

ffi rs.indd 5:7:4:PM/03/31/2015 Page ii

ffi rs.indd 5:7:4:PM/03/31/2015 Page i

AutoCAD®
Platform
Customization
VBA

ffi rs.indd 5:7:4:PM/03/31/2015 Page ii

ffi rs.indd 5:7:4:PM/03/31/2015 Page iii

AutoCAD®
Platform
Customization
VBA

Lee Ambrosius

ffi rs.indd 5:7:4:PM/03/31/2015 Page iv

Senior Acquisitions Editor: Stephanie McComb

Development Editor: Mary Ellen Schutz

Technical Editor: Richard Lawrence

Production Editor: Dassi Zeidel

Copy Editor: Liz Welch

Editorial Manager: Pete Gaughan

Production Manager: Kathleen Wisor

Associate Publisher: Jim Minatel

Book Designers: Maureen Forys, Happenstance Type-O-Rama; Judy Fung

Proofreader: Candace Cunningham

Indexer: Ted Laux

Project Coordinator, Cover: Brent Savage

Cover Designer: Wiley

Cover Image: © Smileyjoanne/iStockphoto.com

Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-118-90044-4 (ebk.)
ISBN: 978-1-118-90698-9 (ebk.)

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechan-
ical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act,
without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for per-
mission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,
fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to the accuracy
or completeness of the contents of this work and specifi cally disclaim all warranties, including without limitation warranties of fi tness for a
particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies contained herein
may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal,
accounting, or other professional services. If professional assistance is required, the services of a competent professional person should be
sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers should be aware that
Internet Web sites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services or to obtain technical support, please contact our Customer Care Department
within the U.S. at (877) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print versions
of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD or DVD that is not included in
the version you purchased, you may download this material at http://booksupport.wiley.com. For more information about Wiley prod-
ucts, visit www.wiley.com.

Library of Congress Control Number: 2015936845

TRADEMARKS: Wiley, the Wiley logo, and the Sybex logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affi liates, in the United States and other countries, and may not be used without written permission.AutoCAD is a registered trademark of
Autodesk, Inc. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product
or vendor mentioned in this book.

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

ffi rs.indd 5:7:4:PM/03/31/2015 Page v

To my friend Kathy Enderby: You were one of the

fi rst people to encourage me to follow my passion for

programming and sharing what I had learned with

others. Thank you for believing in me all those years

ago and for being there when I needed someone to

bounce ideas off—especially during those late-night

scrambles right before deploying a new software

release.

ffi rs.indd 5:7:4:PM/03/31/2015 Page vii

Acknowledgments
I have to give a very special thanks to all the great folks at Sybex, especially Willem Knibbe, for

working on and helping to get this project off the ground after a few years of talking about it.

The next two people I would like to thank are Mary Ellen Schutz and Dassi Zeidel, the develop-

ment and production editors on this book; you two made sure I stayed on track and delivered a

high-quality book. I also want to thank Liz Welch (copyeditor), Candace Cunningham (proof-

reader), and Ted Laux (indexer) for the work you all did on this book.

Thanks to all the folks at Autodesk, who put in the long hours and are dedicated to the

work they do on the Autodesk® AutoCAD® product. I cannot forget one of the most important

individuals on this book, my technical editor, Richard Lawrence. Richard is a great friend who I

met many years ago at Autodesk University. He is a passionate and driven user of AutoCAD and

is always looking to improve the way he uses AutoCAD. Richard, I appreciate everything that

you have done to make this book better. Congrats on making it through your fi rst book as a

technical editor.

ffi rs.indd 5:7:4:PM/03/31/2015 Page viii

ffi rs.indd 5:7:4:PM/03/31/2015 Page ix

About the Author
Lee Ambrosius fi rst started working with AutoCAD R12 for DOS in 1994. As a drafter, he

quickly discovered that every project included lots of repetition. Lee, not being one to settle

for “this is just the way things are,” set out on a path that would redefi ne his career. This new

path would lead him into the wondrous world of customization and programming—which you

might catch him referring to as “the rabbit hole.”

In 1996, Lee began learning the core concepts of customizing the AutoCAD user interface

and AutoLISP. The introduction of VBA in AutoCAD R14 would once again redefi ne how Lee

approached programming solutions for AutoCAD. VBA made it much easier to communicate

with external databases and other applications that supported VBA. It transformed the way

information could be moved between project-management and manufacturing systems.

Not being content with VBA, in 1999 Lee attended his fi rst Autodesk University and began

to learn ObjectARX®. Autodesk University had a lasting impression on him. In 2001, he started

helping as a lab assistant. He began presenting on customizing and programming AutoCAD at

the event in 2004. Along the way he learned how to use the AutoCAD Managed .NET API.

In 2005, Lee decided cubicle life was no longer for him, so he ventured off into the CAD

industry as an independent consultant and programmer with his own company, HyperPics,

LLC. After he spent a few years as a consultant, Autodesk invited him to work on the AutoCAD

team; he has been on the AutoCAD team since 2007. For most of his career at Autodesk, Lee has

worked primarily on customization and end-user documentation. Recently, he has been work-

ing on the AutoLISP, VBA, ObjectARX, .NET, and JavaScript programming documentation.

In addition to working on the AutoCAD documentation, Lee has been involved as a techni-

cal editor or author for various editions of the AutoCAD and AutoCAD LT Bible, AutoCAD for
Dummies, AutoCAD & AutoCAD LT All-in-One Desk Reference for Dummies, AutoCAD 3D Modeling
Workbook for Dummies, and Mastering AutoCAD for Mac. He has also written white papers on

customization for Autodesk and a variety of articles on customization and programming for

AUGIWorld, published by AUGI®.

ffi rs.indd 5:7:4:PM/03/31/2015 Page x

ffi rs.indd 5:7:4:PM/03/31/2015 Page xi

Contents at a Glance

Introduction .xxi

Chapter 1 • Understanding the AutoCAD VBA Environment . 1

Chapter 2 • Understanding Visual Basic for Applications . 21

Chapter 3 • Interacting with the Application and Documents Objects 57

Chapter 4 • Creating and Modifying Drawing Objects . 83

Chapter 5 • Interacting with the User and Controlling the Current View. 113

Chapter 6 • Annotating Objects . 151

Chapter 7 • Working with Blocks and External References . 175

Chapter 8 • Outputting Drawings . 221

Chapter 9 • Storing and Retrieving Custom Data . 247

Chapter 10 • Modifying the Application and Working with Events. 279

Chapter 11 • Creating and Displaying User Forms . 309

Chapter 12 • Communicating with Other Applications . 339

Chapter 13 • Handling Errors and Deploying VBA Projects . 375

Index . 409

ffi rs.indd 5:7:4:PM/03/31/2015 Page xii

ftoc.indd 1:48:10:PM/03/26/2015 Page xiii

Contents

Introduction .xxi

Chapter 1 • Understanding the AutoCAD VBA Environment 1

What Makes Up an AutoCAD VBA Project? . 1

What You’ll Need to Start . 3

Determine If the AutoCAD VBA Environment Is Installed . 3

Install the AutoCAD 2015 VBA Enabler . 4

Getting Started with the VBA Editor . 4

Identifying the Components of a VBA Project. 5

Navigating the VBA Editor Interface. 7

Setting the VBA Environment Options. 11

Managing VBA Programs . 11

Creating a New VBA Project. 12

Saving a VBA Project . 13

Loading and Unloading a VBA Project . 13

Embedding or Extracting a VBA Project. 15

Executing VBA Macros . 16

Accessing the AutoCAD VBA Documentation . 19

Chapter 2 • Understanding Visual Basic for Applications 21

Learning the Fundamentals of the VBA Language . 21

Creating a Procedure . 22

Declaring and Using Variables . 24

Controlling the Scope of a Procedure or Variable . 26

Continuing Long Statements . 27

Adding Comments . 28

Understanding the Differences Between VBA 32- and 64-Bit 29

Exploring Data Types . 30

Working with Objects . 32

Accessing Objects in a Collection. 34

Storing Data in Arrays . 35

Calculating Values with Math Functions and Operators. 38

Manipulating Strings . 39

Converting Between Data Types . 42

Comparing Values . 44

Testing Values for Equality . 44

Comparing String Values . 45

Determining If a Value Is Greater or Less Than Another . 46

XIV | CONTENTS

ftoc.indd 1:48:10:PM/03/26/2015 Page xiv

Checking for Null, Empty, or Nothing Values. 47

Validating Values . 48

Grouping Comparisons . 48

Conditionalizing and Branching Statements. 49

Evaluating If a Condition Is Met . 49

Testing Multiple Conditions . 51

Repeating and Looping Expressions . 52

Repeating Expressions a Set Number of Times . 52

Stepping Through an Array or Collection . 53

Performing a Task While or Until a Condition Is Met . 54

Chapter 3 • Interacting with the Application and Documents Objects . . .57

Working with the Application . 57

Getting Information about the Current AutoCAD Session . 58

Manipulating the Placement of the Application Window . 59

Managing Documents . 60

Working with the Current Drawing . 61

Creating and Opening Drawings. 61

Saving and Closing Drawings . 63

Accessing Information about a Drawing . 66

Manipulating a Drawing Window. 67

Working with System Variables. 68

Querying and Setting Application and

Document Preferences . 70

Executing Commands . 71

Exercise: Setting Up a Project. 72

Creating the DrawingSetup Project . 73

Creating and Saving a New Drawing from Scratch . 74

Inserting a Title Block with the insert Command. 76

Adding Drawing Properties . 78

Setting the Values of Drafting-Related System Variables

and Preferences . 80

Chapter 4 • Creating and Modifying Drawing Objects83

Understanding the Basics of a Drawing-Based Object. 83

Accessing Objects in a Drawing . 88

Working with Model or Paper Space . 89

Creating Graphical Objects. 91

Adding Straight Line Segments . 91

Working with Curved Objects . 92

Working with Polylines . 96

Getting an Object in the Drawing . 99

Modifying Objects . 101

Deleting Objects . 102

Copying and Moving Objects . 102

Rotating Objects . 103

CONTENTS | XV

ftoc.indd 1:48:10:PM/03/26/2015 Page xv

Changing Object Properties . 104

Exercise: Creating, Querying, and Modifying Objects . 105

Creating the DrawPlate Project. 105

Creating the Utilities Class . 106

Defi ning the CLI_DrawPlate Function . 108

Running the CLI_DrawPlate Function . 110

Exporting the Utilities Class . 111

Chapter 5 • Interacting with the User and Controlling

the Current View . 113

Interacting with the User . 113

Requesting Input at the Command Prompt . 114

Providing Feedback to the User . 125

Selecting Objects . 127

Selecting an Individual Object . 127

Working with Selection Sets . 129

Filtering Objects . 132

Performing Geometric Calculations . 134

Calculating a Coordinate Value . 134

Measuring the Distance Between Two Points . 135

Calculating an Angle . 136

Changing the Current View . 137

Zooming and Panning the Current View . 137

Working with Model Space Viewports . 139

Creating and Managing Named Views. 142

Applying Visual Styles. 143

Exercise: Getting Input from the User to

Draw the Plate . 143

Revising the CLI_DrawPlate Function . 144

Revising the Utilities Class . 147

Using the Revised drawplate Function . 149

Chapter 6 • Annotating Objects. 151

Working with Text . 151

Creating and Modifying Text . 151

Formatting a Text String . 153

Controlling Text with Text Styles . 156

Dimensioning Objects . 158

Creating Dimensions . 158

Formatting Dimensions with Styles . 160

Assigning a Dimension Style . 162

Creating and Modifying Geometric Tolerances . 163

Adding Leaders . 164

Working with Multileaders . 164

Creating and Modifying Legacy Leaders . 167

Organizing Data with Tables . 168

XVI | CONTENTS

ftoc.indd 1:48:10:PM/03/26/2015 Page xvi

Inserting and Modifying a Table . 168

Formatting Tables . 169

Assigning a Table Style . 170

Creating Fields . 170

Exercise: Adding a Label to the Plate . 171

Revising the CLI_DrawPlate Function . 171

Revising the Utilities Class . 173

Using the Revised drawplate Function . 173

Chapter 7 • Working with Blocks and External References175

Managing Block Defi nitions. 175

Creating a Block Defi nition . 176

Adding Attribute Defi nitions . 178

Modifying and Redefi ning a Block Defi nition. 181

Determining the Type of Block Defi nition . 182

Inserting and Working with Block References . 183

Inserting a Block Reference. 183

Modifying a Block Reference . 184

Accessing the Attributes of a Block . 187

Working with Dynamic Properties . 189

Managing External References . 192

Working with Xrefs . 192

Attaching and Modifying Raster Images . 197

Working with Underlays . 199

Listing File Dependencies. 201

Exercise: Creating and Querying Blocks . 202

Creating the RoomLabel Project . 203

Creating the RoomLabel Block Defi nition . 203

Inserting a Block Reference Based on the RoomLabel Block Defi nition. 205

Prompting the User for an Insertion Point and a Room Number. 206

Adding Room Labels to a Drawing . 208

Creating the FurnTools Project . 209

Moving Objects to Correct Layers . 210

Creating a Basic Block Attribute Extraction Program. 212

Using the Procedures of the FurnTools Project . 219

Chapter 8 • Outputting Drawings . 221

Creating and Managing Layouts . 221

Creating a Layout . 222

Working with a Layout . 222

Controlling the Display of Layout Tabs . 223

Displaying Model Space Objects with Viewports . 223

Adding a Floating Viewport . 224

Setting a Viewport as Current . 225

Modifying a Floating Viewport . 225

Controlling the Output of a Layout. 228

CONTENTS | XVII

ftoc.indd 1:48:10:PM/03/26/2015 Page xvii

Creating and Managing Named Page Setups . 229

Specifying an Output Device and a Paper Size . 229

Setting a Plot Style as Current . 232

Defi ning the Area to Output. 234

Changing Other Related Output Settings . 235

Plotting and Previewing a Layout. 235

Exporting and Importing File Formats . 237

Exercise: Adding a Layout to Create a Check Plot . 238

Creating the Layout . 239

Adding and Modifying a Plot Confi guration . 240

Inserting a Title Block . 241

Displaying Model Space Objects with a Viewport . 242

Putting It All Together . 242

Testing the CheckPlot Procedure . 246

Chapter 9 • Storing and Retrieving

Custom Data .247

Extending Object Information . 247

Working with Xdata . 248

Defi ning and Registering an Application Name . 249

Attaching Xdata to an Object . 249

Querying and Modifying the Xdata Attached to an Object 252

Removing Xdata from an Object . 258

Selecting Objects Based on Xdata . 258

Creating and Modifying a Custom Dictionary . 259

Accessing and Stepping through Dictionaries. 260

Creating a Custom Dictionary . 262

Storing Information in a Custom Dictionary . 263

Managing Custom Dictionaries and Entries . 264

Storing Information in the Windows Registry . 265

Creating and Querying Keys and Values . 265

Editing and Removing Keys and Values. 267

Exercise: Storing Custom Values for the Room Labels Program 268

Attaching Xdata to the Room Label Block after Insertion . 269

Revising the Main RoomLabel Procedure to Use the

Windows Registry . 269

Testing the Changes to the RoomLabel Procedure. 272

Persisting Values for the Room Label Procedure with a Custom Dictionary 273

Retesting the RoomLabel Procedure . 275

Selecting Room Label Blocks . 276

Chapter 10 • Modifying the Application and Working with Events 279

Manipulating the AutoCAD User Interface. 279

Managing Menu Groups and Loading Customization Files 280

Working with the Pull-Down Menus and Toolbars . 281

Controlling the Display of Other User-Interface Elements . 293

XVIII | CONTENTS

ftoc.indd 1:48:10:PM/03/26/2015 Page xviii

Using External Custom Programs. 294

Working with Events . 295

Exercise: Extending the User Interface and Using Events . 300

Loading the acp.cuix File . 301

Specifying the Location of DVB Files . 302

Adding the Document Events. 303

Implementing an Application Event . 304

Defi ning the AcadStartup Procedure. 305

Testing the AcadStartup Procedure . 306

Testing the Application and Document Events . 307

Chapter 11 • Creating and Displaying User Forms 309

Adding and Designing a User Form. 309

Adding a User Form to a VBA Project. 309

Considering the Design of a User Form . 310

Placing and Arranging Controls on a User Form . 312

Placing a Control on a User Form . 312

Deciding Which Control to Use . 313

Grouping Related Controls . 316

Managing Controls on a User Form . 317

Changing the Appearance of a User Form or Control . 319

Defi ning the Behavior of a User Form or Control. 321

Displaying and Loading a User Form. 324

Showing and Hiding a User Form . 324

Loading and Unloading a User Form . 325

Exercise: Implementing a User Form for the DrawPlate Project 326

Adding the User Form . 326

Adding Controls to the User Form . 327

Displaying a User Form. 330

Implementing Events for a User Form and Controls . 331

Testing the User Form and Controls . 336

Chapter 12 • Communicating with Other Applications 339

Referencing a Programming Library . 339

Creating and Getting an Instance of an Object. 340

Creating a New Instance of an Object . 341

Getting an In-Memory Instance of an Object. 344

Accessing a Drawing File from outside of AutoCAD. 346

Working with Microsoft Windows . 347

Accessing the Filesystem . 348

Manipulating the Windows Shell . 353

Using the Win32 API . 355

Reading and Writing Text Files . 356

Opening and Creating a File. 356

Reading Content from a File . 358

CONTENTS | XIX

ftoc.indd 1:48:10:PM/03/26/2015 Page xix

Writing Content to a File . 359

Closing a File . 360

Parsing Content in an XML File. 360

Working with Microsoft Offi ce Applications . 363

Exercise: Reading and Writing Data . 365

Creating Layers Based on Data Stored in a Text File . 366

Searching for a File in the AutoCAD Support Paths. 369

Adding Layers to a Drawing with the LoadLayers Procedure 370

Writing Bill of Materials to an External File. 371

Using the FurnBOMExport Procedure . 374

Chapter 13 • Handling Errors and Deploying VBA Projects 375

Catching and Identifying Errors . 375

Recovering and Altering Execution after an Error . 375

Getting Information About the Recent Error . 378

Debugging a VBA Project . 381

Debugging Through Messages. 381

Using the VBA Editor Debug Tools . 383

Deploying a VBA Project . 388

Loading a VBA Project. 388

Specifying the Location of and Trusting a Project . 392

Starting a Macro with AutoLISP or a Command Macro . 394

Grouping Actions into a Single Undo . 395

Protecting a Project. 396

Exercise: Deploying the DrawPlate VBA Project. 396

Stepping Through the BadCode VBA Project . 397

Implementing Error Handling for the Utility Procedures. 399

Implementing Error Handling and Undo Grouping for the Main Procedures . . . 401

Confi guring the AutoCAD Support and Trusted Paths . 405

Creating DrawPlate_VBA.bundle . 405
Deploying and Testing DrawPlate_VBA.bundle . 406

Index . 409

fl ast.indd 2:52:16:PM/03/31/2015 Page xxi

Introduction

Welcome to AutoCAD Platform Customization: VBA! Have you ever thought to yourself, why

doesn’t the Autodesk® AutoCAD® program include every feature I need? Why isn’t it stream-

lined for the type of work I perform? If so, you are not alone. AutoCAD at its core is a drafting

platform that, through programming, can be shaped and molded to more effi ciently complete

the tasks you perform on a daily basis and enhance your company’s workfl ows. Take a deep

breath. I did just mention programming, but programming isn’t something to fear. At fi rst, just

the idea of programming makes many people want to run in the opposite direction—myself

included. The productivity gains are what propelled me forward. Programming isn’t all that dif-

ferent from anything else you’ve tried doing for the fi rst time.

In many ways, learning to program is much like learning a foreign language. For many new

to Visual Basic for Applications (VBA), the starting place is learning the basics: the syntax of the

programming language and how to leverage commands and system variables. Executing com-

mands and working with system variables using the SendCommand and PostCommand methods

can be a quick way to get started and become comfortable with VBA. After you are comfortable

with the syntax of VBA and the SendCommand and PostCommand functions, you can begin to

learn how to access the AutoCAD Object library to develop more complex and robust programs.

About Th is Book
AutoCAD Platform Customization: VBA provides you with an understanding of the VBA

programming language and how it can be used in combination with the AutoCAD Object

library to improve your productivity. This book is designed to be more than just an introduction

to VBA and the AutoCAD Object library; it is a resource that can be used time and again when

developing VBA programs for use with AutoCAD. As you page through this book, you will

notice that it contains sample code and exercises that are based on real-world solutions.

This book is the third and fi nal book in a series that focuses on customizing and

programming AutoCAD. The three-book series as a whole is known as AutoCAD Platform
Customization: User Interface, AutoLISP, VBA, and Beyond, which will be available as a printed

book in 2015. Book 1 in the series, AutoCAD Platform Customization: User Interface and Beyond, was

published in early 2014 and focused on CAD standards and general customization of AutoCAD;

Book 2, AutoCAD Platform Customization: AutoLISP, was published in mid-2014 and covers the

AutoLISP programming language.

XXII | INTRODUCTION

fl ast.indd 2:52:16:PM/03/31/2015 Page xxii

Is Th is Book for You?
AutoCAD Platform Customization: VBA covers many aspects of VBA programming for AutoCAD

on Windows. If any of the following are true, this book will be useful to you:

 ◆ You want to develop and load custom programs with the VBA programming language for

use in the AutoCAD drawing environment.

 ◆ You want to automate the creation and manipulation of drawing objects.

 ◆ You want to automate repetitive tasks.

 ◆ You want to help manage and enforce CAD standards for your company.

NOTE VBA programming isn’t supported for AutoCAD on Mac OS.

VBA in AutoCAD
VBA is often overlooked as one of the options available to extend the AutoCAD program. There

is no additional software to purchase, but you must download and install a release-specifi c sec-

ondary component to use VBA. You can leverage VBA to perform simple tasks, such as inserting

a title block with a specifi c insertion point, scale, and rotation and placing the block reference on

a specifi c layer. To perform the same tasks manually, end users would have to fi rst set a layer as

current, choose the block they want to insert, and specify the properties of the block, which in

the case of a title block are almost always the same.

The VBA programming language and AutoCAD Object library can be used to do the

following:

 ◆ Create and manipulate graphical objects in a drawing, such as lines, circles, and arcs

 ◆ Create and manipulate nongraphical objects in a drawing, such as layers, dimension styles,

and named views

 ◆ Perform mathematical and geometric calculations

 ◆ Request input from or display messages to the user at the Command prompt

 ◆ Interact with fi les and directories in the operating system

 ◆ Read from and write to external fi les

 ◆ Connect to applications that support ActiveX and COM

 ◆ Display user forms and get input from the end user

VBA code statements are entered into the Visual Basic Editor and stored in a DVB fi le. Once

a VBA project has been loaded, you can execute the macros through the Macros dialog box.

Unlike standard AutoCAD commands, macros cannot be executed from the Command prompt,

but once executed, a macro can prompt users for values at the Command prompt or with a user

form. It is possible to execute a macro from a command macro that is activated with a command

button displayed in the AutoCAD user interface or as a tool on a tool palette.

INTRODUCTION | XXIII

fl ast.indd 2:52:16:PM/03/31/2015 Page xxiii

What to Expect
This book is organized to help you learn VBA fundamentals and how to use the objects in

the AutoCAD Object library. Additional resources and fi les containing the example code

found throughout this book can be found on the companion web page, www.sybex.com/go/

autocadcustomization.

Chapter 1: Understanding the AutoCAD VBA Environment In this chapter, you’ll get an

introduction to the Visual Basic Editor. I begin by showing you how to verify whether the

VBA environment for AutoCAD has been installed and, if not, how to install it. After that,

you are eased into navigating the VBA Editor and managing VBA programs. The chapter

wraps up with learning how to execute macros and access the help documentation.

Chapter 2: Understanding the Visual Basic for Application In this chapter, you’ll learn

the fundamentals of the VBA programming language and how to work with objects. VBA

fundamentals include a look at the syntax and structure of a statement, how to use a func-

tion, and how to work with variables. Beyond syntax and variables, you learn to group mul-

tiple statements into a custom procedure.

Chapter 3: Interacting with the Application and Documents Objects In this chapter,

you’ll learn to work with the AutoCAD application and manage documents. Many of the

tasks you perform with an AutoCAD VBA program require you to work with either the

application or a document. For example, you can get the objects in a drawing and even access

end-user preferences. Although you typically work with the current document, VBA allows

you to work with all open documents and create new documents. From the current docu-

ment, you can execute commands and work with system variables from within a VBA

program, which allows you to leverage and apply your knowledge of working with

commands and system variables.

Chapter 4: Creating and Modifying Drawing Objects In this chapter, you’ll learn to

create and modify graphical objects in model space with VBA. Graphical objects represent

the drawing objects, such as a line, an arc, or a circle. The methods and properties of an

object are used to modify and obtain information about the object. When working with the

objects in a drawing, you can get a single object or step through all objects in a drawing.

Chapter 5: Interacting with the User and Controlling the Current View In this chapter,

you’ll learn to request input from an end user and manipulate the current view of a drawing.

Based on the values provided by the end user, you can then determine the end result of the

program. You can evaluate the objects created or consider how a drawing will be output and

use that information to create named views and adjust the current view in which objects are

displayed.

Chapter 6: Annotating Objects In this chapter, you’ll learn how to create and modify

annotation objects. Typically, annotation objects are not part of the fi nal product that is built

or manufactured based on the design in the drawing. Rather, annotation objects are used to

communicate the features and measurements of a design. Annotation can be a single line of

text that is used as a callout for a leader, a dimension that indicates the distance between two

http://www.sybex.com/go/autocadcustomization
http://www.sybex.com/go/autocadcustomization

XXIV | INTRODUCTION

fl ast.indd 2:52:16:PM/03/31/2015 Page xxiv

drill holes, or a table that contains quantities and information about the windows and doors

in a design.

Chapter 7: Working with Blocks and External References In this chapter, you’ll learn how

to create, modify, and manage block defi nitions. Model space in a drawing is a special named

block defi nition, so working with block defi nitions will feel familiar. Once you create a block

defi nition, you will learn how to insert a block reference and work with attributes along with

dynamic properties. You’ll complete the chapter by learning how to work with externally

referenced fi les.

Chapter 8: Outputting Drawings In this chapter, you will learn how to output the graphi-

cal objects in model space or on a named layout to a printer, plotter, or electronic fi le. Named

layouts will be used to organize graphical objects for output, including title blocks, annota-

tion, fl oating viewports, and many others. Floating viewports will be used to control the

display of objects from model space on a layout at a specifi c scale. After you defi ne and con-

fi gure a layout, you learn to plot and preview a layout. The chapter wraps up with covering

how to export and import fi le formats.

Chapter 9: Storing and Retrieving Custom Data In this chapter, you will learn how to

store custom information in a drawing or in the Windows Registry. Using extended data

(Xdata), you will be able to store information that can be used to identify a graphical object

created by your program or defi ne a link to a record in an external database. In addition

to attaching information to an object, you can store data in a custom dictionary that isn’t

attached to a specifi c graphical object in a drawing. Both Xdata and custom dictionaries can

be helpful in making information available between drawing sessions; the Windows Registry

can persist data between sessions.

Chapter 10: Modifying the Application and Working with Events In this chapter, you

will learn how to customize and manipulate the AutoCAD user interface. You’ll also learn

how to load and access externally defi ned custom programs and work with events. Events

allow you to respond to an action that is performed by the end user or the AutoCAD applica-

tion. There are three main types of events that you can respond to: application, document,

and object.

Chapter 11: Creating and Displaying User Forms In this chapter, you will learn how to

create and display user forms. User forms provide a more visual approach to requesting

input from the user.

Chapter 12: Communicating with Other Applications In this chapter, you will learn how

to work with libraries provided by other applications. These libraries can be used to access

features of the Windows operating system, read and write content in an external text or XML

fi le, and even work with the applications that make up Microsoft Offi ce.

Chapter 13: Handling Errors and Deploying VBA Projects In this chapter, you will learn

how to catch and handle errors that are caused by the incorrect use of a function or the

improper handling of a value that is returned by a function. The Visual Basic Editor provides

tools that allow you to debug code statements, evaluate values assigned to user-defi ned

variables, identify where within a program an error has occurred, and determine how errors

should be handled. The chapter wraps everything up with covering how to deploy a VBA

project on other workstations for use by individuals at your company.

INTRODUCTION | XXV

fl ast.indd 2:52:16:PM/03/31/2015 Page xxv

Bonus Chapter 1: Working with 2D Objects and Object Properties In this chapter, you

build on the concepts covered in Chapter 4, “Creating and Modifying Drawing Objects.” You

will learn to create additional types of 2D objects and use advanced methods of modifying

objects; you also learn to work with complex 2D objects such as regions and hatch fi lls. The

management of layers and linetypes and the control of the appearance of objects are also

covered.

Bonus Chapter 2: Modeling in 3D Space In this chapter, you learn to work with objects in

3D space and 3D with objects. 3D objects can be used to create a model of a drawing which

can be used to help visualize a design or detect potential design problems. 3D objects can be

viewed from different angles and used to generate 2D views of a model that can be used to

create assembly directions or shop drawings.

Bonus Chapter 3: Development Resources In this chapter, you discover resources that

can help expand the skills you develop from this book or locate an answer to a problem you

might encounter. I cover development resources, as well as places you might be able to obtain

instructor-led training and interact with fellow users on extending AutoCAD. The online

resources listed cover general customization, AutoLISP, and VBA programming in AutoCAD.

NOTE Bonus Chapter 1, Bonus Chapter 2, and Bonus Chapter 3 are located on the companion

website.

Companion Website
An online counterpart to this book, the companion website contains the sample fi les required

to complete the exercises found in this book, in addition to the sample code and project fi les

used to demonstrate some of the programming concepts explained in this book. In addition

to the sample fi les and code, the website contains resources that are not mentioned in this

book, such as the bonus chapters. The companion website can be found at www.sybex.com/go/

autocadcustomization.

Other Information
This book assumes that you know the basics of your operating system and AutoCAD 2009 or

later. When appropriate, I indicate when a feature does not apply to a specifi c operating system

or release of AutoCAD. Most of the images in this book were taken using AutoCAD 2014 in

Windows 8.

Neither AutoCAD LT® nor AutoCAD running on Mac OS support the VBA programming

platform, none of the content in this book can be used if you are working on Mac OS.

Styles and Conventions of Th is Book
This book uses a number of styles and character formats—bold, italic, monotype face, and all

uppercase or lowercase letters, among others—to help you distinguish between the text you

read, sample code you can try, text that you need to enter at the AutoCAD Command prompt, or

the name of an object class or method in one of the programming languages.

http://www.sybex.com/go/autocadcustomization
http://www.sybex.com/go/autocadcustomization

XXVI | INTRODUCTION

fl ast.indd 2:52:16:PM/03/31/2015 Page xxvi

As you read through this book, keep the following conventions in mind:

 ◆ User-interface selections are represented by one of the following methods:

 ◆ Click the Application button ➢ Options.

 ◆ On the ribbon, click the Manage tab ➢ Customization ➢ User Interface.

 ◆ On the menu bar, click Tools ➢ Customize ➢ Interface.

 ◆ In the drawing window, right-click and click Options.

 ◆ Keyboard input is shown in bold (for example, type cui and press Enter).

 ◆ Prompts that are displayed at the AutoCAD Command prompt are displayed as mono-

space font (for example, Specify a start point:).

 ◆ AutoCAD command and system variable names are displayed in all lowercase letters with

a monospace font (for example, line or clayer).

 ◆ VBA function and AutoCAD Object library member names are displayed in mixed-case

letters with a monospace font (for example, Length or SendCommand).

 ◆ Example code and code statements that appear within a paragraph are displayed in mono-

space font. Code might look like one of the following:

 ◆ MsgBox "ObjectName: " & oFirstEnt.ObjectName

 ◆ The MsgBox method can be used to display a text message to the user

 ◆ ' Gets the first object in model space

Contacting the Author
I hope that you enjoy AutoCAD Platform Customization: VBA and that it changes the way you

think about completing your day-to-day work. If you have any feedback or ideas that could

improve this book, you can contact me using the following address:

Lee Ambrosius: lee_ambrosius@hyperpics.com

On my blog and website, you’ll fi nd additional articles on customization and samples that I

have written over the years. You’ll fi nd these resources here:

Beyond the UI: http://hyperpics.blogs.com

HyperPics: www.hyperpics.com

If you encounter any problems with this publication, please report them to the publisher.

Visit the book’s website, www.sybex.com/go/autocadcustomizat ion, and click the Errata link

to open a form and submit the problem you fou n d.

mailto:ambrosius@hyperpics.com
http://hyperpics.blogs.com
http://www.hyperpics.com
http://www.sybex.com/go/autocadcustomizat

c01.indd 4:35:54:PM/04/06/2015 Page 1

Chapter 1

Understanding the AutoCAD VBA
Environment

More than 15 years ago, Visual Basic (VB) was the fi rst modern programming language I

learned. This knowledge was critical to taking my custom programs to a whole new level. VB

allows you to develop stand-alone applications that can communicate with other programs

using Microsoft’s Object Linking and Embedding (OLE) and ActiveX technologies. Autodesk®

AutoCAD® supports a variant of VB known as Visual Basic for Applications (VBA) that requires

a host application to execute the programs you write; it can’t be used to develop stand-alone

executable fi les.

I found VB easier to learn than AutoLISP® for a couple of reasons. First, there are, in general,

many more books and online resources dedicated to VB. Second, VB syntax feels more natural.

By natural, I mean that VB syntax reads as if you are explaining a process to someone in your

own words, and it doesn’t contain lots of special characters and formatting like many other pro-

gramming languages.

As with learning anything new, there will be a bit of hesitation on your part as you approach

your fi rst projects. This chapter eases you into the AutoCAD VBA environment and the VB pro-

gramming language.

What Makes Up an AutoCAD VBA Project?
Custom programs developed with VBA implemented in the AutoCAD program are stored in a

project that has a .dvb fi le extension. VBA projects contain various objects that defi ne a custom

program. These objects include the following:

 ◆ Code modules that store the custom procedures and functions that defi ne the primary

functionality of a custom program

 ◆ UserForms that defi ne the dialog boxes to be displayed by a custom program

 ◆ Class modules that store the defi nition of a custom object for use in a custom program

 ◆ Program library references that contain the dependencies a custom program relies on to

defi ne some or all of the functionality

The AutoCAD VBA Editor is an integrated development environment (IDE) that allows for

the creation and execution of macros stored in a project fi le. A macro is a named block of code

that can be executed from the AutoCAD user interface or privately used within a project. You

can also enter and execute a single VBA statement at the AutoCAD Command prompt using the

vbastmt command.

2 | CHAPTER 1 UNDERSTANDING THE AUTOCAD VBA ENVIRONMENT

c01.indd 4:35:54:PM/04/06/2015 Page 2

The most recent generation of VB is known as VB.NET. Although VB and VB.NET have

similar syntax, they are not the same. VBA, whether in AutoCAD or other programs such as

Microsoft Word, is based on VB6 and not VB.NET. If you are looking for general information on

VBA, search the Internet using the keywords VBA and VB6.

If You Have Conversations Like This, You Can Code Like This

Th e summer intern had one job—add a layer and a confi dentiality note to a series of 260 production

drawings. September arrived, the intern left for school, and now your manager is in your cubicle.

“Half of these drawings are missing that confi dentiality note Purchasing asked for. I need you to

add that new layer, name it Disclaimer, and then add the confi dentiality note as multiline text

to model space. Th e note should be located on the new Disclaimer layer at 0.25,0.1.75,0 with

a height of 0.5, and the text should read Confi dential: Th is drawing is for use by internal

employees and approved vendors only. Be sure to check to see if paper space is active. If it

is, then set model space active per the new standards before you save each drawing,” he says.

“I can do that,” you respond.

“Can you manage it by close of day tomorrow? The parts are supposed to go out for quote on

Wednesday morning.”

“Sure,” you tell him, knowing that a few lines of VBA code will allow you to make the changes quickly.

So, you sit down and start to code. Th e conversation-to-code translation fl ows smoothly. (Notice

how many of the words in the conversation fl ow right into the actual VBA syntax.)

With ThisDrawing

 .Layers.Add "Disclaimer"

 Dim objMText As AcadMText

 Dim insPt(2) As Double

 insPt(0) = 0.25: insPt(1) = 1.75: insPt(2) = 0

 Set objMText = .ModelSpace.AddMText(insPt, 15, _

 "Confidential: This drawing is for use by internal " & _

 "employees and approved vendors only")

 objMText.Layer = "Disclaimer"

 objMText.Height = 0.5

 If .ActiveSpace = acPaperSpace Then

 .ActiveSpace = acModelSpace

 End If

 .Save

End With

WHAT YOU’LL NEED TO START | 3

c01.indd 4:35:54:PM/04/06/2015 Page 3

What You’ll Need to Start
To complete the exercises in this chapter and create and edit VBA project fi les, you must have

the following:

 ◆ AutoCAD 2006 or later

 ◆ Autodesk AutoCAD VBA Enabler for AutoCAD 2010 or later

Beginning with AutoCAD 2010, the AutoCAD VBA Enabler is an additional component that

must be downloaded and installed to enable VBA support in the AutoCAD drawing environ-

ment. (For AutoCAD 2000 through AutoCAD 2009, VBA capabilities were part of a standard

install.)

NOTE Th e Autodesk website (http://www.autodesk.com/vba-download) allows you to

download the Autodesk AutoCAD VBA Enabler for AutoCAD 2014 and 2015 (Microsoft Visual

Basic for Applications Module). If you need the VBA Enabler for AutoCAD 2010 through 2013, you

will want to check with your local Autodesk Value Added Reseller.

Without the VBA Enabler, you won’t have access to the VBA Editor and can’t create or

execute VBA code contained in a DVB fi le with AutoCAD 2010 and later releases. All of the

VBA commands were available without an additional download and install. Changes in the

later AutoCAD releases were made due to Microsoft’s planned deprecation of the VBA technol-

ogy and editor, only to eventually extend its life cycle because of its continued importance to

Microsoft Offi ce. Microsoft planned to move to Visual Studio Tools for Applications (VSTA) as

the replacement for VBA, but the company backed off because there was no easy migration from

VBA to VSTA.

NOTE Although I mention AutoCAD 2006 or later, everything covered in this chapter should

work without any problems going all the way back to AutoCAD 2000. Th e fi rst release of the

AutoCAD program that supported VBA was AutoCAD R14, and much has remained the same

since then as well, with the exception of being able to work with multiple documents in AutoCAD

2000 and later.

Determine If the AutoCAD VBA Environment Is Installed
Prior to working with the AutoCAD VBA Editor, you must ensure that the VBA environment is

installed on your workstation. The following steps explain how to determine whether VBA is

installed and, if necessary, how to download the AutoCAD VBA environment for installation.

These steps are important if you are using AutoCAD 2010 or later.

 1. Launch AutoCAD if it isn’t already running.

 2. At the Command prompt, type vbaide and press Enter.

 3. If the VBA - Not Installed message box is displayed, the AutoCAD VBA environment

hasn’t been installed. Continue to the next step.

 4. Click the http://www.autodesk.com/vba-download link to open your system’s default

web browser to the download website.

http://www.autodesk.com/vba-download
http://www.autodesk.com/vba-download

4 | CHAPTER 1 UNDERSTANDING THE AUTOCAD VBA ENVIRONMENT

c01.indd 4:35:54:PM/04/06/2015 Page 4

 5. Click the link for the AutoCAD VBA Enabler that matches the version of AutoCAD

installed on your workstation.

 6. Save the AutoCAD VBA Enabler to a folder on your local workstation.

Install the AutoCAD 2015 VBA Enabler
After downloading the AutoCAD 2015 VBA Enabler using the steps explained in the previous

section, follow these steps to install it:

 1. Close the AutoCAD program and double-click the downloaded self-extracting executable

for the AutoCAD VBA module.

 2. In the Extract To message, accept the default destination location and click OK.

 3. When the AutoCAD VBA Enabler installer opens, click Install.

 4. On the next page of the installer, accept the default destination location and click Install.

 5. On the Installation Complete page, click Finish.

 6. Launch AutoCAD.

 7. At the Command prompt, type vbaide and press Enter.

The VBA Editor is displayed, indicating that the AutoCAD VBA environment has been

installed.

NOTE If you downloaded the VBA Enabler for a diff erent release of the AutoCAD program,

follow the on-screen instructions for that release of the VBA Enabler.

Getting Started with the VBA Editor
The VBA Editor (see Figure 1.1) is the authoring environment used to create custom programs

that are stored in a VBA project. The following tasks can be performed from the VBA Editor:

 ◆ Access and identify the components in a VBA project

 ◆ View and edit the code and components stored in a loaded VBA project

 ◆ Debug the code of a procedure during execution

 ◆ Reference programming libraries

 ◆ Display contextual help based on the code or component being edited

Any of the following methods can be used to display the VBA Editor:

 ◆ On the ribbon, click the Manage tab ➢ Applications panel ➢ Visual Basic Editor.

 ◆ At the Command prompt, type vbaide and press Enter.

 ◆ When the VBA Manager is open, click Visual Basic Editor.

 ◆ When loading a VBA project, in the Open VBA Project dialog box, check the Open Visual

Basic Editor check box before clicking Open.

GETTING STARTED WITH THE VBA EDITOR | 5

c01.indd 4:35:54:PM/04/06/2015 Page 5

Figure 1.1

Th e VBA Editor

allows for the devel-

opment of a VBA

program

Code editor window

Project Explorer

Properties window

Identifying the Components of a VBA Project
VBA supports four types of components to defi ne the functionality of a custom program. Each

component can be used to store code, but the code in each component serves a distinct purpose

within a VBA project. Before you begin learning the basic features of the VBA Editor, you should

have a basic understanding of the component types in a VBA project.

The following provides an overview of the component types:

Code Module Code modules, also referred to as standard code modules, are used to store

procedures and defi ne any global variables for use in the module or globally across the VBA

project. I recommend using code modules to store procedures that can be executed from the

AutoCAD user interface or used across multiple projects.

When you add a new code module to a VBA project, you should give the module a meaning-

ful name and not keep the default name of Module1, Module2, and so on. Standard industry

naming practice is to add the prefi x of bas to the name of the module. For example, you

might name a module that contains utility procedures as basUtilities. I explain how to

defi ne procedures and variables in the “Learning the Fundamentals of the VBA Language”

section in Chapter 2, “Understanding Visual Basic for Applications.”

Class Module Class modules are used to defi ne a custom class—or object. Custom classes

aren’t as common as code modules in a VBA project, but they can be helpful in organizing

and simplifying code. The variables and procedures defi ned in a class module are hidden

from all other components in a VBA project, unless an instance of the class is created as part

of a procedure in another component.

When you add a new class module to a VBA project, you should give the module a meaning-

ful name and not keep the default name of Class1, Class2, and so on. Standard industry

naming practice is to add the prefi x of cls to the name of the module. For example, you

might name a module that contains a custom class named employee as clsEmployee. I

explain how to defi ne procedures and variables and work with objects in the “Learning the

Fundamentals of the VBA Language” section in Chapter 2.

6 | CHAPTER 1 UNDERSTANDING THE AUTOCAD VBA ENVIRONMENT

c01.indd 4:35:54:PM/04/06/2015 Page 6

ThisDrawing ThisDrawing is a specially named object that represents the current draw-

ing and is contained in each VBA project. The ThisDrawing component can be used to defi ne

events that execute code based on an action performed by the user or the AutoCAD program.

Variables and procedures can be defi ned in the ThisDrawing component, but I recommend

storing only the variables and procedures related to the current drawing in the ThisDrawing

component. All other code should be stored in a code module. I explain how to work with the

current drawing and events in Chapter 3, “Interacting with the Application and Documents

Objects,” and Chapter 10, “Modifying the Application and Working with Events.”

UserForm UserForms are used to defi ne custom dialog boxes for use in a VBA program. A

UserForm can contain controls that present messages to the user and allow the user to pro-

vide input. When you add a new UserForm to a VBA project, you should give the UserForm

a meaningful name and not keep the default name of UserForm1, UserForm2, and so on.

Standard industry naming practice is to add the prefi x of frm to the name of the UserForm.

For example, you might name a UserForm that contains a dialog box that draws a bolt as

frmDrawBolt. I explain how to create and display a UserForm in Chapter 11, “Creating and

Displaying User Forms.”

The following explains how to add a new component to a VBA project and change its name:

 1. In the VBA Editor with a project loaded, on the menu bar, click Insert.

 2. Click UserForm, Module, or Class Module to add a component of that type to the VBA

project.

 3. In the Project Explorer, select the new component.

 4. In the Properties window, in the (Name) fi eld, type a new name and press Enter.

Using Components in Multiple VBA Projects

A component added to a VBA project can be exported, and then imported into another VBA project.

Exporting a component creates a copy of that component; any changes to the component in the

original VBA project don’t aff ect the exported copy of the component. Importing the component

into a VBA project creates a copy of the component in that VBA project.

Th e following steps can be used to export a VBA component to a fi le:

 1. In the VBA Editor, Project Explorer, select the component to export.

 2. On the menu bar, click File ➢ Export File.

 3. In the Export File dialog box, browse to the location to store the exported fi le and enter a fi lename.

Click Save.

Th e following steps can be used to import an exported fi le into a VBA project:

 1. In the VBA Editor, Project Explorer, select a loaded project to set it current.

 2. On the menu bar, click File ➢ Import File.

 3. In the Import File dialog box, browse to and select the exported fi le. Click Open.

GETTING STARTED WITH THE VBA EDITOR | 7

c01.indd 4:35:54:PM/04/06/2015 Page 7

Navigating the VBA Editor Interface
The VBA Editor interface contains a variety of tools and windows that are used to manage and

edit the components and code stored in a VBA project. While all of the tools and windows in the

VBA Editor will be important over time, there are four windows that you should have a basic

understanding of when fi rst getting started:

 ◆ Project Explorer

 ◆ Properties window

 ◆ Code editor window

 ◆ Object Browser

Accessing Components in a VBA Project with the Project Explorer

The Project Explorer window (see Figure 1.2) lists all of the VBA projects that are currently

loaded into the AutoCAD drawing environment and the components of each loaded project. By

default, the Project Explorer should be displayed in the VBA Editor, but if it isn’t you can display

it by clicking View ➢ Project Explorer or pressing Ctrl+R.

Figure 1.2

Th e Project Explorer

lists loaded projects

and components

When the Project Explorer is displayed, you can

 ◆ Select a project to set it as the current project; the name of the current project is shown in

bold. Some tools in the VBA Editor work on only the current project.

 ◆ Expand a project to access its components.

 ◆ Toggle the display style for components; alphabetically listed or grouped by type in

folders.

 ◆ Double-click a component to edit its code or UserForm in an editor window.

 ◆ Right-click to export, import, or remove a component.

Using the Properties Window

The Properties window (see Figure 1.3) allows you to change the name of a component in a

loaded VBA project or modify the properties of a control or UserForm. Select a component or

UserForm from the Project Explorer, or a control to display its properties in the Properties win-

dow. Click in a property fi eld, and enter or select a new value to change the current value of the

property. The Properties window is displayed by default in the VBA Editor, but if it isn’t you can

display it by clicking View ➢ Properties Window or pressing F4.

8 | CHAPTER 1 UNDERSTANDING THE AUTOCAD VBA ENVIRONMENT

c01.indd 4:35:54:PM/04/06/2015 Page 8

Figure 1.3

Modify the proper-

ties of a component,

UserForm, or

control

Editing Code and Class Modules in Editor Windows

A code editor window (see Figure 1.4) is where you will write, edit, and debug code statements

that are used to make up a custom program. You display a code editor window by doing one of

the following in the Project Explorer:

 ◆ Double-clicking a code or class module

 ◆ Right-clicking a UserForm and then clicking View Code

Figure 1.4

Edit code state-

ments stored in

a code or class

module.

Procedure drop-down listObject drop-down list

Margin indicator bar

The code editor window supports many common editing tools: copy and paste, fi nd and

replace, and many others. In addition to common editing tools, it supports tools that are

designed specifi cally for working with VBA code statements, and some of these tools allow you

to accomplish the following:

 ◆ Autocomplete a word as you type

 ◆ Find and replace text across all components in a VBA project

GETTING STARTED WITH THE VBA EDITOR | 9

c01.indd 4:35:54:PM/04/06/2015 Page 9

 ◆ Comment and uncomment code statements

 ◆ Add bookmarks to allow you to move between procedures and code statements

 ◆ Set breakpoints for debugging

The text area is the largest area of the code editor window and where you will spend most of

your time. The Object drop-down list typically is set to (General), which indicates you want to

work with the General Declaration area of the code window. When working in the code editor

window of a UserForm, you can select a control or the UserForm to work with from the Object

drop-down list. The Object drop-down list is also used when working with events.

Once an object is selected, a list of available events or procedures for the selected object is

displayed in the Procedure drop-down list. Select a procedure from the drop-down list to insert

the basic structure of that procedure. Enter the code statements to execute when the procedure is

executed. I explain how to work with events in Chapter 10 and UserForms in Chapter 11.

The margin indicator bar of the code editor window helps you know where a bookmark or

breakpoint is inserted by displaying an oval for a bookmark or a circle for a breakpoint. I dis-

cuss more about breakpoints in Chapter 13, “Handling Errors and Deploying VBA Projects.”

Exploring Loaded Libraries with the Object Browser

The Object Browser (see Figure 1.5) allows you to view the classes and enumerated constants

defi ned in a referenced programming library. Each AutoCAD VBA project contains a reference

to the VBA and AutoCAD Object libraries. I discuss referencing other libraries in Chapter 12,

“Communicating with Other Applications.” You can display the Object Browser by clicking

View ➢ Object Browser or pressing F2.

Figure 1.5

Members of an

object in a refer-

enced library can

be viewed in the

Object Browser.

Libraries drop-down list

A class is used to create an instance of an object, which I discuss in the “Working with

Objects” section in Chapter 2. An enumerated constant is a set of integer values with unique

10 | CHAPTER 1 UNDERSTANDING THE AUTOCAD VBA ENVIRONMENT

c01.indd 4:35:54:PM/04/06/2015 Page 10

names that can be used in a code statement. Using a constant name makes the integer value eas-

ier to understand, and also protects your code when values change. For example, the constant

name of acBlue is equal to an integer value of 5. If the meaning of 5 were changed to mean a

different color than blue, the constant of acBlue would be updated with the new integer and no

changes to your code would need to be made if you used the constant.

When the Object Browser is displayed, you can select a class or enumerated constant from

the Classes list. The Classes list contains all the classes and enumerated constants of the refer-

enced libraries in the VBA project. You can fi lter the list by selecting a referenced library from

the Libraries drop-down list located at the top of the Object Browser. Select a class or enumer-

ated constant from the Classes list to see its members, which are methods, properties, events,

or constant values. Select a member to learn more about it and press F1 to display its associated

help topic. I explain how to access the AutoCAD VBA documentation in the “Accessing the

AutoCAD VBA Documentation” section later in this chapter.

Working with Other Windows

The four windows that I described in the previous sections are the main windows of the VBA

Editor; they are used the most frequently. You will use some additional windows on occasion.

These are primarily used for creating UserForms and debugging VBA statements. (I discuss cre-

ating UserForms in Chapter 11 and debugging in Chapter 13.)

Here are the windows you will use when creating UserForms and debugging:

Immediate Window The Immediate window allows you to execute code statements in

real time, but those code statements are not saved. Not all code statements can be executed

in the Immediate window, such as statements that defi ne a procedure and declare variables.

Text messages and values assigned to a variable can be output to the Immediate window for

debugging purposes with the Print method of the Debug object. I discuss more about the

Debug object and Immediate window in Chapter 13.

Watches Window The Watches window allows you to monitor the current value assigned

to the variables used in the procedures of your VBA project as they are being executed. When

an array or object is assigned to a variable, you can see the values assigned to each element

in the array and the current property values of the object in the Watches window. In the code

editor window, highlight the variable you want to watch, and right-click. Click Add Watch

and then when the Add Watch dialog box opens click OK. I discuss more about the Watches

window in Chapter 13.

UserForm Editor Window The UserForm editor window allows you to add controls and

organize controls on a UserForm to create a custom dialog box that can be displayed from

your VBA project. You add controls to a UserForm from the Toolbox window. While the

UserForm editor window is current, the Format menu on the menu bar contains tools to

lay out and align the controls on a UserForm. I explain how to create and work with

UserForms in Chapter 11.

Toolbox Window The Toolbox window contains the controls that can be added to a

UserForm when displayed in the UserForm editor window. Click a tool and then drag it into

the UserForm editor window to place an instance of the control. Right-click over one of the

tools on the window and click Additional Controls to display the Additional Controls dialog

box. Click any of the available controls to make it available for use in a UserForm. I explain

how to add controls to a UserForm in Chapter 11.

MANAGING VBA PROGRAMS | 11

c01.indd 4:35:54:PM/04/06/2015 Page 11

Setting the VBA Environment Options
There are several settings that affect the behavior of the AutoCAD VBA environment and not

just the currently loaded VBA projects. These settings can be changed in the Option dialog box

of the VBA environment (see Figure 1.6), which can be displayed using one of the following

methods:

 ◆ After the Macros dialog box has been opened with the vbarun command, click Options.

 ◆ At the Command prompt, type vbapref and press Enter.

Figure 1.6

Changing the

VBA environment

settings

Here is an explanation of the settings in the Options dialog box:

Enable Auto Embedding The Enable Auto Embedding option creates a new empty VBA

project each time a drawing fi le is opened and embeds that empty project into the drawing

fi le. A new project is created and embedded only if the drawing opened doesn’t already con-

tain an embedded project. This option is disabled by default.

Allow Break On Errors The Allow Break On Errors option displays a message box that

allows you to step into a procedure if an error is produced during execution. You can then

use the debugging tools offered by the VBA Editor to locate and handle the error. I discuss

debug procedures in Chapter 13. This option is enabled by default.

Enable Macro Virus Protection The Enable Macro Virus Protection option, when enabled,

displays a message box during the loading of a DVB fi le. I recommend leaving this option

enabled to ensure that a drawing fi le with an embedded VBA project isn’t opened in the

AutoCAD drawing environment. This reduces the risk of accidentally running malicious

code. The option is enabled by default.

Managing VBA Programs
VBA programs developed in the AutoCAD VBA environment can be stored in a project fi le or

embedded in a drawing fi le. VBA projects can also be embedded in a drawing template (DWT)

or drawing standards (DWS) fi le. By default, VBA programs developed in the AutoCAD VBA

environment are stored in a project fi le with a .dvb fi le extension and then are loaded into the

AutoCAD drawing environment as needed.

DVB fi les can be managed externally from Windows Explorer or File Explorer, or from within

AutoCAD whenever the fi le is loaded into the AutoCAD drawing environment. General

fi le-management tasks on a DVB fi le can be performed using Windows Explorer or File Explorer.

12 | CHAPTER 1 UNDERSTANDING THE AUTOCAD VBA ENVIRONMENT

c01.indd 4:35:54:PM/04/06/2015 Page 12

Once the DVB fi le is loaded into the AutoCAD drawing environment, you can manage it using

the VBA Manager (see Figure 1.7). The VBA Manager allows you to do the following:

 ◆ Create a new VBA project

 ◆ Save a VBA project to a DVB fi le

 ◆ Load a VBA project from a DVB fi le into the AutoCAD drawing environment

 ◆ Unload a VBA project from the AutoCAD drawing environment

 ◆ Edit the components and code stored in a VBA project

 ◆ Embed or extract a VBA project from a drawing fi le

Figure 1.7

Managing loaded

VBA programs

There are two ways to display the VBA Manager in AutoCAD:

 ◆ On the ribbon, click the Manage tab ➢ Applications panel title bar and then click VBA

Manager.

 ◆ At the Command prompt, type vbaman and press Enter.

Creating a New VBA Project
A new VBA project can be created automatically by the AutoCAD program or manually as

needed. When the VBA environment is initialized the fi rst time during an AutoCAD session,

a new VBA project is created automatically unless a VBA project has already been loaded into

memory. If you want to create a new project after the VBA environment has been initialized, do

one of the following:

 ◆ When the VBA Manager is open, click New.

 ◆ At the Command prompt, type vbanew and press Enter.

Each new VBA project is assigned two default names: a project name and a location name.

The project name is an internal name used by the AutoCAD program to differentiate the pro-

cedures and components in each loaded VBA project. The default project name for a new VBA

project is ACADProject; I recommend assigning a descriptive project name for each VBA project

MANAGING VBA PROGRAMS | 13

c01.indd 4:35:54:PM/04/06/2015 Page 13

you create. A project name can contain alphanumeric characters and underscores, but can’t start

with a number or underscore character.

The location name of a VBA project is the same as a fi lename and is used to specify where the

DVB fi le is stored. Since a new VBA project exists only in memory, it is assigned the default loca-

tion name of Global1. The location name is incremented by one for each new VBA project cre-

ated during an AutoCAD session; thus the second and third VBA projects have location names

of Global2 and Global3, respectively. When you save VBA projects, they are stored in DVB fi les

locally or on a network. To ensure that AutoCAD knows where the DVB fi les are located, you add

the locations of your DVB fi les to the AutoCAD support fi le search and trusted paths. I discuss

how to add a folder to the AutoCAD support fi le search and trusted paths in Chapter 13.

Saving a VBA Project
New VBA projects can be saved to disc using the Save As option in the VBA Manager or Save

in the VBA Editor. When an existing project is loaded in memory, the Save As option can be

used to create a copy of the project on disc or to overwrite an existing VBA project fi le. Typically,

changes made to an existing project fi le that already has been loaded in the VBA environment

are saved to the project fi le using the Save option in the VBA Editor. I discussed the VBA Editor

earlier in the “Getting Started with the VBA Editor” section.

The following explains how to save a VBA project:

 1. In the VBA Editor, click File ➢ Save. Alternatively, on the Standard toolbar click Save.

 2. If the project hasn’t been previously saved, the Save As dialog box is displayed.

Otherwise, the changes to the VBA project are saved.

 3. When the Save As dialog box opens, browse to the folder you wish to use to store the

VBA project.

 4. In the File Name text box, type a descriptive fi lename for the project and click Save.

NOTE A DVB fi le can be password-protected to restrict the editing of the components and code

stored in the fi le. I discuss how to assign a password to a VBA project in Chapter 13.

Loading and Unloading a VBA Project
Before a VBA project can be edited and before the code stored in the project can be executed, the

project must be loaded into the AutoCAD VBA environment. The process for loading a project

into the AutoCAD VBA environment is similar to opening a drawing fi le.

Manually Loading a VBA Project

A VBA project can be manually loaded using the VBA Manager or the vbaload command. The

following explains how to manually load a VBA project:

 1. On the ribbon, click the Manage tab and then click the Applications panel title bar. Click

Load Project. (As an alternative, at the Command prompt, type vbaload and press Enter.)

 2. When the Open VBA Project dialog box opens, browse to and select ch01_hexbolt.dvb.

 3. Clear the Open Visual Basic Editor check box and click Open.

14 | CHAPTER 1 UNDERSTANDING THE AUTOCAD VBA ENVIRONMENT

c01.indd 4:35:54:PM/04/06/2015 Page 14

 4. If the File Loading - Security Concern dialog box is displayed, click Load to load the fi le

into memory. (You can click Do Not Load to cancel a load operation.)

 5. If the AutoCAD dialog box is displayed, click Enable Macro to allow the execution of the

code in the project. (You can click Disable Macros to load a fi le but not allow the execu-

tion of the code, or Do Not Load to cancel without loading the project into memory.)

NOTE You can download the sample VBA project fi le ch01_hexbolt.dvb used in the following

exercise from www.sybex.com/go/autocadcustomization.

Place the fi le in the MyCustomFiles folder within the Documents (or My Documents) folder or

another location you are using to store custom program fi les.

As an alternative, DVB and other types of custom program fi les can be dragged and dropped

onto an open drawing window in the AutoCAD drawing environment. When you drop a DVB

fi le onto an open drawing window, AutoCAD prompts you to load the fi le and/or to enable the

macros contained in the VBA project fi le.

Automatically Loading a VBA Project

The Load Project button in the VBA Manager and the vbaload command require input from

the user to load a VBA project, which isn’t ideal when you want to integrate your VBA projects

as seamlessly as possible into the AutoCAD drawing environment. A script, custom AutoLISP

program, or command macro from the AutoCAD user interface can all be used to load a VBA

project without user input. The following outlines some of the methods that can be used to load

a VBA project without user input:

 ◆ Call the -vbaload command. The -vbaload command is the command-line version of

the vbaload command. When the -vbaload command is started, the Open VBA Project:

prompt is displayed. Provide the name of the DVB fi le as part of the macro or script fi le.

 ◆ Call the AutoLISP vl-vbaload function. The AutoLISP vl-vbaload function can be used

to load a DVB fi le from a custom AutoLISP program. If the DVB fi le that is passed to the

vl-vbaload function isn’t found, an error is returned that should be captured with the

AutoLISP vl-catch-all-apply function.

 ◆ Create a VBA project fi le named acad.dvb and place it in one of the AutoCAD support fi le

search paths. AutoCAD looks for a fi le named acad.dvb during startup and if the fi le is

found, that fi le is loaded automatically.

 ◆ Use the Startup Suite (part of the Load/Unload Applications dialog box that opens with the

appload command). When a DVB fi le is added to the Startup Suite, the fi le is loaded when

the fi rst drawing of a session is opened. Removing a fi le from the Startup Suite causes the

fi le not to be loaded in any future drawings that are opened or in AutoCAD sessions. If you

want to use the Startup Suite to load DVB fi les, you must add the fi les to the Startup Suite

on each workstation and AutoCAD user profi le.

 ◆ Create a plug-in bundle. Plug-in bundles allow you to load DVB and other custom program

fi les in AutoCAD 2013 or later. A plug-in bundle is a folder structure with a special name

and metadata fi le that describes the fi les contained in the bundle.

I discuss each of these methods in greater detail in Chapter 13.

http://www.sybex.com/go/autocadcustomization

MANAGING VBA PROGRAMS | 15

c01.indd 4:35:54:PM/04/06/2015 Page 15

Manually Unloading a VBA Project

When a VBA project is no longer needed, it can be unloaded from memory to release system

resources. A VBA project can be manually unloaded from memory using the VBA Manager or

the vbaunload command. The following explains how to unload the ch01_hexbolt.dvb fi le

with the VBA Manager:

 1. On the ribbon, click the Manage tab and then click the Applications panel title bar to

expand the panel. Click VBA Manager. (If the ribbon isn’t displayed or the release of the

AutoCAD program you are using doesn’t support the ribbon, at the Command prompt

type vbaman and press Enter.)

 2. When the VBA Manager dialog box opens, in the Projects list select HexBolt and click

Unload.

 3. If prompted to save changes to the VBA project, click Yes if you made changes that you

wish to save or No to discard any changes.

Automatically Unloading a VBA Project

If you want to unload a DVB fi le as part of a script, custom AutoLISP program, or command

macro from the AutoCAD user interface, you will need to use the vbaunload command. When

the vbaunload command starts, the Unload VBA Project: prompt is displayed. Provide the

fi lename and full path of the DVB fi le you want to unload; the path you specify must exactly

match the path for the DVB fi le that was loaded into the AutoCAD drawing environment. If

it doesn’t, the unload fails and an error message will be displayed. A failed execution of the

vbaunload command doesn’t cause the program calling the command to fail.

TIP I recommend using the AutoLISP findfile function to locate the DVB fi le in the AutoCAD

support fi le search paths when loading and unloading a DVB fi le to ensure that the correct path

is provided.

Embedding or Extracting a VBA Project
A VBA project can be embedded in a drawing fi le to make the components and code in the proj-

ect available when the drawing fi le is opened in the AutoCAD drawing environment. Only one

VBA project can be embedded in a drawing fi le at a time. Embedding a VBA project in a fi le can

be helpful to make specifi c tools available to anyone who opens the fi le, but there are potential

problems using this approach. Here are the main two problems with embedding a VBA project

fi le into a drawing:

 ◆ Embedding a VBA project triggers a security warning each time a drawing fi le is opened,

which could impact sharing drawing fi les. Many companies will not accept drawings with

embedded VBA projects because of potential problems with viruses and malicious code.

 ◆ Embedding a VBA project that is stored in a DVB fi le results in a copy of that project being

created and stored in the drawing fi le. The embedded project and the original DVB fi le are

kept separately. This can be a problem if the project is embedded in hundreds of drawing

16 | CHAPTER 1 UNDERSTANDING THE AUTOCAD VBA ENVIRONMENT

c01.indd 4:35:54:PM/04/06/2015 Page 16

fi les and needs to be revised. Each drawing fi le would need to be opened, the project

extracted, and the revised project re-embedded.

So, while you can embed a VBA project, I don’t recommend doing it.

Embedding a VBA Project

The following explains how to embed a VBA project in a current drawing fi le:

 1. On the ribbon, click the Manage tab ➢ Applications panel title bar and then click VBA

Manager.

 2. When the VBA Manager opens, select a VBA project to embed from the Projects list. Load

the VBA project you want to embed if it isn’t already loaded.

 3. Click Embed.

Extracting a VBA Project

Extracting a VBA project reverses the embedding process. After a project is selected for extrac-

tion, you can either export the project to a DVB fi le or discard the project. The following

explains how to extract a VBA project from a current drawing fi le:

 1. On the ribbon, click the Manage tab and then click Applications panel title bar to expand

the panel. Click VBA Manager.

 2. When the VBA Manager opens, in the Drawing section click Extract. (If the Extract button

is disabled, there is no VBA project embedded in the current drawing.)

 3. In the AutoCAD message box, click Yes to remove and export the VBA project to a DVB

fi le. Specify a fi lename and location for the project you wish to extract. Click No if you

wish to remove the VBA project from the drawing fi le without saving the project.

Executing VBA Macros
VBA projects contain components that organize code and defi ne user forms and custom classes.

A component can contain one or more procedures that are used to perform a task on the objects

in a drawing or request input from an end user. Most procedures are defi ned so they are

executed from other procedures in a VBA project and not from the AutoCAD user interface. A

procedure that can be executed from the AutoCAD user interface is known as a macro. I explain

how to defi ne a procedure in Chapter 2.

A macro can be executed using the Macros dialog box (see Figure 1.8). In addition to execut-

ing a macro, the Macros dialog box can also be used to do the following:

 ◆ Execute and begin debugging a macro

 ◆ Open the VBA Editor and scroll to a macro’s defi nition

 ◆ Create the defi nition of a new macro based on the name entered in the Macro Name

text box

EXECUTING VBA MACROS | 17

c01.indd 4:35:54:PM/04/06/2015 Page 17

 ◆ Remove a macro from a loaded project

 ◆ Display the VBA Manager

 ◆ Change the VBA environment options

Figure 1.8

Executing a macro

stored in a VBA

project

The following methods can be used to display the Macros dialog box:

 ◆ On the ribbon, click the Manage tab ➢ Applications panel ➢ Run VBA Macro.

 ◆ At the Command prompt, type vbarun and press Enter.

 ◆ When the VBA Manager opens, click Macros.

The Macros dialog box requires input from the user to execute a macro in a loaded VBA proj-

ect. If you want to execute a macro as part of a script, custom AutoLISP program, or command

macro from the AutoCAD user interface you can use one of the following methods:

Command Line The -vbarun command is the command-line version of the vbarun com-

mand. When the -vbarun command is started, the Macro name: prompt is displayed.

AutoLISP The AutoLISP vl-vbarun function can be used to execute a macro in a loaded

DVB fi le from a custom AutoLISP program. If the macro isn’t found, an error message is dis-

played but the error doesn’t cause the program to terminate.

The name of the macro to execute with the -vbarun command or vl-vbarun function must

be in the following format:

DVBFilename.ProjectName!MacroName

For example, you would use the string value firstproject.dvb!ThisDrawing.CCircles to

execute the CCircle macro in the ThisDrawing component of the firstproject.dvb fi le.

18 | CHAPTER 1 UNDERSTANDING THE AUTOCAD VBA ENVIRONMENT

c01.indd 4:35:54:PM/04/06/2015 Page 18

These steps explain how to execute the macro named hexbolt:

 1. On the ribbon, click the Manage tab ➢ Applications panel ➢ Run VBA Macro (or at the

Command prompt, type vbarun and press Enter).

 2. When the Macros dialog box opens, click the Macros In drop-down list and choose ch01_

hexbolt.dvb.

Figure 1.9 shows the macro that is stored in and can be executed from the ch01_hexbolt

.dvb fi le with the Macros dialog box.

Figure 1.9

Edit, debug, and

execute macros

from the Macros

dialog box.

 3. In the Macros list, choose basHexBolt.HexBolt and click Run.

The Draw Hex Bolt View dialog box, shown in Figure 1.10, is displayed.

Figure 1.10

Custom dialog box

used to draw a top

or side view of a hex

bolt

ACCESSING THE AUTOCAD VBA DOCUMENTATION | 19

c01.indd 4:35:54:PM/04/06/2015 Page 19

 4. In the Diameter list box, choose 3/8 and click Insert.

 5. At the Specify center of bolt head: prompt, specify a point in the drawing area to

draw the top view of the hex bolt.

 6. When the Draw Hex Bolt View dialog box reappears, in the View section click the Side

option or image. Click Insert.

 7. At the Specify middle of bolt head: prompt, specify a point in the drawing area to

draw the side view of the hex bolt.

 8. When the Draw Hex Bolt View dialog box reappears again, click Cancel.

Figure 1.11 shows the top and side views of the hex bolt that were drawn with the macro.

Figure 1.11

Views of the com-

pleted hex bolt

Accessing the AutoCAD VBA Documentation
The AutoCAD VBA documentation is available from the AutoCAD product Help landing

page and the VBA Editor. The documentation is composed of two documentation sets: the

AutoCAD Object Library Reference and the ActiveX Developer’s Guide. Although this book

is designed to make it easy to learn how to use the AutoCAD Object library and the VBA pro-

gramming language, you will want to refer to the documentation that is provided with the

AutoCAD product too, as it just isn’t possible to cover every function and technique here.

The topics of the AutoCAD Object Library Reference explain the classes, methods, properties,

and constants that make up the AutoCAD Object library. The ActiveX Developer’s Guide topics

can be used to explore advanced techniques and features that aren’t covered in this book.

You can see the AutoCAD VBA and ActiveX documentation written for AutoCAD 2015 here:

http://help.autodesk.com/view/ACD/201 5/ENU/

On the Autodesk AutoCAD 2015 Help landing page, click the Developer Home Page link.

On the AutoCAD Developer Help Home Page, use the AutoCAD Object Library Reference

and Developer’s Guide links under the ActiveX/VBA section to access the AutoCAD VBA and

ActiveX documentation.

When working in the VBA Editor, you can access the AutoCAD Object Library Reference and

Microsoft Visual Basic for Applications Help by doing the following:

 1. In a code editor window, highlight the keyword, statement, data type, method, property,

or constant that you want to learn more about.

 2. Press F1.

Help can also be accessed from the Object Browser. In the Object Browser, select a class, method,

property, or constant and then press F1 to open the associated help topic. I discussed the Object

Browser earlier, in the “Exploring Loaded Libraries with the Object Browser” s ection.

http://help.autodesk.com/view/ACD/201

c02.indd 4:27:46:PM/04/06/2015 Page 21

Chapter 2

Understanding Visual Basic for
Applications

The Visual Basic for Applications (VBA) programming language is a variant of the Visual Basic

6 (VB6) programming language that was introduced in 1998. Though similar, VB6 isn’t exactly

the same as the current version of Visual Basic (known as VB.NET). Unlike VB6, which allows

you to develop stand-alone applications, VBA programs require a host application. The host

application provides the framework in which the VBA program can be executed; Microsoft

Word and the Autodesk® AutoCAD® program are examples of host applications.

VBA was fi rst introduced as a preview technology and modern programming alternative

to AutoLISP® and ObjectARX® with AutoCAD Release 14 back in 1997. It was not until after

the release of AutoCAD R14.01 that VBA was offi cially supported. The implementation of

VBA in the AutoCAD program at that time was huge to the industry, as the learning curve

between AutoLISP and C++ was steep, and the number of developers who knew VBA was

growing rapidly.

Here are some of the reasons I recommend using VBA for your custom programs:

 ◆ Individuals with VB/VBA experience often can be found in-house (check in your company’s

IS/IT department); fi nding someone fl uent in AutoLISP or ObjectARX is much rarer.

 ◆ VB/VBA resources are easier to locate—on the Internet or at your local library.

 ◆ Connecting to external applications and data sources is simpler using VB/VBA.

 ◆ VBA programs are relatively low maintenance; programs written for the last release of the

AutoCAD program (even those written a decade ago) often run in the latest release with

little to no change.

Learning the Fundamentals of the VBA Language
Before you learn to use VBA to automate the AutoCAD drawing environment, it is essential to

have a basic understanding of the VBA or VB6 programming language. If you are not

familiar with the VBA or VB6 programming language, I recommend reading this chapter

before moving on.

In addition to this chapter, the Microsoft Visual Basic for Applications Help from the Help

menu on the VBA Editor’s menu bar and your favorite Internet search engine can be great

22 | CHAPTER 2 UNDERSTANDING VISUAL BASIC FOR APPLICATIONS

c02.indd 4:27:46:PM/04/06/2015 Page 22

resources for information on the VBA programming language. The following are a couple of

web resources that can help you get started on locating additional information on VBA and VB6:

 ◆ Microsoft’s Programming Resources for Visual Basic for Applications page (http://

support.microsoft.com/kb/163435)

 ◆ Microsoft Developer Network: Visual Basic 6.0 Language Reference (http://msdn.

microsoft.com/en-us/library/aa338033(v=vs.60).aspx)

Creating a Procedure
Most of the code you write in VBA will be grouped into a named code block called a procedure.
If you are familiar with AutoLISP or another programming language, you might be familiar

with the terms function or method. VBA supports two types of procedures:

Subroutine (or Sub) A named code block that doesn’t return a value

Function A named code block that does return a value

The defi nition of a procedure always starts with the keyword Sub or Function followed by its

designated name. The procedure name should be descriptive and should give you a quick idea

of the purpose of the procedure. The naming of a procedure is personal preference—I like to use

title casing for the names of the functions I defi ne to help identify misspelled function names.

For example, I use the name CreateLayer for a function that creates a new layer. If I enter

 createlayer in the VBA Editor window, the VBA Editor will change the typed text to

CreateLayer to match the procedure’s defi nition.

After the procedure name is a balanced set of parentheses that contains the arguments that

the procedure expects. Arguments aren’t required for a procedure, but the parentheses must

be present. The End Sub or End Function keywords (depending on the type of procedure

defi ned) must be placed after the last code statement of the procedure to indicate where the

procedure ends.

The following shows the basic structures of a Sub procedure:

Sub ProcedureName()

End Sub

Sub ProcedureName(Arg1 As DataType, ArgN As DataType)

End Sub

Here’s an example of a custom procedure named MyDraftingAids that changes the values of

two system variables—osmode to 35 and orthomode to 1.

Sub MyDraftingAids()

 ThisDrawing.SetVariable "osmode", 35

 ThisDrawing.SetVariable "orthomode", 1

End Sub

When defi ning a procedure of the Function type, you must indicate the type of data that

the procedure will return. In addition to indicating the type of data to return, at least one code

statement in the procedure must return a value. You return a value by assigning the value to the

procedure’s name.

http://support.microsoft.com/kb/163435
http://support.microsoft.com/kb/163435
http://msdn.microsoft.com/en-us/library/aa338033
http://msdn.microsoft.com/en-us/library/aa338033

LEARNING THE FUNDAMENTALS OF THE VBA LANGUAGE | 23

c02.indd 4:27:46:PM/04/06/2015 Page 23

The following shows the basic structures of a Function procedure:

Function ProcedureName() As DataType

 ProcedureName = Value

End Function

Function ProcedureName(Arg1 As DataType, ArgN As DataType) As DataType

 ProcedureName = Value

End Function

The arguments and return values you specify as part of a procedure follow the structure of

dimensioning a variable. I explain how to dimension a variable in the next section.

Arguments can be prefi xed with one of three optional keywords: Optional, ByRef, or ByVal.

The Optional keyword can be used to pass a value to a procedure that might be needed only

occasionally. You can learn more about these keywords from the VBA Editor Help system.

The following demonstrates the defi nition of a function named CreateLayer that accepts an

optional color argument using the Optional keyword:

Function CreateLayer(lyrName As String, _

 Optional lyrColor As ACAD_COLOR = acGreen) As AcadLayer

 Dim objLayer As AcadLayer

 Set objLayer = ThisDrawing.Layers.Add(lyrName)

 objLayer.color = lyrColor

 Set CreateLayer = objLayer

End Function

The value returned by that function is the new layer created by the Add method based on

the name passed to the lyrName argument. The Add method returns an object of the AcadLayer

type. After the layer is created, the color passed to lyrColor is assigned to the new layer’s Color

property. Finally, the new layer is returned by the assigning the value to CreateLayer. Since

an object is being returned, the Set statement must be placed to the left of the variable name

to assign the object to the variable. I discuss the Set statement in the “Working with Objects”

 section later in this chapter.

The following demonstrates how to use the CreateLayer procedure:

Dim newLayer as AcadLayer

Set newLayer = CreateLayer("Object", acWhite)

Another concept that can be used when defi ning an optional argument is setting a default

value. A default value is assigned to an argument using the equal symbol (=). In the previous

example, the default value of the lyrColor argument is assigned the value of acGreen, which

is a constant in the AutoCAD COM library that represents the integer value of 3. The optional

value is used if no color value is passed to the CreateLayer function.

NOTE Th e keywords Public and Private can be added in front of the Sub and Function

keywords used to defi ne a procedure. Th e Public keyword allows a procedure to be accessed

across most code modules in a VBA project, whereas the Private keyword limits the procedure

to be accessed only from the module in which it is defi ned. I explain these keywords further in

the “Controlling the Scope of a Procedure or Variable” section later in this chapter.

24 | CHAPTER 2 UNDERSTANDING VISUAL BASIC FOR APPLICATIONS

c02.indd 4:27:46:PM/04/06/2015 Page 24

You Want Me to Measure Hungary? Really?

No, I really don’t. However, as you learn about VBA, you’ll be exposed to some new (and seemingly

strange) terms.

When instructions in a procedure want you to declare and defi ne a variable in VBA, you’ll be asked

to dimension the variable. Th is will be accomplished using a Dim statement that looks something

like this: Dim objLayer As AcadLayer.

When you begin working with user forms and variables, you’ll be asked to add a Hungarian notation

prefi x, which helps you to identify UserForm objects and controls or the data type that variables are

declared. Hungarian notation is a shorthand used by programmers to quickly provide identifying

information. Here are a few common prefi xes and their uses:

c or str: string data

d: double

i: integer

o or obj: object

btn: button

cbo or cmb: combo box

lbl: label

txt: text box

Just remember, you’re learning a new language. I’ll do my best to explain the new terms in plain

English in context as I use them, although you might have to wait until later in the chapter or book

to get all the details.

Declaring and Using Variables
Variables are used to allocate space in memory to store a value, which can then be retrieved later

using the name assigned to the variable. You can declare variables to have a specifi c value or

assign it a new value as a program is being executed. I explain the basics of working with vari-

ables in the following sections.

Declaring a Variable

VBA by default allows you to dynamically create a variable the fi rst time it is used within a

procedure, but I don’t recommend using this approach. Although it can save you time, the VBA

Editor isn’t able to assist in catching issues related to incorrect data types in a code statement.

The proper approach to declaring a variable is to use the Dim keyword and follow the

keyword with the name of the variable to dimension. The Option statement can be helpful in
 ensuring that all variables are declared before being used. I mention the Option statement in the

“Forcing the Declaration of Variables” sidebar.

Unlike procedure names, the industry uses Hungarian notation as a standard for naming

variables in VBA programs. For example, you would add c or str in front of a variable name to

represent a string or d for a double. The variable name for a layer name might look like cName

LEARNING THE FUNDAMENTALS OF THE VBA LANGUAGE | 25

c02.indd 4:27:46:PM/04/06/2015 Page 25

or strLayerName, whereas a variable name that holds a double number for the radius of a circle

might be dRadius.

The following shows the minimal syntax used to declare a variable:

Dim VariableName

That syntax would declare a variable of the variant data type. The variant data type can hold

a value of any type; though that might sound convenient, the VBA Editor isn’t able to assist

in catching issues related to the usage of an incorrect data type. It is good practice to use the

As keyword and follow it with a specifi c type of data. The following shows the syntax used to

declare a variable:

Dim VariableName As DataType

The following declares a variable named strName as a string and iRow as an integer:

Dim strName As String

Dim iRow As Integer

I discuss the general types of data that VBA supports in the “Exploring Data Types” section.

NOTE Th e Dim keyword is used when defi ning a variable as part of a procedure, but in the

General Declaration of a VBA code module you must use the Public, Global, and Private

keywords. Th e General Declaration is located at the very top of a code module before the fi rst

procedure defi nition. Th e Public and Global keywords allow a variable to be accessed across

all code modules in a VBA project, whereas the Private keyword limits the access of a variable

to the module where it is defi ned. I explain these keywords further in the “Controlling the Scope

of a Procedure or Variable” section.

Assigning a Value to and Retrieving a Value from a Variable

After a variable has been declared, a value can be assigned to or retrieved from a variable using

the = symbol. A value can be assigned to a variable by placing the name of the variable on the

left side of the = symbol and placing the value to be assigned on the right. The value could be a

static value or a value returned by a procedure.

For example, the following shows how to assign a string value of “Error: Bad string” to a

variable named strMsg and the value of 5 to the variable named iRow.

strMsg = "Error: Bad string"

iRow = 5

The value of a variable can be retrieved by using it as one of the arguments that a procedure

expects. The following demonstrates how to display the value of the strMsg variable in a mes-

sage box with the MsgBox function:

MsgBox strMsg

The MsgBox function is part of the VBA programming language and is used to display a basic

message box with a string and set of predefi ned buttons and icons. I cover providing feedback

to the user in Chapter 5, “Interacting with the User and Controlling the Current View.” You can

also learn more about the MsgBox function from the Microsoft VBA Help system. In the VBA

Editor, click Help ➢ Microsoft Visual Basic For Applications Help.

26 | CHAPTER 2 UNDERSTANDING VISUAL BASIC FOR APPLICATIONS

c02.indd 4:27:46:PM/04/06/2015 Page 26

Declaring Constant Variables

There are special variables known as constants that can only be assigned a value in the editor

window and cannot be changed when the VBA program is executed. A constant variable is

declared using the Const statement; the Const statement is used instead of the Dim statement.

After the data type is assigned to the variable, you then assign the value to the constant variable

using the = symbol. I recommend adding a prefi x of c_ to the name of a constant variable.

Adding the prefi x can be a helpful reminder that the value of the variable can’t be updated.

The following shows the syntax to declare a constant variable:

Const VariableName As DataType = Value

Here’s an example of declaring a constant variable named c_PI of the double data type and

then assigning it the value of 3.14159:

Const c_PI as Double = 3.14159

Forcing the Declaration of Variables

Th e VBA environment supports a statement named Option. Th e Option statement is used to control

several coding practices at the code module level. For example, entering the Option statement with

the Explicit keyword in the General Declaration of a module forces you to declare all variables

before they can be used. To force the declaration of variables, you type Option Explicit in the

General Declaration; the keyword always follows the Option statement. Th e Option statement

also supports the following keywords:

Base—Specifies if the lower limit of an array should be 0 or 1. By default, arrays start at index 0 in

VBA. I discuss arrays in the "Storing Data in Arrays" section. Example statement: Option Base 1

Compare—Specifies the default string comparison method used within a code module. Valid values are

Binary, Database, or Text. Example statement: Option Compare Text Private—All procedures

that are declared with the Public keyword in a code module are available only within the current

project and are not accessible when the project is referenced by other projects.

Controlling the Scope of a Procedure or Variable
Procedures and variables can be designated as being global in scope or local to a VBA project,

component, or procedure. Global scope in VBA is referred to as public, whereas local scope is

referred to as private. By default, a procedure that is defi ned with the Sub or Function statement

is declared as public and is accessible from any module in the VBA project; in the case of a class

module, the procedure can be used when an instance of the class is created.

You typically want to limit the procedures that are public because a public procedure can be

executed by a user from the AutoCAD user interface with the vbarun or -vbarun command. The

Public and Private keywords can be added in front of a Sub or Function statement to control

the scope of the variable. Since all procedures have a public scope by default, the use of the

Public keyword is optional. However, if you want to make a procedure only accessible from the

module in which it is defi ned, use the Private keyword.

LEARNING THE FUNDAMENTALS OF THE VBA LANGUAGE | 27

c02.indd 4:27:46:PM/04/06/2015 Page 27

The following shows how to defi ne a public Sub and private Function procedure:

Public Sub HelloWorld()

 CustomMsg "Hello World!"

End Sub

Private Function CustomMsg(strMsg As String) _

 As VbMsgBoxResult

 CustomMsg = MsgBox(strMsg)

End Function

The CustomMsg function is executed from the Hello subroutine. Because the CustomMsg

 function is private, it cannot be executed from the AutoCAD user interface with the vbarun or

-vbarun command.

All variables declared within a procedure are local to that procedure and can’t be accessed

from another procedure or component. If you want to defi ne a public variable, the variable must

be declared in a module’s General Declarations at the very top of a module. When declaring a

variable that can be accessed from any module in a project or just all procedures in a module,

use the Public or Private keyword, respectively, instead of Dim.

A Dim statement in the General Declarations can be used to declare a public variable, though.

The Public or Private keyword can also be placed in front of the Const statement to declare a

public or private constant variable, which by default is declared as private and is accessible only

from the module in which it is defi ned. The Public keyword can be used only in a code module,

not in a class module or user form, when declaring a constant variable.

NOTE When you’re defi ning a variable in the General Declaration, I recommend adding a prefi x

of g_ to help you identify that the variable is in the global scope of a code module or VBA project.

The following example shows how to declare a public variable that can hold the most recent

generated error:

Public g_lastErr As ErrObject

The next example shows how to declare a private constant variable that holds a double value

of 3.14159:

Private Const c_PI As Double = 3.14159

This last example shows how to declare a private variable that holds a layer object:

Private objLyr As AcadLayer

If you want to make a value accessible to multiple projects or between AutoCAD sessions, you

can write values to a custom dictionary or the Windows Registry. I explain how to work with

 custom dictionaries and use the Windows Registry in Chapter 9, “Storing and Retrieving

Custom Data.”

Continuing Long Statements
A code statement is typically a single line in the editor window that can result in relatively long

and harder-to-read code statements. The underscore character can be placed anywhere within

28 | CHAPTER 2 UNDERSTANDING VISUAL BASIC FOR APPLICATIONS

c02.indd 4:27:46:PM/04/06/2015 Page 28

a code statement to let the VBA environment know a code statement continues to the next line.

A space must be placed in front of the underscore character as well—otherwise the VBA editor

will display an error message.

The following shows a code statement presented on a single line:

Set objCircle = ThisDrawing.ModelSpace.AddCircle(dCenPt, 2)

The following shows several ways the underscore character can be used to continue the

 statement to the next line:

Set objCircle = _

 ThisDrawing.ModelSpace.AddCircle(dCenPt, 2)

Set objCircle = ThisDrawing.ModelSpace. _

 AddCircle(dCenPt, 2)

Set objCircle = ThisDrawing.ModelSpace.AddCircle(dCenPt, _

 2)

Adding Comments
As a veteran programmer of more than 16 years, I can honestly say that I formed my fair share

of bad habits early on. One of the habits that I had to correct was adding very few comments

(or not adding any) to my code. Comments are nonexecutable statements that are stored as

part of code in a VBA project. The concept of comments is not specifi c to VBA; it is part of most

 modern programming languages. The syntax used to indicate a comment does vary from

 programming language to programing language.

The following are common reasons why and when you might want to add comments to

your code:

 ◆ To document when the program or component was created and who created it.

 ◆ To maintain a history of changes made to the program—what changes were made, when,

and by whom.

 ◆ To indicate copyright or legal statements related to the code contained in a code module.

 ◆ To explain how to use a procedure, the values each argument might expect.

 ◆ To explain what several code statements might be doing; you might remember the task

 several code statements perform today, but it can become more of a challenge to remember

what they are doing months or years later.

 ◆ To mask a code statement that you currently don’t want to execute; during testing or while

making changes to a program, you might want to temporarily not execute a code statement

but keep the expression for historical purposes.

Comments in VBA are typically denoted with the use of an apostrophe (‘) or the Rem

 keyword added to the beginning of a code statement. When using the Rem keyword, the

 keyword must be followed by a space. Although a space isn’t required after the use of the apos-

trophe character, I recommend adding one. Code statements and text to the right of the apostro-

phe or Rem keyword are not executed; this allows you to add comments on a line by themselves

or even on the same line after a code statement.

LEARNING THE FUNDAMENTALS OF THE VBA LANGUAGE | 29

c02.indd 4:27:46:PM/04/06/2015 Page 29

The following example demonstrates the use of the comments in a code module. The

comments are used to explain when the procedure was added and what the procedure does.

' Last updated: 7/13/14

' Updated by: Lee Ambrosius

' Revision History:

' HYP1 (7/13/14) - Added optional color argument

' Module Description:

' Shared utility code module that contains many

' procedures that are reusable across VBA projects.

' Creates a new layer and returns the AcadLayer object

' that was created.

' Revision(s): HYP1

Function CreateLayer(strLyrName As String, _

 Optional nLyrColor As ACAD_COLOR = acGreen) _

 As AcadLayer

 ' Create a variable to hold the new layer

 Dim objLayer As AcadLayer

 ' Create the new layer

 Set objLayer = ThisDrawing.Layers.Add(strLyrName)

 objLayer.color = nLyrColor ' Assign the color to the new layer

 'MsgBox "Layer created."

 ' Return the new layer

 Set CreateLayer = objLayer

End Function

Understanding the Diff erences Between VBA 32- and 64-Bit
The VBA programming language is supported on both Windows 32-bit and 64-bit systems, but

there are a few differences that you will need to consider. The following outlines a few of these

differences:

 ◆ The LongLong data type is supported on 64-bit systems to allow larger numbers compared to

the Long data type. I recommend using the LongPtr data type when possible to allow your

program to use either the Long or LongLong data type based on the system it is executing on.

 ◆ Not all third-party libraries and UserForm controls work on both 32-bit and 64-bit systems.

Some third-party libraries and controls are only supported on 32-bit systems, so be sure to

test your programs on both 32-bit and 64-bit systems if possible.

 ◆ Prior to the AutoCAD 2014 release, the AutoCAD COM library had separate procedures

that were required when working on a 32-bit or 64-bit system.

30 | CHAPTER 2 UNDERSTANDING VISUAL BASIC FOR APPLICATIONS

c02.indd 4:27:46:PM/04/06/2015 Page 30

Because of potential problems with library and control references, I recommend creating a

32-bit and 64-bit version of your VBA projects. Then when you make changes in one project,

export and import the changed code modules and UserForms between projects. The examples

and exercises shown in this book are designed to work on 32-bit and 64-bit systems.

Exploring Data Types
Programming languages use data types to help you identify the type of data:

 ◆ Required by a procedure’s argument

 ◆ Returned by a procedure defi ned as a function

Table 2.1 lists the basic data types that VBA supports. The Data Type column lists the name

of a data type and the Hungarian notation that is commonly added as a prefi x to a variable that

is declared with that data type. I mentioned the purpose of Hungarian notation earlier in this

chapter. The Range column gives a basic understanding of the values a data type supports, and

the Description column offers a brief introduction to the data type.

Table 2.1: VBA data types

Data Type

(Hungarian

Notation) Range Description

Byte (by) 0 to 255 Binary data or small integer

Boolean (b) True or False True or False value; used to con-

dition code statements

Date (dt) January 1, 100 to December 31, 9999 Date and time as a double value

Double (d) 1.80 × 10308 to –4.94 × 10–324 for negative num-

bers and 4.94 × 10–324 to 1.80 × 10308 for positive

numbers

Large decimal number with an

accuracy of up to 16 places

Integer (n) -32,768 to 32,767 Numeric value without a decimal

point

Long (l) -2,147,483,648 to 2,147,483,647 Large numeric value without a

decimal point

String (c or str) 0 to 65,400 for fi xed-length strings, or 0 to

approximately 2 billion for variable-length

strings

One or more characters enclosed

in quotation marks

Variant (v) Same as the data type of the value assigned to

the variable

Value of any data type

EXPLORING DATA TYPES | 31

c02.indd 4:27:46:PM/04/06/2015 Page 31

NOTE Th e double data type in VBA is referred to as a real or a fl oat in other programming

languages.

Objects and arrays are two other data types that are commonly found in a VBA program.

I cover these two data types in the next sections.

You can use the TypeName and VarType functions to identify the type of data returned by

a function or assigned to a variable. These two procedures are commonly used to determine

how to handle the data assigned to a variable with conditionalized expressions, which I discuss

in the “Conditionalizing and Branching Statements” section. The TypeName function returns

a string value, and the VarType function returns an integer that represents the data type of

a value.

The following shows the syntax of the TypeName and VarType functions:

retVal = TypeName(value)

retVal = VarType(value)

The value argument represents any valid procedure that returns a value or variable name.

The string or integer value returned by the TypeName or VarType function is represented by the

retVal variable. The variable name you use in your programs doesn’t need to be named retVal.

NOTE Each integer value returned by the VarType function has a specific meaning. For

example, a value of 2 represents an integer data type, whereas a value of 8 represents a string

data type. You can learn about the meaning of each integer value that is returned by looking up

the VbVarType constant in the Object Browser of the VBA Editor. I explained how to use the

Object Browser in the Chapter 1, “Understanding the AutoCAD VBA Environment.”

Here are examples of the TypeName and VarType functions:

' Displays a message box with the text String

MsgBox TypeName("Hello World!")

' Displays a message box with the text Double

MsgBox TypeName(1.0)

' Displays a message box with the text Integer

MsgBox TypeName(1)

' Displays a message box with the text 8

MsgBox VarType("Hello World!")

' Displays a message box with the text 5

MsgBox VarType(1.0)

' Displays a message box with the text 2

MsgBox VarType(1)

I explain more about the MsgBox procedure and other ways of providing feedback to the user

in Chapter 5.

32 | CHAPTER 2 UNDERSTANDING VISUAL BASIC FOR APPLICATIONS

c02.indd 4:27:46:PM/04/06/2015 Page 32

Working with Objects
An object represents an instance of a class from a referenced library, which might be a layer in a

drawing or a control on a user form. A class is a template from which an object can be created,

and it defi nes the behavior of an object. A new object can be created with

 ◆ A procedure, such as Add or AddObject. (The procedure you use depends on the object

being created.)

 ◆ The New keyword when declaring a variable.

The following syntax creates a new object of the specifi c object data type with the New

keyword:

Dim VariableName As New ObjectType

An object can’t simply be assigned to a variable with the = symbol like a string or integer

value can be. The Set statement must precede the name of the variable when you want to assign

an object to a variable. The following shows the syntax of assigning an object to a variable:

Set VariableName = object

The following example shows how to create a new circle object in model space and assign the

new circle to a variable named objCircle:

Dim dCenPt(0 To 2) As Double

dCenPt(0) = 0: dCenPt(1) = 0: dCenPt(2) = 0

Dim objCircle As AcadCircle

Set objCircle = ThisDrawing.ModelSpace.AddCircle(dCenPt, 2)

Once a reference to an object is obtained, you can query and modify the object using its prop-

erties and methods. Place a period after a variable name that contains a reference to an object to

access one of the object’s properties or methods. The following shows the syntax for accessing a

property or method of an object:

VariableName.PropertyName

VariableName.MethodName

You can assign a new value to a property using the same approach as assigning a value to a

variable. The following shows how to assign the string Objects-Light to the Layer property of

a circle:

objCircle.Layer = "Objects-Light"

The current value assigned to a property can be retrieved by placing the object and its prop-

erty name on the right side of the = symbol. The following shows how to retrieve the current

value of the Name property of a circle object and assign it to a variable that was declared as

a string:

Dim strLayerName as String

strLayerName = objCircle.Layer

EXPLORING DATA TYPES | 33

c02.indd 4:27:46:PM/04/06/2015 Page 33

When you create a new object with the New keyword, you should release the object from

memory when it is no longer needed. The VBA environment will automatically free up system

resources when it can, but it is best to assign the Nothing keyword to a variable that contains an

object before the end of the procedure where the object was created. It is okay to assign Nothing

to variables that contain an object reference; the value of the variable will be cleared but might

not free up any system memory. The following shows how to free up the memory allocated for

the creation of a new AutoCAD Color Model object:

Dim objColor As New AcadAcCmColor

Set objColor = Nothing

Using an Object Across Multiple Statements

Th e With statement can be used to work with a referenced object across multiple statements and

can help to reduce the amount of code that needs to be written. Th e following shows the syntax

of the With statement:

With variable

 statementsN

End With

Th e variable argument represents the object that can be referenced throughout the With state-

ment. You type a period between the With and End With statements to access the object’s methods

or properties. Here is an example of using the ThisDrawing object with the With statement to set

the value of multiple system variables:

With ThisDrawing

 .SetVariable "BLIPMODE", 0

 .SetVariable "OSMODE", 32

 .SetVariable "ORTHOMODE", 1

End With

Exploring the AutoCAD Object Model

The AutoCAD Object library is designed to have a hierarchical structure, with the AutoCAD

Application object at the top. From the AutoCAD Application object, you can access and open draw-

ing fi les in the AutoCAD drawing environment. Once you have a reference to a drawing fi le, you can

then access its settings, as well as the graphical and nongraphical objects stored in the drawing.

You can use the Object Browser to explore the classes and their members of the AutoCAD Object

library, but it simply provides you with a fl at listing of the available classes. Th e AutoCAD VBA

documentation off ers an object model map (shown in the following graphic) that allows you to

graphically see the relationship between each object in the AutoCAD Object library. Clicking a node

on the object model displays the object’s topic in the Autodesk AutoCAD: ActiveX Reference Guide.

34 | CHAPTER 2 UNDERSTANDING VISUAL BASIC FOR APPLICATIONS

c02.indd 4:27:46:PM/04/06/2015 Page 34

You can display the AutoCAD Object Model by following these steps:

 1. Open your web browser and navigate to http://help.autodesk.com/view/ACD/2015/ENU/.

If you are using AutoCAD 2015, display the AutoCAD product Help system.

 2. On the Autodesk AutoCAD 2015 Help landing page, click the Developer Home Page link.

 3. On the AutoCAD Developer Help home page, use the AutoCAD Object Model link under the

ActiveX/VBA section.

If you open the Autodesk AutoCAD: ActiveX Reference Guide, scroll to the top of the Contents list

and expand the Object Model node to access the Object Model topic.

Accessing Objects in a Collection
A collection is a container object that holds one or more objects of the same type. For example,

the AutoCAD Object library contains collections named Layers and DimStyles. The Layers

collection provides access to all the layers in a drawing, whereas DimSyles provides access to

the dimension styles stored in a drawing. Since collections are objects, they have properties and

methods as well, which are accessed using a period, as I explained in the previous section.

Objects in a collection have a unique index or key value assigned to them. Most collections

start with an index of 0, but some start with an index of 1; you will need to refer to the documen-

tation for the collection type to know the index of its fi rst item. The following example shows

how to set the fi rst layer in the Layers collection and set it as the current layer:

ThisDrawing.ActiveLayer = ThisDrawing.Layers.Item(0)

The Item method returns the layer object at the index of 0 and the layer is then assigned to

the ActiveLayer property. The Item method is the default method of most collections, so the

previous code example could be written as follows:

ThisDrawing.ActiveLayer = ThisDrawing.Layers(0)

http://help.autodesk.com/view/ACD/2015/ENU

EXPLORING DATA TYPES | 35

c02.indd 4:27:46:PM/04/06/2015 Page 35

A key value is a string that is unique to the object in the collection. The Item method can

accept a key value in addition to an integer that represents an index, as shown in the following

examples:

ThisDrawing.ActiveLayer = ThisDrawing.Layers.Item("Objects-Light")

ThisDrawing.ActiveLayer = ThisDrawing.Layers("Objects-Light")

In addition to the Item method, the exclamation point (!) can be used to reference a key value

in a collection. When using the ! symbol, a key value that contains spaces must be enclosed in

square brackets. The following shows how to access a key value in the Layers collection using

the ! symbol:

ThisDrawing.ActiveLayer = ThisDrawing.Layers!CenterLine

ThisDrawing.ActiveLayer = ThisDrawing.Layers![Center Line]

The Item method and examples I have shown in this section return a specifi c object from a

collection. If you want to step through all the objects in a collection, you can use the For state-

ment. I introduce the For statement in the “Repeating and Looping Expressions” section. To

learn about using collections in the AutoCAD Object library, see the following chapters:

 ◆ Chapter 3, “Interacting with the Application and Documents Objects,” for working with

the Documents collection

 ◆ Chapter 5, “Interacting with the User and Controlling the Current View,” for working with

the Views collection

 ◆ Chapter 6, “Annotating Objects,” for working with the DimStyles and TextStyles collections

 ◆ Bonus Chapter 1, “Working with 2D Objects and Object Properties,” for working with

the Layers and Linetypes collections in AutoCAD Platform Customization: User Interface,
AutoLISP, VBA, and Beyond

 ◆ Bonus Chapter 2, “Modeling in 3D Space,” for working with the UCSs and Materials collec-

tions in AutoCAD Platform Customization: User Interface, AutoLISP, VBA, and Beyond

Storing Data in Arrays
An array is not really a data type but a data structure that can contain multiple values. Unlike

the objects in a collection, the elements of an array can be of different data types and do not all

need to be of the same data type. The fi rst element in an array typically starts at an index of 0,

but you can specify the index of the fi rst element using a range. Arrays are used to represent a

coordinate value in a drawing, to specify the objects used to defi ne a closed boundary when

creating a Region or Hatch object, or to specify the data types and values that make up the

XData attached to an object.

The processes for declaring an array and variable are similar—with one slight difference.

When declaring an array, you add opening and closing parentheses after the variable name. The

value in the parentheses determines whether you declare a fi xed-length or dynamic array.

NOTE Th e Option Base 1 statement can be used to change the default index of 0 to 1 for the

lower limit of an array. I explained the Option statement earlier in the “Forcing the Declaration

of Variables” sidebar.

36 | CHAPTER 2 UNDERSTANDING VISUAL BASIC FOR APPLICATIONS

c02.indd 4:27:46:PM/04/06/2015 Page 36

Declaring a Fixed-Length Array

A fi xed-length array, as its name implies, is an array that can hold a specifi c number of values.

When declaring a fi xed-length array, you can specify a single- or multidimensional array. You

defi ne a single-dimensional array by specifying the number of rows, whereas you typically

defi ne a multidimensional array by specifying the number of rows and columns for the array.

Rows and columns are based on the fi rst row or column having an index of 0, the second one

having an index of 1, and so on. The fi rst row or column in an array is known as the lower limit,
and the last row or column is known as the upper limit of the array.

Entering a single integer value within the parentheses when declaring an array specifi es the

upper limit of the rows in the array. Remember, the fi rst row is 0, so specifying an upper limit of

1 declares an array of two rows. The following shows how to declare a fi xed-length array with

two rows, a single column, and a starting index of 0:

Dim names(1) As String

As an alternative, you can specify the lower and upper limit of an array. Enter the starting

and ending index of the array separated by the To keyword. The following shows how to declare

a fi xed-length array with three rows, a single column, and a starting index of 1:

Dim centerPt(1 To 3) As Double

An array with a single dimension is the most common, but a multidimensional array can be

used to create an in-memory data grid of values. You can specify the upper limit or range of the

columns in the array. The following three examples show how to declare a fi xed-length array

that is four rows by four columns with a starting index of 0:

Dim matrix(3, 3) As Double

Dim matrix(0 To 3, 1 To 4) As Double

Declaring a Dynamic Array

A dynamic array is an array that isn’t declared with a specifi c lower or upper limit, so it isn’t

initialized with any elements. Unlike a fi xed-length array, the lower and upper limit of a

dynamic array can be changed as needed. Typically, the upper limit of an array is increased to

allow additional values to be added to the array. The ReDim statement, short for redimension,

is used to decrease or increase the number of elements in an array by changing the lower and

upper limits of the array. The following shows how to declare a dynamic array and then redi-

mension the array to fi ve elements:

Dim names() As String

ReDim names(4)

When you use the ReDim statement, all values that have been assigned to the array are lost.

The current values of the elements remaining from the original array can be retained by using

the Preserve keyword. The following shows how to increase an array to seven elements and

retain any current values:

ReDim Preserve names(6)

The following shows how to decrease an array to four elements and retain any current

values:

ReDim Preserve names(3)

EXPLORING DATA TYPES | 37

c02.indd 4:27:46:PM/04/06/2015 Page 37

In the previous example, any values in elements 4 through 6 are lost, but all other values

would be retained. It is possible to dynamically resize an array by starting with the array’s

current lower and upper limits. I explain how to get the lower and upper limits of an array in

the “Getting the Size of an Array” section.

Working with Array Elements

After an array has been declared and the number of elements established, you can assign a

value to and retrieve a value from an element. Working with an element in an array is similar to

working with a variable with the exception of needing to specify an element index.

The following shows how to declare a three-element array that represents a coordinate value

of 0,5,0:

Dim dCenPt(0 To 2) As Double

dCenPt(0) = 0

dCenPt(1) = 5

dCenPt(2) = 0

You retrieve the value of an element by using it as an argument of a procedure or placing it to

the right of the = symbol. The following shows how to get the current value of the element in the

dCenPt with an index of 0 and display it in a message box with the MsgBox procedure:

MsgBox dCenPt(0)

If you want to step through all the elements in an array, you can use a For statement. I intro-

duce the For statement in the “Repeating and Looping Expressions” section.

Getting the Size of an Array

When you want to resize an array or step through all the elements of an array, you need to know

how many elements are in an array. The LBound and UBound procedures are used to return an

integer that represents the lower and upper limits of an array, respectively.

The following shows the syntax of the LBound and UBound procedures:

LBound array [, dimension]

UBound array [, dimension]

Here are the arguments:

array The array argument represents the variable that contains the array of the lower or

upper limit you want to return.

dimension The dimension argument is optional and represents the dimension in a multi-

dimensional array that you want to query. When no argument value is provided, the upper

limit of the fi rst dimension is queried. The fi rst dimension in an array has an index of 1 and

not 0 like the elements of an array.

The following shows examples of the LBound and UBound procedures:

' Declares a single dimension array

Dim dCenPt(0 To 2) As Double

' Displays 0

Debug.Print LBound(dCenPt)

38 | CHAPTER 2 UNDERSTANDING VISUAL BASIC FOR APPLICATIONS

c02.indd 4:27:46:PM/04/06/2015 Page 38

' Displays 2

Debug.Print UBound(dCenPt)

' Declares a multi-dimensional array

Dim matrix(0 To 3, 1 To 4) As Double

' Displays 3 which is the upper-limit of the first dimension

Debug.Print UBound(matrix, 1)

' Displays 4 which is the upper-limit of the second dimension

Debug.Print UBound(matrix, 2)

The output is displayed in the Output window of the VBA Editor with the Print procedure

of the Debug object. You’ll learn more about using the Debug object in Chapter 13, “Handling

Errors and Deploying VBA Projects.”

Calculating Values with Math Functions and Operators
When working with AutoCAD, you must consider the accuracy with which objects are placed

and the precision with which objects are created in a drawing. The same is true with using VBA.

You must consider both accuracy and precision when creating and modifying objects. The VBA

math functions allow you to perform a variety of basic and complex calculations. You can add or

multiply two numbers, or even calculate the sine or arctangent of an angle.

Table 2.2 lists many of the math functions and operators that you will use with VBA in

this book.

Table 2.2: VBA math functions and operators

Function/

Operator Description

+ Returns the sum of two numeric values.

Syntax: retVal = number + number

- Returns the diff erence between two numeric values.

Syntax: retVal = number - number

* Returns the product of two numeric values.

Syntax: retVal = number * number

/ Returns the quotient after dividing two numeric values. A double value is

returned.

Syntax: retVal = number / number

EXPLORING DATA TYPES | 39

c02.indd 4:27:46:PM/04/06/2015 Page 39

Function/

Operator Description

\ Returns the quotient after dividing two numeric values. A double value is returned.

Syntax: retVal = number \ number

Mod Returns the remainder after dividing two numeric values.

Syntax: retVal = number Mod number

Atn Calculates the arctangent of an angular value expressed in radians.

Syntax: retVal = Atn(number)

Cos Returns the cosine of an angular value expressed in radians.

Syntax: retVal = Cos(number)

Exp Returns a numeric value that has been raised to its natural antilogarithm.

Syntax: retVal = Exp(number)

Log Calculates the natural logarithm of a numeric value.

Syntax: retVal = Log(number)

Rnd Generates a random value of the single data type, which is similar to a double data

value with less precision.

Syntax: retVal = Rnd([seed])

Th e optional seed argument is used to generate the same random number.

Sin Returns the sine of an angular value expressed in radians.

Syntax: retVal = Sin(number)

Sqr Gets the square root of a numeric value.

Syntax: retVal = Sqr(number)

Tan Calculates the tangent of an angular value expressed in radians.

Syntax: retVal = Tan(number)

For more information on these functions, see the Microsoft Visual Basic for Applications

Help system.

Manipulating Strings
Strings are used for a variety of purposes in VBA, from displaying command prompts and mes-

sages to creating annotation objects in a drawing. String values in a VBA program can have a

static or fi xed value that never changes during execution, or a value that is more dynamic and is

changed by the use of string manipulation functions.

40 | CHAPTER 2 UNDERSTANDING VISUAL BASIC FOR APPLICATIONS

c02.indd 4:27:46:PM/04/06/2015 Page 40

Table 2.3 lists many of the string manipulation functions and operators that you will use with

VBA in this book.

Table 2.3: VBA string manipulation functions and operators

Function/

Operator Description

+ Concatenates two strings together.

Syntax: retVal = string + string

& Concatenates two strings together.

Syntax: retVal = string & string

LCase Converts the characters in a string to all lowercase.

Syntax: retVal = UCase(string)

Left Returns a substring based on a specifi ed number of characters from the left side of a

string.

Syntax: retVal = Left(string, length)

Len Returns an integer that represents the number of characters in a string.

Syntax: retVal = Len(string)

LTrim Removes leading spaces from a string.

Syntax: retVal = LTrim(string)

Mid Returns a substring based on a starting position from the left side of a string and going

to the right for a specifi ed number of characters.

Syntax: retVal = Mid(string, start,length)

A starting position of 1 indicates the substring should start at the fi rst character of the

string.

Right Returns a substring based on a specifi ed number of characters from the right side of a

string.

Syntax: retVal = Right(string, length)

RTrim Removes trailing spaces from a string.

Syntax: retVal = RTrim(string)

Space Returns a string containing the specifi ed number of spaces.

Syntax: retVal = Space(number)

Split Returns an array of strings based on the delimited character.

Syntax: retVal = Split(string [, delimiter [, limit

[, comparison]]])

EXPLORING DATA TYPES | 41

c02.indd 4:27:46:PM/04/06/2015 Page 41

Function/

Operator Description

StrConv Returns a string based on a specifi ed conversion option.

Syntax: retVal = StrConv(string, mode,localeID)

For a list of supported conversion modes and locale IDs, see the StrConv Function

topic in the Microsoft Visual Basic for Applications Help system.

String Returns a string containing a character repeated a specifi ed number of times.

Syntax: retVal = String(number, character)

StrReverse Inverts the characters in a string and returns a new string.

Syntax: retVal = StrReverse(string)

Trim Removes leading and trailing spaces from a string.

Syntax: retVal = Trim(string)

UCase Converts the characters in a string to all uppercase.

Syntax: retVal = UCase(string)

For more information on these functions, see the Microsoft Visual Basic for Applications

Help system.

The + and & operators are used to concatenate two strings together into a single string. In

addition to concatenating two strings, you can concatenate special constants that represent an

ASCII value to a string. For example, you can add a tab or linefeed character. Table 2.4 lists the

special constants that the VBA programming language supports.

Table 2.4: Special constants with ASCII values

Constant Description

vbBack Backspace character equal to Chr(8)

vbCr Carriage return character equal to Chr(13)

vbCrLf Carriage return and linefeed characters equal to Chr(13) + Chr(10)

vbLf Linefeed character equal to Chr(10)

vbTab Tab character equal to Chr(9)

The Chr function is used to return the character equivalent of the ASCII code value that is

passed to the function. I introduce the Chr function and other data conversion functions in the

next section.

42 | CHAPTER 2 UNDERSTANDING VISUAL BASIC FOR APPLICATIONS

c02.indd 4:27:46:PM/04/06/2015 Page 42

The following code statements use the vbLf constant to break a string into two lines before

displaying it in a message box with the MsgBox function:

' Displays information about the active linetype

MsgBox "Name: " & ThisDrawing.ActiveLinetype.Name & vbLf & _

 "Description: " & ThisDrawing.ActiveLinetype.Description

Converting Between Data Types
Variables in VBA hold a specifi c data type, which helps to enforce data integrity and communi-

cate the type of data an argument expects or a function might return. As your programs become

more complex and you start requesting input from the user, there will be times when a function

returns a value of one data type and you want to use that value with a function that expects a

different data type. VBA supports a wide range of functions that can convert a string to a

number, a number to a string, and most common data types to a specifi c data type.

Table 2.5 lists many of the data conversion functions that you will use with VBA in

this book.

Table 2.5: VBA data conversion functions

Function Description

Abs Returns the absolute value of a numeric value, integer, or double number. Th e absolute

value is a positive value—never negative.

Syntax: retVal = Abs(number)

Asc Returns an integer that represents the ASCII code value of the string character that is

passed to the function.

Syntax: retVal = Asc(string)

CBool Converts a value to a Boolean value.

Syntax: retVal = CBool(value)

CByte Converts a value to a byte value.

Syntax: retVal = CByte(value)

CCur Converts a value to a currency value.

Syntax: retVal = CCur(value)

CDate Converts a value to a date value.

Syntax: retVal = CDate(value)

CDbl Converts a value to a double value.

Syntax: retVal = CDbl(value)

CDec Converts a value to a decimal value.

Syntax: retVal = CDec(value)

EXPLORING DATA TYPES | 43

c02.indd 4:27:46:PM/04/06/2015 Page 43

Function Description

Chr Returns the character equivalent of the ASCII code value that is passed to the function.

Syntax: retVal = Chr(number)

CInt Converts a value to an integer value.

Syntax: retVal = CInt(value)

CLng Converts a value to a long value.

Syntax: retVal = CLng(value)

CLngLng Converts a value to a LongLong value that is valid on 64-bit systems only.

Syntax: retVal = CLngLng(value)

CLngPtr Converts a value to a long value on 32-bit systems or a LongLong value on 64-bit

systems.

Syntax: retVal = CLngPtr(value)

CSng Converts a value to a single value.

Syntax: retVal = CSng(value)

CStr Converts a value to a string value.

Syntax: retVal = CStr(value)

CVar Converts a value to a variant value.

Syntax: retVal = CVar(value)

Fix Returns the nearest integer of a double number after discarding the fractional value

after the decimal. When a negative double value is passed to the function, the fi rst neg-

ative number greater than or equal to the number passed is returned.

Syntax: retVal = Fix(number)

Format Returns a string that contains a formatted numeric or date value.

Syntax: retVal = Format(value[, format[,firstweekday

[, firstweekofyear]]])

Th e optional format argument controls the number or date formatting, and the

optional firstweekday and firstweekofyear specify the fi rst day of the week or

fi rst week of the year.

Hex Returns a hexadecimal value as a string based on the number provided.

Syntax: retVal = Hex(number)

Int Returns the nearest integer of a double number after discarding the fractional value

after the decimal. When a negative double value is passed to the function, the fi rst neg-

ative number less than or equal to the number passed is returned.

Syntax: retVal = Int(number)

Oct Returns an octal value as a string based on the number provided.

Syntax: retVal = Oct(number)

44 | CHAPTER 2 UNDERSTANDING VISUAL BASIC FOR APPLICATIONS

c02.indd 4:27:46:PM/04/06/2015 Page 44

For more information on these functions, see the Microsoft Visual Basic for Applications

Help system.

Comparing Values
As the complexity of a program grows, so too does the need to perform conditional tests, also

referred to as test conditions. Test conditions are used to compare values or settings in the

AutoCAD environment against a known condition. VBA operators and functions that are used

to test conditions return a Boolean value of True or False. The VBA operators and functions

used to test a condition allow you to

 ◆ Compare two values for equality

 ◆ Determine if a value is numeric, zero, or negative

 ◆ Compare two values to see which is greater or less than or equal to the other

 ◆ Check for a value being Nothing, an array, or an object

Testing Values for Equality
Testing for equality is probably the most common test condition you will perform in most of

your programs. For example, you might want to see if the user provided any input with one of

the GetXXXX functions that are part of the AutoCAD COM library. In this case, you could check

to see if the value returned is expected. The VBA = (equal to) and <> (not equal to) operators are

how values are commonly compared to each other. The = operator returns True if the values are

equal; otherwise, False is returned. The <> operator returns True if the values are not equal;

False is returned if the values are equal.

The following shows the syntax of the = and <> operators:

value1 = value2

value1 <> value2

Here are examples of the = and <> operators:

' Returns True, numbers are equal

1 = 1

1 = 1.0

' Returns True, strings are equal

"ABC" = "ABC"

' Returns False, numbers are not equal

1 <> 2

' Returns False, strings are not equal

"ABC" = "abc"

In addition to the = operator, the Like operator can be used to compare string values. I dis-

cuss the Like operator in the next section.

TIP Th e Not operator can be used to invert a Boolean value returned by an operator or function.

A value of True is returned as False, whereas a value of False is returned as True.

COMPARING VALUES | 45

c02.indd 4:27:46:PM/04/06/2015 Page 45

The = operator isn’t ideal for comparing to see if two objects are the same. If you want to

compare two objects for equality, you use the Is operator. The syntax for using the Is

operator is the same as for using the = operator. A value of True is returned if both objects are

the same when using the Is operator; otherwise, False is returned.

Here are examples of the Is operator:

' Gets the current layer of the drawing

Dim objCurLayer as AcadLayer

Set objCurLayer = ThisDrawing.ActiveLayer

' Creates a new layer

Dim objNewLayer as AcadLayer

Set objNewLayer = ThisDrawing.Layers.Add("ABC")

' Returns True since both objects are the same

objCurLayer Is ThisDrawing.ActiveLayer

' Returns False since both objects are not the same

objCurLayer Is objNewLayer

Comparing String Values
The = operator isn’t the only way to compare two string values. The Like operator allows you

to compare a string value to a string pattern that can contain one or more wildcard characters.

If the string matches the pattern, True is returned, and False is returned if the string doesn’t

match the pattern.

The following shows the syntax of the Like operator:

retVal = string Like pattern

Here are examples of the Like operator:

' Returns True since both strings match

"ABC" Like "ABC"

' Returns False since both strings don't match

"ABC" Like "AC"

' Returns True since both strings match the pattern

"DOOR_DEMO" Like "DOOR*"

The StrComp and InStr functions can be used to compare two string values using an

optional comparison mode. The StrComp and InStr functions don’t return a Boolean value like

the = operator; instead they return an integer value based on the comparison mode passed to the

function. 0 is returned if the strings are equal, 1 is returned if the binary value of the fi rst string

is greater than the second string or the two strings are not equal when doing a textual compari-

son, and -1 is returned if the binary value of the fi rst string is less than the second string.

The following shows the syntax of the StrComp function:

retVal = StrComp(string1, string2[, comparison])

46 | CHAPTER 2 UNDERSTANDING VISUAL BASIC FOR APPLICATIONS

c02.indd 4:27:46:PM/04/06/2015 Page 46

For more information on the StrComp function and a list of values that the comparison argu-

ment expects, see the Microsoft Visual Basic for Applications Help.

The InStr function is similar to the StrComp function with one exception: it has an optional

start argument, which specifi es the location within the fi rst string that the comparison should

start. The following shows the syntax of the InStr function:

retVal = InStr([start,][string1,][string2,][comparison])

Determining If a Value Is Greater or Less Th an Another
The values that a user provides or the settings that defi ne the AutoCAD environment aren’t

always easily comparable for equality. Values such as the radius of a circle or the length of a line

are often compared to see if a value is greater or less than another. The VBA > (greater than)

and < (less than) operators can be used to ensure that a value is or isn’t greater than or less than

another value.

These two operators are great for making sure a value is within a specifi c range, more than a

value, or less than a value. You can also use the > and < operators with the Do and While state-

ments to count down or up and make sure that while incrementing or decrementing a value you

don’t exceed a specifi c value. You might also use the > and < operators with a logical grouping

operator to make sure a value is within a specifi c range of values. I discuss logical groupings in

the “Grouping Comparisons” section.

The > (greater than) operator returns True if the fi rst number is greater than the second num-

ber; otherwise, False is returned. The < (less than) operator returns True if the fi rst number is

less than the second number; otherwise, False is returned. If the values being compared are

equal, then False is returned.

The following shows the syntax of the > and < operators:

value1 > value2

value1 < value2

In addition to comparing values to see if a value is greater or less than another, you can check

for equality at the same time. The >= (greater than or equal to) and <= (less than or equal to)

operators allow you to check to see if a value is greater or less than another or if the two values

are equal. The syntax and return values for the >= and <= operators are the same as for the

> and < operators, except True is returned if the values being compared are equal to each other.

Here are examples of comparing values with the >, <, >=, and <= operators, along with the

values that are returned:

' Returns True as 2 is greater than 1

2 > 1

' Returns False as the values are equal

1 > 1.0

' Returns False as 2 is not less than 1

2 < 1

' Returns False as the values are equal

COMPARING VALUES | 47

c02.indd 4:27:46:PM/04/06/2015 Page 47

1 < 1.0

' Returns True as the values are equal

1 >= 1.0

' Returns False as 1 is not greater than or equal to 2

1 >= 2

' Returns True as the values are equal

1 <= 1.0

' Returns True as 1 is less than or equal to 2

1 <= 2

TIP You can compare a value within a range of values by using logical groupings, which I cover

in the “Grouping Comparisons” section.

Checking for Null, Empty, or Nothing Values
Values assigned to a variable or returned by a statement can be checked to see whether they

evaluate to null, empty, or nothing. A null value occurs when no valid data is assigned to a vari-

able. The IsNull function returns True if a value is null; otherwise, False is returned. A vari-

able can be set to a value of null using this syntax:

variable = Null

A variable declared with the variant data type can hold any type of data, but if it is not ini-

tialized and assigned a value, it is empty. The IsEmpty function returns True if a value is empty;

otherwise, False is returned. A variable can be set to a value of empty using this syntax:

variable = Empty

Values that are of an object type can’t be compared for a null or empty value, but rather you

compare them against a value of nothing. Unlike checking for a null or empty value, there is no

IsNothing function that can be used to check for a value of nothing. Checking for a Nothing

value requires the use of the Is operator, which I mentioned in the “Testing Values for Equality”

section. The following syntax shows how to compare an object for a value of nothing:

' Creates new variable of the AcadLayer object type

Dim objCurLayer as AcadLayer

' Evaluates to True since no object has been assigned to the variable

objCurLayer Is Nothing

' Gets the current layer of the drawing

Set objCurLayer = ThisDrawing.ActiveLayer

' Evaluates to False since the current layer has been assigned to the variable

Debug.Print objCurLayer Is Nothing

48 | CHAPTER 2 UNDERSTANDING VISUAL BASIC FOR APPLICATIONS

c02.indd 4:27:46:PM/04/06/2015 Page 48

A variable can be set to a value of nothing using the syntax:

Set variable = Nothing

Validating Values
Prior to using a variable, I recommend testing to see if the variable holds the type of value that

you might reasonably expect. Although it does increase the complexity of a program, the addi-

tional statements used to test variables are worth the effort; they help to protect your programs

from unexpected values. The following lists some of the functions that can be used to test the

values of a variable:

IsArray: Determines if a value represents a valid array; returns True or False.

IsDate: Determines if a value represents a valid calendar date or time; returns True or

False.

IsMissing: Checks to see if an optional argument of a procedure was provided; returns True

or False.

IsNumeric: Determines if a value is a number; returns True or False.

IsObject: Determines if a value is an object; returns True or False.

Sgn: Determines the sign of a numeric value; 1 is returned if the value is greater than zero, 0

is returned if equal to zero, or –1 is returned if the number is less than zero.

For more information on these functions, see the Microsoft Visual Basic for Applications

Help system.

Grouping Comparisons
There are many times when one test condition isn’t enough to verify a value. One of the best

examples of when you want to use more than one test condition is to see if a value is within a

specifi c numeric range. Logical grouping operators are used to determine if the results of one or

more test conditions evaluates to True.

The And and Or operators are the two logical grouping operators that can be used to evaluate

two or more test conditions. The And operator returns True if all test conditions in a grouping

return True; otherwise, False is returned. The Or operator returns True if at least one test

condition in a grouping returns True; otherwise it returns False.

The following shows the syntax of the And and Or operators:

test_condition1 And test_condition2

test_condition1 Or test_condition2

The test_condition1 and test_condition2 arguments represent the test conditions that you

want to group together and evaluate.

Here are examples of the And and Or operators, along with the values that are returned:

' Checks to see if a number is between 1 and 5

Dim num as Integer

CONDITIONALIZING AND BRANCHING STATEMENTS | 49

c02.indd 4:27:46:PM/04/06/2015 Page 49

' Evaluates to and displays True since num is 3 and between 1 and 5

num = 3

MsgBox 5 >= num And 1 <= num

' Evaluates to and displays False since num is 6 and is not between 1 and 5

num = 6

MsgBox 5 >= num And 1 <= num

' Checks to see if values are numeric or strings

Dim val1, val2

val1 = 1.5: val2 = "1.5"

' Evaluates to and displays True since va11 is a double or integer

MsgBox VarType(val1) = vbDouble Or VarType(val1) = vbInteger

' Evaluates to and displays False since va12 is not a double or integer

MsgBox VarType(val2) = vbDouble Or VarType(val2) = vbInteger

I discussed the VarType function in the “Exploring Data Types” section.

Conditionalizing and Branching Statements
The statements in a procedure are executed sequentially, in what is commonly known as a linear

program. In a linear program, execution starts with the fi rst statement and continues until the

last statement is executed. Although statements are executed in a linear order, a procedure can

contain branches. Think of a branch as a fork in the road.

Branches allow a procedure to make a choice as to which statements should be executed next

based on the results of a test condition. I covered test conditions in the “Comparing Values”

section. The If and Select Case statements are used to branch the statements in a procedure.

Evaluating If a Condition Is Met
The operators and functions discussed in the previous sections allow a program to compare and

test values to determine which expressions to execute by using a programming technique called

branching. The most common branching method is the If…Then statement. Using the If…Then

statement, a set of statements can be executed if the test condition is evaluated as True.

The following shows the syntax of the If…Then statement:

If test_condition Then

 true_statementsN

End If

Here are the arguments:

test_condition The test_condition argument represents the test condition that you want

to evaluate and determine which statements to execute.

then_statementN The then_statementN argument represents the statements to evaluate if

the test_condition argument evaluates to True.

50 | CHAPTER 2 UNDERSTANDING VISUAL BASIC FOR APPLICATIONS

c02.indd 4:27:46:PM/04/06/2015 Page 50

The If…Then statement supports an optional Else statement, which can be used to execute a

set of statements when the test condition is evaluated as False. The following shows the syntax

of the If…Then statement with the Else statement:

If test_condition Then

 true_statementsN

Else

 else_statementN

End If

The else_statementN argument represents the statements that should be executed if the

test_condition argument evaluates to False. In addition to the Else statement, the If…Then

statement can support one or more optional ElseIf statements. An ElseIf statement allows

for the evaluation of additional test conditions. The following shows the syntax of the If…Then

statement with the inclusion of the ElseIf and Else statements:

If test_condition Then

 true_statementsN

[ElseIf test_condition Then

 elseif_statementN]

[Else

 else_statementN]

End If

When the test_condition argument of the If…Then statement evaluates to a value of False,

the test_condition of the ElseIf statement is evaluated. If the test_condition of the ElseIf

statement evaluates to a value of True, the set of statements after it is executed. If the test_con-

dition of the ElseIf statement evaluates to a value of False, the next ElseIf statement is eval-

uated if one is present. If no other ElseIf statements are present, the Else statement is executed

if one is present.

The following is an example of an If…Then statement that uses the ElseIf and Else state-

ments to compare the value of a number entered:

' Prompts the user for a number

Dim num As Integer

num = CInt(InputBox("Enter a number: "))

' Checks to see if the number is greater than, less than, or equal to 4

If num > 4 Then

 MsgBox "Number is greater than 4"

ElseIf num < 4 Then

 MsgBox "Number is less than 4"

Else

 MsgBox "Number is equal to 4"

End If

CONDITIONALIZING AND BRANCHING STATEMENTS | 51

c02.indd 4:27:46:PM/04/06/2015 Page 51

Validating for an Object of a Specific Type

You can use the TypeOf object Is objecttype clause of the If statement to determine an object’s

type. Th is can be helpful if your program expects the user to select or work with a specifi c type

of object. Selection fi lters, discussed in Chapter 5, can be used to allow only the user to select an

object of a specifi c type.

Th e following example displays one of two messages based on whether the fi rst object in model

space is a circle:

' Gets the first object in model space

Dim oFirstEnt As AcadEntity

Set oFirstEnt = ThisDrawing.ModelSpace(0)

' Display a message based on if the

' first object is a circle or not

If TypeOf oFirstEnt Is AcadCircle Then

 MsgBox "Object is a circle."

Else

 MsgBox "The object isn't a circle."

End If

Testing Multiple Conditions
The If…Then statement allows a procedure to execute one or more possible sets of statements

based on the use of the ElseIf and Else statements. In addition to the If…Then statement,

the Select Case statement can be used to evaluate multiple test conditions. The Select Case

statement is a more effi cient approach to testing multiple conditions when compared to the

If…Then statement.

Each test condition of a Select Case statement starts with the Case statement and can be

used to compare more than one value. Similar to the If…Then statement, the Select Case state-

ment also supports an optional statement if none of the test conditions are valued as True; the

optional statement is named Case Else.

The following shows the syntax of the Select Case statement:

Select Case

 Case test_condition

 case_statementsN

 [Case test_condition

 case_statementsN]

 [Case Else

 else_statementN

]

End Select

52 | CHAPTER 2 UNDERSTANDING VISUAL BASIC FOR APPLICATIONS

c02.indd 4:27:46:PM/04/06/2015 Page 52

test_condition The test_condition argument represents the test condition that you want

to evaluate and determine which statements to execute.

case_statementsN The case_statementsN argument represents the statements to evaluate

if the test_condition argument evaluates to True.

else_statementsN The else_statementsN argument represents the expressions to evalu-

ate if none of the test conditions represented by the Case statements evaluates to True. The

Case Else statement must also be used.

The following is an example of the Select Case statement:

' Displays a message based on the number entered

Select Case CInt(InputBox("Enter a number: "))

 Case 1

 MsgBox "1 was entered"

 Case 2 To 4

 MsgBox "2 to 4 was entered"

 Case 5, 6

 MsgBox "5 or 6 was entered"

 Case Is >= 7

 MsgBox "7 or greater was entered"

 Case Else

 MsgBox "0 or less was entered"

End Select

Repeating and Looping Expressions
Repetition helps to form habits and learn how to perform a task, but repetition can also be coun-

terproductive. If you know a task is repeated many times a day and you know how to complete

that task, it is ideal to automate and simplify the process as much as possible, if not eliminate the

process altogether. VBA—and most programming languages, for that matter—have no problem

with repetition because they support a concept known as loops. Loops allow for a set of expres-

sions to be executed either a fi nite number of times or infi nitely while a condition is met.

Repeating Expressions a Set Number of Times
The easiest way to loop a set of expressions in VBA is to use the For statement. The fi rst argu-

ment of the For statement is known as the counter, which is a variable name that is incremented

or decremented each time the For statement is executed. The initial value of the counter and

number of times the For statement should be executed are determined by a range of two values.

Typically, the range starts with 0 or 1 and the difference between the start and ending of the

range is used to specify how many times the For statement is executed. By default, the counter

is incremented by 1 each time the For statement is executed. Optionally, the For statement sup-

ports the Step keyword, which can be used to specify a larger increment value than the default

of 1 or a decrement value to count down instead of up.

The following shows the syntax of the For statement:

For counter = start To end [Step stepper]

 statementN

Next [counter]

REPEATING AND LOOPING EXPRESSIONS | 53

c02.indd 4:27:46:PM/04/06/2015 Page 53

Its arguments are as follows:

counter The counter argument represents the variable name that is assigned to the current

loop counter. The variable should be of a number data type, such as an integer or short. When

the For statement is executed the fi rst time, the counter variable is assigned the value passed to

the start argument.

start The start argument represents the start of the numeric range.

end The end argument represents the end of the numeric range.

stepper The stepper argument is optional and represents the numeric value that counter

should be stepped each time the For statement is executed. Use a positive number to incre-

ment counter or a negative number to decrement counter.

statementN The statementN argument represents the statements that should be executed

each time the loop is started.

NOTE Th e Exit For statement can be used to end a For statement before the counter reaches

the end of the specifi ed range.

The following is an example of using the For statement:

' Executes the statements 5 times, the variable

' cnt is incremented by 1 with each loop

Dim cnt as Integer

For cnt = 1 To 5

 Debug.Print cnt

Next cnt

Here is the output that the previous statements create:

1

2

3

4

5

Stepping Th rough an Array or Collection
The For Each statement is similar to the For statement described in the previous section.

Instead of specifying a counter variable, a range, and an optional step, the For Each statement

requires an element variable and a grouping, such as an array or a collection object. When the

For Each statement is executed, the fi rst value of the array or object of the collection is assigned

to the element variable. As the For Each statement continues to be executed, the next value or

object is assigned to the variable until all values or objects have been retrieved.

The following shows the syntax of the For Each statement:

For Each element In grouping

 statementN

Next [element]

54 | CHAPTER 2 UNDERSTANDING VISUAL BASIC FOR APPLICATIONS

c02.indd 4:27:46:PM/04/06/2015 Page 54

Its arguments are as follows:

element The element argument represents the variable name that is assigned to the current

loop element. When the For Each statement is executed the fi rst time, the element variable is

assigned the fi rst value or object of the grouping argument.

grouping The grouping argument represents the array or collection object that you want to

step through one value or object at a time.

statementN The statementN argument represents the statements that should be executed

each time the loop is started.

NOTE Th e Exit For statement can be used to end a For statement before the last value or

object in an array or a collection is retrieved.

The following is an example of using the For Each statement:

' Steps through all layer objects in the Layers collection

' of the current drawing and displays the names of each layer

Dim objLayer as AcadLayer

For Each objLayer In ThisDrawing.Layers

 Debug.Print objLayer.Name

Next objLayer

Here is the output that the previous statements create:

0

Plan_Walls

Plan_Doors

Plan_Cabinets

Plan_Furniture

Labels

Panels

Surfaces

Storage

Defpoints

Dimensions

The order in which values or objects are retrieved is the same in which they were added to

the array or collection.

Performing a Task While or Until a Condition Is Met
The For and For Each statements, as I mentioned in the previous sections, can be used to

execute a set of statements a fi nite number of times. However, it isn’t always easy to know just

how many times a set of statements might need to be executed to get the desired results. When

you are unsure of the number of times a set of statements might need to be executed, you can

use the Do or While statement.

The Do and While statements use a test condition, just like the If statement, to determine

whether the set of statements should be executed. The set of statements are executed as long

as the test condition returns True. The test conditions that can be used are the same ones men-

tioned earlier in the “Comparing Values” and “Grouping Comparisons” sections.

REPEATING AND LOOPING EXPRESSIONS | 55

c02.indd 4:27:46:PM/04/06/2015 Page 55

There are two uses for the Do statement. The fi rst is to evaluate a test condition before it

executes any statements, whereas the other executes a set of statements and then evaluates a test

condition to determine whether the statements should be executed again. Which version you

use simply depends on whether you want to execute the statements at least once each time the

Do statement is executed.

A Do statement also requires the use of either the While or Until keyword. The While

keyword indicates that the Do statement should execute until the test condition is no longer

True, and the Until keyword indicates that the Do loop should execute while the test is False.

The following shows the syntax of the Do statement that evaluates a test condition to deter-

mine whether the set of statements should be executed:

Do [{While | Until} test_condition]

 statementN

Loop

The next example shows the syntax of the Do statement that executes a set of statements

before evaluating a test condition:
Do

 statementN

Loop [{While | Until} test_condition]

Its arguments are as follows:

test_condition The test_condition argument represents the statement that should be

used to determine if the expressions represented by the statementN argument should be

executed or continue to be executed.

statementN The statementN argument represents the statements that should be executed

each time the loop is started.

The following are examples of the Do function:

' Executes the statements 5 times, the variable

' cnt is decremented by 1 with each loop

Dim cnt As Integer

cnt = 5

Do While cnt > 0

 Debug.Print cnt

 cnt = cnt - 1

Loop

Here is the output that the previous statements create:

5

4

3

2

1

56 | CHAPTER 2 UNDERSTANDING VISUAL BASIC FOR APPLICATIONS

c02.indd 4:27:46:PM/04/06/2015 Page 56

' Executes the statements once since the test condition

' only returns True while cnt is greater than 4

Dim cnt As Integer

cnt = 5

Do

 Debug.Print cnt

 cnt = cnt + 1

Loop Until cnt > 4

Here is the output that the previous statements create:

5

NOTE Th e Exit Do statement can be used to end a Do statement before the test condition

returns True or False based on whether the While or Until keyword is used.

The While statement is similar to the Do statement with the While keyword when evaluat-

ing a test condition before it executes a set of statements. The one difference between the Do and

While statements is that the While statement doesn’t support the ability to end early with the

use of the Exit statement. Ending a While statement early would require statements to manipu-

late the test condition being used to determine when to end the looping.

The following shows the syntax of the While statement:

While test_condition

 statementN

Wend

The test_condition and statement arguments are the same as those in the Do statement.

Here is an example of the While function:

' Executes the statements 5 times, the variable

' cnt is decremented by 1 with each loop

Dim cnt As Integer

cnt = 5

While cnt > 0

 Debug.Print cnt

 cnt = cnt - 1

Wend

Here is the output that the previous statements create:

 5

4

3

2

1

c03.indd 8:38:38:PM/03/26/2015 Page 57

Chapter 3

Interacting with the Application
and Documents Objects

The top object in the AutoCAD® Object library is the AcadApplication object, which allows you

to access and manipulate the AutoCAD application window. From the AcadApplication object,

you can also access the AcadDocuments collection, which allows you to work with not only the

current drawing but all open drawings in the current AutoCAD session. As mentioned in earlier

chapters, the ThisDrawing object can be used to access the current drawing.

Working with the Application
The AcadApplication object is the topmost object in the AutoCAD Object library. Although it

isn’t the most used object, it does provide access to the many features that you will use in VBA

projects. All objects in the AutoCAD Object library provide access to the AcadApplication

object with the object’s Application property. You can access the AcadApplication object from

the ThisDrawing object with the following code statement in the VBA Editor:

ThisDrawing.Application

You can also use the following code statement to access the AcadApplication object from a

code, class, or UserForm module:

AcadApplication.Application

The following tasks can be performed once you have a reference to the AcadApplication

object:

 ◆ Get the current drawing or the AcadDocuments collection object to work with all

open drawings (see the section “Managing Documents” later in this chapter for more

information).

 ◆ List, load, and unload ObjectARX® applications.

 ◆ Load and unload VBA project fi les and execute a macro (see Chapter 13, “Handling Errors

and Deploying VBA Projects”).

 ◆ Manipulate the menus on the menu bar and toolbars in the user interface (see Chapter 10,

“Modifying the Application and Working with Events”).

 ◆ Monitor changes to the application, system variables, commands, and more using event

handlers (see Chapter 13).

 ◆ Update the display in the drawing window or zoom in the current viewport (see

Chapter 5, “Interacting with the User and Controlling the Current View”).

58 | CHAPTER 3 INTERACTING WITH THE APPLICATION AND DOCUMENTS OBJECTS

c03.indd 8:38:38:PM/03/26/2015 Page 58

 ◆ Access application preferences (see the section “Querying and Setting Application and

Document Preferences” later in this chapter for more information).

 ◆ Get the name of and path to an application executable.

 ◆ Manipulate the size and position of the application window.

The following shows a few code statements that allow you to query or manipulate an

application:

' Gets and displays the caption of the application window

MsgBox ThisDrawing.Application.Caption

' Zooms to the extents of all drawing objects in the current viewport

AcadApplication.Application.ZoomExtents

' Maximizes the application window

ThisDrawing.Application.WindowState = acMax

For a full list of the methods and properties that the AcadApplication object supports, look

up the AcadApplication class in the Object Browser of the VBA Editor and the AutoCAD Help

system.

Getting Information about the Current AutoCAD Session
The properties of the AcadApplication object can be used to access information about the cur-

rent instance of the application. You can learn the application name and where the executable is

stored, as well as which drawing is current or which drawings are open.

Table 3.1 lists the properties of the AcadApplication object that can be used to get informa-

tion about the AutoCAD executable.

Table 3.1: Application-related properties

Property Description

FullName Returns a string that contains the full name of the executable fi le used to start the applica-

tion. Th is property is read-only.

HWND Returns a long integer that contains the handle of the application in memory. A handle is a

unique value assigned to an application by Windows while it is executing in memory. A dif-

ferent number is assigned to the application each time it is started. Th is property is

read-only.

HWND32 Returns a long integer that contains the handle of the application in memory on a Windows

64-bit platform. Th is property is read-only and is available in AutoCAD 2014 and earlier

releases that didn’t support a true implementation of VBA 64-bit on the Windows 64-bit

platform.

LocaleId Returns an integer that represents the locale or language being used in the current session.

Th is property is read-only.

WORKING WITH THE APPLICATION | 59

c03.indd 8:38:38:PM/03/26/2015 Page 59

Property Description

Name Returns a string that contains the name and fi le extension of the executable fi le used to

start the application. Th is property is read-only.

Path Returns a string that contains the path of the executable fi le used to start the application.

Th is property is read-only.

Version Returns a string that contains the version number of the application. Th is property is

read-only.

The following demonstrates how to display a message box containing the name, path, and

version number of the application:

Sub DisplayAppInfo()

 MsgBox "Name: " & ThisDrawing.Application.Name & vbLf & _

 "Path: " & ThisDrawing.Application.Path & vbLf & _

 "FullName : " & ThisDrawing.Application.FullName & vbLf & _

 "Version : " & ThisDrawing.Application.Version, _

 vbInformation, "Application Info"

End Sub

TIP Th e FullName and Path properties can be helpful in identifying whether the current

AutoCAD session was started from a plain or from a vertical AutoCAD installation. For example,

the installation path might be C:\Program Files\Autodesk\AutoCAD 2015\ACA, which

lets you know that instance of AutoCAD 2015 should have access to the AutoCAD® Architecture

features. You can also use the product system variable to check whether the current AutoCAD

instance is a vertical-based product. I discuss working with system variables in the “Working

with System Variables” section later in this chapter.

Manipulating the Placement of the Application Window
Some properties of the AcadApplication object can be used to resize, reposition, or even hide

the AutoCAD application window from the user.

Table 3.2 lists the AcadApplication object properties that can be used to resize and get

information about the application window.

Table 3.2: Application window–related properties

Property Description

Caption Returns a string that contains the title of the application window. Th is property

is read-only.

Height Specifi es the height of the application window. Th e value returned is an integer and

represents the window height in pixels.

60 | CHAPTER 3 INTERACTING WITH THE APPLICATION AND DOCUMENTS OBJECTS

c03.indd 8:38:38:PM/03/26/2015 Page 60

Property Description

Visible Specifi es the visibility of the application window. Th e value returned is Boolean.

True indicates that the application window is visible, whereas False indicates the

window is hidden.

Width Specifi es the width of the application window. Th e value is an integer and repre-

sents the window width in pixels.

WindowLeft Specifi es the location of the application window’s left edge. Th e value is an integer.

0 sets the window to the leftmost visible position. A negative value moves the win-

dow to the left and off the screen, whereas a value greater than 0 moves the window

to the right.

WindowState Returns an integer value that represents the current state of the application win-

dow. Th e integer values allowed are defi ned as part of the AcWindowState enu-

merator. A value of 1 (or acNorm) indicates the window is neither minimized nor

maximized, whereas a value of 2 (or acMin) or 3 (or acMax) indicates the window is

minimized or maximized, respectively.

WindowTop Specifi es the location of the application window’s top edge. Th e value is an integer.

0 sets the window to the topmost visible position. A negative value moves the win-

dow up and off the screen, whereas a value greater than 0 moves the window down.

For more information on these properties, use the Object Browser in the VBA Editor or check

the AutoCAD Help system.

Managing Documents
When a drawing fi le is opened in the AutoCAD drawing environment, it is presented in a draw-

ing window. A drawing window in the AutoCAD Object library is referred to as a document
and is represented by an AcadDocument object. The AcadDocument object provides access to the

objects in a drawing fi le and the window in which the drawing is displayed.

The AcadDocuments collection object is used to manage all the drawings open in the cur-

rent AutoCAD session. You can access the AcadDocuments collection object with the Documents

property of the AcadApplication object. In addition to working with drawings in the current

session, you can create new and open existing drawing fi les, save and close open drawings, and

get information from an open drawing.

NOTE As I explained in Chapter 2, “Understanding Visual Basic for Applications,” the For

statement can be used to step through and get each drawing in the AcadDocuments collection

object. Th e Item method can also be used to get a specifi c document in the AcadDocuments col-

lection object.

Table 3.2: Application window–related properties (continued)

MANAGING DOCUMENTS | 61

c03.indd 8:38:38:PM/03/26/2015 Page 61

Working with the Current Drawing
The ThisDrawing object is the most common way to access the current drawing from a VBA

project. ThisDrawing is equivalent to using the code statement AcadApplication

.ActiveDocument.

From the current drawing, you can perform the following tasks:

 ◆ Add, query, and modify graphical and nongraphical objects (see Chapter 4, “Creating and

Modifying Drawing Objects,” Chapter 6, “Annotating Objects,” and Chapter 7, “Working

with Blocks and External References”).

 ◆ Set a nongraphical object as current (see Chapter 4, Chapter 6, and Chapter 7).

 ◆ Use utility functions to get user input and perform geometric calculations (see Chapter 5).

 ◆ Monitor changes to the drawing, commands, objects, and more using event handlers (see

Chapter 13).

 ◆ Select objects using selection sets (see Chapter 4).

 ◆ Get the name and path to the drawing fi le stored on disc.

 ◆ Access and modify drawing properties.

The following shows a few example code statements that access the properties of a current

drawing:

' Sets the model space elevation to 10.0

ThisDrawing.ElevationModelSpace = 10#

' Displays a message box with the name of the current layer

MsgBox ThisDrawing.ActiveLayer.Name

' Maximizes the drawing window

ThisDrawing.WindowState = acMax

For a full list of the methods and properties that the ThisDrawing object supports, look up

the AcadDocument class in the Object Browser of the VBA Editor or check the AutoCAD Help

system.

Creating and Opening Drawings
Not only can you work with the current drawing, but you can create a new drawing or open

an existing drawing fi le that had been stored on disc. The Add method of the AcadDocuments

collection object can be used to create a new drawing from scratch or based on a drawing tem-

plate (DWT) fi le. If you don’t pass the name of a drawing template fi le to the Add method, the

measurement units of the new drawing is determined by the current value of the measureinit

system variable. A value of 0 for the measureinit system variable indicates the new drawing

will use imperial units, whereas a value of 1 indicates the use of metric units. The Add method

62 | CHAPTER 3 INTERACTING WITH THE APPLICATION AND DOCUMENTS OBJECTS

c03.indd 8:38:38:PM/03/26/2015 Page 62

returns an AcadDocument object that represents the new drawing fi le that has been created in

memory.

The following example code statements show how to create a new drawing that uses metric

units from scratch or based on the Tutorial-iArch.dwt fi le that is installed with AutoCAD:

' Set the measurement system for new drawings to metric

ThisDrawing.SetVariable "measureinit", 1

' Create a new drawing from scratch

Dim newDWG1 As AcadDocument

Set newDWG1 = Application.Documents.Add

' Create a new drawing based on Tutorial-iArch.dwt

Dim newDWG2 As AcadDocument

Set newDWG2 = Application.Documents.Add("Tutorial-iArch.dwt")

NOTE If the DWT fi le passed to the Add method isn’t located in a path listed under the Drawing

Template File Location node on the Files tab of the Options dialog box, you must specify the full

path to the DWT fi le. Th e TemplateDwgPath property of the AcadPreferencesFiles object

can be used to add additional paths for AutoCAD to look in for DWT fi les. I discuss application

preferences later, in the “Querying and Setting Application and Document Preferences” section.

The New method of an AcadDocument object can also be used to create a new drawing

fi le when the AutoCAD drawing environment is in single document interface (SDI) mode.

Autodesk doesn’t recommend using SDI mode; it affects the functionality of some features in

the AutoCAD drawing environment. You can determine whether AutoCAD is in SDI mode by

checking the value of the sdimode system variable or checking the SingleDocumentMode prop-

erty of the AcadPreferencesSystem object. The New method returns an AcadDocument object

that represents the new drawing fi le that has been created in memory.

When you want to work with an existing drawing fi le that is stored on a local or network

drive, use the Open method of the AcadDocument or AcadDocuments collection object. Here’s the

syntax of the Open methods:

retVal = document.Open(fullname [, password])

retVal = documents.Open(fullname [, read-only] [, password])

The arguments are as follows:

fullname The fullname argument is a string that represents the DWG fi le you want to

open. You can also open a DWS or DWT fi le.

password The password argument is an optional string that represents the password that is

required to open a password-protected DWG fi le.

read-only The read-only argument is an optional Boolean that specifi es whether the draw-

ing should be open for read-write or read-only. A value of True indicates the drawing should

be open for read-only access.

MANAGING DOCUMENTS | 63

c03.indd 8:38:38:PM/03/26/2015 Page 63

retVal The retVal argument specifi es a user-defi ned variable that you want to assign the

AcadDocument object that is returned by the Open method.

The following example code statements show how to open a DWG fi le named Building_

Plan.dwg stored at C:\Drawings, fi rst for read-write and then for read-only access:

' Open Building_Plan.dwg for read-write

Dim objDoc1 As AcadDocument

set objDoc1 = ThisDrawing.Open("c:\drawings\building_plan.dwg")

' Open Building_Plan.dwg for read-only

Dim objDoc2 As AcadDocument

set objDoc2 = Application.Documents.Open("c:\drawings\building_plan.dwg", True)

NOTE Before you try to use a DWT fi le or open a DWG fi le, you should make sure the fi le exists

on your workstation. Th e VBA Dir method can be used to check for the existence of a fi le or

folder. I explain how to work with fi les in Windows in Chapter 12, “Communicating with Other

Applications.”

Saving and Closing Drawings
After you create a new drawing or make changes to an existing drawing fi le, you most likely

will want to save the drawing to a fi le. Saving a drawing can be accomplished with the Save

or SaveAs method of the AcadDocument object. Similar to the user interface, the Save method

should be used to save a drawing fi le that was opened from disc or was previously saved with

the SaveAs method.

The Save method accepts no arguments and saves a drawing to the location it was opened

from. If you use the Save method on a new drawing that wasn’t previously saved, the Save

method saves the drawing to the location stored in the Path property of the AcadDocument

object. You can determine whether the drawing was previously saved by checking the FullName

property of the AcadDocument object; if the property returns an empty string, the drawing

hasn’t been saved to disc yet.

When you want to save a new drawing, save an existing drawing with a new name or loca-

tion or in a different fi le format, or change the password protection, save the drawing with the

SaveAs method. Here’s the syntax of the SaveAs method:

document.SaveAs(fullname [, SaveAsType] [,SecurityParams])

The arguments are as follows:

fullname The fullname argument is a string that represents the name and path of the

drawing or drawing interchange fi le on disc.

SaveAsType The SaveAsType argument is an optional integer that represents one of the

supported fi le formats. The supported values can be found in the Object Browser of the

VBA Editor under the enumerator named AcSaveAsType or in the SaveAs Method topic in

the AutoCAD Help system. When not provided, the default format (the native drawing fi le

64 | CHAPTER 3 INTERACTING WITH THE APPLICATION AND DOCUMENTS OBJECTS

c03.indd 8:38:38:PM/03/26/2015 Page 64

format for the AutoCAD release you are using) is used. For AutoCAD 2013 and later, the

default fi le format is the AutoCAD 2013 DWG fi le format.

SecurityParams The SecurityParams argument is an optional AcadSecurityParams

object that specifi es the password or digital signature settings to apply to the drawing. For

information on the AcadSecurityParams object, see the AutoCAD Help system.

Before saving a drawing, you should check to see if the fi le was opened as read-only or if the

drawing already has been saved. The ReadOnly property returns a Boolean value of True when

the drawing is opened for read-only access, and the Saved property returns a Boolean value of

True if the drawing doesn’t need to be saved.

The following example demonstrates how to save a DWG fi le named SampleVBASave.dwg to

the Documents (or My Documents) folder:

' Check to see if the drawing is read-write

If ThisDrawing.ReadOnly = False Then

 ' Check to see if the drawing file was previously saved

 If ThisDrawing.FullName = "" Then

 ' Drawing wasn't previously saved

 ThisDrawing.SaveAs ThisDrawing.GetVariable("MyDocumentsPrefix") & _

 "\SampleVBASave.dwg"

 Else

 ' Drawing was previously saved to disc

 ' Check to see if the drawing has been modifed

 If ThisDrawing.Saved = False Then

 ThisDrawing.Save

 End If

 End If

End If

Once a drawing fi le no longer needs to remain open in the AutoCAD drawing environment,

you can close it using the Close method of the AcadDocument object. Alternatively, you can use

the Close method of the AcadDocuments collection object, which will close all open drawings

and ignore any changes that haven’t previously been saved.

Here’s the syntax of the Close methods:

document.Close([SaveChanges] [, fullname])

documents.Close

Here are the arguments:

SaveChanges The SaveChanges argument is an optional Boolean that specifi es whether the

changes made to the drawing should be saved or discarded.

fullname The fullname argument is an optional string that represents a new name and

path to use when saving the drawing fi le if SaveChanges was passed a value of True.

TIP If you want to close all open drawings, I recommend using the For statement with the

AcadDocuments collection object and then close each drawing one at a time with the Close

method of the AcadDocument object returned by the For statement. Th is approach will give

you a chance to specify how changes are handled for each drawing as it is closed.

MANAGING DOCUMENTS | 65

c03.indd 8:38:38:PM/03/26/2015 Page 65

The following example demonstrates a procedure that mimics some of the functionality

available with the AutoCAD closeall command:

Sub CloseAll()

 Dim oDoc As AcadDocument

 For Each oDoc In Application.Documents

 ' Activates the document window

 oDoc.Activate

 ' Close the drawing if no changes have been made since last save

 If oDoc.Saved = True Then

 oDoc.Close False

 Else

 Dim nRetVal As Integer

 nRetVal = MsgBox("Save changes to " & _

 oDoc.Path & "\" & oDoc.Name & "?", vbYesNoCancel)

 Select Case nRetVal

 Case vbYes

 ' Save the drawing using its default name or last saved name

 ' if not open as read-only.

 If oDoc.ReadOnly = False Then

 oDoc.Save

 ' Close the drawing

 oDoc.Close

 Else

 ' Close file and discard changes if file is read-only

 If vbYes = MsgBox("File is read-only." & vbLf & vbLf & _

 "Discard changes and close file?", vbYesNo) Then

 oDoc.Close False

 End If

 End If

 ' You should prompt the user here if the file was not previously

 ' saved to disc for a file name and path, or how read-only files

 ' should be handled.

 Case vbNo

 ' Close file and discard changes

 oDoc.Close False

 Case vbCancel

 ' Exit the procedure and return to AutoCAD

 Exit Sub

 End Select

 End If

 Next oDoc

End Sub

66 | CHAPTER 3 INTERACTING WITH THE APPLICATION AND DOCUMENTS OBJECTS

c03.indd 8:38:38:PM/03/26/2015 Page 66

NOTE Th e previous example doesn’t handle all situations that might be encountered when

closing and saving changes to a drawing. Th e Ch03_ExSamples.dvb fi le, which you can down-

load from www.sybex.com/go/autocadcustomization, contains a more comprehensive and

complete solution. Place the fi le in the MyCustomFiles folder within the Documents (or My

Documents) folder, or the location you are using to store the DVB fi les. Th en load the VBA project

into the AutoCAD drawing environment to use it. Th is sample fi le also contains a custom class

that wraps two functions that can be used to display an open or save fi le-navigation dialog box.

Accessing Information about a Drawing
The properties of an AcadDocument object can be used to access information about the draw-

ing fi le it represents. You can learn where the drawing fi le is stored, identify the graphical and

nongraphical objects stored in a drawing fi le, and access the drawing properties that are used to

identify a drawing fi le. I discuss how to access graphical and nongraphical objects later in this

book.

Table 3.3 lists the properties of the AcadDocument object that can be used to get the name,

location, and drawing properties of a drawing fi le open in the current AutoCAD session.

Table 3.3: Drawing fi le–related properties

Property Description

FullName Returns a string that contains the full name of the drawing fi le when it is stored on

disc. If the drawing has not been saved yet, this property returns an empty string.

Th is property is read-only.

Name Returns a string that contains the name and fi le extension of the drawing fi le. If

the drawing has not been saved yet, it returns the default name assigned to the

drawing fi le (that is, Drawing1.dwg, Drawing2.dwg, …). Th is property is

read-only.

Path Returns a string that contains the path of the drawing fi le when it is stored on disc

or the Documents (or My Documents) folder by default if the drawing has not been

saved. Th is property is read-only.

SummaryInfo Returns a reference to an AcadSummaryInfo object, which represents the drawing

properties that can be displayed and modifi ed using the AutoCAD dwgprops com-

mand. Th is property is read-only.

NOTE Use the SaveAs method of the AcadDocument object to save a drawing fi le with a new

name or location.

http://www.sybex.com/go/autocadcustomization

MANAGING DOCUMENTS | 67

c03.indd 8:38:38:PM/03/26/2015 Page 67

The following demonstrates how to display a message box containing the path and name of

the current drawing:

Sub DisplayDWGName()

 MsgBox "Name: " & ThisDrawing.Name & vbLf & _

 "Path: " & ThisDrawing.Path & vbLf & _

 "FullName : " & ThisDrawing.FullName, _

 vbInformation, "File Name and Path"

End Sub

To query and set the Author and Comments properties of the AcadSummaryInfo object for the

current drawing, you’d use this code:

Sub DWGSumInfo()

 Dim oSumInfo As AcadSummaryInfo

 Set oSumInfo = ThisDrawing.SummaryInfo

 MsgBox "Author: " & oSumInfo.Author & vbLf & _

 "Comments: " & oSumInfo.Comments, _

 vbInformation, "Drawing Properties"

 oSumInfo.Author = "Drafter"

 oSumInfo.Comments = "Phase 1: Demolishion of first floor"

 MsgBox "Author: " & oSumInfo.Author & vbLf & _

 "Comments: " & oSumInfo.Comments, _

 vbInformation, "Drawing Properties"

End Sub

For more information on the AcadSummaryInfo object, use the Object Browser in the VBA

Editor or check the AutoCAD Help system.

NOTE Th e Ch03_ExSamples.dvb sample fi le, which you can download from www.sybex

.com/go/autocadcustomization, contains two procedures—named AssignSumInfo and

QuerySumInfo—that demonstrate a more comprehensive solution for working with drawing

properties. Place the fi le in the MyCustomFiles folder within the Documents (or My Documents)

folder, or the location you are using to store the DVB fi les. Th en load the VBA project into the

AutoCAD drawing environment to use it.

Manipulating a Drawing Window
In addition to getting information about a drawing fi le, you can query and manipulate the

window in which a drawing fi le is displayed. The Active property and the Activate method

are helpful when you are working with the AcadDocuments collection object. You can use the

Active property to determine whether a document is the current object, and the Activate

method lets you set a document as current.

http://www.sybex.com/go/autocadcustomization
http://www.sybex.com/go/autocadcustomization

68 | CHAPTER 3 INTERACTING WITH THE APPLICATION AND DOCUMENTS OBJECTS

c03.indd 8:38:38:PM/03/26/2015 Page 68

Table 3.4 lists the AcadDocument object properties that can be used to resize and get informa-

tion about a drawing window.

Table 3.4: Drawing window–related properties

Property Description

Height Specifi es the height of the drawing window. Th e value is an integer and represents the

window height in pixels.

Width Specifi es the width of the drawing window. Th e value is an integer and represents the

window width in pixels.

WindowState Returns an integer value that represents the current state of the drawing window. Th e

integer values allowed are defi ned as part of the AcWindowState enumerator. A value

of 1 (or acNorm) indicates the window is neither minimized nor maximized, whereas a

value of 2 (or acMin) or 3 (or acMax) indicates the window is minimized or maxi-

mized, respectively.

WindowTitle Returns a string that contains the title of the drawing window. Th is property is

read-only.

For more information on these properties and methods, use the Object Browser in the VBA

Editor or check the AutoCAD Help system.

Working with System Variables
System variables are used to alter the way commands work, describe the current state of a draw-

ing or AutoCAD environment, and specify where support fi les are stored. Many of the settings

that are exposed by system variables are associated with controls in dialog boxes and palettes;

other settings are associated with various command options. For example, many of the settings

in the Drafting Settings dialog box (which you display using the dsettings command) are

accessible from system variables.

A system variable can store any one of the basic data types that VBA supports (see

“Exploring Data Types” in Chapter 2). You can see the hundreds of system variables and the

type they hold by using the AutoCAD Help system. Whereas you might normally use the

setvar command to list or change the value of a system variable at the AutoCAD Command

prompt, with the AutoCAD Object library you use the GetVariable and SetVariable methods

of an AcadDocument object to query and set the value of a system variable, respectively.

Here’s the syntax of the SetVariable and GetVariable methods:

document.SetVariable sysvar_name, value

retVal = document.GetVariable(sysvar_name)

The arguments are as follows:

sysvar_name The sysvar_name argument specifi es the name of the system variable you

want to query or set.

value The value argument specifi es the data that you want to assign to the system variable.

WORKING WITH SYSTEM VARIABLES | 69

c03.indd 8:38:38:PM/03/26/2015 Page 69

retVal The retVal argument specifi es the user-defi ned variable that you want to assign the

current value of the system variable.

The next exercise demonstrates how to query and set the value of the osmode system variable,

which controls the object snap drafting aid that is currently running. This setting is available in

the Drafting Settings dialog box:

 1. Create a new VBA project or use the empty VBA project that is available by default when

the VBA Editor is started.

 2. In the Project Explorer, double-click the ThisDrawing component.

 3. In the code editor window, type the following:

Sub WorkingWithSysVars()

 ' Get and store the current value of osmode

 Dim nCurOsmode As Integer

 nCurOsmode = ThisDrawing.GetVariable("osmode")

 MsgBox "Current value of osmode: " & CStr(nCurOsmode)

 ' Set osmode to a value of 33

 ThisDrawing.SetVariable "osmode", 33

 MsgBox "Current value of osmode: " & _

 CStr(ThisDrawing.GetVariable("osmode"))

 ' Restore osmode to its previous value

 ThisDrawing.SetVariable "osmode", nCurOsmode

 MsgBox "Current value of osmode: " & _

 CStr(ThisDrawing.GetVariable("osmode"))

End Sub

 4. Switch to the AutoCAD application window.

 5. On the ribbon, click the Manage tab ➢ Applications panel ➢ Run VBA Macro.

 6. When the Macros dialog box opens, select the macro name that ends with

WorkingWithSysVars. Click Run.

 7. Review the value in the message box and click OK to continue the execution of

the procedure.

The current value of the osmode system variable is displayed after the colon in the

message box.

 8. Review the message and click OK in the next two message boxes.

The value of the osmode system variable is changed to 33, and the change is refl ected after

the colon in the message box. The fi nal message box refl ects the original value.

TIP Th e AutoCAD Help system is a great resource for learning about system variables. However,

if you need to support multiple AutoCAD releases, you will need to reference the documentation

for each release. To make it easier to identify which system variables are supported in the current

and previous AutoCAD releases, Shaan Hurley (http://autodesk.blogs.com/between_

the_lines/) and I compiled a list of system variables that spans AutoCAD releases from 2004

through the present; you can view the list here: www.hyperpics.com/system_variables/.

http://autodesk.blogs.com/between_the_lines
http://autodesk.blogs.com/between_the_lines
http://www.hyperpics.com/system_variables

70 | CHAPTER 3 INTERACTING WITH THE APPLICATION AND DOCUMENTS OBJECTS

c03.indd 8:38:38:PM/03/26/2015 Page 70

Querying and Setting Application and
Document Preferences
System variables provide access to many application and document settings, but there are

some settings that are not accessible using system variables. The AcadApplication and

AcadDocument objects both offer a property named Preferences that allows you to access

additional settings that are not accessible using system variables. The Preferences prop-

erty of the AcadApplication object contains a reference to an AcadPreferences object. The

AcadPreferences object provides access to 10 properties that provide access to different prefer-

ence objects that are used to organize the available preferences. The 10 preference objects repre-

sent many of the tabs in the Options dialog box (which you open using the option command).

Table 3.5 lists the preference objects that are used to organize application preferences.

Table 3.5: Preference objects accessible from the application

Class/Object Description

AcadPreferencesDisplay Provides access to settings that control the display and color of

user-interface elements, scroll bars, drawing windows, and

crosshairs.

AcadPreferencesDrafting Provides access to the AutoSnap and AutoTracking settings.

AcadPreferencesFiles Provides access to the support-fi le locations, such as Support

File Search Path and Drawing Template File Location.

AcadPreferencesOpenSave Provides access to the default drawing format used when saving

a drawing with the save and qsave commands, in addition to

settings used to control the loading of Xrefs and ObjectARX

applications.

AcadPreferencesOutput Provides access to settings that control the plotting and pub-

lishing of drawing fi les.

AcadPreferencesProfiles Provides access to methods used to manage profi les defi ned in

the AutoCAD drawing environment, as well as a property used

to get or switch the active profi le.

AcadPreferencesSelection Provides access to settings that control the display of grips and

the pickbox.

AcadPreferencesSystem Provides access to application settings that control the display

of message boxes and whether the acad.lsp fi le is loaded once

per AutoCAD session or into each drawing.

AcadPreferencesUser Provides access to settings that control the default insertion

units used with the insert command and the behavior of the

shortcut menus in the drawing area.

EXECUTING COMMANDS | 71

c03.indd 8:38:38:PM/03/26/2015 Page 71

The Preferences property of the AcadDocument object doesn’t provide access to a reference of

an AcadPreferences object but instead provides access to an AcadDatabasePreferences object.

The AcadDatabasePreferences object can be used to control the display of lineweights, object

selection sorting, and the number of contour lines per surface, among many other settings.

 The following examples show how to query and set application and drawing preferences:

' Sample used to control Application preferences

With ThisDrawing.Application.Preferences

 ' Displays a message box with the current support file search paths

 MsgBox .Files.SupportPath

 ' Displays a message box with all available profiles

 Dim vName As Variant, vNames As Variant, strNames As String

 .Profiles.GetAllProfileNames vNames

 For Each vName In vNames

 strNames = strNames & vName & ","

 Next vName

 MsgBox "Available profile names: " & strNames

 ' Sets the crosshairs to 100

 .Display.CursorSize = 100

 ' Sets the background color of model space color to light gray

 .Display.GraphicsWinModelBackgrndColor = 12632256

End With

' Sample used to control Document preferences

With ThisDrawing.Preferences

 ' Turns off solid fill mode

 .SolidFill = False

 ' Turns on quick text display mode

 .TextFrameDisplay = True

End With

Executing Commands
The AutoCAD Object library allows you to automate most common tasks without the use of a

command, but there might be times when you will need to use an AutoCAD or third-party com-

mand. A command can be executed using the SendCommand method of the AcadDocument object.

NOTE While using a command might seem like a quick and easy choice over using the methods

and properties of the objects in the AutoCAD Object library, you should avoid using commands

whenever possible. Th e execution of an AutoCAD command can be slower and more limited

than using the same approach with the AutoCAD Object library and VBA. Th e behavior of com-

mands is aff ected by system variables, and ensuring system variables are set to specifi c values

before calling a command can result in you having to write additional code statements that can

complicate your programs.

72 | CHAPTER 3 INTERACTING WITH THE APPLICATION AND DOCUMENTS OBJECTS

c03.indd 8:38:38:PM/03/26/2015 Page 72

The SendCommand method expects a single string that represents the command, options, and

values that would be entered at the Command prompt. A space in the string represents the sin-

gle press of the Enter key. When the Enter key must be pressed, such as when providing a string

value that supports spaces, use the vbCr constant.

The following statements show how to draw a rectangle and a single-line text object using

commands:

' Draws a rectangle 0,0 to 10,4

ThisDrawing.SendCommand "._rectang 0,0 10,4 "

' Draws a single line text object with middle center justification

' at 5,2 with a height of 2.5 units and the text string D101

ThisDrawing.SendCommand "._-text _j _mc 5,2 2.5 0 D101" & vbCr

Figure 3.1 shows the result of drawing a rectangle with the rectang command and single-

line text placed inside the rectangle with the -text command.

Figure 3.1

Rectangle and

text drawn using

commands

The string sent by the SendCommand method to the AcadDocument object is executed imme-

diately in most cases. Typically, the string isn’t executed immediately when the SendCommand

method is called from an event handler. I discuss event handlers in Chapter 10.

Starting with AutoCAD 2015, you can postpone the execution of the commands and options

in the string until after the VBA program fi nishes by using the PostCommand method instead

of the SendCommand method. Unlike with the SendCommand method, you don’t need to have all

commands, options, and values in a single string.

The following statements show how to draw a rectangle with the PostCommand method:

' Draws a rectangle 0,0 to 10,4

ThisDrawing.PostCommand "._rectang "

ThisDrawing.PostCommand "0,0 10,4 "

Exercise: Setting Up a Project
Before a product is manufactured or a building is constructed, it starts as an idea that must

be documented. In AutoCAD, documenting is known as drafting or modeling. Similar to a

Microsoft Word document, a drawing must be set up to ensure that what you want to design

appears and outputs as intended. Although you can create a number of drawing template

(DWT) fi les to use when creating a new drawing, it can be better and more fl exible to design an

EXERCISE: SETTING UP A PROJECT | 73

c03.indd 8:38:38:PM/03/26/2015 Page 73

application that can adapt to your company’s needs instead of creating many DWT fi les to try to

cover every type of drawing your company might create.

In this section, you will create and set up a new drawing fi le using some of the concepts that

have been introduced in this chapter. The key concepts that are covered in this exercise are as

follows:

Managing Documents Create and save a new drawing fi le.

Assigning and Creating Drawing Properties Assign values to standard drawing proper-

ties and create custom drawing properties that can be used to populate text in a title block.

Setting System Variables and Preferences Changes can be made to system variables and

preferences that are stored with the application or a drawing to affect the behavior of draft-

ing aids and other AutoCAD features.

Performing Tasks with a Command AutoCAD commands can be used to create and mod-

ify graphical and nongraphical objects in a drawing.

Creating the DrawingSetup Project
A project is used to store any and all VBA code that is to be executed in the AutoCAD drawing

environment. The following steps explain how to create a project named DrawingSetup and

save it to a fi le named drawingsetup.dvb:

 1. On the ribbon, click the Manage tab ➢ Applications panel title bar and then click VBA

Manager (or at the Command prompt, type vbaman and press Enter).

 2. When the VBA Manager opens, select the fi rst project in the Projects list and click

Unload. If prompted to save the changes, click Yes if you wish to save the changes, or

click No to discard the changes.

 3. Repeat step 2 for each VBA project in the list.

 4. Click New.

The new project is added to the list with a default name of ACADProject and a location of

Global1, Global2, and so on based on how many projects have been created in the cur-

rent AutoCAD session.

 5. Select the new project from the Projects list and click Save As.

 6. When the Save As dialog box opens, browse to the MyCustomFiles folder within the

Documents (or My Documents) folder, or the location you are using to store custom pro-

gram fi les.

 7. In the File Name text box, type drawingsetup and click Save.

 8. In the VBA Manager dialog box, click Visual Basic Editor.

74 | CHAPTER 3 INTERACTING WITH THE APPLICATION AND DOCUMENTS OBJECTS

c03.indd 8:38:38:PM/03/26/2015 Page 74

The next steps explain how to change the project name from ACADProject to DrawingSetup

and add a new code module named basDrawingSetup:

 1. When the VBA Editor opens, select the project node labeled ACADProject (shown in

Figure 3.2) from the Project Explorer. If the Project Explorer isn’t displayed, click View ➢

Project Explorer on the menu bar in the VBA Editor.

Figure 3.2

Navigating the new

project with the

Project Explorer

 2. In the Properties window, select the fi eld named (Name) and double-click in the text box

adjacent to the fi eld. If the Properties window isn’t displayed, click View ➢ Properties

Window on the menu bar in the VBA Editor.

 3. In the text box, type DrawingSetup and press Enter.

 4. On the menu bar, click Insert ➢ Module.

 5. In the Project Explorer, select the new module named Module1.

 6. In the Properties window, change the current value of the (Name) property to

basDrawingSetup.

 7. On the menu bar, click File ➢ Save.

Creating and Saving a New Drawing from Scratch
Designs created with the AutoCAD drawing environment are stored in a DWG fi le, which

can then be shared with others in your organization or external vendors and clients. The New

method of the AcadDocuments collection object gives you the most fl exibility in creating a new

drawing fi le.

In the following steps, you defi ne a procedure named newDWGFromScratch, which will

be used to create a drawing from scratch with imperial units and return the AcadDocument

object that represents the new drawing. Once the drawing is created, the SaveAs method of the

new AcadDocument object is used to save the drawing with the name of ACP-D1.B.dwg to the

MyCustomFiles folder within the Documents (or My Documents) folder, or the location you are

using to store fi les from this book.

EXERCISE: SETTING UP A PROJECT | 75

c03.indd 8:38:38:PM/03/26/2015 Page 75

 1. In the Project Explorer, double-click the code module named basDrawingSetup.

 2. When the code editor opens, type the following:

' Creates a new drawing from scratch

' Function accepts an optional value of:

' 0 - Creates an imperial units based drawing

' 1 - Creates a metric units based drawing

Private Function newDWGFromScratch _

 (Optional nMeasureInit As Integer = 0) As AcadDocument

 ' Get the current value of the MEASUREINIT system variable

 Dim curMInit As Integer

 curMInit = ThisDrawing.GetVariable("measureinit")

 ' Set the measurement system for new drawings to metric

 ThisDrawing.SetVariable "measureinit", nMeasureInit

 ' Create a new drawing from scratch

 Dim newDWGFromScratch As AcadDocument

 Set newDWGFromScratch = Application.Documents.Add

 ' Restore the previous value

 ThisDrawing.SetVariable "measureinit", curMInit

End Function

 3. On the menu bar, click File ➢ Save.

Since the procedure newDWGFromScratch is designated as private, it can’t be executed from

the AutoCAD user interface with the vbarun command. In the next steps, you will create a pub-

lic procedure named Main that will be used to execute the various procedures that will make up

the fi nal functionality of the DrawingSetup project.

 1. In the code editor, click after the End Function code statement of the

newDWGFromScratch procedure and press Enter twice.

 2. Type the following:

Public Sub Main()

 ' Executes the newDWGFromScratch to create a new drawing from sratch

 Dim newDWG As AcadDocument

 Set newDWG = newDWGFromScratch

 ' Saves the new drawing

 ThisDrawing.SaveAs ThisDrawing.GetVariable("mydocumentsprefix") & _

 "\MyCustomFiles\acp-d1_b.dwg"

End Sub

 3. On the menu bar, click File ➢ Save.

 4. In the code editor, click after the code statement that starts with Public Sub Main.

76 | CHAPTER 3 INTERACTING WITH THE APPLICATION AND DOCUMENTS OBJECTS

c03.indd 8:38:38:PM/03/26/2015 Page 76

 5. On the menu bar, click Run ➢ Run Sub/UserForm. If the Macros dialog box opens, select

Main and click Run. If you clicked inside the Main procedure defi nition, the Macro dia-

log box will not be displayed.

The new drawing is created and saved to the fi le named acp-d1_b.dwg. If an error mes-

sage is displayed, make sure that the MyCustomFiles folder exists under the Documents

(or My Documents) folder, or update the code to refl ect the folder you are using to store

the fi les for this book.

 6. On the Windows taskbar, click the AutoCAD application icon and verify that the new

drawing was created.

 7. Try executing the Main procedure again.

This time an error message is displayed, as shown in Figure 3.3, which indicates that the

drawing couldn’t be saved. The drawing couldn’t be saved because it was already open in

AutoCAD and the fi le was locked on the local disc. I cover how to handle errors in Chapter 13.

Figure 3.3

Error message

generated as a

result of AutoCAD

not being able to

save the drawing

 8. In the Microsoft Visual Basic error message box, click End to terminate the execution of

the code.

Inserting a Title Block with the insert Command
The next steps insert a title block into the current drawing. The insert command is sent to the

current drawing with the SendCommand method.

NOTE From www.sybex.com/go/autocadcustomization you can download the drawing

fi le b-tblk.dwg used by the insert command in the following steps. Place the fi le in the

MyCustomFiles folder within the Documents (or My Documents) folder, or the location you

are using to store custom program fi les. If you are storing the fi les for this book in a diff erent

folder other than MyCustomFiles under the Documents (or My Documents) folder, update

the code in the following steps as needed.

 1. In the code editor, click after the End Sub code statement of the Main procedure and press

Enter twice.

http://www.sybex.com/go/autocadcustomization

EXERCISE: SETTING UP A PROJECT | 77

c03.indd 8:38:38:PM/03/26/2015 Page 77

 2. Type the following:

Private Sub insertTitleBlock()

 With ThisDrawing

 ' Gets the current layer name

 Dim sLyrName As String

 sLyrName = .GetVariable("clayer")

 ' Creates a new layer named TBlk with the ACI value 8

 .SendCommand "._-layer _m " & "TBlk" & vbCr & "_c 8 " & "TBlk" & vbCr & vbCr

 ' Inserts the title block drawing

 .SendCommand "._-insert " & .GetVariable("mydocumentsprefix") & _

 "\MyCustomFiles\b-tblk" & vbCr & "0,0 1 1 0" & vbCr

 ' Zooms to the extents of the drawing

 .SendCommand "._zoom _e" & vbCr

 ' Restores the previous layer

 .SetVariable "clayer", sLyrName

 End With

End Sub

 3. Scroll up and add the statements shown in bold to the Main procedure:

Public Sub Main()

 ' Executes the newDWGFromScratch to create a new drawing from scratch

 Dim newDWG As AcadDocument

 Set newDWG = newDWGFromScratch

 ' Saves the new drawing

 ThisDrawing.SaveAs ThisDrawing.GetVariable("mydocumentsprefix") & _

 "\MyCustomFiles\acp-d1_b.dwg"

 ' Insert the title block

 insertTitleBlock

End Sub

 4. On the menu bar, click File ➢ Save.

 5. Close all open drawing fi les and then create a new drawing fi le.

 6. Execute the Main procedure with the vbarun command or by clicking Run ➢ Run Sub/

UserForm from the VBA Editor menu bar.

A new drawing should be created and the title block drawing b-tblk is inserted on the

TBlk layer, as shown in Figure 3.4.

78 | CHAPTER 3 INTERACTING WITH THE APPLICATION AND DOCUMENTS OBJECTS

c03.indd 8:38:38:PM/03/26/2015 Page 78

Figure 3.4

New drawing with a

title block

 7. Switch to the AutoCAD application to view the new drawing and title block.

Adding Drawing Properties
Drawing properties can be a great way to populate values of a title block using fi elds or even

to help you locate a drawing fi le years later. (You will remember that drawing properties can

be searched using the Search fi eld in Windows Explorer and File Explorer, making it possible

to fi nd a drawing based on an assigned property value.) Drawing properties are stored with a

DWG fi le and are accessible with the dwgprops command or the AcadSummaryInfo object of the

AutoCAD Object library.

In the following steps, you will defi ne a procedure named addDWGProps, which adds some

static values to some of the standard drawing properties and creates a few custom drawing

properties. A few of the values are used by the fi elds in the title block that was inserted with the

insertTitleBlock procedure added in the previous section.

 1. In the AutoCAD drawing window, zoom into the lower-right area of the title block.

You should notice a few values with the text ----. This text is the default value of a fi eld

value that can’t be resolved.

 2. In the code editor, click after the End Sub code statement of the insertTitleBlock

procedure and press Enter twice.

 3. Type the following:

Private Sub addDWGProps()

 With ThisDrawing.SummaryInfo

 ' Set the author and comment properties

 .Author = "[Replace this text with your initials here]"

EXERCISE: SETTING UP A PROJECT | 79

c03.indd 8:38:38:PM/03/26/2015 Page 79

 .Comments = "Phase 1: 1st Floor Furniture Plan"

 ' Add custom properties to a drawing

 Dim sProject As String

 Dim sPhase As String

 On Error Resume Next

 .GetCustomByKey "ProjectName", sProject

 If Err.Number <> 0 Then

 ' Property doesn't exist

 .AddCustomInfo "ProjectName", "ACP Renovation"

 Err.Clear

 Else

 ' Property exists, so update the value

 .SetCustomByKey "ProjectName", "ACP Renovation"

 End If

 End With

 ' Regen the drawing to update the fields

 ThisDrawing.Regen acActiveViewport

End Sub

 4. Scroll up and add the statements shown in bold to the Main procedure:

Public Sub Main()

 ' Executes the newDWGFromScratch to create a new drawing from scratch

 Dim newDWG As AcadDocument

 Set newDWG = newDWGFromScratch

 ' Saves the new drawing

 ThisDrawing.SaveAs ThisDrawing.GetVariable("mydocumentsprefix") & _

 "\MyCustomFiles\acp-d1_b.dwg"

 ' Insert the title block

 insertTitleBlock

 ' Add the drawing properties

 addDWGProps

End Sub

 5. On the menu bar, click File ➢ Save.

 6. Close all open drawing fi les and then create a new drawing fi le.

80 | CHAPTER 3 INTERACTING WITH THE APPLICATION AND DOCUMENTS OBJECTS

c03.indd 8:38:38:PM/03/26/2015 Page 80

 7. Execute the Main procedure.

The "project name" and "drafted by" values are populated in the title block by the property

values assigned to the drawing. The property values of the drawing are assigned using

the methods and properties of the AcadSummaryInfo object, as shown in Figure 3.5.

Figure 3.5

Field values popu-

lated by drawing

properties

Setting the Values of Drafting-Related System Variables
and Preferences
System variables and the preferences of the application or drawing can be used to affect many of

the commands and drafting aids in the AutoCAD drawing environment.

In the following steps, you defi ne a procedure named setDefDraftingAids, which specifi es

the values of system variables and application preferences.

 1. In the code editor, click after the End Sub code statement of the addDWGProps procedure

and press Enter twice.

 2. Type the following:

Private Sub setDefDraftingAids()

 ' Set the values of drafting-related system variables

 With ThisDrawing

 .SetVariable "orthomode", 1

 .SetVariable "osmode", 35

 .SetVariable "gridmode", 0

 .SetVariable "snapmode", 0

 .SetVariable "blipmode", 0

 End With

 ' Set display-related preferences

 With ThisDrawing.Application.Preferences.Display

 .CursorSize = 100

 End With

EXERCISE: SETTING UP A PROJECT | 81

c03.indd 8:38:38:PM/03/26/2015 Page 81

 ' Set drafting-related preferences

 With ThisDrawing.Application.Preferences.Drafting

 .AutoSnapAperture = True

 .AutoSnapApertureSize = 10

 End With

 ' Set selection-related preferences

 With ThisDrawing.Application.Preferences.Selection

 .DisplayGrips = True

 .PickFirst = True

 End With

End Sub

 3. Scroll up and add the statements shown in bold to the Main procedure:

Public Sub Main()

 ' Executes the newDWGFromScratch to create a new drawing from scratch

 Dim newDWG As AcadDocument

 Set newDWG = newDWGFromScratch

 ' Saves the new drawing

 ThisDrawing.SaveAs ThisDrawing.GetVariable("mydocumentsprefix") & _

 "\MyCustomFiles\acp-d1_b.dwg"

 ' Insert the title block

 insertTitleBlock

 ' Add the drawing properties

 addDWGProps

 ' Sets the values of system variables and application preferences

 setDefDraftingAids

 ' Saves the changes to the drawing

 ThisDrawing.Save

End Sub

 4. On the menu bar, click File ➢ Save.

 5. Close all open drawing fi les and then create a new drawing fi le.

 6. Execute th e Main procedure.

The system variables and application preferences are changed, and the changes to the

drawing fi le are s aved.

c04.indd 4:28:8:PM/04/06/2015 Page 83

 Chapter 4

Creating and Modifying Drawing
Objects

All drawings start off as an idea. Maybe it’s just in your head, or maybe it became a sketch done

on a napkin over lunch. The idea or sketch is then handed over to a drafter or engineer, who

creates a set of drawings that will be used to communicate the fi nal design. The fi nal design is

then used to manufacture the parts or construct the building. A drafter or engineer completes a

design using a variety of objects, from lines to circles, and even splines and hatch patterns.

Although adding objects to a drawing is how most designs start off, those objects are often used

to create new objects or are modifi ed to refi ne a design. Most users of the AutoCAD® program, on

average, spend more time modifying objects than creating new objects. When automating tasks with

VBA, be sure to look at tasks related not only to creating objects but also to modifying objects.

In this chapter, you will learn to create 2D graphical objects and how to work with

 nongraphical objects, such as layers and linetypes. Along with creating objects, you will

learn how to modify objects.

Due to limitations on the number of pages available for this book, additional content

that covers working with 2D and 3D objects is presented in the bonus chapters available

on the companion website. The companion website is located here: www.sybex.com/go/

autocadcustomization.

Understanding the Basics of a Drawing-Based Object
Each drawing contains two different types of objects: nongraphical and graphical. Nongraphical

objects represent the layers, block defi nitions, named styles, and other objects that are stored in

a drawing but aren’t present in model space or on a named layout. Nongraphical objects can,

and typically do, affect the display of graphical objects.

Although model space and named layouts are typically not thought of as nongraphical objects,

they are. Model space is a special block defi nition, whereas a layout is an object that is based

on a plot confi guration—commonly called a page setup—with a reference to a block defi nition.

Graphical objects are those objects that are added to model space or a named layout, such as lines,

circles, and text. Every graphical object added to a drawing references at least one nongraphi-

cal object and is owned by one nongraphical object. The nongraphical object that each graphical

object references is a layer, and each graphical object is owned by model space or a named layout.

In the AutoCAD Object library, any object that can be added to a drawing is derived from

or based on the AcadObject object type. For example, an AcadLine object that represents a line

segment and an AcadLayer object that represents a layer have the same properties and methods

as the AcadObject object type. You can think of the AcadObject as a more general or generic

http://www.sybex.com/go/autocadcustomization
http://www.sybex.com/go/autocadcustomization

84 | CHAPTER 4 CREATING AND MODIFYING DRAWING OBJECTS

c04.indd 4:28:8:PM/04/06/2015 Page 84

object in the terms of AutoCAD objects, much like you might use the term automobile to describe

a vehicle with four wheels. Figure 4.1 shows the object hierarchy of nongraphical and graphical

objects.

Figure 4.1

Drawing object

hierarchy

AcadObject

AcadEntity

AcadLine (Line)

AcadCircle (Circle)

AcadLayers

AcadLayer (Layer)

AcadBlocks

AcadBlock (Block)

Table 4.1 lists the properties of the AcadObject object that you use to get information

about an object in a drawing.

Table 4.1: Properties related to the AcadObject object

Property Description

Application Returns the AcadApplication object that represents the current

AutoCAD session. I discussed working with the AcadApplication object

in Chapter 3, “Interacting with the Application and Documents Objects.”

Document Returns the AcadDocument object that represents the drawing in which

the object is stored. I discussed working with the AcadDocument object in

Chapter 3.

Handle Returns a string that represents a unique hexadecimal value that

 diff erentiates one object from another in a drawing; think of it along the

lines of a database index. An object’s handle persists between drawing

sessions. A handle, while unique to a drawing, can be assigned to another

object in a diff erent drawing.

HasExtensionDictionary Returns True if an extension dictionary has been attached to the object.

I discuss extension dictionaries in Chapter 9, “Storing and Retrieving

Custom Data.”

UNDERSTANDING THE BASICS OF A DRAWINGBASED OBJECT | 85

c04.indd 4:28:8:PM/04/06/2015 Page 85

Property Description

ObjectID Returns a unique integer that diff erentiates one object from another in a

drawing; think of it along the lines of a database index. Unlike a handle,

the object ID of an object might be diff erent each time a drawing is loaded

into memory.

ObjectID32 Same as the ObjectID property, but must be used on 64-bit releases of

Windows. Th is property is only valid with AutoCAD 2009 through 2014.

Use the ObjectID property for earlier releases and AutoCAD 2015.

ObjectName Returns a string that represents the object’s internal classname.

Th is value can be used to distinguish one object type from

another as part of a conditional statement.

OwnerID Returns the object ID of the object’s parent. For example, the parent of a

line might be model space or a named layout whereas the text style symbol

table is the parent of a text style.

OwnerID32 Same as the OwnerID property, but must be used on 64-bit releases of

Windows. Th is property is only valid with AutoCAD 2009 through 2014.

Use the OwnerID property for earlier releases and AutoCAD 2015.

Determining a Drawing Object’s Type

Th e ObjectName property and VBA TypeOf statement can be used to determine an object’s

type. Th e following code statements demonstrate how to display an object’s name in a

 message box and use the TypeOf statement to determine whether an object is based on the

AcadCircle class:

' Gets the first object in model space

Dim oFirstEnt As AcadEntity

Set oFirstEnt = ThisDrawing.ModelSpace(0)

' Display an object's name in a message box

MsgBox "ObjectName: " & oFirstEnt.ObjectName

' Check to see if the object is a circle, and

' display a message based on the results

If TypeOf oFirstEnt Is AcadCircle Then

 MsgBox "Object is a circle."

Else

 MsgBox "The object isn't a circle."

End If

86 | CHAPTER 4 CREATING AND MODIFYING DRAWING OBJECTS

c04.indd 4:28:8:PM/04/06/2015 Page 86

In addition to the properties that are shared across all drawing-based objects, several

methods are shared. The Delete method is used to remove an object from a drawing; it is the

AutoCAD Object library equivalent of the erase command. The other three shared methods are

used to work with extension dictionaries and extended data (Xdata). These three methods are

GetExtensionDictionary, GetXData, and SetXData, and I cover them in Chapter 9.

All graphical objects in a drawing are represented by the AcadEntity object. The AcadEntity

object inherits the properties and methods of the AcadObject object and adds additional prop-

erties and methods that all graphical objects have in common. For example, all graphical objects

can be assigned a layer and moved in the drawing. The Layer property of the AcadEntity object

is used to specify the layer in which an object is placed, and the Move method is used to relocate

an object in the drawing. Objects based on the AcadEntity object can be added to model space,

a named layout, or a block defi nition.

Table 4.2 lists the properties of the AcadEntity object that you can use to get

 information about and control the appearance of a graphical object in a drawing.

Table 4.2: Properties related to the AcadEntity object

Property Description

EntityTransparency Specifi es the transparency for an object. See Bonus Chapter 1, “Working

with 2D Objects and Object Properties.”

Hyperlinks Returns the AcadHyperlinks collection object assigned to an object.

See Bonus Chapter 1.

Layer Specifi es the layer for an object. See Bonus Chapter 1.

Linetype Specifi es the linetype for an object. See Bonus Chapter 1.

LinetypeScale Specifi es the linetype scale for an object. See Bonus Chapter 1.

Lineweight Specifi es the lineweight for an object. See Bonus Chapter 1.

Material Specifi es the name of the material to use when an object is rendered.

See Bonus Chapter 2, “Modeling in 3D Space.”

PlotStyleName Specifi es the name of the plot style for an object. See Bonus Chapter 1.

TrueColor Specifi es the color assigned to an object. See Bonus Chapter 1.

Visible Specifi es the visibility for an object. See Bonus Chapter 1.

Inheriting Default Property Values

When new objects are added to a drawing, they inherit many of their default property values from

system variables; this occurs whether you are using an AutoCAD command or the AutoCAD Object

library. For example, the clayer system variable holds the name of the layer that is assigned to

the Layer property of each new graphical object. If your functions need to create multiple objects

UNDERSTANDING THE BASICS OF A DRAWINGBASED OBJECT | 87

c04.indd 4:28:8:PM/04/06/2015 Page 87

on a specifi c layer, it is best to set that layer current before adding new graphical objects and

then restore the previous layer after the objects have been added.

Th e following lists other system variables that aff ect the default properties of new graphical objects:

cecolor: Color assigned to the TrueColor property

celtype: Linetype assigned to the Linetype property

celweight: Lineweight assigned to the Lineweight property

celtscale: Linetype scale assigned to the LinetypeScale property

cetransparency: Transparency assigned to the EntityTransparency property

cmaterial: Material assigned to the Material property

cplotstyle: Plot style name assigned to the PlotStyleName property

Table 4.3 lists the methods that all graphical objects inherit from the AcadEntity object.

Table 4.3: Methods related to the AcadEntity object

Method Description

ArrayPolar Creates a polar array from an object. See Bonus Chapter 1.

ArrayRectangular Creates a rectangular array from an object. See Bonus Chapter 1.

Copy Duplicates an object. See the “Copying and Moving Objects” section.

GetBoundingBox Returns an array of doubles that represents the lower and upper points of an

object’s extents. See Bonus Chapter 1.

Highlight Highlights or unhighlights an object. See Bonus Chapter 1.

IntersectWith Returns an array of doubles that represents the intersection points between two

objects. See Bonus Chapter 1.

Mirror Mirrors an object along a vector. See Bonus Chapter 1.

Mirror3D Mirrors an object about a plane. See Bonus Chapter 2.

Move Moves an object. See the “Copying and Moving Objects” section.

Rotate Rotates an object around a base point. See the “Rotating Objects” section.

Rotate3D Rotates an object around a vector. See Bonus Chapter 2.

ScaleEntity Uniformly increases or decreases the size of an object. See Bonus Chapter 1.

TransformBy Applies a transformation matrix to an object. A transformation matrix can be used to

scale, rotate, move, and mirror an object in a single operation. See Bonus Chapter 1.

Update Instructs AutoCAD to recalculate the display of an object; similar to the regen

command but it only aff ects the object in which the method is executed. See the

“Modifying Objects” section.

88 | CHAPTER 4 CREATING AND MODIFYING DRAWING OBJECTS

c04.indd 4:28:8:PM/04/06/2015 Page 88

Accessing Objects in a Drawing
Before working with nongraphical and graphical objects, you must understand where objects

are located in the AutoCAD Object hierarchy. Nongraphical objects are stored in collection

objects that are accessed from an AcadDocument or ThisDrawing object. Even graphical objects

displayed in model space, on named layouts, or in a block defi nition require you to work with a

collection object. I explained how to work with the AcadDocument object in Chapter 3.

To access the collection objects of a drawing, use the properties of an AcadDocument object.

Collection objects may also be referred to as symbol tables or dictionaries the AutoLISP and

Managed .NET programming languages (Table 4.4).

Table 4.4: Properties used to access the collection objects of an AcadDocument

object

Property Description

Blocks Returns an AcadBlocks collection object that contains the block

 defi nitions stored in a drawing, even model space, paper space, and

those used for named layouts. See Chapter 7, “Working with Blocks

and External References,” for more information.

Dictionaries Returns an AcadDictionaries collection object that contains the

named dictionaries stored in a drawing. See Chapter 9 for more

information.

DimStyles Returns an AcadDimStyles collection object that contains the

 dimension styles stored in a drawing. See Chapter 6, “Annotating

Objects,” for more information.

FileDependencies Returns an Acad FileDependencies collection object that contains the

external fi le dependencies used by a drawing. See Chapter 7 for more

information.

Groups Returns an AcadGroups collection object that contains the named

groups defi ned in a drawing. See Bonus Chapter 1.

Layers Returns an AcadLayers collection object that contains the layers stored

in a drawing. See Bonus Chapter 1.

Layouts Returns an AcadLayouts collection object that contains the named

 layouts stored in a drawing. See Chapter 8, “Outputting Drawings,”

for more information.

Linetypes Returns an AcadLinetypes collection object that contains the linetypes

stored in a drawing. See Bonus Chapter 1.

WORKING WITH MODEL OR PAPER SPACE | 89

c04.indd 4:28:8:PM/04/06/2015 Page 89

Property Description

Materials Returns an AcadMaterialss collection object that contains the names

of the materials stored in a drawing. See Bonus Chapter 2.

ModelSpace Returns an AcadBlock object that is a reference to model space in the

drawing. See the “Working with Model or Paper Space” section.

PaperSpace Returns an AcadBlock object that is a reference to paper space in the

drawing. See the “Working with Model or Paper Space” section.

PlotConfigurations Returns an Acad PlotConfigurations collection object that contains

the named plot confi gurations stored in a drawing. See Chapter 8 for more

information.

RegisteredApplications Returns an AcadRegisteredApplications collection object that

 contains the names of all registered applications that store custom data

in a drawing. See Chapter 9 for more information.

TextStyles Returns an AcadTextStyles collection object that contains the text

styles stored in a drawing. See Chapter 6 for more information.

UserCoordinateSystems Returns an AcadUCSs collection object that contains the user coordinate

systems saved in a drawing. See Bonus Chapter 2.

Viewports Returns an AcadViewports collection object that contains the named

arrangements of tiled viewports for use in model space. See Chapter 5,

“Interacting with the User and Controlling the Current View,” for more

information.

NOTE Not all named styles are accessible from a property of the AcadDocument object.

For example, table and multileader styles are stored as dictionaries and accessed from the

Dictionaries property.

Working with Model or Paper Space
Graphical objects created by the end user or with the AutoCAD Object library are all added

to a block defi nition. Although this might seem a bit confusing at fi rst, model space is nothing

more than a block defi nition that is edited using the drawing area displayed in the drawing

window. The same is true with paper space and the named layouts stored in a drawing. Before

you can add or modify an object in a drawing fi le, you must determine which block defi nition

to work with.

90 | CHAPTER 4 CREATING AND MODIFYING DRAWING OBJECTS

c04.indd 4:28:8:PM/04/06/2015 Page 90

Model space and paper space are accessed using the ModelSpace and PaperSpace properties

of an AcadDocument or ThisDrawing object. You use the ModelSpace property to get a refer-

ence to an AcadModelSpace object, which is actually a reference to the block defi nition named

*MODEL_SPACE. The PaperSpace property returns a reference to an AcadPaperSpace object,

which is a reference to the most recently accessed paper space block. The initial paper space

block is named *PAPER_SPACE or *PAPER_SPACE0. Switching named layouts changes which

paper space block is returned by the PaperSpace property.

You use the AcadModelSpace and AcadPaperSpace objects to access the graphical objects in

a drawing. A majority of the methods that these two objects support are related to adding new

graphical objects. To add new graphical objects to a drawing, use the methods whose names start

with the prefi x Add. I explain how to add graphical objects to model space in the next section and I

cover how to access the objects already in model space in the “Getting an Object in the Drawing”

section. You can learn more about the properties and methods specifi c to block defi nitions in

Chapter 7 and the properties and methods specifi c to named layouts in Chapter 8.

The standard commands of AutoCAD typically work in the current context of the drawing.

If model space is active and the line command is started, the line object is added to model

space. However, if the line command is started when a named layout is current, the line is

added to the named layout. The AutoCAD Object library isn’t concerned with the active space.

Model space might be active, but objects can be added to paper space and vice versa. The active

space can be bypassed with the AutoCAD Object library and VBA because you have direct

access to the objects in a drawing’s database.

The active space doesn’t matter so much when adding and modifying objects with the

AutoCAD Object library, but users still expect macros to be executed in the current context of

the drawing. The ActiveSpace property can be used to determine which space is active.

A constant value of acModelSpace or acPaperSpace is returned by the ActiveSpace property;

acModelSpace is returned when model space is current. You can also use the ActiveSpace

property to switch the active space; assign the constant value of acPaperSpace to switch to

paper space when model space is current.

The following code statements display a message containing the number of objects in the

current space:

Dim nCnt As Integer

nCnt = 0

Select Case ThisDrawing.ActiveSpace

 Case acModelSpace

 nCnt = ThisDrawing.ModelSpace.Count

 Case acPaperSpace

 nCnt = ThisDrawing.PaperSpace.Count

End Select

MsgBox "Number of objects in current space: " & CStr(nCnt)

TIP As an alternative to specifying model space or paper space, you can use the ActiveLayout

property of an AcadDocument or ThisDrawing object. Th e ActiveLayout property can be

helpful when you want to draw objects on the current layout. Using the Block property of the

AcadLayout object that is returned by the ActiveLayout property, you can get a reference to

model space or paper space. When the Model layout is current, ActiveLayout.Block returns

a reference to the AcadModelSpace object. I discuss more about layouts in Chapter 8.

CREATING GRAPHICAL OBJECTS | 91

c04.indd 4:28:8:PM/04/06/2015 Page 91

Creating Graphical Objects
Graphical objects are used to communicate a design, whether a mechanical fastener or a new

football stadium. AutoCAD supports two types of graphical objects: straight and curved.

Straight objects, such as lines, rays, and xlines, contain only straight segments. Curved objects

can have curved segments, but as an option can have straight segments, too. Arcs, circles,

splines, and polylines with arcs are considered examples of curved objects. I cover commonly

used straight and curved objects in the “Adding Straight Line Segments” and “Working with

Curved Objects” sections. Polylines are discussed in the “Working with Polylines” section.

NOTE As a reminder, graphical objects inherit many of their properties and methods from

the AcadEntity object. For that reason, I only focus on the properties and methods specifi c

to an object as they are introduced going forward. I covered the AcadEntity object in the

“Understanding the Basics of a Drawing-Based Object” section earlier in this chapter.

Adding Straight Line Segments
Straight objects are used in a variety of drawings created by drafters and engineers. You can use

a straight object to represent the following:

 ◆ The top of a bolt head

 ◆ The tooth of a gear

 ◆ A wire in a wiring diagram

 ◆ The edge of a student desk

 ◆ The face of a wall for a building

Lines are straight objects with a defi ned start point and endpoint and are represented by the

AcadLine object. The AddLine function allows you to create a line object drawn between two

points. The following shows the syntax of the AddLine function:

retVal = object.AddLine(startPoint, endPoint)

Its arguments are as follows:

retVal The retVal argument represents the new AcadLine object returned by the AddLine
function.

object The object argument represents the AcadModelSpace collection object.

startPoint The startPoint argument is an array of three doubles that defi nes the start

point of the new line.

endPoint The endPoint argument is an array of three doubles that defi nes the endpoint of

the new line.

The following code statements add a new line object to model space (see Figure 4.2):

' Defines the start and endpoint for the line

Dim dStartPt(2) As Double, dEndPt(2) As Double

dStartPt(0) = 0: dStartPt(1) = 0: dStartPt(2) = 0

dEndPt(0) = 5: dEndPt(1) = 5: dEndPt(2) = 0

92 | CHAPTER 4 CREATING AND MODIFYING DRAWING OBJECTS

c04.indd 4:28:8:PM/04/06/2015 Page 92

Dim oLine As AcadLine

Set oLine = ThisDrawing.ModelSpace.AddLine(dStartPt, dEndPt)

Figure 4.2

Defi nition of a line

Endpoint

Start point

Using the AcadLine object returned by the AddLine function, you can obtain information

about and modify the line’s properties. In addition to the properties that the AcadLine object

shares in common with the AcadEntity object, you can use the properties listed in Table 4.5

when working with an AcadLine object.

Table 4.5: Properties related to an AcadLine object

Property Description

Angle Returns a double that represents the angle of the line expressed in radians. All angles

are stored in a drawing fi le as radians.

Delta Returns an array of three double values that represent the delta of the line: the diff er-

ence between the line’s start and endpoints.

EndPoint Specifi es the endpoint of the line.

Length Returns a double that represents the length of the line.

Normal Specifi es the normal vector of the line. Th e normal vector is an array of three double

values, which defi nes the positive Z-axis of the line.

StartPoint Specifi es the start point of the line.

Thickness Specifi es the thickness assigned to the line; the value must be numeric. Th e default is 0;

anything greater than 0 results in the creation of a 3D planar object.

Working with Curved Objects
Straight objects are used in many designs, but they aren’t the only objects. Curved objects are

used to soften the edges of a design and give a design a more organic look. You can use a curved

object to represent any of the following:

 ◆ A hole in a plate

 ◆ A fi llet on a metal bracket

CREATING GRAPHICAL OBJECTS | 93

c04.indd 4:28:8:PM/04/06/2015 Page 93

 ◆ A round edge on the top of a desk

 ◆ A cross section of a shaft or hub

I discuss how to create and modify circles in the upcoming sections.

NOTE Ellipse and spline objects are covered in Bonus Chapter 1.

Creating and Modifying Circles

Circles are one of the most commonly used curved objects in mechanical designs, but they are

less frequently used in architectural and civil designs. Drill holes in the top view of a model, the

center of a gear, or the grommet in the side of a desk are typically circular and are drawn using

circles. Circles in a drawing are represented by the AcadCircle object in the AutoCAD Object

library. The AddCircle function allows you to create a circle object based on a center point and

radius value, and the function returns an AcadCircle object that represents the new circle.

The following shows the syntax of the AddCircle function:

retVal = object.AddCircle(centerPoint, radius)

Its arguments are as follows:

retVal The retVal argument represents the new AcadCircle object returned by the

AddCircle function.

object The object argument represents the AcadModelSpace collection object.

centerPoint The centerPoint argument is an array of three doubles that defi nes the center

point of the new circle.

radius The radius argument is a double that specifi es the radius of the new circle. If you

know the diameter of the circle you want to create, divide that value in half to get the radius

for the circle.

The following code statements add a new circle object to model space (see Figure 4.3):

' Defines the center point for the circle object

Dim dCenPt(2) As Double

dCenPt(0) = 2.5: dCenPt(1) = 1: dCenPt(2) = 0

' Adds the circle object to model space with a radius of 4

Dim oCirc As AcadCircle

Set oCirc = ThisDrawing.ModelSpace.AddCircle(dCenPt, 4)

Figure 4.3

Defi nition of a

circle

Center point

Radius

94 | CHAPTER 4 CREATING AND MODIFYING DRAWING OBJECTS

c04.indd 4:28:8:PM/04/06/2015 Page 94

The properties and methods of the AcadCircle object returned by the AddCircle function

can be used to obtain information about and modify the circle. An AcadCircle object shares

properties and methods in common with the AcadEntity object, but it has additional properties

that describe the circle object. Table 4.6 lists the properties specifi c to the AcadCircle object.

Table 4.6: Properties related to an AcadCircle object

Property Description

Area Returns a double that represents the calculated area of the circle.

Center Specifi es the center point of the circle. Th at value is expressed as an array of three

doubles.

Circumference Returns a double that represents the circumference of the circle.

Diameter Specifi es the diameter of the circle; the value is a double.

Normal Specifi es the normal vector of the line. Th e normal vector is an array of three doubles

that defi nes the positive Z-axis for the circle.

Radius Specifi es the radius of the circle; the value is a double.

Thickness Specifi es the thickness assigned to the circle; the value must be numeric. Th e default

is 0; anything greater than 0 results in the creation of a 3D cylinder object.

Adding and Modifying Arcs

Fillets and rounded corners are common in many types of designs, and they are drawn using

arcs. Arcs are partial circles represented by the AcadArc object. An arc is added to a drawing

with the AddArc function. Unlike drawing arcs with the arc command, which offers nine

options, the AddArc function offers only one approach to adding an arc, and that is based on a

center point, two angles (start and end), and a radius. The AddArc function returns an AcadArc

object that represents the new arc added to the drawing. The following shows the syntax of the

AddArc function:

retVal = object.AddArc(centerPoint, radius, startAngle, endAngle)

Its arguments are as follows:

retVal The retVal argument represents the new AcadArc object returned by the AddArc
function.

object The object argument represents the AcadModelSpace collection object.

centerPoint The centerPoint argument is an array of three doubles that defi nes the center

point of the new arc.

radius The radius argument is a double that specifi es the radius of the new arc.

startAngle and endAngle The startAngle and endAngle arguments are doubles that

specify the starting and end angle of the new arc, respectively. A start angle larger than

CREATING GRAPHICAL OBJECTS | 95

c04.indd 4:28:8:PM/04/06/2015 Page 95

the end angle results in the arc being drawn in a counterclockwise direction. Angles are

 measured in radians.

The following code statements add a new arc object to model space (see Figure 4.4):

' Defines the center point for the arc object

Dim dCenPt(2) As Double

dCenPt(0) = 2.5: dCenPt(1) = 1: dCenPt(2) = 0

' Sets the value of PI

Dim PI As Double

PI = 3.14159265

' Adds the arc object to model space with a radius of 4

Dim oArc As AcadArc

Set oArc = ThisDrawing.ModelSpace.AddArc(dCenPt, 4, PI, 0)

Figure 4.4

Defi nition of an arc
Start angle

Center point Radius

End angle

The AcadArc object returned by the AddArc function can be used to obtain information about

and modify the object’s properties and methods. In addition to the properties that the AcadArc

object shares in common with the AcadEntity object, you can use the properties listed in Table

4.7 when working with an AcadArc object.

Table 4.7: Properties related to an AcadArc object

Property Description

ArcLength Returns a double that represents the length along the arc.

Area Returns a double that represents the calculated area of the arc.

Center Specifi es the center point of the arc. Th e value is expressed as an array of three doubles.

EndAngle Specifi es a double that represents the end angle of the arc.

EndPoint Returns an array of doubles that represents the endpoint of the arc.

Normal Specifi es the normal vector of the line. Th e normal vector is an array of three doubles

that defi nes the positive Z-axis for the arc.

96 | CHAPTER 4 CREATING AND MODIFYING DRAWING OBJECTS

c04.indd 4:28:8:PM/04/06/2015 Page 96

Property Description

Radius Specifi es the radius of the arc; the value is a double.

StartAngle Specifi es a double that represents the start angle of the arc.

StartPoint Returns an array of doubles that represents the start point of the arc.

Thickness Specifi es the thickness assigned to the circle; the value must be numeric. Th e default is 0;

anything greater than 0 results in the creation of a curved 3D object.

TotalAngle Returns a double that represents the angle of the arc: the end angle minus the start

angle.

Working with Polylines
Polylines are objects that can be made up of multiple straight and/or curved segments.

Although lines and arcs drawn end to end can look like a polyline, polylines are more effi cient

to work with. Because a polyline is a single object made up of multiple segments, it is easier to

modify. For example, all segments of a polyline are offset together instead of individually. If

you were to offset lines and arcs that were drawn end to end, the resulting objects wouldn’t be

drawn end to end like the original objects (see Figure 4.5).

Figure 4.5

Off set polylines and lines
Offset polyline

Offset lines

There are two types of polylines that you can create and modify:

Polyline Legacy polylines were available in AutoCAD R13 and earlier releases, and they

are still available in AutoCAD R14 and later releases. This type of polyline object supports

3D coordinate values, but it uses more memory and increase the size of a drawing fi le.

Lightweight Polyline Lightweight polylines, or LWPolylines, were fi rst introduced in

AutoCAD R14. They are more effi cient in memory and require less space in a drawing fi le.

Lightweight polylines support only 2D coordinate values.

NOTE Autodesk recommends using lightweight polylines in a drawing instead of legacy polylines

when possible.

Table 4.7: Properties related to an AcadArc object (continued)

CREATING GRAPHICAL OBJECTS | 97

c04.indd 4:28:8:PM/04/06/2015 Page 97

Legacy polylines are represented by the AcadPolyline object type and can be added to a

drawing with the AddPolyline function. LWPolylines are represented by the AcadLWPolyline

object type and can be added to a drawing with the AddLightWeightPolyline function. The

AddPolyline and AddLightWeightPolyline functions both require you to specify a list of

vertices.

A vertices list is defi ned using an array of doubles. The number of elements in the array

 varies by the type of polyline you want to create or modify. To create an AcadPolyline object,

you defi ne an array of doubles in multiples of three, whereas an array of doubles must be in

multiples of two to create an AcadLWPolyline object. For example, an AcadPolyline object with

three vertices would require an array with nine elements (three elements × three vertices). For

an LWPolyline, each vertex requires two elements in an array, so an AcadLWPolyline object with

three vertices would require a vertices list with six elements (two elements × three vertices).

The following shows an example of a six-element array that defi nes three 2D points repre-

senting the corners of a triangle:

' Defines a six element array of doubles

Dim dVecList(5) As Double

' Sets the first corner

dVecList(0) = 0#: dVecList(1) = 0#

' Sets the second corner

dVecList(2) = 3#: dVecList(3) = 0#

' Sets the third corner

dVecList(4) = 1.5: dVecList(5) = 2.5981

The following shows the syntax of the AddLightWeightPolyline and AddPolyline

functions:

retVal = object.AddLightWeightPolyline(vecList)

retVal = object.AddPolyline(vecList)

The arguments are as follows:

retVal The retVal argument represents the new AcadLWPolyline or AcadPolyline object

returned by the AddLightWeightPolyline or AddPolyline function.

object The object argument represents the AcadModelSpace collection object.

vecList The vecList argument is an array of doubles that defi nes the vectors of the

 polyline. For the AddLightWeightPolyline function, the array must contain an even number

of elements since each vertex is defi ned by two elements. Specify an array in three-element

increments when using the AddPolyline function since each vertex is defi ned by three

elements.

The following code statements add a new lightweight polyline object to model space

(see Figure 4.6):

' Adds a lightweight polyline

Dim oLWPoly As AcadLWPolyline

Set oLWPoly = ThisDrawing.ModelSpace.AddLightWeightPolyline(dVecList)

98 | CHAPTER 4 CREATING AND MODIFYING DRAWING OBJECTS

c04.indd 4:28:8:PM/04/06/2015 Page 98

Figure 4.6

Polyline with three vertices

1.5,2.5981

0,0

3,0

Using the AcadLWPolyline or AcadPolyline object returned by the

AddLightWeightPolyline or AddPolyline function, you can obtain information about and

modify the polyline’s properties. In addition to the properties that the AcadLWPolyline or

AcadPolyline object share in common with the AcadEntity object, you can use the properties

listed in Table 4.8 when working with an AcadLWPolyline or AcadPolyline object.

Table 4.8: Properties related to an AcadLWPolyline or AcadPolyline object

Property Description

Area Returns a double that represents the calculated area of the polyline.

Closed Specifi es whether the polyline is open or closed. A value of True closes the

polyline if the object contains more than two vertices.

ConstantWidth Specifi es the global width for all segments of the polyline.

Coordinate Specifi es the coordinate value of a specifi c vertex in the polyline.

Coordinates Specifi es the coordinate values for all vertices of the polyline.

Elevation Specifi es the elevation at which the polyline is drawn.

Length Returns a double that represents the length of the polyline.

LinetypeGeneration Specifi es whether the linetype pattern assigned to the polyline is generated

across the polyline as one continuous pattern, or whether the pattern begins

and ends at each vertex. A value of True indicates that the linetype pattern

should be generated across the polyline as one continuous pattern.

Normal Specifi es the normal vector of the polyline. Th e normal vector is an array of

three doubles that defi nes the positive Z-axis for the polyline.

Thickness Specifi es the thickness assigned to the polyline; the value must be numeric. Th e

default is 0; anything greater than 0 results in the creation of a 3D planar object.

In addition to the properties listed in Table 4.8, an AcadLWPolyline or AcadPolyline object

contains methods that are specifi c to polylines. Table 4.9 lists the methods that are unique

to polylines.

GETTING AN OBJECT IN THE DRAWING | 99

c04.indd 4:28:8:PM/04/06/2015 Page 99

Table 4.9: Methods related to an AcadLWPolyline or AcadPolyline object

Method Description

AddVertex Adds a new 2D point at the specifi ed vertex in the LWPolyline (supported by

AcadLWPolyline objects only).

AppendVertex Appends a new 3D point to the polyline (supported by AcadPolyline objects only).

Explode Explodes the polyline and returns an array of the objects added to the drawing as a

result of exploding the polyline.

GetBulge Gets the bulge–curve–value at the specifi ed vertex. Th e bulge is a value of the double

data type.

GetWidth Gets the width of the segment at the specifi ed vertex. Th e width is a value of the

 double data type.

SetBulge Sets the bulge–curve–value at the specifi ed vertex.

SetWidth Sets the width of the segment at the specifi ed vertex.

TIP You use the AddVertex or AppendVertex method to add a new vertex to a polyline, but it

isn’t exactly obvious how you might remove a vertex. To remove a vertex from a polyline, use

the Coordinates property to get the vertices of the polyline. Th en create a new vertices list

of the points you want to keep and assign the new vertices list to the Coordinates property.

Defining Parallel Line Segments

Polylines make it easy to create parallel straight and curved segments. Parallel line segments can

also be created with an AcadMLine object. Multilines (or mlines) allow you to create multiple

parallel line segments and each parallel line can have a diff erent format. Th e formatting of an

mline is inherited from an mline style. You can use mlines to draw the walls of a building and

even the foundation in plan view where the outermost lines might represent the footing and the

inner lines represent the actual foundation walls. Although mlines have their use, they aren’t

common in drawings because they can be hard to edit. Mlines are added to a drawing with the

AddMLine function. You can learn more about the AddMLine function and AcadMLine object in

the AutoCAD Help system.

Getting an Object in the Drawing
Modifying an object after it has been added to a drawing is fairly straightforward; you use the

properties and methods of the object that is returned by one of the Add* functions described in

the previous sections. If you want to modify an existing object in a drawing, you must locate it

100 | CHAPTER 4 CREATING AND MODIFYING DRAWING OBJECTS

c04.indd 4:28:8:PM/04/06/2015 Page 100

in the AcadModelSpace or AcadPaperSpace collection object or a block defi nition represented by

an AcadBlock object. I explain how to work with block defi nitions in Chapter 7 and with paper

space in Chapter 8.

The Item method and a For statement are the most common ways to access an object in the

AcadModelSpace collection object. I explained how to use the Item method and For statement in

Chapter 2, “Understanding Visual Basic for Applications.” Use the Item method when you want

to access a specifi c object in model space based on its index value; the fi rst object in model space

has an index of 0. Here are example code statements that get the handle and object type name of

the fi rst object in model space:

Dim oEnt As AcadEntity

Set oEnt = ThisDrawing.ModelSpace(0)

MsgBox "Handle: " & oEnt.Handle & vbLf & _

 "ObjectID: " & CStr(oEnt.ObjectID) & vbLf & _

 "Object Name: " & oEnt.ObjectName

The values displayed in the message box by the example code will vary from drawing to

drawing. Figure 4.7 shows an example of a message box with the values from a fi rst object in

model space; the values refl ected are of a point object.

Figure 4.7

Message box containing the

handle and object ID of an

object

A For statement is the most effi cient way to step through all the objects in model space or

any other collection object you might need to work with. The following code statements step

through model space and return the center point and radius of each circle object:

Dim oEnt As AcadEntity

Dim oCircle As AcadCircle

' Displays a general message

ThisDrawing.Utility.Prompt vbLf & "Circles in model space"

' Steps through model space

For Each oEnt In ThisDrawing.ModelSpace

 ' Checks to see if the object is a circle

 If TypeOf oEnt Is AcadCircle Then

 Set oCircle = oEnt

 ' outputs the center point and radius of the circle

 ThisDrawing.Utility.Prompt vbLf & "Center point: " & _

 CStr(oCircle.Center(0)) & "," & _

 CStr(oCircle.Center(1)) & "," & _

MODIFYING OBJECTS | 101

c04.indd 4:28:8:PM/04/06/2015 Page 101

 CStr(oCircle.Center(2)) & _

 vbLf & "Radius: " & _

 CStr(oCircle.Radius)

 End If

Next oEnt

ThisDrawing.Utility.Prompt vbLf

Here is an example of the output created by the previous code statements:

Circles in model space

Center point: 5,2,0

Radius: 2.5

Center point: 6,2.5,0

Radius: 0.125

Center point: 3,1,0

Radius: 5

NOTE Th e Item method and For statement are useful when stepping through all objects

in model space or paper space, but they don’t allow the user to interactively select an object.

I discuss how to prompt a user for objects in Chapter 5.

Modifying Objects
Adding new objects is critical to completing a design, but more time is often spent by a

drafter or engineer modifying existing objects than adding new objects. The AutoCAD Object

library contains methods that are similar to many of the standard AutoCAD commands

used to modify objects. The modifying methods of the AutoCAD Object library can be used

to erase, move, scale, mirror, and rotate objects, among other tasks. I explain how to erase,

copy, move, and rotate graphical objects in the following sections using the methods that are

inherited by the AcadEntity object. I discuss how to scale, mirror, offset, array, and control

the visibility of objects in Bonus Chapter 1 on the companion website at www.sybex.com/go/

autocadcustomization.

When a change is made to an object, I recommend that you update the display of that object.

The AutoCAD command regen is used to regenerate the display of all objects in the current

space, but with the AutoCAD Object library you can update the display of a single graphi-

cal object or all objects in a drawing. Use the Update method to update the display of a single

graphical object. The Update method doesn’t accept any argument values.

If you want to update the display of all objects in a drawing, use the Regen method of the

AcadDocument or ThisDrawing object. The Regen method expects a constant value from the

AcRegenType enumerator. You use the acActiveViewport constant to regenerate the objects in

the current viewport or the acAllViewports constant to regenerate all objects in a drawing.

The following code statements show how to update the display of the fi rst object in model

space and all objects in the current viewport:

' Update the first object in model space

ThisDrawing.ModelSpace(0).Update

' Update all objects in the current viewport

Thisdrawing.Regen acActiveViewport

http://www.sybex.com/go/autocadcustomization
http://www.sybex.com/go/autocadcustomization

102 | CHAPTER 4 CREATING AND MODIFYING DRAWING OBJECTS

c04.indd 4:28:8:PM/04/06/2015 Page 102

Deleting Objects
All graphical and most nongraphical objects can be removed from a drawing when they are

no longer needed. The only objects that can’t be removed are any nongraphical objects that are

referenced by a graphical object, such as a text or dimension style, and nongraphical objects

that represent symbol tables, such as the Layers and Blocks symbol tables. The Delete method

is used to remove—or erase—an object. The method doesn’t accept any arguments. If an object

can’t be removed, an error is generated. I explain how to trap and handle errors in Chapter 13,

“Handling Errors and Deploying VBA Projects.”

The following code statement removes the fi rst object in model space:

' Removes the first object in model space

ThisDrawing.ModelSpace(0).Delete

Removing All Unreferenced Nongraphical Objects

Although the Delete method can be used to remove a nongraphical object that isn’t currently

being referenced by a graphical object in a drawing, the PurgeAll method can be used to purge

all unreferenced nongraphical objects. Th e PurgeAll method is a member of the AcadDocument

or ThisDrawing object, and it doesn’t accept any argument values.

Here’s an example of the PurgeAll method:

ThisDrawing.PurgeAll

Copying and Moving Objects
The copy and move commands are used to duplicate and relocate objects in a drawing. When

working with the AutoCAD Object library, use the Copy function to duplicate an object. The

Copy function doesn’t accept any arguments, but it does return a reference to the new duplicate

object. The Move method can be used to relocate an object. It expects two arrays of three doubles

that defi ne the base and destination points to control the distance and angle at which the object

should be moved.

The following code statements draw a circle, duplicate the circle, and then move the dupli-

cated circle 5 units along the X-axis in the positive direction:

' Defines the center point for the circle

Dim dCenPt(2) As Double

dCenPt(0) = 5: dCenPt(1) = 5: dCenPt(2) = 0

' Adds a new circle to model space

Dim oCirc As AcadCircle

Set oCirc = ThisDrawing.ModelSpace.AddCircle(dCenPt, 2)

' Creates a copy of the circle

Dim oCircCopy As AcadCircle

Set oCircCopy = oCirc.Copy

MODIFYING OBJECTS | 103

c04.indd 4:28:8:PM/04/06/2015 Page 103

' Moves the circle 5 units along the X axis

Dim dToPt(2) As Double

dToPt(0) = oCircCopy.Center(0) + 5

dToPt(1) = oCircCopy.Center(1)

dToPt(2) = oCircCopy.Center(2)

oCircCopy.Move dCenPt, dToPt

Rotating Objects
The angle and orientation of an object can be changed by rotating the object around a base

point or axis. Rotating an object around a base point is performed with the Rotate method,

whereas rotating an object around an axis is performed with the Rotate3D method. I discuss

the Rotate3D method in Bonus Chapter 2 on the companion website. The base point you pass to

the Rotate method must be defi ned as an array of three doubles. The angle in which the object

is rotated must be expressed in radians.

The following code statements draw a line from 5,5 to 7,9 and then create a copy of the line.

The new line object that is copied is then rotated 90 degrees to a value of 1.570796325 radians

(see Figure 4.8):

' Defines the start and endpoints of the line

Dim dStartPt(2) As Double, dEndPt(2) As Double

dStartPt(0) = 5: dStartPt(1) = 5: dStartPt(2) = 0

dEndPt(0) = 7: dEndPt(1) = 9: dEndPt(2) = 0

' Adds a new line to model space

Dim oLine As AcadLine

Set oLine = ThisDrawing.ModelSpace.AddLine(dStartPt, dEndPt)

' Copies the line

Dim oLineCopy As AcadLine

Set oLineCopy = oLine.Copy

' Rotates the copied line by 1.570796325 radians

oLineCopy.Rotate dStartPt, 1.570796325

Figure 4.8

Rotated line object around a

base point

Original line

Base point

Copied and rotated line

104 | CHAPTER 4 CREATING AND MODIFYING DRAWING OBJECTS

c04.indd 4:28:8:PM/04/06/2015 Page 104

The angular measurement of radians isn’t as frequently used as degrees, but all angular

 values in a drawing are stored as radians; this is why the Rotate method expects radians.

Radians are also expected or returned by most methods or properties in the AutoCAD Object

library. Listing 4.1 shows two custom functions that can be used to convert degrees to radians

and radians to degrees.

Listing 4.1: Converting angular measurements

Const PI As Double = 3.14159265

Private Function Degrees2Radians(dDegrees As Double)

 Degrees2Radians = dDegrees * PI / 180

End Function

Private Function Radians2Degrees(dRadians As Double)

 Radians2Degrees = dRadians * 180 / PI

End Function

Here are a few examples of using the custom functions in Listing 4.1:

Dim dAngle As Double

' Converts 1.570796325 radians to 90 degrees

dAngle = Radians2Degrees(PI / 2)

' Converts 180 degrees to 3.14159265 radians

dAngle = Degrees2Radians(180)

Changing Object Properties
All graphical objects are derived from the AcadEntity object—that is, all graphical objects

inherit the properties and methods of the AcadEntity object. For example, even though the

AcadLine object represents a single line segment and the AcadCircle object represents a circle,

they share the properties named Layer and Linetype, among many others.

The properties that all graphical objects have in common are known as the general properties

of an object. In the AutoCAD user interface, an object’s general properties can be modifi ed from

the Properties panel on the ribbon or the Properties palette (displayed with the properties

command). The general properties shared by all graphical objects were listed in Table 4.2.

The following code statements assign the layer named TitleBlk to the fi rst object in model

space and override the color of the layer by directly assigning the color 3 (green) to the object:

' Assigns the TitleBlk layer to the first object in model space

ThisDrawing.ModelSpace(0).Layer = "TitleBlk"

' Assigns the ACI color Green to the first object in model space

EXERCISE: CREATING, QUERYING, AND MODIFYING OBJECTS | 105

c04.indd 4:28:8:PM/04/06/2015 Page 105

Dim oClr As AcadAcCmColor

Set oClr = ThisDrawing.ModelSpace(0).TrueColor

oClr.ColorMethod = acColorMethodByACI

oClr.ColorIndex = acGreen

ThisDrawing.ModelSpace(0).TrueColor = oClr

I explain how to work with and manage layers and linetypes in Bonus Chapter 1 on the

 companion website. In addition to working with layers and linetypes, I explain how to work

with true and color book colors, along with assigning a plot style and transparency to a layer

or object.

Exercise: Creating, Querying, and Modifying Objects
In this section, you will create two new projects that create, query, and modify objects. One

 project will defi ne a macro that allows you to draw a mounting plate with 2D objects, and the

second project will use a similar set of logic to create a 3D model of a mounting plate. Along

with the two projects, you will create a utility class that contains common functions that can

be used across both projects and even in other projects later in this book.

The key concepts I cover in this exercise are as follows:

Creating and Modifying Graphical Objects Graphical objects are the backbone of any

design; they are used to communicate what the building or product should look like when

built or manufactured. When you want to add or modify graphical objects, you must decide

whether to work with model space or paper space, or even a custom block defi nition.

Working with Layers All graphical objects are placed on a layer. Layers are used to organize

graphical objects and control many of the general properties that all graphical objects have

in common.

Creating and Using a Custom Class The VBA programming language supports the ability

to create a custom class. Custom classes can be used to organize functions and manage

global variables. A custom class when created in a project can be exported and used across

many projects.

NOTE Th e steps in this exercise don’t rely on the completion of an earlier exercise in this

book. Later exercises in this book will rely on the completion of this exercise, though. If you

don’t complete this exercise, you can obtain the completed fi les from www.sybex.com/go/

autocadcustomization.

Creating the DrawPlate Project
The following steps explain how to create a project named DrawPlate and to save it

to a fi le named drawplate.dvb:

 1. On the ribbon, click Manage tab ➢ Applications panel title bar and then click

VBA Manager (or at the Command prompt, type vbaman and press Enter).

 2. When the VBA Manager opens, click New.

http://www.sybex.com/go/autocadcustomization
http://www.sybex.com/go/autocadcustomization

106 | CHAPTER 4 CREATING AND MODIFYING DRAWING OBJECTS

c04.indd 4:28:8:PM/04/06/2015 Page 106

The new project is added to the list with a default name of ACADProject and a location of

Global1, Global2, and so on based on how many projects have been created in the cur-

rent AutoCAD session.

 3. Select the new project from the Projects list and click Save As.

 4. When the Save As dialog box opens, browse to the MyCustomFiles folder within

the Documents (or My Documents) folder, or the location you are using to store

custom program fi les.

 5. In the File Name text box, type drawplate and click Save.

 6. In the VBA Manager dialog box, click Visual Basic Editor.

The next steps explain how to change the project name from ACADProject to

DrawPlate:

 1. When the VBA Editor opens, select the project node labeled ACADProject from

the Project Explorer.

 2. In the Properties window, select the fi eld named (Name) and double-click in the

text box adjacent to the fi eld.

 3. In the text box, type DrawPlate and press Enter.

 4. On the menu bar, click File ➪ Save.

Creating the Utilities Class
Separating the custom functions you create into logical groupings can make debugging code

statements easier and allow you to reuse code in other products. Custom classes are one way of

sharing functions and protecting global variables from the functions of your main project. One

of the benefi ts of using a custom class over just a code module is that you gain the advantage of

type-ahead in the Visual Basic Editor, which reduces the amount of text you need to type.

In these steps, you add a new custom class module named clsUtilities to the

DrawPlate project:

 1. On the menu bar, click Insert ➪ Class Module.

 2. In the Project Explorer, select the new module named Class1.

 3. In the Properties window, change the current value of the (Name) property to

clsUtilities.

 4. On the menu bar, click File ➪ Save.

The clsUtilities class module will contain functions that defi ne common and

reusable functions for use with the main function of the DrawPlate project along

with other projects later in this book. The following steps add two functions to the

clsUtilities class that are used to work with system variables.

Working with one system variable at a time isn’t always effi cient when you need to

set or restore the values of multiple system variables. You will defi ne two functions

named GetSysvars and SetSysvars. The GetSysvars function will return an array of

the current values for multiple system variables, and the SetSysvars function will be

used to set the values of multiple system variables.

EXERCISE: CREATING, QUERYING, AND MODIFYING OBJECTS | 107

c04.indd 4:28:8:PM/04/06/2015 Page 107

The following steps explain how to add the GetSysvars and SetSysvars functions:

 1. In the Project Explorer, double-click the clsUtilities component.

 2. In the text editor area of the clsUtilities component, type the following.

(The comments are here for your information and don’t need to be typed.)

' GetSysvars function returns an array of the current values

' for each system variable in the array it is passed.

Public Function GetSysvars(sysvarNames) As Variant

 Dim nIdxTotal As Integer

 nIdxTotal = UBound(sysvarNames)

 Dim aVals() As Variant

 ReDim aVals(UBound(sysvarNames) - LBound(sysvarNames))

 Dim nCnt As Integer

 For nCnt = LBound(sysvarNames) To UBound(sysvarNames)

 aVals(nCnt) = ThisDrawing.GetVariable(sysvarNames(nCnt))

 Next

 GetSysvars = aVals

End Function

' SetSysvars function sets the values of the system variables

' in the array that the function is passed.

' Function expects two arrays.

Public Sub SetSysvars(sysvarNames, sysvarValues)

 Dim nCnt As Integer

 For nCnt = LBound(sysvarNames) To UBound(sysvarNames)

 ThisDrawing.SetVariable sysvarNames(nCnt), sysvarValues(nCnt)

 Next

End Sub

 3. Click File ➪ Save.

New graphical objects must be added to model space, paper space, or a block defi nition. In

most situations, you want to add new objects to the current layout. You can create custom func-

tions to combine multiple code statements and reduce the amount of code that needs to be oth-

erwise entered. The following steps add three functions to the clsUtilities class that can be

used to create a closed polyline and circle in the current layout, and a new layer.

 1. In the text editor area of the clsUtilities component, type the following.

(The comments are here for your information and don’t need to be typed.)

' CreateRectangle function draws a closed LWPolyline object.

' Function expects an array that represents four points,

' but can accept more points.

108 | CHAPTER 4 CREATING AND MODIFYING DRAWING OBJECTS

c04.indd 4:28:8:PM/04/06/2015 Page 108

Public Function CreateRectangle(ptList As Variant) As AcadLWPolyline

 Set CreateRectangle = ThisDrawing.ActiveLayout.Block. _

 AddLightWeightPolyline(ptList)

 CreateRectangle.Closed = True

End Function

' CreateCircle function draws a Circle object.

' Function expects a center point and radius.

Public Function CreateCircle(cenPt As Variant, circRadius) As AcadCircle

 Set CreateCircle = ThisDrawing.ActiveLayout.Block. _

 AddCircle(cenPt, circRadius)

End Function

' CreateLayer function creates a layer and returns an AcadLayer object.

' Function expects a layer name and color.

Public Function CreateLayer(sName As String, _

 nClr As ACAD_COLOR) As AcadLayer

 On Error Resume Next

 ' Try to get the layer first and return it if it exists

 Set CreateLayer = ThisDrawing.Layers(sName)

 ' If layer doesn't exist create it

 If Err Then

 Err.Clear

 Set CreateLayer = ThisDrawing.Layers.Add(sName)

 CreateLayer.color = nClr

 End If

End Function

2. Click File ➢ Save.

Defi ning the CLI_DrawPlate Function
The main function of the DrawPlate project draws a rectangular mounting plate with four bolt

holes. The outside edge of the mounting plate is defi ned using a closed lightweight polyline that

is drawn using the CreateRectangle function defi ned in the clsUtilities class. Each of the

bolt holes is drawn using the CreateCircle function of the clsUtilities class. Since objects

in a drawing are organized using layers, you will place the rectangle and circles on different

layers; the layers will be added to the drawing with the CreateLayer function.

In these steps, you add a new custom module named basDrawPlate to the

DrawPlate project:

 1. On the menu bar, click Insert ➢ Module.

 2. In the Project Explorer, select the new module named Module1.

EXERCISE: CREATING, QUERYING, AND MODIFYING OBJECTS | 109

c04.indd 4:28:8:PM/04/06/2015 Page 109

 3. In the Properties window, change the current value of the (Name) property to

basDrawPlate.

 4. On the menu bar, click File ➢ Save.

The following steps explain how to add the CLI_DrawPlate function, which is the

macro users will use to create the mounting plate:

 1. In the Project Explorer, double-click the basDrawPlate component.

 2. In the text editor area of the basDrawPlate component, type the following:

Private myUtilities As New clsUtilities

The clsUtilities.cls fi le code statement defi nes a global variable named myUtilities.

The myUtilities variable is then assigned a new instance of the clsUtilities class that

you defi ned earlier. When you want to reference a function defi ned in the clsUtilities

class, you will use the myUtilities variable.

 3. In the text editor area of the basDrawPlate component, press Enter and type the

 following. (The comments are here for your information and don’t need to be typed.)

Public Sub CLI_DrawPlate()

 Dim oLyr As AcadLayer

 On Error Resume Next

 ' Store the current value of the system variables to be restored later

 Dim sysvarNames As Variant, sysvarVals As Variant

 sysvarNames = Array("nomutt", "clayer", "textstyle")

 sysvarVals = myUtilities.GetSysvars(sysvarNames)

 ' Set the current value of system variables

 myUtilities.SetSysvars sysvarNames, Array(0, "0", "STANDARD")

 ' Define the width and height for the plate

 Dim dWidth As Double, dHeight As Double

 dWidth = 5#

 dHeight = 2.75

 Dim basePt(2) As Double

 basePt(0) = 0: basePt(1) = 0: basePt(2) = 0

 ' Create the layer named Plate or set it current

 Set oLyr = myUtilities.CreateLayer("Plate", acBlue)

 ThisDrawing.ActiveLayer = oLyr

 ' Create the array that will hold the point list

 ' used to draw the outline of the plate

 Dim dPtList(7) As Double

110 | CHAPTER 4 CREATING AND MODIFYING DRAWING OBJECTS

c04.indd 4:28:8:PM/04/06/2015 Page 110

 dPtList(0) = basePt(0): dPtList(1) = basePt(1)

 dPtList(2) = basePt(0) + dWidth: dPtList(3) = basePt(1)

 dPtList(4) = basePt(0) + dWidth: dPtList(5) = basePt(1) + dHeight

 dPtList(6) = basePt(0): dPtList(7) = basePt(1) + dHeight

 ' Draw the rectangle

 myUtilities.CreateRectangle dPtList

 ' Create the layer named Holes or set it current

 Set oLyr = myUtilities.CreateLayer("Holes", acRed)

 ThisDrawing.ActiveLayer = oLyr

 ' Define the center points of the circles

 Dim cenPt1(2) As Double, cenPt2(2) As Double

 Dim cenPt3(2) As Double, cenPt4(2) As Double

 cenPt1(0) = 0.5: cenPt1(1) = 0.5: cenPt1(2) = 0

 cenPt2(0) = 4.5: cenPt2(1) = 0.5: cenPt2(2) = 0

 cenPt3(0) = 0.5: cenPt3(1) = 2.25: cenPt3(2) = 0

 cenPt4(0) = 4.5: cenPt4(1) = 2.25: cenPt4(2) = 0

 ' Draw the four circles

 myUtilities.CreateCircle cenPt1, 0.1875

 myUtilities.CreateCircle cenPt2, 0.1875

 myUtilities.CreateCircle cenPt3, 0.1875

 myUtilities.CreateCircle cenPt4, 0.1875

 ' Restore the saved system variable values

 myUtilities.SetSysvars sysvarNames, sysvarVals

End Sub

 4. Click File ➢ Save.

Running the CLI_DrawPlate Function
Now that the CLI_DrawPlate function has been defi ned with the necessary code statements to

draw the mounting plate, it can be executed from the AutoCAD user interface. In these steps,

you run the CLI_DrawPlate function from the Macros dialog box.

 1. Switch to AutoCAD by clicking on its icon in the Windows taskbar or by clicking View ➢

AutoCAD from the menu bar in the Visual Basic Editor.

 2. In AutoCAD, at the Command prompt, type vbarun and press Enter.

 3. When the Macros dialog box opens, select the DrawPlate.dvb!basDrawPlate.CLI_

DrawPlate macro from the list and click Run.

The new mounting plate is drawn, as shown in Figure 4.9. The mounting plate

measures 5×2.75, which was defi ned in the CLI_DrawPlate function. In Chapter

5,

EXERCISE: CREATING, QUERYING, AND MODIFYING OBJECTS | 111

c04.indd 4:28:8:PM/04/06/2015 Page 111

you will learn to accept user input to control the size of the mounting plate that

should be drawn.

Figure 4.9

New mounting plate

If you don’t see the mounting plate, use the zoom command and zoom to the

extents of the drawing area.

Exporting the Utilities Class
The functions in the clsUtilities class can be used in other projects. By exporting the class

module out of the DrawPlate project, you can then import it into other projects. Class modules

aren’t the only components that can be exported from a project; you can export code modules

and User Forms that defi ne dialog boxes in a project as well.

The following steps explain how to export the clsUtilities class module from the

drawplate.dvb fi le:

 1. In the VBA Editor, in the Project Explorer, right-click the clsUtilities component and

choose Export File.

 2. When the Export File dialog box opens, browse to the MyCustomFiles folder.

 3. Keep the default fi lename of clsUtilities.cls and click Save.

The clsUtilities.cls fi le is exported from the Dra wPlate pr oject.

c05.indd 8:41:18:AM/03/25/2015 Page 113

Chapter 5

Interacting with the User and
Controlling the Current View

Static values in a custom program are helpful in executing a set of code statements consis-

tently each time the program is run. However, using static values only prevents the user from

providing input during execution. Your users might need to specify the location of the corner

of a mounting plate, an insertion point for a block reference, or which objects to modify. The

AutoCAD® Object library provides a variety of functions that allow you to request input at

the Command prompt or with controls in a user form. I cover working with user forms in

Chapter 11, “Creating and Displaying User Forms.”

Some values obtained from a user can be directly assigned to an object without any changes,

whereas other values might need to be manipulated fi rst. The AutoCAD Object library con-

tains functions that can be used to manipulate coordinate and angular values. I discussed

converting values from one data type to another in Chapter 2, “Understanding Visual Basic for

Applications.”

Getting input from a user will be helpful in creating dynamic and fl exible programs, but

so will the manipulation of the current view. The programs you write can pan and change the

zoom factor or area that is visible in the drawing window. In addition to panning and zooming,

you can work with named views, tiled viewports, and visual styles. In this chapter, I explain

how to request input from the user at the Command prompt, calculate geometric values, and

manipulate the current view in model space.

Interacting with the User
There are times when you will want users to provide a value instead of simply deciding which

values a program should use each time it is executed. The AutoCAD Object library contains

functions that can be used to request input from the user. The values returned by the user can

then be validated using test conditions before the values are passed as arguments to a

function. I explained how to use test conditions with comparison and logical grouping

operators in Chapter 2.

In addition to getting input from the user, a custom program can provide textual feedback to

the user, letting the user know the current state of a program or when an error occurs. Textual

feedback can be provided at the Command prompt or in a message box. Whether getting input

from the user or providing textual messages at the Command prompt, you will need to work

with the AcadUtility object. The AcadUtility object can be accessed from the Utility prop-

erty of an AcadDocument or ThisDrawing object.

c05.indd 8:41:18:AM/03/25/2015 Page 114

114 | CHAPTER 5 INTERACTING WITH THE USER AND CONTROLLING THE CURRENT VIEW

The following code statements get the AcadUtility object of the ThisDrawing object:

Dim oUtil as AcadUtility

Set oUtil = ThisDrawing.Utility

Requesting Input at the Command Prompt
With the functions of the AcadUtility object, you can request input from the user at the

Command prompt. Input requested can be any of the following:

 ◆ Integer or double (real) numeric value

 ◆ Distance or angular value

 ◆ String or keyword

 ◆ 2D or 3D point

Before requesting input from the user, you will want to defi ne a prompt. A prompt is a short

text message that provides the user with an idea of the input expected and whether any options

are available. I discuss recommended etiquette for creating a prompt in the sidebar “Guidelines

for Prompts.”

TIP Use the On Error Resume Next statement before using the Getxxx functions mentioned

in this section. An error is generated by most of the functions if the user presses Enter without

providing a value or presses Esc. After a Getxxx function, be sure to check the value of the Err

object. I explain more about error handling in Chapter 13, “Handling Errors and Deploying

VBA Projects.”

Getting Numeric Values

Numbers play an important role in creating and modifying objects in a drawing, whether it is

the radius of a circle, part of a coordinate value, or the number of rows in a rectangular array.

VBA supports two types of numbers: integers and doubles (or reals). Integers are whole num-

bers without a decimal value, and doubles are numbers that support a decimal value. You can

use the GetInteger and GetReal functions to request a numeric value from the Command

prompt. The number entered by the user is the value returned by the function, but if the user

presses the spacebar or Enter without providing a value, an error is generated. When an incor-

rect value is provided, the function re-prompts the user to try again.

The following shows the syntax of the GetInteger and GetReal functions:

retVal = object.GetInteger([msg])

retVal = object.GetReal([msg])

Their arguments are as follows:

retVal The retVal argument represents the integer or double value returned.

object The object argument represents the AcadUtility object.

msg The msg argument is an optional string that defi nes the prompt message to display at the

Command prompt. The msg argument is optional, but I recommend always providing one.

INTERACTING WITH THE USER | 115

c05.indd 8:41:18:AM/03/25/2015 Page 115

The following are examples of the GetInteger and GetReal functions, and the values that

are returned:

nRetVal = oUtil.GetInteger(vblf & "Enter number of line segments: ")

oUtil.Prompt vbLf & "Value=" & CStr(nRetVal) & vbLf

Enter number of line segments: Type 3.5 and press Enter

Requires an integer value.

Enter number of line segments: Type 3 and press Enter

3

dRetVal = oUtil.GetReal(vblf & "Enter angle of rotation: ")

oUtil.Prompt vbLf & "Value=" & CStr(dRetVal) & vbLf

Enter number of line segments: Type 22.5 and press Enter

22.5

NOTE When the user is prompted for a double value with the GetReal function and enters a

whole number, a double value is returned. For example, entering 1 results in 1.0 being returned.

Acquiring a Point Value

The GetPoint function allows the user to specify a point in the drawing area based on an

optional base point. When an optional base point is provided, a rubber-band line is drawn from

the base point to the current position of the cursor. Figure 5.1 shows the rubber-band line effect

used when g etting a point based on the optional base point. A variant containing an array of

three doubles, representing a point, is returned by the GetPoint function if the user success-

fully specifi es a point in the drawing area. If the user presses the spacebar or Enter without

specifying a point, an error is generated.

Figure 5.1

Rubber-band line

eff ect used when

specifying a point

from a base point

Rubber-band line

Base point

In addition to the GetPoint function, the GetCorner function can be used to request a point.

There are differences between the GetPoint and GetCorner functions:

 ◆ The GetCorner function requires a base point.

 ◆ The GetPoint function draws a rubber-band line from a base point to the cursor, whereas

the GetCorner function draws a rectangle from the base point to the cursor, as shown in

Figure 5.2.

c05.indd 8:41:18:AM/03/25/2015 Page 116

116 | CHAPTER 5 INTERACTING WITH THE USER AND CONTROLLING THE CURRENT VIEW

Figure 5.2

Th e rubber-

band eff ect used

when specifying

the opposite

 corner with

the GetCorner

function Base point

Cursor location

The following shows the syntax of the GetPoint and GetCorner functions:

retVal = object.GetPoint([basePoint], [msg])

retVal = object.GetCorner(basePoint, [msg])

Their arguments are as follows:

retVal The retVal argument represents the variant value returned by the function. This

variant is an array of three doubles representing the point specifi ed.

object The object argument represents the AcadUtility object.

basePoint The basePoint argument specifi es the base point from which a rubber-band line

or rectangle is drawn to the current position of the cursor. This argument value must be an

array of three doubles and is optional for the GetPoint function.

msg The msg argument is an optional string that defi nes the prompt message to display

at the Command prompt. The msg argument is optional, but I recommend always

providing one.

The following are examples of the GetPoint and GetCorner functions:

Dim vPt As Variant

vPt = oUtil.GetPoint(, vbLf & "Specify first corner: ")

oUtil.Prompt vbLf & "X=" & CStr(vPt(0)) & _

 " Y=" & CStr(vPt(1)) & _

 " Z=" & CStr(vPt(2)) & vbLf

Dim vCornerPt As Variant

vCornerPt = oUtil.GetCorner(vPt, vbLf & "Specify opposite corner: ")

oUtil.Prompt vbLf & "X=" & CStr(vCornerPt(0)) & _

 " Y=" & CStr(vCornerPt(1)) & _

 " Z=" & CStr(vCornerPt(2)) & vbLf

Here is an example of values entered at the prompts displayed for the previous example code

statements and the values returned:

Specify first corner: 0,0

X=0 Y=0 Z=0

Specify opposite corner: @5,5

X=5 Y=5 Z=0

INTERACTING WITH THE USER | 117

c05.indd 8:41:18:AM/03/25/2015 Page 117

Getting the Distance Between Points

Although the GetReal function can be used to request a value that might represent a distance or

angular value, the AutoCAD Object library contains several functions that are better suited for

acquiring distance or angular values. (I explain how to get angular values in the next section.)

The GetDistance function can be used to get a distance between two points. The distance

between the two points is returned as a double value. Optionally, the user can type a double

value instead of specifying two points. If the user presses the spacebar or Enter without provid-

ing a value, an error is generated.

The following shows the syntax of the GetDistance function:

retVal = object.GetDistance([basePoint], [msg])

Its arguments are as follows:

retVal The retVal argument represents the double that is the result of the function calcu-

lating the distance between the two points specifi ed.

object The object argument represents the AcadUtility object.

basePoint The basePoint argument is an optional argument that determines if a rubber-

band line is drawn from the current position of the cursor to the coordinate value specifi ed

by the basePoint argument. This argument value must be an array of three doubles. If a base

point isn’t provided, the user must specify two points instead of one.

msg The msg argument is an optional string that defi nes the prompt message to display

at the Command prompt. The msg argument is optional, but I recommend always

providing one.

The following are examples of the GetDistance function and the values that are returned:

Dim dRetVal as Double

dRetVal = oUtil.GetDistance(, vblf & "Enter or specify a width: ")

oUtil.Prompt vbLf & "Distance=" & CStr(dRetVal) & vbLf

Enter or specify a width: Pick a point in the drawing area, enter a coordinate

value,

or enter a distance

Specify second point: If a point was specified, pick or enter a second point

Distance=6.25

Dim vPt As Variant, dRetVal As Double

vPt = oUtil.GetPoint(, vbLf & "Specify first point: ")

dRetVal = oUtil.GetDistance(vPt, vbLf & "Specify second point: ")

oUtil.Prompt vbLf & "Distance=" & CStr(dRetVal) & vbLf

Specify first point: Pick a point in the drawing area

Specify second point: Pick a point in the drawing area

Distance=7.0

c05.indd 8:41:18:AM/03/25/2015 Page 118

118 | CHAPTER 5 INTERACTING WITH THE USER AND CONTROLLING THE CURRENT VIEW

TIP Th e lunits system variable aff ects the formatting of the linear distance that can be entered

when the GetDistance function is executed. For example, when lunits is set to 2, the user

can enter only decimal values and not values formatted in inches and feet. If lunits is set to

4, the user can enter either decimal or architectural formats for linear distances.

A double value can be converted to a string that refl ects the formatting of a supported linear

distance with the RealToString function. The RealToString function accepts a double value of

the distance to format as a string, a constant value from the AcUnits enumerator to specify the

linear format to apply, and an integer that indicates the precision in which the double should be

formatted.

It is also possible to convert a string that is formatted as a supported linear distance to a

double value with the DistanceToReal function. The DistanceToReal function accepts a string

value and a constant value from the AcUnits enumerator that indicates the linear formatting of

the string. For more information about the RealToString and DistanceToReal functions, see

the AutoCAD Help system.

Getting the Angular Difference Between Points

The GetAngle and GetOrientation functions are used to obtain the angular difference

between a vector defi ned by two points and the positive X-axis. The angular difference is

expressed in radians, not decimal degrees or other angular measurement, and is returned

as a double. If the user presses the spacebar or Enter without providing a value, an error is

 generated. The angular value returned by both functions is affected by the current value of the

angdir system variable, which defi nes the direction in which positive angles are measured:

counterclockwise or clockwise.

The GetOrientation function is also affected by the angbase system variables. The angular

value returned by GetOrientation is calculated by adding the value specifi ed by the user and

that of the angbase system variable. For example, changing angbase to 45 and entering a value

of 0 for the GetOrientation function returns a value of 0.785398, which is the current value of

angbase. 0.785398 is the radians equivalent of 45 decimal degrees.

The following shows the syntax of the GetAngle and GetOrientation functions:

retVal = object.GetAngle([basePoint], [msg])

retVal = object.GetOrientation([basePoint], [msg])

The arguments of the two functions are the same as those of the GetDistance function

explained in the previous section. The following are examples of the GetAngle function, and the

values that are returned:

Dim dRetVal as Double

dRetVal = oUtil.GetAngle(, vblf & "Enter or specify an angle: ")

oUtil.Prompt vbLf & "Angle=" & CStr(dRetVal) & vbLf

Enter or specify an angle: Pick a point in the drawing area,

INTERACTING WITH THE USER | 119

c05.indd 8:41:18:AM/03/25/2015 Page 119

enter a coordinate value, or enter an angle

Specify second point: If a point was specified, pick or enter a second point

Angle= 0.785398

Dim vPt As Variant, dRetVal As Double

vPt = oUtil.GetPoint(, vbLf & "Specify first point: ")

dRetVal = oUtil.GetAngle(vPt, vbLf & "Specify second point: ")

oUtil.Prompt vbLf & "Angle=" & CStr(dRetVal) & vbLf

Specify first point: Pick a point in the drawing area

Specify second point: Pick a point in the drawing area

Angle=3.14159

Although AutoCAD uses and stores values in radians, users often think in decimal degrees.

Listing 5.1 is a set of custom functions that can be used to convert radians to decimal degrees

and decimal degrees to radians.

Listing 5.1: Decimal degrees to radians and radians to decimal degrees

Const PI = 3.14159265358979

' Convert Radians to Decimal Degrees

' Usage: dRetval = rtd(0.785398)

Private Function rtd(dRadius As Double) As Double

 rtd = (dRadius / PI) * 180

End Function

' Convert Decimal Degrees to Radians

' Usage: dRetval = dtr(45.0)

Private Function dtr(dDegrees As Double) As Double

 dtr = (PI / 180) * dDegrees

End Function

A double that represents an angular value can be converted to a string that refl ects the

formatting of a supported angular measurement with the AngleToString function. The

AngleToString function accepts a double value of the angle to format as a string, a constant

value from the AcAngleUnits enumerator to specify the angular format to apply, and an integer

that sets the precision in which the string should be formatted.

You can also convert a string that is formatted with a supported angular measurement to a

double value with the AngleToReal function. The AngleToReal function accepts a string value

and a constant value from the AcAngleUnits enumerator to specify the angular formatting of

the string. For more information about the AngleToString and AngleToReal functions, see the

AutoCAD Help system.

c05.indd 8:41:18:AM/03/25/2015 Page 120

120 | CHAPTER 5 INTERACTING WITH THE USER AND CONTROLLING THE CURRENT VIEW

Guidelines for Prompts

Prompts explain the type of data that is being requested along with how that data might be used.

Most of the commands you start in the AutoCAD program that don’t open a dialog box will display

a prompt that follows a common structure. I recommend structuring your prompts like the ones

displayed by AutoCAD commands to make your prompts feel familiar to the user. Prompts com-

monly have two or more of the following elements:

Message Th e message is typically formatted as a statement that begins with a verb, such

as specify or enter. I recommend using Specify when the user can pick one or more points

in the drawing area to defi ne a value or enter a value, and using Enter when the user can

only type a value at the Command prompt. Messages can also be formatted as questions,

but this is much less common. I recommend avoiding a conversational tone, which might

use words such as please and thanks, in the message. Special character constants can also be

used as part of a message; vbLf forces the text that follows it onto a new line, and vbTab and

""" represent the Tab and quotation mark characters, respectively. Th e vbBack constant can

be useful in removing the Command: text from the Command prompt; use 9 vbBack con-

stants in a row to remove Command:. Th e exercise at the end of this chapter demonstrates

how to create a constant and remove Command: from the Command prompt. For a full list of

supported constants that can be used in strings, search on the “Miscellaneous Constants”

topic in the Microsoft VBA Help system. In the VBA Editor, click Help ➢ Microsoft Visual

Basic For Applications Help.

Option List Th e option list identifi es which keywords are available in addition to the

main data type of the Getxxx function. An opening ([) and a closing (]) square bracket

denote the start and end of the option list. Each keyword in the option list should be sepa-

rated by a forward slash (/), and the capitalization should match that of the keywords list-

ing in the InitializeUserInput method that is evaluated just prior to the next Getxxx

function. Th e option list should come after the main message of the prompt. I discuss the

InitializeUserInput method in the “Initializing User Input and Keywords” section later

in this chapter.

Default Value Th e default value that should be used if the user doesn’t provide a value

before pressing Enter is commonly displayed in a set of angle brackets (<>). Th e Getxxx

function doesn’t automatically return the value in the angle brackets if Enter is pressed

before a value is provided. You must check for an error and return the desired default value.

I demonstrate how to implement a prompt with a default value in the exercise at the end of

this chapter.

Colon A colon should be the last character in a prompt, followed by a space to provide

some separation between the prompt and value entered.

INTERACTING WITH THE USER | 121

c05.indd 8:41:18:AM/03/25/2015 Page 121

Th e following is the recommended structure of a prompt:

Message [Option list] <Default value>:

Th e following are examples of diff erent prompts that follow my recommendations:

"Specify next point: "

"Specify rotation or [Reference] <45.000>: "

"Enter a number or press Backspace to clear: "

"Enter color option [Blue/Green/Red] <Blue>: "

Th e following are examples of prompts that shouldn’t be used:

"Next point: "

"Pick a color (blue green black):"

"Specify next point"

"Enter color option or <Blue> [Blue/Green/Red]: "

Prompting for String Values

String values are used to represent the prompts that should be displayed when requesting

input, a block name, or path, and even the text to be added to an annotation object. You can use

the GetString function to request a string value at the Command prompt and control whether

spaces are allowed in the string returned. The entered string is returned by the function, but if

the user presses Enter without providing a value, an empty string ("") is returned.

The following shows the syntax of the GetString function:

retVal = object.GetString(allow_spaces, [msg])

Its arguments are as follows:

retVal The retVal argument represents the string that is returned by the function.

object The object argument represents the AcadUtility object.

allow_spaces The allow_spaces argument determines whether the spacebar acts like the

Enter key or if it allows the entering of a space character. By default, pressing the spacebar is

the same as pressing Enter. Provide a value of True to allow the user to enter a space charac-

ter, or use False to not allow spaces in the text entered. A conditional expression that evalu-

ates to True or False can also be used.

msg The msg argument is an optional string that defi nes the prompt message to display

at the Command prompt. The msg argument is optional, but I recommend always

providing one.

c05.indd 8:41:18:AM/03/25/2015 Page 122

122 | CHAPTER 5 INTERACTING WITH THE USER AND CONTROLLING THE CURRENT VIEW

The following is an example of the GetString function and the value that is returned:

Dim sRetVal As String

sRetVal = oUtil.GetString(True, vbLf & "Enter your name: ")

oUtil.Prompt vbLf & "Value=" & sRetVal & vbLf

Type your first and last (or family) name, then press Enter

"Lee Ambrosius"

Initializing User Input and Keywords

The behavior of the Getxxx functions can be modifi ed with the InitializeUserInput method

of the AcadUtility object. When you want to enable one or more of the alternate behaviors of a

Getxxx function, you include the InitializeUserInput method before the Getxxx function. In

addition to controlling the alternate behaviors of the Getxxx functions, InitializeUserInput

can be used to set up keyword usage for a function.

The following shows the syntax of the InitializeUserInput method:

object.InitializeUserInput(flags, [keywords_list])

The flags argument represents a bit-coded value that controls the type of input a Getxxx

function can accept. The flags argument can contain one or more of the bits described in Table

5.1. Additional bits are available and described in the AutoCAD Help system; search on the

 keywords “InitializeUserInput method.”

Table 5.1: Bit codes available for the InitializeUserInput method

Bit code Description

1 User is not allowed to press Enter without fi rst providing a value. Not supported for

use with the GetString function.

2 Zero can’t be entered when requesting a numeric value.

4 A negative value can’t be entered when requesting a numeric value.

32 Rubber-band lines and rectangular boxes are shown as dashed instead of the default

setting as solid.

64 Coordinate input is restricted to 2D points.

128 Arbitrary input is allowed; text values can be entered when using any of the Getxxx

functions.

The keywords_list argument represents the keywords that the next Getxxx function can

support. The keywords must be placed in a string and each keyword separated by a space. The

letters you want a user to be able to enter without typing the full keyword must be in uppercase,

and I recommend that they be consecutive; all other letters in a keyword must be lowercase.

INTERACTING WITH THE USER | 123

c05.indd 8:41:18:AM/03/25/2015 Page 123

The keywords_list argument is optional. Examples of keyword lists are "Blue Green Red"

and "Azul Verde Rojo_Blue Green Red". The second example represents a keyword list that

supports both localized and global languages; here the localized language is Spanish and the

global language is typically English.

The global language value is used when an underscore is placed in front of a letter

combination at the Command prompt. For example, typing A for the Azul option when the

Spanish-language version of your program is loaded would work just fi ne but would fail if the

English version was loaded. Entering _B instead would work with either the Spanish or English

version of the program.

When a user enters a value that represents a keyword, an error is generated. Use the On

Error Resume Next statement to keep the VBA environment from displaying an error message.

After the Getxxx function is executed, check the value of the Err object to determine if the user

entered a keyword, pressed Enter without providing a value, or pressed Esc. If a keyword is

entered, the name of the keyword can be obtained with the GetInput function. The GetInput

function doesn’t accept any arguments and returns a string that represents the keyword the

user choose.

The following is an example of the InitializeUserInput method that forces the user to

provide a numeric value or enter a keyword option of Diameter with the GetDistance function.

The If statement is used to determine if an error occurred and, if so, which error. Was the error

caused by entering the keyword or by pressing Esc? The GetInput function is used to return the

keyword value.

On Error Resume Next

' Disables pressing Enter without first

' entering a number or Diameter keyword

oUtil.InitializeUserInput 1, "Diameter"

Dim vRetVal As Variant

vRetVal = oUtil.GetDistance(, vbLf & "Specify radius or [Diameter]: ")

' Check to see if the user entered a value or option

If Err.Number = -2145320928 Then

 oUtil.Prompt vbLf & "Option=" & oUtil.GetInput & vbLf

ElseIf Err.Number = -2147352567 Then

 oUtil.Prompt vbLf & "User pressed Esc" & vbLf

Else

 oUtil.Prompt vbLf & "Distance=" & CStr(vRetVal) & vbLf

End If

Here are examples of values entered at the prompt displayed for the previous example code

statement and the values returned:

Specify radius or [Diameter]: Type D and press Enter

Option=Diameter

Specify radius or [Diameter]: Type 7.5 and press Enter

Distance=7.5

c05.indd 8:41:18:AM/03/25/2015 Page 124

124 | CHAPTER 5 INTERACTING WITH THE USER AND CONTROLLING THE CURRENT VIEW

The following is an example of the InitializeUserInput method that restricts the user’s

input to positive and nonzero values:

On Error Resume Next

' Disables pressing Enter without first entering a number,

' and limits input to positive and nonzero values

oUtil.InitializeUserInput 7

Dim vRetVal As Variant

vRetVal = oUtil.GetInteger(vbLf & "Enter a number: ")

' Check to see if the user entered a value

If Not Err Then

 oUtil.Prompt vbLf & "Value=" & CStr(vRetVal) & vbLf

End If

Here are examples of values entered at the prompt displayed for the previous example code

statement, and the values returned:

Enter a number: Type -1 and press Enter

Value must be positive and nonzero.

Enter a number: Type 4 and press Enter

4

In addition to using keywords with the Getxxx functions, you can use the GetKeyword

function to prompt the user for just keyword values. The GetKeyword function accepts input

only in the form of a keyword value unless arbitrary input is enabled with the 128 bit-code of

the InitializeUserInput method; in that case, the function can accept any string input. The

GetKeyword function can return only a string value—it can’t return numbers or arrays repre-

senting coordinate values. The InitializeUserInput method must be used to set up the key-

words that the GetKeyword function can accept.

NOTE All Getxxx functions except the GetString function support keywords.

The following shows the syntax of the GetKeyword function:

retVal = object.GetKeyword([msg])

The msg argument represents the textual message to display at the Command prompt. The

msg argument is optional, but I recommend always providing one.

The following is an example of the GetKeyword function and the value that is returned:

On Error Resume Next

' Sets up the keywords for the GetKeyword function

oUtil.InitializeUserInput 0, "Color LTYpe LWeight LTScale"

Dim vRetVal As Variant

INTERACTING WITH THE USER | 125

c05.indd 8:41:18:AM/03/25/2015 Page 125

vRetVal = oUtil.GetKeyword(_

 vbLf & "Enter option [Color/LTYpe/LWeight/LTScale] <Color>: ")

' Check to see if the user specified an option

If Err.Number = -2145320928 Then

 oUtil.Prompt vbLf & "Option=" & oUtil.GetInput & vbLf

ElseIf Err.Number = -2147352567 Then

 oUtil.Prompt vbLf & "User pressed Esc" & vbLf

Else

 If vRetVal = "" Then

 oUtil.Prompt vbLf & "Enter pressed w/o an option" & vbLf

 Else

 oUtil.Prompt vbLf & "Value=" & vRetVal & vbLf

 End If

End If

Here are examples of values entered at the prompt displayed for the previous example code

statement, and the values returned:

Enter option [Color/LTYpe/LWeight/LTScale] <Color>: Type C and press Enter

Option=Color

Enter option [Color/LTYpe/LWeight/LTScale] <Color>: Type L and press Enter

Ambiguous response, please clarify...

LTYpe or LWeight or LTScale? Type LW and press Enter

Option=LWeight

Providing Feedback to the User
Although a program can simply request information from users and go on its way, it is best to

acknowledge users and provide them with some feedback. Now this doesn’t mean you need to

make small talk with the person on the other side of the screen; it also doesn’t mean you should

share your life story. Based on the tasks your program might perform, you may want to provide

information to the user when a macro does one of the following:

Starts Consider displaying the default settings or options that your program will be using,

similar to the informational text that is displayed before the fi rst prompt when using the

fillet or style command.

Executes When processing a large dataset or number of objects, consider displaying a

counter that helps the user know that something is still happening.

Causes an Error If something happens internally in your program, you should let users

know what went wrong so they can let you (the programmer) know or try to fi x the problem

themselves.

Completes In most cases, you don’t need to display information when a macro is done

executing. However, you might want to let the user know if the information from a set of

objects was successfully extracted or how many objects were modifi ed.

c05.indd 8:41:18:AM/03/25/2015 Page 126

126 | CHAPTER 5 INTERACTING WITH THE USER AND CONTROLLING THE CURRENT VIEW

Displaying Messages at the Command Prompt

In the “Requesting Input at the Command Prompt” section earlier, you learned how to display

a message when requesting input from the user with one of the Getxxx functions. Messages can

also be displayed at the Command prompt with the Prompt method of the AcadUtility object.

The following shows the syntax of the Prompt method:

object.Prompt(msg)

The msg argument represents the textual message to display at the Command prompt. As

part of the textual message, you can use the constant vbLf to force the message on a new line,

vbTab to add a Tab character, and """ to represent a quotation mark character. The vbBack con-

stant, which emulates a press of the Backspace key, can also be useful in removing the Command:

text from the Command prompt, thereby giving you a completely clean Command prompt. Use

nine vbBack constants in a row to remove Command:. For a full list of supported constants that

can be used in strings, search on the “Miscellaneous Constants” topic in the Microsoft VBA

Help system. In the VBA Editor, click Help ➢ Microsoft Visual Basic For Applications Help.

The following are examples of the Prompt method and the values that are returned:

Dim oUtil As AcadUtility

Set oUtil = ThisDrawing.Utility

oUtil.Prompt vbLf & "Current OSMODE value: " & _

 CStr(ThisDrawing.GetVariable("OSMODE")) & vbLf

Current OSMODE value: 4133

oUtil.Prompt vbLf & "Drawing Name: "

oUtil.Prompt CStr(ThisDrawing.GetVariable("DWGNAME")) & vbLf

Drawing Name: Drawing1.dwg

TIP I recommend adding a vbLf constant to the start and end of all messages displayed with

the Prompt function. Th e vbLf constant ensures that your message is displayed on a new line

and that the user is always returned to a clean Command prompt.

Displaying Messages in a Message Box

A message at the Command prompt is a common way of displaying information to the user

when you don’t want to interrupt the user’s workfl ow. However, you can also display informa-

tion in a message box (which the user must acknowledge before the program continues).

The MsgBox function of the VBA programming language can display a simple message box

with a custom message and only an OK button. Message boxes can also contain a standard

icon and button confi guration that contains more than just an OK button. The MsgBox func-

tion returns a value that you can use to determine which button the user clicked. You can learn

about the icons and button confi gurations that the MsgBox function supports in the Microsoft

VBA Help system. In the VBA Editor, click Help ➢ Microsoft Visual Basic For Applications Help.

NOTE You can create a user form that displays additional information to the user that cannot

be displayed with the MsgBox function. For example, you could display a picture or allow the

user to click a link in the message displayed.

SELECTING OBJECTS | 127

c05.indd 8:41:18:AM/03/25/2015 Page 127

The following is an example of displaying a message with the MsgBox function and how to

determine which button the user pressed. Figure 5.3 shows the fi rst message box that is dis-

played when the example code is executed.

Dim nRetVal As Integer

nRetVal = MsgBox("Do you want to continue?", _

 vbYesNoCancel + vbQuestion, "Continue")

Select Case nRetVal

 Case vbYes

 MsgBox "Yes was clicked"

 Case vbNo

 MsgBox "No was clicked"

 Case vbCancel

 MsgBox "Cancel was clicked"

End Select

Figure 5.3

Message displayed

with the MsgBox

function

Selecting Objects
The AutoCAD Object library enables you to step through all of the objects in a drawing or allow

the user to interactively select objects in the drawing area. I explained how to get an object

from model space without user input in Chapter 4, “Creating and Modifying Drawing Objects.”

Using the selection techniques supported by the AutoCAD Object library, the user can be

prompted to select a single object or a selection set can be created and the user allowed to select

multiple objects.

Selecting an Individual Object
The user can be prompted to select a single object in the drawing area with the GetEntity

method of the AcadUtility object. The GetEntity method returns two values: the selected

object and the center point of the pick box when the object was selected. If no object is selected,

an error is generated that must be handled to continue execution.

The following shows the syntax of the GetEntity method:

object.GetEntity(selectedObject, pickPoint, [msg])

Its arguments are as follows:

object The object argument represents the AcadUtility object.

selectedObject The selectedObject argument represents the variable that will be assigned

the object that the user selected. The value assigned to the variable is of the Object data type.

c05.indd 8:41:18:AM/03/25/2015 Page 128

128 | CHAPTER 5 INTERACTING WITH THE USER AND CONTROLLING THE CURRENT VIEW

pickPoint The pickPoint argument represents the variable that will be assigned the center

point of the pick box when the object was selected. The value assigned to the variable is an

array of three doubles.

msg The msg argument is an optional string that defi nes the prompt message to display

at the Command prompt. The msg argument is optional, but I recommend always

providing one.

NOTE Th e GetEntity method supports the use of keywords with the InitializeUserInput

method. See the “Initializing User Input and Keywords” section earlier in this chapter for more

information on using keywords.

The following is an example of the GetEntity method. The example prompts the user for an

object and displays a message with the name of the object selected or a general message if no

object was selected.

' Continue on error

On Error Resume Next

' Prompt the user for an object

Dim vObj As Object, vPt As Variant

ThisDrawing.Utility.GetEntity vObj, vPt, vbLf & "Select an object: "

' If an object was selected, display its object name

If Not vObj Is Nothing Then

 MsgBox "Type of object selected: " & vObj.ObjectName

Else

 MsgBox "No object selected."

End If

TIP If you want the user to select a specifi c type of object, you must use a selection method that

supports selection fi ltering. I describe how to use selection fi ltering in the “Filtering Objects”

section later in this chapter. Th e TypeOf statement can be used to validate the type of object

selected. If the user selected the wrong type of object with the GetEntity method, you could

use a While statement to continue prompting the user for an object until they select the correct

type of object, select nothing, or press Enter.

The GetEntity method allows you to select an object as a whole, but not an entity inside of

an object known as a subentity. The GetSubEntity method is similar to GetEntity except that

GetSubEntity allows you to select an entire object or a subentity within an object such as an

old-style polyline, dimension, or block. When the GetSubEntity method is used, it expects four

arguments and can accept an optional prompt message. The four values that the GetSubEntity

method returns are (in this order):

 ◆ The object that represents the subentity selected by the user; a value of the Object data type

is returned

 ◆ The center point of where the pick box was positioned when the user selected the object; an

array of three doubles

SELECTING OBJECTS | 129

c05.indd 8:41:18:AM/03/25/2015 Page 129

 ◆ A transformation matrix for the subentity; a multi-element array of doubles

 ◆ The object IDs of the subentities in the selected object or subentity; an array of long integers

that represent the object IDs

For more information on the GetSubEntity method, see the AutoCAD Help system.

Working with Selection Sets
A grouping of selected objects in the AutoCAD drawing environment is known as a selection
set. A selection set is a named container that holds references to objects in a drawing and exists

only while a drawing remains open. From the AutoCAD user interface, a selection set is created

when a user selects one or more objects at the Select objects: prompt.

In the AutoCAD Object library, a selection set is represented by an AcadSelectionSet object

and all selection sets in a drawing are stored in the AcadSelectionSets collection object. The

AcadSelectionSets collection object of a drawing is accessed using the SelectionSets prop-

erty of an AcadDocument or ThisDrawing object.

In addition to the SelectionSets property, an AcadDocument or ThisDrawing object

has two other properties that are related to selection sets: ActiveSelectionSet and

PickfirstSelectionSet. Both properties are read-only. The ActiveSelectionSet property

returns an AcadSelectionSet object that represents the active selection set of the drawing. The

PickfirstSelectionSet property returns an AcadSelectionSet object that contains a selec-

tion set of the objects contained in the pickfi rst selection. The pickfi rst selection is made up of

the objects that were selected before the execution of the VBA macro.

Managing Selection Sets

A selection set must be created or obtained before a user can be requested to select objects. The

Add function of the AcadSelectionSets collection object creates a new selection set with the

provided name and returns an AcadSelectionSet object. If you want to work with an existing

selection set, use the Item method or a For statement on the AcadSelectionSets collection

object to obtain an AcadSelectionSet object. When a selection set is no longer needed, use the

Delete method of the AcadSelectionSet object to be removed.

NOTE When you try to create most nongraphical objects, such as a layer or linetype, with the

Add function, the existing object with the same name is returned by the function. However, the

same doesn’t happen when creating a selection set. An error is generated by the Add function of

the AcadSelectionSets collection object if you try to create a selection set with a name that

already exists. When the error occurs, use the Item function to get the selection set. If you want

to reuse an existing named selection set, clear the items that are contained in the set with the

Clear method before adding new objects. By clearing the selection set, you can use a selection

set with the same name across many diff erent functions. Th is can be helpful for keeping your

code simple and for cleaning up afterward. For example, you might create a selection set named

SSBlocks that is used to keep a running record in memory of all blocks in a drawing.

The following example creates a new selection set or returns an existing selection if one

already exists with the same name:

On Error Resume Next

' Create a new selection set named NewSS

c05.indd 8:41:18:AM/03/25/2015 Page 130

130 | CHAPTER 5 INTERACTING WITH THE USER AND CONTROLLING THE CURRENT VIEW

Dim oSSet As AcadSelectionSet

Set oSSet = ThisDrawing.SelectionSets.Add("NewSS")

' Check for an error, if so get the existing selection set

If Err Then

 Err.Clear

 Set oSSet = ThisDrawing.SelectionSets.Item("NewSS")

 ' Reset the selection set

 oSSet.Clear

End If

' Perform selection tasks here and work with the objects selected

' When done with a selection set, it is best to remove it

oSSet.Delete

Adding and Removing Objects in a Selection Set

After a selection set has been created or an existing one obtained from the AcadSelectionSets

collection object, you can work with the objects in the selection set or prompt the user to select

objects in a drawing. The AddItems method of an AcadSelectionSet object allows you to

add an array of objects to a selection set. Table 5.2 lists additional methods that can be used to

 manually add objects to a selection set by their placement in the drawing area.

Table 5.2: Object selection methods

Method Description

Select Adds objects to a selection set by selection mode: all objects, crossing window,

last object added to a drawing, previous selected objects, or window. Th e

method expects a selection mode that is a constant value from the AcSelect

enumerator, and two optional arrays of three doubles that represent points in

the drawing area.

SelectAtPoint Adds an object to a selection set at a point in the drawing; the object selected is

the topmost in the draw order at that point. Th e method expects an array of

three doubles that represents a point in the drawing area.

SelectByPolygon Adds objects to a selection set by selection mode: crossing polygon, fence, or

window polygon. Th e method expects a selection mode that is a constant value

from the AcSelect enumerator, and an array of doubles that represents mul-

tiple point values in the drawing area.

The Select, SelectAtPoint, and SelectByPolygon methods support object selection

fi ltering with two optional arguments. I discuss object selection fi ltering in the next section.

SELECTING OBJECTS | 131

c05.indd 8:41:18:AM/03/25/2015 Page 131

For more information on adding objects to a selection set with the Select, SelectAtPoint, and

SelectByPolygon methods, see the AutoCAD Help system.

Although adding objects manually to a selection set has its benefi ts, it is more common to

prompt the user to select the objects that should be modifi ed or queried. The SelectOnScreen

method of an AcadSelectionSet object allows the user to interactively select objects in the

drawing area using the standard selection methods. The SelectOnScreen method also supports

object selection fi ltering.

The following shows the syntax of the SelectOnScreen method:

object.SelectOnScreen([filterType, filterData])

Its arguments are as follows:

object The object argument represents the AcadSelectionSet object.

filterType The filterType argument is an optional array of integers that represents the

DXF code groups that you want to fi lter objects on.

filterData The filterData argument is an optional array of variants that represents the

values that you want to fi lter objects on.

I explain how to defi ne the arrays used to fi lter objects during selection in the “Filtering

Objects” section later in this chapter.

Objects are typically only added to a selection set, but they can also be removed from a selec-

tion set. You might want to remove one or more objects from a selection set that don’t meet

certain criteria. One or more objects can be removed from a selection set with the RemoveItems

method. The RemoveItems method is similar to the AddItems method, and it accepts an array of

objects that should be removed from the selection set.

The following example prompts the user to select objects using the SelectOnScreen method,

and adds the fi rst and last objects in the drawing to the selection set named NewSS with the

AddItems and Select methods. The last object is also removed to demonstrate the use of the

RemoveItems method.

' Prompt the user for objects

ThisDrawing.Utility.Prompt vbLf & "Select objects to list: "

oSSet.SelectOnScreen

' Add the first object in model space to the selection set

Dim arObj(0) As AcadEntity

Set arObj(0) = ThisDrawing.ModelSpace(0)

oSSet.AddItems arObj

' Add the last object in the drawing to the selection set

oSSet.Select acSelectionSetLast

' Remove the last object in model space from

' the selection set

Set arObj(0) = ThisDrawing.ModelSpace(_

 ThisDrawing.ModelSpace.Count - 1)

oSSet.RemoveItems arObj

c05.indd 8:41:18:AM/03/25/2015 Page 132

132 | CHAPTER 5 INTERACTING WITH THE USER AND CONTROLLING THE CURRENT VIEW

Accessing Objects in a Selection Set

A selection set isn’t any different than any other collection object. You can use the Item function

of an AcadSelectionSet object to get a specifi c object in a selection set or a For statement to

step through all the objects in a selection set. In addition to the Item function and For statement,

you can use a While statement in combination with the Item function to step through all the

objects in a selection set. The Count property of an AcadSelectionSet object lets you know how

many objects are in a selection set; this value can be helpful when you are using the Item func-

tion or a While statement.

The following example steps through all the objects in a selection set and outputs the object

name for each object to the command-line window:

' Step through each object in the selection set and output

' the name of each object with the Prompt method

Dim oEnt As AcadEntity

ThisDrawing.Utility.Prompt vbLf & "Objects in " & _

 oSSet.Name & " selection set:"

For Each oEnt In oSSet

 ThisDrawing.Utility.Prompt vbLf & " " & oEnt.ObjectName

Next oEnt

' Return the user to a blank Command prompt

ThisDrawing.Utility.Prompt vbLf & ""

Here is an example of the output that might be displayed in the command-line window:

Objects in NewSS selection set:

 AcDbLine

 AcDbLine

 AcDbLine

 AcDbLine

 AcDbCircle

 AcDbArc

NOTE In most cases, you can step through a selection set and make changes to each object one

at a time. However, there are three methods of an AcadSelectionSet object that can be used to

manipulate all objects in a selection set. Th e Erase method can be used to remove all objects in

a selection set from a drawing. Th e Highlight method can be used to highlight or unhighlight

an object. Th e Update method is used to regenerate all the objects in the selection set.

Filtering Objects
The particular objects that are added to a selection set can be affected through the use of an

optional selection fi lter. A selection fi lter can be used to limit the objects added to a selection set

by type and property values. Filtering is defi ned by the use of two arrays with the same number

of elements. Selection fi lters are supported by the Select, SelectAtPoint, SelectByPolygon,

and SelectOnScreen methods of the AcadSelectionSet object. The two arrays are passed to

the filterType and filterData arguments of the methods.

SELECTING OBJECTS | 133

c05.indd 8:41:18:AM/03/25/2015 Page 133

The fi rst array of a selection fi lter contains only integer values that represent DXF group

codes and the types of data that will be used to restrict object selection. The second array

defi nes the actual values for the selection fi lter. The type of data to fi lter on can be a string,

 integer, or double, among other data types. When selection fi lter is used, objects are only

selected when all conditions of the selection set are True.

For example, if you fi lter on circles that are placed on the Holes layer, only circles placed on

the Holes layer will be added to the selection set. Lines and other objects placed on the layer

named Holes will not be selected; circles on other layers will not be selected.

The following is an example of a selection fi lter that can be used to select the circles placed on

the layer named Holes:

Dim arDXFCodes(1) As Integer, arValues(1) As Variant

' Object type

arDXFCodes(0) = 0: arValues(0) = "circle"

' Object layer

arDXFCodes(1) = 8: arValues(1) = "Holes"

' Prompt for and restrict the selection of objects with a selection filter

ThisDrawing.Utility.Prompt

 vbLf & "Select circles with a radius between 1 and 5: "

oSSet.SelectOnScreen arDXFCodes, arValues

In the previous example, the arDXFCodes variable contains an array of integer values that

includes two DXF group codes. The DXF group code 0 represents an object’s type, and the DXF

group code 8 represents the name of the layer which an object is placed. For more information

on DXF group codes, use the AutoCAD Help system and search on the keywords “dxf codes.”

Object types and properties are not the only values that can be used to fi lter objects—a fi lter

can also include logical grouping and comparison operators. Logical grouping and comparison

operators allow for the selection of several object types, such as both text and MText objects,

or allow for the selection of circles with a radius in a given range. Logical grouping and com-

parison operators are specifi ed by string values with the DXF group code -4. For example, the

 following fi lter allows for the selection of circles with a radius in the range of 1 to 5:

Dim arDXFCodes(6) As Integer, arValues(6) As Variant

' Object type

arDXFCodes(0) = 0: arValues(0) = "circle"

' Start AND grouping

arDXFCodes(1) = -4: arValues(1) = "<and"

' Select circles with a radius between 1 and 5

arDXFCodes(2) = -4: arValues(2) = "<="

arDXFCodes(3) = 40: arValues(3) = 5#

arDXFCodes(4) = -4: arValues(4) = ">="

arDXFCodes(5) = 40: arValues(5) = 1#

' End AND grouping

arDXFCodes(6) = -4: arValues(6) = "and>"

c05.indd 8:41:18:AM/03/25/2015 Page 134

134 | CHAPTER 5 INTERACTING WITH THE USER AND CONTROLLING THE CURRENT VIEW

Selection fi lters support four logical grouping operators: and, or, not, and xor. Each logical

grouping operator used in a selection fi lter must have a beginning and ending operator.

Beginning operators start with the character < and ending operators end with the character >.

In addition to logical operators, you can use seven different comparison operators in a

selection fi lter to evaluate the value of a property: = (equal to), != (not equal to), < (less than),

> (greater than), <= (less than or equal to), >= (greater than or equal to), and * (wildcard for

string comparisons).

In addition to object types and property values, selection fi lters can fi lter on objects with

attached extended data (Xdata). Xdata is used to add custom information to an object in a

 drawing. I discuss working with and selecting objects that have attached Xdata in Chapter 9,

“Storing and Retrieving Custom Data.”

Performing Geometric Calculations
The math functions of the VBA programming language are great for calculating numeric values

based on other numeric values, but they aren’t specifi cally designed to work with geometric

 values. With the AutoCAD Object library and standard math formulas, you can calculate the

following:

 ◆ A new coordinate value based on a starting point, and at a specifi c angle and distance

 ◆ The distance value between two points

 ◆ An angular value from the X-axis

Calculating a Coordinate Value
When you create or modify an object, you frequently need to calculate a new point based on

another point on or near an existing graphical object. Although you could prompt the user

to specify a point you might need, that could lead to unnecessary steps in a workfl ow, so it is

always best to calculate any and all points that you can with minimal input from the user.

The PolarPoint function returns a 2D or 3D point in the current UCS, based on an angle and

distance from a point. The result of the PolarPoint function is similar to specifying a relative

polar coordinate from the AutoCAD user interface.

The following shows the syntax of the PolarPoint function:

retVal = object.PolarPoint(point, angle, distance)

Its arguments are as follows:

retVal The retVal argument represents the variant value that contains the new coordinate

point that was calculated as an array of two or three doubles.

object The object argument represents the AcadUtility object.

point The point argument represents the coordinate point in the drawing that you want to

calculate the new point from. If a 2D point is specifi ed, a 2D point is returned; specifying a

3D point results in a 3D point being returned.

angle The angle argument represents the angle, in radians, by which the new point should

be separated from the coordinate point specifi ed with the point argument.

PERFORMING GEOMETRIC CALCULATIONS | 135

c05.indd 8:41:18:AM/03/25/2015 Page 135

distance The distance argument represents the distance at which the new point should be

calculated from the point argument and along the angle specifi ed by the angle argument.

The following is an example of the PolarPoint function:

Dim oUtil As AcadUtility

Set oUtil = ThisDrawing.Utility

Dim pt1(2) As Double

pt1(0) = 0: pt1(1) = 0: pt1(2) = 0

Dim vPt As Variant

vPt = oUtil.PolarPoint(pt1, 0.785398, 5#)

' Returns the calculated coordinate value

oUtil.Prompt vbLf & "X=" & CStr(vPt(0)) & _

 " Y=" & CStr(vPt(1)) & _

 " Z=" & CStr(vPt(2)) & vbLf

X=3.53553448362991 Y=3.53553332823547 Z=0

NOTE A coordinate value can be translated from one coordinate system to another with the

TranslateCoordinates function. For example, you can convert a coordinate value from the

World Coordinate System (WCS) to a User Coordinate System (UCS). Refer to the AutoCAD Help

system for information on the TranslateCoordinates function.

Measuring the Distance Between Two Points
The AutoCAD Object library doesn’t provide a function to calculate the distance between two

points; instead you must rely on a geometric formula. The geometric formula is shown in Figure

5.4, and the VBA equivalent is as follows:

' Distance of 3D points

Sqr((X2 - X1) ^ 2 + (Y2 - Y1) ^ 2 + (Z2 - Z1) ^ 2)

Figure 5.4

Formula for calcu-

lating the distance

between two points

If you need to calculate the distance between 2D points, the code statement in VBA might be

as follows:

' Distance of 2D points

Sqr((X2 - X1) ^ 2 + (Y2 - Y1) ^ 2)

Listing 5.2 shows a custom function named Distance that can be used to calculate the

 distance between two points in the drawing area. The value returned is a double number.

c05.indd 8:41:18:AM/03/25/2015 Page 136

136 | CHAPTER 5 INTERACTING WITH THE USER AND CONTROLLING THE CURRENT VIEW

Listing 5.2: Calculating the distance between two points

Private Function Distance(Point1 As Variant, Point2 As Variant) As Double

 ' Check to see if the points are 2D or 3D

 If UBound(Point1) - LBound(Point1) = 1 Then

 ' Distance of 2D points

 Distance = Sqr((Point1(0) - Point2(0)) ^ 2 + _

 (Point1(1) - Point2(1)) ^ 2)

 Else

 ' Distance of 3D points

 Distance = Sqr((Point1(0) - Point2(0)) ^ 2 + _

 (Point1(1) - Point2(1)) ^ 2 + _

 (Point1(2) - Point2(2)) ^ 2)

 End If

End Function

Here is an example of using the custom Distance function from Listing 5.2:

Dim pt1(2) As Double, pt2(2) As Double

pt1(0) = 0: pt1(1) = 0: pt1(2) = 0

pt2(0) = 2: pt2(1) = 2: pt2(2) = 2

ThisDrawing.Utility.Prompt vbLf & _

 "Distance=" & CStr(Distance(pt1, pt2)) & vbLf

Distance=3.46410161513775

Calculating an Angle
When you draw or modify an object, you commonly need to know the angle at which an

object should be drawn in relationship to the X-axis or other objects in a drawing. The

AngleFromXAxis function accepts two arrays of three elements that defi ne the line from which

you want to calculate the angular value.

The following shows the syntax of the AngleFromXAxis function:

retVal = object.AngleFromXAxis(fromPoint, toPoint)

Its arguments are as follows:

retVal The retVal argument represents the angular value expressed in radians from the

X-axis. The value is returned as a double.

object The object argument represents the AcadUtility object.

fromPoint The fromPoint argument is an array of three doubles that defi nes the start point

of the line.

toPoint The toPoint argument is an array of three doubles that defi nes the end point of

the line.

The following is an example of the AngleFromXAxis function:

Dim oUtil As AcadUtility

Set oUtil = ThisDrawing.Utility

CHANGING THE CURRENT VIEW | 137

c05.indd 8:41:18:AM/03/25/2015 Page 137

Dim pt1(2) As Double, pt2(2) As Double

pt1(0) = 0: pt1(1) = 0: pt1(2) = 0

pt2(0) = 5: pt2(1) = 5: pt2(2) = 0

oUtil.Prompt vbLf & _

 "Angle=" & CStr(oUtil.AngleFromXAxis(pt1, pt2)) & vbLf

Angle=0.785398163397448

Changing the Current View
The view of model space can be adjusted to show a specifi c area of a drawing or the full extents

of all objects in model space. You can adjust the area and magnifi cation of the current view,

and store a view that can later be restored in model space or applied to a fl oating viewport on a

named layout. In addition to managing named views, you can divide model space into multiple

viewports known as tiled viewports. Each tiled viewport can display a different view of model

space and can be helpful when modeling in 3D. Visual styles can also be used to affect the way

objects appear in a view or viewport.

Zooming and Panning the Current View
You can manipulate the current model space view by adjusting its scale and center in which

objects should be displayed; this is typically known as zooming and panning. When you want to

zoom or pan the current view, you will use the zoom-related methods of the AcadApplication

object. You can get a reference to the AcadApplication object with the Application property of

an AcadDocument or ThisDrawing object. Table 5.3 lists the different zoom-related methods that

are available from the AcadApplication object.

Table 5.3: Zoom-related methods

Method Description

ZoomAll Fills the current view with the extents of the drawing limits or all graphical

objects depending on which is largest.

ZoomCenter Defi nes the center point of the current view, and increases or decreases the

objects based on a specifi ed magnifi cation.

ZoomExtents Fills the current view with the extents of all graphical objects.

ZoomPickWindow Prompts the user for two points. Th e points defi ne the area of the drawing and

magnifi cation in which the objects should be displayed.

ZoomPrevious Restores the most recent view.

c05.indd 8:41:18:AM/03/25/2015 Page 138

138 | CHAPTER 5 INTERACTING WITH THE USER AND CONTROLLING THE CURRENT VIEW

Method Description

ZoomScaled Increases or decreases the magnifi cation of the current view; the center point of

the view remains unchanged.

ZoomWindow Defi nes the area of the drawing and magnifi cation in which the objects should be

displayed.

For specifi cs on the arguments that each of the methods listed in Table 5.3 expects, see the

AutoCAD Help system. The following is an example of the ZoomExtents method:

' Set model space current

ThisDrawing.ActiveSpace = acModelSpace

Dim dPt1(2) As Double, dPt2(2) As Double

dPt1(0) = 1: dPt1(1) = 5: dPt1(2) = 0

dPt2(0) = 7: dPt2(1) = 3: dPt2(2) = 0

' Add a line to model space

ThisDrawing.ModelSpace.AddLine dPt1, dPt2

' Zoom to the extents of model space

ThisDrawing.Application.ZoomExtents

Although it might not seem obvious, you can use the ZoomCenter method to pan the current

view. The following example gets the center point and magnifi cation of the current view with

the viewctr and viewsize system variables. Once the center point is obtained from the viewctr

system variable, the point is adjusted to pan the current view 10 units to the right. The new cen-

ter point and current magnifi cation are passed to the ZoomCenter method to cause the current

view to be panned and not zoomed.

' Get the current values of the viewctr

' and viewsize system variables

Dim vViewPt As Variant, dViewSize As Double

vViewPt = ThisDrawing.GetVariable("viewctr")

dViewSize = ThisDrawing.GetVariable("viewsize")

' Pan the viewport 10 drawing units to the right

vViewPt(0) = vViewPt(0) - 10

ThisDrawing.Application.ZoomCenter vViewPt, dViewSize

Zooming to an Object

Th ere are times when you might want to zoom to a specifi c object in a drawing. Maybe you want to

update the information in a table or dimension text. Th ere is no ZoomObject method like there is

an Object option for the zoom command. However, you can use a combination of the ZoomWindow

and ZoomScaled methods to zoom to the extents of an object. Th e extents of an object can be

Table 5.3: Zoom-related methods (continued)

CHANGING THE CURRENT VIEW | 139

c05.indd 8:41:18:AM/03/25/2015 Page 139

obtained using the GetBoundingBox method that all graphical objects have in common. I discuss

the GetBoundingBox method in Bonus Chapter 1, “Working with 2D Objects and Object Properties.”

Th e following code statements zoom to the extents of the fi rst object in model space:

' Gets the first object in model space

Dim oEnt As AcadEntity

Set oEnt = ThisDrawing.ModelSpace(0)

' Gets the extents of the objects' bounding box

Dim vExtMin As Variant, vExtMax As Variant

oEnt.GetBoundingBox vExtMin, vExtMax

' Zooms to the extents of the object

ThisDrawing.Application.ZoomWindow vExtMin, vExtMax

' Zooms out by 5%

ThisDrawing.Application.ZoomScaled 0.95, acZoomScaledRelative

Working with Model Space Viewports
The Model tab in the AutoCAD user interface is used to view and interact with the graphical

objects of the model space block. By default, the objects in model space are displayed in a single

tiled viewport named *Active. Tiled viewports aren’t the same as the viewports displayed on

a named layout tab; they do share some properties and methods in common, though. You use

tiled viewports to view different areas or angles of the same drawing, whereas you use view-

ports on a named layout to control which model space objects are plotted, the angle in which

objects are viewed, and at which scale. I discuss the viewports that can be added to a named

layout in Chapter 8, “Outputting Drawings.”

Each tiled viewport in model space can be split into two or more smaller viewports, but only

one viewport can be active at a time. Unlike with the AutoCAD user interface, you can’t join

viewports back together again once they have been split; instead, you need to create a new con-

fi guration that refl ects the desired layout and set it as current. Use the name of the active view-

port to determine which viewports are part of the active viewport confi guration.

You can access the active model space viewport with the ActiveViewport property of an

AcadDocument or Thisdrawing object. The ActiveViewport property returns an AcadViewport

object that represents a tiled viewport in model space. Not only is the ActiveViewport property

used to get the active viewport, but it is also used to set a viewport confi guration as active. Once

you have the active viewport, you can modify the drafting aids that are viewport specifi c along

with the current model view.

In addition to working with the active viewport, you can create and manage named view-

port confi gurations with the AcadViewports collection object. You use the Add function of the

AcadViewports collection object to create a new viewport confi guration, and the Item function

or a For statement to step through all the viewports of a viewport confi guration. Named view-

port confi gurations that are no longer needed can be removed using the DeleteConfiguration

c05.indd 8:41:18:AM/03/25/2015 Page 140

140 | CHAPTER 5 INTERACTING WITH THE USER AND CONTROLLING THE CURRENT VIEW

method on the AcadViewports collection object, not the Delete method of the AcadViewport

object like other collection objects.

The following code statements split the current active viewport vertically into two viewports

and then change some of the drafting aids related to the active viewport:

' Get the name of the current viewport configuration

Dim sVpName As String

sVpName = ThisDrawing.ActiveViewport.Name

' Create a new viewport with the same name

' as the active viewport

Dim oVPort As AcadViewport

Set oVPort = ThisDrawing.Viewports.Add(sVpName)

' Split the active viewport vertically

oVPort.Split acViewport2Vertical

' Turn off the grid and snap in the new viewport

oVPort.GridOn = False

oVPort.SnapOn = False

' Turn on Ortho mode

oVPort.OrthoOn = True

' Set the viewport active

ThisDrawing.ActiveViewport = oVPort

' Set snap style to rectangular

ThisDrawing.SetVariable "snapstyl", 0

Using the AcadViewport object returned by the Add function of the AcadViewports collection

object or the ActiveViewport property, you can obtain information about the current view and

some of the drafting aids that are enabled. Table 5.4 lists the properties of the AcadViewport

object.

Table 5.4: Properties related to an AcadViewport object

Property Description

ArcSmoothness Specifi es the smoothness for curved model space objects. Enter a value from 1

to 20,000.

Center Specifi es an array of three double values that represents the center point of

the view in the viewport.

Direction Specifi es the view direction of the model space objects. View direction is

expressed as an array of three double values.

CHANGING THE CURRENT VIEW | 141

c05.indd 8:41:18:AM/03/25/2015 Page 141

Property Description

GridOn Specifi es whether grid display is enabled. A Boolean value of True indicates

the grid display is on.

Height Specifi es the height of the view in drawing units, not pixels. Th is value corre-

sponds to the magnifi cation factor of the current view. Th e value returned or

expected is a double.

LowerLeftCorner Specifi es an array of two double values that represents the lower-left corner

of the viewport.

Name Specifi es the name of the confi guration in which the viewport is associated.

OrthoOn Specifi es whether Ortho mode is enabled. A Boolean value of True indicates

Ortho mode is on.

SnapBasePoint Specifi es an array of two double values that represents the base point of the

snap grid for the viewport.

SnapOn Specifi es whether snapping is enabled. A Boolean value of True indicates

snapping is on.

SnapRotationAngle Specifi es the angle in which the snap grid is rotated. Th e value returned or

expected is a double that represents the angle in radians.

Target Specifi es the target point of the current view in the viewport. View direction

is expressed as an array of three double values.

UCSIconAtOrigin Specifi es whether the UCS icon is displayed at the origin of the drawing. A

Boolean value of True indicates the UCS icon is displayed at the drawing’s

origin, or in the lower-left corner of the drawing area if the origin is off

the screen.

UCSIconOn Specifi es whether the UCS icon is displayed in the drawing area. A Boolean

value of True indicates the UCS icon is displayed.

UpperRightCorner Specifi es an array of two double values that represents the upper-right corner

of the viewport.

Width Specifi es the width of the view in drawing units, not pixels. Th is value corre-

sponds to the magnifi cation factor of the current view. Th e value returned or

expected is a double.

In addition to the GridOn and SnapOn properties that allow you to turn on grid display and

enable snapping to grid, you can use the GetGridSpacing and GetSnapSpacing methods to get

the current grid and snap spacing. Both of the methods expect two arguments that are used to

return the X and Y spacing values for the grid or snap. To change the spacing of the grid and

snap, use the SetGridSpacing and SetSnapSpacing methods, which expect two double values

that represent the X and Y spacing values for the grid or snap.

c05.indd 8:41:18:AM/03/25/2015 Page 142

142 | CHAPTER 5 INTERACTING WITH THE USER AND CONTROLLING THE CURRENT VIEW

A named view can be assigned to a model space viewport using the SetView function. I

explain how to work with named views in the next section. For more information on working

with tiled viewports, see the AutoCAD Help system.

Creating and Managing Named Views
Named views are areas in a drawing with a user-defi ned name that can later be restored to

improve navigation around a large drawing and even help to output various areas of a draw-

ing with viewports on a named layout. Many users associate named views with 3D modeling,

but they can be just as helpful with designs that consist of just 2D objects. Named views are

stored in the AcadViews collection object, which you can access from the Views property of the

AcadDocument or ThisDrawing object. Each view stored in the AcadViews collection object is

represented by an AcadView object.

You can create a new named view with the Add function of the AcadViews collection object. If

you want to work with an existing view, use the Item function of the AcadViews collection object

or a For statement to get the AcadView object that represents the named view you want to modify

or query. Once a named view has been created, you can pass the AcadView object to the SetView

method of an AcadViewport or AcadPViewport object to restore the view. If you no longer need a

named view, you can use the Delete method of the AcadView object to be removed.

Table 5.5 lists the properties of an AcadView object that can be used to modify or query a

named view.

Table 5.5: Properties related to an AcadView object

Property Description

CategoryName Specifi es a category name for the view. Th e category name is used to group mul-

tiple views on the ShowMotion bar when it is pinned and controls how named

views are organized in sheet sets.

Center Specifi es an array of three double values that represents the center point

of the view.

Direction Specifi es the direction from which the objects in the model space should be

viewed. View direction is expressed as an array of three double values.

HasVpAssociation Specifi es whether the view is associated with a viewport. A Boolean value of

True indicates that the view is associated with a viewport placed from the

Sheet Set Manager.

Height Specifi es the height of the view in drawing units, not pixels. Th e value returned

or expected is a double.

LayerState Specifi es the name of the layer state that should be restored when the view is

restored. I discussed layer states in Chapter 4.

LayoutId Specifi es the object ID of the layout that the view is associated with. Model

space views can’t be used on a named layout and a named layout can’t be used on

the Model tab.

EXERCISE: GETTING INPUT FROM THE USER TO DRAW THE PLATE | 143

c05.indd 8:41:18:AM/03/25/2015 Page 143

Property Description

Name Specifi es the name of the named view.

Target Specifi es the target point of the view. Th e target is expressed as an array of

three double values.

Width Specifi es the width of the view in drawing units, not pixels. Th is value corre-

sponds to the magnifi cation factor of the view. Th e value returned or expected

is a double.

For more information on working with named views, see the AutoCAD Help system.

Applying Visual Styles
Visual styles affect the way 2D and 3D objects are displayed on screen and how they are plotted.

The AutoCAD Object library offers very limited support when it comes to managing visual

styles. Using the AutoCAD Object library, you can obtain a listing of which visual styles are

stored in a drawing by accessing the ACAD_VisualStyles dictionary. I explain how to work with

dictionaries in Chapter 9.

If you need to create or update a visual style using the AutoCAD Object library, set as

current the visual style that you want to base the new visual style on or modify with the

vscurrent command. Once the visual style is current, modify the values of the system variables

related to visual styles. Many of the system variables that are related to visual styles begin with

the prefi x VS.

Use the SetVariable and GetVariable methods to work with the system variables. After the

variables have been updated, use the vssave command to save the new visual style or overwrite

an existing visual style with the same name. You can assign a visual style to model space with

the vscurrent command, or use the VisualStyle property of an AcadPViewport object, which

represents a fl oating viewport on a named layout. I explain how to work with fl oating viewports

in Chapter 8.

Exercise: Getting Input from the User to
Draw the Plate
In this section, you will continue to build on the DrawPlate project that was introduced in

Chapter 4. The key concepts I cover in this exercise are as follows:

Requesting Input Input functions can be used to get values from the user at the

Command prompt.

Creating a New Point Value Values from different point lists can be used to create new

coordinate values.

Using Conditional Statements Conditional statements are a great way to check the data

provided by a user.

Looping Until a Condition Is Met Loops allow you to execute a set of expressions a

 specifi c number of times or while a condition remains True. You can use a loop to keep

allowing the user to provide input.

c05.indd 8:41:18:AM/03/25/2015 Page 144

144 | CHAPTER 5 INTERACTING WITH THE USER AND CONTROLLING THE CURRENT VIEW

NOTE Th e steps in this exercise depend on the completion of the steps in the “Exercise: Creating,

Querying, and Modifying Objects” section of Chapter 4. If you didn’t complete the steps,

do so now or start with the ch05_drawplate.dvb sample fi le available for download from

www.sybex.com/go/autocadcustomization. Place the sample fi le in the MyCustomFiles

folder within the Documents (or My Documents) folder, or the location where you are storing

the DVB fi les. Also, remove ch05_ from the fi lename before you begin working.

Revising the CLI_DrawPlate Function
The changes to the CLI_DrawPlate function implement the use of user input to get points and

distances. The points and distances provided by the user are used to specify the size and loca-

tion of the plate in the drawing. The following steps have you replace the CLI_DrawPlate func-

tion with a newer version in the drawplate.dvb project fi le:

 1. Load the drawplate.dvb fi le into the AutoCAD drawing environment and display the

VBA Editor.

 2. In the VBA Editor, in the Project Explorer, double-click the basDrawPlate component.

 3. In the code editor window, replace all of the code statements in the code module with the

following code statements; the comments are here for your information and don’t need to

be typed:

Private myUtilities As New clsUtilities

Private g_drawplate_width As Double

Private g_drawplate_height As Double

' Constants for PI and removal of the "Command: " prompt msg

Const PI As Double = 3.14159265358979

Const removeCmdPrompt As String = vbBack & vbBack & vbBack & _

 vbBack & vbBack & vbBack & _

 vbBack & vbBack & vbBack & vbLf

Public Sub CLI_DrawPlate()

 Dim oLyr As AcadLayer

 On Error Resume Next

 Dim sysvarNames As Variant, sysvarVals As Variant

 sysvarNames = Array("nomutt", "clayer", "textstyle")

 ' Store the current value of system variables to be restored later

 sysvarVals = myUtilities.GetSysvars(sysvarNames)

 ' Set the current value of system variables

 myUtilities.SetSysvars sysvarNames, Array(0, "0", "STANDARD")

 ' Define the width and height for the plate

http://www.sybex.com/go/autocadcustomization

EXERCISE: GETTING INPUT FROM THE USER TO DRAW THE PLATE | 145

c05.indd 8:41:18:AM/03/25/2015 Page 145

 If g_drawplate_width = 0 Then g_drawplate_width = 5#

 If g_drawplate_height = 0 Then g_drawplate_height = 2.75

 ' Get recently used values from the global variables

 Dim width As Double, height As Double

 width = g_drawplate_width

 height = g_drawplate_height

 ' Prompt for the current values

 ThisDrawing.Utility.Prompt removeCmdPrompt & "Current width: " & _

 Format(ThisDrawing.Utility. _

 RealToString(width, acDecimal, 4), _

 "0.0000") & _

 " Current height: " & _

 Format(ThisDrawing.Utility. _

 RealToString(height, acDecimal, 4), _

 "0.0000") & _

 vbLf

 Dim basePt As Variant

 ' Continue to ask for input until a point is provided

 Do

 Dim sKeyword As String

 sKeyword = ""

 basePt = Null

 ' Set up default keywords

 ThisDrawing.Utility.InitializeUserInput 0, "Width Height"

 ' Prompt for a base point, width, or height value

 basePt = ThisDrawing.Utility.GetPoint(, _

 removeCmdPrompt & _

 "Specify base point for plate or [Width/Height]: ")

 ' If an error occurs, the user entered a keyword or pressed Enter

 If Err Then

 Err.Clear

 sKeyword = ThisDrawing.Utility.GetInput

 Select Case sKeyword

 Case "Width"

 width = ThisDrawing.Utility. _

 GetDistance(, removeCmdPrompt & _

 "Specify the width of the plate <" & _

 Format(ThisDrawing.Utility. _

c05.indd 8:41:18:AM/03/25/2015 Page 146

146 | CHAPTER 5 INTERACTING WITH THE USER AND CONTROLLING THE CURRENT VIEW

 RealToString(width, acDecimal, 4), _

 "0.0000") & _

 ">: ")

 Case "Height"

 height = ThisDrawing.Utility. _

 GetDistance(, removeCmdPrompt & _

 "Specify the height of the plate <" & _

 Format(ThisDrawing.Utility. _

 RealToString(height, acDecimal, 4), _

 "0.0000") & _

 ">: ")

 End Select

 End If

 ' If a base point was specified, then draw the plate

 If IsNull(basePt) = False Then

 ' Create the layer named Plate or set it current

 Set oLyr = myUtilities.CreateLayer("Plate", acBlue)

 ThisDrawing.ActiveLayer = oLyr

 ' Create the array that will hold the point list

 ' used to draw the outline of the plate

 Dim dPtList(7) As Double

 dPtList(0) = basePt(0): dPtList(1) = basePt(1)

 dPtList(2) = basePt(0) + width: dPtList(3) = basePt(1)

 dPtList(4) = basePt(0) + width: dPtList(5) = basePt(1) + height

 dPtList(6) = basePt(0): dPtList(7) = basePt(1) + height

 ' Draw the rectangle

 myUtilities.CreateRectangle dPtList

 ' Create the layer named Holes or set it current

 Set oLyr = myUtilities.CreateLayer("Holes", acRed)

 ThisDrawing.ActiveLayer = oLyr

 Dim cenPt1 As Variant, cenPt2 As Variant

 Dim cenPt3 As Variant, cenPt4 As Variant

 Dim dAng As Double, dDist As Double

 ' Calculate the placement of the circle in the lower-left corner.

 ' Calculate a new point at 45 degrees and distance of 0.7071 from

 ' the base point of the rectangle.

 cenPt1 = ThisDrawing.Utility.PolarPoint(basePt, PI / 4, 0.7071)

 myUtilities.CreateCircle cenPt1, 0.1875

 ' Calculate the distance between the first

EXERCISE: GETTING INPUT FROM THE USER TO DRAW THE PLATE | 147

c05.indd 8:41:18:AM/03/25/2015 Page 147

 ' and second corners of the rectangle.

 dDist = myUtilities.Calc2DDistance(dPtList(0), dPtList(1), _

 dPtList(2), dPtList(3))

 ' Calculate and place the circle in the lower-right

 ' corner of the rectangle.

 dAng = myUtilities.Atn2(dPtList(2) - dPtList(0), _

 dPtList(3) - dPtList(1))

 cenPt2 = ThisDrawing.Utility.PolarPoint(cenPt1, dAng, dDist - 1)

 myUtilities.CreateCircle cenPt2, 0.1875

 ' Calculate the distance between the second

 ' and third corners of the rectangle.

 dDist = myUtilities.Calc2DDistance(dPtList(2), dPtList(3), _

 dPtList(4), dPtList(5))

 ' Calculate and place the circle in the upper-right

 ' corner of the rectangle.

 dAng = myUtilities.Atn2(dPtList(4) - dPtList(2), _

 dPtList(5) - dPtList(3))

 cenPt3 = ThisDrawing.Utility.PolarPoint(cenPt2, dAng, dDist - 1)

 myUtilities.CreateCircle cenPt3, 0.1875

 ' Calculate and place the circle in the upper-left

 ' corner of the rectangle.

 dAng = myUtilities.Atn2(dPtList(6) - dPtList(0), _

 dPtList(7) - dPtList(1))

 cenPt4 = ThisDrawing.Utility.PolarPoint(cenPt1, dAng, dDist - 1)

 myUtilities.CreateCircle cenPt4, 0.1875

 End If

 Loop Until IsNull(basePt) = True And sKeyword = ""

 ' Restore the saved system variable values

 myUtilities.SetSysvars sysvarNames, sysvarVals

 ' Save previous values to global variables

 g_drawplate_width = width

 g_drawplate_height = height

End Sub

 4. Click File ➢ Save.

Revising the Utilities Class
The changes to the Utilities class add a new constant named PI that holds the mathematical

value of PI and introduce two new functions: Calc2DDistance and Atn2. The Calc2DDistance

function returns a double value that is the distance between two 2D points, and the Atn2

c05.indd 8:41:18:AM/03/25/2015 Page 148

148 | CHAPTER 5 INTERACTING WITH THE USER AND CONTROLLING THE CURRENT VIEW

function returns an angular value in radians between two points. The following steps have you

adding the constant value and two functions to the clsUtilities class module:

 1. In the VBA Editor, in the Project Explorer, double-click the clsUtilities component.

 2. In the code editor window, click to the left of the fi rst comment or code statement and

press Enter twice.

 3. Click in the fi rst blank line of the code module and type the following code statement:

Const PI As Double = 3.14159265358979

 4. Scroll to the bottom of the code editor window and click to the right of the last code state-

ment. Press Enter twice.

 5. Type the following code statements; the comments are here for your information and

don’t need to be typed:

' Returns the 2D distance between two points.

' Function expects four double numbers that represent the

' X and Y values of the two points.

Public Function Calc2DDistance(X1, Y1, X2, Y2) As Double

 Calc2DDistance = Sqr((X2 - X1) ^ 2 + (Y2 - Y1) ^ 2)

End Function

' Returns the radians angular value between the differences of the

' X and Y delta values.

' Function expects the X and Y delta differences between two points.

Function Atn2(dDeltaX As Double, dDeltaY As Double) As Double

 Select Case dDeltaX

 Case Is > 0

 Atn2 = Atn(dDeltaY / dDeltaX)

 Case Is < 0

 Atn2 = Atn(dDeltaY / dDeltaX) + PI * Sgn(dDeltaY)

 If dDeltaY = 0 Then Atn2 = Atn2 + PI

 Case Is = 0

 Atn2 = (PI / 2) * Sgn(dDeltaY)

 End Select

End Function

 6. Click File ➢ Save.

The following steps explain how to export the clsUtilities class module from the

drawplate.dvb fi le:

 1. In the VBA Editor, in the Project Explorer, right-click the clsUtilities component and

choose Export File.

 2. When the Export File dialog box opens, browse to the MyCustomFiles folder.

 3. Keep the default fi lename of clsUtilities.cls and click Save.

The clsUtilities.cls fi le is exported from the DrawPlate project.

EXERCISE: GETTING INPUT FROM THE USER TO DRAW THE PLATE | 149

c05.indd 8:41:18:AM/03/25/2015 Page 149

 4. In the Confi rm Save As dialog box, click Yes to replace the previously exported version of

the Utilities class.

Using the Revised drawplate Function
Now that that the drawplate.dvb project fi le has been revised, you can test the changes that

have been made. The following steps explain how to use the revised drawplate function:

 1. Switch to AutoCAD by clicking on its icon in the Windows taskbar or click View ➢

AutoCAD from the menu bar in the Visual Basic Editor.

 2. In AutoCAD, at the Command prompt, type vbarun and press Enter.

 3. When the Macros dialog box opens, select the DrawPlate.dvb!basDrawPlate.CLI_

DrawPlate macro from the list and click Run.

 4. Press F2 to expand the command-line window. The current width and height values for

the plate are displayed in the command-line history.

Current width: 5.0000 Current height: 2.7500

 5. At the Specify base point for the plate or [Width/Height]: prompt, type w and

press Enter.

 6. At the Specify the width of the plate <5.0000>: prompt, type 3 and press Enter.

 7. At the Specify base point for the plate or [Width/Height]: prompt, type h and

press Enter.

 8. At the Specify the height of the plate <2.7500>: prompt, type 4 and press Enter.

 9. At the Specify base point for the plate or [Width/Height]: prompt, pick a

point in the drawing area to draw the plate and holes based on the width and height

values specifi ed.

 10. Type 'zoom and press Enter, and then type e and press Enter.

Figure 5.5 shows a number of different plates that were drawn at various sizes with the

CLI_DrawPlate macro.

Figure 5.5

Completed plates

 11. Continue trying the CLI_DrawPla te macro with different input values.

 12. Press Enter to exit the macro when you are don e .

c06.indd 8:47:40:AM/03/25/2015 Page 151

 Chapter 6

Annotating Objects

Annotation plays an important role in most designs; it is used to communicate measurements

and design features that might require explanation. The Autodesk® AutoCAD® program offers

a variety of annotation objects that include stand-alone text, dimensions, leaders, and tables.

Each annotation object type is affected by specially named styles that control its appearance.

Blocks can also include attributes, which are a form of annotation that can be updated when

an instance of a block reference is inserted into a drawing. I discuss blocks and attributes in

Chapter 7, “Working with Blocks and External References.”

In this chapter, you will learn to create and modify stand-alone text objects and other

types of annotation objects, such as dimensions, leaders, and tables. Along with creating

and modifying annotation objects, you will also learn to control the appearance of annotation

objects with named styles and create fi eld values that can be used in multiline text objects

and table cells.

Working with Text
Stand-alone text is often used for adding labels below a viewport and detail, general

 disclaimers, and revision comments. You can create two types of stand-alone text: single-line

and multiline. Single-line text (Text) is used when you only need to add a few words or a short

 comment to a drawing, whereas multiline text (MText) is used when you want to create a bullet

list or a paragraph of text.

MText supports a wider range of formatting options and features than single-line text. Even

though MText is designed for formatting text in paragraphs, it can be used in place of single-line

text. The appearance of stand-alone text is controlled by its assigned text style.

Creating and Modifying Text
Single-line text and MText is represented by the AcadText and AcadMText objects. The AddText

function allows you to create a single-line text object based on a text string, an insertion point,

and text height. The text height passed to the AddText function is used only if the Height

 property of the text style assigned to the text object is set to 0. I discuss text styles in the

“Controlling Text with Text Styles” section later in this chapter. You use the AddMText function

to create a new MText. The AddMText function is similar to the AddText function with one

 exception: the AddMText function expects a value that defi nes the width of the bounding box of

152 | CHAPTER 6 ANNOTATING OBJECTS

c06.indd 8:47:40:AM/03/25/2015 Page 152

the text area instead of a value that defi nes the height of the text object. The following shows the

syntax of the AddText and AddMText functions:

retVal = object.AddText(textString, insertionPoint, height)

retVal = object.AddMText(insertionPoint, width, textString)

Their arguments are as follows:

retVal The retVal argument represents the new AcadText or AcadMText object returned by

the function.

object The object argument represents an AcadModelSpace, AcadpaperSpace, or

 AcadBlock collection object.

textString The textString argument is a string that contains the text that should be added

to the text object. The text string can contain special character sequences to format text and

insert special characters; see the “Formatting a Text String” section later in this chapter for

some of the supported character sequences.

insertionPoint The insertionPoint argument is an array of three doubles that defi nes the

insertion point of the text object.

height or width The height and width arguments are doubles that defi ne the height of

the text for an AcadText object or overall width of the boundary box of an AcadMText object.

The following code statements add two new single-line text objects to model space

(see Figure 6.1):

' Defines the insertion point and height for the text object

Dim dInsPt(2) As Double, dHeight As Double

dInsPt(0) = 0: dInsPt(1) = 0: dInsPt(2) = 0

dHeight = 0.25

' Creates a new text object

Dim oText As AcadText

Set oText = ThisDrawing.ModelSpace.AddText(_

 "NOTE: ADA requires a minimum turn radius of", dInsPt, dHeight)

' Adjusts the insertion point for the second text object

dInsPt(0) = 0: dInsPt(1) = dHeight * -1.6065: dInsPt(2) = 0

Set oText = ThisDrawing.ModelSpace.AddText(_

 "60"" (1525mm) diameter for wheelchairs.", dInsPt, dHeight)

The following code statements add an MText object to model space (see Figure 6.2):

' Defines the insertion point and width for the text object

Dim dInsPt(2) As Double, dWidth As Double

dInsPt(0) = 0: dInsPt(1) = 0: dInsPt(2) = 0

dWidth = 5.5

Figure 6.1

Basic note created with

single-line text

WORKING WITH TEXT | 153

c06.indd 8:47:40:AM/03/25/2015 Page 153

' Creates a new text object

Dim oMText As AcadMText

Set oMText = ThisDrawing.ModelSpace.AddMText(dInsPt, dWidth, _

 "NOTE: ADA requires a minimum turn radius of " & _

 "60"" (1525mm) diameter for wheelchairs.")

The properties of the AcadText and AcadMText objects can be used to adjust the justifi ca-

tion of the text, the direction in which the text is drawn, and much more. For information on

the properties of the two text objects, see the AutoCAD Help system or the Object Browser

in the VBA Editor. Like other graphical objects, the AcadText and AcadMText objects also

inherit the properties and methods of an AcadEntity object, which I discussed in Chapter 4,

“Creating and Modifying Drawing Objects.”

The following code statements add a new single-line text object to model space and

center the text:

' Defines the insertion point and height for the text object

Dim dInsPt(2) As Double, dHeight As Double

dInsPt(0) = 5: dInsPt(1) = 5: dInsPt(2) = 0

dHeight = 0.25

' Creates a new text object

Dim oText As AcadText

Set oText = ThisDrawing.ModelSpace.AddText(_

 "Center Justified", dInsPt, dHeight)

' Sets the justification of the text to middle center

oText.Alignment = acAlignmentMiddleCenter

' Moves the alignment point of the justified text

' to the original insertion point

oText.TextAlignmentPoint = dInsPt

NOTE After changing the justifi cation of an AcadText object, you will need to update the

TextAlignmentPoint property to move the location to the correct position.

In addition to the methods the AcadText and AcadMText objects inherit from an AcadEntity

object, the objects also support a function named FieldCode. I explain the FieldCode function

in the “Creating Fields” section later in this chapter.

Formatting a Text String
Alphanumeric characters are used to create the text string that an AcadText object displays,

but how those characters are arranged can impact how the text appears. The use of the percent

Figure 6.2

Basic note created with

an MText object

154 | CHAPTER 6 ANNOTATING OBJECTS

c06.indd 8:47:40:AM/03/25/2015 Page 154

symbol has a special meaning in a text string. You use a percent symbol to indicate the use of

special control codes and fi eld values. Special control codes can be used to toggle underlining or

overscoring for part or all of a text string and to insert special symbols. Table 6.1 lists the control

codes that are supported in the text string of an AcadText object.

Table 6.1: Control codes for AcadText objects

Control code Description

%%c Adds a diameter symbol to the text.

%%d Adds a degree symbol to the text.

%%nnn Adds the ASCII character represented by the character value nnn. For example,

%%169 adds the Copyright symbol.

%%o Toggles the use of overscoring. Th e fi rst instance of %%o in a text string turns over-

scoring on, and the second turns it off .

%%p Adds a plus or minus symbol (±) to the text.

%%u Toggles the use of underscoring. Th e fi rst instance of %%u in a text string turns

underscoring on, and the second turns it off .

%%% Adds a percent symbol to the text.

%< and >% Defi nes the start and end of a fi eld value. I discuss working with fi eld values in in the

“Creating Fields” section later in this chapter.

The text string of an AcadMText object can be very basic, but it can be very complex as well.

You can control the formatting of each character in a text string with special control codes. Unlike

the special control codes that are supported by an AcadText object, those used by an AcadMText

object are much more complicated and harder to fi gure out at fi rst. However, the AutoCAD list

command will be your friend if you want to create complexly formatted text strings.

The best process for learning how to format the text string of an AcadMText object is to use

the mtext command in AutoCAD and create a sample text string that you want to create with

your VBA macro. Once the MText object is added to the drawing, use the list command and

look at the value after the Contents label in the output. For example, the following is an example

of the output displayed by the list command for an MText object that contains a numbered list

with three items (see Figure 6.3):

Contents:

 Numbered List\P\pxi-3,l3,t3;1. Item 1\P2. Item 2\P3. Item 3

Figure 6.3

Numbered list in an

MText object

WORKING WITH TEXT | 155

c06.indd 8:47:40:AM/03/25/2015 Page 155

The long spaces in the example are actually tab characters. To create the numbered list shown

in Figure 6.3 with VBA, the code statements would look like the following:

' Defines the insertion point and width for the MText object

Dim dInsPt(2) As Double, dWidth As Double

dInsPt(0) = 0: dInsPt(1) = 0: dInsPt(2) = 0

dWidth = 5.5

' Creates a new MText object with a numbered list

Dim oMText As AcadMText

Set oMText = ThisDrawing.ModelSpace.AddMText(dInsPt, dWidth, _

 "Numbered List\P\pxi-3,l3,t3;1." & vbTab & _

 "Item 1\P2." & vbTab & "Item 2\P3." & vbTab & "Item 3")

Most of the control codes you will need to use take a combination of the list and mtext

commands to initially fi gure out, but there a few control codes that are much easier to add to the

text string of MText. The AcadMText object supports the %%d, %%c, and %%p control codes that are

also supported by the AcadText object. If you want to add a special character to a text string of

an AcadMText object, use the control sequence of \U+nnn, which adds a character based on its

Unicode value instead of the %%nnn that an AcadText object supports. For example, to insert the

Copyright symbol you would use the sequence of \U+00A9.

TIP You can use the Windows Character Map to get the Unicode value of a character for a specifi c

font. If you need to use a character from the font that isn’t assigned to the text style applied to

the MText object, you must provide the proper control codes to indicate the font you want to

use for that character. For example, the following indicates that the Copyright symbol of the

Arial font should be added:

{\fArial|b0|i0|c186|p34;\U+00A9}

As I mentioned before, it is best to use the mtext command to fi rst create an MText object and

then use the list command to see the contents of that object. Th en you will know the code control

codes and sequences required.

Checking Spelling

Th e AutoCAD Object library doesn’t support the ability to check the spelling or grammar of a text

string. However, with some help from the Microsoft Word Object library you can check the spell-

ing and grammar of a text string. Th e following outlines an approach you can take using the Word

Object library to check the spelling or grammar of a text string:

 1. Create a Word Document object.

 2. Add the text you want to check.

 3. Perform the spelling and grammar check.

 4. Update the text in the drawing.

 5. Close and discard the changes to the Word Document object.

I introduce how to work with the Word Object library in Chapter 12, “Communicating with

Other Applications.”

156 | CHAPTER 6 ANNOTATING OBJECTS

c06.indd 8:47:40:AM/03/25/2015 Page 156

Controlling Text with Text Styles
Text styles are used to control the appearance of the characters in a text string for an

AcadText or AcadMText object. Some of the characteristics that are controlled by a text style

are font fi lename, bold and italic font faces, and character sets. A text style is represented

by the AcadTextStyle object, and the text styles stored in a drawing are accessed from the

AcadTextStyles collection object. Use the TextStyles property of an AcadDocument or

ThisDrawing object to get a reference to the AcadTextStyles collection object.

Creating and Managing Text Styles

New text styles are created with the Add method of the AcadTextStyles collection object. The

Add method of the AcadTextStyles collection object requires you to provide the name of the

new text style and returns an AcadTextStyle object. The Item method of the AcadTextStyles

collection object is used to get an existing text style in the drawing; if the text style doesn’t

exist, an error is generated. I discuss how to handle errors in Chapter 13, “Handling Errors and

Deploying VBA Projects.”

The Item method accepts a string that represents the name of the text style you want

to work with or an integer value. The integer value represents the index of the text style in

the AcadTextStyles collection object you want to return. The index of the fi rst text style in

the drawing starts with 0, and the highest index is one less than the number of text styles in the

AcadTextStyles collection object returned by the Count property. If you want to step through

all the text styles in the drawing, you can use a For statement.

The following sample code statements check for the existence of a text style named General;

if the text style doesn’t exist, it is created:

On Error Resume Next

' Gets the TextStyles collection

Dim oStyles As AcadTextStyles

Set oStyles = ThisDrawing.TextStyles

' Gets the text style named General

Dim oStyle As AcadTextStyle

Set oStyle = oStyles("General")

' If an error is returned, create the text style

If Err Then

 Err.Clear

 ' Creates a new text style

 Set oStyle = oStyles.Add("General")

End If

NOTE Although the Add method won’t return an error if a text style with the same name already

exists, I recommend using the Item method of the AcadTextStyles collection object to check

whether a text style already exists.

WORKING WITH TEXT | 157

c06.indd 8:47:40:AM/03/25/2015 Page 157

After you have an AcadTextStyle object, you can get its current font and character set with

the GetFont method. The SetFont method is used to set the font and character set among other

settings of the text style. In addition to the GetFont and SetFont methods, you can use the

fontFile and BigFontFile properties of the AcadTextStyle object to specify the TrueType

font (TTF) and Shape (SHX) fi le that should be used by the text style. The BigFontFile property

is helpful if you need to support the double-byte characters that are used mainly for

Asian languages.

If you want text to be drawn at a specifi c height each time the text style is used, you set the

height value to the Height property of the text style. Other properties of a text style allow you to

specify the oblique angle and direction in which the text should be drawn, among other settings

with the properties of the AcadTextStyle object. For information on the properties of the two

text objects, see the AutoCAD Help system or the Object Browser in the VBA Editor.

NOTE Text styles are used by dimension, mleader, and table styles. If a text style will be used

by other named annotation styles, I recommend that you set the Height property of the text

style to 0. When you use a height of 0, the referencing named annotation style has control over

the fi nal text height.

If you don’t need a text style anymore, remove it from a drawing with the Delete method of

the AcadTextStyle object and not the Delete method of the AcadTextStyles collection object.

The PurgeAll method of an AcadDocument or ThisDrawing object can also be used to remove

all unused text styles from a drawing. I discussed the PurgeAll method in Chapter 4.

The following sample code statements set the font of the text style assigned to the oStyle

variable, enable boldface, and set the oblique angle to 10:

Dim sFont As String

Dim bBold As Boolean, bItalic As Boolean

Dim nCharSet As Long

Dim nPitchandFamily As Long

' Sets the font, enables boldface, and assigns an

' oblique angle to the style based on the active style

ThisDrawing.ActiveTextStyle.GetFont sFont, bBold, _

 bItalic, nCharSet, nPitchandFamily

oStyle.SetFont "Arial", True, False, nCharSet, nPitchandFamily

oStyle.ObliqueAngle = 10

Assigning a Text Style

A text style can be assigned to an object directly or inherited by the active text style of the

 drawing. You assign a text style to an AcadText or AcadMText object with the StyleName

 property. The StyleName property returns or accepts a string that represents the name of

 current or the text style to be assigned. When a new text object is created, the text style applied

is inherited from the ActiveTextStyle property of the AcadDocument or ThisDrawing object.

The ActiveTextStyle property returns and expects an AcadTextStyle object.

158 | CHAPTER 6 ANNOTATING OBJECTS

c06.indd 8:47:40:AM/03/25/2015 Page 158

NOTE As an alternative to the ActiveTextStyle property, you can use the textstyle system

variable. Th e textstyle system variable accepts a string that represents the name of the text

style to be inherited by each newly created text object.

The following code statements assign the text style named General to the ActiveTextStyle

property:

' Sets the General text style as the active text style

Dim oStyle As AcadTextStyle

Set oStyle = ThisDrawing.TextStyles("GENERAL")

ThisDrawing.ActiveTextStyle = oStyle

Dimensioning Objects
Dimensions are annotation objects that show a measurement value in a drawing. The value in

which a dimension displays depends on the type of dimension object created. A dimension can

measure the linear distance between two points, the radial value of a circle or an arc, the X or Y

value of a coordinate, the angle between two vectors, or the length of an angle. Similar to text

objects, the appearance of a dimension is controlled by a dimension style. Dimension objects

are graphical objects just like lines and circles, so they inherit properties and methods from

AcadEntity. Dimensions also inherit properties from a class named AcadDimension.

Creating Dimensions
Nine types of dimensions can be created with the AutoCAD Object library and VBA. When

you want to add a dimension object to a drawing, use one of the functions that begin with

the name AddDim. The functions used to add a dimension object can be accessed from an

AcadModelSPace, AcadPaperSpace, or AcadBlock collection object. Table 6.2 lists the functions

that can be used to add a new dimension object.

Table 6.2: Functions used to create new dimensions

Function Description

AddDim3PointAngular Adds an angular dimension based on three points; same as that created with

the dimangular command.

AddDimAligned Adds a linear dimension that is parallel to the two points specifi ed; same as

the dimaligned command.

AddDimAngular Adds an angular dimension based on two vectors; same as that created with

the dimangular command.

AddDimArc Adds an arc length dimension based on the center of an arc and two points

along the arc; same as that created with the dimarc command.

AddDimDiametric Adds a diametric dimension that refl ects the diameter of a circle or an arc;

same as that created with the dimdiameter command.

DIMENSIONING OBJECTS | 159

c06.indd 8:47:40:AM/03/25/2015 Page 159

Function Description

AddDimOrdinate Adds an ordinate dimension that displays the X or Y value of a coordinate;

same as that created with the dimordinate command.

AddDimRadial Adds a radial dimension that refl ects the radius of a circle or an arc; same as

that created with the dimradius command.

AddDimRadialLarge Adds a radial dimension with a jogged line that indicates the radius of a circle

or arc, but the dimension doesn’t start at the center of the object

 dimensioned; same as that created with the dimjogged command.

AddDimRotated Adds a linear dimension that measures the distance between two points, but

the dimension line of the dimension is rotated at a specifi ed value; same as

that created with the dimrotated command.

For specifi cs on the arguments that are required to add a dimension object, see the AutoCAD

Help system or the Object Browser in the VBA Editor.

The following code statements add two circles, add a linear dimension between the center

points of the two circles with the AddDimRotated function, and fi nally, add a diameter dimen-

sion to one of the circles with the AddDiametric function (see Figure 6.4):

' Defines the center point of the circles

Dim dCenPt1(2) As Double, dCenPt2(2) As Double

dCenPt1(0) = 2.5: dCenPt1(1) = 1: dCenPt1(2) = 0

dCenPt2(0) = 5.5: dCenPt2(1) = 2: dCenPt2(2) = 0

' Adds the two circles

ThisDrawing.ModelSpace.AddCircle dCenPt1, 0.5

ThisDrawing.ModelSpace.AddCircle dCenPt2, 0.5

' Adds the linear dimension

Dim dDimPlace(2) As Double

dDimPlace(0) = dCenPt2(0) - dCenPt1(0)

dDimPlace(1) = dCenPt2(1) + 1: dDimPlace(2) = 0

Dim oDimRot As AcadDimRotated

Set oDimRot = ThisDrawing.ModelSpace.AddDimRotated(_

 dCenPt1, dCenPt2, dDimPlace, 0)

' Adds the diametric dimension

Dim vDimChordPt1 As Variant

vDimChordPt1 = ThisDrawing.Utility.PolarPoint(_

 dCenPt1, -0.7854, 0.5)

Dim vDimChordPt2 As Variant

160 | CHAPTER 6 ANNOTATING OBJECTS

c06.indd 8:47:40:AM/03/25/2015 Page 160

vDimChordPt2 = ThisDrawing.Utility.PolarPoint(_

 dCenPt1, 0.7854 * 3, 0.5)

Dim oDimDia As AcadDimDiametric

Set oDimDia = ThisDrawing.ModelSpace.AddDimDiametric(_

 vDimChordPt2, vDimChordPt1, 1)

After you create a dimension object, you can modify its properties. However, based on the

properties that you modify, a dimension override might be applied. For example, if you change

the value of the DimensionLineColor property and later make a change to the dimension style

applied to the dimension, the color of the dimension line will not be updated unless you remove

the override from the dimension.

NOTE Dimensions created with the AutoCAD Object library are not associative; the dimension

isn’t updated if the objects that the dimension measures are changed. If you want to create

associative dimensions, consider using the SendCommand or PostCommand method with the

appropriate command sequence.

Formatting Dimensions with Styles
Dimension styles are stored in and accessed from the AcadDimStyles collection object. Each

dimension style in a drawing is represented by an AcadDimStyle object. A new dimension

style can be added to a drawing with the Add method of the collection object. The Add method

expects a string that contains the name of the new dimension type to be created and returns

an AcadDimStyle object. The Item method of the AcadDimStyles collection object is used to

get an existing dimension style in the drawing; if the dimension style doesn’t exist, an error is

 generated. I discuss how to handle errors in Chapter 13.

The Item method accepts a string that represents the name of the dimension style you want

to work with or an integer value. The integer value represents the index of the dimension style

in the AcadDimStyles collection object you want to return. The index of the fi rst dimension style

in the drawing starts with 0, and the highest index is one less than the number of dimension

styles in the AcadDimStyles collection object returned by the Count property. If you want to

step through all the dimension styles in the drawing, you can use a For statement.

The following sample code statements check for the existence of a dimension style named

Arch24; if the dimension style doesn’t exist, it is created:

Figure 6.4

Aligned and diametric

dimensions showing the

measurement values of

two circles

DIMENSIONING OBJECTS | 161

c06.indd 8:47:40:AM/03/25/2015 Page 161

On Error Resume Next

' Gets the DimStyles collection

Dim oStyles As AcadDimStyles

Set oStyles = ThisDrawing.DimStyles

' Gets the dimension style named Arch24

Dim oStyle As AcadDimStyle

Set oStyle = oStyles("Arch24")

' If an error is returned, create the dimension style

If Err Then

 Err.Clear

 ' Creates a new dimension style

 Set oStyle = oStyles.Add("Arch24")

End If

NOTE Although the Add method won’t return an error if a text style with the same name already

exists, I recommend using the Item method of the AcadDimStyles collection object to check

to see whether a dimension style already exists.

After you create or decide to modify an AcadDimStyle object, how to go about modifying

the dimension style might not be immediately obvious. From the AutoCAD user interface, you

 commonly would use the Dimension Style Manager (displayed with the ddim command), but at

the Command prompt, you could use the -dimstyle command.

Although you could use the -dimstyle command, the workfl ow with VBA is to

 modify the values of dimension-related system variables with the SetVariable method

of an AcadDocument or a ThisDrawing object, and then use the CopyFrom method of the

AcadDimStyle object to copy the values of the dimension system variables to the dimension

style. Modifying the dimension system variables of a drawing will result in the creation of

drawing-level dimension overrides. When creating a new dimension variable, I recommend

storing the name of the current dimension style so it can be restored after you modify your

dimension style.

Now, there is a problem that isn’t easy to resolve: the preservation of drawing-level

 dimension overrides when modifying an existing dimension style. The reason is that when a

dimension style is set as active, the previous drawing-level dimension variable overrides are

lost. It is always best to restore the previous state of a drawing if you don’t want to affect the

 current settings for the user.

The only way to preserve drawing-level dimension variable overrides is to create an array

containing the current value of all dimension variables and then restore the values after the

 previous style has been set as active. An example of storing and restoring system variables

for a number of system variables is shown in the “Setting the Values of Drafting-Related

System Variables and Preferences” section of Chapter 3, “Interacting with the Application and

Documents Objects.”

Here are code statements that demonstrate how to change the values of the dimblk and

 dimscale dimension system variables, copy the values of the dimension variables of the

162 | CHAPTER 6 ANNOTATING OBJECTS

c06.indd 8:47:40:AM/03/25/2015 Page 162

drawing to the dimension style named Arch24, and then restore the previous dimension style

and dimension values:

' Store the current dimension style

Dim oCurDimStyle As AcadDimStyle

Set oCurDimStyle = ThisDrawing.ActiveDimStyle

' Store current values to override

Dim vValues(1) As Variant

vValues(0) = ThisDrawing.GetVariable("DIMBLK")

vValues(1) = ThisDrawing.GetVariable("DIMSCALE")

' Change the DIMBLK and DIMSCALE system variable for the drawing

ThisDrawing.SetVariable "DIMBLK", "ARCHTICK"

ThisDrawing.SetVariable "DIMSCALE", 24#

' Create the new dimension style and copy the variable values from the drawing

oStyle.CopyFrom ThisDrawing

' Restore the previous style

Set ThisDrawing.ActiveDimStyle = oCurDimStyle

' Restore the values of the overridden variables

If vValues(0) = "" Then

 ThisDrawing.SetVariable "DIMBLK", "."

Else

 ThisDrawing.SetVariable "DIMBLK", vValues(0)

End If

ThisDrawing.SetVariable "DIMSCALE", vValues(1)

If you don’t need a dimension style anymore, remove it from a drawing with the Delete

method of the AcadDimStyle object and not the Delete method of the AcadDimStyles collection

object. The PurgeAll method of an AcadDocument or ThisDrawing object can also be used to

remove all unused dimension styles from a drawing. I discussed the PurgeAll method

in Chapter 4.

Assigning a Dimension Style
You can change the dimension style of a dimension object after it has been added to a drawing

with the StyleName property. The StyleName property returns or accepts a string that

 represents the name of the current or dimension style to be assigned. When a new dimension

object is created, the dimension style applied is inherited from the ActiveDimStyle property of

the AcadDocument or ThisDrawing object. The ActiveDimStyle property returns and expects

an AcadDimStyle object.

NOTE Unlike other Active* properties, the ActiveDimStyle property doesn’t have a system

variable alternative that can be used to set the default dimension style for new dimension objects.

Th e dimstyle system variable can be used to get the name of the current dimension style.

CREATING AND MODIFYING GEOMETRIC TOLERANCES | 163

c06.indd 8:47:40:AM/03/25/2015 Page 163

The following code statements assign the dimension style named Arch24 to the

ActiveDimStyle property:

' Sets the Arch24 text style as the active dimension style

Dim oStyle As AcadDimStyle

Set oStyle = ThisDrawing.DimStyles("ARCH24")

ThisDrawing.ActiveDimStyle = oStyle

Creating and Modifying Geometric Tolerances
Geometric tolerances, also referred to as control frames, are used to display acceptable devia-

tions of a form, location, or other measurements in mechanical designs. A geometric tolerance is

represented by an AcadTolerance object. Similar to AcadMText objects, AcadTolerance objects

accept text strings with control codes in them to defi ne the appearance of the fi nal object that

is displayed in the drawing. The control codes that an AcadTolerance object accepts defi ne the

symbols, tolerance, and datum values that are displayed in the geometric tolerance object.

I recommend using the AutoCAD tolerance and list commands to learn the control codes and

text sequences that go into defi ning a geometric tolerance object.

The following is an example of the output displayed by the list command for a geometric

tolerance object that contains a Parallelism symbol, with a tolerance value of 0.00125 and a

datum value of B (see Figure 6.5).

Text

 {\Fgdt;f}%%v{\Fgdt;n}.00125%%v%%vB%%v%%v

To create a geometric tolerance value, use the AddTolerance function of an AcadModelSpace,

AcadPaperSpace, or AcadBlock collection object. The geometric tolerance object shown in

Figure 6.5 can be created with the following code statements:

' Defines the insertion point and direction vector

' for the Tolerance object

Dim dInsPt(2) As Double, dDirVec(2) As Double

dInsPt(0) = 2.5: dInsPt(1) = 2.5: dInsPt(2) = 0

dDirVec(0) = 1: dDirVec(1) = 0: dDirVec(2) = 0

' Creates a new Tolerance object

Dim oTol As AcadTolerance

Set oTol = ThisDrawing.ModelSpace.AddTolerance(_

 "{\Fgdt;f}%%v{\Fgdt;n}.00125%%v%%vB%%v%%v", dInsPt, dDirVec)

The text string, insertion point, and direction among other characteristics of a geometric

object can be queried or modifi ed using the properties and methods of the AcadTolerance

Figure 6.5

Geometric tolerance

object created with

the AddTolerance

function

164 | CHAPTER 6 ANNOTATING OBJECTS

c06.indd 8:47:40:AM/03/25/2015 Page 164

object. Like AcadDimension objects, an AcadTolerance object inherits the way it looks by the

dimension style it is assigned. When initially created, the geometric tolerance object is assigned

the dimension style that is assigned to the ActiveDimStyle property, and the StyleName prop-

erty of an AcadTolerance object can be used to assign the object a specifi c dimension style.

If you need to use geometric tolerance objects in your drawings, see the AutoCAD Help

 system or Object Browser in the VBA Editor for more information.

Adding Leaders
Leaders, also known as callouts, are used to bring attention to a feature in a drawing. A leader

starts with an arrowhead that is connected to multiple straight segments or a spline. The end of

a leader often includes an attachment: a text object that contains a label or descriptive text. An

attachment could also be a geometric tolerance object or block reference. AutoCAD supports

two types of leaders: multileader and legacy.

Multileaders are leaders that can be made up of multiple leader lines and one or more

 attachments. The attachment and leader lines behave as a single object with multileaders. Legacy

leaders don’t provide as much fl exibility as multileaders. Leader lines and the attachment of a

legacy leader can be connected to or separate from the leader object.

Working with Multileaders
Multileaders were introduced in AutoCAD 2008 to improve the workfl ow when working

with leaders. A multileader object is represented by the AcadMLeader object in a drawing fi le.

Their initial appearance is controlled by a multileader style. The methods and properties

of an AcadMLeader object allow you to add and modify leader lines and the content of a

multileader object.

In addition to modifying a multileader object as a whole, you can modify the appearance of

each leader line attached to the multileader object. Along with methods and properties specifi c

to the AcadMLeader object, an AcadMLeader object inherits properties and methods from an

AcadEntity.

Placing and Modifying Multileaders

A multileader object is created with the AddMLeader function. The AddMLeader method is

 available from an AcadModelSpace, AcadPaperSpace, or AcadBlock collection object and

returns an AcadMLeader object. When you create a leader with the AddMLeader function, you

specify the vertices of the initial leader line for the multileader. The AddMLeader function also

returns an index for the leader line. which is represented by an AcadMLeaderLeader.

When a multileader is added to a drawing, its appearance is inherited by the active

 multileader style. I explain how to defi ne and manage multileader styles in the next section,

“Defi ning Multileader Styles.” You will learn to apply a named multileader style in the

“Assigning a Multileader Style” section.

The following code statements add a multileader with two leader lines and an attachment

object of MText (see Figure 6.6):

' Defines the points of the first leader

Dim dLeader1Pts(0 To 5) As Double

dLeader1Pts(0) = 0.1326: dLeader1Pts(1) = 0.1326: dLeader1Pts(2) = 0

ADDING LEADERS | 165

c06.indd 8:47:40:AM/03/25/2015 Page 165

dLeader1Pts(3) = 1.1246: dLeader1Pts(4) = 2.1246: dLeader1Pts(5) = 0

' Defines the points of the second leader

Dim dLeader2Pts(0 To 5) As Double

dLeader2Pts(0) = 0.1847: dLeader2Pts(1) = 1.7826: dLeader2Pts(2) = 0

dLeader2Pts(3) = 1.1246: dLeader2Pts(4) = 2.1246: dLeader2Pts(5) = 0

' Adds the new multileader object

Dim lLeaderIdx As Long

Dim oMLeader As AcadMLeader

Set oMLeader = ThisDrawing.ModelSpace.AddMLeader(dLeader1Pts, lLeaderIdx)

' Adds the second leader line

oMLeader.AddLeaderLine lLeaderIdx, dLeader2Pts

' Attaches the MText object

oMLeader.ContentType = acMTextContent

oMLeader.TextString = "3/16""R"

After placing a multileader object, you can refi ne the leader lines, content, and appearance

of the object using its methods and properties. However, depending on the properties that

you modify, a style override might be applied. For example, if you change the value of the

ArrowheadBlock property and later make a change to the multileader style applied to the object,

the arrowhead of the leader lines will not be updated unless you remove the Xdata attached to

the multileader that represents the data associated with the override. I explain more about Xdata

in Chapter 9, “Storing and Retrieving Custom Data.”

Defining Multileader Styles

Multileader styles are not accessed directly through a collection object like AcadTextStyles

for text styles and AcadDimStyles for dimension styles. Named multileader styles stored in

a drawing are stored in the ACAD_MLEADERSTYLE dictionary, which is accessed from the

AcadDictionaries collection object. Each multileader style in the ACAD_MLEADERSTYLE

 dictionary is represented by an AcadMLeaderStyle object.

Use the AddObject function to create a new multileader style and the GetObject function to

get an existing object that is in the dictionary. When using the AddObject function, you must

specify two strings: the fi rst is the name of the style you want to create and the second is the

Figure 6.6

Multileader with two

leader lines

166 | CHAPTER 6 ANNOTATING OBJECTS

c06.indd 8:47:40:AM/03/25/2015 Page 166

class name of AcDbMLeaderStyle. You can learn more about working with dictionaries

in Chapter 9.

The following code statements create a multileader style named Callouts if it doesn’t

already exist:

On Error Resume Next

' Gets the multileader styles dictionary

Dim oDict As AcadDictionary

Set oDict = ThisDrawing.Dictionaries.Item("ACAD_MLEADERSTYLE")

' If no error, continue

If Not oDict Is Nothing Then

 ' Gets the multileader style named Callouts

 Dim oMLStyle As AcadMLeaderStyle

 Set oMLStyle = oDict.GetObject("Callouts")

 ' If an error is returned, create the multileader style

 If Err Then

 Err.Clear

 ' Creates a new dimension style

 Set oStyle = oDict.AddObject("Callouts", "AcDbMLeaderStyle")

 End If

 ' Defines the landing settings for the multileader style

 oMLStyle.EnableLanding = True

 oMLStyle.LandingGap = 0.1

End If

A multileader style that is no longer needed can be removed with the Remove method

of the AcadDictionary object. For more information on the properties and methods of the

AcadMLeaderStyle object, see the AutoCAD Help system or the Object Browser in the

VBA Editor.

Assigning a Multileader Style

The active multileader style is assigned to a multileader when it is fi rst added to a drawing,

but the style assigned can be changed using the StyleName property. The StyleName property

returns or accepts a string that represents the name of the current or multileader style to be

assigned. When a new multileader object is created, the multileader style applied is inherited

from the cmleaderstyle system variable of the drawing. You can use the SetVariable and

GetVariable methods of an AcadDocument or a ThisDrawing object.

The following code statement assigns the multileader style named Callouts to the

cmleaderstyle system variable:

' Sets the Callouts multileader style active

ThisDrawing.SetVariable "cmleaderstyle", "callouts"

ADDING LEADERS | 167

c06.indd 8:47:40:AM/03/25/2015 Page 167

Creating and Modifying Legacy Leaders
Legacy leader objects are represented by an AcadLeader object and are added to a drawing

with the AddLeader function. The AddLeader method is available from an AcadModelSpace,

AcadPaperSpace, or AcadBlock collection object. When you create a leader with the AddLeader

function, you can choose to add an attachment object or no attachment. The types of objects you

can attach to an AcadLeader object are AcadMText, AcadTolerance, and AcadBlockReference.

If you don’t want to add an attachment to a leader object, pass the value of Nothing to the

AddLeader function instead of the object that represents the attachment object.

Unlike multileader objects, legacy leader objects inherit their format and appearance from a

dimension style. Use the StyleName property of the AcadLeader object to assign a dimension

style to the leader. The properties of the leader object can also be used to create an override.

The leader object shown in Figure 6.7 can be created with the following code statements:

' Defines the points of the leader line

Dim points(0 To 8) As Double

points(0) = 0: points(1) = 0: points(2) = 0

points(3) = 0.717: points(4) = 1.0239: points(5) = 0

points(6) = 1.217: points(7) = 1.0239: points(8) = 0

' Defines the insertion point and height for the text object

Dim dInsPt(2) As Double, dHeight As Double

dInsPt(0) = points(6): dInsPt(1) = points(7): dInsPt(2) = points(8)

' Creates a new text object

Dim oMText As AcadMText

Set oMText = ThisDrawing.ModelSpace.AddMText(dInsPt, 4#, _

 "TYP (4) Drill Holes")

' Sets the justification of the text to middle left

oMText.AttachmentPoint = acAttachmentPointMiddleLeft

' Moves the alignment point of the justified text

' to the original insertion point

oMText.InsertionPoint = dInsPt

Dim annotationObject As AcadObject

Set annotationObject = oMText

' Creates the leader object in model space

Dim leaderObj As AcadLeader

Set leaderObj = ThisDrawing.ModelSpace.AddLeader(points, _

 annotationObject, acLineWithArrow)

168 | CHAPTER 6 ANNOTATING OBJECTS

c06.indd 8:47:40:AM/03/25/2015 Page 168

For more information on legacy leaders, search on AcadLeader in the AutoCAD Help system.

Organizing Data with Tables
Data in a drawing can often be presented in a tabular form with a table. Tables can be helpful

in creating schedules or a bill of materials (BOM), which provides a quantitative listing of

the objects in a drawing. Tables were introduced in AutoCAD 2005 to simplify the process of

 creating tables, which commonly had been made up of lines and single-line text objects. A table

object is represented by the AcadTable object and the initial appearance is controlled by a

table style.

The methods and properties of an AcadTable object allow you to add and modify the content

of a table object. Just like other graphical objects, the AcadTable object inherits some of its

 properties and methods from an AcadEntity object.

Inserting and Modifying a Table
A table object is represented by the AcadTable object. The AddTable function allows you to

create a table object based on an insertion point, number of rows and columns, as well as a

row height and column width. The AddTable method is available from an AcadModelSpace,

AcadPaperSpace, or AcadBlock collection object and returns an AcadTable object.

The appearance of a table is defi ned by a table style and cell styles. The default table style

assigned to a new table is based on the active table style of a drawing. I explain how to defi ne

and manage table styles in the “Formatting Tables” section later in this chapter. You can learn to

apply a named table style in the “Assigning a Table Style” section.

The following code statements add a table with fi ve rows and three columns, and add labels

to the header rows (see Figure 6.8):

' Defines the insertion point of the table

Dim dInsPt(2) As Double

dInsPt(0) = 5: dInsPt(1) = 2.5: dInsPt(2) = 0

' Adds the new table object

Dim oTable As AcadTable

Set oTable = ThisDrawing.ModelSpace.AddTable(dInsPt, 5, 3, 0.25, 2)

' Supresses the Title row and unmerge the cells in the first row

oTable.TitleSuppressed = True

oTable.UnmergeCells 0, 0, 0, 2

Figure 6.7

Legacy leader created

with the AddLeader

function

ORGANIZING DATA WITH TABLES | 169

c06.indd 8:47:40:AM/03/25/2015 Page 169

' Sets the values of the header row

oTable.SetCellValue 0, 0, "Qty"

oTable.SetCellValue 0, 1, "Part"

oTable.SetCellValue 0, 2, "Description"

' Sets the width of the third column

oTable.SetColumnWidth 2, 10

Due to the complexities of tables, it isn’t practical to cover everything that is possible. You can

merge cells, add block references to a cell, and control the formatting of individual cells with the

AutoCAD Object library and VBA. If you need to work with tables, I recommend referring to the

AutoCAD Help system.

Formatting Tables
Table styles—like multileader styles—are not accessed directly through a collection object

like AcadTextStyles for text styles and AcadDimStyles for dimension styles. Table styles are

stored in the ACAD_TABLESTYLE dictionary, which is accessed from the AcadDictionaries

collection object. Each table style in the ACAD_TABLESTYLE dictionary is represented by an

AcadTableStyle object.

New table styles are created with the AddObject function and the GetObject function is

used to obtain an existing table style in a drawing. When using the AddObject function, you

must specify two strings: the fi rst is the name of the style you want to create and the second is

the class name of AcDbTableStyle. You can learn more about working with dictionaries

in Chapter 9.

The following code statements create a table style named BOM if it doesn’t already exist:

On Error Resume Next

' Gets the table styles dictionary

Dim oDict As AcadDictionary

Set oDict = ThisDrawing.dictionaries.Item("ACAD_TABLESTYLE")

' If no error, continue

If Not oDict Is Nothing Then

 ' Gets the table style named BOM

 Dim oTblStyle As AcadTableStyle

 Set oTblStyle = oDict.GetObject("BOM")

 ' If an error is returned, create the multileader style

 If Err Then

 Err.Clear

Figure 6.8

Empty BOM table

170 | CHAPTER 6 ANNOTATING OBJECTS

c06.indd 8:47:40:AM/03/25/2015 Page 170

 ' Creates a new table style

 Set oTblStyle = oDict.AddObject("BOM", "AcDbTableStyle")

 End If

 ' Supresses the title row and displays the header row of the table style

 oTblStyle.TitleSuppressed = True

 oTblStyle.HeaderSuppressed = False

 ' Creates a new cell style

 oTblStyle.CreateCellStyle "BOM_Header"

 oTblStyle.SetCellClass "BOM_Header", 1

 ' Sets the background color of the new cell style

 Dim oClr As AcadAcCmColor

 Set oClr = oTblStyle.GetBackgroundColor2("BOM_Header")

 oClr.ColorMethod = acColorMethodByACI

 oClr.ColorIndex = 9

 oTblStyle.SetBackgroundColor2 "BOM_Header", oClr

 ' Sets the color of the text for the cell style

 oClr.ColorIndex = acBlue

 oTblStyle.SetColor2 "BOM_Header", oClr

End If

A table style that is no longer needed can be removed with the Remove method of

the AcadDictionary object. For more information on the properties and methods of the

AcadTableStyle object, see the AutoCAD Help system or the Object Browser in the VBA Editor.

Assigning a Table Style
You can change the style of a table once it has been added to a drawing with the StyleName

property. The StyleName property returns or accepts a string that represents the name of

the current or table style to be assigned. When a new table object is created, the style applied

is inherited from the ctablestyle system variable. You can use the SetVariable and

GetVariable methods of an AcadDocument or a ThisDrawing object.

The following code statement assigns the table style named BOM to the ctablestyle

system variable:

' Sets the BOM style active

ThisDrawing.SetVariable "ctablestyle", "BOM"

Creating Fields
Fields are used to add dynamic values to a text object based on the current value of an object’s

property, a drawing fi le property, date, system variable, table cell, and many other types of val-

ues stored in a drawing. A fi eld can be added to a stand-alone text object, dimension, table cell,

and even block attributes. Fields are implemented with the use of control codes. Typically, a fi eld

EXERCISE: ADDING A LABEL TO THE PLATE | 171

c06.indd 8:47:40:AM/03/25/2015 Page 171

is added to a drawing using the Field dialog box displayed with the field command. In the

lower-left corner of the Field dialog box is an area labeled Field Expression. The Field Expression

area displays the text that you can assign to the TextString property of an annotation object

or pass to the SetCellValue method of an AcadTable object to assign a value to a table cell.

For example, the following is an example of the fi eld expression used to add today’s date to the

drawing in an MText object with the MM/dd/yyyy format:

%<\AcVar Date \f "MM/dd/yyyy">%

To create a new MText object with the example fi eld expression, the VBA code statements

might look like the following:

' Defines the insertion point and width for the text object

Dim dInsPt(2) As Double, dWidth As Double

dInsPt(0) = 0: dInsPt(1) = 0: dInsPt(2) = 0

dWidth = 2.5

' Creates a new MText object with a field

Dim oMText As AcadMText

Set oMText = ThisDrawing.ModelSpace.AddMText(dInsPt, dWidth, _

 "%<\AcVar Date \f ""MM/dd/yyyy"">%")

NOTE Th e fieldeval and fielddisplay system variables aff ect when fi elds are evaluated

and if fi elds are displayed with a gray background in the drawing. For more information on these

system variables, see the AutoCAD Help system.

Exercise: Adding a Label to the Plate
In this section, you will continue to build on the DrawPlate project that was introduced in

Chapter 4. Here is the key concept I cover in this exercise:

Creating an MText Object Simple and complex text strings can be added to a drawing

with an MText object. A single-line text object can also be used to add descriptive text or a

label to a drawing.

NOTE The steps in this exercise depend on the completion of the steps in the “Exercise:

Getting Input from the User to Draw the Plate” section of Chapter 5, “Interacting with the

User and Controlling the Current View.” If you didn’t complete the steps, do so now or start with

the ch06_drawplate.dvb sample fi le available for download from www.sybex.com/go/

autocadcustomization. Place the sample fi le in the MyCustomFiles folder within the

Documents (or My Documents) folder, or the location where you are storing the DVB fi les.

Also, remove ch06_ from the fi lename before you begin working.

Revising the CLI_DrawPlate Function
These changes to the CLI_DrawPlate function add an MText object to display a basic label for

the plate drawn. In the following steps you will update code statements in the CLI_DrawPlate

function of the drawplate.dvb project fi le:

http://www.sybex.com/go/autocadcustomization

172 | CHAPTER 6 ANNOTATING OBJECTS

c06.indd 8:47:40:AM/03/25/2015 Page 172

 1. Load the drawplate.dvb fi le into the AutoCAD drawing environment and display the

VBA Editor.

 2. In the VBA Editor, in the Project Explorer, double-click the basDrawPlate component.

 3. In the code editor window, scroll to the bottom of the CLI_DrawPlate function, locate the

following code statements, and add the code statements shown in boldface:

 ' Calculate and place the circle in the upper-left

 ' corner of the rectangle.

 dAng = myUtilities.Atn2(dPtList(6) - dPtList(0), _

 dPtList(7) - dPtList(1))

 cenPt4 = ThisDrawing.Utility.PolarPoint(cenPt1, dAng, dDist - 1)

 myUtilities.CreateCircle cenPt4, 0.1875

 ' Get the insertion point for the text label

 Dim insPt As Variant

 insPt = Null

 insPt = ThisDrawing.Utility.GetPoint(, _

 removeCmdPrompt & "Specify label insertion point " & _

 "<or press Enter to cancel placement>: ")

 ' If a point was specified, placed the label

 If IsNull(insPt) = False Then

 ' Define the label to add

 Dim sTextVal As String

 sTextVal = "Plate Size: " & _

 Format(ThisDrawing.Utility. _

 RealToString(width, acDecimal, 4), "0.0###") & _

 "x" & _

 Format(ThisDrawing.Utility. _

 RealToString(height, acDecimal, 4), "0.0###")

 ' Create label

 Set oLyr = myUtilities.CreateLayer("Label", acWhite)

 ThisDrawing.ActiveLayer = oLyr

 myUtilities.CreateText insPt, acAttachmentPointMiddleCenter, _

 0.5, 0#, sTextVal

 End If

 End If

 Loop Until IsNull(basePt) = True And sKeyword = ""

 ' Restore the saved system variable values

 myUtilities.SetSysvars sysvarNames, sysvarVals

 4. Click File ➢ Save.

EXERCISE: ADDING A LABEL TO THE PLATE | 173

c06.indd 8:47:40:AM/03/25/2015 Page 173

Revising the Utilities Class
These changes to the Utilities class introduce a new function named CreateText. The

CreateText function consolidates the creation of an MText object and the setting of specifi c

properties and returns an AcadMText object. In the following steps you will add the constant

value and two functions to the clsUtilities class module:

 1. In the VBA Editor, in the Project Explorer, double-click the clsUtilities component.

 2. Scroll to the bottom of the code editor window and click to the right of the last code

 statement. Press Enter twice.

 3. Type the following code statements; the comments are here for your information and

don’t need to be typed:

' CreateText function draws a MText object.

' Function expects an insertion point, attachment style,

' text height and rotation, and a string.

Public Function CreateText(insPoint As Variant, _

 attachmentPt As AcAttachmentPoint, _

 textHeight As Double, _

 textRotation As Double, _

 textString As String) As AcadMText

 Set CreateText = ThisDrawing.ActiveLayout.Block. _

 AddMText(insPoint, 0, textString)

 ' Sets the text height, attachment point, and rotation of the MText object

 CreateText.height = textHeight

 CreateText.AttachmentPoint = attachmentPt

 CreateText.insertionPoint = insPoint

 CreateText.rotation = textRotation

End Function

 4. Click File ➢ Save.

 5. Export the clsUtilities class model from the drawplate.dvb fi le to a fi le named

 clsUtilities.cls in the MyCustomFiles folder, as explained in Chapter 5.

Using the Revised drawplate Function
Now that the drawplate.dvb project fi le has been revised, you can test the changes that have

been made. The following steps explain how to use the revised drawplate function:

 1. Switch to AutoCAD by clicking on its icon in the Windows taskbar or click View ➢

AutoCAD from the menu bar in the Visual Basic Editor.

 2. In AutoCAD, at the Command prompt, type vbarun and press Enter.

 3. When the Macros dialog box opens, select the DrawPlate.dvb!basDrawPlate.CLI_

DrawPlate macro from the list and click Run.

174 | CHAPTER 6 ANNOTATING OBJECTS

c06.indd 8:47:40:AM/03/25/2015 Page 174

 4. At the Specify base point for the plate or [Width/Height]: prompt, pick a

point in the drawing area to draw the plate and holes based on the width and height

values specifi ed.

 5. At the Specify label insertion point <or press Enter to cancel placement >:

prompt, pick a point below the plate to place the label.

 6. Press Enter to exit the macro when you are don e.

c07.indd 11:58:44:AM/03/25/2015 Page 175

Chapter 7

Working with Blocks and External
References

Most designs created with the AutoCAD® program start off with simple geometric objects, such

as lines, circles, and arcs. The geometric objects are used to represent holes, bolts, motors, and

even the outside of a building. As a design grows in complexity, elements often are repeated

many times. For example, you might use several lines and circles to represent a bolt head or a

desk with a grommet.

AutoCAD allows you to reuse geometry by creating what is known as a block. A block is a

named grouping of objects that can be inserted in a drawing multiple times. Each insertion

creates a block reference that displays the objects stored in the block at the insertion point. If the

block is changed, each block reference based on that block is updated.

Blocks aren’t the only method for reusing geometry or other data in a drawing. A drawing

fi le can also include external references (xrefs) to geometry stored in another drawing fi le.

External references can include blocks, raster images, and other documents. When you reference

another document, such as a PDF or DWF fi le, it is known as an underlay. In this chapter,

I explain how to use VBA to work with blocks and external referenced fi les.

Managing Block Defi nitions
Blocks make it possible to logically group basic geometry together with a unique name and

then create instances of that geometry within a drawing. Blocks are implemented as two sepa-

rate objects: block defi nitions and block references. Block defi nitions are nongraphical objects

that are stored in the AcadBlocks collection object. Each block defi nition is represented by an

AcadBlock object, which contains the geometry and attribute defi nitions that defi ne how the

block should appear and behave when it is inserted into the drawing area. A block defi nition

can contain either static or dynamic properties.

Figure 7.1 shows the relationship between a block defi nition and a block reference and how

the attributes of the block are used to bring the geometry into model space.

176 | CHAPTER 7 WORKING WITH BLOCKS AND EXTERNAL REFERENCES

c07.indd 11:58:44:AM/03/25/2015 Page 176

Figure 7.1

Block-defi nition-

to-block-reference

relationship

Drawing
(ThisDrawing)

Model space (AcadModelSpace)

Block reference
(AcadBlockReference)
Attribute reference
(AcadAttributeReference)

Blocks collection (AcadBlocks)

Block (AcadBlock)
Attribute definition (AcadAttribute)

You can think of a block defi nition much like a cookie recipe. The recipe lists the

 ingredients (which determines how the cookie should taste) and provides instructions

for combining those ingredients and baking the dough. What the recipe doesn’t control is

how much dough is placed on any particular spot on the cookie sheet before baking. The

exact placement and amount of the cookie dough on the tray is determined by the baker.

Similarly, an end user uses a block reference in a drawing to determine the exact placement,

size, and number of geometries to be displayed. I explain how to insert and work with

block references in the “Inserting and Working with Block References” section later in

this chapter.

Creating a Block Defi nition
A new block defi nition can be added to a drawing using the Add function of the AcadBlocks col-

lection object. The Add function expects two argument values and returns an AcadBlock object.

Before adding a new block defi nition, you should use the Item method with an error handler

to check to see if a block defi nition with the specifi c name you want to use already exists in the

drawing. The Item method can also be used to get a specifi c block defi nition in the AcadBlocks

collection object and, as with other collections, a For statement can be used to step through the

block defi nitions in a drawing.

The following shows the syntax of the Add function:

retVal = object.Add(origin, blockName)

Its arguments are as follows:

retVal The retVal argument represents the new AcadBlock collection object returned by

the Add function.

object The object argument specifi es the AcadBlocks collection object that is used to add

a new block defi nition.

origin The origin argument is an array of three doubles that defi nes the origin of the new

block defi nition; think insertion point for the block reference.

blockName The blockName argument is a string that specifi es the unique name to be

assigned to the new block defi nition.

MANAGING BLOCK DEFINITIONS | 177

c07.indd 11:58:44:AM/03/25/2015 Page 177

The following code statements add a new block defi nition named RoomNum:

' Defines the origin of the block

Dim dOrigin(2) As Double

dOrigin(0) = 5: dOrigin(1) = 2.5: dOrigin(2) = 0

Dim oBlkDef As AcadBlock

Set oBlkDef = ThisDrawing.Blocks.Add(dOrigin, "RoomNum")

Here is an example that checks for the existence of a block defi nition named RoomNum:

On Error Resume Next

Dim oBlkDef As AcadBlock

Set oBlkDef = ThisDrawing.Blocks("RoomNum")

If Err Then

 MsgBox "Block definition doesn't exist."

Else

 MsgBox "Block definition exists."

End If

After an AcadBlock object has been obtained using the Item or Add method of the

AcadBlocks collection object, you can step through the objects of the block using a For state-

ment or the Item method of the AcadBlock object. You can use the same functions to add

new objects to a block defi nition as you would to add objects to model space or paper space.

I explained how to add objects to and step through the objects of model space in Chapter 4,

“Creating and Modifying Drawing Objects.”

The following code statements add a closed lightweight polyline to the block defi nition

named RoomNum:

On Error Resume Next

' Gets the RoomNum block definition

Dim oBlkDef As AcadBlock

Set oBlkDef = ThisDrawing.Blocks("RoomNum")

' If the block doesn't exist, an error is generated

If Err Then

 ' Defines the origin of the block

 Dim dOrigin(2) As Double

 dOrigin(0) = 5: dOrigin(1) = 2.5: dOrigin(2) = 0

 ' Adds the block definition

 Set oBlkDef = ThisDrawing.Blocks.Add(dOrigin, "RoomNum")

 ' Defines the vertex points for the

 ' lightweight polyline

 Dim dPts(7) As Double

 dPts(0) = 0: dPts(1) = 0

178 | CHAPTER 7 WORKING WITH BLOCKS AND EXTERNAL REFERENCES

c07.indd 11:58:44:AM/03/25/2015 Page 178

 dPts(2) = 10: dPts(3) = 0

 dPts(4) = 10: dPts(5) = 5

 dPts(6) = 0: dPts(7) = 5

 ' Adds a new lightweight polyline to the block

 Dim oLWPoly As AcadLWPolyline

 Set oLWPoly = oBlkDef.AddLightWeightPolyline(dPts)

 ' Closes the lightweight polyline

 oLWPoly.Closed = True

 ' Sets the layer of the lightweight polyline to 0

 oLWPoly.Layer = "0"

End If

NOTE I recommend placing objects in a block defi nition on layer 0 when the object should

inherit its properties from the layer that the block reference is inserted onto. Th e appearance

of objects in a block defi nition can be controlled ByBlock or ByLayer when you insert a block

defi nition as a block reference. For information on the ByBlock and ByLayer values, see the

AutoCAD Help system.

When a block defi nition is no longer needed, it can be removed from the drawing using the

Delete method of an AcadBlock object. A block defi nition can’t be deleted if a block reference

associated with the block defi nition is inserted into the drawing.

NOTE Dynamic blocks—block defi nitions with dynamic properties—can’t be created with the

AutoCAD Object library. However, you can modify the dynamic properties of a block reference

using the AutoCAD Object library. I explain how to work with blocks that contain dynamic

properties in the “Working with Dynamic Properties” section later in this chapter.

Adding Attribute Defi nitions
A block defi nition can contain what is known as an attribute. An attribute is similar to a text

object, except its value can be changed after a block reference has been inserted into a drawing.

Attributes allow you to store string values and then extract their values later. There are two

types of attributes that are part of the block creation and insertion process: attribute defi nitions

and attribute references. Attribute defi nitions can be added to a block defi nition, and attribute

references are part of each block reference inserted into a drawing that is associated with a block

defi nition that has one or more attribute defi nitions.

The AddAttribute function is used to add an attribute defi nition to a block defi nition

and returns an AcadAttribute object. The following shows the syntax of the AddAttribute

function:

retVal = object.AddAttribute(height, mode, prompt, insertionPoint, tag, value)

Its arguments are as follows:

retVal The retVal argument represents the new AcadAttribute object returned by the

AddAttribute function.

object The object argument specifi es the AcadBlock object to add the attribute defi nition.

MANAGING BLOCK DEFINITIONS | 179

c07.indd 11:58:44:AM/03/25/2015 Page 179

height The height argument is a double that represents the height of the attribute.

mode The mode argument is an integer that represents the behavior of the attribute reference

added to a block reference when the block is inserted into the drawing. Instead of using an

integer value, I recommend that you use the constant values of the AcAttributeMode enu-

merator. Table 7.1 lists each of the constant values of the AcAttributeMode enumerator. You

can specify more than one constant by separating each constant with a plus symbol, such as

acAttributeModeInvisible + acAttributeModeNormal.

prompt The prompt argument is a string that represents the text that provides a hint for the

value that’s expected when the block reference is inserted.

insertionPoint The insertionPoint argument is an array of three doubles that defi nes

the insertion point of the attribute defi nition.

tag The tag argument is a string that represents the text that’s displayed in the drawing if

the block reference is exploded after being inserted and the value used to extract the attri-

bute’s value from a block reference. A tag cannot contain spaces.

value The value argument is a string that represents the default value of the attribute when

the block reference is inserted.

Table 7.1 lists the constant values of the AcAttributeMode enumerator that can be passed

to the mode argument of the AddAttribute function or assigned to the Mode property of an

AcadAttribute object.

Table 7.1: Constant values of the AcAttributeMode enumerator

Constant Description

acAttributeModeConstant Indicates the value of the attribute can’t be changed.

acAttributeModeInvisible Attribute is marked as invisible. Th e attmode system vari-

able controls the display of all invisible attributes.

acAttributeModeLockPosition Position of the attribute can’t be adjusted using grip

editing.

acAttributeModeMultipleLine Attribute supports multiple lines of text instead of the

standard single line of text.

acAttributeModeNormal Default display behavior of the attribute is maintained

when the block is inserted using the insert command.

acAttributeModePreset Value of the attribute is preset. When the block is inserted

using the insert command, the user isn’t prompted to

enter a value for the attribute.

acAttributeModeVerify User is prompted to verify the value they provide for the

attribute when inserting the block reference with the

insert command.

180 | CHAPTER 7 WORKING WITH BLOCKS AND EXTERNAL REFERENCES

c07.indd 11:58:44:AM/03/25/2015 Page 180

The following code statements add an attribute defi nition to the block defi nition assigned to

the oBlkDef variable:

' Defines the insertion point of the attribute definition

Dim dInsPt(2) As Double

dInsPt(0) = 5: dInsPt(1) = 2.5: dInsPt(2) = 0

' Adds the attribute definition to the block

Dim oAttDef As AcadAttribute

Set oAttDef = oBlkDef.AddAttribute(2.5, acAttributeModeNormal, _

 "Room#", dInsPt, "Room#", "101")

' Sets the alignment for the attribute's text

oAttDef.Alignment = acAlignmentMiddleCenter

oAttDef.TextAlignmentPoint = dInsPt

After adding an attribute defi nition to a block defi nition, you can modify its appearance and

behavior using the properties and methods of the AcadAttribute object. The properties and

methods of an AcadAttribute object are similar to those of an AcadText object. I discussed the

AcadText object in Chapter 6, “Annotating Objects.”

Table 7.2 lists the properties of the AcadAttribute object that are unique to the object and are

different from those of an AcadText object.

Table 7.2: Properties related to an AcadAttribute object

Property Description

Constant Returns True if the attribute is set to the constant mode.

Invisible Returns True if the attribute should be invisible

when the block reference is inserted.

LockPosition Returns True if the attribute can’t be modifi ed using

grip editing when the block reference is inserted.

MTextAttribute Returns True if the attribute should be multiline

instead of single-line text.

MTextAttributeContent Specifi es the content for the multiline text when the

MTextAttribute property is True.

MTextBoundaryWidth Specifi es the width of the multiline text when the

MTextAttribute property is True.

MANAGING BLOCK DEFINITIONS | 181

c07.indd 11:58:44:AM/03/25/2015 Page 181

Property Description

MTextDrawingDirection Specifi es the direction in which the text should be

drawn when the MTextAttribute property is True.

Preset Returns True if the user shouldn’t be prompted to

enter a value for the attribute when the block is

inserted.

PromptString Specifi es the prompt string that is displayed for the

attribute when the block is inserted.

TagString Specifi es the tag for the attribute that is displayed in

the drawing if the block reference is exploded after

being inserted. Th e tag can also be useful when trying

to identify which attribute’s value to extract when

generating a BOM.

TextString Specifi es the default text for the attribute to use

when the block is inserted.

Verify Returns True if the user should be prompted to ver-

ify the value of the attribute when the block is

inserted.

NOTE If you change the MTextAttributeContent , MTextBoundaryWidth , or

MTextDrawingDirection property, you must execute the UpdateMTextAttribute method

of the AcadAttribute object. Th e UpdateMTextAttribute method updates the display of

the multiline attribute in the drawing.

Modifying and Redefi ning a Block Defi nition
You can add new objects or modify existing objects of a block defi nition, much like you can in

model space or paper space. The Item method of the AcadBlock object can be used to get a spe-

cifi c object or a For statement to step through all objects in a block defi nition.

In addition to modifying the objects in a block defi nition, the origin—the insertion point of a

block—can be modifi ed using the Origin property. The Origin property of an AcadBlock object

allows you to get or set the origin for the block defi nition. The origin of a block defi nition is

defi ned as a double array with three elements.

Besides modifying the objects and origin of a block, you can specify whether a block refer-

ence created from a block can be exploded, set the units that control the scaling of a block,

and make other changes. Table 7.3 lists the properties that control the behavior of and provide

 information about an AcadBlock object.

182 | CHAPTER 7 WORKING WITH BLOCKS AND EXTERNAL REFERENCES

c07.indd 11:58:44:AM/03/25/2015 Page 182

Table 7.3: Properties related to an AcadBlock object

Property Description

BlockScaling Specifi es if the block can only be scaled uniformly (acUniform) or the

block can be assigned a diff erent scale factor for each axis (acAny).

Comments Specifi es a string that describes the block defi nition.

Count Returns an integer value that contains the number of block references

that have been inserted into the drawing based on the block defi nition.

Explodable Returns True if the block reference inserted into the drawing can be

exploded.

Name Specifi es a string that contains the name of the block defi nition.

Units Specifi es the units of measurement for the block. A constant value

from the AcInsertUnits enumerator is returned by or can be

assigned to this property. See the Object Browser in the VBA Editor for

a list of possible values. Th e units specifi ed aff ect the insertion scale of

the block.

After a block defi nition has been updated, you should use the Regen method of the

AcadApplication object to regenerate the display of the drawing. You can also update the

display of an individual block reference using the Update method. I explained the Regen and

Update methods in Chapter 4. If you add or remove an AcadAttribute object in a block defi ni-

tion, the block references inserted into model space or paper space aren’t updated to refl ect the

change unless the attribute being changed is defi ned as a constant.

To refl ect the changes in the attributes between a block defi nition and the block references

inserted into a drawing, you will need to do the following:

 1. Insert a new block reference into the drawing.

 2. Update the attribute values of the new block reference with those from the existing block

reference.

 3. Remove the old block reference.

I discuss more about working with block references in the “Inserting and Working with

Block References” section later in this chapter.

Determining the Type of Block Defi nition
Block defi nitions stored in the AcadBlocks collection object of a drawing aren’t only used to

insert block references. Model space and paper space are also block defi nitions with special

names along with external references (xrefs) and layouts. You can determine a block defi nition’s

INSERTING AND WORKING WITH BLOCK REFERENCES | 183

c07.indd 11:58:44:AM/03/25/2015 Page 183

type using the properties in Table 7.4. I discuss xrefs in the “Working with Xrefs” section later in

this chapter and layouts in Chapter 8, “Outputting Drawings.”

Table 7.4: Properties used to determine a block defi nition’s type

Property Description

IsDynamicBlock Returns True if the block defi nition contains dynamic properties.

IsLayout Returns True if the block defi nition is for a layout. You can use the Layout

property of an AcadBlock, AcadModelSpace, or AcadPaperSpace object

to get the object’s associated AcadLayout object.

IsXref Returns True if the block defi nition is for an external reference.

Inserting and Working with Block References
A block reference is an instance—not a copy—of the geometry from a block defi nition; the

geometry only exists as part of the block defi nition, with the exception of attributes. Attribute

defi nitions that are part of a block defi nition are added to a block reference as attribute refer-

ences unless the attribute defi nition is defi ned as a constant attribute. Constant attributes are

part of the geometry that is inherited from a block defi nition and are not part of the block

reference.

Inserting a Block Reference
The InsertBlock function is used to insert a reference of a block defi nition in model space,

paper space, or another block defi nition and expects seven argument values that defi ne the

block defi nition you want to insert, as well as the placement and size of the block reference.

After a block reference has been inserted, an AcadBlockReference object is returned.

The following shows the syntax of the InsertBlock function:

retVal = object.InsertBlock(insertionPoint, blockName, xScale, yScale,

 zScale, rotation [, password])

Its arguments are as follows:

retVal The retVal argument represents the new AcadBlockReference object returned by

the InsertBlock function.

object The object argument specifi es the AcadBlock, AcadModelSpace, or

AcadPaperSpace object where the block reference is to be inserted.

insertionPoint The insertionPoint argument is an array of doubles that represents the

insertion point of the block reference.

184 | CHAPTER 7 WORKING WITH BLOCKS AND EXTERNAL REFERENCES

c07.indd 11:58:44:AM/03/25/2015 Page 184

blockName If you wish to insert the reference into a block defi nition, use the blockName

argument (a string) to specify the name of that block defi nition. The block must already be

defi ned in the drawing before the insertion can be executed. If you wish to insert a DWG fi le

as a reference into a drawing, specify the full path of a DWG fi le. When a DWG fi le is speci-

fi ed, an AcadBlock object based on the objects in model space of the DWG fi le specifi ed is

created, and then the block reference is inserted.

NOTE An error is generated if the block defi nition being inserted doesn’t already exist in the

drawing. You can catch the error and use the Add method to create the block defi nition or specify

a DWG fi le to insert that might contain the objects for the block you want to use.

For example, the following inserts a block named grid.dwg from the location c:\symbols:

Set oBlkRef = ThisDrawing.ModelSpace.InsertBlock(_

 insPt, "c:\symbols\grid.dwg", 1, 1, 1, 0)

xScale, yScale, and zScale The xScale, yScale, and zScale arguments are doubles that

represent the scale factors of the block reference.

rotation The rotation argument is a double that represents the rotation angle of the block

reference. The rotation angle must be expressed in radians.

password The password argument is an optional string that represents the password

assigned to restrict the drawing fi le from being opened or inserted into by unapproved users.

This argument is only required if you are inserting a block based on a DWG fi le that is pass-

word protected.

The following code statements insert a block reference based on a block named RoomNum at

15,27. (Remember, the block you name in code like this must already be defi ned in your draw-

ing before the code can be executed. Be sure to use an error handler to add the block if it doesn’t

exist.)

' Defines the insertion point

Dim insPt(2) As Double

insPt(0) = 15: insPt(1) = 27: insPt(2) = 0

' Defines the name of the block

Dim blkName As String

blkName = "RoomNum"

' Inserts the block reference

Dim oBlkRef As AcadBlockReference

Set oBlkRef = ThisDrawing.ModelSpace.InsertBlock(_

 insPt, blkName, 1, 1, 1, 0)

Modifying a Block Reference
Once a block reference, an AcadBlockReference object, is inserted into a drawing, you can

modify it using the methods and properties inherited from the AcadEntity object and those

specifi c to the AcadBlockReference object. I explained how to use the methods and properties

INSERTING AND WORKING WITH BLOCK REFERENCES | 185

c07.indd 11:58:44:AM/03/25/2015 Page 185

of the AcadEntity object in Chapter 4. Table 7.5 lists the properties that are used to change the

placement, rotation, and scale of a block reference.

Table 7.5: Properties used to aff ect a block reference

Property Description

InsertionPoint Specifi es the insertion point of the block reference in the

drawing and is an array of doubles

InsUnits Returns a string that represents the insertion units saved

with the block

InsUnitsFactor Returns the insertion factor that is based on the insertion

units of the block and those of the drawing

Rotation Specifi es the rotation of the block reference

XEffectiveScaleFactor Specifi es the eff ective scale factor along the X-axis for the

block reference

XScaleFactor Specifi es the scale factor along the X-axis for the block

reference

YEffectiveScaleFactor Specifi es the eff ective scale factor along the Y-axis for the

block reference

YScaleFactor Specifi es the scale factor along the Y-axis for the block

reference

ZEffectiveScaleFactor Specifi es the eff ective scale factor along the Z-axis for the

block reference

ZScaleFactor Specifi es the scale factor along the Z-axis for the block

reference

Block references also support the ability to be exploded. The Explode method is used to

explode a block reference and it returns an array of the objects added to the drawing as a result

of exploding the block reference. The objects in the array are copies of the objects from the block

defi nition associated with the block reference. When the Explode method is executed, the block

reference isn’t removed from the drawing. You must decide what to do with the block reference.

Typically, the block reference is removed using the Delete method, while the objects from the

Explode method are kept.

The following code statements explode the fi rst block reference located in model space and

then list the block defi nition name and the objects that make up the block defi nition:

Sub ExplodeFirstBlkRef()

 Dim oBlkRef As AcadBlockReference

186 | CHAPTER 7 WORKING WITH BLOCKS AND EXTERNAL REFERENCES

c07.indd 11:58:44:AM/03/25/2015 Page 186

 Dim oObj As Object

 ' Step through model space

 For Each oObj In ThisDrawing.ModelSpace

 ' If a block reference is found, explode it

 If TypeOf oObj Is AcadBlockReference Then

 Set oBlkRef = oObj

 ' Explode the block reference

 Dim vObjArray As Variant

 vObjArray = oBlkRef.Explode

 ' List the objects that were added

 ThisDrawing.Utility.Prompt vbLf & "Block exploded: " & _

 oBlkRef.Name & vbLf

 ThisDrawing.Utility.Prompt vbLf & "Objects added: " & _

 vbLf

 ' Remove the block reference

 oBlkRef.Delete

 Dim oAcadObj As AcadObject

 Dim oObjFromBlkRef As Variant

 For Each oObjFromBlkRef In vObjArray

 Set oAcadObj = oObjFromBlkRef

 ThisDrawing.Utility.Prompt " " & oAcadObj.ObjectName & _

 vbLf

 Next oObjFromBlkRef

 ' Exit the For statement since we are interested

 ' in the first block reference only

 Exit For

 End If

 Next oObj

End Sub

Here is an example of the output from the previous example code:

Block exploded: 2x4x8

Objects added:

 AcDbPolyline

 AcDbLine

 AcDbLine

INSERTING AND WORKING WITH BLOCK REFERENCES | 187

c07.indd 11:58:44:AM/03/25/2015 Page 187

Accessing the Attributes of a Block
When a block reference is fi rst inserted into a drawing, the default values of all attributes are

used. The value of each nonconstant attribute of a block reference can be changed. Before you

access the attributes of a block reference, you should make sure the block reference has attri-

butes. The HasAttributes property of an AcadBlockReference object returns True if a block

reference has attributes, either constant or nonconstant.

The GetAttributes and GetConstantAttributes functions of an AcadBlockReference

object are used to access the attributes of a block reference. Neither function accepts any

arguments. The GetAttributes function returns an array of AcadAttributeReference

objects that aren’t defi ned as constant attributes attached to a block reference, whereas the

GetConstantAttributes function returns an array of AcadAttribute objects.

Listing 7.1 is a custom procedure that demonstrates how to get both the attributes and

constant attributes attached to a block reference.

Listing 7.1: Lists attribute tags and values of a block reference

Sub ListBlockAtts()

 ' Prompt the user to select a block reference

 Dim oObj As Object

 Dim vPtPicked As Variant

 ThisDrawing.Utility.GetEntity oObj, vPtPicked, vbLf & _

 "Select a block reference: "

 ' Check to see if the entity selected is a

 ' block reference

 If TypeOf oObj Is AcadBlockReference Then

 Dim oBlkRef As AcadBlockReference

 Set oBlkRef = oObj

 ' Output information about the block

 ThisDrawing.Utility.Prompt vbLf & "*Block Reference*" & _

 vbLf & " Block name: " & _

 oBlkRef.Name & vbLf

 ' Check to see if the block reference has attributes

 If oBlkRef.HasAttributes = True Then

 Dim oAttRef As AcadAttributeReference

 Dim oAttDef As AcadAttribute

 Dim vObj As Variant

 ' Gets the nonconstant attributes

 ThisDrawing.Utility.Prompt vbLf & "*Nonconstant Attributes*"

 Dim vArAtts As Variant

188 | CHAPTER 7 WORKING WITH BLOCKS AND EXTERNAL REFERENCES

c07.indd 11:58:44:AM/03/25/2015 Page 188

 vArAtts = oBlkRef.GetAttributes

 ' Steps through the nonconstant attributes

 If UBound(vArAtts) > -1 Then

 For Each vObj In vArAtts

 Set oAttRef = vObj

 ' Outputs the tag and text of the attribute

 ThisDrawing.Utility.Prompt vbLf & " Tag: " & _

 oAttRef.TagString & _

 vbLf & " Value: " & _

 oAttRef.TextString

 Next vObj

 Else

 ThisDrawing.Utility.Prompt vbLf & " None"

 End If

 ' Gets the nonconstant attributes

 ThisDrawing.Utility.Prompt vbLf & "*Constant Attributes*"

 ' Gets the constant attributes

 vArAtts = oBlkRef.GetConstantAttributes

 ' Steps through the constant attributes

 If UBound(vArAtts) > -1 Then

 For Each vObj In vArAtts

 Set oAttDef = vObj

 ' Outputs the tag and text of the attribute

 ThisDrawing.Utility.Prompt vbLf & " Tag: " & _

 oAttDef.TagString & _

 vbLf & " Value: " & _

 oAttDef.TextString

 Next vObj

 Else

 ThisDrawing.Utility.Prompt vbLf & " None"

 End If

 ThisDrawing.Utility.Prompt vbLf

 End If

 End If

End Sub

Here is an example of the output generated by the custom ListBlockAtts procedure from

Listing 7.1:

Block Reference

 Block name: RoomNumber

Nonconstant Attributes

INSERTING AND WORKING WITH BLOCK REFERENCES | 189

c07.indd 11:58:44:AM/03/25/2015 Page 189

 Tag: ROOM#

 Value: 101

Constant Attributes

 None

In addition to listing the values of the attributes attached to a block reference, you can modify

the appearance and placement of the attribute references returned by the GetAttributes func-

tion. If you make changes to an attribute reference, make sure to execute the Update method

and regenerate the display of the object. The AcadAttributeReference and AcadAttribute

objects are nearly identical. However, the AcadAttributeReference object doesn’t support the

Mode, Preset, PromptString, or Verify property.

Working with Dynamic Properties
Most block references display a single set of geometry, meaning that the objects that are

included in the block defi nition are the only ones that can be shown in the drawing. Starting

with AutoCAD 2006, block defi nitions were extended to support what are known as dynamic
properties. Block defi nitions with dynamic properties are known as dynamic blocks. You can’t

 create dynamic blocks with the AutoCAD Object library, but you can modify the custom prop-

erties of a dynamic block after it is inserted into a drawing. For information on how to create a

dynamic block, see the topic “About Dynamic Blocks” in the AutoCAD Help system.

The IsDynamicBlock property of the AcadBlockReference object can be used to determine

whether a block reference has dynamic properties. When the IsDynamicBlock property returns

True, the block reference has dynamic properties that can be queried and modifi ed.

Once you have verifi ed that a block reference has dynamic properties, you use the

GetDynamicBlockProperties function to get an array of AcadDynamicBlockReferenceProperty

objects. The Value property of an AcadDynamicBlockReferenceProperty object is used to get

and set the value of a dynamic property, whereas the PropertyName property returns a string

that represents the name of the dynamic property.

Listing 7.2 is a custom procedure that demonstrates how to get the custom properties and

their values of a block reference named Door - Imperial. You can insert the Door - Imperial

block reference using the block tool on the Architectural tab of the Tool Palettes window

(displayed using the toolpalettes command).

Listing 7.2: Listing custom properties and values of a block reference

Sub ListCustomProperties()

 ' Prompt the user to select a block reference

 Dim oObj As Object

 Dim vPtPicked As Variant

 ThisDrawing.Utility.GetEntity oObj, vPtPicked, vbLf & _

 "Select a block reference: "

 ' Check to see if the entity selected is a

 ' block reference

 If TypeOf oObj Is AcadBlockReference Then

 Dim oBlkRef As AcadBlockReference

 Set oBlkRef = oObj

190 | CHAPTER 7 WORKING WITH BLOCKS AND EXTERNAL REFERENCES

c07.indd 11:58:44:AM/03/25/2015 Page 190

 ' Output information about the block

 ThisDrawing.Utility.Prompt vbLf & "*Block Reference*" & _

 vbLf & " Block name: " & _

 oBlkRef.Name & vbLf

 ' Check to see if the block reference has dynamic properties

 If oBlkRef.IsDynamicBlock = True Then

 Dim oDynProp As AcadDynamicBlockReferenceProperty

 Dim vObj As Variant

 ' Gets the block reference's dynamic properties

 ThisDrawing.Utility.Prompt vbLf & "*Dynamic Properties*"

 Dim vDynProps As Variant

 vDynProps = oBlkRef.GetDynamicBlockProperties

 ' Steps through the dynamic properties

 If UBound(vDynProps) > -1 Then

 For Each vObj In vDynProps

 Set oDynProp = vObj

 ' Outputs the property name and value

 Dim sValue As String

 If IsArray(oDynProp.Value) = False Then

 sValue = CStr(oDynProp.Value)

 Else

 For Each vVal In oDynProp.Value

 If sValue <> "" Then sValue = sValue & ","

 sValue = sValue & CStr(vVal)

 Next vVal

 End If

 ThisDrawing.Utility.Prompt vbLf & " Property Name: " & _

 oDynProp.PropertyName & _

 vbLf & " Value: " & _

 sValue

 sValue = ""

 Next vObj

 Else

 ThisDrawing.Utility.Prompt vbLf & " None"

 End If

INSERTING AND WORKING WITH BLOCK REFERENCES | 191

c07.indd 11:58:44:AM/03/25/2015 Page 191

 ThisDrawing.Utility.Prompt vbLf

 End If

 End If

End Sub

Here is an example of the output generated by the custom ListCustomProperties procedure

from Listing 7.2:

Block Reference

 Block name: *U3

Dynamic Properties

 Property Name: Door Size

 Value: 40

 Property Name: Origin

 Value: 0,0

 Property Name: Wall Thickness

 Value: 6

 Property Name: Origin

 Value: 0,0

 Property Name: Hinge

 Value: 0

 Property Name: Swing

 Value: 0

 Property Name: Opening Angle

 Value: Open 30º

When a user manipulates a grip associated with a dynamic property, onscreen it looks like

the user is manipulating the block reference through a stretching, arraying, moving, or other

action. The action that is performed by the user results in the creation of a new anonymous

block defi nition. An anonymous block is a block that can’t be inserted into a drawing but that is

used as a way to let AutoCAD create and manage unique blocks.

NOTE Th e name of a block reference is typically obtained using the Name property, but with

dynamic blocks the Name property might return an anonymous block name such as *U8. An

anonymous block name is created as a result of manipulating one of the grips associated with

a dynamic property on a block reference. To get the original name of the block defi nition for a

dynamic block, you use the EffectiveName property.

You can convert a dynamic block to an anonymous block without dynamic proper-

ties using the ConvertToAnonymousBlock method or a new block defi nition using the

ConvertToStaticBlock method. The ConvertToStaticBlock method expects a string that

 represents the name of the new block defi nition.

The appearance and custom properties of a dynamic block can be reset to their default

 values. To reset the appearance and custom properties of a dynamic block, you use the

192 | CHAPTER 7 WORKING WITH BLOCKS AND EXTERNAL REFERENCES

c07.indd 11:58:44:AM/03/25/2015 Page 192

ResetBlock method of an AcadBlockReference object. The ResetBlock method doesn’t accept

any argument values and doesn’t return a value.

Managing External References
AutoCAD allows you to create what is known as an external reference. An external reference is

a reference to a fi le that is stored outside of a drawing fi le. The contents in an external fi le can

be another drawing, a raster or vector image, or even a fi le that supports Object Linking and

Embedding (OLE). OLE allows you to embed, among other things, a Word document or an Excel

spreadsheet into a drawing fi le. In addition to referencing a fi le, you can import objects into a

drawing using OLE. An OLE object is represented by the AcadOle object in the AutoCAD Object

library. You can modify, but not create, an OLE object with the AutoCAD Object library. I dis-

cuss how to import objects or a fi le in Chapter 8.

You can see which fi les are externally referenced to a fi le by accessing the items of the

AcadFileDependencies collection object. Each fi le that a drawing is dependent on to cor-

rectly display objects is part of the AcadFileDependencies collection object. I mention the

AcadFileDependencies collection object in the “Listing File Dependencies” section later in this

chapter.

Working with Xrefs
An external drawing fi le referenced into a drawing is known as an xref. Xrefs are similar to

blocks because they allow for the reuse of geometry in any drawing with one distinct difference.

The difference that sets blocks and xrefs apart is that any changes made to the objects in the

external drawing fi le are refl ected in any drawings that reference the fi le. Xrefs are frequently

used in architectural and civil engineering drawings to reference a fl oor plan or survey

drawing. An xref is represented by an AcadExternalReference object and is similar to an

AcadBlockReference object except in the way that the object can be modifi ed and managed.

Attaching an Xref

An xref is attached to a drawing, not inserted like a block or added like other graphical objects.

The AttachExternalReference function returns an AcadExternalReference object and

expects nine argument values that defi ne which fi le to attach, as well as the placement and

size of the xref. When an xref is attached to a drawing, an AcadBlock object is created. The

AcadBlock object contains the geometry that is in the referenced drawing fi le, but objects can’t

be added or modifi ed in that AcadBlock object. Figure 7.2 shows the fl ow of data that takes place

when a drawing fi le is attached to a drawing and an xref is placed in model space.

The following shows the syntax of the AttachExternalReference function:

retVal = object.AttachExternalReference(fileName, xrefName, insertionPoint,

 xScale, yScale, zScale, rotation,

 overlay [, password])

Its arguments are as follows:

retVal The retVal argument represents the new AcadExternalReference object returned

by the AttachExternalReference function.

MANAGING EXTERNAL REFERENCES | 193

c07.indd 11:58:44:AM/03/25/2015 Page 193

object The object argument specifi es the AcadBlock, AcadModelSpace, or

AcadPaperSpace object where you wish to attach the xref.

fileName The fileName argument is a string that represents the name of the external DWG

fi le you want to reference.

xrefName The xrefName argument is a string that represents the name you want to assign

to the AcadBlock object that is added to the drawing.

insertionPoint The insertionPoint argument is an array of doubles that represents the

insertion point of the xref.

xScale, yScale, and zScale The xScale, yScale, and zScale arguments are doubles that

represent the scale factors of the xref.

rotation The rotation argument is a double that represent the rotation angle of the xref.

The rotation angle must be expressed in radians.

overlay The overlay argument is a Boolean that represents the reference type for the xref.

There are two reference types: attachment and overlay. The reference types don’t affect the

current drawing unless the drawing is referenced into another drawing. An attachment

 reference type allows the xref to be displayed in other drawings that reference the drawing

that contains the xref, whereas an overlay reference restricts the xref to be displayed only in

the drawing to which it is attached. Use a value of True to specify an overlay reference type.

password The password argument is an optional string that represents the password

assigned to restrict the drawing fi le from being opened or referenced by unapproved users.

Figure 7.2

Xref attachment

fl ow Drawing
(ThisDrawing)

AutoCAD

Model space
(AcadModelSpace)

Blocks collection (AcadBlocks)

Drawing (DWG) file

Block (AcadBlock)

Xref (AcadExternalReference)

The following code statements add an xref based on the Ch07_Building_Plan.dwg fi le at 0,0

and set the reference type to attachment:

' Defines the insertion point

Dim insPt(2) As Double

insPt(0) = 0: insPt(1) = 0: insPt(2) = 0

' Defines the path to the drawing file

194 | CHAPTER 7 WORKING WITH BLOCKS AND EXTERNAL REFERENCES

c07.indd 11:58:44:AM/03/25/2015 Page 194

Dim dwgName As String

dwgName = ThisDrawing.GetVariable("MyDocumentsPrefix") & _

 "\MyCustomFiles\Ch07_Building_Plan.dwg"

' Adds the xref

Dim oXref As AcadExternalReference

Set oXref = ThisDrawing.ModelSpace.AttachExternalReference(_

 dwgName, "Building_Plan", insPt, 1, 1, 1, 0, False)

TIP Th e objects of all attached xrefs can be faded using the xdwgfadectl and xfadectl system

variables. Use the SetVariable method of an AcadDocument or ThisDrawing object to change

the values of the system variables, or the GetVariable function to get their current values.

Getting Information About and Modifying an Xref

Once an xref has been attached to a drawing, you can access information about the instance of

the xref. As I previously mentioned, an xref is similar to a block reference that has been inserted

into a drawing, and even the AcadExternalReference and AcadBlockReference objects share

many of the same properties and methods. For information on how to access information about

and modify a block reference, see the “Modifying a Block Reference” section earlier in this

chapter.

Although an AcadExternalReference and AcadBlockReference object have much in com-

mon, there are a few differences:

 ◆ Xrefs do not support attributes.

 ◆ Xrefs do not support dynamic block properties.

 ◆ Xrefs can’t be exploded unless they have been bound to the drawing fi rst.

 ◆ The path to the external fi le can be modifi ed.

 ◆ The objects in the external referenced fi le can be accessed.

Although there are a number of differences between xrefs and block references, in the

AutoCAD Object library the AcadExternalReference and AcadBlockReference objects

are similar. The only difference between the two object types is the Path property. The Path

property of an AcadExternalReference object can be used to get and specify the path that

AutoCAD should look in for the externally referenced drawing fi le. I show an example of using

the Path property in the next section.

For each externally referenced fi le that is attached to a drawing, AutoCAD creates an

in-memory database for that fi le. The database is represented by an AcadDatabase object

and contains access to the nongraphical and graphical objects stored in the externally

 referenced fi le. The database of an xref can be accessed with the XRefDatabase property of an

AcadBlock object.

Objects in the database of an xref returned by the XRefDatabase property can’t be directly

modifi ed. However, it is possible to open the externally referenced drawing fi le into memory

with the AutoCAD/ObjectDBX Common Type library. After a drawing fi le is opened in

memory with the AutoCAD/ObjectDBX Common Type library, the objects in the fi le can then

MANAGING EXTERNAL REFERENCES | 195

c07.indd 11:58:44:AM/03/25/2015 Page 195

be modifi ed. Once changes have been made to the drawing, you use the Reload method of an

AcadBlock object in the drawing to which the xref is attached to update its display. I mention

the Reload method in the next section and how to reference other object libraries in Chapter 12,

“Communicating with Other Applications.”

Changing the Layers of an Xref

Although you can’t make changes to the geometry of an AcadBlock object that references an

external fi le, you can aff ect the layers of an xref. To change a layer in an xref, set the visretain

system variable to 1 with the SetVariable method of an AcadDocument or ThisDrawing object.

After the visretain system variable has been enabled, you can use the XRefDatabase property

of the AcadBlock object and access its AcadLayers collection, which contains the layers used

by the objects of the xref. Any changes made to the layers are maintained in the drawing fi le that

contains the xref and not the externally referenced fi le.

When locating an item in a collection object of the xref database, you must add the name of the

xref with a pipe symbol as a prefi x to the item’s name. For example, to get the Surfaces layer in

the xref named Building_Plan, you use the value Building_Plan|Surfaces.

Th e following code statements change the color of the layer named Surfaces to yellow:

' Enable the visretain system variable

ThisDrawing.SetVariable "visretain", 1

' Defines the name of the xref to locate

Dim sXrefName As String

sXrefName = "Building_Plan"

' Gets the name of the block

Dim oBlkDef As AcadBlock

Set oBlkDef = ThisDrawing.Blocks(sXrefName)

' Change the Surface layer in the xref to yellow

oBlkDef.XRefDatabase.Layers(sXrefName & "|" _

 & "Surfaces").color = acYellow

Managing an Attached Xref

The management of the reference between an external drawing fi le and an xref is handled

through an AcadBlock object. The name of the AcadBlock object used by an xref can be

obtained with the Name property of the AcadExternalReference object. Once the name of the

block has been obtained, you can use the Item method of the AcadBlocks collection object to get

the AcadBlock object associated with the xref.

In addition to using the Item method, you can use a For statement to step through all the

blocks in a drawing and see which ones are associated with an external fi le. While stepping

through the AcadBlocks collection object, the IsXref property of the AcadBlock object returns

True if the block represents an external referenced fi le.

196 | CHAPTER 7 WORKING WITH BLOCKS AND EXTERNAL REFERENCES

c07.indd 11:58:44:AM/03/25/2015 Page 196

The following code statements get the AcadBlock object for a block named Building_Plan

and then use the IsXref property to see if it is an xref. If the block is an xref, a message box with

the path to the external referenced fi le is displayed.

' Defines the name of the xref to locate

Dim sXrefName As String

sXrefName = "Building_Plan"

' Gets the name of the block

Dim oBlkDef As AcadBlock

Set oBlkDef = ThisDrawing.Blocks(sXrefName)

' Check to see if the block is an xref

If oBlkDef.IsXRef Then

 ' Display information about the xref

 MsgBox "Block name: " & sXrefName & _

 vbLf & "Path: " & oBlkDef.Path

End If

The Path property shown in the previous sample code is used to get the current path to

the external referenced fi le, but it can also be used to update the default location for the exter-

nally referenced drawing fi le. After an AcadBlock object containing an external reference

has been obtained, you can then manage the reference between the drawing and the external

 referenced fi le stored outside of AutoCAD. Table 7.6 lists the four functions that can be used to

 manage an xref.

Table 7.6: Methods used to manage an xref

Method Description

Bind Removes the reference to the external fi le, and all xrefs attached to the drawing are con-

verted to blocks and stored as part of the drawing. Changes made to the external fi le no

longer aff ect the objects in the drawing. Th e method expects a Boolean value; use True if

you do not want to add a prefi x to the symbol names that are created from the external

reference or use False to add a prefi x to the symbol name. Use a value of False to main-

tain the appearance of objects in the xref. Specifying a value of True indicates that the

objects from the xref being merged will use the nongraphical objects defi ned in the drawing

to which the xref is attached. If the nongraphical objects don’t exist in the drawing to which

the xref is attached and True is specifi ed, the nongraphical object is copied from the xref’s

database.

Detach Removes the reference to the external referenced fi le, and all xrefs attached to the drawing

are removed. Th is method doesn’t accept any arguments.

Reload Updates the geometry in the drawing by reading the objects from the external referenced

fi le. Th is method doesn’t accept any arguments.

Unload Maintains the reference to the external referenced fi le, and all xrefs remain in the drawing.

Th e fi le isn’t loaded into the drawing, which results in the objects contained in the fi le not

being displayed. Th is method doesn’t accept any arguments.

MANAGING EXTERNAL REFERENCES | 197

c07.indd 11:58:44:AM/03/25/2015 Page 197

The following code statements reload the external reference named Building_Plan:

' Defines the name of the xref to locate

Dim sXrefName As String

sXrefName = "Building_Plan"

' Gets the name of the block

Dim oBlkDef As AcadBlock

Set oBlkDef = ThisDrawing.Blocks(sXrefName)

' Reload the xref

oBlkDef.Reload

Attaching and Modifying Raster Images
A raster image stored in an external fi le can be attached to a drawing. You might want to refer-

ence an external image fi le to place a company logo on a title block, display a watermark, or ref-

erence a topography map. An image fi le that has been added to a drawing is represented by an

AcadRasterImage object.

NOTE Before attaching an image to a drawing fi le, keep in mind that large image fi les can

 increase the amount of time it takes to open a drawing and even change the display of a drawing.

A raster image can be added to model space or paper space using the AddRaster function.

The AddRaster function returns an AcadRasterImage object and expects four argument values

that specify the image fi le you want to add and then the placement and size of the image.

The following shows the syntax of the AddRaster function:

retVal = object.AddRaster(fileName, insertionPoint, scaleFactor, rotation)

Its arguments are as follows:

retVal The retVal argument represents the new AcadRasterImage object returned by the

AddRaster function.

object The object argument specifi es the AcadBlock, AcadModelSpace, or

AcadPaperSpace object and indicates where you want to add the raster image.

fileName The fileName argument is a string that represents the name of the image fi le.

insertionPoint The insertionPoint argument is an array of doubles that represents the

insertion point of the raster image.

scaleFactor The scaleFactor argument is a double that represents the scale factor of the

raster image.

rotation The rotation argument is a double that represents the rotation angle of the raster

image. The rotation angle must be expressed in radians.

The following code statements add a raster image based on the acp_logo.png fi lename to 5,5

and set the background of the image to transparent:

' Defines the insertion point

Dim insPt(2) As Double

insPt(0) = 5: insPt(1) = 5: insPt(2) = 0

198 | CHAPTER 7 WORKING WITH BLOCKS AND EXTERNAL REFERENCES

c07.indd 11:58:44:AM/03/25/2015 Page 198

' Defines the path to the image

Dim imageName As String

imageName = ThisDrawing.GetVariable("MyDocumentsPrefix") & _

 "\MyCustomFiles\acp_logo.png"

' Adds the raster image

Dim oRaster As AcadRasterImage

Set oRaster = ThisDrawing.ModelSpace. _

 AddRaster(imageName, insPt, 1, 0)

' Sets the background of the image to transparent

oRaster.Transparency = True

After a raster image has been added to a drawing, you can control its appearance using the

object properties and methods. A raster image supports the same general properties and methods

as all graphical objects in a drawing, along with additional object-specifi c properties. Table 7.7

lists the properties that are specifi c to a raster image.

Table 7.7: Raster image–related properties and methods

Property/Method Description

Brightness Specifi es the brightness applied to the raster image; the valid range is 0 to

100.

ClippingEnabled Returns True if the raster image is clipped.

ClipBoundary Specifi es the clipping boundary of the raster image. Th e ClipBoundary

method expects an array of doubles that form a closed region. Th e array

must contain a minimum of six elements; each element pairing specifi es a

2D coordinate value.

Contrast Specifi es the contrast applied to the raster image; the valid range is 0 to 100.

Fade Specifi es the fade value applied to the raster image; the valid range is 0 to

100. Th e greater the value, the more transparent the object.

Height Returns the height, in pixels, for the raster image. Th is property is

read-only.

ImageFile Specifi es the full path to the external fi le for the raster image.

ImageHeight Specifi es the height, in pixels, for the raster image.

ImageVisibility Returns True if the raster image is visible.

ImageWidth Specifi es the width, in pixels, for the raster image.

MANAGING EXTERNAL REFERENCES | 199

c07.indd 11:58:44:AM/03/25/2015 Page 199

Property/Method Description

Name Specifi es the name of the raster image.

Origin Specifi es the insertion point of the raster image in the drawing and is an

array of doubles.

Rotation Specifi es the rotation of the raster image.

ScaleFactor Specifi es the scale factor applied to the raster image.

ShowRotation Returns True if the raster image is displayed at its specifi ed rotation.

Transparency Returns True if the background of the raster image is displayed as

transparent.

Width Returns the width, in pixels, for the underlay. Th is property is read-only.

Masking Objects with Wipeouts

A wipeout object is used to mask or hide other objects in a drawing. For example, you can place a

wipeout behind the text or extension line of a dimension to make the text easier to read and make

it easier to identify the objects that are dimensioned. An AcadWipeout object is used to represent

a wipeout object that was created in a drawing.

There is no method to create a new wipeout, but you can use the wipeout command with the

SendCommand or PostCommand method. Th e properties of an AcadWipeout object are the same

as an AcadRasterImage object. I explained how to work with raster images in the “Attaching and

Modifying Raster Images” section earlier in this chapter.

Working with Underlays
Underlays consist of geometry and annotation that is referenced into a drawing fi le from a

drawing web (DWF/DWFx) fi le, MicroStation design (DGN) fi le, or an Adobe portable docu-

ment (PDF) fi le. The geometry in an underlay is less accurate than that of a drawing because of

the source applications that created the objects. Even though an underlay is less accurate, the

accuracy might be enough for many designs created in the architectural and civil engineering

industries.

When an underlay is attached to a drawing, its objects can be controlled using the layer

information embedded in the underlay. As users create new objects in a drawing, they can use

object snaps to snap to geometry that is part of an underlay.

The AutoCAD Object library doesn’t provide support for attaching or detaching an underlay,

but it does provide some support for querying and modifying an underlay that has already been

attached to a drawing. If you want to attach an underlay, you can use the -dgnattach,

-dwfattach, or -pdfattach commands with the SendCommand or PostCommand method.

200 | CHAPTER 7 WORKING WITH BLOCKS AND EXTERNAL REFERENCES

c07.indd 11:58:44:AM/03/25/2015 Page 200

The following objects represent the underlays that can be attached to a drawing:

 ◆ AcadDgnUnderlay—DGN underlay

 ◆ AcadDwfUnderlay—DWF/DWFx underlay

 ◆ AcadPdfUnderlay—PDF underlay

The following code statements demonstrate how the ObjectName property can be used to

determine the type of an underlay object. The fi rst two code statements get the fi rst object in

model space and expect the object to be an underlay.

Dim oEnt As AcadEntity

Set oEnt = ThisDrawing.ModelSpace(0)

Select Case oEnt.ObjectName

 Case "AcDbDgnReference"

 MsgBox "Underlay is a DGN file."

 Case "AcDbDwfReference"

 MsgBox "Underlay is a DWF file."

 Case "AcDbPdfReference"

 MsgBox "Underlay is a PDF file."

End Select

An underlay shares many properties in common with an AcadRaster object. The following

properties are shared between underlays and raster images:

 ◆ ClippingEnabled

 ◆ Contrast

 ◆ Fade

 ◆ Height

 ◆ Rotation

 ◆ ScaleFactor

 ◆ Width

Table 7.8 lists the properties specifi c to an underlay. These properties can be used to control

the display of the object and get information about the referenced fi le.

Table 30.8: Underlay-related properties

Property Description

AdjustForBackground Returns True if the colors in the underlay are adjusted for the cur-

rent background color of the viewport.

File Specifi es the full path to the external fi le that contains the objects

for the underlay.

ItemName Specifi es the sheet or design model name in the underlay fi le you

want to display. A sheet or design model is one of the pages or

designs stored in the underlay fi le. For example, a PDF fi le can con-

tain several pages, and you use ItemName to specify which page

you want to display.

LISTING FILE DEPENDENCIES | 201

c07.indd 11:58:44:AM/03/25/2015 Page 201

Property Description

Monochrome Returns True if the colors of the underlay are displayed as

monochromatic.

Position Specifi es the insertion point of the underlay in the drawing and is

an array of doubles.

UnderlayLayerOverrideApplied Specifi es whether layer overrides are applied to the underlay; a

constant value of acNoOverrides means no overrides are applied,

whereas acApplied indicates overrides are applied.

UnderlayName Specifi es the name of the underlay fi le.

UnderlayVisibility Returns True if the objects in the underlay should be visible.

Listing File Dependencies
A drawing fi le relies on a number of support fi les to display objects accurately. These support

fi les might be font fi les, plot styles, external referenced fi les, and much more. You can use the

AcadFileDependencies collection object to access a listing of the fi les that need to be included

when sharing your fi les with a subcontractor or archiving your designs. Each dependency in the

AcadFileDependencies collection object is represented by an AcadFileDependency object.

Although it is possible to directly add new entries for fi le dependencies to a drawing, I

recommend letting the AutoCAD application and AutoCAD Object library do the work for

you. Incorrectly defi ning a fi le dependency could have unexpected results on a drawing;

objects might not display correctly or at all. Methods such as AttachExternalReference and

AddRaster will add the appropriate fi le dependency entries to a drawing.

If you want, you can use the CreateEntry, RemoveEntry, and UpdateEntry methods to man-

age the fi le dependencies of a drawing. See the AutoCAD Help system for information on the

methods used to manage fi le dependencies. In most cases, you will simply want to query the fi le

dependencies of a drawing to learn which fi les might be missing and help the user locate them

if possible. Use the Item method or a For statement to step through the fi le dependencies of the

AcadFileDependencies collection object.

The following code statements display information about each fi le dependency at the

Command prompt:

Sub ListDependencies()

 Dim oFileDep As AcadFileDependency

 For Each oFileDep In ThisDrawing.FileDependencies

 ThisDrawing.Utility.Prompt _

 vbLf & "Affects graphics: " & CStr(oFileDep.AffectsGraphics) & _

 vbLf & "Feature: " & oFileDep.Feature & _

 vbLf & "File name: " & oFileDep.FileName & _

 vbLf & "File size (Bytes): " & CStr(oFileDep.FileSize) & _

 vbLf & "Found path: " & oFileDep.FoundPath & _

 vbLf

202 | CHAPTER 7 WORKING WITH BLOCKS AND EXTERNAL REFERENCES

c07.indd 11:58:44:AM/03/25/2015 Page 202

 Next oFileDep

End Sub

NOTE A drawing fi le must have been saved once before you access its fi le dependency entries

with the AcadFileDependencies collection object. Using the file path returned by the

FileName and FoundPath properties of an AcadFileDependency object, you can use the

FileSystemObject object to get more information about the referenced fi le. I explain how to

use the FileSystemObject object in Chapter 12.

Here is an example of the output produced for a fi le dependency:

Affects graphics: True

Feature: Acad:Text

File name: arial.ttf

File size (Bytes): 895200

Found path: C:\WINDOWS\FONTS\

Exercise: Creating and Querying Blocks
In this section, you will create several new procedures that create and insert room label blocks

into a drawing, move the blocks to specifi c layers based on their names, and extract the attri-

butes of the blocks to produce a bill of materials (BOM). Room labels and blocks with attributes

are often used in architectural drawings, but the same concepts can be applied to callouts and

parts in mechanical drawings.

As you insert a room label block with the custom program, a counter increments by 1 so you

can place the next room label without needing to manually enter a new value. The last calcu-

lated value is stored in a custom dictionary so it can be retrieved the next time the program is

started. The key concepts I cover in this exercise are:

Creating and Modifying Block Defi nitions Block defi nitions are used to store a grouping

of graphical objects that can be inserted into a drawing. Inserting a block defi nition creates a

block reference that creates an instance of the objects defi ned in a block defi nition and not a

copy of the objects.

Modify and Extracting Attributes The attributes attached to a block reference can be mod-

ifi ed to hold different values per block reference, and those values can be extracted to a data-

base or even a table within the drawing. Attribute values can represent project information,

part numbers and descriptions of the parts required to assemble a new project, and so on.

NOTE Th e steps in this exercise depend on the completion of the steps in the “Exercise: Creating,

Querying, and Modifying Objects” section of Chapter 4. If you didn’t complete the steps, do so

now or start with the ch07_clsUtilities.cls sample fi le available for download from www.

sybex.com/go/autocadcustomization. Place these sample fi les in the MyCustomFiles

folder under the Documents (or My Documents) folder, or the location you are using to store

the DVB fi les. Also, remove the ch07_ prefi x from the name of the CLS fi le. You will also be

working with the ch07_building_plan.dwg from this chapter’s sample fi les.

http://www.sybex.com/go/autocadcustomization
http://www.sybex.com/go/autocadcustomization

EXERCISE: CREATING AND QUERYING BLOCKS | 203

c07.indd 11:58:44:AM/03/25/2015 Page 203

Creating the RoomLabel Project
The RoomLabel project will contain functions and a main procedure that allow you to create

and insert a room label block based on end-user input. The number applied to the block is incre-

mented each time the block is placed in the current drawing. The following steps explain how to

create a project named RoomLabel and to save it to a fi le named roomlabel.dvb:

 1. Create a new VBA project with the name RoomLabel. Make sure to change the default

project name (ACADProject) to RoomLabel in the VBA Editor.

 2. In the VBA Editor, in the Project Explorer, right-click the new project and choose

Import File.

 3. When the Import File dialog box opens, browse to and select the clsUtilities.cls fi le

in the MyCustomFiles folder. Click Open.

The clsUtilities.cls fi le contains the utility procedures that you created as part of the

DrawPlate project.

 4. In the Project Explorer, right-click the new project and choose Insert ➢ Module. Change

the default name of the new module to basRoomLabel.

 5. On the menu bar, click File ➢ Save.

Creating the RoomLabel Block Defi nition
Creating separate drawing fi les that your custom programs depend on has advantages and

 disadvantages. One advantage of creating a separate drawing fi le is that you can use the AutoCAD

user interface to create the block fi le. However, AutoCAD must be able to locate the drawing fi le

so that the custom program can use the fi le. If AutoCAD can’t locate the fi le, the custom program

will have problems. Creating a block defi nition through code allows you to avoid the need of

 maintaining separate fi les for your blocks, thus making it easier to share a custom application with

your clients or subcontractors. A disadvantage of using code to create your blocks is the time it takes

to write the code for all your blocks and then having to maintain the code once it has been written.

In these steps, you create a custom function named roomlabel_createblkdef that will

be used to create the block defi nition for the room label block if it doesn’t already exist in the

drawing.

 1. In the Project Explorer, double-click the basRoomLabel component.

 2. In the text editor area of the basRoomLabel component, type the following. (The com-

ments are here for your information and don’t need to be typed.)

Private myUtilities As New clsUtilities

' Constant for the removal of the "Command: " prompt msg

Const removeCmdPrompt As String = vbBack & vbBack & vbBack & _

 vbBack & vbBack & vbBack & _

 vbBack & vbBack & vbBack & vbLf

Private g_nLastNumber As Integer

Private g_sLastPrefix As String

204 | CHAPTER 7 WORKING WITH BLOCKS AND EXTERNAL REFERENCES

c07.indd 11:58:44:AM/03/25/2015 Page 204

' Creates the block definition roomlabel

Private Sub RoomLabel_CreateBlkDef()

 On Error Resume Next

 ' Check for the existence of the roomlabel block definition

 Dim oBlkDef As AcadBlock

 Set oBlkDef = ThisDrawing.Blocks("roomlabel")

 ' If an error was generated, create the block definition

 If Err Then

 Err.Clear

 ' Define the block's origin

 Dim dInsPt(2) As Double

 dInsPt(0) = 18: dInsPt(1) = 9: dInsPt(2) = 0

 ' Create the block definition

 Set oBlkDef = ThisDrawing.Blocks.Add(dInsPt, "roomlabel")

 ' Add a rectangle to the block

 Dim dPtList(7) As Double

 dPtList(0) = 0: dPtList(1) = 0

 dPtList(2) = 36: dPtList(3) = 0

 dPtList(4) = 36: dPtList(5) = 18

 dPtList(6) = 0: dPtList(7) = 18

 Dim oLWPline As AcadLWPolyline

 Set oLWPline = oBlkDef.AddLightWeightPolyline(dPtList)

 oLWPline.Closed = True

 ' Add the attribute definition to the block

 Dim oAttDef As AcadAttribute

 Set oAttDef = oBlkDef.AddAttribute(9, acAttributeModeLockPosition, _

 "ROOM#", dInsPt, "ROOM#", "L000")

 oAttDef.Layer = "Plan_RoomLabel_Anno"

 ' Set the alignment of the attribute

 oAttDef.Alignment = acAlignmentMiddleCenter

 oAttDef.TextAlignmentPoint = dInsPt

 End If

End Sub

 3. Click File ➢ Save.

Figure 7.3 shows the block defi nition that is created by this procedure. To see the contents

of the block defi nition, use the bedit command and select the RoomLabel block. As an

alternative, you can insert the RoomLabel block into the drawing and explode it.

EXERCISE: CREATING AND QUERYING BLOCKS | 205

c07.indd 11:58:44:AM/03/25/2015 Page 205

Figure 7.3

RoomLabel block

defi nition

Inserting a Block Reference Based on the RoomLabel Block Defi nition
Once you’ve created the block defi nition and added it to the AcadBlocks collection object, you

can insert it into the drawing by using the insert command or the InsertBlock function in the

AutoCAD Object library.

In these steps, you create two custom functions named changeattvalue and roomlabel_

insertblkref. The changeattvalue function allows you to revise the insertion point and value

of an attribute reference attached to a block reference based on the attribute’s tag. The roomlabel_

insertblkref function creates a block reference based on the RoomLabel block defi nition that

was created with the roomlabel_createblkdef function.

 1. In the text editor area of the basRoomLabel component, scroll to the bottom of the last

procedure and press Enter a few times. Then, type the following. (The comments are here

for your information and don’t need to be typed.)

' Changes the value of an attribute reference in a block reference

Private Sub ChangeAttValue(oBlkRef As AcadBlockReference, _

 vInsPt As Variant, sAttTag As String, _

 sNewValue As String)

 ' Check to see if the block reference has attribute references

 If oBlkRef.HasAttributes Then

 ' Get the attributes of the block reference

 Dim vAtts As Variant

 vAtts = oBlkRef.GetAttributes

 Dim nCnt As Integer

 ' Step through the attributes in the block reference

 Dim oAttRef As AcadAttributeReference

 For nCnt = 0 To UBound(vAtts)

 Set oAttRef = vAtts(nCnt)

 ' Compare the attributes tag with the tag

 ' passed to the function

 If UCase(oAttRef.TagString) = UCase(sAttTag) Then

 oAttRef.InsertionPoint = vInsPt

 oAttRef.TextAlignmentPoint = vInsPt

 oAttRef.textString = sNewValue

 ' Exit the For statement

 Exit For

206 | CHAPTER 7 WORKING WITH BLOCKS AND EXTERNAL REFERENCES

c07.indd 11:58:44:AM/03/25/2015 Page 206

 End If

 Next

 End If

End Sub

' Creates the block definition roomlabel

Private Sub RoomLabel_InsertBlkRef(vInsPt As Variant, _

 sLabelValue As String)

 ' Add the layer Plan_RoomLabel_Anno

 myUtilities.CreateLayer "Plan_RoomLabel_Anno", 150

 ' Create the "roomlabel" block definition

 RoomLabel_CreateBlkDef

 ' Insert the block into model space

 Dim oBlkRef As AcadBlockReference

 Set oBlkRef = ThisDrawing.ModelSpace. _

 InsertBlock(vInsPt, "roomlabel", _

 1, 1, 1, 0)

 ' Changes the attribute value of the "ROOM#"

 ChangeAttValue oBlkRef, vInsPt, "ROOM#", sLabelValue

End Sub

 2. Click File ➢ Save.

Prompting the User for an Insertion Point and a Room Number
Now that you have defi ned the functions to create the block defi nition and inserted the block

reference into a drawing, the last function creates the main procedure that will prompt the

user for input. The roomlabel procedure will allow the user to specify a point in the drawing,

 provide a new room number, or provide a new prefi x. The roomlabel procedure uses the default

number of 101 and prefi x of L. As you use the roomlabel procedure, it increments the counter

by 1 so that you can continue placing room labels.

In these steps, you create the custom procedure named roomlabel that uses all of the func-

tions that you defi ned in this exercise to place a RoomLabel block each time you specify a point

in the drawing.

 1. In the text editor area of the basRoomLabel component, scroll to the bottom of the last

procedure and press Enter a few times. Then, type the following. (The comments are here

for your information and don’t need to be typed.)

' Prompts the user for an insertion point and room number

Public Sub RoomLabel()

 On Error Resume Next

 ' Set the default values

EXERCISE: CREATING AND QUERYING BLOCKS | 207

c07.indd 11:58:44:AM/03/25/2015 Page 207

 Dim nLastNumber As Integer, sLastPrefix As String

 If g_nLastNumber <> 0 Then

 nLastNumber = g_nLastNumber

 sLastPrefix = g_sLastPrefix

 Else

 nLastNumber = 101

 sLastPrefix = "L"

 End If

 ' Display current values

 ThisDrawing.Utility.Prompt removeCmdPrompt & _

 "Prefix: " & sLastPrefix & _

 vbTab & "Number: " & CStr(nLastNumber)

 Dim basePt As Variant

 ' Continue to ask for input until a point is provided

 Do

 Dim sKeyword As String

 sKeyword = ""

 basePt = Null

 ' Setup default keywords

 ThisDrawing.Utility.InitializeUserInput 0, "Number Prefix"

 ' Prompt for a base point, number, or prefix value

 basePt = ThisDrawing.Utility.GetPoint(, _

 removeCmdPrompt & "Specify point for room label (" & _

 sLastPrefix & CStr(nLastNumber) & _

 ") or change [Number/Prefix]: ")

 ' If an error occurs, the user entered a keyword or pressed Enter

 If Err Then

 Err.Clear

 sKeyword = ThisDrawing.Utility.GetInput

 Select Case sKeyword

 Case "Number"

 nLastNumber = ThisDrawing.Utility. _

 GetInteger(removeCmdPrompt & _

 "Enter new room number <" & _

 CStr(nLastNumber) & ">: ")

 Case "Prefix"

 sLastPrefix = ThisDrawing.Utility. _

 GetString(False, removeCmdPrompt & _

 "Enter new room number prefix <" & _

208 | CHAPTER 7 WORKING WITH BLOCKS AND EXTERNAL REFERENCES

c07.indd 11:58:44:AM/03/25/2015 Page 208

 sLastPrefix & ">: ")

 End Select

 End If

 ' If a base point was specified, then insert a block reference

 If IsNull(basePt) = False Then

 RoomLabel_InsertBlkRef basePt, sLastPrefix & CStr(nLastNumber)

 ' Increment number by 1

 nLastNumber = nLastNumber + 1

 End If

 Loop Until IsNull(basePt) = True And sKeyword = ""

 ' Store the latest values in the global variables

 g_nLastNumber = nLastNumber

 g_sLastPrefix = sLastPrefix

End Sub

 2. Click File ➢ Save.

Adding Room Labels to a Drawing
The roomlabel.dvb fi le contains the main roomlabel procedure and some helper functions

defi ned in the clsUtilities.cls fi le to defi ne new layers.

NOTE Th e following steps require a drawing fi le named ch07_building_plan.dwg. If you

didn’t download the sample fi les previously, download them now from www.sybex.com/go/

autocadcustomization. Place these sample fi les in the MyCustomFiles folder under the

Documents (or My Documents) folder.

The following steps explain how to use the roomlabel procedure that is in the roomlabel

.lsp fi le:

 1. Open Ch07_Building_Plan.dwg. Figure 7.4 shows the plan drawing of the offi ce

building.

Figure 7.4

Plan view of the

offi ce building

 2. At the Command prompt, type vbarun and press Enter.

http://www.sybex.com/go/autocadcustomization

EXERCISE: CREATING AND QUERYING BLOCKS | 209

c07.indd 11:58:44:AM/03/25/2015 Page 209

 3. When the Macros dialog box opens, select the RoomLabel.dvb!basRoomLabel.RoomLabel

macro from the list and click Run.

 4. At the Specify point for room label (L101) or change [Number/Prefix]: prompt,

specify a point inside the room in the lower-left corner of the building.

The room label defi nition block and Plan_RoomLabel_Anno layer are created the fi rst

time the roomlabel procedure is used. The RoomLabel block defi nition should look like

Figure 7.5 when inserted into the drawing.

Figure 7.5

Insert ed

RoomLabel block

 5. At the Specify point for room label (L101) or change [Number/Prefix]:

prompt, type n and press Enter.

 6. At the Enter new room number <102>: prompt, type 105 and press Enter.

 7. At the Specify point for room label (L105) or change [Number/Prefix]:

prompt, type p and press Enter.

 8. At the Enter new room number prefix <L>: prompt, type R and press Enter.

 9. At the Specify point for room label (R105) or change [Number/Prefix]:

prompt, specify a point in the large open area in the middle of the building.

 10. Press Enter to end roomlabel.

 11. Close and discard the changes to the drawing fi le.

Creating the FurnTools Project
The FurnTools project will contain several functions and main procedures that modify the

properties and extract the attribute values of block references that have been inserted into a

drawing. The following steps explain how to create a project named FurnTools and save it to a

fi le named furntools.dvb:

 1. Create a new VBA project with the name FurnTools. Make sure to also change the

default project name (ACADProject) to FurnTools in the VBA Editor.

 2. In the VBA Editor, in the Project Explorer, right-click the new project and choose

Import File.

 3. When the Import File dialog box opens, browse to and select the clsUtilities.cls fi le

in the MyCustomFiles folder. Click Open.

The clsUtilities.cls fi le contains the utility procedures that you created as part of the

DrawPlate project.

 4. In the Project Explorer, right-click the new project and choose Insert ➢ Module. Change

the name of the new module to basFurnTools.

210 | CHAPTER 7 WORKING WITH BLOCKS AND EXTERNAL REFERENCES

c07.indd 11:58:44:AM/03/25/2015 Page 210

 5. On the menu bar, click File ➢ Save.

Moving Objects to Correct Layers
Not everyone will agree on the naming conventions, plot styles, and other various aspects of

layers, but there are two things drafters can agree on when it comes to layers:

 ◆ Objects should inherit their properties, for the most part, from the objects in which they are

placed.

 ◆ Objects should only be placed on layer 0 when creating blocks.

Although I would like to think that all of the drawings I have ever created are perfect, I know

they aren’t. Rushed deadlines, changing project parameters, and other distractions impede

perfection. Objects may have been placed on the wrong layer, or maybe it wasn’t my fault and

standards simply changed during the course of a project. With VBA and the AutoCAD Object

library, you can identify potential problems in a drawing and let the user know about them so

they can be fi xed. You might even be able to fi x the problems automatically without user input.

In these steps, you will create a custom procedure named furnlayers that will be used to

identify objects by type and value to ensure they are placed on the correct layer. This is achieved

by using selection sets and entity data lists, along with looping and conditional statements.

 1. In the Project Explorer, double-click the basFurnTools component.

 2. In the text editor area of the basFurnTools component, type the following. (The com-

ments are here for your information and don’t need to be typed.)

Private myUtilities As New clsUtilities

' Constants for PI

Const PI As Double = 3.14159265358979

' Moves objects to the correct layers based on a set of established rules

Sub FurnLayers()

 On Error Resume Next

 ' Get the blocks to extract

 Dim oSSFurn As AcadSelectionSet

 Set oSSFurn = ThisDrawing.SelectionSets.Add("SSFurn")

 ' If an error is generated, selection set already exists

 If Err Then

 Err.Clear

 Set oSSFurn = ThisDrawing.SelectionSets("SSFurn")

 End If

 ' Define the selection set filter to select only blocks

 Dim nDXFCodes(3) As Integer, nValue(3) As Variant

 nDXFCodes(0) = -4: nValue(0) = "<OR":

EXERCISE: CREATING AND QUERYING BLOCKS | 211

c07.indd 11:58:44:AM/03/25/2015 Page 211

 nDXFCodes(1) = 0: nValue(1) = "INSERT"

 nDXFCodes(2) = 0: nValue(2) = "DIMENSION"

 nDXFCodes(3) = -4: nValue(3) = "OR>"

 Dim vDXFCodes As Variant, vValues As Variant

 vDXFCodes = nDXFCodes

 vValues = nValue

 ' Allow the user to select objects in the drawing

 oSSFurn.SelectOnScreen vDXFCodes, vValues

 ' Proceed if oSSFurn is greater than 0

 If oSSFurn.Count > 0 Then

 ' Step through each object in the selection set

 Dim oEnt As AcadEntity

 For Each oEnt In oSSFurn

 ' Check to see if the object is a block reference

 If oEnt.ObjectName = "AcDbBlockReference" Then

 Dim oBlkRef As AcadBlockReference

 Set oBlkRef = oEnt

 ' Get the name of the block, use EffectiveName because

 ' the block could be dynamic

 Dim sBlkName As String

 sBlkName = oBlkRef.EffectiveName

 ' If the block name starts with RD or CD,

 ' then place it on the surfaces layer

 If sBlkName Like "RD*" Or _

 sBlkName Like "CD*" Then

 oBlkRef.Layer = "Surfaces"

 ' If the block name starts with PNL, PE, and PX,

 ' then place it on the panels layer

 ElseIf sBlkName Like "PNL*" Or _

 sBlkName Like "PE*" Or _

 sBlkName Like "PX*" Then

 oBlkRef.Layer = "Panels"

 ' If the block name starts with SF,

 ' then place it on the panels layer

 ElseIf sBlkName Like "SF*" Or _

 sBlkName Like "FF*" Then

 oBlkRef.Layer = "Storage"

 End If

 ElseIf oEnt.ObjectName Like "AcDb*Dim*" Then

212 | CHAPTER 7 WORKING WITH BLOCKS AND EXTERNAL REFERENCES

c07.indd 11:58:44:AM/03/25/2015 Page 212

 oEnt.Layer = "Dimensions"

 End If

 Next oEnt

 ' Remove the selection set

 oSSFurn.Delete

 End If

End Sub

 3. Click File ➢ Save.

Creating a Basic Block Attribute Extraction Program
The designs you create take time and often are a source of income or savings for your company.

Based on the types of objects in a drawing, you can step through a drawing and get attribute

information from blocks or even geometric values such as lengths and radii of circles. You can

use the objects in a drawing to estimate the potential cost of a project or even provide informa-

tion to manufacturing.

In these steps, you create four custom functions named ExtAttsFurnBOM, SortArray,

TableFurnBOM, and RowValuesFurnBOM. The ExtAttsFurnBOM function extracts the values of the

attributes in the selected blocks and then uses the SortArray function to sort the attribute val-

ues before quantifying them. The TableFurnBOM and RowValuesFurnBOM functions are used to

create a grid of lines containing the extracted values.

 1. In the text editor area of the basFurnTools component, scroll to the bottom of the last

procedure and press Enter a few times. Then, type the following. (The comments are here

for your information and don’t need to be typed.)

' ExtAttsFurnBOM - Extracts, sorts, and quantifies the attribute information

Private Function ExtAttsFurnBOM(oSSFurn As AcadSelectionSet) As Variant

 Dim sList() As String

 Dim sPart As String, sLabel As String

 ' Step through each block in the selection set

 Dim oBlkRef As AcadBlockReference

 Dim nListCnt As Integer

 nListCnt = 0

 For Each oBlkRef In oSSFurn

 ' Step through the objects that appear after

 ' the block reference, looking for attributes

 Dim vAtts As Variant

 vAtts = oBlkRef.GetAttributes

 ' Check to see if the block has attributes

 If oBlkRef.HasAttributes = True Then

EXERCISE: CREATING AND QUERYING BLOCKS | 213

c07.indd 11:58:44:AM/03/25/2015 Page 213

 ' Get the attributes of the block reference

 Dim vAttRefs As Variant

 vAttRefs = oBlkRef.GetAttributes

 Dim oAttRef As AcadAttributeReference

 Dim nAttCnt As Integer

 For nAttCnt = LBound(vAttRefs) To UBound(vAttRefs)

 Set oAttRef = vAttRefs(nAttCnt)

 If UCase(oAttRef.TagString) = "PART" Then

 sPart = oAttRef.textString

 ElseIf UCase(oAttRef.TagString) = "LABEL" Then

 sLabel = oAttRef.textString

 End If

 Next

 End If

 ' Resize the array

 ReDim Preserve sList(nListCnt)

 ' Add the part and label values to the array

 sList(nListCnt) = sLabel & vbTab & sPart

 ' Increment the counter

 nListCnt = nListCnt + 1

 Next oBlkRef

 ' Sort the array of parts and labels

 Dim vFurnListSorted As Variant

 vFurnListSorted = SortArray(sList)

 ' Quantify the list of parts and labels

 ' Step through each value in the sorted array

 Dim sFurnList() As String

 Dim vCurVal As Variant, sPreVal As String

 Dim sItems As Variant

 nCnt = 0: nListCnt = 0

 For Each vCurVal In vFurnListSorted

 ' Check to see if the previous value is the same as the current value

 If CStr(vCurVal) = sPreVal Or sPreVal = "" Then

 ' Increment the counter by 1

 nCnt = nCnt + 1

 ' Values weren't the same, so record the quantity

 Else

214 | CHAPTER 7 WORKING WITH BLOCKS AND EXTERNAL REFERENCES

c07.indd 11:58:44:AM/03/25/2015 Page 214

 ' Split the values of the item

 sItems = Split(sPreVal, vbTab)

 ' Resize the array

 ReDim Preserve sFurnList(nListCnt)

 ' Add the part and label values to the array

 sFurnList(nListCnt) = CStr(nCnt) & vbTab & sItems(0) & vbTab & sItems(1)

 ' Increment the array counter

 nListCnt = nListCnt + 1

 ' Reset the counter

 nCnt = 1

 End If

 sPreVal = CStr(vCurVal)

 Next vCurVal

 ' Append the last item

 ' Split the values of the item

 sItems = Split(sPreVal, vbTab)

 ' Resize the array

 ReDim Preserve sFurnList(nListCnt)

 ' Add the part and label values to the array

 sFurnList(nListCnt) = CStr(nCnt) & vbTab & sItems(0) & vbTab & sItems(1)

 ' Return the sorted and quantified array

 ExtAttsFurnBOM = sFurnList

End Function

' Performs a basic sort on the string values in an array,

' and returns the newly sorted array.

Private Function SortArray(vArray As Variant) As Variant

 Dim nFIdx As Integer, nLIdx As Integer

 nFIdx = LBound(vArray): nLIdx = UBound(vArray)

 Dim nOuterCnt As Integer, nInnerCnt As Integer

 Dim sTemp As String

 For nOuterCnt = nFIdx To nLIdx - 1

 For nInnerCnt = nOuterCnt + 1 To nLIdx

 If vArray(nOuterCnt) > vArray(nInnerCnt) Then

 sTemp = vArray(nInnerCnt)

EXERCISE: CREATING AND QUERYING BLOCKS | 215

c07.indd 11:58:44:AM/03/25/2015 Page 215

 vArray(nInnerCnt) = vArray(nOuterCnt)

 vArray(nOuterCnt) = sTemp

 End If

 Next nInnerCnt

 Next nOuterCnt

 SortArray = vArray

End Function

' Create the bill of materials table/grid

Private Sub TableFurnBOM(vQtyList As Variant, dInsPt() As Double)

 ' Define the sizes of the table and grid

 Dim dColWidths(3) As Double

 dColWidths(0) = 0: dColWidths(1) = 15

 dColWidths(2) = 45: dColWidths(3) = 50

 Dim dTableWidth As Double, dTableHeight As Double

 dTableWidth = 0: dTableHeight = 0

 Dim nRow As Integer

 nRow = 1

 Dim dRowHeight As Double, dTextHeight As Double

 dRowHeight = 4: dTextHeight = dRowHeight - 1

 ' Get the table width by adding all column widths

 Dim vColWidth As Variant

 For Each vColWidth In dColWidths

 dTableWidth = dTableWidth + CDbl(vColWidth)

 Next vColWidth

 ' Define the standard table headers

 Dim sHeaders(2) As String

 sHeaders(0) = "QTY": sHeaders(1) = "LABELS": sHeaders(2) = "PARTS"

 ' Create the top of the table

 Dim vInsPtRight As Variant

 vInsPtRight = ThisDrawing.Utility.PolarPoint(_

 dInsPt, 0, dTableWidth)

 Dim oLine As AcadLine

 Set oLine = ThisDrawing.ModelSpace.AddLine(dInsPt, vInsPtRight)

 ' Get the bottom of the header row

 Dim vBottomRow As Variant

 vBottomRow = ThisDrawing.Utility.PolarPoint(_

 dInsPt, ((PI / 2) * -1), dRowHeight)

216 | CHAPTER 7 WORKING WITH BLOCKS AND EXTERNAL REFERENCES

c07.indd 11:58:44:AM/03/25/2015 Page 216

 ' Add headers to the table

 RowValuesFurnBOM sHeaders, vBottomRow, dColWidths, dTextHeight

 ' Step through each item in the list

 Dim vItem As Variant

 For Each vItem In vQtyList

 nRow = nRow + 1

 vBottomRow = ThisDrawing.Utility.PolarPoint(_

 dInsPt, ((PI / 2) * -1), dRowHeight * nRow)

 RowValuesFurnBOM Split(vItem, vbTab), vBottomRow, dColWidths, dTextHeight

 Next vItem

 ' Create the vertical lines for each column

 dColWidthTotal = 0

 For Each vColWidth In dColWidths

 ' Calculate the placement of each vertical line (left to right)

 dColWidthTotal = CDbl(vColWidth) + dColWidthTotal

 Dim vColBasePt As Variant

 vColBasePt = ThisDrawing.Utility.PolarPoint(_

 dInsPt, 0, dColWidthTotal)

 Dim vColBottomPt As Variant

 vColBottomPt = ThisDrawing.Utility.PolarPoint(_

 vColBasePt, ((PI / 2) * -1), _

 myUtilities.Calc2DDistance(dInsPt(0), _

 dInsPt(1), _

 vBottomRow(0), _

 vBottomRow(1)))

 ' Draw the vertical line

 Set oLine = ThisDrawing.ModelSpace.AddLine(vColBasePt, vColBottomPt)

 Next vColWidth

End Sub

' Create a row and populate the data for the table

Private Sub RowValuesFurnBOM(vItems As Variant, _

 vBottomRow As Variant, _

 vColWidths As Variant, _

 dTextHeight As Double)

 ' Calculate the insertion point for the header text

EXERCISE: CREATING AND QUERYING BLOCKS | 217

c07.indd 11:58:44:AM/03/25/2015 Page 217

 Dim dRowText(2) As Double

 dRowText(0) = 0.5 + vBottomRow(0)

 dRowText(1) = 0.5 + vBottomRow(1)

 dRowText(2) = vBottomRow(2)

 Dim dTableWidth As Double

 dTableWidth = 0

 ' Get the table width by adding all column widths

 Dim vColWidth As Variant

 For Each vColWidth In vColWidths

 dTableWidth = dTableWidth + CDbl(vColWidth)

 Next vColWidth

 ' Lay out the text in each row

 Dim nCol As Integer, dColWidthTotal As Double

 nCol = 0: dColWidthTotal = 0

 Dim vItem As Variant

 For Each vItem In vItems

 ' Calculate the placement of each text object (left to right)

 dColWidthTotal = dColWidthTotal + vColWidths(nCol)

 Dim vInsTextCol As Variant

 vInsTextCol = ThisDrawing.Utility.PolarPoint(_

 dRowText, 0, dColWidthTotal)

 ' Draw the single-line text object

 Dim oText As AcadText

 Set oText = ThisDrawing.ModelSpace.AddText(CStr(vItem), _

 vInsTextCol, dTextHeight)

 ' Create the row line

 Dim vBottomRowRight As Variant

 vBottomRowRight = ThisDrawing.Utility.PolarPoint(_

 vBottomRow, 0, dTableWidth)

 Dim oLine As AcadLine

 Set oLine = ThisDrawing.ModelSpace.AddLine(vBottomRow, vBottomRowRight)

 ' Increment the counter

 nCol = nCol + 1

 Next vItem

End Sub

' Extracts, aggregates, and counts attributes from the furniture blocks

Sub FurnBOM()

 On Error Resume Next

218 | CHAPTER 7 WORKING WITH BLOCKS AND EXTERNAL REFERENCES

c07.indd 11:58:44:AM/03/25/2015 Page 218

 ' Get the blocks to extract

 Dim oSSFurn As AcadSelectionSet

 Set oSSFurn = ThisDrawing.SelectionSets.Add("SSFurn")

 ' If an error is generated, selection set already exists

 If Err Then

 Err.Clear

 Set oSSFurn = ThisDrawing.SelectionSets("SSFurn")

 End If

 ' Define the selection set filter to select only blocks

 Dim nDXFCodes(0) As Integer, nValue(0) As Variant

 nDXFCodes(0) = 0

 nValue(0) = "INSERT"

 Dim vDXFCodes As Variant, vValues As Variant

 vDXFCodes = nDXFCodes

 vValues = nValue

 ' Allow the user to select objects in the drawing

 oSSFurn.SelectOnScreen vDXFCodes, vValues

 ' Use the ExtAttsFurnBOM to extract and quantify the attributes in the blocks

 ' If a selection set was created, then look for attributes

 If oSSFurn.Count > 0 Then

 ' Extract and quantify the parts in the drawing

 Dim vAttList As Variant

 vAttList = ExtAttsFurnBOM(oSSFurn)

 ' Create the layer named BOM and set it current

 Dim oLayer As AcadLayer

 Set oLayer = myUtilities.CreateLayer("BOM", 8)

 Set ThisDrawing.ActiveLayer = oLayer.Name

 ' Prompt the user for the point to create the BOM

 Dim vInsPt As Variant

 vInsPt = ThisDrawing.Utility.GetPoint(, vbLf & _

 "Specify upper-left corner of BOM: ")

 ' Start the function that creates the table grid

 Dim dInsPt(2) As Double

 dInsPt(0) = vInsPt(0): dInsPt(1) = vInsPt(1): dInsPt(2) = vInsPt(2)

 TableFurnBOM vAttList, dInsPt

EXERCISE: CREATING AND QUERYING BLOCKS | 219

c07.indd 11:58:44:AM/03/25/2015 Page 219

 ' Remove the selection set

 oSSFurn.Delete

 End If

End Sub

 2. Click File ➢ Save.

Using the Procedures of the FurnTools Project
The procedures you added to FurnTools project leverage some of the functions defi ned in

clsUtilities.cls. These tools allow you to change the layers of objects in a drawing and

extract information from the objects in a drawing as well. More specifi cally, they allow you to

work with blocks that represent an offi ce furniture layout.

Although you might be working in a civil engineering– or mechanical design–related

fi eld, these concepts can and do apply to the work you do—just in different ways. Instead of

 extracting information from a furniture block, you could get and set information in a title block,

a callout, or even an elevation marker. Making sure hatching is placed on the correct layers

along with dimensions can improve the quality of output for the designs your company creates.

NOTE Th e following steps require a drawing fi le named ch07_building_plan.dwg. If you

didn’t download the sample fi les previously, download them now from www.sybex.com/go/

autocadcustomization. Place these sample fi les in the MyCustomFiles folder under the

Documents (or My Documents) folder.

The following steps explain how to use the FurnLayers procedure:

 1. Open ch07_building_plan.dwg.

 2. At the Command prompt, type vbarun and press Enter.

 3. When the Macros dialog box opens, select the FurnTools.dvb!basFurnTools

.FurnLayers macro from the list and click Run.

 4. At the Select objects: prompt, select all the objects in the drawing and press Enter.

The objects in the drawing are placed on the correct layers, and this can be seen as the

objects were all previously placed on layer 0 and had a color of white (or black based on

the background color of the drawing area).

The following steps explain how to use the FurnBom procedure:

 1. At the Command prompt, type vbarun and press Enter.

 2. When the Macros dialog box opens, select the FurnTools.dvb!basFurnTools.FurnBOM

macro from the list and click Run.

 3. At the Select objects: prompt, select all the objects in the drawing. Don’t press

Enter yet.

Notice that the dimension objects aren’t highlighted. As a result of the selection set fi lter

being applied with the SelectOnScreen function, the SelectOnScreen function only

allows block references (insert object types) to be selected.

http://www.sybex.com/go/autocadcustomization

220 | CHAPTER 7 WORKING WITH BLOCKS AND EXTERNAL REFERENCES

c07.indd 11:58:44:AM/03/25/2015 Page 220

 4. Press Enter to end the object selection.

 5. At the Specify upper-left corner of BOM: prompt, specify a point to the right of the

furniture layout in the drawing.

The bill of materials that represents the furniture blocks is placed in a table grid, as

shown Figure 7.6.

Figure 7.6

Bill of materials

generated from

the offi ce furniture

layout

 6. Close and discard the changes to the drawing fi le.

c08.indd 4:30:40:PM/04/06/2015 Page 221

 Chapter 8

Outputting D rawings

Autodesk® AutoCAD® drawing fi les are the living documents that an engineer or a drafter

creates to communicate the product or building being designed. Typically before a design is

brought from the digital to the physical world, it goes through a series of reviews and then fi nal

sign-off with the customer. As part of the review and sign-off process, it is common practice to

output a drawing fi le to an electronic fi le or hardcopy—known as paper.

Plotting is the most common way of outputting a drawing, whether to an electronic fi le or

to a hardcopy. You indicate which layouts to plot and plot settings to use. Plot settings can be

assigned directly to an individual layout or assigned to multiple layouts using a page setup. A

layout typically contains one or more viewports that display objects from model space and a

title block that provides information about the objects in the viewport, such as project location

and recent revisions.

In addition to plotting a layout, you can use the information contained in a drawing with

another application by exporting or importing other fi le types. For example, you might use an

external structural analysis or sun study application to complete some of the tasks you perform

or even insert an image of the drawing into a presentation.

Creating and Managing Layouts
A layout—also known as paper space—is used to organize and control which objects should be

output to an electronic fi le or hardcopy, and how. Layouts are the digital equivalent of a physi-

cal sheet of paper in which objects from model space are displayed using fl oating viewports. A

fl oating viewport allows you to specify which area of model space to display and at which scale

to display it on a layout. Each fl oating viewport can display a separate area of model space and

have a different scale. I explain how to create and modify fl oating viewports in the “Displaying

Model Space Objects with Viewports” section later in this chapter.

Floating viewports aren’t the only objects typically found on a layout. A layout commonly

has a title block that provides information about the objects being plotted and which project

they are associated with. Dimensions and notes can also be found on a layout. In addition to

the graphical objects I mentioned, each layout contains a set of plot settings. The plot settings

are used to control how the objects on the layout are output, and which device and paper size

should be used when outputting the layout. I discuss plot settings in the “Controlling the

Output of a Layout” section later in this chapter.

From the perspective of the AutoCAD Object library, a layout is represented by an

AcadLayout object that is stored in the AcadLayouts collection object. You access the

AcadLayouts collection object with the Layouts property of the AcadDocument or ThisDrawing

object. Unlike most objects in the AutoCAD Object library, a layout is a container object made

up of two different object types: AcadBlock and AcadPlotConfiguration.

222 | CHAPTER 8 OUTPUTTING DRAWINGS

c08.indd 4:30:40:PM/04/06/2015 Page 222

Creating a Layout
A new layout can be added to a drawing using the Add method of the AcadLayouts collection

object. The Add method expects a string that represents the name of the new layout to add and

returns an AcadLayout object of the new layout added. Each layout must have a unique name.

You can use the Item method with an error handler to check to see if a layout with a specifi c

name already exists in the drawing or to get a specifi c layout in the AcadLayouts collection

object. Just like other collections, a For statement can be used to step through the layouts in

a drawing.

The following code statements add a new layout named Demolition:

Dim oLayout As AcadLayout

Set oLayout = ThisDrawing.Layouts.Add("Demolition")

Here are example code statements that check for the existence of a layout named Demolition:

On Error Resume Next

Dim oLayout As AcadLayout

Set oLayout = ThisDrawing.Layouts("Demolition")

If Err Then

 MsgBox "Layout isn't in the drawing."

Else

 MsgBox "Layout was found."

End If

When a layout is no longer needed, it can be removed from the drawing using the Delete

method of an AcadLayout object.

NOTE After you create a new layout, you can copy the plot settings from an existing layout to

another layout with the CopyFrom method. I explain the CopyFrom method in the “Creating

and Managing Named Page Setups” section.

Working with a Layout
Once a layout has been created, it can be set as current or objects can be added to it, like adding

objects to model space. The ActiveLayout property of the AcadDocument object is used to set a

layout as current. The ActiveLayout property expects an object of the AcadLayout type, which

can be obtained by the Add or Item method of the AcadLayouts collection object. You can also

use the ActiveLayout property to get the AcadLayout object of the current layout.

The following code statement sets a layout named Demolition as current:

ThisDrawing.ActiveLayout = ThisDrawing.Layouts("Demolition")

NOTE When a layout is set as current using the ActiveLayout property or the layout tabs

along the bottom of a drawing window in the AutoCAD user interface, an event named

LayoutSwitched is triggered, if it has been defi ned. You can use this event to control the

display of objects on a layout after it is set as current or to change the values of system variables

DISPLAYING MODEL SPACE OBJECTS WITH VIEWPORTS | 223

c08.indd 4:30:40:PM/04/06/2015 Page 223

as needed. Th e LayoutSwitched event is a member of the AcadDocument object. I explain

how to use events for the AcadDocument object in Chapter 10, “Modifying the Application and

Working with Events.”

The Block property of an AcadLayout object returns the AcadBlock object, which contains

the graphical objects on a layout. I explained how to work with blocks in Chapter 7, “Working

with Blocks and External References.” In addition to using the Block property to get the objects

on a layout, the PaperSpace property of an AcadDocument or a ThisDrawing object can be used

to access the objects on a layout. The PaperSpace property returns an AcadPaperSpace object,

which is the only way to add a fl oating viewport to a layout. A fl oating viewport displays the

objects in model space on a layout. I explain how to add and modify fl oating viewports in the

“Displaying Model Space Objects with Viewports” section.

The following code statements insert a drawing fi le named c-tblk.dwg onto the layout

named Demolition:

' Gets the layout named Demolition

Dim oLayout As AcadLayout

Set oLayout = ThisDrawing.Layouts("Demolition")

' Defines the title block name and location

Dim sTitleBlk As String

sTitleBlk = ThisDrawing.GetVariable("MyDocumentsPrefix") & _

 "\c-tblk.dwg"

' Inserts the drawing at 0,0,0

Dim dInsPt(2) As Double

dInsPt(0) = 0: dInsPt(1) = 0: dInsPt(2) = 0

oLayout.Block.InsertBlock dInsPt, sTitleBlk, 1, 1, 1, 0

Controlling the Display of Layout Tabs
The layouts of an open drawing are typically accessed by the user with the tabs displayed

along the bottom of a drawing window. The display of the layout tabs can be toggled with the

DisplayLayoutTabs property of the AcadPreferencesDisplay object. I explained how to access

the preferences of the AutoCAD application and an open drawing in Chapter 3, “Interacting

with the Application and Documents Objects.”

Along with controlling the display of the layout tabs, you can control the order in which

 layouts appear. The TabOrder property of the AcadLayout object can be used to get or set the

order of a layout. The leftmost tab has an order of 0 and is always the Model tab. The order

of the Model tab can’t be changed, but that of a named layout can. You assign the TabOrder

 property an integer value that specifi es the new location of the tab; the order of all other layouts

is automatically updated.

Displaying Model Space Objects with Viewports
The objects added to a layout fall into one of two categories: annotation or viewports.

Annotation can be in the form of general notes, dimensions, tables, and even a title block.

224 | CHAPTER 8 OUTPUTTING DRAWINGS

c08.indd 4:30:40:PM/04/06/2015 Page 224

You place annotation on a layout to help communicate your design. Although a title block isn’t

 typically thought of as annotation, in the general sense any object that isn’t part of the actual

design in a drawing is annotation.

Viewports are windows into model space that control the objects to be displayed on a layout;

not only do they control the display of objects; viewports also control the scale at which the

objects are displayed. The viewport on a layout, other than the Model tab, is represented by

the AcadPViewport object and shouldn’t be confused with the AcadViewport object, which

represents a tiled viewport in model space. You learned about tiled viewports in Chapter 5,

“Interacting with the User and Controlling the Current View.”

Adding a Floating Viewport
A fl oating viewport can be added to a layout using the AddPViewport function. The

AddPViewport function returns an AcadPViewport object and expects three argument values

that defi ne the placement and size of the fl oating viewport. Once the fl oating viewport has

been created, you then defi ne the area of model space that should be displayed and at which

scale. I explain how to modify a viewport in the “Modifying a Floating Viewport” section later

in this chapter.

The following shows the syntax of the AddPViewport function:

retVal = object.AddPViewport(centerPoint, width, height)

Its arguments are as follows:

object The object argument represents the AcadPaperSpace object returned by the

PaperSpace property of an AcadDocument object.

centerPoint The centerPoint argument is an array of doubles that represents the center of

the viewport on the layout.

Width and height The width and height arguments are doubles that represent the

width and height of the viewport.

The following code statements create a new viewport that is 200 units wide by 190 units high

and centered at 102,97.5:

' Get the active paper space block

Dim oPSpace As AcadPaperSpace

Set oPSpace = ThisDrawing.PaperSpace

' Define the center point of the viewport

Dim dCenPt(2) As Double

dCenPt(0) = 102: dCenPt(1) = 97.5: dCenPt(2) = 0

' Add the viewport to the layout

Dim oPVport As AcadPViewport

Set oPVport = oPSpace.AddPViewport(dCenPt, 200, 190)

NOTE Viewports added with the AddPViewport function are off by default. When a viewport

is turned off , the objects in model space aren’t displayed. You use the Display method of

an AcadPViewport object to turn on the display of objects in model space. Th e Display

DISPLAYING MODEL SPACE OBJECTS WITH VIEWPORTS | 225

c08.indd 4:30:40:PM/04/06/2015 Page 225

 method accepts a single Boolean value: True to turn on a viewport or False to turn it off . Th e

ViewportOn property of an AcadPViewport object can be used to determine the current display

state of a viewport. Th e following code statement turns on a viewport:

object.Display True

Setting a Viewport as Current
The ActivePViewport property of an AcadDocument object is used to determine which view-

port is current or to set a viewport as current. Before you set a viewport as current, model space

must be active. Model space can be set as active using the MSpace property of an AcadDocument

object. When the MSpace property is True, objects in model space can be edited. The changes

made through a viewport on a layout are the same as if they were made on the Model tab or in

model space directly.

The following code statements make the viewport object assigned to the oVPort variable

active and enable model space:

ThisDrawing.ActivePViewport = oVPort

ThisDrawing.MSpace = True

As an alternative to the MSpace property, you can use the ActiveSpace property to deter-

mine which space is active and to switch between model space and paper space while a layout

is active. The MSpace property can’t be used from the Model tab, but the ActiveSpace property

can be. You can use ActiveSpace to switch to paper space if paper space isn’t currently active.

ActiveSpace behaves similar to the tilemode system variable.

The following code statement sets paper space active on a layout or switches from the Model

tab to the most recently used named layout:

ThisDrawing.ActiveSpace = acPaperSpace

Modifying a Floating Viewport
Once a viewport has been added to a layout or a reference to an AcadPViewport object has been

obtained, you can modify its properties. The properties of a viewport allow you to do the following:

 ◆ Control which area of model space is visible and the scale at which objects are displayed

 ◆ Specify the general visibility settings for the objects in model space

 ◆ Determine whether a viewport represents a view in a sheet set

Specifying the Display Settings for a Viewport

The objects that are displayed in a viewport vary based on the features of a design being com-

municated. For example, in some drawings you might want to display all objects, whereas in

others you might only want to show a small area to be detailed.

Table 8.1 lists the properties of an AcadPViewport object that control the display

of objects from model space objects. The following code statements change the arc

smoothness and display locking status for a fl oating viewport assigned to the oPVport:

oPVport.ArcSmoothness = 1500

oPVport.DisplayLocked = True

226 | CHAPTER 8 OUTPUTTING DRAWINGS

c08.indd 4:30:40:PM/04/06/2015 Page 226

Table 8.1: Display-related properties of an AcadPViewport object

Property Description

ArcSmoothness Specifi es the smoothness for curved model space objects. Enter a value

from 1 to 20,000.

Clipped Returns True if the viewport is clipped. Th ere is no method for

 clipping a viewport; you must use the vpclip command.

Direction Specifi es the view direction of the model space objects. View direction

is expressed as an array of three double values.

DisplayLocked Specifi es the lock state of the viewport’s display. When the display is

locked, the user isn’t able to change the viewport’s view.

LayerPropertyOverrides Returns True if the viewport has layer overrides applied. Th ere is no

method for applying or modifying layer overrides; you must use the

-vport command.

LensLength Specifi es the lens length applied to the viewport when perspective

viewing is enabled; use the perspective system variable to enable

 perspective view in the current viewport.

ModelView Specifi es the AcadView object that defi nes the area of model space that

should be displayed in the viewport. After assigning an AcadView

object, you must execute the SyncModelView method to update the

view in the viewport to match the AcadView object.

ShadePlot Specifi es the visual style that should be applied to the model space

objects displayed in the viewport.

Target Specifi es the target point of the current view in the viewport.

TwistAngle Specifi es the twist angle to be applied to the current view in the

viewport.

You can learn more about the properties listed in Table 8.1 from the AutoCAD Help system.

Scaling Objects in a Viewport

In addition to defi ning which area of model space to display in a viewport, the scale at which

the objects are displayed is critical to outputting a design. When you produce a drawing, the

objects displayed are commonly output at a specifi c scale so the recipient of the hardcopy can do

measurements in the fi eld. The StandardScale and CustomScale properties allow you to set the

scale for the objects in model space.

The StandardScale property lets you specify a standard scale value from a set of constant

values. The constant values include many standard plot scales used in Imperial and metric

DISPLAYING MODEL SPACE OBJECTS WITH VIEWPORTS | 227

c08.indd 4:30:40:PM/04/06/2015 Page 227

drawings in addition to the values that fi t all objects in model space to the viewport or that use

a custom scale. When using the acVpScaleToFit constant value, the extents of all the objects in

model space are displayed and a custom scale is applied to the viewport.

An example of a constant value that represents a standard scale is acVp1_4in_1ft, which

assigns a scale of ¼” = 1’-0” to a viewport. You can get a full list of the constant values that are

supported by searching on AcViewportScale in the Object Browser of the VBA Editor.

Unlike the StandardScale property, the CustomScale property accepts and returns a double

value that defi nes the scale factor for the objects displayed in a viewport. For example, the scale

factor of ¼” = 1’-0” is 0.02083, which is calculated by dividing 0.25 by 12. To use a custom scale,

the StandardScale property must be assigned the constant value of acVpCustomScale.

The following code statement sets the scale factor of ½” = 1’-0” using the constant value

acVp1_2in_1ft to a viewport assigned to the variable oVPort:

oVPort.StandardScale = acVp1_2in_1ft

Establishing the Settings for Drafting Aids in a Viewport

Although viewports are commonly used to display objects from model space, an end user can

work in model space from a viewport. Double-clicking over a viewport enters model space from

that viewport. When a viewport is activated, many of the drafting aids available in model space

are also available for use from within a viewport. Each viewport stores the current state and set-

tings for several drafting aids.

Table 8.2 lists the properties of an AcadPViewport object that enable and control drafting aids

related to model space objects in a viewport. The following code statements disable the grid and

snap modes for a fl oating viewport assigned to the oPVport:

oPVport.Grid = False

oPVport.SnapOn = False

Table 8.2: Drafting aids–related properties of an AcadPViewport object

Property Description

GridOn Displays the grid in a viewport

SnapBasePoint Specifi es the base point of snap mode in a viewport; the base point is an

array of three double values

SnapOn Enables snap mode in a viewport

SnapRotationAngle Specifi es the rotation angle of snap mode in a viewport

UCSIconAtOrigin Displays the user coordinate system (UCS) icon at the origin of the drawing

when the origin is visible in a viewport

UCSIconOn Displays the UCS icon in a viewport

UCSPerViewport Enables the ability to change the orientation of the UCS icon in a viewport

228 | CHAPTER 8 OUTPUTTING DRAWINGS

c08.indd 4:30:40:PM/04/06/2015 Page 228

The GridOn and SnapOn properties are used to enable or disable the use of the grid or snap

modes but don’t affect the grid or snap spacing. The GetGridSpacing and GetSnapSpacing

methods return the current X and Y spacing values of the grid and snap modes of a viewport.

Typically, the grid and snap spacing values are the same, but they don’t need to be. To

change the current spacing values of the grid and snap modes, use the SetGridSpacing and

SetSnapSpacing methods. The SetGridSpacing and SetSnapSpacing methods accept two

double values: the fi rst sets the X spacing value of the grid or snap mode, and the second sets

the Y spacing value.

You can learn more about the properties listed in Table 8.2 from the AutoCAD Help system.

Getting Information about a Sheet View

A sheet view is a viewport with some additional information. The drawings are part of a sheet

set and contain layouts with named views in model space. The AutoCAD Object library doesn’t

allow you to create or manage sheet views created with the Sheet Set Manager.

NOTE You can use the Sheet Set Object library to create and manage sheet views. I explain how

to reference other libraries in Chapter 12, “Communicating with Other Applications.”

Table 8.3 lists the properties of an AcadPViewport object that allow you to obtain information

about a sheet view.

Table 8.3: Sheet view–related properties of an AcadPViewport object

Property Description

HasSheetView Returns True if the viewport is associated with a sheet view

LabelBlockId Specifi es the object ID of the AcadBlock object that is used as the label block

for the viewport

SheetView Specifi es the AcadView object that represents the sheet view associated with

the viewport

You can learn more about the properties listed in Table 8.3 from the AutoCAD Help system.

Controlling the Output of a Layout
In addition to organizing graphical objects for output, a layout also includes a set of proper-

ties known as plot settings. The plot settings of a layout specify the device, paper size, scale, and

orientation for output. Other settings control the output of a layout to an electronic fi le or hard-

copy. Plot settings can be stored in what is known as a plot confi guration. In the AutoCAD user

interface, a plot confi guration is referred to as a page setup.

A plot confi guration or page setup allows you to apply the same plot settings to

multiple layouts. The AcadPlotConfiguration object represents one of the page setups stored

CONTROLLING THE OUTPUT OF A LAYOUT | 229

c08.indd 4:30:40:PM/04/06/2015 Page 229

in a drawing. All page setups in a drawing are accessed from the AcadPlotConfigurations col-

lection object. You obtain the AcadPlotConfigurations collection object of a drawing by using

the PlotConfigurations property of an AcadDocument object.

Creating and Managing Named Page Setups
The Add function of the AcadPlotConfigurations collection object creates a new page setup

and returns an AcadPlotConfiguration object. When adding a new page setup with the Add

function, you must provide a string that contains a unique name for the page setup. The Add

function also accepts a second optional argument of the Boolean data type that specifi es the

model type for the page setup.

A Boolean value of True creates a page setup that can only be applied to the Model

tab or False for a page setup that can be applied to a named layout. If no model type is

specifi ed, the model type is determined by the active layout tab. When working with an

existing page setup, you can check its model type by using the ModelType property of

an AcadPlotConfiguration object.

The following code statements create a new page setup named CheckPlot that can

be applied to a named layout:

Dim oPltConfig As AcadPlotConfiguration

Set oPltConfig = ThisDrawing.PlotConfigurations. _

 Add("CheckPlot", False)

If you want to modify an existing page setup, use the Item method of the

AcadPlotConfigurations collection object or a For statement to obtain an

AcadPlotConfiguration object. Once an AcadPlotConfiguration object has been

obtained, you can then modify the individual properties of the page setup or copy the

properties of another page setup. The CopyFrom method of an AcadPlotConfiguration

object copies the plot settings from one page setup to another. It accepts a single argu-

ment that specifi es an AcadPlotConfiguration object type.

TIP Th e CopyFrom method can be used to apply plot settings between two AcadLayout or

AcadPlotConfiguration objects. Th e objects don’t need to be of the same type, so you can

copy the plot settings between a layout and a page setup.

When a page setup is no longer needed, it can be removed from the drawing using the

Delete method of an AcadPlotConfiguration object. Even if an AcadPlotConfiguration

object was applied to a layout, it can be removed from the drawing, as the plot settings of a plot

confi guration are copied to a layout and not referenced by a layout. This is unlike other named

objects. For example, a dimension style is referenced to a dimension object.

Specifying an Output Device and a Paper Size
Plot settings contain two main properties that control the device and paper size to use when

outputting a layout. The name of the device to use when outputting a layout is specifi ed by the

ConfigName property of an AcadPlotConfiguration object. A device name can be a system

printer confi gured in Windows or a PC3 fi le that is created and managed with the AutoCAD

Plotter Manager (started with the plottermanager command).

230 | CHAPTER 8 OUTPUTTING DRAWINGS

c08.indd 4:30:40:PM/04/06/2015 Page 230

The devices you can assign to the plot settings of a layout or page setup are the same ones

listed in the Printer/Plotter drop-down list of the Plot and Page Setup dialog boxes. Although

you can use the Printer/Plotter drop-down list to get an idea of which devices are available to

your programs, the actual name of a device might be different. Use the GetPlotDeviceNames

function to obtain an array of the names for the available output devices that can be assigned to

the ConfigName property.

NOTE Before you can use the GetPlotDeviceNames function, you must execute the

RefreshPlotDeviceInfo method. Th e RefreshPlotDeviceInfo method updates the infor-

mation on the available devices. You must also execute the RefreshPlotDeviceInfo method

before using the GetCanonicalMediaNames function.

The paper size—physical or virtual—used to output a layout is known as a canonical media
name. A canonical media name is a unique string used to identify a paper size supported by the

device assigned to the ConfigName property. You specify a canonical media name for the plot

settings with the CanonicalMediaName property of an AcadPlotConfiguration object. The

GetCanonicalMediaNames function is used to obtain an array of all canonical media names of

the device specifi ed by the ConfigName property.

In addition to a canonical media name, each paper size has a locale media name. The locale

media name is the name of a paper size that is displayed in the Paper Size drop-down list of the

Plot and Page Setup dialog boxes. You can get the locale media name of a paper size by passing

a canonical media name to the GetLocaleMediaName function.

The paper sizes that a device supports have a fi xed size and margin, you can get the dimen-

sions of the paper size assigned to the CanonicalMediaName property with the GetPaperSize

method. The GetPaperSize method can be used to return two double values that represent the

width and height of the paper size, whereas the GetPaperMargins method returns two arrays of

two double values that represent the number of millimeters from the lower-left and upper-right

corners of the paper.

The following code statements display a message box with the paper size and plottable area

assigned to the current layout. The plottable area is calculated by the subtracting the margin

from the paper size.

Dim vLowerLeft As Variant, vUpperRight As Variant

Dim oLayout As AcadLayout

Dim dHeight As Double, dWidth As Double

' Gets the active layout

Set oLayout = ThisDrawing.ActiveLayout

' Gets the margin and paper size

oLayout.GetPaperMargins vLowerLeft, vUpperRight

oLayout.GetPaperSize dWidth, dHeight

MsgBox "Layout paper size: " & CStr(dWidth) & " x " & _

 CStr(dHeight) & vbLf & _

 "Plottable area: " & _

 CStr(dWidth - vUpperRight(0) - vLowerLeft(0)) & _

 " x " & CStr(dHeight - vUpperRight(1) - vLowerLeft(1))

CONTROLLING THE OUTPUT OF A LAYOUT | 231

c08.indd 4:30:40:PM/04/06/2015 Page 231

TIP Th e canonical media name specifi ed indicates the orientation of the paper to output the plot,

but the PlotRotation property of an AcadPlotConfiguration object can be used to rotate

the paper in 90-degree increments. Th e PlotRotation property expects a constant value of

ac0degrees, ac90degrees, ac180degrees, or ac270degrees.

The following code statements assign the DWF6 ePlot.pc3 device and a paper size

of ANSI B to a page setup assigned to the oPltConfig variable:

' Set the plot device to DWF6 ePlot

oPltConfig.ConfigName = "DWF6 ePlot.pc3"

' Set the paper size to ANSI B

oPltConfig.CanonicalMediaName = "ANSI_B_(17.00_x_11.00_Inches)"

The following code statements list all available devices, and the canonical and locale

media names of the fi rst paper size of the DWF6 ePlot.pc3 device:

Sub ListDevicesAndPaperSizes()

 Dim oPltConfig As AcadPlotConfiguration

 Set oPltConfig = ThisDrawing.PlotConfigurations.Add("Check")

 ' Display introduction text

 ThisDrawing.Utility.Prompt vbLf + "Available devices:"

 ' Update device and paper size information

 oPltConfig.RefreshPlotDeviceInfo

 ' Get the available plot devices

 Dim vDevices As Variant

 vDevices = oPltConfig.GetPlotDeviceNames

 ' Output the names of each device

 For Each sDeviceName In vDevices

 ThisDrawing.Utility.Prompt vbLf + " " + sDeviceName

 Next sDeviceName

 ' Get the first canonical media name of the DWF6 ePlot device

 oPltConfig.ConfigName = "DWF6 ePlot.pc3"

 Dim vMediaNames As Variant

 vMediaNames = oPltConfig.GetCanonicalMediaNames

 ' Display first canonical media name

 ThisDrawing.Utility.Prompt vbLf + "Canonical media name: " + _

 vMediaNames(0)

 ' Display first locale media name

232 | CHAPTER 8 OUTPUTTING DRAWINGS

c08.indd 4:30:40:PM/04/06/2015 Page 232

 ThisDrawing.Utility.Prompt vbLf + "Locale media name: " + _

 oPltConfig.GetLocaleMediaName(vMediaNames(0)) + _

 vbLf

End Sub

Here is an example of the output that is created by the sample code:

Available devices:

 None

 Snagit 11

 Send To OneNote 2013

 Microsoft XPS Document Writer

 HP ePrint

 Fax

 Default Windows System Printer.pc3

 DWF6 ePlot.pc3

 DWFx ePlot (XPS Compatible).pc3

 DWG To PDF.pc3

 PublishToWeb JPG.pc3

 PublishToWeb PNG.pc3

Canonical media name: ISO_full_bleed_B5_(250.00_x_176.00_MM)

Locale media name: ISO full bleed B5 (250.00 x 176.00 MM)

NOTE Th e PaperUnits property controls the units used to represent the scale factor and plot

off set settings of a layout or page setup. Use the constant value of acInches to set inches as

the paper units, acMillimeters for millimeters, or acPixels for pixels. Pixels are typically

used when outputting to a raster image.

Setting a Plot Style as Current
Plot styles are used to control the color, linetype, lineweight, screening, and many other settings

that affect the way graphical objects are output. A plot style can be one of two types: color-

dependent or named. Color-dependent plot styles are stored in CTB fi les, and named plot styles

are stored in STB fi les. Plot style fi les are created and managed with the AutoCAD Plot Style

Manager (displayed with the stylesmanager command). The name of the plot style to use when

outputting a layout is specifi ed by the StyleSheet property of an AcadPlotConfiguration

object.

A drawing fi le can support only one plot style type at a time, either color-dependent or

named. The pstylemode system variable indicates whether a drawing is confi gured to use color-

dependent or named plot styles. When the pstylemode system variable returns a value of 1, the

drawing is confi gured to use color-dependent plot styles and CTB fi les. A value of 0 indicates

that a drawing can use named plot styles and STB fi les. Assigning a plot style of the wrong type

to a layout causes an error.

The plot styles you can assign to the plot settings of a layout or page setup are the same ones

displayed in the Plot Style Table drop-down list of the Plot and Page Setup dialog boxes. The

GetPlotStyleTableNames function is used to obtain an array of the names for the available plot

styles that can be assigned to the StyleSheet property.

TIP Before you can use the GetPlotStyleTableNames function, you must execute the

RefreshPlotDeviceInfo method. Th e RefreshPlotDeviceInfo method updates the in-

formation on the available plot styles.

CONTROLLING THE OUTPUT OF A LAYOUT | 233

c08.indd 4:30:40:PM/04/06/2015 Page 233

The following code statements assign the monochrome.ctb or monochrome.stb fi le

to a plot confi guration assigned to a variable named oPltConfig :

' If pstylemode = 0, then drawing is using named plot styles

' Assign the correct monochrome plot style

If ThisDrawing.GetVariable("pstylemode") = 0 Then

 oPltConfig.StyleSheet = "monochrome.stb"

Else

 oPltConfig.StyleSheet = "monochrome.ctb"

End If

The following code statements list all available plot styles:

Sub ListPlotStyles()

 Dim oPltConfig As AcadPlotConfiguration

 Set oPltConfig = ThisDrawing.PlotConfigurations.Add("CheckPlot")

 ' Display introduction text

 ThisDrawing.Utility.Prompt vbLf + "Available plot styles:"

 ' Update plot style information

 oPltConfig.RefreshPlotDeviceInfo

 ' Get the available plot styles

 Dim vPStyles As Variant

 vPStyles = oPltConfig.GetPlotStyleTableNames

 ' Output the name of each plot style

 For Each sPSName In vPStyles

 ThisDrawing.Utility.Prompt vbLf + " " + sPSName

 Next sPSName

 ThisDrawing.Utility.Prompt vbLf

End Sub

Here is an example of the output that is created by the sample code:

Available plot styles:

 acad.stb

 Autodesk-Color.stb

 Autodesk-MONO.stb

 monochrome.stb

 acad.ctb

 DWF Virtual Pens.ctb

 Fill Patterns.ctb

 Grayscale.ctb

 monochrome.ctb

 Screening 100%.ctb

 Screening 25%.ctb

 Screening 50%.ctb

 Screening 75%.ctb

234 | CHAPTER 8 OUTPUTTING DRAWINGS

c08.indd 4:30:40:PM/04/06/2015 Page 234

Even when a plot style has been assigned to a layout, the plot style isn’t used when

 outputting a layout unless the PlotWithPlotStyles property is set to True. Although a plot

style can be assigned to a layout or page setup, it can also be used to affect the appearance of

graphical objects onscreen. The ShowPlotStyles property must be set to True before the plot

style assigned to a layout affects objects onscreen.

Defi ning the Area to Output
When plotting a layout, you typically specify the entire layout and not an area within the layout.

However, when plotting from the Model tab it is common to plot a small area or the extents of

all objects. The PlotType property of an AcadPlotConfiguration object specifi es what should

be plotted. The values of the PlotType property are the same as those in the What To Plot

 drop-down list in the Plot Area section of the Plot or Page Setup dialog boxes.

Table 8.4 lists the constant values of the AcPlotType enumerator that can be

assigned to or returned by the PlotType property. The following code statements set

the plot type to the extents of the layout:

oPltConfig.PlotType = acExtents

Table 8.4: Constant values of the AcPlotType enumerator

Constant Description

acDisplay Plot area matches what is shown onscreen.

acExtents Th e extents of the drawing objects on the layout defi ne the area to plot.

acLayout Margins of the active named layout are used to defi ne the area to plot. Applies only to

named layouts.

acLimits Drawing limits of the Model tab defi ne the area to plot. Th e limits of model space are

set with the limits command. Applies only to the Model tab.

acView Defi nes the area to plot with a named view. Th e named view to plot is set with the

ViewToPlot property. Th e ViewToPlot property accepts and returns an AcadView

object. I discussed how to create named views and the AcadView object in Chapter 5,

“Interacting with the User and Controlling the Current View.”

acWindow Two points are used to defi ne a window that sets the area to plot. Th e

GetWindowToPlot and SetWindowToPlot methods get and set the corners of the

window to plot, respectively. Each corner of the window is represented by an array of

two double values.

The PlotOrigin property of an AcadPlotConfiguration object specifi es the lower-left corner

of the area to plot. The value assigned to or returned by the PlotOrigin property is an array of

two double values. A plot origin of 0,0 is the most common value. Adjusting the origin shifts the

geometry in the output. For example, to shift the geometry 2 units to the right and 1 unit up, use

an origin of 2,1. If you are plotting a view or a window, you might want to center the plot on the

paper. To center a plot, set the CenterPlot property of an AcadPlotConfiguration object to True.

PLOTTING AND PREVIEWING A LAYOUT | 235

c08.indd 4:30:40:PM/04/06/2015 Page 235

Changing Other Related Output Settings
Based on the area being plotted, you might want to use lineweights or generate a hidden line

view of 3D objects. Table 8.5 lists additional properties you might need to specify when confi g-

uring plot settings. The following code statements disable the plotting of viewport borders and

enable the plotting of lineweights for the plot confi guration assigned to oPltConfig:

oPltConfig.PlotViewportBorders = False

oPltConfig.PlotWithLineweights = True

Table 8.5: Additional plot settings of an AcadPlotConfiguration object

Constant Description

PlotHidden Specifi es whether the hidden line view is applied to the objects being

plotted.

PlotViewportBorders Specifi es whether the border of the viewports on a named layout should

be plotted.

PlotViewportsFirst Specifi es whether viewports on a named layout should be plotted fi rst.

PlotWithLineweights Specifi es whether lineweights assigned to an object are used to aff ect the

appearance of the objects in the drawing when plotted.

ScaleLineweights Specifi es whether the lineweights on a layout are scaled.

SetCustomScale Specifi es the custom plot scale to apply to the objects being plotted. Set

the UseStandardScale property to False when using a custom scale.

StandardScale Specifi es the standard plot scale to apply to the objects being plotted. Set

the UseStandardScale property to True when using a standard scale.

UseStandardScale Specifi es whether a custom or standard scale should be used when plot-

ting the specifi ed area.

You can learn more about the properties listed in Table 8.5 from the AutoCAD Help system.

Plotting and Previewing a Layout
Now that you have organized objects on a layout, displayed objects from model space in a

fl oating viewport, and specifi ed the plot settings to use when outputting a layout, you are

ready to plot a layout. The AcadPlot object, which is obtained using the Plot property of the

AcadDocument object, contains the methods for plotting a layout. Before you can plot, you must

add the names of the layouts to be plotted to an array of string values. Once you’ve defi ned the

array, you pass it to the SetLayoutsToPlot method, which lets AutoCAD know the layouts to

be plotted next.

236 | CHAPTER 8 OUTPUTTING DRAWINGS

c08.indd 4:30:40:PM/04/06/2015 Page 236

Plot Today, Print Tomorrow

Plotting is often associated with large output devices, but it can also mean to print using a system

printer—a small inkjet or laser printer that uses letter, A4, and even legal- or tabloid-size paper.

Th e GetPlotDeviceNames function returns not only the plotters confi gured for AutoCAD, but also

the system printers available. As with plotters, you assign a system printer to a layout or plot con-

fi guration with the Confi gName property. Th e media sizes supported by the system printer can be

retrieved using the GetCanonicalMediaNames function and specifying the media size to use with

the CanonicalMediaName property.

For example, if a printer named First Floor Copy Room Printer is confi gured in Windows and you

use it to print your Microsoft Word documents, you can assign the same name to the Confi gName

property of the layout or plot confi guration in an AutoCAD drawing. Th e values of Letter and A4

represent two of the possible paper sizes that can be assigned to the CanonicalMediaName property.

As a programmer, you’ll fi nd that confi guring a layout or plot confi guration can be challenging.

After all, you don’t have control over which devices or media sizes a user has access to. Th e best

solution is to prompt the user to select the device and media size your program should use via

a user form. I explain how to work with user forms and controls in Chapter 11, “Creating and

Displaying User Forms.” After the user provides you with the device and media size to use, you

can store the values in the Windows Registry and retrieve the values when needed. Using this

approach, your program can be adapted for use in diff erent environments.

The following code statements create an array of two layout names and set them to be

plotted:

' Assign the names of layouts to plot

Dim sLayoutNames(1) As String

sLayoutNames(0) = "Layout1"

sLayoutNames(1) = "Layout2"

' Set the layouts to plot

ThisDrawing.Plot.SetLayoutsToPlot sLayoutNames

After the layouts to be plotted have been specifi ed with the SetLayoutsToPlot method, they

can be plotted to a hardcopy using the PlotToDevice method or to an electronic fi le using the

PlotToFile method. When you’re using the PlotToDevice or PlotToFile method, each lay-

out specifi ed can be plotted using its own plot settings, or the plot settings of each layout can

be overridden with the settings of an AcadPlotConfiguration object. The PlotToDevice and

PlotToFile methods return a Boolean value of True if all layouts are successfully plotted;

otherwise, False is returned.

TIP Th e BeginPlot and EndPlot events can be used to monitor the start and end of the plot

process. Th ese events are members of the AcadDocument object. I explain how to use events

for the AcadDocument object in Chapter 10.

The following shows the syntax of the PlotToDevice and PlotToFile methods:

object.PlotToDevice [plotConfig]

object.PlotToFile fileName [, plotConfig]

EXPORTING AND IMPORTING FILE FORMATS | 237

c08.indd 4:30:40:PM/04/06/2015 Page 237

Their arguments are as follows:

object The object argument represents the variable assigned the AcadPlot object that you

will be working with.

fileName The fileName argument is a string that specifi es the full path of the fi le to be

created.

plotConfig The plotConfig argument is optional and of the AcadPlotConfiguration

object type. The AcadPlotConfiguration object overrides the plot settings of the layouts

specifi ed by the SetLayoutsToPlot method.

The PlotToDevice and PlotToFile methods are affected by the backgroundplot system

variable. When the backgroundplot system variable is set to 2 or 3, plotting occurs in the back-

ground; the plotting can take longer, but the VBA program completes sooner.

NOTE When you’re plotting a layout with the PlotToDevice and PlotToFile methods, any

errors that are generated while plotting are displayed in message boxes. Th e QuietErrorMode

property of the AcadPlot object can be used to disable the error message displays during plot-

ting; a plot log is generated instead. Set the QuietErrorMode property to True to log plot errors

and disable the error message boxes when plotting.

The following code statements plot the layouts specifi ed by the SetLayoutsToPlot method

and each layout’s plot settings:

' Plot the layouts quietly

ThisDrawing.Plot.QuietErrorMode = True

If ThisDrawing.Plot.PlotToDevice Then

 MsgBox "Layouts successfully plotted."

End If

As an alternative to immediately plotting a layout, you can display a layout in the Preview

window and let the user decide whether to plot the layout based on the preview. The

DisplayPlotPreview method displays the current layout in the Preview window, which is the

same as the one opened with the Preview button in the Plot dialog box or when the preview

command is executed. The execution of the VBA macro is suspended until the Preview window

is dismissed.

NOTE An error is generated if you call the SetLayoutsToPlot method before calling the

DisplayPlotPreview method.

Exporting and Importing File Formats
Although the objects on a layout can be plotted to an electronic fi le with a confi gured device,

you can also export the objects of a drawing to a supported fi le format. An exported fi le can

be used in a presentation, imported into an analysis software package, or even used to print a

prototype in a 3D printer. The Export method of the AcadDocument object allows you to export

specifi ed objects from a drawing. Exporting objects from a drawing requires you to specify the

name and location of the fi le, a fi le extension, and the objects to export.

238 | CHAPTER 8 OUTPUTTING DRAWINGS

c08.indd 4:30:40:PM/04/06/2015 Page 238

The fi lename and location you pass to the Export method can’t include a fi le extension; the

fi le type is determined by the fi le extension specifi ed. The fi le extensions .wmf, .sat, .eps, .dxf,

and .bmp are supported. The graphical objects you want to export must be passed to the Export

method using an AcadSelectionSet object. As an alternative, you can allow the user to select

which objects to export by passing an AcadSelectionSet object with no objects or specify a

value of Nothing to export all objects in a drawing.

A previously exported or supported fi le created by another application can be imported into

a drawing with the Import method, which is a member of the AcadDocument object. The Import

method requires you to specify the full fi lename and location of the fi le you want to import,

as well as an insertion point and scale factor to control the placement and size of the imported

objects.

The following code statements export all objects in a drawing to a DXF fi le and then import

them back into the current drawing at half of their original scale:

' Export objects to a DXF file

Dim sDXFFile As String, sFileExt As String

sDXFFile = ThisDrawing.GetVariable("MyDocumentsPrefix") & _

 "\ACP_Sample"

sFileExt = "DXF"

ThisDrawing.Export sDXFFile, sFileExt, Nothing

' Import a DXF file

Dim dInsPt(2) As Double

dInsPt(0) = 0: dInsPt(1) = 0: dInsPt(2) = 0

ThisDrawing.Import sDXFFile & "." & sFileExt, dInsPt, 0.5

Exercise: Adding a Layout to Create a Check Plot
As part of the design process, many companies create what is known as a check plot. A check

plot is a hardcopy of a layout that is used by an engineer to review a design that was created in

AutoCAD. During the review, comments and markups are handwritten on the hardcopy and

then passed back to the drafter for corrections. Over time, the review process has been slowly

moving from an analog process (hardcopy) to being digitally done on a workstation.

In this section, you will continue to work with the DrawingSetup project that you created in

Chapter 3. As part of the existing project, you will create several new procedures that create and

confi gure an output device so a check plot can be output. The key concepts that are covered in

this exercise are as follows:

Creating and Working with a Layout Layouts allow you to organize objects in a drawing for

output. Once a layout has been created, annotation and viewports can be added to help

communicate a design.

Confi guring the Plot Settings of a Layout Before a layout can be output, you must specify

the device and paper size you want to use, among other settings that control the appearance of

the objects on the layout.

EXERCISE: ADDING A LAYOUT TO CREATE A CHECK PLOT | 239

c08.indd 4:30:40:PM/04/06/2015 Page 239

Adding and Modifying Viewports Viewports are used to control which objects from model

space you want to display as part of a layout. Each viewport can be assigned a different scale to

control the size at which the objects from model space are displayed.

Plotting a Layout Plotting a layout allows you to output a design to hardcopy or an elec-

tronic fi le to share with others.

NOTE Th e steps in this exercise depend on the completion of the steps in the “Exercise: Setting

Up a Project” section of Chapter 3. If you didn’t complete the steps, do so now or start with

the ch08_drawingsetup.dvb sample fi le available for download from www.sybex.com/

go/ autocadcustomization. Place this sample fi le in the MyCustomFiles folder under the

Documents (or My Documents) folder, or the location you are using to store the DVB fi les.

After the fi les are saved to the location you are using to store DVB fi les, remove ch08_ from the

fi lename. You will also need the sample fi les ch08_building_plan.dwg, ch08_clsUtilities.

cls, and b-tblk.dwg for this exercise.

Creating the Layout
A layout is used to organize objects from model space and the annotation required to com-

municate the design within viewports. Depending on the type of drawings you work with,

there can be benefi ts to creating layouts dynamically as they are needed instead of manually

adding them to your drawings. The following steps explain how to create a procedure named

AddCheckPlotLayout to the drawingsetup.dvb project:

 1. Open the VBA Editor and load the drawingsetup.dvb fi le.

 2. In the VBA Editor Project Explorer, double-click the code module

named basDrawingSetup.

 3. When the code editor window opens, scroll to the bottom and click after the last

End Sub statement. Press Enter twice.

 4. Type the following; the comments are included for your information and don’t

need to be typed:

' Adds a new layout based on the name passed to the function

Private Function AddLayout(sLayoutName As String) As AcadLayout

 On Error Resume Next

 ' Get the layout

 Set AddLayout = ThisDrawing.Layouts(sLayoutName)

 ' If an error is generated, the layout doesn't exist

 If Err Then

 Err.Clear

 ' Add the layout

 Set AddLayout = ThisDrawing.Layouts.Add(sLayoutName)

 End If

End Function

 5. On the menu bar, click File ➢ Save.

http://www.sybex.com/go/autocadcustomization

240 | CHAPTER 8 OUTPUTTING DRAWINGS

c08.indd 4:30:40:PM/04/06/2015 Page 240

Adding and Modifying a Plot Confi guration
Plot settings control how a layout is output to a device (printer, plotter, or fi le). You can modify

the plot settings of a layout directly or create a named plot confi guration and then copy those

plot settings to a layout.

The following steps defi ne a procedure named AddPlotConfig, which is a helper function used

to create a plot confi guration based on a device and media size. You will use this function later to

create a new plot confi guration or return the plot confi guration if it already exists in the drawing.

The function returns an AcadPlotConfiguration object that represents the new plot confi guration.

 1. In the code editor window, scroll to the bottom and click after the last End

Function statement. Press Enter twice.

 2. Type the following; the comments are here for your information and don’t need

to be typed:

' Adds a plot configuration based on the name and values

' passed to the function

Private Function AddPlotConfig(sPltConfigName As String, _

 sDeviceName As String, _

 sMediaName As String, _

 sPlotStyleName As String, _

 bModelType As Boolean, _

 nPlotType As AcPlotType, _

 nPlotRotation As AcPlotRotation, _

) As AcadPlotConfiguration

 On Error Resume Next

 ' Get the plot configuration

 Set AddPlotConfig = ThisDrawing. _

 PlotConfigurations(sPltConfigName)

 ' If an error is generated, the plot configuration doesn't exist

 If Err Then

 Err.Clear

 ' Add the plot configuration

 Set AddPlotConfig = ThisDrawing. _

 PlotConfigurations. _

 Add(sPltConfigName, bModelType)

 ' Assign a device name

 AddPlotConfig.ConfigName = sDeviceName

 ' Assign a media name

 AddPlotConfig.CanonicalMediaName = sMediaName

 ' Assign a plot style name

 AddPlotConfig.StyleSheet = sPlotStyleName

 ' Assign the layout plot type

 AddPlotConfig.PlotType = nPlotType

EXERCISE: ADDING A LAYOUT TO CREATE A CHECK PLOT | 241

c08.indd 4:30:40:PM/04/06/2015 Page 241

 ' Assign the plot rotation

 AddPlotConfig.PlotRotation = nPlotRotation

 End If

End Function

 3. On the menu bar, click File ➢ Save.

Inserting a Title Block
Title blocks are a form of annotation that is used to help identify and communicate the project

with which the drawing is associated. Depending on your design, a title block might display

the location of a building, the model number of a new part to be manufactured, revision history,

and much more. In the exercises in Chapter 3, you inserted the title block b-tblk.dwg into a

drawing using the insert command with the SendCommand method, but as I explained earlier in

the book, using commands for this kind of operation has drawbacks.

In the next steps, you will create a new procedure named AddBlkReference that

will insert a title block onto a specifi ed layout with a known location, rotation, and

scale. The procedure will then be used later to insert that same block.

 1. In the code editor window, scroll to the bottom and click after the last End

Function statement. Press Enter twice.

 2. Type the following; the comments are here for your information and don’t need

to be typed:

' Insert a block onto a specified layout

Private Function AddBlkReference(oLayout As AcadLayout, _

 sBlkName As String, _

 vInsPoint As Variant, _

 dRotation As Double, _

 dScale As Double _

) As AcadBlockReference

 On Error Resume Next

 ' Insert the block

 Set AddBlkReference = oLayout.Block. _

 InsertBlock(vInsPoint, _

 sBlkName, _

 dScale, dScale, dScale, _

 dRotation)

 ' If an error is generated, return Nothing

 If Err Then

 Err.Clear

 Set AddBlkReference = Nothing

 End If

End Function

 3. On the menu bar, click File ➢ Save.

242 | CHAPTER 8 OUTPUTTING DRAWINGS

c08.indd 4:30:40:PM/04/06/2015 Page 242

Displaying Model Space Objects with a Viewport
The most common objects placed on a layout after annotation objects are viewports. Viewports

are used to display model space objects at a specifi c scale.

In the next steps, you will create a new procedure named AddFloatingViewport that adds a

fl oating viewport to the specifi ed paper space block with a known center, width, and height.

 1. In the code editor window, scroll to the bottom and click after the last End Function

statement. Press Enter twice.

 2. Type the following; the comments are here for your information and don’t need to

be typed:

' Add a floating viewport to a layout

Private Function AddFloatingViewport(oPSpace As AcadPaperSpace, _

 vCenterPoint As Variant, _

 dWidth As Double, _

 dHeight As Double _

) As AcadPViewport

 On Error Resume Next

 ' Add the Viewport

 Set AddFloatingViewport = oPSpace. _

 AddPViewport(vCenterPoint, _

 dWidth, _

 dHeight)

 ' If an error is generated, return Nothing

 If Err Then

 Err.Clear

 Set AddFloatingViewport = Nothing

 End If

End Function

 3. On the menu bar, click File ➢ Save.

Putting It All Together
Now that you have defi ned functions that create a layout and plot confi guration, insert a block,

and add a fl oating viewport, it is time to put them all to work. In addition to using the functions

defi ned in this exercise, you will use the createlayer function from the clsUtilities class to

create a few new layers if they aren’t present in the drawing fi le.

In these steps, you’ll import the class module named clsUtilities.cls and defi ne a global

variable, which will be used to access the procedures defi ned in the clsUtilities class:

 1. In the VBA Editor, in the Project Explorer, right-click the DrawingSetup project and

choose Import File.

 2. When the Import File dialog box opens, browse to and select the clsUtilities.cls fi le

in the MyCustomFiles folder. Click Open.

EXERCISE: ADDING A LAYOUT TO CREATE A CHECK PLOT | 243

c08.indd 4:30:40:PM/04/06/2015 Page 243

The clsUtilities.cls fi le contains the utility procedures that you created as part of the

DrawPlate project or downloaded as part of the sample fi les for this book.

 3. In the Project Explorer, double-click the code module named basDrawingSetup.

 4. In the text editor area of the basDrawingSetup component, scroll to the top and add the

following on a new line:

Private myUtilities As New clsUtilities

The createlayer function is now available for use in the basDrawingSetup code

module.

In the next steps, you will create a new procedure named CheckPlot. This will be the main

procedure that the end user executes from the AutoCAD user interface. This new procedure cre-

ates a layout and plot confi guration named CheckPlot, inserts the title block stored in the draw-

ing fi le named b-tblk.dwg, creates a new fl oating viewport, and outputs the layout using the

assigned device to a fi le named checkplot.dwf.

 1. In the code editor window, scroll to the bottom and click after the last End Function

statement. Press Enter twice.

 2. Type the following; the comments are here for your information and don’t need to

be typed:

' Creates a function that creates a new layout named CheckPlot,

' sets the output device for the layout to the DWF ePlot.pc3 file,

' inserts a title block for a ANSI B size sheet of paper and

' plots the layout.

Public Sub CheckPlot()

 On Error Resume Next

 ' Check to see if the CheckPlot layout already exists,

 ' and if so set it current

 Dim oLayout As AcadLayout

 Set oLayout = ThisDrawing.Layouts("CheckPlot")

 If Err Then

 Err.Clear

 ' Store and change the default for creating a viewport

 ' when a new layout is created

 Dim bFlag As Boolean

 bFlag = ThisDrawing.Application. _

 Preferences.Display.LayoutCreateViewport

 ThisDrawing.Application. _

 Preferences.Display.LayoutCreateViewport = False

 ' Use the AddLayout function to create

244 | CHAPTER 8 OUTPUTTING DRAWINGS

c08.indd 4:30:40:PM/04/06/2015 Page 244

 ' the CheckPlot layout

 Set oLayout = AddLayout("CheckPlot")

 ' Set the new layout current

 ThisDrawing.ActiveLayout = oLayout

 ' Use the AddPlotConfig function to create

 ' the CheckPlot plot configuration

 Dim oPltConfig As AcadPlotConfiguration

 Set oPltConfig = AddPlotConfig("CheckPlot", "DWF6 ePlot.pc3", _

 "ANSI_B_(17.00_x_11.00_Inches)", _

 False, "acad.ctb", _

 acLayout, ac0degrees)

 ' Assign the plot configuration to the layout

 oLayout.CopyFrom oPltConfig

 ' Use the AddBlkReference function to insert

 ' the title block named b-tblk.dwg onto the layout

 Dim sTitleBlkName As String

 sTitleBlkName = ThisDrawing.GetVariable("mydocumentsprefix") & _

 "\MyCustomFiles\b-tblk.dwg"

 Dim dInsPt(2) As Double

 dInsPt(0) = 0: dInsPt(1) = 0: dInsPt(2) = 0

 Dim oBlkRef As AcadBlockReference

 Set oBlkRef = AddBlkReference(oLayout, sTitleBlkName, _

 dInsPt, 0, 1)

 ' If a block reference was returned, place it on the Tblk layer

 If Not oBlkRef Is Nothing Then

 ' Add the layer for the title block

 oBlkRef.Layer = myUtilities.CreateLayer("TBLK", 8).Name

 End If

 ' Add a viewport to the layout

 Dim dCPt(2) As Double

 dCPt(0) = 6.375: dCPt(1) = 4.875: dCPt(2) = 0

 Dim oVport As AcadPViewport

 Set oVport = AddFloatingViewport(ThisDrawing.PaperSpace, _

 dCPt, 12.55, 9.55)

 ' If a floating viewport was returned, place it on the Vport layer

 If Not oVport Is Nothing Then

 ' Turn the viewport On

EXERCISE: ADDING A LAYOUT TO CREATE A CHECK PLOT | 245

c08.indd 4:30:40:PM/04/06/2015 Page 245

 oVport.Display True

 ' Add the layer for the viewport and set it to not plottable

 Dim oLayer As AcadLayer

 Set oLayer = myUtilities.CreateLayer("Vport", 9)

 oLayer.Plottable = False

 ' Assign the layer for the viewport

 oVport.Layer = oLayer.Name

 ' Set the scale of the viewport to Fit

 oVport.StandardScale = acVpScaleToFit

 Else

 MsgBox "Warning: The viewport couldn't be created."

 End If

 ' Restore viewport creation for new layouts

 ThisDrawing.Application. _

 Preferences.Display.LayoutCreateViewport = bFlag

 Else

 ' Set the new layout current

 ThisDrawing.ActiveLayout = oLayout

 End If

 ' Zoom to the extents of the layout

 ThisDrawing.Application.ZoomExtents

 ' Regen the drawing

 ThisDrawing.Regen acActiveViewport

 ' Re-establish the area to plot is the layout

 ThisDrawing.ActiveLayout.PlotType = acLayout

 ' Prompt the user if the check plot should be created now

 If MsgBox("Do you want to create the check plot?", _

 vbYesNo) = vbYes Then

 With ThisDrawing.Plot

 ' Assign the CheckPlot layout for plotting

 .SetLayoutsToPlot Array(oLayout)

 ' Define the name of the DXF file to create

 Dim sDWFName As String

 sDWFName = ThisDrawing.GetVariable("mydocumentsprefix") & _

 "\MyCustomFiles\checkplot.dwf"

 ' Plot the DWF file and display a message if the

 ' plot was unsuccessful

246 | CHAPTER 8 OUTPUTTING DRAWINGS

c08.indd 4:30:40:PM/04/06/2015 Page 246

 If .PlotToFile(sDWFName) = False Then

 MsgBox "The CheckPlot layout couldn't be output." & _

 vbLf & "Check the device and plot settings."

 End If

 End With

 End If

End Sub

 3. On the menu bar, click File ➢ Save.

Testing the CheckPlot Procedure
The following steps explain how to test the CheckPlot procedure:

 1. Switch to the AutoCAD application window.

 2. Open Ch08_Building_Plan.dwg.

 3. At the Command prompt, type vbarun and press Enter.

 4. When the Macros dialog box opens, select the RoolLabel.dvb!basDrawingsetup.

CheckPlot macro from the list and click Run.

The new layout named CheckPlot is set as current, as shown in Figure 8.1.

Figure 8.1

New layout with

a title block

 5. When the message box opens, click Yes to create the DWF fi le in the MyCustomFiles

folder.

Open the checkplot.dwf fi le that is generated with the Autodesk Design Review

 program (http://usa.autodesk.com/design-review/) or a similar program.

http://usa.autodesk.com/design-review

c09.indd 12:3:0:PM/03/25/2015 Page 247

Chapter 9

Storing and Retrieving
Custom Data

There are times when it would be nice to have a custom program store values and then retrieve

them at a later time. Although you can use a global variable to temporarily store a value while

the custom program remains in memory, global variables do not persist across multiple

sessions. Using the AutoCAD® Object library and VBA, you can store values so that they persist

between drawing or AutoCAD sessions.

If you want a value to be available when a drawing is open, you can use extended data

(Xdata) or a custom dictionary. (I introduced the use of dictionaries in Chapter 8, “Annotating

Objects,” and how they are used for storing annotation styles such as table and multileader

styles.) Xdata can be attached to an object as a way to differentiate one object from another or, in

some cases, to affect the way an object might look in the drawing area.

Values can be stored in the Windows Registry and retrieved from any AutoCAD session that

your custom program is loaded into. The values stored in the Windows Registry can represent

strings, 2D or 3D points, integers, and doubles. As an alternative, the values can be written

to a text fi le and read at a later time. (I discuss how to work with external fi les in Chapter 12,

“Communicating with Other Applications.”)

Extending Object Information
Each object in a drawing has a preestablished set of properties that defi ne how that object

should appear or behave. For example, these properties are used to defi ne the size of a circle

or the location of a line within a drawing. Although you can’t use VBA to add a new property

to an object, you can append custom information to an object. The custom information that is

appended to an object is known as Xdata.

Xdata is structured using two arrays. The fi rst array contains the data types for the values to

be stored (DXF group codes); the second array contains the values to be stored. The two arrays

must contain the same number of elements. As part of the values to be stored, the fi rst value

must be an application name to identify the custom program that added the Xdata. After the

application name, the array can contain any supported values. Supported values are strings,

integers, doubles, and entity names, among others.

The values that make up the Xdata and what they represent is up to you, the creator of the

data. Data in the Xdata arrays can be used to identify where an object should be placed or which

layer it should be on, to store information about an external database record that is related to an

248 | CHAPTER 9 STORING AND RETRIEVING CUSTOM DATA

c09.indd 12:3:0:PM/03/25/2015 Page 248

object, or to build relationships between objects in a drawing. The way data is used or enforced

is up to you as the programmer.

In addition to Xdata, graphical and nongraphical objects support what are known as extension
dictionaries. Extension dictionaries are kind of like record tables that can be attached to an object.

For example, you could store revision history of a drawing in an extension dictionary that is

attached to model space, and then populate the drawing title block with that information. Even

AutoCAD uses extension dictionaries to implement features, such as Layer States and Filters,

which are attached to the Layer symbol table. I discuss creating custom dictionaries in greater

detail in the “Creating and Modifying a Custom Dictionary” section later in this chapter.

Working with Xdata
Attaching Xdata to an object requires you to do some initial planning and perform several steps.

Appending Xdata

The following list outlines the steps that you must perform in order to attach Xdata to an object:

 1. Check to see if the object already has Xdata attached and with what application name.

If Xdata is already attached with the application name you planned to use, skip to the

“Replacing Xdata” section.

 2. Defi ne and register an application name for your custom program.

 3. Defi ne the array that will hold the DXF group codes that will specify the data types for

the data values array; the fi rst element in the array should be 1001, which represents the

DXF group code for the application name.

 4. Defi ne the array that will hold the data values for the Xdata; the fi rst element in the array

should be a string that represents the application name.

 5. Get the object to which you wish to append the Xdata.

 6. Append the Xdata to the object with the SetXData method.

Replacing Xdata

Prior to appending Xdata, you should check to see if the object already has Xdata with your

custom program’s application name attached to it. If that’s the case, you should replace the current

Xdata with the new. Follow these steps to modify the Xdata previously attached to an object:

 1. Defi ne the values that will make up the Xdata.

 2. Defi ne the array that will hold the DXF group codes that will be used to represent the

data types of the data values array; the fi rst element in the array should be 1001, which

represents the DXF group code for the application name.

 3. Defi ne the array that will hold the data values for the Xdata; the fi rst element in the array

should be a string that represents the application name.

 4. Get the object for which you wish to replace the Xdata.

EXTENDING OBJECT INFORMATION | 249

c09.indd 12:3:0:PM/03/25/2015 Page 249

 5. Use the GetXData method to check for the existence of Xdata for the application name.

 6. Substitute the current Xdata attached to an object with the new Xdata.

 7. Update the object.

Defi ning and Registering an Application Name
Before you can attach Xdata to an object, you must decide on an application name and then

register that name with the current drawing. The application name you choose should be

unique to avoid confl icts with other Xdata that could potentially be attached to an object.

After you choose an application name, register the name with the Add method of the

AcadRegisteredApplications collection object. The Add method accepts a single string

argument that is the name of the application you want to register, and it returns the new

AcadRegisteredApplication object.

The following example demonstrates how to register an application:

' Registers the application named MyApp

Dim sAppName as String

sAppName = "MyApp"

Dim oRegApp As AcadRegisteredApplication

Set oRegApp = ThisDrawing.RegisteredApplications.Add(sAppName)

Attaching Xdata to an Object
Once you have defi ned and registered an application name, you can attach Xdata to an object

within that drawing. Xdata is made up of two arrays and has a total size limit of 16 KB per

object. (See the “Monitoring the Memory Used by Xdata for an Object” sidebar for more infor-

mation.) The fi rst array defi nes the data types of the values to be stored using DXF group

codes, whereas the second array defi nes the actual values. The two arrays are used for what is

known as a dotted pair. A dotted pair in AutoCAD is a relationship of a data type and value that

has the format of (dxftype . value) to programming languages such as the AutoLISP® and

ObjectARX® languages.

The DXF group codes used in the data type array of Xdata must be within the range of 1000

to 1071. Each DXF group code value in that range represents a different type of data, and you

can use each DXF group code more than once in the data type array for Xdata. Table 9.1 lists

some of the commonly used DXF group codes for Xdata.

Table 9.1: Xdata-related DXF group codes

DXF group code Description

1000 String value

1001 Application name

250 | CHAPTER 9 STORING AND RETRIEVING CUSTOM DATA

c09.indd 12:3:0:PM/03/25/2015 Page 250

DXF group code Description

1010 3D point

1040 Real numeric value

1070 16-bit (unsigned or signed) integer value

1071 32-bit signed integer value

The following arrays defi ne Xdata that contains the application name MyApp, a string value

with the text “My custom application,” and a double that represents the current date:

' Define the data types array for the Xdata

Dim nXdTypes(2) As Integer

nXdTypes(0) = 1001

nXdTypes(1) = 1000

nXdTypes(2) = 1071

' Define the data values array for the Xdata

Dim vXdVals(2) As Variant

vXdVals(0) = "MyApp"

vXdVals(1) = "My custom application"

vXdVals(2) = CLng(ThisDrawing.GetVariable("cdate"))

The array that defi nes the data types of the values in the Xdata must be defi ned as the inte-

ger data type, whereas the data values array for the Xdata should be defi ned as the variant data

type. Once the arrays that will make up the Xdata have been defi ned, the Xdata can be attached

to an object with the SetXData method.

The following shows the syntax of the SetXData method:

object.SetXData dataTypes, dataValues

Its arguments are as follows:

object The object argument represents the AutoCAD object that you want to attach

Xdata to.

dataTypes The dataTypes argument is an array of integers that represent the types of data

values to be stored with the object’s Xdata.

dataValues The dataValues argument is an array of variants that represent the data values

to be stored with the object’s Xdata.

After the Xdata has been attached to an object, you might need to execute the object’s

Update method to refresh the object if the Xdata affects the appearance of the object. I

explained how to use the Update method in Chapter 5, “Interacting with the User and

Controlling the Current View.”

Table 9.1: Xdata-related DXF group codes (continued)

EXTENDING OBJECT INFORMATION | 251

c09.indd 12:3:0:PM/03/25/2015 Page 251

This exercise shows how to attach Xdata to a circle:

 1. At the AutoCAD Command prompt, type vbaman and press Enter.

 2. When the VBA Manager opens, click New.

 3. Click Visual Basic Editor.

 4. In the VBA Editor, in the Project Explorer, double-click the ThisDrawing component.

 5. In the code editor window, type the following:

Sub AddXDataToCircle()

 ' Registers the application named MyApp

 Dim sAppName As String

 sAppName = "MyApp"

 Dim oRegApp As AcadRegisteredApplication

 Set oRegApp = ThisDrawing.RegisteredApplications.Add(sAppName)

 ' Define the data types array for the Xdata

 Dim nXdTypes(2) As Integer

 nXdTypes(0) = 1001

 nXdTypes(1) = 1000

 nXdTypes(2) = 1071

 ' Define the data values array for the Xdata

 Dim vXdVals(2) As Variant

 vXdVals(0) = "MyApp"

 vXdVals(1) = "My custom application"

 vXdVals(2) = CLng(ThisDrawing.GetVariable("cdate"))

 ' Define center point for the circle

 Dim dCenPt(2) As Double

 dCenPt(0) = 2: dCenPt(1) = 2: dCenPt(2) = 0

 ' Add a circle object to model space

 Dim oCirc As AcadCircle

 Set oCirc = ThisDrawing.ModelSpace.AddCircle(dCenPt, 1)

 ' Assign the Xdata to the circle object

 oCirc.SetXData nXdTypes, vXdVals

End Sub

 6. Switch to AutoCAD.

 7. At the Command prompt, type vbarun and press Enter.

 8. When the Macros dialog box opens, select the GlobalN!ThisDrawing.AddXDataToCircle

macro and click Run.

 9. Save the project if you want, but don’t close it as you will continue with the project in the

next exercise.

252 | CHAPTER 9 STORING AND RETRIEVING CUSTOM DATA

c09.indd 12:3:0:PM/03/25/2015 Page 252

A new circle with a center point of 2,2 and radius of 1 is added to model space along with the Xdata

attached to it. The circle won’t look any different than a circle without the Xdata attached to it because the

Xdata doesn’t affect the way the AutoCAD program draws the object. However, you can now identify

this circle from those that might be created with the circle command. For example, you could use

Xdata to tag a circle that represents a drill hole in your drawing. By identifying the circle as a drill hole,

you make it easier to locate and update the circles that represent drill holes as needed in the drawing.

Monitoring the Memory Used by Xdata for an Object

Each object in a drawing can have a maximum of 16 KB of Xdata attached to it. Th e 16 KB is the

total of all Xdata attached to an object, and not just for one application. If the limit of Xdata is

close and you attach additional Xdata that exceeds the limit, the Xdata won’t be attached. AutoLISP

provides two functions that help to determine the size of the Xdata being attached to an object and

the amount of space already being used by the Xdata attached to an object.

Th e AutoCAD Object library doesn’t support any functions that can be used to manage Xdata, but

when the limit is exceeded an error is generated. You can use the VBA error-handling features to

catch and respond to the error accordingly.

Querying and Modifying the Xdata Attached to an Object
Xdata that has been previously attached to an object can be queried and modifi ed by following

a process that is similar to the one used to attach Xdata to an object. The GetXData method of an

object is used to get the Xdata attached to an object for a specifi c application or all applications.

Two arrays are returned by the GetXData method. You can use the IsArray function to check

whether the values returned by the GetXData method are empty. If a value of True is returned

by the IsArray function, the object has Xdata attached to it for the specifi ed application name.

The following shows the syntax of the GetXData function:

object.GetXData appName, dataTypes, dataValues

Its arguments are as follows:

object The object argument represents the AutoCAD object that you want to retrieve

Xdata from.

appName The appName argument is a string that represents the application name of the

Xdata you want to retrieve. Using an empty string returns the Xdata for all applications that

have Xdata attached to the object.

EXTENDING OBJECT INFORMATION | 253

c09.indd 12:3:0:PM/03/25/2015 Page 253

dataTypes The dataTypes argument must be a variant and is assigned the current types of

data that are stored with the object’s Xdata. The variant that is returned contains an array of

integer values.

dataValues The dataValues argument must be a variant and is assigned the current data

values that are stored with the object’s Xdata.

The following code statements return the Xdata for the application named MyApp if attached

to the last object in model space:

' Get the last object added to model space

Dim oAcadObj As AcadObject

Set oAcadObj = ThisDrawing.ModelSpace(ThisDrawing.ModelSpace.Count - 1)

' Get the Xdata for the MyApp application name

Dim vXdTypes As Variant, vXdVals As Variant

oAcadObj.GetXData "MyApp", vXdTypes, vXdVals

Using an empty string instead of an actual application name returns the Xdata for all applica-

tions attached to an object, as shown here:

' Get the Xdata for all applications

Dim vXdTypes As Variant, vXdVals As Variant

oAcadObj.GetXData "", vXdTypes, vXdVals

This exercise shows how to list the Xdata attached to a dimension with a dimension override:

 1. At the AutoCAD Command prompt, type dli press Enter.

 2. At the Specify first extension line origin or <select object>: prompt, specify

a point in the drawing.

 3. At the Specify second extension line origin: prompt, specify a second point in the

drawing.

 4. At the Specify dimension line location or [Mtext/Text/Angle/Horizontal/

Vertical/Rotated]: prompt, specify a point in the drawing to place the linear

dimension.

 5. Select the linear dimension that you created, right-click, and then click Properties.

 6. In the Properties palette, click the Arrow 1 fi eld under the Lines & Arrows section. Select

None from the drop-down list.

The fi rst arrowhead of the linear dimension is suppressed as a result of a dimension over-

ride being created.

 7. In the VBA Editor, open the code editor window for the ThisDrawing component of the

project you created in the previous exercise. Type the following:

Sub RetreiveXDataForLastObject()

 ' Get the last object added to model space

 Dim oAcadObj As AcadObject

 Set oAcadObj = ThisDrawing.ModelSpace(ThisDrawing.ModelSpace.Count - 1)

 ' Get the Xdata attached to the object

254 | CHAPTER 9 STORING AND RETRIEVING CUSTOM DATA

c09.indd 12:3:0:PM/03/25/2015 Page 254

 Dim vXdTypes As Variant, vXdVals As Variant

 oAcadObj.GetXData "", vXdTypes, vXdVals

 ' Check to see whether the value returned is an array

 ' An array means Xdata is present

 If IsArray(vXdTypes) Then

 Dim sMsg As String

 sMsg = "Xdata Values" & vbLf

 Dim nCnt As Integer

 ' Append the values of the Xdata to the sMsg variable

 For nCnt = 0 To UBound(vXdVals)

 sMsg = sMsg & "Value (" & CStr(nCnt) & ") " & vXdVals(nCnt) & vbLf

 Next nCnt

 ' Display the value of the sMsg variable

 MsgBox sMsg

 End If

End Sub

 8. Switch to AutoCAD.

 9. At the Command prompt, type vbarun and press Enter.

 10. When the Macros dialog box opens, select the GlobalN!ThisDrawing.

RetreiveXDataForLastObject macro and click Run.

Attaching Xdata to the linear dimension is how the AutoCAD program handles dimen-

sion overrides for individual dimensions. Figure 9.1 shows what the Xdata attached to the

linear dimension looks like as a result of changing the Arrow 1 property in step 6.

 11. Save the project if you want, but don’t close it, as you will continue with the project in the

next exercise.

NOTE I mentioned earlier that Xdata doesn’t aff ect the appearance of an object, and that is still

true even when used as we did in the previous exercise. Xdata itself doesn’t aff ect the object, but

AutoCAD does look for its own Xdata and uses it to control the way an object might be drawn. If

you implement an application with the ObjectARX application programming interface, you could

use ObjectARX and Xdata to control how an object is drawn onscreen. You could also control

the way an object looks using object overrules with Managed .NET and Xdata. ObjectARX and

Managed .NET are the two advanced programming options that Autodesk supports for AutoCAD

development. You can learn more about ObjectARX and Managed .NET at www.objectarx.com.

As shown in the previous exercise, the IsArray function can be used to determine whether

Xdata for a specifi c application is already attached to an object by getting the values returned by the

GetXData method. If Xdata is already attached to an object for a specifi c application name, assign-

ing new values with the same application will overwrite the previous Xdata that was attached.

http://www.objectarx.com

EXTENDING OBJECT INFORMATION | 255

c09.indd 12:3:0:PM/03/25/2015 Page 255

Modifying Xdata that is already attached requires you to get the current Xdata with the GetXData

method and then re-dimension the array using the ReDim and Preserve statements. Which

approach you use depends on whether you need to replace or modify the existing Xdata.

Figure 9.1

Message box dis-

playing the data

values of Xdata that

represent a dimen-

sion override

This exercise shows how to modify the Xdata of the dimension you created in the previous

exercise. You will append values that will assign ACI 40 to the dimension line and ACI 7 to the

extension lines overriding the colors assigned to the dimension by its assigned dimension style.

 1. In the VBA Editor, open the code editor window for the ThisDrawing component of the

project you created earlier in this chapter. Type the following:

Sub ReplaceXDataForDimOverride()

 On Error Resume Next

 ' Prompt the user to select an object

 Dim oAcadObj As AcadObject

 ThisDrawing.Utility.GetEntity oAcadObj, Nothing, _

 vbLf & "Select dimension to add overrides: "

 Dim nXdTypesFinal() As Integer

 Dim vXdValsFinal() As Variant

 ' Check to see if an object was selected

 If Not oAcadObj Is Nothing Then

 ' Check to see if the selected object is a dimension

 If TypeOf oAcadObj Is AcadDimension Then

 ' Get the Xdata attached to the object

 Dim vXdTypes As Variant, vXdVals As Variant

256 | CHAPTER 9 STORING AND RETRIEVING CUSTOM DATA

c09.indd 12:3:0:PM/03/25/2015 Page 256

 oAcadObj.GetXData "ACAD", vXdTypes, vXdVals

 ' Check to see whether the value returned is an array

 ' An array means Xdata is present

 If IsArray(vXdTypes) Then

 Dim nCnt As Integer, nNewCnt As Integer

 nCnt = 0: nNewCnt = 0

 ' Append the values of the Xdata to the sMsg variable

 For nCnt = 0 To UBound(vXdVals)

 ' If "{", append the previous value and new values

 If vXdVals(nCnt) = "{" Then

 ' Increase the arrays by 4 additional values to make

 ' room for the new overrides

 ReDim Preserve nXdTypesFinal(nNewCnt + 4)

 ReDim Preserve vXdValsFinal(nNewCnt + 4)

 ' Add the existing Xdata value of "{"

 nXdTypesFinal(nNewCnt) = vXdTypes(nCnt)

 vXdValsFinal(nNewCnt) = vXdVals(nCnt)

 ' Add the data types and values for the new overrides

 ' Dimension line color

 nXdTypesFinal(nNewCnt + 1) = 1070

 vXdValsFinal(nNewCnt + 1) = 176

 nXdTypesFinal(nNewCnt + 2) = 1070

 vXdValsFinal(nNewCnt + 2) = 40

 ' Extension line color

 nXdTypesFinal(nNewCnt + 3) = 1070

 vXdValsFinal(nNewCnt + 3) = 177

 nXdTypesFinal(nNewCnt + 4) = 1070

 vXdValsFinal(nNewCnt + 4) = 200

 ' Increment the array counter by 5 since we added 5 elements

 nNewCnt = nNewCnt + 5

 Else

 ' Not the "{" value, so append the previous value

 ReDim Preserve nXdTypesFinal(nNewCnt)

 ReDim Preserve vXdValsFinal(nNewCnt)

 ' Add the previous values of the Xdata to the new arrays

 nXdTypesFinal(nNewCnt) = vXdTypes(nCnt)

 vXdValsFinal(nNewCnt) = vXdVals(nCnt)

EXTENDING OBJECT INFORMATION | 257

c09.indd 12:3:0:PM/03/25/2015 Page 257

 ' Increment the array counter by 1

 nNewCnt = nNewCnt + 1

 End If

 Next nCnt

 Else

 ' The following is executed if no Xdata is already applied.

 ' The two arrays define color overrides for the dimension

 ' and extension lines.

 ' Define the data types array for the Xdata

 ReDim nXdTypesFinal(7)

 nXdTypesFinal(0) = 1001: nXdTypesFinal(1) = 1000

 nXdTypesFinal(2) = 1002: nXdTypesFinal(3) = 1070

 nXdTypesFinal(4) = 1070: nXdTypesFinal(5) = 1070

 nXdTypesFinal(6) = 1070: nXdTypesFinal(7) = 1002

 ' Define the data values array for the Xdata

 ReDim vXdValsFinal(7)

 vXdValsFinal(0) = "ACAD": vXdValsFinal(1) = "DSTYLE"

 vXdValsFinal(2) = "{": vXdValsFinal(3) = 176

 vXdValsFinal(4) = 40: vXdValsFinal(5) = 177

 vXdValsFinal(6) = 200: vXdValsFinal(7) = "}"

 End If

 ' Assign the Xdata to the dimension

 oAcadObj.SetXData nXdTypesFinal, vXdValsFinal

 oAcadObj.Update

 End If

 End If

End Sub

 2. Switch to AutoCAD.

 3. At the Command prompt, type vbarun and press Enter.

 4. When the Macros dialog box opens, select the GlobalN!ThisDrawing.

ReplaceXDataForDimOverride macro and click Run.

 5. At the Select dimension to add overrides: prompt, select the linear dimension you

created in the previous exercise.

The colors of the dimension and extension lines of the dimension object inherited from

the dimension style are now overridden while preserving the fi rst arrow of the dimen-

sion being set to None. This is similar to what happens when you select a dimension,

right-click, and choose Precision.

 6. Save the project if you want, but don’t close it as you will continue with the project in the

next exercise.

258 | CHAPTER 9 STORING AND RETRIEVING CUSTOM DATA

c09.indd 12:3:0:PM/03/25/2015 Page 258

Removing Xdata from an Object
Xdata can be removed from an object when it is no longer needed. You do so by replacing the

Xdata attached to an object with a data value array that contains only an application name.

When AutoCAD evaluates Xdata with only an application name and no additional data values,

it removes the Xdata from the object. Here is an example of Xdata that can be used to remove the

Xdata associated with the MyApp application:

' Define the data types array for the Xdata

Dim nXdTypes(0) As Integer

nXdTypes(0) = 1001

' Define the data values array for the Xdata

Dim vXdVals(0) As Variant

vXdVals(0) = "MyApp"

The following example removes the Xdata list associated with an application named ACAD

from a dimension, which removes all overrides assigned to the dimension:

Sub RemoveDimOverride()

 On Error Resume Next

 ' Define the data types array for the Xdata

 Dim nXdTypes(0) As Integer

 nXdTypes(0) = 1001

 ' Define the data values array for the Xdata

 Dim vXdVals(0) As Variant

 vXdVals(0) = "Acad"

 Dim oAcadObj As AcadObject

 ThisDrawing.Utility.GetEntity oAcadObj, Nothing, _

 vbLf & "Select dimension to remove overrides: "

 ' Check to see if an object was selected

 If Not oAcadObj Is Nothing Then

 ' Check to see if the selected object is a dimension

 If TypeOf oAcadObj Is AcadDimension Then

 ' Assign the Xdata to the circle object

 oAcadObj.SetXData nXdTypes, vXdVals

 End If

 End If

End Sub

Selecting Objects Based on Xdata
You can use the Xdata attached to an object as a way to select or fi lter out specifi c objects with

the selection-related functions of the AcadSelectionSet object. (I explained how to use the

optional filterType and filterData arguments with the selection-related functions of the

CREATING AND MODIFYING A CUSTOM DICTIONARY | 259

c09.indd 12:3:0:PM/03/25/2015 Page 259

AcadSelectionSet object in Chapter 4, “Creating and Modifying Drawing Objects.”) If you

want to fi lter on the Xdata attached to an object, you use the DXF group code 1001 along with

the application name from the Xdata.

Here are example code statements that use the SelectOnScreen method to allow the user to

select objects in the drawing but keep in the selection set those that have Xdata attached to them

with the ACAD application name:

Sub SelectObjectsByXdata()

 On Error Resume Next

 ' Define the data types array for the Xdata

 Dim nXdTypes(0) As Integer

 nXdTypes(0) = 1001

 ' Define the data values array for the Xdata

 Dim vXdVals(0) As Variant

 ' Get the selection set named SSAcad

 Dim oSSAcad As AcadSelectionSet

 Set oSSAcad = ThisDrawing.SelectionSets("SSAcad")

 ' If SSMyApp isn't found, add it

 If Err Then

 Err.Clear

 Set oSSAcad = ThisDrawing.SelectionSets.Add("SSAcad")

 Else

 ' Clear the objects in the selection set

 oSSAcad.Clear

 End If

 ' Selects objects containing Xdata

 ' with the application name of ACAD.

 vXdVals(0) = "ACAD"

 oSSAcad.SelectOnScreen nXdTypes, vXdVals

 ' Display the number of objects in the selection set

 MsgBox "Objects that contain Xdata for MyApp are: " & CStr(oSSAcad.Count)

 ' Remove the SSAcad selection set

 oSSAcad.Delete

End Sub

Creating and Modifying a Custom Dictionary
Dictionaries are used to store custom information and objects in a drawing and can be thought

of as an extension of symbol tables. Dictionaries were introduced with AutoCAD R13 as a way

to introduce new symbol-table-like objects without the need to change the drawing fi le format

260 | CHAPTER 9 STORING AND RETRIEVING CUSTOM DATA

c09.indd 12:3:0:PM/03/25/2015 Page 260

with each release. Although there is only one type of dictionary in a drawing, dictionaries can

be stored in two different ways: per drawing or per object.

The main dictionary—also known as the named object dictionary—of a drawing contains

nested dictionaries that store multileader and table styles, and even the layouts used to organize

and output a drawing. Dictionaries can also be attached to an object, and those are known as

extension dictionaries, which I explained earlier this chapter.

Custom dictionaries are great for storing custom program settings so that they persist across

drawing sessions. You might also use a custom dictionary as a way to store drawing revision

history or project information that can be used to track a drawing and populate a title block.

In this section, you’ll learn how to access, create, query, and modify information stored in a

dictionary.

Accessing and Stepping through Dictionaries
The main dictionary of a drawing is accessed using the Dictionaries property of

the ThisDrawing or an AcadDocument object. The Dictionaries property returns the

AcadDictionaries collection object, which contains all the dictionaries that aren’t attached to

an object as an extension dictionary. Dictionaries are similar to working with symbol tables.

Once you have the AcadDictionaries collection object, use the object’s Item method or a For

statement to get an individual dictionary that is represented by an AcadDictionary object.

A dictionary can store an object or extended record—also known as an Xrecord. An Xrecord

is similar to the Xdata that can be attached to an object, which I explain in the “Storing

Information in a Custom Dictionary” section later in this chapter. The only difference is that

Xrecord data types are in the range of 1–369 instead of more than 1,000 like Xdata. Although

VBA can be used to get any dictionary stored in a drawing, not all entries in a dictionary can be

accessed with VBA and the AutoCAD Object library. The reason that not all entries in a diction-

ary are accessible is that some objects aren’t part of the AutoCAD Object library.

For example, you can access the dictionaries that store plot and visual styles in a drawing but

not the individual entries themselves. The entries of the dictionaries used to store layouts, table

styles, and multileader styles are accessible from VBA because the objects in those dictionaries

are defi ned in the AutoCAD Object library.

NOTE If you need to access the entries of other dictionaries, you will need to use the AutoLISP

programming language, ObjectARX, or Managed .NET. I discussed how to work with diction-

aries using the AutoLISP programming language in Part II, “AutoLISP: Productivity through

Programming.”

The following example code statements step through and list the names of each table style in

the drawing that is stored in the ACAD_TABLESTYLE dictionary. The code is followed by sample

output.

' Lists the table styles in the current drawing

Sub ListTableStyles()

 ' Get the ACAD_TABLESTYLE dictionary

 Dim oDictTblStyle As AcadDictionary

 Set oDictTblStyle = ThisDrawing.Dictionaries("ACAD_TABLESTYLE")

 If Not oDictTblStyle Is Nothing Then

CREATING AND MODIFYING A CUSTOM DICTIONARY | 261

c09.indd 12:3:0:PM/03/25/2015 Page 261

 Dim sMsg As String

 sMsg = "Table styles in this drawing:" & vbLf

 ' Append the names of each table style to the sMsg variable

 Dim oTblStyleEntry As AcadTableStyle

 For Each oTblStyleEntry In oDictTblStyle

 sMsg = sMsg & oTblStyleEntry.Name & vbLf

 Next oTblStyleEntry

 ' Display the table style names in the Command Line history

 ThisDrawing.Utility.Prompt vbLf & sMsg

 Else

 ThisDrawing.Utility.Prompt vbLf & _

 "Drawing doesn't contain the ACAD_TABLESTYLE dictionary."

 End If

End Sub

Table styles in this drawing:

BOM - Architectural

BOM - Mechanical

Standard

Title Sheet

The existence of an entry in a dictionary can be validated with the Item method of the

AcadDictionary object and an If conditional statement or by using the For statement to get

each entry in the dictionary. If the name of the entry in the dictionary exists, the object is

returned; otherwise, an error is generated.

The following shows how to get the Standard table style entry from the ACAD_TABLESTYLE

dictionary:

' Gets the Standard table style in the current drawing

Sub GetStandardTableStyle()

 On Error Resume Next

 ' Get the ACAD_TABLESTYLE dictionary

 Dim oDictTblStyle As AcadDictionary

 Set oDictTblStyle = ThisDrawing.Dictionaries("ACAD_TABLESTYLE")

 If TypeOf oDictTblStyle Is AcadDictionary Then

 ' Get the Standard table style

 Dim oTblStyleEntry As AcadTableStyle

 Set oTblStyleEntry = oDictTblStyle("Standard")

 If Not oTblStyleEntry Is Nothing Then

 MsgBox "Standard table style found."

 End If

 End If

End Sub

262 | CHAPTER 9 STORING AND RETRIEVING CUSTOM DATA

c09.indd 12:3:0:PM/03/25/2015 Page 262

Creating a Custom Dictionary
As I mentioned earlier, one of the benefi ts of dictionaries is that you can store custom

information or settings related to the programs you create in a drawing. Before a custom

dictionary can be used and entries added to it, it must fi rst be created. The Add method of the

AcadDictionaries collection object is used to create a new named object dictionary. When you

create a dictionary with the Add method, you must pass the method a string that represents the

name of the dictionary you wish to create. The Add method of the AcadDictionaries collection

object returns an AcadDictionary object.

Here’s an example that creates a dictionary named MY_CUSTOM_DICTIONARY and adds it to the

named object dictionary:

' Creates a custom dictionary named MY_CUSTOM_DICTIONARY

Dim oDict As AcadDictionary

Set oDict = ThisDrawing.Dictionaries.Add("MY_CUSTOM_DICTIONARY")

In addition to adding a dictionary to the named object dictionary, you can create an exten-

sion dictionary on any object that is based on AcadObject, which includes most nongraphical

and graphical objects in an AutoCAD drawing. Since an AcadDictionary object is based on an

AcadObject, it can also have an extension dictionary, which can make for some interesting and

complex data models.

An extension dictionary is similar to the named object dictionary of a drawing, and it can

hold nested dictionaries of extended records. If you want to create an extension dictionary, you

must fi rst get the extension dictionary of an object with the GetExtensionDictionary method.

This method returns an AcadDictionary object. The HasExtensionDictionary property of an

object can be used to check whether an object has an extension dictionary attached to it.

These example code statements check whether an extension dictionary exists on the last

object in model space:

Sub AddExtensionDictionary()

 On Error Resume Next

 ' Get the last object added to model space

 Dim oAcadObj As AcadObject

 Set oAcadObj = ThisDrawing.ModelSpace(ThisDrawing.ModelSpace.Count - 1)

 If Err.Number = 0 Then

 Dim oExDict As AcadDictionary

 ' Check whether an extension dictionary already exists

 If oAcadObj.HasExtensionDictionary Then

 Set oExDict = oAcadObj.GetExtensionDictionary

 MsgBox "Extension dictionary attached." & vbLf & _

 "Number of entries in the extension dictionary: " & _

 oExDict.Count

 Else

CREATING AND MODIFYING A CUSTOM DICTIONARY | 263

c09.indd 12:3:0:PM/03/25/2015 Page 263

 MsgBox "No extension dictionary attached."

 ' If the extension dictionary doesn't exist, it is added

 Set oExDict = oAcadObj.GetExtensionDictionary

 End If

 End If

End Sub

If the example code is executed, a message box is displayed, indicating whether an exten-

sion dictionary exists for the last object in model space. If the extension dictionary exists, the

number of entries in the extension dictionary is returned; otherwise, the extension dictionary is

added by the GetExtensionDictionary method. Once the extension dictionary is attached to

the object, you can then add an Xrecord or nested dictionary to the object’s extension dictionary.

You’ll learn how to add information to a custom dictionary in the next section.

Storing Information in a Custom Dictionary
After a custom dictionary has been created, you add entries to that custom dictionary using the

AddObject or AddXrecord method of the AcadDictionary object. The AddObject method allows

you to add an object based on the AcDbDictionaryRecord class that is part of the ObjectARX

and Managed .NET APIs, which Autodesk supports for AutoCAD. The AcDbDictionaryRecord

class or AcadDictionaryRecord object isn’t available from the AutoCAD Object library. In

Chapter 6, I explained how to use the AddObject method to create a new table style.

When storing information in a dictionary, use the AddXrecord method to add a new Xrecord

to the dictionary. The AddXrecord method accepts a string that represents the name of the

entry to add and returns an AcadXrecord object. The name of the entry must be unique to the

dictionary.

The following code statements add an Xrecord with the name XR1 to the dictionary named

MY_CUSTOM_DICTIONARY. The data assigned to the Xrecord contains a string (DXF group code 1),

a coordinate value (DXF group code 10), and an integer (DXF group code 71).

; Add the Xrecord to the dictionary

Dim oXRec As AcadXRecord

Set oXRec = oDict.AddXRecord("XR1")

' Define the data types array for the Xrecord

Dim nXdTypes(2) As Integer

nXdTypes(0) = 1: nXdTypes(1) = 10: nXdTypes(2) = 71

' Define a point list

Dim dPT(2) As Double

dPT(0) = 5: dPT(1) = 5: dPT(2) = 0

' Define the data values array for the Xrecord

Dim vXdVals(2) As Variant

264 | CHAPTER 9 STORING AND RETRIEVING CUSTOM DATA

c09.indd 12:3:0:PM/03/25/2015 Page 264

vXdVals(0) = "Custom string"

vXdVals(1) = dPT

vXdVals(2) = 11

' Add the arrays to the Xrecord

oXRec.SetXRecordData nXdTypes, vXdVals

If you need to make a change to the data contained in an Xrecord, you use the

GetXRecordData method of the AcadXrecord object to get the data type and value arrays of the

data stored in the Xrecord. Once you have the two arrays, you can modify their values by using

the same steps you used to modify Xdata in the “Querying and Modifying the Xdata Attached

to an Object” section earlier in this chapter.

Managing Custom Dictionaries and Entries
After a dictionary or Xrecord has been created and attached, you can change its name, remove

it, or replace it. You can freely rename and remove the dictionaries you create; those created

by AutoCAD can also be renamed and removed. I recommend being cautious about renaming

or removing dictionaries created by other features in the AutoCAD program because doing

so could cause problems. Not all dictionaries and entries of a dictionary can be removed; if an

entry is referenced by another object, it can’t be removed.

The name of an AcadDictionary object can be changed using its Name property, and

the name of an entry in a dictionary can be changed using the Rename method of the

AcadDictionary object. The Rename method expects two strings: the current name and the new

name. The following shows the syntax of the Rename method:

object.Rename oldName, newName

An AcadDictionary object can be removed using its Delete method, and the Remove method

of the AcadDictionary object can be used to remove an entry from a dictionary. The Remove

method expects a string that represents the name of the entry you want to remove from the

dictionary. An AcadObject object is returned by the Remove method that contains the object or

Xrecord that is being removed. The following shows the syntax of the Remove method:

retVal = object.Remove(entryName)

Here are examples that rename and remove a custom dictionary:

' Renames MY_CUSTOM_DICTIONARY to MY_DICTIONARY

Dim oDict As AcadDictionary

Set oDict = ThisDrawing.Dictionaries("MY_CUSTOM_DICTIONARY")

oDict.Name = "MY_DICTIONARY"

' Removes MY_DICTIONARY

Dim oDict As AcadDictionary

Set oDict = ThisDrawing.Dictionaries("MY_DICTIONARY")

oDict.Delete

STORING INFORMATION IN THE WINDOWS REGISTRY | 265

c09.indd 12:3:0:PM/03/25/2015 Page 265

Here are examples that rename and remove a dictionary entry:

' Gets the dictionary MY_CUSTOM_DICTIONARY

Dim oDict As AcadDictionary

Set oDict = ThisDrawing.Dictionaries("MY_CUSTOM_DICTIONARY")

' Renames the entry XR1 to XR_1

oDict.Rename "XR1", "XR_1"

' Removes the entry XR_1

oDict.Remove "XR_1"

If you are storing objects and not Xrecords in a dictionary, you can use the Replace method

of the AcadDictionary object to replace an object in an entry. The Replace method expects a

string that represents the name of the entry you want to replace in the dictionary, and it also

expects the new object that should replace the existing object. The following shows the syntax of

the Replace method:

object.Replace entryName, newObject

Storing Information in the Windows Registry
The AutoCAD program stores information and setting values using many different methods.

Some are proprietary; others are industry standard. Most setting values are stored as part of the

drawing using system variables, Xdata, or custom dictionaries. Those settings that aren’t stored

with the drawing are, for the most part, stored with the AutoCAD user profi le. The AutoCAD

user profi le is maintained in the Windows Registry.

You learned how to work with system variables in Chapter 3, “Interacting with the

Application and Documents Objects.” I covered Xdata and custom dictionaries earlier in

this chapter.

Creating and Querying Keys and Values
You can create and query values in the Windows Registry. The values that you can access in the

Windows Registry aren’t just related to AutoCAD but are those managed by Windows and other

installed applications. The Windows Registry is organized into three main areas (known as hive
keys but most commonly just keys). These keys are as follows:

HKEY_CLASSES_ROOT The HKEY_CLASSES_ROOT key contains settings related to fi le

extensions and ActiveX libraries that are registered with the local machine. The settings are

available to any user logged on to the machine and require elevated or administrative rights

to change.

HKEY_LOCAL_MACHINE The HKEY_LOCAL_MACHINE key contains settings related to the soft-

ware or hardware confi guration of the local machine. The settings are available to any user

logged on to the machine and require elevated or administrative rights to change.

HKEY_CURRENT_USER The HKEY_CURRENT_USER key contains settings related to software and

hardware that don’t impact the installation of software or the hardware confi guration of the

266 | CHAPTER 9 STORING AND RETRIEVING CUSTOM DATA

c09.indd 12:3:0:PM/03/25/2015 Page 266

local machine. Typically, the settings in this key are driven by the choices made while using a

software program. These settings are available only to the user who is currently logged into

Windows.

You might occasionally query values in the HKEY_CLASSES_ROOT and HKEY_LOCAL_MACHINE

keys, but the programs you create should treat the values under these keys as read-only. The

values in these keys are typically set by an application installer. The HKEY_CURRENT_USER key is

where you should store any values you want to access between AutoCAD sessions. The values

of the HKEY_CURRENT_USER key can be queried and added as needed by your programs.

There are three approaches to accessing values in the Windows Registry. The simplest is to

use the SaveSetting and GetSetting functions that are part of the VBA programming

language. These methods access values under the following location in the Windows Registry:

HKEY_CURRENT_USER\Software\VB and VBA Program Settings

The SaveSetting function allows you to save a string to the Windows Registry under a

user-specifi ed application, section, and key name. Once a value has been stored, you use the

GetSetting function, which expects the application, section, and key name of the value you

want to query.

The following shows the syntax of the SaveSetting and GetSetting functions:

SaveSetting appName, section, key, value

retVal = GetSetting(appName, section, key [, defaultValue])

The arguments are as follows:

appName The appName argument is a string that specifi es the subkey under the VB and VBA

Program Settings in the Windows Registry that you want to access.

section The section argument is a string that specifi es the key under the key represented

by the appName argument.

key The key argument is a string that specifi es the key under the key represented by the

section argument.

value The value argument is the string value that you want to store under the key speci-

fi ed. Use an empty string ("") to access the value of the key named (Default).

defaultValue The defaultValue argument is an optional string value that should be

returned if the key specifi ed doesn’t exist.

Here are some examples of writing and reading values to and from the Windows Registry:

' Creates a new key with the value of 5.5 under the application

' named CompanyABC123, in a section named HexBolt, and a key named Width

SaveSetting "CompanyABC123", "HexBolt", "Width", "5.5"

' Gets the value of the key CompanyABC123\HexBolt\Width

' If the key doesn't exist, a default value of 5.0 is returned

Dim sWidth As String

sWidth = GetSetting("CompanyABC123", "HexBolt", "Width", "5.0")

STORING INFORMATION IN THE WINDOWS REGISTRY | 267

c09.indd 12:3:0:PM/03/25/2015 Page 267

The GetSetting function requires you to know the name of the value you want to read,

but there are times when you might want to read all values under a key. You can use the

GetAllSettings function to get the names of all the values under a key. The GetAllSettings

function returns a two-dimensional array that contains the key names and their values.

Here is the syntax of the GetAllSettings function:

retVal = GetAllSettings(appName, section)

The appName and section arguments are the same as previously described for the

SaveSetting and GetSetting functions.

The following code statements list the keys and their values under HKEY_CURRENT_USER\

Software\VB and VBA Program Settings \CompanyABC123\HexBolt:

Dim vKeys As Variant, nCnt As Integer

' Query the settings under CompanyABC123\HexBolt

vKeys = GetAllSettings("CompanyABC123", "HexBolt")

' Step through the two-dimensional array

For nCnt = LBound(vKeys, 1) To UBound(vKeys, 1)

 MsgBox "Key: " & CStr(vKeys(nCnt, 0)) & vbLf & _

 "Value: " & CStr(vKeys(nCnt, 1))

Next nCnt

If you need to query or create values in other areas of the Windows Registry, you can use the

Windows Script Host Object Model, which is an external programming library that can be

referenced into your VBA project. The WshShell object contained in the library has the

functions RegRead, RegWrite, and RegDelete. In addition to the Windows Script Host Object

Model programming library, the Win32 API contains a range of Windows Registry functions

that can be used to create, read, and delete keys in any area. You can learn more about the

Win32 API functions that are related to the Windows Registry at http://support.microsoft

.com/kb/145679. I explain how to work with additional programming libraries and the Win32

API in Chapter 12.

TIP You can access the settings stored in the Windows Registry for the AutoCAD programs

installed on your workstation by reading the keys under HKEY_CURRENT_USER\Software\

Autodesk\AutoCAD.

Editing and Removing Keys and Values
You can update the data of a value under a key or remove a key or value that is no

longer needed. You update a value by using the SaveSetting function, whereas you use the

DeleteSetting function to remove a key or value.

Here is the syntax of the DeleteSetting function:

DeleteSetting appName [, section] [, key]

http://support.microsoft

268 | CHAPTER 9 STORING AND RETRIEVING CUSTOM DATA

c09.indd 12:3:0:PM/03/25/2015 Page 268

The appName, section, and key arguments are the same as previously described for the

SaveSetting and GetSetting functions. The section and key arguments are optional for the

DeleteSetting function.

The following code statement deletes the sections and keys under HKEY_CURRENT_USER\

Software\VB and VBA Program Settings \CompanyABC123:

' Removes the settings under the key CompanyABC123

DeleteSetting "CompanyABC123"

' Removes the Width value from under key CompanyABC123\HexBolt

DeleteSetting "CompanyABC123", "HexBolt", "Width"

Exercise: Storing Custom Values for the Room Labels
Program
In this section, you will modify the VBA project named RoomLabel that was introduced in

Chapter 7, “Working with Blocks and External References.” The RoomLabel project creates

and inserts a room label block into a drawing. The modifi cations that you will make to the

 project will allow you to identify the room label block in the drawing and to store values in the

Windows Registry and in a custom dictionary.

When the room label block is inserted, Xdata is attached to the block reference and allows

you to use it as a way to locate the room label blocks in the drawing. The program lets you

choose a starting (or next) number and a prefi x. These values are stored as part of the drawing,

allowing the program to continue where it last left off, and they can be stored in the Windows

Registry as the default values to use when the program is executed for the fi rst time in a

drawing.

The key concepts covered in this exercise are as follows:

Attaching Xdata to an Object Extended data (or Xdata) can be used to store custom infor-

mation with a graphical or nongraphical object. Once attached, the information can be used

to fi lter out objects with specifi c Xdata values and even manage objects differently through

custom programs.

Setting and Querying Information in the Windows Registry The Windows Registry

allows you to store values so they can be persisted between AutoCAD sessions and accessed

no matter which drawing is current.

Creating and Storing Information in a Custom Dictionary Values assigned to variables in

a drawing are temporary, but you can use custom dictionaries to persist values across draw-

ing sessions. The values stored in a drawing can then be recovered by your programs after

the drawing is closed and reopened, similar to how system variables work.

NOTE Th e steps in this exercise depend on the completion of the steps in the “Exercise: Creating

and Querying Blocks” section of Chapter 7. If you didn’t complete these exercises, do so now or

start with the ch09_roomlabel.dvb and ch09_building_plan.dwg sample fi les available

for download from www.sybex.com/go/autocadcustomization. Th ese sample fi les should

be placed in the MyCustomFiles folder within the Documents (or My Documents) folder, or in

the location you are using to store the custom program fi les. Once the fi les are stored on your

system, remove ch09_ from the name of the DVB fi le.

http://www.sybex.com/go/autocadcustomization

EXERCISE: STORING CUSTOM VALUES FOR THE ROOM LABELS PROGRAM | 269

c09.indd 12:3:0:PM/03/25/2015 Page 269

Attaching Xdata to the Room Label Block after Insertion
Chapter 7 was the last chapter in which any changes were made to the RoomLabel project.

At that time, you implemented functionality that created and inserted the room label block,

and even set the label value for the attribute in the block. Here you’ll modify the RoomLabel_

InsertBlkRef procedure so that it attaches some Xdata to the block reference that is inserted

into the drawing. The Xdata will help you identify the room label blocks inserted with the

RoomLabel project.

The following steps show how to modify the RoomLabel_InsertBlkRef procedure:

 1. Load the RoomLabel.dvb fi le into the AutoCAD drawing environment and display the

VBA Editor.

 2. In the VBA Editor, in the Project Explorer, double-click the basRoomLabel component.

 3. In the code editor window, scroll to the code statement that starts with Private Sub

RoomLabel_InsertBlkRef.

 4. Type the code shown in bold; the comments are here for your information and don’t need

to be typed:

 ' Changes the attribute value of the "ROOM#"

 ChangeAttValue oBlkRef, vInsPt, "ROOM#", sLabelValue

 ' Create and attach Xdata to assist in selecting Room Labels

 ' Define the data types array for the Xdata

 Dim nXdTypes(1) As Integer

 nXdTypes(0) = 1001: nXdTypes(1) = 1000

 ' Define the data values array for the Xdata

 Dim vXdVals(1) As Variant

 vXdVals(0) = "ACP_RoomLabel": vXdVals(1) = "Room label block"

 ' Attach the Xdata to the block reference

 oBlkRef.SetXData nXdTypes, vXdVals

End Sub

 5. Click File ➢ Save.

Revising the Main RoomLabel Procedure to Use the
Windows Registry
The changes you make to the RoomLabel procedure determine which values are used when

the procedure is initialized the fi rst time it is executed in a drawing. Previously, the default

values were defi ned in the procedure, but with the changes they can be stored in the Windows

Registry.

Follow these steps to update the Global declaration in the basRoomLabel component:

 1. In the VBA Editor, in the Project Explorer, double-click the basRoomLabel component.

 2. In the code editor window, scroll to the top of the code editor window.

 3. Remove the code shown in bold:

270 | CHAPTER 9 STORING AND RETRIEVING CUSTOM DATA

c09.indd 12:3:0:PM/03/25/2015 Page 270

Private myUtilities As New clsUtilities

' Constant for the removal of the "Command: " prompt msg

Const removeCmdPrompt As String = vbBack & vbBack & vbBack & _

 vbBack & vbBack & vbBack & _

 vbBack & vbBack & vbBack & vbLf

Private g_nLastNumber As Integer

Private g_sLastPrefix As String

 4. Click File ➢ Save.

The following steps explain how to get the last number and prefi x from the Windows

Registry:

 1. In the code editor window, scroll to the code statement that starts with Public Sub

RoomLabel().

 2. In the procedure, locate and select the code statements shown in bold:

On Error Resume Next

' Set the default values

Dim nLastNumber As Integer, sLastPrefix As String

If g_nLastNumber <> 0 Then

 nLastNumber = g_nLastNumber

 sLastPrefix = g_sLastPrefix

Else

 nLastNumber = 101

 sLastPrefix = "L"

End If

' Display current values

ThisDrawing.Utility.Prompt removeCmdPrompt & _

 "Prefix: " & sLastPrefix & _

 vbTab & "Number: " & CStr(nLastNumber)

 3. Type the bold code that follows; the comments are here for your information and don’t

need to be typed:

Dim nLastNumber As Integer, sLastPrefix As String

' Check to see if the defaults have been previously

' stored in the Windows Registry

nLastNumber = CInt(GetSetting("ACP_Settings", "RoomLabel", _

 "FirstNumber", "101"))

sLastPrefix = GetSetting("ACP_Settings", "RoomLabel", _

 "Prefix", "L")

 4. In the code editor window, still in the RoomLabel procedure, scroll down and locate the

following code statement:

ThisDrawing.Utility.InitializeUserInput 0, "Number Prefix"

EXERCISE: STORING CUSTOM VALUES FOR THE ROOM LABELS PROGRAM | 271

c09.indd 12:3:0:PM/03/25/2015 Page 271

 5. Revise the code statements in bold; you are adding a new option named Save:

basePt = Null

' Set up default keywords

ThisDrawing.Utility.InitializeUserInput 0, "Number Prefix Save"

' Prompt for a base point, number, or prefix value

basePt = ThisDrawing.Utility.GetPoint(, _

 removeCmdPrompt & "Specify point for room label (" & _

 sLastPrefix & CStr(nLastNumber) & _

 ") or change [Number/Prefix/Save]: ")

' If an error occurs, the user entered a keyword or pressed Enter

 6. In the code editor window, still in the RoomLabel procedure, scroll down a few lines to

the Select Case sKeyword code statement.

 7. Type the code shown in bold; the comments are here for your information and don’t need

to be typed:

 Case "Prefix"

 sLastPrefix = ThisDrawing.Utility. _

 GetString(False, removeCmdPrompt & _

 "Enter new room number prefix <" & _

 sLastPrefix & ">: ")

 Case "Save"

 ThisDrawing.Utility.InitializeUserInput 0, "Yes No"

 Dim sSaveToDefaults As String

 sSaveToDefaults = ThisDrawing.Utility. _

 GetKeyword(removeCmdPrompt & _

 "Save current number and prefix " & _

 "as defaults [Yes/No] <Yes>: ")

 If UCase(sSaveToDefaults) = "YES" Or _

 sSaveToDefaults = "" Then

 ' Save the current room number

 SaveSetting "ACP_Settings", "RoomLabel", _

 "FirstNumber", CStr(nLastNumber)

 ' Save the current prefix

 SaveSetting "ACP_Settings", "RoomLabel", _

 "Prefix", sLastPrefix

 End If

End Select

 8. In the code editor window, still in the RoomLabel procedure, scroll to the End Sub code

statement at the end of the RoomLabel procedure.

 9. Remove the bold text that follows:

 Loop Until IsNull(basePt) = True And sKeyword = ""

272 | CHAPTER 9 STORING AND RETRIEVING CUSTOM DATA

c09.indd 12:3:0:PM/03/25/2015 Page 272

 ' Store the latest values in the global variables

 g_nLastNumber = nLastNumber

 g_sLastPrefix = sLastPrefix

End Sub

 10. Click File ➢ Save.

Testing the Changes to the RoomLabel Procedure
The following steps explain how to use the changes made to the RoomLabel procedure:

 1. Switch to the AutoCAD application window.

 2. Open ch09_Building_Plan.dwg . Figure 9.2 shows the plan drawing of the offi ce building

that is in the drawing.

Figure 9.2

Plan view of the

offi ce building

 3. At the Command prompt, type vbarun and press Enter.

 4. When the Macros dialog box opens, select the RoolLabel.dvb!basRoomLabel.RoomLabel

macro from the list and click Run.

 5. At the Specify point for room label (L101) or change [Number/Prefix/Save]:

prompt, specify a point inside the room in the lower-left corner of the building.

The room label defi nition block, Plan_RoomLabel_Anno layer, and My_Custom_Program_

Settings custom dictionary are created the fi rst time the RoomLabel procedure is

used. The RoomLabel block defi nition should look like Figure 9.3 when inserted into the

drawing.

Figure 9.3

Inserted

RoomLabel block

 6. At the Specify point for room label (L101) or change [Number/Prefix/Save]:

prompt, type n and press Enter.

 7. At the Enter new room number <102>: prompt, type 105 and press Enter.

 8. At the Specify point for room label (L105) or change [Number/Prefix/Save]:

prompt, type p and press Enter.

EXERCISE: STORING CUSTOM VALUES FOR THE ROOM LABELS PROGRAM | 273

c09.indd 12:3:0:PM/03/25/2015 Page 273

 9. At the Enter new room number prefix <L>: prompt, type R and press Enter.

 10. At the Specify point for room label (R105) or change [Number/Prefix/Save]:

prompt, specify a point in the large open area in the middle of the building.

The new room label is marked as R105.

These steps show how to save a new default prefi x and starting number:

 1. At the Specify point for room label (R105) or change [Number/Prefix/Save]:

prompt, type n and press Enter.

 2. At the Enter new room number <105>: prompt, type 101 and press Enter.

 3. At the Specify point for room label (R101) or change [Number/Prefix/Save]:

prompt, type p and press Enter.

 4. At the Enter new room number prefix <P>: prompt, type F and press Enter.

 5. At the Specify point for room label (F101) or change [Number/Prefix/Save]:

prompt, type s and press Enter.

 6. At the Save current number and prefix as defaults [Yes/No] <Yes>: prompt,

press Enter.

 7. Press Enter again to exit the RoomLabel procedure.

 8. Create a new drawing and execute the RoomLabel procedure.

The starting value is F101. You can change the prefi x and number without affecting the

default values used each time the program is started.

 9. Execute the RoomLabel procedure again.

You should notice that the program starts numbering once again with the default values

stored in the Windows Registry. This is as expected since you removed the use of the

global variables to hold the last number and prefi x. You will address this problem in the

next section by writing the last number and prefi x to a custom dictionary to persist val-

ues in the drawing.

 10. Discard the changes to ch09_Building_Plan.dwg and the new drawing fi le.

Persisting Values for the Room Label Procedure with a Custom
Dictionary
Instead of using global variables that are lost after a drawing is closed, sometimes it is benefi cial

to persist values in a drawing for use when the program is executed again. A custom dictionary

will be used to persist the last number and prefi x used between drawing sessions.

The following steps explain how to add support for storing values in a custom dictionary:

 1. Switch to the VBA Editor.

 2. In the VBA Editor, in the Project Explorer double-click the basRoomLabel component.

274 | CHAPTER 9 STORING AND RETRIEVING CUSTOM DATA

c09.indd 12:3:0:PM/03/25/2015 Page 274

 3. In the code editor window, scroll up to the code statement that starts with Public Sub

RoomLabel().

 4. In the procedure, type the bold text that follows; the comments are here for your informa-

tion and don’t need to be typed:

nLastNumber = CInt(GetSetting("ACP_Settings", "RoomLabel", _

 "FirstNumber", "101"))

sLastPrefix = GetSetting("ACP_Settings", "RoomLabel", _

 "Prefix", "L")

' Gets the custom dictionary "My_Custom_Program_Settings" if it exists

Dim oDict As AcadDictionary

Set oDict = ThisDrawing.Dictionaries("My_Custom_Program_Settings")

Dim oXrecRL As AcadXRecord

Dim nXdType(1) As Integer, vXdValues(1) As Variant

' If the dictionary exists, get the previous values

If Not oDict Is Nothing Then

 Set oXrecRL = oDict("RoomLabel")

 If Not oXrecRL Is Nothing Then

 Dim vXdType As Variant, vXdValue As Variant

 oXrecRL.GetXRecordData vXdType, vXdValue

 Dim nCnt As Integer

 For nCnt = 0 To UBound(vXdType)

 Select Case vXdType(nCnt)

 Case 1

 sLastPrefix = vXdValue(nCnt)

 Case 71

 nLastNumber = vXdValue(nCnt)

 End Select

 Next

 End If

Else

 ' Create the dictionary

 Set oDict = ThisDrawing.Dictionaries.Add("My_Custom_Program_Settings")

 ' Add the default record

 Set oXrecRL = oDict.AddXRecord("RoomLabel")

 nXdType(0) = 1: vXdValues(0) = sLastPrefix

 nXdType(1) = 71: vXdValues(1) = nLastNumber

 oXrecRL.SetXRecordData nXdType, vXdValues

End If

EXERCISE: STORING CUSTOM VALUES FOR THE ROOM LABELS PROGRAM | 275

c09.indd 12:3:0:PM/03/25/2015 Page 275

Err.Clear

' Display current values

ThisDrawing.Utility.Prompt removeCmdPrompt & _

 "Prefix: " & sLastPrefix & _

 vbTab & "Number: " & CStr(nLastNumber)

 5. In the code editor window, still in the RoomLabel procedure, scroll to the End Sub code

statement at the end of the RoomLabel procedure.

 6. Type the bold text that follows; the comments are here for your information and don’t

need to be typed:

 End If

 ' If a base point was specified, then insert a block reference

 If IsNull(basePt) = False Then

 RoomLabel_InsertBlkRef basePt, sLastPrefix & CStr(nLastNumber)

 ' Increment number by 1

 nLastNumber = nLastNumber + 1

 ' Update the Xrecord

 nXdType(0) = 1: vXdValues(0) = sLastPrefix

 nXdType(1) = 71: vXdValues(1) = nLastNumber

 oXrecRL.SetXRecordData nXdType, vXdValues

 End If

 Loop Until IsNull(basePt) = True And sKeyword = ""

End Sub

 7. Click File ➢ Save.

Retesting the RoomLabel Procedure
Follow these steps to test the changes made to the RoomLabel procedure:

 1. Switch to the AutoCAD application window.

 2. Open ch09_Building_Plan.dwg.

 3. At the Command prompt, type vbarun and press Enter.

 4. When the Macros dialog box opens, select the RoolLabel.dvb!basRoomLabel.RoomLabel

macro from the list and click Run.

 5. At the Specify point for room label (F101) or change [Number/Prefix/Save]:

prompt, specify a point inside the room in the lower-left corner of the building.

 6. Place two other room label blocks.

 7. Save the drawing with the name RoomLabel Test - VBA.dwg, and then close the fi le.

276 | CHAPTER 9 STORING AND RETRIEVING CUSTOM DATA

c09.indd 12:3:0:PM/03/25/2015 Page 276

 8. Reopen the RoomLabel Test - VBA.dwg fi le.

 9. Execute the RoomLabel procedure and press F2. Notice the current values being used are

104 for the number and a prefi x of F, which were the current values before closing the

drawing.

 10. Add additional room labels. Keep the drawing fi le open when done.

Selecting Room Label Blocks
As I mentioned earlier, Xdata can be used to select the room label blocks placed with the

RoomLabel procedure. Here, you’ll create a new procedure named SelectRoomLabels, which

creates a selection set with only the selected room label blocks. The room label blocks can then

be selected using the Previous selection option at any Select objects: prompt.

The following steps show how to add the SelectRoomLabels procedure:

 1. Switch to the VBA Editor.

 2. In the VBA Editor, in the Project Explorer double-click the basRoomLabel component.

 3. In the code editor window, scroll to the end of the code editor window and click after the

last code statement. Press Enter twice.

 4. Type the following text; the comments are here for your information and don’t need to be

typed:

Sub SelectRoomLabels()

 On Error Resume Next

 ' Get the select set named SSRoomLabel if it exists

 Dim oSSet As AcadSelectionSet

 Set oSSet = ThisDrawing.SelectionSets("SSRoomLabel")

 If Err Then

 Set oSSet = ThisDrawing.SelectionSets.Add("SSRoomLabel")

 End If

 ' Define the data types array for the Xdata

 Dim nXdTypes(0) As Integer

 nXdTypes(0) = 1001

 ' Define the data values array for the Xdata

 Dim vXdVals(0) As Variant

 vXdVals(0) = "ACP_RoomLabel"

 ThisDrawing.Utility.Prompt _

 removeCmdPrompt & _

 "Select objects to filter on room labels: "

 ' Prompt the user to select objects to filter

 oSSet.SelectOnScreen nXdTypes, vXdVals

EXERCISE: STORING CUSTOM VALUES FOR THE ROOM LABELS PROGRAM | 277

c09.indd 12:3:0:PM/03/25/2015 Page 277

 ThisDrawing.Utility.Prompt _

 removeCmdPrompt & _

 "Use the Previous selection method to select room labels." & _

 vbLf

 ' Remove the selection set

 oSSet.Delete

End Sub

 5. Click File ➢ Save.

The following steps explain how to test the SelectRoomLabels procedure:

 1. Switch to the AutoCAD application window.

 2. If you closed the RoomLabel Test - VBA.dwg fi le from the previous section, reopen

it now.

 3. At the Command prompt, type vbarun and press Enter.

 4. When the Macros dialog box opens, select the RoolLabel.dvb!basRoomLabel

.SelectRoomLabels macro from the list and click Run.

 5. At the Select objects: prompt, type all and press Enter twice.

 6. At the Command prompt, type erase and press Enter.

 7. At the Select objects: prompt, type p and press Enter twice.

All of the room label blocks have been removed.

 8. At the Command prompt, typ e u and press Enter.

 9. Save and close the drawing fi le.

c10.indd 1:46:36:PM/03/26/2015 Page 279

Chapter 10

Modifying the Application and
Working with Events

The ability to automate the creation and modifi cation of objects in a drawing can be a huge

productivity boost to any organization. As a programmer, you should always try to seamlessly

integrate your custom programs into existing workfl ows and make it feel as if they were native

to the AutoCAD® application.

You can implement a custom user-interface element to make it easier to start a macro or

frequently used AutoCAD command. The user interface elements you implement can start

macros from different VBA projects and even custom commands defi ned in AutoLISP® (LSP) or

ObjectARX® (ARX) fi les that are loaded into the AutoCAD drawing environment. A VBA project

can load other custom programs it requires into the AutoCAD environment.

In addition to implementing custom user interface elements, you can use events to help

enforce your organization’s CAD standards when AutoCAD and third-party commands

are used. Events are specially named procedures that can be used to monitor changes to the

AutoCAD application, an open drawing, or a specifi c graphical or nongraphical object in a

drawing.

Manipulating the AutoCAD User Interface
The AcadApplication and AcadDocument objects can be used to manipulate the AutoCAD

user interface. The AcadMenuGroups collection object returned by the MenuGroups property

of the AcadApplication object allows you to access the customization groups (also known as

menu groups) of all loaded CUIx fi les. A CUIx fi le is stored externally from the AutoCAD pro-

gram and contains the defi nitions of various user interface element types that make up many

of the tools displayed in the AutoCAD application window. I explain how to work with the

AcadMenuGroups collection and AcadMenuGroup objects in the next section.

Pull-down menus on the menu bar, toolbars, and tabs on the ribbon are a few of the user

interface elements that are stored in CUIx fi les. Use the CUI Editor (accessed using the cui

command) to create new CUIx fi les and modify the user interface elements stored in an exist-

ing CUIx fi le. As an alternative, pull-down menus and toolbars can be customized using the

AutoCAD Object library.

280 | CHAPTER 10 MODIFYING THE APPLICATION AND WORKING WITH EVENTS

c10.indd 1:46:36:PM/03/26/2015 Page 280

Customizing Older Versions of AutoCAD

If you are using AutoCAD 2006 through 2009, customization fi les had the fi le extension of .cui

and not .cuix. Prior to AutoCAD 2006, customization fi les were known as menu fi les and had the

fi le extension of .mns. MNS fi les were customized using the Customize dialog box (accessed using

the customize command). You can convert CUI and MNS fi les to the CUIx fi le format in the latest

release of AutoCAD by using the cuiimport command. For more information on working with

older customization and menu fi les, see the cuiimport command in the AutoCAD Help system.

Some user interfaces can’t be customized, but their display can be toggled using system vari-

ables. You can set or get the values system variables using the SetVariable and GetVariable

methods of the AcadDocument object. I discuss how to toggle the display of some user interface

elements that can be affected by system variables in the “Controlling the Display of Other User

Interface Elements” section later in this chapter.

Managing Menu Groups and Loading Customization Files
In recent AutoCAD releases, each CUIx fi le contains a special name known as the customization
group name. (In AutoCAD 2005 and earlier, it is the menu group name.) The customization group

name must be unique for each CUIx fi le that is loaded into the AutoCAD drawing environ-

ment; if the name is already used by a loaded CUIx fi le, the AutoCAD program won’t allow the

new CUIx fi le to be loaded. A loaded CUIx fi le is represented by an AcadMenuGroup object in

the AcadMenuGroups collection object. You can get the AcadMenuGroups collection object of the

AutoCAD application by using the MenuGroups property of the AcadApplication object.

As with other collection objects, you can use the Count property to get the number of objects

in the collection and the Item method to retrieve a specifi c object. You can use a For statement

to step through a collection one object at a time if you don’t want to retrieve a specifi c object

with the Item method.

A customization group (CUIx fi le) can be loaded either as a base menu group (acBase

MenuGroup) or as a partial menu group (acPartialMenuGroup). A base menu group forces all

other CUIx fi les to be unloaded before the CUIx fi le is loaded. A partial menu group is loaded in

addition to any CUIx fi les that are already loaded. You can use the example that follows to see

what’s currently loaded in your AutoCAD session and help you determine how you wish to load

a customization group.

The following example displays a message box for each AcadMenuGroup object in the

AcadMenuGroups collection object. The message box displays the customization group name, the

full path to the CUIx fi le, and how the CUIx fi le is loaded (base or partial).

Sub InfoMenuGroups()

 Dim oMnuGrp As AcadMenuGroup

 For Each oMnuGrp In ThisDrawing.Application.MenuGroups

 With oMnuGrp

 MsgBox "MenuGroup Info: " & vbLf & _

 "Name = " & .Name & vbLf & _

MANIPULATING THE AUTOCAD USER INTERFACE | 281

c10.indd 1:46:36:PM/03/26/2015 Page 281

 "FileName = " & .MenuFileName & vbLf & _

 "Type = " & Switch(.Type = acBaseMenuGroup, "Base", _

 .Type = acPartialMenuGroup, "Partial")

 End With

 Next oMnuGrp

End Sub

To load a CUIx fi le into the AutoCAD drawing environment, use the Load method of the

AcadMenuGroups collection object. A customization group, or more specifi cally a CUIx fi le, is

unloaded using the Unload method for an AcadMenuGroup object.

The following shows the syntax of the Load method:

object.Load cuixFileName [, type]

Its arguments are as follows:

object The object argument represents the variable that contains a reference to the

AcadMenuGroups collection object.

cuixFileName The cuixFileName argument is a string that specifi es the full path to the

CUIx fi le to load.

type The type argument is an optional integer that specifi es how the CUIx should be

loaded. A value of 0 indicates the CUIx fi le should be loaded as a base customization fi le,

which forces all other CUIx fi les to be unloaded before the specifi ed CUIx fi le is loaded. A

value of 1 specifi es that the CUIx fi le should be loaded as an additional partial menu. You can

also use the constant values acBaseMenuGroup and acPartialMenuGroup instead of 0 and 1

(an approach I recommend).

The following statements load a CUIx fi le named acp.cuix and unload the customization

group named ACP:

 ' Loads the acp.cuix file as a partial file

 ThisDrawing.Application.MenuGroups.Load "c:\acp.cuix", acPartialMenuGroup

 ' Unloads the menu group named ACP

 ThisDrawing.Application.MenuGroups("ACP").Unload

The properties of the AcadMenuGroup object can also give you information about pull-down

menus and toolbars. Look at the Menus and Toolbars properties. I discuss how to access the

pull-down menus and toolbars included in a loaded CUIx fi le in the next section.

Working with the Pull-Down Menus and Toolbars
In recent releases, the ribbon has been the primary focus for accessing tools from the out-of-

the-box AutoCAD user interface, but pull-down menus and toolbars still play an important

role in custom tool access. The pull-down menus on the menu bar and toolbars displayed in the

AutoCAD application window can be customized. You can control the display of pull-down

menus and toolbars and modify the items on a pull-down menu or toolbar to align with your

customization needs. I explain how to work with pull-down menus and toolbars in the follow-

ing sections.

282 | CHAPTER 10 MODIFYING THE APPLICATION AND WORKING WITH EVENTS

c10.indd 1:46:36:PM/03/26/2015 Page 282

NOTE Changes made to a pull-down menu or toolbar can be saved to a CUIx fi le with the Save

and SaveAs methods of the AcadMenuGroup object. Th e Save method saves changes back to the

loaded CUIx fi le and expects a fi le type; specify a value of 0 for a compiled menu and 1 for a menu

source fi le type. As an alternative, you can use the constant values acMenuFileCompiled and

acMenuFileSource instead of 0 and 1 (and I recommend that you do). Th e SaveAs method saves

changes to a specifi ed CUIx fi le; you must specify a fi le type just as you do with the Save method.

For more information on the Save and SaveAs methods, see the AutoCAD ActiveX Help system.

Customizing Pull-Down Menus and the Menu Bar

The menu bar is an area along the top of most Windows-based applications, and it’s used to

access a set of pull-down menus. A pull-down menu is displayed by clicking its caption on the

menu bar. Each pull-down menu contains a set of items that are typically grouped by function.

For example, the Draw pull-down menu contains items used to start a command that creates a

new graphical object, as opposed to the Modify pull-down menu, which contains items related

to changing an existing drawing object.

NOTE In recent AutoCAD releases, the menu bar is hidden in favor of the ribbon, but you can

display it by using the menubar system variable. Set the menubar system variable to 1 to display

the menu bar or 0 to hide it.

Figure 10.1 shows a pull-down menu expanded on the AutoCAD menu bar and how the

objects in the AutoCAD Object library are visually related.

Figure 10.1

Visual reference

of the objects that

make up a pull-

down menu

Pull-down menu (AcadPopupMenu)

Separator

Submenu

Menu bar
(AcadMenuBar)

Menu item
(AcadPopupMenuItem)

The pull-down menus that are displayed on the AutoCAD menu bar can come from

any one of the loaded CUIx fi les. You access the pull-down menus of a loaded CUIx fi le

using the AcadMenuGroups collection object returned by the MenuGroups property of the

AcadApplication, which I discussed earlier, in the section “Managing Menu Groups and

Loading Customization Files.”

The Menus property of an AcadMenuGroup object returns an AcadPopupMenus collection object

that represents the pull-down menus in the associated CUIx fi le. Use the Item method and a For

statement to get an AcadPopupMenu collection object from an AcadPopupMenus collection object.

You can add a new pull-down menu to an AcadPopupMenus collection object by using the Add

method, which expects a string that represents the name of the new pull-down menu.

MANIPULATING THE AUTOCAD USER INTERFACE | 283

c10.indd 1:46:36:PM/03/26/2015 Page 283

The following example code statements display a message box with a listing of the names for

each pull-down menu in the acad.cuix fi le:

Sub ListAcadMenus()

 Dim sMsg As String

 sMsg = "List of pull-down menus in acad.cuix: "

 Dim oMenuGrp As AcadMenuGroup

 Set oMenuGrp = ThisDrawing.Application.MenuGroups("ACAD")

 Dim oPopMenu As AcadPopupMenu

 For Each oPopMenu In oMenuGrp.Menus

 If oPopMenu.ShortcutMenu = False Then

 sMsg = sMsg & vbLf & " " & oPopMenu.NameNoMnemonic

 End If

 Next oPopMenu

 MsgBox sMsg

End Sub

Table 10.1 lists the properties that can be used to learn more about an AcadPopupMenu collec-

tion object.

Table 10.1: Properties that describe an AcadPopupMenu collection object

Property Description

Name Specifi es the pull-down menu name with optional mnemonic characters. Th e

mnemonic characters are used to access the pull-down menu from the keyboard

and are displayed when the user holds the Alt key. Figure 10.1 has the mnemonic

characters displayed for the pull-down menus and menu items.

NameOnMnemonic Returns the menu name without the mnemonic characters.

OnMenuBar Returns a Boolean value indicating whether the menu is displayed on the menu

bar.

ShortcutMenu Returns a Boolean value indicating that the menu is designated as a context menu

displayed in the drawing area and not on the menu bar.

TagString Returns the tags assigned to the pull-down menu. Tags are used to uniquely iden-

tify an item in a CUIx fi le.

The menu items on a pull-down menu can be organized into groups using separators and

submenus. A submenu is an item that contains additional items; think along the lines of a

folder inside of a folder. Menu items are represented by the AcadPopupMenuItem object. You

can add new menu items to a pull-down menu by using the AddMenuItem, AddSeparator,

and AddSubMenu methods of the AcadPopupMenu collection object. Existing menu items on

a pull-down menu can be accessed by using the Item method and a For statement with an

284 | CHAPTER 10 MODIFYING THE APPLICATION AND WORKING WITH EVENTS

c10.indd 1:46:36:PM/03/26/2015 Page 284

AcadPopupMenu collection object. You can remove a menu item or submenu from on a pull-down

menu by using the Delete method.

When you use the AddMenuItem, AddSeparator, and AddSubMenu methods, you must use an

index value to specify where in the pull-down menu the item should appear. An index of 0 is used

to specify the topmost item. In addition to the index, you must use a string to specify the menu item

label when using the AddMenuItem and AddSubMenu methods. A third value is required when using

the AddMenuItem method: you must specify the macro that should be executed when the menu item

is clicked. The AddMenuItem and AddSeparator methods return an AcadPopupMenuItem object,

and the AddSubMenu method returns an AcadPopupMenu collection object.

The following code statements create a pull-down menu named ACP—short for AutoCAD

Customization Platform—and add a few menu items to it. The ACP pull-down menu is added

to the ACAD menu group—which represents the acad.cuix fi le—but not saved to the CUIx fi le.

Closing the AutoCAD application will result in the removal of the ACP menu.

Sub AddACPMenu()

 On Error Resume Next

 Dim oMenuGrp As AcadMenuGroup

 Set oMenuGrp = ThisDrawing.Application.MenuGroups("ACAD")

 Dim oPopMenu As AcadPopupMenu

 Set oPopMenu = oMenuGrp.Menus("ACP")

 If Err Then

 Err.Clear

 Set oPopMenu = oMenuGrp.Menus.Add("ACP")

 oPopMenu.AddMenuItem 0, "Draw Plate", _

 Chr(3) & Chr(3) & _

 "(vl-vbaload (findfile ""drawplate.dvb""))" & _

 "(vl-vbarun " & _

 """DrawPlate.dvb!basDrawPlate.CLI_DrawPlate"") "

 oPopMenu.AddSeparator 1

 Dim oPopSubMenu As AcadPopupMenu

 Set oPopSubMenu = oPopMenu.AddSubMenu(2, "Additional Tools")

 oPopSubMenu.AddMenuItem 0, "First Program", _

 Chr(3) & Chr(3) & _

 "(vl-vbaload (findfile ""firstproject.dvb""))" & _

 "(vl-vbarun " & _

 """firstproject.dvb!ThisDrawing.FirstMacro"") "

 oPopSubMenu.AddMenuItem 1, "BOM", _

 Chr(3) & Chr(3) & _

 "(vl-vbaload (findfile ""furntools.dvb""))" & _

 "(vl-vbarun ""FurnTools.dvb!basFurnTools.FurnBOM"") "

 End If

End Sub

Figure 10.2 shows what the ACP pull-down menu would look like if you added it to the

menu bar.

MANIPULATING THE AUTOCAD USER INTERFACE | 285

c10.indd 1:46:36:PM/03/26/2015 Page 285

Figure 10.2

ACP pull-down

menu

Table 10.2 lists the properties that can be used to change or learn more about an

AcadPopupMenuItem object.

Table 10.2: Properties that describe an AcadPopupMenuItem object

Property Description

Caption Returns a menu item’s text as it appears on a pull-down menu.

Check Specifi es a Boolean value indicating whether the menu item is checked. When the

item is selected, a check mark is displayed to the left of its label. Th is is typically

used to indicate a setting value, such as whether the UCS icon is displayed or the

mode is enabled.

Enable Specifi es a Boolean value indicating whether the menu item is enabled. When dis-

abled, the menu item can’t be clicked.

EndSubMenuLevel Specifi es the nesting level in which the menu item appears on a submenu; the value

is an integer.

HelpString Specifi es the help string to be displayed in the status bar when the cursor is over

the pull-down menu item.

Index Returns the index of the menu item (its location on the pull-down menu or

submenu).

Label Specifi es the complete label for the menu item. Th is includes the text that is dis-

played in the user interface, mnemonic characters, and the DIESEL (Direct

Interpretively Evaluated String Expression Language) macro that can be used to

control the behavior of the menu item. DIESEL can be used to check or disable the

menu item.

Macro Specifi es the macro that should be executed when the menu item is clicked. Use

Chr(3) to represent the pressing of the Esc key to cancel the current command.

Autodesk recommends that you use at least two instances of Chr(3) in a macro.

SubMenu Returns a Boolean value indicating whether the menu item is a submenu.

TagString Returns the tags assigned to the menu item. Tags are used to uniquely identify an

item in a CUIx fi le.

Type Returns an integer based on the menu item’s type: 0 (or acMenuItem) for a menu

item, 1 (or acMenuSeparator) for a separator bar, or 2 (or acMenuSubMenu) for a

submenu.

286 | CHAPTER 10 MODIFYING THE APPLICATION AND WORKING WITH EVENTS

c10.indd 1:46:36:PM/03/26/2015 Page 286

A pull-down menu from an AcadPopupMenus collection object can be added to or removed

from the menu bar. The leftmost place on the AutoCAD menu bar is specifi ed by passing the

location argument 0. Table 10.3 lists the methods that can be used to manage pull-down menus

on the menu bar.

Table 10.3: Methods used to manage pull-down menus on the menu bar

Method Description

InsertInMenuBar

InsertMenuInMenuBar

Inserts an AcadPopupMenu collection object onto the AutoCAD menu bar.

Th e InsertInMenuBar method accepts a single argument that is an integer

specifying the pull-down menu’s location on the menu bar.

Th e InsertMenuInMenuBar method accepts a string that represents the

name of the pull-down menu from the AcadPopupMenus collection object to

insert onto the menu bar and an integer that specifi es the pull-down menu’s

location on the menu bar.

RemoveFromMenuBar

RemoveMenuFromMenuBar

Removes an AcadPopupMenu collection object from the AutoCAD menu bar.

Th e RemoveFromMenuBar method doesn’t require any argument values.

Th e RemoveMenuFromMenuBar method accepts an integer that specifi es the

location of the pull-down menu to remove from the menu bar.

The MenuBar property of the AcadApplication object returns an AcadMenuBar collection

object that contains the pull-down menus displayed on the menu bar. You can step through the

collection object to see which pull-down menus are on the menu bar before adding or removing

a pull-down menu.

The following example code statements check to see whether the pull-down menu with the

name ACP is on the menu bar. If the pull-down menu isn’t on the menu bar, the ACP pull-down

menu is inserted onto the menu bar from the ACAD customization group.

Sub InsertACPMenu()

 ' Get the menu bar from the application

 Dim oMenubar As AcadMenuBar

 Set oMenubar = ThisDrawing.Application.MenuBar

 ' Set the default test condition to False

 Dim bMenuFound As Boolean

 bMenuFound = False

 ' Step through the pull-down menus on the menubar for ACP

 Dim oPopMenu As AcadPopupMenu

 For Each oPopMenu In ThisDrawing.Application.MenuBar

 If UCase(oPopMenu.NameNoMnemonic) = "ACP" Then

 ' Exit if the ACP menu is already on the menu bar

 bMenuFound = True

 Exit For

 End If

MANIPULATING THE AUTOCAD USER INTERFACE | 287

c10.indd 1:46:36:PM/03/26/2015 Page 287

 Next oPopMenu

 ' If not found on the menu bar, insert ACP

 If bMenuFound = False Then

 Dim oMenuGrp As AcadMenuGroup

 Set oMenuGrp = ThisDrawing.Application.MenuGroups("ACAD")

 On Error Resume Next

 ' Insert the ACP menu

 oMenuGrp.Menus("ACP").InsertInMenuBar oMenubar.Count

 End If

End Sub

TIP Since AutoCAD 2006, workspaces have been used to control the display of pull-down menus

on the menu bar. However, using a combination of CUIx fi les and the AutoCAD Object library,

you can ensure a pull-down menu is available from the menu bar no matter which workspace

is current.

Customizing Toolbars

Toolbars were among the fi rst visual user interfaces that most Windows-based applications

implemented as an alternative to pull-down menus. In recent AutoCAD releases, the ribbon has

replaced much of the functionality that is part of a toolbar. However, it is benefi cial to use both

the ribbon and toolbars at the same time. For example, using the Layers toolbar, you can switch

layers or see which layer is current without needing to switch to the Home tab on the ribbon.

Less switching of interface elements means you can spend more time on design-related tasks.

A toolbar can be docked along one of the edges between the application and drawing windows,

or in a fl oating state. Since toolbars can take up a fair amount of space onscreen, the number of

tools that they provide access to is typically a small subset of those found on a pull-down menu.

Like a pull-down menu, all the tools on a toolbar typically perform related tasks.

TIP By default, toolbars are hidden in recent AutoCAD releases. You can display a toolbar by

using the Toolbars submenu on the Tools pull-down menu of the AutoCAD menu bar or the

toolbar command. If the AutoCAD menu bar is hidden, set the menubar system variable to 1.

Figure 10.3 shows the Modify toolbar with the Array fl yout expanded and shows how the

objects in the AutoCAD Object library are visually related.

Figure 10.3

Visual reference

of the objects that

make up a toolbar

Flyout

Toolbar (AcadToolbar)

Toolbar item
(AcadToolbarItem)

The toolbars that are displayed in the AutoCAD user interface can come from any one of

the loaded CUIx fi les. You access the toolbars of a loaded CUIx fi le using the AcadMenuGroups

288 | CHAPTER 10 MODIFYING THE APPLICATION AND WORKING WITH EVENTS

c10.indd 1:46:36:PM/03/26/2015 Page 288

collection object returned by the MenuGroups property of the AcadApplication, which I dis-

cussed earlier, in the section “Managing Menu Groups and Loading Customization Files.”

The Toolbars property of an AcadMenuGroup object returns an AcadToolbars collection

object that represents the toolbars in the associated CUIx fi le. You use the Item method and a

For statement to get an AcadToolbar collection object from an AcadToolbars collection object.

A new toolbar can be added to an AcadToolbars collection object by using the Add method; a

string that represents the name of the toolbar is expected.

The following example code statements display a message box with a listing of the names for

each toolbar in the acad.cuix fi le:

Sub ListAcadToolbars()

 Dim sMsg As String

 sMsg = "List of toolbars in acad.cuix: "

 Dim oMenuGrp As AcadMenuGroup

 Set oMenuGrp = ThisDrawing.Application.MenuGroups("ACAD")

 Dim cnt As Integer, nPrevNameChars As Integer

 cnt = 0: nPrevNameChars = 0

 Dim oTbar As AcadToolbar

 For Each oTbar In oMenuGrp.Toolbars

 ' Display the toolbar names in two columns

 If InStr(1, CStr(cnt / 2), ".") = 0 Then

 sMsg = sMsg & vbLf & " " & oTbar.Name

 Else

 sMsg = sMsg & vbTab

 ' If the previous toolbar name was greater than or

 ' equal to 9 characters add a second tab

 If nPrevNameChars <= 9 Then

 sMsg = sMsg & vbTab

 End If

 sMsg = sMsg & " " & oTbar.Name

 End If

 ' Get the number of characters in the toolbar name

 nPrevNameChars = Len(oTbar.Name)

 cnt = cnt + 1

 Next oTbar

 MsgBox sMsg

End Sub

Table 10.4 lists the properties that can be used to learn more about an AcadToolbar collection

object. The toolbar must be visible before you can call many of its properties.

MANIPULATING THE AUTOCAD USER INTERFACE | 289

c10.indd 1:46:36:PM/03/26/2015 Page 289

Table 10.4: Properties that describe an AcadToolbar collection object

Property Description

DockStatus Returns an integer that indicates where the toolbar is docked on the application

window:

0 (or acToolbarDockTop) top

1 (or acToolbarDockBottom) bottom

2 (or acToolbarDockLeft) left

3 (or acToolbarDockRight) right

4 (or acToolbarFloating) fl oating

FloatingRows Specifi es the number of rows that the toolbar should conform to when fl oating.

Height Returns the height of the toolbar in pixels when docked or fl oating.

HelpString Specifi es the help string to be displayed in the status bar when the cursor is over

the button item on the toolbar.

LargeButtons Returns a Boolean value that indicates whether the toolbar is shown using large or

small button images. True is returned when large button images are being used.

Left Specifi es the left edge of the toolbar in pixels. Th e value is calculated from the left

edge of the screen; the leftmost position is 0.

Name Specifi es the toolbar’s name.

TagString Returns the tags assigned to the toolbar. Tags are used to uniquely identify an item

in a CUIx fi le.

Top Specifi es the top edge of the toolbar in pixels. Th e value is calculated from the top

edge of the screen; the topmost position is 0.

Visible Specifi es whether the toolbar is visible onscreen. True indicates the toolbar is

visible.

Width Returns the width of the toolbar in pixels when docked or fl oating.

The button items on a toolbar can be organized into groups using separators and fl youts.

A fl yout is kind of like a submenu on a pull-down menu, but a fl yout is a nested toolbar that

is referenced by another toolbar and accessed from a button item. When the fl yout is clicked,

the most recent button on the fl yout is used, but if the mouse cursor is over the button and the

mouse button is held, the other button items of the nested toolbar can be selected.

Button items are represented by the AcadToolbarItem object. You can add new button items

to a toolbar by using the AddSeparator and AddToolbarButton methods of the AcadToolbar

collection object. Existing button items on a toolbar can be accessed by using the Item method

and a For statement with an AcadToolbar collection object. You can remove a button item or

fl yout from a toolbar by using the Delete method.

290 | CHAPTER 10 MODIFYING THE APPLICATION AND WORKING WITH EVENTS

c10.indd 1:46:36:PM/03/26/2015 Page 290

When you use the AddSeparator and AddToolbarButton methods, you must specify an

index location that specifi es where the new item should appear on the toolbar. Index 0 is the left-

most item. In addition to an index, the AddToolbarButton method requires you to specify the

following to add a button:

 ◆ Name: string value

 ◆ HelpString: string value

 ◆ Macro: string value

 ◆ Optionally, if the button should be a fl yout: Boolean value

The AddSeparator and AddToolbarButton methods return an AcadToolbarItem object. When

creating a fl yout with the AddToolbarButton method, the Macro argument, although ignored, must

have a value other than "", and True must be specifi ed for the optional argument. After the fl yout

button is created, the AttachToolbarToFlyout method must be called on the AcadToolbarItem

object returned by the AddToolbarButton method to attach a toolbar to the fl yout button.

The AttachToolbarToFlyout method expects the name of the customization group that the

toolbar is part of and the toolbar name as assigned to its Name property.

A button item isn’t very helpful without an image. You assign images to a button item by

using the SetBitmaps method of an AcadToolbarItem object. If the image fi les are stored in the

AutoCAD support fi le search paths, only the fi lenames of the small and large images need to

be specifi ed. If they are stored elsewhere, you must specify the full path to the images. You can

use the GetBitmaps method on an existing button item to get the names of the small and large

images used by a button item.

TIP Controls such as the Layer drop-down list or the Quick Find Text text box can’t be added

to a toolbar using the AutoCAD Object library. Th ese controls must be added to a toolbar in a

CUIx fi le with the CUI Editor (accessed by calling the cui command). Th e CUIx fi le can then be

loaded and the toolbar displayed using a VBA program.

The following code creates a new toolbar named ACP—short for AutoCAD Customization

Platform—and adds a few button items to the new toolbar and a CAD Standards toolbar as a

fl yout button. The ACP toolbar is added to the ACAD customization group—which represents the

acad.cuix fi le—but not saved to the CUIx fi le.

Sub AddACPToolbar()

 On Error Resume Next

 Dim oMenuGrp As AcadMenuGroup

 Set oMenuGrp = ThisDrawing.Application.MenuGroups("ACAD")

 Dim oTbar As AcadToolbar

 Set oTbar = oMenuGrp.Toolbars("ACP")

 If Err Then

 Err.Clear

MANIPULATING THE AUTOCAD USER INTERFACE | 291

c10.indd 1:46:36:PM/03/26/2015 Page 291

 Set oTbar = oMenuGrp.Toolbars.Add("ACP")

 Dim oTbarItem As AcadToolbarItem

 Set oTbarItem = oTbar. _

 AddToolbarButton(0, "Draw Plate", _

 "Draws a plate with 4 bolt holes", _

 Chr(3) & Chr(3) & _

 "(vl-vbaload (findfile ""drawplate.dvb""))" & _

 "(vl-vbarun " & _

 """DrawPlate.dvb!basDrawPlate.CLI_DrawPlate"") ")

 oTbarItem.SetBitmaps "drawplate_16.bmp", "drawplate_32.bmp"

 Set oTbarItem = oTbar. _

 AddToolbarButton(1, "BOM", _

 "Creates a BOM for the furniture blocks", _

 Chr(3) & Chr(3) & _

 "(vl-vbaload (findfile ""furntools.dvb""))" & _

 "(vl-vbarun ""FurnTools.dvb!basFurnTools.FurnBOM"") ")

 oTbarItem.SetBitmaps "bom_16.bmp", "bom_32.bmp"

 oTbarItem.AddSeparator 2

 Set oTbarItem = oTbar. _

 AddToolbarButton(3, "CAD Standards", _

 "CAD Standards toolbar", _

 "Flyout", _

 True)

 oTbarItem.AttachToolbarToFlyout "ACAD", "CAD Standards"

 End If

End Sub

Figure 10.4 shows what the new ACP toolbar would look like if created using the example

code statements. The images shown for the fi rst two button items are part of this chapter’s sam-

ple fi les.

Figure 10.4

New ACP toolbar

Table 10.5 lists the properties that can be used to change or learn more about an

AcadToolbarItem object.

292 | CHAPTER 10 MODIFYING THE APPLICATION AND WORKING WITH EVENTS

c10.indd 1:46:36:PM/03/26/2015 Page 292

Table 10.5: Properties that describe an AcadToolbarItem object

Property Description

CommandDisplayName Specifi es the text that mentions which commands are being used by the

macro.

Flyout Returns a Boolean value that indicates whether the button item is a fl yout.

True indicates the button is a fl yout.

HelpString Specifi es the help string to be displayed in the status bar when the cursor

is over the button item on the toolbar.

Index Returns the index of the button item (its location on the toolbar).

Macro Specifi es the macro that should be executed when the button item is

clicked. Use Chr(3) to represent pressing the Esc key to cancel the current

command. Autodesk recommends the use of at least two instances of

Chr(3) in a macro.

Name Specifi es the name for the button item.

TagString Returns the tags assigned to the button item. Tags are used to uniquely

identify an item in a CUIx fi le.

Type Returns an integer based on the button item type:

0 (or acToolbarButton) button item

1 (or acToolbarSeparator) separator bar

2 (or acToolbarControl) control

3 (or acToolbarFlyout) fl yout

A toolbar from an AcadToolbars collection object can be displayed and then docked or set to

fl oating in the AutoCAD application window. A toolbar can be docked using the Dock method

or set to fl oating with the Float method of the AcadToolbar collection object. The Dock method

expects a single argument value of an integer between 0 and 3—the same values as the DockStatus

property mentioned in Table 10.4. The Float method expects three integer values that represent the

top and left edges of the toolbar and how many rows the toolbar should be displayed with.

Why Won’t My Toolbars Stay Put?

Th e order in which toolbars are docked isn’t very straightforward, and the AutoCAD Object library

is somewhat limited in this area. If you want to control the order in which toolbars are displayed

with the AutoCAD Object library, you must undock all the toolbars from an edge of the applica-

tion window and then re-dock them in a right-to-left or bottom-to-top order. Th ere is no equiva-

lent to the AcadMenuBar collection object to determine which toolbars are visible, so you must

step through the AcadMenuGroups collection object returned by the MenuGroups property of the

AcadApplication object. Th en use the AcadMenuGroup object’s Toolbars property and step

through each toolbar and see which toolbars are visible and the edge they are displayed along. If

you need absolute control over the placement of toolbars, consider using a CUIx fi le to defi ne a

workspace and set the workspace as current.

MANIPULATING THE AUTOCAD USER INTERFACE | 293

c10.indd 1:46:36:PM/03/26/2015 Page 293

The following example code statements hide all toolbars and then redisplay three toolbars.

The toolbars displayed are the ACP toolbar that could be created with the previous example,

and then the standard AutoCAD Layers and Draw toolbars. The ACP and Layers toolbars

will be docked below the ribbon, and the Draw toolbar will be fl oating near the center of the

AutoCAD application window.

Sub DisplayToolbars()

 On Error Resume Next

 Dim oMenuGrp As AcadMenuGroup

 Dim oTbar As AcadToolbar

 ' Hide all toolbars

 For Each oMenuGrp In ThisDrawing.Application.MenuGroups

 For Each oTbar In oMenuGrp.Toolbars

 oTbar.Visible = False

 Next oTbar

 Next oMenuGrp

 ' Display the ACP, Layers, and Draw toolbars in the ACAD menugroup

 Set oMenuGrp = ThisDrawing.Application.MenuGroups("ACAD")

 ' Display the ACP toolbar, if found

 Set oTbar = oMenuGrp.Toolbars("ACP")

 oTbar.Visible = True

 oTbar.Dock acToolbarDockTop

 ' Display the Layers toolbar

 Set oTbar = oMenuGrp.Toolbars("Layers")

 oTbar.Visible = True

 oTbar.Dock acToolbarDockTop

 ' Display the Draw toolbar near the center of the

 ' AutoCAD application window

 Set oTbar = oMenuGrp.Toolbars("Draw")

 oTbar.Visible = True

 oTbar.Float (ThisDrawing.Application.Height / 2) + _

 ThisDrawing.Application.WindowTop, _

 (ThisDrawing.Application.Width / 4) + _

 ThisDrawing.Application.WindowLeft, _

 1

End Sub

TIP Starting with AutoCAD 2006, workspaces are used to control the display of toolbars in the

AutoCAD user interface. However, using a combination of CUIx fi les and the AutoCAD Object

library, you can ensure a toolbar is displayed no matter which workspace is current.

Controlling the Display of Other User-Interface Elements
Not all user interface elements of the AutoCAD application can be customized using the

AutoCAD Object library. However, you can affect the display of some user interface elements by

294 | CHAPTER 10 MODIFYING THE APPLICATION AND WORKING WITH EVENTS

c10.indd 1:46:36:PM/03/26/2015 Page 294

using the properties of the AcadPreferencesDisplay object, system variables, or commands. I

mentioned the AcadPreferencesDisplay object in Chapter 3, “Interacting with the Application

and Documents Objects.” The following explains how you can control the display of some addi-

tional elements in the AutoCAD user interface:

Menu Bar You can control the display of the menu bar with the menubar system variable.

Layout Tabs The display of the layout tabs along the bottom of the drawing window can be

toggled by setting the DisplayLayoutTabs property of the AcadPreferencesDisplay object

to True or False. The following hides the layout tabs:

ThisDrawing.Application.Preferences.Display. _

 DisplayLayoutTabs = False

Scroll Bars The display of the scroll bars in the drawing window can be toggled by setting

the DisplayScrollBars property of the AcadPreferencesDisplay object to True or False.

The following hides the scroll bars:

ThisDrawing.Application.Preferences.Display. _

 DisplayScrollBars = False

Status Bars You can control the display of the drawing and application window status bars

with the statusbar system variable.

TIP Workspaces stored in a CUIx fi le control the display of many user interface elements in the

AutoCAD application window. You can set a workspace as current that is defi ned in a loaded

CUIx fi le by using the wscurrent system variable.

Using External Custom Programs
VBA projects can use macros defi ned in other VBA projects and third-party commands as long

as they are loaded into the AutoCAD drawing environment. Macros and commands can also

be executed from user interface elements, such as pull-down menus, toolbars, and the ribbon,

as you saw in the “Manipulating the AutoCAD User Interface” section. You shouldn’t rely on a

custom program fi le being loaded when you need it—you should load the custom program fi le

before you try to call the macro or command.

NOTE If a custom program fi le is already loaded, loading a custom program fi le again typi-

cally doesn’t aff ect the AutoCAD drawing environment or the current drawing. However, you

will want to test what happens when reloading a custom program in your AutoCAD drawing

environment, because some programs might execute code statements when a program is be-

ing loaded. Th e code statements that are executed could aff ect the objects and settings in the

current drawing.

The following outlines how you can work with a custom program from a VBA project:

VBA Project The LoadDVB method of the AcadApplication object allows you to specify

the full path of a DVB fi le you wish to load. Once loaded, the RunMacro method can be

used to execute a macro in a DVB fi le from another VBA project. You must use the format

WORKING WITH EVENTS | 295

c10.indd 1:46:36:PM/03/26/2015 Page 295

filename.dvb![projectname.]modulename.macro to specify the macro to execute. For

example, to execute the macro CLI_DrawPlate in the code module basDrawPlate of the

DrawPlate.dvb, you would use DrawPlate.dvb!basDrawPlate.CLI_DrawPlate.

The UnloadDVB method lets you unload a DVB fi le when it is no longer needed. Be sure to

specify the full path to the DVB fi le you wish to unload. If you are looking for information

on getting your VBA program fi les loaded into the AutoCAD drawing environment, see

Chapter 13, “Handling Errors and Deploying VBA Projects.”

ObjectARX (ARX) File The LoadARX method of the AcadApplication object allows you to

specify the full path of the ARX fi le to load. Once the fi le is loaded, use the SendCommand or

PostCommand method of the AcadDocument object to execute one of the defi ned commands.

You can unload an ARX fi le when it is no longer needed with the UnloadARX method; you

must specify the full path to the ARX fi le you want to unload. You can get an array of all

loaded ARX fi les with the ListARX method and determine whether the ARX fi le you need is

already loaded.

Managed .NET DLL (AutoCAD 2005 and Later) Use the netload command with the

SendCommand or PostCommand method of the AcadDocument object to load a Managed .NET

DLL. The following shows an example of how to load the fi le named layerutils.dll:

ThisDrawing.SetVariable "filedia", 0

ThisDrawing.SendCommand "netload layerutils.dll" & vbCr

ThisDrawing.SetVariable "filedia", 1

AutoLISP (LSP/VLX/FAS) File Use the AutoLISP load function with the SendCommand or

PostCommand method of the AcadDocument object to load an AutoLISP fi le. The following

shows an example of how to load the fi le named layerutils.lsp:

ThisDrawing.SendCommand "(load ""layerutils.lsp"")" & vbCr

JavaScript (JS) File (AutoCAD 2014 and Later) Use the webload command with the

SendCommand or PostCommand method of the AcadDocument object to load a JS fi le. The fol-

lowing shows an example of how to load the fi le named layerutils.js:

ThisDrawing.SendCommand "webload layerutils.js" & vbCr

Working with Events
There are two types of programming paradigms: linear and event-driven. In linear programming,

code statements are executed in a specifi c and known order, typically a fi rst-to-last approach. In

event-driven programming, events are triggered by the actions of the user or messages from an

application. Most modern applications that get input from the user using a dialog box or con-

trols of some sort rely on event-driven programming. From a programming perspective, events

are specially named procedures that are triggered under specifi c conditions. I discuss dialog

boxes—or UserForms as they are known in VBA—and controls in Chapter 11, “Creating and

Displaying User Forms.”

Many of the objects in the AutoCAD Object library support event-driven programming. The

AutoCAD application, document (or drawing), and graphical and nongraphical objects all sup-

port different types of events. Events can be used to monitor changes to the application and

296 | CHAPTER 10 MODIFYING THE APPLICATION AND WORKING WITH EVENTS

c10.indd 1:46:36:PM/03/26/2015 Page 296

drawing windows, or even to enforce CAD standards for the objects in a drawing. For example,

you can watch for the start of a dimension-related command or the hatch command and set a

specifi c layer as current before the command accepts input from the user.

By default, the events of the current drawing are accessible from the ThisDrawing object in

an AutoCAD VBA project. To use the events of other objects, such as the AcadApplication or a

graphical object, you must declare a variable of the object type with the WithEvents keyword.

The variable must be declared at the global level of ThisDrawing or within class and UserForm

modules so that it persists beyond the current procedure.

The following are example code statements that declare an AcadApplication and AcadBlock

object with events:

Public WithEvents oAcadApp As AcadApplication

Private WithEvents oTitleBlk As AcadBlock

Once you declare a variable of an object type with the WithEvents keyword, you must assign

the variable an object by using the Set keyword. The assignment of an object to the variable

is typically done when the VBA project is loaded using the AcadStartup procedure or when a

procedure is executed. AutoCAD looks for and automatically loads a VBA project named acad.

dvb and executes the procedure AcadStartup after the VBA project is loaded. In Chapter 13, I

explain techniques that can be used to automatically load a VBA project fi le when the AutoCAD

program starts up.

The following is an example of an AcadStartup procedure that assigns the AcadApplication

object of the current drawing to the oAcadApp variable:

Public Sub AcadStartup()

 Set oAcadApp = ThisDrawing.Application

End Sub

Even though the procedure is named AcadStartup, it isn’t executed automatically unless

it is included in a DVB fi le named acad.dvb. Once you have declared a variable using the

WithEvents keyword and assigned an object to the variable, you can then defi ne a procedure

that uses an exposed event of the object in your program.

The following steps explain how to add a procedure for an object event:

 1. In the Project Explorer, double-click the ThisDrawing component.

The code editor window opens. You will be working with the Object and Procedure

drop-down lists (see Figure 10.5).

 2. In the code editor window, click the Object drop-down list. Choose an object that you

want to interact with when an event occurs.

After you make a selection in the Object drop-down list, the event you select in the

Procedure drop-down list will be added to the code editor window. You can remove the

event if it isn’t the one you want.

 3. Click the Procedure drop-down list and choose the event you want to use in your

program.

WORKING WITH EVENTS | 297

c10.indd 1:46:36:PM/03/26/2015 Page 297

A private procedure is added to the code editor window with the appropriate name and

arguments. The following shows what the BeginCommand event looks like for a variable

named g_oAcadApp that is of the AcadApplication object type:

Private Sub g_oAcadApp_BeginCommand(ByVal CommandName As String)

End Sub

Figure 10.5

Selecting an object

and event to add

Object drop-down list Procedure drop-down list

After the procedure is added to your project, you then add the code statements that should

be executed when the proper conditions are met in the AutoCAD drawing environment for the

event to be triggered.

NOTE Don’t use the SendCommand or PostCommand method with an event-triggered procedure.

Th e SendCommand and PostCommand methods are delayed and executed only after the AutoCAD

program becomes idle, and the AutoCAD program typically doesn’t enter an idle state until all

the procedures triggered by events have been executed.

Table 10.6 lists some of the most commonly used events that the AcadApplication and

AcadDocument objects support. For a full list of events, view the object’s class in the Object

Browser of the VBA Editor or the AutoCAD ActiveX Help system.

Table 10.6: Common events for the AcadApplication and AcadDocument objects

Events

Supported

objects Description

Activate

Deactivate

AcadDocument Occurs when a drawing window receives (Activate) or

loses (Deactivate) focus as a result of switching draw-

ing windows.

AppActivate

AppDeactivate

AcadApplication Occurs when the AutoCAD application window receives

(AppActivate) or loses (AppDeactivate) focus as a

result of switching applications.

298 | CHAPTER 10 MODIFYING THE APPLICATION AND WORKING WITH EVENTS

c10.indd 1:46:36:PM/03/26/2015 Page 298

Events

Supported

objects Description

BeginClose AcadDocument Occurs immediately after a request to close a drawing is

made.

BeginCommand

EndCommand

AcadApplication,

AcadDocument

Occurs when a command begins or ends. Useful in deter-

mining which command a user is using.

BeginDocClose AcadDocument Occurs before a drawing is completely closed. Useful if

you don’t want to allow the drawing to be closed.

BeginLisp

EndLisp

AcadApplication,

AcadDocument

Occurs when the evaluation of an AutoLISP program or

statement begins or ends. Useful in determining which

AutoLISP programs a user is using.

BeginOpen

EndOpen

AcadApplication Occurs before or after a drawing fi le is opened.

BeginPlot

EndPlot

AcadApplication,

AcadDocument

Occurs before or after a layout is plotted.

BeginQuit AcadApplication Occurs before the application window is closed.

BeginSave

EndSave

AcadApplication,

AcadDocument

Occurs before or after a drawing fi le is saved.

LayoutSwitched AcadDocument Occurs when focus is switched from one layout to

another.

NewDrawing AcadApplication Occurs when a new drawing is being created.

ObjectAdded

ObjectErased

ObjectModified

AcadDocument Occurs when an object is added to, erased from, or modi-

fi ed in a drawing.

SysVarChanged AcadApplication Occurs when a change to a system variable is being made.

Not all system variables trigger this event. In the system

variables database I maintain on my website, www

.hyperpics.com/system_variables, I indicate

whether or not a system variable triggers this event.

In addition to the events listed in Table 10.6, the AcadObject object supports an event named

Modified. The AcadObject object is the base class used to implement graphical and nongraphi-

cal objects, such as AcadLine, AcadCircle, AcadLayers, and AcadLayer. You can use the

Table 10.6: Common events for the AcadApplication and AcadDocument objects (continued)

WORKING WITH EVENTS | 299

c10.indd 1:46:36:PM/03/26/2015 Page 299

Modified event to monitor changes to a specifi c object. However, instead of declaring a variable

with events for a single object, it is often more effi cient to use the ObjectModified event of the

AcadDocument object.

Listing 10.1 shows an example program that logs the commands and fi rst expressions of an

AutoLISP program that are used after the BeginLog procedure is executed. Logging is disabled

when the EndLog procedure is executed or when AutoCAD is closed. Using these two proce-

dures, you can track the use of the custom programs and fi gure out which commands your

users frequently use. I discuss how to write to a text fi le in Chapter 12, “Communicating with

Other Applications.”

Listing 10.1: Custom command logging functionality using events

Private Sub AcadDocument_BeginCommand(ByVal CommandName As String)

 LogActivity CommandName

End Sub

Private Sub AcadDocument_BeginLisp(ByVal FirstLine As String)

 LogActivity FirstLine

End Sub

Private Sub LogActivity(sActivity As String)

 On Error Resume Next

 ' Create a new text file named Data.txt

 Dim ofsObj As FileSystemObject

 Set ofsObj = CreateObject("Scripting.FileSystemObject")

 sLogName = ThisDrawing.GetVariable("MyDocumentsPrefix") & _

 "\cmdtracker.log"

 ' Open or create the log file

 If ofsObj.FileExists(sLogName) Then

 Set oTxtStreamData = ofsObj.OpenTextFile(sLogName, ForAppending)

 Else

 Set oTxtStreamData = ofsObj.CreateTextFile(sLogName, False)

 End If

 ' Write text to the log file

 oTxtStreamData.WriteLine sActivity

 oTxtStreamData.Close

 Set ofsObj = Nothing

End Sub

Public Sub DisplayLog()

 ' Open the log in NotePad

 Dim oShell As Object

300 | CHAPTER 10 MODIFYING THE APPLICATION AND WORKING WITH EVENTS

c10.indd 1:46:36:PM/03/26/2015 Page 300

 Set oShell = CreateObject("WScript.Shell")

 oShell.Run "Notepad.exe " & _

 ThisDrawing.GetVariable("MyDocumentsPrefix") & _

 "\cmdtracker.log"

End Sub

The code in Listing 10.1 is in the sample fi le ch10_CodeListings.dvb that is available from

this book’s website. When loaded, the code writes to a text fi le named cmdtracker.log in your

My Documents (or Documents) folder. The following shows an example of the output containing

commands and a single AutoLISP expression:

CIRCLE

(alert "Hello ACP!")

ERASE

LINE

ZOOM

ZOOM

Exercise: Extending the User Interface and Using Events
In this section, you will create a new VBA project that loads a customization fi le named acp.cuix

into the AutoCAD drawing environment and uses events to help enforce some basic layer standards.

The acp.cuix fi le contains a custom ribbon tab, pull-down-menu, and toolbar, all named ACP.

Using the AcadMenuGroups collection object, you will load the CUIx fi le and then use properties of

the customization group to display the pull-down menu and toolbar in the AutoCAD user interface.

 The ribbon tabs in one or more loaded CUIx fi les can be merged. For example, you can merge

a custom ribbon tab named ACP with the standard Home tab. Merging ribbon tabs can make it

easier to control where or when a custom ribbon tab is displayed on the ribbon. The process of

merging two or more ribbon tabs requires you to assign the same alias value to the ribbon tabs

you want to merge. To merge a custom ribbon tab with the Home tab, you would assign the cus-

tom ribbon tab the alias ID_TabHome.

The events that you defi ne in this exercise will allow you to monitor the opening of a draw-

ing fi le and instances of several different commands. The BeginCommand event allows you to

perform tasks before a command is started, whereas the EndCommand event allows you to per-

form tasks after a command has been completed. The BeginCommand and EndCommand events

will be used to watch for the use of hatch- and dimension-related commands; to check the cur-

rent layer, when necessary; to set a specifi c layer as current before the command is started; and,

when necessary, to restore the previous layer after the command has been completed.

The key concepts I cover in this exercise are as follows:

Loading a CUIx File CUIx fi les can be used to add new and arrange user interface

elements in the AutoCAD drawing environment. Using the AutoCAD Object library, you

can load a CUIx fi le and even control the display of some of the user interface elements

defi ned in the CUIx fi le.

Implementing Application and Document Events Events are used to defi ne how the user

can interact with the controls on the UserForm and the code statements that the UserForm

should execute when loading or unloading.

EXERCISE: EXTENDING THE USER INTERFACE AND USING EVENTS | 301

c10.indd 1:46:36:PM/03/26/2015 Page 301

NOTE Th e steps in this exercise depend on the Chapter 10 sample fi les (ch10_acp.cuix and ch10_

hexbolt.dvb) available for download from www.sybex.com/go/autocadcustomization.

If you completed all the exercises presented earlier in this book, you do not need to

extract ch10_drawplate.dvb and ch10_furntools.dvb from the sample fi les archive. Place

the sample fi les from the archive in the MyCustomFiles folder under the Documents (or My

Documents) folder, or in the location you are using to store your custom program fi les. Once

the sample fi les are extracted on your system, remove the characters ch10_ from the fi lenames.

Loading the acp.cuix File
Here you load a customization (CUIx) fi le that contains a ribbon tab, pull-down menu, and

toolbar with a few of the tools you have created in various exercises throughout this book.

The following steps explain how to create a procedure that loads a CUIx fi le, and then

controls the display of the pull-down menu and toolbar named ACP:

 1. Create a new VBA project with the name Environment; make sure to also change the

default project name of ACADProject to Environment in the VBA Editor.

 2. In the VBA Editor, in the Project Explorer, double-click the ThisDrawing component.

 3. In the code editor window, type the following code. Throughout this exercise, I’ve

included the comments for your information, and you don’t have to type them.

Public Sub LoadACPMenu()

 On Error Resume Next

' Load the acp.cuix file

 ' Get the MenuGroups object of the application

 Dim oMenuGrps As AcadMenuGroups

 Set oMenuGrps = ThisDrawing.Application.MenuGroups

 ' Get the ACP menugroup if it is loaded

 Dim oMenuGrp As AcadMenuGroup

 Set oMenuGrp = oMenuGrps("ACP")

 ' If an error is returned, the ACP menugroup doesn't exist

 If Err Then

 Err.Clear

 oMenuGrps.Load ThisDrawing.GetVariable("MyDocumentsPrefix") & _

 "\MyCustomFiles\acp.cuix", acPartialMenuGroup

 End If

' Display the ACP toolbar

 Dim oTbar As AcadToolbar

 Set oTbar = oMenuGrp.Toolbars("ACP")

 ' If an error is returned, the ACP toolbar wasn't found

 If Not Err Then

 If oTbar.Visible = False Then

 oTbar.Visible = True

http://www.sybex.com/go/autocadcustomization

302 | CHAPTER 10 MODIFYING THE APPLICATION AND WORKING WITH EVENTS

c10.indd 1:46:36:PM/03/26/2015 Page 302

 oTbar.Dock acToolbarDockTop

 End If

 End If

' Add the ACP menu to the menubar

 ' Display the menubar

 ThisDrawing.SetVariable "menubar", 1

 ' Get the MenuBar object of the application

 Dim oMenuBar As AcadMenuBar

 Set oMenuBar = ThisDrawing.Application.MenuBar

 Dim oPopMenu As AcadPopupMenu

 Set oPopMenu = oMenuBar.Item("ACP")

 ' If an error is returned, the ACP menu isn't on the menubar

 If Err Then

 Err.Clear

 ' Add the ACP menu to the far right on the menubar

 oMenuGrp.Menus.InsertMenuInMenuBar "ACP", oMenuBar.Count

 End If

End Sub

 4. Click File ➢ Save.

Specifying the Location of DVB Files
The macros that are defi ned in the acp.cuix fi le expect that the AutoCAD program can locate

the DVB fi les in its support fi le search paths. Chapter 13 explains more about setting up the

AutoCAD support fi le search paths and the use of trusted paths in recent releases.

The following steps explain how to add the MyCustomFiles folder under the Documents (or

My Documents) folder, or in the location you are using to store your custom program fi les to the

AutoCAD support fi le search paths:

 1. Click the Application menu button ➢ Options (or at the Command prompt, type options

and press Enter).

 2. When the Options dialog box opens, click the Files tab.

 3. Select the Support File Search Path node. Click Add and then click Browse.

 4. In the Browse For Folder dialog box, browse to the MyCustomFiles folder that you created

for this book in the Documents (or My Documents) folder, or browse to the folder that con-

tains your DVB fi les.

 5. Select the folder that contains your DVB fi les and click OK.

 6. Click OK to save the changes to the Options dialog box.

EXERCISE: EXTENDING THE USER INTERFACE AND USING EVENTS | 303

c10.indd 1:46:36:PM/03/26/2015 Page 303

Adding the Document Events
Document events allow you to monitor changes that occur in the drawing window and

the objects and other elements in the associated drawing fi le. Using the BeginCommand and

EndCommand events, you can ensure that specifi c settings are in place—either before or after a

command has been executed. In this exercise, you will be using these events to make sure a spe-

cifi c layer is set as current to ensure that dimensions are placed on the Dim layer and that hatch

and gradient fi lls are placed on the Hatch layer. Using the same approach, you should warn

users when they are about to draw on layer 0, which isn’t ideal unless they are creating blocks.

The following steps explain how to add the BeginCommand and EndCommand events:

 1. In the code editor window, scroll to the top and type the text shown in bold:

Private g_sPrevLyr As String

Public Sub LoadACPMenu()

 2. In the code editor window, click the Object drop-down list and choose AcadDocument.

The Object drop-down list is in the upper-left corner of the code editor window.

 3. Click the Procedure drop-down list and choose BeginCommand.

 4. If a procedure other than AcadDocument_BeginCommand was added before step 2, remove

that procedure.

 5. Type the code in bold that follows:

Private Sub AcadDocument_BeginCommand(ByVal CommandName As String)

 On Error Resume Next

 ' Store the current layer

 g_sPrevLyr = ThisDrawing.ActiveLayer.Name

 ' Create and switch layers based on the command used

 Select Case CommandName

 Case "HATCH", "BHATCH", "GRADIENT"

 CreateSetLayer "Hatch", acRed

 Case "DIMLINEAR", "DIMDIAMETER", "DIMROTATED"

 CreateSetLayer "Dim", acGreen

 End Select

End Sub

 6. Add the EndCommand event and type the code in bold that follows:

Private Sub AcadDocument_EndCommand(ByVal CommandName As String)

 On Error Resume Next

 ' Restore the previous layer if they are different

 If g_sPrevLyr <> "" Then

 ThisDrawing.ActiveLayer = ThisDrawing.Layers(g_sPrevLyr)

 End If

End Sub

 7. Click File ➢ Save.

304 | CHAPTER 10 MODIFYING THE APPLICATION AND WORKING WITH EVENTS

c10.indd 1:46:36:PM/03/26/2015 Page 304

The BeginCommand event uses a procedure named CreateSetLayer to create a particular

layer or to set that particular layer as current. The following steps add the CreateSetLayer

procedure:

 1. In the code editor window, click after the End Sub statement of the EndCommand event

procedure and press Enter twice.

 2. Type the following code:

Private Sub CreateSetLayer(sName As String, nColor As ACAD_COLOR)

 On Error Resume Next

 ' Get the layer if it exists

 Dim oLyr As AcadLayer

 Set oLyr = ThisDrawing.Layers(sName)

 ' If an error is returned, the layer doesn't exist

 If Err Then

 Err.Clear

 ' Create the layer and assign it a color

 Set oLyr = ThisDrawing.Layers.Add(sName)

 oLyr.color = nColor

 End If

 ' Set the layer current

 ThisDrawing.ActiveLayer = oLyr

End Sub

 3. Click File ➢ Save.

Implementing an Application Event
Application events allow you to monitor changes that are made to the application window,

as well as some of the events that are available as document events. Using the EndOpen event,

you can make sure specifi c settings and even applications are available before the user begins

working in the drawing. In this exercise, you will be using the EndOpen event to make sure the

drawing opens in model space by setting the system variable tilemode to 0 and then adjusting

the view of the drawing to show the extents of the objects in model space. EndOpen can also be

useful if you are trying to create a batch operation and want to know when it is safe to begin

making changes to the drawing.

To defi ne a variable of the AcadApplication object type with events, in the code editor

window, scroll to the top and add the following code:

Private WithEvents g_oAcadApp As AcadApplication

EXERCISE: EXTENDING THE USER INTERFACE AND USING EVENTS | 305

c10.indd 1:46:36:PM/03/26/2015 Page 305

Now that you have defi ned a variable with events in the global scope of the ThisDrawing

component, you can access the variable from the Object drop-down list and add an available

event:

 1. In the code editor window, click the Object drop-down list and choose g_oAcad. The

Object drop-down list is in the upper-left corner of the code editor window.

 2. Click the Procedure drop-down list and choose EndOpen.

 3. If a procedure other than g_oAcad_EndOpen was added after step 1 as a result of choosing

g_oAcad from the Object drop-down list, remove that procedure. Choosing a different

object adds a default procedure, if not already defi ned, which might not be the procedure

you want to work with.

 4. Type the code in bold that follows:

Private Sub g_oAcadApp_EndOpen(ByVal FileName As String)

 On Error Resume Next

 ' Set the ModelSpace tab current

 ThisDrawing.SetVariable "tilemode", 1

 ' Zoom to the extents of the drawing

 ThisDrawing.Application.ZoomExtents

 ' Zoom out a bit

 ThisDrawing.Application.ZoomScaled 0.8, acZoomScaledRelative

End Sub

 5. Click File ➢ Save.

Even though you added the EndOpen event, it won’t be triggered until a reference to the

AutoCAD application has been assigned to the g_oAcad variable. In the next section, you will

add an AcadStartup procedure, which assigns the AutoCAD application object to the g_oAcad

variable and executes the LoadACPMenu procedure.

Defi ning the AcadStartup Procedure
The AcadStartup procedure in this VBA project assigns the AcadApplication object of the

current drawing to the global variable g_oAcad that was defi ned at the top of the code window

of the ThisDrawing component. In addition to assigning the AcadApplication object to the

g_oAcad variable, the AcadStartup procedure executes the LoadACPMenu procedure, which

loads the acp.cuix fi le and displays the custom user interface elements in the AutoCAD draw-

ing environment.

The following steps explain how to add the AcadStartup procedure:

 1. In the code editor window, scroll to the bottom and click after the last code statement.

Then press Enter twice.

306 | CHAPTER 10 MODIFYING THE APPLICATION AND WORKING WITH EVENTS

c10.indd 1:46:36:PM/03/26/2015 Page 306

 2. Type the following code:

Public Sub AcadStartup()

 ' Assign the current Application object to the g_oAcad variable

 Set g_oAcadApp = ThisDrawing.Application

 ' Load the ACP menu

 LoadACPMenu

 ' Execute the loading of the ACP menu a second time

 ' The ACP menu isn't always added the first time

 LoadACPMenu

End Sub

 3. Click File ➢ Save.

Testing the AcadStartup Procedure
Follow these steps to test the AcadStartup procedure in the Environment.dvb fi le:

 1. Switch to the AutoCAD application and use the vbarun command to execute the envi-

ronment.dvb!ThisDrawing.AcadStartup macro.

The acp.cuix fi le is loaded and the custom user interface elements in the fi le are dis-

played, as you can see in Figure 10.6. The ACP menu is displayed on the menu bar, the

ACP toolbar is docked below the ribbon, and the ACP ribbon tab is merged with the

Home tab.

Figure 10.6

Custom user inter-

face elements added

by loading acp.cuix

ACP toolbar

ACP pull-down menu

ACP ribbon tab

 2. Click one of the custom tools on the ribbon, pull-down menu, or toolbar. If the File

Loading - Security Concern message is displayed (AutoCAD 2013 or later), click Load.

The DVB fi le in the macro is loaded and then a specifi c macro is executed. If the message

“Macro not found” is displayed in the Command History window, make sure you added

the correct folder to the AutoCAD support fi le search paths and renamed the DVB fi les as

needed.

 3. Press Esc to cancel the macro.

EXERCISE: EXTENDING THE USER INTERFACE AND USING EVENTS | 307

c10.indd 1:46:36:PM/03/26/2015 Page 307

Testing the Application and Document Events
To test the application and document events that are part of the Environment.dvb fi le, follow

these steps:

 1. Create a new drawing based on the acad.dwt drawing template fi le.

 2. At the Command prompt, type layer and press Enter.

Notice there is only one layer and it is named 0.

 3. At the Command prompt, type rectang and press Enter. Draw a rectangle.

The new rectangular object is drawn on layer 0.

 4. At the Command prompt, type hatch and press Enter.

 5. Follow the prompts of the hatch command and specify a point inside the rectangle to

apply a hatch fi ll.

The hatch object is added to the Hatch layer that was created and set as current when the

hatch command was started. The previous layer is restored after the hatch command

ends.

 6. At the Command prompt, type dimlinear and press Enter.

 7. Follow the prompts of the dimlinear command, and specify the lower corners of the

rectangle to create the linear dimension.

The dimension object is added to the Dim layer that was created and set as current when

the dimlinear command was started. The previous layer is restored after the dimlinear

command ends.

 8. Click the Layout1 tab.

 9. Save the drawing with the name ch10_exercise to the MyCustomFiles folder, or in the

location you are using to store the exercise fi les from this book.

 10. Close the drawing.

 11. Reopen the ch10_exercise.dwg fi le.

Notice the drawing opens in model space and the extents of the objects in the drawing

are displayed. Figure 10.7 shows the results of the document and applications.

Figure 10.7

Layers created

as a result of the

BeginCommand

event and the use

of the hatch

and dimlin ear

commands

c11.indd 12:3:26:PM/03/25/2015 Page 309

Chapter 11

Creating and Displaying User
Forms

Input from end users is either the key to a fl exible and effi cient program or its Achilles' heel. It

all depends on how you gather and use that input. Up to this point, the input that you have been

getting from the user has been requested at the AutoCAD® Command prompt. There is nothing

bad about getting input only from the Command prompt, but it can be a limiting approach.

VBA programs support the ability to implement dialog boxes by adding a UserForm object to

a project. Standard interactive controls that you are already familiar with from other Windows-

based programs can be added to a user form to get input from the user. User forms allow a user

to see values that might normally be hidden behind a set of prompts and provide input for only

those options they are interested in changing. A user form can also be used to stitch multiple

procedures together into a single, easy-to-use interface.

Adding and Designing a User Form
Many Windows-based programs use dialog boxes to get nonsequential input from the user and

to provide feedback. A dialog box in a VBA project is known as a UserForm object. A user form,

or dialog box, uses objects known as controls. A control can be of various types and sizes, and

it usually accepts input from the mouse and/or keyboard that is attached to a workstation. In

more recent years, input can come in the form of touch as well. Touch input is interpreted in

a manner similar to mouse input. As a user clicks or types in a control, procedures known as

events are executed. Events allow your program time to validate and manipulate the values

provided through the control.

Adding a User Form to a VBA Project
With a VBA project loaded in the VBA Editor, a UserForm object can be added to the project. The

default UserForm contains only a Close button in the upper-right corner, as shown in Figure 11.1.

You can add a new UserForm object to a VBA project using one of the following methods:

 ◆ On the menu bar, click Insert ➢ UserForm.

 ◆ In the Project Explorer, right-click over the project and choose Insert ➢ UserForm.

310 | CHAPTER 11 CREATING AND DISPLAYING USER FORMS

c11.indd 12:3:26:PM/03/25/2015 Page 310

Figure 11.1

Default UserForm

displayed in the

UserForm editor

window

When a new UserForm object is added to a VBA project, it is displayed in the UserForm editor

window. You can perform the following tasks with the UserForm editor window:

 ◆ Add controls from the Toolbox window; see the “Placing a Control on a User Form” section

later in this chapter for more information.

 ◆ Reposition, resize, group, and align controls.

 ◆ Use the Properties window to change the appearance of the user form or controls; see the

“Changing the Appearance of a User Form or Control” section later in this chapter.

 ◆ Defi ne the behavior of the user form as it is being loaded or when the user interacts with

controls; see the “Defi ning the Behavior of a User Form or Control” section later in this

chapter.

As I explained with naming variables in Chapter 2, “Understanding Visual Basic for

Applications.” Hungarian notation should be used to help identify a variable’s data type.

Hungarian notation is also typically used with UserForm objects and controls. The standard

Hungarian notation used for a UserForm object name is frm.

TIP If you have a UserForm in another project that you want to reuse, export the UserForm to a

form (FRM) fi le and then import it into your project. Right-click over a UserForm in the Project

Explorer and choose Export File to export the component. To import a previously exported

component, right-click over a project and choose Import File.

Considering the Design of a User Form
A user form often provides your users with their fi rst impression of your program. Users typi-

cally don’t see the code that is running behind the scenes where all the real magic happens. As

in real life, fi rst impressions can be hard to shake. The user forms you create for your programs

should have a familiar feel, as if the user has been using them forever.

ADDING AND DESIGNING A USER FORM | 311

c11.indd 12:3:26:PM/03/25/2015 Page 311

When creating a user form, consider the following basic guidelines:

 ◆ Controls with the most importance should be placed in the upper-left corner, whereas the

least frequently used should be located in the lower area of the user form.

 ◆ The fl ow in a user form should be top-down and left-to-right.

 ◆ Controls should be aligned along the top edge when placed horizontally or along their left

edge when placed vertically.

 ◆ Controls of the same type should be of a similar size.

 ◆ Organize and group related options together.

 ◆ Don’t crowd the controls on a user form—be sure to put some space between the controls.

Be aware that too much space can make a user form feel empty.

 ◆ Keep text labels and messages short and meaningful.

 ◆ Buttons used to accept or cancel the changes made should be placed horizontally along the

lower right or vertically along the right edge of the user form.

 ◆ The button used to accept changes should be to the left of or above the button used to can-

cel the changes made.

You should also consider the following as you design a user form:

Will the user form be used to get input or provide feedback? User forms used to get input

are displayed temporarily and then dismissed, whereas those used to provide feedback

remain onscreen until they are dismissed. A good comparison might be dialog boxes versus

palettes in the AutoCAD program.

Will the text on a user form need to be available in more than one language? Localizing

text on a user form affects how controls are laid out and their size. German text strings on

average are longer than most other languages, whereas text strings in languages such as

Hebrew and Korean can be taller. As you design your dialog boxes, consider the impact that

other languages might have on the width or height of the controls on the user form.

What should the look of a user form and its controls be? You can make your user form

and its controls as vibrant as the latest summer clothing line or use a fancy font, but that

doesn’t mean you should. If you look at the dialog boxes in the applications you use every

day, colors are commonly limited to identifying a tool through the use of an image or to com-

municate information about a problem. Fonts that are chosen are easy to read. The default

color choices in most dialog boxes are friendly to those who are color-blind. Although only a

small percentage of the population is color-blind, it is a factor that should be considered.

TIP For ideas on how to design your user forms, take a look at the dialog boxes you use every

day to see how they are laid out and how they present information.

The guidelines and recommendations I mentioned are basic and the main ones I apply

when creating a user form. You might also want to check with your organization to see if it has

312 | CHAPTER 11 CREATING AND DISPLAYING USER FORMS

c11.indd 12:3:26:PM/03/25/2015 Page 312

specifi c guidelines you should follow. Microsoft offers design guidelines and recommendations

for Windows developers to help create similar and familiar dialog boxes and interfaces. I recom-

mend you take a look at the guidelines Microsoft publishes, but remember that these are guide-

lines and not the be-all, end-all.

You can read more about Microsoft’s recommendations for the Windows user experience

with the following resources:

 ◆ Windows User Experience Interaction Guidelines (www.microsoft.com/en-us/

download/details.aspx?id=2695)

 ◆ Designing a User Interface (http://msdn.microsoft.com/en-us/library/windows/

desktop/ff728820(v=vs.85).aspx)

 ◆ Common UI Controls and Text Guidelines (http://msdn.microsoft.com/en-us/

library/windows/desktop/bb246433(v=vs.85).aspx)

Placing and Arranging Controls on a User Form
Maybe you’ve never thought of yourself as the next Leonardo da Vinci, painting the next great

work of art, but a well-designed user form can seem like a work of art. Okay, maybe not so

much, but a new user form is similar to a blank canvas. You will select colors and fonts, and

place and lay out controls, with precision and care.

You select controls from the Toolbox window and place them on the user form. You can then

modify the position and size of your controls using grip editing. Grip editing in the UserForm

editor window is similar to grip editing in the AutoCAD drawing window.

In addition to changing a control’s position and size after it has been placed on a user form,

you can change the control’s properties using the Properties window or the control’s interactive

behavior. I explain how to change the appearance and defi ne a control’s interactive behavior in

the “Changing the Appearance of a User Form or Control” and “Defi ning the Behavior of a User

Form or Control” sections later in this chapter.

Placing a Control on a User Form
The Toolbox window, shown in Figure 11.2, is used to add controls to a user form. When you’re

editing a UserForm object in the UserForm editor window, the Toolbox window should be dis-

played. If the window isn’t displayed, choose Toolbox on the Standard toolbar or from the View

menu on the VBA Editor menu bar.

Figure 11.2

Controls that can

be added to a user

form are displayed

in the Toolbox

window.

http://www.microsoft.com/en-us/download/details.aspx?id=2695
http://www.microsoft.com/en-us/download/details.aspx?id=2695
http://msdn.microsoft.com/en-us/library/windows/desktop/ff728820
http://msdn.microsoft.com/en-us/library/windows/desktop/ff728820
http://msdn.microsoft.com/en-us/library/windows/desktop/bb246433
http://msdn.microsoft.com/en-us/library/windows/desktop/bb246433

PLACING AND ARRANGING CONTROLS ON A USER FORM | 313

c11.indd 12:3:26:PM/03/25/2015 Page 313

From the Toolbox window, you can add a control to a UserForm object using any of the

following methods:

 ◆ Click the icon that represents the control you want to add. Move your cursor to the

UserForm editor window, and then click and drag to create the new control. This method

allows you to specify both the location and the size of the control.

 ◆ Click the icon that represents the control you want to add. Move your cursor over the

UserForm editor window and click. This method allows you to specify the upper-left

corner of the new control; its size is set to a default value.

 ◆ Click and drag the icon that represents the control you want to add to the UserForm. This

method allows you to specify the middle of the new control; its size is set to a default value.

By default, controls are placed on the UserForm using a grid system. The spacing of the grid

is set to 6 points in the horizontal and vertical directions. The grid starts in the upper-left

corner of the UserForm with a value of 0,0. The X value increases as you move to the right, and

the Y value increases when moving down. You can toggle between showing and hiding the grid,

specify the grid spacing, and toggle snap to grid on and off from the General tab of the Options

dialog box in the VBA Editor. To display the Options dialog box, choose Tools ➢ Options on the

VBA Editor’s menu bar.

You can fi ne-tune the placement of a control with the control’s Left and Top properties in

the Properties window. You can also adjust the height and width of the control using the con-

trol’s Height and Width properties. I explain how to change the properties of a control in the

“Changing the Appearance of a User Form or Control” section.

Deciding Which Control to Use
The type of control you use depends on the information needed from the user. If you need the

user to choose between a value of on or off, it wouldn’t be productive to have the user type On or

Off as it is more work and increases the potential for errors. You should become familiar with the

14 common controls that are available on the Toolbox window and the type of user interaction

they support. Figure 11.3 shows the use of several of the common controls in two user forms.

The following describes the icons on the Toolbox window and the controls they represent:

Select Object The Select Object icon in the upper-left corner of the Toolbox window isn’t

used to place a control on the user form; it enables Object Selection mode. Click the icon

again to exit Control Creation mode.

Label A label is used to display descriptive text and messages. Use the control’s Caption

property to change or get the current text. When naming a label, use the Hungarian notation

prefi x of lbl, such as lblPlateWidth or lblPlateHeight.

TextBox A text box allows the user to enter a text string. Use the control’s Value property to

change or get its current text. When naming a text box, use the Hungarian notation prefi x of

txt, such as txtPlateWidth or txtPlateHeight.

ComboBox A combo box (or drop-down list) allows the user to enter a text string or

choose a predefi ned value from a list. Use the control’s Value property to change or get its

current value. You use the AddItem method of the control to add items to the drop-down

314 | CHAPTER 11 CREATING AND DISPLAYING USER FORMS

c11.indd 12:3:26:PM/03/25/2015 Page 314

list. When naming a combo box, use the Hungarian notation prefi x of cbo or cmb, such as

cmbSectionViews.

ListBox A list box allows the user to choose a predefi ned value from a list. Use the control’s

Value property to change or get its current value. You use the AddItem method of the control to

add items to the list. When naming a list box, use the Hungarian notation prefi x of lst, such as

lstBoltSizes.

CheckBox A check box allows the user to indicate a value of on/off or true/false. This

control is often used when the user can make multiple choices, such as wanting to use the

Midpoint and Endpoint object snap modes. Use the control’s Value property to change or get

its current value. When naming a check box, use the Hungarian notation prefi x of chk, such

as chkHiddenLines or chkAddLabel.

OptionButton An option button (or radio button) allows the user to indicate a value of

on/off or true/false. This control is often used when the user can choose only one out of mul-

tiple choices, such as using a straight line or spline segment for a leader line. Use the control’s

Value property to change or get its current value. When naming an option button, use the

Hungarian notation prefi x of opt or rad, such as optSideView or radTopView.

ToggleButton A toggle button allows the user to indicate a value of on/off or true/false.

This control is similar to a CheckBox control, but it typically shows an image refl ecting the

current state of the control. Use the control’s Value property to change or get its current

value, or use the Picture property to display an image instead of text. When naming a

toggle button, use the Hungarian notation prefi x of tgl, such as tglAddLabel.

CommandButton A command button allows the user to start an action. This control is

commonly used to accept or cancel the changes made to a user form or to display a nested

user form. Use the control’s Caption property to change or get its current display text, or use

the Picture property to display an image instead of text. When naming a command button,

use the Hungarian notation prefi x of cmd, such as cmdOK or cmdCancel.

ScrollBar and SpinButton A scroll bar and spin button allows the user to specify a value

within a range of two numeric values. Use the control’s Value property to change or get its

current value. When naming a scroll bar or spin button control, use the Hungarian notation

prefi x of sb or spb, respectively, such as sbLength or spbHeight.

Image An image allows the user to start an action or get visual feedback about a value they

might have chosen. Use the control’s Picture property to specify the image to be displayed.

When naming an image, use the Hungarian notation prefi x of img, such as imgTopView or

imgSideView.

NOTE Hungarian notation is used as a way to help identify the data type of a variable or the

type an object represents. Its use is optional but highly recommended.

There are times when you might need to use a specialized control for the type of input or

feedback you want to provide. The AutoCAD program installs two additional controls that you

can use in a user form:

AutoCAD Control (AcCtrl) Allows you to embed an instance of the AutoCAD applica-

tion in a user form. With this control, you can open a drawing and even use the control’s

PostCommand method to send command macros to the drawing to automate tasks.

PLACING AND ARRANGING CONTROLS ON A USER FORM | 315

c11.indd 12:3:26:PM/03/25/2015 Page 315

AutoCAD Focus Control (AcFocusCtrl) I explain this control and its purpose in the

“Keeping the Focus on Your User Form” sidebar later in this chapter.

Figure 11.3

Common controls

employed in user

forms

Frame

Option button

Image

Label

Text box

Spin button

Command button

List box

Check box

Autodesk and third-party developers offer additional controls that can be used to display

the thumbnail of a drawing or slide fi le, controls that mimic the standard AutoCAD color and

linetype drop-down lists, data grids, and much more. To access the additional controls that

Autodesk offers, you must be a registered Autodesk Developer Network (ADN) partner.

Autodesk Developer Network Partners

If you plan to make a career out of developing custom applications for others to use with AutoCAD,

an ADN membership is optional but recommended. Th e membership grants you access to most of

Autodesk’s product off ers for a fl at annual fee and provides direct access to a professional support

team that helps developers when they are stuck.

You can become an ADN partner by going to www.autodesk.com/adn or, if you are an Autodesk User

Group International (AUGI) member, go to https://www.augi.com/adn-membership-offer.

As of this writing, AUGI members can upgrade to the Professional level and get a complimentary

ADN membership, which is a great deal for $100.

http://www.autodesk.com/adn
https://www.augi.com/adn-membership-offer

316 | CHAPTER 11 CREATING AND DISPLAYING USER FORMS

c11.indd 12:3:26:PM/03/25/2015 Page 316

You can locate additional controls by searching the Internet on the keywords “free activex

controls” or “purchase activex controls” along with VBA or VB6. Here are a few sites where you

can get ActiveX controls that you can place on a user form:

http://download.cnet.com

www.componentsource.com

You can add third-party controls that you’ve installed and registered on your workstation to

the Toolbox window by doing the following:

 1. In the Toolbox window, right-click and choose Additional Controls.

 2. When the Additional Controls dialog box opens, check the control to display on the

Toolbox window and click OK.

NOTE Be careful when using an uncommon control, because it might not be available on other

workstations or it may be available only on the 32- or 64-bit release of Windows.

Grouping Related Controls
Controls on a user form can be grouped in two different ways: for editing in the UserForm

editor window or visually for user interaction. When controls are grouped in the UserForm edi-

tor window with the Group option, it doesn’t affect how a user interacts with the controls when

a user form is displayed in the AutoCAD drawing environment, but it does make editing and

repositioning controls easier. To group controls in the UserForm editor window, hold down the

Ctrl key and select the controls you want to group. Then right-click and choose Group.

After controls are grouped, clicking a control in the group selects the group. Once a group is

selected, you can drag an individual control or the group’s boundary to reposition all the con-

trols in the group. With the group selected, you also can edit the common properties of all the

controls in the group from the Properties window. I explain how to edit the properties of a con-

trol in the “Changing the Appearance of a User Form or Control” section later in this chapter. If

you want to edit a single control in a group, select the group and then select the individual con-

trol you wish to edit. If a grouping of controls is no longer needed, you can ungroup the controls

by selecting the group, right-clicking, and then choosing Ungroup from the context menu.

Grouping controls visually in the UserForm editor window can be achieved using the follow-

ing controls from the Toolbox window:

Frame A frame graphically groups related controls and is a container object. You add a

frame on a user form and then add the controls to be grouped over the frame. You can add

an existing control to a frame by dragging it from the user form onto the frame and drop-

ping it. As an alternative, you can cut a control from the user form and paste it to the frame. If

you wish to cut and paste a control, select the frame before trying to paste it. Controls placed

in the frame are moved or hidden when it is repositioned or its visibility changes. Use the

control’s Caption property to change or get its current display text. When naming a frame,

use the Hungarian notation prefi x of fra or fam, frmViewStyle, or famBoltDimensions, for

example.

http://download.cnet.com
http://www.componentsource.com

PLACING AND ARRANGING CONTROLS ON A USER FORM | 317

c11.indd 12:3:26:PM/03/25/2015 Page 317

NOTE A container object, such as a UserForm or frame control, is used to hold and organize

controls without the need for additional code statements. Controls placed on a UserForm or

frame are displayed automatically when the UserForm or frame is shown or visible.

Tab Strip A tab strip control graphically groups related controls with the use of tabs.

Unlike the frame control, a tab strip isn’t a container object; this makes additional work for

you. To control the display of controls with a tab strip, you use the tab strip’s Click event

to know when a tab is being switched and then use code statements to change the Visible

property of the controls that should be hidden to False and those that should be displayed

to True. Use the control’s SelectedItem property to get information about the current

page. When naming a tab strip, use the Hungarian notation prefi x of tb or tab, such as

tbDrawHexBolt or tabDrawPlate.

MultiPage A MultiPage control graphically groups related controls on different pages (or

tabs). The MultiPage control is a container object like the frame control. You set one of the

control’s pages current, and then add the controls to the page that should be visible when

that page is current. You add or manage pages on the control by right-clicking one of the

pages and choosing the desired option. An existing control can be added to a page by drag-

ging and dropping it from the user form onto the page, or by cutting and pasting the control

to the page. If you cut a control from the user form, select the page before trying to paste

it. Controls placed on the page are moved when it is repositioned or hidden when the page

isn’t current. Use the control’s SelectedItem property to get information about the current

page. When naming a MultiPage control, use the Hungarian notation prefi x of mp, such as

mpDrawHexBolt.

NOTE I recommend using the MultiPage control if you want to control the visibility of controls

with tabs. Th e MultiPage control is a container object that doesn’t require you to provide any

additional code to determine which controls should be visible when a specifi c tab is current. Th e

control requires less coding but off ers fewer options to defi ne how it should appear. Th e tab strip

supports horizontal tabs, vertical tabs, and tabs displayed as buttons, whereas the MultiPage

control only supports horizontal tabs along the top of the control.

Managing Controls on a User Form
Once a control has been placed on a user form or in a container control, such as a frame or

MultiPage control, you can interactively manipulate, duplicate, remove, and change the display

order of a control. The following explains how:

Moving a Control You can move a control by selecting and dragging it on the user form. As

the control is dragged, it snaps to the grid based on the current spacing values. If you need

to move a control off the grid, disable grid snapping or use the Properties window (which

I explain in the “Changing the Appearance of a User Form or Control” section later in this

chapter). You can disable grid snapping in the VBA Editor’s Option dialog box (on the menu

bar, choose Tools ➢ Options and click the General tab) and clear the Align Controls To Grid

check box.

318 | CHAPTER 11 CREATING AND DISPLAYING USER FORMS

c11.indd 12:3:26:PM/03/25/2015 Page 318

NOTE You can arrange command buttons along the bottom or right edge of a user form by

selecting the command buttons you wish to arrange and choosing an option from the Arrange

Buttons submenu on the Format menu bar.

Duplicating a Control An existing control and its properties can be duplicated to create a

new control. To create a copy, right-click the control and choose Copy; then right-click and

choose Paste. The name of the control is changed to its default value, so be sure to give the

new control a meaningful name. The procedures (events) that defi ne the user interaction

behavior for a control aren’t duplicated. I discuss how to defi ne the behavior of a control in

the “Defi ning the Behavior of a User Form or Control” section later in this chapter.

Removing a Control You can remove a control from a user form by selecting the control

and pressing the Delete key or by right-clicking over the control and choosing Delete. You

aren’t prompted to confi rm the removal of the control, so be careful about removing a con-

trol. Sometimes it is best to move a control off to the side and set its Visible property to

False—just in case you need the control later. By setting the Visible property to False, you

ensure that the control isn’t accessible to the user of the user form when shown. If you deter-

mine later that the control is no longer needed, delete it.

Aligning a Control Although you can use the grid to align controls on a user form, it

doesn’t always produce the look and feel you want when it comes to controls of different

types and sizes. You can align one control to the edge of another control. Hold the Ctrl key

while selecting controls; the last control selected is designated as the anchor control (its

grips are white fi lled instead of black). All of the selected controls will be aligned with the

anchor control. Right-click one of the selected controls, choose Align, and then choose one of

the alignment options. You can also align controls to the closest grid point while the Align

Controls To Grid option is disabled by selecting one or more controls, right-clicking, and

then choosing Align ➢ To Grid. The alignment tools can also be found on the Format menu

and UserForm toolbar. If you want to center controls on the user form, select the controls you

want to center, choose Format ➢ Center In Form, and then choose one of the suboptions.

Resizing a Control The size of a control can be adjusted by selecting the control and then

using the grips that are displayed along the control’s boundary. When the Align Controls To

Grid option is enabled, as you drag a grip it snaps to the nearest grid point. Disable Align

Controls To Grid or use the Properties window to adjust the size of a control when you don’t

want it to land on one of the grid points. If you want multiple controls to have the same

height, width, or both, select the controls you want to make the same size. The last control

selected defi nes the height and width that will be applied to all selected controls. Then right-

click one of the selected controls, choose Make Same Size, and then choose one of the avail-

able options. The resizing tools can also be found on the Format menu and UserForm toolbar.

Spacing Controls Equally The spacing between two or more controls can be evenly

distributed, increased, decreased, or removed altogether. Select two or more controls,

choose Format ➢ Horizontal Spacing or Vertical Spacing, and then choose one of the

 available suboptions from the menu bar. The distance used to equally space the controls is

based on the two outermost selected controls in the horizontal or vertical directions.

Controlling the Display Order of a Control The display order isn’t something that needs

to be specifi ed too often, but you can adjust the order in which controls are displayed.

Sometimes, you want to ensure that a control is displayed in front of another control. For

CHANGING THE APPEARANCE OF A USER FORM OR CONTROL | 319

c11.indd 12:3:26:PM/03/25/2015 Page 319

example, you might want a text box to be displayed in front of a tab strip. You can adjust the

display order of a control by right-clicking over the control and choosing Bring Forward or

Send Backward. The display order of a control can also be changed using the ZOrder method

of the control while the VBA project is being executed. The display order tools can also be

found on the Format menu and UserForm toolbar.

NOTE When one or more controls is selected, dragging one of the controls repositions all the

selected controls. If you drag the grip of a selected control, all controls are resized accordingly.

Changing the Appearance of a User Form or Control
You can change the appearance of a user form or control in design time or runtime. Design-time

is the time you spend developing an application before executing the procedures you have writ-

ten. All of the objects you create or modify in an AutoCAD drawing are done during runtime;

runtime is the time that occurs while a program is executing (or running).

During design-time, you add a UserForm, and then place and size controls on the UserForm.

Like manipulating graphical and nongraphical objects in the AutoCAD drawing environ-

ment, the appearance of a UserForm or control can also be changed during runtime using code

statements.

When a UserForm or control is selected in the UserForm editor window, its properties are

displayed in the Properties window (see Figure 11.4). Display the Properties window by click-

ing View ➢ Properties Window, by choosing Properties Window on the Standard toolbar, or

by pressing F4. To change a property of a UserForm or control, display the Properties window,

select a property, and then change the property’s value. Most of the properties displayed in the

Properties window can also be changed at runtime.

Figure 11.4

View and change

the property values

in the Properties

window.

TIP You can click the drop-down list at the top of the Properties window to choose which con-

trol to work with on the active UserForm. Click the Alphabetic and Categorized tabs below the

drop-down list to specify whether the properties are displayed by name or in groups of similar

purpose.

Figure 11.4 shows the Properties window with the properties of a UserForm named

frmDrawPlate. Each UserForm has a property named Caption that controls the text displayed

320 | CHAPTER 11 CREATING AND DISPLAYING USER FORMS

c11.indd 12:3:26:PM/03/25/2015 Page 320

in its title bar. The text can be changed at design-time using the Caption property in the

Properties window or at runtime using the Caption property, as shown in the following

statement:

 frmDrawPlate.Caption = "Draw Plate"

As you can see in Figure 11.4, there is a large number of properties that you can change to

affect the appearance of a UserForm or control. In addition to properties that affect the appear-

ance of a UserForm or control, there are properties that affect the behavior of a control dur-

ing runtime. Table 11.1 lists some of the properties that affect the appearance or behavior of a

UserForm or control.

Table 11.1: Common UserForm or control properties

Property Description

Cancel Determines which command button is used to discard changes; CommandButton set to

True is executed when the user presses Esc.

Default Determines which command button is used to accept changes; CommandButton set to

True is executed when no other command button has focus and the user presses Enter.

Enabled Determines whether a control can receive focus; True indicates the user can interact

with the control.

Font Specifi es the font, font style, and size of the text displayed for a control.

GroupName Specifi es the name of a group. It is used to create a mutually exclusive group for

CheckBox and OptionButton controls without using a Frame control.

Height Specifi es the height of a control or UserForm.

Left Specifi es the coordinate value for the leftmost edge of a control. Th e greater the value,

the farther to the right on the UserForm the control is placed. A value of 0 specifi es the

control is positioned adjacent to the left edge of the UserForm.

ListStyle Specifi es the list style for a ComboBox or ListBox control.

Locked Determines whether the user can change the value of a control; True indicates the value

can’t be changed.

Style Specifi es whether the user can enter information or only choose a listed value from a

ComboBox.

TabStop Determines whether the user can navigate to a control by pressing the Tab key; True

indicates the control can be navigated to with the Tab key. Use the TabIndex property

to set the tab order.

DEFINING THE BEHAVIOR OF A USER FORM OR CONTROL | 321

c11.indd 12:3:26:PM/03/25/2015 Page 321

Property Description

Tag A property that can be used to store a custom or secondary value.

Top Specifi es the top edge of the control. Th e greater the value, the farther down on the

UserForm the control is placed. A value of 0 specifi es the control is positioned adjacent

to the top edge of the UserForm.

Visible Determines whether the control is visible at runtime; True indicates the control is

visible.

Width Specifi es the width of a control or UserForm.

TIP User forms and the various control types have many properties in common; there are also

many unique properties. Select a property in the Properties window and press F1 to access help

related to that property. Th is can be a great way to learn about properties.

Defi ning the Behavior of a User Form or Control
You might have noticed that some properties affect the behavior of a control. Properties alone

don’t defi ne every behavior of a control. Consider what happens when the user enters text in a

text box, clicks a command button or check box, or even chooses an option from a list. When a

user interacts with a control, VBA looks for and executes specially named procedures known

as events. I discussed how an event could be created to monitor changes to the application,

drawing, or an object in a drawing in Chapter 10, “Modifying the Application and Working

with Events.”

Click is a commonly used event and is typically associated with a command button. VBA

will execute the control’s Click event if one has been defi ned and the user clicks the button. The

same is true for other types of controls. The KeyPress event of a text box control can be used to

determine which key the user pressed, and the Change event is used to notify you when the user

makes a selection change in a list box.

In addition to using events to get information about a control while the user is interact-

ing with it, events are used to let you know when a UserForm component is being loaded or

unloaded. The Initialize event is executed when a UserForm is being loaded the fi rst time

during a session, and the QueryClose and Terminate events are executed when a UserForm is

being closed or unloaded from memory.

The following steps explain how to add an event to a UserForm or control:

 1. In the Project Explorer, right-click over a UserForm component and choose View Code to

display the UserForm in the UserForm editor window.

The code editor window opens and looks just as it always has, but you will need to work

with the Object and Procedure drop-down lists now (see Figure 11.5).

322 | CHAPTER 11 CREATING AND DISPLAYING USER FORMS

c11.indd 12:3:26:PM/03/25/2015 Page 322

Figure 11.5

Selecting an object

and event to add

Object drop-down list Procedure drop-down list

 2. In the code editor window, click the Object drop-down list box. Choose UserForm to add

an event for the UserForm or one of the controls on the UserForm to add an event for the

selected control.

When you make a selection in the Object drop-down list, the event selected in the

Procedure drop-down list is added to the code editor window. Remove the event if it isn’t

the one you want.

 3. Click the Procedure drop-down list and choose the event you want to use in your

program.

A private procedure is added to the code editor window with the appropriate name and

arguments. The following shows what the KeyPress event looks like for a text box control

named txtHeight:

Private Sub txtHeight_KeyPress(ByVal KeyAscii As MSForms.ReturnInteger)

End Sub

TIP You can double-click any UserForm or control (except a text box) from the UserForm editor

window to add a Click event for that object. For text boxes, a double-click adds a Change event.

Table 11.2 lists some of the most commonly used events for UserForms and controls.

DEFINING THE BEHAVIOR OF A USER FORM OR CONTROL | 323

c11.indd 12:3:26:PM/03/25/2015 Page 323

Table 11.2: Common UserForm or control events

Event Description

Change Executed when a change to a control’s Value property occurs. You can use this event to

validate the current value of a control and change the value as needed.

Click Executed when the user clicks on the user form or a control or selects a value from a list.

Th is event is often used to perform tasks related to accepting or discarding the values in a

user form, such as an OK or Cancel button.

DblClick Executed when the user double-clicks on the user form or a control. Th is event is often

used to implement secondary click event for a control that already has a Click event. Th e

speed with which the double-click must occur is based on the input settings for the oper-

ating system.

Enter Executed when a control receives focus from another control. You can use this event to

inform the user of the type of input expected before the control receives focus.

Exit Executed when a control loses focus to another control. You can use this event to perform

fi nal validation of a control’s value.

Initialize Executed when a UserForm is loaded with the Load statement or displayed using the

Show method. You can use this event to initialize the values of the controls on the

UserForm.

KeyPress Executed when the user provides input using a physical or onscreen keyboard. You can

use this event to restrict the characters that the user can provide as input. For example,

you can restrict a value to numeric characters only.

QueryClose Executed when a request for the UserForm to be unloaded is made with the Unload

statement or the Close button is clicked. You can use this event to veto and not allow the

UserForm to be unloaded. Th e event isn’t triggered when a UserForm is hidden.

Terminate Th is is the last event executed before a UserForm is unloaded from memory. You can use

this event to do any fi nal cleanup of variables and store values to the Windows Registry

so they can be restored the next time the UserForm is displayed. Th e event isn’t triggered

when a UserForm is hidden.

NOTE For more information on the events mentioned in Table 11.2 and other supported events,

see the Microsoft Visual Basic Help available from the Help menu on the VBA Editor’s menu bar.

324 | CHAPTER 11 CREATING AND DISPLAYING USER FORMS

c11.indd 12:3:26:PM/03/25/2015 Page 324

Displaying and Loading a User Form
Once you’ve designed your user form, you need to get it in front of the users. Before you display

a user form, you must decide if it should be displayed in a modal or modeless state. The modal

state forces the user to interact only with your user form while it is displayed; no other tasks can

be performed in the AutoCAD drawing environment while the user form is displayed. Dialog

boxes such as the Insert (insert command) and Options (options command) in the AutoCAD

program are examples of modal dialog boxes—you must click OK or Cancel to get back to the

drawing environment.

The modeless state allows the user to interact with your user form and the AutoCAD draw-

ing environment without fi rst closing the user form. There are a number of examples of this

behavior in AutoCAD. The ribbon, toolbars, Properties palette, and Tool Palettes window are

all examples of modeless user interfaces. Use the modeless state if your user form provides real-

time feedback (similar to the Properties palette) or, like the ribbon or a toolbar, is designed to

allow the user to start a tool. User forms that are displayed in the modeless state typically don’t

have a traditional Accept or Cancel button.

Showing and Hiding a User Form
A UserForm object is displayed onscreen with the Show method. Once the form is displayed, the

user can interact with its controls. The Hide method is used to hide the user form but will keep

it loaded in memory to preserve the values a user might have entered for the next time the user

form is displayed. The Show method accepts an optional integer value, which is used to indicate

whether the user form should be displayed in the modal or modeless state; modal is the default

display state. A value of 1 indicates the user form should be displayed in the modal state; a value

of 0 specifi es a modeless state. As an alternative, you can use the constant values vbModal and

vbModeless in place of the integer values.

NOTE Th e Initialize event of a UserForm is executed the fi rst time a form is displayed in

the current AutoCAD session. Th is procedure allows you to set up the default values for the

controls on a UserForm before it is displayed. I discussed how to use events to defi ne how a

user can interact with a user form and its controls in the “Defi ning the Behavior of a User Form

or Control” section.

The Hide method doesn’t accept any values. When the Hide method is executed, the

UserForm remains loaded in memory but is no longer displayed. It can be redisplayed using

the Show method. It is common practice to hide a UserForm when the user might need to select

objects or a point in the drawing area, and then redisplay it after the user has fi nished interact-

ing with the drawing area. The current UserForm can be referenced by using the object name Me.

Me is a self-reference, and it is commonly used when a control needs to reference the UserForm

where it is located.

Here are examples of displaying and hiding a UserForm:

' Displays a UserForm named frmDrawPlate

frmDrawPlate.Show vbModal

' Hides the UserForm in which a control is placed

DISPLAYING AND LOADING A USER FORM | 325

c11.indd 12:3:26:PM/03/25/2015 Page 325

Me.Hide

' Redisplays a UserForm which was hidden by a control

Me.Show

Keeping the Focus on Your User Form

When the AutoCAD program is in the foreground, the frontmost application, it wants to keep all

attention on itself. Th e palettes in the AutoCAD environment fi ght for attention when the cursor

passes over them. Th e same thing happens when you display a user form in the modeless state; the

AutoCAD program tries to grab attention away from your user form.

You tell AutoCAD that your modeless user form should be allowed to have focus while the user

interacts with it by adding an AutoCAD Focus Control (AcFocusCtrl) control to the user form.

Th e control isn’t visible to the user when the user form is displayed, so its placement on the user

form doesn’t matter. I explained how to add controls to a user form in the “Placing a Control on a

User Form” section earlier in this chapter.

To add the AcFocusCtrl control to the Toolbox window, follow these steps:

 1. On the Toolbox window, right-click and choose Additional Controls.

 2. When the Additional Controls dialog box opens, check AcFocusCtrl and click OK.

Loading and Unloading a User Form
A UserForm can be loaded into and unloaded from memory. The Show method, mentioned in the

previous section, loads and immediately displays a UserForm. There are times when you might

only want to load a UserForm into memory and manipulate its controls without displaying it

immediately.

For example, if you have a program that uses one or more nested UserForm objects, similar

to the Options dialog box, you can preload the nested UserForm objects into memory so they are

all initialized and ready to go when needed. The loading of nested UserForm objects is typically

handled in the Initialize event of the main UserForm in your program. The Load statement is

used to load a UserForm into memory.

Once a UserForm is no longer needed, you can remove it from memory to free up system

resources using the Unload statement. When a UserForm is hidden with the Hide method, it

remains in memory and all of the control values are preserved until the project is unloaded from

memory. (Projects are unloaded from memory as a result of unloading the VBA project or closing

the AutoCAD program.) If you want to preserve control values between AutoCAD sessions, write

the current values of the controls on the UserForm to the Windows Registry. Then, restore the

values from the Windows Registry as part of the Initialize event. I discussed how to store

custom values in the Windows Registry in Chapter 9, “Storing and Retrieving Custom Data.”

The Load and Unload statements require the name of an object for their single argument

value. The name must be of a UserForm in the current VBA project.

326 | CHAPTER 11 CREATING AND DISPLAYING USER FORMS

c11.indd 12:3:26:PM/03/25/2015 Page 326

Here are examples of loading and unloading a UserForm:

' Loads the frmMySettings UserForm into memory

Load frmMySettings

' Unloads the frmMySettings UserForm from memory

Unload frmMySettings

Exercise: Implementing a User Form for the DrawPlate
Project
In this section, you will add a user form to the DrawPlate project that was originally introduced

in Chapter 4, “Creating and Modifying Drawing Objects.” The dialog box replaces the width

and height prompts of the CLI_DrawPlate procedure and adds an option to control the creation

of the label. The key concepts I cover in this exercise are:

Creating a User Form and Adding Controls A user form and the controls placed on it are

used to get input from or provide feedback to a user.

Implementing Events for a User Form and Controls Events are used to defi ne how the

user can interact with the controls on the user form and the code statements that the user

form should execute when loading or unloading.

Displaying a User Form Once a user form has been created, it can be displayed in the

AutoCAD drawing environment. The choices a user makes can then be used to control the

behavior and output of a custom program.

NOTE Th e steps in this exercise depend on the completion of the steps in the “Exercise: Adding

Annotation to a Drawing” section of Chapter 6, “Annotating Objects.” If you didn’t complete the

steps, do so now or start with the ch11_drawplate.dvb sample fi le available for download from

www.sybex.com/go/autocadcustomization. Place this sample fi le in the MyCustomFiles

folder under the Documents (or My Documents) folder, or in the location you are using to store

your custom program fi les. Once the sample fi le is stored on your system, remove the characters

ch11_ from the fi lename.

Adding the User Form
Chapter 6 was the last chapter in which any changes were made to the DrawPlate project. At

that time, you implemented functionality that added a label to the plate that is drawn. Here you

add a user form to get the width and height values to draw a plate.

The following steps explain how to add the user form:

 1. Load the DrawPlate.dvb fi le into the AutoCAD drawing environment and display the

VBA Editor.

 2. In the VBA Editor, in the Project Explorer right-click the DrawPlate project and choose

Insert ➢ UserForm from the context menu.

 3. In the Properties window, click the (Name) fi eld and type frmDrawPlate.

http://www.sybex.com/go/autocadcustomization

c11.indd 12:3:26:PM/03/25/2015 Page 327

If the Properties window isn’t displayed, click View ➢ Properties Window.

 4. Change the following UserForm properties to the indicated values:

 ◆ Caption = DrawPlate

 ◆ Height = 122

 ◆ Width = 158

Figure 11.6 shows what the UserForm should look like after you have updated its

properties.

Figure 11.6

New UserForm in

the editor window

 5. Click File ➢ Save.

 6. With the UserForm editor window active, click Run ➢ Run Sub/UserForm.

Figure 11.7 shows what the user form looks like when executing.

Figure 11.7

New user form

running in the

AutoCAD drawing

environment

 7. Click the Close button in the upper-right corner of the user form.

Adding Controls to the User Form
Controls are used to get input from a user. The type of controls you use depends on the type of

input needed from the user. The Draw Plate user form will include two labels, two text boxes,

a check box, and two command buttons. The labels are used to indicate the values that are

expected for the text boxes. The two text boxes are used to get the width and height values for

the plate, whereas the check box will be used to indicate whether a label should be placed in the

drawing when the plate is drawn. The two command buttons will be used to draw the plate or

exit the dialog box.

Figure 11.8 shows what the fi nalized user form will look like when completed.

EXERCISE: IMPLEMENTING A USER FORM FOR THE DRAWPLATE PROJECT | 327

328 | CHAPTER 11 CREATING AND DISPLAYING USER FORMS

c11.indd 12:3:26:PM/03/25/2015 Page 328

Figure 11.8

Completed Draw

Plate user form

The following steps explain how to add two labels to the user form:

 1. In the Project Explorer, double-click the frmDrawPlate component.

 2. In the Toolbox window, click the Label icon.

 3. In the UserForm editor window, click and drag to create the label shown in Figure 11.9.

Figure 11.9

Th e label control

added to the user

form

 4. In the Toolbox window, click and drag the Label icon, and release the mouse button over

the UserForm editor window when the outline of the control appears below the fi rst label

control placed.

 5. Select the control labeled Label1.

 6. In the Properties window, change the following properties of the Label1 control to the

indicated values:

(Name) = lblWidth

Caption = Width:

Height = 18

 7. Select the Label2 control and change its properties to the following:

(Name) = lblHeight

Caption = Height:

Top = 24

 8. Select the second label, and then press and hold the Ctrl key. Select the fi rst label control

you placed.

The fi rst label control should have white-fi lled grips.

 9. Right-click over the selected controls and choose Align ➢ Lefts.

Left = 6

Top = 6

Width = 72

EXERCISE: IMPLEMENTING A USER FORM FOR THE DRAWPLATE PROJECT | 329

c11.indd 12:3:26:PM/03/25/2015 Page 329

 10. Right-click over the selected controls and choose Make Same Size ➢ Both.

The following steps explain how to add two text boxes to the user form:

 1. In the Toolbox window, use the TextBox icon and place two text boxes. Place a text box to

the right of each label.

 2. Select the fi rst text box placed, the one to the right of the label with the caption Width:.

 3. In the Properties window, change the following properties of the TextBox1 control to the

indicated value:

(Name) = txtWidth

Height = 18

 4. In the Properties window, change the following property of the TextBox2 control to the

indicated value:

(Name) = txtHeight

 5. Select the second text box, and then press and hold the Ctrl key. Select the fi rst text box

control you placed.

 6. Right-click over the selected controls and choose Align ➢ Lefts.

 7. Right-click over the selected controls and choose Make Same Size ➢ Both.

 8. Select the fi rst text box control you placed, and then press and hold the Ctrl key. Select the

label with the caption Width:.

 9. Right-click over the selected controls and choose Align ➢ Tops.

 10. Align the tops of the second text box and label.

The following steps explain how to add a check box to the user form:

 1. In the Toolbox window, click the CheckBox icon and place a check box below the second

label.

 2. In the Properties window, change the following properties of the CheckBox1 control to

the indicated values:

(Name) = chkAddLabel

Caption = Add Label

Height = 18

The following steps explain how to add two command boxes to the user form:

 1. In the Toolbox window, use the CommandButton icon and place two command boxes

along the bottom of the form below the check box.

 2. In the Properties window, change the following properties of the CommandButton1

control to the indicated values:

Left = 78

Width = 72

Left = 6

Top = 48

Width = 108

330 | CHAPTER 11 CREATING AND DISPLAYING USER FORMS

c11.indd 12:3:26:PM/03/25/2015 Page 330

(Name) = cmdCreate

Caption = Create

Default = True

Height = 24

 3. Change the following properties of the CommandButton2 control to the indicated values:

(Name) = cmdCancel

Caption = Cancel

 4. Select the second command button, and then press and hold the Ctrl key. Select the fi rst

command button you placed.

 5. Right-click over the selected controls and choose Align ➢ Tops.

 6. Right-click over the selected controls and choose Make Same Size ➢ Both.

 7. Click File ➢ Save.

Displaying a User Form
The Show method of a UserForm is used to display it in the AutoCAD drawing environment.

The following steps explain how to create a procedure that displays the user form:

 1. In the Project Explorer, double-click the basDrawPlate component.

 2. In the code editor window, scroll to the end of the code editor window.

 3. Click after the last code statement and press Enter twice. Type the following:

Public Sub DrawPlate()

 frmDrawPlate.Show

End Sub

 4. Click File ➢ Save.

 5. Switch to the AutoCAD application window.

 6. At the Command prompt, type vbarun and press Enter.

 7. When the Macros dialog box opens, select the DrawPlate.dvb!basDrawPlate.DrawPlate

macro from the list and click Run.

The Draw Plate user form is displayed in the AutoCAD drawing environment, as shown

in Figure 11.10.

Figure 11.10

Completed Draw

Plate user form in

the AutoCAD draw-

ing environment

Left = 42

Top = 72

Width = 54

Cancel = True

Left = 102

EXERCISE: IMPLEMENTING A USER FORM FOR THE DRAWPLATE PROJECT | 331

c11.indd 12:3:26:PM/03/25/2015 Page 331

 8. Interact with the controls on the dialog box. Type acb123 in the text boxes and click the

command buttons.

Notice you can enter text in the text boxes and check the check box. The command but-

tons don’t do anything at the moment, and the text boxes accept any text characters

entered with the keyboard.

 9. Click the Close button in the upper-right corner of the user form.

Implementing Events for a User Form and Controls
Events are used to control what happens when a user clicks a button, types text in a text box, or

even when a UserForm is loaded during an AutoCAD session. You will defi ne the Initialize

event for the UserForm to assign default values to the text boxes. In addition to setting up the

default values for the text boxes, you will defi ne a custom procedure that restricts the user to

entering numeric values only into the text values. The custom procedure will be used with the

KeyPress event of the text boxes.

The fi nal events you will set up are related to the Click event of the two command buttons.

When the Create button is clicked, it will use the values in the user form and prompt the user

for the fi rst corner of the plate. The Cancel button dismisses or hides the dialog box without

drawing the plate.

The following steps explain how to set up the global variables and constants that will be

used by the procedures of the Draw Plate user form:

 1. In the Project Explorer, right-click the frmDrawPlate component and choose View Code.

 2. In the code editor window, type the following:

Private myUtilities As New clsUtilities

Private g_drawplate_width As Double

Private g_drawplate_height As Double

Private g_drawplate_label As Boolean

' Constants for PI and removal of the "Command: " prompt msg

Const PI As Double = 3.14159265358979

Const removeCmdPrompt As String = vbBack & vbBack & vbBack & _

 vbBack & vbBack & vbBack & _

 vbBack & vbBack & vbBack & vbLf

 3. Click File ➢ Save.

The following steps add the Initialize event for the UserForm and assign the default values

to the controls:

 1. In the code editor window, click the Object drop-down list and choose UserForm. The

Object drop-down list is in the upper-left corner of the code editor window.

 2. Click the Procedure drop-down list and choose Initialize.

 3. If a procedure other than UserForm_Initialize was added before step 2, remove the

procedure.

 4. Between the Private Sub UserForm_Initialize() and End Sub code statements, type

the following:

332 | CHAPTER 11 CREATING AND DISPLAYING USER FORMS

c11.indd 12:3:26:PM/03/25/2015 Page 332

Private Sub UserForm_Initialize()

 ' Define the width and height for the plate, and enable label placement

 If g_drawplate_width = 0 Then g_drawplate_width = 5#

 If g_drawplate_height = 0 Then g_drawplate_height = 2.75

 If g_drawplate_label = 0 Then g_drawplate_label = True

 Me.txtWidth.Text = Format(g_drawplate_width, "0.0000")

 Me.txtHeight.Text = Format(g_drawplate_height, "0.0000")

 Me.chkAddLabel.Value = g_drawplate_label

End Sub

 5. Click File ➢ Save.

The following steps defi ne a custom procedure named ForceNumeric, which restricts input

to numeric values only. The procedure is then assigned to the KeyPress event for the txtWidth

and txtHeight controls.

 1. In the code editor window, scroll to the end of the code editor window.

 2. Click after the last code statement and press Enter twice. Type the following:

Private Sub ForceNumeric(ByRef KeyAscii As MSForms.ReturnInteger)

 If (KeyAscii > 47 And KeyAscii < 58) Or KeyAscii = 8 Or KeyAscii = 32 Then

 KeyAscii = KeyAscii

 ElseIf KeyAscii = 46 Then

 If InStr(1, txtWidth.Text, ".") = 0 Then

 KeyAscii = KeyAscii

 Else

 KeyAscii = 0

 End If

 Else

 KeyAscii = 0

 End If

End Sub

The procedure is passed the ASCII value of the key that is pressed, and if it isn’t a number

between 0 and 9, a period, a backspace (8), or a carriage return (32), the character returned

is a Null value.

 3. Add the KeyPress event for the txtWidth control and type the text in bold to modify the

procedure:

Private Sub txtWidth_KeyPress(ByVal KeyAscii As MSForms.ReturnInteger)

 ForceNumeric KeyAscii

End Sub

 4. Repeat step 3 for the txtHeight control.

 5. Click File ➢ Save.

The following steps defi ne the Click event for the Cancel button:

 1. In the Project Explorer, right-click the frmDrawPlate component and choose View Object.

 2. In the UserForm editor window, double-click the command button labeled Cancel.

EXERCISE: IMPLEMENTING A USER FORM FOR THE DRAWPLATE PROJECT | 333

c11.indd 12:3:26:PM/03/25/2015 Page 333

 3. The code editor, window is displayed and the Click event for the cmdCancel control is

added. Type the text in bold to complete the event:

Private Sub cmdCancel_Click()

 Me.Hide

End Sub

 4. Click File ➢ Save.

The following steps defi ne the Click event for the Create button, which is a variant of the

CLI_DrawPlate function.

 1. Add the Click event to the cmdCreate control. Between the Private Sub cmdCreate_

Click and End Sub code statements, type the following:

Private Sub cmdCreate_Click()

 Dim oLyr As AcadLayer

 ' Hide the dialog so you can interact with the drawing area

 Me.Hide

 On Error Resume Next

 Dim sysvarNames As Variant, sysvarVals As Variant

 sysvarNames = Array("nomutt", "clayer", "textstyle")

 ' Store the current value of system variables to be restored later

 sysvarVals = myUtilities.GetSysvars(sysvarNames)

 ' Set the current value of system variables

 myUtilities.SetSysvars sysvarNames, Array(0, "0", "STANDARD")

 ' Get recently used values from the global variables

 Dim width As Double, height As Double

 width = Me.txtWidth.Text

 height = Me.txtHeight.Text

 ' Prompt for a base point

 Dim basePt As Variant

 basePt = Null

 basePt = ThisDrawing.Utility.GetPoint(, _

 removeCmdPrompt & "Specify base point for plate: ")

 ' If a base point was specified, then draw the plate

 If IsNull(basePt) = False Then

 ' Create the layer named Plate or set it current

 Set oLyr = myUtilities.CreateLayer("Plate", acBlue)

 ThisDrawing.ActiveLayer = oLyr

 ' Create the array that will hold the point list

 ' used to draw the outline of the plate

334 | CHAPTER 11 CREATING AND DISPLAYING USER FORMS

c11.indd 12:3:26:PM/03/25/2015 Page 334

 Dim dPtList(7) As Double

 dPtList(0) = basePt(0): dPtList(1) = basePt(1)

 dPtList(2) = basePt(0) + width: dPtList(3) = basePt(1)

 dPtList(4) = basePt(0) + width: dPtList(5) = basePt(1) + height

 dPtList(6) = basePt(0): dPtList(7) = basePt(1) + height

 ' Draw the rectangle

 myUtilities.CreateRectangle dPtList

 ' Create the layer named Holes or set it current

 Set oLyr = myUtilities.CreateLayer("Holes", acRed)

 ThisDrawing.ActiveLayer = oLyr

 Dim cenPt1 As Variant, cenPt2 As Variant

 Dim cenPt3 As Variant, cenPt4 As Variant

 Dim dAng As Double, dDist As Double

 ' Calculate the placement of the circle in the lower-left corner.

 ' Calculate a new point at 45 degrees and distance of 0.7071 from

 ' the base point of the rectangle.

 cenPt1 = ThisDrawing.Utility.PolarPoint(basePt, PI / 4, 0.7071)

 myUtilities.CreateCircle cenPt1, 0.1875

 ' Calculate the distance between the first and second corners of the

 ' rectangle.

 dDist = myUtilities.Calc2DDistance(dPtList(0), dPtList(1), _

 dPtList(2), dPtList(3))

 ' Calculate and place the circle in the lower-right

 ' corner of the rectangle.

 dAng = myUtilities.Atn2(dPtList(2) - dPtList(0), _

 dPtList(3) - dPtList(1))

 cenPt2 = ThisDrawing.Utility.PolarPoint(cenPt1, dAng, dDist - 1)

 myUtilities.CreateCircle cenPt2, 0.1875

 ' Calculate the distance between the second and third corners of the

 ' rectangle.

 dDist = myUtilities.Calc2DDistance(dPtList(2), dPtList(3), _

 dPtList(4), dPtList(5))

 ' Calculate and place the circle in the upper-right

 ' corner of the rectangle.

 dAng = myUtilities.Atn2(dPtList(4) - dPtList(2), _

 dPtList(5) - dPtList(3))

 cenPt3 = ThisDrawing.Utility.PolarPoint(cenPt2, dAng, dDist - 1)

 myUtilities.CreateCircle cenPt3, 0.1875

EXERCISE: IMPLEMENTING A USER FORM FOR THE DRAWPLATE PROJECT | 335

c11.indd 12:3:26:PM/03/25/2015 Page 335

 ' Calculate and place the circle in the upper-left

 ' corner of the rectangle.

 dAng = myUtilities.Atn2(dPtList(6) - dPtList(0), _

 dPtList(7) - dPtList(1))

 cenPt4 = ThisDrawing.Utility.PolarPoint(cenPt1, dAng, dDist - 1)

 Dim oEnt As AcadEntity

 Set oEnt = myUtilities.CreateCircle(cenPt4, 0.1875)

 ' Force an update to the last object to display it when

 ' the dialog reappears.

 oEnt.Update

 If Me.chkAddLabel.Value = True Then

 ' Get the insertion point for the text label

 Dim insPt As Variant

 insPt = Null

 insPt = ThisDrawing.Utility.GetPoint(, _

 removeCmdPrompt & "Specify label insertion point " & _

 "<or press Enter to cancel placement>: ")

 ' If a point was specified, place the label

 If IsNull(insPt) = False Then

 ' Define the label to add

 Dim sTextVal As String

 sTextVal = "Plate Size: " & _

 Format(ThisDrawing.Utility. _

 RealToString(width, acDecimal, 4), "0.0###") & _

 "x" & _

 Format(ThisDrawing.Utility. _

 RealToString(height, acDecimal, 4), "0.0###")

 ' Create label

 Set oLyr = myUtilities.CreateLayer("Label", acWhite)

 ThisDrawing.ActiveLayer = oLyr

 Dim oMtext As AcadMText

 Set oMtext = myUtilities.CreateText(insPt, _

 acAttachmentPointMiddleCenter, _

 0.5, 0#, sTextVal)

 ' Use update to force the display of the label

 ' as it is the last object drawn before the form

 ' is redisplayed.

 oMtext.Update

 End If

 End If

 End If

336 | CHAPTER 11 CREATING AND DISPLAYING USER FORMS

c11.indd 12:3:26:PM/03/25/2015 Page 336

 ' Restore the saved system variable values

 myUtilities.SetSysvars sysvarNames, sysvarVals

 ' Save previous values to global variables

 g_drawplate_width = width

 Me.txtWidth.Text = Format(g_drawplate_width, "0.0000")

 g_drawplate_height = height

 Me.txtHeight.Text = Format(g_drawplate_height, "0.0000")

 g_drawplate_label = Me.chkAddLabel.Value

 ' Show the dialog box once done

 Me.show

End Sub

 2. Click File ➢ Save.

Testing the User Form and Controls
The following steps explain how to test the user form and the DrawPlate procedure in the

DrawPlate.dvb fi le:

 1. Switch to the AutoCAD application and use the vbarun command to execute the

DrawPlate.dvb!basDrawPlate.DrawPlate macro.

The Draw Plate user form is displayed.

 2. In the Draw Plate user form, in the Width text box, clear the current value and type abc.

Notice the text box ignores the characters abc as they are being typed.

 3. In the Width text box, clear the current value and type 4.

 4. In the Height text box, clear the current value and type 4.

 5. Clear the Add Label check box.

 6. Click Create.

 7. At the Specify base point for the plate: prompt, pick a point in the drawing area

to draw the plate and holes based on the width and height values specifi ed.

AutoCAD draws the completed plate without the label, as expected.

 8. Run the macro again.

 9. In the Draw Plate user form, select the Add Label check box.

 10. Click Create and specify the insertion point for the plate and label.

EXERCISE: IMPLEMENTING A USER FORM FOR THE DRAWPLATE PROJECT | 337

c11.indd 12:3:26:PM/03/25/2015 Page 337

AutoCAD draws the completed plate with a label this time. Figure 11.11 shows the results

of the plates drawn with and without th e label.

Figure 11.11

Completed plates

c12.indd 1:47:22:PM/03/26/2015 Page 339

Chapter 12

Communicating with Other
Applications

Everything up until this point has been focused on learning VBA, automating tasks in the

AutoCAD® drawing environment, and manipulating the AutoCAD program itself. The VBA

programming language also supports features that can be used to get information from outside

of the AutoCAD program.

Using VBA, you can read and write text fi les that are stored on disc and leverage other librar-

ies registered on your workstation with the ActiveX technology. Microsoft Windows comes

preinstalled with a number of libraries that can be used to parse the information stored in an

XML fi le or manipulate the fi les and directories on the discs that are accessible from your work-

station. If you have Microsoft Offi ce installed, you can also access Microsoft Word, Excel, and

Access to read and write information to DOC, DOCX, XLS, XLSX, ACCDB, or MDB fi les.

Referencing a Programming Library
When a new VBA project is created, the Microsoft VBA and AutoCAD Object libraries are ref-

erenced by default. You can reference other libraries that are installed and registered on your

workstation using the References dialog box. Here are examples of other programming libraries:

AutoCAD/ObjectDBX™ Common Type Library (axdb<version>enu.tlb) This library

allows you to access the objects of a drawing without loading the drawing into the AutoCAD

drawing environment fi rst.

AcSmComponents 1.0 Type Library (acsmcomponents<version>.tlb) Using this

library, you can automate tasks related to the Sheet Set Manager in the AutoCAD drawing

environment.

Microsoft Excel Object Library (excel.exe) If you need to access the Excel application, use

this library.

Microsoft Word Object Library (msword<version>.olb) Using the Microsoft Word Object

Library, you can access the Word application.

340 | CHAPTER 12 COMMUNICATING WITH OTHER APPLICATIONS

c12.indd 1:47:22:PM/03/26/2015 Page 340

The following explains how to add a reference to a third-party library in a VBA project:

 1. In the VBA Editor, from the Project Explorer select a loaded project to set it as current.

 2. On the menu bar, click Tools ➢ References.

 3. When the References dialog box opens, scroll to the library you want to reference.

 4. Click the check box next to the programming library to reference.

If the programming library you want to load is not referenced, click Browse and select

the library to load. Click Open.

 5. Click OK.

Creating and Getting an Instance of an Object
Most of the objects that you have learned to work with were created using an object method

defi ned in the AutoCAD Object library or using the New keyword. I explained how to use the

New keyword to create a new instance of an object in the “Working with Objects” section of

Chapter 2, “Understanding Visual Basic for Applications.”

When using a library registered on your workstation, you can let VBA know that you want

to use the library by referencing it fi rst or simply creating an instance of an object that can be

instantiated. Referencing a library as part of your VBA project is known as early binding. Early

binding allows you to browse the objects and members of a library using the Object Browser in

the VBA Editor as well as the IntelliSense (type-ahead) feature of the code editor windows. I men-

tioned how to reference a library in the “Referencing a Programming Library” section earlier.

The alternative to early binding is known as late binding. Late binding is when you use a

programming library without fi rst adding a reference to the library in your project. Early binding is

the more popular approach when working with a programming library, but it does have a limitation.

Early binding forces your program to use a specifi c release of a programming library,

whereas late binding allows you to work with any version of a programming library registered

Extending Nondrafting Workflows with VBA

Your boss has just come from the latest conference. He’s excited about agile systems and how imple-

menting Agile processes can make projects go smoother. After sitting in a few meetings, you realize

how much extra work this could be in the short term, but you can see how it will help deliver more

projects on time in the long term. So, you decide to participate in the pilot project using Agile processes.

One of the new processes that drafters will be responsible for is entering project team queries into

an Excel spreadsheet. Th e spreadsheet will be used by the team to address issues during the daily

meeting, report project status in Microsoft Project at each handoff point in a drawing, and notify

the team of queries and handoff s by email. Using VBA, you help facilitate the information exchange.

Your custom programs allow drafters to export status updates, handoff s, and queries to Excel and

Project, and the interface in AutoCAD allows the drafters to respond to a query, send a request for

more information, and update a project’s status from within any drawing for the project.

CREATING AND GETTING AN INSTANCE OF AN OBJECT | 341

c12.indd 1:47:22:PM/03/26/2015 Page 341

on your workstation. An example of when you might want to use late binding instead of early

binding is when you want to create a program that can target and take advantage of the features

in different releases of Word.

NOTE Late binding is more fl exible when deploying an application to workstations that could

have diff erent versions of a programming library than you are using. However, early binding

does make development and debugging easier because you can take advantage of IntelliSense

for the library in the VBA Editor.

Creating a New Instance of an Object
The New keyword can only be used when you use early binding. To create a new instance of an

object with early or later binding, you can use the CreateObject function. The CreateObject

function expects a class ID for the object you want to create. Class ID values are defi ned in the

Windows Registry, but the vendor of the library should have these documented as part of the

library’s documentation.

The following shows the syntax of the CreateObject function:

retObj = CreateObject(classID [, servername])

Its arguments are as follows:

retObj The retObj argument represents the object that is returned.

classID The classID argument is a string that represents the object to be created. The

string is in the form of appname.objecttype[.version]. When the library has already been

referenced in a project, the value of appname must match the name of the library you are call-

ing exactly as it appears in the Libraries drop-down list in the Object Browser of the VBA

Editor (see Figure 12.1). The value of objecttype specifi es the type of object to be created,

whereas version is an optional version number that could include a major and/or minor ver-

sion number. Not all object types support a version number.

Figure 12.1

Check the Libraries

drop-down list in

the Object Browser

and use the

appname listed

there.

Libraries drop-down list

342 | CHAPTER 12 COMMUNICATING WITH OTHER APPLICATIONS

c12.indd 1:47:22:PM/03/26/2015 Page 342

An example of a major version number might be 19, and an example of a major and minor

number might be 19.1. The AcadApplication object in the AutoCAD Object library supports

both major and minor versions and is based on the release of AutoCAD. Table 12.1 lists some

common class IDs for the Application object in the AutoCAD Object library.

Table 12.1: Common class IDs for the AutoCAD Object library Application object

Class ID Specifies

AutoCAD.Application Any version of AutoCAD

AutoCAD.Application.19 AutoCAD 2013 release

AutoCAD.Application.19.1 AutoCAD 2014 release

AutoCAD.Application.20 AutoCAD 2015 release

Be sure to refer to each library’s documentation for object versioning information.

servername The servername argument is an optional string that represents the name of the

server on the network where the object should be created. If no value or a value of "" is

provided, the object is created locally in memory on your workstation.

If the object specifi ed by the classID argument can’t be created, an error is generated. You

will need to handle those errors. I show an example of how to handle the errors generated by

the CreateObject function later in this chapter, and you can learn more about error handling in

Chapter 13, “Handling Errors and Deploying VBA Projects.”

Two objects must be created using the CreateObject function before they can be used: the

File System object (FileSystemObject) from the Scripting Object library and the Application

object in the Word Object library. The FileSystemObject object provides access to the fi les

and folders on a local or network drive and allows you to automate the fi le management tasks

related to your projects. For example, you could use the Application object of the Word Object

library to generate sections of a bid specifi cation or a cost estimation document from the infor-

mation in a drawing. I discuss more about the File System and Word application objects in the

“Working with Microsoft Windows” and “Working with Microsoft Offi ce Applications” sections

later in this chapter.

Here are examples of creating new instances of a fi lesystem or the Word application object:

' Create a new instance of the FileSystemObject without

' referencing the Microsoft Scripting Runtime (scrrun.dll)

Dim ofsObj as Object

Set ofsObj = CreateObject("Scripting.FileSystemObject")

CREATING AND GETTING AN INSTANCE OF AN OBJECT | 343

c12.indd 1:47:22:PM/03/26/2015 Page 343

' Create a new instance of the Word application without

' referencing the Microsoft Word 15.0 Object Library (msword15.olb)

Dim oWordApp as Object

Set oWordApp = CreateObject("Word.Application")

If you have both Word 2003 and Word 2013 installed on the same machine (a fair number

of tech writers and editors have those two versions available for compatibility with client fi les

or because they have an extensive macro set that was developed with 2003 and didn’t translate

smoothly to 2010 and later versions), you can specify which version of the application to work

with by adding the version number to the class ID. Here are examples of creating a new instance

of an Application object from the Word 2003 Object library and Word 2013 Object library with

the CreateObject function:

' Create a new instance of the Word 2003 application

Dim oWordApp2003 as Object

Set oWordApp2003 = CreateObject("Word.Application.11")

' Create a new instance of the Word 2013 application

Dim oWordApp2013 as Object

Set oWordApp2013 = CreateObject("Word.Application.15")

When you create a new object, whether with the New keyword or the CreateObject func-

tion, you should consider whether the object should be removed from memory when you are

done with it or left resident. Remove the object from memory if you don’t plan to use it again or

want the user to interact with the object; such is the case if you create an instance of the Word

application. Some objects support a method such as Close or Quit that removes the object from

memory, whereas some require you to set the object to Nothing.

For example, the following example creates a new instance of the File System object and gets

the fi lesystem type of the C: drive.

Dim ofsObj As Object

Set ofsObj = CreateObject("Scripting.FileSystemObject")

' Display the file system type of the C: drive

Dim oDrv As Object

Set oDrv = ofsObj.Drives("C")

MsgBox oDrv.FileSystem

' Release the object

Set ofsObj = Nothing

I discuss more about the File System object in the “Accessing the Filesystem” section later in

this chapter.

344 | CHAPTER 12 COMMUNICATING WITH OTHER APPLICATIONS

c12.indd 1:47:22:PM/03/26/2015 Page 344

Obtaining a List of the Class IDs Registered on Your Workstation

Th e HKEY_LOCAL_MACHINE\SOFTWARE\Classes key in the Windows Registry contains a list of all

class IDs and their versions that can be created with the CreateObject function. You can display

the Windows Registry by doing the following:

 1. Right-click the Windows Start button on Windows XP or Windows 7, or right-click in the lower-left

corner of the screen on Windows 8.

 2. Click Run.

 3. When the Run dialog box opens, type regedit and click OK to open the Registry Editor.

Getting an In-Memory Instance of an Object
In some cases, you don’t need to create a new instance of an object but can work with an

instance of an object that is already running in memory. The GetObject function returns an

instance of an object that is running in memory or can create an object that is representative of

a fi le. For example, you can get an instance of the Word Application object running in memory

or create a Word Document object based on a DOC or DOCX fi le that is stored on disc.

The following shows the syntax of the GetObject function:

retObj = GetObject([pathName] [, classID])

Its arguments are as follows:

retObj The retObj argument represents the object that is returned.

pathName The pathName argument is an optional string that represents the fi lename con-

taining the type of object to create and return. The fi lename could be an executable or a fi le

created by an application, but the fi lename must correspond to a valid class ID in a registered

programming library.

CREATING AND GETTING AN INSTANCE OF AN OBJECT | 345

c12.indd 1:47:22:PM/03/26/2015 Page 345

classID The classID argument is an optional string that represents the type of object in

memory to be returned. For information on the structure of the class ID value, review the

syntax of the CreateObject function in the “Creating a New Instance of an Object” section

earlier in this chapter.

Here are two examples of the GetObject function:

' Gets an instance of the Word application running in memory

Dim oWordApp as Word.Application

Set oWordApp = GetObject("Word.Application")

' Creates an instance of a Document object of the

' Word Object library based on a file

Dim oWordApp as Word.Document

Set oWordApp = GetObject("c:\Users\Lee\Documents\MyCustomFiles\ch12_circles.doc")

NOTE Be cautious of setting the object returned by GetObject to Nothing; doing so could

cause potential problems for the application that originally created the instance of the object.

In most cases, unless the object is created as a result of specifying a fi le, I wouldn’t set the object

to Nothing.

Listing 12.1 shows a custom function named GetCreateObject that tries to get an instance

of an object in memory before attempting to create a new instance of the object. This function

can be helpful when creating a new instance of the AutoCAD or Word application. The code in

Listing 12.1 can be found in the ch12_code_listings.dvb fi le that is available for download

from www.sybex.com/go/autocadcustomization.

Listing 12.1: Getting and creating an instance of an object based on a class ID

' Try and get an instance of an object before

' creating a new instance based on a class ID

Function GetCreateObject(classID As String) As Object

 On Error Resume Next

 ' Try and get an instance of the object

 Set GetCreateObject = GetObject(, classID)

 If Err Then

 Err.Clear

 On Error GoTo ErrHandler

 ' Create a new instance of the object

 Set GetCreateObject = CreateObject(classID)

 End If

 Exit Function

http://www.sybex.com/go/autocadcustomization

346 | CHAPTER 12 COMMUNICATING WITH OTHER APPLICATIONS

c12.indd 1:47:22:PM/03/26/2015 Page 346

' If an error is generated when creating the

' new instance of the object, raise an error

ErrHandler:

 Err.Raise Err.Number, Err.Source, Err.Description, _

 Err.HelpFile, Err.HelpContext

End Function

Here is an example of how the GetCreateObject function can be used to get or create an

instance of the Word application:

Sub WordAppInstance()

 On Error GoTo ObjectNotCreated

 Dim wordApp As Object

 Set wordApp = GetCreateObject("Word.Application")

 ' Make the application visible

 wordApp.Visible = True

 ' Create a new document

 wordApp.Documents.Add

 Exit Sub

ObjectNotCreated:

 MsgBox "MS Word couldn't be started." & vbLf & _

 "Verify MA Word is installed or the install isn't corrupt."

End Sub

If Microsoft Word isn’t installed on the workstation, a message box with the text MS Word

couldn't be started. is displayed when the previous example is executed.

Accessing a Drawing File from outside of AutoCAD
There are times when you want to get information from a drawing fi le that isn’t opened in the

current instance of AutoCAD. Although you could use the Open method of the AcadDocument

or AcadDocuments objects, it takes time to open the drawing because you have to wait for the

AutoCAD program to create a new document window and regenerate the drawing as it is being

opened in the AutoCAD user interface.

Using the AutoCAD/ObjectDBX Common Type Library that comes with the AutoCAD

program, you can access and modify graphical and nongraphical objects stored in a DWG fi le.

Although there are limitations—such as not being able to allow the user to select objects to work

with or use AutoCAD commands—it is much faster if you need to work with several to several

hundreds of drawings quickly.

To use the AutoCAD/ObjectDBX Common Type Library in a VBA project, follow these steps:

 1. Create a new or open an existing VBA project.

 2. In the VBA Editor, click Tools ➢ References.

WORKING WITH MICROSOFT WINDOWS | 347

c12.indd 1:47:22:PM/03/26/2015 Page 347

 3. When the References dialog box opens, scroll to and check AutoCAD/ObjectDBX

Common <version> Type Library.

You typically want to always work with the latest version on your workstation, but if you

need to work with a specifi c version make sure you choose that one. Version 18 represents

AutoCAD 2010 through 2012, 19 represents AutoCAD 2013 and 2014, and 20 represents

AutoCAD 2015. If you have more than one instance of the library registered, be sure to

reference the one in <drive>:\Program Files\Common Files\Autodesk Shared.

 4. Click OK.

The following example shows how to open a DWG fi le in memory and list the number of

layers and objects in model space that are present in the drawing. Figure 12.2 shows the resulting

message box when the example code is executed.

Sub ReadDrawingEx()

 Dim sFlrPath As String, sDWGName As String

 sFlrPath = ThisDrawing.GetVariable("MyDocumentsPrefix") & _

 "\MyCustomFiles\"

 sDWGName = "Ch12_Building_Plan.dwg"

 Dim oDWGFile As New AxDbDocument

 oDWGFile.Open sFlrPath & sDWGName

 MsgBox sDWGName & " contains:" & vbLf & _

 "Layers - " & CStr(oDWGFile.Layers.Count) & vbLf & _

 "Objects - " & CStr(oDWGFile.ModelSpace.Count)

 ' Close the drawing file

 Set oDWGFile = Nothing

End Sub

Figure 12.2

Information from

an externally

opened drawing fi le

If you make changes to the DWG fi le, be sure to save the changes with the SaveAs method.

Because there is no Close method, you simply set the variable that contains the Document object

that represents the DWG fi le to Nothing, as shown in the previous example.

Working with Microsoft Windows
Microsoft provides a number of programming libraries that allow you to access and use some of

the features defi ned in the Windows operating system with your own programs.

348 | CHAPTER 12 COMMUNICATING WITH OTHER APPLICATIONS

c12.indd 1:47:22:PM/03/26/2015 Page 348

These programming libraries can save you time and help to implement user experiences in your

custom programs that are found in many other Windows-based programs. Although it isn’t

possible to introduce all of the Windows programming libraries that are available in this book, I

will show you examples from a few of my favorite libraries.

Here are some Windows programming libraries that I suggest you take a look at:

 ◆ Microsoft Scripting Runtime

 ◆ Windows Script Host Object Model

 ◆ Microsoft Shell Controls and Automation

 ◆ Windows 32-bit API

For additional information on these libraries, use your favorite Internet search engine and do

a search of the library names with VB6 as one of the keywords.

Accessing the Filesystem
The Microsoft Scripting Runtime library is your gateway to the Windows fi lesystem. The library

allows you to access information about the fi les, folders, and drives on your workstation. To use

the Microsoft Scripting Runtime library, reference the library as part of your VBA project or use

late binding with the class ID Scripting.FileSystemObject.

You can use the Microsoft Scripting Runtime library to perform the following tasks:

 ◆ List the names and types of drives attached to a workstation

 ◆ Create and manage the folders on a drive

 ◆ Check to see if a fi le exists

 ◆ Get information about a fi le or folder, including the extension of a fi le, parent folder of a

folder, or name of a special folder

NOTE You can also use the Microsoft Scripting Runtime library to create, read from, and write

to a text fi le. I discuss accessing the content of a text fi le in the “Reading and Writing Text Files”

section later in this chapter.

Here is how to create an instance of a File System object (FileSystemObject):

Dim ofsObj As New FileSystemObject

or

Dim ofsObj As Object

Set ofsObj = CreateObject("Scripting.FileSystemObject")

NOTE Don’t forget to reference the Microsoft Scripting Runtime library in your VBA project

before using the New keyword to create an instance of the File System object.

WORKING WITH MICROSOFT WINDOWS | 349

c12.indd 1:47:22:PM/03/26/2015 Page 349

Getting the Drives Attached to a Workstation

When you fi rst begin to work with the fi lesystem, it is a common tendency to want to work with

a fi le. After all, a fi le is typically what you are creating with AutoCAD or any other application.

Files are the lowest item in the fi lesystem hierarchy; drives are the very top.

The FileSystemObject object allows you to access all the drives attached to a workstation

using the Drives collection object. Information about a drive can be obtained using the proper-

ties and methods of a Drive object.

The following example steps through the Drives collection object and displays a message

box containing a drive’s letter designation and the fi lesystem used to format it:

Sub ListDrives()

 Dim ofsObj As Object

 Set ofsObj = CreateObject("Scripting.FileSystemObject")

 ' Display the drive letter and file system

 Dim oDrv As Object

 For Each oDrv In ofsObj.Drives

 ' Check to see if the drive is ready

 If oDrv.IsReady Then

 MsgBox "Letter: " & oDrv.DriveLetter & vbLf & _

 "File System: " & oDrv.FileSystem

 Else

 MsgBox "Letter: " & oDrv.DriveLetter & vbLf & _

 "File System: *Drive not ready*"

 End If

 Next oDrv

 ' Release the object

 Set ofsObj = Nothing

End Sub

Table 12.2 lists the methods of the FileSystemObject object that can be helpful when working

with the drives attached to a workstation.

Table 12.2: Drive-related methods of the FileSystemObject object

Method Description

DriveExists Returns True if the drive specifi ed exists

GetDrive Returns a Drive object based on a drive letter or UNC path

GetDriveName Returns the drive name in a fi le path

350 | CHAPTER 12 COMMUNICATING WITH OTHER APPLICATIONS

c12.indd 1:47:22:PM/03/26/2015 Page 350

Working with Folders and Special Folders

Folders are used to organize the fi les on a drive. You can use folders to organize your custom

programs or all the drawing fi les related to a client project. The Folder object is used to get

information about a folder on a drive, whereas the Folders collection object is used to access

all the subfolders contained in a folder or drive. The FileSystemObject object can also be used

to get the folders Microsoft has designated as special folders. There are three special folders:

Windows, System, and Temp. Special folders are obtained using the GetSpecialFolder func-

tion and an integer value of 0 to 2. Pass the GetSpecialFolder function a value of 0 to get the

Windows folder. Use a value of 1 to get the System folder or 2 to get the Temp folder.

The following example lists the subfolders in the AutoCAD installation folder and the loca-

tion of the Windows folder:

Sub ListFolders()

 Dim ofsObj As New FileSystemObject

 ' Get the AutoCAD install folder

 Dim oAcadFldr As Folder

 Set oAcadFldr = ofsObj.GetFolder(ofsObj. _

 GetFile(ThisDrawing.Application.FullName).ParentFolder.Path)

 ' Get the subfolders of the AutoCAD install folder

 Dim oFldr As Folder

 Dim sFldrs As String

 For Each oFldr In oAcadFldr.SubFolders

 sFldrs = sFldrs & vbLf & " " & oFldr.Name

 Next oFldr

 ' Output the names of the AutoCAD install subfolders

 ThisDrawing.Utility.Prompt vbLf & oAcadFldr & sFldrs

 ' Get the Windows folder

 Dim oWinFldr As Folder

 Set oWinFldr = ofsObj.GetSpecialFolder(0)

 ' Get information about the Windows folder

 ThisDrawing.Utility.Prompt vbLf & "Windows install folder: " & _

 vbLf & " " & oWinFldr.Path

 ' Release the object

 Set ofsObj = Nothing

End Sub

The following shows an example of the output from the previous example:

C:\Program Files\Autodesk\AutoCAD 2015

 AcWebBrowser

 AdExchange

WORKING WITH MICROSOFT WINDOWS | 351

c12.indd 1:47:22:PM/03/26/2015 Page 351

 AdlmRes

 CER

 Content Explorer

 Drv

Windows install folder:

 C:\Windows

Table 12.3 lists some of the other methods of the FileSystemObject object that can be helpful

when working with the folders on a drive.

Table 12.3: Folder-related methods of the FileSystemObject object

Method Description

CopyFolder Copies the folder and its fi les from a source to a destination location

CreateFolder Creates a new folder and returns a Folder object

DeleteFolder Removes a folder

FolderExists Returns True if the folder specifi ed exists

GetAbsolutePathName Returns a string that represents the absolute path of a fi le

GetBaseName Returns a string that represents the base path of a fi le

GetParentFolderName Returns a string that represents the parent path of a fi le

MoveFolder Moves a folder and its fi les from a source to a destination location

Getting Information about a File

Files are the lowest item in the fi le hierarchy, but they are also the most important because they

hold the information created by an application or the Windows operating system. The File

object is used to get information about a fi le stored in a folder, whereas the Files collection

object is used to access all the fi les in a folder.

The following example lists the fi les in the Fonts folder in the AutoCAD installation folder:

Sub ListFiles()

 Dim ofsObj As Object

 Set ofsObj = CreateObject("Scripting.FileSystemObject")

 Dim sAcadFontsFldr As String

 sAcadFontsFldr = ofsObj.GetParentFolderName(_

 ThisDrawing.Application.FullName)

 ' Get the AutoCAD Fonts folder

 Dim oAcadFontsFldr As Object

352 | CHAPTER 12 COMMUNICATING WITH OTHER APPLICATIONS

c12.indd 1:47:22:PM/03/26/2015 Page 352

 Set oAcadFontsFldr = ofsObj.GetFolder(sAcadFontsFldr & "\Fonts")

 ' Get the Files of the Fonts folder

 Dim oFile As Object

 Dim sFiles As String

 For Each oFile In oAcadFontsFldr.Files

 sFiles = sFiles & vbLf & " " & oFile.Name

 Next oFile

 ' Output the names of the files

 ThisDrawing.Utility.Prompt vbLf & oAcadFontsFldr.Path & sFiles

 ' Release the object

 Set ofsObj = Nothing

End Sub

The following shows an example of the output from the previous example:

C:\Program Files\Autodesk\AutoCAD 2015\Fonts

 @extfont2.shx

 AcadEref.shx

 aehalf.shx

 AMDTSymbols.shx

 amgdt.shx

 amgdtans.shx

 bigfont.shx

Table 12.4 lists some of the other methods of the FileSystemObject object that can be helpful

when working with the fi les on a drive or in a folder.

Table 12.4: File-related methods of the FileSystemObject object

Method Description

CopyFile Copies a fi le from a source to a destination location

DeleteFile Removes a fi le

FileExists Returns True if the fi le specifi ed exists

GetExtension Returns a string that represents the extension of the fi le based on the specifi ed path

GetFile Returns the File object based on the specifi ed path

GetFileName Returns a string that represents the name of the fi le based on the specifi ed path

GetFileVersion Returns a string that represents the version of the fi le based on the specifi ed path

MoveFile Moves a fi le from a source to a destination location

mailto:@extfont2.shx

WORKING WITH MICROSOFT WINDOWS | 353

c12.indd 1:47:22:PM/03/26/2015 Page 353

Manipulating the Windows Shell
The Windows Script Host Object Model library can be helpful in manipulating some of the fea-

tures found in the Windows shell. To use this library, reference it as part of your VBA project or

use a late bind to the class ID WScript.Shell.

You can use the Windows Script Host Object Model library to perform the following tasks:

 ◆ Create a desktop shortcut

 ◆ Get and set environment variables

Here is how to create an instance of the Windows Scripting Shell object:

Dim ofsObj As New WshShell

or

Dim ofsObj As Object

Set ofsObj = CreateObject("WScript.Shell")

NOTE Don’t forget to reference the Windows Script Host Object Model library in your

VBA project before using the New keyword to create an instance of the Windows Scripting

Shell object.

The following shows an example of creating a desktop shortcut:

Sub CreateDesktopShortcut()

 Dim oWshObj As New WshShell

 ' Get the Desktop and Documents folder locations

 Dim sDskFldr As String, sDocsFldr As String

 sDskFldr = oWshObj.SpecialFolders("Desktop")

 sDocsFldr = oWshObj.SpecialFolders("MyDocuments")

 ' Create the shortcut file

 Dim oShrtObj As WshShortcut

 Set oShrtObj = oWshObj.CreateShortcut(sDskFldr & "\My AutoCAD.lnk")

 ' Set the target and properties of the shortcut

 oShrtObj.TargetPath = ThisDrawing.Application.FullName

 oShrtObj.Arguments = "/w ""3D Modeling"""

 oShrtObj.Description = "Custom AutoCAD Desktop Shortcut"

 oShrtObj.WindowStyle = WshNormalFocus

 oShrtObj.Hotkey = "Ctrl+Alt+A"

 oShrtObj.WorkingDirectory = sDocsFldr

 oShrtObj.IconLocation = ThisDrawing.Application.FullName & ",0"

354 | CHAPTER 12 COMMUNICATING WITH OTHER APPLICATIONS

c12.indd 1:47:22:PM/03/26/2015 Page 354

 ' Save the shortcut

 oShrtObj.Save

 ' Release the object

 Set oShrtObj = Nothing

End Sub

The following custom procedures demonstrate how to get and set the values of environment

variables in the Windows operating system:

' Shows how to use expanding environment strings

' Usage: ExpEnvStr "%TEMP%\\MYDATA"

' Results of sample: "C:\\DOCUME~1\\Lee\\LOCALS~1\\Temp\\MYDATA"

Public Function ExpEnvStr(strToExpand As String) As String

 Dim oWshObj As New WshShell

 ' Expand the string and any variables in the string

 ExpEnvStr = oWshObj.ExpandEnvironmentStrings(strToExpand)

 ' Release the object

 Set oWshObj = Nothing

End Function

' Retrieve the value of the environment variable

' Usage: GetEnvStr "SYSTEM", "PROCESSOR_ARCHITECTURE"

' Results of sample: "AMD64"

' Alt Usage: GetEnvStr "SYSTEM", "USERID"

' Results of sample: "L123"

Public Function GetEnvStr(VarType As String, VarName As String) As String

 Dim oWshObj As New WshShell

 ' Get a reference to the Environment

 Dim envVars As WshEnvironment

 Set envVars = oWshObj.Environment(VarType)

 ' Get the value of the variable

 GetEnvStr = envVars(VarName)

 ' Release the object

 Set oWshObj = Nothing

End Function

' Set the value to an environment variable

' Usage: SetEnvStr "SYSTEM", "USERID", "L123"

WORKING WITH MICROSOFT WINDOWS | 355

c12.indd 1:47:22:PM/03/26/2015 Page 355

Public Function SetEnvStr(VarType As String, VarName As String, _

 VarValue As String) As String

 Dim oWshObj As New WshShell

 ' Get a reference to the Environment

 Dim envVars As WshEnvironment

 Set envVars = oWshObj.Environment(VarType)

 ' Set the variable to the provided value

 oWshObj.Environment(VarType) = VarValue

 ' Release the object

 Set oWshObj = Nothing

End Function

Using the Win32 API
Buried deep in the Windows operating system lies a powerful programming library known as

the Win32 API (or the Windows API in recent years). This programming library was introduced

with Windows 95 but was still present in the latest release of Windows (Windows 8.1) available

when this book was written. Although the Win32 API was originally introduced with Windows

95 (the fi rst 32-bit release of Windows), the Win32 library contains functions that were intro-

duced with Windows 3.1 (a 16-bit release) and later 64-bit releases of Windows.

Much of the information around using the Win32 API has gone dormant over the years since

the introduction of VB.NET and its rebranding as the Windows API, but there are resources on

the Internet that you will fi nd useful. You can use the following resources to learn how to imple-

ment the Win32 API in your VBA programs:

Using the Win32 API This tutorial (available at www.vb6.us/tutorials/using-win32-

api) provides an overview for using the Win32 API.

Visual Basic Win32 API Declarations This download (available from www.microsoft

.com/en-gb/download/details.aspx?id=12427) installs a TXT fi le that contains the

declarations of the functions and data types in the Win32 API.

If you prefer a book to electronic references, I suggest tracking down a copy of the Visual
Basic Programmer’s Guide to the Win32 API written by Dan Appleman (Sams, 1999). Other Win32

books also were written in the late 1990s, so you should be able to fi nd something.

Although the Win32 API can take a while to learn and understand, it does offer many great

functions that can be used to implement familiar interfaces and access features in the depths of

the Windows operating system from your VBA programs. You will use the GetOpenFileName

and GetSaveFileName functions from the Win32 API later in the “Exercise: Reading and

Writing Data” section to prompt the user to select a fi le or specify a fi lename using a dialog box.

The Ch26_ExSamples.dvb sample fi le that comes with this book also shows an example of the

GetSaveFileName function, which allows the user to specify a location and fi lename in which to

save a fi le using a standard fi le navigation dialog box.

http://www.microsoft.com/en-gb/download/details.aspx?id=12427
http://www.microsoft.com/en-gb/download/details.aspx?id=12427
http://www.vb6.us/tutorials/using-win32-api
http://www.vb6.us/tutorials/using-win32-api

356 | CHAPTER 12 COMMUNICATING WITH OTHER APPLICATIONS

c12.indd 1:47:22:PM/03/26/2015 Page 356

Reading and Writing Text Files
VBA supports the ability to read and write ASCII or Unicode text fi les. You can read a text fi le

and use the contents of the fi le to create general notes and disclaimers for known building con-

ditions, or even populate project information in a title block. In addition to reading the contents

of a fi le, you can write data to a text fi le, which is useful for exporting a bill of materials (BOM)

containing the quantity and parts in a drawing or listing the properties of nongraphical objects

or system variables to help identify CAD standard violations in a drawing.

Text fi les can be used to defi ne a number of fi le types, such as CSV, text (TXT), HTM/HTML,

or even XML. The File System (FileSystemObject) object, which I introduced in the “Accessing

the Filesystem” section earlier in this chapter, can also be used to read and write a text fi le.

NOTE You can use libraries registered on your workstation and ActiveX to parse the contents

of an XML fi le or access fi les that can be opened from an application in the Microsoft Offi ce

suite. I explain how to parse XML fi les in the “Parsing Content in an XML File” section later in

this chapter. How to work with applications in the Microsoft Offi ce suite will be discussed in

the “Working with Microsoft Offi ce Applications” section, also later in this chapter.

Opening and Creating a File
Content can be read or written to an existing text fi le stored on a local or network drive, or a text

fi le can be created to store new content. The OpenTextFile function of the FileSystemObject

object is used to open an existing fi le, whereas the CreateTextFile function can be used to cre-

ate a new fi le. Whether you use the OpenTextFile or CreateTextFile function, both functions

return a TextStream object. The TextStream object is then used to read and write the contents

of a text fi le in memory.

The following shows the syntax of the OpenTextFile function:

retObj = OpenTextFile(filename [, mode] [, create] [, format])

Its arguments are as follows:

retObj The retObj argument represents the TextStream object that is returned.

filename The filename argument is a string that represents the fi le you want to open or

create when the create argument is set to True and the fi le wasn’t found.

mode The mode argument is an optional integer value that represents how the fi le should be

opened. By default, the fi le is open for read only. Table 12.5 provides a basic description of the

supported integer values and the corresponding constants that can be used in their place.

Table 12.5: File modes available for the OpenTextFile statement

Mode Description

1 or ForReading Content of the fi le can only be read.

2 or ForWriting Content of the fi le can be read or written.

8 or ForAppending New content added to the fi le is appended to the end of the fi le. Content cannot be read.

READING AND WRITING TEXT FILES | 357

c12.indd 1:47:22:PM/03/26/2015 Page 357

create The create argument is an optional Boolean that determines whether the fi le speci-

fi ed by the filename argument should be created if it wasn’t found. A value of True creates

the fi le if it wasn’t found.

format The format argument is an optional integer value that determines the format of the

fi le: ASCII or Unicode. By default, the fi le is opened as an ASCII fi le. Table 12.6 provides a

basic description of the supported integer values and the corresponding constants that can be

used in their place.

Table 12.6: File formats available for the OpenTextFile statement

Mode Description

-2 or TriStateUseDefault File format is set to the system default; ASCII or Unicode.

-1 or TriStateTrue File format is indicated as Unicode.

0 or TriStateFalse File format is indicated as ASCII.

NOTE As an alternative to the OpenTextFile function, you can use the OpenAsTextStream

function of the File object in the Microsoft Scripting Runtime library to open a text fi le and

return a TextStream object. See the section “Getting Information about a File” earlier in this

chapter to learn how to work with a File object.

The following shows the syntax of the CreateTextFile function:

retObj = CreateTextFile(filename [, overwrite] [, unicode])

Its arguments are as follows:

retObj The retObj argument represents the TextStream object that is returned.

filename The filename argument is a string that specifi es the name of the fi le you want to

create.

overwrite The overwrite argument is an optional Boolean that determines whether the

fi le specifi ed by the filename argument should be overwritten if it already exists. A value of

True results in the existing fi le being overwritten by the newly created fi le.

unicode The unicode argument is an optional Boolean that determines whether the fi le

specifi ed by the filename argument should be created with the ASCII or Unicode format. A

value of True results in the fi le being created with the Unicode format.

Here are a few examples of opening and creating a text fi le:

' Create an instance of the File System object

Dim ofsObj As New FileSystemObject

' Open the text file Data.txt for read

Dim oTxtStreamData As TextStream

Set oTxtStreamData = ofsObj.OpenTextFile("c:\Dataset\Data.txt")

358 | CHAPTER 12 COMMUNICATING WITH OTHER APPLICATIONS

c12.indd 1:47:22:PM/03/26/2015 Page 358

' Create the text file BOM.txt, and overwrite if found

Dim oTxtStreamBOM As TextStream

Set oTxtStreamBOM = ofsObj.CreateTextFile("c:\Dataset\BOM.txt", True)

NOTE Trying to open a fi le that is read-only or that is stored in a read-only location with the

write or append access mode results in a permissions error. Make sure to add proper error

handling to check to see if the fi le is read-only. You can also use the Attributes property of a

File object that is returned using the GetFile method of the FileSystemObject object to

determine whether a fi le is read-only.

As the filename argument can specify any text fi le on a local or network drive, the name of

the fi le and path you choose can affect the sustainability of your custom program. When you

specify the filename argument for the open function, consider the following:

Static Filenames When you need to read the contents from a fi le, using a static fi le-

name might be ideal, but static fi lenames don’t work well when you want to write data to

a fi le. When creating a fi le, allow the user to specify a fi lename either using the AutoCAD

Command prompt or a fi le-navigation dialog box, or as part of a user form.

Hard-Coded Paths I recommend against placing specifi c fi le paths in a custom program.

Rather than hard-coding (typing the actual path to a particular fi le) a path or drive as part of a

fi lename, use paths stored in system or environment variables related to the operating system or

returned by the File object. For example, you can get the paths to My Documents (or Documents)

or the temporary fi les folder with the AutoCAD system variables mydocumentsprefix and

tempprefix.

If you just want to create a temporary fi le, you can use the GetTempName function of the File

System object to generate a unique fi lename. Then, use the CreateTextFile function to

create the TextStream object for that fi le. If you want to keep the temporary fi le, you can use the

MoveFile function of the File object to keep the fi le and give it a more meaningful name.

Reading Content from a File
Once a TextStream object has been obtained, you can use its various read methods to step

through the content. You can choose to read a specifi c number of characters at a time, read one

line, or read all content into a string. The Read function allows you to specify a number of char-

acters to read from the text stream into a string. Each successive call to the function gets the next

characters in the text stream.

Reading a specifi c number of characters at a time until you reach the end of the text stream

can be helpful in some situations, such as when you are reading a space-delimited fi le, but in

most cases you want to read an entire line in the text stream. A line is defi ned as a text string

that ends with a new linefeed character, which has an ASCII code value of 10. Use the ReadLine

function to read a line of text from a text stream. Similar to the Read function, each successive

call to the ReadLine function gets the next line in the text stream.

When using the Read or ReadLine function, an Input Past End of File error will be

generated when there are no additional characters or lines to be read from the text stream. You

should check the AtEndOfStream property of the TextStream object to see if the end of the

fi le has been reached before you continue to read the content of the text stream. If you want to

READING AND WRITING TEXT FILES | 359

c12.indd 1:47:22:PM/03/26/2015 Page 359

read all the content from a text stream, use the ReadAll function to get a string containing all

the content.

NOTE Be careful with mixing the use of the Read, ReadLine, and ReadAll functions when

reading the content from the same text stream. Each time one of the read functions is called, the

fi le pointer is moved forward a specifi c number of characters or a line. Th e fi le pointer specifi es

where in the text stream the next read function begins.

The Read function expects a single integer value that represents the number of characters to

be read from the text stream, whereas the ReadLine and ReadAll functions don’t accept any val-

ues. The Read, ReadLine, and ReadAll functions all return a string value.

Here are examples of reading content from a text stream with the Read, ReadLine, and

ReadAll functions:

' Create an instance of the File System object

Dim ofsObj As New FileSystemObject

' Open the text file Data.txt for reading

Dim oTxtStreamData As TextStream

Set oTxtStreamData = ofsObj.OpenTextFile("c:\Dataset\Data.txt")

' Read the first 10 chracters of the content

ThisDrawing.Utility.Prompt vbLf & oTxtStreamData.Read(10) & vbLf

' Read the next line or remainder of the current line

ThisDrawing.Utility.Prompt vbLf & oTxtStreamData.ReadLine & vbLf

' Read the rest of the file

ThisDrawing.Utility.Prompt vbLf & oTxtStreamData.ReadAll & vbLf

TIP If you know there is some content in the text stream that you want to skip over, you can

use the Skip and SkipLine functions. Th e skip functions are used to advance the fi le pointer

a specifi c number of characters or to the next line in the text stream. Th e next read function

called starts at the new location of the fi le pointer.

As you read content from the text stream, you can get your current location using the

Columns or Line property. The Columns property lets you know how many characters from

the left you have read in the current line, and the Line property lets you know which line

you are on in the fi le. You can use the AtEndOfStream property to see if you have reached the

end of the text stream, and when reading characters with the Read function, you can use the

AtEndOfLine property to see if you have reached the end of the current line when reading one

character at a time.

Writing Content to a File
Writing data to a text stream is similar to reading data from a text stream. You can write a string

with or without using the ASCII code value of 10 (the linefeed character). The linefeed character

360 | CHAPTER 12 COMMUNICATING WITH OTHER APPLICATIONS

c12.indd 1:47:22:PM/03/26/2015 Page 360

is used to indicate the end of a line in the text stream. A line can be created with content or

blank lines can be written.

The Write and WriteLine functions are used to write a string to a text stream. The differ-

ence between the two functions is that the WriteLine function adds the linefeed character to

the end of the string and forces a new line in the text stream. The WriteBlankLines function

is used (just as its name indicates) to write blank lines to a text stream. Both the Write and

WriteLine functions expect a string value that represents the content that should be written to

the fi le, whereas the WriteBlankLines function expects a single integer value that represents

the number of blank lines that should be written.

Here are examples of writing content to a text stream with the Write, WriteLine, and

WriteBlankLine functions:

' Create an instance of the File System object

Dim ofsObj As New FileSystemObject

' Create a new text file named Data.txt

Dim oTxtStreamData As TextStream

Set oTxtStreamData = ofsObj.CreateTextFile("c:\Dataset\Data.txt")

' Write a content to the file without adding the new linefeed character

oTxtStreamData.Write "BLOCK" & vbTab & "TAG" & vbTab

' Append to the current line and add the new linefeed character

oTxtStreamData.WriteLine "PART" & vbTab & "DESCRIPTION"

' Write a blank line

oTxtStreamData.WriteBlankLine 1

Closing a File
Each text stream that represents an opened or new text fi le created with the OpenTextFile or

CreateTextFile function must be closed using the Close function. Closing the text stream

saves the changes to the fi le and removes the text stream from memory to free up system

resources. Text streams that aren’t closed might remain open in memory, and that memory is

not available to other applications until AutoCAD is closed or the VBA project is unloaded.

Typically, when the procedure ends and the Close function hasn’t been called, the text

stream is closed automatically, but I wouldn’t rely on this approach. It is always good practice to

close the text stream when it is no longer needed and not to rely on the system. The Close func-

tion doesn’t accept any values.

Here is an example of the Close function:

' Close the text stream

oTxtStreamData.Close

Parsing Content in an XML File
XML fi les were once used primarily for working with data on the Internet, but today they are

used by many applications and are a way to transfer information between different applications.

PARSING CONTENT IN AN XML FILE | 361

c12.indd 1:47:22:PM/03/26/2015 Page 361

Although text fi les can be nice for generating basic reports that can be printed or for storing

content, they aren’t really designed as a data repository or for working with large amounts of

data. XML fi les are readable both by humans (when not compiled) and by applications without

specialized software, but unlike a text fi le, they can help to enforce a data structure. You can

create an XML fi le using the functions I mentioned in the “Reading and Writing Text Files”

section earlier, but reading an XML fi le can be simplifi ed using the Microsoft XML library.

The following is an example of an XML fi le that contains the contents of three general notes

that could be found in a drawing or on a title sheet of a drawing set:

<?xml version="1.0"?>

<catalog>

 <note id="n001">

 <updated_date>2014-09-01</updated_date>

 <name>ADA Turn Radius</name>

 <description>ADA REQUIRES A MINIMUM TURN RADIUS OF 60" (1525MM) FOR

WHEELCHAIRS.</description>

 </note>

 <note id="n002">

 <updated_date>2014-05-14</updated_date>

 <name>Dimension Reference</name>

 <description>ALL DIMENSIONS INDICATED ARE FOR REFERENCE AND

COORDINATION PURPOSES ONLY.</description>

 </note>

 <note id="n003">

 <updated_date>2014-04-14</updated_date>

 <name>Electrical Contractor</name>

 <description>ALL ELECTRICAL WORK SHALL BE COMPLETED WITH NEW

MATERIALS AND CONDUCTED BY THE ELECTRICAL CONTRACTOR UNLESS

NOTED.</description>

 </note>

</catalog>

NOTE Spaces in an attribute value are interpreted as literal spaces in XML. In the previous

example, the description attributes aren’t indented for this reason. If I had indented the

values of the description attributes, the spaces or tab characters would become part of the

value when the XML fi le is parsed.

A note is represented by the Note element and is a child of the root element Catalog. Each

Note element has an attribute named id, which is used to uniquely identify the note in the

XML fi le and three children nodes that describe the Note element. The three children nodes are

named updated_date, name, and description.

The following shows an example VBA procedure that reads each Note element in an XML

fi le, and then outputs the values of the attribute and children nodes of the Note element to the

AutoCAD Command prompt:

Sub ReadXML()

 ' Specify the XML file to open

 Dim sXMLFile As String

 sXMLFile = ThisDrawing.GetVariable("MyDocumentsPrefix") & _

362 | CHAPTER 12 COMMUNICATING WITH OTHER APPLICATIONS

c12.indd 1:47:22:PM/03/26/2015 Page 362

 "\MyCustomFiles\ch12_notes.xml"

 ' Open the XML file

 Dim oXMLDoc As New MSXML2.DOMDocument

 oXMLDoc.async = False

 oXMLDoc.validateOnParse = False

 oXMLDoc.Load sXMLFile

 ' Get the root node of the XML file

 ' In the ch12_notes.xml file, the root node is Catalog

 Dim oNodeCatalog As MSXML2.IXMLDOMNode

 Set oNodeCatalog = oXMLDoc.documentElement

 Dim oNote As MSXML2.IXMLDOMNode

 Dim oNoteChild As MSXML2.IXMLDOMNode

 ' Get the nodes under the catalog node

 ' In the ch12_notes.xml file, the children nodes are Note

 For Each oNote In oNodeCatalog.ChildNodes

 ' Get and output the first attribute of the Note

 ' In the ch12_notes.xml file, the first attribute is ID

 ThisDrawing.Utility.Prompt vbLf & "ID: " & _

 oNote.Attributes(0).Text & vbLf

 ' Get and output the children nodes of the Note node

 ' In the ch12_notes.xml file, the children nodes are updated_date,

 ' name, and description.

 For Each oNoteChild In oNote.ChildNodes

 ThisDrawing.Utility.Prompt vbLf & " " & UCase(oNoteChild.BaseName) & _

 ": " & oNoteChild.Text & vbLf

 Next oNoteChild

 Next oNote

 ThisDrawing.Utility.Prompt vbLf

 ' Release the object

 Set oXMLDoc = Nothing

End Sub

The following shows what the output looks like in the AutoCAD Command Line history

after executing the previous example:

ID: n001

 UPDATED_DATE: 2014-09-01

WORKING WITH MICROSOFT OFFICE APPLICATIONS | 363

c12.indd 1:47:22:PM/03/26/2015 Page 363

 NAME: ADA Turn Radius

 DESCRIPTION: ADA REQUIRES A MINIMUM TURN RADIUS OF 60" (1525MM)

 FOR WHEELCHAIRS.

ID: n002

 UPDATED_DATE: 2014-05-14

 NAME: Dimension Reference

 DESCRIPTION: ALL DIMENSIONS INDICATED ARE FOR REFERENCE AND COORDINATION

 PURPOSES ONLY.

ID: n003

 UPDATED_DATE: 2014-04-14

 NAME: Electrical Contractor

 DESCRIPTION: ALL ELECTRICAL WORK SHALL BE COMPLETED WITH NEW MATERIALS AND

 CONDUCTED BY THE ELECTRICAL CONTRACTOR UNLESS NOTED.

Before using the previous example, be sure to reference the Microsoft XML Library. There

might be several versions of the Microsoft XML Library registered on your workstation; refer-

ence the latest version on your workstation. If you reference the Microsoft XML 6.0v library,

you will need to change the code statement Dim oXMLDoc As New MSXML2.DOMDocument to Dim

oXMLDoc As New MSXML2.DOMDocument60.

For more information on parsing an XML fi le and using the Microsoft XML library, I

recommend starting with the “A Beginner’s Guide to the XML DOM” topic on the Microsoft

Developer Network site (http://msdn.microsoft.com/en-us/library/aa468547.aspx). You

can also use your Internet browser to locate additional resources on working with XML fi les, or

buy a book from your favorite retailer.

Working with Microsoft Offi ce Applications
The Microsoft Offi ce suite installs a number of programming libraries that allow you to manip-

ulate the contents in the fi les that the applications of the suite can create and access the applica-

tion’s settings. For example, you can create an instance of the Microsoft Word application, and

then create or open a DOC or DOCX fi le. Once a document has been created or opened, you can

step through and manipulate the content of the document or print the document to an available

system printer.

The following libraries allow you to create an instance of an application and work with the

fi les that can be created or modifi ed using the Microsoft Offi ce suite:

 ◆ Microsoft Word <version>.0 Object Library (msword.olb)

 ◆ Microsoft Excel <version>.0 Object Library (excel.exe)

 ◆ Microsoft Outlook <version>.0 Object Library (msoutl.olb)

 ◆ Microsoft PowerPoint <version>.0 Object Library (msppt.olb)

 ◆ Microsoft Access <version>.0 Object Library (msacc.olb)

 ◆ Microsoft Publisher <version>.0 Object Library (mspub.tlb)

http://msdn.microsoft.com/en-us/library/aa468547.aspx

364 | CHAPTER 12 COMMUNICATING WITH OTHER APPLICATIONS

c12.indd 1:47:22:PM/03/26/2015 Page 364

Referencing the Correct Version of the Microsoft Office Library

Th e text <version> in the previous list represents the version of Microsoft Offi ce installed on your

workstation. For Microsoft Offi ce 2013, <version> would be a value of 15. Here is a listing of the

version numbers from recent releases of the Microsoft Offi ce suite:

 ◆ Microsoft Offi ce 2013 - 15

 ◆ Microsoft Offi ce 2010 - 14

 ◆ Microsoft Offi ce 2007 - 12

 ◆ Microsoft Offi ce 2003 - 11

 ◆ Microsoft Offi ce 2000 - 10

If you are not sure which version of Microsoft Offi ce suite might be installed on a workstation,

you can use late binding, as I explained earlier in this chapter, to create an instance of one of the

applications in the Microsoft Offi ce suite. Using early binding does make development and debug-

ging easier, though, but you can switch to late binding later, after you have debugged your program

and are ready to deploy it.

Th e following shows how you can create an instance of the Microsoft Word application and create

a new blank document using late binding:

Sub CreateWordApp ()

 On Error Resume Next

 Dim oWordApp As Object

 Set oWordApp = CreateObject("Word.Application")

 ' Create a new drawing

 oWordApp.Documents.Add

 ' Make the application visible

 oWordApp.Visible = True

End Sub

You can use the following code to create a reference to the Microsoft Excel object using late binding:

Dim oExcelApp As Object

Set oExcelApp = CreateObject("Excel.Application")

The Microsoft Access Object library can be used to manipulate information in a database fi le,

but you can also access the tables and queries of an Access database fi le without having Access

installed. You can use the following programming libraries when you want to work with an

Access database fi le without having Access installed:

 ◆ Microsoft ActiveX Data Objects 2.8 Library (msado28.tlb)

 ◆ Microsoft DAO 3.6 Object Library (dao360.dll)

The object libraries for each of the applications in the Microsoft Offi ce suite are very extensive,

and it would take an entire book to do them justice. If you want to learn more about creating

VBA programs that interact with the applications in the Microsoft Offi ce suite, I recommend

checking out Mastering VBA for Microsoft Offi ce 2013, by Richard Mansfi eld (John Wiley & Sons,

EXERCISE: READING AND WRITING DATA | 365

c12.indd 1:47:22:PM/03/26/2015 Page 365

2013). You can also use your favorite Internet browser and search engine to access resources

online for learning to use VBA with the applications in the Microsoft Offi ce suite.

I have created several examples for this book that demonstrate how you can connect informa-

tion from an AutoCAD drawing to Microsoft Word and Excel. You can fi nd these custom pro-

cedures in the ch12_mswin_office.dvb fi le that can be downloaded from www.sybex.com/go/

autocadcustomization.

The DVB fi le contains the following custom procedures:

createmsworddoc The createmsworddoc procedure creates a new Word document and

saves it with the name ch12_apc_word_sample.doc to the MyCustomFiles folder. The new

Word document fi le is populated with information about some of the nongraphical objects in

the current drawing.

printmsworddoc The printmsworddoc procedure opens the ch12_apc_word_sample.doc

fi le that was created with the createmsworddoc procedure and placed in the MyCustomFiles

folder. The Word document fi le is then printed using the default system printer.

extractattributestoexcel The extractattributestoexcel function creates a new

spreadsheet fi le named ch12_attributes.xls in the MyCustomFiles folder. The handle,

tag, and text string for each attribute in the block references of the current drawing are

extracted to columns and rows in the spreadsheet. Open the ch12_building_plan.dwg fi le

in AutoCAD before executing the function.

updateattributesfromexcel The updateattributesfromexcel function reads the infor-

mation from the spreadsheet fi le named ch12_attributes.xls in the MyCustomFiles folder.

The extracted handle in the spreadsheet is used to get the attribute reference and then update

the tag and text string value that are present in the spreadsheet. Since handles are unique by

drawing, you must open the original drawing that the attributes were extracted from. Make

changes to the third column in the spreadsheet fi le, such as C2436 to CC2436, before opening

the ch12_building_plan.dwg fi le in AutoCAD before executing the function.

Along with the custom procedures that demonstrate how to work with Microsoft Word and

Excel fi les, there are a few functions that demonstrate how to connect to an Access database

(MDB) fi le using Database Access Object (DAO) and ActiveX Data Object (ADO). The database

library you use depends on which release of Windows you are using or the Microsoft Offi ce ver-

sion installed. You can fi nd these custom procedures in the ch12_mswin_office.dvb fi le that

can be downloaded from www.sybex.com/go/autocadcustomization.

The DVB fi le contains the following custom functions:

accessdatabasedao The accessdatabasedao procedure makes a connection to the Access

database ch12_employees.mdb located in the MyCustomFiles folder. Once a connection to

the database is made, the records in the Employees table are read and modifi ed. Use this

function when working with Access 2007 and earlier.

accessdatabaseado The accessdatabaseado function makes a connection to the Access

database ch12_employees.mdb located in the MyCustomFiles folder. Once a connection to

the database is made, the records in the Employees table are read and modifi ed. Use this

function when working with Access 2007 and later.

Exercise: Reading and Writing Data
In this section, you will create a new VBA project and modify the FurnTools project to introduce

several new procedures that read data from and write data to text fi les. The fi rst main procedure

reads information from a text fi le and uses that information to add new layers to a drawing.

http://www.sybex.com/go/autocadcustomization
http://www.sybex.com/go/autocadcustomization

366 | CHAPTER 12 COMMUNICATING WITH OTHER APPLICATIONS

c12.indd 1:47:22:PM/03/26/2015 Page 366

The second main procedure is an extension of the BOM program in the FurnTools project

that you created in Chapter 7. Instead of adding a table grid to a drawing, this new procedure

exports the BOM content to a comma-delimited (CSV) fi le that can be imported into a database

or spreadsheet program.

The key concepts I cover in this exercise are as follows:

Referencing a Programming Library Programming libraries allow you to access addi-

tional features and utilities that are not part of the core VBA programming language.

Locating and Prompting for External Files Files that a custom program might rely on can

be located in the AutoCAD support fi le search paths before they are used, or the user can be

prompted for a fi lename and location.

Opening, Reading, and Writing Data in External Files Data fi les can be opened before the

data in the fi le can be read or data can be written to. Once fi le access is no longer needed, the

fi le should be closed.

NOTE Th e steps in this exercise depend on the completion of the steps in the “Exercise: Creating

and Querying Blocks” section of Chapter 7. If you didn’t complete the steps, do so now or start

with the ch12_furntools.dvb sample fi le available for download from www.sybex.com/

go/autocadcustomization. Th is sample fi le should be placed in the MyCustomFiles folder

under the Documents (or My Documents) folder, or the location you are using to store the DVB

fi les. After the fi les are saved to the location you are using to store DVB fi les, remove ch12_

from the fi lename. You will also need the fi les ch12_building_plan.dwg, ch12_layers.dat,

ch12_clsDialogs.cls, and ch12_clsUtilities.cls for this exercise.

Creating Layers Based on Data Stored in a Text File
Often you start a drawing from a drawing template that contains a default set of layers, but

any layers that are not used can accidentally be removed with the purge or -purge command.

To restore the missing layers, you could create a drawing that contains your default layers and

insert it into your drawing. As an alternative on Windows, you could restore the layers using

the Content ExplorerTM palette or the DesignCenter TM palette. An additional approach to restor-

ing layers (or other named standards) is through the use of external data fi les and VBA.

The ch12_layers.dat fi le (part of the sample fi les supplied with this book) contains infor-

mation that can be used to create layers in a drawing. The DAT fi le is tab-delimited and contains

three pieces of information about each layer—layer name, color, and linetype:

; AutoCAD Customization Platform

; Layer data file used to setup layers

Plan_Cabinets 6 Continuous

Plan_Dimensions 3 Continuous

You will use the createlayer function defi ned in the ch12_clsUtilities.cls fi le (exported

as part of the exercise in Chapter 4, “Creating and Modifying Drawing Objects”) to create

the new layers. In addition to using the ch12_clsUtilities.cls fi le, you will use a function

defi ned in the ch12_clsDialogs.cls fi le to let the user select a fi le on their local or network

drive. The functions in the ch12_clsDialogs.cls fi le use the Win32 API.

http://www.sybex.com

EXERCISE: READING AND WRITING DATA | 367

c12.indd 1:47:22:PM/03/26/2015 Page 367

In these steps, you’ll create a new VBA project named LayerTools with a custom procedure

named LoadLayers that will read and use the data stored in the fi le named layers.dat to

create new layers in a drawing:

 1. Create a new VBA project with the name LayerTools. Make sure to also change the

default project name (ACADProject) to LayerTools in the VBA Editor.

 2. In the VBA Editor, in the Project Explorer, right-click the new project and choose

Import File.

 3. When the Import File dialog box opens, browse to and select the ch12_clsUtilities

.cls fi le in the MyCustomFiles folder. Click Open.

The ch12_clsUtilities.cls fi le contains the utility procedures that you created as part

of the DrawPlate and the FurnTools projects.

 4. Import the ch12_clsDialogs.cls fi le into the new project from the MyCustomFiles folder.

 5. In the Project Explorer, right-click the new project and choose Insert ➢ Module. Change

the name of the new module to basLayerTools.

 6. In the text editor area of the basLayerTools component, type the following; the com-

ments are here for your information and don’t need to be typed:

Private myUtilities As New clsUtilities

Private myDialogs As New clsDialogs

' Creates layers based on the values in the ch12_layers.dat file.

Sub LoadLayers()

 ' Select the layer data file, if not found

 ' in the AutoCAD support file search paths

 Dim sLayerDataFile As String

 sLayerDataFile = myUtilities.FindFile("ch12_layers.dat")

 ' If the file wasn't found then prompt the user

 If sLayerDataFile = "" Then

 ' Check to see if a previous file name is in the Windows Registry

 Dim sLastLoc As String

 sLastLoc = GetSetting("Sybex", "ACP", "LastLayerDataFile")

 ' Make sure the value in the Windows Registry is valid

 If sLastLoc <> "" Then

 sLastLoc = myUtilities.FindFile(sLastLoc)

 End If

 ' If the file is not valid, prompt for the file

 If sLastLoc = "" Then

368 | CHAPTER 12 COMMUNICATING WITH OTHER APPLICATIONS

c12.indd 1:47:22:PM/03/26/2015 Page 368

 sLayerDataFile = myDialogs.SelectOpenFile(_

 "Select Layer Data File", "", "ch12_layers.dat", _

 "Data File (*.dat)" & Chr(0) & "*.dat")

 Else

 sLayerDataFile = sLastLoc

 End If

 ' Store the last location to the Windows Registry

 If sLayerDataFile <> "" Then

 SaveSetting "Sybex", "ACP", "LastLayerDataFile", sLayerDataFile

 End If

 End If

 ' Check to see if the user selected a file

 If sLayerDataFile <> "" Then

 On Error Resume Next

 ' Create a new instance of the File System object

 Dim ofsObj As New FileSystemObject

 ' Check to see if the value passed was a file or not

 Dim oFile As File

 Set oFile = ofsObj.GetFile(sLayerDataFile)

 Dim oTextStream As TextStream

 Set oTextStream = oFile.OpenAsTextStream(ForReading)

 ' Skip the first two lines in the text stream as they are comments

 oTextStream.SkipLine

 oTextStream.SkipLine

 ' Read the text from the stream

 Dim vLineData As Variant

 While Not oTextStream.AtEndOfStream

 ' Split the line into elements based on tab characters

 vLineData = Split(oTextStream.ReadLine, vbTab)

 ' Create the new layer

 Dim oLayer As AcadLayer

 Set oLayer = myUtilities.CreateLayer(CStr(vLineData(0)), _

 CInt(vLineData(1)))

 ' Assign the linetype to the layer

 oLayer.Linetype = vLineData(2)

 Wend

 End If

End Sub

 7. Click File ➢ Save.

EXERCISE: READING AND WRITING DATA | 369

c12.indd 1:47:22:PM/03/26/2015 Page 369

The procedure can’t be executed yet, because you need to defi ne a new utility procedure

named FindFile in the imported clsUtilities component. You will do so in the

next section.

Searching for a File in the AutoCAD Support Paths
The fi les that a custom program relies on should be found within the AutoCAD support search

fi le paths or in a location that the custom program can always fi nd, such as the ProgramData

folder. The AutoCAD Object library doesn’t have a native function that can be used to

check to see if a fi le is found in the AutoCAD support fi le search paths, but you can use the

SupportPaths property of the AcadPreferencesFiles object to get a list of the support paths

and then use the FileExists function of the File System object to check for the existence of

the fi le.

In these steps, you’ll add the FindFile function to the imported version of the ch12_

clsUtilities.cls fi le:

 1. On the menu bar, click Tools ➢ References.

 2. When the References dialog box opens, scroll to the Microsoft Scripting Runtime library

and click the check box next to it. The library should now be checked.

 3. Click OK.

 4. In the Project Explorer, double-click the clsUtilities component.

 5. In the text editor area of the clsUtilities component, scroll to the bottom of the last

procedure and press Enter a few times. Then, type the following. (The comments are here

for your information and don’t need to be typed.)

' Returns a string containing the full path to the file if it is found

' in the AutoCAD support file search path.

' Function expects a string representing the name of

' the file you want to find.

Function FindFile(sFileName As String) As String

 On Error Resume Next

 ' Create a new instance of the File System object

 Dim ofsObj As FileSystemObject

 Set ofsObj = CreateObject("Scripting.FileSystemObject")

 ' Check to see if the value passed was a file or not

 Dim oFile As File

 Set oFile = ofsObj.GetFile(sFileName)

 If Err Then

 Err.Clear

 Dim sSupportPaths As String, sPath As Variant

370 | CHAPTER 12 COMMUNICATING WITH OTHER APPLICATIONS

c12.indd 1:47:22:PM/03/26/2015 Page 370

 ' Get the Support File paths

 sSupportPaths = ThisDrawing.Application.Preferences.Files.SupportPath

 ' Split the support paths delimited by a semicolon

 For Each sPath In Split(sSupportPaths, ";")

 ' Check to see if the file exists in the path

 If ofsObj.FileExists(CStr(sPath) & "\" & sFileName) Then

 ' Return the full path to the file

 FindFile = CStr(sPath) & "\" & sFileName

 ' Exit the For statement

 Exit Function

 End If

 Next

 Else

 ' Return the file name as it is a full path

 FindFile = sFileName

 Exit Function

 End If

 FindFile = ""

End Function

 6. Click File ➢ Save.

 7. In the Project Explorer, right-click the clsUtilities component and choose Export File.

 8. When the Export File dialog box opens, browse to the MyCustomFiles folder and click

Save. The name in the File Name text box should be clsUtilities.cls; if it isn’t, enter

clsUtilities and then click Save. If you have a previous version of this fi le, be sure you

want to overwrite that fi le.

Now when you import the clsUtilities.cls fi le into a future project, the FindFile

function will be available in that project. If you need this function in an existing project,

you will need to remove the existing clsUtilities component and import this fi le.

Adding Layers to a Drawing with the LoadLayers Procedure
The LayerTools.dvb fi le now contains the LoadLayers procedure, which uses the createlayer

function defi ned in the clsUtilities component and the SelectOpenFile function defi ned in

the clsDialogs component.

NOTE Th e following steps require a data fi le named ch12_layers.dat. If you didn’t down-

load the sample fi les previously, download them now from www.sybex.com/go/autocadcus-

tomization. Place these sample fi les in the MyCustomFiles folder under the Documents (or

My Documents) folder.

http://www.sybex.com/go/autocadcus-tomization.Place
http://www.sybex.com/go/autocadcus-tomization.Place
http://www.sybex.com/go/autocadcus-tomization.Place

EXERCISE: READING AND WRITING DATA | 371

c12.indd 1:47:22:PM/03/26/2015 Page 371

The following steps explain how to use the LoadLayers procedure in the LayerTools.dvb fi le:

 1. Create a new drawing.

 2. At the Command prompt, type vbarun and press Enter.

 3. When the Macros dialog box opens, select the LayerTools.dvb!basLayerTools

.LoadLayers macro from the list and click Run.

 4. If the Select Layer Data File dialog box opens, browse to and select the ch12_layers.dat

fi le, which you should have copied to the MyCustomFiles folder under the Documents (or

My Documents) folder. Click Open.

The Select Layer Data File dialog box is only displayed if the VBA program couldn’t

locate the ch12_layers.dat fi le in the AutoCAD support search fi le paths.

 5. On the ribbon, click Home tab ➢ Layers panel ➢ Layer Properties.

 6. Open the ch12_layers.dat fi le in Notepad.

 7. Click at the end of the last line; the line starts with Plan_Walls.

 8. In the text editor area, type the following. (Press the Tab key rather than typing the text

<tab>.)

Title_Block<tab>7<tab>Continuous

 9. Save the changes to the ch12_layers.dat fi le.

 10. In AutoCAD, execute the LoadLayers macro again with the vbarun command; notice that

the layer Title_Block is now added to the drawing.

Writing Bill of Materials to an External File
In Chapter 7 you created a VBA project that allowed you to extract the attributes of a block

and then quantify the results before creating the BOM in the drawing. Here you will create a

procedure named FurnBOMExport that allows you to export the BOM data generated with the

ExtAttsFurnBOM procedure output to a comma-delimited text (CSV) fi le instead of adding it to

the drawing as a table grid as you did with the FurnBOM procedure. You could then use the CSV

fi le and import the BOM into a costing or ordering system.

Using these steps, you will create the custom procedure named FurnBOMExport in the

FurnTools.dvb fi le, which you created in Chapter 7.

 1. Load the FurnTools.dvb fi le into the AutoCAD drawing environment and display the

VBA Editor.

 2. In the VBA Editor, in the Project Explorer, right-click the FurnTools project and choose

Import File.

 3. When the Import File dialog box opens, browse to the MyCustomFiles folder and select

the ch12_clsDialogs.cls fi le (or the clsDialogs.cls fi le you exported in the previous

section). Click Open.

372 | CHAPTER 12 COMMUNICATING WITH OTHER APPLICATIONS

c12.indd 1:47:22:PM/03/26/2015 Page 372

 4. On the menu bar, click Tools ➢ References.

 5. When the References dialog box opens, scroll to the Microsoft Scripting Runtime library

in the list and click the check box next to it. The library should now be checked.

 6. Click OK.

 7. In the Project Explorer, double-click the basFurnTools component to edit the code in the

code editor window.

 8. In the code editor window, scroll to the top of the window and after the code statement

Private myUtilities As New clsUtilities press Enter.

 9. Type the following:

Private myDialogs As New clsDialogs

 10. Scroll to the bottom of the code editor window, click after the End statement of the

last procedure, and press Enter twice.

 11. In the code editor window, type the following:

' Exports the extracted attribute information to an external data file

Sub FurnBOMExport()

 On Error Resume Next

 ' Get the blocks to extract

 Dim oSSFurn As AcadSelectionSet

 Set oSSFurn = ThisDrawing.SelectionSets.Add("SSFurn")

 ' If an error is generated, selection set already exists

 If Err Then

 Err.Clear

 Set oSSFurn = ThisDrawing.SelectionSets("SSFurn")

 End If

 ' Define the selection set filter to select only blocks

 Dim nDXFCodes(0) As Integer, nValue(0) As Variant

 nDXFCodes(0) = 0

 nValue(0) = "INSERT"

 Dim vDXFCodes As Variant, vValues As Variant

 vDXFCodes = nDXFCodes

 vValues = nValue

 ' Allow the user to select objects in the drawing

 oSSFurn.SelectOnScreen vDXFCodes, vValues

 ' Proceed if oSSFurn is greater than 0

EXERCISE: READING AND WRITING DATA | 373

c12.indd 1:47:22:PM/03/26/2015 Page 373

 If oSSFurn.Count > 0 Then

 Dim sBOMDataFile As String

 sBOMDataFile = myDialogs.SelectSaveFile("Create CSV File", "", "", _

 "Comma-delimited File (*.csv)" & Chr(0) & "*.csv")

 ' Check to see if the user selected a file

 If sBOMDataFile <> "" Then

 ' Extract and quantify the parts in the drawing

 Dim vAttList As Variant

 vAttList = ExtAttsFurnBOM(oSSFurn)

 On Error Resume Next

 ' Create a new instance of the File System object

 Dim ofsObj As New FileSystemObject

 ' Check for a file extension, if not present append one

 If ofsObj.GetExtensionName(sBOMDataFile) = "" Then

 sBOMDataFile = sBOMDataFile & ".csv"

 End If

 ' Create a new text file based on the selected file

 Dim oTextStream As TextStream

 Set oTextStream = ofsObj.CreateTextFile(sBOMDataFile)

 ' Write the header line to the file

 oTextStream.WriteLine "QTY,LABELS,PARTS"

 ' Step through the list

 Dim vItem As Variant

 For Each vItem In vAttList

 vItem = Split(vItem, vbTab)

 oTextStream.WriteLine CStr(vItem(0)) & "," & _

 CStr(vItem(1)) & "," & _

 CStr(vItem(2))

 Next vItem

 ' Close the file

 oTextStream.Close

 End If

 ' Remove the selection set

 oSSFurn.Delete

 End If

End Sub

 12. Click File ➢ Save.

374 | CHAPTER 12 COMMUNICATING WITH OTHER APPLICATIONS

c12.indd 1:47:22:PM/03/26/2015 Page 374

Using the FurnBOMExport Procedure
The following steps explain how to use the FurnBOMExport procedure that is defi ned in the

FurnTools.dvb fi le. Before starting the steps, download the sample ch12_building_plan.dwg

from www.sybex.com/go/autocadcustomization. Place the sample fi le in the MyCustomFiles

folder under the Documents (or My Documents) folder.

 1. Open ch12_building_plan.dwg.

 2. At the Command prompt, type vbarun and press Enter.

 3. When the Macros dialog box opens, select the FurnTools.dvb!basFurnTools

.FurnBOMExport macro from the list and click Run.

 4. At the Select objects: prompt, select the furniture blocks in the plan and press Enter.

 5. When the Create CSV File dialog box opens, browse to the MyCustomFiles folder or the

folder in which you want to create the CSV fi le.

 6. In the File Name text box, type furnbom and click Save.

 7. Open Windows Explorer or File Explorer, and browse to the location of the furnbom.csv fi le.

 8. Open the fi le in Notepad or even an application like Microsoft Excel.

Figure 12.3 shows the results of opening the furnbom.csv fi le in Exc el.

Figure 12.3

BOM content in

Excel

http://www.sybex.com/go/autocadcustomization

c13.indd 4:27:6:PM/04/06/2015 Page 375

Chapter 13

Handling Errors and Deploying VBA
Projects

What separates a good programmer from a great programmer is often the ability to implement

error handling that catches an error and exits the program cleanly, thus avoiding system crashes

and unwanted changes to a drawing.

The ability to predict where something might go wrong in your program can help you locate

potential problems—errors or bugs, as programmers commonly refer to them. If you hang

around any programmers, you might have heard the term debugging; it is the industry-standard

term used for the process of locating and resolving problems in a program. Conditional state-

ments can be used to identify and work around potential problems by validating values and

data types used in a program.

Once you have tested a program for potential problems and handled the errors generated,

you are ready to deploy the program for use.

Catching and Identifying Errors
The VBA programming language supports two statements that are designed to assist in han-

dling errors. The On Error and Resume statements allow you to execute your code and specify

the code statements that should be executed if an error occurs. Along with these two statements,

the Err object can be used to get information about the error that was generated. You can use

this information for evaluation and error handling or, when necessary, to pass an error forward

from a custom function for the calling program to evaluate and handle.

For example, you might have a procedure that works with a text fi le and accepts a string that

contains the fi le it should work with. If the procedure is passed a string but it doesn’t represent a

proper fi lename, your procedure should handle the error but also raise the error so that the call-

ing procedure can use the error handling of the VBA programming language to continue.

Recovering and Altering Execution after an Error
There is nothing more frustrating to end users than a program that misbehaves or terminates

without warning and provides them with no information about what went wrong. No program

is ever perfect, but you should make every attempt to ensure the users of your custom program

the best possible experience by adding proper error handling.

376 | CHAPTER 13 HANDLING ERRORS AND DEPLOYING VBA PROJECTS

c13.indd 4:27:6:PM/04/06/2015 Page 376

The On Error statement is what you will be using to catch and handle any errors that occur

during the execution of a custom procedure. There are two variants of the On Error statement:

 ◆ On Error Resume Next instructs VBA to ignore any error it encounters and continue exe-

cution with the next code statement.

 ◆ On Error GoTo < Line Number or Label> instructs VBA to move execution to a specifi c

label or line number in the current procedure when an error occurs.

The On Error Resume Next statement is the most frequently used variant of the On Error

statement, as you typically want to execute the next code statement in a procedure to try to

recover from the error.

The following is an example of a procedure that tries to get a layer named ACP-Doors:

Private Function GetLayerACP_Doors() As AcadLayer

 Set GetLayer = ThisDrawing.Layers("ACP-Doors")

End Function

In this procedure, if the layer doesn’t exist, the function suddenly terminates and VBA dis-

plays an error message. This isn’t ideal because the VBA program doesn’t perform the expected

task and the default error message displayed isn’t helpful (see Figure 13.1).

Figure 13.1

Th e layer wasn’t

found in the

drawing.

If the On Error Resume Next statement is added to a procedure and inserted before a code

statement that could generate an error, no error message is displayed. The procedure that calls

the GetLayerACP_Doors procedure would need to check the value that is returned for a valid

AcadLayer object or a value of Nothing. Here is what the function would look like with an On

Error Resume Next statement added:

Private Function GetLayerACP_Doors() As AcadLayer

 On Error Resume Next

 Set GetLayer = ThisDrawing.Layers("ACP-Doors")

End Function

The On Error GoTo <Line Number or Label> statement can be helpful when you don’t

want execution to continue to the next code statement in a procedure after an error occurs. The

statement On Error GoTo <Line Number> is used to move execution to a code statement within

the procedure that starts with a specifi ed line number. VBA does not automatically assign line

numbers, and not all code statements need to have a line number. To use this statement, you

must manually enter the line number in front of each code statement that should have a line

number. The lines don’t need to be numbered sequentially, but the numbers specifi ed must

be greater than 0; a line number of 0 indicates that error handling should be disabled in the

procedure.

CATCHING AND IDENTIFYING ERRORS | 377

c13.indd 4:27:6:PM/04/06/2015 Page 377

The following shows an example of the On Error GoTo <Line Number> statement. An

error is generated in the procedure when the Add method of the AcadLayers collection object is

executed as a result of the < and > characters, which are not valid, in the layer name. When the

error occurs, execution is moved to the code statement with line number 9 to its left.

Public Sub CreateLayer()

1 On Error GoTo 9

 Dim sName As String

3 sName = "<Bad Name>"

5 ThisDrawing.Layers.Add sName

 MsgBox "Layer " & sName & " was added."

 Exit Sub

9 Err.Clear

 ThisDrawing.Utility.Prompt _

 vbLf + "Error: Layer couldn't be created."

 GoTo 1

End Sub

NOTE In the previous example, the GoTo statement is used without On Error to move execu-

tion back to the code statement numbered 1 in the procedure. Th e GoTo statement can also be

used to move execution to a label in a procedure. I discuss how to use labels next.

As an alternative to using line numbers to specify a location within a procedure, you can

use labels that have more meaningful names than 1, 5, 9, and so on. A label starts on a new

line in a procedure and ends with a colon. For example, you could create labels with the names

LayerNotFound, BadName, and ErrHandler. LayerNotFound might contain code statements that

should be executed if a layer wasn’t found, BadName might contain code statements to handle an

invalid name passed to the Add method of the AcadLayers collection, and ErrHandler might

be a generic label to handle all other errors that are generated. Although multiple labels can be

used in a procedure, only one can be used with the On Error GoTo <Label> statement in a

procedure.

The following shows an example of the On Error GoTo <Label> statement. In this case, an

error could be generated by the code statement Set oLayer = ThisDrawing.Layers(sName) as

a result of the layer ACP-Door not being found in the drawing. When the error occurs, execution

is moved to the label LayerNotFound in the procedure where the layer is added to the drawing.

The newly added layer is assigned to the oLayer variable. Once the layer is added, execution is

returned to the oLayer.color = acBlue statement using the Resume Next statement.

Public Sub GetLayer()

 On Error Resume Next

 Dim sName As String

 sName = "ACP-Door"

378 | CHAPTER 13 HANDLING ERRORS AND DEPLOYING VBA PROJECTS

c13.indd 4:27:6:PM/04/06/2015 Page 378

 On Error GoTo LayerNotFound

 Dim oLayer As AcadLayer

 Set oLayer = ThisDrawing.Layers(sName)

 oLayer.color = acBlue

 Exit Sub

LayerNotFound:

 Set oLayer = ThisDrawing.Layers.Add(sName)

 Resume Next

End Sub

NOTE In the previous example, the Resume Next statement is used without On Error to move

execution to the code statement immediately after the code statement that originally generated

the error. Resume can also be used to move execution back to the code statement that originally

caused the error. If you want execution to resume at a specifi c code statement, you can use the

statement Resume <Line Number or Label>.

Getting Information About the Recent Error
The Err object is part of the VBA programming language, and it holds information about the

most recent error that was generated during the execution of a procedure. If you want to learn

more about the Err object, you can look up ErrObject (not Err) in the VBA Help system or the

Object Browser of the VBA Editor. You can use a combination of the On Error and If statements

to determine whether an error occurred. The value of the Err object’s Number property is 0 by

default, and is changed to a nonzero number when an error occurs.

The value of the Number property isn’t always very helpful or decipherable by us humans.

For example, the value of 5 could mean “Invalid procedure call or argument” for one software

vendor’s object library but have a different meaning for another library from a different vendor.

You will want to contact the software vendor or use your favorite Internet search engine to see if

you can obtain a listing of error values and their meaning. For humans, the Err object also has

a Description property. The Description property of the Err object provides a basic expla-

nation of the error that occurred, but even this can be a bit cryptic if you don’t understand the

terminology used.

The following example fi rst tries to get the layer 10101 in the AcadLayers collection object of

the current drawing. If the layer exists, no error is generated and nothing happens. If the layer

doesn’t exist, an error is returned and the code statements in the If statement are executed.

Private Sub CreateLayer10101()

 On Error Resume Next

 Dim obj As AcadLayer

 Set obj = ThisDrawing.Layers("10101")

 If Err.Number <> 0 Then

CATCHING AND IDENTIFYING ERRORS | 379

c13.indd 4:27:6:PM/04/06/2015 Page 379

 MsgBox "Number: " & CStr(Err.Number) & vbLf & _

 "Description: " & Err.Description

 ThisDrawing.Layers.Add "10101"

 End If

End Sub

The fi rst time the procedure is executed, an error occurs and a message, shown in Figure 13.2,

is displayed, indicating that the key (the layer in this case) wasn’t found. As part of the If state-

ment, the layer is added to the drawing, and executing the procedure a second time results in no

error or message being displayed because the layer already exists.

Figure 13.2

Custom message

containing infor-

mation about a

recent error

Table 13.1 lists the other properties of the Err object that can be used to get information about

the most recent error.

Table 13.1: Err object–related properties

Property Description

HelpContext Specifi es a long value that represents the context ID of a help topic in the

help fi le specifi ed by the HelpFile property related to the error.

HelpFile Specifi es a string value that represents the help fi le in which information

can be found about the error.

LastDLLError Returns a long value that contains an error code if the error was generated

at the operating system level. Th is property is read-only.

Source Specifi es a string value that represents the application or object library in

which the error occurred.

The Err object supports two methods: Clear and Raise. The Clear method allows you to

reset the Err object to its default state so that you can continue execution of your procedure and

handle additional errors. Though not used as frequently, the Raise method can be used to gen-

erate an error from a custom procedure within a program. The error that is generated can then

be caught with the On Error statement by the calling procedure.

The following example shows two custom procedures, a subroutine and a function, that are

used to create a new layer. The On Error and Err objects are used to handle the errors that

might occur.

380 | CHAPTER 13 HANDLING ERRORS AND DEPLOYING VBA PROJECTS

c13.indd 4:27:6:PM/04/06/2015 Page 380

Public Sub AddLayer()

 On Error Resume Next

 ' Call the CreateLayer function with a bad layer name

 CreateLayer "<BadName>", acBlue

 ' If an error occurs in the CreateLayer function,

 ' display a message

 If Err.Number <> 0 Then

 MsgBox "Number: " & CStr(Err.Number) & vbLf & _

 "Description: " & Err.Description

 End If

End Sub

' Creates a new layer and returns the AcadLayer object

Private Function CreateLayer(sName As String, _

 nClr As ACAD_COLOR) As AcadLayer

 On Error Resume Next

 ' Try to get the layer first and return it if it exists

 Set CreateLayer = ThisDrawing.Layers(sName)

 ' If layer doesn't exist create it

 If Err.Number <> 0 Then

 Err.Clear

 On Error GoTo ErrHandler

 Set CreateLayer = ThisDrawing.Layers.Add(sName)

 CreateLayer.color = nClr

 End If

 ' Exit the function if it gets this far

 Exit Function

' If an error occurs when the layer is created, raise an error

ErrHandler:

 Err.Raise Err.Number, Err.Source, Err.Description, _

 Err.HelpFile, Err.HelpContext

End Function

In the previous example, the AddLayer procedure passes the CreateLayer procedure a

name and color. The layer name that is passed is invalid and causes an error to occur in the Add

method of the AcadLayers collection object. The On Error Resume Next statements are used

to keep execution going, whereas the On Error GoTo <Label> statement allows execution to be

moved to the general error handler. The general error handler in the CreateLayer procedure

uses the Raise method of the Err object to pass an error up to the AddLayer procedure so that it

can handle what should be done next.

DEBUGGING A VBA PROJECT | 381

c13.indd 4:27:6:PM/04/06/2015 Page 381

TIP Instead of checking for a value that isn’t equal to 0 in the previous examples (If Err.

Number <> 0 Then), you could simply check to see if the Err object has a value using a state-

ment such as If Err Then.

Debugging a VBA Project
Debugging is a process that steps through a program and inspects either each code statement—

one at a time—or an entire procedure and looks for problems in the code. Maybe your proce-

dure expects a string and instead it is passed a numeric value that generates an error; debugging

can be helpful in fi guring out just where the problematic value is coming from in your program.

The tools that you can use to debug your code range from simply displaying a message to

employing the more integrated solutions found in the VBA Editor. Displaying messages at the

Command prompt or in a message box can be a low-tech solution and allow nondevelopers to

provide you with troubleshooting information as they use your custom programs. The debug-

ging tools that the VBA Editor offers are more effi cient at debugging problems when compared

to putting code statements in your program to display messages to the user.

Debugging Th rough Messages
One of the simplest forms of debugging a program is to display messages at the AutoCAD®

Command prompt or in a message box during execution. These messages are displayed periodi-

cally as your program executes to let you know which code statements are about to be executed

next. You can think of this form of debugging much like the children’s game “Red Light, Green

Light.” Every so often you use a unique message in your program so you have an understand-

ing of progress during the execution of the program. In the game “Red Light, Green Light,” you

randomly shout out “Red Light” or “Green Light” to ensure people are paying attention and to

keep the game moving.

To debug through messages, you place a messaging function every 5 to 10 statements in a

custom procedure; place the debugging messages too frequently (or infrequently), and they

become less useful. The Prompt method of the AcadUtility object and the VBA MsgBox func-

tions are the most commonly used techniques for displaying a message; I tend to lean away

from the MsgBox function as it adds unnecessary extra steps to executing a procedure. Once

debugging is completed, you can comment out the messaging code statements so they are not

displayed to the end user.

The following is an example of a custom procedure that contains two errors and demon-

strates how messaging functions can be used to help identify the bad statements. You will step

through this code as part of the exercise later in this chapter under the “Stepping Through the

BadCode VBA Project” section.

Sub BadCode()

 ' Prompt for string

 Dim sVal As String

 sVal = ThisDrawing.Utility.GetString(True, vbLf & "Enter a string: ")

 ' If str is not empty, continue

 If IsEmpty(sVal) = False Then

 ThisDrawing.Utility.Prompt vbLf & "DEBUG: Inside IF"

382 | CHAPTER 13 HANDLING ERRORS AND DEPLOYING VBA PROJECTS

c13.indd 4:27:6:PM/04/06/2015 Page 382

 ' Error 1, - should be &

 ThisDrawing.Utility.Prompt vbLf & "Value entered: " - sVal

 ' Prompt for integer

 Dim nVal As Integer

 nVal = ThisDrawing.Utility.GetInteger(vbLf & "Enter an integer: ")

 ThisDrawing.Utility.Prompt vbLf & "DEBUG: Ready to divide"

 ' Error 2, if the user enters 0, cannot divide by 0

 ThisDrawing.Utility.Prompt vbLf & "Divisor: " & CStr(2 / nVal)

 Else

 ThisDrawing.Utility.Prompt vbLf & "DEBUG: If...Else"

 End If

 ThisDrawing.Utility.Prompt vbLf & "DEBUG: Outside IF"

End Sub

If you execute the previous example, the following prompts are displayed the fi rst time you

execute the procedure:

Enter a string: Hello World!

DEBUG: Inside IF

If you change "Value entered: " - sVal to "Value entered: " & sVal and execute the

procedure again, the following messages are displayed at the AutoCAD Command prompt if 0

is entered when prompted for an integer:

DEBUG: Inside IF

Value entered: Hello World!

Enter an integer: 0

DEBUG: Ready to divide

If a value other than 0 is entered, the following messages are displayed:

DEBUG: Inside IF

Value entered: Hello World!

Enter an integer: 2

DEBUG: Ready to divide

Divisor: 1

DEBUG: Outside IF

TIP You can use the messaging approach mentioned in this section and adapt it to create a

debug log fi le that can be used to identify problems with your programs after you deploy them.

I discussed how to create and write to an external fi le in Chapter 12, “Communicating with

Other Applications.”

DEBUGGING A VBA PROJECT | 383

c13.indd 4:27:6:PM/04/06/2015 Page 383

Using the VBA Editor Debug Tools
Although the On Error statement and Err object are useful in catching and handling errors

during execution, the VBA Editor offers several tools that can be helpful in determining what

happened during the execution of a procedure that led to an error. The VBA Editor offers the

following features that can be used to debug a program:

 ◆ Output values to and execute a code statement using the Immediate window

 ◆ Interrupt the execution of a procedure and step through the code statements of a procedure

in real time using breakpoints

 ◆ Check the value of a variable during the execution of a procedure and get notifi ed of when

the value changes by establishing a watch on a variable

Outputting Information to the Immediate Window

The Immediate window of the VBA Editor allows you to view the debug output from a pro-

gram. You can display the Immediate window by pressing Ctrl+G or by clicking Immediate

Window in the View menu or Debug toolbar. Although the Immediate window is used pri-

marily to output debug information, it can also be used to execute a single code statement.

To execute a code statement in the Immediate window, type a code statement such as MsgBox

ThisDrawing.WindowTitle and press Enter.

When you use the VBA Debug object, the resulting values and messages are output to the

Immediate window, where they aren’t visible to the user running the VBA project from the

AutoCAD user interface. The Debug object supports two output methods: Print and Assert.

The Print method accepts most data types with the exception of an object and displays the

value to the Immediate window.

The following shows an example of using the Print method to output values and messages

to the Immediate window:

Sub DivByZeroDebug()

 Debug.Print "Start DivByZeroDebug"

 Dim nVal As Integer, nDiv As Integer

 nVal = ThisDrawing.Utility.GetInteger(vbLf & "Enter an integer: ")

 Debug.Print "User entered: " & nVal

 If nVal <> 0 Then

 nDiv = nVal / 2

 MsgBox nDiv

 Debug.Print "Calculated value: " & nDiv

 End If

 Debug.Print "End DivByZeroDebug"

End Sub

384 | CHAPTER 13 HANDLING ERRORS AND DEPLOYING VBA PROJECTS

c13.indd 4:27:6:PM/04/06/2015 Page 384

Figure 13.3 shows the results of the Debug.Print statements in the Immediate window

before the error occurred. Using this technique, you can then deduce that the error occurred

after the last message output in the Immediate window and before the next Debug.Print

statement.

Figure 13.3

Outputting debug

information to the

Immediate window

Asserting Your Position

An assert in programming is a controlled condition that should always evaluate to True, and when

it is False the program goes into debug mode. In VBA programming, an assert causes the execu-

tion of a program to be interrupted and focus to be brought to the position of the code statement

containing the assert in the code editor window, where you can evaluate what might have gone

wrong. You add an assert to your program using the Assert method of the Debug object.

While on the surface the Assert method might not seem helpful, it can be a useful debugging tool.

Instead of using breakpoints, which I cover in the next section, you can suspend the execution of a

program when a condition is False, thereby reducing the time it takes to debug a program because

you engage in the task of debugging only when a specifi c condition is met.

Th e following shows an example of using the Assert method:

Sub DivByZeroAssert()

 Dim nVal As Integer, nDiv As Integer

 nVal = ThisDrawing.Utility.GetInteger(vbLf & "Enter an integer: ")

 If nVal <> 0 Then

 nDiv = nVal / 2

 MsgBox nDiv

 Else

 Debug.Assert False

 End If

End Sub

It is good practice to add an assert when you want to check an assumption at runtime. You may

want to use an assert with complex conditionals or to test if an error is generated.

Th e Assert method won’t execute if a project is password protected and hasn’t been unlocked for

editing. For information on password-protecting a project, see the “Protecting a Project” section

later in this chapter.

DEBUGGING A VBA PROJECT | 385

c13.indd 4:27:6:PM/04/06/2015 Page 385

Stepping Through a Procedure

The VBA Editor enables you to step through a program while it is being executed with the use

of a feature known as breakpoints. Breakpoints allow you to specify a position in a VBA program

at which execution should be suspended. While the program is suspended, you can check the

current values of a variable and move execution forward one code statement at a time using the

code stepping tools, where execution is currently suspended.

While you are in the code editor window, you can set breakpoints quickly by doing any of

the following:

 ◆ Clicking in the left margin adjacent to a code statement

 ◆ Placing the cursor on the desired line and pressing F9

 ◆ Right-clicking on a code statement and choosing Toggle ➢ Breakpoint from the context menu

When a breakpoint is placed, a circle is displayed in the left margin and the code statement is

highlighted; see Figure 13.4. (By default, the circle and highlight are maroon colored; you can

change the color using the Options dialog of the VBA Editor.) Click a breakpoint that is set in

the left margin to remove it.

Figure 13.4

Suspend the execu-

tion of a program

with breakpoints

for debugging.

TIP If you wish to remove all breakpoints from a VBA project (not just those in the active code

editor window), you can press Ctrl+Shift+F9 or choose Debug ➢ Clear All Breakpoints from the

VBA Editor menu bar.

Once one or more breakpoints have been set, you can execute the procedure from the VBA

Editor or the AutoCAD user interface with the vbarun command. Execution starts and is sus-

pended when the fi rst breakpoint is encountered. The VBA Editor moves to the foreground and

386 | CHAPTER 13 HANDLING ERRORS AND DEPLOYING VBA PROJECTS

c13.indd 4:27:6:PM/04/06/2015 Page 386

the code editor receives focus when execution is suspended. A yellow arrow—known as the

execution point—and highlighted code indicate the code statement that will be executed next (see

Figure 13.4).

TIP You can drag the yellow arrow up or down to control which code statement will be executed

next when stepping code statements or resuming normal execution.

While execution is suspended, you can position the cursor over a variable to see its current

value in a tooltip (see Figure 13.4). You can also see the current values of all variables in the cur-

rent procedure using the Locals window or those that are being watched in the Watches win-

dow. I discuss the Locals and Watches windows in the next section.

Execution of the procedure can be continued by stepping into, over, or out of a code state-

ment. To step through the code statements of a procedure, you choose one of the following

options on the Debug menu or toolbar.

Choose Step Into when you want to step through each code statement in a procedure and

continue stepping into other procedures that are called.

Use Step Over when you want to step through each code statement in a procedure but don’t

want to continue stepping into other procedures that are called.

The Step Out tool resumes normal execution for the code statements in the current proce-

dure. If execution is suspended in a procedure that was called from the original procedure,

normal execution is resumed for the called procedure and is suspended when execution

returns to the calling procedure.

Normal execution can be restored by choosing Continue on the Run menu or Debug toolbar.

Debugging can be terminated by choosing Reset on the Run menu or Debug toolbar.

Watching Variable Values

Many people like to watch birds or go whale watching. As a programmer, I have often found

watching variable values enjoyable. The VBA Editor allows you to view the current value of one

or more variables or see the result of a code statement while a program is executing. It can also

let you know when the value of a variable changes or evaluates to True.

In the VBA Editor, either the Locals window or the Watches window can be used to view the

current value of the variables in a procedure while execution is suspended using a breakpoint or

when an assertion occurs:

Locals Window The Locals window, shown in Figure 13.5, allows you to view the value of

each local variable in the procedure that currently has execution focus. (The procedure that

has the execution focus is the procedure that contains the next code statement to be executed.)

You don’t need to follow any extra steps to get the variables to display in the window. You

can display the Locals window by choosing Locals Window from the View menu or by click-

ing the Locals Window icon on the Debug toolbar. When the Locals window is displayed,

click the ellipsis button in the upper-right corner of the window to open the Call Stack win-

dow. The Call Stack window allows you to view the variables dimensioned in either the pro-

cedure that has execution focus or the calling procedure that is currently executing.

Watches Window The Watches window, shown in Figure 13.6, allows you to view the value

of a specifi c variable or the return value of a statement in a similar fashion to how the Locals

DEBUGGING A VBA PROJECT | 387

c13.indd 4:27:6:PM/04/06/2015 Page 387

window does. However, the Watches window displays the values only for the variables you

are interested in knowing more about. You can also use the Watches window to be notifi ed

when the value of a variable changes or whenever the value of a variable or code statement

evaluates to True. Display the Watches window by choosing Watch Window from the View

menu or by clicking the Watches Window icon on the Debug toolbar.

Figure 13.5

Viewing local

variables with the

Locals window

Figure 13.6

Watching variables

and statements

with the Watches

window

To add a variable or statement to the Watches window, use the following steps:

 1. In the code editor window, select a variable or code statement to add to the Watches

window.

 2. Right-click the highlighted text and click Add Watch.

 3. When the Add Watch dialog box (see Figure 13.7) opens, verify that the variable or

statement is displayed in the Expression text box. If not, close the Add Watch dialog

box and try again. As an alternative, you can simply type into the Expression text

box the code statement or variable name you want to watch.

Figure 13.7

Adding a watch

with the Add Watch

dialog box

388 | CHAPTER 13 HANDLING ERRORS AND DEPLOYING VBA PROJECTS

c13.indd 4:27:6:PM/04/06/2015 Page 388

 4. Optionally, you can change the context in which the value of the variable or code state-

ment should be evaluated. The default context is based on where you highlighted the

text in your project. You can set the procedure or module settings to (All Procedures)

or (All Modules) to display the current value of a variable or code statement no matter

what procedure is currently being executed.

 5. Optionally, you can change the watch type. The default is Watch Expression, which

displays the current value of the variable or returns the value of the code statement in

the specifi ed context. Choose Break When Value Is True or Break When Value Changes

if you want to debug your program when the value either is True or changes while

executing the program.

 6. Click OK.

You can modify a watch by selecting it in the Watches window and right-clicking.

When the context menu opens, choose Edit Watch (to make changes to the watch entry)

or Delete Watch (to remove the watch).

NOTE Watches are not saved with the VBA project, and they are not maintained between

AutoCAD sessions. Unloading a VBA project or closing AutoCAD removes any watches that

were added.

Deploying a VBA Project
After you have spent countless hours, days, or even weeks writing a program, handling errors,

and debugging a VBA program, it all comes down to deploying the program for others to use.

When you are ready to deploy a VBA project, you should consider the following:

 ◆ How will the VBA project be loaded into the AutoCAD drawing environment?

 ◆ How will the user start a VBA macro?

 ◆ Should a user be able to make changes to the code and components of a VBA project?

Loading a VBA Project
VBA programs are stored in DVB project fi les that must be loaded into AutoCAD before they

can be used. A number of methods can be used to load a DVB fi le. These methods fall into one

of two categories: manual or automatic. Most DVB fi les are loaded using one of the manual

techniques.

Manually Loading a VBA Project File

AutoCAD is a graphics- and resource-intensive application, and it loads components into

memory only as each is needed. DVB fi les are typically rather small in size, but loading a large

number (or even several that include complex user forms) into the AutoCAD drawing environ-

ment can impact performance. For this reason, you should load a DVB fi le only as it is needed

and then unload the fi le once it is no longer needed. I don’t suggest loading a DVB fi le, execut-

ing a macro, and then unloading the DVB fi le immediately because that can affect the user’s

DEPLOYING A VBA PROJECT | 389

c13.indd 4:27:6:PM/04/06/2015 Page 389

experience with your custom programs and even with AutoCAD. All DVB fi les are unloaded

from AutoCAD when the current session is terminated, but you can use the vbaunload com-

mand to unload a specifi c VBA project while AutoCAD is still running.

Use the following techniques to manually load a DVB fi le into AutoCAD:

Open VBA Project Dialog Box (vbaload Command) The Open VBA Project dialog box

allows you to browse to where your DVB fi les are stored and select which fi le to load. After

selecting a DVB fi le, click Open to load the fi le into memory. I discussed how to use this com-

mand in Chapter 1, “Understanding the AutoCAD VBA Environment.”

Load/Unload Applications Dialog Box (appload Command) The Load/Unload

Applications dialog box allows you to browse to where your DVB fi les are stored and select

which fi les to load. After selecting a DVB fi le, click Load to load the fi le into memory.

I explain how to load a DVB fi le with the Load/Unload Applications dialog box in the “Using

the Load/Unload Applications Dialog Box to Load a DVB File” section later in this chapter.

Drag and Drop DVB and other types of custom program fi les can be dragged and dropped

onto an open drawing window in the AutoCAD drawing environment. When you drop a

DVB fi le onto an open drawing window, AutoCAD prompts you to load the fi le and/or to

enable the macros contained in the VBA project fi le.

AutoLISP® vl-vbaload Function The AutoLISP function vl-vbaload allows you to

load a DVB fi le from a script fi le, from a command macro defi ned in a CUI/CUIx fi le, at the

AutoCAD Command prompt, or even from a LSP fi le. When you use the vl-vbaload func-

tion, it searches the paths that are listed under the Support File Search Path node in the

Options dialog box. You should avoid using absolute fi le paths with the vl-vbaload func-

tion; if your drive mappings or folder structure changes, the DVB fi le will fail to load.

The following is an example of loading a DVB fi le named drawplate.dvb with the

vl-vbaload function:

(vl-vbaload "drawplate.dvb")

Automatically Loading a VBA Project File

Manually loading DVB fi les doesn’t always create the best user experience. Keep in mind,

though, that you don’t want all your DVB fi les to be loaded at startup because it takes away

some of the computing resources from the operating system and the AutoCAD program.

You will recall that in Chapter 1, I introduced the following techniques for automatically

loading a DVB fi le into the AutoCAD drawing environment:

Startup Suite (appload Command) The Startup Suite is part of the Load/Unload

Applications dialog box (appload command). When a DVB fi le is added to the Startup Suite,

the fi le is loaded when the fi rst drawing of a session is opened. Removing a fi le from the

Startup Suite causes the fi le not to be loaded in any future AutoCAD sessions. If you want

to use the Startup Suite to load DVB fi les, you must add the fi les to the Startup Suite on each

workstation and AutoCAD user profi le. I discuss how to add DVB fi les to the Startup Suite

in the “Using the Load/Unload Applications Dialog Box to Load a DVB File” section later in

this chapter.

Using an acad.dvb File Each time you start AutoCAD, it looks for a fi le named acad.dvb

and loads it automatically if found in the AutoCAD support fi le search paths. In addition to

390 | CHAPTER 13 HANDLING ERRORS AND DEPLOYING VBA PROJECTS

c13.indd 4:27:6:PM/04/06/2015 Page 390

loading the fi le, if the VBA project contains a public procedure of the subroutine type named

AcadStartup, the macro is executed at startup.

TIP You can use one of the LSP fi les that is automatically loaded at startup or with each draw-

ing that is created to load one or more DVB fi les. For a listing of other fi les that are loaded

automatically when the AutoCAD program is started, see Chapter 20, “Authoring, Managing,

and Loading AutoLISP Programs,” in AutoCAD Platform Customization: User Interface, AutoLISP,

VBA, and Beyond, or check the AutoCAD Help system.

Plug-in Bundles Plug-in bundles allow you to load DVB and other custom program fi les

in AutoCAD 2013 or later, and they are supported on both Windows and Mac OS. A plug-in

bundle is a folder structure with a special name and metadata fi le that describes the fi les

contained in the bundle. I discuss plug-in bundles in the “Loading a Project with a Plug-in

Bundle” section later in this chapter.

Using the Load/Unload Applications Dialog Box to Load a DVB File

The Load/Unload Applications dialog box (which you open with the appload command) is

the easiest way to load a DVB fi le into the AutoCAD drawing environment. Some of the other

methods for loading a DVB fi le provide better integration into an end user’s workfl ow, but they

require you to defi ne where the DVB fi les are located. I describe how to set up and identify

the folders where the AutoCAD program should look for custom fi les in the “Specifying the

Location of and Trusting a Project” section later in this chapter.

The following steps provide an overview of how to load a DVB fi le with the Load/Unload

Applications dialog box.

 1. On the ribbon, click Manage tab ➢ Customization panel ➢ Load Application (or at the

Command prompt, type appload and press Enter).

 2. When the Load/Unload Applications dialog box opens, browse to and select a DVB fi le.

Click Load.

TIP If the Add To History check box is selected when you click Load, AutoCAD adds the selected

fi le to a list box on the History tab. Click the History tab and then select the fi le you want to

load. Th en click Load to load the fi le.

 3. If the File Loading - Security Concern message box is displayed, click Load. You’ll learn

which paths contain custom fi les that should be trusted in the “Specifying the Location of

and Trusting a Project” section and the sidebar “Restricting Custom Applications” later

in this chapter.

 4. Click Close to return to the drawing area.

You can use the following steps to add a DVB fi le to the Startup Suite:

 1. On the ribbon, click the Manage tab ➢ Customization panel ➢ Load Application (or at the

Command prompt, type appload and press Enter).

 2. When the Load/Unload Applications dialog box opens, click Contents in the Startup

Suite section.

 3. When the Startup Suite dialog box opens, click Add.

DEPLOYING A VBA PROJECT | 391

c13.indd 4:27:6:PM/04/06/2015 Page 391

 4. In the Add File To Startup Suite dialog box, browse to and select a DVB fi le. Click Open.

 5. In the Startup Suite dialog box, click Close.

 6. In the Load/Unload Applications dialog box, click Close.

Loading a Project with a Plug-in Bundle

A plug-in bundle, as I previously mentioned, is one of the methods that can be used to deploy

your DVB fi les. Fundamentally, a bundle is simply a folder structure with its topmost folder hav-

ing .bundle appended to its name and a manifest fi le with the fi lename PackageContents.xml

located in the topmost folder.

You can use Windows Explorer or File Explorer to defi ne and name the folder structure of

a bundle. You can create the PackageContents.xml fi le with a plain ASCII text editor such

as Notepad. You will also need a bit of assistance from AutoLISP to load a DVB fi le into the

AutoCAD drawing environment with the bundle.

The following is a sample PackageContents.xml fi le that defi nes the contents of a bundle

named DrawPlate_VBA.bundle that contains three fi les: a help fi le named DrawPlate_VBA.htm,

a LSP fi le named DrawPlateLoader.lsp, and the VBA project fi le named DrawPlate.dvb:

<?xml version="1.0" encoding="utf-8"?>

<ApplicationPackage

 SchemaVersion="1.0"

 AppVersion="1.0"

 Name="Plate Generator (VBA)"

 Description="Draws a rectangle plate with four bolt holes."

 Author="HyperPics, LLC"

 ProductCode="{144819FE-3A2B-4D8A-B49C-814D0DBD45B3}"

 HelpFile="./Contents/DrawPlate_VBA.htm"

>

 <CompanyDetails

 Name="HyperPics, LLC"

 Url="http://www.hyperpics.com"

 />

 <RuntimeRequirements

 OS="Win32|Win64"

 SeriesMin="R19.0"

 Platform="AutoCAD*"

 SupportPath="./Contents/"

 />

 <Components Description="Windows OSs">

 <ComponentEntry Description="Loader file"

 AppName="DrawPlateMainLoader"

 Version="1.0"

 ModuleName="./Contents/DrawPlateLoader.lsp">

 </ComponentEntry>

http://www.hyperpics.com

392 | CHAPTER 13 HANDLING ERRORS AND DEPLOYING VBA PROJECTS

c13.indd 4:27:6:PM/04/06/2015 Page 392

 <ComponentEntry Description="Main file"

 AppName="DrawPlateMain"

 Version="1.0"

 ModuleName="./Contents/DrawPlate.dvb">

 </ComponentEntry>

 </Components>

</ApplicationPackage>

The folder structure of the bundle that the PackageContents.xml fi le refers to looks like this:

DrawPlate_VBA.bundle

 PackageContents.xml

 Contents

 DrawPlate.dvb

 DrawPlate_VBA.htm

 DrawPlateLoader.dvb

I have provided the DrawPlate_VBA.bundle as part of the sample fi les for this book, but you

will also learn how to create the DrawPlate_VBA.bundle yourself later in this chapter. To use

the bundle with AutoCAD, copy the DrawPlate_VBA.bundle folder and all of its contents to one

of the following locations so that all users can access the fi les:

 ◆ ALLUSERSPROFILE%\Application Data\Autodesk\ApplicationPlugIns (Windows XP)

 ◆ ALLUSERSPROFILE%\Autodesk\ApplicationPlugIns (Windows 7 or Windows 8)

If you want a bundle to be accessible only by specifi c users, place the bundle into the follow-

ing location under each user’s profi le:

 ◆ APPDATA%\Autodesk\ApplicationPlugIns

For additional information on the elements used to defi ne a PackageContents.xml fi le, per-

form a search in the AutoCAD Help system on the keyword “PackageContents.xml.”

NOTE Th e appautoload system variable controls when bundles are loaded into AutoCAD. By

default, bundles are loaded at startup, when a new drawing is opened, and when a plug-in is

added to the ApplicationPlugins folder. You can use the appautoloader command to list

which bundles are loaded or to reload all the bundles that are available to AutoCAD.

Specifying the Location of and Trusting a Project
The DVB fi les that you create or download from the Internet can be placed in any folder on a

local or network drive. I recommend placing all your custom fi les in a single folder on a network

drive so they can be accessed by anyone in your company who might need them. Placing the

fi les in a network location makes rolling out changes easier as well. You might consider using

the name DVB Files or VBA Project Files for the folder that contains your DVB fi les.

I also recommend marking any folder(s) that contain custom fi les on the network as read-

only for everyone except for those designated to make updates to the fi les. Marking the folders

as read-only helps prevent undesired or accidental changes.

Regardless of the folder name you use or where you choose to place your DVB fi les, you need

to let AutoCAD know where these fi les are located. To do so, add each folder that contains DVB

DEPLOYING A VBA PROJECT | 393

c13.indd 4:27:6:PM/04/06/2015 Page 393

fi les to the Support File Search Path and the Trusted Locations settings accessible through the

Options dialog box.

The support fi le search paths are used by AutoCAD to locate custom fi les, such as those that

contain block defi nitions, linetype patterns, AutoLISP programs, and VBA projects. Use the

Options dialog box to add the folders that contain DVB fi les to the support fi le search paths of

AutoCAD.

If you are using AutoCAD 2013 SP1 or later, when you try to load a DVB fi le AutoCAD

checks to see if the DVB fi le being loaded is from a trusted location. A folder that you identify

as a trusted location contains DVB fi les that are safe to be loaded without user interaction. The

Trusted Locations setting in the Options dialog box or the trustedpaths system variable are

used to specify trusted locations. Any DVB fi le that isn’t loaded from a trusted location results

in the File Loading - Security Concern message box (see Figure 13.8) being displayed.

Figure 13.8

Th is security warn-

ing informs you

that a DVB fi le

is being loaded

from an untrusted

location.

The File Loading - Security Concern message box indicates why it might not be a good idea to

load the fi le if its origins aren’t known. Loading fi les with an unknown origins could introduce

malicious code. The end user then must decide to load (or not load) the fi le before the AutoCAD

program can complete the load. When adding new trusted locations, make sure you limit the

number of folders you trust. Further, trusted folders should be marked as read-only to avoid the

introduction of unknown DVB fi les or other custom programs to the folders. For more informa-

tion on trusted paths, see the trustedpaths system variable in the AutoCAD Help system.

NOTE A folder that you identify as a trusted location must also be listed in the Support File

Search Paths setting of the Options dialog box.

The following steps explain how to add a folder to the support fi le search paths and trusted

locations used by AutoCAD:

 1. Click the Application menu button ➢ Options (or at the Command prompt, type options

and press Enter).

 2. When the Options dialog box opens, click the Files tab.

The following steps explain how to add a folder to the AutoCAD support fi le search paths:

 1. Select the Support File Search Path node. Click Add and then click Browse.

 2. In the Browse For Folder dialog box, browse to and select the folder that contains your

DVB fi les.

 3. Click OK.

394 | CHAPTER 13 HANDLING ERRORS AND DEPLOYING VBA PROJECTS

c13.indd 4:27:6:PM/04/06/2015 Page 394

The following steps explain how to add a folder to the AutoCAD trusted locations:

 1. Select the Trusted Locations node and click Add, and then click Browse.

 2. In the Browse For Folder dialog box, browse to and select the folder that contains your

DVB fi les.

 3. Click OK.

 4. If the selected folder is not read-only, the Trusted File Search Path - Security Concern dia-

log box will be displayed. Click Continue to add the folder.

 5. Click OK to save the changes to the Options dialog box.

If the location of your custom programs changes, you can replace an existing folder in the

Options dialog box by expanding the Support File Search Path or Trusted Paths node and select-

ing the folder you want to replace. After selecting the folder you want to replace, click Browse

and then select the new folder.

Restricting Custom Applications

Starting with AutoCAD 2013 SP1, Autodesk introduced some new security measures to help reduce

potential threats or viruses that could aff ect AutoCAD and the drawing fi les you create. Th ese

security measures allow you to do the following:

 ◆ Disable the loading of executable code when AutoCAD is started using /nolisp (AutoCAD

2013 SP1) or /safemode (AutoCAD 2014 and later)

 ◆ Automatically load and execute specially named fi les: acad.lsp, acad.fas, acad.vlx,

 acaddoc.lsp, acaddoc.fas, acaddoc.vlx, and acad.dvb

In AutoCAD 2014 and later, you can use the secureload system variable to control whether

AutoCAD loads fi les only from trusted locations or allows you to load custom fi les from any loca-

tion. I recommend setting secureload to 2 and loading custom fi les only from a secure and trusted

location. However, the default value of 1 for secureload is also fi ne; it displays a message box

when AutoCAD tries to load a fi le from a nontrusted location. Don’t set secureload to 0, thereby

disabling the security feature, because it could result in your system loading a malicious program.

Starting a Macro with AutoLISP or a Command Macro
Executing a VBA macro from the Macros dialog box can be a bit overwhelming to an end user

since the dialog box lists all the available macros from each of the VBA projects that are cur-

rently loaded into the AutoCAD drawing environment. Most end users are accustomed to start-

ing a command from the user interface or even typing a command at the AutoCAD Command

prompt.

A VBA macro can be executed from a command macro in the user interface or at the

Command prompt using the AutoLISP vl-vbarun function or the -vbarun command. Both

methods achieve the same result and can be used interchangeably.

DEPLOYING A VBA PROJECT | 395

c13.indd 4:27:6:PM/04/06/2015 Page 395

The following examples show how to execute the CLI_DrawPlate procedure defi ned in the

basDrawPlate code module of the DrawPlate.dvb fi le with the vl-vbarun function and the

-vbarun command using the AutoLISP command function:

; Execute macro with vl-vbarun

(vl-vbarun "DrawPlate.dvb!basDrawPlate.CLI_DrawPlate")

; Execute macro with command function and -vbarun command

(command "._-vbarun" "DrawPlate.dvb!basDrawPlate.CLI_DrawPlate")

The following shows how to execute the CLI_DrawPlate procedure defi ned in the

 basDrawPlate code module of the DrawPlate.dvb fi le with the -vbarun command at the

AutoCAD Command prompt:

Command: -VBARUN

Macro name: DrawPlate.dvb!basDrawPlate.CLI_DrawPlate

TIP If for some reason a DVB fi le with the same name is loaded from diff erent locations, you

can specify the absolute fi le path to a DVB fi le to ensure the correct macro is executed. For

example, you could use

(vl-vbarun "c:\\users\\lee\\documents\\mycustomfiles\\DrawPlate.dvb!basDrawPlate.

CLI_DrawPlate") instead of (vl-vbarun "DrawPlate.dvb!basDrawPlate.CLI_DrawPlate")

Although VBA doesn’t allow you to create a custom command that end users can enter at the

Command prompt like AutoLISP, ObjectARX®, or Managed .NET does, you can use AutoLISP

as a wrapper to execute a VBA procedure.

The following shows how to use AutoLISP to defi ne a custom command named -drawplate_

vba that an end user could use to execute the CLI_DrawPlate macro:

(defun c:-drawplate_vba ()

 (vl-vbarun "DrawPlate.dvb!basDrawPlate.CLI_DrawPlate")

)

Grouping Actions into a Single Undo
When a VBA macro is executed, users tend to expect certain things to occur before or after the

use of any custom program. Users expect that any changes to system variables will be restored

if those variables affect drawings, and they expect that when they type u and press Enter any

changes to the drawing will be rolled back. A single undo record isn’t always created when a

VBA program is executed, especially when the SendCommand or PostCommand method of the

AcadDocument object is used. I discussed these methods in Chapter 3, “Interacting with the

Application and Documents Objects.”

It is good practice to call the StartUndoMark and EndUndoMark methods of the AcadDocument

object when a VBA program makes changes to a drawing. The StartUndoMark method should

be called before the fi rst change is made, and the EndUndoMark method should be called after

the last change is made. The methods instruct AutoCAD to group the operations between the

two methods into a single undo record, making it easier for the user to roll back any changes

made by a VBA program.

396 | CHAPTER 13 HANDLING ERRORS AND DEPLOYING VBA PROJECTS

c13.indd 4:27:6:PM/04/06/2015 Page 396

Protecting a Project
A lot of time and effort can go into developing a VBA project, and a VBA project may include

information about proprietary processes or intellectual property. The VBA Editor offers a way to

password-protect the code and components of a VBA project. When a VBA project is password-

protected, the VBA project can be loaded and macros can be executed without entering a pass-

word. But when anyone wishes to edit the code and components, the password must be entered.

The following steps explain how to password-protect a VBA project:

 1. Load a DVB fi le into the AutoCAD drawing environment.

 2. In the VBA Editor, click Tools ➢ <Project Name> Properties.

 3. When the <Project Name> - Project Properties dialog box opens, click the Protection tab.

 4. On the Protection tab, check the Lock Project For Viewing check box and enter a pass-

word in the Password and Confi rm Password text boxes.

 5. Click OK.

Exercise: Deploying the DrawPlate VBA Project
In this section, you will continue to work with the DrawPlate project that was introduced in

Chapter 4, “Creating and Modifying Drawing Objects.” If you completed the exercises, you also

worked with the DrawPlate project throughout this book by adding annotations, getting input

from the user at the Command prompt, and even implementing a user interface to get input

from the user.

The key concepts I cover in this exercise are as follows:

Using Breakpoints and Stepping Through Code Statements Suspending a VBA program

during execution can be used to step through the code statements that defi ne a procedure

and to view the current values of the variables used by a procedure.

Adding Error-Handling Statements Using On Error GoTo statements and labels to imple-

ment error handling can help reduce problems that an end user might encounter when using

a custom program.

Using Undo Grouping Wrapping methods into an undo grouping allows any changes that

are made by a custom program to be rolled back and restores the drawing to the state it was

in before it was executed.

Identifying the Locations of Your DVB Files AutoCAD must be able to fi nd your DVB fi les

and needs to know which locations are trusted.

Creating and Deploying Plug-in Bundles Plug-in bundles can make deploying VBA

programs easier than having to set up support fi le search paths and trusted locations on

multiple machines, and they allow you to support multiple releases of a program with much

greater ease.

NOTE The steps in this exercise depend on the completion of the steps in the “Exercise:

Implementing a UserForm for the DrawPlate Program” section of Chapter 11, “Creating

and Displaying User Forms.” If you didn’t complete the steps, do so now or start with the

EXERCISE: DEPLOYING THE DRAWPLATE VBA PROJECT | 397

c13.indd 4:27:6:PM/04/06/2015 Page 397

ch13_drawplate.dvb sample file available for download from www.sybex.com/go/

autocadcustomization. You will also need the ch13_badcode.dvb, ch13_packagecon-

tents.xml, ch13_drawplate_vba.htm, and ch13_drawplateloader.lsp sample fi les.

Place these sample fi les in the MyCustomFiles folder under the Documents (or My Documents)

folder or in the location you are using to store the DVB fi les. Once you’ve stored the sample fi les

on your system, remove the characters ch13_ from the name of each fi le.

Stepping Th rough the BadCode VBA Project
In this exercise, you’ll work with the badcode.dvb fi le that came with this book and was shown in

the “Debugging Through Messages” section. Stepping through a program code statement by code

statement allows you to identify what is happening in your code, determine whether it is executing

as expected or if an error occurs, and see which branches of a program are being followed based on

the results of the logical tests. Additionally, you can view the current values of the variables in the

program at specifi c times to ensure they have the correct data before they are passed to a function.

The following steps explain how to set a breakpoint and add watches to the Watches

window:

 1. Open the VBA Editor and load the badcode.dvb fi le.

 2. In the Project Explorer of the VBA Editor, double-click the basBadCode component.

 3. In the code editor window, locate the statement that is below the comment

' Error 1, - should be &. Click in the left margin adjacent to the code statement

to set a breakpoint.

The code editor window should now look like Figure 13.9.

Figure 13.9

Breakpoint set in

the code editor

window

http://www.sybex.com/go

398 | CHAPTER 13 HANDLING ERRORS AND DEPLOYING VBA PROJECTS

c13.indd 4:27:6:PM/04/06/2015 Page 398

 4. In the code editor window, in the fi rst few code statements of the BadCode procedure

locate the variable sVal.

 5. Double-click the sVal text to select it and then right-click the selected text. Choose Add

Watch from the context menu.

 6. When the Watches window opens, in the Watch Type section choose Break When Value

Changes and click OK.

 7. If the Watches window is in the way, drag it away from the code editor window.

 8. In the code editor window, right-click and choose Add Watch.

 9. When the Watches window opens, replace the text in the Expression text box with

CStr(2 / nVal) and click OK.

The Watches window should now look like Figure 13.10.

Figure 13.10

Current watches

added to the

Watches window

The following steps explain how to step through the code statements of the BadCode

procedure:

 1. Switch to AutoCAD.

 2. At the Command prompt, type vbarun and press Enter.

 3. When the Macros dialog box opens, select the BadCode procedure from the Macros list.

Click Run.

 4. At the Enter a string: prompt, type Hello World! and press Enter.

Execution of the BadCode procedure is suspended as a result of the watch setup for the

sVal variable. The If IsEmpty(sVal) = False Then code statement is also highlighted,

indicating which code statement will be executed next when execution resumes.

 5. Review the current value of the sVal variable in the Watches window. The value of the

sVal variable in the Watches window should now be listed as “Hello World!”

 6. In the VBA Editor, click Run ➢ Continue to resume normal execution.

Execution is suspended again when the breakpoint is reached.

 7. In the VBA Editor, click Debug ➢ Step Into to execute the highlighted code statement and

move execution to the next code statement.

 8. When the Microsoft Visual Basic error message is displayed, click Debug.

EXERCISE: DEPLOYING THE DRAWPLATE VBA PROJECT | 399

c13.indd 4:27:6:PM/04/06/2015 Page 399

The type mismatch error is the result of the text - sVal in the code statement.

 9. In the highlighted statement, change the text "Value entered: " - sVal to "Value

entered: " & sVal.

 10. Press F8 to execute the highlighted code statement and move execution to the next code

statement.

 11. Click Debug ➢ Clear All Breakpoints to remove the breakpoint that was set.

 12. Click Run ➢ Continue to resume normal execution.

 13. Switch to AutoCAD.

 14. At the Enter an integer: prompt, type 4 and press Enter.

 15. Press F2 to expand the Command Line history.

The Command Line history shows the following messages:

DEBUG: Inside IF

Value entered: Hello World!

Enter an integer: 4

Command:

DEBUG: Ready to divide

Divisor: 0.5

DEBUG: Outside IF

Implementing Error Handling for the Utility Procedures
As you make changes to the procedures in the clsUtilities class module, notice how easy it

can be to implement error handling for your utility functions.

The following steps explain how to update the CreateLayer procedure to handle general

problems and pass the error to the calling procedure:

 1. Load the drawplate.dvb fi le that you last updated in the exercises for Chapter 11, or

rename the fi le ch13_drawplate.dvb to drawplate.dvb and then load the renamed fi le.

 2. In the Project Explorer, double-click the clsUtilities component.

 3. In the code editor window, scroll to the CreateLayer procedure and add the bold text:

Public Function CreateLayer(sName As String, _

 nClr As ACAD_COLOR) As AcadLayer

 On Error Resume Next

 ' Try to get the layer first and return it if it exists

 Set CreateLayer = ThisDrawing.Layers(sName)

 ' If layer doesn't exist create it

 If Err Then

400 | CHAPTER 13 HANDLING ERRORS AND DEPLOYING VBA PROJECTS

c13.indd 4:27:6:PM/04/06/2015 Page 400

 Err.Clear

 On Error GoTo ErrHandler

 Set CreateLayer = ThisDrawing.Layers.Add(sName)

 CreateLayer.color = nClr

 End If

 ' Exit the function if it gets this far

 Exit Function

' If an error occurs, raise an error

ErrHandler:

 Err.Raise Err.Number, Err.Source, Err.Description, _

 Err.HelpFile, Err.HelpContext

End Function

 4. Click File ➢ Save.

The following steps explain how to update the CreateRectangle, CreateText, and

CreateCircle procedures to handle general problems and pass the error to the calling

procedure:

 1. In the code editor window, scroll to the procedures in the code and add the bold text:

Public Function CreateRectangle(ptList As Variant) As AcadLWPolyline

 On Error GoTo ErrHandler

 Set CreateRectangle = ThisDrawing.ActiveLayout.Block. _

 AddLightWeightPolyline(ptList)

 CreateRectangle.Closed = True

 ' Exit the function if it gets this far

 Exit Function

' If an error occurs, raise an error

ErrHandler:

 Err.Raise Err.Number, Err.Source, Err.Description, _

 Err.HelpFile, Err.HelpContext

End Function

Public Function CreateText(insPoint As Variant, _

 attachmentPt As AcAttachmentPoint, _

 textHeight As Double, _

 textRotation As Double, _

 textString As String) As AcadMText

 On Error GoTo ErrHandler

 Set CreateText = ThisDrawing.ActiveLayout.Block. _

 AddMText(insPoint, 0, textString)

EXERCISE: DEPLOYING THE DRAWPLATE VBA PROJECT | 401

c13.indd 4:27:6:PM/04/06/2015 Page 401

 ' Sets the text height, attachment point, and rotation of the MText object

 CreateText.height = textHeight

 CreateText.AttachmentPoint = attachmentPt

 CreateText.insertionPoint = insPoint

 CreateText.rotation = textRotation

 ' Exit the function if it gets this far

 Exit Function

' If an error occurs, raise an error

ErrHandler:

 Err.Raise Err.Number, Err.Source, Err.Description, _

 Err.HelpFile, Err.HelpContext

End Function

Public Function CreateCircle(cenPt As Variant, circRadius) As AcadCircle

 On Error GoTo ErrHandler

 Set CreateCircle = ThisDrawing.ActiveLayout.Block. _

 AddCircle(cenPt, circRadius)

 ' Exit the function if it gets this far

 Exit Function

' If an error occurs, raise an error

ErrHandler:

 Err.Raise Err.Number, Err.Source, Err.Description, _

 Err.HelpFile, Err.HelpContext

End Function

 2. Click File ➢ Save.

Implementing Error Handling and Undo Grouping for the Main
Procedures
The following steps explain how to update the CLI_DrawPlate procedure to handle general

problems when drawing the objects that form the plate and use undo grouping to make rolling

back changes easier:

 1. In the Project Explorer, double-click the basDrawPlate component.

 2. In the code editor window, scroll to the CLI_DrawPlate and add the text in bold:

Public Sub CLI_DrawPlate()

 Dim oLyr As AcadLayer

 On Error Resume Next

402 | CHAPTER 13 HANDLING ERRORS AND DEPLOYING VBA PROJECTS

c13.indd 4:27:6:PM/04/06/2015 Page 402

 ' Start an undo mark here

 ThisDrawing.StartUndoMark

 Dim sysvarNames As Variant, sysvarVals As Variant

 sysvarNames = Array("nomutt", "clayer", "textstyle")

 3. Scroll to the If IsNull(basePt) = False Then statement and add the text in bold:

' If a base point was specified, then draw the plate

If IsNull(basePt) = False Then

 On Error GoTo ErrHandler

 ' Create the layer named Plate or set it current

 Set oLyr = myUtilities.CreateLayer("Plate", acBlue)

 ThisDrawing.ActiveLayer = oLyr

 4. Scroll to the Dim insPt As Variant statement and add the text in bold:

myUtilities.CreateCircle cenPt4, 0.1875

On Error Resume Next

' Get the insertion point for the text label

Dim insPt As Variant

insPt = Null

insPt = ThisDrawing.Utility.GetPoint(, _

 removeCmdPrompt & "Specify label insertion point " & _

 "<or press Enter to cancel placement>: ")

' If a point was specified, placed the label

If IsNull(insPt) = False Then

 On Error GoTo ErrHandler

 ' Define the label to add

 Dim sTextVal As String

 5. Scroll to the Loop Until IsNull(basePt) = True And sKeyword = "" statement and

add the text in bold:

 myUtilities.CreateText insPt, acAttachmentPointMiddleCenter, _

 0.5, 0#, sTextVal

 End If

 End If

 On Error Resume Next

Loop Until IsNull(basePt) = True And sKeyword = ""

EXERCISE: DEPLOYING THE DRAWPLATE VBA PROJECT | 403

c13.indd 4:27:6:PM/04/06/2015 Page 403

' Restore the saved system variable values

myUtilities.SetSysvars sysvarNames, sysvarVals

 6. Scroll to the End Sub statement and add the text in bold:

 ' Save previous values to global variables

 g_drawplate_width = width

 g_drawplate_height = height

 ' End an undo mark here

 ThisDrawing.EndUndoMark

 Exit Sub

ErrHandler:

 ' End an undo mark here

 ThisDrawing.EndUndoMark

 ' Rollback changes

 ThisDrawing.SendCommand "._u "

End Sub

 7. Click File ➢ Save.

The following steps explain how to update the cmdCreate_Click procedure to handle gen-

eral problems when drawing the objects that form the plate and use undo grouping to make

rolling back changes easier:

 1. In the Project Explorer, right-click the frmDrawPlate component and choose View Code.

 2. In the code editor window, scroll to the cmdCreate_Click procedure, or select cmdCreate

from the Object drop-down list and then choose Click from the Procedure drop-down list

to the right of the Object drop-down list at the top of the code editor window.

 3. Add the text in bold:

Private Sub cmdCreate_Click()

 Dim oLyr As AcadLayer

 ' Hide the dialog so you can interact with the drawing area

 Me.Hide

 On Error Resume Next

 ' Start an undo mark here

 ThisDrawing.StartUndoMark

 Dim sysvarNames As Variant, sysvarVals As Variant

 sysvarNames = Array("nomutt", "clayer", "textstyle")

404 | CHAPTER 13 HANDLING ERRORS AND DEPLOYING VBA PROJECTS

c13.indd 4:27:6:PM/04/06/2015 Page 404

 4. Scroll to the If IsNull(basePt) = False Then statement and add the text in bold:

' If a base point was specified, then draw the plate

 If IsNull(basePt) = False Then

 On Error GoTo ErrHandler

 ' Create the layer named Plate or set it current

 Set oLyr = myUtilities.CreateLayer("Plate", acBlue)

 ThisDrawing.ActiveLayer = oLyr

 5. Scroll to the If Me.chkAddLabel.Value = True Then statement and add the text in

bold:

myUtilities.CreateCircle cenPt4, 0.1875

If Me.chkAddLabel.Value = True Then

 On Error Resume Next

 ' Get the insertion point for the text label

 Dim insPt As Variant

 insPt = Null

 insPt = ThisDrawing.Utility.GetPoint(, _

 removeCmdPrompt & "Specify label insertion point " & _

 "<or press Enter to cancel placement>: ")

 ' If a point was specified, placed the label

 If IsNull(insPt) = False Then

 On Error GoTo ErrHandler

 ' Define the label to add

 Dim sTextVal As String

 6. Scroll of the End Sub statement and add the text in bold:

 ' Save previous values to global variables

 g_drawplate_width = width

 Me.txtWidth.Text = Format(g_drawplate_width, "0.0000")

 g_drawplate_height = height

 Me.txtHeight.Text = Format(g_drawplate_height, "0.0000")

 g_drawplate_label = Me.chkAddLabel.Value

 ' End an undo mark here

 ThisDrawing.EndUndoMark

 ' Show the dialog box once done

 Me.show

 Exit Sub

ErrHandler:

EXERCISE: DEPLOYING THE DRAWPLATE VBA PROJECT | 405

c13.indd 4:27:6:PM/04/06/2015 Page 405

 ' End an undo mark here

 ThisDrawing.EndUndoMark

 ' Rollback changes

 ThisDrawing.SendCommand "._u "

 ' Show the dialog box once done

 Me.show

End Sub

 7. Click File ➢ Save.

Confi guring the AutoCAD Support and Trusted Paths
If you can’t or don’t plan to use a bundle to deploy your custom programs, you must let

AutoCAD know where your DVB fi les are stored and whether they can be trusted. Without the

trusted fi le designation, AutoCAD will display the File Loading - Security Concern message box

each time a custom program is loaded in AutoCAD 2013 SP1 or later. And consider this: How

can AutoCAD run a program it can’t fi nd?

The following steps explain how to add the folder named MyCustomFiles to the support fi le

search paths and trusted locations used by AutoCAD:

 1. Click the Application menu button ➢ Options (or at the Command prompt, type options

and press Enter).

 2. When the Options dialog box opens, click the Files tab.

 3. Select the Support File Search Path node. Click Add and then click Browse.

 4. In the Browse For Folder dialog box, browse to the MyCustomFiles folder that you created

for this book in the Documents (or My Documents) folder, or browse to the folder that con-

tains your DVB fi les.

 5. Select the folder that contains your DVB fi les and click OK.

 6. With the new path still highlighted, press F2. Press Ctrl+C, or right-click and choose

Copy.

 7. Select the Trusted Locations node. Click Add.

 8. With focus in the in-place text editor, press Ctrl+V, or right-click and choose Paste. Then

press Enter to accept the pasted path.

 9. If the Trusted File Search Path - Security Concern message box appears, click Continue.

 10. Click OK to save the changes to the Options dialog box.

Creating DrawPlate_VBA.bundle
Plug-in bundles are a relatively new concept in AutoCAD, but they make deploying your custom

programs much easier. After all, a bundle is simply a folder structure that you can copy between

machines no matter which operating system you are using. Bundles are supported in AutoCAD

2013–based products and later.

406 | CHAPTER 13 HANDLING ERRORS AND DEPLOYING VBA PROJECTS

c13.indd 4:27:6:PM/04/06/2015 Page 406

The following steps explain how to create a bundle named DrawPlate_VBA.bundle:

 1. Launch Windows Explorer or File Explorer based on your version of the operating sys-

tem. Right-click the Windows Start button in Windows XP or Windows 7, or right-click

in the lower-left corner of the screen on Windows 8. Click Windows Explorer or File

Explorer.

 2. Browse to the MyCustomFiles folder under the Documents (or My Documents) folder.

Right-click in an empty area and choose New ➢ Folder.

 3. Type DrawPlate_VBA.bundle and press Enter.

 4. Double-click the DrawPlate_VBA.bundle folder.

 5. Create a new folder under the DrawPlate_VBA.bundle folder and name the new folder

Contents.

 6. From the sample fi les that are available with this book and those that you created, copy

the following fi les into the appropriate folder (see Table 13.2).

Table 13.2: Files for DrawPlate_VBA.bundle

Filename Folder

packagecontents.xml DrawPlate.bundle

drawplateloader.lsp Contents

drawplate.dvb Contents

drawplate_vba.htm Contents

The drawplateloader.lsp fi le loads the drawplate.dvb fi le and then defi nes two custom

functions named -drawplate_vba and drawplate_vba. The -drawplate_vba function also sup-

ports contextual help; when the function is active, you can press F1 to display the drawplate_

vba.htm fi le.

Deploying and Testing DrawPlate_VBA.bundle
Plug-in bundles must be placed within a specifi c folder before they can be used. You learned

which folders a bundle can be placed in earlier in the section “Loading a Project with a Plug-in

Bundle.”

The following steps explain how to deploy a bundle named DrawPlate_VBA.bundle:

 1. In Windows Explorer or File Explorer, browse to the DrawPlate_VBA.bundle folder you

created in the previous exercise.

 2. Select the DrawPlate_VBA.bundle folder and right-click. Choose Copy.

 3. In the Location/Address bar of Windows Explorer or File Explorer, type one of the fol-

lowing and press Enter:

EXERCISE: DEPLOYING THE DRAWPLATE VBA PROJECT | 407

c13.indd 4:27:6:PM/04/06/2015 Page 407

 ◆ In Windows XP, type %ALLUSERSPROFILE%\Application Data\Autodesk\

ApplicationPlugIns.

 ◆ In Windows 7 or Windows 8, type %ALLUSERSPROFILE%\Autodesk\

ApplicationPlugIns.

 4. Right-click in the fi le list and choose Paste.

The following steps explain how to test DrawPlate.bundle:

 1. In AutoCAD, create a new drawing.

 2. At the Command prompt, type -drawplate_vba and press Enter.

You should see the familiar Specify base point for plate or [Width/Height]:

prompt. Before you created the bundle, you had to load the drawplate.dvb fi le and then

start the macro with the vbarun command to access the functionality. As a reminder, the

-drawplate_vba function is defi ned as part of the drawplateloader.lsp fi le that is used

to also load the DrawPlate.dvb fi le.

NOTE If the -drawplate_vba function isn’t available in the drawing, check the current value

of the appautoload system variable. Th e appautoload system variable controls when a bundle

should be loaded. Th e default value of the appautoload system variable is 14, which indicates

a bundle should be loaded at startup, when a new drawing is opened, or when a new bundle has

been added to one of the plug-in folders.

 3. When the -drawplate_vba function starts, press Esc to end the function.

 4. At the Command prompt, type drawplate_vba and press Enter.

You should see the Draw Plate UserForm that you defi ned in Chapter 11, “Creating and

Displaying User Forms.”

 5. Click Cancel to exit the dialog box.

bindex.indd 5:32:36:PM/03/28/2015 Page 409

Index
Note to the Reader: Throughout this index boldfaced page numbers indicate primary discussions of a topic.
Italicized page numbers indicate illustrations.

A
Abs function, 42
acActiveViewport constant, 101
acad.dvb fi les, 389–390
ACAD_MLEADERSTYLE dictionary, 165
ACAD_TABLESTYLE dictionary, 169, 261
ACAD_VisualStyles dictionary, 143
AcadApplication objects

application window, 59–60
current session information, 58–59
working with, 57–58

AcadArc objects, 94–96
AcadAttribute objects, 180–182, 189
AcadAttributeReference objects, 187, 189
AcadBlock objects

block defi nitions, 175–177, 181–182
layouts, 221

AcadBlockReference objects, 183–187, 189, 194
AcadBlocks collection, 175–177, 182–183
AcadCircle objects, 85, 93–94
AcadDatabasePreferences objects, 71
AcadDgnUnderlay objects, 200
AcadDictionaries collection, 169, 262
AcadDictionary objects

dictionaries, 260–261, 264–265
multileader styles, 166
table styles, 170

AcadDictionaryRecord objects, 263
AcadDimStyle objects, 160–161
AcadDimStyles collection, 160–161
AcadDocument_BeginCommand procedure,

299, 303
AcadDocument_BeginLisp procedure, 299
AcadDocument_EndCommand procedure,

303
AcadDocument objects, 60

fi le-related properties, 66–67
properties, 88–89
window-related properties, 68

AcadDocuments collection, 60–62
AcadDwfUnderlay objects, 200
AcadDynamicBlockReferenceProperty objects, 189
AcadEntity objects, 86–87
AcadExternalReference objects, 192, 194
AcadFileDependencies collection, 192, 200–202
AcadFileDependency objects, 200–202
AcadLayout objects, 221
AcadLayouts collection, 221–222

AcadLeader objects, 167
AcadLine objects, 83, 92
AcadLWPolyline objects, 97–99
AcadMenuBar objects, 286
AcadMenuGroup objects, 279–281, 288
AcadMenuGroups collection, 279–280
AcadMLeader objects, 164–166
AcadMLeaderStyle objects, 165–166
AcadModelSpace objects, 90
AcadMText objects, 151. See also text
AcadObject objects, 83–85, 84
AcadOle objects, 192
AcadPaperSpace objects, 90, 223
AcadPdfUnderlay objects, 200
AcadPlot objects, 235
AcadPlotConfi guration objects

layouts, 221
page setups, 228–229
settings, 235

AcadPlotConfi gurations collection, 229
AcadPolyline objects, 97–99
AcadPopupMenu objects, 282–284
AcadPopupMenuItem objects, 283–286
AcadPopupMenus collection, 282
AcadPreferences objects, 70
AcadPreferencesDisplay objects

description, 70
layout, 223
user interface elements, 294

AcadPreferencesDrafting objects, 70
AcadPreferencesFiles objects, 62, 70
AcadPreferencesOpenSave objects, 70
AcadPreferencesOutput objects, 70
AcadPreferencesProfi les objects, 70
AcadPreferencesSelection objects, 70
AcadPreferencesSystem objects, 70
AcadPreferencesUser objects, 70
AcadPViewport objects, 224–228
AcadRasterImage objects, 197
AcadRegisteredApplication objects, 249
AcadRegisteredApplications collection,

249
AcadSelectionSet objects, 129–130

exported objects, 238
Xdata, 258–259

AcadSelectionSets collection, 129
AcadStartup procedure, 296, 305–306
AcadSummaryInfo objects, 67
AcadTable objects, 168

410 | ACADTABLESTYLE OBJECTS • ADDPLOTCONFIG PROCEDURE

bindex.indd 5:32:36:PM/03/28/2015 Page 410

AcadTableStyle objects, 169
AcadText objects, 151, 154–155. See also text
AcadTextStyle objects, 156–157
AcadTextStyles collection, 156
AcadTolerance objects, 163–164
AcadToolbar collection, 288–289
AcadToolbarItem objects, 289–292
AcadUtility objects, 113, 381
AcadView objects, 142–143
AcadViewport objects, 139–141
AcadWipeout objects, 199
AcadXrecord objects, 264
acAllViewports constant, 101
AcAttributeMode enumerator, 179
accessdatabaseado procedure, 365
accessdatabasedao procedure, 365
accessing

collection objects, 34–35
custom dictionaries, 260–261
drawing-based objects, 88–89
fi lesystem, 348
outside fi les, 346–347, 347
selection set objects, 132

AcCtrl (AutoCAD Control) controls, 314
AcDbDictionaryRecord objects, 263
acDisplay constant, 234
acExtents constant, 234
AcFocusCtrl (AutoCAD Focus Control) controls,

315, 325
acInches constant, 232
acLayout constant, 234
acLimits constant, 234
acMenuFileCompiled constant, 282
acMenuFileSource constant, 282
acMillimeters constant, 232
acp.cuix fi le, 300–302
acPixels constant, 232
AcPlotType enumerator, 234
AcSmComponents 1.0 Type Library, 339
Activate events, 297
Activate method, 67
Active property, 67
ActiveDimStyle property, 162–164
ActiveLayer property, 34–35
ActiveLayout property, 90, 222
ActivePViewport property, 225
ActiveSelectionSet property, 129
ActiveSpace property, 90, 225
ActiveTextStyle property, 157–158
ActiveViewport property, 139
ActiveX Developer’s Guide, 19
acView constant, 234
acVpScaleToFit constant, 227
acWindow constant, 234

Add File To Startup Suite dialog box, 391
Add method

AcadBlocks, 176–177
AcadDictionaries, 262
AcadDimStyles, 160–161
AcadDocuments, 61–62
AcadLayouts, 222
AcadPlotConfi gurations, 229
AcadPopupMenus, 282
AcadRegisteredApplications, 249
AcadSelectionSets, 129
AcadTextStyles, 156
AcadViewports, 139
layers, 23
objects, 32

Add To History option, 390
Add Watch dialog box, 10, 387, 387
AddACPMenu procedure, 284
AddACPToolbar procedure, 290–291
AddArc function, 94–95
AddAttribute function, 178–179
AddBlkReference procedure, 241
AddCircle function, 93–94
AddDim3PointAngular function, 158
AddDimAligned function, 158
AddDimAngular function, 158
AddDimArc function, 158
AddDimDiametric function, 158–159
AddDimOrdinate function, 159
AddDimRadial function, 159
AddDimRadialLarge function, 159
AddDimRotated function, 159
addDWGProps procedure, 78–79
AddExtensionDictionary procedure, 262–263
AddFloatingViewport procedure, 242
AddItems method, 130
addition, 38
Additional Controls dialog box

AcFocusCtrl controls, 325
Toolbox window, 10, 316

AddLayer procedure, 380
AddLayout procedure, 239
AddLeader method, 167
AddLightWeightPolyline function, 97–99
AddLine function, 91–92
AddMenuItem method, 283–284
AddMLeader method, 164
AddMLine function, 99
AddMText function, 151–152
AddObject method, 32

AcadDictionary, 263
multileaders, 165
tables, 169

AddPlotConfi g procedure, 240–241

ADDPOLYLINE FUNCTION • AUTOCAD OBJECT LIBRARIES | 411

bindex.indd 5:32:36:PM/03/28/2015 Page 411

AddPolyline function, 97
AddPViewport function, 224–225
AddRaster method, 197–198, 201
AddSeparator method

AcadPopupMenu, 283–284
AcadToolbar, 289–290

AddSubMenu method, 283–284
AddTable function, 168
AddText function, 151–152
AddTolerance function, 163
AddToolbarButton method, 289–290
AddVertex method, 99
AddXDataToCircle procedure, 251
AddXrecord method, 263
AdjustForBackground property, 200
ADN (Autodesk Developer Network) partners, 315
Align Controls To Grid option, 318
aligned dimensions, 158–160, 160
aligning controls, 318
Allow Break On Errors option, 11
ampersand operator (&) for strings, 40
and operators

comparisons, 48–49
selection sets, 134

angbase system variable, 118
Angle property, 92
AngleFromXAxis function, 136–137
angles, calculating, 136–137
AngleToReal function, 119
AngleToString function, 119
angular difference between points, 118–119
angular measurement of radians, 104
annotating objects, 151

dimensions, 158–163, 160
exercise, 171–174
fi elds, 170–171
geometric tolerances, 163–164, 163
leaders, 164–168, 165, 168
tables, 168–170, 169
text. See text

apostrophes (æ) for comments, 28
AppActivate events, 297
appautoload system variable, 392, 407
AppDeactivate events, 297
appending Xdata, 248
AppendVertex method, 99
Application objects. See AcadApplication objects
Application property

AcadApplication access by, 57
AcadObject, 84

application window
events, 304
properties, 59–60
pull-down menus, 281

status bars, 294
toolbars, 292
tools, 279

ApplicationPlugins folder, 392
applications

defi ning and registering names, 249
events, 304–305
preferences, 70–71

appload command, 389
ArcLength property, 95
arcs, 94–96, 95
ArcSmoothness property

AcadPViewport, 226
AcadViewport, 140

Area property
AcadArc, 95
AcadCircle, 94
polylines, 98

arguments for procedures, 22–23
ArrayPolar method, 87
ArrayRectangular method, 87
arrays, 35

declaring, 36–37
elements, 37
size, 37–38
stepping through, 53–54

ARX (ObjectARX) fi les, 295
Asc function, 42
Assert method, 383–384
asterisks (*)

multiplication, 38
selection sets, 134

AtEndOfStream property, 358–359
Atn function, 39
Atn2 procedure, 148
AttachExternalReference method, 192–193, 201
attaching

Xdata, 249–252, 269
xrefs, 192–194, 193

AttachToolbarToFlyout method, 290
attributes

block references, 187–189
defi nitions, 178–181

AUGI (Autodesk User Group International), 315
AutoCAD Control (AcCtrl) controls, 314
AutoCAD Focus Control (AcFocusCtrl) controls,

315, 325
AutoCAD Object libraries, 9, 19

AcadApplication objects, 57
AcadDocument objects, 88–89
AcadObject objects, 83–84, 84
Application objects, 342
default values, 86
documents, 60

412 | AUTOCAD OBJECT LIBRARY REFERENCE • CHANGE EVENTS

bindex.indd 5:32:36:PM/03/28/2015 Page 412

exploring, 33, 34
methods, 101
selection sets, 129
system variables, 68

AutoCAD Object Library Reference, 19
AutoCAD/ObjectDBX Common Type Library

description, 339
working with, 346–347
xrefs, 194

Autodesk Developer Network (ADN) partners, 315
Autodesk User Group International (AUGI), 315
AutoLISP fi les

custom programs, 295
dictionary access, 260
loading projects, 14, 389–391
macros, 17, 394–395
unloading projects, 15
Xdata, 252

automatically loading projects, 14, 389–390

B
backgroundplot system variable, 237
backslashes (\) for division, 39
BadCode procedure, 381–382
Base keyword, 26
base menu groups, 280
BeginClose events, 298
BeginCommand events, 297–298
BeginDocClose events, 298
BeginLisp events, 298
BeginOpen events, 298
BeginPlot events, 236, 298
BeginQuit events, 298
BeginSave events, 298
BigFontFile property, 157
bills of materials

block attributes, 202–220, 220
external fi les, 371–374
tables, 168–170, 169
text fi les, 356

Bind method, 196
binding, 196, 340–341
block defi nitions

attribute defi nitions, 178–181
creating, 175–178, 176
exercise, 202–209, 205
modifying and redefi ning, 181–182
types, 182–183

Block property, 223
block references, 183

attributes, 187–189
dynamic properties, 189–192
exercise, 209–220, 220

inserting, 183–184
modifying, 184–186

Blocks property, 88
BlockScaling property, 182
Boolean data type, 30
branching statements, 49–52
Break When Value Changes option, 388
Break When Value Is True option, 388
breakpoints, 385–386, 385
Brightness property, 198
Bring Forward option, 319
Browse For Folder dialog box, 393–394
bundles, 14, 390–392, 405–407
ByBlock value for block defi nitions, 178
ByLayer value for block defi nitions, 178
ByRef keyword for procedures, 23
Byte data type, 30
ByVal keyword for procedures, 23

C
%%c control code, 154–155
cadPreferencesSystem object, 62
Calc2DDistance procedure, 148
Call Stack window, 386
callouts, 164

legacy, 167–168, 168
multileaders, 164–166, 165

Cancel property, 320
canonical media names, 230, 236
CanonicalMediaName property, 236
Caption property

AcadPopupMenuItem, 285
Application window, 59
UserForm, 319–320

CategoryName property, 142
CBool function, 42
CByte function, 42
CCur function, 42
CDate function, 42
CDbl function, 42
CDec function, 42
cecolor system variable, 87
celtscale system variable, 87
celtype system variable, 87
celweight system variable, 87
Center property

AcadArc, 95
AcadCircle, 94
AcadView, 142
AcadViewport, 140

CenterPlot property, 234
cetransparency system variable, 87
Change events, 323

CHANGEATTVALUE PROCEDURE • CONVERTTOSTATICBLOCK METHOD | 413

bindex.indd 5:32:36:PM/03/28/2015 Page 413

ChangeAttValue procedure, 205–206
check plots, 238–246, 246
Check property, 285
CheckBox controls, 314
CheckPlot procedure, 243–246
Chr function, 41, 43
CInt function, 43
circles, 93–94, 93
Circumference property, 94
class IDs for objects, 341–342, 344, 344
class modules, 5
clayer system variable, 86
Clear All Breakpoints command, 385
Clear method, 379
CLI_DrawPlate function

defi ning, 108–110
error handling in, 401–403
labels, 171–172
running, 110–111, 111
user input, 144–147

Click events, 321–322
ClipBoundary property, 198
Clipped property, 226
ClippingEnabled property

underlays, 200
xrefs, 198

CLng function, 43
CLngLng function, 43
CLngPtr function, 43
Close method

drawings, 64
text fi les, 360

closeall procedure, 64
Closed property, 98
closing

drawings, 63–66
text fi les, 360

cmaterial system variable, 87
cmdCancel_Click procedure, 333
cmdCreate_Click procedure, 332–335, 403–404
cmleaderstyle system variable, 166
code editor windows, 8–9, 8
code modules, 5
collections

object access in, 34–35
stepping through, 53–54

colons (:)
command prompt, 120
labels, 377

color-dependent plot styles, 232
Columns property, 359
ComboBox controls, 313–314
command line for macros, 17
command prompt input, 114

angular difference between points, 118–119
exercise, 143–149, 149
feedback, 125
guidelines, 120–121
initializing, 122–125
keywords, 122–125
linear distance between points, 117–118
messages, 126–127
numeric values, 114–115
point values, 115–116, 115–116
string values, 121–122

CommandButton controls, 314
CommandDisplayName property, 292
commands

executing, 71–72
logging, 299–300

comments, 28–29
Comments property, 182
Common UI Controls and Text Guidelines, 312
Compare keyword, 26
comparisons

grouping, 48–49
selection set operators, 134
strings, 26, 45–46
values, 44–48

concatenating strings, 40–41
conditionalizing and branching statements, 49–52
Confi gName property, 229–230, 236
Const statement, 26
Constant property, 180
constants, 26
ConstantWidth property, 98
Contrast property

raster images, 198
underlays, 200

control codes in AcadText, 154–155
control frames, 163–164, 163
controls

32-bit vs. 64-bit, 29
adding, 327–330, 328
appearance, 319–321, 319
choosing, 313–316, 315
description, 309
events, 321–323, 322, 331–336
exercise, 326–337, 327–328, 330, 337
grouping, 316–317
managing, 317–319
placing, 312–313, 312
testing, 336–337, 337

converting
block types, 191
data types, 42–44

ConvertToAnonymousBlock method, 191
ConvertToStaticBlock method, 191

414 | COORDINATE PROPERTY • DEFAULT VALUES

bindex.indd 5:32:36:PM/03/28/2015 Page 414

Coordinate property, 98
coordinates

calculating, 134–135
polyline vertices, 98

Coordinates property, 98
Copy method

AcadEntity, 87
objects, 102

CopyFile method, 352
CopyFolder method, 351
CopyFrom method

AcadPlotConfi guration, 229
dimension styles, 161

copying
controls, 318
fi les, 351
folders, 352
objects, 87, 102–103
plot settings, 229
system variable values, 161

Copyright symbol, 155
Cos function, 39
Count property

AcadBlock, 182
AcadDimStyles, 160
AcadSelectionSet, 132
AcadTextStyles, 156

counters in repeating expressions, 52–53
cplotstyle system variable, 87
CreateCircle procedure, 108, 401
CreateDesktopShortcut procedure, 353–354
CreateEntry method, 201
CreateFolder method, 351
CreateLayer procedure, 23, 108

comments in, 29
error handling in, 377, 380, 399–400

CreateLayer10101 procedure, 378–379
createmsworddoc procedure, 365
CreateObject function, 341–343
CreateRectangle procedure, 108, 400
CreateSetLayer procedure, 304
CreateText procedure, 173, 400–401
CreateTextFile function, 356–358
CreateWordApp procedure, 364
CSng function, 43
CStr function, 43
ctablestyle system variable, 170
CTB fi les, 232
CUI fi les, 280
cuiimport command, 280
CUIx fi les, 279–281
current drawing, 61
current plot styles, 232–234
current session information, 58–59

current view, 137
model space, 139–142
named views, 142–143
setting, 225
visual styles, 143
zooming and panning, 137–139

curved objects, 92–93
arcs, 94–96, 95
circles, 93–94, 93
polylines, 96–99, 96, 98

custom data, 247
dictionaries, 259–265
exercise, 268–277, 272
Windows Registry, 265–268
Xdata. See Xdata

custom dictionaries, 259–260
accessing and stepping through, 260–261
creating, 262–263
managing, 264–265
storing information in, 263–264, 273–275

custom programs
restricting, 394
working with, 294–295

customization fi les, loading, 280–281
customization group names, 280
Customize dialog box, 280
CustomScale property, 226–227
CVar function, 43

D
%%d control code, 154–155
data types

converting, 42–44
determining, 51, 85
list of, 30–31

Date data type, 30
DblClick events, 323
ddim command, 161
Deactivate events, 297
Debug objects, 383
debugging, 381

Immediate window, 383–384, 384
messages for, 381–382
stepping through procedures, 385–386,

385
VBA Editor tools, 383
Watches window, 386–388, 387

declaring
arrays, 36–37
variables, 24–25

Default property for controls, 320
default values

arguments, 23

DEFINING APPLICATION NAMES • DRAW HEX BOLT VIEW DIALOG BOX | 415

bindex.indd 5:32:36:PM/03/28/2015 Page 415

command prompt, 120
inheriting, 86–87

defi ning application names, 249
degree symbol, 154
degrees, 104, 119
Delete method

AcadBlock, 178
AcadBlockReference, 185
AcadDictionary, 264
AcadDimStyle, 162
AcadObject, 86
AcadPopupMenu, 284
AcadTextStyle, 157
AcadToolbar, 289
objects, 102

Delete Watch option, 388
DeleteConfi guration function, 139–140
DeleteFile method, 352
DeleteFolder method, 351
DeleteSetting function, 267–268
deleting

block defi nitions, 178
block references, 185
controls, 318
custom dictionary entries, 264–265
dimension styles, 162
fi les, 351
folders, 352
menu items, 284
multileaders, 166
objects, 86, 102
selection set objects, 130–131
table styles, 170
text styles, 157
toolbar items, 289
viewport confi gurations, 139–140
watches, 388
Windows Registry keys, 267–268

Delta property, 92
dependencies, fi le, 200–201
description attributes in XML, 361
Description property, 378
design time, user form appearance in, 319
Designing a User Interface resource, 312
desktop shortcuts, 353–354
Detach method, 196
Diameter property, 94
diameter symbol, 154
diametric dimensions, 158–160, 160
dictionaries

custom, 259–265
extension, 248

Dictionaries property, 88, 260
Dim keyword, 24–25, 27
dimblk system variable, 161

Dimension Style Manager, 161
DimensionLineColor property, 160
dimensions, 158

creating, 158–160, 160
formatting, 160–162

dimscale system variable, 161
-dimstyle command, 161
DimStyles collection, 34
DimStyles property, 88
Direction property

AcadPViewport, 226
AcadView, 142
AcadViewport, 140

Display method, 224–225
display order of controls, 318–319
display settings for viewports, 225–226
DisplayAppInfo procedure, 59
DisplayDWGName procedure, 67
displaying

user forms, 324–325, 330–331, 330
user interface elements, 293–294

DisplayLayoutTabs property, 294
DisplayLocked property, 226
DisplayLog procedure, 299–300
DisplayPlotPreview method, 237
DisplayScrollBars property, 294
DisplayToolbars procedure, 293
distance between points, 117–118, 135–136,

135
Distance function, 135–136
DistanceToReal function, 118
DivByZeroAssert procedure, 384
DivByZeroDebug procedure, 383
division, 38
Do statements, 54–56
Dock method, 292
docked toolbars, 292
DockStatus property, 289
Document property, 84
documentation, 19
documents, 60

creating and opening, 61–63
current, 61
events, 303–304
information about, 66–67
preferences, 70–71
saving and closing, 63–66
system variables, 68–69
windows, 67–68

dotted pairs, 249
Double data type, 30
drafting aids for viewports, 227–228
Drafting Settings dialog box, 68
drag and drop, 389
Draw Hex Bolt View dialog box, 18–19, 18

416 | DRAWINGBASED OBJECTS • EXIT DO STATEMENTS

bindex.indd 5:32:36:PM/03/28/2015 Page 416

drawing-based objects
AcadEntity, 86–87
AcadObject, 83–86, 84
accessing, 88–89
copying and moving, 102–103
deleting, 102
exercise, 105

CLI_DrawPlate function, 108–111, 111
DrawPlate project, 105–106
Utilities class, 106–108, 111

getting, 99–101, 100
graphical. See graphical objects
model and paper space, 89–90
modifying, 101
properties, 104–105
rotating, 103–104, 103
type determination, 85

drawings
closing, 63–66
creating, 61–63, 74–76, 76
current, 61
information about, 66–67
opening, 61–63
saving, 63–66, 74–76, 76
system variables, 68–69
windows, 67–68

DrawingSetup project
check plots, 238–246, 246
creating, 73–74, 74

DrawPlate project
creating, 105–106
deployment, 405–407
error handling, 396–405, 397–398
labels, 171–174
user forms, 326–337, 327–328, 330, 337
user input, 143–149, 149

DrawPlate_VBA.bundle, 405–407
DriveExists method, 349
drives, workstation, 349
dsettings command, 68
duplicating controls, 318
DVB fi les, 1, 11, 302
dwgprops command, 78
DWGSumInfo procedure, 67
DXF group codes, 249–250
dynamic arrays, 36
dynamic blocks, 189
dynamic properties, 189–192

E
early binding, 340–341
Edit Watch option, 388
EffectiveName property, 191

elements in arrays, 37
Elevation property, 98
Else statements

If...Then statements, 50
Select Case statements, 51–52

ElseIf statements, 50
embedding projects, 15–16
empty value, checking for, 47
Enable Auto Embedding option, 11
Enable Macro option, 14
Enable Macro Virus Protection option, 11
Enable property for menu items, 285
Enabled property for controls, 320
End Function keywords, 22
End Sub keywords, 22
End With statements, 33
EndAngle property, 95
EndCommand events, 298
EndLisp events, 298
EndOpen events, 298
EndPlot events, 236, 298
EndPoint property

AcadArc, 95
AcadLine, 92

EndSave events, 298
EndSubMenuLevel property, 285
EndUndoMark method, 395
Enter events, 323
EntityTransparency property, 86
environment variables, 354–355
equal symbols (=)

arguments, 23
equality tests, 44
objects, 32, 45
selection sets, 134
value comparisons, 45–46
variables, 25

equality, testing for, 44–45
Erase method, 132
Err objects, 123, 378–379
errors, 375

debugging. See debugging
exercise, 396–405, 397–398
information about, 378–381, 379
recovery and execution after, 375–378, 376

event-driven programming, 295
events

controls, 321–323, 322, 331–336
exercise, 303–307, 306–307
working with, 295–300

exclamation points (!) for collections, 35
executing commands, 71–72
execution points, 386
Exit Do statements, 56

EXIT EVENTS • FURNBOM PROCEDURE | 417

bindex.indd 5:32:36:PM/03/28/2015 Page 417

Exit events, 323
Exit For statements, 53–54
Exp function, 39
ExpEnvStr procedure, 354
Explicit keyword, 26
Explodable property, 182
Explode method

block references, 185
polylines, 99

ExplodeFirstBlkRef procedure, 185–186
Export File dialog box, 6
Export method, 237–238
exporting fi le formats, 237–238
ExtAttsFurnBOM procedure, 212–214
extended records, 260
extension dictionaries, 248, 260
external custom programs, 294–295
external fi les

accessing, 346–347, 347
exercise, 365–374, 374
Microsoft Offi ce applications, 363–365
Microsoft Windows. See Microsoft Windows
text, 356–360
XML, 360–363

external references (xrefs), 175
attaching, 192–194, 193
information about, 194–195
layers, 195
managing, 192, 195–197
modifying, 194–195
raster images, 197–199
underlays, 199–201

extractattributestoexcel procedure, 365
extracting projects, 15–16

F
Fade property

raster images, 198
underlays, 200

False value, 44
feedback with input, 125
Field dialog box, 171
FieldCode function, 153
fi elddisplay system variable, 171
fi eldeval system variable, 171
fi elds, 170–171
File Loading - Security Concern message box, 14,

393, 393
File objects, 351
File property, 200
FileDependencies property, 88
FileExists method, 352
FileName property, 202

fi les
dependencies, 200–201
exporting and importing formats, 237–238
external. See external fi les
searching for, 369–370

Files collection, 351
FileSystemObject objects, 202

description, 342–343
drive-related methods, 349
fi le-related methods, 352
folder-related methods, 351

fi ltering selection set objects, 132–134
fi ndfi le function, 15
FindFile procedure, 369–370
Fix function, 43
fi xed-length arrays, 36
Float method, 292
fl oating toolbars, 292
fl oating viewports, 221

adding, 224–225, 242
modifying, 225–227

FloatingRows property, 289
Flyout property, 292
focus in user forms, 325
Folder objects, 350
FolderExists method, 351
folders in Microsoft Windows, 350–351
Font property, 320
fontFile property, 157
fonts

AcadTextStyle, 157
controls, 320

For statements, 52–53
For Each statements, 53–54
ForAppending mode, 356
ForceNumeric procedure, 332
Format function, 43
formatting

dimensions, 160–162
tables, 169–170
text, 153–155, 154

forms. See user forms and UserForm objects
ForReading mode, 356
ForWriting mode, 356
FoundPath property, 202
frames for controls, 316–317
FullName property

AcadApplication, 58–59
drawings, 66

functions
math, 38–39
overview, 22–23
strings, 40–41

FurnBOM procedure, 217–219

418 | FURNBOMEXPORT PROCEDURE • GROUPS PROPERTY

bindex.indd 5:32:36:PM/03/28/2015 Page 418

FurnBOMExport procedure, 372–374
FurnLayers procedure, 210–212
FurnTools project

block references, 209–220, 220
reading and writing data, 365–374

G
g_oAcadApp_EndOpen procedure, 305
general properties, 104
geometric calculations, 134

angles, 136–137
coordinate values, 134–135
distance between two points, 135–136, 135

geometric tolerances, creating and modifying,
163–164, 163

GetAbsolutePathName method, 351
GetAllSettings function, 267
GetAngle function, 118
GetAttributes function, 187, 189
GetBaseName method, 351
GetBitmaps method, 290
GetBoundingBox method, 87
GetBulge method, 99
GetCanonicalMediaNames function, 230, 236
GetConstantAttributes function, 187
GetCorner function, 115–116
GetCreateObject procedure, 345–346
GetDistance function, 117–118
GetDrive method, 349
GetDriveName method, 349
GetDynamicBlockProperties function, 189
GetEntity method, 127–128
GetEnvStr procedure, 354
GetExtension method, 352
GetExtensionDictionary method, 86, 262–263
GetFile method, 352
GetFileName method, 352
GetFileVersion method, 352
GetFont method, 157
GetGridSpacing method

AcadViewport, 141
viewports, 228

GetInput function, 123
GetInteger function, 114–115
GetKeyword function, 124
GetLayer procedure, 377–378
GetLayerACP_Doors procedure, 376
GetLocaleMediaName function, 230
GetObject function

multileaders, 165
tables, 169

GetOrientation function, 118
GetPaperMargins method, 230

GetPaperSize method, 230
GetParentFolderName method, 351
GetPlotDeviceNames function, 230, 236
GetPlotStyleTableNames function, 232
GetPoint function, 115–116
GetReal function, 114–115
GetSetting function, 266–267
GetSnapSpacing method

AcadViewport, 141
viewports, 228

GetSpecialFolder function, 350
GetStandardTableStyle procedure, 261
GetString function, 121–122
GetSysvars procedure, 106–107
GetTempName function, 358
getting drawing-based objects, 99–101, 100
GetVariable method, 68–69

multileader styles, 166
table styles, 170
user interface, 280
visual styles, 143
xrefs, 194

GetWidth method, 99
GetXData method, 86, 249, 252–255
GetXRecordData method, 264
Global keyword, 25–26
GoTo statements, 376–377
graphical objects, 83

arcs, 94–96, 95
circles, 93–94, 93
creating, 91
curved, 92–93
polylines, 96–99, 96, 98
straight line segments, 91–92,

92
greater than operator (>)

equality tests, 44
selection sets, 134
text control codes, 154
value comparisons, 45–46

GridOn property
AcadPViewport, 227–228
AcadViewport, 141

grids
user forms, 313
viewports, 141, 227–228

group codes for DXF, 249–250
grouping

comparisons, 48–49
controls, 316–317

grouping operators for selection sets,
134

GroupName property, 320
Groups property, 88

HANDLE PROPERTY • ISEMPTY FUNCTION | 419

bindex.indd 5:32:36:PM/03/28/2015 Page 419

H
Handle property, 84
hard-coded paths for text fi les, 358
HasAttributes property, 187
HasExtensionDictionary property, 84, 262
HasSheetView property, 228
HasVpAssociation property, 142
Height property

AcadDocument, 68
AcadTextStyle, 157
AcadToolbar, 289
AcadView, 142
AcadViewport, 141
Application window, 59
controls, 313, 320
raster images, 198
text, 151
underlays, 200

help
accessing, 19
error messages, 379

HelpContext property, 379
HelpFile property, 379
HelpString property

AcadPopupMenuItem,
285

AcadToolbar, 289–290
AcadToolbarItem, 292

Hex function, 43
Hide method, 324–325
hiding user forms, 324–325
Highlight method

AcadEntity, 87
AcadSelectionSet, 132

hive keys, 265–268
HKEY_CLASSES_ROOT key, 265–266
HKEY_CURRENT_USER key, 265–266
HKEY_LOCAL_MACHINE key, 265–266
HKEY_LOCAL_MACHINE\SOFTWARE\Classes

key, 344
Hungarian notation, 24–25
Hurley, Shaan, 69
HWND property, 58
HWND32 property, 58
Hyperlinks property, 86

I
IDE (integrated development environment), 1
If...Then statements, 49–51
Image controls, 314
ImageFile property, 198
ImageHeight property, 198
ImageVisibility property, 198

ImageWidth property, 198
Immediate window, 10, 383–384, 384
Import File dialog box, 6
Import method, 238
importing fi le formats, 237–238
in-memory object instances, 344–346
Index property

AcadPopupMenuItem, 285
AcadToolbarItem, 292

indexes
arrays, 35, 37
collections, 34–35
dimension styles, 160
menu items, 283–285
text styles, 156
toolbar items, 290, 292

individual objects, selecting, 127–129
InfoMenuGroups procedure, 280–281
inheriting default property values, 86–87
Initialize events, 321, 323–325
InitializeUserInput method, 120, 122–124, 128
initializing user input, 122–125
input. See command prompt input
Input Past End of File errors, 358
insert command, 76–78
InsertACPMenu procedure, 286–287
InsertBlock function, 183–184
inserting

block references, 183–184
tables, 168–169, 169
title blocks, 76–78, 78, 241

InsertInMenuBar method, 286
InsertionPoint property, 185
InsertMenuInMenuBar method, 286
insertTitleBlock procedure, 77
instances of objects, 340–341

creating, 341–343, 341
in-memory, 344–346

InStr function, 45–46
InsUnits property, 185
InsUnitsFactor property, 185
Int function, 43
Integer data type, 30
integrated development environment (IDE), 1
interface

user. See user interface
VBA Editor, 7–10, 7–9

IntersectWith method, 87
Invisible property, 180
Is operator, 45
IsArray function, 48, 252, 254
IsDate function, 48
IsDynamicBlock property, 183, 189
IsEmpty function, 47

420 | ISLAYOUT PROPERTY • LINETYPESCALE PROPERTY

bindex.indd 5:32:36:PM/03/28/2015 Page 420

IsLayout property, 183
IsMissing function, 48
IsNothing function, 47
IsNull function, 47
IsNumeric function, 48
IsObject function, 48
IsXref property, 183, 195–196
Item method

AcadBlocks, 176–177, 195
AcadDictionary, 261
AcadDimStyles, 160–161
AcadFileDependencies, 201
AcadLayouts, 222
AcadModelSpace, 100
AcadPlotConfi gurations, 229
AcadPopupMenu, 282–283
AcadSelectionSets, 129, 132
AcadTextStyles, 156
AcadToolbar, 288
collections, 34–35

ItemName property, 200

J
JavaScript (JS) fi les, 295

K
key values for collections, 35
KeyPress events, 321–323
keys in Windows Registry, 265–268
keywords in user input, 122–125

L
Label controls, 313
Label property, 285
LabelBlockId property, 228
labels

DrawPlate project, 171–174
GoTo statements, 377
RoomLabel project, 202–209, 205, 268–277, 272

LargeButtons property, 289
LastDLLError property, 379
late binding, 340–341
Layer property, 86
LayerPropertyOverrides property, 226
layers

adding, 370–371
based on text fi les, 366–369
xrefs, 195

Layers collection, 34
Layers property, 88

LayerState property, 142
layout tabs, displaying, 294
LayoutId property, 142
layouts, 221

creating, 222, 239–240
exercise, 238–246, 246
named page setups, 229
output area, 234
output devices and paper size, 229–232
output settings, 228–229, 235
plot styles, 232–234
plotting and previewing, 235–237
tabs, 223
working with, 222–223

Layouts property, 88, 221
LayoutSwitched events, 222–223, 298
LBound procedure, 37–38
LCase function, 40
leaders, 164

legacy, 167–168, 168
multileaders, 164–166, 165

Left function, 40
Left property, 313, 320
legacy leaders, 167–168, 168
legacy polylines, 96–99
Len function, 40
Length property

AcadLine, 92
polylines, 98

LensLength property, 226
less than operator (<)

equality tests, 44
selection sets, 134
text control codes, 154

libraries
AutoCAD Object. See AutoCAD Object libraries
AutoCAD/ObjectDBX Common Type Library,

194, 338, 346–347
Microsoft, 339, 348, 364
Object Browser, 9–10, 9
programming, 339–340

lightweight polylines, 96–99
Like operator, 44–45
Line property, 359
line segments

parallel, 99
straight, 91–92, 92

linear programming, 295
linefeed characters, 41, 358–360
Linetype property, 86
LinetypeGeneration property, 98
Linetypes property, 88
LinetypeScale property, 86

LINEWEIGHT PROPERTY • MICROSOFT WINDOWS | 421

bindex.indd 5:32:36:PM/03/28/2015 Page 421

Lineweight property, 86
ListAcadMenus procedure, 283
ListAcadToolbars procedure, 288
ListARX method, 295
ListBlockAtts procedure, 187–188
ListBox controls, 314
ListCustomProperties procedure, 189–191
ListDependencies procedure, 201–202
ListDevicesAndPaperSizes procedure, 231–232
ListDrives procedure, 349
ListFiles procedure, 351–352
ListFolders procedure, 350
ListPlotStyles procedure, 233–234
ListStyle property, 320
ListTableStyles procedure, 260–261
load function in AutoLISP fi les, 295
Load method in AcadMenuGroup, 281
Load/Unload Applications dialog box, 389–391
LoadACPMenu procedure, 301–303
LoadARX method, 295
LoadDVB method, 294–295
loading

customization fi les, 280–281
projects, 13–14, 388–392
user forms, 325–326

LoadLayers procedure, 367–371
LocaleId property, 58
Locals window, 386, 387
location of projects, 392–394, 393
Lock Project For Viewing option, 396
Locked property, 320
LockPosition property, 180
Log function, 39
LogActivity procedure, 299
logging commands, 299–300
Long data type, 30
long statements, continuing, 27–28
LongLong data type, 29
looping expressions, 52–56
lower limits for arrays, 36
LowerLeftCorner property, 141
LTrim function, 40
lunits system variable, 118
LWPolylines, 96–99

M
Macro property

AcadPopupMenuItem, 285
AcadToolbarItem, 292

macros
AutoLISP and command macros, 394–395
executing, 16–19, 17–19

Macros dialog box, 11, 16–18, 17–18
main dictionaries, 260
Make Same Size option, 318
Managed .NET DLL, 295
manual processes

loading projects, 388–389
unloading projects, 15

margins for paper, 230
masking objects, 199
Material property, 86
Materials property, 89
math functions and operators, 38–39
memory

objects, 33, 343
Xdata, 252

menu bars
displaying, 294
user interface, 281–287, 282, 285

menu group names, 280
menu groups

managing, 280–282
toolbars, 288, 292

MenuBar property, 286
menubar system variable, 282
MenuGroups property

pull-down menus, 279–280, 282
toolbars, 288, 292

Menus property, 282
menus, pull-down, 281–287, 282, 285
message boxes, 126–127
messages

command prompt, 120, 126
for debugging, 381–382
message boxes, 126–127

methods for objects, 32
Microsoft Access Object library, 364
Microsoft ActiveX Data Objects 2.8 Library, 364
Microsoft DAO 3.6 Object Library, 364
Microsoft Developer Network: Visual Basic 6.0

Language Reference, 22
Microsoft Excel Object Library, 339
Microsoft Offi ce applications, 363–365
Microsoft Scripting Runtime programming library,

348
Microsoft Shell Controls and Automation

programming library, 348
Microsoft Windows, 347–348

fi le information, 351–352
fi lesystem access, 348
folders, 350–351
shell, 353–355
Win32 API, 355
workstation drives, 349

422 | MICROSOFT WORD OBJECT LIBRARY • NOTHING VALUE

bindex.indd 5:32:36:PM/03/28/2015 Page 422

Microsoft Word Object Library, 339
Mid function, 40
minus sign operator (-) for subtraction, 38
Mirror method, 87
Mirror3D method, 87
mlines (multilines), 99
MNS fi les, 280
Mod function, 39
modal state for user forms, 324
model space

viewports, 139–142, 223–228, 242
working with, 89–90

modeless state for user forms, 324
ModelSpace property, 89–90
ModelType property, 229
ModelView property, 226
Modifi ed events, 299
Modify toolbar, 287, 287
modifying

block defi nitions, 181–182
block references, 184–186
drawing-based objects, 101
external references, 194–195
geometric tolerances, 163–164, 164
plot confi gurations, 240–241
raster images, 197–199
tables, 168–169, 169
text, 151–153
viewports, 225–227
Windows Registry keys, 267–268
Xdata, 252–257, 255

modules, 5
Monochrome property, 201
Move method

AcadEntity, 87
objects, 102

MoveFile method, 352, 358
MoveFolder method, 351
moving

controls, 317
fi les, 352, 358
folders, 351
objects, 87, 102–103
Xdata, 258

MsgBox function
command prompts, 126–127
debugging messages, 381
variable values, 25

MSpace property, 225
mtext command, 155
MText (multiline text), 151–153
MTextAttribute property, 180
MTextAttributeContent property, 180
MTextBoundaryWidth property, 180

MTextDrawingDirection property, 181
multidimensional arrays, 36
multileaders, 164–166, 165
multiline text (MText), 151–153
multilines (mlines), 99
MultiPage controls, 317
multiple conditions, testing, 51–52
multiple projects, components in, 6
multiplication, 38
mydocumentsprefi x system variable, 358

N
Name property

AcadApplication, 59
AcadBlock, 182
AcadDictionary, 264
AcadExternalReference, 195
AcadPopupMenu, 283
AcadToolbar, 289
AcadView, 143
AcadViewport, 141
block references, 191
drawings, 66
raster images, 199

named page setups, 229
named plot styles, 232
named views, 142–143
NameOnMnemonic property, 283
names

applications, 58–59, 249
block references, 191
custom dictionaries, 264–265
customization group, 280
macros, 17
procedures, 22
projects, 6, 12–13
text fi les, 358
variables, 24–25

netload command, 295
New keyword, 32–33, 341
New method in AcadDocument, 62
NewDrawing events, 298
newDWGFromScratch procedure, 74–76
nongraphical objects, 83
Normal property

AcadArc, 95
AcadCircle, 94
AcadLine, 92
polylines, 98

not operators
equality tests, 44
selection sets, 134

Nothing value

NULL VALUE • PATH PROPERTY | 423

bindex.indd 5:32:36:PM/03/28/2015 Page 423

checking for, 47–48
objects, 33

null value, checking for, 47
Number property, 378
numeric values, user input for, 114–115

O
Object Browser

libraries, 9–10, 9, 341, 341
working with, 33

Object Library Reference, 19
Object Linking and Embedding (OLE), 1, 192
Object Model, 33–34, 34
ObjectAdded events, 298
ObjectARX application programming interface, 254,

260
ObjectARX (ARX) fi les, 295
ObjectErased events, 298
ObjectID property, 85
ObjectID32 property, 85
ObjectModifi ed events, 298–299
ObjectName property

AcadObject, 85
underlays, 200

objects
accessing, 34–35
annotating. See annotating objects
code editor window, 9
drawing-based. See drawing-based objects
instances, 340–341

creating, 341–343, 341
in-memory, 344–346

masking, 199
memory, 343
Object Model, 33–34, 34
scaling, 226–227
selecting, 127–132
working with, 32–33

Oct function, 43
OLE (Object Linking and Embedding), 1, 192
On Error statements

Get functions, 114
user input, 123
working with, 375–377

OnMenuBar property, 283
Open VBA Project dialog box, 4, 13, 389
Open Visual Basic Editor option, 4, 13
OpenAsTextStream function, 357
opening

drawings, 61–63
text fi les, 356–358

OpenTextFile function, 356–357
operators

math, 38–39
string, 40

Option Base 1 statement, 35
option lists in command prompt, 120
Option statement for variables, 24, 26
Optional keyword for procedures, 23
OptionButton controls, 314
Options dialog box

controls, 313
search paths, 393–394
VBA environment, 11, 11

or operators
comparisons, 48–49
selection sets, 134

Origin property
AcadBlock, 181
raster images, 199

origins
block defi nitions, 181
plot, 234
raster images, 199

OrthoOn property, 141
osmode system variable, 69
output, 221

fi le formats, 237–238
layouts. See layouts
viewports, 223–228

output area, 234
output devices, 229–232
overscoring symbol, 154
OwnerID property, 85
OwnerID32 property, 85

P
%%p control code, 154–155
PackageContents.xml fi le, 391
Page Setup dialog box, 232
page setups, 228–229
panning, 137–138
paper size, 229–232
paper space

layouts. See layouts
working with, 89–90

PaperSpace property, 89–90, 223
PaperUnits property, 232
parallel line segments, 99
parentheses () for arrays, 36
partial menu groups, 280
passwords for projects, 396
Path property

AcadApplication, 59
AcadDocument, 66
AcadExternalReference, 194, 196

424 | PATHS FOR TEXT FILES • RADIUS PROPERTY

bindex.indd 5:32:36:PM/03/28/2015 Page 424

paths for text fi les, 358
percent symbols (%) for text control codes, 154
periods (.)

collections, 34
objects, 32

PI constant, 148
Pickfi rstSelectionSet property, 129
Picture property, 314
pixels, 232
plot confi gurations

adding and modifying, 240–241
description, 228

Plot dialog box, 232
plot settings, 228
Plot Style Manager, 232
plot styles, 232–234
PlotConfi gurations property, 89, 229
PlotHidden constant, 235
PlotOrigin property, 234
PlotRotation property, 231
PlotStyleName property, 86
plotting layouts, 235–237
PlotToDevice method, 236–237
PlotToFile method, 236–237
PlotType property, 234
PlotViewportBorders constant, 235
PlotViewportsFirst constant, 235
PlotWithLineweights constant, 235
PlotWithPlotStyles property, 234
plug-in bundles, 14, 390–392, 405–407
plus or minus symbol (±), 154
plus sign operator (+)

math, 38
strings, 40–41

points
angular difference between, 118–119
linear distance between, 117–118, 135–136, 135
user input, 115–116, 115–116

PolarPoint function, 134–135
polylines, 96–99, 96, 98
Position property, 201
PostCommand method

ARX fi les, 295
description, 72
dimensions, 160
events, 297
underlays, 199
wipeouts, 199

preferences, setting, 80–81
Preferences property, 70–71
Preserve keyword, 36, 255
Preset property, 181
previewing layouts, 235–237
Print method, 383–384, 384

printmsworddoc procedure, 365
Private keyword, 23, 25–27
procedures

creating, 22–24
scope, 26–27
stepping through, 385–386, 385, 397–399,

397–398
programming libraries, 339–340
Programming Resources for Visual Basic for

Applications page, 22
programs, managing, 11–12, 12
Project Explorer, 7, 7, 74, 74
projects, 388

components, 5–6
creating, 12–13
debugging. See debugging
deploying, 405–407
embedding and extracting, 15–16
loading, 13–14, 388–392
locating and trusting, 392–394, 393
macros, 394–395
overview, 1–2
protecting, 396
saving, 13
setting up, 72–73

creating and saving drawings, 74–76, 76
DrawingSetup project, 73–74, 74
properties, 78–80, 80
system variables and preferences, 80–81
title blocks, 76–78, 78

unloading, 15
Prompt method, 126, 381
PromptString property, 181
properties overview, 32, 104–105
Properties window, 7, 8
protecting projects, 396
pstylemode system variable, 232
Public keyword, 23, 25–27
pull-down menus, 281–287, 282, 285
PurgeAll method

dimension styles, 162
objects, 102
text styles, 157

Q
QueryClose events, 321, 323
querying Xdata, 252–257, 255
QuietErrorMode property, 237

R
radians, 104, 119
Radius property

RAISE METHOD • SELECTION SETS | 425

bindex.indd 5:32:36:PM/03/28/2015 Page 425

AcadArc, 96
AcadCircle, 94

Raise method, 379
raster images, 197–199
Read function, 358–359
read-only fi les, 358
ReadAll function, 359
ReadDrawingEx procedure, 347
reading from text fi les, 358–359
ReadLine function, 358–359
ReadOnly property, 64
ReadXML procedure, 361–362
RealToString function, 118
rectang command, 72
rectangles, drawing, 72
redefi ning block defi nitions, 181–182
ReDim statement, 36, 255
references

block. See block references
external. See external references (xrefs)

References dialog box
libraries, 340
outside fi les, 347

RefreshPlotDeviceInfo method, 230, 232
RegDelete function, 267
Regen method, 101, 182
RegisteredApplications property, 89
registering application names, 249
Registry, 265–272
RegRead function, 267
RegWrite function, 267
Reload method, 195–196
Rem keyword, 28
Remove method

AcadDictionary, 264
multileaders, 166
table styles, 170

RemoveDimOverride procedure, 258
RemoveEntry method, 201
RemoveFromMenuBar method, 286
RemoveItems method, 131
RemoveMenuFromMenuBar method, 286
removing. See deleting
Rename method, 264–265
repeating and looping expressions, 52–56
Replace method, 265
ReplaceXDataForDimOverride procedure, 255–257
replacing Xdata, 248–249
ResetBlock method, 192
resizing controls, 318
Resume statements, 375–378
RetreiveXDataForLastObject procedure, 253–254
return values for procedures, 23
Right function, 40

Rnd function, 39
RoomLabel procedure, 206–208, 269–276
RoomLabel_CreateBlkDef procedure, 204
RoomLabel_InsertBlkRef procedure, 206, 269
RoomLabel project

block defi nitions, 202–209, 205
custom values, 268–277, 272

Rotate method, 87, 103–104
Rotate3D method, 87, 103
rotating objects, 87, 103–104, 103
Rotation property

block references, 185
raster images, 199
underlays, 200

RowValuesFurnBOM procedure, 216–217
RTrim function, 40
rubber-band line effect, 115, 115–116
RunMacro method, 294
runtime, user form appearance in, 319

S
Save As dialog box, 13, 73, 106
Save method, 63
SaveSetting function, 266
saving

drawings, 63–66, 74–76, 76
projects, 13

ScaleEntity method, 87
ScaleFactor property

raster images, 199
underlays, 200

ScaleLineweights constant, 235
scaling objects, 226–227
scope of procedures and variables, 26–27
scroll bars, displaying, 294
ScrollBar controls, 314
SDI (single document interface) mode, 62
searching for fi les, 369–370
secureload system variable, 394
Select Case statements, 51–52
Select method, 130–132
Select Object controls, 313
SelectAtPoint method, 130–132
SelectByPolygon method, 130–132
SelectedItem property, 317
selecting objects, 127

individual, 127–129
selection sets, 129–134

selection sets, 129
accessing objects in, 132
adding and removing objects in, 130–131
fi ltering objects in, 132–134
managing, 129–130

426 | SELECTIONSETS PROPERTY • STRCONV FUNCTION

bindex.indd 5:32:36:PM/03/28/2015 Page 426

SelectionSets property, 129
SelectObjectsByXdata procedure, 259
SelectOnScreen method, 131–132
SelectRoomLabels procedure, 276–277
Send Backward option, 319
SendCommand method

ARX fi les, 295
description, 71–72
dimensions, 160
events, 297
underlays, 199
wipeouts, 199

Set statement, 23, 32, 296
SetBitmaps method, 290
SetBulge method, 99
SetCellValue method, 171
SetCustomScale constant, 235
setDefDraftingAids procedure, 80–81
SetEnvStr procedure, 355
SetFont method, 157
SetGridSpacing method

AcadPViewport, 228
AcadViewport, 141

SetLayoutsToPlot method, 236–237
SetSnapSpacing method

AcadPViewport, 228
AcadViewport, 141

SetSysvars procedure, 106–107
SetVariable method, 68–69

dimension styles, 161
multileader styles, 166
table styles, 170
user interface, 280
visual styles, 143
xrefs, 194–195

SetView function, 141
SetWidth method, 99
SetXData method, 86, 250
Sgn function, 48
ShadePlot property, 226
Shape (SHX) fi les, 157
sheet views, information about, 228
SheetView property, 228
shell for Microsoft Windows, 353–355
ShortcutMenu property, 283
shortcuts, desktop, 353–354
Show method, 324–325
ShowPlotStyles property, 234
ShowRotation property, 199
SHX (Shape) fi les, 157
Sin function, 39
single-dimensional arrays, 36
single document interface (SDI) mode, 62
single-line text, 151–153

64-bit VBA, 29–30
size

arrays, 37–38
controls, 318
paper, 229–232

slashes (/)
command prompt, 120
division, 38

SnapBasePoint property
AcadPViewport, 227
AcadViewport, 141

SnapOn property
AcadPViewport, 227–228
AcadViewport, 141

SnapRotationAngle property
AcadPViewport, 227
AcadViewport, 141

SortArray procedure, 214–215
Source property, 379
Space function, 40
spaces in XML, 361
spacing controls, 318
special folders in Microsoft Windows, 350–351
spell checking, 155
SpinButton controls, 314
Split function, 40
Sqr function, 39
square brackets ([]) for command prompt, 120
StandardScale property, 226–227, 235
StartAngle property, 96
StartPoint property

AcadArc, 96
AcadLine, 92

StartUndoMark method, 395
Startup Suite, 14, 389–390
statements, continuing, 27–28
static fi lenames, 358
status bars, displaying, 294
statusbar system variable, 294
STB fi les, 232
Step Into command, 386
Step keyword, 52–53
Step Out command, 386
Step Over command, 386
stepping through

arrays and collections, 53–54
custom dictionaries, 260–261
procedures, 385–386, 385, 397–399, 397–398

storing information
in custom dictionaries, 263–264, 273–275
in Windows Registry, 265–268

straight line segments, 91–92, 92
StrComp function, 45–46
StrConv function, 41

STRING DATA TYPE • TOOLBOX WINDOW | 427

bindex.indd 5:32:36:PM/03/28/2015 Page 427

String data type, 30
String function, 41
strings. See also text

in command prompt, 121–122
comparing, 45–46
manipulating, 39–42

StrReverse function, 41
Style property, 320
StyleName property

AcadTolerance, 164
dimension styles, 162
legacy leaders, 167
multileaders, 166
tables, 170
text, 157

styles
controls, 320
dimensions, 160–163
multileaders, 165–166
plot, 232–234
tables, 169–170
text, 156–158
visual, 143

StyleSheet property, 232
stylesmanager command, 232
SubMenu property, 285
subroutines, 22–23
subtraction, 38
SummaryInfo property, 66
Support File Search Path setting, 393–394
support fi les, searching for fi les in, 369–370
System folder, 350
system variables

setting, 80–81
user interface, 280
working with, 68–69

SysVarChanged events, 298

T
tab strip controls, 317
TableFurnBOM procedure, 215–216
tables, 168

formatting, 169–170
inserting and modifying, 168–169, 169

TabOrder property, 223
tabs, layout, 223
TabStop property, 320
Tag property, 321
TagString property

AcadAttribute, 181
AcadPopupMenu, 283
AcadPopupMenuItem, 285
AcadToolbar, 289

AcadToolbarItem, 292
Tan function, 39
Target property

AcadPViewport, 226
AcadView, 143
AcadViewport, 141

Temp folder, 350
TemplateDwgPath property, 62
tempprefi x system variable, 358
Terminate events, 321, 323
testing

for equality, 44–45
multiple conditions, 51–52
user forms and controls, 336–337, 337

text, 151
creating and modifying, 151–153
formatting, 153–155, 154
spell checking, 155
styles, 156–158

text area in code editor window, 9
-text command, 72
text fi les

closing, 360
exercise, 365–374, 374
layers based on, 366–369
opening and creating, 356–358
overview, 356
reading from, 358–359
writing to, 359–360

TextAlignmentPoint property, 153
TextBox controls, 313
TextStream objects, 356–358
TextString property

AcadAttribute, 181
fi elds, 171

textstyle system variable, 158
TextStyles property, 89, 156
Thickness property

AcadArc, 96
AcadCircle, 94
AcadLine, 92
polylines, 98

32-bit VBA, 29–30
ThisDrawing object

AcadApplication access by, 57
for current drawing, 61
overview, 6

tiled viewports, 137, 139
title blocks, 76–78, 78, 241
To keyword, 36
ToggleButton controls, 314
toolbars, 287–293, 287, 291
Toolbars property, 288
Toolbox window

428 | TOP PROPERTY • VALUE PROPERTY

bindex.indd 5:32:36:PM/03/28/2015 Page 428

code editor window, 10
controls, 312–313, 312

Top property
AcadToolbar, 289
controls, 313, 321

TotalAngle property, 96
TransformBy method, 87
TranslateCoordinates function, 135
Transparency property, 199
Trim function, 41
TriStateFalse format, 357
TriStateTrue format, 357
TriStateUseDefault format, 357
True value, 44
TrueColor property, 86
TrueType fonts (TTF), 157
Trusted File Search Path - Security Concern dialog

box, 394
trusted locations, 393
Trusted Locations setting, 393
trustedpaths system variable, 393
trusting projects, 392–394, 393
TTF (TrueType fonts), 157
TwistAngle property, 226
txtWidth_KeyPress procedure, 332
Type property

AcadPopupMenuItem, 285
AcadToolbarItem, 292

TypeName function, 31
TypeOf statement, 51, 85

U
%%u control code, 154
UBound procedure, 37–38
UCase function, 41
UCSIconAtOrigin property

AcadPViewport, 227
AcadViewport, 141

UCSIconOn property
AcadPViewport, 227
AcadViewport, 141

UCSPerViewport property, 227
UnderlayLayerOverrideApplied property, 201
UnderlayName property, 201
underlays, 175, 199–201
UnderlayVisibility property, 201
underscore character (_) for long statements, 27–28
underscoring symbol, 154
undo actions, grouping, 395
Units property, 182
Unload method

AcadMenuGroup, 281
xrefs, 196

UnloadARX method, 295
UnloadDVB method, 295
unloading

projects, 15
user forms, 325–326

unreferenced nongraphical objects, 102
Until keyword, 55–56
Update method

AcadEntity, 87
block references, 189

updateattributesfromexcel function, 365
UpdateEntry method, 201
UpdateMTextAttribute method, 181
upper limits for arrays, 36
UpperRightCorner property, 141
user forms and UserForm objects, 309

adding, 309–310, 310, 326–327, 327
appearance, 319–321, 319
behavior, 321–323, 322
code editor window, 9
controls. See controls
design, 310–312
displaying, 330–331, 330
events, 331–336
exercise, 326–337, 327–328, 330, 337
focus, 325
loading and unloading, 325–326
overview, 6
showing and hiding, 324–325
testing, 336–337, 337

user interaction, 113–114. See also command prompt
input

user interface, 279–280
element display, 293–294
exercise, 300–302
menu groups and customization fi les, 280–281
pull-down menus, 281–287, 282, 285
toolbars, 287–293, 287, 291

UserCoordinateSystems property, 89
UserForm editor, 10, 310, 310
UseStandardScale constant, 235
Using the Win32 API tutorial, 355
Utilities class

creating, 106–108
exporting, 111
labels, 173
user input, 147–149

V
validating values, 48
Value property

AcadDynamicBlockReferenceProperty, 189
controls, 314

VALUES • VISUAL STUDIO TOOLS FOR APPLICATIONS | 429

bindex.indd 5:32:36:PM/03/28/2015 Page 429

values
comparing, 44–48
controls, 314
validating, 48
variables, 25
Windows Registry, 265–268

variables
constants, 26
declaring, 24–25
scope, 26–27
system, 68–69
values, 25
watching values, 386–388, 387

Variant data type, 25, 30
VarType function, 31
VB.NET, 2, 21
VB (Visual Basic), 1–2
VBA. See Visual Basic for Applications (VBA)

programming language overview
VBA Editor, 1

debugging tools, 383–388, 384–385, 387
interface, 7–10, 7–9
tasks, 4, 5

VBA Enabler
benefi ts, 3
installing, 4

VBA environment overview, 1
documentation, 19
installation verifi cation, 3–4
macros, 16–19, 17–19
options, 11
program management, 11–12, 12
projects

components, 5–6
description, 1–2
managing, 12–16
starting requirements, 3

VBA Editor, 4, 7–10, 7–9
VBA Enabler, 4

VBA Manager
creating projects, 12, 12
embedding and extracting projects, 16
opening, 4
unloading projects, 15

vbaide command, 3–4
vbaload command, 14, 389
vbaman command, 15
-vbarun command, 17, 394–395
vbastmt command, 1
vbaunload command, 15
vbBack constant, 41, 120, 126
vbCr constant, 41
vbCrLf constant, 41
vbLf constant, 41, 120, 126

vbTab constant, 41, 120, 126
Verify property, 181
Version property, 59
versions

applications, 59, 343
customizing, 280
Microsoft Offi ce applications, 364
objects, 341–342

vertices for polylines, 97, 99
viewctr system variable, 138
ViewportOn property, 225
viewports

adding, 242
current, 225
display settings, 225–226
drafting aids, 227–228
fl oating, 224–225
model space, 139–142, 223–224, 242
modifying, 225–227
scaling objects in, 226–227
sheet views, 228

Viewports property, 89
viewsize system variable, 138
Visible property

AcadApplication, 60
AcadEntity, 86
AcadToolbar, 289
controls, 321

visretain system variable, 195
Visual Basic (VB), 1–2
Visual Basic for Applications (VBA) programming

language overview
32-bit vs. 64-bit, 29–30
arrays, 35–38
benefi ts, 21
comments, 28–29
comparing values, 44–48
conditionalizing and branching statements,

49–52
data types, 30–31, 42–44
environment for. See VBA environment

overview
fundamentals, 21–22
grouping comparisons, 48–49
long statements, 27–28
math functions and operators, 38–39
objects, 32–35
procedures, 22–24
repeating and looping expressions, 52–56
strings, 39–42
validating values, 48
variables, 24–27

Visual Basic Win32 API Declarations resource, 355
Visual Studio Tools for Applications (VSTA), 3

430 | VISUAL STYLES • ZSCALEFACTOR PROPERTY

bindex.indd 5:32:36:PM/03/28/2015 Page 430

visual styles, 143
VisualStyle property, 143
vl-vbaload function, 14, 389
vl-vbarun function, 17, 394–395
VSTA (Visual Studio Tools for Applications), 3

W
Watches window, 10, 386–388, 387
webload command, 295
While statements, 54–56
Width property

AcadApplication, 60
AcadDocument, 68
AcadToolbar, 289
AcadView, 143
AcadViewport, 141
controls, 313, 321
raster images, 199
underlays, 200

wildcards for selection sets, 134
Win32 API, 355
WindowLeft property, 60
windows, drawing, 67–68
Windows 32-bit API programming library, 348
Windows folder, 350
Windows Registry, 265–272
Windows Script Host Object Model, 267, 348, 353
Windows User Experience Interaction Guidelines,

312
WindowState property, 60, 68
WindowTitle property, 68
WindowTop property, 60
wipeouts, 199
With statements, 33
WithEvents keyword, 296
WordAppInstance procedure, 346
WorkingWithSysVars procedure, 69
workstation drives, 349
Write function, 360
WriteBlankLines function, 360
WriteLine function, 360

writing to text fi les, 359–360
WshShell objects, 267

X
Xdata

appending, 248
attaching, 249–252, 269
description, 247–248
memory, 252
moving, 258
object selection based on, 258–259
querying and modifying, 252–257, 255
replacing, 248–249

xdwgfadectl system variable, 194
XEffectiveScaleFactor property, 185
xfadectl system variable, 194
XML fi les, 360–363
xor operators for selection sets, 134
Xrecords, 260
XRefDatabase property, 194–195
xrefs. See external references (xrefs)
XScaleFactor property, 185

Y
YEffectiveScaleFactor property, 185
YScaleFactor property, 185

Z
 ZEffectiveScaleFactor property,

185
ZoomAll method, 137
ZoomCenter method, 137–138
ZoomExtents method, 137–138
zooming current view, 137–139
ZoomPickWindow method, 137
ZoomPrevious method, 137
ZoomScaled method, 138
ZoomWindow method, 138
ZScaleFactor property, 185

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover������������
	Title Page�����������������
	Copyright����������������
	Contents���������������
	Chapter 1 Understanding the AutoCAD VBA Environment��
	What Makes Up an AutoCAD VBA Project?��
	What You’ll Need to Start��������������������������������
	Determine If the AutoCAD VBA Environment Is Installed��
	Install the AutoCAD 2015 VBA Enabler���

	Getting Started with the VBA Editor��
	Identifying the Components of a VBA Project��
	Navigating the VBA Editor Interface��
	Setting the VBA Environment Options��

	Managing VBA Programs����������������������������
	Creating a New VBA Project���������������������������������
	Saving a VBA Project���������������������������
	Loading and Unloading a VBA Project��
	Embedding or Extracting a VBA Project��

	Executing VBA Macros���������������������������
	Accessing the AutoCAD VBA Documentation��

	Chapter 2 Understanding Visual Basic for Applications��
	Learning the Fundamentals of the VBA Language��
	Creating a Procedure���������������������������
	Declaring and Using Variables������������������������������������
	Controlling the Scope of a Procedure or Variable���
	Continuing Long Statements���������������������������������
	Adding Comments����������������������
	Understanding the Differences Between VBA 32- and 64-Bit���

	Exploring Data Types���������������������������
	Working with Objects���������������������������
	Accessing Objects in a Collection��
	Storing Data in Arrays�����������������������������
	Calculating Values with Math Functions and Operators���
	Manipulating Strings���������������������������
	Converting Between Data Types������������������������������������

	Comparing Values�����������������������
	Testing Values for Equality����������������������������������
	Comparing String Values������������������������������
	Determining If a Value Is Greater or Less Than Another���
	Checking for Null, Empty, or Nothing Values��
	Validating Values������������������������
	Grouping Comparisons���������������������������

	Conditionalizing and Branching Statements��
	Evaluating If a Condition Is Met���������������������������������������
	Testing Multiple Conditions����������������������������������

	Repeating and Looping Expressions��
	Repeating Expressions a Set Number of Times��
	Stepping Through an Array or Collection��
	Performing a Task While or Until a Condition Is Met��

	Chapter 3 Interacting with the Application and Documents Objects���
	Working with the Application�����������������������������������
	Getting Information about the Current AutoCAD Session��
	Manipulating the Placement of the Application Window���

	Managing Documents�������������������������
	Working with the Current Drawing���������������������������������������
	Creating and Opening Drawings������������������������������������
	Saving and Closing Drawings����������������������������������
	Accessing Information about a Drawing��
	Manipulating a Drawing Window������������������������������������

	Working with System Variables������������������������������������
	Querying and Setting Application and Document Preferences��
	Executing Commands�������������������������
	Exercise: Setting Up a Project�������������������������������������
	Creating the DrawingSetup Project��
	Creating and Saving a New Drawing from Scratch���
	Inserting a Title Block with the insert Command��
	Adding Drawing Properties��������������������������������
	Setting the Values of Drafting-Related System Variables and Preferences��

	Chapter 4 Creating and Modifying Drawing Objects���
	Understanding the Basics of a Drawing-Based Object���
	Accessing Objects in a Drawing�������������������������������������
	Working with Model or Paper Space��
	Creating Graphical Objects���������������������������������
	Adding Straight Line Segments������������������������������������
	Working with Curved Objects����������������������������������
	Working with Polylines�����������������������������

	Getting an Object in the Drawing���������������������������������������
	Modifying Objects������������������������
	Deleting Objects�����������������������
	Copying and Moving Objects���������������������������������
	Rotating Objects�����������������������

	Changing Object Properties���������������������������������
	Exercise: Creating, Querying, and Modifying Objects��
	Creating the DrawPlate Project�������������������������������������
	Creating the Utilities Class�����������������������������������
	Defining the CLI_DrawPlate Function��
	Running the CLI_DrawPlate Function���
	Exporting the Utilities Class������������������������������������

	Chapter 5 Interacting with the User and Controlling the Current View���
	Interacting with the User��������������������������������
	Requesting Input at the Command Prompt���
	Providing Feedback to the User�������������������������������������

	Selecting Objects������������������������
	Selecting an Individual Object�������������������������������������
	Working with Selection Sets����������������������������������
	Filtering Objects������������������������

	Performing Geometric Calculations��
	Calculating a Coordinate Value�������������������������������������
	Measuring the Distance Between Two Points��
	Calculating an Angle���������������������������

	Changing the Current View��������������������������������
	Zooming and Panning the Current View���
	Working with Model Space Viewports���
	Creating and Managing Named Views��
	Applying Visual Styles�����������������������������

	Exercise: Getting Input from the User to Draw the Plate��
	Revising the CLI_DrawPlate Function��
	Revising the Utilities Class�����������������������������������
	Using the Revised drawplate Function���

	Chapter 6 Annotating Objects�����������������������������������
	Working with Text������������������������
	Creating and Modifying Text����������������������������������
	Formatting a Text String�������������������������������
	Controlling Text with Text Styles��

	Dimensioning Objects���������������������������
	Creating Dimensions��������������������������
	Formatting Dimensions with Styles��
	Assigning a Dimension Style����������������������������������

	Creating and Modifying Geometric Tolerances��
	Adding Leaders���������������������
	Working with Multileaders��������������������������������
	Creating and Modifying Legacy Leaders��

	Organizing Data with Tables����������������������������������
	Inserting and Modifying a Table��������������������������������������
	Formatting Tables������������������������
	Assigning a Table Style������������������������������

	Creating Fields����������������������
	Exercise: Adding a Label to the Plate��
	Revising the CLI_DrawPlate Function��
	Revising the Utilities Class�����������������������������������
	Using the Revised drawplate Function���

	Chapter 7 Working with Blocks and External References��
	Managing Block Definitions���������������������������������
	Creating a Block Definition����������������������������������
	Adding Attribute Definitions�����������������������������������
	Modifying and Redefining a Block Definition��
	Determining the Type of Block Definition���

	Inserting and Working with Block References��
	Inserting a Block Reference����������������������������������
	Modifying a Block Reference����������������������������������
	Accessing the Attributes of a Block��
	Working with Dynamic Properties��������������������������������������

	Managing External References�����������������������������������
	Working with Xrefs�������������������������
	Attaching and Modifying Raster Images��
	Working with Underlays�����������������������������

	Listing File Dependencies��������������������������������
	Exercise: Creating and Querying Blocks���
	Creating the RoomLabel Project�������������������������������������
	Creating the RoomLabel Block Definition��
	Inserting a Block Reference Based on the RoomLabel Block Definition��
	Prompting the User for an Insertion Point and a Room Number��
	Adding Room Labels to a Drawing��������������������������������������
	Creating the FurnTools Project�������������������������������������
	Moving Objects to Correct Layers���������������������������������������
	Creating a Basic Block Attribute Extraction Program��
	Using the Procedures of the FurnTools Project��

	Chapter 8 Outputting Drawings������������������������������������
	Creating and Managing Layouts������������������������������������
	Creating a Layout������������������������
	Working with a Layout����������������������������
	Controlling the Display of Layout Tabs���

	Displaying Model Space Objects with Viewports��
	Adding a Floating Viewport���������������������������������
	Setting a Viewport as Current������������������������������������
	Modifying a Floating Viewport������������������������������������

	Controlling the Output of a Layout���
	Creating and Managing Named Page Setups��
	Specifying an Output Device and a Paper Size���
	Setting a Plot Style as Current��������������������������������������
	Defining the Area to Output����������������������������������
	Changing Other Related Output Settings���

	Plotting and Previewing a Layout���������������������������������������
	Exporting and Importing File Formats���
	Exercise: Adding a Layout to Create a Check Plot���
	Creating the Layout��������������������������
	Adding and Modifying a Plot Configuration��
	Inserting a Title Block������������������������������
	Displaying Model Space Objects with a Viewport���
	Putting It All Together������������������������������
	Testing the CheckPlot Procedure��������������������������������������

	Chapter 9 Storing and Retrieving Custom Data���
	Extending Object Information�����������������������������������
	Working with Xdata�������������������������
	Defining and Registering an Application Name���
	Attaching Xdata to an Object�����������������������������������
	Querying and Modifying the Xdata Attached to an Object���
	Removing Xdata from an Object������������������������������������
	Selecting Objects Based on Xdata���������������������������������������

	Creating and Modifying a Custom Dictionary���
	Accessing and Stepping through Dictionaries��
	Creating a Custom Dictionary�����������������������������������
	Storing Information in a Custom Dictionary���
	Managing Custom Dictionaries and Entries���

	Storing Information in the Windows Registry��
	Creating and Querying Keys and Values��
	Editing and Removing Keys and Values���

	Exercise: Storing Custom Values for the Room Labels Program��
	Attaching Xdata to the Room Label Block after Insertion��
	Revising the Main Room Label Procedure to Use the Windows Registry
	Testing the Changes to the RoomLabel Procedure���
	Persisting Values for the Room Label Procedure with a Custom Dictionary��
	Retesting the RoomLabel Procedure��
	Selecting Room Label Blocks����������������������������������

	Chapter 10 Modifying the Application and Working with Events���
	Manipulating the AutoCAD User Interface��
	Managing Menu Groups and Loading Customization Files���
	Working with the Pull-Down Menus and Toolbars��
	Controlling the Display of Other User-Interface Elements���

	Using External Custom Programs�������������������������������������
	Working with Events��������������������������
	Exercise: Extending the User Interface and Using Events��
	Loading the acp.cuix File��������������������������������
	Specifying the Location of DVB Files���
	Adding the Document Events���������������������������������
	Implementing an Application Event��
	Defining the AcadStartup Procedure���
	Testing the AcadStartup Procedure��
	Testing the Application and Document Events��

	Chapter 11 Creating and Displaying User Forms��
	Adding and Designing a User Form���������������������������������������
	Adding a User Form to a VBA Project��
	Considering the Design of a User Form��

	Placing and Arranging Controls on a User Form��
	Placing a Control on a User Form���������������������������������������
	Deciding Which Control to Use������������������������������������
	Grouping Related Controls��������������������������������
	Managing Controls on a User Form���������������������������������������

	Changing the Appearance of a User Form or Control��
	Defining the Behavior of a User Form or Control��
	Displaying and Loading a User Form���
	Showing and Hiding a User Form�������������������������������������
	Loading and Unloading a User Form��

	Exercise: Implementing a User Form for the DrawPlate Project���
	Adding the User Form���������������������������
	Adding Controls to the User Form���������������������������������������
	Displaying a User Form�����������������������������
	Implementing Events for a User Form and Controls���
	Testing the User Form and Controls���

	Chapter 12 Communicating with Other Applications���
	Referencing a Programming Library��
	Creating and Getting an Instance of an Object��
	Creating a New Instance of an Object���
	Getting an In-Memory Instance of an Object���

	Accessing a Drawing File from outside of AutoCAD���
	Working with Microsoft Windows�������������������������������������
	Accessing the Filesystem�������������������������������
	Manipulating the Windows Shell�������������������������������������
	Using the Win32 API��������������������������

	Reading and Writing Text Files�������������������������������������
	Opening and Creating a File����������������������������������
	Reading Content from a File����������������������������������
	Writing Content to a File��������������������������������
	Closing a File���������������������

	Parsing Content in an XML File�������������������������������������
	Working with Microsoft Office Applications���
	Exercise: Reading and Writing Data���
	Creating Layers Based on Data Stored in a Text File��
	Searching for a File in the AutoCAD Support Paths��
	Adding Layers to a Drawing with the LoadLayers Procedure���
	Writing Bill of Materials to an External File��
	Using the FurnBOMExport Procedure��

	Chapter 13 Handling Errors and Deploying VBA Projects��
	Catching and Identifying Errors��������������������������������������
	Recovering and Altering Execution after an Error���
	Getting Information About the Recent Error���

	Debugging a VBA Project������������������������������
	Debugging Through Messages���������������������������������
	Using the VBA Editor Debug Tools���������������������������������������

	Deploying a VBA Project������������������������������
	Loading a VBA Project����������������������������
	Specifying the Location of and Trusting a Project��
	Starting a Macro with AutoLISP or a Command Macro��
	Grouping Actions into a Single Undo��
	Protecting a Project���������������������������

	Exercise: Deploying the DrawPlate VBA Project��
	Stepping Through the BadCode VBA Project���
	Implementing Error Handling for the Utility Procedures���
	Implementing Error Handling and Undo Grouping for the Main Procedures��
	Configuring the AutoCAD Support and Trusted Paths��
	Creating DrawPlate_VBA.bundle������������������������������������
	Deploying and Testing DrawPlate_VBA.bundle���

	Index
	EULA

