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Preface

The recent emergence of Near Field Communication (NFC)-enabled smartphones
led to an increasing interest in NFC technology and its applications by equipment
manufacturers, service providers, developers, and end-users. Nevertheless, frequent
media reports about security and privacy issues of electronic passports, contactless
credit cards, asset tracking systems, NFC-enabled mobile phones, and proprietary
contactless technologies suggest that NFC is a potentially unsafe technology whose
main beneficiaries are thieves. While these weaknesses are often bound to specific
applications and products, they boost the fear that NFC technology as a whole is
dangerous, threatens our privacy, and helps identity theft and fraud. In order to
defend their own products and services, manufacturers and service providers often
position themselves on the opposite extreme, stating that their products and services
incorporate sufficient countermeasures.

This book is a revised version of my Ph.D. thesis. It is written for researchers,
engineers, and students interested in security aspects of mobile devices and Near
Field Communication. This book contains the results of my research conducted
between late 2009 and early 2013 at the NFC Research Lab Hagenberg (a research
group at the University of Applied Sciences Upper Austria) in close cooperation
with the Department of Computational Perception at the Johannes Kepler Uni-
versity Linz.

My research aims for assessing the actual state of NFC security, for discovering
new attack scenarios, and for providing concepts and solutions to overcome any
identified unresolved issues. Based on exemplary use-case scenarios, this work
focuses on the security requirements for the interaction with NFC tags and the use
of NFC card emulation. For each of these two modes of NFC, existing security
concepts are identified, new attack scenarios that are possible despite these existing
concepts are revealed, and solutions to overcome these issues are proposed. With
the introduction of NFC to iOS (on the iPhone 6 in late 2014)—the last smartphone
platform with significant market share that did not yet include NFC technology—
the results of my research gained new importance.

The original thesis was finished in January 2013 and was submitted to Johannes
Kepler University Linz for review in February 2013. The viva voce was
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successfully held in March 2013. Compared to my original thesis, this book con-
tains updates, clarifications, and additions based on recent events.

The three years of researching, preparing, and writing this thesis were a journey
with many ups and downs. I would like to thank my colleagues at the NFC
Research Lab Hagenberg (Josef Langer, Christian Saminger, and Stefan Grünber-
ger) for supporting me in many ways. I would like to thank my advisor, Josef
Scharinger, and my second advisor, René Mayrhofer, for their guidance, advice,
and criticism. Josef and René took the time to read this Ph.D. thesis and to provide
valuable feedback. Further, I would like to thank the participants of the seminar for
Ph.D. students at the Department of Computational Perception (Johannes Kepler
University Linz) for giving valuable hints and starting interesting discussions.
Moreover, I would also like to thank the team of First Data Austria for providing a
credit card terminal for my tests.

Last, but not least, I would like to thank my family for their love and support;
and I would like to thank my friends for making my life enjoyable and sociable.

Linz, Austria, December 2014 Michael Roland
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Abstract

The recent emergence of Near Field Communication (NFC)-enabled smartphones
led to an increasing interest in NFC technology and its applications by equipment
manufacturers, service providers, developers, and end-users. Nevertheless, frequent
media reports about security and privacy issues of electronic passports, contactless
credit cards, asset tracking systems, NFC-enabled mobile phones, and proprietary
contactless technologies suggest that NFC is a potentially unsafe technology whose
main beneficiaries are thieves. While these weaknesses are often bound to specific
applications and products, they boost the fear that NFC technology as a whole is
dangerous, threatens our privacy, and helps identity theft and fraud. In order to
defend their own products and services, manufacturers and service providers often
position themselves on the opposite extreme, stating that their products and services
incorporate sufficient countermeasures.

This work aims for assessing the actual state of NFC security, for discovering
new attack scenarios and for providing concepts and solutions to overcome any
identified unresolved issues. Based on exemplary use-case scenarios, application-
specific security aspects of NFC are extracted. The current security architectures of
NFC-enabled mobile phones are evaluated with regard to the identified security
aspects. As a result of the exemplary use-cases, this research focuses on the
interaction with NFC tags and on card emulation. For each of these two modes of
NFC, this thesis reveals attack scenarios that are possible despite existing security
concepts. For the interaction with NFC tags, a new attack scenario is introduced that
allows modification of tag content even though its authenticity and integrity were
supposedly guaranteed by a digital signature scheme. Moreover, potential privacy
issues and remaining problems have been identified in the NFC Forum’s signature
scheme specification. For the card emulation scenario, the mobile phone itself is
identified as a significant, yet unconsidered, threat. Specifically, the well-known
concept of relay attacks on smartcards is extended to the mobile phone platform. By
using the phone’s processing capabilities and communication facilities, relay

xvii



attacks can be mounted in a significantly easier and less obvious way. These
assumptions are verified through prototypical implementations. Possible solutions
and workarounds to overcome these issues are outlined and evaluated with regard to
their advantages and disadvantages.

xviii Abstract



Chapter 1
Introduction

1.1 Motivation

Over the last couple of years, there has been a significant change in mobile phones
and their use. The trend shifted from simple mobile phones with only telephone and
text messaging capabilities over feature phones to smart phones. In 2010 smart phone
shipments grew 74% over 2009 [14]. According to a survey by the market research
company Nielsen [41] the smart phone market in the United States is constantly
growing. In 2011, already 62% of all mobile users aged between 25 and 34 owned
a smart phone [41].

Feature phones—the first step into the direction of smart phones—were devices
that featured limited additional functionality, like a camera or amusic player. Current
smart phones are much more than a simple telephone and pager. They are truly
universal devices which perform many tasks in our everyday life. We use them as
our address book, organizer, digital notepad, alarm clock, calculator, camera, photo
gallery, media player, navigation system, portable web browser, e-mail client, storage
device and game console. We even use them as mobile wireless access points to link
other devices to the Internet. There seems to be virtually no limit to smart phone
applications. A recent trend turns smart phones into clients for mobile banking and
into digital wallets for mobile payment. Further, users can constantly extend the
capabilities of their smart phones by installing software (so-called apps) through
various application market places.1 In the context of this work, the term “mobile
phone” typically refers to smart phones.

A technology with the potential to further boost smart phone usability is Near
Field Communication (NFC). NFC could significantly simplify many tasks around
mobile phones. For instance, it can be used to quickly, easily and securely estab-
lish other wireless communication channels (like Bluetooth or Wi-Fi) between two
devices. By simply tapping each other’s mobile phones, users can instantly exchange
content between the two devices. Users can also tap NFC-enabled objects to instantly

1 Examples for application market places are Google’s Play Store and Apple’s App store.

© Springer International Publishing Switzerland 2015
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2 1 Introduction

retrieve Uniform Resource Locators (URLs) and other (interactive) content. Using
NFC card emulation capabilities, smart phones can even act as contactless smartcards
for payment, ticketing and access control applications. Thus, NFC enables devices
to be secure mobile wallets that contain various credit and debit cards, tickets for
public transport and events, keys for access to buildings, etc.

NFC technology was invented by NXP Semiconductors and Sony in 2002 as
an evolution of their existing contactless smartcard systems [29]. Since then, the
technology only became available on a limited number of mobile phones. Most of
them were low-end feature phones and only a small number of them were com-
mercially available products. It took almost a decade until NFC was introduced to
a current high-end smart phone: the Google Nexus S (co-developed and manufac-
tured by Samsung) [54]. With this step, Google not only integrated NFC technology
into their “flagship” Android device, but also brought NFC functionality into their
Android operating system. Thus, they laid the cornerstone for addingNFC to a whole
range of Android-based smart phones by many different manufacturers. Soon, other
operating system manufacturers and device manufacturers followed this trend (e.g.
BlackBerry [8]). Meanwhile, less than two years after Google’s initial commitment,
more and more new smart phones come with NFC and the technology seems to
finally become a standard feature for new devices [2, 3, 6, 7, 9, 11, 12].

However, despite all the commitment, there are still doubts about NFC throughout
its stakeholders. Some device manufacturers are still unsure if the technology will
have significant use-cases and, therefore, hesitate to integrate NFC into all of their
new mobile phones. From an end-user’s perspective there is still a lack of awareness
of NFC and its applications. Users often believe that NFC is a feature only intended
for “tech-savvy” people. They seem to be insufficiently educated about existing
appealing applications that could potentially make their lives easier. Often, they also
do not know how to interact with NFC tags and other devices (i.e. how they should
tap tags and other devices with their own phone).

Also, not all aspects of NFC are completely defined. Especially NFC card emu-
lation mode is still very blurry and leaves many unanswered questions asked by
application developers and service providers. Some of the most prominent questions
are:

• Whowill be in control of the secure element and who will have the keys to manage
it?

• Can multiple secure elements co-exist in one device?
• Who can get applications into the secure element andwhat are the security require-
ments for such applications?

• Will there be centralized entities that manage secure elements owned by different
manufacturers, mobile network operators, etc.?

• Will there be standardized programming interfaces for access to the secure ele-
ment?

• Is host-based card emulation a viable alternative to secure element based card
emulation?
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Some of these questions have been dealt with in several scientific publications
(e.g. [30–32, 35, 44]) and white papers (e.g. [15, 18, 19, 21, 23, 37, 40, 56, 57]).
Nevertheless, adoption of these concepts in standards and implementations has only
just begun.

Yet another issue of NFC is its security or rather its perceived security. Many
people believe that NFC is a potentially unsafe technology. For instance, reports on
attacks against electronic passports, contactless credit cards, asset tracking systems
and NFC-compatible memory cards (e.g. NXP Semiconductors’ MIFARE Classic)
boost the fear that NFC technology as a whole is dangerous, threatens our privacy
and helps identity theft and fraud. While news stories often exaggerate the situation,
they severely damage the reputation of NFC as a whole.

In spite of all these doubts, NFC seems to finally take off and hit the mass market
these days [5, 10]. Therefore, there is a huge need for verification of existing security
concepts and their implementations. It has to be assured that NFC is sufficiently
secure for its current and future applications. Thus, protecting end-users’ privacy
and safety.

For example, when users tap a touch point or a tag with their mobile phones, they
expect that no harmful actions are triggered on their devices. Similarly, if users use
their NFC phone as a digital wallet and store their credit cards on it, they expect
that these cards are safe and secure, and that nobody else can use them without their
explicit permission.

1.2 Objectives

With NFC moving into broader attention, research around this topic started to grow.
In 2009, the NFC Research Lab Hagenberg (a research group of the University
of Applied Sciences Upper Austria) together with VTT Technical Research Centre
of Finland created the International Workshop on Near Field Communication as a
first forum dedicated to research on all aspects of NFC. The scientific workshop
covers various topics ranging from applications and services over usability and user
experience to security and hardware-related research.

Security and privacy research focuses on various aspects of NFC. Among them
are the interaction with smart posters and NFC tags [33, 36, 38, 39, 48, 50, 55],
management of the secure element [30, 31, 33–35], security and privacy of the com-
munication protocol itself [1, 25–28, 33], vulnerabilities of NFC-enabled mobile
phones in general [58], usability of NFC-enabled mobile phones as attack plat-
forms [16, 17, 47] and security impacts of embedding secure elements into mobile
phones [51, 52].

For several years, the NFC Forum (the driving organization behind NFC) con-
sidered security only a minor priority. Their focus and, thus, their main priority was
the creation of an infrastructure for applications and services. Therefore, security
considerations were left to the application developers. However, recent activities by
the NFC Forum suggest that this trend is starting to change. In 2010, the NFC Forum
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published an initial version of the NFC Signature Record Type Definition technical
specification [4]. This specification provides a means for adding authenticity and
integrity to NFC tag infrastructures (e.g. smart posters) by digitally signing the tag
content. With this specification, the NFC Forum intended to make interaction with
smart posters and NFC tags more secure and, therefore, reacted to security threats
shown by Mulliner [38]. Meanwhile, the NFC Forum has installed the Security
Technical Working Group that deals with all kinds of NFC security related topics
and whose aim is to create models, specifications, guidelines and recommendations
related to NFC security.

When it comes to secure element security, secure elements embedded into mobile
phones and other NFC devices are usually considered to inherit all security features
of the underlying smartcard architecture. Of course, a secure element also shares
shortcomings and security weaknesses of regular smartcards. The mobile phone is
typically regarded as an additional security feature providing capabilities that exceed
those of regular plastic cards. For instance, the display and input capabilities of a
mobile phone supposedly provide additional and more tamper-proof user interaction
with the smartcard [22, 56].

The aim of this thesis is to assess the current state of NFC security, to discover new
attack scenarios and to provide concepts and solutions to overcome any identified
unresolved issues. My main research questions are:

• What are the strategies that NFC uses to provide security and privacy for its current
applications, and are these measures adequate for the current applications?

• What are the main unresolved security and privacy issues of NFC?
• What steps are necessary to make NFC a reliable and secure technology?

In this thesis, I will sketch example scenarios for use-cases of NFC. These use-
caseswillmainly concentrate onusage ofNFC in automotive environments to achieve
energy-efficient economic and ecological mobility. Based on these use-cases, I will
investigate the current security features and capabilities of NFC devices. The focus
will lie on interaction with NFC tags and on card emulation, which seem to have the
broadest use-cases at the moment. Based on the exemplary use-cases, I will extract
the security requirements demanded from NFC technology and NFC devices.

1.3 Approach

This thesis assesses the existing security concepts of NFC and NFC-enabled mobile
phones in the context of specific use-case scenarios. Research methods used for this
assessment comprise:

• literature review,
• evaluation of protocols, standards and their existing implementations,
• characterization of attack scenarios based on exemplary use-cases,
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• design of attack models and concepts based on protocol evaluation and literature
review,

• design and implementation of prototypes, and
• evaluation of attack models and concepts based on these prototype implementa-
tions.

1.4 Contributions

This thesis describes exemplary use-cases of NFC and uses them as a basis for
discussing the current security architectures of NFC-enabled mobile phones. As a
result of the identified use-cases, this research focuses on interaction with NFC tags
(“tagging” or reader/writer mode) and card emulation. For each of these two modes
of NFC, this thesis reveals attack scenarios that are possible despite existing security
concepts.

For the tagging scenario, I introduce an attack that allows modification of tag
content even though its authenticity and integrity were supposedly guaranteed by
a digital signature scheme. For the card emulation scenario, I introduce the mobile
phone itself as a significant, yet unconsidered threat. Specifically, the well-known
concept of relay attacks on (contactless) smartcards [25, 26, 28] is extended to the
mobile phone platform. By using the processing capabilities and communication
facilities of the mobile phone that contains the secure element, relay attacks can be
mounted in a significantly easier and less obvious way. These assumptions have been
verified through prototypical implementations.

The results of my research on digital signatures for the tagging scenario and the
identified possible solutions were presented to the NFC Forum’s security technical
working group and have been used to create a new and robust version of the NFC
Signature Record Type Definition.

My research results on relay attacks against NFC secure elements have been used
to improve existing card emulation applications by adhering to strategies shown
in this thesis to circumvent possible relay attacks. Specifically, my research results
on relay attacks against Google Wallet have been disclosed to Google and their
wallet partners prior to releasing them to the public. Google acknowledged this
responsible disclosure procedure with an entry in the “Honorable Mention” section
of theirApplication Security Hall of Fame [20]. This story has also been picked up by
severalAustrian newspapers (e.g. derStandard [43],Die Presse [13], Futurezone [59],
Oberösterreichische Nachrichten [24], ORF.at [42]).

1.5 Publications

Parts of this thesis have been previously published in peer-reviewed conference pro-
ceedings, in e-print archives, in reports and in books:
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• Roland, M., Langer, J., Scharinger, J.: Applying Relay Attacks to Google Wallet.
In: Proceedings of the Fifth InternationalWorkshop onNear Field Communication
(NFC2013). IEEE, Zurich, Switzerland (2013). DOI 10.1109/NFC.2013.6482441

• Roland, M.: Applying recent secure element relay attack scenarios to the real
world: Google Wallet Relay Attack. Computing Research Repository (CoRR),
arXiv:1209.0875 [cs.CR] (2012). URL http://arxiv.org/abs/1209.0875

• Roland, M.: Software Card Emulation in NFC-enabled Mobile Phones: Great
Advantage or Security Nightmare? In: 4th International Workshop on Security
and Privacy in Spontaneous Interaction and Mobile Phone Use. Newcastle, UK
(2012). URL http://www.medien.ifi.lmu.de/iwssi2012/papers/iwssi-spmu2012-
roland.pdf

• Roland, M., Langer, J., Scharinger, J.: Relay Attacks on Secure Element-enabled
MobileDevices:Virtual PickpocketingRevisited. In: InformationSecurity andPri-
vacy Research, IFIP AICT, vol. 376/2012, pp. 1–12. Springer, Heraklion, Creete,
Greece (2012). DOI 10.1007/978-3-642-30436-1_1

• Roland, M., Langer, J., Scharinger, J.: Practical Attack Scenarios on Secure
Element-enabled Mobile Devices. In: Proceedings of the Fourth International
Workshop on Near Field Communication (NFC 2012), pp. 19–24. IEEE, Helsinki,
Finland (2012). DOI 10.1109/NFC.2012.10

• Roland, M.: Security & Privacy Issues of the Signature RTD. Report to the NFC
Forum Security Technical Working Group (2012). URL http://www.mroland.at/
fileadmin/mroland/papers/201202_SignatureRTD_Security_Issues.pdf

• Roland, M., Langer, J., Scharinger, J.: Security Vulnerabilities of the NDEF Sig-
nature Record Type. In: Proceedings of the Third International Workshop on Near
Field Communication (NFC 2011), pp. 65–70. IEEE, Hagenberg, Austria (2011).
DOI 10.1109/NFC.2011.9

• Roland, M., Langer, J., Bogner, M., Wiesinger, F.: NFC im Automobil: Soft-
ware bringt Ökonomie und braucht Sicherheit. In: L. Höfler, J. Kastner, T. Kern,
G. Zauner (eds.) Energieeffiziente Mobilität, Informations- und Kommunikation-
stechnologie, pp. 112–119. Shaker, Aachen (2010)

• Langer, J., Roland, M.: Anwendungen der Near Field Communication Technolo-
gie und deren Nutzung inMobiltelefonen. In: Wireless Communication and Infor-
mation: Car to Car, Sensor Networks and Location Based Services, pp. 75–84.
Hülsbusch, Boizenburg (2010)

• Langer, J., Roland, M.: Anwendungen und Technik von Near Field Communica-
tion (NFC). Springer Berlin Heidelberg (2010)

• Roland, M., Langer, J.: Digital Signature Records for the NFC Data Exchange
Format. In: Proceedings of the Second International Workshop on Near Field
Communication (NFC 2010), pp. 71–76. IEEE, Monaco (2010). DOI 10.1109/
NFC.2010.10
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1.6 Outline

Figure1.1 shows the outline of this book. The remainder of this book is divided
into seven chapters. Chapter 2 gives an introduction to Near Field Communication
and its use in smart phones. Chapter 3 sketches use-cases that are used as the basis
for the evaluation of NFC security aspects. Chapter 4 summarizes related work and
positions this thesis in comparison to existing work in the areas of NFC and smart
phone security. Chapters5, 6 and 7 comprise the two main parts of this thesis. While
Chap.5 focuses on the tagging scenario, Chaps. 6 and 7 focus on card emulation
mode and the use of secure elements in mobile phones. Chapter 5 first describes the
security issues of tagging and evaluates digital signatures as a security measure to
provide authenticity, integrity and trust for data stored on NFC tags. The chapter
further discovers severe weaknesses in the existing security standard for NFC tags
and provides possible solutions. Chapter 6 evaluates existing measures to protect the
secure element in NFC devices. Based on this evaluation, a group of new hypotheti-
cal attack scenarios—consisting of a denial-of-service attack and a relay attack—is
characterized. The viability of the relay attack in a controlled environment is ver-
ified with a prototypical implementation. Moreover, the chapter discusses possible
countermeasures against these attack scenarios. Chapter 7 verifies the applicability

Fig. 1.1 Outline of this thesis

http://dx.doi.org/10.1007/978-3-319-15488-6_2
http://dx.doi.org/10.1007/978-3-319-15488-6_3
http://dx.doi.org/10.1007/978-3-319-15488-6_4
http://dx.doi.org/10.1007/978-3-319-15488-6_5
http://dx.doi.org/10.1007/978-3-319-15488-6_6
http://dx.doi.org/10.1007/978-3-319-15488-6_7
http://dx.doi.org/10.1007/978-3-319-15488-6_5
http://dx.doi.org/10.1007/978-3-319-15488-6_6
http://dx.doi.org/10.1007/978-3-319-15488-6_7
http://dx.doi.org/10.1007/978-3-319-15488-6_5
http://dx.doi.org/10.1007/978-3-319-15488-6_6
http://dx.doi.org/10.1007/978-3-319-15488-6_7
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of the software-based relay attack scenario based on the existing payment system
GoogleWallet. Chapter 8 summarizes the main arguments of this thesis and provides
an outlook on possible future research.

Parts of Chap. 2 have been published verbatim in [29, 45, 47, 48, 50–52].
Significant parts of Chap. 3 have been published verbatim as [49]. Parts of Chap. 4
have been published verbatim in [45, 47, 48, 50–53]. Significant parts of
Chap.5 have been published verbatim as [46, 48, 50]. Significant parts of Chaps. 6
and 7 have been published verbatim as [45, 51–53].
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Chapter 2
Basics

This chapter summarizes basic concepts of smartcards, Near Field Communication
(NFC) and payment cards.

2.1 Smartcards

Smartcards are identification cards equippedwith amicrochip (integrated circuit, IC).
Depending on their functionality, they can be grouped intomemory cards and proces-
sor cards [40]. Memory cards contain simple memory logic that can be accessed with
primitive read and write commands. Processor cards contain a microprocessor that
can execute complex programs. Classic smartcards have a contact interface stan-
dardized in ISO/IEC 7816-2 [22]. These contact pads can be used with various syn-
chronous and asynchronous communication protocols. Synchronous protocols are
typically used for memory cards while asynchronous protocols are typically used
for processor cards. ISO/IEC 7816-3 [21] defines a set of asynchronous transmis-
sion protocols. Some smartcards even have a Universal Serial Bus (USB) interface as
standardized in ISO/IEC 7816-12 [19]. Besides classical contact interfaces, cards can
also have contactless interfaces that follow Radio Frequency Identification (RFID)
standards.

Smartcards are present in our everyday lives. We use them as credit and debit
cards, as ID cards and as access control tokens. There also exist smartcards in other
form factors. For instance, the Universal Integrated Circuit Card (UICC) in mobile
phones (also known as the Subscriber Identity Module (SIM) card) is a smartcard
too. Even electronic passports contain contactless smartcard technology. In particular
smartcards with a contactless interface are no longer bound to specific form factors.
Instead they could be integrated into virtually any object.

© Springer International Publishing Switzerland 2015
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2.1.1 Protocol Stack

The smartcard protocol stack is standardized in the ISO/IEC 7816 series. Part 1 [27]
describes the physical characteristics of smartcards. Part 2 [22] describes the contact
interface. Part 3 [21] describes the electrical interface and the low-level transport
protocols. Part 4 [20] describes the application layer protocol.

2.1.1.1 ISO/IEC 7816-3

ISO/IEC 7816-3 [21] defines an asynchronous serial protocol for character based
exchange of information between a smartcard reader (“terminal”) and a smartcard.
The standard further defines the reset procedure that initializes the communica-
tion with the smartcard. In response to this reset procedure, the smartcard sends
its Answer-to-Reset (ATR). The ATR contains information about communication
speed, a list of supported protocols and parameters and product-specific data. On
top of the asynchronous serial protocol, ISO/IEC 7816-3 defines two half-duplex
transport protocols: the byte-oriented protocol T = 0 and the block-oriented protocol
T = 1.

2.1.1.2 ISO/IEC 7816-4

ISO/IEC 7816-4 [20] defines an application layer protocol for smartcards. The
protocol consists of a file system and commands for access to the file system, man-
agement of logical communication channels, and securing the communication. The
file system consists of a master file (MF), dedicated files (DFs) and elementary files
(EFs). DFs can be seen as directories. They may host complete applications, group
files or store data objects [20]. EFs are the leaf nodes of the file system and contain
the actual data.

The application level communication protocol is mapped on top of the lower
layer transport protocol (e.g. T = 0 or T = 1). Command-response pairs are called
Application Protocol Data Units (APDUs). Commands are always sent from the
smartcard reader to the card while responses are always sent from the card to the
reader.

Table2.1 shows a command APDU. It consists of a header and a body. The header
field contains the command class (CLA), an instruction code (INS) and instruction
parameters (P1, P2). The body contains data associatedwith the command and length
fields for the command data (Lc) and the expected response (Le).

Table2.2 shows a response APDU. It consists of a body and a trailer. The body
contains the response data. The trailer contains the status word (SW1, SW2). Typical
status words are:
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Table 2.1 Command APDU (based on [20])

Field type Field name Size Description

Header CLA 1 byte Command class

INS 1 byte Instruction byte

P1 1 byte Parameter byte 1

P2 1 byte Parameter byte 2

Body Lc 0–3 bytes Command data length Nc

DATA Nc bytes Command data

Le 0–3 bytes Response data length Ne

Table 2.2 Response APDU (based on [20])

Field type Field name Size Description

Body DATA ≤Ne bytes Response data

Trailer SW1 1 byte Status word (first byte)

SW2 1 byte Status word (second byte)

• 0x9000: The command has been successfully executed.
• 0x61NN: The command has been successfully executed, but 0xNN bytes of further
data are waiting for retrieval.

• 0x6XYY (2 ≤ X ≤ 3): The execution of the command ended with a warning.
• 0x6XYY (4 ≤ X): The execution of the command ended with an error.

2.1.2 Contact versus Contactless Smartcards

Instead or in addition to a contact interface, some smartcards have a contactless
interface. The most common interface for contactless smartcards is standardized in
the ISO/IEC 14443 series. This standard defines a proximity RFID system based on
inductive couplingwith an operating frequency of 13.56MHz.On top of the ISO/IEC
14443 protocol stack, a contactless smartcard can either use a proprietary protocol
or use the APDU-based protocol defined in ISO/IEC 7816-4. Figure2.1 shows a
comparison of the protocol stack of contact-based and contactless smartcards. The
ISO/IEC 14443 standard is split into four parts. Part 1 [23] specifies the physical
characteristics of the card and the antenna. Part 2 [25] defines modulation and coding
schemes of the bit transfer layer and the power supply of passive cards over the
Radio Frequency (RF) interface. Part 3 [26] defines the activation and anti-collision
sequence and a frame-based communication protocol. Part 4 [24] specifies a half-
duplex block-oriented transmission protocol comparable to T = 1. ISO/IEC 14443 is
split into two types: Type A and Type B. These types differ in their modulation and
coding schemes, in their activation and anti-collision protocols and in their frame-
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Fig. 2.1 Comparisonof the ISO/IEC7816contact protocol stack and the ISO/IEC14443contactless
protocol stack (Source [29])

based communication protocol. The block-oriented transmission protocol is the same
for both types.

2.1.2.1 ISO/IEC 14443-3

ISO/IEC 14443-3 [26] is a reader-talks-first protocol. Thus, the communication is
always started with a request from the reader to the card. The card then returns
a response to the reader. In ISO/IEC 14443 terminology, the smartcard reader is
a Proximity Coupling Device (PCD) and the smartcard is a Proximity Integrated
Circuit Card (PICC).

PICCs have unique or pseudo-unique addresses that are used to identify and
operate multiple cards simultaneously with one PCD. While the PCD is in idle
mode, it polls for PICCs with repeated REQUEST commands (REQA for Type A
and REQB for Type B).

For Type A, the REQUEST command causes all cards that have not been activated
before to synchronously answer with their ATQA (Answer-to-Request). The reader
then knows that at least one new card is available and continueswith the anti-collision
procedure. The anti-collision procedure enumerates all cards based on their Unique
Identifier (UID) using a binary search tree algorithm [10]. After successful anti-
collision, the PICC reveals whether it supports the transport protocol according to
ISO/IEC 14443-4 or uses a proprietary transmission protocol [10].
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For Type B, the REQUEST command immediately starts the anti-collision
protocol which is based on a slotted-ALOHA algorithm [10]. The slotted-ALOHA
algorithm works by splitting the responses of the different PICCs to the REQUEST
command into multiple time slots. Each card sends its ATQB (Answer-to-Request)
in its time slot. The ATQB contains the Pseudo Unique PICC Identifier (PUPI), pro-
tocol parameters and application parameters of a card. If there is a collision-free
transmission in one of the time slots, the PCD has the PUPI of that PICC and can
then address the card.

Besides the anti-collision and activation procedure, ISO/IEC 14443-3 also defines
the frame formats and timing requirements for exchanging data between the PCD
and the PICC.

2.1.2.2 ISO/IEC 14443-4

ISO/IEC 14443-4 [24] defines the protocol activation and the half-duplex
block-oriented transmission protocol for contactless smartcards. For Type A, the
PCD first requests the Answer-to-Select (ATS) from the PICC. The ATS is similar to
the ATR of a contact-based card and contains protocol parameters and the historical
bytes. The historical bytes contain free-form product identification data. For Type
B, the protocol and application parameters have already been exchanged with the
ATQB. After protocol activation, the transmission protocol is the same for both, Type
A and B.

2.1.2.3 Other Contactless Protocols

Besides ISO/IEC 14443, also other protocols for contactless smartcards exist.
ISO/IEC 15693 is a vicinity RFID standard that uses the same operating frequency
(13.56MHz) and the same communication principle (inductive coupling) as ISO/IEC
14443. However, it is specified for longer communication distances at the price of
slower data rates. ISO/IEC 15693 is mainly used for simple memory cards.

Sony’s proprietary FeliCa is a smartcard technology that is similar to ISO/IEC
14443. FeliCa has a file system similar to that defined in ISO/IEC 7816-4. The file
system and commands for access to the file system are standardized in JIS X 6319-4
[28]. In addition, the FeliCa system has proprietary cryptography and security fea-
tures.

2.1.3 Smartcard Software

Application specific smartcards (e.g. bank cards) may use customized operating sys-
tems and their application software is usually programmed into a read-only memory
during the manufacturing process. Today, however, there also exist generic smart-
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card platforms which can be loaded with various applications. A single card can even
contain multiple applications at the same time.

2.1.3.1 Java Card

Astandardized framework formulti-application smartcards is the JavaCard platform.
Java Card operating systems provide a common set of application programming
interfaces (APIs) and a standardized run-time environment. This allows development
of applications that are independent of the actual smartcard hardware and of the actual
operating system. As a consequence, a Java Card application that has been compiled
for a certain version of the Java Card API can be run on any Java Card compliant
smartcard that implements that API version.

A Java Card application consists of one or more applets. When an application
is installed onto a Java Card each applet instance is assigned a name (application
identifier, AID).Using thisAID, the applet can be selected for further communication
with the SELECT (file by DF name) command from the ISO/IEC 7816-4 command-
set.After selection, further commands—except for the selection of other applets—are
sent to the Java Card applet for processing. Hence, it is up to an applet to interpret
commands and to (possibly) provide a file system like view on application data.

2.1.3.2 GlobalPlatform

Besides a common API, an application provider also needs a standardized interface
tomanage the lifecycle and the application software of a smartcard. “TheGlobalPlat-
form architecture is designed to provide card issuers with the system management
architecture for managing these smart cards” [13]. GlobalPlatform specifies inter-
faces, mechanisms and commands to allow secure smartcard application manage-
ment. The management facilities are independent of the actual smartcard hardware
and of the actual operating system, and are, thus, interoperable.

A GlobalPlatform compliant smartcard contains a Card Manager, which is the
central component for card administration. It is responsible formanaging card content
(applications and data), security domains and the whole card lifecycle. GlobalPlat-
form provides standardized methods to load, install and configure applications on a
smartcard. During the load operation the application executable load-file is stored on
the card. Then the application and its applets can be installed, enabled for selection
and personalized.

2.1.4 Data Structures Used on Smartcards

ISO/IEC 7816-4 defines five different files structures for smartcards:

1. transparent structure,
2. records of fixed size in a linear structure,
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3. records of variable size in a linear structure,
4. records of fixed size in a cyclic structure, and
5. tag-length-value (TLV) format structure.

The transparent structure is a simple binary file formatwith byte-wise random access.
Record files can be accessed on a per-record basis.

The TLV format is a special type of file structure where each data object consists
of an identifier (“tag”), length information for the data part (“length”) and a data part
(“value”). TLV data objects can even be nested. Thus, the value of one data object
might consist of one or more TLV data objects. TLV structures are not limited to
EFs. Instead, many smartcard applications use these structures for various purposes.
In this book, TLV structures are represented in the following format:

<TAG> <LENGTH> (name)
<VALUE> (interpretation)

For instance:
6F 12 (FCI template)

84 0E (DF name)
325041592E5359532E4444463031 (“2PAY.SYS.DDF01”)

A5 00 (Proprietary information encoded in BER-TLV)
In this example 0x6F is the tag of an FCI template data object that contains
0x12 (18) bytes of data. The FCI template contains two nested data objects:
0x84 is the tag of a DF name data object with a length of 0x0E (14) bytes.
The data object contains the application identifier “2PAY.SYS.DDF01” (the bytes
325041592E5359532E4444463031 represented in US-ASCII character encoding).
0xA5 is the tag of a Proprietary information encoded in BER-TLV data object that
contains no data.

2.1.5 PC/SC

PC/SC (Personal Computer/Smart Card) is a standard to connect smartcards to PC
platforms. It is supported on different operating systems (e.g. Microsoft Windows,
Apple OSX and Linux). PC/SCAPIs and wrapper APIs that rely on the PC/SC func-
tionality of the underlying operating systems are available for various programming
languages (e.g. C++, C#, Java and Python).

2.2 Near Field Communication

Near Field Communication (NFC) is a contactless communication technology for
communication over short distances. NFC has been developed by NXP Semicon-
ductors (formerly Philips Semiconductors) and Sony as an evolution of their induc-
tively coupled proximity Radio Frequency Identification (RFID) technologies and
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smartcard technologies. NFC has originally been standardized by Ecma International
in ECMA-340 [4] and ECMA-352 [3]. These standards have later been adopted by
ISO/IEC in ISO/IEC18092 [17] and ISO/IEC21481 [18]. Further ISO/IECandEcma
standards exist that describe test methods and enhanced interface protocols. Besides
standardization through these normative bodies, further specification of protocols,
data formats and NFC applications is driven by the NFC Forum.

2.2.1 NFC Forum

The NFC Forum1 is an association of industry organizations (in particular manu-
facturers, application developers, and financial service institutions) and non-profit
organizations with an interest in NFC. The NFC Forum was originally founded by
NXP Semiconductors, Sony and Nokia to promote the use of NFC technology [29].

Today, the NFC Forum creates specifications for data formats, protocols and
reference applications. A certification program based on these specifications, assures
interoperability between different products and implementations.

2.2.2 Operating Modes

NFC has three operating modes:

1. peer-to-peer mode,
2. reader/writer mode, and
3. card emulation mode.

2.2.2.1 Peer-to-Peer Mode

Peer-to-peer mode is an operatingmode specific to NFC and allows twoNFC devices
to communicate directly with each other. This mode is based on the communication
protocol standardized in ISO/IEC 18092 [17]. On top of this protocol, the NFC
Forum specified the Logical Link Control Protocol (LLCP) as a protocol that allows
bi-directional communicationbetween logical end-points of the twoNFCdevices [29].
Further high-level protocols (e.g. Simple NDEF Exchange Protocol, SNEP) allow
the exchange of standardized data structures across an LLCP link.

1 http://www.nfc-forum.org/.

http://www.nfc-forum.org/
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2.2.2.2 Reader/Writer Mode

In reader/writer mode, an NFC device can access passive NFC tags. NFC tags are a
subset of RFID transponders that contain a simple memory structure for storing data
in a standardized format. NFC tags provide a basis for interoperability between NFC
devices. BesidesNFC tags,manyNFCdevices in reader/writermode can also interact
with other proximity RFID transponders and contactless smartcards that are based
on the standards ISO/IEC 14443 [23–26] and JIS X 6319-4 [28]. Some NFC devices
can even communicate with NXP’s MIFARE Classic tags and with vicinity RFID
transponders based on the standard ISO/IEC 15693 [14–16]. As a consequence,
reader/writer mode makes NFC devices interoperable with legacy RFID tag and
smartcard infrastructures.

2.2.2.3 Card Emulation Mode

In card emulation mode, an NFC device emulates a contactless smartcard. Thus,
while an NFC device is in this mode, it can be accessed by existing RFID readers
as if it was a regular contactless smartcard. As a consequence, card emulation mode
makes NFC devices interoperable with legacy RFID reader infrastructures.

There exist several possible options for NFC card emulation mode. Emulation
can differ in communication standards, in supported protocol layers, in supported
command sets and in the part of the NFC device that performs the actual emulation.

With regard to the communication standard, an NFC device could emulate
ISO/IEC 14443 Type A, ISO/IEC 14443 Type B or JIS X 6319-4 (Sony’s FeliCa).
Support for either of these modes depends on the NFC controller, the secure element
and typically the geographic region. For example, ISO/IEC 14443 is the prevalent
technology in Europe and North America as it is used with many payment and
access control applications. For instance, contactless credit card standards are based
on ISO/IEC 14443. FeliCa (JIS X 6319-4) is popular in Japan where it is used for
many payment systems.

Another difference is the part of the device that performs the actual emulation. On
the one hand, a contactless smartcard can be emulated by a dedicated smartcard chip,
the so-called secure element. On the other hand, card emulation can be performed in
software on the main application processor of a device (host-based card emulation
(HCE), software card emulation [41], or soft-SE [11]).

2.2.3 NFC Tags

NFC devices in reader/writer mode and NFC tags are used to enable NFC’s tagging
application scenario. The basic principle behind tagging is “it’s all in a touch” [2].
I.e. touching an object with an NFC device triggers an action on that device. For
example, a printed advertisement could contain a tag that links to interactive content.
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Table 2.3 Overview of the NFC Forum tag types (based on [29])

Tag type RFID technologya Standards Maximum memory size

Type 1 Innovision topaz ISO/IEC 14443-3 Type A 2 KB

Type 2 NXP MIFARE ultralight ISO/IEC 14443-3 Type A 2 KB

Type 3 Sony FeliCa lite JIS X 6319-4 1 MB

Type 4 NXP MIFARE DESFireb ISO/IEC 14443 & ISO/IEC 7816-4 64 KB (4 GBc)
aThe column RFID technology lists only the product that the tag types were originally based on
bAn NFC Forum Type 4 tag could be implemented on any programmable contactless smartcard
that supports ISO/IEC 14443 and ISO/IEC 7816-4
cIn version 3.0 of the Type 4 Tag Operation specification

Tapping the tag with an NFC-enabled mobile phone could cause a web site to be
opened, a phone call to be initiated or a ready-made SMS message to be sent.

In order to achieve interoperability between NFC tags and NFC devices, the NFC
Forum defined four different tag types that should be supported by all NFC devices.
These tag types are based on existing RFID tag technologies. Table2.3 gives an
overview of the four tag types. For each tag type, the NFC Forum released a Tag
Operation Specification [36–39]. These specifications define the memory layout of
the tags and commands to access the tags.

2.2.4 NFC Data Exchange Format (NDEF)

The NFC Data Exchange Format (NDEF, [30]) is defined by the NFC Forum as a
common format for storing data on NFC tags and for data exchange between NFC
devices in peer-to-peer mode [29]. NDEF abstracts the data from the storage medium
and the communication channel. Thus, on the application level an NFC device can
operate on NDEF messages and need not cope with different tag platforms and
operating modes.

NDEF is a simple binary data format that encapsulates application data and meta-
information [29]. Data is packed into NDEF records, where each record contains
type information and optional identification information for the data packet. Multiple
records are grouped into one NDEF message.

2.2.4.1 NDEF Record

Figure2.2 shows the layout of an NDEF record. A record consists of multiple header
fields and a payload field. The header starts with five flag bits:

1. Message Begin (MB): MB marks the first record of an NDEF message.
2. Message End (ME): ME marks the last record of an NDEF message.
3. Chunk Flag (CF): The CF, if set, specifies that the record payload is continued

in the next record.
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Fig. 2.2 Layout of an NDEF
record (Source [29])

4. Short Record (SR): SR defines the size of the Payload Length field. If SR is set,
the payload length is a 1-byte unsigned integer, otherwise it is a 4-byte unsigned
integer. This flag is useful to reduce the memory consumption of short records.

5. ID-Length Present (IL): The IL flag, if set, specifies that the optional ID field and
its corresponding length field are present.

The flags are followed by a 3-bit type classification field (Type Name Format, TNF).
The value of the TNF field determines the interpretation of the Type field:

• Empty (0x0): The record is empty. The fields Type, ID and Payload are not present
and their length fields are set to zero.

• Well-known Type (0x1): The Type field contains the relative Uniform Resource
Identifier (URI) of an NFC Forum well-known type according to the NFC Record
Type Definition (RTD, [31]).

• Media Type (0x2): The Type field contains a Multipurpose Internet Mail Exten-
sions (MIME) media type identifier according to RFC 2046 [12].

• Absolute URI (0x3): The Type field contains an absolute URI according to RFC
3986 [1].

• External Type (0x4): The Type field contains the relative URI of an NFC Forum
external type according to the NFC Record Type Definition (RTD, [31]).

• Unknown (0x5): The record contains data in an unknown format. No type infor-
mation is present and the length of the Type field is zero.

• Unchanged (0x6): The record continues the payload of the preceding chunked
record. No type information is present and the length of the Type field is zero.

• Reserved (0x7): This TNF value is reserved for future use.

The remaining header fields are the length information for the fields of variable length
(Type Length, Payload Length, and ID Length), the type identification field (Type)
and the optional record identifier (ID). The ID field may be used to specify a URI
as a unique identifier for each record. This identifier can be used to cross-reference
between multiple records.
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Fig. 2.3 Multiple NDEF
records form an NDEF
message (based on [29])

The Payload field carries the actual data. The data is formatted and interpreted
according to the type information in the Type field. If, for instance, the Type field
specifies the MIME media type “text/x-vcard”, then the payload is an electronic
business card in the vCard format.

A data packet can be divided into multiple record chunks. In this case, the
first record contains the type information and the optional record ID. The remain-
ing chunks do not carry this information. Instead, their TNF field is set to 0x6
(“unchanged”). Except for the last chunk, every record chunk has its CF set, indicat-
ing that the payload is continued in the next record.

2.2.4.2 NDEF Message

Figure2.3 shows the layout of an NDEF message. An NDEF message consists of
one or more NDEF records. The first record of an NDEF message has its MB flag
set. The last record has its ME flag set. The special case of an empty NDEF message
is encoded by a single NDEF record with both, MB and ME set and with the TNF
0x0 (“empty”).

2.2.5 NFC Record Type Definition (RTD)

The NFC Record Type Definition (RTD, [31]) defines two namespaces for NDEF
record types: the NFC Forum well-known types and the NFC Forum external types.

NFC Forum well-known types are reserved for specifications of the NFC Forum.
The type name is a Uniform Resource Name (URN) of the form “urn:nfc:wkt:
<NAME>”, where <NAME> identifies the type. To save storage space, the prefix
“urn:nfc:wkt:” is not included into the Type field. Well-known type names can be
either global or local. Global types start with an upper-case letter and have the same
meaning regardless of their context. Local type names start with either a lower-case
letter or a digit. They are defined for a specific context and are only valid within that
context.

NFC Forum external types are reserved for self-allocation of global type names by
organizations [31]. The type name is a URN of the form “urn:nfc:ext:<DOMAIN>:
<NAME>”, where<DOMAIN> is the issuing organizations Internet domain name
and <NAME> identifies the type within that organization’s namespace. In order to
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Table 2.4 Format of a text record payload (based on [33])

Field Offseta Size Coding of field content

Status byte 0 1 byte Bit 7: Encoding of the text field (0: UTF-8, 1: UTF-16)

Bit 6: Reserved for future use

Bit 5..0: Length n of the language code

Language code 1 n bytes ISO/IANA language code (US-ASCII encoded)

Text 1 + n m bytes Actual text (UTF-8/UTF-16 encoded)
aIn bytes

save storage space, the prefix “urn:nfc:ext:” is not included into the Type field. As
opposed to well-known type names, external types are case-insensitive.

The NFC Forum has defined a set of well-known types. These specifications cover
primitive data types as well as complex data structures for specific use-cases.

2.2.5.1 Text Record Type

The Text Record Type Definition [33] specifies a record format for free-form text
with language and encoding information. The text record has the well-known type
name “urn:nfc:wkt:T”. Table2.4 lists the payload format of a text record. The payload
consists of a status byte, a language code and the actual text. The language code can
be used to choose one out of multiple text records that best-fits a user’s language
preferences.

2.2.5.2 URI Record Type

The URI Record Type Definition [34] specifies a record format for URIs. Thus,
the URI record can be used to store website addresses, e-mail addresses, telephone
numbers, SMS messages and other information that can be represented by URIs.
The URI record has the well-known type name “urn:nfc:wkt:U”. Table2.5 lists the
payload format of a URI record. The payload consists of an identifier code and a URI
field. The identifier code is used to reduce the size of the URI by truncating common
prefixes from the URI that is stored in the URI field. Table2.6 lists the most common
identifier codes. For example, the URI “http://www.mroland.at/” could be truncated
to the URI field “mroland.at/” and the identifier code 0x01.

Table 2.5 Format of a URI record payload (based on [34])

Field Offseta Size Coding of field content

Identifier code 0 1 byte Prefix code for compressing the actual URI

URI field 1 n bytes Remaining URI (UTF-8 encoded)
aIn bytes



26 2 Basics

Table 2.6 Common
identifier codes and their URI
prefixes (based on [34])

Identifier code URI prefix

0x00 No prefix, the URI field contains the full URI

0x01 “http://www.”

0x02 “https://www.”

0x03 “http://”

0x04 “https://”

0x05 “tel:”

0x06 “mailto:”

Fig. 2.4 Example of a smart poster record (based on [29])

2.2.5.3 Smart Poster Record Type

While many NFC devices associate a default action with stand-alone URI records
(e.g. website addresses are opened in a web-browser), the URI Record Type
Definition only specifies a container format. Instead, the NFC Forum created the
Smart Poster Record Type Definition [32] to extend URI records with additional
functionality.

A smart poster record (see Fig. 2.4) has the well-known type name “urn:nfc:wkt:
Sp”. Its payload is an NDEF message that consists of one URI record and optionally
one or more other records. These other records can be text records that describe the
URI in one or more languages, icon records that contain graphics that should be
displayed together with the text, size and type information of the data referenced
by the URI and a recommended action that should be performed with the URI. The
Smart Poster Record Type Definition specifies three types of recommended actions:
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1. Execute the default action associated with the given URI.
2. Store the URI for later use.
3. Open the URI in an appropriate editor.

Typical applications of smart poster records are advertisements with active content.
Such an NFC-enabled advertisement could, for instance, link to a website or contain
a ready-made SMS message for purchasing tickets [29].

2.2.5.4 Connection Handover Reference Application

The Connection Handover reference application [35] provides a means of using
NFC as an enabler for other communication technologies (e.g. Bluetooth or Wi-Fi).
The connection handover specification defines record types, message structures and
handshake protocols for establishing a link through virtually any alternative carrier.

2.2.6 Card Emulation

There are several different options for performing card emulationwith anNFCdevice.
Card emulation could be performed by a secure element or by the software on the
application processor (“host processor”) of the device itself.

2.2.6.1 Secure Element

A secure element (SE) is a smartcard microchip that is integrated into an NFC device
and connected to the NFC controller. In card emulation mode, the NFC controller
routes all communication to the secure element.

A secure element can be a dedicated microchip that is embedded into the NFC
device (embeddedSE). Such a chip could also be combined into a single packagewith
the NFC controller. An example for such a combined chip module is NXP’s PN65N
which contains a PN544 NFC controller and a secure element fromNXP’s SmartMX
series. Another possibility is the combination of the secure element functionalitywith
another smartcard/security device that is used within the NFC device. For instance,
a UICC (also known as the SIM card) is a smartcard that is already present in many
NFC devices (particularly in NFC-enabled mobile phones). Other security devices
that are available equippedwith smartcard technology are (micro) SD (secure digital)
cards.

Many secure elements (e.g. NXP’s SmartMX) are standard smartcard ICs as used
for regular contact and contactless smartcards. They share the same hardware and
software platforms. The only difference is the interface they provide: Instead of (or
in addition to) a classic smartcard interface according to ISO/IEC 7816 (for contact
cards) or an antenna (for contactless cards), the secure element has a direct interface
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for the connection to the NFC controller. Such interfaces are theNFC Wired Interface
(NFC-WI, [5]) and the Single Wire Protocol (SWP, [9]).

2.2.6.2 Software Card Emulation

Typical use-cases for card emulation are security critical applications such as access
control and payment. For these applications the secure element provides secure stor-
age, a secure execution environment and hardware-based support for cryptographic
operations. Therefore, emulation by software on a non-secure application processor
was not widely used in the past. Nevertheless, several NFC controllers and NFC
devices have support for software card emulation.

Software card emulation or host-based card emulation (sometimes also referred
to as “soft-SE” [11]) was first made available on NFC-enabled mobile phones by
BlackBerry on their BlackBerry 7 platform. A BlackBerry application can emulate
NFC Forum type 4 tags and ISO/IEC 14443-4 smartcards. For an NFC Forum type
4 tag, the application simply needs to define an NDEF message that is used by the
operating system to emulate the virtual tag. For an ISO/IEC 14443-4 smartcard,
the application receives the command APDUs sent by the smartcard terminal and
generates corresponding response APDUs.

BlackBerry mobile phones were the first mobile phones known to support soft-
ware card emulation. However, patches [42, 43] to the CyanogenMod aftermarket
firmware for Android devices brought software card emulation to Android devices
with NXP’s PN544 NFC controller. Starting with Android 4.4, software card emu-
lation became available on most Android NFC devices under the term host-based
card emulation (HCE). Besides that, some NFC readers (e.g. ACS ACR 122U) can
be used to perform software card emulation on PC platforms.

2.3 EMV

EMV is a series of standards for chip-based credit and debit cards. The EMV stan-
dards were initially created by Europay, MasterCard and Visa (hence the acronym
EMV) in an effort to design a worldwide standard for chip-based payment cards and
payment terminals [8]. Today, the EMV standards are maintained by EMVCo, an
organization owned by the credit card companies American Express, JCB, Master-
Card and Visa [8].

The EMVCo website [8] names several advantages of EMV chip-based payment
cards in comparison to chip-less cards (e.g. magnetic stripe cards):

• EMV cards prevent fraud because the smartcard chip can contain data that is close
to impossible to be cloned while magnetic stripes can easily be copied.

• Asmartcard is capable of computinguniquedigital signatures/authentication codes
for each transaction in both, online and offline environments.
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• Smartcards support enhanced cardholder verification methods (e.g. offline PIN
verification).

• A smartcard chip has significantly more data storage than a magnetic stripe card.

The EMV Integrated Circuit Card Specifications for Payment Systems [7] are based
on ISO/IEC 7816 smartcard standards. An EMV payment card (also referred to
as Chip & PIN card) can support various online and offline transaction modes.
Possible security measures include authenticating the card to the payment terminal,
authenticating the payment terminal to the card and authenticating the cardholder
to the card. Besides interaction between the terminal and the smartcard, they also
define test methods, secure key management, the interface between the payment
terminal and its users and the interface between the payment terminal and the bank
that manages the payment.

EMVCo does not only support contact-based smartcards. Instead, they extended
their scope to contactless and mobile payment systems. The EMV Contactless Spec-
ifications for Payment Systems [6] are a series of standards for contactless payment
systems based on ISO/IEC 14443 and ISO/IEC 7816. The EMV specifications for
contactless payment systems are a mere aggregation of four different payment sys-
tems (one by JCB, one by MasterCard, one by Visa and one by American Express).
For each of these payment systems, the terminal has a separate software module that
processes transactions.

MasterCard’s EMV-compliant contactless payment system is called MasterCard
PayPass. It supports two different operating modes: emulation of the magnetic stripe
system (EMV Mag-Stripe mode) and EMV mode. In Mag-Stripe mode, the card
stores information comparable to that on the magnetic stripe and generates dynamic
authentication codes to authorize payments.As the authorization codes do not contain
any information about the payment transaction, this mode is for online transactions
only. In EMV mode, the card authenticates itself to the terminal and signs the pay-
ment transaction, making it possible to verify and store transactions offline for later
processing.

Other EMV-compliant contactless payment systems are Visa’s payWave and
American Express’s ExpressPay.
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Chapter 3
Exemplary Use-Cases

Mobile phones and Near Field Communication (NFC) have the potential to be
important tools in future automotive environments. Particularly in the field of energy
efficiency and economic improvements, NFC opens up for significant simplifications
and can provide a good basis for securing systems.

Mobile phones become our every day universal tools. Statistics reveal that, on
average, there is more than one mobile phone contract per EU citizen [4]. Especially
with regard to automotive environments, mobile phones and NFC could significantly
influence future applications.

At themoment,mobile phones aremainly used asminor add-ons to the automotive
environment. For instance, the mobile phone is used as an in-car telephone through
simple hands-free equipment. Smart phones are also often used as autonomous navi-
gation systems. However, there is a trend towards further interconnecting the mobile
phone and the automobile: In-car navigation systems can often access the mobile
phone address book to browse for destination addresses. Some cars can even (auto-
matically) call breakdown or emergency services through the hands-free equipment.
In the future, the mobile phone could become the central interface between the auto-
mobile and the cellular network (and, consequently, between the automobile and the
Internet).

NFC technology has several benefits that ease integration of mobile phones into
automobiles. Recent research by Steffen et al. [15] shows various new possibilities
for NFC in automobiles. For instance, NFC provides an easy, reliable and fast means
to establish wireless connections (like Bluetooth andWi-Fi) between the automobile
and other devices (e.g. anNFC-enabled handset). This capabilitymakes it particularly
easy to link a mobile phone to an automotive computer system. Besides this “out-
of-band pairing” capability, NFC with its secure element could also be used as a
replacement for car keys.

While the NFC channel on its own is susceptible to eavesdropping and potentially
also to message injection, its short communication distance adds a notion of explicit
user interaction. I.e. by tapping an NFC tag or an NFC reader, users declare that they
explicitly intend to trigger a specific action.
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3.1 Improving Efficiency in Automotive Environments

A link between the computer system of an automobile and a mobile phone opens up
a whole new range of possibilities for improving the efficiency of processes in and
around cars. This thesis focuses on two main aspects:

• Each mobile phone is tightly bound to a specific person. Thus, it is possible to
derive a context for customization of the automobile system based on the detected
mobile phone.

• Amobile phone provides a permanent link to the cellular network and the Internet.
In comparison to equipping a car directly with a cellular modem, the mobile phone
is bound to its user’s cellular network account. Thus, it is possible to easily switch
to a user’s preferred cellular network in a multi-user environment by using each
user’s mobile phone.

Three groups of applications that rely on those aspects are analyzed in detail in this
thesis:

1. personalization of a car to its user in amulti-user or even amulti-car environment,
2. transmission of data generated by sensors of a vehicle, and
3. intelligent cloud-based multimedia applications.

3.1.1 Personalization in a Multi-user/Multi-car Environment

Radio Frequency Identification (RFID) technology is alreadywidely used in automo-
biles. An example is car immobilizer systems: An RFID chip is embedded into each
car key. The immobilizer will disable the car ignition if it does not detect a genuine
RFID chip. Thus, it becomes more difficult to clone a car key.

Instead of a passive RFID transponder, an NFC-enabled mobile phone could be
used to perform this task. In that case, the secure element inside the phone would
contain an application that generates the codes necessary to disable the immobilizer
system. A major benefit of this scenario would be that the secure element is capable
of using state-of-the-art cryptography and guarantees a high level of security.

In addition to the token for the immobilizer system, anNFC-enabledmobile phone
has the potential to replace thewhole car key (Fig. 3.1). If a car is equippedwithNFC-
enabled door locks, the doors can be unlocked as soon as the mobile phone is brought
into close proximity of such an NFC-enabled door lock (cf. Steffen et al. [15]).

Additionally, an NFC-based car key could allow the car to uniquely identify each
user (i.e. each driver). This can be achieved with a user identifier that is unique for
each user’s secure element application. Therefore, keys for a car can be bound to
specific users. This allows the automotive computer system to distinguish between
multiple drivers upon unlocking the car and throughout its use. As a consequence, a
car can adapt to its driver. For instance, parameters like the position of the seat and the
mirrors, the air-condition setup and settings of the car radio could be automatically
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Fig. 3.1 An NFC-enabled
mobile phone can act as car
keys and additionally
provide driver identification
(based on [14])

adjusted to each individual driver (cf. Steffen et al. [15]). An automobile could,
therefore, “learn” each driver’s individual profile, associate it with the driver’s NFC
key and recall that profile whenever the driver’s NFC key is used.

In comparison to an identification solution that uses only Bluetooth to detect the
current driver, an NFC-based solution has the advantage that the driver needs to bring
the NFC key in close proximity to a touch point and, therefore, expresses an explicit
intention. In a multi-user environment, this assures that only the person that actually
intended to claim the car is detected as the current driver. For a Bluetooth-based
system, it might be problematic to detect the current driver if multiple persons inside
the car would qualify as drivers (i.e. if multiple persons had Bluetooth-enabled car
keys that would allow them to use that particular car).

Besides parameters for the comfort of the driver, future automobiles could also
optimize parameters of the engine control unit to each driver’s individual profile
to increase the energy efficiency of the car (cf. BMW’s project Ilena [6]). Start-
stop systems or kinetic energy recovery systems could use the operational profile
of a car to adapt to each driver’s habits. Especially hybrid cars could gain valuable
information to optimize the use of available energy [6].

Another application of per-user operational profiles is the evaluation of that data
with regard to acceleration and deceleration characteristics. This information could
be used to provide the drivers with feedback and to suggest improvements of their
driving habits.

Organizations owningmultiple vehicles that are shared bymultiple users (i.e. large
companies as well as car-sharing providers and car-rental companies) could particu-
larly benefit from NFC-based car key solutions (cf. Steffen et al. [15]). Permissions
for access to individual vehicles can bemanaged online through a centralized system.
Thus, an NFC-based system could significantly simplify and optimize shared use of
cars.

Figure 3.2 illustrates a basic system architecture for over-the-air management of
NFC-based car keys: The secure element contains an application that stores access
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Fig. 3.2 Basic system architecture for over-the-air management of NFC-based car keys (based
on [14])

control tokens for one or more cars. The vehicle fleet manager can add, update and
revoke these permissions across the cellular network. Every driver can be assigned
permissions for a specific vehicle and a specific time span. Lost or stolen car keys
(i.e. lost or stolen mobile phones) can be revoked over the cellular network.

Such a system has several benefits: Time-consuming activities like the return/
exchange of physical keys are no longer necessary. Moreover, the overall security is
increased as users (e.g. employees) can only access their assigned vehicles during
a predefined period of time. Furthermore, a fleet management system like this can
easily be combined with the automation of other tasks like, for instance, keeping a
driver’s log.

Nevertheless, using the mobile phone as a car key also has some disadvantages.
A mobile phone is not as robust as a regular car key. For instance, the mobile phone
may get damaged from external conditions like heavy rain or snowfall. Even worse
if the user wears gloves or has both hands full of bags the phone may fall on the
ground and break.

3.1.2 Transmission of Data Generated by Vehicle Sensors

NFC can be used to quickly establish other wireless communication channels like
Bluetooth or Wi-Fi [11]. Parameters and shared secrets for the wireless link are
negotiated across the NFC interface in order to establish the communication channel
(out-of-band pairing).
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In an automotive environment, a mobile phone can use this functionality to
establish a Bluetooth or Wi-Fi link to the computer system of an automobile. This
provides a means to connect a vehicle to global networks (i.e. the cellular network
and, consequently, the Internet) through the mobile phone.

An application of this connection to the Internet is intelligent systems for traffic
optimization. Position andmotion information can be transmitted to an online system.
This allows for early detection of traffic jams and for energy-efficient guidance of
traffic by giving useful tips about optimized speed in relation to green phases of traffic
lights. In addition, the collected data could be used to analyze the causes of accidents
and to even avoid looming accidents by early detection of critical situations.

In case of a breakdown or a looming breakdown it is possible to find a suitable
repair shop and—if necessary—a towing service based on the error diagnostics (e.g.
sensor data), the state of the car, the current position and the planned route. For
instance, it would be possible to continuously monitor sensors of the motor control
unit. As an example, faulty operating conditions of the engine of a car could be
detected by analyzing the exhaust fumes based on data retrieved from the lambda
probe. Similarly, an increased use of fuel could also be the result of an imminent
defect of the engine.

An onlinemonitoring systemwould allow early detection and—ideally—immedi-
ate corrective actions in case of such fault conditions. Otherwise, such problems are
possibly detected only after thousands of kilometers (e.g. during scheduled service
intervals or after an actual breakdown). Additionally, data on phases of green traffic
lights, on traffic jams, and on the current traffic situation in general could be used to
adapt parameters of a vehicle (cf. BMW’s project Ilena [6]).

While those services could significantly improve energy and economic efficiency
as well as the comfort of the driver, they also increase the vulnerability to security
threats and attacks: the mobile phone acts as an interface between the automotive
computer system, the cellular network and—consequently—the Internet. Moreover,
sensitive data is exchanged across the cellular network. On the one hand, this connec-
tion is a central part of many approaches to increase the efficiency of automobiles.
On the other hand, a connection between the automotive computer system and its
surrounding world opens up an avenue for intrusions into that system.

Recent research (cf. [8, 10, 12, 16]) reveals, however, that automotive electronics
is sensitive to various attacks that allow a potential attacker to take over control of
parts of the (or even the whole) automotive system. Threats range from showing text
on a car radio display to putting brakes out of operation or even forcing a car to
accelerate [1, 10]. Protection from security issues is, therefore, a core requirement
for integrating efficiency-increasing measures based on mobile phones and NFC into
vehicles.

These systems could benefit from NFC secure element technology that provides
secure storage, encryption and digital signature. Remote systems can use digital
signatures to verify the integrity and authenticity of transmitted data. Signature—
through the secure element—could even link data to a specific driver. Similarly,
encryption assures that only the designated recipient can use encrypted data. Keys
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Fig. 3.3 Schematic system architecture for secure data transfer between an automotive computer
system and a car repair shop back-end system or a traffic optimization system (based on [14])

for digital signature and encryption can be securely stored inside the secure element.
Thus, an attacker can neither extract nor exchange these secret keys in order to
intercept communication.

Figure 3.3 shows a schematic system architecture for secure communication
between a car and a repair shop back-end system (or an intelligent traffic optimiza-
tion system): First, the out-of-band pairing functionality of NFC is used to establish
a Bluetooth or Wi-Fi link between the car and the mobile phone. Then, the mobile
phone secures the communication between the car and the remote back-end sys-
tem using the secure element. The secure element encrypts every message with the
back-end public key and signs each message with the driver’s secret key. Messages
from the back-end are encrypted with the driver’s public key and can, therefore, only
be decrypted by that driver’s secure element. An additional signature assures the
authenticity and integrity of the message. The communication between the mobile
phone and the car is protected in a similar manner. Consequently, only the legitimate
driver can decrypt messages from the car and can modify the car parameters.

3.1.3 Intelligent Cloud-Based Multimedia Applications

Another group of services that could benefit from integrating NFC into automobiles
(in terms of mobility and comfort) are multimedia applications.

An example use-case is a music library in the cloud. Music retailers could offer
this service for their customers: Users have their own virtual music libraries that are
accessible over the Internet. The libraries are directly linked to an online store where
newmusic can be bought and added to the libraries. The car radio (in-car multimedia
system) can be linked to such a library. The radio can then access the media library
over the Internet. As with the transmission of sensor data, an NFC-enabled mobile
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Fig. 3.4 Scenario for access to a cloud-based multimedia service

phone could function as the gateway between the in-car multimedia system and the
Internet. Similarly, the secure element could be used to secure the system against
malicious activities.

Figure 3.4 depicts a scenario for access to a cloud-based multimedia service.
After a connection between the mobile phone and the car has been established using
the out-of-band pairing capabilities of NFC, the user is authenticated to the online
service based on a digital signature issued by the secure element. After successful
authentication, the in-car multimedia system can access the music library. Further-
more, the in-car multimedia system could enable the user to directly buy new music
in the online store. In that case, payment could be securely authorized through a
credit card stored on the secure element inside the mobile phone.

3.2 Generalized Use-Cases

These use-cases take advantage of several aspects of NFC technology. In order to
analyze the security requirements and the current state of security of these features
of NFC, it is necessary to derive more general scenarios from these use-cases. Two
aspects of NFC-enabled mobile phones have a particular focus throughout all of the
above use-cases: the out-of-band pairing capability and the secure element.

3.2.1 Out-of-Band Pairing with NFC

The NFC link itself only supports data rates of up to 424 kbps.While this is sufficient
for transferring small amounts of data, it is too slow for applications that need
to exchange a large data volume. There exist other, more suitable communication
technologies—for instance Bluetooth and Wi-Fi—for the exchange of large vol-
umes of data. However, configuration of these fast wireless carriers typically requires
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complex configuration procedures or even the knowledge of device names, addresses
and parameters [11].

Tomaintain the simplicity of establishing connections and exchanging information
with a simple touch gesture throughNFC,while at the same time being able to achieve
high data rates, NFC can be used as an “out-of-band” channel for establishing other
wireless communication technologies between two devices (“pairing”). This capa-
bility is, therefore, called out-of-band pairing. The NFC interface is used to auto-
matically negotiate available interfaces, addresses, parameters and shared secrets in
order to quickly and easily establish a fast wireless communication channel for the
actual data exchange.

The NFC Forum created the Connection Handover technical specification [13]
which defines a reference application for negotiating alternative communication
channels. The reference application consists of NDEF record definitions and hand-
shake protocols. Two connection handover protocols are available: negotiated han-
dover and static handover.

Negotiated handover is intended for use with NFC peer-to-peer mode. With this
protocol, two NFC devices can find a common alternative carrier that best suits both
devices. The two devices exchange lists of their supported communication interfaces
and choose the most efficient interface that both have in common. Besides the type
of the interface, they also exchange interface parameters, each other’s communi-
cation endpoint addresses and can even establish a shared secret for securing the
communication.

Static handover is intended for use with NFC tags and NFC reader/writer mode.
With this protocol anNFCdevice can retrieve static information about available com-
munication interfaces, interface parameters and communication endpoint addresses
that are stored on NFC tags. Thus, this handover protocol enables simple out-of-band
pairing even for non-NFC devices.

3.2.2 Secure Element

The secure element serves the thirdmode of operation of NFC: card emulationmode.
In this mode, an NFC device acts as a contactless smartcard and can interface with
existing RFID reader infrastructure.

Typically, secure elements are standard smartcard microchips as used for contact
and contactless smartcards. Instead of (or in addition to) the classical contact-based
or contactless interfaces, a secure element chip is equipped with a dedicated interface
to connect to the NFC controller. The NFC controller can use a secure element in two
modes: externalmode and internalmode. In externalmode, theNFCcontroller ties the
secure element to the NFC antenna and, therefore, provides the RF (radio frequency)
interface to interact with RFID readers. In internal mode, the NFC controller links
the secure element to the application processor. Thus, applications that run on the
application processor can access the secure element as if it was a smartcard attached
to a reader device.
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The use-cases in Sect. 3.1 perform various tasks with the secure element:

• The secure element is used as a security device for identification, authentication
and messaging security (i.e. for secure storage, digital signature and encryption).

• The secure element is used as a digital wallet to securely store payment cards.
• Data and applications contained within the secure element are managed over the
mobile phone network (“over-the-air”).

3.2.2.1 Security Device

A secure element is based on the same hardware and software platforms as regular
smartcards. Consequently, it provides the same set of functionality and protection
as regular smartcards. A secure element contains secure storage, provides a secure
execution environment and has hardware-based support for cryptographic operations.
The IC (integrated circuit) itself, as well as its software, is protected against various
attacks that aim for retrieval or manipulation of stored data and processed operations.

A secure element can store secret cryptographic keys in a way that they cannot
be read from outside the secure element. Thus, it can operate as an uncloneable
security device that can perform decryption and digital signature based on such
keys. Similarly, public keys can be stored in a way that only authorized parties can
update them. Consequently, a secure element can operate as an unmodifiable security
device for encryption and verification of digital signatures.

In externalmode, this capability can be used to identify and authenticate the holder
of an NFC device to an RFID smartcard reader over the contactless RF interface.
Cryptographic key agreement and authentication protocols assure mutual authenti-
cation between the secure element and the external device and also establish shared
secrets for guaranteed end-to-end encryption for secure exchange of user information
and credentials.

The security device capability is not only useful for external mode. In internal
mode, the secure element could be used to securely authenticate toweb/cloud services
just in the sameway as it does with external reader devices. The secure element could
also be used by apps on the application processor to encrypt and decrypt messages
based on securely stored keys.

3.2.2.2 Digital Wallet

A digital wallet is a specialized security device dedicated to payment cards, loyalty
cards, digital money, and coupons. Hence, the security device capability of a secure
element fulfills all the security requirements of a digital wallet.

For example, a credit card requires unmodifiable storage of card identification data
(e.g. credit card number, validity period, card holder information). It also requires
uncloneable storage of secret keys and the capability to perform cryptographic oper-
ations for authentication and authorization of payments.
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Virtual credit cards (or payment cards in general) stored inside the secure element
can be useful in both external mode and internal mode. In external mode, an NFC
device can be used just like any other contactless credit card with any contactless-
enabled credit card terminal. In internal mode, the virtual credit card could be used
for secure “card-present” payment in apps and on web pages.

3.2.2.3 Over-the-Air Management

While classical smartcards are typically only configured once before they are dis-
tributed to their users, this approach is not feasible with secure elements. The set of
services that a secure element is used for can change at any time while the secure
element is in the field. Therefore, it must be possible to manage the applications and
data stored on the secure element over the cellular network or the Internet. Typically,
the secure element as a whole is managed by a trusted service manager (cf. [7]). This
trusted service manager can install, configure, disable and uninstall applications and
can lock lost or stolen secure elements as a whole. Individual applications could also
be managed directly by their respective service providers.

For most types of secure elements, the operating system or an application running
on the application processor need to tunnel the communication between the secure
element and the remote managing entity through the internal mode of the secure
element.Only for a universal integrated circuit card (UICC) based secure element, the
management link could be established directly through the subscriber identitymodule
(SIM) application and does not necessarily need to pass through the application
processor. In any of these cases, application and data management can be performed
over an encrypted and mutually authenticated communication channel. Security and
management protocols are defined by GlobalPlatform (cf. [5]).

3.3 Identification of Security Aspects

The various application scenarios have different requirements with regards to secu-
rity. For further analysis, the three operating modes of NFC devices are examined
separately.

3.3.1 Peer-to-Peer Mode

Negotiated connection handover and peer-to-peer communication in general require
authenticity and integrity protection because recipients want to be sure that they
receive the data that they expect to receive and that no attacker is able to present
forged data to them. In addition, some peer-to-peer communication (in particular
the exchange of shared secrets and other sensitive data) also requires confidentiality.
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Otherwise, an attacker could acquire sensitive data by tapping into the communica-
tion. If shared secrets for encryption of an alternative wireless carrier are intercepted
by an attacker, the attacker could then also eavesdrop on the communication on
that carrier. Without proper authenticity and integrity protection, an attacker could
possibly even manipulate the communication. In the case of a negotiated connec-
tion handover, this could allow an attacker to manipulate endpoint addresses for
the alternative wireless carrier. Thus, attackers could redirect the established wire-
less link through their own equipment and, consequently, take full control over that
communication.

However, there exist protocols to prevent such attacks. For instance, theNFC-SEC
protocol suite provides mechanisms for key agreement, encryption and integrity
protection of the data exchange protocol across the NFC peer-to-peer communica-
tion channel. The protocol suite has been first standardized in ECMA-385 [2] and
ECMA-386 [3] in 2008 and has been adopted by ISO in the ISO/IEC 13157 series [9]
in 2010.

3.3.2 Reader/Writer Mode

Static connection handover has similar requirements as negotiated handover.
Recipients want to be sure that they receive the data that they expect to receive
and that no attacker is able to present forged data to them. As a result, static connec-
tion handover needs authenticity and integrity protection. As opposed to negotiated
handover, NFC tags with static handover information are typically located in public
places and anybody should be able to read them. Thus, confidentiality is usually not
necessary.

Reading tags in general demands a high level of trust, authenticity and integrity
protection. On the one hand, NFC tags are usually located in publicly accessible
places. Therefore, it could be fairly easy for an attacker to mess with these tags.
On the other hand, however, users expect that it is safe to tap these tags with their
NFC-enabled mobile phones. At the same time, they expect that a tag triggers an
immediate action on their device (e.g. establish a wireless connection, open a web
page, send an SMSmessage). This requires a method to establish trust in the contents
of NFC tags in order to create a good user experience for “tagging” applications
(i.e. applications that involve interaction with NFC tags).

3.3.3 Card Emulation Mode

The use-cases identified in this chapter require the secure element to provide
secure storage memory and cryptographic operations for authentication, message
encryption and authorization of payment transactions. In general, the secure ele-
ment, therefore, needs to guarantee authenticity, integrity protection, confidentiality
and non-repudiation.
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Card emulation mode has a significant advantage in terms of security: It is tightly
linked to the security of regular smartcards. Regular smartcards have been used
for security critical tasks for a long time. Most modern smartcard microchips are
certified according to Common Criteria security standards for smartcards. The chips
are designed to be tamper-proof and robust against many physical and electrical
attacks. Smartcard operating systems are also carefully designed to mitigate all kinds
of attacks. Smartcard application software has existed for a long time too. Thus,
application software, protocols, and standards had a long time to mature.

A secure element is just a regular smartcard chip with specialized interfaces to
its surrounding world. As a consequence, it inherits all the security properties of
regular smartcards. Nevertheless, card emulation mode introduces a new path to the
secure element beyond the external contactless interface. To fulfill the use-cases in
this chapter, many applications on the secure element would be accessible from the
application processor through internalmode.While communication in externalmode
is only possible when the NFC device is in read range of a contactless reader device,
applications on the application processor may access the secure element at any time.
Moreover, applications running on the application processor also have the ability
to use the cellular network connectivity. While this is, for instance, necessary for
over-the-air management, it might open a new path for intruders.
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Chapter 4
Related Work

There have been several research activities focused on the security and privacy of
Near Field Communication (NFC) and its underlying Radio Frequency Identification
(RFID) technologies during the last couple of years. To assess the current status of
NFC security and privacy, it is necessary to collect preceding research results and to
analyze the issues and solutions identified in them.

4.1 Communication Protocol

Haselsteiner and Breitfuß [45] thoroughly evaluate the security and privacy aspects
of the NFC signaling layer (as defined in ISO/IEC 18092 [51]). They conclude
that the most serious threats are eavesdropping and data corruption. Eavesdropping
is an attack where the attacker listens to the RF (radio frequency) waves of the
communication between two NFC devices from a longer distance. Data corruption
is a scenario where the attacker sends arbitrary data on the same frequency as the
real sender, so that the actual receiver is unable to decode the real sender’s data,
effectively resulting in a denial-of-service. Attacks which they identified as also
possible (but difficult) are data modification and data insertion. Data modification is
a scenariowhere an attacker changes specific bits in the communication to selectively
manipulate the meaning of the data. However, Haselsteiner and Breitfuß state that
data modification is only possible for certain modulation and coding schemes. In
a data insertion attack, the attacker uses the idle time between a command and a
response to send an alternative response. Another attack scenario identified by them
is theman-in-the-middle attack,where the attacker routes all communication between
the two NFC devices over a third device. This gives the attacker full control over the
data exchange. However, Haselsteiner and Breitfuß conclude that man-in-the-middle
attacks are impossible due to the proximity between the two NFC devices.

As a universal solution against eavesdropping, data modification and data inser-
tion, they suggest to use a secure channel that provides encryption and integrity pro-
tection [45]. This is also the approach that has been followed in recent standardization
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activities: ISO dedicated the ISO/IEC 13157 [52] series to NFC security related
standards. First standards of this series define a secure channel for NFC and have
been adopted by ISO in early 2010. However, it is unknown if there are already appli-
cations based on these standards. Also, these standards have not yet been adopted
into NFC Forum specifications. As an alternative to the security protocols defined
in ISO/IEC 13157, the TLS Working Group of the Internet Engineering Task Force
(IETF) published a draft [93] on using transport layer security (TLS) over the NFC
Logical Link Control Protocol (LLCP) layer to create authenticated and encrypted
LLCP connections.

4.2 Flaws in Legacy Contactless Chip Card Systems

Besides the NFC-specific peer-to-peer communication mode, NFC devices are capa-
ble of interacting with proximity RFID chip card systems in reader/writer mode as
well as in card emulation mode. NXP MIFARE Classic is one of these legacy chip
card systems that can be read and written by many NFC-enabled handsets, and that
can be emulated by many secure elements. MIFARE Classic, a technology that cel-
ebrated its 20th anniversary in 2014, is still in wide use. Therefore, its integration in
NFC-enabled mobile phones—and the resulting backward compatibility to existing
contactless infrastructures—is considered essential for a success of NFC.

Nevertheless, the cryptography ofMIFAREClassic has been broken in 2007.Nohl
et al. [79, 80] reverse-engineered the cryptographic circuit of aMIFAREClassic card
and obtained the secret MIFARE Crypto-1 cipher. They evaluated the cipher with
regard to its weaknesses. They identified several weak parts (a linear feedback shift
register (LFSR) based random number generator that derives its value from time,
a non-linear component in the feedback loop, and an output derived from a fixed
subset of bits) and conclude that the security of the proprietary Crypto-1 algorithm is
primarily based on obscurity. Nohl [78] performed further cryptanalysis of Crypto-1
to improve the performance of attacks.

Independently, de Koning Gans et al. [62] found a method to recover the key
stream of recorded MIFARE Classic transactions. They used this information to
read parts of a MIFARE Classic card without actually knowing the secret key.

Courtois et al. [16] propose an algebraic method to recover the secret key of
the Crypto-1 cipher from a known initialization vector and 50 bits of the encrypted
output. They claim that their attack can be performed within several hundred seconds
on a standard personal computer (PC) platform.

By reverse-engineering the communication between a MIFARE reader and a
MIFARE Classic card, Garcia et al. [32] found two methods to attack a MIFARE
Classic system: With the first method, an attacker can obtain the secret keys from a
reader without possession of an actual card. The second method allows obtaining the
keys as well as the plaintext of the communication from a recorded communication
between a reader and a card.
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Teepe [92] summarizes the vulnerabilities of MIFARE Classic and also presents
strategies to reduce their threats.

Further analysis by Garcia et al. [35] revealed that MIFARE Classic cards can
be attacked even without possession of a genuine reader device (i.e. a reader that
knows the secret keys). Instead, weaknesses of the authentication protocol and the
cipher can be abused to compute the secret keys with only a few (unsuccessful)
authentication attempts and pre-calculated lookup tables. Courtois [15] proposes an
improvedmethod of the card-only attack that does not require huge lookup tables and
only requires a few thousand authentication attempts. As a consequence, MIFARE
Classic is considered to be completely broken.

BesidesMIFAREClassic, other proprietary contactless chip card systems become
a target for attacks too. An example is HID iClass which has been dismantled by
Garcia et al. [33, 34].

While many broken products like MIFARE Classic have been superseded1 by
more robust products (e.g. MIFARE DESFire EV1), compatibility of NFC to these
legacy systems has its downside: It potentially leads to the believe thatNFCas awhole
is insecure and even dangerous because it is compatible to insecure technology.

4.3 Attacks on Contactless Smartcards

Besides potential vulnerabilities as a result of protecting cryptographic algorithms
in proprietary RFID systems by obscurity instead of robustness, there are also other
attack scenarios on contactless smartcards. For instance, power analysis (a form
of side channel analysis) could be used to reveal information about the operations
performed on a microchip (cf. Kocher et al. [61]). Thus, power analysis has the
potential to retrieve secret information that is processed in cryptologically robust
cryptographic operations (e.g. secret keys). A system that has proven vulnerable
to this class of attacks is MIFARE DESFire. This has been shown by Oswald and
Paar [81].

Typically, modern smartcard microchips are protected against various kinds of
physical and logical attacks by sensors and counter measures in hardware, and by a
robust design process (cf. [67]). Chip hardware and software, as well as their design
processes, are usually evaluated and certified according to high security standards.
Examples for such evaluation criteria are the various smartcard-related Common
Criteria protection profiles (cf. [24, 25] for examples of integrated circuit (IC) hard-
ware related protection profiles and [90, 91] for examples of card operating system
related protection profiles).While this thorough design processmitigatesmost known
attack scenarios, new and—up to now—unconsidered attack scenarios are still pos-
sible, as has been demonstrated by Barbu et al. [6].

1 Even though MIFARE Classic has a more robust successor for several years, it is still widely in
use.



50 4 Related Work

Apart from new vulnerabilities, there is also a class of well-known attack sce-
narios on (contactless) smartcards: relay attacks. Described by Conway [14] as the
“Grandmaster Chess Attack” and by Desmedt et al. [18] as the “mafia fraud”, relay
attacks are a means for impersonating someone else. Desmedt et al. [18] describe
their mafia fraud attack as follows:

A identifies himself to B. [B] is collaborating with C and C impersonates A [...] Then, D
checks the identity of C who is claiming to be A. [...] A and D are not aware of the [...] fraud.
[...] While D is checking the identity, C and B [...] sit in the middle between A and D. So B
and C pass all questions and all answers related to the [...] identification going from D to A
and vice-versa.

Thus, the relay attack (mafia fraud) can be seen as a simple extension of the com-
munication channel between A and D. Ideally, A and D do not notice any difference
between the relay scenario and direct interaction.

A variation of the relay attack is the wormhole attack in wireless networks. It has
been introduced by Hu et al. [49, 50]. The wormhole attack does not only tunnel the
communication between two endpoints A and D but instead relays packets received
from one or more senders at one location to one or more receivers at another location.
Hu et al. [49] describe the wormhole attack as an attack, where “[...] an attacker
receives packets at one point in the network, ‘tunnels’ them to another point in the
network, and then replays them into the network from that point.” They introduce
“packet leashes” as measure to detect wormhole attacks. A packet leash is additional
authenticated location and time information that is attached to each packet. Based
on that information, the recipient can then determine if the packet traveled across the
expected path or across a wormhole.

In 2005, Hancke [38] first applied relay attacks to ISO/IEC 14443 Type A based
smartcard systems. His relay system consists of a “mole” (relay reader; B in themafia
fraud scenario) and a “proxy” (relay card emulator; C in the mafia fraud scenario).
The mole and the proxy forward the demodulated and decoded bits of the data link
layer communication of the real card and the real reader through a fast ultra high
frequency (UHF) channel. His test setup could successfully relay communication
over a distance of up to 50m. Though, he admitted that there would be timing issues
during the anti-collision phase if there were multiple cards in the field of the real
reader. Hancke [38] explains that “this attack is invisible to application layer security
[...]” Thus, cryptographic protocols for confidentiality, authentication and integrity
cannot prevent relay attacks. Hancke [38] concludes that “if a contactless card could
be read while in a pocket, purse or wallet, a thief might be able to engage in the act
of digital pickpocketing while standing next to or merely walking past his victim.”
The victim, therefore, would not even notice the attack.

Kfir and Wool [56] describe a similar system. Through additional amplification
and filtering in the relay reader, they were able to access a victim’s card from a
distance of up to 50cm, which is a significant improvement over typical reading
distances of proximity RFID systems.

Drimer and Murdoch [20] show that relay attacks are also possible with contact
smartcards. Their scenario relays EMV Chip & PIN credit card transactions.
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Hancke [38], Kfir and Wool [56] and Hancke et al. [44] propose several counter-
measures against relay attacks:

• The RF interface of the card, when not in use, could be physically shielded with
a Faraday cage (e.g. aluminum foil).

• The card could contain additional circuitry for physical activation and deactivation
(e.g. an on-off switch).

• In addition to the card, a secondary authentication factor (e.g. password, PIN,
biometrics) could be used to verify legitimate use of the card.

• Hancke [39] states that “an attacker executing a relay attack cannot avoid causing a
delay in the system.” This suggests relay attacks can be prevented by determining
the distance through these delays. Thus, timing constraints could be used to limit
the delay that may be introduced by the relay channel. However, Hancke et al. [44]
conclude that the timing constraints of ISO/IEC 14443 are too loose to provide
adequate protection against relay attacks.

• Distance bounding protocols can be used on fast channels to determine the actual
distance between the card and the reader.

Distance-bounding is a sophisticated and effective countermeasure. This method
allows determining the distance between the real card and the real reader. They rely
on the fact that the “maximum propagation speed of the communication medium is
constant andknown” [40].Distance-boundingprotocols forRFIDandNFChavebeen
designed and evaluated in many publications (cf. [5, 40–42, 59, 60, 83]). However,
conventional channels and, in particular, the ISO/IEC 14443 communication channel
are too slow for accurate distance bounding [43].

Besides distance-bounding protocols there exist also other approaches to counter
relay attacks at the communication channel. For instance, Choudary and Stajano [12]
propose a protocol based on inducing noise on the communication channel. Though,
they admit that their scenario is idealized andwould not withstand a real-world attack
without further research.

4.4 Security and Privacy Aspects of NFC Devices

Several threats to security and privacy of NFC devices have been identified byMadl-
mayr et al. [69]:

• relay attacks,
• skimming of applications on the secure element,
• access to the secure element from the host controller,
• unencrypted peer-to-peer communication,
• privacy issues and identity spoofing due to static unique identifiers, and
• phishing and denial-of-service through manipulation of NFC tags.

Access to the secure element from the host controller and phishing/denial-of-service
through manipulation of NFC tags are the basis for the research conducted in this
thesis.
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4.4.1 Tagging and Peer-to-Peer Communication

Madlmayr et al. [69] assume that “the inhibition threshold of touching a tag or a reader
with the mobile phone is probably much lower than making an intended connection
with a wire.” Therefore, the average user will not be able to distinguish forged tags
from genuine tags. This makes applications based on NFC Data Exchange Format
(NDEF) tags potentially vulnerable to data modification. By modifying tag contents
or by replacing NFC tags, an attacker could perform various types of phishing and
social engineering attacks.

In 2008,Mulliner [73] evaluated various attack scenarios on existingNFC-enabled
mobile phones through their reader/writer mode capabilities (cf. tagging). He identi-
fies several suitable attack targets. Among them are bugs in the mobile phone system,
bugs and design flaws in mobile phone applications and the tag infrastructure itself.

Mulliner [73] explains that there are several possibilities to spoof tags. Some tags
that are deployed in the field are not write-protected at all. In that case attackers can
simply overwrite the tags with their spoofed NDEF data. Some tags are protected
by weak write keys. Particularly with MIFARE Classic, which is often used as an
alternative to standard NFC tags, write keys can easily be discovered (cf. Sect. 4.2).
Mulliner [73] has a solution even if the tags are permanently write-protected: An
attacker could destroy or shield the original tag and stick a new tag on top of it.

Mulliner’s analysis [74] of theNokia 6131NFCmobile phone reveals several flaws
in the NDEF implementation and the web browser that make the phone susceptible
to content spoofing with NDEF smart poster records. All of these spoofing attacks
follow a similar pattern: The phone usually displays the title record followed by
the uniform resource identifier (URI) record (Internet address, telephone number,
etc.). Consequently, an attacker could use a specially crafted title record to show
a falsified URI and push the real target URI off the screen. A user is likely to fall
for this trick without even noticing the manipulated URI. Therefore, attackers could
take advantage of this approach by redirecting the users to phishing websites or by
redirecting telephone calls or SMSmessages to their own premium rate service [74].
As most problematic he identified that JAR files containing executable application
code are automatically downloaded to the devicewhen referenced through aURI [74].
The user is then only one click (a confirmation dialog to run the application) away
from executing the application.

Verdult and Kooman [95] found several vulnerabilities in the Nokia 6131 NFC
and Nokia 6212 mobile phones that allow an attacker to initiate Bluetooth connec-
tions and Bluetooth file transfers with specially crafted NFC tags and peer-to-peer
communication. With one attack scenario an attacker can install an application on
the victim’s phone over an OBEX (OBject EXchange) file transfer connection with-
out requiring user consent. Another attack scenario establishes a pairing between
the phone and another Bluetooth device with presenting “only one vague notifica-
tion” [95] to the user. They further describe how the two attack scenarios can be
combined to establish a Bluetooth connection to the Nokia PC Suite interface of the
phone that can be used to gain full write access to the phone memory. An attacker
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can abuse that write access to install an application and to elevate the privileges of
that application to a level where it is allowed to access sensitive information and
functionality of the phone.

Mulliner [74] employed black-box testing (fuzzing) to find vulnerabilities in the
implementation of the NDEF parser of Nokia’s first NFC-enabledmobile phones. He
used NFC tags with malformed NDEF messages to trigger invalid input conditions
of the NDEF parser. He found several input conditions that lead to errors and even
crashes of the mobile phones. Attackers could potentially abuse such conditions
to trigger code execution exploits. Though, Mulliner admits that no code injection
techniques existed for that platform at the time of his writing. Despite the fact that
such issues were known for quite some time,Mulliner’s recent research [75] revealed
that similar problems still existed on the Nexus S, Google’s first NFC phone.

In 2012, Mulliner [76] refined his black-box testing for Android NFC phones. He
used binary instrumentation to add logging and data manipulation functions to the
Android NFC stack. As a result, he could sniff the communication between the NFC
stack and the NFC controller hardware. Moreover, he was able to simulate NFC tags
with his setup to perform automated fuzzing without the need to touch a physical tag.

Yet another approach was used by Miller [72]: He performed fuzzing with a card
emulator device that repeatedly emulates NFC tags. This method also has the advan-
tage that there is no need to touch a physical tag, but without the need to manipulate
the software on themobile phone.Miller found several conditions that trigger crashes
in native code that possibly result into memory corruption vulnerabilities.

Miller [72] also found that, starting with Android 4.0, Internet addresses received
from NFC tags or over Android Beam (the peer-to-peer mode implementation of
Android) are automatically opened in the web browser. Similarly, other applications
can register for specific NDEF data types and URIs too. Miller [72] concludes that
“[...] if an attacker can get the device to process an NFC tag, they can get it to
visit a web site of their choosing in the [web] browser with no user interaction.”
As a consequence, the potential attack surface of the web browser is now open to
NFC. Mulliner [75] as well as Benninger and Sobell [9] found that this automatic
processing without the need for user confirmation can be used to mount phishing
attacks and to trigger unintended actions in the context of the user (e.g. to trigger a
check-in on Foursquare).

4.4.2 Protection for Tagging and Peer-to-Peer Communication

Madlmayr et al. [69] suggest digital signatures as a suitable countermeasure against
tag spoofing. When NDEF messages are protected by digital signatures, an NFC
device can verify the authenticity and integrity of received NDEF records. Schoo
and Paolucci [88] follow a different approach: They propose that tag spoofing can
be reliably prevented by registering all genuine tags in a database back-end and
by using a certified application on the NFC device that compares the tag data with
the data stored in that back-end database. Wu et al. [96] follow a similar approach:
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Tags only contain a unique identifier that is dynamically mapped to content (either
a link to a website or a user poll) in a back-end database. Their system also allows
authentication of users and access control to restrict access to tag content.

Digital signatures are the solution that has been chosen by the NFC Forum.
Kilås [58] evaluated several digital signature algorithms regarding their feasibility
and performance on mobile Java platforms. He also created a reference implementa-
tion [57] for Java ME (Java Platform, Micro Edition). The NFC Forum released the
first draft of their Signature Record Type specification in early 2010 [13].

Rosati and Zaverucha [84, 85] conclude that this Signature Record Type specifi-
cation is impractical due to its huge space requirements for storing the signature and
the certificate chain on a tag. They explain that the size of the signature record would
be much greater than that of the NDEF messages typically signed with it. They note
that these space requirementswould exceed thememory sizes ofmost of the available
NFC tag types. This is especially true for low-cost tags. To overcome this issue, Rosati
and Zaverucha [85] propose the use of ECQV (Elliptic Curve Qu-Vanstone) implicit
certificates together with ECDSA (Elliptic Curve Digital Signature Algorithm). This
would drastically reduce the size of the signature record (factor of 4–9).

Rosati and Zaverucha [84, 85] further clarify that the Signature Record Type
specification lacks a definition of the public-key infrastructure (PKI). A PKI defines
a set of the rules for certification of signature keys and for trust in signatures.However,
they conclude that these definitions are necessary for signatures to be useful and to
achieve an improved user experience in tagging use-cases.

4.4.3 Integration of Secure Elements into Mobile Phones

The integration of secure elements into mobile phones is often seen as a great advan-
tage to improve usability and security of the mobile phone, the secure element and
its applications. Anderson [2] states the following:

This technology holds out the prospect of solving the problem of a trustworthy user interface.
The plan is that instead of being a relatively dumb device, your credit card will be an
application on your mobile phone. You bring your mobile into close proximity with the
merchant terminal, an application displays the sale amount, you authorise this, and the
transaction goes through.

In [37], the mobile handset is proposed to be used as a secure display and as a secure
PIN entry device for mobile contactless payment. This concept has been adopted in
the EMV specifications: [23] allows “Consumer Device CVM”, a cardholder verifi-
cation method where the PIN is entered on the device that is used as the contactless
payment token.This approach is also in linewithDrimer andMurdoch [20]who argue
that customers cannot easily distinguish forged from genuine credit card terminals.

Besides using the NFC-enabled mobile handset as a trusted user interface for
mobile contactless payment, the secure element could also be used for secure Internet
purchases through the mobile phone web browser. Attard [4] proposes a card-present
payment scheme for in-browser credit card payment onNFC-enabledmobile phones.
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While this scheme uses NFC to interface an external credit card, it could also be used
in combination with a credit card stored in the secure element.

Another benefit of the secure element in comparison to a standalone smartcard
is over-the-air management. Applications on the secure element can be installed,
controlled and removed throughout its whole lifecycle. If, for example, a device is
lost or stolen, the secure element and all its applications can be wiped through the
over-the-air management link.

Besides bringing new advantages over regular smartcards, the secure element
is also supposed to add current security properties of regular smartcards (secure
data storage, secure execution environment and hardware-based cryptography) to
the mobile phone. Thus, it enables apps on the mobile phone to benefit from these
features.

However, combining themobile phone and the secure element does not only bring
advantages. Madlmayr et al. [69] state—with regard to the interaction between the
application processor (“host controller”) and the secure element—that “applications
running on the host controller need to authenticate against the secure element before
a communication can be established.” They suggest to “[...] implement a certificate
based authentication between the application running on the host [controller] and the
applets in the secure element.”

A guideline for restricting access to the secure element is proposed in [89]:

A good practice is to require all phone applications that need to communicate to the secure
element to be authenticated by a trusted entity [...] The phone’s operating system will then
prevent access to the secure element APIs by any non-trusted applications.

This implies a trust relationship between the mobile device application processor
(including the operating system that runs on it) and the secure element that usually
does not exist on current mobile phone architectures. As a result of this lack of trust,
code that runs on the application processor poses an additional threat vector to the
secure element. Nevertheless, applications that rely on the communication between
the application processor and the secure element exist (e.g. Van Damme et al. [94]).

4.4.4 Mobile Phones as Attack Platforms

Francis et al. [28, 29] demonstrate that NFC-enabled mobile phones are not only a
target for attacks, but that they could also be used as a platform to carry out attacks on
ISO/IEC 14443 based systems. Their research focuses on the fact that NFC devices
can operate in both reader/writer mode and in card emulation mode. Thus, they can
be used to read, write and emulate contactless smartcards. As a consequence, an
attacker could use such a mobile phone to secretly copy a contactless token (e.g.
by bringing the mobile phone close to the victim’s pocket). Moreover, the attacker
could then transfer (clone) that data onto the secure element in the mobile phone.
The secure element can then be used in card emulation mode to skim the original
token. Benninger [8] suggests a similar approach to clone the access token for an
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NFC-enabled lock: Instead of using the secure element, the access control card is
cloned onto a blank card by using an NFC-enabled handset. However, Francis et
al. [29] admit that such cloning and skimming is only possible if the token does not
use strong cryptography to communicate with the reader. In that case it would not
be possible to retrieve secret/protected data from the token.

Besides cloning tags and smartcards, it is also possible to use reader/writer mode
to carry out data modification attacks on tags and contactless smartcards. An exam-
ple for such a scenario is an attack on MIFARE Ultralight based transport tickets
described by Benninger and Sobell [10]. They found that certain transport systems
use tickets that store information about the “rides left on [the] card” in an unpro-
tected memory area. Consequently, the ticket memory can be restored to its initial
value after each use. As a result, the ticket can be “refilled” an infinite number of
times—effectively allowing unlimited use of the transport system.

Anderson [2] suggests that NFC-enabled mobile phones are an ideal platform for
relay attacks. With regard to contactless credit card fraud he explains the following:

[...] NFC is likely to make middleperson attacks much easier. At present, such an attack
requires the construction of custom hardware; in future, an attack could be carried out by
software installed on commodity mobile phones. One phone could act as a rogue merchant
terminal to the cardholder, and communicate with another [phone] that acts as a card to a
merchant elsewhere.

Francis et al. [30] evaluate this possibility to use NFC-enabled mobile phones as a
platform for relay attacks. In their proof-of-concept, they relay peer-to-peer commu-
nication over longer distances. They successfully relay the communication between
two mobile phones at the NFC Data Exchange Protocol (NFC-DEP) layer using two
other NFC-enabled mobile phones. They use Bluetooth as the relay channel. As a
countermeasure, they propose to integrate location information intoNFC transactions
(cf. packet leashes as a countermeasure to wormhole attacks [50]). They name GPS
(Global Positioning System) and broadcast cell identification as accurate sources of
location information.

Francis et al. [31] extend this peer-to-peer relay scenario to ISO/IEC 14443 based
smartcard systems. They show that NFC-enabled mobile phones can be used in
“soft-SE” mode (card emulation through software on the application processor of
the phone). Thus, two mobile phones can be used to relay smartcard communication
on the application protocol data unit (APDU) layer by using one as a reader and
one as “soft-SE”. The two relay devices can then forward the communication over
any interface that both devices have in common (typically Bluetooth, Wi-Fi or the
cellular network).

4.5 Mobile Phone and Smart Phone Security

When NFC functionality is added to a mobile phone, a critical factor for over-
all security is the security of the whole device software stack. Already in 2004,
Gowdiak [36] revealed several vulnerabilities in Java ME that allow escaping the
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restrictions of the Java virtual machine (KVM) sandbox on Java ME devices. Using
these vulnerabilities, an attacker could elevate the privileges of an application and
access otherwise restricted system functions.An attacker could even access thewhole
device memory. Gowdiak successfully verified his results on a Nokia 6310i but notes
that many other devices are potentially vulnerable.

Lately the topic of mobile phone security experiences significantly increasing
awareness. Recent research activities include the assessment of vulnerabilities and
threats and the uncovering of actual attack scenarios. An important factor for the rise
in malicious activities is the concept of “apps” in modern smart phones. In the past,
a mobile phone contained a fixed set of applications and the average user could not
easily extend this functionality. Today, an important aspect of smart phones is their
extensibility. Every user can easily extend the functionality of their own devices by
downloading an application (“app”) from an online market place.

Jeon et al. [55] analyzed the vulnerabilities and threats in smart phone security.
They identified vulnerabilities caused by implementation errors, incompatibilities,
user unawareness, improper configuration, social engineering, loss of smart phones
and the interaction of a smart phonewith its environment.While connectivity features
(Internet, wireless networks, etc.) make smart phones “useful and most popular”,
these same features open up various paths for intruders [55]. The threats identified by
Jeon et al. comprise malware, attacks through (wireless) networks, denial-of-service,
break-in attacks, malfunction, phishing, loss of devices and platform alteration.

Kooman [64] discovered a vulnerability in Nokia’s proprietary PC Suite interface
which can be accessed over Bluetooth. The vulnerability allows modification of the
certificate store of Nokia’s S40 phones. Kooman created an exploit [63] to install
X.509 [54] certificates on these devices and to enable the certificates for code-signing,
which is otherwise not possible on S40 devices. Thus, an attacker can use this exploit
to elevate the privileges of applications installed on a Nokia S40 phone. Verdult and
Kooman [95] use this vulnerability to elevate the privileges of an application into
the operator or the manufacturer domain, what gives them full control over security
critical system functions.

Davi et al. [17] investigated the security model of the Android platform. The secu-
rity mechanism of Android consists of a combination of discretionary access con-
trol for file system access, sandboxing for application execution, mandatory access
control for inter-component communication, component encapsulation and applica-
tion signing. They state that “Android does not deal with transitive privilege usage,
which allows applications to bypass restrictions imposed by their sandboxes.”Conse-
quently, an application with lower privileges could potentially access an application
with higher privileges in such a way, that it could use these higher privileges for its
own purposes.

Armando et al. [3] found a vulnerability of the Android operating system that
can be exploited by malicious applications to perform a denial-of-service attack and
even force a device to reboot.

According to McAfee Lab’s quarterly threat report [71], the trend towards threats
and malware for mobile platforms has dramatically increased in 2012. Especially for
the Android platform, the number of new malware samples detected by quarter has
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increased from about 100 in the third quarter of 2011 to over 8,000 in the third quarter
of 2012 [70, 71]. Therefore, it seems unlikely that this trend will be interrupted any
time soon. The trend is also confirmed by the most recently published vulnerabilities
and publicly available exploits for the Android platform:

• ObjectInputStream Privilege Escalation (CVE-2014-7911), published in Nov.
2014, works up to Android 4.4.4,

• Fake ID [27], published in Aug. 2014, works up to Android 4.3,
• TowelRoot (CVE-2014-3153), published in Jun. 2014, works for Android 4.4,
• Master Key (CVE-2013-4787), published in Jul. 2013, works up to Android 4.2,
• mempodroid2 (CVE-2012-0056), published in Jan. 2012, works for Android
4.0.1–4.0.3,

• Levitator3 (CVE-2011-1352), published in Oct. 2011, works up to Android 2.3.5,
• zergRush4 (CVE-2011-3874), published in Oct. 2011, works up to Android 2.3.3,
• GingerBreak5 (CVE-2011-1823), published in Apr. 2011, works up to Android
2.3.3,

• KillingInTheNameOf6 (CVE-2011-1149), ZimperLich,7 RageAgainstTheCage,8

Exploid, and others for earlier versions.

Soon after one vulnerability gets fixed, a new exploit for another vulnerability is
published. If this trend continues, it is only a matter of time until exploits for the most
recent versions of the Android platform become available. With mobile operating
systems like Android, there is an issue that has a significant impact on the viability
of exploits: There is a significant delay between fixing a vulnerability in the Android
open source project and distribution of the updated Android platform to existing
devices. There is even a chance that older devices do not receive updates at all.

Höbarth andMayrhofer [47] introduce a framework for the Android platform that
can use arbitrary exploits to achieve permanent privilege escalation. Based on any
existing or future exploit that gains temporary root level privileges, their framework
modifies the system in such a way that these root level privileges are permanently
retained. Such frameworks provide an easy-to-use platform for attackers to integrate
the newest exploit code into their malware applications.

Höbarth [46] uses a loophole in Google Play Store (formerly Android Market)
to publish a malicious app under the same publisher information and the same app
information as an existing app. This scenario can be used to trick users intomistakenly
installing the malicious app instead of the genuine app. He further explains that an
attacker could even reengineer an existing app downloaded from Play Store to add
malicious code to a legitimately looking app.

2 https://github.com/saurik/mempodroid.
3 http://jon.oberheide.org/files/levitator.c.
4 http://forum.xda-developers.com/showthread.php?t=1296916.
5 http://c-skills.blogspot.com/2011/04/yummy-yummy-gingerbreak.html.
6 http://c-skills.blogspot.com/2011/01/adb-trickery-again.html.
7 http://c-skills.blogspot.com/2010/12/zygote-trickery-743c-27c3-release.html.
8 http://c-skills.blogspot.com/2010/08/droid2.html.
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http://forum.xda-developers.com/showthread.php?t=1296916
http://c-skills.blogspot.com/2011/04/yummy-yummy-gingerbreak.html
http://c-skills.blogspot.com/2011/01/adb-trickery-again.html
http://c-skills.blogspot.com/2010/12/zygote-trickery-743c-27c3-release.html
http://c-skills.blogspot.com/2010/08/droid2.html
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4.6 Combining NFC with Trusted Platform Concepts

Madlmayr [68] explains that trusted computing is an essential requirement for NFC
applications. Secure storage and execution of applications on a mobile device are the
basis for contactless payment transactions [68].

Ekberg and Kylänpää [22] give an overview over the mobile trusted module
(MTM), a trusted platformmodule for mobile devices. MTMs can be used to guaran-
tee the integrity of mobile device firmware (boot a trusted boot loader, run a trusted
hypervisor, run a trusted operating system, etc.). Though, Kostiainen et al. [66] note
that modern smart phone operating systems are usually too large to guarantee that
they are free of vulnerabilities.

Ekberg et al. [21] explain how trusted platform architectures on mobile devices
can be used to create an inexpensive, open and secure alternative to secure elements.
Their “on-board credentials” (ObC) provide a secure execution environment and
secure storage based on secure hardware like Texas Instruments M-Shield or ARM
TrustZone. Thus, they can be used to store digital keys, tickets or even payment
applications. ObCs provide similar properties as conventional secure elements—
for instance isolation of different credential applications and secure provisioning
of credentials. At the same time, ObCs have the advantage that they do not rely
on a dedicated secure element chip and that anyone can deploy new credentials
to an ObC without approval of the application. However, Kostiainen [65] explains
that “traditionally, only smart cards and TPMs have achieved commonly accepted
security certification levels”. He further notes that “lack of formal certification can be
a significant problem for deployment in financial services [...]” Nevertheless, ObC
platforms could be an interesting opportunity for implementing NFC applications
that are less restrictive about security certification (e.g. public transport ticketing).
Also, despite these concerns, Proxama [82] created a credit card application based
on ARM TrustZone for secure (“card present”) payment in a mobile phone web
browser. Their application stores the credit card in a protected location and provides
a secure user interface, both by the help of ARM TrustZone.

Recently, Dmitrienko et al. [19] proposed a security architecture for NFC-enabled
mobile phones to improve the protection of the secure element against software-based
attacks. Their scheme moves access control decisions for secure element access to
a trusted compartment on the application processor, which leads to access control
enforcement by a trusted component. Consequently, this seems to be a promising
approach to mitigate the attack scenarios against the secure element discovered in
this thesis.

4.7 Flaws in Existing Mobile Wallet Implementations

Zefferer [97] gives an overview of recent NFC-based payment systems and mobile
wallets. While some of them are proprietary (and often closed) solutions, others are
based on EMV credit card standards (e.g. MasterCard PayPass and Visa payWave).
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One wallet implementation has recently gained particular interest: Google Wallet.
This application is the first NFC-based mobile wallet that has become publicly avail-
able in the USA. It has quickly spread to a broad user-base. In late 2012, the app
already counted over a million installations. As Google Wallet is based on Master-
Card PayPass it can be used worldwide with any merchant that accepts contactless
MasterCard transactions [98].

A first in-depth analysis of Google Wallet is performed by Hoog [48]: He reveals
several weaknesses of the app. For instance information about the credit card holder,
expiration date, some digits of the credit card number, the credit card balance and
even information about transactions is stored on the device unencrypted. Information
that has been explicitly deleted through the user interface of the app can even be
recovered. Above all, Google Wallet uses Google Analytics to collect usage data,
which results in partly unencrypted information to be sent across the Internet.

Benninger [7, 53] discovered a vulnerability in Google Wallet that allows an
attacker to reveal the last four digits of all credit card numbers associated with a
user’s Google Wallet and Google Checkout accounts.

Rubin [87] discovered that the PIN needed to access the Google Wallet app is
stored as a salted SHA-256 hash on the device. As the PIN consists of only four digits,
it can easily be recovered from the hash and salt information by brute-force testing of
all (10,000) combinations. Allen et al. [1] even published exploit code to demonstrate
this vulnerability. Rubin [87] notes that root privileges are required to access the
hash and salt information. While it is frequently argued that devices that have been
intentionally “rooted” by their owners are not secure anyways, Rubin [86] explains
that even if users do not intentionally root their devices, malicious apps could also
exploit privilege escalation vulnerabilities to elevate their privileges to “root” access.

Fannin [26] found that the Google prepaid credit card that can be used in Google
Wallet is bound to each device and not to the user’s Google account. As a conse-
quence, an attacker can bypass the wallet PIN by wiping the data of the Google
Wallet app (including the PIN). The attacker can then re-initialize Google Wallet on
the same device. By adding a Google prepaid card, the old (device-bound) card is
added to the new wallet instance. Thus, the attacker gains access to the prepaid card
including any funds that were left on it. According to Zefferer [98] this vulnerability
even caused Google to temporarily disable provisioning of new prepaid cards.

Apart from attacking mobile wallet implementations, there is also vulnerability
research on the underlying credit card standards. Murdoch et al. [77] show a flaw in
the offline PINverification of the EMVChip & PIN protocol: An attackerwho has the
control over a stolen credit card can trick a point-of-sale terminal into accepting any
PIN for the card by means of a man-in-the-middle attack. Bond et al. [11] discovered
that many automatic teller machines (ATMs) and point-of-sale terminals use weak
random number generators that are simple counters, derive their random numbers
from clocks, use a reduced random number space or have bad seeding. This allows an
attacker to predict the random number sequence. Hence, an attacker can pre-play the
transaction authentication procedure for a series of random numbers with a genuine
card. Later, the pre-computed authorization codes generated in the pre-play attack
can be used to skim the card using a card clone.
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4.8 Summary

The previous sections gave an overview of research activities focused on the secu-
rity and privacy of NFC and its underlying RFID technologies. Figure4.1 lists the
identified research topics and positions them in the context of this thesis.

From the exemplary use-cases of NFC described in Chap. 3 two major research
areas have been identified:

• security and privacy aspects of “tagging” (i.e. the interaction with NFC tags), and
• security aspects of the interaction between the application processor and the secure
element in card emulation mode.

In the area of tagging, research focuses mainly on finding vulnerabilities. While
some research (and already some standardization) is done to create a robust and secure
tagging experience, continuous reports of similar vulnerabilities in newmobile phone

Fig. 4.1 Scope of this thesis. Novel ideas presented in this thesis are highlighted with bold font

http://dx.doi.org/10.1007/978-3-319-15488-6_3
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platforms suggest that well-known research results are barely considered during the
development of new NFC devices. This thesis follows up on these research results
and analyzes the first generation of digital signature standards for the NFC data
exchange format that are supposed to mitigate most vulnerabilities of tagging use-
cases. The results of this analysis reveal that the NDEF Digital Signature Record
Type specification leaves several important parts of the signature ecosystem open
to the implementer. Moreover, this record type specification contains some severe
weaknesses that result in new security and privacy issues. As part of my research,
a new attack scenario, the record composition attack, has been discovered. This
scenario can be abused to manipulate integrity protected and authenticated NDEF
record data.

In the area of card emulation, existing research leaves one huge gap: the mobile
phone—specifically apps on its application processor—as platform for attacks
against its own secure element. It is well-known thatNFC-enabledmobile phones can
be used to attack tags, smartcards and other NFC devices. Literature also mentions
several attack scenarios that can be applied to contactless smartcards and, therefore,
also to secure elements. However, with regard to the interaction between the mobile
phone application processor and the secure element, literature usually assumes that
the mobile phone operating system can perform trusted access control enforcement
(cf. Sect. 4.4.3 and Madlmayr et al. [69]). While there is plenty of research on strate-
gies to perform trusted access control enforcement on a mobile phone application
processor (cf. Sect. 4.6), the link to securing access to the secure element is still
missing. This thesis analyzes various secure element APIs (application program-
ming interfaces) with regard to their access control mechanisms. Based on these
findings two new attack scenarios against the secure element are introduced: One is
a denial-of-service attack against the secure element and the other—the software-
based relay attack—is an improved relay attack scenario that can be performed even
without physical proximity to the device under attack.
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Chapter 5
Tagging

One of the major application scenarios of Near Field Communication (NFC) is
tagging. The basic principle behind tagging is “it’s all in a touch” [2]. This means
that simply tapping an object with an NFC device immediately triggers an action. In
the case of out-of-band pairing, for example, after scanning a connection handover
tag with an NFC-enabled mobile phone, the phone immediately establishes a link
based on the information retrieved from that tag. Similarly, a smart poster tag may
convey an Internet address that is automatically opened in the mobile phone web
browser, a telephone number that automatically initiates a phone call, or a ready-
made SMS message that is automatically sent. While some NFC devices and some
specific actions may require additional confirmation by the user, some actions may
be performed automatically without any user interaction.

5.1 Security Issues

Several tagging applications already exist in the field. Most applications are based
on NFC Data Exchange Format (NDEF), the standardized format for data exchange
between NFC devices and for storage on NFC tags. This makes applications inde-
pendent of any particular tag hardware and makes them interoperable across device
platforms.

In the past, when NFC was only available on selected feature phones, applica-
tions focused mainly on the smart poster use-case and on integrating NFC into exist-
ing web-based or SMS-based ticketing and information systems. The term “smart
poster” refers to posters, flyers and other advertising material equipped with NFC
tags. For instance, these tags may convey an Internet address which provides further
information about an advertised service, a telephone number for an advertised hotline
or a ready-made SMS message for a ticket ordering service. Examples for some of
the first applications based on tagging are
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• the “ÖBB Handy-Ticket”, a web-based train ticket in Vienna, Austria [18],
• the “Wiener Linien HANDY Fahrschein”, an SMS-based e-ticket for the public
transport system in Vienna, Austria [19],

• payment at Selecta vending machines in Vienna, Austria [20],
• ticketing and current traffic information for the public transport system in
Gothenburg, Sweden [35], and

• traffic information and guidance for the public transport system in London,
UK [36].

Today’s use-cases also cover NFC-enabled business cards, connection pairing with
Bluetooth devices, and the automation of arbitrary tasks onmobile phones. Examples
are

• Cardolution’s electronic business card solution [1, 24],
• Sony’s MDR-1RBT Bluetooth headphones [33], and
• Tagstand’s NFC Task Launcher for Android [34].

However, these examples are only a small excerpt of the multitude of today’s tag-
based NFC applications and devices.

Although, the number of available applications increases continuously, the analysis
in Sect. 4.4.1 revealed that there is a significant number of security problems associ-
ated with tagging and the exchange of NDEF messages.

A serious threat is the manipulation of NFC tags. An attacker may replace (unpro-
tected) tag content or even replace whole tags with modified tags. By, for instance,
manipulating Internet addresses or telephone numbers in smart poster tags it is
possible to redirect the user to a forged website for phishing of user credentials,
to trigger arbitrary actions on a mobile phone in the context of the user or to trick
the user into sending an SMS message to a costly premium rate service.

A practical attack is described by Mulliner [11] for payment at Selecta vending
machines in Austria:

The Selecta company started installing soda and snack vending machines that offer mobile
phone payment using the paybox service. The payment works as follows: each vending
machine has a unique identifier in the form of SNACK257 that is printed on the machine. A
customer wishing to buy an item sends a short message containing this identifier to a phone
number also printed on the machine. In the next step the machine displays that it is ready to
dispense an item. After the customer selected an item the amount is charged to his paybox
account. NFC-equipped vending machines feature a tag containing an SMS Smart Poster
that contains the same data that is printed on the machine. The customer only needs to read
the tag and send the message.

A possible attack on these vending machines could have the goal of buying snacks or soda
using somebody else’s paybox account. The attack would work as following. The attacker
produces a number of fake tags (the vending machine tags are cheap paper tags) that contain
the ID of vending machine A. These are mounted on vending machines B, C, and D. The
attacker only needs to wait until vending machine A shows that it is ready for selecting an
item. This attack has the important advantage that it is nearly untraceable since no premium
rate phone number is needed.

http://dx.doi.org/10.1007/978-3-319-15488-6_4
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Fig. 5.1 NDEF records for a practical attack on payment at Selecta vending machines in Austria
described by Mulliner [11]

The attack can even be enhanced by using the text portion of the smart poster record
with a text like “Pay at vending machine B” while still using the ID of machine A in
the SMS message. Figure5.1 shows the NDEF records for this example.

An important measure against manipulation of tag content is write protection.
For NFC Forum Type 1 and Type 2 tags, the tag operation specifications [14, 15]
define a mechanism to permanently write-protect the data using lock bits. For NFC
Forum Type 3 and Type 4 tags, the write protection mechanism is not covered by the
tag operation specifications [16, 17] and is, therefore, left open to vendor specific
implementations. Even some Type 2 tags (e.g. Infineon’s my-d NFC) ignore the
lock bits defined in the tag operation specification and use a proprietary mechanism
instead. In addition, all NFC Forum tags support a soft write-protection, which is
basically a flag in the tag data memory that indicates that NFC devices must not
write data to the tag. However, this flag does not prevent actual write operations. For
most typical applications, it is important to activate the permanent physical write
protection of each tag before distribution in order to protect the tag infrastructure
from malicious modifications.

Unfortunately, permanent physical write protection only prevents modification of
that specific tag. An attacker could still replace the whole tag or add additional tags
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to the infrastructure. For instance, an attacker could use an “RFID zapper” (a device
that tries to destroy a tag microchip by inducing a high voltage at the tag antenna)
to disable a tag. Alternatively, a tag could be shielded with metal foil. The attacker
can then stick a replacement tag with (maliciously) modified content on top of the
disabled tag.

One measure to diminishing the risk of such an attack is that the NFC device
verifies the authenticity and the integrity of all received NDEF records. There are
two different approaches towards assuring authenticity and integrity of tag contents
described in literature: Schoo and Paolucci [32] suggest that spoofing of NFC tags
can be prevented by registering all genuine tags in a database back-end and by using a
certified application on the NFC device that compares the data from the tags with the
data stored in that back-end database. A major disadvantage of this approach is that
verification requires either an online connection to the back-end database whenever
a tag is scanned or an offline copy of that database. Madlmayr et al. [9] suggest
digital signatures as a method to assure authenticity and integrity of NFC tags. With
a combination of digitally signed NDEF messages and a trustworthy certification
infrastructure, users (or their NFC equipment) have a means to distinguish genuine
tags from forged tags.

5.2 Digital Signature for NDEF Messages

Digital signature consists of two cryptographic operations: calculation of a hash value
and encryption. A hash function generates a fixed-length fingerprint of a variable-
length message. A cryptographic hash function has three security properties [10]:

1. Preimage resistance: While it should be easy to calculate a hash value h from
a given message M , it should be difficult to find any message M that leads to a
given hash value h.

2. Second preimage resistance: Given a message M with a hash value h, it should
be difficult to find a second message M ′ that leads to the same hash value h.

3. Collision resistance: It should be difficult to find two different messages M and
M ′ that lead to the same hash value h.

As a result of these properties, a hash guarantees the integrity of a message.
A digital signature over a data packet is calculated in two steps: First, a hash value

is calculated for the data packet. Second, the hash value is encrypted with the signer’s
secret key. As only the signer has knowledge of that secret key, this step assures the
authenticity of the hash value. As the hash guarantees the integrity of the data packet,
the encrypted hash (the “digital signature”) assures the authenticity and integrity of
the whole data packet.

Digital signatures based on public-key cryptography in combination with a trust-
worthy certification infrastructure warrant three important properties [31]:
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1. Authenticity: The signing party can be determined unambiguously.
2. Unforgeability: Only the holder of a secret signing key can create an authentic

signature.
3. Non-reusability: A signature is bound to the signed data and cannot be used for

any other data. Thus, a digital signature assures the integrity of the signed data.

Therefore, properly signedNDEFdata allows the receivingNFCdevice (and the user)
to determine if anNDEFmessage has a certain origin and if it is free ofmanipulations.
Based on that information a decision can be made, whether NDEF records should be
allowed to trigger certain events, like opening a specific website, calling a specific
telephone number or initiating a specific alternative carrier. Yet, there are several
types of attacks that cannot be averted with digital signatures. Among them are the
malicious modification of unlocked tags (e.g. to perform a denial-of-service attack
against the tag infrastructure) and the use of valid signed tags in other than the
intended places.

5.2.1 Attaching a Signature to an NDEF Message

There are several conceivable ways to attach a digital signature to an NDEFmessage:

• The signature could be stored in a separate memory area of the NFC tag.
• The signature could be appended (or prepended) to the NDEF message without
using a separate NDEF record.

• The signature could be packed into its own record type and inserted into the NDEF
message.

To stay compatible with the NDEF format and to use signatures regardless of the
medium used for data exchange, a dedicated record type for digital signatures seems
to be the best option. This is also the method that the NFC Forum chose for digital
signature. They created the Signature Record Type Definition [13]. However, at the
time of the research described in this part of the thesis, the Signature Record Type
Definition was still under development and was, therefore, not publicly available.

5.2.2 Maintaining Backwards Compatibility

Backwards compatibility is an important requirement for digitally signing NDEF
messages. There are two classes of compatibility that need to be considered:

1. No signature support: Devices that do not support digitally signed NDEF mes-
sages must still be able to process the NDEF message as if it had no signature.
By using the approach of appending a dedicated signature record, devices that
do not support signatures will simply ignore the signature as an unknown record
type and will process the remainder of the message as usual.
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2. Handling of unsigned NDEF messages: Backwards compatibility to unsigned
NDEF tags is a difficult topic. On the one hand, many current applications rely
on unsigned tags. Therefore, an NFC device that blocks or ignores unsigned
NDEFmessages would render these applications unusable. On the other hand, an
NFC device should distinguish between signed and unsigned data and should use
different levels of trust for each of these cases. If an NFC device would handle
both cases, signed and unsigned, in exactly the same way, then the signature
would be useless.

5.2.3 Signing Individual Records

A digital signature could be attached to a single record, a group of records or the
whole NDEF message. Records within one NDEF message might even be issued
by more than one party. Hence, signing an NDEF message as a whole with a single
signature may not always be a desirable solution. The other extreme would be to
sign each and every record individually. As tag memory is usually a very limited
resource, this is not a reasonable solution either. Consequently, the best approach is
to group the records and sign each group individually.

The Signature Record Type Definition (Signature RTD) is capable of selectively
signing slices of an NDEF message by inserting begin and end markers into the
message. The end marker also contains the signature for that marked slice. This
method has been patented by Samsung in WO 2010/005228 A2 [29].

5.2.4 Scope of a Signature

When a digital signature is applied to an NDEF message, one could either sign each
record as a whole or sign only certain fields of each record. Signing each record as
a whole may lead to certain problems:

• Records may be re-formatted by the NDEF parser (e.g. the format may be changed
between regular-length and short-length format, records may be split into chunks,
or record chunks may be joined).

• Signed slices may be re-grouped to form new NDEF messages.

All of these cases result into changes of some bits of the signed NDEF records.
Therefore, it is either necessary to prohibit such operations on signed NDEF records
or to exempt certain record fields from protection by the signature.

5.2.4.1 Message Begin Flag and Message End Flag

When a signature is appended to a group of NDEF records, none of the signed records
can have the message end (ME) flag set. As a result, including the ME flag results
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in an invalid signature when signing the last record of an NDEF message before
actually appending the signature record.

Similarly, when signing the first record of an NDEFmessage (i.e. the one with the
message begin (MB) flag set), that slice cannot later be moved to another position
within an NDEF message as this would require the MB flag to be cleared.

In general, it is desirable to maintain the possibility of moving a group of signed
NDEF records to any position within an NDEF message. Hence, including the MB
flag or the ME flag into the signature is not useful.

5.2.4.2 Payload Field and Type Field

The central element to be protected by the digital signature is the record payload.
Therefore, the payload field inevitably needs to be covered by the signature. As the
type identification determines the interpretation of the payload field, the integrity of
the type field has to be guaranteed as well.

5.2.4.3 ID Field

NDEF records may be linked to other NDEF records through their ID reference.
When the ID field of a referenced record is manipulated, any such links will be
broken. An attacker could use this method to bypass a record in the signed NDEF
message and to redirect the link to a new record (either unsigned or signed by the
attacker). Thus, the ID field needs to be part of the signed data.

5.2.4.4 Short Record Flag

The short record (SR) flag controls the size of the payload length field. When SR
is set, the size is reduced from four bytes to one byte. When the signature includes
neither this flag nor the payload length field, then repacking of NDEF records from
one format to the other format would be possible. On the one hand, this could be
used to reduce the size of an NDEF message without invalidating its signature. On
the other hand, an attacker could use this feature to modify the fields that follow the
payload length by moving bytes between the payload length field and the following
fields. If the length fields are not part of the signature, then there is no advantage for
the attacker in manipulating the size of the payload length field. Its value could be
modified anyways and the three bytes could only be moved between other fields that
are not covered by the signature. However, if the length fields are part of the signature,
three signed bytes could be moved from the payload length into the following fields
(or the other way round) without voiding the signature. Nevertheless, when this
happens to change the value of the ID length or the payload length fields or when
this changes the actual size of the data available for the type, ID, and payload fields,
signed bytes might be missing or left over from the record. Thus, such an attack
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is not easily achievable. Moreover, such attacks on the payload length field could
be mitigated by treating the payload length field as a 4-byte-value during signature
generation and verification regardless of the value of the SR flag.

5.2.4.5 ID Length Present Flag

The ID-length present (IL) flag controls the presence of the ID length field and,
consequently, of the ID field. When the signature includes neither this flag nor the
length fields, then an attacker could add an ID field and use it to hide a suffix of
the type field or a prefix of the payload field without invalidating the signature.
Similarly, an existing ID field could be integrated into the type or the payload field.
If the length fields are part of the signature, then the lengths of type, ID and payload
cannot be arbitrarily chosen. Therefore, as with the SR flag, such an attack is not
easily achievable in that case.

5.2.4.6 Length Fields

When the length fields are not included into the signature, then the size of the type,
ID and payload fields may be changed without requiring an update of the signature.
As with the IL flag, this could be exploited to move bytes between the boundaries
of each of these fields. For example, parts of the ID field or even the payload field
could be appended to the type field or the other way round. The signed parts of
subsequent records could even be completely included into the payload field of a
preceding record.

When the length fields are signed, then it becomes more difficult for an adversary
to change the field sizes. An attacker could only adjust the lengths in combination
with the SR flag or the IL flag. But even then the values of the length fields cannot
be chosen arbitrarily.

5.2.4.7 Chunk Flag and Record Chunks

The chunk flag allows the payload of one record to be split across multiple smaller
record chunks. When only the type, ID and payload fields are signed, then a signed
record can be divided into chunks or merged from multiple chunks without voiding
the signature. This feature is useful to join chunks to one record in order to reduce
the overhead of multiple chunk headers.

Yet, permitting this feature also makes the signature prone to attacks: Even when
every other field and flag, except for the chunk flag (CF) is protected by the signature,
an attacker could clear a set CF to cut the remaining chunks off the record. That way
parts of a chunked record payload can be chopped off. However, the remaining
chunks will trigger parser errors as their type name format (TNF) field states that
they continue a previous record. Only if the TNF field is also not included into the
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signature, an attacker could change the value of that field to “unknown” and, thereby,
force the parser to ignore the trimmed chunks. In a similar fashion a subsequent record
could be appended as a record chunk to the payload of its preceding record.

Using a normalized form of each record for signature generation could mitigate
this scenario and, therefore, could permit rearrangement of record chunks without
such vulnerabilities. Normalized form means that the signature is generated over a
version of an NDEF record that is the same regardless of how the record is split
across multiple chunks and regardless of any flag values that influence the structure
of a record. Consequently, the full record payload and only the header of the first
chunk would be used for signature calculation.

5.2.4.8 Type Name Format Field

When the TNF field is excluded from the signature, the interpretation of the type field
could be changed without actually modifying the type field contents. For instance,
the well-known type “urn:nfc:wkt:U” could be changed to the external type “urn:
nfc:ext:U”.1

In combinationwith other unprotected fields even further manipulation is possible
without voiding the signature. Particularly in combination with the length fields an
attacker could change the type of a record to “unknown” and integrate the unused
type field into the payload (or the ID respectively).

5.2.5 Limitations of NDEF APIs

NFC devices typically provide libraries to handle NDEF records and messages. For
instance, the Contactless Communication API (JSR 257, [7]) for Java ME (Java
Platform, Micro Edition) includes a package for parsing NDEF messages. It may
be a good approach to allow the digital signature functionality to be built on top of
that API (application programming interface). This would permit a fast adoption of
digital signatures for NDEF without the necessity of preceding modifications of the
API.

For example, with JSR 257, it involves lengthy administrative steps to extend
the API specification and it takes additional time until actual implementations are
rolled out to NFC devices. Therefore, building a signature library on top of existing
APIs would allow for the library to be available to application developers much
faster. Unfortunately, the NDEF parser that is included into that API already puts a
certain level of abstraction on theNDEF records. For example, JSR257 automatically
combines record chunks into single non-chunked records. Similarly, a typical NDEF
parser API would not distinguish between regular-length and short-length records.

For a signature library on top of an existing NDEF parser API such an abstraction
renders the inclusion of most header fields into the signature virtually impossible.

1 Note that this external type identifier would violate the RTD specification as it does not include a
domain name.



78 5 Tagging

Merely header fields that only exist in the first chunk of a chunked record, like type
length and ID length, can be included. Consequently, if the JSR 257 NDEF parser
needs to be used, only the type, ID, payload, type length and ID length fields can be
protected by the signature.

Another option would be to use a normalized form of all records (i.e. one without
the concept of record chunks and without the concept of short records) for generation
and verification of the signature. By signing the payload field before the normalized
header fields, signature calculation can even be performed on devices with limited
processing capabilities or tightmemory constraints that can only handle small chunks
of data at a time. As the normalized header (containing the payload length field) is
processed after the payload, the length of whole record payloads need not be known
before the last part of the payload is processed.

5.2.6 Recommended Practice

While some fields have to be included into the signature in order to guarantee a min-
imum level of integrity and authenticity, the inclusion of some fields has advantages
as well as disadvantages. Yet, some other fields should never be signed. Table5.1
gives an overview of the capabilities of JSR 257 and of the recommended scope of
the signature.

A minimum of integrity and authenticity is achieved by signing the type, ID and
payload fields. The MB and ME flags, however, should never be signed to allow
moving blocks of signed records within an NDEF message.

Table 5.1 Record fields weighted by the benefits of not signing a field and the drawbacks through
the possible attack scenarios (based on [26])

Field Signature usefula Signature possible on top of JSR 257

No normalization With normalization

Message begin −− Not considered Not considered

Message end −− Not considered Not considered

Chunk flag − No Not applicable

Short record flag + No Not applicable

ID length present flag + No Not applicable

Type name format + Nob Yes

Type length + Yes Yes

Payload length + No Yes

ID length + Nob Yes

Type ++ Yes Yes

ID ++ Yes Yes

Payload ++ Yes Yes
aWeights are ++, +, − and −− (with ++ being a definitive yes and −− a definitive no)
bSome combinations cannot be detected
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Excluding the remaining fields from the signature has several benefits: Most of
these fields cannot easily be handled through the JSR 257 NDEF API. Moreover,
records could be repacked to accommodate a signed message to memory require-
ments, even when not using a normalized record structure for signature calculation.

Nevertheless, not signing these fields opens up several vulnerabilities to attack
scenarios. Some of these scenarios allow single records in the signed message to be
hidden from the parser or references through the ID field to be broken intentionally
without voiding a signature. These records could subsequently be replaced by new
records that are either unsigned or signed by the attacker. This kind of attacks can
be prevented by either signing the vulnerable fields or by putting adequate rules
of authorization in place that prevent mixing signed records, unsigned records and
records that are signed by multiple parties within one context.

5.3 Establishing Trust in Digitally Signed Content

When working with digitally signed data, one has to distinguish between authentic-
ity and authorization. A digital signature on its own only provides authenticity and
integrity protection. Authenticity means that the origin of a signature can be identi-
fied. Integrity protection refers to the fact that modifications of the data covered by
a signature can be detected.

Based on those two properties alone, a receiver cannot determine if the signing
party was also eligible to sign a specific set of data. Moreover, given only a signature,
a receiver cannot determine if the signing party should be trusted at all. The problem
of trust is explained by Gladman et al. [5]:

It is particularly important to distinguish between trust in a signature and trust in the owner
of a signature. Under the right conditions digital signatures can provide confidence that a
person (or an entity) has signed a data item but still say nothing about the trustworthiness of
the person concerned.

In otherwords the receiver of a signedNDEFmessage can take as a fact that the issuer
of the signature was in possession of the secret signing key and that the signed data is
unmodified. Yet, the signature alone allows no assumptions about the trustworthiness
of the issuer. This is where certificates come into play.With certificates, an ultimately
trusted third party certifies that the issuer of the signature can be trusted with regard
to certain actions.

5.3.1 Public-Key Infrastructure

One concept to establish trust relationships to digital signatures and certificates is
a public-key infrastructure (PKI). A PKI is a hierarchy of certificates that certify
digital signatures based on an ultimately trusted root node. Such a hierarchy consists
of certification authorities (CAs) and end-user certificates.
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Fig. 5.2 Certification hierarchy for trust in digital signature of NDEF messages (Source [21])

CAs certify the identity of other CAs and end-users by digitally signing their
public key and a certificate that contains information about the identity of the holder
of the private key. In addition, the certificate contains information about its purpose
(i.e. if the private key can be used to certify other CAs or to sign certain NDEF
records). End-user certificates guarantee that the holder of a particular private key is
trusted to sign certain NDEF records.

A CA has a registration authority that manages the registration of users (other
CAs and end-users) and the issuance of certificates [21]. A registration authority
also verifies the users’ identity and their eligibility for certain certificates.

Figure5.2 outlines a possible certification hierarchy for digital signature of NDEF
messages. There must be at least one root certification authority. This root CA is the
start of the chain of trust. The root CA certificate is stored in the certificate store
of NFC devices and is ultimately trusted to certify intermediate CAs. Intermediate
CAs that have a certificate that has been signed by an ultimately trusted root CA
are trusted to issue content issuer certificates to end-users. End-users with a valid
content issuer certificate that chains back to a trusted CA are trusted to sign NDEF
records that match the purpose defined in their content issuer certificate.
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5.3.2 Mapping Content Issuer Certificates to Content

Certificatesmap an issuer private key to a specific purpose of use. In the case of digital
signature of NDEFmessages, this could simply be the signature of anyNDEF record.
However, this means that anyone who is in possession of a certified private key could
create any NDEF message.

Certificates have attributes to further restrict their usage. For example, secure
sockets layer (SSL) certificates for web servers certify only the usage of a certain
host name (or domain name). Thus, a certificate that has been issued for one server
cannot be used for another server. In order to get a certificate for a certain host name,
users have to prove that they are the legitimate owners of that host name.

Similarly, for NDEF records it might be desirable to bind certificates to certain
information within an NDEF message. While mapping of content issuer certificates
to specific content is possible with some record types, it is difficult or even impossible
with other record types. In some cases binding a certificate to record content does
not make sense at all [22].

Mapping is fairly easy with records that contain information in a standardized
format that can be uniquely associated with an issuer (cf. [22]):

• Uniform resource locators (URLs): Signature of uniform resource identifier (URI)
records with Internet addresses can be restricted to URLs that contain the host or
domain name of the issuer. For instance, a certificate bound to mroland.at may
only qualify for signing URI records that point to Internet addresses in the domain
mroland.at and may not provide authorization for URLs in other domains.

• SMS messages and telephone calls: Signature of URI records with SMSmessages
and telephone calls can be restricted to telephone numbers that belong to the issuer.
For instance, a certificate bound to the phone number +435080427149 may only
qualify for signing URI records that contain SMS messages or telephone calls
for that phone number and may not provide authorization for use of other phone
numbers.

• External type records: Signature of external record types can be restricted to type
names within the issuer domain.

• Smart poster records: Signature of smart poster records can be restricted based on
the URI record inside the smart poster.

However, in some cases a content-based mapping may not be possible or even desir-
able (cf. [22]):

• Text records: Text records do not contain a value that is suitable for mapping to a
specific issuer.

• Business cards: While business cards (i.e. Multipurpose Internet Mail Extensions
(MIME) type records of type text/x-vcard) contain several values that could be
mapped to an issuer (e.g. the name of an organization, URLs, phone numbers
or even a person’s name), it is not always desirable to have such a binding. For
instance, mapping the name of an organization to the certificate would work if only
that organization issues business cards. However, if electronic business cards were
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used at an event to allow easy exchange of contact details between participants,
the business cards may be created and distributed by the event organizer and not
by the organizations named within the business cards.

• Connection Handover:With connection handover, the hardware addresses ofwire-
less interfaces could be used to bind certificates to specific content. There are,
however, several issues with this: First, an issuer would need to get certificates
that cover all of their equipment hardware addresses. Second, any issuer would
get a certificate for their own wireless equipment. Thus, an attacker who wants to
redirect users through their own equipment would easily get a valid certificate for
handover to that equipment. Similar attacks may be possible with URIs.

• URLs: Even with URLs there are some situations where binding the certificate to
a domain name or a host name is not feasible. For example, application developers
may want to use tags to link to their application on a market place (e.g. on Google
Play Store). The application developer would not be able to obtain a certificate
based on that host name as it belongs to the market place and not to the developer.
Using the full URL within the certificate would mitigate that problem.

• SMS messages: As with URLs, there are some situations where content binding
based on the phone number is not feasible. An example would be a premium
rate SMS phone number that is shared by multiple issuers and only distinguishes
between the different services based on the SMS message text. Using the full
SMS-URI within the certificate would again mitigate that problem.

In these cases, where a certificate cannot easily be mapped to the content of NDEF
messages, it may make sense to let the user explicitly decide if certain issuers are
allowed to perform certain actions. This is similar to code-signing certificates, where
the user or the operating system decides if the apps of a certain developer are trusted
to be run on a device.

As a result, content binding makes sense in some cases but is impracticable in
other cases. Overall, it would make sense to have both, certificates that are mapped
to certain content and certificates that are more like general code-signing certificates.

5.3.3 Partial Signatures

Binding certificates to content is not the only problem. An even sever issue arises if
it is possible to sign only specific records within an NDEF message. If a signature
can cover only specific records within an NDEF message, it becomes possible to
mix signed and unsigned records in one message. It is even possible to create NDEF
messages that contain multiple individually signed parts. The signatures may even
be backed by different certificates and different issuers. The following questions
emphasize the possible security issues:

• What if a smart poster contains a signed title but an unsigned URI?
• What if a smart poster contains a signed URI but an unsigned title?
• What if a smart poster title and URI are signed by different parties?
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These questions are tightly linked to the issue of authorization. Especially the latter
case may be abused to replace a smart poster URI with a malicious URI. When
attackers have a valid certificate for the malicious URI they may even sign the forged
part of the smart poster NDEF message. Such cases and their possible exploitation
for attacks must be considered thoroughly when implementing digital signatures for
the NDEF format.

Davis [4] describes three types of signing categories that exist for static messages:

• comprehensively signed content,
• (partially) unsigned content, and
• signed content groups.

Comprehensively signed content has only one signature for the whole data packet
and, thus, can be trusted based on this signature. The other two categories add a
potential risk to the trust relationship.

With partially unsigned NDEF messages, the receiver can only trust the signed
parts of the message, while the unsigned parts have to be regarded as untrusted. With
signed content groups, actions of the receiver depend on the relationship between
the content groups. On the one hand, as long as the groups are unrelated, each group
and its signature can be handled individually. If, on the other hand, multiple content
groups share a common context, they must also share a common origin (i.e. the
signatures must be issued by the same party).

An example for such a common context is the smart poster record. Its payload
is an NDEF message that contains one URI record and multiple other records that
describe the URI. When the smart poster record is signed as a whole (Fig. 5.3a)
then the trust in the smart poster record and all its sub-records can be based on that
signature and its certificate. The same applies to the case where all the sub-records
of the smart poster are signed by a single party (Fig. 5.3b).

But the sub-records of the smart poster could also be divided into multiple record
groups (Fig. 5.3c, d). The smart poster contains a URI record and a text record.
While the URI record is signed with a signature issued by party A, the text record
is signed with a signature issued by party B (for Fig. 5.3c) or has no signature at all
(for Fig. 5.3d).

In the case of a text record without a signature, the text record simply cannot be
trusted. However, in the case of multiple signatures issued by different parties, the
evaluation of both signatures may lead to the conclusion that they are both legiti-
mate on their own. For instance the result of this evaluation could be that the URI
(“http://www.a.com/”) is legitimate for A and the text (“Visit B’s website”) is legiti-
mate for B. Nevertheless, in context of the smart poster record the text is a misleading
description for the URI. As a consequence, the receiver has to also determine if it is
safe to associate A’s URI with B’s text. As a general rule records in a common con-
text, like a smart poster, should be signed by the same issuer in order to be regarded
as trustworthy.
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Fig. 5.3 Example: Different
ways to sign a smart poster
record, a comprehensive
signature, b multiple
signatures, same issuer,
c multiple signatures,
different issuers, d partially
unsigned

(a) (b)

(c) (d)

5.3.4 Managing Content Issuer Private Keys

Plank and Kolberger [21] outline two different approaches to management of content
issuer private keys: Management by the content issuer and management by the tag
manufacturer.

5.3.4.1 Content Issuer

In that case, end-users manage their own secret keys. No one else has access to the
keys. Thus, non-repudiation is not endangered. However, this scenario also has a
negative side effect: If, for example, a content issuer wants to order a large number
of tags preformatted with URLs that contain a unique serial number for each tag,
then the content issuer would need to individually sign each tag URL and submit
all signed data sets to the tag manufacturer. Thus, this scenario may involve huge
amounts of data transferred between the content issuer and the tag issuer.
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5.3.4.2 Tag Manufacturer

In that case, the tag manufacturer would manage the content issuer secret keys. As
the tag manufacturer can then sign content in the name of the content issuer, this
might result into a liability issue. While some tag manufacturers (e.g. those that have
secure printing facilities) may have the know-how and the resources to responsibly
manage these secret keys, other tag manufacturers may not have these capabilities.

The advantage of this scenario is that even for URLs with diversified content, the
content issuer only needs to provide the base URL. The tag manufacturer can then
diversify the URL and generate an individual signature for each tag.

5.3.4.3 Online Signature Generation

Another approach for managing the content issuer private keys is online signature
generation at the CA-side. This is a centralized solution where the CA manages all
the content issuer private keys. Whenever a content issuer wants to sign an NDEF
message, themessage (or its hash value) is transmitted to the CA signature generation
service. The service then computes the signature and sends it back to the content
issuer. This approach is used, for instance, with code-signing of apps for BlackBerry
devices.

The main advantage of this online signature generation is that it significantly
reduces the complexity at the client-side. Content issuers do not need to manage
and protect their secret signing keys. When they want to delegate the production
of individually personalized tags to a tag manufacturer, they could simply assign a
limited number of tickets for signature generation to that manufacturer. Also, the
client software needs to perform less cryptographic operations. In case a hash value
is transmitted to the signature service, then the software only needs to be capable
of calculating that hash value from the signed NDEF message and of attaching the
received signature record to the NDEF message. In case the whole NDEF message
is transmitted to the signature service, the client software neither needs to perform
any cryptographic operations nor needs to be capable of parsing NDEF messages.
These tasks can all be handled at the server-side.

Nonetheless, online signature generation also has some disadvantages. First, there
might be privacy issues that prevent the transmission of NDEF messages to the
signature service. These issues can be circumvented by transmitting hash values
instead of whole NDEF messages. Even then the signature service is capable of
tracking the number of issued signatures, which might not be desirable for some tag
issuers.

Second, if a tag manufacturer personalizes a large number of tags with diversified
content, signing that content will be time and bandwidth consuming as a separate
signature has to be requested and transferred across the Internet for each tag. Also the
signature service must be reliable and available at all times while a batch of NDEF
messages is processed.
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5.3.5 Lifespan of Certificates and Signatures

Certificates usually have a limited validity period. This validity period reflects the
minimum period of time that the certified secret signing key is expected to be kept
secret. While a signing key is usually expected to remain secret for a long time
beyond the certificate expired, there might be some occasions where an adversary
gains knowledge of that key. Typically, this would be the case if the adversary man-
aged to gain access to the location where the secret key was stored. In the worst case
scenario, weaknesses in the cryptographic algorithms or improvements in computa-
tional power would allow an adversary to compute the secret key from publicly avail-
able information (e.g. the public key, signatures). However, current cryptographic
algorithms are expected to remain secure for a long time.

The validity period of certificates has a significant impact on the validity of sig-
natures themselves. Thus, when creating a PKI for NDEF signature, it is important
to analyze how long the signature on an NFC tag should remain valid. Plank and
Kolberger [23] discuss four different models to cope with the lifespan of certificates
and signatures: the shell model, the modified shell model, the chain model, and the
modified chain model.

5.3.5.1 Shell Model

With the shell model (Fig. 5.4a), a signature is valid at a time tverify if all certificates
in the chain of trust are valid at that time [37]. As a consequence, a signature is
considered invalid as soon as any certificate in the chain of trust expired.

For an NFC tag, this means that signed NDEF records are only valid while the
content issuer certificate is valid. Therefore, the content issuer certificate needs to be
valid for a reasonable time after the last NDEF message was signed with it. I.e. the
certificate needs to remain valid for the whole expected lifetime of the tag.

5.3.5.2 Modified Shell Model

With the modified shell model (Fig. 5.4b), a signature is valid if all the certificates in
the chain of trust were valid at the time of signature creation (tsign) regardless of when
the signature is verified [37]. This model has the advantage that signatures remain
valid even after certificates in the chain of trust expired. However, the signature must
contain a timestamp that records the time of its creation [23]. Including an accurate
and unforgable timestamp in the signature would be particularly easy in combina-
tion with online signature generation as a trusted service would be responsible for
determining and inserting the timestamp.

Nevertheless, this model defeats the initial purpose of certificate expiry: Signa-
tures will be accepted as valid even after the secret key was exposed to an adversary.
Even if the secret key is exposed long after the certificate expired, an adversary could
easily forge the signature and back-date the timestamp to a time within the validity
period.
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(a)

(b)

(c)

(d)

Fig. 5.4 Models for the lifetime of certificates and signatures: a shell model [37], b modified shell
model [37], c chain model [37], d modified chain model [23] (based on [23])

5.3.5.3 Chain Model

With the chain model (Fig. 5.4c), a signature is valid if the certificate that certifies
its signing key was valid at the time of signature creation [37]. The same applies for
each certificate in the chain of trust. Similar to the modified shell model, signatures
remain valid even after certificates in the chain of trust expired. Again, the signature
must contain a timestamp that keeps track of its creation.
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The chain model is known to be prone to attacks that allow an adversary to
bypass certificate revocation lists. The vulnerability is caused by the fact that, once
an adversary gains knowledge of a secret key, the timestamp included in a signature
can be forged. Further information on this topic can be found in [37].

5.3.5.4 Modified Chain Model

The modified chain model (Fig. 5.4d) is similar to the chain model. However, the
content issuer certificate must be valid at the time of signature verification (tverify)
instead of the time of signature creation (tsign). This results in an equal lifetime as
with the shell model. In comparison to the chain model, no timestamp needs to be
included in the NDEF signature.

5.4 The NFC Forum Signature RTD

The Signature Record Type Definition [13] adds digital signatures to NDEF. It offers
a trustworthy method for providing information about the origin of NDEF data and
provides users with the possibility of verifying the authenticity and integrity of data
within an NDEF message [13]. The NFC Forum released their first candidate of the
signature RTD in early 2010 [3]. The candidate was adopted as a final technical
specification in November 2010.

The signature RTD defines an NDEF record type as a container for digital certifi-
cates and certificate chains. It also specifies a method to attach signatures to NDEF
messages.

At the time of this research, version 1.0 of the signature RTD became available.
Therefore, this thesis focuses on version 1.0. Version 2.0 has been released as a
candidate technical specification in 2013. That version adds stronger cryptography
and tries to solve the issues discussed in this thesis.

5.4.1 Signature Record

A signature record is an NDEF record with the well-known type name “urn:nfc:wkt:
Sig”. The layout of a signature record payload is depicted in Fig. 5.5. The payload
consists of three parts: a version byte, a signature field, and a certificate chain.

The signature field contains the signature over the signed NDEF records. The
signature can either be stored directly within the signature field (denoted by a cleared
URI present flag) or referenced through a URI (typically an Internet address) that
points to the actual signature (denoted by a set URI present flag). The signature type
field determines the algorithm that is used to calculate the signature (cf. Table5.2, in
all cases SHA-1 is used as the hash function).
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Fig. 5.5 The payload of a signature record contains the record version information, a signature
part and a certificate chain (Source [8])

Table 5.2 Possible values for
the signature type field (based
on [13])

Field value Signature algorithm

0x00 No signature

0x01 RSASSA-PSS

0x02 RSA-PKCS1-v1_5

0x03 DSA

0x04 ECDSA – P-192

Other values Reserved for future use

The certificate chain is a list of certificates followed by an optional URI reference
(if the URI present flag is set) that points to a continuation of that list. The list starts
with the content issuer certificate for the signing key. Each further certificate in the
list certifies the issuer of its preceding certificate. Thus, the certificates build a chain
of trust. The last certificate in the list must be issued by one of the trusted root
CAs. The root CA certificate itself is not part of the list. The certificate format field
determines whether the certificates use the X.509 [6] certificate format (0x0) or the
X9.68 format (0x1).
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5.4.2 Attaching a Signature to NDEF Messages

Asignature record always signs a slice of consecutiveNDEF recordswithin anNDEF
message. The signature record itself is appended to that slice. Each signature record
signs all preceding NDEF records starting either from the beginning of the NDEF
message or from the record that follows the previous signature record. A special
placeholder signature record—one with a signature type of 0x00, without an actual
signature and without a certificate chain—can be used to mark the beginning of a
signed slice of records while the preceding records remain unsigned. The assignment
of signature records to slices of an NDEF message is shown in Fig. 5.6.

5.4.3 Signature Coverage

The digital signature contained in the signature record type does not protect all the
fields of a signed record. Figure5.7 shows how to prepare the data string for signature
computation. Only the type, ID, and payload fields are covered by the signature. The
remaining fields (flags, type name format, and length fields) are not part of the signed
data. Consequently, those fields can be changed in signed records without voiding the
signature. This allows certain operations (like changing between regular-length and
short-length format, and realignment of record chunks) to be performed on signed
NDEF records.

5.5 Weaknesses of the Signature RTD

In this section, the Signature Record Type Definition is further evaluated based on
the analysis in Sects. 5.2 and 5.3. Several weaknesses and practical attack scenarios
have been discovered.

Fig. 5.6 Each signature record signs all preceding NDEF records starting either from the beginning
of the NDEF message or from the record that follows the previous signature record (Source [8])
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Fig. 5.7 Assembling the data string for signature calculation from the signed NDEF records

5.5.1 Establishing Trust

The Signature Record Type Definition specifies only the container format for the
signature and a method to attach signatures to NDEF messages. Thus, signature
records only provide integrity and authenticity. Methods for establishing trust in the
legitimacy of signed data are out of the scope of the signature RTD. Implementers
have to build their own PKI, and define their own policies on how to handle trust
and how to establish trust relationships between content, issuers, receiving devices,
and users. This makes the use of the signature RTD impractical for many real-world
applications.

5.5.2 Using Remote Signatures and Certificates

A further potential weakness of the signature record type is the use of remote signa-
tures and certificates referenced by URIs. This could open up for security vulnera-
bilities and privacy issues. The main problem is that the data referenced by the URIs
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has to be retrieved prior to verifying any signature. Therefore, the URIs within a sig-
nature record have no authenticity and integrity protection. As a result, an adversary
could try to use these URIs to launch attacks.

First, if the remote URIs are accessed without notifying the user, there is a possi-
bility of invading the user’s privacy. When the URI references an Internet location,
data that identifies a user (IP addresses, cookies, etc.) can be collected at a centralized
service (cf. [30]) at the moment a tag is touched. This could be used to collect usage
data on tags even without the need for the user to actually access the services offered
by the tag. As the URIs have to be retrieved prior to the verification of the signed
NDEF data, the receiver cannot make any trusted assumptions on the offered service
at the time the URI resource is accessed.

An attacker could even use this approach to collect usage and user data on any
existing tag infrastructure that is protected by signatures: The attacker would simply
need to replace each tag with a new tag where the signature URI (or the certificate
chain URI) points to a location that is controlled by the attacker. The attacker would
then collect usage data whenever a signature is retrieved from the URI. In order to
hide the attack from the user, the attacker would then forward the request to the
original signature URI (or to the signature itself) that has been extracted from the
original tag. Therefore, the user would not notice any disruption of service.

Second, the URIs are retrieved in the context of the user. As a consequence, it
may be possible to use cookies and other identification data during the retrieval of
the referenced URIs. An attacker could abuse this to trigger HTTP GET requests on
services that are usually only available to the user. For example, theURImight trigger
sending a message on an online platform (e.g. Facebook, Twitter) in the context of
the user that received the NDEF message.

Furthermore, the URI could reference locations or services that are only available
in the context of the receiving device. This includes resources on local network
segments and on network segments that are available through virtual private network
(VPN) tunnels. This also affects services that have IP address based access control
and can, therefore, only be used from the user’s device.

Third, the URI may be abused to trigger existing vulnerabilities of the underlying
operating system. For example, this could be vulnerabilities in the URI parser or the
certificate parser. In the worst case such vulnerabilities could be exploited to perform
a denial-of-service or to trigger the execution of program code (e.g. through buffer
overflows) on the receiving device.

5.5.3 Insufficient Signature Coverage

The signature record signs only the type, ID, and payload fields of an NDEF record.
The analysis in Sect. 5.2.4 reveals that this is the worst case scenario and guarantees
only a minimum of integrity and authenticity of the signed records. Yet, it allows for
the use of signatures on top of certain NDEF APIs (e.g. the Contactless Communi-
cation API for Java ME).
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However, by changing the unsigned fields of signedNDEF records, it is possible to
manipulate the semantics of signed records while still maintaining a valid signature.
This leads to several potential vulnerabilities:

• Data can be moved between the three signed fields (type, ID, payload).
• Records can be hidden from processing.
• Records can be joined into a preceding record payload.
• Parts of a record payload can be extracted into separate records.

5.5.3.1 Moving Data Between Type, ID and Payload Fields

By changing the length fields, it is possible to move bytes between the type, ID
and payload fields. A record with the external type “mroland.at:myapp”, an empty
ID and the payload “1234567890” could be changed to a record with the external
type “mroland.at:my”, the ID “app” and the payload “1234567890” (see Fig. 5.8).
In both cases the signature is calculated over the same data string: “mroland.at:
myapp1234567890”. Only header fields that are not covered by the signature are
changed.

5.5.3.2 Hiding NDEF Records

Record hiding can be achieved by setting the TNF field of a record to 0x5
(“unknown”). For unknown TNF, the specification [12] says:

(a)

(b)

Fig. 5.8 Moving data between fields within a record: a original record, b record after moving the
data (Source [25])
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(a) (b)

(c)

(d)

Fig. 5.9 A text record is hidden from a signed NDEF message by setting its type name format
to “unknown”. The type field of the text record is merged into its payload field. a Original smart
poster, b smart poster with hidden text record, c original text record, d hidden text record (Source
[25])

Regarding implementation, it is RECOMMENDED that anNDEF parser receiving anNDEF
record of this type, without further context to its use, provides a mechanism for storing but
not processing the payload.

Therefore, a receiver of NDEF records should ignore such records. Consequently,
an attacker has a means of selectively hiding records from signed NDEF messages
without voiding the signature (see Fig. 5.9).

5.5.3.3 Joining NDEF Records

By changing the length fields of the first record and removing the header byte
and length fields of subsequent records, multiple consecutive records can be joined
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(a)

(b)

Fig. 5.10 Joining consecutive records: a original records, b joined records (Source [25])

into one record. For example, a record that has the external type “mroland.at:num-
ber”, an empty ID and the payload “1234567890”, and a record that has the exter-
nal type “mroland.at:text”, an empty ID and the payload “ABCDEFG” could be
joined into one record with the external type “mroland.at:number”, an empty ID
and the payload “1234567890mroland.at:textABCDEFG”. In both cases the signa-
ture is calculated over the data string “mroland.at:number1234567890mroland.at:
textABCDEFG” (see Fig. 5.10).

5.5.3.4 Extracting NDEF Records

Using these methods, it is possible to extract parts of a signed record payload without
voiding the signature. Unused parts can be eliminated with record hiding. Figure5.11
shows an example: A signed smart poster record is decomposed into sub-records.
One sub-record hides all unwanted parts of the original smart poster record and one
record is the remaining text record. The signature is still valid after record extraction.
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(a) (b)

Fig. 5.11 Extracting parts of signed records: a original record, b extracted parts are embedded into
a new smart poster record (Source [25])

5.5.4 Record Composition Attack

The combination of the above vulnerabilities leads to a new practical attack scenario:
An attacker can collect multiple signed NDEF messages (e.g. from smart posters)
and assemble them into a newNDEFmessage. The newNDEFmessage still contains
the valid signatures of the old messages.

As explained in Sect. 5.3.3, all records that belong to a certain context need to
be signed by the same party in order to establish a trust relationship between them.
However, even if this rule is obeyed, there is the possibility of having multiple
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signatures from the same content issuer within one context. For example, the sub-
records of a smart poster record may all have their own signature. If these signatures
were issued by different parties (see Fig. 5.3c), the records can clearly not be trusted
to form one smart poster record. If these signatures were issued by the same party
(see Fig. 5.3b), the records may be trusted to form one smart poster record.

Therefore, if a complex record type (e.g. a smart poster record) is assembled
from multiple records that were all individually signed with the same content issuer
certificate, the complex record as a whole may still be regarded as validly signed.
This new attack scenario is called the “Record Composition Attack” (cf. [27]).

As an example, Fig. 5.12 shows how to use the record composition attack to
perform Mulliner’s attack on Selecta snack vending machines (cf. Sect. 5.1) even
when digital signatures are used. The attack is performed in several steps:

1. The adversary collects the smart poster records of two snack vending machines
A and B. Each smart poster record contains a text record of the form “Pay at
vending machine X” and a URI record with a ready-made SMS message of the
form “sms:+43...?body=SNACK_X”, where X is either A or B. Both smart poster
records are signed by Selecta.

2. The adversary extracts the text record of the smart poster from machine A by
selectively hiding the unwanted parts (i.e. the smart poster header, the URI record
and the text record header) in records of “unknown” type.

3. The adversary extracts the URI record of the smart poster from machine B by
selectively hiding the unwanted parts (i.e. the smart poster header, the URI record
header and the text record) in records of “unknown” type.

4. The remaining records are combined into one NDEF message and used as the
payload of a new smart poster record. The new smart poster record contains
the text record “Pay at vending machine A”, the URI record “sms:+43...?body=
SNACK_B”, several records of “unknown” type and a valid signature for both
the text record and the URI record.

As a result, the receiver of the NDEF message will see a smart poster record con-
taining a text record and a URI record, both with a valid signature. The attacker
can now replace the NFC tag at vending machine A with a new tag containing
this new smart poster message. The user will still see the expected text “Pay at
vending machine A” and a certificate issued by Selecta. However, when send-
ing the SMS message, the payment is actually processed for vending machine
B as the text of the SMS message is “SNACK_B”. The adversary could then
wait at vending machine B until a user tries to buy a snack at machine A. As
soon as a payment is authorized, the attacker can release a snack at machine B.

This scenario demonstrates that even when an NDEF message is signed by only a
single party there is not necessarily a trust relationship between the signed records.
Only if records are signed by the same signature record and, thus, form a single
content group, they can be trusted to belong to each other.

Besides fraud, another exemplary use-case of the record composition attack is
denial-of-service attacks. A denial-of-service attack can be achieved by composing
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Fig. 5.12 Record composition attack: a signed(!) smart poster record conveying a new intent is
assembled from parts of two signed smart poster records [27] (Source [25])

amessage that triggersmisbehavior in the receiving application. The fact that, despite
the misbehavior, all records are properly signed, could lead the user into additional
confusion. Mulliner [11] explains that “denial-of-service attacks can be used for
destroying the trust relationship between the customer and the service provider.”
As the signature strongly binds the records to a certain issuer, trust in this issuer is
severely endangered by such attacks.

5.6 Possible Solutions to the Discovered Weaknesses

Three weaknesses of the existing signature RTD technical specification have been
discovered:
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1. The signature RTD defines only a format for embedding signatures into NDEF
messages. A framework for establishing trust (i.e. a public-key infrastructure) is
still missing.

2. Use of URIs within signature records results in the URIs themselves not being
covered by the signature. Thus, these URIs may pose a threat to users’ security
and privacy.

3. The signature covers only parts of the signed records and leaves certain fields
unprotected. This could be abused to manipulate the semantics of signed NDEF
messages without voiding their signature.

The solution to the first issue could be fairly easy as the NFC Forum only needs to
define a public-key infrastructure as proposed in Sect. 5.3.

For the second issue, it could be left up to the user to decide, which URIs are
trusted for certificate and signature retrieval. However, it can be assumed that the
average user cannot easily distinguish between legitimate and manipulated URIs.
Another possibility would be to predefine a set of allowed URIs. For instance, as
with the root CA certificates, a list of trusted URIs for retrieval of intermediate CA
certificates and content issuer certificates could be stored on the user’s device. The
content issuer certificates would then contain lists of URIs for retrieval of signatures.
Nevertheless, with this solution, those service providers that have trusted URIs are
still able to track users. The most restrictive solution, but also the only solution that
makes this type of tracking impossible, would be to completely eliminate the usage
of URI references from the signature RTD.

The third issue can only be overcome by changing the signature RTD techni-
cal specification. Attacks can only be reliably prevented if the record header fields
(maybe except for MB and ME flags) are included into the signature. Of course, this
would also prevent legitimate manipulations like rearrangement of record chunks
and re-coding between short-length and regular-length records. A possible solution
that also allows for these legitimatemanipulations would be to use a normalized form
of the records for calculating the signature. I.e. before calculating the signature, the
NDEF message would be converted into a form that does not contain chunked or
short records. Saeed and Walter [28] propose a different solution that also allows
re-arrangement of record chunks by modifying the whole NDEF record format for
chunked records and by including the type length and the ID length into the signed
data.

In addition, to reliably prevent the composition of NDEF messages that convey
a new intention from existing signed NDEF records, it is advisable to obey the
following guidelines:
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• The receiver of an NDEF message should only trust the relationship of records if
all records are signed and if all records share one common signature record.

• The issuer of an NDEF message should sign all related records with one common
signature. Unrelated records, however, should always be signed with separate
signatures.
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Chapter 6
Card Emulation

While tagging is the most widely supported application scenario of Near Field
Communication (NFC), card emulation is the mode that is expected to have the
highest commercial impact. The reason is that, in card emulation mode, an NFC
device can interact with existing contactless smartcard readers as if it were a contact-
less smartcard. Contactless smartcards and their corresponding reader infrastructures
are already in use with several applications. For instance, more and more credit cards
and credit card terminals are equipped with NFC-compatible contactless interfaces.
Also, many contactless micro-payment systems and access control systems are com-
patible to NFC. Thus, an NFC device can operate as a payment card, as a loyalty/
coupon card or as a key card for access control in these existing systems. Especially
payment use-cases (e.g. credit cards) are believed to have a potential for generating
high revenues.

6.1 Current Perspective on Security

The integration of smartcards as secure elements into mobile phones is seen as an
advantage for both, the mobile phone and the smartcard. The mobile phone benefits
from the secure storage and secure execution environment of a secure element. This
could be used by apps on the mobile phone to store secret credentials or to perform
secure cryptographic operations. For instance, a user could be securely authenticated
to a web service using credentials stored on the secure element.

The smartcard (i.e. the secure element) benefits from the mobile phone too. It
inherits all the security features of a regular smartcard (cf. Sect. 4.3) and combines
them with the mobile phone user interface and network connectivity. The user inter-
face (e.g. screen and keyboard) can be used to enhance smartcard applications with
input and output capabilities. For a payment application, the user interface could
provide a display to show the transaction amount and a keyboard for PIN entry and
transaction confirmation. It is often assumed that the mobile phone user interface
is more trustworthy than that of a payment terminal (cf. Sect. 4.4.3). In addition to
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simple input and output capabilities during a transaction, an app on the mobile phone
could even keep track of the transaction history.

A regular (contactless) smartcard is normally disconnected from its surrounding
world and only interacts with the reader infrastructure of its application. The program
code and data necessary to fulfill the application requirements are pre-personalized
before distribution of a card to its user. Thus, a smartcard is bound to a predefined
application and can hardly be updated once it is in use.

A secure element is almost permanently connected to a global network (cellular
network, Internet) through the mobile phone. This allows management of the secure
element throughout its whole lifecycle. Consequently, the secure element is no longer
restricted to one application. Applications can be added, configured and removed
whenever the secure element has a connection to its trusted service manager (i.e. the
entity that manages card applications over-the-air).

The combination of smartcards and mobile phones could even mitigate vulner-
abilities. Contactless smartcards, for instance, can be accessed from a distance of
several centimeters. Consequently, they are potentially prone to skimming and relay
attacks. Thus, an attacker could place a reader device in proximity of a card and
communicate with that card without the user’s knowledge. With current contact-
less cards, the only viable countermeasure is to enclose the card with some protec-
tive shielding. For a secure element inside a mobile phone, there is another option:
Software on the application processor could disable external card emulation when-
ever it is not needed. This would make access through the external interface of the
secure element impossible unless the user explicitly enables it.

Literature (cf. Sect. 4.4.3) mainly covers the positive effects of combining mobile
phones and smartcard technology.However, this combination can also result into new
vulnerabilities. In particular, the vulnerabilities of each technology could accumulate
into new and more severe vulnerabilities.

For example, while the mobile phone can restrict access to the secure element
through external card emulation mode, at the same time, the mobile phone opens
a new path into the secure element through internal card emulation mode. Thus,
attackers might be able to access the secure element from apps or even over a network
connection. Whether this potential new vulnerability poses an actual threat depends
on how access control to the secure element is enforced in the mobile phone system.

6.2 APIs for Access to the Secure Element

In order to estimate how vulnerable the secure element is to unauthorized access
from the application processor of a phone, it is necessary to analyze the interface
between mobile phone apps and the internal mode of the secure element. Various
mobile phone platforms use different application programming interfaces (APIs) and
have different access control schemes for access to the internal mode of the secure
element.

http://dx.doi.org/10.1007/978-3-319-15488-6_4
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6.2.1 JSR 177

The Security and Trust Services API (SATSA) is standardized as JSR 177 [17]
and specifies a number of Java programming interfaces for integrating secure
elements into Java ME (Java Platform, Micro Edition) applications. Specifically
the sub-package SATSA-APDU (javax.microedition.apdu) is designed for
APDU (application protocol data unit) based communication (according to ISO/IEC
7816-4) with secure elements. The other packages of SATSA are SATSA-JCRMI for
Java Card remote method invocation, SATSA-PKI for digital signature and creden-
tial management and SATSA-CRYPTO for basic cryptographic operations. JSR 177
is defined for Java ME, which is a Java platform specifically designed for devices
with limited processing and storage capabilities (e.g. mobile phones).

In today’s Java ME capable devices SATSA-APDU is mainly used for access
to the universal integrated circuit card (UICC) of a mobile phone. An interface
APDUConnection is provided for access to specific applets on the secure element.
The Generic Connection Framework (GCF) is used to open connections based on
the secure element slot number and the application identifier (AID) of the applet:

APDUConnection c = (APDUConnection)
Connector.open("apdu:<SLOT >; target=<AID >");

APDUConnection has methods for retrieval of the answer-to-reset (getATR) of
the card, for verification and management of PIN codes (enterPin, changePin,
disablePin, enablePin and unblockPin) and for exchange of arbitrary
APDUs with the selected applet (exchangeAPDU). The exchangeAPDUmethod
cannot be used with commands for logical channel management and for applet selec-
tion. This limitation assures that each APDUConnection is bound to the initially
selected applet. Regarding the PIN-related methods, JSR 177 specifies that imple-
mentations should handle PIN entry dialogs in a way that other applications can
neither imitate them nor intercept entered PIN codes.

Access to the SATSA-APDU API is protected by Java ME permissions. The per-
missions for smartcard access are only granted to signed applications. Applications in
the manufacturer domain and the operator domain are automatically granted the per-
mission while applications in the trusted third party domain may require additional
user interaction in order for the permissions to be granted.

As an addition to this basic access control scheme, the SATSA specification rec-
ommends a more sophisticated access control model in order to protect the secure
element from malicious mobile phone applications. The Recommended Security
Element Access Control [17] defines twomechanisms for fine-grained access control
to secure element applications. The first mechanism extends the security domains
of the Java ME device in that only applications signed with certificates that chain
back to a root certificate provided by the secure element are granted access. The
second mechanism is an access control scheme based on access control lists (ACLs).
The secure element as a whole and each applet can have their own access control
file (ACF). Each ACF contains access control entries (ACEs). The access control
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scheme grants access based on the APDU header information and the mobile phone
application security domain (manufacturer, operator, trusted third party) or applica-
tion signature (specific end-entity certificate, specific root certificate).

The SATSA specification makes some important assumptions for the access con-
trol model to be secure: Mobile phone applications are bound by all secure element
access restrictions, both the mobile phone application and the applet trust the mobile
device platform and only Java ME applications are considered [17].

6.2.2 Nokia Extensions to JSR 257

The Contactless Communication API is standardized as JSR 257 [18] and specifies a
Java programming interface for access to contactless targets (NFC and RFID (Radio
Frequency Identification) tags, contactless smartcards andvisual tags).Consequently,
this API provides access to NFC reader/writer mode. For their first NFC phones
(specifically Nokia 6131 and Nokia 6212), Nokia developed some extensions to the
Contactless Communication APIs in order to support more features of NFC. Besides
support for further RFID tag types and for some limited peer-to-peer functionality,
Nokia’s extensions to JSR 257 also provide access to the embedded secure element
of their mobile phones.

Both JSR 177 and JSR 257 provide access to smartcards. While JSR 177 is
intended for access to specific applets on secure elements connected to or inte-
grated into a mobile device, JSR 257 is intended for access to any contactless smart-
card that is accessed through the NFC interface of a device. JSR 257 provides an
interface ISO14443Connection for creating connections to contactless smart-
cards. The interface has a single method (exchangeData) to exchange arbitrary
APDUs (on top of the data exchange protocol defined in ISO/IEC 14443-4) with
the card. As opposed to JSR 177, a connection is not limited to one specific applet.
Instead, any ISO/IEC 7816-4 APDU—including applet selection and logical channel
management—can be sent to the card.

With Nokia’s extensions to JSR 257 a connection can also be established to the
embedded secure element of a phone. This compensates for the missing support of
access to the embedded secure element through JSR 177 on their first NFC devices.
An ISO14443Connection to the secure element is opened using the GCF. The
system property “internal.se.url” contains the connection URI (Uniform Resource
Identifier):

ISO14443Connection c = (ISO14443Connection)
Connector.open(

System.getProperty("internal.se.url"));

Opening an ISO14443Connection is subject to protection by Java ME permis-
sions. On Nokia’s mobile phones, however, the permission for contactless smart-
card access is granted to any application by default. Thus, even applications in the
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untrusted third party domain (i.e. applications without a trusted signature) may freely
access this API.

An additional security scheme has been introduced for secure element access
through Nokia’s API extensions. This scheme requires that an application is in the
manufacturer, the operator or the trusted third party security domain. Therefore, only
applications that are signed with trusted certificates are granted access to the secure
element API.

6.2.3 BlackBerry

NFC functionality for BlackBerry devices is available since API version 7.0.0. The
BlackBerry API uses the SATSA-APDU interface for secure element communi-
cation. An additional helper library (net.rim.device.api.io.nfc.se) is
provided to manage multiple secure elements. The library contains the SecureEl-
ementManager singleton class for enumeration of available secure elements and
for configuration of card emulation options. Each secure element is represented by a
SecureElement object. This object provides methods to register for notifications
about certain events (e.g. when an applet is selected through an external reader) and
for retrieval of connection URIs for use with the GCF. The method getUri is used
to obtain a connection URI for an APDUConnection to either a specific applet or
the secure element as a whole:

APDUConnection cSE = (APDUConnection)
Connector.open(se.getUri ());

APDUConnection cApplet = (APDUConnection)
Connector.open(se.getUri(AID));

From the available API documentation [24] it is unclear if application selection and
logical channel management—which is usually not possible with an APDUCon-
nection—are permitted if a connection has been established to the secure element
as a whole. If these commands are not permitted, then only the application that is
selected by default can be accessed in that case.

Access to the secure element helper library is restricted to applications that are
signed with BlackBerry Java code signing keys. Code signing keys are provided to
developers free of charge [22]. However, registration is required. Registrants have to
provide their name, company name, country, e-mail address, website, phone number
and detailed information about their project.

6.2.4 Android

While many Android-based NFC devices have an embedded secure element or
support a UICC-based secure element, the Android platform API currently has no
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standardized interface for access to secure elements. However, several APIs exist for
secure element access on today’s Android devices (e.g. Samsung Nexus S, Samsung
Galaxy Nexus, Samsung Galaxy S III, Sony Xperia S, etc.):

• Google’s proprietary secure element API,
• SEEK-for-Android SmartCard API, and
• Open NFC secure element API.

The first two APIs are evaluated in detail in the following sections.

6.2.4.1 Google’s Proprietary Secure Element API

While there is still no standardized public API for secure element access as part of
the official Android Open Source Project (AOSP), Google has already introduced its
Google Wallet—a secure element based container for payment, loyalty and coupon
cards. Google Wallet has been available for the Nexus S in certain regions since
Android 2.3.5. The wallet consists of both a mobile phone app and a component
on the secure element. For the wallet to interact with the on-card component and
for management of the secure element as a whole, Google secretly integrated an
undocumented API called com.android.nfc_extras into their Android plat-
form. This API can be used to access an embedded secure element and is available
since Android 2.3.4. However, this interface is not included in the public software
development kit (SDK) and, thus, is hidden from the average programmer.

The secure element API consists of two classes: NfcAdapterExtras and
NfcExecutionEnvironment. NfcAdapterExtras is used to enable and
disable external card emulation (setCardEmulationRoute) and to retrieve an
instance of the NfcExecutionEnvironment class of the secure element (get-
EmbeddedExecutionEnvironment):

NfcAdapterExtras extras = NfcAdapterExtras.get(nfcAdapter);
NfcExecutionEnvironment se =

extras.getEmbeddedExecutionEnvironment ();

NfcExecutionEnvironment is used to establish an internal connection to the
embedded secure element and to exchange APDUs with it. This class provides meth-
ods to open and close the internal connection to the secure element (open, close)
and to exchange APDU sequences with the secure element (transceive):

se.open();
byte[] rAPDU = se.transceive(cAPDU);
se.close ();

As opposed to other secure element APIs, the connection is established to the secure
element as a whole and not bound to a single applet.

In later versions of the Android platform notifications upon external card emula-
tion activity have been added. See Appendix A for the full interface definition.

The access control to the secure element API depends on the Android platform
version:
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• Android 2.3.4: The API can be accessed by any application that holds the
permission to use NFC (android.nfc.permission.NFC).

• Android 2.3.5–4.0.2: Starting with the roll-out of Google Wallet, the permission
required to access the secure element API has been changed to a special permis-
sion named com.android.nfc.permission.NFCEE_ADMIN. This spe-
cial permission is only granted to applications which are signed with the same
certificate as the NFC system service. Consequently, access to the secure element
is restricted to applications that are distributed by the manufacturer/provider of the
NFC system service.

• Android 4.0.3+: Starting with Android 4.0.3, the permission system for the secure
element API has fundamentally changed. Permissions are granted in two steps.
First, the Android permission system is used to verify that the app that tries to
access the API has the permission to use NFC. If the app passes this check, the
application certificate and package name are matched against a database of secure
element access rules. Access is granted if there is a matching rule. The database
is stored as an XML file (/etc/nfcee_access.xml). As a consequence, any
application with a certificate that is listed in the XML file can gain access to the
secure element. The XML file is part of the system partition and can, therefore,
be updated through system updates.

6.2.4.2 SEEK-for-Android SmartCard API

SEEK, the Secure Element Evaluation Kit for Android, has been launched by
Giesecke & Devrient as an open-source project on Google Code [7]. The project
aims for creating a standard API for access to any type of secure element—the
SmartCard API—that could be integrated into a future version of the Android plat-
form. The SmartCard API started with an interface similar to the smartcard API for
Java SE (Java Platform, Standard Edition). The latest version of the SmartCard API
implements the Open Mobile API defined by SIMalliance (cf. Sect. 6.2.5).

While the SEEK-for-Android project submitted patches for integration into a
future release of the Android platform, these patches have not been adopted as of
Android 4.4.However,many devices, like the SonyXperia S and the SamsungGalaxy
S III already ship with an implementation of the Open Mobile API (typically based
on the SEEK-for-Android SmartCard API).

6.2.5 Open Mobile API

The Open Mobile API specification [30] has been created by SIMalliance, a non-
profit trade association that aims for creating secure, open and interoperable mobile
services. The specification defines a platform-independent framework and an API
that is not bound to any specific programming language.



110 6 Card Emulation

Fig. 6.1 Architectural overview of the Open Mobile API (based on [30])

The overall architecture of the Open Mobile API is shown in Fig. 6.1. The core
component is the Transport API which provides APDU-based connections to secure
element applets. The Transport API consists of four classes:SEService, Reader,
Session and Channel. The SEService manages all secure element slots in
a mobile device. Each secure element slot matches one secure element provider
driver module and, thus, interfaces one secure element. Each slot is represented
by an instance of the Reader class. The Reader class has methods to check the
availability of a secure element and to establish a session to the secure element. Once
a session is established it is represented by a Session object. The Session class
provides methods to obtain the answer-to-reset (ATR) of the secure element and to
open APDU-based communication channels to applets on the secure element. Each
communication channel is represented by a Channel object. The Channel class
has a transmit method to exchange APDUs.

The Service API consists of multiple service modules. Each module provides an
application-specific abstraction of the transport layer. Thus, instead of low-level
communication through APDUs, high-level methods can be defined for specific
applications. For example, an authentication service API could provide methods
for PIN code management and verification. Similarly, a file management service
API could provide methods to create, write, and read files in a smartcard file system.

An access control enforcer between the Transport API and the secure element
providers ensures that access restrictions to secure elements are obeyed. The security
mechanism for access control enforcement is defined by GlobalPlatform’s Secure
Element Access Control specification.
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6.2.6 Secure Element Access Control

GlobalPlatform’s Secure Element Access Control [9] specification defines a sophis-
ticated security scheme for secure element APIs to prevent secure element access
from unauthorized applications. The scheme is similar to the Recommended Security
Element Access Control of JSR 177.

The architecture of the access control scheme is depicted in Fig. 6.2. The heart of
the access control scheme is the access control enforcer. The enforcer resides within
the secure element API and acts as a gatekeeper between mobile phone apps and the
secure element. Access control decisions are based on access control rules. Each rule
defines access rights for a specific secure element applet (or for all other applets)
and a specific app, a group of apps or all other apps on the mobile phone based on
their certificates. Access rights can grant and deny access to all APDUs, to specific
APDUs and to event notifications.

The access control enforcer reads the access control rules from a database on the
secure element. Different methods for access to the database exist. The database can
be a simple file, the access rule file (ARF), which is accessible through file access
APDUs. The preferred way, however, is an access rule applet (ARA). As the access
rule databases may be distributed across multiple security domains so that they can
be managed over-the-air by multiple entities, the ARA aggregates all these databases
and provides a standardized interface to the access control enforcer.

When a mobile phone app tries to access an applet on the secure element, the
access control enforcer retrieves the app certificate from the mobile phone operating
system (application manager) and looks up the access rules for that certificate (or its

Fig. 6.2 Secure element access control architecture (based on [9])



112 6 Card Emulation

certificate chain) and the applet AID. Based on these rules, access control is enforced
for each transmitted APDU. Therefore, the access control enforcer needs to trust the
operating system to provide the correct certificate that identifies the app.

6.2.7 Comparison of Access Control Schemes

The examined APIs have diverging access control mechanisms. Table6.1 shows a
comparison of these mechanisms. All schemes require an application to be signed
with a valid code-signing certificate. On Android 2.3.4 this is the only requirement
to request the permission for secure element access. The other schemes additionally
require the code-signing certificate to be trusted by the operating system or the
secure element. On Android 2.3.5–4.0.2 this trust is established by comparing the
certificates of the application and the NFC service. Only if those certificates match,
the application is granted access. Thus, only the system manufacturer can distribute
apps that are granted this permission. With Nokia’s extensions to JSR 257 any valid
code-signing certificate that chains back to one of the code-signing root certificates
stored on the device can be used. For the BlackBerry API, special code-signing
keys, provided by the device manufacturer on request, are necessary. JSR 177 and
GlobalPlatform’s Secure Element Access Control have the most sophisticated access
controlmechanisms. Both allow the definition of access control policies that consider
specific applets, the mobile phone app certificate, and specific APDUs.

Yet, with all schemes access control is enforced by the operating system on the
application processor. Thus, the secure element has to assume that the underlying
operating system and the mobile phone hardware can be trusted. So, in all cases,
the secure element (secure component) blindly trusts the access control decisions of
the operating system (i.e. the insecure component). Therefore, once an application
passes or bypasses the security checks performed by the operating system, it can
exchange (arbitrary) APDUs with the secure element.

Particularly, the Secure Element Access Control specification assumes that the
mobile phone operating system “can be trusted about the validity of the certificates
and the corresponding signatures” it provides to identify apps that trigger the access
control enforcer [9]. At the same time that specification states that “restricting the use
of [the secure element API] is necessary since mobile operating systems do not effi-
ciently prevent unauthorized parties from abusing the API and potentially causing
damage to the Secure Element itself.” Recent research results on malicious soft-
ware and attacks against mobile phone platforms (cf. Sect. 4.5) also strongly suggest
that many operating systems on current mobile phones are potentially vulnerable
to attacks that allow escaping the restrictions imposed by the operating system. For
instance, the signature-based access restriction of the secure element API onAndroid
2.3.5–4.0.2 can be circumvented by abusing a vulnerability that exists throughout all
of these platform versions (Master Key, CVE-2013-4787). Similarly, a vulnerability
(Fake ID [3]) allows bypassing of the access control scheme of the secure element
API on Android 4.0.3–4.3. As a consequence, access control enforcement within the

http://dx.doi.org/10.1007/978-3-319-15488-6_4
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mobile phone operating system may not sufficiently protect the secure element as an
application might be able to bypass these security measures.

6.2.8 Impact of Rooting and Jail Breaking

For manymobile phone platforms there exist methods that users can use to intention-
ally circumvent security measures. Popular techniques used on many smart phones
are “jail breaking” and “rooting”. Jail breaking refers to escaping the restrictions
imposed by the operating system, so that an application can access resources it usu-
ally could not access. Rooting refers to a slightly different scenario where the user
or an application gains full access to the whole system. Both methods are often used
intentionally by device owners/legitimate users to circumvent digital rights manage-
ment or to gain “improved” control over their device.

However, these elevated privileges are exactly what is necessary to circumvent
secure element access control enforcement. Thus, jail breaking and rooting imposes
a significant security risk to the secure element. Even worse, not only the legitimate
user may gain access to—otherwise restricted—resources but also an attacker could
get these same possibilities. Thus, a jail broken or rooted phone is significantly more
vulnerable to attacks.

On the one hand, rooting can be done by using vendor-supplied methods. Such
methods typically exist for development phones (e.g. for the Google Nexus series of
Android smart phones). They are usually implemented in a safe way that protects the
user frommalicious activities. For example, rooting aGoogleNexus phone according
to the official instructionswillwipe all data on the phone. Thus, thismethod of rooting
cannot be used to gain access to sensitive user data that resides on the device.

On the other hand, jail breaking and rooting can be done by exploiting vulnera-
bilities in software or hardware (cf. Sect. 4.5). Unfortunately, these exploits are not
only viable for intentional jail breaking and rooting by the device owners/legitimate
users. The same exploits can be integrated in virtually any application. That way
a malicious application could elevate its permissions even without the (legitimate)
user’s knowledge. Considering the current continuous trend in privilege escalation
exploits for various mobile device platforms (cf. Sect. 4.5), it can be assumed that an
arbitrary application can use exploits to bypass restrictions and security checks per-
formed by the operating systemonmost platforms that are currently in the field. Thus,
an attacker may easily bypass secure element access restrictions on those devices.

6.3 New Attack Scenarios

Under the assumption that arbitrary applications may gain full control of the mobile
phone operating system, the secure element is not sufficiently protected against
attacks from such applications. Therefore, it can be assumed that applications can

http://dx.doi.org/10.1007/978-3-319-15488-6_4
http://dx.doi.org/10.1007/978-3-319-15488-6_4
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get unrestricted access to the internal mode of the secure element. As a result, attacks
that were mitigated by the fact that it is difficult to secretly interface the secure ele-
ment through its external RF (radio frequency) interface could be performed by an
app at any time while the mobile phone is turned on. These apps can even connect
the secure element to the cellular network and the Internet.

Two possible attack scenarios have been analyzed in this thesis: denial-of-service
and relay of communication. Based on this analysis, two new practical attacks have
been found:

• a denial-of-service (DoS) attack through the GlobalPlatform card management
interface and

• a software-based relay attack on secure element applications.

The attack scenarios can be applied to the existing NFC-enabled mobile phones
Nokia 6131, Nokia 6212 (both running the latest firmware), Samsung Nexus S and
possibly to other devices too.

6.3.1 Denial-of-Service (DoS)

The first attack scenario is a denial-of-service attack that can be used to render a
secure element temporarily unusable or to permanently prevent future card content
management.

6.3.1.1 GlobalPlatform Card Management

Secure elements must be manageable while they are in the field. Certain types of
secure elements do not need the application processor to establish a management
channel. For instance, on a UICC, management messages could be processed imme-
diately as they arrive over the mobile phone network and need not be passed through
the application processor. However, for most secure elements the management inter-
face is exposed to the application processor so that over-the-air management is pos-
sible using the wireless communication interfaces of the mobile phone.

An interface for card content management that is used for most of today’s secure
elements is standardized in the GlobalPlatform Card Specification [8]. A GlobalPlat-
form compliant secure element contains a Card Manager which consists of the
GlobalPlatform Environment (OPEN), the Issuer Security Domain (ISD) and the
cardholder verification method services. The card manager is the central component
used tomanage card content (applications and data), supplementary security domains
and the whole card lifecycle.

In order to access the card manager, a service manager has to authenticate and
establish a secure channel to the security domain. A sequence of three APDU com-
mands is used for mutual authentication and to establish a shared secret for a secure
channel:
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Fig. 6.3 Card lifecycle
according to GlobalPlatform
(based on [8])

OP_READY

INITIALIZED

SECURED

CARD_LOCKED TERMINATED

1. SELECT security domain by AID (to select the card manager),
2. INITIALIZE UPDATE (to start the authentication procedure and to authenticate

the card/secure element), and
3. EXTERNAL AUTHENTICATE (to authenticate the service manager/host).

Once a secure channel to the issuer security domain is established, the service
manager can load, install, personalize and uninstall applications and supplementary
security domains, update application data and manage the card lifecycle.

GlobalPlatform defines five states for the lifecycle (Fig. 6.3) of a smartcard [8]:

• OP_READY,
• INITIALIZED,
• SECURED,
• CARD_LOCKED, and
• TERMINATED.

OP_READY is the initial state after card production. During initialization with initial
keys for card management, the lifecycle state irreversibly traverses from OP_READY
via INITIALIZED to SECURED. In the state SECURED, the card is ready for
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issuance. When the card is in the state CARD_LOCKED, applications on the card
can be used, but card content can no longer be managed (i.e. no applications can be
added or removed). This state is reversible to SECURED. TERMINATED is similar
to CARD_LOCKED, but transitions to this state are irreversible. Thus, once a card
reached the TERMINATED state, management of card lifecycle and card content are
no longer possible. As this state is permanent it is intended for cases where a severe
security threat was detected or where a card has expired [8].

6.3.1.2 Irreversible Denial-of-Service

Many contactless smartcards and secure elements have a special security scheme
to protect the card manager from unauthorized access: After a certain number of
successive authentication failures, the card is put into TERMINATED state. This
mechanism will prevent brute-force attacks on the authentication keys and, thus,
makes the card more secure.

However, an attacker who can send APDUs to the secure element can abuse
this security mechanism to permanently block a secure element from further card
management. Thus, an attacker can mount a denial-of-service attack by repeatedly
issuing the three commands needed for an authentication attempt—SELECT (issuer
security domain), INITIALIZE UPDATE, and EXTERNAL AUTHENTICATE—
until the card transitions into TERMINATED state.

Many contactless smartcards and the secure elements embedded into Nokia’s first
NFC phones (i.e. Nokia 6131 NFC and Nokia 6212) transition into TERMINATED
state after only ten successive authentication failures (cf. [4]). Consequently, at most
30 APDU commands are needed to render an NFC device unusable for new card
emulation applications. This makes it relatively easy to create an app for performing
that type of denial-of-service. Malicious code for permanently locking the secure
element could even be injected into any (harmless looking) application (e.g. a game).

As a result, this type of denial-of-service attack on the card manager may lead to
a significant decrease in reputation and user satisfaction. Moreover, it might result
in costly product recalls.

6.3.1.3 Temporary Denial-of-Service

Newer secure elements have improved that security scheme. For example, the secure
element embedded into the Samsung Nexus S allows 47 authentication attempts until
it transitions into TERMINATED state. However, this is not the only improvement.
After five successive authentication failures, the secure element slows down the
communication speed by adding a penalty of 30 s before generating a response.
As a consequence, it is not easy for a malicious application to trigger a permanent
denial-of-service.

However, the delayed response by the secure element could be abused to perform
a temporary denial-of-service attack: Many secure elements can only handle one
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of the two communication modes (internal mode and external mode) at a time.
Thus, if the secure element is blocking on a response to an authentication attempt, it
cannot be used in external mode. Similarly, while one command-response sequence
is processed, it is unlikely that the secure element will accept another command.
Thus, it is also not accessible from other apps in internal mode. An attacker could
use this to render the secure element temporarily unusable for the duration of the
authentication attempt.

6.3.2 Software-Based Relay Attack

Hancke [11] concludes about the relay attack on contactless smartcards:

If a contactless card could be read while in a pocket, purse or wallet, a thief might be able
to engage in the act of digital pickpocketing while standing next to or merely walking past
his victim.

This type of attack is oftenmitigated by the short reading distance of ISO/IEC 14443-
based cards that makes it difficult to access a smartcard or a secure element-enabled
mobile phone that is inside the victim’s pocket. Moreover, mobile phones would
usually turn the contactless interface off when they are not in use.

However, things are different if the internal interface of the secure element can be
used for the attack. Instead of being physically close-by to the victim’s phone, the
attacker simply needs to install an application onto the victim’s mobile phone. As
with the denial-of-service attack, relevant exploit code could be packed into virtually
any application.

6.3.2.1 Relay Attack on Contactless Smartcards

The relay attack is a well-known issue with contactless payment cards and secure
element-enabled devices. It has been first evaluated in the context of contactless
smartcards by Hancke [11], Kfir and Wool [19].

A relay attack can be seen as a simple range extension of the contactless commu-
nication channel (see Fig. 6.4). Therefore, an attack requires three components:

1. a reader device (also called mole [11] or leech [19]) in close proximity to the
card under attack,

2. a card emulator device (also called proxy [11] or ghost [19]) that is used to
communicate with the actual reader, and

3. a fast communication channel between these two devices.

The attack is performed by bringing the mole in proximity to the card under attack.
At the same time, the card emulator is brought into proximity of a reader device
(e.g. point-of-sale (POS) terminal, access control reader). Every command that the
card emulator receives from the actual reader is forwarded to the mole. The mole,
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(a)

(b)

Fig. 6.4 Interaction between a smartcard and a reader: a without relay, b with relay (Source
[25, 29])

(a)

(b)

Fig. 6.5 Communication between a smartcard and a reader: a without relay, b with relay

in turn, forwards the command to the card under attack. The response of the card
is then received by the mole and sent all the way back through the card emulator
to the actual reader. Figure6.5 shows the command flow without relay (a) and with
relay (b).
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This type of attack cannot be prevented by application-level cryptography
[11, 12]. The problem is that the relay attack is a simple range extension of the
contactless interface, so neither the mole nor the card emulator need to “understand”
the actual communication. They simply proxy any bits of data they receive. As a con-
sequence, encrypted and integrity protected data packets can simply be forwarded
between the reader and the card. Both, the reader and the card will not notice any
difference. Even current EMV credit card payment protocols usingMag-Stripe mode
as well as EMV mode (Chip & PIN) can be relayed.

While initial approaches to relay attacks [11, 19] focused on forwarding physical
layer protocols (bit transfer level), recent approaches [5, 6, 27, 28] skip the lower
layers and directly transfer theAPDUs of the application layer protocols. This relaxes
timing requirements and greatly improves achievable relay distances.

Since their initial proposal, the practicability of relay attacks has greatly improved
due to the availability of NFC-enabled mobile phones. Francis et al. [5] showed that
it is possible to relay NFC signals over Bluetooth using two mobile phones. They [6]
further revealed that, with the introduction of software card emulation in some smart
phones, it is even possible to relay contactless credit card transactions and electronic
passport transactions between two phones. Thus, NFC-enabled mobile phones can
be used as both mole (relay reader) and proxy (card emulator).

6.3.2.2 The Next Generation: Software-Based Relay Attack

The threat potential of relay attacks was mitigated by the fact that all relay scenarios
required close physical proximity to the device-under-attack. However, this thesis
follows a different approach. Instead of accessing the secure element of a device
through the contactless interface (external mode), the internal mode is used. Thus,
the secure element is accessed from an app running on the application processor
of the device. While the original relay attack required mole hardware in physical
proximity of the device-under-attack, pure software (malware) on an attacked device
application processor replaces the physical mole.

The complete relay system has been first suggested in [27] and has been verified
for the Samsung Nexus S in [28]. Figure6.6 gives an overview of the software-based
relay system. It consists of four parts:

1. a mobile phone (under the control of its owner/legitimate user),
2. a relay software (under the control of the attacker),
3. a card emulator (under the control of the attacker), and
4. a reader device (under the control of its owner, e.g. at a point-of-sale terminal or

at an access control gate).

The relay software is installed on the victim’s mobile phone. This application is
assumed to have the privileges necessary for access to the secure element and for
communicating over a network. These privileges can be either explicitly granted
to the application or acquired by means of a privilege escalation attack. The relay
application waits for APDU commands on a network socket and forwards these
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Fig. 6.6 System overview of the relay scenario (Source [25, 28])

APDUs to the secure element. The responses received from the secure element are
then sent back through the network socket.

The card emulator is a device that is capable of emulating a contactless smartcard
in software. The emulator has RFID/NFC hardware that acts as a contactless smart-
card when put in the RF field of a smartcard reader. The emulator software forwards
the APDU commands (and responses) between a network socket and the RFID/NFC
emulator hardware.

The flow of relayed smartcard commands (APDUs) between the “real” smartcard
reader and the secure element is shown inFig. 6.7. The commandAPDUs (C-APDUs)
received from the reader device (here: point-of-sale terminal) are routed through the
card emulator and over a wireless network (e.g. cellular,Wi-Fi, Bluetooth) to the vic-
tim’s device. There, the relay app forwards the C-APDUs to the secure element. The
corresponding responses (R-APDUs) generated by the secure element are routed all
theway back—through the relay app, thewireless network and the card emulator—to
the “real” reader device. As a result, the point-of-sale terminal would believe that it
talks to the secure element directly.

In comparison to existing relay scenarios by Hancke [11], Kfir and Wool [19],
where bits are relayed at the data link layer, our attack scenario relays command and
response packets (APDUs) at the application layer. Due to this high protocol level,
there are practically no timing constraints on the delay through the relay channel.
Therefore, Bluetooth, Wi-Fi, or even the mobile phone network could be used as a
relay channel.
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Fig. 6.7 Flow of relayed smartcard commands (APDU) through the relay system (Source [25, 29])

6.4 Viability of the Software-Based Relay Attack

The software-based relay attack seems to be a promising scenario from an attacker’s
point of view. Nevertheless, it is only a theoretical concept. Further evaluation is
necessary to verify the usability of this concept in a real-world system.

6.4.1 Constraints of the Protocol Layers

There are several protocol layers and several specifications and standards involved
in smartcard communication. For instance, a MasterCard PayPass credit card trans-
action uses protocols defined in the MasterCard PayPass specifications, in the EMV
specifications for payment systems, in the ISO/IEC 7816 series of standards and in
the ISO/IEC 14443 series of standards.

6.4.1.1 ISO/IEC 14443

ISO/IEC 14443 specifies multiple delays and timeouts. A detailed summary of these
timings has been published by Issovits and Hutter [16].

First, there is the frame delay time (FDT)which is defined in ISO/IEC14443-3 [15]
for the Type A protocol. The FDT is the time between commands sent by the reader
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and responses sent by the card. For commands that are used during anti-collision,
the FDT defines a strict timing between a request and the following response. This is
necessary to assure synchronicity between all cards during thebit-frameanti-collision
procedure in order for the reader to detect collisions. For all other commands and for
the delay between a response from the card and the next request by the reader, the
FDT specifies only a minimum delay. Similarly, ISO/IEC 14443-2 [14] and ISO/IEC
14443-3 [15] specify timing constraints for the Type B protocol. These are minimum
and maximum delays between a request from the reader and the response from the
card (TR0, TR1) and the minimum delay between a response from the card and the
next request from the reader (TR2).

Second, there is the frame waiting time (FWT) defined in ISO/IEC 14443-4 [13]
for the half-duplex block transmission protocol. The FWT specifies the maximum
timeout between a block sent by the reader and the corresponding response block
returned by the card. This timeout is defined by the card and can range between
about 302µs and 4,949ms. The timeout can be extended indefinitely (for each block
sequence) by the card using frame waiting time extension (WTX) blocks.

Hancke et al. [12] conclude that these timing constraints are too loose to pro-
vide adequate protection against relay attacks. Particularly, the software-based relay
attack only has APDU-based access to the secure element. As a consequence, the
lowest protocol layer that is transferred across the relay channel is the APDU layer.
As the APDU protocol sits on top of the ISO/IEC 14443-4 half-duplex block trans-
mission protocol, the ISO/IEC 14443 protocol and timing must be handled by the
card emulator anyways. Therefore, it is not affected by the relay channel. Conse-
quently, the card emulator could use the frame waiting time extension mechanism to
prevent timeouts until a response is supplied on the relay channel (cf. Issovits and
Hutter [16]). Even if the card emulator would not use frame waiting time extension,
relaying an APDU may take almost 5 s without violating the FWT timeout.

Also an application note byMasterCard on transaction optimization for PayPass—
M/Chip terminals [20] states that “it is not unusual for many [frame waiting time
extensions] to be required to complete a transaction [...]”. Thus, in particular credit
card terminals support and even expect long waiting time extensions. Some systems,
like electronic passports (machine-readable travel documents), use the waiting time
extension mechanism to artificially insert long delays into the communication after
failed authentication attempts to diminish the efficiency of brute-force attacks.

6.4.1.2 EMV Payment Systems

The EMV specification for contactless payment systems [2] specifies a limit of
500ms for a contactless payment transaction as a whole. In the sense of that specifi-
cation a transaction is the total time that a card needs to be in proximity to the reader.
Thus, this includes processing times on both the terminal and the card, anti-collision,
selection, and multiple APDU command-response sequences.

However, a payment terminal is not required to interrupt a transaction if it takes
longer than this limit. The limit ismerelymeant as a benchmark target tomaintain user
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experience. For example, the PayPass terminals used in recent roll-outs in Austria
(Hypercom Artema Hybrid combined with a ViVOpay 5000 contactless terminal)
do not enforce any such timings. In fact, tests revealed that transactions could take
more than 20s without being interrupted. Francis et al. [6] measured that the EMV
payment terminal they used for relay attacks interrupts a transaction after 35 s.

Also, cloud-based secure element solutions (cf. [26, 34, 35]) like those provided
by YES-wallet [39] require transactions to be processed over the Internet (“online”).
The operational principle of the communication with such a cloud-based secure
element is similar to that of a relay channel. Thus, these systems will only work with
relaxed timing requirements.

However, newer concepts for cloud-based secure element concepts use tokeniza-
tion techniques to create temporary payment credentials stored within the mobile
device memory. Hence, they cache the data necessary to perform transactions on the
mobile device (“offline”) and, therefore, do not require such relaxed timing require-
ments.

6.4.1.3 Other Timing Constraints

Typical limits for contactless transactions in transport ticketing and payment are
between 300 and 500ms (cf. [31]). These limits apply to overall transactions, which,
typically, consist of multiple command-response pairs. However, these limits are
meant tomaintain user experience and are usually not enforced asmaximum timeouts
by contactless reader devices. For instance, Francis et al. [6] measured that a reader
for machine-readable travel documents which they used for relay attacks would
interrupt transactions only if they were not completed after 5.2 s.

6.4.2 Building a Card Emulator

There are several different options when building a proxy card emulation device.
These options range from building new card emulator hardware from scratch to using
various kinds of existing hardware. The various choices have different advantages
and disadvantages that result into different design and implementation costs and into
different levels of emulation capabilities.

6.4.2.1 Building a New Device from Scratch

This method gives full control over the whole design process. The card emulator
can be put into any inconspicuous looking shape. The whole RFID protocol stack
can be controlled starting from the lowest layer. Thus, parameters of all protocol
layers can be adapted. For instance, the unique identifier (UID) that is used during
the anti-collision sequence and the ATS could be freely chosen. Also, low-level
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protocol timing can be influenced by setting FWT values and by handling the WTX
mechanism. However, building a new emulator device from scratch also involves the
highest design costs and effort.

6.4.2.2 Using a Ready-Made RFID Card Emulation Device

Dedicated card emulation hardware for ISO/IEC14443 can be bought on the Internet.
For example, there exist the IAIK HF DemoTag [32] and the Proxmark [21]. Both
provide a hardware platform and a rudimentary software stack for card emulation.
With this choice, it is still possible to control thewholeRFIDprotocol stack.However,
the ready-made devices cannot easily be fit into any desired shape.

6.4.2.3 Using an NFC Reader Device

Some NFC reader devices (e.g. the ACS ACR 122U) can not only read contactless
smartcards and communicate in peer-to-peer mode, but they can also be put into
software card emulation mode. In this mode, the device waits for APDU commands
from an external reader and forwards them to the computer. The computer then
generates a response that is returned to the reader. The lower protocol layers are
handled automatically by the reader firmware. For instance, NXP’s PN532 NFC
controller that is embedded into the ACR 122U even performs automatic waiting
time extension.

One disadvantage of this approach is that manyNFC chipsets do not allow the user
to freely choose all parameters for the protocol layers below APDUs. For example,
with NXP’s PN532 the UID for the anti-collision procedure must always start with
0x08, which denotes a random ID. Also, the ACR 122U can only emulate the
ISO/IEC 14443 Type A communication protocol. Moreover, the ready-made NFC
reader cannot easily be fit into any desired (inconspicuous) shape.

6.4.2.4 Using an NFC-Enabled Mobile Phone

Yet another alternative is the use of NFC-enabled mobile phones as software card
emulation devices. While BlackBerry mobile phones were the first phones that con-
tained an API [23] for software card emulation, other NFC devices could be adapted
to support software card emulation as well. User-contributed patches [37, 38] to
the CyanogenMod 9.1 aftermarket Android firmware show that open mobile phone
platforms can easily be extended to enable this type of card emulation. Starting with
Android 4.4, software card emulation (under the term host-based card emulation,
HCE [1]) has been integrated into the official Android platform and is supported on
a broad range of Android NFC devices.

Using a mobile phone as card emulation device has several advantages (cf. [26]).
First, the mobile phone already has the form-factor that is expected for NFC
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contactless transactions. In other words, it is a mobile phone just as the device
that actually carries the secure element and that is expected to be used at e.g. the
point-of-sale. Second, the mobile phone has network interfaces that match the net-
work interfaces of the device-under-attack. Thus, it can be easily connected to the
relay software. Third, the mobile phone has all the processing capabilities to transfer
APDU commands between its network interface and its card emulation hardware.
Consequently, no extra hardware, like a PC, is required.

On BlackBerry mobile phones, software card emulation is possible with both,
ISO/IEC 14443 Type A and Type B communication protocols. On Android mobile
phones, support for card emulation depends on theNFC chipset and the device imple-
mentation. Devices either support ISO/IEC 14443 Type A or Type B. Both, Android
and BlackBerry mobile phones with card emulation support only allow emulation of
protocols on top of the ISO/IEC 14443-4 block transmission protocol. Android even
requires the use of APDUs and the ISO/IEC 7816-4 application selectionmechanism
in order to route the communication to HCE apps.While this is sufficient for the relay
scenario described in this thesis, it is not possible to influence or handle lower proto-
col layers (e.g. to implement proprietary protocols on top of ISO/IEC 14443-3) using
the APIs available on these platforms. Also, none of these platforms allow low-level
parameters, like the anti-collision identifier (UID), to be freely chosen. Woolley [36]
explains that, for the BlackBerry platform, this was an intentional design decision
due to security concerns.

6.4.3 Prototype Implementation of the Relay System

An initial prototype has been developed to proof the concept of the software-based
relay attack. The prototype consists of the following parts:

• a Samsung Nexus S with Android 2.3.4,
• an Android app (relay software) that accesses the hidden secure element API
(com.android.nfc_extras) and relays commands over a TCP (Transmis-
sion Control Protocol) socket,

• aPython script (card emulation software) that controls the card emulation hardware
and relays commands over a TCP socket, and

• an ACS ACR 122U NFC reader in software card emulation mode.1

1 At the time this research was conducted, software card emulation (as described in Sect. 6.4.2.4)
was not yet available on Android phones.
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6.4.3.1 The Relay App

The relay app, a purely Java-basedAndroid app, is a simple TCP client that maintains
a persistent TCP connection to a remote server (the card emulator). The IP (Internet
Protocol) address of the remote server can be set in a simple user interface (Fig. 6.8).
Using the mobile phone as the client and the card emulator as the server has the
advantage that connections are even possible when the mobile network operator
blocks all incoming connections to the mobile phone. Once connected, the server
can send commands to the client. The most important commands are:

• connect to the secure element,
• transmit APDU and receive response,
• disconnect from the secure element, and
• terminate the relay app.

When the card emulator requests access to the secure element, a connection is estab-
lished through the hidden Android secure element API (class NfcExecutionEn-
vironment in com.android.nfc_extras). The relay app listens for com-
mand APDUs on the TCP socket and forwards them to the secure element. The
response APDUs from the secure element are transmitted back through the TCP
socket to the card emulator. The following listing gives an overview of the function-
ality of the relay app in pseudo-code:

Fig. 6.8 Android relay app
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1 TCPClientSocket ->ConnectToServer(IPAddress);
2
3 loop {
4 command := TCPClientSocket ->WaitForCommand ();
5 switch command {
6 case ConnectSecureElement:
7 SecureElement ->open();
8
9 case SendCommandAPDU:
10 responseAPDU := SecureElement ->transceive(
11 command ->commandAPDU);
12 TCPClientSocket ->SendResponseAPDU(
13 responseAPDU);
14
15 case DisconnectSecureElement:
16 SecureElement ->close ();
17
18 case TerminateRelayApp:
19 exit loop;
20 }
21 }
22
23 TCPClientSocket ->DisconnectFromServer ();

6.4.3.2 The Card Emulator

The card emulator (Fig. 6.9) has been built from an ACS ACR 122U NFC reader and
a notebook computer running a card emulation server application. The ACR 122U
supports software card emulation mode and is available for about EUR 50 (including
taxes) from GoToTags [10].

The card emulation software, a Python application, is based on the nfcpy [33]
project. The nfcpy project has been modified to enable software card emulation for
the PN532 NFC controller in the ACR 122U. The card emulation software contains

Fig. 6.9 Card emulator
made from a notebook and
an ACS ACR 122U NFC
reader (Source [25])
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a TCP server that listens for incoming connections from the relay app. Once a TCP
connection has been established, the card emulation server requests access to the
secure element through the relay app:

1 TCPClientSocket := TCPServer ->WaitForClient (...);
2 TCPClientSocket ->ConnectSecureElement ();

Then, it puts the PN532 into card emulation mode:

3 PN532 ->WriteRegister(
4 CIU_TxMode ,
5 TxCRCEn | TxSpeed := 106 kbps |
6 TxFraming := ISO/IEC 14443A);
7 PN532 ->WriteRegister(
8 CIU_RxMode ,
9 RxCRCEn | RxSpeed := 106 kbps |
10 RxFraming := ISO/IEC 14443A);
11 PN532 ->WriteRegister(CIU_TxAuto , InitialRFOn);
12
13 PN532 ->SetParameters(fISO14443 -4_PICC | fAutomaticRATS);
14
15 PN532 ->TgInitAsTarget(
16 PICCOnly | PassiveOnly ,
17 MifareParams := {
18 SENS_RES := { 0x00 , 0x04} |
19 NFCID1t := {0x76 , 0x82 , 0x4F} |
20 SEL_RES := 0x20 },
21 FelicaParams := { 0x00 , ..., 0x00 },
22 NFCID3t := { 0x00 , ..., 0x00 },
23 GeneralBytes := { },
24 HistoricalBytes := {
25 0x80 , 0x31 , 0x80 , 0x66 , 0xB0 , 0x84 ,
26 0x0C , 0x01 , 0x6E , 0x01 , 0x83 , 0x00 ,
27 0x90 , 0x00 });

The emulator then waits for commands from a contactless smartcard reader:

28 loop {
29 commandAPDU := PN532 ->TgGetData ();
30 if (commandAPDU == ERROR) { exit loop; }
31 TCPClientSocket ->SendCommandAPDU(commandAPDU);

Upon reception of a command APDU, the card emulation server forwards it through
the TCP socket to the relay app. As soon as a response is received on the TCP socket,
the response is returned to the smartcard reader:

32 responseAPDU := TCPClientSocket ->WaitForResponseAPDU ();
33 PN532 ->TgSetData(responseAPDU);
34 }

The card emulator then waits for the next command APDU. This cycle continues
until the ACR 122U leaves the range of the smartcard reader (i.e. until an RF field
is no longer detected). Then, the card emulator instructs the relay app to close the
connection to the secure element:

35 TCPClientSocket ->DisconnectSecureElement ();

Figure6.10 shows a sequence diagram of the interaction between smartcard reader,
card emulation server, relay app and secure element.
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Fig. 6.10 Sequence diagram of the interaction between smartcard reader, card emulation server,
relay app and secure element (Source [28])

6.4.4 Test Setup for Measurement of Communication Delays

Four different scenarios are compared to verify the feasibility of the relay system:

1. The secure element is accessed directly in external mode with an external smart-
card reader. An app on the mobile phone activates the secure element for external
access.

2. The secure element is accessed directly in internalmodewith an app on the phone.
3. The secure element is accessed through the relay system using a direct Wi-Fi link

between the phone and the card emulator.
4. The secure element is accessed through the relay system using the mobile phone

network and the Internet between the phone and the card emulator.

For each scenario, the time between sending a command and receiving a response is
measured. The first two scenarios do not use a relay channel but provide reference
values to compare relay and non-relay cases instead.
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By the time of themeasurements, therewere no secure element-based applications
(e.g. a credit card or an access control applet) available for the Nexus S in Austria.
Also, we do not have access to the secret keys that are required for GlobalPlatform
card management. Thus, we were unable to install a custom application onto the
secure element. As a consequence, a different approach had to be found to measure
communication delays with the secure element. Therefore, we chose to communicate
with the only applet that was known to be available on the blank, GlobalPlatform-
compliant secure element: theGlobalPlatformcardmanager application for the issuer
security domain.

6.4.4.1 Customized Reader

The customized smartcard reader consists of a Java SE application and an HID
OMNIKEY 5321 USB contactless reader connected through PC/SC (Personal Com-
puter/Smart Card Interface). The reader application interactswith theGlobalPlatform
card manager by exchanging a sequence of three APDU commands:

1. SELECT the issuer security domain by its AID:
00 A4 0400 08 A000000003000000 (13 bytes)

A file control information template is expected as response:
6F 65

84 08 A000000003000000
A5 59

9F65 01 FF
9F6E 06 479100783300
73 4A

06 07 2A864886FC6B01
60 0C 06 0A 2A864886FC6B02020101
63 09 06 07 2A864886FC6B03
64 0B 06 09 2A864886FC6B040215
65 0B 06 09 2B8510864864020103
66 0C 06 0A 2B060104012A026E0102

9000 (105 bytes)
2. GET_DATA for data object 0x65:

00 CA 0065 00 (5 bytes)
The expected response is a “reference data not found” error code:

6A88 (2 bytes)
3. GET_DATA for data object 0x66:

00 CA 0066 00 (5 bytes)
The expected response is the card data:

73 4A
06 07 2A864886FC6B01
60 0C 06 0A 2A864886FC6B02020101
63 09 06 07 2A864886FC6B03
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Fig. 6.11 Sequence diagram
that shows the measured
command-response delay

64 0B 06 09 2A864886FC6B040215
65 0B 06 09 2B8510864864020103
66 0C 06 0A 2B060104012A026E0102

9000 (78 bytes)

As soon as a smartcard is detected in the RF field of the reader, the application
connects to that card, sends the three APDU commands and disconnects. The reader
application measures the delay in milliseconds between sending the command and
receiving the response for each APDU command-response pair (cf. Fig. 6.11):

1 long timeStart = System.currentTimeMillis ();
2 byte[] responseAPDU = smartcard.exchangeData(commandAPDU);
3 long timeEnd = System.currentTimeMillis ();
4 long delay = timeEnd - timeStart;

6.4.4.2 Reader App for Reference Measurement

The customized reader app can be used in all but one scenario. For scenario 2 the
command-response delay must be measured directly in an app on the mobile phone.
Therefore, an Android app with equivalent functionality to the external reader app
has been developed. The app opens a connection to the secure element, exchanges
the three APDUs and closes the connection again. For each APDU, the app measures
the command-response delay:
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1 long timeStart = System.currentTimeMillis ();
2 byte[] responseAPDU = securelement.transceive(commandAPDU);
3 long timeEnd = System.currentTimeMillis ();
4 long delay = timeEnd - timeStart;

6.4.4.3 Automated Test System

Figure6.12 shows the test system for measurements of the communication delays.
In order to get a significant result, several thousand communication cycles between
the secure element and the smartcard reader had to be recorded. Between each cycle
the card emulator (or the phone) had to be isolated from the smartcard reader to
maintain identical conditions for each measurement. Tests with scenario 3 showed
that the average command-response delay does not significantly deviate for more

Fig. 6.12 Overview of the relay system for delay measurements (based on [28])
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(a)

(b)

(c)

Fig. 6.13 Variation of the average command-response delay over the number of measurement
cycles: a SELECT, b GET_DATA for data object 0x65, c GET_DATA for data object 0x66

than 5,000 repetitions (see Fig. 6.13). Therefore, 5,000 repetitions have been chosen
for each scenario to account for variations of the communication channels.

As 15,000 repetitions (5,000 for each of the scenarios 1, 3 and 4) would take a
long time if they are performed manually, an automated test setup has been created.
The customized reader is extended with a test robot. The test robot moves the card
emulator (or the phone) into the RF field of the reader. After the reader software
completed the exchange of the three APDU command-response pairs, the test robot
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Fig. 6.14 Test setup for measurements of the communication delay

removes the card emulator (or the phone) from the RF field of the reader. This
procedure is repeated for each of the 5,000 cycles. The complete test setup is shown
in Fig. 6.14.

6.4.5 Measurement Results

The four scenarios are compared based on measurements performed with the test
system described above.

6.4.5.1 Measured Paths

Figure6.15 shows the paths that are used for measurement of the communication
channel in each of the four scenarios:

• Scenario 1: The external interface of the secure element is accessed directly with
the reader system. The command-response delay is measured in the reader soft-
ware.

• Scenario 2: The internal interface of the secure element is accessed with an app
on the phone. The command-response delay is measured by the app.

• Scenario 3: The internal interface of the secure element is accessed by the relay
app. The relay app is connected to aWi-Fi router through theWi-Fi interface of the
mobile phone. The card emulation server is connected to the Wi-Fi router through
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(a)

(b)

(c)

(d)

Fig. 6.15 Communication paths for command-response delay measurement: a scenario 1, b sce-
nario 2, c scenario 3, d scenario 4

a direct cabled interface. The card emulator is accessed by the reader system. The
command-response delay is measured in the reader software.

• Scenario 4: The internal interface of the secure element is accessed by the relay app.
The relay app is connected to the Internet through the cellular network interface
of the mobile phone. The relay app accesses the card emulation server through the
public IP address 193.170.124.15. This IP address is assigned to the WAN port of
the Wi-Fi router and routed through the FH Oberösterreich corporate network.2

The card emulation server is connected to the Wi-Fi router through a direct cabled
interface. The card emulator is accessed by the reader system. The command-
response delay is measured in the reader software.

2 Unfortunately, the mobile phone operator (A1 Telekom Austria) blocks the packets necessary to
perform a traceroute analysis. Therefore, the exact routing between the mobile phone and theWi-Fi
router could not be determined.
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6.4.5.2 Results for the SELECT Command

Figure6.16 shows the histograms of the command-response delay for the APDU
“SELECT issuer security domain by AID” for 5,000 repetitions. The histograms are
divided into 200 bins. Each bin has a width of 50ms. The last bin also contains
all measurements above 10,000ms. Figure6.16a is zoomed from 0 to 50ms with
1-ms-bins. Figure6.16a is zoomed from 0 to 150ms with 5-ms-bins. Figure6.16c is
zoomed from 0 to 500ms with 5-ms-bins.

The delay for scenario 1 centers on about 30ms. On-device access to the secure
element (scenario 2) already takes significantly longer (50–80ms). The delay over
the Wi-Fi link (scenario 3) ranges from 190 to 260ms. Thus, the Wi-Fi relay link
adds a delay in the range of 110 and 210ms. For scenario 4, the delays start at about
200ms and have a significant peak around 300ms. About 44% of the measured
delays are below 1s, about 80% are below 4s, and about 97% are below 10s.

6.4.5.3 Results for the GET_DATA Command for Data Object 0x65

Figure6.17 shows the histograms of the command-response delay for the APDU
“GET_DATA for data object 0x65” for 5,000 repetitions. The histograms are divided
into 200 bins. Each bin has a width of 10ms. The last bin also contains all measure-
ments above 2,000ms. Figure6.17a is zoomed from 0 to 50ms with 1-ms-bins.
Figure6.17b is zoomed from 0 to 150ms with 5-ms-bins. Figure6.17c is zoomed
from 0 to 500ms with 5-ms-bins.

The delay for scenario 1 centers on about 13ms. On-device access to the secure
element (scenario 2) already takes significantly longer (20–40ms). The delay over
the Wi-Fi link (scenario 3) ranges from 55 to 135ms. Thus, the Wi-Fi relay link
adds a delay in the range of 15 and 115ms. For scenario 44, the delays start at about
120ms and have a significant peak around 170ms.

6.4.5.4 Results for the GET_DATA Command for Data Object 0x66

Figure6.18 shows the histograms of the command-response delay for the APDU
“GET_DATA for data object 0x66” for 5,000 repetitions. The histograms are divided
into 200 bins. Each bin has a width of 10ms. The last bin also contains all measure-
ments above 2,000ms. Figure6.18a is zoomed from 0 to 50ms with 1-ms-bins.
Figure6.18b is zoomed from 0 to 150ms with 5-ms-bins. Figure6.18c is zoomed
from 0 to 500ms with 5-ms-bins.

The delay for scenario 1 centers on about 19ms. On-device access to the secure
element (scenario 2) already takes significantly longer (35–60ms). The delay over
the Wi-Fi link (scenario 3) ranges from 100 to 220ms. Thus, the Wi-Fi relay link
adds a delay in the range of 40 and 185ms. For scenario 4, the delays start at about
160ms and have a significant peak around 240ms.
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6.4.5.5 Comparison of the Results

TheWi-Fi link increased delays around 100–200ms per APDU sequence. The Inter-
net link, on average, added about 200ms of delay to each APDU sequence. For
a transaction that consists of multiple APDUs, the relay channel may add several
seconds to the total transaction time.

However, the measurements revealed that not only the relay channel adds to the
overall command-response delay. On the Nexus S, access to the secure element in
internal mode is also significantly slower (up to 50ms) than access in external mode.

The limits for contactless transactions that are usually expected in transport ticket-
ing and payment (300–500ms) will most likely not be met for relayed transactions.
Nevertheless, typical point-of-sale terminals would accept a transaction even if it
takes up to 20s. Thus, a relayed transaction would be accepted by such terminals
even if it consists of several APDU command-response pairs. As contactless trans-
actions (especially with mobile phones) are quite new and users are still not used to
them, we assume that even long delays (in the order of 20–30 s per transaction) will
not raise suspicions to point-of-sale personnel.

6.5 Possible Solutions

Several countermeasures against relay attacks have been identified in publications
about relay attacks on contactless smartcards [11, 12, 19]:

1. The contactless RF interface can be shielded with a Faraday cage when it is not
in use.

2. A smartcard could contain additional circuitry for physical activation and deac-
tivation.

3. Additional passwords or PIN codes could be used for two-factor authentication.
4. Distance bounding protocols can be used on fast channels to determine the actual

distance between the smartcard and the reader.

An analysis of these proposedmethods with regard to the software-based relay attack
reveals that not all of them can be applied to internal card emulation mode:

1. Shielding with a Faraday cage is only possible for external mode. The equivalent
of shielding for internal mode is an API access control policy. However, access
control mechanisms have been found to have weaknesses on many platforms
(cf. Sect. 6.2). Nevertheless, the adoption of trusted computing concepts for
mobile phone systems could potentially improve the security of the interaction
between the application processor and the secure element. For instance, the secure
element could recognize if the application processor is in a trusted state.

2. Physical activation and deactivation of the secure element (e.g. by means of a
hardware button on themobile device)would significantly hinder over-the-air card
management. Thus, it seems to be impractical to implement physical activation
and deactivation.
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3. Two-factor authentication can reliably hinder relay attacks as long as PINs are
not known by the attacker. While an attacker would still be able to relay the
communication, the applications on the secure elementwould be unusablewithout
knowledge of the PINs. Nevertheless, if PINs are entered on the mobile phone, an
attacker with sufficient privileges might be able to monitor and reuse previously
entered PIN codes.

4. Distance bounding protocols would require an additional fast communication
channel (e.g. ultra-wideband [12]). Such a channel is neither defined in current
NFC standards nor available in current NFC chipsets.

Section6.4.1 revealed that protocols involved in contactless transactions have insuf-
ficient timing constraints to provide adequate protection against relay attacks. Still,
some (potentially unreliable) timing-based countermeasures are conceivable:

• Contactless readers—particularly EMV credit card terminals—could enforce
shorter timeouts. For instance, the EMV specifications define rather tight bench-
mark targets for credit card transactions that must be achieved by both the terminal
and the card (500ms per contactless payment transaction [2]). Thus, a POS termi-
nal could safely interrupt and disregard transactions taking longer than this timeout
if the credit card complies with the EMV specifications. Nonetheless, this measure
would not prevent relay over shorter distances and fast communication channels.
Also, such tight timeouts would prevent cloud-based EMV applications where the
secure credit card is stored in the cloud and accessed over the Internet (cf. [26]) as
these applications would have delays comparable to the malicious relay scenario.

• The processing time of a command on a smartcard is usually similar for each
invocation of the command with the same side conditions. Therefore, significant
deviations of command-response delays in comparison to previous transactions
may indicate a change in the communication channel and, thus, may be a symptom
of a relay attack. As a consequence, readers could base timeouts on a history of
measured command-response delays from previous transactions with that card.

• Similarly, timeouts could be established for specific commands that are known to
have a short processing time on the smartcard.

Another optionwould be to disable internalmode communication for certain applica-
tions or commands. Many current secure element microchips provide instruments to
distinguish between external mode communication and internal mode communica-
tion. Based on this information, applets as a whole can be restricted to using a specific
interface (either internal mode or external mode). Moreover, applets themselves can
use this information to decide on a per-APDU basis whether a specific command
should be allowed in internal mode or external mode. However, such restrictions
are not always possible. For example, over-the-air card management must be pos-
sible through internal mode.3 Therefore, the denial-of-service attack described in
Sect. 6.3.1 may still be applicable. Also for credit card payment applications, a sig-
nificant advantage of the secure element would be that these applications could

3 The UICC is an exception to this as over-the-air card management of the UICC may be possible
directly without access from the application processor.
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be used for secure (card-present) transactions from within the mobile phone (e.g.
through the mobile phone web browser). Therefore, if access to credit card applica-
tions is limited to external mode in favor of preventing software-based relay attacks,
these card-present transactions would not be possible.
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Chapter 7
Software-Based Relay Attacks
on Existing Applications

The software-based relay attack has been applied to Google Wallet [7] to verify its
feasibility in existing payment systems. Google Wallet has been chosen for several
reasons:

• Google Wallet was made available to users outside the US through XDA Devel-
opers forum1 in late 2011 using some hacks to bypass mobile phone operator and
location restrictions.

• Google Wallet is already in use by many users. Google Play Store2 listed more
than 500,000 installations in early 2012. By the end of 2012, Google Wallet had
over 1,000,000 installations. Meanwhile, it has over 10,000,000 installations.

• The wallet contains a credit card application that is based on EMV payment stan-
dards (specifically on MasterCard PayPass using the EMV Mag-Stripe mode)
and can be used with any point-of-sale terminal that supports PayPass contactless
credit card transactions.

• The Android source code is publicly available. Thus, it was fairly easy to explore
the Near Field Communication (NFC) software stack of Android devices and the
hidden secure element application programming interface (secure element API,
cf. Sect. 6.2.4.1).

• Google Wallet is known to be installed by many users on rooted devices (mainly
to circumvent operator and location restrictions). This means that the security
measures of the operating system are alreadyweakened/bypassed on those phones.

• For non-rooted devices, there either already exist privilege escalation exploits or
it is assumed that such exploits will appear soon (cf. [19]). Additionally, once an
exploit is found/known, it can take several months until devices in the field are
patched [1].

1 http://forum.xda-developers.com/showthread.php?t=1365360.
2 https://play.google.com/store/apps/details?id=com.google.android.apps.walletnfcrel.
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7.1 Google Wallet

Google Wallet is a container for payment cards, gift cards, reward cards and special
offers. It consists of an Android app with a user interface and Java Card applets on
the secure element.3 The user interface is used to protect the wallet with a PIN code,
to manage the payment, gift and reward cards, to select the currently active card, to
find specific offers and to view the transaction history. The secure element is used to
store sensitive information of the payment, gift and reward cards and to interact with
existing point-of-sale (POS) reader infrastructures. The analysis and attack described
in this thesis have been performed with version 1.1-R52v7 of the Google Wallet app
and the secure element applets installed in February 2012.

7.1.1 Preparing for an In-depth Analysis

For this analysis of Google Wallet, the most interesting part is the communication
with the secure element. Therefore, debug output has been added to the Android
secure element API (com.android.nfc_extras) in order to trace the interac-
tion with the API and the communication between the Google Wallet app and the
secure element. As the secure element API is encapsulated in a separate library (JAR
file), it was possible to modify and re-compile the library source code. Our modifi-
cations output messages to the Android debug log for the following operations:

• When an app enables or disables the external mode of a secure element.
• When an app looks up the current state of the external mode activation of a secure
element.

• When an app retrieves an instance of the NfcExecutionEnvironment class
for internal mode communication.

• When an app opens or closes a connection (internal mode) to the secure element.
• When an app exchanges APDUs (application protocol data units) with the secure
element. In this case, the debug output also contains the exchanged APDUs.

The log messages reveal the method, the method parameters and the return values.
AppendixB lists themodified source code of com.android.nfc_extras. After
re-compilation, the library JAR file on the device (/system/framework/com.
android.nfc_extras.jar) has been replaced with the modified version.

3 Since host-based card emulation was introduced to Android, recent versions of the wallet can use a
cloud-based secure element in combination with host-based card emulation instead of an on-device
secure element.
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7.1.2 Static Structure

Uponfirst start, theGoogleWallet app initializes the secure element and installs a PIN
code that is necessary for using the app user interface. During initialization several
applets are installed and personalized on the secure element using GlobalPlatform
card management (cf. [4]). Specifically, the Google Wallet app creates a connection
between the secure element and a remote server. Over that connection, the remote
server establishes a secure channel based on the secure channel protocol SCP02 to
the secure element. The remote server then performs the card management through
this authenticated and partly encrypted channel.

While sensitive information—like applets and data that is personalized into these
applets—is encrypted, responses from the secure element to the remote server are
sent without encryption. Thus, it was possible to extract some information from these
responses. One such information is the list of executable load-files present on the
secure element after the initialization of Google Wallet:

1. A000000003 5350
2. A000000004 10
3. A000000476 10
4. A000000476 1000
5. A000000476 1001
6. A000000476 1002
7. A000000476 20
8. A000000476 30
9. 785041592E

Load-file 1 is assumed to be the load-file used to instantiate security domains
(cf. [11]). Load-file 2 contains the MasterCard credit card application and load-file 9
is assumed to contain the EMV payment system environment. Load-file 7 contains
the Google Wallet on-card component. Load-file 8 contains Google’s application for
MIFARE access. Load-files 3–6 have Google AIDs. Their purpose is unknown.

After successful initialization of Google Wallet, several applets can be found on
the secure element. The following is a list of applet instance identifiers (AIDs) that
have been identified to be used by either Google Wallet during normal operation or
by POS terminals during payment transactions:

1. A000000476 2010
2. A000000476 3030
3. 325041592E5359532E4444463031
4. A000000004 1010
5. A000000004 1010 AA54303200FF01FFFF

AID 1 is the Google Wallet on-card component, which is used by Google Wallet
to manage the payment cards on the secure element. AID 2 is the Google MIFARE
access applet, which is used to manage the MIFARE Classic 4K memory of the
secure element. Both applet instances can only be accessed from the application
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processor. Selecting them though the radio frequency (RF) interface results in the
error code 6999. This denotes that the selection of those applets failed.

The last three applet instances are related to credit card payment transactions.
AID 3 is the directory definition file of the EMV Proximity Payment System Envi-
ronment (PPSE) as mandated by [2]. It contains a list of all activated credit card
applications. It can be selected from the application processor and through the RF
interface. While Google Wallet is in locked state an empty list is returned, otherwise
the list contains AID 4 and 5.

AID 4 is the AID for a regular MasterCard credit card. We assume that the other
credit card AID (AID 5) denotes a MasterCard co-branded as Google Wallet but
we have no confirmation for this.4 Both credit card applet instances contain equal
data structures (including the same primary account number, PAN). The credit card
applets are only selectable while Google Wallet is in unlocked state, otherwise the
error code 6999 is returned. Access to both applet instances is possible from the
application processor and through the RF interface.

7.1.3 Interacting with the Google Wallet On-card Component

Several commands used by the Google Wallet app to interact with its on-card com-
ponent have been identified:

• 00 A4 0400 07 A000000476 2010 00:
This SELECT command selects the GoogleWallet on-card component by its AID.
The secure element responds with 9000 indicating successful selection.

• 80 E2 00AA 00:
This command is used to unlock the wallet and to allow access to the credit card
application after the GoogleWallet app has successfully verified the PIN. The PIN
itself is not passed to the on-card component for verification.

• 80 E2 0055 00:
This command is used to lock the wallet.

• 80 CA 00A5 00:
This GET_DATA command returns a list containing the two credit card instances:

A5 2B
61 0F (Application template)

80 01 00
C2 01 81
4F 07 (Application identifier)

A000000004 1010
61 18 (Application template)

80 01 01

4 An installation with version 1.5-R79-v5 of the Google Wallet app and version 1.6 of
the on-card component installed in September 2012 reports the second credit card AID as
A000000004 1010 AA539648FFFF00FFFF.
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C2 01 81
4F 10 (Application identifier)

A000000004 1010 AA54303200FF01FFFF
9000 (Status: Success)

• 80 F0 0100 12 4F 10 A000000004 1010 AA54303200FF01FFFF 00:
This command is used when the Google Prepaid card is disabled through the
Google Wallet app. The secure element returns 61 00 9000.

• 80 F0 0200 12 4F 10 A000000004 1010 AA54303200FF01FFFF 00:
This command is usedwhen theGoogle Prepaid card is enabled through theGoogle
Wallet app. The secure element returns 61 00 9000.

7.1.4 Google Prepaid Card: A MasterCard PayPass Card

The credit card applet is based on the EMV Contactless Specifications for Pay-
ment Systems and is a MasterCard PayPass card. It supports Mag-Stripe mode with
dynamic CVC3 (card verification code) and requires online transactions. Full EMV
mode is not supported. Also, there is no cardholder verification, even though PIN-
based cardholder verification would significantly complicate relay attacks or would
even render them impossible if the attacker is unable to “guess” the PIN.

A typical Mag-Stripe mode transaction with the Google Prepaid card consists of
the following command sequence (cf. [15] for a detailed analysis of a Mag-Stripe
transaction):

1. POS → Card: The POS terminal selects (SELECT command) the PPSE:
00 A4 0400 0E 325041592E5359532E4444463031 00

2. Card → POS: The secure element responds with the file control information
template (FCI) that contains a list of supported EMV payment applications and
their priority indicators:

6F 3A (FCI template)
84 0E (DF name)

325041592E5359532E4444463031 (“2PAY.SYS.DDF01”)
A5 28 (Proprietary information encoded in BER-TLV)

BF0C 25 (FCI issuer discretionary data)
61 15 (Application template)

4F 10 (Application identifier)
A000000004 1010 AA54303200FF01FFFF

87 01 01 (Application priority indicator)
61 0C (Application template)

4F 07 (Application identifier)
A000000004 1010

87 01 02 (Application priority indicator)
9000 (Status: Success)
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3. POS → Card: The POS terminal selects (SELECT command) the MasterCard
Google Prepaid card:

00 A4 0400 10 A000000004 1010 AA54303200FF01FFFF 00
4. Card→ POS: The secure element responds with an FCI that contains application

details:
6F 20 (FCI template)

84 10 (DF name)
A000000004 1010 AA54303200FF01FFFF

A5 0C (Proprietary information encoded in BER-TLV)
50 0A (Application label)

4D617374657243617264 (“MasterCard”)
9000 (Status: Success)

5. POS → Card: The POS terminal retrieves the processing options of the credit
card application (GET_PROCESSING_OPTIONS command):

80 A8 0000 02 8300 00
6. Card → POS: The credit card applet responds with the application interchange

profile (0000 indicatesMag-Stripemode only, online transactions only, no card-
holder verification, etc.) and the location of the Mag-Stripe data file:

77 0A (Response message template)
82 02 (Application interchange profile)

0000
94 04 (Application file locator)

08 01 01 00 (short EF = 1, first record = 1, last record = 1)
9000 (Status: Success)

7. POS→Card: The POS terminal reads (READ_RECORDS command) theMag-
Stripe data from record 1 of the record data file with the short EF 1:

00 B2 010C 00
8. Card→ POS: The credit card applet responds with theMag-Stripe version, track

1 and track 2 information:
70 6A (Non inter-industry nested data object template)

9F6C 02 (Mag-Stripe application version number)
0001 (Version 1)

9F62 06 (Track 1 bit map for CVC3)
000000000038

9F63 06 (Track 1 bit map for UN and ATC)
0000000003C6

56 29 (Track 1 data)
42 (ISO/IEC 7813 structure “B” format)
35343330 xxxxxxxx 30xxxx37 xxxxxxxx

(Primary account number “5430xxxx0xx7xxxx”)
5E (Field separator “ˆ”)
202F (Cardholder name “ /”)
5E (Field separator “ˆ”)
31373131 (Expiry date “17”/“11”)
313031 (Service code “101”)
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30303130303030303030303030
(Discretionary data “0010000000000”)

9F64 01 (Track 1 number of ATC digits)
04

9F65 02 (Track 2 bit map for CVC3)
0038

9F66 02 (Track 2 bit map for UN and ATC)
03C6

9F6B 13 (Track 2 data)
5430 xxxx 0xx7 xxxx (Primary account number)
D (Field separator)
1711 (Expiry date)
101 (Service code)
0010000000000 (Discretionary data)
F (Padding)

9F67 01 (Track 2 number of ATC digits)
04

9000 (Status: Success)
9. POS→ Card: The POS terminal instructs the card to compute the cryptographic

checksum for a given unpredictable number nnnnnnnn (COMPUTE_CRYP-
TOGRAPHIC_CHECKSUM command):

80 2A 8E80 04 nnnnnnnn 00
10. Card → POS: The credit card applet responds with the application transaction

counter (xxxx) and with the dynamically generated CVC3 for track 1 (yyyy)
and track 2 (zzzz):

77 0F (Response message template)
9F61 02 zzzz (CVC3 Track 2)
9F60 02 yyyy (CVC3 Track 1)
9F36 02 xxxx (Application transaction counter, ATC)

9000 (Status: Success)

Most of the data exchanged in a Mag-Stripe transaction is static for all transactions
(e.g. the Mag-Stripe data). COMPUTE_CRYPTOGRAPHIC_CHECKSUM (9 and
10) is the only APDU command-response pair that contains dynamically generated
data that differs for each transaction: the unpredictable number generated by the POS
and the transaction counter and CVC3 codes generated by the card. Each COM-
PUTE_CRYPTOGRAPHIC_CHECKSUM command that is sent to the card must
be preceded by a fresh GET_PROCESSING_OPTIONS command (5 and 6). Thus,
the minimum sequence for generating a dynamic CVC3 is

1. SELECT the MasterCard Google Prepaid card (3 and 4),
2. GET_PROCESSING_OPTIONS (5 and 6), and
3. COMPUTE_CRYPTOGRAPHIC_CHECKSUM (9 and 10).
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7.2 Performing a Software-Based Relay Attack

In order to perform a software-based relay attack on a Google Wallet installation,
the proof-of-concept implementation used for delay measurements (see Sect. 6.4.3)
needed some minor modifications:

The main difference between the delay measurement scenario and access to the
credit card in Google Wallet is that Google Wallet is protected by a PIN. However,
knowledge of the PIN itself is not necessary to unlock the wallet. Instead, a simple
unlock command needs to be sent to the Google Wallet on-card component. After
this, the default payment card can be accessed through the internal mode of the secure
element.Nouser interaction is required. If other cards besides theMasterCardGoogle
Prepaid Card are installed into the wallet, additional commands might be necessary
to enable the desired payment card.

Thus, whenever the card emulation server begins relaying a transaction, the relay
app first selects the Google Wallet on-card component and sends the unlock com-
mand. This imitates the behavior of the GoogleWallet app upon successful PIN entry
by the user. After a transaction completed, the Google Wallet on-card component is
selected again and the lock command is used to lock the wallet.

As Android 2.3.7 has been used to initially test the relay scenario with Google
Wallet, the access restrictions of the secure element API were loosened in a cus-
tomized build of the Android firmware. For tests on Android 4.0.3 and 4.1.1, the
signature of the relay app was simply added to the secure element permissions file
(/system/etc/nfcee_access.xml). Root access to the device was neces-
sary in all cases. Instead of manually granting the permissions, privilege escalation
exploits could be integrated into future versions of the relay app to automate this
process. For easy integration of future exploits, a privilege escalation framework
(cf. [10]) could be embedded into the app.

We successfully tested the software-based relay attack with Google Wallet by
paying at a real POS terminal with our card emulator (Figs. 7.1 and 7.2). The POS
terminal used for these tests was a Hypercom Artema Hybrid with a ViVOtech
ViVOpay 5000 contactless reader. For ethical reasons we used our own credit card

Fig. 7.1 Test setup for
performing a payment
transaction with the card
emulator at a POS terminal
(Source [15, 17])

http://dx.doi.org/10.1007/978-3-319-15488-6_6


7.2 Performing a Software-Based Relay Attack 155

Fig. 7.2 Performing a successful payment transaction with the card emulator at a POS terminal:
a payment transaction in progress (Source [15]), b payment receipt

terminal instead of a POS installation in the field. However, the POS terminal is
identical to those used in recent roll-outs at Schlecker and Zielpunkt in Austria.
Videos of the successful relay attack are available on YouTube [13, 14].

7.3 Viability, Limitations and Improvements

An NFC reader device (available for less than EUR 50), a notebook computer and
some programming skills are all that was necessary to mount this attack. However, it
has to be admitted that,while using theACR122U togetherwith a notebook computer
worked in a controlled environment, this setup will certainly raise suspicions when
used to pay in a store. An alternative approach would be to use another mobile phone
as card emulator. Francis et al. [3] showed that a credit card can be emulated using a
BlackBerry 9900 in software card emulationmode (cf. also [16]). The recent addition
of host-based card emulation to Android enables software card emulation on a broad
range of Android devices. A mobile phone has several advantages:

• accepted form factor for mobile contactless transactions,
• same network interfaces as the device-under-attack, and
• various Android smart phones with NFC (e.g. the Nexus 4) are available for less
than EUR 300.
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7.3.1 Getting the Relay App on Devices

To roll out the relay app to devices of actual users, it could be integrated into any
existing app downloaded from Google Play Store (cf. Sect. 4.5 and Höbarth [9]).
The infected app could then be re-published on Google Play Store under similar (or
even identical) publisher information and with the same app name as its original. The
publisher account that is necessary to re-publish the app costsUSD25 (approximately
EUR 20) [5].

For many users it would be difficult to distinguish the original app from the mal-
ware, as these apps would only differ in the number of installs and user comments. To
specifically target users of rooted devices, an app that already requires root permis-
sions could be used as a base for code injection. This would also simplify root-access,
as users would explicitly grant the root privileges to such an app.

However, Google started to combat this approach with updates to the Google Play
Developer Program Policy in late 2012.

7.3.2 Transaction Limits

InAustria, PIN-less contactless transactions are usually limited to EUR25. However,
reports on the Internet [12] suggest that Google Wallet can be used for transactions
of at least up to USD 100 (approximately EUR 75). An attacker would typically
not attack a single Google Wallet device, but instead distribute transactions on many
devices infected with the relay app. Thus, an attacker could build a “bot network” of
Google Wallets. This method has the advantage that each wallet would be charged
less, whichmight cover the attack for a longer period. Also, the attacker could use the
“bot network” to select a device with a good (i.e. stable and fast) network connection.

7.3.3 Optimizing the Relayed Data

The analysis of communication delays induced by a relay attack reveals that the
relay channel adds a significant portion of the overall command-response delay.
This results in a noticeable slow-down of relayed transactions in comparison to
direct transactions. Using the full procedure for a payment transaction described
in Sect. 7.1.4, 5 commands (totaling 65 bytes) and 5 responses (totaling 241 bytes)
would need to be exchanged between the relay app and the card emulator. Even when
only theminimum sequence of commands described in Sect. 7.1.4 is used, this would
still result in 3 commands (totaling 40 bytes) and 3 responses (totaling 69 bytes) that
need to be exchanged over the relay channel.

One possibility to further improve the speed of relayed transactions is to cache
all static transaction data and only transmit dynamically generated data during the

http://dx.doi.org/10.1007/978-3-319-15488-6_4
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transaction. Thus, it is sufficient to transmit the dynamic fields of the COMPUTE_
CRYPTOGRAPHIC_CHECKSUM command-response pair over the relay channel.
All other data can be retrieved from the Google Wallet device prior to the attack.
This reduces the number of commands exchanged over the relay channel during one
transaction to one command (containing a 4 byte unpredictable number as the data)
and to one response (containing 6 bytes of data generated by the secure element in
response to the unpredictable number).As a consequence, even a singleSMSmessage
for each direction would be sufficient as a relay channel if all other information (e.g.
Mag-Stripe data) has been previously cached on the card emulator.

7.4 Possible Workarounds

Section6.5 gives an overview of possible solutions to prevent relay attacks and
software-based relay attacks in particular. Several of these solutions could be applied
to Google Wallet. However, each method has its advantages and disadvantages.

7.4.1 Timeouts of POS Terminals

An easy, but potentially unreliable, measure to prevent relay attacks would be the
enforcement of short timeouts (e.g. the benchmark targets specified by the EMV
specifications) for payment transactions on the POS terminals. Transactions taking
longer than this timeout should be interrupted or discarded. While this measure
will prevent most long-distance relay scenarios, relays over shorter distances and
fast communication channels might not be rejected. Also, such tight timeouts will
prevent some cloud-based EMV applications (cf. Sect. 6.5).

7.4.2 Google Wallet PIN Verification

A PIN and the ability to remotely disable Google Wallet make it very safe [8].

In version 1.1-R52v7 of theGoogleWallet app, the PIN that protects thewallet is only
verified within the mobile phone app. Simple lock and unlock commands are used to
control the state of the on-card component instead of on-card PIN verification. This,
once more, delegates access control for a secure component (Google Wallet on-card
component and credit card applets) to a potentially insecure component (Google
Wallet app on the application processor). The on-card component does not verify
this PIN.

PINverification couldbehandledby theon-card component on the secure element.
After all, PIN verification is a core component of smartcards anyways. In that case,

http://dx.doi.org/10.1007/978-3-319-15488-6_6
http://dx.doi.org/10.1007/978-3-319-15488-6_6
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Fig. 7.3 Monitoring the Google Wallet PIN entry dialog may allow an attacker to capture the PIN:
a PIN entry dialog, b touch event for digit “1” causes the button to change its color from gray to
blue, c digit “1” has been released

the attacker would need to know the wallet PIN in order to conduct a successful
attack. Still, a malicious app with sufficient privileges might be able to monitor PIN
entry (e.g. by intercepting keyboard inputs or by capturing the screen on touch events,
cf. Fig. 7.3).

Another approach would be to require PIN entry and online PIN verification at
the point-of-sale for any transaction amount. However, this is impracticable or even
impossible at certain points-of-sale.

7.4.3 Disabling Internal Mode for Payment Applets

Modern secure elements (like those embedded into Google’s Nexus devices) pro-
vide instruments to distinguish between external mode communication and internal
communication from within a Java Card applet. Rules for interface-based access can
be applied on a per-applet basis and even on a per-APDU basis. These capabilities
could be used to disable internal mode communication for all payment applets and
consequently disable their vulnerability for software-based relay attacks.

The disadvantage of this workaround is that the secure element cannot be used
for future on-device secure payment applications (e.g. EMV-based authorization of
payment transactions in the mobile phone web browser). Such applications would,
however, be one of the key benefits of having a secure element inside amobile phone.
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7.5 Reporting and Industry Response

We reported our findings and proposed workarounds to Google (and some of their
Google Wallet partners) in April 2012. Google quickly acknowledged the problem
and confirmed that they could reproduce the attack. Our tests in June 2012 revealed
that new installations of Google Wallet (i.e. secure element applets provisioned in
June)were no longer vulnerable to our relay attack setup. Further testing inSeptember
2012 showed that users of older versions of GoogleWallet are now required to update
to the latest version. This forces existing users to receive the necessary fixes of the
secure element applets. Therefore, we assume that GoogleWallet users are no longer
vulnerable to the relay attack scenario described in this thesis.

Google acknowledged the report of this security vulnerability with an entry in the
“Honorable Mention” section of their Application Security Hall of Fame [6].

7.6 Analysis of the Relay-Immune Google Wallet

Version 1.6 of the Google Wallet on-card component (installed with version 1.5-
R79-v5 of Google Wallet in September 2012, cf. Fig. 7.4) is no longer vulnerable
to the software-based relay attack setup described in this thesis. The relay attack is
inhibited by the fact that the select commands for both MasterCard credit card applet

Fig. 7.4 Google Wallet version 1.5-R79-v5
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instances5 fail with the error code 6999. Thus, access to the credit card applet from
the application processor has been disabled as we suggested (cf. Sect. 7.4.3). The
PPSE can still be selected through both internal and external mode.

The on-card component can still only be selected through internal mode. It now
returns its version number upon selection:
6F 0F (FCI template)

84 07 (DF name)
A000000476 2010

A5 04 (Proprietary information encoded in BER-TLV)
80 02 0106 (Version 1.6)

9000 (Status: Success)
Also, some commands for interaction with the on-card component have slightly
changed their parameters (e.g. the commands for enabling and disabling a specific
payment card). However, the commands for switching between locked and unlocked
state of the wallet are still the same. As a result, it is still possible to unlock Google
Wallet and the credit card contained in it without PIN verification. Consequently, a
malicious application with access to the secure element could enable the credit card
on the RF contactless interface even though Google Wallet is protected by a PIN that
is not known to the malicious application.

In a thread on XDA Developers [18], Rubin explains why PIN verification has
not been moved to the secure element:

Google believes that the change required may constitute a ‘change of agency’ regarding who
does the PIN verification (if it is done inside the secure element). If the banks then become
responsible for the PIN verification, the PIN becomes subject to the same regulations and
procedures as an ATM PIN.

However, in my opinion, this would only apply if the PIN was part of the credit
card application. If the PIN verification is performed in the Google Wallet on-card
component, which is part of the Google Wallet application, responsibility would not
shift to the banks but would remain with Google and the Google Wallet application.
After all, Google Wallet only hosts the credit card applets for the banks.

References

1. Drake, J.J., Oliva Fora, P., Lanier, Z., Mulliner, C., Ridley, S.A., Wicherski, G.: Android
Hacker’s Handbook. Wiley, New York (2014)

2. EMVCo: EMV Contactless Specifications for Payment Systems—Book B: Entry Point Spec-
ification. Version 2.1 (2011)

3. Francis, L., Hancke, G.P.,Mayes, K.E.,Markantonakis, K.: Practical relay attack on contactless
transactions by using NFCmobile phones. Cryptology ePrint Archive, Report 2011/618. http://
eprint.iacr.org/2011/618 (2011)

4. GlobalPlatform: Card Specification. Version 2.2.1 (2011)

5 AIDs A000000004 1010 and A000000004 1010 AA539648FFFF00FFFF.

http://eprint.iacr.org/2011/618
http://eprint.iacr.org/2011/618


References 161

5. Google: Android developer—Google Play developer help—developer registration. https://
support.google.com/googleplay/android-developer/answer/113468 (2014). Accessed Dec
2014

6. Google:Google—application security—hall of fame—honorablemention. http://www.google.
com/about/appsecurity/hall-of-fame/distinction/ (2014). Accessed Dec 2014

7. Google: Google Wallet. https://www.google.com/wallet/ (2012). Accessed Sept 2012
8. Google: Google Wallet—how it works—in-store. http://www.google.com/wallet/how

-it-works/in-store.html (2012). Accessed Sept 2012
9. Höbarth, S.: Android monkeys—get it, malware it, market it. Presentation at Hacking Night

WS 2011. Hagenberg, Austria (2012)
10. Höbarth, S.,Mayrhofer, R.:A framework for on-device privilege escalation exploit execution on

Android. In: 3rd International Workshop on Security and Privacy in Spontaneous Interaction
and Mobile Phone Use. San Francisco, CA, USA. http://www.medien.ifi.lmu.de/iwssi2011/
papers/hoebarth-spmu2011.pdf (2011)

11. Mostowski, W., Pan, J., Akkiraju, S., de Vink, E., Poll, E., den Hartog, J.: A comparison of
Java Cards: state-of-affairs 2006. CS-Report CSR 07–06, Technische Universiteit Eindhoven
(2007)

12. Planck, S.: Google Wallet statistics roundup. NFC rumors. http://www.nfcrumors.com/05
-27-2011/google-wallet-statistics-roundup/ (2011)

13. Roland, M.: Google Wallet relay attack. http://youtu.be/_R2JVPJzufg
14. Roland, M.: Google Wallet relay attack (low quality). http://youtu.be/hx5nbkDy6tc
15. Roland, M.: Applying recent secure element relay attack scenarios to the real world: Google

Wallet relay attack. Comput. Res. Repository (CoRR), arXiv:1209.0875 (cs.CR) (2012). http://
arxiv.org/abs/1209.0875

16. Roland, M.: Software card emulation in NFC-enabled mobile phones: great advantage or secu-
rity nightmare? In: 4th InternationalWorkshop on Security and Privacy in Spontaneous Interac-
tion and Mobile Phone Use. Newcastle, UK. http://www.medien.ifi.lmu.de/iwssi2012/papers/
iwssi-spmu2012-roland.pdf (2012)

17. Roland,M., Langer, J., Scharinger, J.: Applying relay attacks to GoogleWallet. In: Proceedings
of the Fifth International Workshop on Near Field Communication (NFC 2013). IEEE, Zurich,
Switzerland (2013). doi:10.1109/NFC.2013.6482441

18. Rubin, J.: Google wallet PIN vulnerability, post #5 on 9 Feb 2012 12:45 AM by J. Rubin (alias
“miasma”). Thread on XDA Developers forum. http://forum.xda-developers.com/showpost.
php?p=22327658&postcount=5 (2012). Accessed Sept 2012

19. Rubin, J.: Google Wallet security: about that rooted device requirement... zveloBLOG. https://
zvelo.com/blog/entry/google-wallet-security-about-that-rooted-device-requirement (2012)

https://support.google.com/googleplay/android-developer/answer/113468
https://support.google.com/googleplay/android-developer/answer/113468
http://www.google.com/about/appsecurity/hall-of-fame/distinction/
http://www.google.com/about/appsecurity/hall-of-fame/distinction/
https://www.google.com/wallet/
http://www.google.com/wallet/how-it-works/in-store.html
http://www.google.com/wallet/how-it-works/in-store.html
http://www.medien.ifi.lmu.de/iwssi2011/papers/hoebarth-spmu2011.pdf
http://www.medien.ifi.lmu.de/iwssi2011/papers/hoebarth-spmu2011.pdf
http://www.nfcrumors.com/05-27-2011/google-wallet-statistics-roundup/
http://www.nfcrumors.com/05-27-2011/google-wallet-statistics-roundup/
http://youtu.be/_R2JVPJzufg
http://youtu.be/hx5nbkDy6tc
http://arxiv.org/abs/1209.0875
http://arxiv.org/abs/1209.0875
http://arxiv.org/abs/1209.0875
http://www.medien.ifi.lmu.de/iwssi2012/papers/iwssi-spmu2012-roland.pdf
http://www.medien.ifi.lmu.de/iwssi2012/papers/iwssi-spmu2012-roland.pdf
http://dx.doi.org/10.1109/NFC.2013.6482441
http://forum.xda-developers.com/showpost.php?p=22327658&postcount=5
http://forum.xda-developers.com/showpost.php?p=22327658&postcount=5
https://zvelo.com/blog/entry/google-wallet-security-about-that-rooted-device-requirement
https://zvelo.com/blog/entry/google-wallet-security-about-that-rooted-device-requirement


Chapter 8
Summary and Outlook

This work assessed the current state of Near Field Communication (NFC) security
with regard to a range of specific application scenarios. Based on exemplary use-
cases from the area of improving efficiency in automotive environments, application-
specific security requirements have been identified. Two aspects of NFC—tagging
and card emulation—have been found to be particularly important. Both aspects have
been evaluated with regard to the efficiency of existing security architectures. Weak-
nesses of the existing securitymeasures and new attack scenarios have been identified
for both, tagging and secure element based card emulation. Countermeasures and
solutions to overcome these unresolved security issues have been outlined.

8.1 Tagging

For the interaction with NFC tags (i.e. the tagging scenario), the NFC Forum pub-
lished the NDEF Signature Record Type Definition specification as a first approach
towards achieving authenticity and integrity for data stored on NFC tags and for data
transferred across the NFC link. Nevertheless, this specification is only a small step
towards authenticity and integrity protection. The signature record type definition
only specifies a container record format for a digital signature and rules for generating
that digital signature. Another important part—the infrastructure behind the digital
signatures and the certificates—has yet to be defined. A public-key infrastructure
and rules for establishing trust in signature issuers and signed data are an essential
part of the overall signature system. Therefore, a possible design of a public key
infrastructure (PKI) for digital signature of NDEF data has been outlined. Moreover,
the advantages and disadvantages of different methods for binding digital certificates
to signed content have been discussed.

Two critical design criteria that have to be considered carefully when implement-
ing an NDEF-PKI are the management of the private signing keys and the lifespan
of certificates. Several different models for both design criteria have been evaluated
with regard to their advantages and disadvantages.
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A promising approach for the management of private signing keys seems to be
online signature generation at an online signature generation service owned by the
certificate authority (CA). While that approach requires a considerable amount of
trust in that centralized service, it significantly reduces complexity for the content
issuer. The content issuer does not need to handle the secret key which results in
reduced costs. At the same time, the content issuer can even delegate signature
generation to a tag manufacturer without passing on the secret key.

With regard to the lifespan and the validity period of certificates and signatures,
several existingmodels have been evaluated for their viability in the tagging scenario.
The evaluation revealed that there is a notable trade-off between long-term usability
of signed NFC tags and the security of their signatures. In particular the expected
lifetimeofNFC tags varies between different applications. In some cases the expected
lifespan of NFC tags is still not clear as the mass-adoption of NFC is only slowly
beginning.

Though the signature RTD only specifies the container for transporting digital
signatures and the rules for computing a signature, an in-depth analysis revealed that
the specification even fails its goal of providing an adequate means for protecting
the authenticity and integrity of NDEF records. The signature RTD contains a vul-
nerability that permits several methods of manipulating the content of signed NDEF
records without voiding their signature. The weakness is that only parts of the fields
of signed records are covered by the signature while important header fields are not
protected by the signature. Consequently, the signature RTD fails to provide adequate
integrity protection.

The vulnerabilities can be abused to conduct a “record composition attack”. The
record composition attack is an attack scenario wheremultiple existing signedNDEF
messages are aggregated into a new NDEF message that conveys a new meaning.
Unwanted parts of the originalmessages are selectively hidden from the newmessage
by manipulating header fields that are not covered by the signature.

Besides its vulnerability to hiding and manipulation of signed NDEF records, the
signature RTD is also susceptible to security and privacy issues caused by the use
of remote URIs (uniform resource identifiers) as part of the signature records. These
URIs have no form of authenticity and integrity protection. Therefore, they could be
freely manipulated by an attacker. Possible attack scenarios range from collecting
usage information for NFC tag infrastructures to triggering HTTP GET requests for
arbitrary URIs in the context of the user.

8.2 Card Emulation

Secure element based card emulation is often considered secure due to its use of
secure smartcard technology. Also, many secure element access APIs have sophisti-
cated access controlmechanisms to prevent unauthorized applications fromaccessing
the secure element. However, an analysis performed as part of this thesis showed that
all APIs rely on the integrity of the operating system when performing access con-
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trol decisions. Once an application is able to elevate its privileges (e.g. to gain root
privileges), it is also capable of circumventing the access control policies of secure
element APIs.

While applications on the secure element are usually protected with further secu-
rity measures such as shared keys and encryption, some attack scenarios are possible
even if the data stored inside the secure element applications itself is inaccessible.
In particular, two potential attack scenarios have been identified: a denial-of-service
attack and a software-based relay attack.

The denial-of-service attack uses the security mechanisms of the GlobalPlatform
cardmanagement interface to either permanently block any further cardmanagement
operations (e.g. installation and removal of applets) or to temporarily block all further
communication with the secure element.

The software-based relay attack is an extension of existing relay attack con-
cepts. Traditional relay attacks on contactless smartcards and secure element enabled
mobile phones rely on physical proximity between the device-under-attack and the
attacker. Also, external card emulation needs to be enabled during the attack. How-
ever, the software-based relay attack no longer has these restrictions. Especially
physical proximity to the device-under-attack is not required. Instead, an app on the
mobile phone application processor relays the communication between an attacker
and the secure element over the cellular network or another wireless communication
channel. That way, an attacker could build a card emulator (proxy) that relays the
commands received from a real reader device (e.g. a point-of-sale (POS) terminal)
through the relay app on the device-under-attack to the secure element and that routes
the responses of the secure element back to the reader.

Protocol analysis and reference measurements with a prototype implementation
of the relay system revealed that such relay attacks are possible and not hindered
by any of the protocols involved in the communication. Specifically, the fact that
the communication with the secure element is performed on the application layer
(APDUs, application protocol data units) further relaxes the timing constraints.

To verify the software-based relay attack with an existing application, Google
Wallet has been chosen as an attack target. An analysis of the communication of
the Google Wallet app with its on-card component in the secure element and an
analysis of the communication between Google Wallet and an actual POS terminal
during a payment transaction showed that the MasterCard-branded prepaid credit
card stored inside the wallet is based on EMV payment card standards. The analysis
also revealed that the credit card is protected inside the wallet by activation and
deactivation commands. The activation command is necessary before the payment
card can be accessed and is usually sent by the Google Wallet app upon successful
PIN entry.

Aftermodifying the prototype relay system to issue the activation commandbefore
starting the relay communication, the relay attack could be successfully used to
perform a payment transaction at a real POS terminal with the Google MasterCard
prepaid card stored inside the wallet. These findings, together with a number of
proposals for possible workarounds, have been reported to Google and some of their
wallet partners. Google responded by releasing an updated version of their wallet
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that rejects access to the credit card application on the secure element from apps
on the mobile phone application processor. This fix matches one of our proposed
solutions. Google acknowledged the responsible disclosure of this vulnerability of
their wallet with an entry in their Application Security Hall of Fame [3]. The story of
the vulnerability has even been picked up by the media (e.g. derStandard [12], Die
Presse [2], Futurezone [13], Oberösterreichische Nachrichten [4], ORF.at [11]).

8.3 Conclusion

NFC technology has some security measures for all three of its operating modes. For
reader/writer mode and tagging, write protection of tags has been the only security
measure for several years. The recently released signature RTD adds digital signature
as an additional security measure. However, due to the lack of a PKI, most NDEF
applications do not use digital signatures yet. For peer-to-peer mode there is an ISO
standard that provides a secure communication channel for NFC. Nonetheless, this
secure channel protocol is not used in any of the current smart phone peer-to-peer
stacks. There are also no NFC Forum specifications based on this standard. For card
emulationmode there is the secure element as central securitymeasure. As the secure
element is based on secure smartcard technology, it has similar security properties
as regular smartcards. Nevertheless, the secure element has insufficient protection
against unauthorized access on most current mobile phone platforms.

8.4 The Bigger Picture

While NFC has been developed in 2002 and the first NDEF specifications appeared
in 2006, it took four more years until the NFC Forum released its first security
specification: the Signature Record Type Definition. Even today, 4years after the
signature RTD was initially published, it is still the NFC Forum’s only security
related specification. Only in late 2014 a policy document [10] with guidelines for a
signature RTD certification authority has been released. As a result, digital signatures
for NDEF are still not widely used.

Nevertheless, more andmoremobile phones are equippedwithNFC andmore and
more NFC tags are in use. Also, several installations of NFC tag infrastructures are
already in place. Therefore, upgrading to signature-based security would require all
these existing tags to be replaced with tags that contain valid signatures. Otherwise,
these tag infrastructures would have a significantly decreased user-experience (e.g.
additional warning messages and additional user interaction). The longer it takes to
publish a complete security specification and guidelines to NFC security, the more
products and services without security features will become available. As a conse-
quence, it will become difficult to convince service providers that additional security
measures are even necessary, especially as the cost for these measures increases with
the size of their existing tag infrastructures.
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A similar situation exists with NFC devices. While there have been various
publications about vulnerabilities in the first NFC-enabled mobile phones (e.g.
Mulliner [7, 8] in 2008/2009), similar security issues still exist in current Android
NFC devices (cf. Miller [6], Mulliner [9], Benninger and Sobell [1]). Thus, years
after the first reports about vulnerabilities in NFC devices, these very same vulnera-
bilities are still built into new devices. Therefore, even 10years after the birth of the
NFC technology, there still seem to be no guidelines that device manufacturers can
follow to build devices that are robust to well-known attacks.

For the card emulation scenario, the first platform independent API specifica-
tion for secure element access has been released in 2011: the Open Mobile API. It
took one more year until a standard for access control to the secure element was
published. Before, only standards for Java ME (Java Platform, Micro Edition) and
several proprietary interfaces existed. Nevertheless, even these new specifications
make the assumption that the mobile phone platform (hardware, operating system,
etc.) itself is secure. However, many publications (cf. Sect. 4.5) prove that this cannot
be assumed for most of the current smart phones.

In all these cases, security related specifications, standards and guidelines have
been developed in a late stage only after the technology itself became more popular
or have not been developed at all. This seems to be a significant flaw in the strategies
around NFC technology. It seems as if there is a priority on pushing standards for
interoperable applications while security is left aside as a low priority. Development
of security standards seems to happen only in response to actual vulnerability reports
and threats. However, NFC security could potentially be implemented in a contin-
uous proactive process that happens in parallel to the development of the protocol
and application specifications. This would particularly help service providers and
application developers that create applications and services based on these standards
to implement security from the beginning.

8.5 Future Research

This thesis identified several issues in current securitymeasures for NFC applications
and gave an overview of possible countermeasures. Nevertheless, with both, tagging
and card emulation, there are still several questions left for future research.

Particularly the various options for a public-key infrastructure for digital signature
of NDEFmessages need further evaluation. For instance, certificate binding needs to
be analyzed based on existing NDEF applications and for combinations of multiple
records. Another topic for future research is user interaction and the implementation
of signature verification in general and on specific device platforms. Korak and
Wilfinger [5] built an Android implementation of the signature RTD that can detect
potentially malicious signed NDEF records based on the weaknesses identified in
this thesis. Their implementation also provides a first approach to differentiated user
interaction based on signature verification results.

http://dx.doi.org/10.1007/978-3-319-15488-6_4
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For the integration of NFC card emulation and secure elements into smart phones,
the focus of future research could be on secure authentication of apps to the secure
element. For instance, trusted platform concepts seem to be a promising approach
to reliably perform access control to the secure element. Trusted platform concepts
could also provide a basis for trusted user interaction with the secure element (e.g.
to provide a trusted display and trusted PIN entry that cannot be intercepted by
malicious applications). Trusted input/output capabilities could also be used to feed
the secure elementwith trusted sensor data (e.g.GPS) that could be used to implement
countermeasures against relay attacks comparable to distance bounding and packet
leashes.

Nevertheless, future researchmight also search for new attack surfaces. For exam-
ple, other applications on the secure element besides the card manager might also be
vulnerable to denial-of-service attacks. In particular applications that use PIN codes
could be vulnerable to intentionally exceeding the limits of the retry counters. Also
EMV-compliant credit cards contain transaction counters to prevent replay attacks.
These counters could possibly be incremented until they exceed theirmaximumvalue
which might make a payment card unusable for further transactions.

Further more, a recent trend towards host-based card emulation (HCE) in com-
bination with cloud-based secure elements (as an alternative to on-device secure
elements) could potentially open new attack surfaces. Both, the cloud-based secure
element and theHCE app on themobile device provide interfaces similar to those of a
secure element. Consequently, it may be possible to extend the software-based relay
attack scenario to HCE applications. An attacker could, for instance, try to hijack the
communication channel between the wallet app and the cloud-based secure element.
Alternatively, an attacker could try to inject communication into the HCE interface
of an app.
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Appendix A
Google’s Secure Element API

This appendix lists the interface definition of Google’s proprietary secure element
API as included in version 4.2.1 of theAndroid system. See Sect. 6.2.4.1 for a detailed
analysis.

A.1 Class NfcAdapterExtras

1 /*

2 * Copyright (C) 2011 The Android Open Source Project

3 *

4 * Licensed under the Apache License , Version 2.0 (the

5 * "License"); you may not use this file except in compliance

6 * with the License. You may obtain a copy of the License at

7 *

8 * http ://www.apache.org/licenses/LICENSE -2.0

9 *

10 * Unless required by applicable law or agreed to in writing ,

11 * software distributed under the License is distributed on

12 * an "AS IS" BASIS , WITHOUT WARRANTIES OR CONDITIONS OF ANY

13 * KIND , either express or implied. See the License for the

14 * specific language governing permissions and limitations

15 * under the License.

16 */

17
18 package com.android.nfc_extras;

19
20 public final class NfcAdapterExtras {

21 /**

22 * Broadcast Action: RF field ON has been detected.

23 * This is an unreliable signal , and will be removed.

24 */

25 public static final String ACTION_RF_FIELD_ON_DETECTED =

26 "com.android.nfc_extras.action.RF_FIELD_ON_DETECTED";

27
28 /**

29 * Broadcast Action: RF field OFF has been detected.

30 * This is an unreliable signal , and will be removed.

31 */

32 public static final String ACTION_RF_FIELD_OFF_DETECTED =

33 "com.android.nfc_extras.action.RF_FIELD_OFF_DETECTED";
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34
35
36 /**

37 * Get the NfcAdapterExtras for the given NfcAdapter.

38 */

39 public static NfcAdapterExtras get(NfcAdapter adapter) { ... }

40
41
42 /**

43 * Immutable data class that describes a card emulation route.

44 */

45 public final static class CardEmulationRoute {

46 /**

47 * Card Emulation is turned off on this NfcAdapter.

48 */

49 public static final int ROUTE_OFF = 1;

50
51 /**

52 * Card Emulation is routed to nfcEe only when the screen

53 * is on, otherwise it is turned off.

54 */

55 public static final int ROUTE_ON_WHEN_SCREEN_ON = 2;

56
57 /**

58 * A route such as ROUTE_OFF or ROUTE_ON_WHEN_SCREEN_ON.

59 */

60 public final int route;

61
62 /**

63 * The NFcExecutionEnvironment that Card Emulation is

64 * routed to.

65 */

66 public final NfcExecutionEnvironment nfcEe;

67
68
69 public CardEmulationRoute(

70 int route , NfcExecutionEnvironment nfcEe) { ... }

71 }

72
73
74 /**

75 * Get the current routing state of the secure element.

76 */

77 public CardEmulationRoute getCardEmulationRoute () { ... }

78
79 /**

80 * Set the routing state of the secure element.

81 */

82 public void setCardEmulationRoute(

83 CardEmulationRoute route) { ... }

84
85
86 /**

87 * Get the NfcExecutionEnvironment for the embedded secure

88 * element.

89 */

90 public NfcExecutionEnvironment getEmbeddedExecutionEnvironment(

91 ) { ... }

92
93
94 /**

95 * Authenticate the client application.

96 * Some implementations of NFC Adapter Extras may require

97 * applications to authenticate with a token , before using

98 * other methods.

99 * This method is not used on Nexus S/Galaxy Nexus.

100 */
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101 public void authenticate(byte[] token) { ... }

102
103 /**

104 * Returns the name of this adapter’s driver.

105 */

106 public String getDriverName () { ... }

107 }

A.2 Class NfcExecutionEnvironment

1 /*

2 * Copyright (C) 2011 The Android Open Source Project

3 *

4 * Licensed under the Apache License , Version 2.0 (the

5 * "License"); you may not use this file except in compliance

6 * with the License. You may obtain a copy of the License at

7 *

8 * http ://www.apache.org/licenses/LICENSE -2.0

9 *

10 * Unless required by applicable law or agreed to in writing ,

11 * software distributed under the License is distributed on

12 * an "AS IS" BASIS , WITHOUT WARRANTIES OR CONDITIONS OF ANY

13 * KIND , either express or implied. See the License for the

14 * specific language governing permissions and limitations

15 * under the License.

16 */

17
18 package com.android.nfc_extras;

19
20 import java.io.IOException;

21
22 public class NfcExecutionEnvironment {

23 /**

24 * Broadcast Action: An ISO -DEP AID was selected.

25 */

26 public static final String ACTION_AID_SELECTED =

27 "com.android.nfc_extras.action.AID_SELECTED";

28 /**

29 * Mandatory byte array extra field in ACTION_AID_SELECTED.

30 */

31 public static final String EXTRA_AID =

32 "com.android.nfc_extras.extra.AID";

33
34 /**

35 * Broadcast action: A filtered APDU was received.

36 */

37 public static final String ACTION_APDU_RECEIVED =

38 "com.android.nfc_extras.action.APDU_RECEIVED";

39 /**

40 * Mandatory byte array extra field in ACTION_APDU_RECEIVED.

41 */

42 public static final String EXTRA_APDU_BYTES =

43 "com.android.nfc_extras.extra.APDU_BYTES";

44
45 /**

46 * Broadcast action: An EMV card removal event was detected.

47 */

48 public static final String ACTION_EMV_CARD_REMOVAL =

49 "com.android.nfc_extras.action.EMV_CARD_REMOVAL";

50
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51 /**

52 * Broadcast action: An adapter implementing MIFARE Classic

53 * via card emulation detected that a block has been accessed.

54 */

55 public static final String ACTION_MIFARE_ACCESS_DETECTED =

56 "com.android.nfc_extras.action.MIFARE_ACCESS_DETECTED";

57 /**

58 * Optional integer extra field in ACTION_MIFARE_ACCESS

59 * _DETECTED that provides the block number being accessed.

60 */

61 public static final String EXTRA_MIFARE_BLOCK =

62 "com.android.nfc_extras.extra.MIFARE_BLOCK";

63
64
65 /**

66 * Open the NFC Execution Environment on its contact

67 * interface.

68 */

69 public void open() throws IOException { ... }

70
71 /**

72 * Close the NFC Execution Environment on its contact

73 * interface.

74 */

75 public void close() throws IOException { ... }

76
77 /**

78 * Send raw commands to the NFC Execution Environment

79 * and receive the response.

80 */

81 public byte[] transceive(byte[] in) throws IOException { ... }

82 }
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Modifications to Google’s Secure Element
API Library

This appendix lists a modified version of Google’s proprietary secure element API
that outputs debug information to the Android debug log. This version is based on
com.android.nfc_extras as included inAndroid 4.1.1.Most comments were
removed from these listings.

B.1 Class NfcAdapterExtras

1 /*

2 * Copyright (C) 2011 The Android Open Source Project

3 * Modifications (debug output): (C) 2012 Michael Roland

4 *

5 * Licensed under the Apache License , Version 2.0 (the

6 * "License"); you may not use this file except in compliance

7 * with the License. You may obtain a copy of the License at

8 *

9 * http ://www.apache.org/licenses/LICENSE -2.0

10 *

11 * Unless required by applicable law or agreed to in writing ,

12 * software distributed under the License is distributed on

13 * an "AS IS" BASIS , WITHOUT WARRANTIES OR CONDITIONS OF ANY

14 * KIND , either express or implied. See the License for the

15 * specific language governing permissions and limitations

16 * under the License.

17 */

18
19 package com.android.nfc_extras;

20
21 import java.util.HashMap;

22
23 import android.content.Context;

24 import android.nfc.INfcAdapterExtras;

25 import android.nfc.NfcAdapter;

26 import android.os.RemoteException;

27 import android.util.Log;

28 import java.lang.reflect.Method;
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37 public final class NfcAdapterExtras {

38 private static final String TAG = "NfcAdapterExtras";

48 public static final String ACTION_RF_FIELD_ON_DETECTED =

59 public static final String ACTION_RF_FIELD_OFF_DETECTED =

60 "com.android.nfc_extras.action.RF_FIELD_OFF_DETECTED";

65 private static INfcAdapterExtras sService;

66 private static final CardEmulationRoute ROUTE_OFF =

67 new CardEmulationRoute(CardEmulationRoute.ROUTE_OFF ,

68 null);

71 private static final HashMap <NfcAdapter , NfcAdapterExtras >

72 sNfcExtras = new HashMap();

73
74 private final NfcExecutionEnvironment mEmbeddedEe;

75 private final CardEmulationRoute mRouteOnWhenScreenOn;

76
77 private final NfcAdapter mAdapter;

78 final String mPackageName;

79
80 /** get service handles */

81 private static void initService(NfcAdapter adapter) {

82 try {

83 Method getNfcAdapterExtrasInterface =

84 NfcAdapter.class.getMethod(

85 "getNfcAdapterExtrasInterface");

86 final INfcAdapterExtras service = (INfcAdapterExtras)

87 getNfcAdapterExtrasInterface.invoke(adapter);

88 if (service != null) {

89 // Leave stale rather than receive a null value.

90 sService = service;

91 }

92 } catch (Exception e) {}

93 }

104 public static NfcAdapterExtras get(NfcAdapter adapter) {

105 Context context = null;

106 try {

107 Method getContext =

108 NfcAdapter.class.getMethod("getContext");

109 context = (Context)getContext.invoke(adapter);

110 } catch (Exception e) {}

111 if (context == null) {

112 throw new UnsupportedOperationException(

113 "You must pass a context to your NfcAdapter to use the

NFC extras APIs");

114 }

115
116 synchronized (NfcAdapterExtras.class) {

117 if (sService == null) {

118 initService(adapter);

119 }

120 NfcAdapterExtras extras = sNfcExtras.get(adapter);

121 if (extras == null) {

122 extras = new NfcAdapterExtras(adapter);
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123 sNfcExtras.put(adapter , extras);

124 }

125 return extras;

126 }

127 }

128
129 private NfcAdapterExtras(NfcAdapter adapter) {

130 mAdapter = adapter;

131 String packageName = null;

132 try {

133 Method getContext =

134 NfcAdapter.class.getMethod("getContext");

135 packageName = (( Context)getContext.invoke(adapter))

136 .getPackageName ();

137 } catch (Exception e) {}

138 mPackageName = packageName;

139 mEmbeddedEe = new NfcExecutionEnvironment(this);

140 mRouteOnWhenScreenOn = new CardEmulationRoute(

141 CardEmulationRoute.ROUTE_ON_WHEN_SCREEN_ON ,

142 mEmbeddedEe);

143 }

148 public final static class CardEmulationRoute {

153 public static final int ROUTE_OFF = 1;

159 public static final int ROUTE_ON_WHEN_SCREEN_ON = 2;

164 public final int route;

170 public final NfcExecutionEnvironment nfcEe;

171
172 public CardEmulationRoute(int route ,

173 NfcExecutionEnvironment nfcEe) {

174 if (route == ROUTE_OFF && nfcEe != null) {

175 throw new IllegalArgumentException(

176 "must not specifiy a NFC -EE with ROUTE_OFF");

177 } else if (route != ROUTE_OFF && nfcEe == null) {

178 throw new IllegalArgumentException(

179 "must specifiy a NFC -EE for this route");

180 }

181 this.route = route;

182 this.nfcEe = nfcEe;

183 }

184 }

189 void attemptDeadServiceRecovery(Exception e) {

190 Log.e(TAG ,

191 "NFC Adapter Extras dead - attempting to recover");

192 try {

193 Method attemptDeadServiceRecovery =

194 NfcAdapter.class.getMethod(

195 "attemptDeadServiceRecovery",

196 Exception.class);

197 attemptDeadServiceRecovery.invoke(mAdapter , e);

198 } catch (Exception ee) {}
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199 initService(mAdapter);

200 }

201
202 INfcAdapterExtras getService () {

203 return sService;

204 }

212 public CardEmulationRoute getCardEmulationRoute () {

213 try {

214 int route = sService.getCardEmulationRoute(mPackageName);

215 Log.d(TAG ,

216 "getCardEmulationRoute () for " +

217 (( mPackageName != null) ? mPackageName : "[null]") +

218 " = " + route);

219 return route == CardEmulationRoute.ROUTE_OFF ?

220 ROUTE_OFF :

221 mRouteOnWhenScreenOn;

222 } catch (Exception e) {

223 attemptDeadServiceRecovery(e);

224 return ROUTE_OFF;

225 }

226 }

238 public void setCardEmulationRoute(CardEmulationRoute route) {

239 try {

240 Log.d(TAG ,

241 "setCardEmulationRoute(" + route.route + ") for " +

242 (( mPackageName != null) ? mPackageName : "[null]"));

243 sService.setCardEmulationRoute(mPackageName , route.route);

244 } catch (Exception e) {

245 attemptDeadServiceRecovery(e);

246 }

247 }

258 public NfcExecutionEnvironment getEmbeddedExecutionEnvironment () {

259 Log.d(TAG ,

260 "getEmbeddedExecutionEnvironment () for " +

261 (( mPackageName != null) ? mPackageName : "[null]"));

262 return mEmbeddedEe;

263 }

264
265 /**

266 * Convert a byte array into its hexadecimal string form.

267 * @param b Byte array.

268 * @return Hexadecimal string representation.

269 */

270 private static String convertByteArrayToHexString(byte[] b) {

271 if (b != null) {

272 StringBuilder s = new StringBuilder (2 * b.length);

273
274 for (int i = 0; i < b.length; ++i) {

275 final String t = Integer.toHexString(b[i]);

276 final int l = t.length ();

277 if (l > 2) {

278 s.append(t.substring(l - 2));

279 } else {

280 if (l == 1) {

281 s.append("0");

282 }

283 s.append(t);

284 }
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285 }

286
287 return s.toString();

288 } else {

289 return "";

290 }

291 }

302 public void authenticate(byte[] token) {

303 try {

304 Log.d(TAG ,

305 "authenticate() for " +

306 (( mPackageName != null) ? mPackageName : "[null]") +

307 ": " + convertByteArrayToHexString(token));

308 sService.authenticate(mPackageName , token);

309 } catch (Exception e) {

310 attemptDeadServiceRecovery(e);

311 }

312 }

313 }

B.2 Class NfcExecutionEnvironment

1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 * Modifications (debug output): (C) 2012 Michael Roland
4 *
5 * Licensed under the Apache License , Version 2.0 (the
6 * "License"); you may not use this file except in compliance
7 * with the License. You may obtain a copy of the License at
8 *
9 * http ://www.apache.org/licenses/LICENSE -2.0

10 *
11 * Unless required by applicable law or agreed to in writing ,
12 * software distributed under the License is distributed on
13 * an "AS IS" BASIS , WITHOUT WARRANTIES OR CONDITIONS OF ANY
14 * KIND , either express or implied. See the License for the
15 * specific language governing permissions and limitations
16 * under the License.
17 */
18
19 package com.android.nfc_extras;
20
21 import android.os.Binder;
22 import android.os.Bundle;
23 import android.os.RemoteException;
24 import android.util.Log;
25
26 import java.io.IOException;
27
28 public class NfcExecutionEnvironment {
29 private static final String TAG="NfcExecutionEnvironment";
30
31 private final NfcAdapterExtras mExtras;
32 private final Binder mToken;
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46 public static final String ACTION_AID_SELECTED =

47 "com.android.nfc_extras.action.AID_SELECTED";

55 public static final String EXTRA_AID =

56 "com.android.nfc_extras.extra.AID";

70 public static final String ACTION_APDU_RECEIVED =

71 "com.android.nfc_extras.action.APDU_RECEIVED";

80 public static final String EXTRA_APDU_BYTES =

81 "com.android.nfc_extras.extra.APDU_BYTES";

88 public static final String ACTION_EMV_CARD_REMOVAL =

89 "com.android.nfc_extras.action.EMV_CARD_REMOVAL";

102 public static final String ACTION_MIFARE_ACCESS_DETECTED =

103 "com.android.nfc_extras.action.MIFARE_ACCESS_DETECTED";

113 public static final String EXTRA_MIFARE_BLOCK =

114 "com.android.nfc_extras.extra.MIFARE_BLOCK";

115
116 NfcExecutionEnvironment(NfcAdapterExtras extras) {

117 mExtras = extras;

118 mToken = new Binder ();

119 }

135 public void open() throws IOException {

136 try {

137 Log.d(TAG ,

138 "open() for " +

139 (( mExtras.mPackageName != null) ?

140 mExtras.mPackageName : "[null]"));

141 Bundle b = mExtras.getService ().open(mExtras.mPackageName ,

142 mToken);

143 throwBundle(b);

144 } catch (Exception e) {

145 mExtras.attemptDeadServiceRecovery(e);

146 throw new IOException("NFC Service was dead , try again");

147 }

148 }

158 public void close() throws IOException {

159 try {

160 Log.d(TAG ,

161 "close() for " +

162 (( mExtras.mPackageName != null) ?

163 mExtras.mPackageName : "[null]"));

164 throwBundle(mExtras.getService ().close(

165 mExtras.mPackageName ,

166 mToken));

167 } catch (Exception e) {
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168 mExtras.attemptDeadServiceRecovery(e);

169 throw new IOException("NFC Service was dead");

170 }

171 }

172
173 /**

174 * Convert a byte array into its hexadecimal string form.

175 * @param b Byte array.

176 * @return Hexadecimal string representation.

177 */

178 private static String convertByteArrayToHexString(byte[] b) {

179 if (b != null) {

180 StringBuilder s = new StringBuilder (2 * b.length);

181
182 for (int i = 0; i < b.length; ++i) {

183 final String t = Integer.toHexString(b[i]);

184 final int l = t.length ();

185 if (l > 2) {

186 s.append(t.substring(l - 2));

187 } else {

188 if (l == 1) {

189 s.append("0");

190 }

191 s.append(t);

192 }

193 }

194
195 return s.toString();

196 } else {

197 return "";

198 }

199 }

209 public byte[] transceive(byte[] in) throws IOException {

210 Bundle b;

211 try {

212 Log.d(TAG ,

213 "transceive () for " +

214 (( mExtras.mPackageName != null) ?

215 mExtras.mPackageName : "[null]") +

216 ": C-APDU=" + convertByteArrayToHexString(in));

217 b = mExtras.getService ().transceive(mExtras.mPackageName ,

218 in);

219 } catch (Exception e) {

220 mExtras.attemptDeadServiceRecovery(e);

221 throw new IOException(

222 "NFC Service was dead , need to re-open");

223 }

224 throwBundle(b);

225 byte[] out = b.getByteArray("out");

226 Log.d(TAG ,

227 "transceive () for " +

228 (( mExtras.mPackageName != null) ?

229 mExtras.mPackageName : "[null]") +

230 ": R-APDU=" + convertByteArrayToHexString(out));

231 return out;

232 }

233
234 private static void throwBundle(Bundle b) throws IOException {

235 if (b.getInt("e") == -1) {

236 Log.d(TAG , "IOException: " + b.getString("m", "[null]"));

237 throw new IOException(b.getString("m"));

238 }

239 }

240 }
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bypass, 112
enforcer, 110

Access Rule Applet, 111
Android, 2, 57, 107, 148

vulnerabilities, 58
Answer-to-Reset, 14, 105, 110
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Anti-collision, 16
APDU, see Application Protocol Data Unit
App, 1, 57, 120, 165

signature, see Code signing
Applet, 18, 105, 142
Application processor, 55, 104, 112, 120,

141, 165
Application Protocol Data Unit, 14, 105,

106, 108, 111, 120, 131
ARA, see Access Rule Applet
ARM TrustZone, 59
ATR, see Answer-to-Reset
ATS, see Answer-to-Select
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Authorization, 79, 83
Automotive computer system, 37

C
CA, see Certification authority
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key, 34–36

Card emulation, 2, 5, 21, 27, 40, 44, 62, 103,
164, 168

Card emulator, 121, 124, 128, 155, 165
Card Manager, 18, 115, 131, 149
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lifespan, 86, 164
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Chain model, 87
Chip & PIN, 29, 60
Cloning, 56
Cloud, 38
Code signing, 57, 85, 106, 107, 112
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Command-response delay, 132, 137, 156
Common Criteria, 49
Compute Cryptographic Checksum, 153
Connection handover, 27, 33, 36, 38, 40, 42,

43, 82
Content spoofing, 52
Credential storage, 103
Crypto-1 cipher, 48

D
Data insertion, 47
Data manipulation, 71
Data modification, 47, 56
Denial-of-service, 62, 97, 115, 117, 142, 165
Digital signature, 53, 54, 62, 72, 166

partial, 74, 82, 83, 97
scope, 74, 78
trust, 79, 91, 97, 100

Distance-bounding, 51

E
Eavesdropping, 43, 47
EMV, 28, 50, 54, 60, 123

cloud-based, 142
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EMV mode, see Chip & PIN
mag-stripe mode, 29, 151

F
FDT, see Frame delay time
Feature phone, 1
FeliCa, see JIS X 6319-4
Fleet management, 36
Frame delay time, 122
Frame waiting time, 123
Fuzzing, 53
FWT, see Frame waiting time

G
Get Processing Options, 152, 153
GlobalPlatform, 18, 42, 115, 116
Google Wallet, 5, 60, 108, 147, 148, 165

on-card component, see On-card compo-
nent

PIN, 154, 157
relay attack, 165
unlock command, 154, 157

H
Hash function, 72
HCE, see Host-based card emulation
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120, 125, 155, 168

I
In-browser payment, 54, 143
Inductive coupling, 15
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ISO/IEC 15693, 17
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J
Jail breaking, see Privilege escalation
Java Card, 18
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L
LLCP, see Logical Link Control Protocol
Logical Link Control Protocol, 20, 48

M
Mafia fraud, see Relay attack

MasterCard PayPass, 29, 60, 147, 151
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N
NDEF, see NFC Data Exchange Format
Near Field Communication, 1, 19

Card emulation mode, see Card emula-
tion

key, 34–36
operating modes, 20
Peer-to-peer mode, 20, 40, 42
Reader/writer mode, 21, 40, 43, 106
Record Type Definition, 24
security, 3, 4, 47, 51, 163, 167
tag, see Tagging
wired interface, 28

NFC, see Near Field Communication
NFC Data Exchange Format, 22, 69

API, 77
chunk flag, 22, 24, 76
connection handover, see Connection
handover

external type, 24
message, 24
parser, 77
record, 22
short record, 23, 75
signature, 73, see aso Signature Record
Type Definition

smart poster record, see Smart poster
text record, 25, 81
type name format, 23, 76, 77, 93
URI record, 25, 81
well-known type, 24

NFC Forum, 3, 20, 54, 88, 166
Normalized form, 77, 78, 99

O
On-board credentials, 59
On-card component, 149, 150, 154
On-device secure payment, 158
Online signature generation, 85, 164
Open Mobile API, 109, 110
Over-the-air management, 42, 55, 104, 115,

141, 142

P
Pairing

out-of-band, see Connection handover
PC/SC, see Personal Computer/Smart Card

interface
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PCD, see Proximity Coupling Device
Personal Computer/Smart Card interface,

19, 131
Personalization, 34
PICC, see Proximity Integrated Circuit Card
PKI, see Public-key infrastructure
Power analysis, 49
Preimage resistence, 72
Private key, 38, 80, 81, 84, 85
Privilege escalation, 53, 57, 60, 114, 120,

147, 165
framework, 58, 154

Proximity Coupling Device, 16
Proximity Integrated Circuit Card, 16
Public-key infrastructure, 79, 91, 99, 163,

167

R
Record composition attack, 62, 96, 97, 164
Record hiding, 93
Record joining, 93, 95
Relay attack, 5, 50, 56, 104, 115, 118

countermeasures, 51, 141

S
Secret key, see Private key
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