

Xcode 6 Essentials

Create exciting native apps for your Apple devices
with Xcode

Jayant Varma

P U B L I S H I N G

professional expert ise dist i l led

BIRMINGHAM - MUMBAI

Xcode 6 Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2015

Production reference: 1220115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-443-1

www.packtpub.com

Credits

Author
Jayant Varma

Reviewers
Smart Cai

Ben Dodson

Acquisition Editor
Sonali Vernekar

Content Development Editor
Akashdeep Kundu

Technical Editor
Tanvi Bhatt

Copy Editors
Shivangi Chaturvedi

Gladson Monteiro

Jasmine Nadar

Merilyn Pereira

Project Coordinator
Neha Thakur

Proofreaders
Bridget Braund

Stephen Copestake

Maria Gould

Indexer
Tejal Soni

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

Jayant Varma is a technophile with a career spanning over 2 decades and was
introduced to computing in the days of 8-bit computers and Z80 chips. While
managing the IT and telecom department at the BMW dealerships in India and
Oman, and Nissan in Qatar, he worked extensively on Windows, AS/400, and Unix.
His love for travelling inspired him to work and travel to several countries. He is
currently based in Australia.

His technological journey began as a Microsoft Technologies developer and has
diversified; his focus is now on Apple and mobile technologies. He has a masters
degree in Business Administration and IT from James Cook University, Australia. He
also lectured at James Cook University and co-ordinated the on-shore and off-shore
teaching for the Linux/Unix Administration subject. He worked closely with the
Australian Computer Society (ACS) and Apple University Consortium (AUC)
on workshops and projects.

He authored the book Learn Lua for iOS Game Development, Apress, and has also been
a technical reviewer on several titles.

As a founder, consultant, and developer at OZApps (www.oz-apps.com), he helps
organizations and individuals integrate technology into their business and strategies.
He also conducts trainings and workshops, and writes blogs to share his knowledge
with the community.

About the Reviewers

Smart Cai is a Chinese iOS developer with 3 years of experience in the field of
IT. Currently, he works as a software engineer at Beijing Effective Biz Info Tech Co,
LTD. He has also published an application on the App Store named, 今目标
(a business iOS App).

Ben Dodson is a freelance iOS developer in the UK. He has been working on
application development since the introduction of the App Store and has built
a number of high-ranking applications for clients, including Channel 4, Nectar,
ExpenseMagic, and NBC. Ben has also published a number of his own applications
including Highlights (featured as "iPad App of the Week" and "Best of 2011 Travel
Apps" by Apple) and WallaBee (voted "Best European Gaming Startup 2012" at
Nonick 012).

Ben spends the majority of his time working on WallaBee, the largest collecting game
on the App Store, of which he is the founder and the lead developer. He is currently
working on a number of exciting projects written in Swift and using the latest iOS 8
technologies. He is also working on a major game for the upcoming Apple Watch.

Find out more about him at www.bendodson.com.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface 1
Chapter 1: Introduction to Xcode 7

Requirements and installing Xcode 7
Features of Xcode 10
What's new in Xcode 6? 10

Interactive coding using Playgrounds 11
Mac OS X storyboards 11
Live design and responsive UI 11
Visual debugging 11
Improved debugger 12

Summary 12
Chapter 2: Tour of Xcode 13

Starting Xcode 13
Creating a new project 14

Selecting the project type 14
Setting the project options 15
Setting the project properties 15

Xcode overview 15
The project section 17
The editor and assistant editor sections 18

Source code editors 18
The assistant editor 20

The utility/inspector section 20
The Apple development languages 23

Swift 23
Summary 24

Table of Contents

[ii]

Chapter 3: Playgrounds 25
Introduction 25
Swift Playgrounds 26

The UI 26
Learning Swift 29

Console output printing 29
Working with variables 29

Variable types 30
Declaring variables 30
What are Int, Double, and Float variables 31
Adding different types 31
Booleans 32
Arrays and dictionaries 32
Tuples 37
Strings 37
Any and AnyObject 38

Control flows and code execution 39
The if statement 39
The if..else statement 39
The if..elseif..else statement 39
The ternary operator 40
For loops 40
The While loop 42
The switch condition 42

Functions 47
Return values 47
Parameters 48
Using closures 50

Objects 51
Classes 51
Enumerations 54

Extensions – extending the classes 55
Operator overloading 56

Summary 57
Chapter 4: Interface Builder 59

Introducing Interface Builder 60
Creating a basic interface 61

Elements on the view 62
Adaptive UI 64
Adding scenes 68
Navigating between View Controllers 69
Building a simple application 71

Adding items to Table View 71
Different elements for different orientations and dimensions 76
Adding the code 77

Table of Contents

[iii]

Autolayout 79
Subclassing 80
Quick help 82
Managing connections 83
Adding gesture recognizers 84

Segues and connections 86
Summary 87

Chapter 5: Custom Controls 89
An introduction to custom controls 89
The basics 89

Creating a class 90
Properties 91
Changing properties from the inspector 93
Enhancing custom controls 93

Adding some text 95
Frameworks 96

Creating a framework 96
Debugging custom controls 98

Summary 99
Chapter 6: Debugging 101

Breakpoints 102
Listing all the breakpoints 103
Navigating 103
The console 104
Understanding the debug information 105
Visualizing variables with the Quick Look functionality 107

Using images with quick view 109
Debugging the view hierarchy 110
Introducing debug gauges 112

Summary 113
Chapter 7: Building and Running 115

Simulator 115
Choosing the device 116

Preparing for distribution 116
Configuring the project settings 117

The Identity section 117
The Deployment Info section 118
Application icons and launch images 118
Linked frameworks and libraries 120

Table of Contents

[iv]

The Capabilities tab 120
The Info tab 120
The Build tabs 121
The Targets tab 121

Setting project-wide properties 122
Code signing 123
Organizer 124

Summary 125
Appendix: Conditional Execution and Interface Designing 127

More?.Swift! 127
Differences between iOS 7.x and 8.x SDK 132

Location services 132
Conditional execution 134

Displaying alerts 135
Showing an alert with ActionController 136
Showing ActionSheet with AlertController 136

Designing in Interface Builder 138
Adaptive UI 138

Summary 140
Index 141

Preface
Welcome to Xcode 6 Essentials. Development has moved on from the realm of
computer science students to practically everyone. A couple of decades ago,
computers were expensive and hard to use and now everyone has one in their
pockets. Similarly, developmental tools have also changed and made life easier and
allowed people from many other aspects to get with developing. With the popularity
of iOS devices and Macs, the lure of being the App Store millionaire appeals to one
and all. With a growing number of developers using Xcode, Apple has been adding
a lot of features to it. In 2014, Apple released Xcode 6 and Swift. This book will cover
using Xcode, and the language of choice is Swift. This book will take the reader
through the various aspects of Xcode that might be important to use. The book
employs a combination of a step-by-step approach and a theory approach to help
the reader develop.

What this book covers
Chapter 1, Introduction to Xcode, introduces what Xcode is all about. It helps you
install Xcode, if you do not have it on your system, and set it up for use.

Chapter 2, Tour of Xcode, offers a quick tour of the Xcode UI, the various panels,
windows, and settings. This is what you will interact with on a regular basis
when developing. It is helpful to know the shortcuts, what each displays, and
how to activate or deactivate the windows.

Chapter 3, Playgrounds, takes you through a quick journey of Swift, allowing you
to learn Swift interactively using the new feature called Playgrounds. This allows
you to see the results of your commands and variables; your code is run in the
background with no need to compile and run it.

Preface

[2]

Chapter 4, Interface Builder, introduces Interface Builder and Storyboards. It further
helps non-developers or beginners to create applications with little to no code. This
can also be used to create functional mock-ups as required.

Chapter 5, Custom Controls, introduces another new feature added to Xcode: the
inclusion of custom controls and live previews. This chapter helps you understand
the stub of a custom control and then add code. It further explains how to create
this as a framework.

Chapter 6, Debugging, helps you as you progress and write your code, given the
possibility of errors creeping in. Powerful debugging tools are introduced; they
will help you understand where to look for basic help and will set up breakpoints,
monitor variables, and quick look values.

Chapter 7, Building and Running, helps you understand the next step after creating
your application: packaging it for distribution to the App Store. After going through
this chapter, you will have run a full life cycle introduction to creating an application
for iOS devices using Xcode.

Appendix, Conditional Execution and Interface Designing, has some interesting gotchas
and tips for using Xcode more efficiently and also learning how the current versions
differ from previous versions of Xcode and SDK.

What you need for this book
To be able to run the code and work through the chapter step-by-step, you will need
the following:

• An Apple computer running OS X 10.9 or higher
• Xcode 6.x installed on this Apple computer

Who this book is for
This book is aimed at intermediate developers who have little to no experience with
iOS SDK. It will also be useful to those who want to get up-to-speed with the new
features of Xcode briefly. A basic understanding of programming logic is necessary
and any experience with iOS is beneficial. It also introduces and uses Swift, a new
language, and will be helpful to those who want a quick introduction to Swift.

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"New UIAlertController is introduced to replace the older UIAlertView."

A block of code is set as follows:

var name: String = "XCode Esentials"
var version: Int = 1.0
var title = "\(name) - ver (\version)"
println("The book is \(title)")

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

var width: Int = 200
var height: Int = 200
@IBInspectable theColor: UIColor = UIColor.redColor()
var title: String = "Untitled"

Any command-line input or output is written as follows:

po UIScreen().bounds

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Clicking
on the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register
to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Introduction to Xcode
A carpenter needs his tools to build furniture; similarly, as a developer, you need
to have a set of tools that allow you to work in a better and more efficient manner.
However, in the analogy of the carpenter, the tools could be used to make different
types of furniture. With software, it is a little different. There are plenty of tools and
they are dependent on many factors, such as the operating system (Windows, Mac
OS X, or Linux) and the language of choice (for example, C, C++, Python, Ruby,
JavaScript, and Objective-C). This book is about Xcode, the IDE that Apple makes
available to developers who want to develop for Apple devices (iPhone, iPad, Mac,
and so on). In this book, we will explore working with Xcode 6.x and all the features
that it offers to write code; build UI; and debug, build, and distribute your apps.

Xcode helps you to build native applications that run on and use the features of the
current iOS and Mac OS. The current one as of Xcode 6.x is iOS 8 for mobile devices
and Mac OS X 10.10 Yosemite for desktops. Xcode 6.x has backward compatibility
for iOS 7.0 and OS X 10.9. While there is backward compatibility, new features are
available mostly with the newer version or later.

Requirements and installing Xcode
At first, Xcode was available with all Mac OS X installation disks, but then Apple
made it available as a purchase from the App Store. Now it is available on the App
Store for free. The minimum requirement for Xcode 6 is that you need to have Mac
OS X 10.9.x installed with at least 10 GB of disk space. To run the simulator with
newer, larger resolutions, it is advisable that you have a large screen display. The
retina MacBook Pro or the newer iMac 5K retina would be a very good suggestion
to help you work and design at 1:1 resolution.

The method to install Xcode via the App Store eliminates all the setting up
and creation of the correct directories, which are generally associated with the
installation. This also ensures that all of the upgrades are applied appropriately. If
there is an issue, performing a simple reinstallation is as simple as downloading it
again from the App Store.

Introduction to Xcode

[8]

If you like to work with ß software, you could also consider installing
beta versions of Xcode from your Apple Developer Portal. Generally,
since Apple does not allow you to create apps with ß versions, unless
you are an advanced user, it is advisable to steer clear and wait for
the release versions.

Here is a screenshot of the Xcode installation via App Store:

Xcode installation via App Store

Chapter 1

[9]

Upon first run, Xcode downloads some of the required components and utilities.
These can be found under the Developer tools menu. Other components, utilities,
and documentation can be downloaded via preferences. After these are installed,
the API documentation and iOS simulators need to be downloaded:

You can build and test your iOS applications on the simulator from within Xcode
and run OS X applications. To test your iOS app on a device or distribute the iOS or
OS X app, you will have to enroll in the Apple Developer program for either iOS or
Mac OS X, as appropriate, or both (this is a paid option).

The advantage of joining a developer program is that it provides access to pre-release
software. It also offers access to the Apple forums, including two incident supports
with Apple (per year).

Introduction to Xcode

[10]

Features of Xcode
Xcode is an all-inclusive IDE, and it offers a variety of tools required by a developer.
IDE stands for Integrated Development Environment, which basically means that
most of the tools required for a developer are available in this environment. The
developer will not have to go outside of this environment to perform other tasks.
Some basic features of an IDE include the ability to edit, write, and browse code and
be able to run and debug the code from the program and return to the code editor
when done. The Xcode environment is made up of the following components:

• Editor: Xcode offers a code editor with syntax highlighting for some
languages, such as C, C++, Objective-C, JavaScript, Ruby, AppleScript, and
Java. With third-party add-ins, support has been added for other languages
as well, such as Pascal and C#.

• File View: Xcode also features file viewers for code, images, media, and
data models.

• Interface Builder: Xcode features an Interface Builder that allows you
to create interfaces for your apps, mobiles, or desktops. This provides
a drag-and-drop interface to lay out the components of your app.

• Debugger: Xcode also features a debugger; earlier versions of Xcode used
GDB, which has been replaced by the LLDB debugger since 4.3.

• Versioning: Xcode has Git integration that allows for versioning and
integrated source control.

What's new in Xcode 6?
Xcode has been around for a while, and it was at WWDC 2014 that Xcode 6 was
introduced. There were a couple of new features that were introduced in Xcode,
and we will explore some of them in this book along with the standard features.

The first important thing that Apple introduced is a new Language called Swift
(detailed in Chapter 3, Playgrounds). Since the days of NeXT, when Steve Jobs returned
to Apple, Macs has been using the Objective-C language to write applications for the
Mac environment. With the introduction of iPhone, Apple introduced their PhoneSDK,
which allowed developers to write apps for their phones using Objective-C. This was
later named iOS, as the devices were not just phones. Like any language, Objective-C
has its own set of followers and haters. With the uptake of iOS devices, many users
wanted to try their hand at developing apps. However, Objective-C largely remained
a hurdle so they considered other options. At WWDC 2014, Apple unveiled a new
language they had been working on, called Swift. Swift is an easy-to-learn-and-use
language that looked more like a scripting language than a structured C variant. The
code looked smaller and more manageable.

Chapter 1

[11]

The most important bit was that there was no more memory management in the
form of alloc and retain statements. To add to this, the introduction to Swift by
Apple mentioned, "Semi-colons are optional".

Interactive coding using Playgrounds
Apple also introduced a feature called Playgrounds. This allows you as the
developer to quickly type in your commands in an editor, like you would write in
a text editor or Microsoft Word. The Playground compiles, runs, and displays the
results of each line of code that is typed. This topic is further detailed in Chapter 3,
Playgrounds.

There is an open source project that runs your Objective-C code like
Playgrounds. So you can simply alter your code in the editor and the
running application is altered on the fly. This is not part of this book
but could be interesting for some advanced users.

Mac OS X storyboards
Before storyboards, there were XIB files that described the user interface or the form
in XML format. Apple introduced the storyboard, which allowed users to define
the relationship between the elements, mainly to direct the workflow. This was
originally introduced only for iOS projects, but with Xcode 6, storyboards are now
available for OS X projects too. This is detailed in Chapter 4, Interface Builder.

Live design and responsive UI
In earlier versions of Xcode, there was little control over debugging and testing
controls you created. Now, Apple offers a way to interact with your controls
while in design mode in Interface Builder.

Xcode now offers new functionality to allow you to create a single storyboard that
would adapt to different screen sizes with the help of size classes and autolayout.
They are detailed in Chapter 4, Interface Builder.

Visual debugging
When debugging your code, Xcode can now display variables and objects visually.
This helps make debugging much simpler and easy to use. It also offers functionality
to provide custom previews for your own classes/objects while debugging. They are
detailed in Chapter 5, Custom Controls.

Introduction to Xcode

[12]

Improved debugger
Even the debugger has some new features added to it. Some of these allow you
to test and optimize your code and eliminate errors, including visual debugging
with a hierarchical view of the views and elements on the screen. This is detailed
in Chapter 6, Debugging.

In addition to these, we will also cover some of the other features that were present
in earlier versions, which are equally important in getting things done.

Summary
This short chapter talks about how Xcode fits in with your development requirements.
Every year, Apple adds new features to Xcode (and hopefully continues). This time
around, out of the many features added, one of the major new additions that has
everyone talking is a language called Swift and Playgrounds. In our next chapter,
we will have a detailed look at Xcode, its components, and UI.

Tour of Xcode
In the previous chapter, we looked briefly at Xcode. In this chapter, we shall look at
Xcode closely as this is going to be the tool you would use quite a lot for all aspects
of your app development for Apple devices. It is a good idea to know and be familiar
with the interface, the sections, shortcut keys, and so on.

Starting Xcode
Xcode, like many other Mac applications, is found in the Applications folder or
the Launchpad. On starting Xcode, you will be greeted with the launch screen that
offers some entry points for working with Xcode. Mostly, you will select Create a
new Xcode project or Check out an existing project, if you have an existing project
to continue work on. We shall look at the option to get started with a playground
slightly later in the book.

Tour of Xcode

[14]

Xcode remembers what it was doing last, so if you had a project or file
open, it will open up those windows again.

Creating a new project
After selecting the Create a new project option, we are guided via a wizard that
helps us get started.

Selecting the project type
The first step is to select what type of project you want to create. At the moment,
there are two distinct types of projects, mobile (iOS) or desktop (OS X) that you
can create. Within each of those types, you can select the type of project you want.
The screenshot displays a standard configuration for iOS application projects. The
templates used when the selected type of project is created are self sufficient, that is,
when the Run button is pressed, the app compiles and runs. It might do nothing, as
this is a minimalistic template. On selecting the type of project, we can select the
next step:

Chapter 2

[15]

Setting the project options
This step allows selecting the options, namely setting the application name, the
organization name, identifier, language, and devices to support. In the past, the
language was always set to Objective-C, however with Xcode 6, there are two
options: objective-C and Swift (more of which we shall see later in this book):

Setting the project properties
On creation, the main screen is displayed. Here it offers the option to change other
details related to the application such as the version number and build. It also allows
you to configure the team ID and certificates used for signing the application to test
on a mobile device or for distribution to the App Store. It also allows you to set the
compatibility for earlier versions. The orientation and app icons, splash screens, and
so on are also set from this screen. If you want to set these up later on in the project,
it is fine, this can be accessed at any time and does not stop you from development.
It needs to be set prior to deploying it on a device or creating an App Store ready
application. These are covered later in the book in Chapter 7, Building and Running.

Xcode overview
Let us have a look at the Xcode interface to familiarize ourselves with the same as it
would help improve productivity when building your application.

Tour of Xcode

[16]

The top section immediately following the traffic light (window chrome) displays
a Play and Stop button. This allows the project to run and stop. The breadcrumb
toolbar displays the project-specific settings with respect to the product and the
target. With an iOS project, it could be a particular simulator for iPhone, iPad,
and so on, or a physical device (number 5 in the following screenshot).

Just under this are vertical areas that are the main content area with all the files,
editors, UI, and so on. These can be displayed or hidden as required and can be
stacked vertically or horizontally.

The distinct areas in Xcode are as follows:

• Project navigation (number 1)
• Editor and assistant editor (number 2) and (number 3)
• Utility/inspector (number 4)
• The toolbar (number 5) and (number 6)

These sections can be switched on and off (shown or hidden) as required to make
space for other sections or more screen space to work with:

Sections in Xcode

Chapter 2

[17]

The project section
The project navigation section has three sub sections, the topmost being the project
toolbar that has eight icons. These can be seen as in the following screenshot. The
next sub section contains the project files and all the assets required for this project.
The bottom most section consists of recently edited files and filters:

You can use the keyboard shortcuts to access these areas quickly
with the CMD + 1...8 keys.

The eight areas available under project navigation are key and for the beginner to
Xcode, this could be a bit daunting. When you run the project, the current section
might change and display another where you might wonder how to get back to the
project (file) navigator. Getting familiar with these is always helpful and the easiest
way to navigate between these is the CMD + 1..8 keys.

• Project navigator (CMD + 1): This displays all of the files, folders, assets,
frameworks, and so on that are part of this project. This is displayed as a
hierarchical view and is the way that a majority of developers access their
files, folders, and so on.

• Symbol navigator (CMD +2): This displays all of the classes, members,
and methods that are available in them. This is the easiest way to navigate
quickly to a method/function, attribute/property.

• Search navigator (CMD + 3): This allows you to search the project
for a particular match. This is quite useful to find and replace text.

• Issues navigator (CMD + 4): This displays the warning and errors that occur
while typing your code or on building and running it. This also displays the
results of the static analyzer.

• Tests navigator (CMD + 5); This displays the tests that you have present
in your code either added by yourself or the default ones created with
the project.

• Debug navigator (CMD + 6): This displays the information about the
application when you choose to run it. It has some amazing detailed
information on CPU usage, memory usage, disk usage, threads, and so on.

Tour of Xcode

[18]

• Breakpoint navigator (CMD + 7): This displays all the breakpoints in your
project from all files. This also allows you to create exception and symbolic
breakpoints (symbolic breakpoints is an advanced feature and not discussed
in the scope of this book).

• Log navigator (CMD + 8): This displays a log of all actions carried out,
namely compiling, building, and running. This is more useful when used to
determine the results of automated builds (automated builds is an advanced
topic and not covered in the scope of this book).

The editor and assistant editor sections
The second area contains the editor and assistant editor sections. These display
the code, the XIB (as appropriate), storyboard files, device previews, and so on.
Each of the sub sections have a jump bar on the top that relates to files and allow
for navigating back and forth in the files and display the location of the file in
the workspace. To the right from this is a mini issues navigator that displays all
warnings and errors. In the case of the assistant editors, it also displays two buttons:
one to add a new assistant editor area and another to close it.

Source code editors
While we are looking at the interface, it is worth noting that the Xcode code editor
is a very advanced editor with a lot of features, which is now seen as standard with
a lot of text editors. Some of the features that make working with Xcode easier are
as follows:

• Code folding: This feature helps to hide code at points such as the function
declaration, loops, matching brace brackets, and so on. When a function or
portion of code is folded, it hides it from view, thereby allowing you to view
other areas of the code that would not be visible unless you scrolled.

• Syntax highlighting: This is one of the most useful features as it helps you,
the developer, to visually, at a glance, differentiate your source code from
variables, constants, and strings. Xcode has syntax highlighting for a couple
of languages as mentioned earlier.

Chapter 2

[19]

• Context help: This is one of the best features whereby when you hover over
a word in the source code with OPT pressed, it shows a dotted underline
and the cursor changes to a question mark. When you click on a word with
the dotted underline and the question mark cursor, it displays a popup with
details about that word. It also highlights all instances of that word in the
file. The popup details as much information as available. If it is a variable or
a function that you have added to the code, then it will display the name of
the file where it was declared. If it is a word that is contained in the Apple
libraries, then it displays the description and other additional details.

• Context jump: This is another cool feature that allows jumping to the point
of declaration of that word. This is achieved by clicking on a word while
keeping the CMD button pressed. In many cases, this is mainly helpful to
know how the function is declared and what parameters it expects. It can
also be useful to get information on other enumerators and constants used
with that function. The jump could be in the same file as where you are
editing the code or it could be to the header files where they are declared.

• Edit all in scope: This is a cool feature where you can edit all of the instances
of the word together rather than using search and replace. A case scenario
is if you want to change the name of a variable and ensure that all instances
you are using in the file are changed but not the ones that are text, then you
can use this option to quickly change it.

• Catching mistakes with fix-it: This is another cool feature in Xcode that will
save you a lot of time and hassle. As you type text, Xcode keeps analyzing
the code and looking for errors. If you have declared a variable and not used
it in your code, Xcode immediately draws attention to it suggesting that the
variable is an unused variable. However, if it was supposed to be a pointer
and you have declared it without *; Xcode immediately flags it as an error
that the interface type cannot be statically allocated. It offers a fix-it solution
of inserting * and the code has a greyed * character showing where it will
be added. This helps the developer fix commonly overlooked issues such as
missing semicolons, missing declarations, or misspelled variable names.

• Code completion: This is the bit that makes writing code so much easier,
type in a few letters of the function name and Xcode pops up a list of
functions, constants, methods, and so on that start with those letters and
displays all of the required parameters (as applicable) including the return
type. When selected, it adds the token placeholders that can be replaced with
the actual parameter values. The results might vary from person to person
depending on the settings and the speed of the system you run Xcode on.

Tour of Xcode

[20]

The assistant editor
The assistant editor is mainly used to display the counterparts and related files to
the file open in the primary editor (generally used when working with Objective-C
where the .h or.m files are the related files). The assistant editors track the contents
of the editor. Xcode is quite intelligent and knows the corresponding sections and
counterparts.

When you click on a file, it opens up in the editor. However, pressing the OPT + Shift
while clicking on the file, you would be provided with an interactive dialog to select
where to open the file. The options include the primary editor or the assistant editor.
You can also add assistant editors as required.

Another way to open a file quickly is to use the Open Quickly option,
which has a shortcut key of CMD + Shift + O. This displays a textbox that
allows accessing a file from the project.

The utility/inspector section
The last section contains the inspector and library. This section changes based on the
type of file selected in the current editor. The inspector has 6 tabs/sections and they
are as follows:

• The file inspector (CMD + OPT + 1): This displays the physical file
information for the file selected. For code files, it is the text encoding, the
targets that it belongs to, and the physical file path. While for the storyboard,
it is the physical file path and allows setting attributes such as auto layout
and size classes (new in Xcode 6).

• The quick help inspector (CMD+OPT + 2): This displays information about
the class or object selected.

Chapter 2

[21]

• The identity inspector (CMD + OPT + 3): This displays the class name, ID,
and others that identify the object selected.

• The attributes inspector (CMD + OPT + 4): This displays the attributes for
the object selected as if it is the initial root view controller, does it extend
under the top bars or not, if it has a navigation bar or not, and others. This
also displays the user-defined attributes (a new feature with Xcode 6).

• The size inspector (CMD + OPT + 5): This displays the size of the control
selected and the associated constraints that help position it on the container.

• The connections inspector (CMD + OPT + 6): This displays the connections
created in the Interface Builder between the UI and the code.

The lower half of this inspector contains four options that help you work efficiently,
they are as follows:

• The file template library: This contains the options to create a new class,
protocol. The options that are available when selecting the File | New option
from the menu.

• The code snippets library: This is a wonderful but not widely used option.
This can hold code snippets that can help you avoid writing repetitive blocks
of code in your app. You can drag and drop the snippet to your code in the
editor. This also offers features such as shortcuts, scopes, platforms, and
languages. So you can have a shortcut such as appDidLoad (for example) that
inserts the code to create and populate a button. This is achieved simply by
setting the platform as appropriate to iOS or OS X.

Tour of Xcode

[22]

After creating a code snippet, as soon as you type the first few characters, the
code snippet shows up in the list of autocomplete options;

• The object library: This is the toolbox that contains all of the controls that
you need for creating your UI, be it a button, a label, a Table View, view,
View Controller, or anything else.

Adding a code snippet is as easy as dragging the selected code
from the editor onto the snippet area. It is a little tricky because the
moment you start dragging, it could break your selection highlight.
You need to select the text, click (hold) and then drag it.

• The media library: This contains the list of all images and other media types
that are available to this project/workspace.

Chapter 2

[23]

The Apple development languages
We need to choose a language to write our code in. Till now, developing for an
Apple device was synonymous with Objective-C. It is something that has carried
on from the days of NeXT. Now Apple has boldly offered a new modern language
alternative, unveiled at WWDC 2014, called Swift. All developers that used Xcode till
now used Objective-C for development. From now on, Apple is offering the choice to
use either Swift or Objective-C as the language to develop with. In the future, there
might be just one or there could be more languages, for now, we have these options.
We shall focus on Swift as the language of choice for the remaining chapters. Do not
worry if you have no idea about Swift, because in the next chapter we shall have a
crash course on Swift. Enough swift to get you started up and running.

Swift
In simple terms, Swift is a language that closely reads like a scripting language in
comparison to many of the C and C++ variants. Of the long list of advantages and
features, some of the key features that would be of interest to someone starting off
are as follows:

• Automatic memory management
• Multiple return values and tuples
• Typesafe Language
• Closures
• Function pointers
• Generics
• Structures and enums with support for methods, extensions, and protocols
• It is fast, comparable to Objective-C
• Official language for development supported by Apple

Though Xcode has syntax highlighting for several languages, the official languages
offered by Apple are Objective-C and Swift. Objective-C has been the only choice to
develop native apps for iOS or OS X. There are plenty of books on Objective-C and
we shall look at a crash course introduction to Swift in the next chapter. If you want
to know more about either Objective-C or Swift, the best sources are obviously from
Apple. Apple has a blog dedicated to resources for Swift including articles, iBooks,
and videos to learn Swift from the time they introduced it. This can be found at
https://developer.apple.com/swift/.

https://developer.apple.com/swift/

Tour of Xcode

[24]

Summary
In this chapter, you have seen a quick tour of Xcode, keep the shortcuts and tips
handy as they really do help get things done faster. The code snippets are a wonderful
feature that allow for quickly setting up commonly used code with shortcut
keywords. Now that you are settled in with Xcode, we can start playing with code.
The language of choice for all samples from here on in the book would be Swift.

Let's head on to the next chapter and get our hands into Swift so you can learn all
about this new language that everyone is excited about.

Playgrounds
In this chapter, we will cover the following topics:

• Introduction to Playgrounds
• Introduction to the Swift language
• Handling loops
• Creating logic (conditionals)
• Functions and parameters
• Understanding classes and structures
• Extensions to classes
• Operator overloading

Introduction
Programming has always been considered difficult. It is not only because of the
complexities of logic or the syntax of the language; it has been so also because of the
tools available to work with. The second issue is that to test a single line, you have
to write the code in an editor, then compile it, and run it to finally see the results;
tedious for a single line of code. If you have to test a function, and there is a line
that has a bug, it is not easy to debug that unless you have an integrated debugger
that allows you to go line by line and add watches, and print out the values of the
variables. The mere mention of the "issue" makes it sound complicated. Apple has
released a new feature as part of Xcode 6 called Playgrounds. This is largely based
on the principles of live coding where one can change the code without having
to recompile it. Think of it as a scratchpad that executes your code with each
keystroke you type into the editor, without having to even run it. It displays errors
and warnings unobtrusively allowing you to continue writing your code and also
indicating where the issues are.

Playgrounds

[26]

Swift Playgrounds
For this chapter, we shall look at this brilliant new feature called Playground. You
can simply type the code you see in this chapter in a Playground, and it will run and
show the results without having to compile or run the application. However, there
are a few things to note before we start:

• The language supported by Playgrounds is a new language called Swift,
introduced by Apple. You cannot have (as yet) a Playground with
Objective-C as the code language.

• The entire file is a single Playground and called so too. This means that the
compiler treats it like a single source file. This can give rise to issues where,
for example, if you used a variable called temp as string, and further down
you used it as an int, the compiler would throw an error complaining that
the variable is being redefined.

• The code you can type in a Playground is specific to the platform of the
Playground, that is, iOS or OS X. This affects the code in terms of the classes
available for use, CocoaTouch or Cocoa. If your Playground is for iOS, you
cannot have the classes that are available for Mac OS X, and vice-versa.

• The code is compiled and run at every change as you type/alter the code.
The results could vary from machine to machine, depending on the specs
of the Mac you are running it on.

You can open only one Playground at a time.

The UI
We can create a new Playground by navigating to File | New | Playground or by
OPT + CMD + N:

Chapter 3

[27]

The Playground is the Xcode editor without the toolbar, or the other elements. It has
a sidebar that displays the results of the line of code. It is suggested that you turn on
the assistant editor as it displays additional information that would be quite useful:

If you hover over the results in the main code editor, you see two icons, an eye and
a circle. The eye allows you to view the value in a pop-up, if it is a primitive, such
as Int, String, and Double, it will display the value. If it is a complex class such as
CGRect, CGPoint, UIBezierCurve, and UIColor, it is displayed visually, as in the
following screenshot:

Playgrounds

[28]

Playgrounds can show a lot of information that is otherwise difficult to visualize. For
the simplest amazing example to illustrate this point, type the following code in a
Playground to see the results:

var red = UIColor.redColor()
var rect1 = CGRectMake(10, 10, 200, 50)
var path = UIBezierPath(ovalInRect:rect1)

The following screenshot shows the Playground:

The items in the sidebar can be added by simply hovering over the line
and clicking on the + icon. If the item is displayed, the icon shows as a
filled circle, as shown in the preceding screenshot.

Chapter 3

[29]

Learning Swift
Apple released Swift officially as an alternative language for development, apart
from Objective-C. It looks and reads like an easy-to-use scripting-like language. It is
a modern language, and has the features of most modern languages such as Python,
Ruby, Lua and Scala. Swift removes the need for semicolons and uses the standard
double slash for comments, amongst other things, as shown here:

//This is a comment

Console output printing
The println function is used for printing data. Swift also has a more evolved
println function that allows for formatted printing. The value of a variable can be
inserted into a string by enclosing the variable name in brackets preceded by a slash:
\(varname). This format has to be enclosed in double quotes to make it work.

println("Hello World")
println("This is fine too");

var ver = 6
println("Hello from Xcode \(ver)")

Working with variables
We can add two numbers, say 1 and 3, but if our program just added 1 and 3, we
would not have much use of the same. If we wanted to write a program that adds
two numbers that we pass and it returns a result, then it would be of some use.
There are a couple of things that need attention here; we need to first store the
numbers in some space and then be able to access them. Variables are basically
storage spaces in the system that hold a value of a particular type, and access is via
named labels. It would be easier to remember a variable called age than one called
0xff22400d3. Swift has two types of variables; mutable and immutable. Immutable
variables are called constants. The values that they hold cannot be changed.

When dealing with large numbers, it is difficult to type them in or read them
while trying to group them mentally. A number like 123456789 is not as easy to
decipher as 123,456,789 is. While assigning the same number to variables, it is not
easy to read and check the same, as you cannot set something like var largeNum
= 1,234,567.89. However, Swift allows you to format your numbers with an
underscore as 1_234.50, or in the preceding example as 1_234_567.89:

var thousands = 4_693.45
var billions = 3_142_857_143
var crazyNumber = 1_23_456_7_890

Playgrounds

[30]

Variable types
In Swift, a variable can be of any type as available. However, there are some internal
types that are provided by the system, they are as follows:

• Int, Float, Double
• String

• Array, Dictionary
• Bool

Declaring variables
All variables in Swift need to be declared prior to using them, as Swift is a typesafe
language. The compiler checks for the types and highlights of potential issues with
the use of non-matching variable types used. So, a variable that is declared as Int
cannot hold any other type than Int. The two keywords used to declare variables are
let and var; let declares constants (the value for these variables can be set once and
not changed after that) and var declares mutable variables:

var publisher:String
let name:String = "Learning Xcode 6"
var year:Int = 2014

Variables can either just be declared or can be both, declared and assigned a value.
Once declared, a mutable variable can be reassigned a new value; whereas, if we try
to do so with a constant, the compiler would complain:

name = "Learning Visual Studio" // Compiler complains
year = 2015 // Works ok

The Swift compiler is quite intelligent and it can implicitly define variables. It knows
that when you type the following:

let author = "Jayant Varma"

The variable author is of type String as the value assigned to it is of type String
and it does not have to be explicitly declared.

Multiple variables can be declared on the same line too by separating them
with commas.

var a = 1, b = 2.3, c = "Four"
var x, y, x : Double

Chapter 3

[31]

If you have to declare a variable that is a keyword, you can
enclose it in back ticks `. You can access all the variables
using back ticks, though it's not very convenient.

What are Int, Double, and Float variables
Implicit assignment works even with numbers, and all the numbers without the
decimal point are considered of type Int and all with a decimal point are of
type Double:

var nextYear = year + 1 // autocasts to type Int

In cases where you wanted this variable to be Double and not Int, you could
explicitly assign it to type Double as follows:

var nextYearAndHalf = Double(year) + 1.5

When working with iOS SDK, you will realize that you will need another type of
variable for numbers, called CGFloat; while it is a floating point number, it is a
different structure than Double of Float or Int.

Adding different types
As mentioned earlier, the Swift compiler expects the types to be of the expected
types, so while a number is a number and broadly we consider 1, 1.0, and "1.0" as the
same, for computers, and more so for Swift, these are three different types, namely
Int, Double, and String. When working with different types, we need to convert
them to the same type in order for it to work:

var pi = 3.14 // autocast to Double
var e = 3 // autocast to Int
var pie = pi + e // Compiler error - not similar types

To resolve such issues, we need to cast the values to the expected type (if they can be
converted), we can fix this by using the following line of code:

var pie = pi + Double(e) // works as expected

Or, as we discussed in the previous example, regarding CGFloats, you could use the
following line of code:

var cgPie = CGFloat(pie) // this is now of CGFloat type

The same is true for strings; we can easily do something like the following:
var hello = "Hello"
var world = "World"
var test = hello + world

Playgrounds

[32]

However, we get an error when we try something like this:

var appname = "Xcode"
var appversion = 6
var bookname = appname + appversion // we get an error

This is because we are trying to add type String with type Int. We can convert Int
to String and it would work fine, we can do that easily by using the following line
of code:

var bookname = appname + String(appversion)

Or, use the string formatting feature in Swift:

var sBookname = "\(appname) \(appversion)"

Booleans
Booleans are simple true and false values, and the variable type in Swift is called
Bool. They form the basis for a lot of logic and conditions. It can be used either
by setting them explicitly via declaration, or can be set via conditions and never
assigned to variables, as shown here:

var worksOnWindows = false
if appversion > 6 {
 println("Cutting edge version")
 if worksOnWindows == true {
 println("and it works on Windows too")
 }
}

In the first line, we explicitly set the value of a variable to type Bool, and in the
second line, we use the result of the condition appversion > 6, which evaluates
to either true or false.

Arrays and dictionaries
Sometimes, we need multiple variables, say a student enrolled at university, and we
want to store the name of the classes they are enrolled in. We can have something
like this:

var class1 = "Math"
var class2 = "Creative English"
var class3 = "Compiler Theory"

Chapter 3

[33]

This works but is not practical as the more classes the student is enrolled in, the more
variables there will be. The student might enroll in a few classes this semester and
might take additional classes in the next semester. How would we know how many
classes the student was enrolled in? How would we access the variable names in our
code? If we were to use the classXX format by name, we are hardcoding our logic
and this would not be good. For this purpose we use an Array.

Array objects
An array stores a list of values and these can be accessed via a sequential index.
In simple terms, we can access the list using a numeric index that is in sequence,
starting from 0 up to the number of values held in the array. Arrays are declared
in Swift as follows:

var arrClasses:[String] //shorthand declaration

The alternative way is to declare an array as follows:

var arrClasses = Array<String>() //declaration

This tells the compiler that arrClasses is a type Array variable that holds
String values. With arrays, we also get additional functions that allow us to work
with the array, such as, to get the number of elements in the array we can use the
count function.

Initializing array objects
Arrays need to be initialized, we can either initialize them with a blank list, or we can
populate the values while initializing them, as shown in the following code:

var arrClasses:[String]

This only declares the variable called arrClasses to be of type array of string, but it
is not initialized and cannot be used prior to initialization:

arrClasses = [] //Initialized as blank

A blank array can be declared and initialized by using var arrBlank = [Int](). It
can also be initialized with a set of default repeating values like this:

var arrZeros = [Int](count:10, repeatedValue:0)
// Array of Ints with 10 items and all initialized to 0

Arrays can also be initialized with default values, as follows:

var arrSlots = ["Morning", "Afternoon", "Evening", "Night"]

Playgrounds

[34]

This would have created an array with four string elements. If we will not have the
need to modify this array, we can declare it with let instead.

In our example, we can now have the student enroll in several classes and we
can know the classes the student is enrolled in and also the number by accessing
the array:

var numberOfClasses = arrClasses.count

Apart from the count property, there is another property called isEmpty that returns
true if there are no elements in the array.

Appending values
More elements can be added to the array using the append method, as shown in the
following code:

arrClasses.append("Finance")
arrClasses.append("Learning MS Office")

Or, we can also use the += operator as follows:

arrClasses += ["Algorithms"]
arrClasses += ["Basket Weaving", "Bread Making", "Cheese Tasting"]
numberOfClasses = arrClasses.count

The index can be used to access the elements or to modify the elements, as follows:

arrClasses[0] = "Basics of Finance" // Modifies the 1st element

Removing values
Elements can be removed using the remove method. The remove function returns the
element value it is removing:

arrClasses.removeAtIndex(1) // Removes the 2nd element

We can also remove the last element or remove all the elements using the
removeLast or removeAll functions.

Inserting values
We can also add an item specifically at an index position using the insert function:

arrClasses.insert("Creative Writing", atIndex: 2)

Chapter 3

[35]

Iterating values
We can iterate through the array using a for loop:

for sClass in arrClasses {
 println("class name : \(sClass)")
}

Enumerating values
Another way is to enumerate the items in an array using the enumerate function:

for (index, value) in enumerate(arrClass){
 println("Class at index \(index+1) is \(value)")
}

We used index+1 in the code because all the array indexes
are 0 based.

Dictionary objects
Dictionaries are also called key-value pairs or associative index. This is because,
instead of a numeric index value, we have an associative value to access the element
or a key to retrieve the value. This is quite useful in cases where you might want to
access an item (the value) by a key (usually a string) instead of using a numerical
index. Declaring dictionaries is similar to declaring arrays. However, the only
difference is that Swift expects that the variable types for both the key and the
value be specified:

var dClassTimes : [String:String]
// Specifies both the key and the value would be of type string

An example for using an associative array / dictionary could be to store the subject
code with the subject name:

var myCourse : [String:String] = ["CP1001":"Computing Basics",
"FP1001":"Finance Basics", "CP2002":"Algorithms"]

Then, we can simply get the subject name using the following code:

var theSubject = myCourse["CP1001"]
println("The subject name for CP1001 is \(theSubject!)")

var _CODE_ = "CP1005"
println("The subject name for CP1001 is \(myCourse[_CODE_])")

Playgrounds

[36]

if let invSubject = myCourse["CPxxxx"] {
 println("The invalid subject is \(invSubject)")
}

The functions to work with dictionary variables are similar to the ones available with
arrays, including the isEmpty and the count functions.

Adding values
In a dictionary object, new values can be added by simply specifying the value
for a key:

myCourse["OZ1001"] = "Custom Subject"

Replacing values
This would replace the value that has the key CP1001 with this new text:

myCourse["CP1001"] = "Basics of Computing"

Another alternative for replacing a value in the dictionary object is using the
updateValue function and pass the forKey parameter as the key:

myCourse.updateValue("Basics of Finance", forKey:"FP1001")

Removing Values
To remove a value from the dictionary, either set the value of the key to nil or use
the function removeValueForKey:

myCourse["CP2002"] = nil
myCourse.removeValueForKey("CP1001")
myCourse.removeValueForKey("LP1001") // Non existent key-value

The function returns the value being removed or nil if none existed.

Iterating values
The elements in a dictionary object can be iterated using the for loop:

for (key, value) in myCourse {
 println("The key :\(key) has a value of : \(value)")
}

Each item in a dictionary object is returned as a tuple (key, value) and all of the keys,
or all of the values can also be accessed as arrays:

var allKeys = myCourse.keys.array
var allValues = myCourse.values.array

Chapter 3

[37]

Tuples
Tuples are a simple concept. It is a data structure that holds multiple parts. The
values inside of a tuple can be of the same type or different types. Declaring a tuple
is easy and can be defined as TupleName and the value parts inside brackets:

var webError = (Int, String)
webError = (404, "Page not found")
var myTuple = ("07:00", "Morning Run", true)

Accessing the members of a tuple
To access the members of a tuple, the values can be stored into normal variables. This
reverse assignment is called decomposition:

var (errorCode:Int, errorDescription:String) = webError

Since tuples are not arrays or dictionary objects, they cannot be accessed using
indices, sequences, or associates. In such a scenario, Swift creates sequential member
properties that allow access to the tuple members:

println("The components of webError are code: \(webError.0) and
Description: \(webError.1)")

Named access to tuple members
It is not always very easy to use the sequential members to access tuples. How
would you know what was .0 and what was .1, this is where named members
make the access easier. Creating named members just involves defining a name
for the tuple members:

var namedError = (code:200, description:"OK")
println("The components of named error are code : \(namedError.code)
and description : \(namedError.description)")

These components can now be accessed using the named members, as follows:

var theCode = namedError.code // returns the error code

Strings
Working with strings is also quite easy in Swift. Like arrays, strings can be iterated
using a for loop:

var testing = "This is a test"
for char in testing {
 println("The char is \(char)")
}

Playgrounds

[38]

Appending strings
The + and += operators can be used to concatenate strings:

var strSmall = "Small "
strSmall = strSmall + "string "
strSmall += "with added text"

Formatting strings
Like the println function, strings can be formatted and stored in strings instead of
using them for printing:

var theStr = "The test string"
var length = countElements(theStr)
var strRes = "The length of \(theStr) is \(length)"
println(strRes)

Any and AnyObject
Any needs to be mentioned, as it is a type that matches any of the types. This is useful
to store a type that could change:

var someValue:Any = "Frogs"
someValue = 6
someValue = "Green Tree Frogs"

If instead of using the Any type in the preceding example, you used something
like this:

 var stringValue = "Green Frogs"
 stringValue = 6

Then Playgrounds would complain, as the stringValue variable has been implicitly
defined as String. Assigning an integer value to a string variable is not acceptable.
This functionality allows Xcode to be typesafe and ensures that even before you run
your code, you are accidentally assigning wrong value types to the variables. The
Any variable type is similar to id in Objective-C:

 var castedString = someValue as String
 // the last value of someValue was "Green Tree Frogs"

The AnyObject type is similar to the Any variable type and the values need to be
cast to a specific type to work with. If a value is of type Any and you compare it to
a String, it would not work because type Any is not the same as type String and
there is no function that compares these two using the == operator. So, it must be
cast to a variable of type String and then it could be easily compared.

Chapter 3

[39]

Control flows and code execution
Like the C variants, Swift offers a series of control flow options that allow conditional
execution or multiple executions of other statements. Swift has most of the C-type
constructs providing the familiar for loops, if..else, switch, and a couple of
newer ones.

The if statement
The classic if statements are available in Swift, and the commands that need to be
executed if the condition evaluates to true or false is enclosed in curly brackets:

var berry = "black"
if berry == "red" {
 println ("This is not a blackberry")
}

We see that the condition does not evaluate to true as the value in the variable called
berry is black and we are checking it for red. So we do not see any output.

The if..else statement
The if statement also has functionality to do something when the condition does not
evaluate to true. So, it basically has two sets of statements; one that evaluates when
the condition is true and the other when it does not:

var numApples = 3
if numApples > 5 {
 println("You have enough Apples")
} else {
 println("You might want to buy some more Apples")
}

The if..elseif..else statement
Sometimes, there are more than a single if..else type conditions. In cases where
you need more than two conditions, we use the if..elseif..else statement:

var platform = "MAC"
if platform == "MAC" {
 println("This is running Apple OS X")
}else if platform == "WIN" {
 println("This is running Microsoft Windows")

Playgrounds

[40]

}else{
 println("This could be running Linux")
}

We can add more else if statements to check for more conditions.

The ternary operator
The ternary operator ?: is also referred to as the Elvis Operators since it looks like
Elvis' hairdo in ASCII. This is the shortcut for an if...else condition and can be
used as follows:

var eggs = 0
var bread = eggs > 0 ? 12 : 1

This checks for a condition, and if it is true, evaluates to the statement between ?
and :, and if the condition is not satisfied, it evaluates to the statement after the :.

For loops
When you want to perform some statements repeatedly, you can use loops. This
makes it easy rather than write them several times over.

The for-increment loop
The classic for loop is for-condition-increment loop:

for var i=0; i<=10; i++ {
 println("The value of i is \(i)")
}

You can also have multiple assignments or increments in the preceding for loop,
as shown:

for var i=0, j=0, k=0; i<=10; i++, j--, k+=5 {
 println("The value of i=\(i) j=\(j) k=\(k)")
}

The for-in loop
The new for loop added in Swift is the for-in loop that we have already seen in use
earlier for enumerating arrays, and with strings. The for-in loop provides a range
of values for the loop to iterate through.

Chapter 3

[41]

Using for with strings
The following is an example of using the for loop with strings:

for i in "Hello" {
 println("The value of i = \(i)")
}

 Using for with numeric ranges
The following is an example of using the for loop with numeric ranges:

for i in 1...10 {
 println("The value of i = \(i)")
}

Swift has the concept of half closed and full closed ranges. The preceding example is
a full closed range that prints the value of i from 1 through to 10:

for i in 1..<10 {
 println("The value of i = \(i)")
}

This would print the values of i from 1 to 9, not including the last value that we
specified of 10.

Stepped ranges
While we can create ranges with the three dots operator (...), we can create these
stepped ranges or strides using the stride functions:

for i in stride(from:1, through:20, by:3){
 println("The value of i = \(i)")
}

The other alternative stride function is stride(from:1, to:20, by:3).

The stride function with the through parameter is ...
(full closed range) and the function with the to parameter
is ..< (half closed range).

Playgrounds

[42]

The While loop
The other alternative to for loops is a while loop; this performs the statements
repeatedly as long as the condition provided evaluates to true, as shown in the
following code

var coins = 0
while coins < 10 {
 coins += 1
 println("We have mined \(coins) coins")
}

This will run and keep incrementing our coins, and when it reaches the value of 10,
it stops, as our condition is that the coins should be less than 10, so the maximum
coins we should have are 9. However, because when the value of coins is 9, the
while condition is evaluated as true and run once again, incrementing our coins
count to 10.

There is a variation on the while condition and that is the do..while loop. The
difference between the while loop and the do..while loop is that the while loop
may or may not execute, depending on the condition; whereas the do..while loop
will execute at least once before evaluating the condition to determine running the
code or not:

coins = 0
do {
 coins += 1
 println("We have mined \(coins) coins")
}while coins < 10

We find that the loop ran once again and now we have 10 coins. When the value
of coins reaches 10, the loop is stopped and not executed again.

Seeing the two variations, be careful when you use them, they could give you
unexpected results due to the way they work.

The switch condition
The if statement works with conditions and mostly we use a series of if statements
to check for the value of a variable. switch is a better approach that allows checking
for multiple values.

var age1 = 28
switch age1 {
 case 0:
 println("Baby")

Chapter 3

[43]

 case 1:
 println("Toddler")
}

This code would cause the compiler to complain, especially since the Swift compiler
attempts to reduce programming errors. We have the code that is not faulty, but
we have not handled the scenario where none of the cases are matched as in the
preceding example. Swift expects a default value to handle the other scenarios
that do not match. The working code would look like this:

var age1 = 28
switch age1 {
 case 0:
 println("Baby")
 case 1:
 println("Toddler")
 default:
 println("Others")
}

If we were to classify the ages, it would be quite a hassle to type in every possible
match, we might just want that 1 to 3 be a toddler and 4 to 12 be a child, as
shown ahead:

var age1 = 28
switch age1 {
 case 0:
 println("Baby")
 case 1, 2, 3:
 println("Toddler")
 case 4, 5, 6, 7, 8, 9, 10, 11, 12:
 println("Child")
 default:
 println("Other")
}

This is a bit tedious, typing in all of the values. Swift helps us out here with ranges,
we can use the range operator ... (three dots) as shown in the following code:

var age1 = 28
switch age1 {
 case 0:
 println("Baby")
 case 1...3:
 println("Toddler")
 case 4...12:

Playgrounds

[44]

 println("Child")
 case 13...19:
 println("Teen")
 default:
 println("Other")
}

We can also use non-contiguous ranges, such as 0 to 17 and 60 to 99 in this example
to segregate them as working and non-working population:

var age1 = 28
switch age1 {
 case 0...17, 60...99:
 println("Not Working")
default:
 println("Working")
}

The switch statement can handle pretty much any type of value, not just numeric.
It can handle strings, tuples, and many more.

var berry1 = "red"
switch berry1 {
 case "red" :
 println("This is a red berry")
 case "blue" :
 println("This is a blue berry")
 case "black" :
 println("This is a black berry")
 default
 println("This is a not a berry")
}

Character ranges can also be used like "a"..."i", "l"..."x".

Tuples can also be used for switch case matching:

var aScore = (100, "Temple Bun")
switch aScore {
 case (1000, "Temple Bun"):
 println ("You made the high score")
 default:
 println("A little more \(1000-aScore.0) and you can beat the high
score")
}

Chapter 3

[45]

With tuples, you can choose to ignore a value, that is, say you wanted to check
the scores of a particular game or just a particular score for any game, as in the
following code:

switch aScore{
 case (_, "Temple Bun"):
 println("Wow, I could never score on this game")
 case (100, _):
 println("Yay! You are a player… I have not yet tried \(aScore.1)")
 default:
 println("All play makes Jack a dull boy")
}

There are a couple more tricks with Swift. In the previous example, since our score
is 100, the first condition matches and it prints out the "Wow, I could never …"
message. This is the default behavior, and the expected one too. In some cases, you
might want it to continue matching the next case. In such a scenario, you can use
the fallthrough keyword. By default, the code exits the switch block and does
not check the next case, with fallthrough, the statements for the next case are also
executed, irrespective of the match, as shown here:

switch aScore{
 case (_, "Temple Bun"):
 println("Wow, I could never score on this game")
 fallthrough
 case (100, _):
 println("Yay! You are a player… I have not yet tried \(aScore.1)")
 default:
 println("All play makes Jack a dull boy")
}

Now, we will see both the messages, "Wow, I could…" and "Yay! You are a …".

In another example, we can see this:

var theNumber = 1
switch (theNumber) {
 case 1:
 println("One")
 fallthrough
 case 2:
 println("Two")
 case 3:

Playgrounds

[46]

 println("Three")
 default:
 println("Default")
}

You will see that in the output it prints One and Two. This is useful in cases where
you might want to only execute println("Two") if theNumber is 2, but display
both One and Two if it is 1.

If you need to exit a loop or a switch, the break statement exits
the current scope and continues execution.

In the examples, you will notice that we used aScore.0 or aScore.1 to access the
first or the second member of the tuple. This is fine, but sometimes you want to
access them with a proper variable name. We can do this via value binding, and
use it as follows:

switch aScore{
 case (let score, "Temple Bun"):
 println("Wow, I could never score \(score) ")
 case (100, let game):
 println("Yay! You are a player… I have not yet tried \(game)")
 default:
 println("All play makes Jack a dull boy")
}

switch is even more powerful in Swift and it offers more condition checking options
via the where clause:

var marks = (80, "Math")
switch marks {
 case (let score, let subject) where score>75 && subject == "Math" :
 println("You got a HD in Math")
 case (50..<80, let subject):
 println("You passed the subject \(subject)"
 case (let score, let subject):
 println("You scored \(score) in \(subject)")
 default:
 println("")
}

You can also check for compound cases, such as switch score
+ bonus in one go, or use functions to check conditions.

Chapter 3

[47]

Functions
Functions in Swift are declared using the func keyword. A function encloses a set of
statements inside a block. When a function is called, all of the statements inside that
block that make up the function are executed.

Return values
Functions may or may not return any values. Although, functions in Swift can return
multiple values via tuples.

The no-return value function
The following is an example of a no-return value function:

func noValues(){
 println("this returns no values")
}

The single-return value function
The following is an example of a single-return value function:

func returnOne() -> Int{
 return 1
}
var one = returnOne()

You might note that when a function returns a value, we need to specify the return
type of the value and that the function is written with a -> at the end followed by
the return type.

The multiple-return value function
The following is an example of a multiple-return value function:

func returnMany() -> (Int, String){
 return (404, "Page not found")
}
var error = returnMany()

The multiple return values are in the form of a tuple and it is imperative to define the
return values. In the previous example, we return an Int and a String value. While
in this example, we are returning the tuple without named parameters; depending
on your needs, you could return tuples with named parameters.

Playgrounds

[48]

Parameters
Functions might accept parameters that allow you to pass values that may influence
the functionality of the function. We have seen examples of functions that do not
require any parameters in the previous examples. If we need to pass parameters,
we need to specify the type of the parameter value we shall pass to
the function.

The single parameter function
The following is an example of a single parameter function:

func strLength(theStr:String) -> Int {
 return countElements(theStr)
}
var len = strLength("Hello World")

The multiple parameter function
The following is an example of a multiple parameter function:

func multiplyBy(num1:Int, num2:Int) -> Int {
 return num1 * num2
}
var res = multiplyBy(7, 4)

Named parameters
You might have noticed that we pass parameters to the functions, but as a developer
you might want to have named parameters that would be self-explanatory as to
what the parameters are. It would not be very clear on the purpose of the parameters
passed. To name the parameters, we need to give them a name. These are called
external parameter names, the internal names are used by the function:

func appendString(theString first: String, withString second: String)
-> String {
 return "\(first) \(second)"
}

var strRes = appendString("Hello", "World!")

The preceding code will give a compiler error because appendString was declared
to use named functions and it is missing the named arguments of first and second.
To be able to call the appendString function, we need to use the named parameters:

var strRes = appendString(theString:"Hello", withString: "World!")

Chapter 3

[49]

Shorthand external parameter names
Swift has a shorthand method that helps avoid this scenario by simply using a hash
symbol (#). This ensures that both the parameters (internal and external) have the
same name. The following code explains this:

func appendStrings(#theString: String, #withString: String) -> String
{
 return "\(theString) \(withString)"
}
var theBook = appendStrings(theString: "Swift", withString: "Rocks")

Optional parameters with default values
For some functions, you can also provide default values that allow you to omit
passing that parameter:

func replicate(times:Int, theString:String = "-")->String{
 var result = ""
 for i in 1...times {
 result += theString
 }
 return result
}
var dashes = replicate(20)

This calls the replicate function and passes 20 for times and a value of "-" as
theString. If we want to call this function with a different string to replicate, we
cannot simply call it as follows:

var plusses = replicate(20, "+")

This would give an error and to fix it, we need to call it as follows:

var plusses = replicate(20, theString:"+")

Passing multiple parameters
While we can have functions with no parameters, we could also have functions with
single or multiple parameters; but in some cases, there might be a scenario to pass
an unknown number of parameters. With a known number of parameters, we can
define the number of parameters. With unknown, we would never know if there will
be any parameters and if there are; the number of parameters would be unknown.
These are called parameter arrays or variadic parameters. This is denoted by three dots
... after the parameter type, as indicated in the following code:

func add(numbers:Int...)->Int{
 var result = 0

Playgrounds

[50]

 for i in numbers{
 result += i
 }
 return result
}
var total = add(3, 7, 2, 9, 12, 11) // 44

You can have only one variadic parameter in a function and it must
be at the last position in the list of parameters.

There are more advanced features associated with functions. This
chapter is a quick intro to Swift and hence they are not covered
here. Please refer to a Swift book for comprehensive coverage of
advanced features such as in-out parameters, constant and variable
parameters, function types, and using functions as return types.
Apple has a free book called The Swift Programming Language that
you can download and refer to, among other options.

Using closures
Closures might sound like a fanciful name but in simple terms, they are what Apple
introduced as Blocks for Objective-C. This is functional code that can be called at a
later time. These retain their own scopes for variables and contained functions and
can be executed in a different scope than they were created in. These are so called
because they form an enclosure over the variables and constants, as shown in the
following code:

func startFrom(startValue:Int) -> (()->Int) {
 var _startVal = startValue
 func increment() -> Int{
 return ++_starVal
 }
 return increment
}

Chapter 3

[51]

In the previous example, we return a function and if you noticed the return type, it
is (()-> Int), which specifies that the return type is a function. This function takes
no parameters and returns an Int value. First, we save the value passed into a local
variable called _startVal. Then we return the value while incrementing it using
++_startVal as shown here:

var counter1 = startFrom(1)
var counter2 = startFrom(10)
counter1() // return 2
counter2() // return 11

The preceding example demonstrates that both of the counter functions contain their
own set of variables and are independent of each other.

Objects
Swift has an object-oriented paradigm for you to declare and create classes,
structures and enumerations. The primitives such as Int, String, Float, Double,
to name a few, are structures or structs as they are now called.

Classes
To define a class, we simply use the keyword class. A class can contain variables,
functions and methods that have initializers to set up the initial values; they can be
extended and they can also conform to protocols to provide standard functionality.
The following code explains this:

class Stooge{
 var name:String = ""
 func getName() -> String{
 return self.name
 }
}
var stooge1 = Stooge()
stooge1.name = "Moe"
println("The name of the first stooge is \(stooge1.getName())")

This is a bit cumbersome. What if we could initialize our object with a default name?
How about using the following:

var stooge2 = Stooge("Larry")

Playgrounds

[52]

We get a compiler error. To be able to use it this way, we need to create initializers
using the init function. Our Stooge class would need modifications, and will now
look something like the following code snippet:

class Stooge{
 var name: String = ""

 func lengthName() -> Int {
 return countElements(self.name)
 }

 init(forName: String){
 self.name = forName
 }
}

However, we still get a compiler error and this time the compiler tells us that
it is looking for a named parameter name. So we cannot simply call this as
Stooge("Larry"); instead, we need to call it as Stooge(forName:"Larry").

Swift provides us a way to ignore the external name by adding an underscore before
the internal name. Then we can call this without the forName: parameter:

init(_ forName:String){
 self.name = forName
}

And now, we can initialize our new stooge variable as follows:

var stooge2 = Stooge("Larry")

Properties
We created a property called name in the previous example, and it can be read and
updated directly. Say we add another property in the year of first appearance as:

class Stooge{
 var name:String
 var firstAppear:Int

init(_ forName:String){
 self.name = forName
 self.firstAppear = 1900
}

Chapter 3

[53]

convenience init(){
 self.init("Unknown")
}

convenience init(_ forName:String, _ year:Int){
 self.init(forName)
 self.firstAppear = year
}

 func lengthName() -> Int {
 return countElements(self.name)
 }
 }

We have two convenience functions for init. The convenience functions are
defined to allow different function signatures. In our case, we can call the init
function without any parameters, with just the name or with both, the name and
the year. If we did not use the convenience keyword, the compiler would complain
thinking we are redefining the function with a new signature:

var stooge3 = Stooge("Moe", 1934)

The properties in this class, name and firstAppear, are both directly accessible. You
could also define setters and getters that could be used to set the values as required.
These are useful as calculated properties:

 var theYear:Int {
 get {
 return self.firstAppear - 1900
 }
 set {
 self.firstAppear = newValue + 1900
 }
 }

We could now use this like a property and it will interact and set/get the value from
the firstAppear variable:

println("\(stooge3.firstAppear)") // Prints 1934
stooge3.theYear = 67
println("\(stooge3.firstAppear)") // Prints 1967

Playgrounds

[54]

If you want to run some code before a value is set or after a value is set,
Swift offers the willSet and the didSet functions like the get and set.

Structures are similar to classes in most regards whereby they can have
properties, functions, initializers, and so on. One of the differences
between structures and classes in Swift is that structures are copied and
do not use reference counting.

Enumerations
Enumerations are data types that have named values and behave like constants.
They too, like structures and classes, have properties and functions associated
including initializer functions:

enum eStooges:Int{
 case Moe = 1
 case Larry
 case Curly
 case Shemp
 case Joe
}
var aStooge = eStooges.Moe

You could add a function to this like toString, which returns the name of Stooge
as a string:

enum eStooges:Int{
 case Moe = 1
 case Larry
 case Curly
 case Shemp
 case Joe

 func toString()->String{
 switch self{
 case .Moe:
 return "Moe"
 case .Larry:
 return "Larry"
 case .Curly:
 return "Curly"

Chapter 3

[55]

 case .Shemp:
 return "Shemp"
 case .Joe:
 return "Joe"
 }
 }
}
var aStooge = eStooges.Moe
println(aStooge.toString()) // Moe

You can also use the enumerations without the enumeration name directly with the
member name, like this:

var theStooge: eStooges = .Curly
println("\(theStooge.toString())") // Curly
println("\(theStooge.rawValue)") // 3

When using enumerations, it will always number them starting from 0,
however, if you want to change that start index, you can define the first
value and the rest will be assigned a sequential value. You can also assign
values to each of the members or they are assigned the next number (that
is, sequential).

Extensions – extending the classes
This is one of the most interesting language features in Swift. It allows adding of
functions and features to an existing class. We can extend an Int variable and
add an extension called "square" that returns the square of the integer:

extension Int{
 var square:Int {
 return self * self
 }
}

You can now type 4.square in the Playground and the result 16 will show.

We can create another extension for strings called reverse:

extension String {
 var reverse:String{
 var result:String = ""
 for i in self {
 result = String(i) + result
 }

Playgrounds

[56]

 return result
 }
}
"Hello".reverse // shows olleH

Operator overloading
We can use most of the basic operators to perform basic operations, as you have
seen in the previous examples. With Swift, we can also re-declare these operators
to perform custom operations. Some of the basic operators can be overridden to
provide additional functionality.

There are three positions for operators, prefix, postfix, and infix. They are
defined depending on the position of where the operator lies.

The prefix operator
Prefix operators are those that have the operator before the expression, such as ++a
or !b. Here's an example of using the square root symbol operator (√) and making it
function as expected:

prefix operator √ {}
prefix func √ (theNumber:Double) -> Double {
 return sqrt(theNumber)
}
var sqRoot1 = √144 // 12.0
var sqRoot2 = √16 // 4.0

The postfix operator
Postfix operators appear at the end of the expression, such as a++. Here is an
example of using the % postfix operator that returns the percentage:

postfix operator %{}
postfix func %(theNumber: Double) -> Double {
 return theNumber / 100
}

var rads1 = 60% // 0.6
var rads2 = 152% // 1.52

Chapter 3

[57]

The infix operator
The infix operator appears in between two expressions, such as the equality operator
== or +=, or >>, << and the bitwise operators &&, ||,. Let us create a custom infix
operator that replicates a string as many times as the number following it:

infix operator ** {}
func ** (theString:String, times:Int) -> String{
 var res = theString
 for i in 1..<times {
 res += theString
 }
 return res
}
var buffer = "Hello" ** 5 //HelloHelloHelloHelloHello

Summary
We have tried to cover as much of Swift to get started with coding as possible. A
single chapter would not do justice to cover the breadth of this topic. We saw that
we can use the println function to output our data, and while in the Playground,
the values for all variables are seen in the editor space. In the next chapter, we will
take a break from code and look at creating interfaces visually in Interface Builder. If
you want to learn more about Swift, Apple has a blog and lots of resources including
some free iBooks on Swift. One thing to note is that Swift is evolving, and in the time
since Swift was announced at WWDC to the time it was released in September, the
language and the syntax has undergone many changes. The possibility of it changing
in the near future cannot be ruled out. So be aware of this fact when working
with Swift.

Interface Builder
In this chapter, we will cover the following topics:

• Interface Builder – the storyboard
• Creating a mockup
• Adaptive layouts
• Connecting code

In the last chapter, you learned about Swift, the alternative programming language.
There is an increasing pressure on developers to make a pretty-looking application; the
designers deliver a design and it is mostly up to the developers to convert this design
into an application. Earlier, an external component of Xcode, Interface Builder (IB)
now is an integrated part of Xcode. Interface Builder allowed you to visually layout the
UI of the application in forms/screens that were saved as XIBs. With iOS5 and Xcode
4.3, Apple introduced storyboards. Storyboards were generally used in the movie and
animation industry, where sequences of images were used to previsualize the scene
or flow of the movie. The concept remains and a storyboard in Interface Builder also
allows you to previsualize the different scenes in your project including the interaction
between them. The different scenes in a storyboard are called views and the transitions
between the two scenes linking them is called a segue. Segues can be drawn between
the UI elements in a scene to the destination scene.

Interface Builder

[60]

Introducing Interface Builder
Interface Builder has now been a part of Xcode for a while and can be used as you
can use the code editor. Create a new project with a storyboard to create a simple UI.
To start, create a new project (File | New | Project) and create an iOS project:

Chapter 4

[61]

Creating a basic interface
To work with the storyboard UI, first click on the Main.storyboard option to open
the storyboard in the editor for you to work with. This area is called the canvas; this
is where you drag-and-drop your elements:

Now you can place items onto the canvas. You can drag-and-drop elements from the
library, scroll down to a button object, and drag and drop it onto the canvas. Use the
blue guidelines to align it right at the center of the view.

Interface Builder

[62]

Elements on the view
On top of the scene, there are three icons: the first yellow and the next two orange.
These are the View Controller, First Responder, and Exit as can be seen in the
following screenshot:

Chapter 4

[63]

The following is the description of the three icons:

• The View Controller element is the object that handles the interface events
and it is also the UIViewController class. You can change it to make it
manage your custom class.

• The First Responder element is a placeholder that informs the application
that it should be the first one to handle the events. This is mainly useful for
UITextViews and other controls that require a first responder to be set.

• The Exit element is used to connect code that is called when exiting a
segue scene.

You can simply press CMD+R or click on the Run button. You will see it running in
the simulator, as shown in the following screenshot:

Interface Builder

[64]

You might wonder why the button is being cut off even when you centered it and
aligned it. The main reason for this is that Interface Builder sets the size of the
view to 600 x 600 by default. When this is run and positioned on an iPhone-sized
screen, the elements are culled or clipped and hence half the button is shown in the
preceding screenshot. When you switch off the size class, the sizes are retained for
either the iPhone or the iPad screen size and thereby they remain as you might have
laid out your elements. You can switch off the size class from your storyboard by
navigating to the first tab of Utilities Navigator (OPT + CMD + 1) under Interface
Builder Document and deselecting Use Size Classes. With size classes, you can
create a single view that adapts based on the device and the orientation it is run on.
You can also switch off Autolayout for the project.

Adaptive UI
Adaptive UI is quite exciting, especially since it allows defining how the UI should
adapt to different orientations and resolutions. The first thing that Apple has done to
make this possible is to do away with UIInterfaceOrientation and UIDeviceIdiom
and replace them with the size class. Earlier, your code could have been littered with
a lot of conditional code determining the orientation and the device to run code.
Obviously, you would not have done so with Swift as it is a new feature with Xcode 6,
but this is a sample of what it would look like with Objective-C:

UIDevice *device = [UIDevice currentDevice];
UIDeviceOrientation currentOrientation = device.orientation;
BOOL isPhone = (device.userInterfaceIdiom ==
UIUserInterfaceIdiomPhone);
BOOL isPortrait = ([[UIScreen mainScreen] bounds].size.height ==
568.0);

This would then be followed up with a series of conditions such as:

if (isPhone == YES) {
 if (isPortrait == YES) {
 // Do something when in Portrait orientation
 } else {
 // Do something when in Landscape orientation
 }
else
 {
 //You could check for iPad and its orientations
 }

Chapter 4

[65]

This is quite cumbersome. Instead, the size class offers three options on each of the
dimensions: width and height. The size options are Compact and Regular and the
third option is Any, which is basically a way of saying it could be either.

Xcode has nine values available for creating your UI; this includes the third option
Any that we mentioned earlier. In the following figure, you can see that this allows
you to adapt to more UI's easily, so you do not have to explicitly check for sizes
any more; it is all about the space available. The sizes as displayed by 1, 3, 7, and
9 are final values, specifically for the desired orientations, whereas 2, 4, 5, 6, and 8
are base values. Final values are more like fixed values that conform to a particular
device size, whereas the base values are those that can adapt to or be used for more
than one device and/or orientation. Constraints created in the Any | Any layout
are applied to all of the layouts, while constraints created for a specific layout are
applied for that layout only.

Interface Builder

[66]

If you look at the bottom of the Interface Builder screen, you can see wAny and hAny,
if you click on that, it will show a pop-up as shown in the following screenshot. This
allows you to select the size you want to create your UI at:

For now, we will work with the Any | Any layouts. This is the universal layout that
would work on most devices.

The scene size in Interface Builder can be adjustable (in case you need to) by first
setting Simulated Size to Freeform in Size Inspector (OPT + CMD + 5) after you
select the view. Then, set the width and height to the desired size.

The first task is to ensure that the button remains in the center as we expected it
to be. To do that, we need to add constraints. Constraints are not new; they were
introduced with iOS 6 and Auto Layout. This allows you to specify how the elements
would be displayed on the view, and how they will be displayed when viewed on
different devices. To ensure that the button stays in the center of the screen, you can
add two constraints, one to center it horizontally and another to center it vertically.
To do that, press Control and then click and drag from the button towards the left
and release; it displays a pop-up that allows you to center vertically in the container.

Chapter 4

[67]

Alternatively, you can also click on the Align button and select the alignment options:

Now, when you run the project again, you will see the button display in the center as
expected to start with.

Interface Builder

[68]

Adding scenes
If you click on the button that we just created, nothing happens; that is OK because
we have not specified anything for it to do. Let's look at creating a mock-up without
writing a single line of code. The first thing you need is another view that will be
displayed when you click on the button. Drag-and-drop View Controller from the
library and position it next to the existing one.

Chapter 4

[69]

Now press control and click and drag from the button to the new View Controller
that you just added to the storyboard. This displays a pop-up option to select the
method to use when displaying the new View Controller; select show:

Let us quickly add a label to the new view and set the constraints to the top-left
corner. Now, if you run the application and click on the button, it will display the
second view. There is no way to go back to the previous view. We do not see the
back button that you would have expected from many iPhone applications that
navigate between views.

Navigating between View Controllers
To get the View Controller that you would have expected along with the back
button, you need NavigationViewController. An easy way to add
NavigationViewController is to select the root View Controller (the root View
Controller can be identified as the one with the half arrow that is not connected
from any other View Controller) and navigate to the menu option Editor | Embed
In | Navigation Controller. You will notice that the root View Controller changes
to new navigationViewController.

Interface Builder

[70]

To change any View Controller to be the root View Controller, look
for the settings in the Attributes Inspector (OPT + CMD + 4); under
the View Controller, select the Initial View Controller checkbox.

Now, when you run the project, you will notice that the view has space for a
navigation bar in Interface Builder. Run the project again and you will notice the top
navigation bar space in gray; and when you click on Button, the new presented view
also has the Back button that works as expected without doing anything much.

You can add more UI elements and scenes that can be connected with segues.

Chapter 4

[71]

Building a simple application
Start a new project of the Single View Application type, name it as fixedDataTable.
Click on the Main.storyboard option to open it in the editor. Drag Table View
Controller from Utilities Library and arrange it to the left of the view. Delete the main
View Controller; now select Table View Controller and check the Is Initial View
Controller checkbox. This will make Table View Controller the main controller.
Run the project and you will see Table View blank for now.

Adding items to Table View
To be able to access the various parts of Table View, such as the cells and the content,
you can activate the document outline that allows you to access each element more
accurately than by simply clicking on them.

Click on Table View and, under the Attributes Inspector tab, change the value of
Prototype Cells to 4. This determines the number of items displayed in Table View.
Change the Content option to Static Cells from Dynamic properties. Change the
style to Grouped from Plain. Next, click on each of the Table View Cell options and
change the type to Basic from Custom. Now, select the Table View section. ensure
that the value of rows is 4, and add Header and Footer text.

Click on each of the Table View Cell options and, under Accessory, change the
value to Disclosure Indicator from None. This will display the > indicating that,
when the tableCellView is clicked, it will display some other detail.

Now, double-click on each of the cells to edit and set its text. We are making a
Stooge-o-dex so we have the names of the four stooges. The show was called the Three
stooges; however, there were as many as six stooges but that's beside the point here.
We will have information about four stooges in our sample application.

Interface Builder

[72]

Name the cells as Moe Howard, Shemp Howard, Larry Fine, and Curly Howard:

Chapter 4

[73]

Add four View Controllers, add an image view, and add two labels on each of them.
The image will hold the picture of the stooge and the two labels will display some
information about the stooges. Position the image view to be centered horizontally
and towards the top of the view. Position the first label just below the image view
and position the last label at the bottom of the view. Refer to the following screenshot.
In the Attributes Inspector tab, name the View Controllers as per the names of the
stooges. Add the four images (you can get these from the companion files download)
to your project; then select the image view and set its image property from the
Attributes navigator. Type relevant text into the two labels. Set your constraints
to have them display as per the following screenshot:

Interface Builder

[74]

Next, press Control and click-and-drag from each of Table View Cells to the View
Controller to connect them with a segue. Select show when asked how you would like
to display the View Controller. After you are done connecting Table View Cells to
the View Controllers, you should have a storyboard with multiple arrows connecting
the scenes, as seen in the following screenshot:

A storyboard with multiple arrows connecting different scenes

Open the assistant editor (press OPT + CMD + Enter) and then select the storyboard.
Next, click on the first icon on the left; it looks like a set of 4 squares. Scroll down to the
Preview option and select it. This displays a preview of the view. If you do not get the
Preview option, but see a code file in the assistant editor, select the storyboard from the
list of recent files (in the assistant editor), and then select the Preview option again.

Chapter 4

[75]

You can quickly open the storyboard in the main editor by clicking
on it. However, if you press the option key and click on the file, it will
open it in the assistant editor.

Click on the plus button (+) at the bottom; it offers three choices: the iPhone 3.5,
iPhone 4.0, and iPad. When you select a particular device, it is added to the preview
and the view in the main editor is displayed as adapted for that particular device.
It is very useful to preview your work live on various-sized devices. You can add
two of the same and keep them in different orientations, as shown in the previous
screenshot. You can see how the View Controller for Moe Howard in both portrait
and landscape is adapted and displayed based on the view and constraints. This
would speed up the process to create adaptive UIs. In addition to this, designers
can create the UIs with Xcode and add basic functionality without writing a single
line of code. This book does not go into details of auto layout and constraints as that
is a topic that might require a chapter or more by itself. It could be used to create
pixel-perfect and aligned UIs as your designer might expect while designing it in
some image manipulation software.

Once you have populated the screens for all four of the View Controllers, you are all
set. You have just created a static application without writing a single line of code.

Interface Builder

[76]

Different elements for different orientations and
dimensions
You can also select which controls are seen in a particular orientation, work with the
Any | Any option for the common elements, then switch to the desired orientation
or size; for example, navigate to Compact | Any for widescreen layouts on an iPhone
device. Rearrange or add the component you want for that orientation.

You might notice in the preceding screenshot that the two previews have different
buttons depending on the orientation they are displayed in.

Chapter 4

[77]

Adding the code
While it is easy to create UIs in Interface Builder, there is only so much that you can
do. If you want to add a button that displays another view, it is rather difficult to do
that in Interface Builder.

Before we start writing some code, there are a couple of things that we need to know
about Interface Builder and Xcode:

• Interface Builder follows the Model-View-Controller (MVC) model. This, in
simple terms, means that there is a model that holds the data, a view that you
see on the screen that displays the data, and a controller that liaises between
the view and the controller.

• You can create a custom class of the UIViewController type that allows you
to work with the View Controller—that is, add code that can be executed.

• You need to make connections between the elements on a View Controller in
Interface Builder and the code via outlets. These are similar to variables but
are connections to your UI elements, thereby allowing you to refer to them
from code.

If you are new to Xcode, you would want to take care of what you connect from.
This is because there are differences between, say, connecting an element to the
first responder and connecting the first responder to an element.

1. Simply add a new row to the existing Table View and name it counter.
2. Add a new View Controller to the storyboard and connect the table cell to the

View Controller by pressing control and dragging from the table cell to the
View Controller.

3. Next, add a button, position it in the center of the screen, and set the
appropriate constraints, aligning the button centrally in the container,
both horizontally and vertically.

4. Double-click to change the title of the button and type in Press me for
more – UIAlertView.

5. You can also change the TextColor color to White and the Background color
to Blue. This would give it contrast while on the screen.

Interface Builder

[78]

6. Next, add a label above the button and set its constraints accordingly.

Chapter 4

[79]

Autolayout
This book will not delve into autolayout, but a quick look at it would help you to
understand a bit more about autolayouts. In the following screenshot, the button
has its constraints set to position it in the center, both horizontally and vertically.
There is another constraint that sets the vertical spacing between the button and the
label. There are another two constraints: the width and the height. Interface Builder
shows you where the element would be shown at runtime as seen via the orange
dotted lines. In fact, it would even show you inconsistencies and missing constraints,
including if any of them are ambiguous or conflict with others. It even tells you that
the frame will be different at runtime.

You can also individually click on each of the constraints like any other object in
Interface Builder and it will show up in Properties Inspector, which you can tweak
as required.

Interface Builder

[80]

Subclassing
You have the simple UI that you need (also referred to as the view). To create
the controller, we navigate to File | New | File. Under iOS Source, select
Cocoa Touch Classes, name this myViewController and select it as Subclass of
UIViewController. Do not select Also create XIB file as we are using storyboards,
and choose the language as Swift.

To create the connections, open the storyboard in the editor and position the view, in
Identity Inspector, change the class from UIViewController to myViewController.
Now, if you open the assistant editor (by pressing OPT + CMD + Enter) it will open
the myViewController.swift code in the assistant editor. Now press control and drag
from the label to the code at the top just after the class name declaration, and select to
create an outlet connection, name it theText, and ensure that storage is of type weak.

This would create the code:

@IBOutlet weak var theText: UILabel!

Chapter 4

[81]

Next, press control and drag from the button to the code and create a connection of
type action, name it pressMe. This would generate the following lines of code:

@IBAction func pressMe(sender: AnyObject){
}

You need to supply the code for that action. In this case, to create
UIAertViewController, type the following code between the curly braces:

let alert = UIAlertController(title: "Button Pressed", message: "You
pressed this button", preferredStyle: .Alert)
let actionOK = UIAlertAction(title: "OK", style: .Default, handler:
nil)
let actionNo = UIAlertAction(title:"Nopes", style: .Cancel, handler:
nil)
alert.addAction(actionOK)
alert.addAction(actionNo)
self.presentViewController(alert, animated: true, completion: nil)

This would create an alert as expected when the button is pressed:

Interface Builder

[82]

To be able to process the alert button, that is, handle the button pressed, you need to
add a function block to the action's handler. We had specified it as nil previously. For
now, we will simply display a message to the Xcode console window using println.
Modify UIAlertAction as follows:

let actionOK = UIAlertAction(title:"OK", style:.Default, handler: {_in
println("We clicked OK"})

If you are a keyboard ninja and work with the keyboard and find that
the mouse/trackpad slows you down, you can switch between the
editor and the assistant editor or other elements by quickly pressing
CMD + J which will pop up the elements for you to choose from.

Quick help
When you are writing code, there are times when you are unsure of the methods or
properties; Xcode offers a quick and easy method to lookup the words. If you keep the
option key pressed and hover over a class, it underlines the word with a dotted line
and the cursor changes to a question mark, this will display a pop up with the details
of the word under the cursor. If it is a function or a method it displays its details:

If you have the command key pressed, the cursor changes to a hand cursor and the
word under the cursor changes to a solid line. Then, if you click on the word, it
would open the corresponding header declaration and even display the declares
(from the system file headers) and so on as their Swift equivalents. If the class is
your own custom class, then the source code file is displayed.

Chapter 4

[83]

Managing connections
Connections created using Interface Builder can end up with multiple connections if
you create, change elements and maybe recreate the connections. Most importantly,
if these connections are invalid or changed, they may cause crashes. It is best to
check the connections and removing them if they are no longer required. To bring up
the connections, you can right-click on the object and it will display a list of items; it
will also show the connections (if any). Another way to look at the connections is in
Connections Inspector (OPT + CMD + 6) under Utilities Inspector.

Connections Inspector

Interface Builder

[84]

Adding gesture recognizers
Once you start to connect code and views in storyboards, you can do a lot more
than display simple alert boxes. You can attach gesture recognizers to make your UI
interact with gestures. Continuing with the example project, you can add a rotation
gesture recognizer and then rotate the button, which looks really cool and still works
like a button.

First, look up for Rotation Gesture Recognizer from Object Library and drag it to
the view. Notice that this does not show up on the view; it sits on top of it. It looks
like a yin-yang symbol. Then, set up the gesture recognizer by connecting it. Press
Control and drag from the button to the gesture recognizer; from the pop-up menu
outlet collections, select gestureRecognizers. Next, open up myViewController.
swift in the assistant editor; press control and drag from the gesture recognizer to
the editor and add a new IBAction called rotateMe. This creates a blank function
with the name rotateMe in myViewController.swift. You can add the following
code to this function:

@IBAction func rotateMe(sender:AnyObject){
 let gesture = sender as UIRotationGestureController
 let transform = gesture.view?.transform as CGAffineTransform!
gesture.view?.transform = CGAffineTransformRotate(transform, gesture.
rotation)
 gesture.rotation = 0
}

Chapter 4

[85]

First of all, the parameter passed to this function is of the AnyObject type; we could
have instead specified that we need this to be UIRotationGestureController.
The code simply changes the rotation of the view by using
CGAffineTransformationRotate and then sets the rotation as 0, so it continues
from that point. Otherwise, it goes a bit crazy with the rotation adding up. You can
comment the gesture.rotation = 0 line and have a look. Alternatively, Apple
offers you something called the CGAffineTransformIdentity. This is basically the
default position with no transformations applied, no rotations, no scaling, etc. So
you could use this as the starting point to apply your transforms.

If you are in the simulator, you can press the option key to get the second touch and
then rotate the button. The rotated button works just as it did when it was normal.

Interface Builder

[86]

Segues and connections
The last thing you need to know with Interface Builder is segues. It is pronounced as
seg'ways as in the two-wheeled self-balancing transportation vehicle. Segues are the
lines with arrows that connect various scenes with the elements on another scene.
If you are a designer, you can use this to quickly create mock-ups that work natively
and move between scenes without writing a single line of code. The other thing
about segues is that you can name them. In the attributes inspector, you can give
them an identifying name. This name can be used via code to present or
identify segues.

Add another button and position it at the bottom of the view; create Center
Horizontally in Container and a Bottom Space to Bottom Layout Guide constraints.
Next, add a new View Controller, press control and drag from the button to the View
Controller, and select show. Click on the newly created segue and, in the attributes
property, select mySegue as the identifier.

Now, in the assistant editor, open myViewController.swift. Add the following
code to that file:

override func prepareForSegue(segue: UIStoryboardSegue!, sender:
AnyObject!) {
 println("The segue '\(segue.identifier)' was called")
}

The prepareForSegue function is called every time a new scene is called. This
allows you to prepare and be able to pass data to the new scene or set up the new
scene. It provides you with access to the new scene's View Controller . However, this
function is invoked in the current View Controller before the new View Controller is
displayed. Now if you run the project, navigate to this scene, and click on the button,
you will see the message The segue 'mySegue' was called displayed in the console.

You can also manually invoke segues from code then rely on design-time connections.
If you called the presentSegueWithIdentifier function at the end of the
viewDidLoad function, it will navigate to the new view when this view is displayed:

self.performSegueWithIdentifier("mySegue", sender:self)

Chapter 4

[87]

Summary
In this chapter, you saw how a storyboard contains several scenes and how they
could be connected via segues. This helps create quick interactive mock-ups that
can be provided to clients or your teams. You also learned how you can set up
constraints and how to create adaptive UI's using the size classes. You also learned
about dragging to the code to create outlets or action functions.

If you are feeling adventurous or when you feel comfortable, try to use segues and
display all of the stooges data using a single view, having Table View populate
dynamically from a data source.

In the next chapter, we will have a look at creating custom controls. Custom controls
are the controls that are not available with the standard controls that come with
Xcode; they are created by developers.

Custom Controls
In this chapter, we will cover the following topics:

• An introduction to custom controls
• The basics
• Interactive properties
• Frameworks
• Debugging

An introduction to custom controls
In the previous chapter, we saw that we could quickly build our UIs in Interface
Builder. We added components or elements from the library onto the views.
However, Apple cannot provide developers with every conceivable control as
developers keep coming up with new and innovative ideas to add beautiful features
to an app, other than just simple basic TextBoxes, Labels, TableViews, and so on.
Creating a custom control is not exactly new. However, the new features that Apple
has added in Xcode 6 are quite exciting and these will unfold in this chapter.

The basics
At the very base, all visual elements are derived from the UIView object described
in UIKit. A custom control is basically a custom class that is derived from a UIView
class and is responsible for displaying itself visually on the screen.

Some controls such as the stock ticker will display the data based on the stocks that
you might want to track. In the case of a progress bar, however, you might want to
set the progress and then also retrieve the progress status at some point.

Custom Controls

[90]

Creating a class
First, let us start with the basics; we will create a class and give it some properties.
Since this is a visual class, we will need to derive it from UIView. Perform the
following steps:

1. Start a new project and name it customControl1:

2. Click on Main.storyboard to open it in the editor and then drag a view
control onto the View Controller scene. This will be the placeholder for our
custom control. Since the view has a white background and so does our
scene, it is a little difficult to see white on white. Change the background
color to Light Gray and set the size of the control to 100 x 100. Now
it will be manageable and visible.

Chapter 5

[91]

3. Next, create a new Cocoa Touch Class that is a subclass of UIView.
Select File | New | File and under Source, select the Cocoa Touch Class.
Name the class CustomControlView and make it a subclass of UIView.

4. Open the storyboard in the main editor and open the newly created
CustomControlView.swift class in the assistant editor.

5. Select the UIView control and, in the Identity inspector (CMD + 3), change
the class to CustomControlView. Remove all the commented code provided
by the Xcode template—that is, between the /* and */. Just leave the top
lines of import and the class declaration, as it is easier to work with a clean
blank slate.

Properties
The custom control that we create will be a simple placeholder that displays the size
of the control. We need a property, backColor, for this control. This can be easily
created with Swift, as follows:

var backColor = UIColor.lightGrayColor()

We also need to override the layoutSubViews function, called when the view is
created, resized, or scrolled:

override func layoutSubViews() {
 //set the background color
 self.backgroundColor = backColor
}

Custom Controls

[92]

Change backColor to UIColor.redColor(). You will see no change in the view.
What we are after is a custom control that is interactive and changes when we make
changes in our code.

This is pretty simple and easy. All we need to do is add the @IBDesignable attribute
before the class declaration. Xcode will compile the code in the background. Voilà,
the color changes to red! You will also notice that there is a new attribute added
under the class called Designables with the text, Up to date:

This should help you to understand and look at what Xcode has to offer in terms of
live previews.

Chapter 5

[93]

Changing properties from the inspector
It would be nice if, instead of changing the color in the code, we could change it
from the inspector. For us to be able to do this, we need to set the @IBInspectable
attribute before the variable that we want to expose in the Attributes Inspector. In
our case, it would be @IBInspectable var backColor = UIColor.redColor(),
and Xcode will show this attribute under the Attributes Inspector option. you can
see the same show up as can be seen in the following figure.

Select a color from the drop-down list. If you navigate to Identity Inspector, you will
be able to see the color under User Defined Runtime Attributes. You will see that
there is absolutely nothing more you need to do. Now if you select a new color from
Xcode, the view updates automatically.

Enhancing custom controls
This is the easiest example to demonstrate a very simple custom control and how it
works. However, when we want something a bit more complex that requires drawing
lines and images, we can use CALayer, which is more efficient in comparison. The
CALayer class is available in the QuartzCore framework, so you will need to import it
before you can start using the CALayer class reference or CAShapeLayer:

var theLayer:CAShapeLayer!
override func layoutSubviews() {
 if theLayer == nil {
 theLayer = CAShapeLayer()
 layer.addSublayer(theLayer)
 }
}

Custom Controls

[94]

First, we need to declare theLayer as an optional variable. Then, when the
views are laid out, we need to check whether the variable is nil—that is, not
declared—and create it as required.

Now that we have created the layer, we can get some information about the bounds:

let rect = CGRectInset(bounds, width/2, width/2)
var path = UIBezierPath(rect: rect)
theLayer.path = path.CGPath

theLayer.fillColor = backColor.CGColor

Now, instead of setting self.backgroundColor, we can set the color for the layer.
Layers use color as CGColor and not as UIColor. We simply pass it in that format:

theLayer.fillColor = backColor.CGColor
theLayer.strokeColor = foreColor.CGColor
theLayer.lineWidth = width
theLayer.frame = bounds

We need to add a couple of properties with the custom control that we will use in
our project:

@IBInspectable var backColor:UIColor = UIColor.redColor()
@IBInspectable var foreColor:UIColor = UIColor.whiteColor()

@IBInspectable var width:CGFloat = 1
var theLayer: CAShapeLayer!

Our control now has an outline via the foreColor property and the background color
via the backColor property. The width property determines the thickness of the line
used in the drawing of the custom control, as shown in the following screenshot:

Chapter 5

[95]

To draw a line diagonally across from the top-left to the bottom-right, we need to
add a line to the path with, like a strike-out like a strike-out. Add this code before
the theLayer.path = path.CGPath line:

path.addLineToPoint(CGPointMake(rect.width, rect.height))

Adding some text
To add some text to this control that shows the size of the control over it, we need
to create new CATextLayer; this is similar to CAShapeLayer but is more efficient in
comparison. After all, it is more suited for text.

First, we need to add another property the variable declarations:

var txtLayer:CATextLayer!

Then, at the end of the function, after theLayer.frame = frame, we can add the
following piece of code:

If txtLayer==nil {
 txtLayer = CATextLayer()
 layer.addSublayer(txtLayer)
}
let size = txtLayer.bounds
let szW = Int(size.width)
let szH = Int(size.height)
txtLayer.string = "\(szW) x \(szH)"
txtLayer.foregroundColor = foreColor.CGColor
txtLayer.backgroundColor = nil
txtLayer.fontSize = 12
txtLayer.position = CGPointMake(CGFloat(szW/2), CGFloat(szH) -
(txtLayer.fontSize/2))
txtLayer.alignmentMode = kCAAlignmentCenter
txtLayer.bounds = bounds

Custom Controls

[96]

Now, we can see that the custom control displays its size at the center of the control.
This can be used as a placeholder in your applications to quickly see the size of
the control:

Frameworks
When you want to create a custom control, Apple recommends that you simply follow
these four easy steps:

1. Create a framework.
2. Create a subclass.
3. Mark the class as IBDesignable.
4. Set the class of the view to the custom class.

To be able to debug the code of the custom control, it needs to be run; however, while
you are working with Interface Builder, writing the code, it is not really running.
When you create a framework, Xcode compiles and runs the code and also allows you
to debug it.

A simple rule about frameworks is that if the code appears more than once, it probably
belongs in a framework.

Creating a framework
We saw from the recommendations made by Apple, that custom controls should
be placed in their own framework. The simple reason is that, if you want to use this
control in an Objective-C project or distribute it to your friends and customers, you
might want to keep it on its own as a framework. Moving an embedded custom
control to a framework is easy, as we will see through the following steps:

1. First, select the project in the project navigator. In the main editor,
this will bring up the information and build settings.

Chapter 5

[97]

2. Click on the CustomControl1 drop down on the top-left of the
editor window:

3. Then, click on the drop down and select Add Target.
4. Select the template type for the new project, which in this case will be Cocoa

Touch Framework. Give it a name; I am using MyCustomControl. This is
similar to creating a new project that is embedded in the main project.

5. Next, click on the MyCustomControl folder in the project navigator and
navigate to File | New | File.

6. Select the Cocoa Touch Class template, make it a subclass of UIView, and
call it MyCustomControlView. The process is mainly the same as the one we
did earlier at the start of this chapter.

Custom Controls

[98]

7. Lastly, as before, set the class to @IBDesignable, add the appropriate
@IBInspectable to properties as required, and finally write the code for
your custom control.

8. Now, place a view control on the storyboard scene from the object library
and change the class name to MyCustomControlView. You will be able to see
that this control is interactive during design time.

Debugging custom controls
Xcode makes it easy to debug a custom control; it is as simple as selecting the custom
control and then navigating to the Editor | Debug Selected Views menu. However,
the first thing to do is to set breakpoints in the source file and then select Debug
Selected View from the menu. All the debugging tools and features will be available
as soon as the breakpoint is hit.

Debugging tools and features

Chapter 5

[99]

Summary
In this chapter, we had a look at the four-step recommendation made by Apple to
create custom controls. You learned how to subclass UIView to use it as a custom
control. You also learned about the IBDesignable and IBInspectable attributes,
that allow Xcode to display the control and let the user interact with it. We also saw
briefly that we can debug the control in design time rather than at runtime.

In the next chapter, we will look closely at debugging.

Debugging
In this chapter, we will cover the following topics:

• Breakpoints
• Console
• Debug view hierarchy
• Data tips and quick look
• Debug gauges

Everyone knows that debugging is twice as hard as writing a program in the first
place. So if you are as clever as you can be when you write it, how will you ever
debug it?

– Brian Kerninghan

No one writes code with the intention of introducing bugs. However, there are
situations where despite the best intentions our worst nightmare comes true—the
code crashes. Even with the new advancements that check for code issues and type-
safe code, to make a long story short, even then bugs can creep in and cause crashes.
Crashes and bugs are not just code errors; they could be missing or unreferenced
libraries. There could also be a case where you might be attempting to optimize your
code. Debugging provides you with a way to go through your code, and Apple has
a whole heap of tools and utilities to help you achieve this task.

Debugging

[102]

Breakpoints
When you run your project, it opens up in the Simulator or the device (mainly in
the simulator). You can stop it from running with the stop button. Clicking on the
stop button returns you to your code. You can then update your code and rerun the
project. Everything is fine but, if there was an error while the project was running, it
goes back to Xcode and displays a source, either your own source code or some other
code where the error occurred. However, instead of waiting for errors to break your
code and provide you with an opportunity to debug it, you could set breakpoints.
Breakpoints are, as the name suggests, points in your code that cause the running
code to break (go to debugging mode) when the execution reaches that point.

One of the ways in which most developers try to resolve errors is by including
statements that output some text and check what happened or is happening. This
could work for some. However, these will have to be removed when you build your
application for release. Then, there are times when your code does not do what you
expect. For example, it loads the wrong image or does not display one, and so on.
This will not crash your code and hence will not bring up the debugger, but you
might still want to know the reasons why it did not work. The worst thing after an
application that crashes is an application that does not do what it is expected to do.

Creating a breakpoint is quite simple; just click on the line number in the code editor
and you will see a blue mark on that line. Click on it again and it will turn lighter
indicating that the bookmark is inactive. Removing a bookmark is easy; simply drag
the bookmark onto the code and it will turn into a dust ball and be removed once
you release the drag.

There are additional types of breakpoints, as follows:

• Exception breakpoints
• Symbolic breakpoints
• OpenGL ES error breakpoints
• Test failure breakpoints

On the breakpoints navigator screen, the + button at the bottom can be used to add
these additional breakpoints.

Chapter 6

[103]

Listing all the breakpoints
The breakpoint navigator (CMD + 7) displays all the breakpoints. The listing displays
the source file and the line number where the breakpoint is created. Clicking on these
breakpoints will quickly navigate to the location in the code where the breakpoint
is set:

Navigating
When Xcode breaks execution at a breakpoint, it offers you a couple of options to
work with the code. You can continue executing the code (unless there is an error,
which is equivalent to a crash if it was not being debugged). Then, there are the
options to step over, step into, and step out, hierarchy view and location:

• Step over: This executes the line or function and goes to the next line
• Step into: This executes the line or jumps to the function being called
• Step out: This exits the function and jumps to the line of code it was

called from
• Hierarchy view: This allows you to see all the elements on the screen

Debugging

[104]

• Location: This allows you to set the location for the simulator since it does
not have GPS capabilities

Xcode also displays a list of variables in the current module and function. These
variables can be expanded, viewed, inspected, and even printed onto the console.
The variables also display their type, which can be useful to determine the type of
the variable when debugging.

When an error occurs in your code, there are a questions that need to be answered to
help get a solution for the crashing code:

• What happened and why has the code stopped execution? Xcode displays
this on the right-hand side of the editor.

• Which code resulted in this outcome? This line of code is highlighted in
green with the reason why the code stopped execution.

• Investigate the variable and its values. Xcode displays the list of variables
and their values just under the debug toolbar.

• Lastly, fix the code as required and step through the code.

The console
The console is the area that displays all your system-generated messages and the
messages that are printed using println or NSLog. The messages are displayed only
when the application is running. This console provides interactivity when in debug
mode. In interactive mode, you can view the values of variables and objects, run the
debugger commands, inspect code, evaluate it, step through it, and even skip code.

For most developers that are new to debugging with Xcode, the GUI is self-sufficient
and provides all the tools and icons to access these tools. However, if you want to
use the command line in the console, you have the lldb commands at your disposal.
Some of the commands that might be useful are as follows:

• thread info: This displays information about the thread including the
reason why the break occurred.

Chapter 6

[105]

• thread backtrace: This dumps the trace and the frames. This information
is displayed graphically as the thread information, which you can see in the
previous screenshot.

• frame select n: This is quite useful when you are trying to focus on what
the piece of code being executed is. It displays a couple of lines of source
code around the line of that frame.

• br: The b or br command allows you to work with breakpoints. Although
you can set the breakpoints by simply clicking on the line in which you want
to set them, you can also do this from the console. However, these do not set
visual breakpoints:

 ° br l: This lists all the breakpoints that are set.
 ° b function_name: This sets a breakpoint for a function.
 ° b filename:line: This sets a breakpoint in the file specified by the

filename at the specified line number.
 ° br del num: This deletes the breakpoints. Use the list command to

see a list of the breakpoints that are set.
 ° br m –c "condition": This sets the condition for the breakpoint.

When you list the breakpoints, it displays detailed information about the breakpoint
and also the number of times the breakpoint was reached.

A life saver in the console is the command po, which is the short for ‘print out’. This
simply prints out the value of the variable following the po command. Sometimes
this is more useful as you can use this to cast the values. For example, po theData as
myClass.

The ability to switch to the REPL mode (Read-Evaluate-Print-Loop) is new in Xcode
6. The REPL mode is specific for Swift. Getting into the REPL mode is as simple as
typing repl in the console. Once you're in the REPL mode, you can type in the Swift
commands or even write functions that can call or be called from your code. When
you are done, simply type : to exit the REPL mode back to the lldb debugger.

Understanding the debug information
When you reach a breakpoint or an exception/error, you can look at the information
that is displayed; but what does it all mean? Here's a quick look at the information
displayed and how to use it to debug and resolve the issues.

First, when the execution is interrupted either by reaching a breakpoint or an
exception or by physically stopping the execution, lldb displays the reason for
the code interrupting execution and all the frames and threads, as relevant.

Debugging

[106]

To quickly understand debugging, let us create a new single-view project and call it
myDebugging. Now, open the ViewController.swift file in the editor and add the
code immediately after the ViewController class declaration line:

var counter = 0

Next, add the following code to the viewDidLoad function:

NSTimer.scheduledTimerWithTimeIntervals(0.5,
 target: self,
 selector: "runme:",
 userInfo: nil,
 repeats: true)

Lastly, create a function called runme. This function is called every time the timer
that we created in the previous code fires:

func runme(timer:NSTimer) {
 counter++
 if counter <= 10 {
 println("timer fired \(counter)")
 } else {
 timer.invalidate()
 }
}

Now, when we run the project, it displays timer fired 1, goes on till 10, and then
stops printing. This is because of the timer.invalidate function that stops
the timer from firing more events.

To start debugging, click on the line that has func runme. So, now whenever the
function is called, Xcode will go to the debug mode.

You will notice that the line is highlighted and, to the right, Thread 1: breakpoint 1.1
is displayed. This means that the code has stopped because of a breakpoint.

We asked a couple of questions earlier, among which was: What caused the
break? We can see the reason for the break in the code editor and also type thread
information into the console. It will display something like the following code:

thread #1: tid = 0x1302c, 0x00000001006afab3 debugging`debugging.
ViewController.runme (timer=0x00007fb6c1b6d250,
self=0x00007fb6c0d23e70) (ObjectiveC.NSTimer) -> () + 19 at
ViewController.swift:34, queue = 'com.apple.main-thread', stop reason
= breakpoint 1.1

Chapter 6

[107]

You can see that debugging`debugging.ViewController.runme is the
representation of <Project>`<Folder>.<ClassName>.<function>. It simply
means that the project is called debugging and the folder in this case is also called
debugging. The class name for this is ViewController and the function is called
runme. Further down, you can see ViewController.swift:34 that indicates a
human-readable form for the source filename and the line where the breakpoint
is created.

Let's list out the breakpoints. We can list them by typing the br l command in the
console; it will display something like this:

Current Breakpoints:

1: file = '/Users/Jayant/Desktop/Projects/debugging/debugging/
ViewController.swift', line=33, locations = 1, resolved = 1, hit count =
1

 1.1: where = debugging`debugging.ViewController.runme (debugging.
ViewController)(ObjectiveC.NSTimer) -> () + 19 at ViewController.
swift:34, address = 0x00000001006afab3, resolved, hit count = 1

We can inspect the variable counter by using the po counter command; if this were
the first run, it would return the value of 0. We can also modify the value by using
the expr counter = 5 command; this will set the value of the counter to 5. You can
click on the Continue button to continue running the code till the next breakpoint
stops it (or use the key combination CTRL + CMD + Y).

The scope of this chapter is a simple introduction and this can be a bit difficult to
take in at one go; so play around with it and try the commands listed in this chapter.
If you get stuck, just stop the project and rerun it.

Visualizing variables with the Quick Look
functionality
If you have worked on a Mac, you would be aware of the Quick Look functionality.
It provides a way to quickly see a file's contents without having to open it in the
associated application. As you saw earlier in Chapter 3, Playgrounds, with Xcode you
can now visualize objects and structs such as CGRect, CGPoint and so on. However,
when it comes to your own classes, Xcode does not know how to render these. Your
class can be an image, a text, or a combination of these. For example, if our object
is an employee class, should it display the image, the employee number, or the
employee name? The choices or options are endless. However, you are the best judge
to decide the best way to visualize the employee class. So, Xcode provides us with a
function that we can use to visualize the class as per our specifications.

Debugging

[108]

Let us see how Quick Look works with our custom class that we created in the
previous chapter. After opening the project, click on the myViewController.swift
file and add the following code before the last curly bracket:

func debugQuickLookObject() -> AnyObject {
 return "This is the custom preview text"
}

Create a breakpoint on the viewDidLoad function. Now, if you run the application,
you can see it in the self variable in the watch list, as shown in the following
screenshot:

Creating a breakpoint on the viewDidLoad function

In the context of this example, the self variable refers to myViewController.
You can click on it and then click on the little icon that looks like an eye. This
displays a pop over with the visual representation of the custom class. In this case,
since we return a string value, it displays the text in the pop-up, as shown in the
preceding screenshot.

Chapter 6

[109]

Using images with quick view
We can alternatively return a UIImage object or draw on one and return it. We can
also render the current view to show what we have on the screen. This is relatively
simple. Replace the debugQuickLookObject function with the following code:

func debugQuickLookObject() -> AnyObject {
 let theView = self.view
 UIGraphicsBeginImageContextWithOptions(theView.bounds.size, false,
0)

 if !theView.drawViewHierarchyInRect(theView.bounds,
afterScreenUpdates:true) {
 theView.layer.renderInContext(UIGraphicsGetCurrentContext())
 }
 let image = UIGraphicsGetImageFromCurrentImageContext()
 UIGraphicsEndImageContext()
 return image
}

Using images with quick view

Debugging

[110]

Debugging the view hierarchy
When an application is running, it is made up of a hierarchy of windows and views.
As you create elements, they are combinations of views and subviews. This is similar
to what we saw in the previous chapter where we subclassed a UIView with our
custom class to create the custom control.

Chapter 6

[111]

While debugging, you can inspect the variables, the code, and so on, and investigate
any code issues. However, if a particular view is presented in an unexpected order
other than and gets covered, it will not be seen. You could spend a lot of time trying
to debug the code before you discover that your text or image was covered by
another one. When you use the hierarchy view, you can see all the views exploded
and you can also rotate the view to display all of them. Apple introduced this feature
in Xcode 6 and it offers options to display the views along with their attributes.
These attributes can be inspected in the inspectors.

Debugging

[112]

Introducing debug gauges
When you start an application, the navigation viewer changes to the debug view
where you can see some gauges. These gauges provide you with information about
features such as CPU usage, memory usage, and so on. This also displays all the
threads running with the functions:

Debug gauges

The CPU report displays information about the process that is being run. In the
preceding screenshot, the Memory report is displayed and you can see that 17.6 MB
of memory is in use by the application, 0.43 percent of the total available memory.
The Usage Comparison report shows the memory in use by other processes. This is
clearly running in the simulator on a Mac with 4 GB of RAM. When you are testing
and optimizing, you must use a device.

Similarly, there are gauges for CPU usage, disk usage, and network usage. Therefore,
I you added functionality for other features such as iCloud, and so on, then the
appropriate gauges for these would also be displayed.

Chapter 6

[113]

Summary
In this chapter, you saw that, despite reducing errors at precompile time, errors
can still slip in and crash or prevent your code from doing what is expected.
Apple provides a powerful debugger and features that allow you to debug your
code, both visually and functionally. You also saw how you can create custom Quick
Look previews for your own classes. Lastly, you also received a brief introduction to
the debug console and its commands. For the scope of this book, we had a brief look
at the relevant features in Xcode that you might use for debugging. Debugging by
itself is vast and can warrant an entire book.

In the next chapter, we will compile and package everything to create our application
ready for deployment to the testers or the store.

Building and Running
In this chapter, we will cover the following topics:

• Simulator
• Organizer
• Code signing
• Archiving

In the last few chapters, we have explored some of the features of Xcode. From
writing the code to debugging it and ironing out bugs (if any). However, we can't
give our application to our testers and/or upload it to the App Store as-it-is in
source-code form. The first step in running our application is simply achieved by
clicking on the big Run button on the top-left corner of the Xcode window. This
compiles and runs our code into a simulator (by default) or the target as specified.

Simulator
Apple provides a simulator that can be configured to simulate several iOS devices.
With Xcode 6, Apple has provided the iOS7 and iOS8 simulators (though you have
to download the iOS7 simulator). There are a few things to note about the simulator:

• It is a simulator, not an emulator
• Most of the hardware-specific features are not supported
• Some of the features do not work on the simulator with iOS8 simulation

For speed-testing and optimization, the code should be run on a device. The
simulator is no stranger to us, as we have been running our code and testing
it in the simulator.

Building and Running

[116]

Choosing the device
When testing, you might want to test the application on different devices such as
the iPhone or the iPad to check how the application renders on different devices.
You might also want to choose how the application runs on normal iPad and retina
iPad devices. It would be unwise to submit an application to the App store without
testing on a device. To give an example, say you have an application that requires
a phone-specific feature. You have tested against a physical phone, and it works all
right. Now, your user downloads the same onto an iPod Touch. There is a chance
that the application will crash as that phone-specific feature would be missing. It is
best to check against a majority of hardware as possible and also check for device
capabilities that you might want to use in your application.

Preparing for distribution
Once you have satisfactorily tested your application with the simulator and/or the
device, you need to prepare it for distribution. The first stop to do so is by clicking
on the application name in the project list that brings up the screen, displaying
details about the application. Let's create a single view application called Chapter
7. We will use this template application (it does nothing for now) and prepare it for
distribution. We will customize the different aspects that one might need at the end
of their application.

Chapter 7

[117]

Configuring the project settings
The fist tab you can see is the General tab. Under this tab, you will find major
options listed in the following subsections. In the most basic scenarios, all one
needs is present in this tab—for example, would the device support the various
orientations; should the status bar (displaying the time and battery level) be visible?

The Identity section
This helps to set up attributes such as Bundle Identifier, Version, Build, and Team.
Once you have your Apple Developer account set up, Team will show your team
name (generally your developer apple ID). If you have a new installation without
any account, the Add an account option helps you to set up your account for use.
You can also view your account details at any time via Preferences (CMD + ,).

Building and Running

[118]

The Deployment Info section
The Deployment Info section is useful to set the various aspects such as the
orientation and the devices on which the application should run. The first option
is Deployment Target. This is the setting that specifies the minimum iOS version.
The next option is Devices that specifies the devices on which the application can
run. This can be iPhone, iPad or Universal (both). The Device Orientation option
specifies the orientations that the device would adapt to/support. The Status Bar
Style option specifies the type of status bar, light, or default and the status bar can
also be hidden.

Application icons and launch images
This is where you can specify the icons that will show up on the main screen from
where the application is launched. The little arrow next to the AppIcon option takes
you to images.xcassets that allows us to specify all the icons required as per the
various resolutions and sizes:

If you have worked with or read about Xcode, you might have read about
the filename, filename@2x. This was introduced allowing developers
to add retina capable assets to their projects. With the minimum entry
barrier raising to an iPhone 4S, the devices are all retina enabled and
hence you do not create the 1x assets any more.

Chapter 7

[119]

The launch image is the image that displays when the applications starts, also
called the splash screen. Apple's suggestion for Splash Screens was to make it
like the empty UI of your application. So, as far as the user was concerned, the
application started instantly from the time they saw the splash screen. However,
many developers would want to utilize this to display their logos, their publishers'
logos, and so on. These were static images called Default.png; you could, like icons,
have multiple splash screens for each device type and orientation. So you could have
two Splash screens for the iPad, one in portrait and another in landscape. Then, you
could have another two for Retina iPad and so on.

With Xcode 6, Apple has allowed the use of a XIB or storyboard file as a launch
image. This is a single view like our application that is displayed as the Splash
Screen. This could be used to display an animated Splash Screen, which is a custom
loading screen. The following is the image of LaunchScreen.xib that is used as the
launch image for the sample application. Note that this was automatically created
by XCode 6.

The advantage of using a launch screen is that this is code driven and can include
dynamism as compared to a static image.

Building and Running

[120]

Linked frameworks and libraries
This allows you to add any libraries or frameworks that you need to your application.

The Capabilities tab
Under the Capabilities section, you can visually specify the options supported by your
application. The way to set or unset any option is via a checkbox that specifies ON
or OFF. The good part of this section is that it takes away the arduous task of linking
frameworks and setting a key in the info.plist file. When you unset, it also removes
those settings. If you have ever used any of these features in earlier versions of Xcode,
you will know how painful and ugly this process could become. With Xcode 6, it
automatically generates the required entitlements and provisioning certificates.

The Info tab
This is the section that displays the info.plist file that is used by the application
to determine its capabilities and settings. Apart from the custom plist settings, it
also allows you to set up the document types and custom UTI and URLs that the
application will support. This is useful to allow your application to be able to handle a
particular file type or handle a URL. Even with a simple application, you might have
to visit this tab to add a key or tweak a setting. The most common scenario would be
to specify the setting for location access authorization.

Chapter 7

[121]

The Build tabs
There are three additional sections, Build Settings, Build Phases, and Build Rules.
We will not go into detail about these. It could be very rare for you to get to these
sections. However, you could use this to fine-tune the compilation and linking
flags. Earlier, you could specify the certificates and so on to use for signing the
application. Now, in Xcode 6.1, Apple makes it easy for you and automatically sets
the appropriate certificates and so on. As a beginner, you could get away without
ever having to peek under the bonnet and tweak any settings in these tabs. Going
through these settings in detail is a bit out of scope of this book. However, note
that you can, if you want to, change a specific provisioning profile under the Code
Signing section. In a real-life scenario, you might be developing with your own
certificates but, when you want to deploy the application, you might want to use a
client certificate. You can change from the automatic value set by Xcode here.

The Targets tab
Not all projects are applications; you might want to create a framework, a test,
a library, or any other type. You could do this because you might not want to
distribute the source code to anyone and instead offer them a binary that they
could use in their application (via the embedded binary option).

Building and Running

[122]

Each target has its own set of options associated with it; when you click on the
different ones, you get different options. There are two sections namely: Project and
Targets. Under Targets, by default, Xcode adds two options; one is the application
and the other is the set of tests for that application.

Setting project-wide properties
The project settings page allows you to quickly configure the settings for the
project—things such as the iOS deployment target. The settings we looked at
earlier were specific for each target. This setting allows you to specify the minimum
iOS version installed on the device for the application to run. Please note that the
minimum requirement to run a Swift application is iOS 7.1; thus, if your application
is written with or has a Swift component, setting a value lower than 7.1 will not work
and the application will crash on launch.

This also allows you to specify the build type, debug, or release.

Chapter 7

[123]

Code signing
After you have finished testing and trying out the various settings, you need to
build a binary that you can upload to the App Store. This is where a lot of new
newcomers to Xcode get stuck. The general expectation is to receive a binary file that
can be uploaded to the App Store. The earlier workflow in Xcode was exactly that
simple. Start the build process and, it would compile and generate the final binary.
You could pick up the relevant one from either the Debug directory or the Release
directory. However, there is no such option available anymore. There is a small
trick to it to get a release build for the App Store. I call it a trick because the natural
assumption is that, when you compile the code, you will be presented with an end
result as per the settings chosen. Perform the following steps:

1. Ensure that Bundle Identifiers, assets, and so on are all set
2. Ensure that, under the Build Settings section, under Code Signing, the

CODE_SIGN_IDENTITY under Release has iPhone Distribution and the
Any iOS SDK has your team ID; if you are compiling for a client, you select
their distribution identity and not your own, or vice-versa.

3. Also ensure that the PROVISIONING_PROFILE setting has the appropriate
certificate that you want to use for distributing this application.

4. Change Destination under Product to iOS Device. The literal value of the
iOS device not a connected iOS device or a simulator device.

5. Now, if you look at the Product menu, there is an option that was disabled
earlier and is now enabled. This is the Archive option. Select the Archive
option from the menu:

6. This will compile, code-sign, and create an archive of your application. This
archive can be found in Organizer. To display the Organizer window, from
the Xcode menu navigate to Window | Organizer.

Building and Running

[124]

Organizer
The organizer is the place where you can navigate and find all of your projects
and archives. Under the projects, you can find all of the projects that you opened
on that machine. You can also create snapshots, a saved version of your code like
a versioning system. This is sometimes useful to check and fix bugs if your users
provide you with crash reports. The organizer also houses the archives; this is
of interest to us as this is how Apple has provided a workflow to upload your
application to the App Store.

As you can see in the preceding screenshot, there are three projects that have been
archived including our sample Project Chapter7. Since there was no icon specified
for this, you are seeing the default blank template used for icons. From here, you can
run the Validate, Submit, or Export commands. Validate checks for all of the libraries,
dependencies including related files, and the certificate used for code signing.

Chapter 7

[125]

This is quite handy as it checks for the preliminary issues that could cause your
application to be rejected by Apple. However, this assumes that you have created an
entry on the iTunes App Store for your application. Post validation, the application
can also be submitted to the App store right from the Organizer window. Once it
is uploaded, you wait for Apple to review and approve your application. Once it is
approved, you can log into iTunes Connect and make it available for sale (if you set
a later date), control the price, and so on.

Summary
Xcode has seen a lot of improvements and changes. Creating an application
has become easier and more integrated than it used to be a couple of years ago.
Certificates were a big hassle, which has now been integrated into the Xcode
workflow. Some developers might feel that the way release binaries are created are a
bit strange and rather inconvenient, whereas on the other hand, you no longer have to
search for it, zip it, and so on. It is all integrated. Creating an application with Xcode
is much faster and easier, add to that the introduction of the Swift language makes it
simply a breeze. Hope this book has been able to introduce you to Xcode and get you
started and look forward to seeing what you can achieve with this knowledge.

Conditional Execution and
Interface Designing

"The only thing that is constant is change"

 – Heraclitus

From the time Swift was introduced on stage to the first public release, there have
been many changes. This is mainly because Swift has been thrust into the limelight
due to being an Apple technology. This has also added the pressure for it to become
a mature language. There will definitely be changes in the way Swift works in
future. So bear that in mind that the tools around it will reflect the dynamic nature
of change. It is not only about Swift; other aspects such as the editor, storyboard,
and the debugger could also start to reflect the new changes.

Coming back to the present time, there are a few things that were important to
discuss with respect to developing with Xcode, some little gotchas that needed a
little getting around. This section actually came up as a result of the rapid changes
that were introduced in Xcode 6.

More?.Swift!
From the version of Swift demonstrated at WWDC, to the current version that is
available with Xcode 6, Swift has seen changes. Some syntax changed and in some
cases the way the command/keyword worked changed. However, there are some
important concepts that will always be important.

Each language has its own peculiarities that confuse or keep a beginner at a distance.
These include +(void) or -(void) found with Objective-C, or object.method(),
and object:method() found in Lua or ? and ! found in Swift.

Conditional Execution and Interface Designing

[128]

What do those two symbols mean in the context of Swift code? The answer to that
in a sentence is: ! and ? are used to identify optionals. We did discuss that Swift is
a typesafe language, which means that the compiler ensures that every variable is
of a particular type; if you assign the wrong type, the compiler complains, thereby
avoiding a runtime error or a crash.

Consider the following lines of code:

var name:String = "Jayant Varma"
name = "Alexander" // reassignment works
name = 123.45 // does not work
name = nil // does not work

We can assign a new value of the same type but not of a different type. Even if the
variable was of type Any, you cannot assign nil to it. It is important to note that nil
indicates the absence of a value.

Let's look at another scenario; if we were to declare our variables, due to Swift being
a typesafe language, you are expected to specify a type. So you cannot simply have
code that says:

var theName //Type annotation missing in pattern

You have to specify it like this:

var theName:String // Class <classname> has no initializers

However, when you try to compile it, Swift's compiler will throw errors. The
compiler expects that the variable is assigned a value via the initialization functions.

With primitives, you can specify default values, such as a blank string or a 0
for numbers:

var theOldBookName:String = ""
var theOldVersionNumber = 0
var theBookName:String = "Xcode Essentials"
var theVersionNumber = 6

Even though we have theOldBookName assigned the value; of an empty string or
theoldVersionNumber with 0, it indicates the presence of a value.

With objects, you simply wouldn't create an object to assign a value, you might want
to assign a nil value to the variable and then check if the variable was initialized
with a value or not. If you try to assign a nil as we saw earlier, an error is thrown.
Say we have a function that returns the number of books sold when we pass it the
book ISBN. We store that result in a variable like this:

var booksSold = getBooksSoldByISBN("9781430246626")

Appendix

[129]

The only issue with this code is that, if the function could not find the ISBN number
or does not have any data on the number of books sold, it returns nil. If we try to
assign nil to the variable booksSold, we get an error as the variable cannot hold nil
values. This is where optionals come in handy. We can mark a variable with ? at the
end of the variable type to tell the compiler that that variable could now have or not
have a value (that is, nil):

var booksSold as Int?
booksSold = getBooksSoldByISBN("9781430246626")

We can also display the number of books sold using the value of this variable:

let message = "We sold \(booksSold!) books"

The compiler instantly starts to complain because the initializer for string cannot
accept nils. We need to unwrap the variable. Unwrapping simply means that it
transfers the variable from being of the optional type to the underlying value type.
To unwrap, we use the ! symbol:

let message = "We sold \(booksSold!) books"

If the ! symbol is used at the beginning of the variable name, it acts as
Boolean negation; it unwraps an optional only if used at the end of the
variable name.

This is called forced unwrapping. Like the ? symbol informs the compiler that a
value might be missing, the ! symbol tells the compiler that a value exists. If you use
a ! symbol and the value is nil, you will definitely have a crash. If you run this line
in the playground, you will see that an error that occurred as booksSold was nil.
Set the value of booksSold to 50000 and you will see:

booksSold = 500000 // getBooksSoldByISBN("9781430246626")
let message = "We sold \(booksSold!) books"

It is advised that you should check for nil values before using them, so your code
might look something like this:

booksSold = 500000 // getBooksSoldByISBN("9781430246626")
if booksSold != nil {
 let message = "We sold \(booksSold!) books"
 println(message)
 }

Conditional Execution and Interface Designing

[130]

Now if you comment the booksSold to leave it as nil, it will be fine but that adds
a lot of redundant code and checking. Swift offers a better way:

booksSold = 500000 // getBooksSoldByISBN("9781430246626")
if let numberBooksSold = booksSold {
 let message = "We sold \(booksSold!) books"
 println(message)
 }

This assignment using the let statement is called Optional Binding. It serves two
purposes: it assigns an unwrapped value to the variable and it works with the if
Boolean conditional statement. To the compiler, it instructs:

1. Unwrap the value of booksSold.
2. Assign it to the numberBooksSold variable.
3. If the value was nil or not present, then skip that block; otherwise execute

the statements in that block.

We could simplify it further and use the return value from the function as follows:

if let numberBooksSold = getBooksSoldByISBN("9781430246626") {
 let message = "We sold \(booksSold!) books"
 println(message)
}

There is one more interesting operator used with Swift, the ?? (double question
marks). This is also used with optionals and is called the nil coalescing operator:

var myNilVariable:Int?
println("The value of myNilVariable is \(myNilVariable ?? 100)")

This is used to provide a default value if the variable does not have
a value (that is nil).

You will see that the output displays 100.

Let's say we have another function called getSalesForBookWithISBN that returns
a class object. The members of this class that we are interested in are salesNumbers
and bookPrice. We could use them like this:

if let bookSales = getSalesForBookWithISBN("9781430246626") {
 if let salesNumbers = bookSales.salesNumbers {
 println("We sold \(salesNumbers) books")
 }
}

Appendix

[131]

We could use optional chaining as follows:

if let salesNumbers = getSalesForBookWithISBN("9781430246626")?.
salesNumbers {
 println("We sold \(salesNumbers) books")
 }
}

Note that we have a ? symbol at the end of the function; this indicates that, if the
value returned is nil, then do not check for the remaining properties. So you do
not have to first check if a valid class object was returned and then if salesNumbers
was not nil. This helps avoid a big mess of nested if let conditional statements.
Apple suggests the usage of optional chaining instead of using forced unwrapping,
as optional chaining fails gracefully, whereas forced unwrapping can cause runtime
errors due to nil values.

Here is another example of how your code can work gracefully with Swift
using optionals:

class theClass{
 var students:[String]?
 var className:String?
 var classCode:String?
}
var cp5290 = theClass()

Everything is fine till here, we have an instantiated class object of the theClass type
but all of its properties are still nil. Pay special attention to the array called students.
If we try to get the number of students from the array using the count function, we
could simply use something like this:

if var studentNumbers = cp5290.students?.count {
 println("We have \(studentNumbers) students in our class")
}

One last thing to note about declaring optional variables with respect to using
a ? or ! symbol is:

var name1:String!
var name2:String?
name1 = "Moe"
name2 = "Larry"
println("The name is \(name1) and \(name2)")

This outputs The name is Moe and Optional("Larry").

Conditional Execution and Interface Designing

[132]

All optionals that are declared with the ? symbol need to be unwrapped for use
whereas the variables declared with the ! symbol do not need forced unwrapping.
The preceding code line can be used as follows:

println("The name is \(name1) and \(name2!)")

This outputs The name is Moe and Larry.

With iOS development, you will invariably be using TableViews and you will see
a lot of ! and ?; hopefully, you will be able to understand it better after reading
this section.

As you use and get familiar with Swift, you will notice the beauty and ease of use
that Swift offers. Also note that Swift is an organically growing language and the
concepts discussed could change in future versions.

Differences between iOS 7.x and 8.x SDK
There are some differences between the iOS 7.x and 8.x SDK in the way things work.
Here are some examples and resolutions to get them to work.

Location services
Let's look at a simple application that gets the location fix and displays it to the
console. The steps for that are quite simple:

1. In a project that you want to add location capabilities to, we need to import
CoreLocation and declare a couple of functions:
import CoreLocation

2. Next, we need to add the CLLocationManagerDelegate protocol to the class
definition, which for the ViewController.swift file would look something
like this:
class ViewController: UIViewController, CLLocationManagerDelegate
{

3. Now, declare the variable to hold a reference to the location manager:
var locManager:CLLocationManager!

Appendix

[133]

4. Also declare the same variable in a function such as viewDidLoad or where
you might want to start the updates:
if locManager == nil {
 locManager = CLLocationManager()
 locManager.delegate = self
 locManager.desiredAccuracy = kCLLocationAccuracyBest
 locManager.distanceFilter = 10.0
}
locManager.startUpdatingLocation()

This would be fine, however; when position updates are received, we need a
function such as the following to handle them:

func locationManager(manager: CLLocationManager!, didUpdateLocations
locations: [AnyObject]!) {
 let arrLocations = locations as NSArray
 let newLoc = aLocations.lastObject as CLLocation!

 let lat = \(newLoc.coordinate.latitude.description)
 let lon = \(newLoc.coordinate.longitude.description)

 manager.stopUpdatingLocation()
 println("We got \(lat), \(lon)")
}

Now run this on the iOS 7.x simulator or device; everything works fine. Run this on
an iOS 8.x simulator or device and… nothing works:

You will find that, due to the new privacy policies on iOS 8.x, you have to first obtain
permission from the user to be able to access the location services. There are two
functions available that allow you to do so:

• requestWhenInUseAuthorization: This tries to get permission every time it
has to use the application in the foreground—that is, as an active application

• requestAlwaysAuthorization: This tries to get the permission for
access even when the application is in the background—that is it is
not the active application

Conditional Execution and Interface Designing

[134]

When you request either of these, it invokes the following function:

locationManager(manager: CLLocationManager!,
didChangeAuthorizationStatus status: CLAuthorizationStatus)

The status is one among: NotDetermined, Authorized, Denied, Restricted, or
AuthorizedWhenInUse.

Now, you run the application with the request for authorization functions added as:

locManger.requestWhenInUseAuthorization()

Just before the locManager.startUpdatingLocation() function, it still doesn't do
anything; it does not even ask for the authorization dialog. This is because there is
a key that you need to set in the plist file. The authorization functions will only
work as expected if this key is set. For requestWhenInUseAuthorization, the key is
NSLocationWhenInUseUsageDescription and, for requestAlwaysAuthorization,
the key is NSLocationAlwaysUsageDescription. The values for these keys are a
message that you can set.

Conditional execution
Whenever you have backwards compatibility in your application, you will have
to check for the device iOS version to ensure that you do not call functions that do
not exist; otherwise, the app will crash. The easiest way to manage this is to use a
conditional if statement. First, we can determine the iOS version on which the
app is running, as follows:

let device = UIDevice.currentDevice()
let iosVersion = device.systemVersion
let OS_8_OR_LATER = NSString(string: iosVersion).doubleValue >= 8.0

Appendix

[135]

After this, with a simple if statement, we can check the following:

if OS_8_OR_LATER {
 println("Only when we run the app on iOS 8.x")
} else {
 println("This would be iOS 7.x")
}

If you are uncertain and do not want to have version-specific code, you can also
check for the existence of a particular function with respondsToSelector. In our
preceding example, you could write the code that would work on both iOS 7.x and
iOS 8.x without errors:

if locManager.respondsToSelector("requestWhenInUseAuthorization") {
 locManager.requestWhenInUseAuthorization() // iOS 8.x only
}

Displaying alerts
If you have developed for iOS or searched some code samples on the Internet, you
will find a solution in the form of something called UIAlertView. This is a class that
allows you to quickly display an alert on the screen:

let vue = UIAlertView()
vue.title = "Hello from this Alert"
vue.message = "Whatever message here"
vue.addButtonWithTitle("OK")
vue.show()

The following is the alert screen:

However, to be able to detect and perform some action when the button is clicked,
you need to also add UIAlertViewDelegate and set delegate to self, and then
write the function to handle the button tap:

alertView(_ alertView: UIAlertView,
 clickedButtonAtIndex buttonIndex: Int)

Conditional Execution and Interface Designing

[136]

With iOS 8.0, UIAlertView and UIActionSheet have been deprecated and replaced
by UIAlertController. The AlertViews displays a message in the center of its
view while ActionSheet is displayed anchored to the bottom of the screen. The new
AlertController can display either style but note that this is available from iOS 8.x
onwards only.

Showing an alert with ActionController
You can display an alert using UIAlertController and add the actions like this:

let actController = UIAlertController(title:"Hello Fom this Alert",
message:"Whatever message", preferredStyle: .Alert)
let actOK = UIAlertAction(title: "OK", style: .Default) {
 (action) in
 // Code to handle the click here
}
actController.addAction(actOK)
self.presentViewController(actController, animated:true) {}

Showing ActionSheet with AlertController
You could display ActionSheet using UIAlertController by setting its
preferredStyle value to .ActionSheet like this:

let actController = UIAlertController(title:"Hello from the Alert",
message:"This is the ActionSheet alert", preferredStyle: .ActionSheet)
let actCancel = UIAlertAction(title: "Cancel", style: .Cancel) {
(action) in }
actController.addAction(actCancel)
let actOK = UIAlertAction(title: "OK", style: .Default) { (action) in
}
actController.addAction(actOK)
let actDestroy = UIAlertAction(title: "End of the World", style:
.Destructive) { (action) in }
actController.addAction(actDestroy)

self.presentViewController(actController, animated:true) {}

In case you are wondering what those funny { (action) in } lines are all about,
they are inline handlers or blocks, as those familiar with Objective-C will know them.
There are two ways to pass handlers, either as inline code (seen in the preceding
code) or as a reference to the handler, like this:

let actOKHandler = { (action:UIAlertAction!) in println("This is the
OK Handler") }

Appendix

[137]

Then, add an OK action as follows:

actController.addAction(UIAlertAction(title:"OK", style: .Default,
handler: actOKHandler))

You can see that the rest of the code is mostly the same. If you were to change
preferredStyle from .ActionSheet to .Alert, the same code would work
but would display the alert on the screen differently:

Action styles can be one of three button types, namely:

•	 .Default

•	 .Cancel

•	 .Destructive

You can also add other UI elements onto ActionController; however, we are not
going to cover that in this book.

Conditional Execution and Interface Designing

[138]

Designing in Interface Builder
We did discuss Interface Builder in detail in Chapter 4, Interface Builder; however,
there are a couple of tricks and tips that you could use. With the new UI changes
since iOS7, buttons have stopped being grey rectangles with a border and some
text. They are now transparent areas with just the text sitting there. It is difficult
to see their size on the screen, as it would not show up other than as text. This can
quickly be resolved by a simple setting, by going to Editor | Canvas | Show Layout
Rectangles | Show Bounds Rectangles. When these are turned on, you will see the
elements and their size.

Adaptive UI
In a previous chapter, we have not even skimmed the surface of what auto layout
and size classes can do for your projects. The advantage of these classes is that
your UI's adapt to devices based on characteristics as supplied by the class sizes.
If you have seen the iPhone 6+, it is the first iOS phone that adapts the screen to
both portrait and landscape mode. Here is a screenshot from the mail application.
You can see that it has a master-detail view like we are used to on iPads:

Appendix

[139]

From that point on, portrait mode does not have the sidebar, just the e-mail like we
are used to on iPhones:

This is because of the new class called UISplitViewController that adapts and
provides this functionality.

Conditional Execution and Interface Designing

[140]

Summary
We have nearly come to the end of the chapter and the book. In this short book, we
have tried to cover as much as possible while not subjecting you to a whole lot of
information. The content consists of what you might encounter or need to know to
get started, make your own apps, and have them App Store-ready. The mileage and
learning that each reader gets from the book could be different but we would like to
hear from you. We wish you all the best with your applications and your journey
with Xcode.

Index
A
Adaptive UI 64-67
AnyObject type

using 38
Any type

using 38
Apple development languages

about 23
Swift 23

application, Interface Builder
autolayout 79
coding 77
connections, managing 83
elements, adding for different

dimensions 76
elements, adding for different

orientations 76
gesture recognizers, adding 84
items, adding to Table View 71-75
quick help 82
subclassing 80-82

array objects
about 33
initializing 33
values, appending 34
values, enumerating 35
values, inserting 34
values, iterating 35
values, removing 34

arrays 32
assistant editor, Xcode 20
associative index. See dictionaries
attributes inspector 21
autolayout 79

B
basics, custom controls

about 89
class, creating 90, 91
enhancing 93, 94
framework 96
framework, creating 96-98
properties 91, 92
properties, modifying from inspector 93

Booleans 32
Bool type 32
breakpoint navigator 18
breakpoints

about 102
listing 103
navigating 103
types 102

C
canvas 61
classes

about 51
properties 52

closures
using 50

code signing 123
code snippets library 21
commands, console

b filename:line 105
b function_name 105
br 105
br del num 105
br l 105
br m –c "condition" 105

[142]

frame select n 105
thread backtrace 105
thread info 104

components, Xcode environment
debugger 10
editor 10
File View 10
Interface Builder 10
versioning 10

conditional execution
about 134
ActionSheet, displaying with

AlertController 136, 137
alerts, displaying 135
alerts, displaying with

ActionController 136
connections

about 86
managing 83

connections inspector 21
console 104
console output printing, Swift 29
control flow options, Swift

about 39
for loops 40
if..elseif..else statement 39
if..else statement 39
if statement 39
switch condition 42-46
ternary operator 40
While loop 42

Create a new project option
about 14
project options, setting 15
project properties, setting 15
project type, selecting 14

custom controls
about 89
debugging 98

custom controls, enhancing
about 93, 94
text, adding 95

D
debug gauges 112
debugger 10

debug information 105-107
debug navigator 17
dictionaries 33-35
dictionary object, values

adding 36
iterating 36
removing 36
replacing 36

Double variable 31

E
editor 10
elements, Interface Builder

about 62-64
Exit 63
First Responder 63
View Controller 63

Elvis Operators. See ternary operator
enhancements, Xcode 6

improved debugger 12
interactive coding, with Playgrounds 11
live design 11
Mac OS X storyboards 11
responsive UI 11
visual debugging 11

enumerations 54, 55
Exit element 63
extensions, Swift

about 55
operator overloading 56

F
file inspector 20
file template library 21
File View 10
First Responder element 63
Float variable 31
for-increment loop 40
for-in loop 40
for loops

about 40
for-in 40
for-increment 40
stepped ranges 41
using, with numeric ranges 41
using, with strings 41

[143]

functions
about 47
parameters 48
return values 47

G
gesture recognizers

adding 84

I
identity inspector 21
if..elseif..else statement 39
if..else statement 39
if statement 39
images

using, with quick view 109
infix operator 57
inspector section, Xcode overview

attributes inspector 21
connections inspector 21
file inspector 20
identity inspector 21
quick help inspector 20
size inspector 21

Interface Builder
about 10, 59, 60
Adaptive UI 64-67
application, building 71
connections 86
elements 62-64
interface, creating 61
scenes, adding 68, 69
segues 86
View Controllers, navigating

between 69, 70
Int variable 31
iOS 7.x, versus 8.x SDK

about 132
Adaptive UI 138, 139
conditional execution 134
designing, in Interface Builder 138
location services 132-134

issues navigator 17

K
key-value pairs. See dictionaries

L
location services 132-134
log navigator 18

M
Mac OS X storyboards 11
media library 22
Model-View-Controller (MVC) 77
multiple parameter function 48
multiple parameters

passing 49
multiple-return values function 47

N
named parameters 48
no-return value function 47
numeric ranges

for loops, using with 41

O
object library 22
objects

about 51
class 51
enumerations 54, 55

operator overloading
about 56
infix operator 57
postfix operator 56

optional parameters, default values 49
options, breakpoint

hierarchy view 103
location 104
step into 103
step out 103
step over 103

organizer 124, 125

[144]

P
parameters, function

about 48
multiple parameter function 48
multiple parameters, passing 49
named parameters 48
optional parameters, with default values 49
single parameter function 48

Playgrounds
about 11, 26
UI 26-28

postfix operator 56
prefix operator 56
println function 29
project navigator 17
project section, Xcode

about 17
breakpoint navigator 18
debug navigator 17
issues navigator 17
log navigator 18
project navigator 17
search navigator 17
symbol navigator 17
tests navigator 17

project settings, template application
about 117
application icons 118
Deployment Info section 118
Identity section 117
launch images 119
Linked frameworks and libraries

section 120
project-wide properties

code signing 123
organizer 124, 125
setting 122

properties 52

Q
quick help inspector 20
quick look functionality

variables, visualizing with 107, 108
quick view

images, using with 109

R
REPL mode (Read-Evaluate-Print-Loop) 105
return values, function

about 47
multiple-return values function 47
no-return value function 47
single-return value function 47

S
scenes

adding 68, 69
search navigator 17
segues 59, 86
simulator

about 115
device, selecting 116

single parameter function 48
single-return value function 47
size inspector 21
source code editors, Xcode overview

features 18, 19
stepped ranges, for loops 41
storyboards 59
strings

about 37
appending 38
for loops, using with 41
formatting 38

Swift
about 10, 23
concepts 127-132
console output printing 29
control flow options 39
extensions 55
features 23
functions 47
learning 29
objects 51
URL 23
variables 29

switch condition 42-46
symbol navigator 17

[145]

T
template application, preparing

for distribution
about 116
Build tabs 121
Capabilities tab 120
Info tab 120
project settings, configuring 117
Targets tab 121, 122

ternary operator 40
tests navigator 17
tuples

about 37
members, accessing of 37
named access, to tuple members 37

V
variables

visualizing, with quick look
functionality 107, 108

variables, Swift
about 29
AnyObject type 38
Any type 38
arrays 32
Booleans 32
declaring 30
dictionaries 33
different types, adding 31, 32
Double 31
Float 31
Int 31

strings 37
tuples 37
types 30

versioning 10
View Controller

about 63
navigating between 69, 70

view hierarchy
debugging 110, 111

views 59

W
While loop 42

X
Xcode

about 7
features 10
installing 7-9
requisites 7-9
starting 13

Xcode 6
enhancements 10-12

Xcode environment
components 10

Xcode overview
about 15, 16
assistant editor section 18, 20
project section 17, 18
source code editors 18
source code editors, features 18
utility/inspector section 20-22

Thank you for buying
Xcode 6 Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly
focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including
(but not limited to) IBM, Microsoft, and Oracle, often for use in other corporations. Its titles
will offer information relevant to a range of users of this software, including administrators,
developers, architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Xcode 4 iOS Development
Beginner's Guide
ISBN: 978-1-84969-130-7 Paperback: 432 pages

Use the powerful Xcode 4 suite of tools to build
applications for the iPhone and iPad from scratch

1. Learn how to use Xcode 4 to build simple, yet
powerful applications with ease.

2. Each chapter builds on what you have
learned already.

3. Learn to add audio and video playback to
your applications.

4. Plentiful step-by-step examples, images, and
diagrams to get you up to speed in no time
with helpful hints along the way.

Xcode 4 Cookbook
ISBN: 978-1-84969-334-9 Paperback: 402 pages

Over 100 recipes to build your own fun and exciting
iOS applications

1. Learn how to go about developing some
simple, yet powerful applications with ease
using recipes and example code.

2. Teaches how to use the features of iOS 6 to
integrate Facebook, Twitter, iCloud, and
Airplay into your applications.

3. Lots of step-by-step recipe examples with
ample screenshots right through to application
deployment to the Apple App Store to get you
up to speed in no time, with helpful hints along
the way.

Please check www.PacktPub.com for information on our titles

iOS 5 Essentials
ISBN: 978-1-84969-226-7 Paperback: 252 pages

Harness iOS 5's new powerful features to create
stunning applications

1. Integrate iCloud, Twitter, and AirPlay into your
applications.

2. Lots of step-by-step examples, images, and
diagrams to get you up to speed in no time
with helpful hints along the way.

3. Each chapter explains iOS 5's new features
in-depth, while providing you with enough
practical examples to help incorporate these
features in your apps.

4. From the author of Xcode 4 iOS development.

Core Data iOS Essentials
ISBN: 978-1-84969-094-2 Paperback: 340 pages

A fast-paced, example-driven guide to data-driven
iPhone, iPad, and iPod Touch applications

1. Covers the essential skills you need for working
with Core Data in your applications.

2. Particularly focused on developing fast, light
weight data-driven iOS applications.

3. Builds a complete example application. Every
technique is shown in context.

4. Completely practical with clear, step-by-step
instructions.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to Xcode
	Requirements and installing Xcode
	Features of Xcode
	What's new in Xcode 6?
	Interactive coding using Playgrounds
	Mac OS X storyboards
	Live design and responsive UI
	Visual debugging
	Improved debugger

	Summary

	Chapter 2: Tour of Xcode
	Starting Xcode
	Creating a new project
	Selecting the project type
	Setting the project options
	Setting the project properties

	Xcode overview
	The project section
	The editor and assistant editor sections
	Source code editors
	The assistant editor

	The utility/inspector section

	The Apple development languages
	Swift

	Summary

	Chapter 3: Playgrounds
	Introduction
	Swift Playgrounds
	The UI

	Learning Swift
	Console output printing
	Working with variables
	Variable types
	Declaring variables
	What are Int, Double, and Float variables
	Adding different types
	Booleans
	Arrays and dictionaries
	Tuples
	Strings
	Any and AnyObject

	Control flows and code execution
	The if statement
	The if..else statement
	The if..elseif..else statement
	The ternary operator
	For loops
	The While loop
	The switch condition

	Functions
	Return values
	Parameters
	Using closures

	Objects
	Classes
	Enumerations

	Extensions – extending the classes
	Operator overloading

	Summary

	Chapter 4: Interface Builder
	Introducing Interface Builder
	Creating a basic interface
	Elements on the view

	Adaptive UI
	Adding scenes
	Navigating between View Controllers
	Building a simple application
	Adding items to Table View
	Different elements for different orientations and dimensions
	Adding the code
	Autolayout
	Subclassing
	Quick help
	Managing connections
	Adding gesture recognizers

	Segues and connections

	Summary

	Chapter 5: Custom Controls
	An introduction to custom controls
	The basics
	Creating a class
	Properties
	Changing properties from the inspector
	Enhancing custom controls
	Adding some text

	Frameworks
	Creating a framework
	Debugging custom controls

	Summary

	Chapter 6: Debugging
	Breakpoints
	Listing all the breakpoints
	Navigating
	The console
	Understanding the debug information
	Visualizing variables with the Quick Look functionality
	Using images with quick view

	Debugging the view hierarchy
	Introducing debug gauges

	Summary

	Chapter 7: Building and Running
	Simulator
	Choosing the device

	Preparing for distribution
	Configuring the project settings
	The Identity section
	The Deployment Info section
	Application icons and launch images
	Linked frameworks and libraries

	The Capabilities tab
	The Info tab
	The Build tabs
	The Targets tab

	Setting project-wide properties
	Code signing
	Organizer

	Summary

	Appendix: Conditional Execution and Interface Designing
	More?.Swift!
	Differences between iOS 7.x and 8.x SDK
	Location services
	Conditional execution
	Displaying alerts
	Showing an alert with ActionController
	Showing ActionSheet with AlertController

	Designing in Interface Builder
	Adaptive UI

	Summary

	Index

