

Xamarin Essentials

Learn how to efficiently develop Android and iOS
apps for deployment using the Xamarin platform

Mark Reynolds

BIRMINGHAM - MUMBAI

Xamarin Essentials

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2014

Production reference: 1221214

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-083-8

www.packtpub.com

Cover image by Abhishek Dhir (abhishekdhirimages@gmail.com)

abhishekdhirimages@gmail.com

Credits

Author
Mark Reynolds

Reviewers
Jason Awbrey

Joe Dan Galyean

Paul F. Johnson

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Richard Harvey

Content Development Editors
Priya Singh

Rohit Singh

Technical Editor
Nitee Shetty

Copy Editors
Relin Hedly

Stuti Srivastava

Neha Vyas

Project Coordinator
Mary Alex

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexer
Monica Ajmera Mehta

Graphics
Abhinash Sahu

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

About the Author

Mark Reynolds is a software enthusiast who has worked in the industry for
nearly 30 years. He began his career with Electronic Data Systems, building and
supporting systems for the manufacturing sector. Over the years, Mark has worked
with start-ups and Fortune 100 companies across a diverse set of industries. In 1993,
he started a consulting practice that focused on delivering training and mentoring
services in the areas of software architecture, design, and implementation. With the
rise of mobile computing, he has focused his practice on designing, developing, and
delivering mobile software solutions.

Mark recently published his first book, Xamarin Mobile Application Development for
Android, Packt Publishing. His private consulting practice is based in Allen, TX, USA,
where he resides with his wife and son.

I would like to thank my mother, Charlene Reynolds, who I lost this
year. She was a great mother, wife, sister, cousin, aunt, and friend,
and a great inspiration to everyone she came in contact with. We'll
miss her, but we know in her new home; she has overcome the
illness she battled here, and we rejoice in that.

About the Reviewers

Jason Awbrey is a Xamarin MVP, frequent speaker, author, and consultant based
in Spring, Texas, USA. He has been working with the .NET framework for over 15
years, and with Xamarin since its early beta stages. He is the President of the North
Houston .NET Users Group and a co-lead of the Houston Xamarin Meetup.

Jason's company, PostDotNet Consulting (postdotnet.com), is a Xamarin
Consulting Partner.

Thanks to Vicki for everything, and to Jacob, Jonah, and Maggie for
not bothering daddy while he was in the office.

Joe Dan Galyean is the Vice President of Application Development for Cinemark
USA. He has been working in the field of software development for 14 years,
primarily with .NET technologies.

postdotnet.com

Paul F. Johnson has many years of experience in cross-platform development.
He started his programming career back in the 1980s on 8-bit machines. With a
background in chemistry and working experience in education, he developed a large
number of applications for students as well as developed code in Fortran for his
Master's degree. During this time, he became interested in .NET, especially C# due
to its similarities with the other C languages. By chance, a small start-up in the US
called Ximian had started to develop an open source implementation of the .NET
standard, so being a Linux chap was now no longer a barrier.

Over the years, this interest grew and so did Ximian. Novell bought them out,
and after Novell was sold, Xamarin was formed and mobile development was
the next stage.

After completing education, Paul worked on the ill-fated WowZapp messenger
application followed by a number of other mobile apps on both iOS and Android.
All the code for these platforms was in C#, so the idea of cross-platform mobile
development was certainly going strong.

In April 2013, Paul began working on a complete rewrite of F-Track Live so that it
would run on Android, iPhone, and Windows Mobile. During that time, he was
contacted by Xamarin to check whether he was willing to come on board as part of
the documentation team.

Paul has written Xamarin Mobile Application Development for iOS, Packt Publishing,
and is part way through writing a new book for Packt—again using Xamarin for
cross-platform development. He also has a third book in discussion with Packt
Publishing for using the Xamarin Mobile platform to create an interactive
adventure (including the AI aspects required for it).

I would like to dedicate my work to my ever loving wife, Becki, and
to my extremely good coffee-making son, Richard, who have helped
me with the phrasing of comments and supply of coffee during the
technical review process. I'd also like to thank Mary and Puja at
Packt Publishing for being great to work with as well as Mark
(the author of this book) for showing me a trick or two and
accepting criticism when given.

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Table of Contents
Preface	 1
Chapter 1: Xamarin and Mono – a Pathway to the Unnatural	 7

Understanding Mono	 7
The Xamarin product suite	 8
Evaluating whether Xamarin is the right tool	 9
Learning C#	 11
Installing Xamarin	 11

Installing Xamarin on OS X	 12
Installing Xamarin on Windows	 12

Development environments	 12
Using the Xamarin Studio environment	 12
Using Xamarin Studio to develop Android apps	 13
Using Xamarin Studio to develop iOS apps	 14
Using the Visual Studio environment	 14

Using Visual Studio to develop Android apps	 15
Using Visual Studio to develop iOS apps	 15

Comparing IDEs	 16
Version control	 17

Summary	 18
Chapter 2: Demystifying Xamarin.iOS	 19

Xamarin.iOS and Ahead-of-Time compilation	 19
Understanding Mono assemblies	 20
Xamarin.iOS bindings	 20

The design principles	 20
C# types and type safety	 21
Use of inheritance	 21

Table of Contents

[ii]

Mapping Objective-C delegates	 22
Via .NET events	 22
Via .NET properties	 23
Via strongly typed delegates	 23
Via weakly typed delegates	 24

Creating binding libraries	 25
Memory management	 25

Disposing of objects	 27
Keeping objects around	 27

Limitations of using the AOT compilation	 27
Runtime features disabled	 28

Generating code for XIB and storyboard files	 29
Generated classes	 29

Designer files	 29
Non-designer files	 30
Outlets properties	 31
Action properties	 31

Xamarin.iOS Designer	 31
Summary	 32

Chapter 3: Demystifying Xamarin.Android	 33
Mono CLR and Dalvik VM – working side by side	 34

Introducing the Java Native Interface	 34
Peer objects	 35

Xamarin.Android application packaging	 36
Understanding Mono assemblies	 36
Xamarin.Android bindings	 36

The design principles	 37
Properties	 37
Events versus listeners	 38
Special help with collections	 38
Interfaces	 39
Mapping nested classes	 40
Mapping the Runnable interface	 40
Enumerations	 40
Resources	 41

Attributes for the ApplicationManifest.xml file	 41
Editor for the ApplicationManifest.xml file	 42
Garbage collection	 43

JNI global and weak references	 44
Mono collections	 44

Table of Contents

[iii]

Automatic collections	 45
Helping the GC	 45

Xamarin.Android Designer	 46
Summary	 46

Chapter 4: Developing Your First iOS App with Xamarin.iOS	 47
The sample national parks app	 48
Creating the sample app	 48

The Project Options view	 51
Running and debugging within Xamarin Studio	 52
Extending the sample app	 56

Storing and loading national parks	 56
Adding Json.NET	 57
Creating an entity class	 57

Adding a JSON-formatted file	 58
Loading objects from a JSON-formatted file	 59
Saving objects to a JSON-formatted file	 60
Running the app	 60

Enhancing the UI	 60
Touring the Xamarin.iOS Designer	 62
Adding EditViewController and segues	 65
Implementing the DoneClicked event handler	 67
Implementing the DeleteClicked action	 68
Passing data	 69
Running the app	 72

Finishing the sample app	 72
Finishing DetailViewController	 73
Finishing EditViewController	 74
Running the app	 76

MonoTouch.Dialog	 76
Summary	 77

Chapter 5: Developing Your First Android App
with Xamarin.Android	 79

The sample app	 80
Creating NationalParks.Droid	 80
Reviewing the app	 82

Resources	 82
The Resource.designer.cs file	 82
The MainActivity.cs file	 82
The Main.axml file	 83
Project Options	 84
Xamarin Studio Preferences	 84

Table of Contents

[iv]

Running and debugging with Xamarin Studio	 84
Running apps with the Android Emulator	 85
Running apps on a physical device	 87
Running apps with Genymotion	 87

Extending NationalParks.Droid	 88
Storing and loading national parks	 88

Adding Json.NET	 88
Borrowing the entity class and JSON file	 89
Creating the NationalParksData singleton	 89

Enhancing MainActivity	 91
Adding a ListView instance	 91
Creating an adapter	 92
Adding the New action to the ActionBar	 94
Running the app	 96

Creating the DetailActivity view	 96
Adding ActionBar items	 97
Populating DetailActivity	 98
Handling the Show Photos action	 98
Handling the Show Directions action	 99
Adding navigation	 99
Running the app	 100

Creating EditActivity	 100
Adding ActionBar items	 101
Creating reference variables for widgets	 102
Populating EditActivity	 102
Handling the Save action	 103
Handling the Delete action	 104
Adding navigation	 105
Refreshing ListView in MainActivity	 106
Running the app	 106

Working with Xamarin.Android projects in Visual Studio	 107
Reviewing the generated elements	 107

Peer objects	 107
The AndroidManifest.xml file	 108
The APK file	 108

Summary	 110
Chapter 6: The Sharing Game	 111

Sharing and reuse	 111
Old school source file linking	 112

Creating a shared library project	 112
Updating NationalParks.Droid to use shared files	 115
Updating NationalParks.iOS to use shared files	 116

Table of Contents

[v]

Portable Class Libraries	 118
Creating NationalParks.PortableData	 118
Implementing IFileHandler	 119
Updating NationalParks.Droid to use PCL	 120
Updating NationalParks.iOS to use PCL	 121

The pros and cons of the code-sharing techniques	 122
Summary	 123

Chapter 7: Sharing with MvvmCross	 125
Introducing MvvmCross	 126

The MVVM pattern	 126
Views	 127
ViewModels	 127
Commands	 127
Data binding	 128

The binding modes	 129
The INotifyPropertyChanged interface	 129
Binding specifications	 130

Navigating between ViewModels	 131
Passing parameters	 131
Solution/project organization	 132
The startup process	 132

Creating NationalParks.MvvmCross	 134
Creating the MvvmCross core project	 134
Creating the MvvmCross Android app	 135

Reusing NationalParks.PortableData and NationalParks.IO	 137
Implementing the Android user interface	 138
Implementing the master list view	 139
Implementing the detail view	 143
Implementing the edit view	 146

Creating the MvvmCross iOS app	 149
Implementing the iOS user interface	 150
Implementing the master view	 150
Implementing the detail view	 151
Implementing the edit view	 153

Considering the pros and cons	 155
Summary	 155

Chapter 8: Sharing with Xamarin.Forms	 157
An insight into the Xamarin.Forms framework	 157

Pages	 158
Views	 158
Layouts	 159

Table of Contents

[vi]

Cells	 159
Navigation	 160
Defining Xamarin.Forms user interfaces	 160

Extensible Application Markup Language (XAML)	 161
Code-behind classes	 162

Data binding	 164
Using Renderers	 165
Native features and the DependencyService API	 165
App startup	 166

Shared App classes	 166
iOS apps	 166
Android apps	 167

Project organization	 167
Creating the NationalParks Xamarin.Forms app	 168

Creating the solution	 168
Adding NationalParks.PortableData	 169

Implementing ParksListPage	 170
Implementing ParkDetailPage	 172

Using DependencyService to show directions and photos	 174
Implementing ParkEditPage	 177

Considering the pros and cons	 179
Summary	 180

Chapter 9: Preparing Xamarin.iOS Apps for Distribution	 181
Preparing for distribution	 181

Profiling Xamarin.iOS apps	 182
iOS Application (Info.plist) settings	 182
iOS Build settings	 183

SDK Options	 183
Linker Options	 184
Debugging options	 186
Code generation options	 186

Distributing Xamarin.iOS apps	 187
The Ad Hoc and enterprise distributions	 187

TestFlight distribution	 189
App Store submission	 191

Summary	 191
Chapter 10: Preparing Xamarin.Android Apps for Distribution	 193

Preparing for a release APK	 193
Profiling Xamarin.Android apps	 194
Disabling debug	 194

Changing the settings in AndroidManifest.xml	 194
Changing the settings in AssemblyInfo.cs	 194

Table of Contents

[vii]

Android Application (AndroidManifest.xml) settings	 195
Linker Options	 196

Overriding the linker	 197
Supported ABIs	 199

Publishing a release APK	 200
Keystores	 200
Publishing from Xamarin.Android	 200
Republishing from Xamarin.Android	 203
Publishing from Visual Studio	 203

App distribution options	 203
Summary	 203

Index	 205

Preface
Mobile applications have revolutionized the way we communicate and interact
with each other, and their development is now beginning to reach a certain level
of maturity. To support the development of mobile apps, there are now many tools
and environments available.

Xamarin is a toolset that has seen increasing success in recent years and is gaining
more and more interest, particularly from development shops that have a significant
investment in .NET and C# resources. Xamarin wraps each platform's native APIs
with a C# wrapper, allowing the developer to interact with the environment in
essentially the same way as any native developer would. As Xamarin apps are
developed in C#, a whole new possibility of sharing code across platforms comes
into play with all the associated benefits and challenges.

As companies look to adopt Xamarin, new Xamarin developers will be required;
where do they come from? In many cases, there will be existing seasoned mobile
developers who are already familiar with Android and iOS development.

That's where this book comes in; the idea being to provide a quick path for
developers already familiar with Android and/or iOS development so they can
get up to speed with Xamarin development. To that end, this book does not focus
on the basics of developing Android and iOS apps; rather, we focus on teaching
experienced Android and iOS developers how to develop apps using Mono, C#,
and the Xamarin suite of tools. Specifically, we focus on the following topics:

•	 Architecture: This explains how the Xamarin products allow the use
of Mono and C# to develop Android and iOS apps

•	 Tools: This describes the tools provided to support the development
of applications

Preface

[2]

•	 Code sharing: This explains the types of code that can be shared between
Android and iOS apps and the issues that might arise

•	 Distribution: This explains the special considerations that should be made
when distributing Xamarin.Android and Xamarin.iOS apps

It should be noted that sample apps and code snippets are provided where
appropriate.

When I first started using C# to develop iOS apps, it just felt a little strange. I was
no fan of Objective-C, but when did C# become the cross-platform tool of choice? I
always had a lot of respect for what the Mono team accomplished, but I generally
had the view that Microsoft would eventually prohibit C# and .NET from being
terribly successful on any platform that they did not own. Being a Star Wars fan, and
somewhat of a geek, I was reminded of a conversation from Episode III. If you recall
a certain scene between Anakin and Palpatine, where Anakin realizes Palpatine
knew the dark side of the force; just replace the dark side of the force with Xamarin
and you get Palpatine turning to you saying: "Xamarin is a pathway to many abilities
some consider to be unnatural." That's pretty much the feeling I had; was I selling
out to learn a cross-platform set of technologies that would eventually completely
tie me to Windows?

Two years later, I feel fairly comfortable answering that question as no! Obviously,
we work in a dynamic industry and things can change in an instant, but the
technology world is in a different place than it was 10 years ago, and cross-platform
C# and .NET seem to play in Microsoft's favor now. So, the strange feeling has been
diminished with success, and seeing how the relationship between Microsoft and
Xamarin has only gone from strength to strength, I am encouraged.

If you are coming from an Objective-C or Java background, you will likely have the
same feelings from time to time, but if you give the tools a chance I think you will
be amazed.

I hope that you find this book a valuable resource on your path to becoming a
productive mobile application developer with the Xamarin suite of products.

What this book covers
Chapter 1, Xamarin and Mono – a Pathway to the Unnatural, provides an overview
of the Mono project and the suite of Mono-based commercial products offered
by Xamarin.

Chapter 2, Demystifying Xamarin.iOS, describes how Mono and the iOS platform
coexist and allow developers to build iOS apps using C#.

Preface

[3]

Chapter 3, Demystifying Xamarin.Android, describes how Mono and the Android
platform coexist and allow developers to build Android apps using C#.

Chapter 4, Developing Your First iOS App with Xamarin.iOS, walks you through the
process of creating, compiling, running, and debugging a simple iOS app.

Chapter 5, Developing Your First Android App with Xamarin.Android, walks you through
the process of creating, compiling, running, and debugging a simple Android app.

Chapter 6, The Sharing Game, presents various approaches of sharing code between
Xamarin.iOS and Xamarin.Android apps.

Chapter 7, Sharing with MvvmCross, walks you through the use of the Xamarin.Mobile
app, which provides a cross-platform API to access location services, contacts, and
the device camera.

Chapter 8, Sharing with Xamarin.Forms, walks you through the basics of using the
MvvmCross framework to increase code reuse between platforms.

Chapter 9, Preparing Xamarin.iOS Apps for Distribution, discusses various methods
of distributing iOS apps, and walks you through the process of preparing
a Xamarin.iOS app for distribution.

Chapter 10, Preparing Xamarin.Android Apps for Distribution, discusses various
methods of distributing Android apps, and walks you through the process
of preparing a Xamarin.Android app for distribution.

What you need for this book
This book contains both Android and iOS examples. The simplest configuration
to create and run all the examples is to have an Intel-based Mac running OS X
10.8 (Mountain Lion) or a later version with Xcode, the iOS SDK 7.x, and Xamarin
installed. The 30-day trial edition of Xamarin can be used as it installs both Xamarin.
iOS and Xamarin.Android by default.

The following points provide detailed requirements based on specific features
and configurations.

To create and execute the iOS examples in this book, you will need the following:

•	 An Intel-based Mac running OS X 10.8 (Mountain Lion) or a higher version
•	 Xcode and the iOS SDK 7 or a newer version installed

Preface

[4]

•	 Xamarin.iOS installed; the 30-day trial edition can be used
•	 An iPad or iPhone can be helpful, but is not essential

To use the Visual Studio plugin for Xamarin.iOS, you will need the following:

•	 A PC running Windows 7 or a higher version
•	 Visual Studio 2010, 2012, or 2013 installed; any non-Express edition
•	 Xamarin.iOS installed; the 30-day trial edition can be used
•	 Network connectivity to a Mac, which meets the requirements for compiling

and running the apps

To create and execute the iOS examples in this book, you will need the following:

•	 A PC running Windows 7 or a higher version, or an Intel-based Mac running
OS.X 10.8 (Mountain Lion) or a higher version

•	 Xamarin.Android installed; the 30-day trial edition can be used. Xamarin.
Android includes the Android SDK

•	 An Android phone or tablet can be helpful, but is not essential

To use the Visual Studio plugin for Xamarin.Android you will need the following:

•	 A PC running Windows 7 or a higher version
•	 Visual Studio 2010, 2012, or 2013; any non-Express edition
•	 Xamarin.Android installed; the 30-day trial edition can be used. Xamarin.

Android includes the Android SDK

Who this book is for
This book is a great resource for mobile developers who are already familiar with
Android and/or iOS development and need to get up to speed with Xamarin
development quickly. It is assumed that you have a background of Android, iOS
and C#. The book provides an overview of the Xamarin architecture, walks you
through the process of creating and running sample apps, demonstrates the use
of tools provided by Xamarin, and discusses special considerations for preparing
apps for distribution.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Preface

[5]

Code words in text are shown as follows: "Set a breakpoint on the
SetContentView() statement."

A block of code is set as follows:

protected string GetFilename()
{
 return Path.Combine (
 Environment.GetFolderPath(
 Environment.SpecialFolder.MyDocuments),
 "NationalParks.json");
}

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "From
the Project menu, select Publish Android Project."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a book that you need and would like to see us publish, please send us a
note in the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@
packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

www.packtpub.com
www.packtpub.com/authors

Preface

[6]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Xamarin and Mono – a
Pathway to the Unnatural

This chapter provides an overview of the Mono project and the suite of Mono-based
commercial products offered by Xamarin. To begin this pathway into the unknown,
this chapter will cover the following topics:

•	 Understanding Mono
•	 Why you should use Xamarin
•	 Installation of Xamarin.Android and Xamarin.iOS
•	 Using Xamarin Studio and Visual Studio for development
•	 Options for source control

Understanding Mono
Before we jump straight into a conversation about Xamarin, let's discuss a related
topic: Mono. Mono is an open source cross-platform implementation of the .NET
platform. This includes a Common Language Runtime (CLR) that is binary
compatible with Microsoft .NET, a set of compilers for languages such as C#, and
an implementation of the .NET runtime libraries. The Mono CLR has been ported to
many platforms, which include the Linux and BSD-based operating systems (which
are not limited to just Android, iOS, and OS X), Windows-based systems, and even
some game consoles such as the Wii, Xbox 360, and PS4.

The Mono project was started by a Ximian, which was purchased by Novell.
Xamarin now leads Mono.

Xamarin and Mono – a Pathway to the Unnatural

[8]

The Xamarin product suite
Xamarin is a software company that offers a suite of commercial Mono-based
products that allow developers to create apps for Android, iOS, and OS X using
C# and the .NET framework. Xamarin's cofounder, Miguel de Icaza, has directed
the Mono project since its inception in 2001.

Xamarin's primary product offerings are:

•	 Xamarin.Android (formerly Mono for Android)
•	 Xamarin.iOS (formerly MonoTouch)
•	 Xamarin.Mac

Each of these products is licensed through an annual subscription with the following
levels being available:

•	 Starter: This subscription is actually free, but restricts the size of apps.
•	 Indie: This subscription provides everything needed to build and deploy

full-featured mobile apps, but can only be purchased by companies with
five or less employees. This subscription also does not include the use
of the Visual Studio add-in discussed in the Using the Visual Studio
environment section.

•	 Business: This subscription adds the use of the Visual Studio add-in as
well as e-mail support.

•	 Enterprise: This subscription adds access to a set of prime components,
hotfixes, and enhanced support.

A link for the pricing information can be found at the end of this section.
For quick reference, please visit https://store.xamarin.com.

Xamarin also hosts a component store; a market place to buy and sell components
that can be used in Xamarin apps. The components in this store can be distributed
for free or sold, and Xamarin pays component vendors a percentage of the revenue
collected from the sales.

https://store.xamarin.com

Chapter 1

[9]

Another service that Xamarin offers is the Test Cloud. As the name implies,
this is a cloud-based testing service that allows teams to create automated testing
capabilities for their apps that can be run against a plethora of physical devices.
This is particularly important for Android developers as there are far more devices
that need to be considered.

The following table provides useful links to additional information about the
Xamarin suite:

Type of information URL to access it
Product information http://xamarin.com/tour

http://xamarin.com/csharp

http://xamarin.com/products

http://xamarin.com/faq

Product pricing https://store.xamarin.com

Component store https://components.xamarin.com

Xamarin Test Cloud http://xamarin.com/test-cloud

Evaluating whether Xamarin is the
right tool
Now that you have some background on Mono and the Xamarin suite of products,
you might want to ask yourself: "Is Xamarin the right tool for my project?"

The benefits of using Xamarin are as follows:

•	 It builds on your existing skills of using C# and .NET: Because of the
huge number of features available to both the C# language and the .NET
framework, it requires a huge investment of time and energy for developers
to master them. Although you can argue that Java and Objective-C have
similarities (being object-oriented languages), there is a real cost associated
with transferring your proficiency in C# and .NET to make the same claim
regarding Java or Objective-C. This is where Xamarin comes to your rescue;
individuals and groups that have made a significant investment in C# and
.NET might turn to it if they wish to develop iOS and Android apps due to
the requirement of these skills.

http://xamarin.com/tour
http://xamarin.com/csharp
http://xamarin.com/products
http://xamarin.com/faq
https://store.xamarin.com
https://components.xamarin.com
http://xamarin.com/test-cloud

Xamarin and Mono – a Pathway to the Unnatural

[10]

•	 Allows for reusability of code in cross-platform development: Although
the Xamarin suite prevents you to create an app that can also be deployed
to Android, iOS, and WP8, it compensates for this by providing you with
the capability to recycle huge portions of your code base across all of
these platforms. The general process that makes this all so much easier for
you is that the user interface code and the code that deals with the device
capabilities tend to be written for each platform. With this, things such as
client-side logic (proxies and caching), client-side validation, data caching,
and client-side data storage can potentially be reused, saving you a huge
amount of time and energy. I have personally seen Android and iOS apps
share as much as 50 percent of the code base and some report as high as 80
percent. The more you invest in the approach to reuse, the more likely you
will achieve a higher percentage.

However, there are some drawbacks when it comes to using Xamarin:

•	 Costs due to licensing requirements: The Xamarin suite or tools are all
commercial tools and must be licensed, meaning there is a tangible cost of
entry. You can check Xamarin's website for the current pricing.

•	 Waiting for updates: You will find that there is some lag time between a new
release of a platform (Android/iOS) and the corresponding release of the
Xamarin products that support it. Xamarin has done a great job of releasing
Xamarin.iOS on the same day when the new versions of the OS are made
available. Xamarin.Android generally lags behind because Google does not
make beta/preview versions available. In some ways, this delay is not a big
issue at least for phone apps; the telecoms generally take some period of time
before they provide the newest Android versions to be downloaded.

•	 Performance and memory management: This is probably more of a concern
for Xamarin.Android than Xamarin.iOS. As you will see in Chapter 2,
Demystifying Xamarin.iOS, Xamarin.iOS essentially builds a binary executable
much like those produced by using just Xcode and the iOS SDK. However,
as we will see in Chapter 3, Demystifying Xamarin.Android, Xamarin.Android
relies on deploying the Mono CLR and the communications between the
Mono CLR and the Dalvik VM. In some cases, Xamarin.Android will allocate
Java and C# objects to achieve some of the "magic" and "sorcery" behind
developing in C# or .NET on an Android device. As a result of this, Xamarin.
Android will affect both the memory footprint and execution performance.

Chapter 1

[11]

•	 Distribution size: There are a number of runtime libraries that must be
distributed or linked with Xamarin apps. A discussion of the actual size and
strategies to minimize the distribution size is reserved for the last chapter.

While the list of drawbacks might seem extensive, in most cases, the impact of each
can be minimized. I have chosen to build out a Xamarin consulting practice because
I place a high value on the benefits identified and feel like many groups that have
a significant investment in C# and .NET will see the same value. If you are a group
or an individual that places a great value on Xamarin's benefits, then you should
certainly consider using it.

Learning C#
This book assumes that you have a working knowledge of C# and .NET. Since this
might not be the case for some readers, we have included a few links to help you
get up to speed. Xamarin provides the following link which presents C# from an
Objective-C perspective: http://docs.xamarin.com/guides/ios/advanced_
topics/xamarin_for_objc/primer

Microsoft provides a set of tutorials for learning C# available at: http://msdn.
microsoft.com/en-us/library/aa288436(v=vs.71).aspx.

Installing Xamarin
Before moving on, we need to install Xamarin. This section will show you the steps
to install Xamarin on both the Android and iOS platforms, notably Xamarin.Android
and Xamarin.iOS, on both OS X and Windows.

Since Xamarin.iOS is dependent on the latest iOS SDK and the latest Xcode, both of
these should be installed prior to starting the OS X install.

Both Xcode and the iOS SDK are free and you can download these
installs from: https://developer.apple.com/devcenter/ios/
index.action#downloads.
Also, note that you can install Xcode from the OS X App Store.

http://docs.xamarin.com/guides/ios/advanced_topics/xamarin_for_objc/primer
http://docs.xamarin.com/guides/ios/advanced_topics/xamarin_for_objc/primer
http://msdn.microsoft.com/en-us/library/aa288436(v=vs.71).aspx
http://msdn.microsoft.com/en-us/library/aa288436(v=vs.71).aspx
https://developer.apple.com/devcenter/ios/index.action#downloads
https://developer.apple.com/devcenter/ios/index.action#downloads

Xamarin and Mono – a Pathway to the Unnatural

[12]

Likewise, Xamarin.Android is dependent on the latest Android SDK; however, the
difference being that the Xamarin install will automatically download the Android
SDK and install it as part of the overall install process. So, no separate steps need to
be taken. If you already have installed the Android SDK, you have just been handed
the opportunity to use it.

Installing Xamarin on OS X
To install Xamarin on OS X, go to www.Xamarin.com, download the OS X installer
to launch it, and follow the directions. Be sure to choose to install both Xamarin.
Android and Xamarin.iOS; Xamarin.Mac is optional.

The Xamarin.iOS Visual Studio plugin uses the build server called mtbserver to
compile the iOS code on your Mac. If you plan to use the Visual Studio plugin, be
sure to choose to allow network connections.

Installing Xamarin on Windows
Now, we move on to the Windows installation process. If you plan on using
the Visual Studio add-in, Visual Studio will need to be installed prior to
installing Xamarin.

To install Xamarin on Windows, you need to visit www.Xamarin.com, download
the Windows installer, launch it, and then follow the directions. Be sure to install
both Xamarin.Android and Xamarin.iOS.

Development environments
Developers have two options when it comes to IDEs: Xamarin Studio or Visual
Studio. This section will show you how to develop apps for both Android and
iOS through both of these studios.

Using the Xamarin Studio environment
Xamarin Studio is a customized version of the MonoDevelop IDE and this can be
used to develop applications for Android, iOS, and OS X. Xamarin Studio is available
on both OS X and Windows with highly advanced and useful features such as:

•	 Code completion
•	 Smart syntax highlighting
•	 Code navigation

www.Xamarin.com
www.Xamarin.com

Chapter 1

[13]

•	 Code tooltips
•	 Integrated debugging for mobile apps running in emulators or on devices
•	 Source control integration with Git and Subversion built-in

If you look at the following screenshot, you will see how Xamarin Studio is shown
with the Android user interface designer opened:

Using Xamarin Studio to develop Android
apps
Xamarin Studio and the Xamarin.Android add-in allow the complete development
and debugging of Android apps without use of any other IDEs. The Android UI
designer can also be used from within Xamarin Studio.

Xamarin and Mono – a Pathway to the Unnatural

[14]

Using Xamarin Studio to develop iOS apps
Xamarin Studio and the Xamarin.iOS add-in allow the development and testing
of iOS apps when installed on a Mac with Xcode and the iOS SDK. All code can be
written, compiled, and debugged from within Xamarin Studio. In general, the user
interface XIB and/or storyboard files must be built within Xcode; Xamarin Studio
provides a link to Xcode such that when a xib or storyboard file is double-clicked on,
Xcode will be launched.

There is a caveat to this; Xamarin has an iOS UI designer built for Xamarin Studio,
yet it has remained in an alpha status for almost a year. I have seen a number of
posts on various forums indicating it is stable and safe to use, but Xamarin has been
slow to clarify why it is still in alpha status and when it will move to a stable status.
We will discuss the use of the iOS UI designer in more detail in Chapter 4, Developing
Your First iOS App with Xamarin.iOS.

Using the Visual Studio environment
Xamarin for Visual Studio is an add-in that supports the development of the
Xamarin.Android and Xamarin.iOS apps and is available to business and enterprise
subscribers. This add-in can be used with any non-Express edition of Visual Studio
2010 through to Version 2013. Android apps can be completely developed using
Visual Studio. In order to develop iOS apps, you will still need a Mac with the iOS
SDK and Xcode to compile and create the user interface xib and/or storyboard files.

If you already have a license for Visual Studio and are comfortable
with the environment, this add-in will be better suited to you than
Xamarin Studio due to it being simple to use.

The following screenshot shows Visual Studio 2012 with the Android user interface
designer opened:

Chapter 1

[15]

The Android user interface designer

Using Visual Studio to develop Android apps
The Visual Studio add-in for Xamarin.Android allows the full development and
debugging of Android apps without the use of any other IDE. This add-in provides
the usage of the Android UI designer from within Visual Studio. For those that have
the appropriate licenses and are comfortable with Visual Studio, this might be the
best option for Android development.

Using Visual Studio to develop iOS apps
The Visual Studio add-in for Xamarin.iOS allows you to develop and test iOS apps,
but only in conjunction with the use of a Mac with both Xcode and the iOS SDK
installed. The iOS code must be compiled and executed on a Mac using the Xamarin's
mtbserver. Xcode on a Mac must also be used to develop the user interface xib and/
or storyboard files for an iOS app. We will discuss this configuration in more detail
in Chapter 4, Developing Your First iOS App with Xamarin.iOS.

Xamarin and Mono – a Pathway to the Unnatural

[16]

Solution and project files created and used by Xamarin Studio are
completely compatible with Visual Studio. This gives teams the
flexibility to choose which IDE to use and they can easily change
throughout the duration of a project.

Comparing IDEs
The advantages and disadvantages of adopting each IDE are shown in the
following table:

IDE Pros Cons
Xamarin Studio Available for all Xamarin

subscription levels
Runs on Windows and OS X

Limited number of
productivity add-ins
available
Does not offer support for
the use of TFS for source
control

Visual Studio Most C# developers are
already familiar and
comfortable with Visual
Studio
Allows the use of popular
productivity add-ins such
as ReShaper and CodeRush
Allows the use of TFS for
source control and issue
tracking

Requires a business or
enterprise subscription of
Xamarin
Requires a license of VS
Runs on Windows only
For iOS development,
requires a more complex
configuration in which VS
must communicate with
a Mac running Xcode to
perform builds and UI
development must be done
with Xcode

Chapter 1

[17]

Version control
Version control can be a challenge anytime you have a diverse set of development
tools, and Xamarin certainly adds diversity to most shops. The challenge is
making it easy to share and manage code from all of the different IDEs and client
apps that folks will be working with; many times they do not have access to
the same repositories. Since the benefits of using Xamarin are very attractive to
existing .NET shops, many Xamarin developers will find themselves working in
environments already committed to using Microsoft Team Foundation Server (TFS).
Unfortunately, it's not always easy to connect to TFS from non-Microsoft tools. In
the case of Xamarin Studio, there is an open source add-in that cannot be directly
supported by Xamarin and can be challenging to configure.

Other version control systems to consider include Git and Subversion. Xamarin
Studio contains built-in support for both Git and Subversion, and add-ins for both
of these tools exist for Visual Studio. The following table contains useful URLs to
download and read about the various add-ins:

Add-in URL to access it
TFS add-in for
Xamarin Studio

https://github.com/Indomitable/monodevelop-tfs-
addin

http://www.teamaddins.com/blog

Git for Visual
Studio

(VS2013 has built-in support)
http://msdn.microsoft.com/en-us/library/hh850437.
aspx

(VS2012 requires a free plugin)
http://visualstudiogallery.msdn.microsoft.com/
abafc7d6-dcaa-40f4-8a5e-d6724bdb980c

Subversion add-
in for Visual
Studio (by
VisualSVN)

http://www.visualsvn.com/visualsvn/?gclid=CMmSnY-
opL0CFa07MgodDksA5g

https://github.com/Indomitable/monodevelop-tfs-addin http://www.teamaddins.com/blog
https://github.com/Indomitable/monodevelop-tfs-addin http://www.teamaddins.com/blog
https://github.com/Indomitable/monodevelop-tfs-addin http://www.teamaddins.com/blog
http://msdn.microsoft.com/en-us/library/hh850437.aspx
http://msdn.microsoft.com/en-us/library/hh850437.aspx
http://visualstudiogallery.msdn.microsoft.com/abafc7d6-dcaa-40f4-8a5e-d6724bdb980c
http://visualstudiogallery.msdn.microsoft.com/abafc7d6-dcaa-40f4-8a5e-d6724bdb980c
http://www.visualsvn.com/visualsvn/?gclid=CMmSnY-opL0CFa07MgodDksA5g
http://www.visualsvn.com/visualsvn/?gclid=CMmSnY-opL0CFa07MgodDksA5g

Xamarin and Mono – a Pathway to the Unnatural

[18]

Like many aspects of software development, there is not a "one size fits all". The
following table outlines some of the pros and cons to consider when deciding
on a source control solution for Xamarin projects:

VCS Tool Pros Cons
TFS Already in use by many

shops that will consider
Xamarin.
Free add-in for Xamarin
Studio.

Xamarin Studio add-in
has been known to be
problematic to use in the
past.

Git Built-in support in Xamarin.
Free add-in available for
Visual Studio 2012 and 2013.

Difficult to share and
synchronize code with other
teams in a large organization
that might be using TFS for
their C# code.

Subversion Built-in support in Xamarin
Studio.
Commercial add-in for
Visual Studio.

Difficult to share and
synchronize code with other
teams in a large organization
that might be using TFS for
their C# code.

If you already have a significant investment in using TFS, try to make that work for
your Xamarin development as well. This can be done by either having developers
use Visual Studio or trying your luck with the TFS add-in for Xamarin Studio.

Summary
In this chapter, we provided an introduction to Mono and the suite of commercial
products offered by Xamarin and considered the pros and cons of using Xamarin.
We also went through the installation process and took a first look at the IDE options
available to developers.

In the next chapter, we will take a look at the architecture of the Xamarin.iOS product.

Demystifying Xamarin.iOS
Now that we have a little background on Mono and Xamarin, let's dive in and see
how Xamarin.iOS works. This chapter covers the following topics:

•	 Xamarin.iOS and AOT compilation
•	 Mono assemblies
•	 Xamarin.iOS bindings
•	 Memory management for Xamarin.iOS apps
•	 XIB and storyboard code generation
•	 Xamarin.iOS Designer

Xamarin.iOS and Ahead-of-Time
compilation
Unlike most Mono or .NET apps, Xamarin.iOS apps are statically compiled, where
compilation is accomplished through the Mono Ahead-of-Time (AOT) compilation
facilities. AOT is used to comply with Apple's requirements, for example, the use of
iOS apps to compile, refraining from Just-in-Time compilation facilities, or running
on virtual machines.

Use of AOT compilation comes with some limitations regarding the C# language.
These limitations will be easier to discuss after discussing the approach to binding
iOS to C# and .NET. This is why we have pushed this topic to the Limitations of using
the AOT compilation section in the later part of this chapter.

Demystifying Xamarin.iOS

[20]

Additional information about Mono AOT compilation can be found
at the following link:
http://www.mono-project.com/AOT#Full_AOT

Understanding Mono assemblies
Xamarin.iOS ships with an extended subset of Silverlight and desktop .NET
assemblies. These libraries provide the .NET runtime library support for developers,
including namespaces such as System.IO and System.Threading.

Xamarin.iOS is not binary compatible with assemblies compiled for a different
profile, meaning your code must be recompiled to generate assemblies that
specifically target the Xamarin.iOS profile. This is essentially the same thing
you have to do if you are targeting other profiles such as Silverlight or .NET 4.5.

For a complete list of assemblies that ship with Xamarin.iOS, please
refer to the following link:
http://docs.xamarin.com/guides/ios/under_the_hood/
assemblies

Xamarin.iOS bindings
In this section, you will discover one of the main sources of power behind Xamarin.
iOS. This ships with a set of binding libraries that provides support for iOS
development. What will follow are some details into each of these bindings.

The design principles
A number of goals or design principles guided the development of the binding
libraries. These principles are critical to make C# developers productive in an
iOS development. The following represents a summary of the design principles:

•	 Allow developers to subclass Objective-C classes in the same way as they
subclass other .NET classes

•	 Provide a way to call arbitrary Objective-C libraries
•	 Transform the common Objective-C tasks into something much easier

while making the difficult Objective-C tasks possible to complete

http://www.mono-project.com/AOT#Full_AOT
http://docs.xamarin.com/guides/ios/under_the_hood/assemblies
http://docs.xamarin.com/guides/ios/under_the_hood/assemblies

Chapter 2

[21]

•	 Expose Objective-C properties as C# properties as well as expose a strongly
typed API

•	 Use Native C# types in lieu of Objective-C types when possible
•	 Support both C# events and Objective-C Delegation as well as expose C#

delegates to Object-C APIs

This section has provided you with a general idea of the principles to
bear in mind. If you are curious to find a complete discussion, you can
refer to the official documentation available at the following link:
http://docs.xamarin.com/guides/ios/under_the_hood/
api_design/

C# types and type safety
The Xamarin.iOS bindings are designed to use types familiar to C# developers and
to increase type safety when possible.

For example, the API uses C# string instead of NSString, meaning the text property
in UILabel is defined in the iOS SDK in the following manner:

@property(nonatomic, copy) NSString *text

Also, this is exposed in Xamarin.iOS as follows:

public string Text { get; set; }

Behind the scenes, the framework takes care of marshaling C# types to the
appropriate type expected by the iOS SDK.

Another example is the treatment of NSArray. Rather than exposing weakly typed
arrays, Xamarin.iOS exposes strongly typed arrays to the following Object-C
property on UIView:

@property(nonatomic, readonly, copy) NSArray *subviews

This is exposed as a C# property in the following manner:

UIView[] Subviews { get; }

Use of inheritance
Xamarin.iOS allows you to extend any Objective-C type in the same manner you will
extend any C# type and features like calling "base" from overridden methods work
as predicted.

http://docs.xamarin.com/guides/ios/under_the_hood/api_design/
http://docs.xamarin.com/guides/ios/under_the_hood/api_design/

Demystifying Xamarin.iOS

[22]

Mapping Objective-C delegates
In Objective-C, the delegation design pattern is used extensively to allocate
responsibility to various objects. Xamarin faced a few inherent challenges in
mapping iOS delegates to C# and .NET.

In Objective-C, delegates in Objective-C are implemented as objects that respond to
a set of methods. This set of methods is generally defined as a protocol, and although
it resembles a C# interface, there is in fact a significant difference between a C#
interface and an Objective-C protocol:

•	 In C#, an object that implements an interface is required to implement all the
methods defined on the interface

•	 On the other hand, objects in Objective-C that adopt a protocol are
not required to implement the methods of the protocol for the given
circumstance

Another challenge is that, in many ways, traditional .NET frameworks have relied
more heavily on events to accomplish similar capabilities, and the event model is
much more familiar to .NET developers.

With these differences in mind and hoping to make Xamarin.iOS as intuitive to C#
developers as possible without compromising the iOS architecture, Xamarin.iOS
provides four different ways to implement delegate functionality:

•	 Via .NET events
•	 Via .NET properties
•	 Via strongly typed delegates
•	 Via weakly typed delegates

Via .NET events
For many types, Xamarin.iOS automatically creates an appropriate delegate and
forwards delegate calls to corresponding .NET events. This makes the development
experience very natural to C# and .NET developers.

UIWebView is a good example of this. iOS defines UIWebViewDelegate, which
contains a number of methods that a UIWebView will forward if a delegate is
assigned that includes the following:

•	 webViewDidStartLoad

•	 webViewDidFinishLoad

•	 webView:didFailLoadWithError

Chapter 2

[23]

What we find in the Xamarin.iOS class MonoTouch.UIKit.UIWebView are three
events that correspond to the following methods:

•	 LoadStarted

•	 LoadFinished

•	 LoadError

Via .NET properties
Although events have the advantage of having multiple subscribers, they come with
their own limitations. Specifically, this could be where events cannot have a return
type. In situations where a delegate method must return a value, delegate properties
are used. The following example shows you how to use a delegate property for
UITextField. In this example, an anonymous method is assigned to the delegate
property ShouldReturn on UITextField:

firstNameTextField.ShouldReturn = delegate (textfield)
{
 textfield.ResignFirstResponder ();
 return true;
}

Via strongly typed delegates
If events or delegate properties have not been provided or if you would just rather
work with a delegate, you will be pleased to hear that Xamarin.iOS provides a set of
.NET classes that correspond to each iOS delegate. These classes contain a definition
for each method defined on the corresponding protocol. Methods that require
implementations are defined as abstract and methods that are optional are defined
as virtual. To use one of these delegates, a developer simply creates a new class
that inherits from the desired delegate and overrides the methods that need to
be implemented.

For an example of using strongly typed delegate, we will turn to
UITableViewDataSource. This is the protocol iOS defines to populate a
UITableView instance. The following example demonstrates a data source that can
be used to populate UITableView with phone numbers:

public class PhoneDataSource : UITableViewDataSource
{
 List<string>_phoneList;
 public PhoneDataSource (List<string> phoneList) {
 _phoneList = phoneList;
}

Demystifying Xamarin.iOS

[24]

public override int RowsInSection(UITableView
tableView, int section)
{
 return _phoneList.Count;
}
public override UITableViewCell GetCell(UITableView
 tableView, NSIndexPath indexPath) {
 ... // create and populate UITableViewCell
 return cell;
}
}

Now that we have created the delegate, we need to assign it to a UITableView
instance. The property for the UITableViewDataSource delegate is named Source
with the following code that shows you how to make the assignment:

phoneTableView.Source = new PhoneDataSource(phoneList);

Via weakly typed delegates
Lastly, Xamarin.iOS provides you with a way to use weakly typed delegates.
Unfortunately, this method requires a bit more work for the developer.

In Xamarin.iOS, weak delegates can be created using any class that inherits from
NSObject. When creating a weak delegate, you are being handed the responsibility
to properly decorate your class using the Export attribute, which effectively teaches
iOS how the methods are mapped. The following example shows a weak delegate
with the appropriate attribute specifications:

public class WeakPhoneDataSource : NSObject
{
...
[Export ("tableView:numberOfRowsInSection:")]
public override int RowsInSection(UITableView
 tableView, int section)
 {
 ...
 }
[Export ("tableView:cellForRowAtIndexPath:")]
 public override UITableViewCell GetCell(UITableView
 tableView, NSIndexPath indexPath) {
...
 }
}

Chapter 2

[25]

The last few steps assign the weak delegate to a UITableView instance. By Xamarin.
iOS convention, weak delegate property names always begin with Weak. The
following example shows you how to assign the weak data source delegate:

phoneTableView.WeakSource =
 new WeakPhoneDataSource(...);

Once a weak delegate has been assigned, any assigned strong delegates will cease to
receive calls.

Creating binding libraries
There might be times when you are required to create your own binding library for
an Objective-C library that is not delivered as part of Xamarin.iOS and can't be found
in the Xamarin component store. Xamarin provides a great deal of guidance to create
bindings as well as an automated tool to help with some of the drudgery work. The
following links provide guidance to create custom bindings for Objective-C libraries:

Type of information URL to access it
General binding information http://docs.xamarin.com/guides/ios/

advanced_topics/binding_objective-c/

Use of the Objective Sharpie
automation tool

http://docs.xamarin.com/guides/ios/
advanced_topics/binding_objective-c/
objective_sharpie/

Binding types reference http://docs.xamarin.com/guides/ios/
advanced_topics/binding_objective-c/
binding_types_reference_guide/

Memory management
When it comes to releasing resources, Xamarin.iOS has this covered for you through
garbage collector (GC), which does this on your behalf. On top of this, all objects
that are derived from NSObject utilize the System.IDisposable interface so that
developers have some control over it when the memory is released.

NSObject not only implements the IDisposable interface, but also follows the
.NET dispose pattern. The IDisposable interface only requires a single method to
be implemented, Dispose(). The dispose pattern requires an additional method to
be implemented, Dispose(bool disposing). The disposing parameter indicates
whether the method is being called from the Dispose() method, in which case the
value is true, or from the Finalize method, in which case the value is false.

http://docs.xamarin.com/guides/ios/advanced_topics/binding_objective-c/
http://docs.xamarin.com/guides/ios/advanced_topics/binding_objective-c/
http://docs.xamarin.com/guides/ios/advanced_topics/binding_objective-c/objective_sharpie/
http://docs.xamarin.com/guides/ios/advanced_topics/binding_objective-c/objective_sharpie/
http://docs.xamarin.com/guides/ios/advanced_topics/binding_objective-c/objective_sharpie/
http://docs.xamarin.com/guides/ios/advanced_topics/binding_objective-c/binding_types_reference_guide/
http://docs.xamarin.com/guides/ios/advanced_topics/binding_objective-c/binding_types_reference_guide/
http://docs.xamarin.com/guides/ios/advanced_topics/binding_objective-c/binding_types_reference_guide/

Demystifying Xamarin.iOS

[26]

The disposing parameter is intended to be used to determine if managed objects
should be freed. If the value is true, the managed objects should be released.
Unmanaged objects should be released regardless of the value. The following
code demonstrates what should be present in the Dispose() method:

public void Dispose ()
{
 this.Dispose (true);
 GC.SuppressFinalize (this);
}

Take note of the call to Dispose(bool disposing) with a value of true.
Conveniently, the Dispose() method is implemented for you by the framework as a
virtual method on NSObject. The following code demonstrates an implementation of
the Dispose(bool disposing) method:

class MyViewController : UIViewController {

 UIImagemyImage;

 . . .

 public override void Dispose (bool disposing)
 {
 if (disposing){
 if (myImage!= null) {
 myImage.Dispose ();
 myImage = null;
 }
 }

 // Free unmanaged objects regardless of value.

 base.Dispose (disposing)

 }
}

Again, notice the call to base.Dispose(disposing). This call
is very important as it deals with resources managed within the
framework itself.

Chapter 2

[27]

Why the fuss? Why not clean up everything in Dispose()? The answer lies in the
garbage collector. The order in which the garbage collector destroys objects is not
defined and thus is unpredictable and subject to change. The .NET dispose pattern
helps prevent the finalizer from calling Dispose() on objects that have already been
disposed of.

You can read more about the .NET dispose pattern at the following link:
http://msdn.microsoft.com/en-us/library/fs2xkftw.aspx

Disposing of a managed object renders it useless. Even though references to the
object might still exist, you need to structure your software with the assumption
that an object that has been disposed of is no longer valid. In some cases, an
ObjectDisposedException will be thrown when accessing methods of a
disposed object.

Disposing of objects
Anytime you have an object that is holding substantial resources and is no longer
required, call the Dispose() method. The GC is convenient and fairly sophisticated
but might not have a complete picture as to the amount of resources a specific object
has allocated, particularly if those resources are associated with unmanaged objects.

Keeping objects around
To prevent an object from being destroyed, you simply need to be sure there is
at least one reference to the object maintained. Once an object's reference count
reaches 0, the GC is all happy to call the Dispose() method on it and the object
is no longer usable.

Limitations of using the AOT compilation
As we mentioned earlier in this chapter, some limitations come with the use of
the AOT compilation. The following sections outline the limitations imposed by
Xamarin.iOS due to the use of the AOT compilation:

•	 No generic subclasses of NSObject are allowed. The following will not be
allowed since UIViewController is a subclass of NSObject:
class MainViewController<T> : UIViewController {
...
}

http://msdn.microsoft.com/en-us/library/fs2xkftw.aspx

Demystifying Xamarin.iOS

[28]

•	 P/Invoke is not supported in generic classes, so the following is not
supported in Xamarin.iOS:
class MyGenericType<T> {
 [DllImport ("System")]
 public static extern int getpid ();
}

•	 Property.SetInfo() on a Nullable<T> Type is not supported. Using
Reflection's Property.SetInfo() to set the value on a Nullable<T> is
not currently supported.

•	 No dynamic code generation. The iOS kernel prevents an app from
generating code dynamically and thus Xamarin.iOS imposes the
following limitations:

°° Neither System.Reflection.Emit nor System.Runtime.Remoting
is available

°° No support to create types dynamically
°° Reverse callbacks must be registered with the runtime at compile

time

•	 There is a further limitation for reverse callbacks. In Mono, you can pass
C# delegates to unmanaged code rather than passing a function pointer.
Use of AOT imposes some limitations on this:

°° Callback methods must be flagged with the Mono attribute
MonoPInvokeCallbackAttribute

°° Callback methods must be static; there is no support for
instance methods

Runtime features disabled
The following features are disabled in Xamarin.iOS:

•	 Profiler
•	 The Reflection.Emit functionality
•	 The Reflection.Emit.Save functionality
•	 COM bindings
•	 The JIT engine
•	 The metadata verifier (since there is no JIT)

Chapter 2

[29]

Generating code for XIB and
storyboard files
The Apple Interface Builder is a designer built into Xcode that allows for visual
design of a user interface. The use of the Interface Builder is optional; user interfaces
can be completely built using iOS APIs. The definitions created by the Interface
Builder are saved in either XIB or storyboard files with the difference being that the
XIB files tend to contain a single view. Storyboards, on the other hand, contain a set
of views along with the transitions or segues between the views.

Xamarin Studio works in conjunction with Xcode to support the UI design. When a
storyboard or XIB file is double-clicked on within Xamarin Studio, Xcode is launched
to facilitate the design of the UI. Once the changes are saved in Xcode and you
switched back to Xamarin Studio, C# code is generated to support the UI design
captured in Xcode. The following sections describe this process in more detail.

Generated classes
Xamarin Studio generates two files for each custom class found in an XIB file or a
storyboard file, a designer file, and a non-designer file. For instance, a view controller
named LoginViewController will cause the following files to be generated:

•	 LoginViewController.cs

•	 LoginViewController.designer.cs

These files are generated after the changes have been saved in Xcode, and Xamarin
Studio gains focus.

Designer files
Designer files contain a partial class definition for custom classes found in the XIB
or storyboard file with properties being created for outlets and partial methods for
the actions that are found. The following example is for a view controller with two
UITextField controls and a single UIButton control:

[Register ("LoginViewController")]
partial class LoginViewController
{
 [Outlet]
 MonoTouch.UIKit.UITextField textPassword { get; set; }
 [Outlet]
 MonoTouch.UIKit.UITextField textUserId { get; set; }

Demystifying Xamarin.iOS

[30]

 [Action ("btnLoginClicked:")]
 partial void btnLoginClicked
 (MonoTouch.Foundation.NSObject sender);
void ReleaseDesignerOutlets ()
{
if (textUserId != null) {
 textUserId.Dispose ();
textUserId = null;
}
if (textPassword != null) {
textPassword.Dispose ();
textPassword = null;
}
}

Designer files are automatically updated once an XIB or storyboard
file has been altered. As a result, they should not be modified
manually because any changes will be lost once Xamarin Studio
updates them.

Non-designer files
Designer files are used alone but in conjunction with a non-designer file. The non-
designer file contains a partial class specification, which completes the class defined
in its corresponding designer file. The non-designer files identify the base class,
defines constructors that are required to instantiate the class, and provides a place
to implement functionality either by providing implementations for partial methods
or by overriding virtual methods on the base class. The following example shows a
non-designer file with an override and partial method implementation:

public partial class LoginViewController : UIViewController
{
 public LoginViewController (IntPtr handle) :
 base (handle)
{
}
 public override void ViewDidLoad ()
 {
 base.ViewDidLoad ();
 // logic to perform when view has loaded...
 }
partial void btnLoginClicked (NSObject sender)
{
// logic for login goes here...
}
}

Chapter 2

[31]

Note that the partial method implementation in this file is for a
method generated in the designer file in response to find an action
defined in the corresponding XIB or storyboard files.

Changes made to the non-designer file will not be lost as these files are only
created the first time Xamarin Studio encounters the new custom class and are
not subsequently updated.

Outlets properties
Designer classes contain private properties, which correspond to outlets defined on
the custom class that can then be used from the CodeBehind class found in the non-
designer file. If you need to make these properties public, all you need to do is add
the accessor properties to the non-designer file similar to how you will for any given
private field.

Action properties
Designer files have the property of containing partial methods that are associated to
all of the actions defined on the custom class. You should note that these methods do
not contain an implementation and they serve a dual purpose:

•	 Their first purpose is that when you insert partial into the class body of the
non-designer file, Xamarin Studio will offer to autocomplete the signatures of
all non-implemented partial methods, which allows developers to implement
logic for actions.

•	 Their other purpose is that their signatures have an attribute applied to them,
exposing them to the Objective-C world. Consequently, they can be invoked
once the corresponding action is triggered in iOS.

Xamarin.iOS Designer
Xamarin provides an alternative to Apple's Interface Builder. Xamarin.iOS Designer
is an add-in for the Xamarin Studio environment that adds full drag-and-drop user
interface design for iOS storyboards all from within Xamarin Studio. Xamarin.iOS
Designer provides the following key features:

•	 Compatible storyboard format: As you will expect, Xamarin.iOS Designer
creates storyboards in the same format used by Xcode and the iOS SDK,
so switching back to Xcode at some point is allowed

Demystifying Xamarin.iOS

[32]

•	 Eliminates syncing with Xcode: Using Xamarin.iOS Designer eliminates
the need to use Xcode in the development process along with the
synchronization problems that can occur between Xamarin Studio and Xcode

•	 Easy properties: Xamarin.iOS Designer automatically creates properties that
reference controls as they are dropped on a view

•	 Easy event handlers: Xamarin.iOS Designer provides a more intuitive means
to create event handlers, which work in a very similar way as Visual Studio
works on other UI frameworks such as Silverlight and WPF

•	 Custom controls: User can create their own custom UI controls that are
accessible from within the toolbox panel

Xamarin.iOS Designer can only be used to create storyboards. If you prefer or need
to work with XIB files, you will need to continue to work with Xcode.

Summary
In this chapter, we presented the essentials of Xamarin.iOS architecture and tried to
demystify the way Xamarin.iOS allows developers to create great native apps for
iOS using C# and Mono. While we have obviously not covered the entire iOS SDK,
we have described the approach and principles used to build Xamarin.iOS. With
this knowledge in place, you should be in a good position to move forward with
Xamarin.iOS development and resolve issues as they arise.

In the next chapter, we will try to accomplish the same goals for Xamarin.Android.

Demystifying
Xamarin.Android

It's now time to take a deeper dive into Xamarin.Android to see how it pulls off
the same magic as Xamarin.iOS. In this chapter, we will see that Xamarin.iOS and
Xamarin.Android share many of the same design goals. However, Xamarin.Android
does not rely on static compilation. Many of the goals are achieved through
completely different methods. This chapter covers the following topics:

•	 Mono CLR and Dalvik VM—working side by side
•	 Application packaging
•	 Mono assemblies
•	 Xamarin.Android bindings
•	 Attributes for the ApplicationManifest.xml file
•	 Garbage collection

Demystifying Xamarin.Android

[34]

Mono CLR and Dalvik VM – working side
by side
Android apps run within the Dalvik Virtual Machine (Dalvik VM), which is
somewhat similar to a Java VM, but optimized for devices with limited resources.
As we discussed in Chapter 1, Xamarin and Mono – a Pathway to the Unnatural,
Xamarin products are based on the Mono platform that has its own VM called the
Common Language Runtime (CLR). The key question to ask here is, "In which
environment does a Xamarin.Android app run?" The answer is both. If you take a
look at the next diagram, you will see for yourself how these two runtimes coexist:

JNI calls

Android

Binding

Linux Kernel

.NET APIs

My App Classes

Android.* Java.*

My App Classes

Mono CLR Dalvik VM

Both environments seem quite different from each other, so how does an app run in
both? Xamarin.Android's power is achieved through a concept called peer objects
and a Java framework called Java Native Interface (JNI).

Introducing the Java Native Interface
Let's start with JNI. This is a framework that allows non-Java code with languages
such as C++ or C#, as an example, to call or be called by Java code running inside a
JVM. As you can see from the previous diagram, JNI is a critical component in the
overall Xamarin.Android architecture.

You can find some supporting information on JNI, particularly
on peer objects, in Chapter 2, Xamarin.Android Architecture in Packt
Publishing's Xamarin Mobile Application Development for Android,
Mark Reynolds.

Chapter 3

[35]

Peer objects
Peer objects are a pair of objects that work together to carry out the functionality of
an Android app. One of these is a managed object residing in the Mono CLR, while
the other is a Java object residing in the Dalvik VM.

Xamarin.Android is delivered with a set of assemblies called the Android binding
libraries. Classes in the Android binding libraries correspond to the Java classes in
the Android application framework, and the methods on the binding classes act as
wrappers, to call corresponding methods on Java classes. These binding classes are
commonly known as Managed Callable Wrappers (MCW). Because whenever you
create a C# class that inherits from one of these binding classes, a corresponding
Java proxy class is generated at build time. The Java proxy contains a generated
override for each overridden method in your C# class and acts as a wrapper to
call the corresponding method on the C# class.

Peer objects can be created from within the Dalvik VM by the Android application
framework or from within the Mono CLR by the code you write in the overridden
methods. A reference between the two peer objects is kept by each instance of a MCW
and can be accessed through the Android.Runtime.IJavaObject.Handle property.

You can see for yourself how peer objects collaborate together here:

The managed object inherits from a class in a binding
library which contains wrapper methods that call the
corresponding Java object s method.'

The Java proxy contains generated overrides which act
as a wrapper and call the managed peer object s'
corresponding override.

Inherited Methods (MCW)

SetContentView()

Virtual Overridden Methods

OnCreate()

Mono CLR

MyActivity

Virtual Overridden Methods

OnCreate()

Dalvik VM

MyActivity

Inherited Methods

setContentView()

Demystifying Xamarin.Android

[36]

Xamarin.Android application packaging
Android applications are delivered for installation in an Android package format,
which is an archive file with a .apk extension. An Android package contains the apps
code and all of the supporting files required to run the app that includes the following:

•	 Dalvik executables (*.dex files)
•	 Resources
•	 Native libraries
•	 The application manifest

Xamarin.Android apps follow the same standard with the following additions:

•	 C# code is compiled into assemblies and stored in a top-level folder
named assemblies

•	 Mono runtime libraries are stored along with other native libraries
in the lib folder

Understanding Mono assemblies
Like Xamarin.iOS, Xamarin.Android ships with an extended subset of Silverlight
and desktop .NET assemblies. Together, these libraries provide the .NET runtime
library support for developers, including namespaces such as System.IO and
System.Threading.

Xamarin.Android is not binary compatible with assemblies compiled for a different
profile, meaning your code must be recompiled to generate assemblies, specifically
targeting the Xamarin.Android profile. This is essentially the same thing you have
to do if you're targeting other profiles such as Silverlight or .NET 4.5.

For a complete list of assemblies that ship with Xamarin.Android,
you can refer to http://docs.xamarin.com/guides/
android/under_the_hood/assemblies.

Xamarin.Android bindings
Xamarin.Android also ships with a set of binding libraries that provide the support
for Android development. The binding libraries form the second big part of the
magic behind Xamarin.Android similar to the way in which the Mono CLR and
Dalvik VM function. The following sections delve into the details of these bindings.

http://docs.xamarin.com/guides/android/under_the_hood/assemblies
http://docs.xamarin.com/guides/android/under_the_hood/assemblies

Chapter 3

[37]

The design principles
A number of goals or design principles guided the development of the binding
libraries. These principles are critical to make C# developers productive in an
Android development. The following represents a summary of the design principles,
where you will notice some similarities with the Xamarin.iOS bindings:

•	 Allow developers to subclass Java classes in the same way they subclass
other .NET classes

•	 Make common Java tasks easy, and tough Java tasks possible
•	 Expose JavaBean properties as C# properties
•	 Expose a strongly typed API
•	 Expose C# delegates (lambdas, anonymous methods, and System.Delegate)

instead of single-method interfaces when appropriate and applicable
•	 Provide a mechanism to call arbitrary Java libraries (Android.Runtime.

JNIEnv)

A complete discussion around these principles can be found at
http://docs.xamarin.com/guides/android/advanced_
topics/api_design.

Properties
To the greatest extent possible, JavaBean properties in the Android framework
classes are transformed into C# properties. The following rules are always
followed whenever this takes place:

•	 Firstly, read/write properties are created for both the getter and setter
method pairs

•	 Read-only properties are created for getters without the corresponding
setter methods

•	 In the rare case that only a setter exists, no write-only properties are created
•	 Finally, no properties are created when the type will be an array

http://docs.xamarin.com/guides/android/advanced_topics/api_design
http://docs.xamarin.com/guides/android/advanced_topics/api_design

Demystifying Xamarin.Android

[38]

Events versus listeners
Android APIs follow the Java pattern in order to define and hook up event listeners.
C# developers should be more familiar with the similar concepts of delegates
and events.

The following is an example of Java event listeners:

addTicketButton.setOnClickListener (
new View.OnClickListener() {
 public void onClick (View v) {
_ticketCount++;
updateLineItemCost();
 }
});

This following is the equivalent code that uses C# events:

addTicketButton.Click += (sender, e) => {
 _ticketCount++;
 UpdateLineItemCost();
};

The Android bindings provide events when possible. The following rules are
followed:

•	 When the listener has a set prefix such as setOnClickListener
•	 When the listener callback has a void return
•	 When the listener accepts only a single parameter, the interface has only a

single method, and the interface name ends with Listener

When an event is not created due to one of the rules enlisted here, a specific delegate
is generated that supports the appropriate signature.

Special help with collections
The native Android APIs uses list, set, and map collections extensively from java.
util. The Android bindings expose these collections using interfaces from System.
Collections.Generic. In addition, Xamarin.Android provides a set of helper
classes that implement each corresponding .NET collection and provides faster
marshaling because they do not actually perform a copy. The following table
shows how these classes map:

Chapter 3

[39]

Java type .NET interface Helper class
java.util.Set<E> ICollection<T> Android.Runtime.

JavaSet<T>

java.util.List<E> IList<T> Android.Runtime.
JavaList<T>

java.util.
Map<K,V>

IDictionary<TKey,TValue> Android.Runtime.
JavaDictionary<K,V>

java.util.
Collection<E>

ICollection<T> Android.Runtime.
JavaCollection<T>

Xamarin.Android allows you to pass any collection (which implements the correct
interface) into the Android API methods. For example, List implements IList and
can be used when an IList entity is required. However, for performance reasons,
it is recommended that you use the helper classes anytime you need to pass any
of these collection types into an Android API method.

Interfaces
Java and C# both support interfaces; however, Java supports additional capabilities.
Also, both support the ability to define a set of method names and signatures. In
addition, Java supports the following:

•	 Nested interface definitions
•	 Fields (public final static only)

In general, the following items describe how the Android bindings provide
the following Java interfaces:

•	 A C# interface with the same name but prefixed by I and containing
method declarations is created. For example, android.view.Menu is
created as Android.Views.IMenu.

•	 An abstract class with the same name as the Java interface is generated,
which contains definitions for the constants from the Android interface.
For example, the constants from android.view.Menu are placed in the
generated abstract class Android.Views.Menu.

•	 A C# interface is generated for each nested interface and is given a name
prefixed by I, the name of the parent Java interface, followed by the name
of the nested Java interface.

•	 Classes in the Android bindings that implement an Android interface
containing constants get a nested InterfaceConsts type generated
that also contains definitions.

Demystifying Xamarin.Android

[40]

Mapping nested classes
Java and C# both support the definition of nested classes. However, Java supports
two types of nested classes: static and non-static. The following points clarify how
it does this:

•	 Java static nested classes are the same as C# nested classes and are
translated directly

•	 Non-static nested classes, also known as inner classes, are somewhat
different; additional rules apply:

°° A reference to an instance of the containing type must be provided
as a parameter in the constructor to the inner class.

°° In the case of inheriting from an inner class, the derived class must
be nested within a type. This type inherits properties from the class
that contains the base inner class, and the derived class must provide
a constructor of the same type as the C# containing type.

Mapping the Runnable interface
Java provides the java.lang.Runnable interface with a single method, run(), in
order to implement delegation. The Android platform makes use of this interface
in a number of places such as Activity.runOnUIThread() and View.post().

C# provides the System.Action delegate for a method with a void return and
no parameters; thus, it maps very nicely to the Runnable interface. The Android
bindings provide overloads that accept an Action parameter for all API members
that accept a Runnable interface in the native API.

The IRunnable overloads were also left in place so that types that are returned
from other API calls can be used.

Enumerations
In many places, the Android APIs uses int constants as parameters to specify
processing options. To increase type safety, the Android bindings create
enumerations to replace int constants when possible. The following example
shows the use of the ActivityFlags.NewTaskenum value rather than the native
FLAG_ACTIVITY_NEW_TASK constant:

myIntent.SetFlags (ActivityFlags.NewTask);

Another great advantage of using an enum class is the enhanced support that you
get with code completion in IDEs such as Xamarin Studio and Visual Studio.

Chapter 3

[41]

Resources
Xamarin.Android generates a file named Resource.Designer.cs in the Resources
folder of your project. This file contains constants for all of the resources referenced
in your app and serves the same purpose as the R.java file generated for traditional
Android apps.

Attributes for the ApplicationManifest.
xml file
Android applications have a manifest file (AndroidManifest.xml) that tells the
Android platform everything it needs to know to successfully run the application,
including the following features:

•	 The minimum API level required by the application
•	 Hardware/software features used or required by the application
•	 Permissions required by the application
•	 The initial activity to start when the application is launched
•	 Libraries required by the application

Xamarin.Android provides a robust set of .NET attributes that can be used to adorn
your C# classes so that much of the information required in ApplicationManifest.
xml will be automatically generated at compile time. Use of these attributes
simplifies the task of keeping the manifest in sync with your code. For example,
if you rename an Activity class, the next time you compile, the corresponding
<Activity/> element in the manifest is automatically updated.

The following example demonstrates the use of the Activity attribute to specify
the launch activity for an app:

[Activity (Label = "My Accounts", MainLauncher = true)]
public class MyAccountsActivity : Activity
{
 ...
}

This will result in the following entry in the ApplicationManifest.xml file:

<activity android:label="My Accounts"
android:name="myaoo.MyActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category

Demystifying Xamarin.Android

[42]

android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

Although .NET attributes are a convenient way to keep your code and manifest file
in sync, the use of these attributes is not required.

Editor for the ApplicationManifest.xml file
Xamarin Studio also provides an editor for ApplicationManifest.xml. This can
be used instead of attributes or to edit content that cannot be set through the use of
attributes such as the hardware/software features required and permissions. The
following screenshot depicts the editor:

Chapter 3

[43]

Garbage collection
Since Xamarin.Android apps run in two different VMs, garbage collection is
somewhat complex and creates some interesting challenges. Therefore, we have
devoted significant time to discuss this process. Xamarin.Android uses Mono's
simple generational garbage collector, which supports two types of collections
called minor and major:

•	 Minor collections: These collections are cheap and thus invoked frequently.
Minor collections collect recently allocated and dead objects and are invoked
after every few MB of allocations. You can manually invoke a minor
collection with the following code:
GC.Collect(0)

•	 Major collections: These collections are expensive and are thus invoked less
frequently. Major collections reclaim all dead objects and are only invoked
when memory is exhausted for the current heap size. You can manually
invoke a major collection with the following code:

GC.Collect() or GC.Collect(GC.MaxGeneration).

You can review a more detailed discussion on Mono's simple
generational garbage collector at http://www.mono-
project.com/Compacting_GC.

Before we continue with the discussion, it will help us if we group objects in an
app into the following categories:

•	 Managed objects: These are any C# objects you create from standard
libraries such as the Mono runtime libraries. They are garbage collected like
any other C# object and have no special connection to any classes from the
Android bindings.

•	 Java objects: These are Java objects that reside in the Dalvik VM that were
created as a part of some process, but not exposed to a managed object
through JNI. These objects are collected as any other Java object, and there
is little that we need to discuss about them.

•	 Peer objects: As we mentioned earlier, peer objects are a managed object
and Java object pair that communicates via JNI. It works together to carry
out the functionality of an Android app.

http://www.mono-project.com/Compacting_GC
http://www.mono-project.com/Compacting_GC

Demystifying Xamarin.Android

[44]

JNI global and weak references
JNI references come in a couple of different types and they have a big impact
on when objects can be collected. Specifically, we will discuss two types of JNI
references, which are global and weak references:

•	 Global reference: A JNI global reference is a reference from "native", or in
our case managed code, to a Java object managed by the Dalvik VM. A JNI
global reference is established between peer objects when they are initially
created. A JNI global reference will prevent the Dalvik garbage collector
from performing the required action as it indicates the object is still in use.

•	 Weak reference: A JNI weak reference also allows a managed object to
reference a Java object, but the difference is that a weak reference will not
prevent the Dalvik VM GC from collecting it.

We will see how these differ later on in this chapter.

Mono collections
Mono collections are where the fun happens. As mentioned earlier, simple managed
objects are collected normally, but peer objects are collected by performing the
following steps:

1.	 All managed peers are eligible for Mono collection, meaning they are
not referenced by any other managed objects. They have their JNI global
reference replaced with a JNI weak reference. This allows the Dalvik VM
to collect the Java peer if no other Java objects in the VM reference them.

2.	 A Dalvik VM GC is invoked that allows the Java peers with weak global
references to be collected.

3.	 Managed peers with a JNI weak reference, as created in step 1, are evaluated.
If the Java peer has been collected, then the managed peer is also collected.
If the Java peer has not been collected, then it is replaced with a JNI global
reference and the managed peer is not collected until a future GC.

The end result is that an instance of a managed peer will live as long as it's referenced
by a managed code or its corresponding Java peer is referenced by a Java code. To
shorten the lifetime of peers, dispose of peer objects when they are no longer needed.

Best practice
Calling the Dispose() method manually severs the connection
between the peers by freeing the JNI global reference, thus allowing
each VM to collect the objects as soon as possible.

Chapter 3

[45]

Automatic collections
From Xamarin.Android 4.1.0 version onwards, a full garbage collection is performed
automatically when a gref threshold has crossed 90 percent of the known maximum
gref values for the platform.

When you perform an automatic collection, a message similar to the following is
displayed in the debug log:

I/monodroid-gc(PID): 46800 outstanding GREFs. Performing a full GC!

Invocations of the automatic GC are nondeterministic and might not happen at best
times. If you are experiencing a pause in processing, look for messages in the logcat
that might indicate that an automatic GC occurred. When this scenario occurs, you
can consider when you can use Dispose() to reduce the lifetime of the peer.

Helping the GC
There are a number of ways in which you can help the GC with the collection
process. The following sections provide some additional thoughts:

•	 Disposing of peer objects: Get rid of managed peers when they are no
longer needed and consider invoking a minor GC. As we mentioned earlier,
the Mono GC does not have a complete picture of the memory situation.
To Mono, peer objects appear to take up only 20 bytes because the MCWs
don't add instance variables. Hence, all of the memory is associated with the
corresponding Java object and allocated to the Dalvik VM. If you have an
instance of Android.Graphics.Bitmap loaded with a 2 MB image, the Mono
GC only sees the 20 bytes and thus disposing of the object will be a low
priority to the GC.

•	 Reduce direct references in peer objects: Whenever a managed peer is
scanned during GC, the entire object graph is scanned, meaning every object
it directly references is scanned as well. Objects with a significant number of
direct references can cause a pause when the GC runs.

•	 Minor collections: Minor collections are relatively cheap. You can consider
invoking minor collections at the end of an activity or after completing a
significant set of service calls or background processing.

•	 Major collections: Major collections are expensive and should rarely be
performed manually. Only consider manually invoking a major collection
after a significant processing cycle when a large amount of resource has
been freed and you can live with a pause in the app's responsiveness.

Demystifying Xamarin.Android

[46]

Xamarin.Android Designer
Xamarin provides a plugin for Xamarin Studio that can be used to design layout
files for Xamarin.Android apps. The designer supports a Content mode for visual
drag-and-drop and a Source mode for XML-based editing. The following screenshot
depicts the designer opened in the Content mode:

Summary
In this chapter, we reviewed the architecture of Xamarin.Android, discussed the
design goals, and looked at some of the details of its implementation. We also looked
at how memory management works with a Xamarin.Android app. In the next
chapter, we will start developing a Xamarin.iOS app.

Developing Your First iOS
App with Xamarin.iOS

In this chapter, we finally get to jump in and start writing some code. We will
develop a sample app that demonstrates the basics of developing Xamarin.iOS
apps and will cover the following topics:

•	 Overview of the sample app
•	 Creating a Xamarin.iOS app
•	 Running and debugging apps with Xamarin Studio
•	 Using Xamarin iOS Designer
•	 Extending the sample app
•	 MonoTouch.Dialog

Developing Your First iOS App with Xamarin.iOS

[48]

The sample national parks app
In this chapter, we will create a sample app that we will continue to work with
through Chapter 8, Sharing with Xamarin.Forms. The app will allow you to view,
create, edit, and delete information about national parks, and will have a
similar user interface and flow as the iOS 7 Contacts app. The following screen
mock-ups depict how the user interface will be organized:

ABC3G 06:19 AM

< Master Detail Edit

State:

Country:

Lat:

Lon:

TX

US

29.127529

-103.242543

Big Bend

Big Bend National Park in the U.S. State

of Texas has national significance as

the largest protected area of

Chihuahuan Desert topography and

ecology in the United States.

Description

Photos Directions

ABC3G 06:19 AM

Master +

>

>

>

Big Bend

Great Smoky Mountains

Yellowstone

ABC3G 06:19 AM

< Detail Edit Done

State:

Country:

Lat:

Lon:

TX

US

29.127529

-103.242543

Big Bend

Big Bend National Park in the U.S. State

of Texas has national significance as

the largest protected area of

Chihuahuan Desert topography and

ecology in the United States.

Description

Delete

List View Detail View Edit View

The following are the different views of national park apps:

•	 List view: This view displays a list of national parks that allows a park
to be viewed and also a new park to be created

•	 Detail view: This view displays all the properties of a national park in
read-only mode, and allows navigation to see photos of a park or see
directions to a park

•	 Edit view: This view allows you to edit new or existing parks as well
as delete parks

Creating the sample app
A Xamarin.iOS template will be used to create the sample app, giving us much
of the required functionality that is already in place.

Chapter 4

[49]

Throughout the chapter, we will present sample code from the downloaded solutions.
Feel free to deviate in any manner to take the app in any direction you see fit.

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the
files e-mailed directly to you.

To create the national parks sample app, perform the following steps:

1.	 Launch Xamarin Studio.
2.	 From the File menu, navigate to New | Solution. The New Solution dialog

box will be presented, as shown in the following screenshot:

3.	 Navigate to C# | iOS | iPhone Storyboard on the left-hand side of the
dialog box and Master-Detail Application in the middle section.

4.	 Enter NationalParks.iOS in the Name field, select the location where you
would like to place your code by clicking on the Browse button, change
the Solution name to NationalParks, leave Create directory for solution
checked, and click on OK.

Developing Your First iOS App with Xamarin.iOS

[50]

5.	 One reason for naming the project NationalParks.iOS is that in future
chapters, we will add a new project named NationalParks.Droid to the
same solution. This project will clearly identify which platform is supported
by each project.

6.	 Xamarin Studio will create both the solution and project folders, generate a
number of files for solution and project, and then open the new solution and
project. The following screenshot depicts Xamarin Studio with the newly
created project open:

By selecting the Master-Detail template, Xamarin Studio has generated a functioning
application with a master view (list) and a detail view along with everything that is
needed to navigate between the two.

Let's take a brief look at what was automatically created:

•	 MainStoryboard.storyboard: A storyboard file containing the user
interface definitions was created and named MainStoryboard.storyboard.
Double-click on this file to open it in Xcode. You will notice that the
storyboard contains two view controllers: MasterViewController and
DetailViewController with a single segue between them.

Chapter 4

[51]

•	 MasterViewController: The MasterViewController.cs and the
corresponding MasterViewController.designer.cs files were
created as a result of MasterViewController defined in the storyboard.
MasterViewController.cs is the file where we will add code, while we
override methods and add logic.

•	 DataSource: MasterViewController contains an inner class named
DataSource, which is a specialization of UITableViewSource. The
DataSource class is responsible for providing populated UICellViews
to the table view on MasterViewController.

•	 DetailViewController: The DetailViewController.cs and its
corresponding DetailViewController.designer.cs files were created
as a result of DetailViewController defined in the storyboard. This
is used to display properties of a specific item from the table view on
MasterViewController.

The Project Options view
There are numerous options that can be set that affect how an iOS app is built and
executed. These options can be viewed and adjusted from the Project Options view.
The following sections are of the most interest for iOS apps:

•	 iOS Application: This includes settings that describe the application,
including the devices supported, iOS target version, orientations supported,
icons, and more

•	 iOS IPA Options: This includes settings related to creating an IPA package
for ad hoc distribution

•	 iOS Bundle Signing: This includes settings that control how the bundle is
signed during the build process

•	 iOS Build: This includes settings used by the compile and link process to
optimize the resulting executable

Prior to running the app, we need to choose a setting for our target version of iOS.
To adjust this setting, follow these steps:

1.	 Select the sample app project under the sample app solution in the
Solution pad.

2.	 Right-click and select Options.

Developing Your First iOS App with Xamarin.iOS

[52]

3.	 Select the iOS Application section and set the Deployment Target
option to 7.0 and click on OK.

Running and debugging within Xamarin
Studio
Now that we have a good understanding of what was created for us, let's take
a few minutes to look at the capabilities Xamarin Studio provides to run and
debug apps. The way in which a tool supports running and debugging apps has
a big impact on developer productivity. Xamarin Studio provides a robust set of
debugging capabilities comparable to the most modern development environments
that can be used with either the iOS Simulator or a physical device. As with an iOS
development, using a physical device provides the most accurate results.

Chapter 4

[53]

The two dropdowns on the upper-left hand corner of Xamarin Studio control the
type of build (Release or Debug) that will be produced and, when Debug is selected,
which of the iOS Simulators should be used. Build types include Ad-Hoc, AppStore,
Debug, and Release. All of these build types except Debug will be discussed in
Chapter 9, Preparing Xamarin.iOS Apps for Distribution. The Debug build type is
shown in the following screenshot:

Note that Debug is selected for the type of build and the various options available
for the iOS Simulator. Selecting iOS Device allows you to debug the app on an
attached device.

To debug an app, follow the given steps:

1.	 Select Debug for the build type, and select iOS 7.1 from iPhone Retina
(4-inch 64-bit) for the iOS Simulator option.

2.	 Start the debugging session by clicking on the Start button from the taskbar
on the left-hand side. You can also initiate the debugging session by
navigating to Run | Start Debugging from the main menu bar.

Developing Your First iOS App with Xamarin.iOS

[54]

3.	 Xamarin Studio will compile the app, launch the iOS Simulator, install the
app on the simulator and finally launch the app. Xamarin Studio keeps you
informed of what is going in the status window in the middle of the taskbar.
The following screenshot shows the status window during the build process:

4.	 An empty list is initially presented. Click the + (add) button a few times and
you will see the date/time fields being added to the list. Select an entry and
the Detail view is displayed, as shown in the following screenshot:

5.	 Open MasterViewController.cs by double-clicking the Solution
pad on the left-hand side. Set a breakpoint on the first line in the
AddNewItem() method.

Chapter 4

[55]

6.	 Click on the + (add) button in the app. You will notice the app has
stopped on the breakpoint, as follows:

7.	 You will find the basic flow controls in the taskbar. These allow you to
continue execution, step over current line, step into current function, and
step out of the current function. The taskbar will appear:

A complete set of flow control and debugging options can be
found under the Run main menu.

8.	 From the first line in AddNewItem(), select DateTime.Now, right-click, and
select Expression Evaluator. This dialog box allows you to quickly view the
status of objects during your app's execution, as follows:

Developing Your First iOS App with Xamarin.iOS

[56]

9.	 You will also notice a set of panels at the bottom of Xamarin Studio, which
contain tabs for Watch, Locals, Breakpoints, Threads, Application Output,
and Call Stack.

10.	 Click the continue icon to allow the app to continue running.

As you can see from the previous exercise, Xamarin Studio and the iOS Simulator
provide a robust set of features to run and debug applications.

Extending the sample app
Now, it's time to extend the app. We have two primary tasks before us:

•	 Create a way for national parks to be loaded and saved from a file
•	 Enhance the user interface to show all of the appropriate attributes

and allow to view and edit data

Storing and loading national parks
We will use a simple JSON-formatted text file to store information. .NET provides
libraries to accomplish this, but the library I have had the most success with is
Json.NET. Json.NET is an open source library created by James Newton-King,
and this is definitely worth considering. Json.NET is also available in the
Xamarin component store, so we can add it to our project directly from there.

Chapter 4

[57]

Adding Json.NET
To add Json.NET to the sample app, perform the following steps:

1.	 Expand the NationalParks.iOS project, select the Components folder,
and choose Edit Components.

2.	 In the upper-right corner, click on Get More Components and enter
Json.NET in the search field.

3.	 Select Json.NET from the list and choose Add to App.

Creating an entity class
We now need an entity class that represents our subject: national parks. This will be
a simple .NET class with a handful of properties.

To create an entity class, perform the following steps:

1.	 Right-click on NationalParks.iOS project and select the New File option.
2.	 In the New File dialog box, select the General section, select Empty Class,

enter NationalPark in the Name field, and click on New.

The following code demonstrates what is needed for the entity class:

public class NationalPark
{
 public NationalPark ()
 {
 Id = Guid.NewGuid ().ToString();
 Name = "New Park";
 }

 public string Id { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
 public string State { get; set; }
 public string Country { get; set; }
 public double? Latitude { get; set; }
 public double? Longitude { get; set; }

 public override string ToString ()
 {
 return Name;
 }
}

Developing Your First iOS App with Xamarin.iOS

[58]

Adding a JSON-formatted file
Now, we need a file filled with JSON-formatted national parks. You can find
such a file in the assets folder of the downloaded solutions. The name of the
file is NationalParks.json.

To add the data file to the project, perform the following steps:

1.	 Copy the NationalParks.json file to the NationalParks.iOS
project folder.

2.	 Right-click on the NationalParks.iOS project and choose Add Files,
select NationalParks.json and click on Open.

3.	 Double-click on the NationalParks.json file to open it and view
the content.

There are several file properties that must be set that determine how the file is
handled during the compilation and deployment process. We want the file to be
treated as content and placed in the same folder as the app during deployment.
The following screenshot shows the settings required to accomplish this. The
panels to adjust these settings are in the Properties tab on the right-hand side
of Xamarin Studio.

This is not an ideal location for apps to store their data for a production distribution,
but will work for our purpose in this chapter. In Chapter 5, Developing Your First
Android App with Xamarin.Android, we will build a more robust storage mechanism
when we discuss sharing code between iOS and Android apps.

Chapter 4

[59]

Loading objects from a JSON-formatted file
Now, we need to add the logic to load data from the file to a list.

To load objects from a file, perform the following steps:

1.	 As you recall, when our app was generated, the UITableViewSource file
placed in MasterViewController.cs used a List<object> object to
populate the list. We need to convert this to List<NationalPark> Parks,
as follows:
readonly List<NationalPark> parks;

Note that we do not instantiate the Parks list; Json.NET will do this for us
when we deserialize the JSON string.

2.	 We also need to convert the Objects property defined on DataSource to
the following:
public IList<NationalPark> Parks {get {return parks;}}

3.	 Add the using clauses for System.IO and Newtonsoft.Json in preparation
to add the load and deserialize steps:
using System.IO;
. . .
using Newtonsoft.Json;

4.	 The JSON file will be placed in the app folder; the Environment.
CurrentDirectory property gives us the path to this location. Loading
objects from this file requires two basic steps. The first step is to read the text
into a string with File.ReadAllText(). The second step is to deserialize
the objects into a list using JsonConvert.DeserializeObject<>().
The following code sample demonstrates what needs to be placed in the
constructor of the DataSource class:

string dataFolder = Environment.CurrentDirectory;
string serializedParks =
 File.ReadAllText (Path.Combine(dataFolder,
 "NationalParks.json"));
parks =
 JsonConvert.DeserializeObject<List<NationalPark>>
 (serializedParks);

Developing Your First iOS App with Xamarin.iOS

[60]

Saving objects to a JSON-formatted file
Saving objects to a JSON-formatted file is just as simple as loading them. Simply call
JsonConvert.SerializeObject() to create a JSON representation of the object(s) in
a string and write the resulting string to a text file using File.WriteAllText(). The
following code demonstrates what is needed:

string dataFolder = Environment.CurrentDirectory;
string serializedParks =
 JsonConvert.SerializeObject (dataSource.Parks);
File.WriteAllText(Path.Combine(dataFolder,
 "NationalParks.json"), serializedParks);

We will use this logic in the upcoming section titled Implementing the Done Clicked
event handler.

Running the app
We are now ready to take a look at some of our work. Run the app and notice
the following:

•	 MasterViewController is populated with information from
NationalParks.json

•	 Selecting a park displays DetailViewController populated with the
name of the park

•	 Clicking on the Add button from MasterViewController adds a new park
with the name New Park

Enhancing the UI
We will now turn our attention to create a more robust UI that will support listing
items, view item details, and edit new and existing items. This is a common pattern
for mobile apps and we already have about 75 percent of what we need. We need to
make the following additions:

1.	 Add a new view controller named EditViewController that can be used to
edit new or existing national parks.

2.	 Change the Add button on MasterViewController to open a new national
park entry in EditViewController.

3.	 Add fields to DetailViewController that will display all the properties of a
national park and an Edit button that will navigate to EditViewController
to edit the current item.

Chapter 4

[61]

As we discussed in Chapter 2, Demystifying Xamarin.iOS, we have two options to edit
storyboards: Xcode Interface Builder and the Xamarin.iOS Designer. Either of these
tools can be used based on preference. Within Xamarin Studio, you can choose which
tool to launch by selecting a storyboard file, right-click on it and select Open With.
The following screenshot shows the storyboard context menu:

The rest of this chapter will be based on using the Xamarin.iOS Designer. If you
choose to work with Xcode Interface Builder, you need to be aware that when
changes are made in Xcode, there is a synchronization process that takes place
when the Xamarin Studio becomes active again. This process synchronizes
changes made in Xcode with C# designer class files and creates appropriate
outlets and actions. The following screenshot shows Xamarin Studio's status
bar during synchronization:

Developing Your First iOS App with Xamarin.iOS

[62]

If you would like more guidance with Xamarin.iOS Designer or need
a kick start or refresher course on using Xcode Interface Builder, the
following links provide tutorials:

•	 Xamarin Tutorial for using Xamarin.iOS Designer available at
http://developer.xamarin.com/guides/ios/user_
interface/designer/

•	 Apple Tutorial for Xcode Interface Builder available at https://
developer.apple.com/library/ios/documentation/
ToolsLanguages/Conceptual/Xcode_Overview/
chapters/edit_user_interface.html

•	 Xamarin Tutorial for using Xcode Interface Builder
available at http://docs.xamarin.com/guides/ios/
user_interface/tables/part_5_-_using_xcode,_
interface_builder,_and_storyboards/

Touring the Xamarin.iOS Designer
Xamarin.iOS Designer provides a full set of tools to create and edit storyboard files.
As this might be your first time using the tool, we will devote a few minutes to get
familiar with it. To do so, follow the given steps:

1.	 Double-click on MainStoryboard.storyboard to open the storyboard
in Xamarin.iOS Designer. You will see NavigationController,
MasterViewController, DetailViewController, and segues that
connect everything, as shown in following screenshot:

http://developer.xamarin.com/guides/ios/user_interface/designer/
http://developer.xamarin.com/guides/ios/user_interface/designer/
http://docs.xamarin.com/guides/ios/user_interface/tables/part_5_-_using_xcode,_interface_builder,_and_storyboards/
http://docs.xamarin.com/guides/ios/user_interface/tables/part_5_-_using_xcode,_interface_builder,_and_storyboards/
http://docs.xamarin.com/guides/ios/user_interface/tables/part_5_-_using_xcode,_interface_builder,_and_storyboards/
https://developer.apple.com/library/ios/documentation/ToolsLanguages/Conceptual/Xcode_Overview/chapters/edit_user_interface.html
https://developer.apple.com/library/ios/documentation/ToolsLanguages/Conceptual/Xcode_Overview/chapters/edit_user_interface.html
https://developer.apple.com/library/ios/documentation/ToolsLanguages/Conceptual/Xcode_Overview/chapters/edit_user_interface.html
https://developer.apple.com/library/ios/documentation/ToolsLanguages/Conceptual/Xcode_Overview/chapters/edit_user_interface.html

Chapter 4

[63]

2.	 Note the Toolbox pad in the lower right-hand corner of Xamarin Studio.
It contains all the items that can be used within a storyboard. You can
search for items using the search field. The Toolbox pad is shown in the
following screenshot:

3.	 Note the Document Outline pad in the upper-right hand corner of Xamarin
Studio. This view depicts the content of the storyboard in a hierarchical
form that you can use to drill down to view increasing levels of detail. The
Document Outline pad is very helpful to view and select specific elements
in a storyboard, as shown in the following screenshot:

Developing Your First iOS App with Xamarin.iOS

[64]

4.	 Note the Properties pad in the upper-right hand corner of Xamarin Studio;
you can access it by clicking on the tab labeled Properties. The Properties
pad allows you to edit properties for the currently selected item. Entering a
name for a control in the Widget section will automatically create an outlet
and entering names in the Events section will automatically create an action.
The Properties pad is shown in the following screenshot:

5.	 Note the top of the designer that contains a number of controls to adjust
options, such as iOS version, device size, device orientation, and level
of zoom. There are also controls to establish constraints, as shown in the
following screenshot:

Chapter 4

[65]

6.	 Selecting items in the designer can be a little tricky, particularly when
selecting a view controller. If you click in the middle of the view controller,
the view will be selected and not the view controller. There are three
different ways to select a view controller:

°° Right-click in the middle of the view controller and navigate to
View Controller | Select, as shown in the following screenshot:

°° Click on the bar at the bottom of the view controller, as shown in
the following screenshot:

°° Select the view controller in the Document Outline pad

Adding EditViewController and segues
With a basic understanding of Xamarin.iOS Designer, we are now ready to add
a new view controller and segues.

To add EditViewController and segues, perform the following steps:

1.	 Double-click on MainStoryboard.storyboard to open the storyboard
in Xamarin.iOS Designer. You will see MasterViewController and
DetailViewController in the file with a segue between them.

2.	 Create a new UIViewController by selecting the View Controller
item from the Toolbox pad and drag-and-drop it on the designer view.

Developing Your First iOS App with Xamarin.iOS

[66]

3.	 Name the new view controller EditViewController by clicking on
the bar at the bottom to select it, switch to the Properties pad, and enter
EditViewController for the Class field. The following screenshot depicts
the Properties pad:

4.	 Add a Bar Button Item to the right-hand side of the Navigation Item
on DetailViewController and set the Identifier button to Edit on the
Widget section of the Properties pad.

5.	 Add a push segue from the Edit button on DetailViewController
to the new controller, EditViewController. Press and hold the Ctrl
key, click and hold the Edit button, drag it to the bar at the bottom
of EditViewController, let go of the mouse, choose Push and enter
editFromDetail for the Identifier option on the Widget section of the
Properties pad.

6.	 Add a Bar Button Item to the right-hand side of the Navigation Item
on MasterViewController and set the Identifier button to Add.

7.	 Add a push segue from the Add button on MasterViewController
to the new controller, EditViewController. Press and hold the Ctrl
key, click and hold the Add button, drag it to the bar at the bottom
of EditViewController, let go of the mouse, choose Push, and enter
editFromMaster for the Identifier option on the Widget section of the
Properties pad.

8.	 Add a Bar Button Item to the right-hand side of the Navigation Item on
EditViewController and set the Identifier option to Done. Name the
button DoneButton. Naming the button will create an outlet that can
later be used as a reference to assign a traditional .NET event handler.

Chapter 4

[67]

9.	 Add a label, UILabel, to the center of EditViewController. This
will be used temporarily to display the name of an item, while we test
and debug the navigation of the app. Name this UILabel instance as
editDescriptionLabel.

10.	 Add a UIButton instance to EditViewController and set the Title option
to Delete. Add an action named DeleteClicked to the Touch Down event
in the Events section of the Properties pad. Creating an action will generate
a partial method that we can later complete with logic to implement the
DeleteClicked event handler.

11.	 Save all of the changes made.
12.	 Now, we need to write some code to tie everything together. Let's start

by looking at some of the code that was generated as a result of our work
in Xamarin.iOS Designer. You will find two files that have been added
for EditViewController, a designer file named EditViewController.
designer.cs nested under a nondesigner file named EditViewController.
cs. Double-click on the designer class to view the contents, as shown in the
following code snippet:

[Outlet]
MonoTouch.UIKit.UIBarButtonItem DoneButton { get; set; }
[Outlet]

MonoTouch.UIKit.UILabel editContent { get; set; }
[Action ("DeleteClicked:")]
Partial void DeleteClicked (
 MonoTouch.Foundation.NSObject sender);

Note that EditViewController is a partial class; the two outlets
and the actions were generated based on the specifications we made.

Implementing the DoneClicked event handler
For the Done button, we created an outlet so we will have a reference to the object
that can be used to assign a .NET event handler at runtime. When Done is clicked
on, we need to do a few things. First, check whether we are dealing with a new object
and add it to the _parks collection. If so, then we need to save the _parks collection
to NationalParks.json.

Developing Your First iOS App with Xamarin.iOS

[68]

To implement the Done button, perform the following steps:

1.	 Create a method to save changes to NationalParks.json, as follows:
private void SaveParks()
{
 string dataFolder = Environment.CurrentDirectory;
 string serializedParks = JsonConvert.SerializeObject (_parks);
 File.WriteAllText(Path.Combine(dataFolder,
 "NationalParks.json"), serializedParks);
}

2.	 Create a .NET event handler named DoneClicked and add logic to add
_park to the _parks collection. If it's a new park, call the SaveParks()
method to save updates to NationalParks.json, and to return to the
previous view controller, use the following code snippet:

private void DoneClicked (object sender, EventArgs e)
{

 if (!_parks.Contains (_park))
 _parks.Add (_park);

 SaveParks ();
 NavigationController.PopViewControllerAnimated (true);
}

Assign the DoneClicked event handler to the Clicked event on the
DoneButton outlet in ViewDidLoad().

public override void ViewDidLoad ()
{
 . . . DoneButton.Clicked += DoneClicked;
}

Implementing the DeleteClicked action
We created an action for the Delete button, which caused a partial method to be
created in the designer class. We now need to create an implementation for the
partial method.

Chapter 4

[69]

To implement the Delete action all you need to do is add a partial method
implementation for DeleteClicked that removes _park from the parks collection
and saves the change to the NationalParks.json file, which will then return to the
MasterViewController. This can be done by:

partial void DeleteClicked (UIButton sender)
{
 if (_parks.Contains(_park))
 _parks.Remove(_park);

 SaveParks();

 NavigationController.PopToRootViewController(true);
 }

The two approaches demonstrated to implement event handlers accomplish
essentially the same thing without having a clear advantage over the other. As
we don't have the event handler assignment in ViewDidLoad() for the action, it's
slightly less coded. It really comes down to which method you prefer and become
most comfortable with.

Passing data
All iOS apps have a need to navigate between views and pass data. As we are using
storyboards and segues for the UI, most of the work related to navigation is done
for us. However, we need to pass data between the views. There are two parts to
accomplish this: define a way that a view controller will accept data and use this
mechanism from the initiating view controller. As far as accepting data is concerned,
this can be accomplished with the use of simple properties on the view controller, or
by defining a method that accepts the data and saves it to private variables. We will
go with defining a method to accept navigation data, which is also the approach the
code that was generated for us uses.

To complete the logic to accept navigation data, perform the following steps:

1.	 Open DetailViewController and locate the SetDetailItem method.
2.	 Let's start by changing the name to be a little more meaningful. Select the

SetDetailItem text in the editor, right-click and navigate to Refactor |
Rename. Enter SetNavData and click on OK.

Developing Your First iOS App with Xamarin.iOS

[70]

3.	 Let's also rename ConfigureView () to ToUI() using the same method.
4.	 Change the SetNavData() method so that it accepts a list of NationalPark

items as well as the single park that should be displayed and saves these
parameters to a set of private variables. Also, remove the call to ToUI(); we
will move this to a more appropriate place in the next step, as shown in the
following code:
IList<NationalPark> _parks;
NationalPark _park;
. . .
public void SetNavData(
 IList<NationalPark> parks, NationalPark park)
{
 _parks = parks;
 _park = park;
}

5.	 Override ViewWillAppear() to call ToUI(), as follows:
public override void ViewWillAppear (bool animated)
{
 ToUI ();
}

6.	 Update ToUI() so that it populates UILabel using the private _park
variable, as follows:
void ToUI()
{
 // Update the user interface for the detail item
 if (_park != null)
 detailDescriptionLabel.Text = _park.ToString ();
}

7.	 Now, add SetNavData() and ToUI() methods to EditViewController that
has the same function as DetailViewController.

Now that we have taken care of receiving navigation data, we turn our attention to
passing data. When using segues, iOS view controller has the PrepareForSegue()
method that can be overridden to prepare the target view controller for display.
We need to override PrepareForSegue() in both MasterViewController and
DetailViewController.

Chapter 4

[71]

To complete the logic to pass navigation data, perform the following steps:

1.	 Open MasterViewController and locate the existing PrepareForSegue()
method.

2.	 MasterViewController actually has two segues: the original segue that
navigates to DetailViewController and the new one we added that
navigates to EditViewController. The PrepareForSegue() method
provides a segue parameter that has an Identifier property that can be
used to determine which navigation path is being taken. Change the code in
PrepareForSegue() so that it calls SetNavData() on the appropriate view
controller based on the segue identifier, as follows:
public override void PrepareForSegue (
 UIStoryboardSegue segue, NSObject sender)
{
 if (segue.Identifier == "showDetail") {
 var indexPath = TableView.IndexPathForSelectedRow;
 var item = dataSource.Parks [indexPath.Row];
 ((DetailViewController)segue.
 DestinationViewController).SetNavData
 (dataSource.Parks, item);
 }
 else if (segue.Identifier == "editFromMaster") {
 ((EditViewController)segue.
 DestinationViewController).SetNavData
 (dataSource.Parks, new NationalPark());
 }
}

3.	 Now, open DetailViewController and create an override for
PrepareForSegue() that passes navigation data to EditViewController,
as follows:

public override void PrepareForSegue (
 UIStoryboardSegue segue, NSObject sender)
{
 if (segue.Identifier == "editFromDetail") {
 ((EditViewController)segue.
 DestinationViewController).SetNavData
 (_parks, _park);
 }
}

Developing Your First iOS App with Xamarin.iOS

[72]

Running the app
We have made a lot of changes and are now ready to run the app to test the
basic navigation. Start the app and test navigation to the various views; observe
the following:

1.	 When you click the + (add) button on MasterViewController, a new
national park is displayed in EditViewController.

2.	 When you click the Edit button on DetailViewController, the app
navigates to EditViewController that shows the current park.

3.	 When you click on Done on EditViewController, it will take you
to the previous view controller, either MasterViewController or
DetailViewController.

4.	 When you click on Delete on EditViewController, it will take you to
MasterViewController.

The following screenshots depict what you should see:

Finishing the sample app
The view controllers and navigation are now in place. All we need now is to add
some addition controls to view and edit information and a little logic.

Chapter 4

[73]

Finishing DetailViewController
To finish DetailViewController, we need a set of UILabel controls that can be
used to display the properties of a park, and add buttons that can initiate actions
to view photos or receive directions.

To finish DetailViewController, perform the following steps:

1.	 Add a UIScrollView onto the View for DetailViewController.
2.	 Add UILabel controls for each property defined on NationalPark except

for the Id property. Also add UILabel controls that can be used as labels
for the properties. Use the screen mockups from the The sample national
parks app section as a guide to lay out the controls.

3.	 Enter a name for each UILabel control that will be used to display park
properties so that outlets can be created.

4.	 Update the ToUI() method so that the UILabel controls are populated
with data from the park, as follows:
void ToUI()
{
 // Update the user interface for the detail item
 if (IsViewLoaded && _park != null) {
 nameLabel.Text = _park.Name;
 descriptionLabel.Text = _park.Description;
 stateLabel.Text = _park.State;
 countryLabel.Text = _park.Country;
 latitudeLabel.Text = _park.Latitude.ToString ();
 longitudeLabel.Text = _park.Longitude.ToString ();
 }
}

5.	 Add a UIButton instance with a title of photos with an action named
PhotoClicked in the Touch Down event.

6.	 Add an implementation for the PhotoClicked action, which opens a
URL to view photos on www.bing.com that uses the park's name as
the search parameter:
partial void PhotosClicked (UIButton sender)
{
 string encodedUriString =
 Uri.EscapeUriString(String.Format(
 "http://www.bing.com/images/search?q={0}", _park.Name));
 NSUrl url = new NSUrl(encodedUriString);
 UIApplication.SharedApplication.OpenUrl (url);
}

www.bing.com

Developing Your First iOS App with Xamarin.iOS

[74]

7.	 Add a UIButton instance with a title of directions with an action named
DirectionsClicked in the Touch Down event.

8.	 Add an implementation for the DirectionsClicked action, which opens
a URL to receive directions to a park that uses the park's latitude and
longitude coordinates:
partial void DirectionsClicked (UIButton sender)
{
 if ((_park.Latitude.HasValue) && (_park.Longitude.HasValue))
 {
 NSUrl url = new NSUrl (
 String.Format(
 "http://maps.apple.com/maps?daddr={0},{1}",
 _park.Latitude, _park.Longitude));

 UIApplication.SharedApplication.OpenUrl (url);
 }
}

9.	 Add appropriate constraints to UIScrollView and and UILables so that
scrolling and layout works as desired in the landscape and portrait modes.
Take a look at the example for more clarity.

Finishing EditViewController
To finish EditViewController, we need to add labels and edit controls in order to
edit the park data. We also need to do some data conversion and save the updates.

To finish EditViewController, perform the following steps:

1.	 Add a UIScrollView instance on the View for EditViewController.
2.	 Add controls to the EditViewController class along with the corresponding

outlets to allow editing of each property on the NationalPark entity. The
UITextField controls can be used for everything except the description
property, which is better suited to a UITextView control. Also add
UITextLabel controls to label properties of the park. You can again use the
screen mockups from the The sample national parks app section as a guide.

3.	 Update the ToUI() method to account for the new fields:
private void ToUI ()
{
 // Update the user interface for the detail item
 if (IsViewLoaded && _park != null) {
 nameTextField.Text = _park.Name;

Chapter 4

[75]

 descriptionTextView.Text = _park.Description;
 stateTextField.Text = _park.State;
 countryTextField.Text = _park.State;
 latitudeTextField.Text = _park.Latitude.ToString();
 longitudeTextField.Text =
 _park.Longitude.ToString();
 }
}

4.	 Create a new method that moves data from the UI controls to the entity class
prior to saving it, as follows:
void ToPark()
{
 _park.Name = nameTextField.Text;
 _park.Description = descriptionTextView.Text;
 _park.State = stateTextField.Text;
 _park.Country = countryTextField.Text;

 if (String.IsNullOrEmpty (latitudeTextField.Text))
 _park.Latitude =
 Double.Parse (latitudeTextField.Text);
 else
 _park.Latitude = null;

 if (String.IsNullOrEmpty (longitudeTextField.Text))
 _park.Longitude =
 Double.Parse (longitudeTextField.Text);
 else
 _park.Longitude = null;
}

5.	 Update the DoneClicked() action to call ToPark() in order to move values
to the park object prior to saving changes to NationalParks.json:
partial void DoneClicked (NSObject sender)
 {
 ToPark ();

 . . .
}

6.	 Add appropriate constraints to UIScrollView and UITextFields so that
scrolling and layout works as desired in landscape and portrait modes.
Take a look at the reference solution for more clarity.

Developing Your First iOS App with Xamarin.iOS

[76]

7.	 Add logic to scroll the active UITextField into view when the keyboard
is displayed. There are several methods of accomplishing this. Refer to the
example for reference solution.

Running the app
Okay, we now have a fairly functional app. Run the app in the simulator and test
each screen and navigation path. The following screenshots show the final result of
the three view controllers:

MonoTouch.Dialog
MonoTouch.Dialog (MT.D) is a framework for Xamarin.iOS that provides a
declarative approach to develop the user interface and eliminates writing a lot
of the tedious code. MT.D is based on using UITableView controls to provide
navigation and allow users to interact with data.

More information about MT.D can be found at http://docs.xamarin.com/guides/
ios/user_interface/monotouch.dialog/.

http://docs.xamarin.com/guides/ios/user_interface/monotouch.dialog/
http://docs.xamarin.com/guides/ios/user_interface/monotouch.dialog/

Chapter 4

[77]

Summary
In this chapter, we created a sample Xamarin.iOS app and demonstrated the
concepts that need to be understood to work with the Xamarin.iOS platform. While
we did not demonstrate all of the features that we can use in an iOS app, you should
now feel comfortable with how to access these features.

In the next chapter, we will build the same sample app for Android.

Developing Your First Android
App with Xamarin.Android

In this chapter, we will develop a sample app similar to NationalParks.iOS from
the last chapter using Xamarin.Android. This chapter covers the following topics:

•	 Overview of the sample app
•	 Creating a Xamarin.Android app
•	 Editing Android layout files with Xamarin Studio
•	 Running and debugging apps with Xamarin Studio
•	 Running and debugging apps with Visual Studio
•	 Inspecting compile-time generated elements of a Xamarin.Android app

Developing Your First Android App with Xamarin.Android

[80]

The sample app
The sample app we will create in this chapter follows the same basic design as the
NationalParks.iOS app from the previous chapter. To review the screen mockups
and general description you can refer to the The sample national parks app section in
Chapter 4, Developing Your First iOS App with Xamarin.iOS. The following screenshots
show the Android screens from the provided solution:

There is one design change we will introduce in the Android version of the app;
we will create a singleton class to help manage loading and saving parks to a
JSON-formatted file. This will be discussed further when we start building the
singleton class in an upcoming section, Creating the NationalParksData singleton.

Creating NationalParks.Droid
We will begin by creating a new Android project and adding it to our existing
NationalParks solution created in the previous chapter. Xamarin Studio allows
both Android and iOS projects to be part of the same solution. This proves to be
very useful particularly as we move towards the later chapters that are focused
on code reuse. You will find that the next chapter, Chapter 6, The Sharing Game,
will show you exactly how to do this.

Chapter 5

[81]

To create the national parks Android app, perform the following steps:

1.	 You first need to launch Xamarin Studio and open the NationalParks
solution created in the previous chapter.

2.	 Following this, select the NationalParks solution in the Solution pad
on the left-hand side of Xamarin Studio, right-click on it, and navigate
to Add | Add New Project…, as shown in the following screenshot:

3.	 Navigate to C# | Android on the left-hand side of the dialog box and
Android Application in the middle section, as follows:

Developing Your First Android App with Xamarin.Android

[82]

4.	 You now need to enter NationalParks.Droid in the Name field and
click on OK. Xamarin Studio will then create a new project, add it to the
NationalParks solution, and open it.

Reviewing the app
A simple working app has been created that contains a number of files; let's take
a few minutes to review what was created.

Resources
The Resources folder corresponds to the res folder in a traditional Java Android
app. It contains subfolders with the various types of resources that can be used,
including layouts, menus, drawables, strings, and styles. Subfolders within
Resources follow the same naming conventions as in traditional Java Android apps,
drawables, layouts, values, and so on.

The Resource.designer.cs file
Resource.designer.cs is a C# source file in the Resources folder that is generated
by Xamarin.Android and contains constant ID definitions for all the resources in the
app; it corresponds to the R.java file generated for Java Android apps.

The MainActivity.cs file
MainActivity.cs is a C# source file in the root of the NationalParks.Droid project
and is the only activity added to the project. Open the file to view the contents. Note
the attributes at the top of the class:

[Activity (Label = "NationalParks.Droid",
 MainLauncher = true)]

The specification of Label and MainLauncher will affect the contents of
ApplicationManifest.xml. Note the overridden OnCreate() method in the
following code snippet:

protected override void OnCreate (Bundle bundle)
{
 base.OnCreate (bundle);

Chapter 5

[83]

 // Set our view from the "main" layout resource
 SetContentView (Resource.Layout.Main);

 // Get our button from the layout resource,
 // and attach an event to it
 Button button =
 FindViewById<Button> (Resource.Id.myButton);

 button.Click += delegate {
 button.Text = string.Format (
 "{0} clicks!", count++);
 };
}

With the exception of the fact that OnCreate() is using C# syntax, the code within it
looks very similar to what you might find in a Java Android app. Near the top, the
content is set to the Main layout file; Resource.Layout.Main is a constant defined
in Resource.designer.cs. A reference to a Button instance is obtained by a call to
FindViewById(), and then an event handler is assigned to handle click events.

The Main.axml file
Main.axml is an XML layout file located in the Resources/layout folder. Xamarin.
Android uses the extension .axml for layout files rather than simply using .xml.
Other than using a different extension, Xamarin.Android treats layout files in
essentially the same way that a Java Android app does. Open Main.axml to view
the contents; at the bottom of the screen, there are tabs to switch between a visual,
content view, and a source or XML view. Notice that there is a single Button
instance defined with LinearLayout.

Xamarin.Android honors the Android naming convention for layout folders,
as follows:

•	 Resources/layout: This naming convention is used for a normal screen
size (default)

•	 Resources/layout-small: This naming convention is used for small screens
•	 Resources/layout-large: This naming convention is used for large screens
•	 Resources/layout-land: This naming convention is used for a normal

screen size in landscape mode

Developing Your First Android App with Xamarin.Android

[84]

Project Options
There are many options that can be set that affect the way your app is compiled,
linked, and executed. These options can be viewed and modified from the Project
Options dialog box. The sections that are most interesting for Android apps are
as follows:

•	 Build | General: This setting is used for the Target framework version
•	 Build | Android Build: This setting is used by the compile and link process

to optimize the resulting executable
•	 Build | Android Application: This setting gives the default package name,

app version number, and app permissions

To set the Target framework version for NationalParks.Droid, perform the
following steps:

1.	 Select the NationalParks.Droid project in the Solution pad.
2.	 Right-click and select Options.
3.	 Navigate to Build | General and set the Target Framework option

to 4.0.3 (Ice Cream Sandwich) and click on OK.

Xamarin Studio Preferences
Xamarin Studio provides a Preferences dialog box that allows you to adjust various
preferences that control how the environment operates. These are as follows:

•	 Projects | SDK Locations | Android: Using this option, you can control the
location for the Android SDK, Java SDK, and Android NDK that should be
used to compile and run apps

•	 Projects | Android: These settings affect how the Android Emulator is
launched including command-line arguments

Running and debugging with Xamarin
Studio
While the app we currently have is very simple, it is runnable, and now is a good
time to take a look at how you can execute and debug Xamarin.Android apps. Apps
can be executed in a number of ways; the two most common ways are the Android
Emulator and a physical device.

Chapter 5

[85]

Running apps with the Android Emulator
Xamarin.Android works with the Android Emulator to support executing and
debugging your app. When Xamarin.Android is installed, a number of Android
Virtual Devices (AVD) are automatically set up for your use. You can launch the
AVD Manager from the Tools menu by choosing Open Android Emulator Manager.

To run NationalParks.Droid, perform the following steps:

1.	 Click on the Start/Stop button on the left-hand side of the taskbar. You can
also run the app by pressing F5 or by navigating to Run | Start Debugging.

2.	 Then, select an AVD on the Select Device dialog box and click on
Start Emulator.

3.	 When the emulator has completed startup, select the name of the running
emulator instance in the Devices list and click on OK.

4.	 You now need to click on the Hello World button on the app and note the
caption change.

5.	 Switch back to Xamarin Studio and stop the app by clicking on the
Start/Stop button on the left-hand side of the taskbar.

6.	 Open MainActivity.cs and set a breakpoint on the SetContentView()
statement in OnCreate() by clicking in the far-left margin of the editor
window, which you can see in the following screenshot. At this point,
restart NationalParks.Droid; the app will stop at the breakpoint:

7.	 You will find the basic flow controls to step through execution in the
taskbar. These allow you to (icons from left to right) continue execution,
step over the current line, step into the current function, and step out of
the current function:

Developing Your First Android App with Xamarin.Android

[86]

8.	 Use the step controls to go to line 27, highlight the button in the text,
right-click on it and select Expression Evaluator. The Expression Evaluator
dialog box can be used to view the state of objects during the program
execution, as follows:

9.	 You will also notice a set of panels at the bottom of Xamarin Studio that
contains tabs for Watch, Locals, Breakpoints, Threads, Application Output,
and Call Stack, as follows:

10.	 Click on the Continue button to allow the app to continue running.

Chapter 5

[87]

As you can see, Xamarin Studio, in combination with the Android Emulator,
provides a robust environment to execute and debug apps with most of the
features that can be found in most modern IDEs.

You can make any modifications to the list of AVDs from the AVD Manager
(Tools | Open Android Emulator Manager), and you can make any adjustments
to the Android SDK from Android SDK Manager (Tools | Open Android
SDK Manager).

Running apps on a physical device
Xamarin Studio also supports debugging apps running on a physical device. This
is generally the most productive way to develop and debug apps as many of the
device features can be challenging to configure and use in the emulator. There is
really nothing special about getting Xamarin Studio to work with a device; simply
go through the normal steps of enabling USB debugging on the device, attach the
device to your computer, and start the app from Xamarin Studio; the device will
show up in Xamarin Studio's Select Device dialog box. As you might be aware,
on Windows, a special USB driver is required that corresponds with the device
being used; generally OS X users are good to go.

The issues related to debugging with an emulator or physical device is not unique
or even different because of the use of Xamarin; it's an issue that all Android
developers face.

Running apps with Genymotion
A while ago, I became aware of another option to run Android apps. Genymotion
is a product that is based on the VirtualBox virtualization platform. Genymotion
provides a set of virtual device templates for many of the Android devices available
on the market today. Once a virtual device is created, you simply start it and it
will be selectable from Xamarin Studio's Select Device dialog box just like a
running AVD.

With all the different device templates that come with Genymotion, it's a great
testing tool. Genymotion also has a much quicker start time and a much more
responsive execution time than the standard Android Emulators. There are free
and paid versions depending on what features you need, irrespective of whether
you are using Xamarin.Android or native Java Android development. You can
find more information about Genymotion on their home page at http://www.
genymotion.com.

http://www.genymotion.com
http://www.genymotion.com

Developing Your First Android App with Xamarin.Android

[88]

Extending NationalParks.Droid
As we have a good understanding of our starting point, we can now turn our
attention to enhance what we have to support the features we need. We have
the following enhancements to complete:

1.	 Add a ListView instance to MainActivity to list national parks and an
add action in the ActionBar class to add a new national park.

2.	 Add a detail view that can be used to view and update national parks
with actions to save and delete national parks as well as to view photos
on www.Bing.com and get directions from a map provider.

3.	 Add logic to load and save national parks to a JSON-formatted text file.

Storing and loading national parks
Similar to the NationalParks.iOS project, we will store our parks data in a JSON-
formatted text file. In this project, we will create a singleton class to help manage
loading and saving parks. We are going with a singleton class for a couple of reasons:

•	 In the next chapter, we are going to start looking at sharing and reusing code;
this gets us started on a solution we will want to reuse

•	 It's a little more difficult to pass an object between Activities in Android
than it is between ViewControllers in iOS, and the singleton class will
provide a convenient way to share park data

Adding Json.NET
If you worked through Chapter 4, Developing Your First iOS App with Xamarin.iOS,
Json.NET will already be installed on your machine and you simply need to add this
to your project.

To add Json.NET to the NationalParks.Droid project, perform the following steps:

1.	 Select the Components folder in the NationalParks.Droid project in the
Solution pad, right-click and choose Edit Components.

2.	 If you see Json.NET listed in the Installed on this machine section, click on
Add to Project and you are done; otherwise continue with the next step.

3.	 In the upper-right hand corner, click on Get More Components and enter
Json.NET in the search field.

4.	 Select Json.NET from the list and choose Add to App.

www.Bing.com

Chapter 5

[89]

Borrowing the entity class and JSON file
We need an entity class that represents our subject area: the national parks. This
sounds familiar if you worked through Chapter 4, Developing Your First iOS App with
Xamarin.iOS, where we created one. As one already exists, there is no need to create
one from scratch, so let's just copy it from NationalParks.iOS. In Chapter 6, The
Sharing Game, we will look at actually sharing the code between projects.

To copy the NationalPark.cs file, perform the following steps:

1.	 Select the NationalPark.cs file in the NationalParks.iOS project,
right-click on it, and choose Copy.

2.	 Select the NationalPark.Droid project, right-click on it and choose Paste.

Creating the NationalParksData singleton
As we mentioned previously, we will create a singleton class to simplify sharing
and accessing national parks. A singleton is a design pattern that restricts the
number of instances of class that can exist within an app to a single instance.
Singletons can be helpful in maintaining global state and sharing a single object
across multiple views. For our purposes, the singleton pattern simplifies managing
a single collection of national parks and housing the logic required to load and
save parks to a JSON-formatted file.

To create NationalParksData, perform the following steps:

1.	 Select NationalParks.Droid, right-click on it, and navigate to
Add | New File.

2.	 Select General | Empty Class, enter NationalParksData for the
Name field, and click on New.

3.	 Add a static instance property to access a single instance for
NationalParksData and initialize the single instance in the getter
for the property, as follows:
private static NationalParksData _instance;
public static NationalParksData Instance
{
 get { return _instance ??
 (_instance = new NationalParksData()); }
}

4.	 Add a Parks collection property to load the parks into:
 public List<NationalPark> Parks { get; protected set; }

Developing Your First Android App with Xamarin.Android

[90]

Note the use of protected set, which protects the Parks
property from being modified outside of the singleton class.

5.	 There are several places we need to determine the filename to load and save
parks to a JSON-formatted file. Create a method that returns a fully-qualified
filename, as follows:
protected string GetFilename()
{
 return Path.Combine (
 Environment.GetFolderPath(
 Environment.SpecialFolder.MyDocuments),
 "NationalParks.json");
}

6.	 Add a private constructor that loads the Parks collection if a file exists.
Providing a private constructor is a part of implementing the singleton
pattern as it helps ensure only a single instance exists. The private
constructor can be added using the following code snippet:
private NationalParksData ()
{
 if (File.Exists (GetFilename())) {
 string var serializedParks = File.ReadAllText
 (GetFilename());
 Parks =
 JsonConvert.DeserializeObject<List<NationalPark>>
 (serializedParks);
 }
 else
 Parks = new List<NationalPark> ();
}

7.	 Add a Save() method. This method accepts a park, adds it to the Parks
collection if it is a new park, and then saves the collection to the file, as follows:
public void Save(NationalPark park)
{
 if (Parks != null) {
 if (!Parks.Contains (park))
 _parks.Add (park);
 string var serializedParks =
 JsonConvert.SerializeObject (Parks);
 File.WriteAllText (GetFilename (), serializedParks);
 }
}

Chapter 5

[91]

8.	 Add a Delete() method. This method removes the park from the Parks
collection and saves the updated collection to the file, as follows:

public void Delete(NationalPark park)
{
 if (Parks != null) {
 Parks.Remove (park);
 string serializedParks =
 JsonConvert.SerializeObject (Parks);
 File.WriteAllText (GetFilename (), serializedParks);
 }
}

Enhancing MainActivity
With the NationalParksData singleton in place, we can move on to some of the UI
work. The Xamarin.Android project template did not give us much of a head start as
we received in the last chapter. We need to add a list view to MainActivity, create
a DetailActivity to view a park, and create an EditActivity to update and delete
parks. MainActivity is a good starting point.

Adding a ListView instance
The default view (Main.xml) generated when we created the project contains a
Button instance within LinearLayout. We need to remove this button and add a
ListView instance to display our parks.

Touring the Xamarin.Android Designer
Xamarin Studio provides a graphical design tool to create and edit layout files. As
this is our first time using this tool, we will devote a few minutes to become familiar
with it. Perform the following steps:

1.	 Open Main.xml; note the two tabs at the bottom of the view, Content and
Source. With the Content tab selected, a visual representation of the layout
is displayed. With the Source tab selected, the raw XML is displayed in an
XML editor.

2.	 Now, switch to the Content tab. Note that on the right-hand side of Xamarin
Studio, there are two pads, Document Outline and Properties. When a
layout is opened in the Content mode, the Document Outline pad displays
a hierarchical view of the contents of the layout file. The Document Outline
pad shows the Button control within LinearLayout.

Developing Your First Android App with Xamarin.Android

[92]

3.	 The Properties pad displays properties for the currently selected widget.
Select the Button instance and switch to the Properties pad. Note the tabs
at the top of the Properties pad: Widget, Style, Layout, Scroll, and Behavior.
The tabs group together the various types of properties available for a
particular widget.

Editing the Main.xml file
To add a ListView instance in Main.xml, perform the following steps:

1.	 With Main.axml open in the Content mode, select the Button instance,
right-click on it, and choose Delete (or press the Delete key).

2.	 In the search field at the top of the Toolbox tab, enter List. Select the
ListView widget displayed and drag-and-drop it to Main.axml.

3.	 In the Document Outline pad, select the ListView widget.
4.	 In the Properties pad under the Widget tab, enter @+id/parksListView

for the ID value.
5.	 In the Document Outline pad, select the LinearLayout widget.
6.	 In the Properties pad under the Layout tab, enter 8dp for Padding.

Creating an adapter
We need a ListAdapter instance to populate our ListView with national parks.
We will create an adapter that extends from BaseAdapter.

To create NationalParksAdapter.cs, perform the following steps:

1.	 Select the NationalParks.Droid project, right-click on it, and choose New
File. In the New File dialog box, navigate to Android | Android Class.

2.	 Enter NationalParks.cs for the Name field and click on New.
3.	 Change NationalParksAdapter to be a public class and to extend

BaseAdapter<> using NationalPark as the type specification, as follows:
public class NationalParksAdapter :
 BaseAdapter<NationalPark>
{
}

4.	 Place the cursor on BaseAdapater<>, right-click on it, and navigate to
Refactor | Implement abstract members, and then press Enter. Xamarin
Studio will create a default method stub for each abstract method with code
that throws the exception NotImplementedException.

Chapter 5

[93]

5.	 At this point, you can implement a constructor that accepts an activity and
saves the reference for use within GetView(), as shown in the following code
snippet:
private Activity _context;
public NationalParksAdapter(Activity context)
{
 _context = context;
}

6.	 Implement the GetItemId() method and return the position that was passed
as the ID. The GetItemId() method is intended to provide an ID for a row
of data displayed in AdapterView. Unfortunately, the method must return
a long instance, and our ID is a GUID. The best we can do is return the
position that is passed to us, as follows:
public override long GetItemId(int position)
{
 return position;
}

7.	 Implement the Count property to return the number of items in the Parks
collection, as follows:
public override int Count
{
 get { return NationalParksData.Instance.Parks.Count; }
}

8.	 Implement the indexed property and return the NationalPark instance
located at the position passed in within the Parks collection, as follows:
public override NationalPark this[int position]
{
 get { return NationalParksData.Instance.Parks[position]; }
}

9.	 Implement the GetView() method and return a populated View instance for
a park using the default Android layout SimpleListItem1, as follows:
public override View GetView(int position,
 View convertView, ViewGroup parent)
{
 View view = convertView;
 if (view == null) {
 view =
 _context.LayoutInflater.Inflate(
 Android.Resource.Layout.SimpleListItem1,

Developing Your First Android App with Xamarin.Android

[94]

 null);
 }

 view.FindViewById<TextView>
 (Android.Resource.Id.Text1).Text =
 NationalParksData.Instance.Parks [position].Name;

 return view;
}

10.	 To conclude these steps, hook up the adapter to ListView on MainActivity.
This is normally done in the OnCreate() method, as follows:

NationalParksAdapter _adapter;
. . .
protected override void OnCreate (Bundle bundle)
{
 . . .
 _adapter = new NationalParksAdapter (this);
 FindViewById<ListView>
 (Resource.Id.parksListView).Adapter = _adapter;
 . . .
}

Adding the New action to the ActionBar
We now need to add an Add action to the ActionBar, which can be used to create
a new national park.

To create the Add action, perform the following steps:

1.	 You firstly need to select the Resources folder in the NationalParks.Droid
project, right-click on it, and navigate to Add | New Folder.

2.	 At this point, name the folder menu.
3.	 Select the newly created menu folder, right-click on it, and navigate to Add

| New File, then select XML | Empty XML File, enter MainMenu.xml in the
Name field, and click on New.

4.	 Fill in the newly created XML file with a menu definition for the Add action.
The following sample demonstrates what is needed:
<menu
 xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/actionNew"
 android:icon="@drawable/ic_new"

Chapter 5

[95]

 android:title="New"
 android:showAsAction="ifRoom" />
</menu>

5.	 Copy all of the image files (*.png) from the Assets folder to the Resources/
drawable folder in the NationalParks.Droid project.

6.	 Select the Resources/drawable folder, right-click and choose Add Files,
select all of the image files, including ic_new.png, and click on Open.

Now that we have the menu definition and graphics in place, we need to add some
code to put the menus in place. Android provides several virtual methods to create
and process clicks for ActionBar items.

Overriding the OnCreateOptionsMenu() method
The OnCreateOptionsMenu() method is called when an activity is started and
provides a place to create ActionBar items. The following code demonstrates how to
use the definition in MainMenu.xml to create the Add action:

public override bool OnCreateOptionsMenu(IMenu menu)
{
 MenuInflater.Inflate(Resource.Menu.MainMenu, menu);
 return base.OnCreateOptionsMenu(menu);
}

Overriding the OnOptionsItemSelected() method
The OnOptionsItemsSelected() method is called when an action in the ActionBar
is clicked on, and it provides a place to handle the request. In our case, we want
to navigate to the detail view, which has not been created yet. For now, simply
implement the OnOptionsItemSelected() method with a placeholder for the
navigation logic. The following code demonstrates what is needed:

public override bool OnOptionsItemSelected (
 IMenuItem item)
{
 switch (item.ItemId)
 {
 case Resource.Id.actionNew:
 // Navigate to Detail View
 return true;

 default :
 return base.OnOptionsItemSelected(item);
 }
}

Developing Your First Android App with Xamarin.Android

[96]

Running the app
We have completed our enhancements to MainActivity. Run the app and review
the changes. When you initially start the app, you will notice that ListView is
empty. You can place the NationalParks.json file in the emulator virtual device
using the Android Device Monitor (ADM). Xamarin Studio is not configured with
a menu item for ADM, but you can add one using Preferences | External Tools.

Upload NationalParks.json to the emulator using the ADM application. Restart
NationalParks.Droid; you should now see parks listed.

Creating the DetailActivity view
Now, let's add a view that displays the details for a national park. For this, we need
to create a simple view with ScrollView as the parent ViewGroup and EditText
widgets for each of the properties on the NationalPark entity class.

To create the DetailActivity view, perform the following steps:

1.	 Select the NationalParks.Droid project in the Solution pad, right-click
and navigate to Add | New File.

2.	 After this, navigate to Android | Android Activity, enter DetailActivity
for the value of the Name field, and click on New.

3.	 Then, select the Resources/layout folder in NationalParks.Droid,
right-click on it, and navigate to Add | New File.

4.	 Navigate to Android | Android Layout, enter Detail for the Name field,
and click on New.

5.	 In the Outline pad, select LinearLayout, right-click on it, and choose Delete.
6.	 From the Toolbox pad, select the ScrollView widget and drag it onto

the Detail.axml layout.
7.	 From the Toolbox pad, select LinearLayout and drag it onto the Detail.

axml layout.
8.	 In the Properties pad under the Layout tab, set Padding to 8dp for

LinearLayout.

Chapter 5

[97]

9.	 Add TextView widgets for each property on the NationalPark entity class
except the ID property. Also, add TextView widgets that serve as labels.
For each of the TextView widgets that will be used to display properties, fill
in the ID property with a name that corresponds to the property names on
the entity, for example, nameTextView. Arrange the widgets based on your
preferences; you can use the screen mockups in the The sample national parks
app section of Chapter 4, Developing Your First iOS App with Xamarin.iOS, or
the sample solution as a guide.

10.	 Review Detail.axml in the Content mode and adjust it as needed.
11.	 In DetailActivity.OnCreate(), add call to SetContentView(), and pass

the layout ID for Detail.axml, as follows:

SetContentView (Resource.Layout.Detail);

Adding ActionBar items
We now need to add three items to the action bar: an action to edit a park, view
photos on www.bing.com for a park, and get directions to a park. Follow the same
steps used previously to create a new menu definition file named DetailMenu.xml.
The following XML shows the code that needs to be used:

<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/actionEdit"
 android:icon="@drawable/ic_edit"
 android:title="Edit"
 android:showAsAction="ifRoom" />
 <item android:id="@+id/actionPhotos"
 android:title="Photos"
 android:showAsAction="never" />
 <item android:id="@+id/actionDirections"
 android:title="Directions"
 android:showAsAction="never" />
</menu>

After adding the menu definition, implement the OnCreateOptionsMenu()and
OnOptionsItemSelected() methods like we did for MainActivity. Just add empty
stubs to handle the actual actions and we will fill in the logic in the coming sections.

www.bing.com

Developing Your First Android App with Xamarin.Android

[98]

Populating DetailActivity
Add logic to populate DetailActivity in OnCreate(), using the following steps:

1.	 The first step is to determine if a park Id was passed in as an intent extra.
If one was passed in, locate it in the Parks list on NationalParksData.
If not, create a new instance using the following snippet:
if (Intent.HasExtra ("parkid")) {
 string parkId = Intent.GetStringExtra ("parkid");
 _park = NationalParksData.Instance.
 Parks.FirstOrDefault (x => x.Id == parkId);
}
else
 _park = new NationalPark ();

2.	 Now populate the EditText fields based on data from the park. The
sample solution has a ParkToUI() method for this logic, as follows:

protected void ParkToUI()
{
 _nameEditText.Text = _park.Name;
 . . .
 _latEditText.Text = _park.Latitude.ToString();
 . . .
}

Handling the Show Photos action
We would like to direct the user to www.bing.com to view photos for a park.
This can be accomplished with a simple ActionView intent and a properly
formatted search URI for www.bing.com.

To handle the Show Photos action, create some logic on the
OnOptionsItemSelected() method to create an ActionView intent and pass
in a formatted URI to search www.bing.com for photos. The following code
demonstrates the required action:

public override bool OnOptionsItemSelected (
 IMenuItem item)
{
 switch (item.ItemId) {
 . . .
 case Resource.Id.actionPhotos:
 Intent urlIntent =
 new Intent (Intent.ActionView);

www.bing.com
www.bing.com
www.bing.com

Chapter 5

[99]

 urlIntent.SetData (
 Android.Net.Uri.Parse (
 String.Format(
 "http://www.bing.com/images/search?q={0}",
 _park.Name)));
 StartActivity (urlIntent);
 return true;
 . . .
 }
}

Handling the Show Directions action
We would like to direct the user to an external map app to get directions to a park.
Again, this can be accomplished with a simple ActionView intent along with a
properly formatted URI requesting map information.

To handle the Show Directions action, create a logic on the
OnOptionsItemSelected() method to create an ActionView intent and pass in a
formatted URI to display the map information. The following code demonstrates
the required action:

case Resource.Id.actionDirections:

 if ((_park.Latitude.HasValue) &&
 (_park.Longitude.HasValue)) {
 Intent mapIntent = new Intent
 (Intent.ActionView,
 Android.Net.Uri.Parse (
 String.Format ("geo:0,0?q={0},{1}&z=16 ({2})",
 _park.Latitude,
 _park.Longitude,
 _park.Name)));
 StartActivity (mapIntent);
 }

 return true;

Adding navigation
Now that we have DetailActivity in place, we need to go back and add some
navigation logic in MainActivity so that when a park is selected in the list,
DetailActivity will be displayed.

Developing Your First Android App with Xamarin.Android

[100]

A user clicking on an item in ListView can be handled by providing an event
handler for ListView.OnItemClicked.

To add navigation from MainActivity, perform the following steps:

1.	 Open MainActivity.cs.
2.	 Create an event handler to handle an OnItemClicked event. The following

event handler represents what is needed:
public void ParkClicked(object sender,
 ListView.ItemClickEventArgs e)
{
 Intent intent = new Intent (this,
 typeof(DetailActivity));
 intent.PutExtra("parkid", adapter[e.Position].Id);
 StartActivity (intent);
}

3.	 Hook up the event handler in the OnCreate() method, as follows:

FindViewById<ListView>
 (Resource.Id.parksListView).ItemClick += ParkClicked;

Running the app
We have now completed DetailActivity. Run the app and select a park to display
the new activity. Choose the Show Photos and Show Directions actions. If you are
running the application in an emulator, you will not be able to view directions as
the emulator will not have access to Google Play Services.

Creating EditActivity
We are now ready to add our last activity, EditActivity. This exercise will be
similar to the one we just finished except that we will use EditText widgets so that
users will be able to modify data. In addition, EditActivity can be used to display
an existing park or a new one.

To create EditActivity, perform the following steps:

1.	 Follow the same steps used in the previous section to create a new activity
and layout file named EditActivity and Edit.axml respectively.

2.	 Also, add ScrollView, LinearLayout, and Padding in the same manner
as was done for Detail.axml.

Chapter 5

[101]

3.	 Add TextView widgets and EditText widgets for each property on the
NationalPark entity class except the Id property. The TextView widgets
should be used as labels and the EditText widgets to edit properties. For each
of the EditView widgets that will be used to display properties, fill in the Id
property with a name that corresponds to the property names on the entity,
for example, nameTextView. Arrange the widgets based on your preferences;
you can use the screen mockups in the The sample national parks app section of
Chapter 4, Developing Your First iOS App with Xamarin.iOS, or sample solution
as a guide.

4.	 Review Edit.axml in the Content mode and adjust as needed.
5.	 In EditActivity.OnCreate(), add a call to SetContentView() and pass

in the layout Id for Edit.axml, as follows:

SetContentView (Resource.Layout.Edit);

Adding ActionBar items
We now need to add three items to the action bar: an action to edit a park, view
photos on www.bing.com for a park, and get directions to a park. Follow the same
steps used previously in the section Adding the New action to the ActionBar to create
a new menu definition file named DetailMenu.xml. The following XML shows the
required code:

<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/actionSave"
 android:icon="@drawable/ic_save"
 android:title="Save"
 android:showAsAction="always" />
 <item android:id="@+id/actionDelete"
 android:icon="@drawable/ic_delete"
 android:title="Delete"
 android:showAsAction="always" />
</menu>

After adding the menu definition, implement the OnCreateOptionsMenu()and
OnOptionsItemSelected() methods like we did for MainActivity. Add empty
stubs to handle each action and we will fill in the logic in the coming sections,
as follows:

public override bool OnOptionsItemSelected (IMenuItem item)
{
 switch (item.ItemId)
 {

www.bing.com

Developing Your First Android App with Xamarin.Android

[102]

 case Resource.Id.actionSave:
 // will add save logic here…
 return true;

 case Resource.Id.actionDelete:
 // will add delete logic here…
 return true;

 default :
 return base.OnOptionsItemSelected(item);
 }
}

Creating reference variables for widgets
As we will be putting data in the EditText widgets and then pulling it back
out again, it make sense to create reference variables for the widgets and set the
references in the OnCreate() method.

To create reference variables for widgets, perform the following steps:

1.	 Create a set of references to EditText objects in the EditActivity class,
as follows:
EditText _nameEditText;
EditText _descrEditText;
. . .

2.	 In the OnCreate() method of EditActivity, set the references to the
appropriate widgets using FindViewById(), as follows:

_nameEditText= FindViewById<EditText>
 (Resource.Id.nameEditText);
_descrEditText = FindViewById<EditText>
 (Resource.Id.descrEditText);
. . .

Populating EditActivity
To populate EditActivity, perform the following steps:

1.	 Create a method named ParkToUI() to move data from the _park object
to the EditText widgets, as follows:
protected void ParkToUI()
{
 _nameEditText.Text = _park.Name;

Chapter 5

[103]

 _descrEditText.Text = _park.Description;
 . . .
}

2.	 Override OnResume() and add a call to the ToUI() method to populate the
EditText widgets, as follows:

protected override void OnResume ()
{
 base.OnResume ();
 ParkToUI ();
}

Handling the Save action
When the Save action is clicked on, the OnOptionsItemSelected() method
is called. Create a Save() method on DetailActivity and call it from
OnOptionsItemSelected(). The solution project has a UIToPark() method to take
content from the EditText widgets and populate the Park entity before saving it.

To handle the Save action, perform the following steps:

1.	 Create a method named ToPark() to move data from the EditText widgets
to the _park object. This method will be used when handling the Save action,
as follows:
protected void UIToPark()
{
 _park.Name = _nameEditText.Text;
 _park.Description = _descrEditText.Text;
 . . .
 if (!String.IsNullOrEmpty (_latEditText.Text))
 _park.Latitude = Double.Parse (_latEditText.Text);
 else
 _park.Latitude = null;
 . . .
}

2.	 Create a method to handle saving the park that calls UIToPark() to
populate the _park object with changes, then it calls the Save() method on
NationalParksData to save the changes to file, sets the result code, and
finishes the activity. The required code is as follows:
protected void SavePark()
 {
 UIToPark ();

Developing Your First Android App with Xamarin.Android

[104]

 NationalParksData.Instance.Save (_park);

 Intent returnIntent = new Intent ();
 returnIntent.PutExtra ("parkdeleted", false);
 SetResult (Result.Ok, returnIntent);

 Finish ();
}

Note that a Boolean Extra named parkdeleted is set to false.
This is used to communicate to the calling activity that the park was
not deleted.

3.	 Update OnOptionsItemSelected() to call SavePark(), as follows:

case Resource.Id.actionSave:
 SavePark ();
 return true;

Handling the Delete action
Handling the Delete action is similar to the Save action, but somewhat simpler
as we do not have to save changes from the UI widgets.

To handle the Delete action, perform the following steps:

1.	 Create a method to handle the deleting of the park by calling the Delete()
method on NationalParksData, setting the result code, and finishing
the activity, as follows:
protected void DeletePark()
{
 NationalParksData.Instance.Delete (_park);

 Intent returnIntent = new Intent ();
 returnIntent.PutExtra ("parkdeleted", true);
 SetResult (Result.Ok, returnIntent);

 Finish ();
}

Note that the Boolean Extra named parkdeleted is set to true to
tell the calling activity that the park was deleted. This is important to
the DetailActivity because when a park was previously shown
as deleted, it should be finished and returned to MainActivity.

Chapter 5

[105]

2.	 Update OnOptionsItemSelected() to call DeletePark(), as follows:

case Resource.Id.actionDelete:
 DeletePark ();
 return true;

Adding navigation
Now that EditActivity is in place, we need to add navigation logic to
MainActivity when a user chooses the New action and to DetailActivity
when the user chooses the Edit action.

Navigating on the New action
As you can recall, in OnMenuItemSelected() in MainActivity, we added a
comment to the place where we need to navigate to EditActivity. We can
now replace this comment with the following use of StartActivity():

public override bool OnOptionsItemSelected (
 IMenuItem item)
{
 switch (item.ItemId)
 {
 case Resource.Id.actionNew:
 StartActivity (typeof(DetailActivity));
 return true;
 default :
 return base.OnOptionsItemSelected(item);
 }
}

Navigating on the Edit action
In the same way, we need to add navigation code to OnMenuItemSelected() in
DetailActivity. However, there are a few differences. We need to pass in the
Id property for the park we want to edit and we want to receive back a result that
indicates whether or not the user deleted this park. The required code is as follows:

case Resource.Id.actionEdit:
 Intent editIntent = new Intent(this,
 typeof(EditActivity));
 editIntent.PutExtra("parkid", _park.Id);
 StartActivityForResult(editIntent, 1);
 return true;

Developing Your First Android App with Xamarin.Android

[106]

DetailActivity also needs to detect when a park is deleted so that it can
finish and return to MainActivity to view the list. To accomplish this, override
OnActivityResult() and check the Boolean Extra named parkdeleted to
determine if the park was deleted, as follows:

protected override void OnActivityResult (
 int requestCode, Result resultCode, Intent data)
 {
 if ((requestCode == 1) && (resultCode == Result.Ok))
 {
 if (data.GetBooleanExtra ("parkdeleted", false))
 Finish ();
 }
 else
 base.OnActivityResult (
 requestCode, resultCode, data);
 }
}

Refreshing ListView in MainActivity
The last thing we need to implement is the logic that will refresh ListView in
MainActivity with any changes that might have been made on EditActivity.
To accomplish this, call NotifyDataSetChanged() on the adapter object within
an override to the OnResume() method on MainActivity, as follows:

protected override void OnResume ()
{
 base.OnResume ();
 adapter.NotifyDataSetChanged ();
}

Running the app
We have now completed the NationalParks.Droid app. You should now be
able to run your app and exercise each of the features.

Chapter 5

[107]

Working with Xamarin.Android projects
in Visual Studio
If you have installed Xamarin.Android on a Windows machine with Visual Studio
2010 or Visual Studio 2013 (which is the current version), the Xamarin.Android
Visual Studio add-on will already be installed. Working with projects in Visual
Studio is similar to working with Xamarin Studio with the exception of certain
features. To access options for the project, perform the following steps:

1.	 Select the NationalParks.Droid project, right-click and select Properties.
A multi-tabbed window will be open that allows various project-related
options to be specified.

2.	 To access Xamarin.Android-related options for Visual Studio, navigate
to Tools | Options | Xamarin | Android Settings.

3.	 To access the AVD Manager, navigate to Tools | Open Android
Emulator Manager.

4.	 To manage your Xamarin account and activate a license, navigate to
Tools | Xamarin Account.

If you are working on a Windows machine with Visual Studio installed and you
have not taken time to try out the add-on, open NationalParks.Droid in Visual
Studio and run the app.

Reviewing the generated elements
Prior to wrapping this chapter up, let's look at some of the things that go on behind
the scenes.

Peer objects
In Chapter 3, Demystifying Xamarin.Android, we discussed the role of peer objects in a
Xamarin.Android app. Let's now take a look at one of the generated Java peer objects
from our project. The source for these classes can be found in NationalParks.
Droid/obj/Debug/android/src. Open nationalparks.droid.MainActivity.
java. Now, note the following pointers:

•	 MainActivity extends android.app.Activity.

Developing Your First Android App with Xamarin.Android

[108]

•	 Each method we created an override for has a corresponding method created
that calls our override. For example, we created an override for OnCreate().
The generated class has a method named onCreate() that calls a private
native method n_onCreate(), which in turn points to our override through
a JNI reference.

•	 The static class initializer for MainActivity registers all the native methods
for use with JNI using the mono.android.Runtime.register() method.

•	 The class constructor activates an instance of our managed C# class using
the mono.android.TypeManager.Activate()method.

The AndroidManifest.xml file
Xamarin.Android generates an AndroidManifest.xml file at build time using two
sources as input: the first one being the content in the AndroidManifest.xml file
in NationalParks.Droid/Properties and the second one being the attributes
specified on classes, primarily activities in your project. You can find the generated
AndroidManifest.xml in NationalParks.Droid/obj/Debug/android. Open the
file with a text editor and note the following pointers:

•	 There are two <activity/> elements in the file and MainActivity is
specified to be the launch activity. These entries are generated from the
attributes specified on each of the activity classes.

•	 A single permission of INTERNET is specified. This came from the
AndroidManifest.xml file in the NationalParks.Droid/Properties folder.

The APK file
Another interesting thing to look at is the APK produced for a Xamarin.Android
app. We will be covering in detail how to create APKs in Chapter 10, Preparing
Xamarin.Android Apps for Distribution. This a fairly simple process; if you can't wait,
use the following steps:

1.	 In the upper-left hand corner of the toolbar, set the built type to Release.
2.	 From the Project menu, select Publish Android Project.
3.	 In the Publish Android Application dialog box, choose Create new

keystore, fill out all of the required information, and click on Create.
4.	 Xamarin.Android will publish the APK in the location you selected.

As APKs are ZIP files, simply unzip the APK to view the contents.

Chapter 5

[109]

The following screenshot shows the contents of the resulting APK:

The following table provides a description of the contents of the APK:

Content Description
assemblies/System.* These assemblies contain core .NET

namespaces such as System.IO and
System.Collection

assemblies/Mono.Android.dll This assembly contains the Xamarin.
Android binding classes

assemblies/NationalParks.Droid.dll This assembly contains the classes
we created: MainActivity,
DetailActivity, and
NationalParksAdapter

assemblies/Newtonsoft.Json.dll This assembly contains the Json.NET
classes

classes.dex This file contains all the generated Java
peer objects in a Dalvik-compiled format

lib/armeabi-v7a/libmonodroid.so This is the Mono CLR for Android
res/* This folder contains all the resources;

drawables, layouts, menus, and so on

Developing Your First Android App with Xamarin.Android

[110]

Summary
In this chapter, we created a sample Xamarin.Android app and demonstrated the
concepts that need to be understood to work with the Xamarin.Android platform.
While we did not demonstrate all of the features that can be used in an Android
app, you should now feel comfortable with how to access these features.

In the next chapter, we will turn our attention to the important topics of sharing
code across apps, one of the key advantages of using Xamarin.

The Sharing Game
In this chapter, we will discuss one of the most interesting and important aspects
of developing with Xamarin: cross-platform code sharing. We will cover the
following topics:

•	 The file linking technique
•	 Portable Class Libraries
•	 The pros and cons of each approach

Sharing and reuse
One of the advantages of using Xamarin and C# is the ability to share code across
your mobile apps as well as other .NET solutions. The reuse of code can provide
significant productivity and reliability advantages as well as reduce many of the
long-term maintenance headaches that come with long-lived apps. That's great,
but anyone who has been involved in software development for a long period
of time understands that reuse is not free and not simple to achieve.

There are practical aspects of reuse; the question is, "Physically, how do I package
my code for reuse?" For this, we can use one of the following three methods:

•	 Share source code that can be compiled into multiple projects
•	 Share Dynamic-Link Library (DLL) that can be referenced by

multiple projects
•	 Share code as a service that can be accessed remotely by multiple clients

The Sharing Game

[112]

There are also more strategic aspects; again the question arises, "How can I
organize my code so that I can reuse more of it?" To solve this problem, we
have the following options:

•	 Create a layered approach so that data access logic and business validation
is separated out of the user interface logic

•	 Utilize interfaces and frameworks that abstract platform-specific services
away from the reusable layers

In this chapter, we will touch on both these aspects of reuse, but primarily focus on
the practical side of reuse. Specifically, we will present two different approaches to
bundle up the code for reuse.

So, what parts of our code should we try and reuse? In the work we have done on
the NationalParks apps so far, one obvious set of code stands out for reuse: the
persistence code, which is the logic that loads parks from a JSON file and saves
them back to the same file. In Chapter 5, Developing Your First Android App
with Xamarin.Android, we moved towards a reusable solution by creating the
NationalParkData singleton. In this chapter, we will demonstrate two different
methods for sharing the NationalParkData singleton across both our projects as
well as other .NET projects that might need it.

Old school source file linking
File linking refers to a technique where source code files are linked or referenced by
a Xamarin project and are compiled when a build is run on the project along with the
rest of the source code in the project. When using file linking, a separate DLL is not
created for the files you are sharing, rather the code is compiled into the same DLL
produced for the project that the file is linked to; in our case, either NationalParks.
iOS.dll or NationalParks.Droid.dll.

Creating a shared library project
We will start by creating a new Library project to house the reusable code. To
create a Library project, perform the following steps:

1.	 Add a new library project with the name NationalParks.Data to the
NationalParks solution. You can find the Library project template
in the New Project dialog box under C# | Library, as shown in the
following screenshot:

Chapter 6

[113]

2.	 Remove MyClass.cs from the new project. When removing the file, selecting
Delete will remove the file from being referenced by the project and delete
the underlying file from the filesystem.

3.	 Set the Target Framework option to Mono/.NET 4.5 in the Project Options
dialog box under Build | General.

4.	 Move the NationalPark.cs and NationalParkData.cs files from
NationalParks.Droid to NationalPark.Data.

5.	 Open NationalPark.cs and NationalParkData.cs and change the
namespace to NationalParks.Data.

6.	 Add a public string DataDir property to NationalParkData and use it in
the GetFilename() method, as follows:
public string DataDir { get; set; }
. . .
protected string GetFilename()
{
 return Path.Combine (DataDir, "NationalParks.json");
}

The Sharing Game

[114]

7.	 Move the logic to load the parks data from the constructor to a new method
named Load(), as shown in the following code snippet:
public void Load()
{
 if (File.Exists (GetFilename())) {
 string serializedParks =
 File.ReadAllText (GetFilename());
 _parks = JsonConvert.DeserializeObject
 <List<NationalPark>> (serializedParks);
 }
 else
 _parks = new List<NationalPark> ();
}

8.	 Compile NationalParks.Data. You will receive compile errors due to
unresolved references to Json.NET. Unfortunately, we cannot simply add
a reference to the component version of Json.NET that we previously
downloaded from the Xamarin component store because this version is built
to be used with the Xamarin.iOS and Xamarin.Android profiles and is not
binary compatible with Mono/.NET 4.5 library projects.

9.	 Add the Json.NET library to the project using NuGet. Select NationalParks.
Data, right-click on it, and navigate to Add | Add Packages. Enter Json.
NET in the search field, check the Json.NET entry in the list, and select Add
Packages. The following screenshot shows the Add Packages dialog box:

Chapter 6

[115]

10.	 Compile NationalParks.Data; you should receive no compile errors
this time.

Updating NationalParks.Droid to use shared
files
Now that we have the NationalParksData singleton in a separate project, we are
now ready to reuse it.

To update NationalParks.Droid in order to use the shared solution, perform the
following steps:

1.	 Select NationalPark.cs and NationalParksData.cs in the Solution pad,
right-click on it, select Remove, and then select Delete. This will remove
the selected files from the project and physically delete them from the
project folder.

2.	 In NationalParks.Droid, add a folder named NationalParks.Data.
This folder will not contain any files, but will simply be used within the
project structure to organize links to the shared files.

3.	 Select the NationalParks.Data folder, right-click on it, and navigate to
Add | Add Files to add the existing files to the project.

4.	 In the Add Files dialog box, navigate to the NationalParks.Data project
folder, select NationalPark.cs and NationalParkData.cs, and click
on Open.

5.	 In the Add File to Folder dialog box, select Add a link to file, check the
Use the same action for all selected files option, and click on OK. Expand
the NationalParks.Data folder to see that two file links are added. The
following screenshot shows the Add File to Folder dialog box:

The Sharing Game

[116]

6.	 Add a using clause to the NationalParks.Data namespace and remove any
using directives for Newtonsoft.Json in MainActivity, DetailActivity,
EditActivity, and NationalParksAdapter.

7.	 In MainActivity.OnCreate(), set the NationalParksData.DataDir
property and call the Load() method prior to creating the ListView adapter:
 NationalParksData.Instance.DataDir =
 System.Environment.GetFolderPath (
 System.Environment.SpecialFolder.MyDocuments);
NationalParksData.Instance.Load ();

8.	 Compile and run the app. You should see no noticeable behavior changes,
but we are now using the serialization and storage logic in a shareable way.

Updating NationalParks.iOS to use
shared files
Now, let's move on to update NationalParks.iOS. We have a little more work
to do here because if you can recall, we had the file handling logic spread out in
several areas.

To update NationalParks.iOS in order to use the shared solution, perform the
following steps:

1.	 Remove NationalPark.cs from the project.
2.	 Add a folder named NationalParks.Data in the NationalParks.Droid

project.
3.	 Add file links to NationalPark.cs and NationalParksData.cs.
4.	 Open MasterViewController.cs, add a using instance of NationalParks.

Data, and remove the using instance of Newtonsoft.Json.
5.	 In MasterViewController.ViewDidLoad(), set the DataDir property

before creating the data source for UITableView:
NationalParksData.Instance.DataDir =
 Environment.CurrentDirectory;
NationalParksData.Instance.Load ();

6.	 In the DataSource class, remove the Parks collection and remove the
loading action of the Parks collection in the constructor.

Chapter 6

[117]

7.	 Update the methods in DataSource to reference the Parks collection
property in NationalParksData.

8.	 Remove the Parks property from DataSource and update
MasterViewController.PrepareForSegue() to use the Parks property
in NationalParksData.

9.	 Open DetailViewController and add a using instance of NationalParks.
Data.

10.	 In SetNavData(), remove the Parks collection argument,
corresponding private variable, and then update the navigation logic in
MasterViewController.

11.	 Open EditViewController and add a using directive for NationalParks.
Data.

12.	 In SetNavData(), remove the Parks collection argument,
corresponding private variable, and then update the navigation logic in
MasterViewController and DetailViewController so that no Parks
collection is passed in.

13.	 Remove the SaveParks() method.
14.	 In DoneClicked(), replace the logic that adds the park to the collection and

saves the collection with a call to NationalParksData.Instance.Save(),
as follows:
private void DoneClicked (object sender, EventArgs e)
{
 ToPark ();
 NationalParksData.Instance.Save (_park);
 NavigationController.PopViewControllerAnimated (true);
}

15.	 In DeleteClicked(), replace the logic that removes the park from the
collection and saves the collection with a call to NationalParks.Instance.
Delete(), as follows:
partial void DeleteClicked (UIButton sender)
{
 NationalParksData.Instance.Delete(_park);
 NavigationController.PopToRootViewController(true);
}

16.	 Compile and run the app. As with NationalParks.Droid, you should see
no noticeable behavior changes.

The Sharing Game

[118]

Portable Class Libraries
Portable Class Libraries (PCL) are libraries that conform to a Microsoft standard
and can be shared in a binary format across many different platforms such as
Windows 7 desktop, Windows 8 desktop, Windows 8 phone, Xbox 360, and
Mono. The big advantage with a PCL is that you can share a single binary for
all these platforms and avoid distributing source code. However, there are some
significant challenges.

One issue we face straightaway is the fact that our code uses APIs that are
not supported across all the platforms; specifically File.Exists(), File.
ReadAllText(), and File.WriteAllText(). It seems surprising, but most of
System.IO is not common across all of the .NET profiles; so, the file I/O logic can
be difficult to deal with within the shared code. In our case, there are only three
methods and we can easily abstract this logic away from the shared code by creating
an IO interface. Each platform that uses our shared solution will be responsible for
providing an implementation of the IO interface.

Creating NationalParks.PortableData
The first step is to create the Portable Class Library to house our shared solution.
To create NationalParks.PortableData, perform the following steps:

1.	 Add a new Portable Class Library project to the NationalParks solution.
The project template can be found under C# | Portable Library.

2.	 Remove MyClass.cs from the newly created project.
3.	 Copy NationalPark.cs and NationalParksData.cs from the

NationalParks.Data project to NationalParks.PortableData.
4.	 Add a reference to the Json.NET Portable Class Library.
5.	 Create the IFileHandler interface and add three methods that abstract

the three IO methods we need. It will be best to make the read and write
methods asynchronous returning Task<>, because many of the platforms
only support asynchronous IO. This will simplify implementing the interface
on these platforms. The following code demonstrates the required action:
public interface IFileHandler
{
 bool FileExists (string filename);
 Task<string> ReadAllText (string filename);
 Task WriteAllText (string filename, string content);
}

Chapter 6

[119]

6.	 Add a public IFileHandler property to NationalParksData and change all
the logic to use this property rather than using System.IO.File, as follows:

public IFileHandler FileHandler { get; set; }
. . .
public async Task Load()
{
 if (FileHandler.FileExists (GetFilename())) {
 string serializedParks =
 await FileHandler.ReadAllText (GetFilename());
 Parks = JsonConvert.DeserializeObject
 <List<NationalPark>> (serializedParks);
 }
 . . .
}
. . .
public Task Save(NationalPark park)
{
 . . .
 return FileHandler.WriteAllText (
 GetFilename (), serializedParks);
}
public Task Delete(NationalPark park)
{
 . . .
 return FileHandler.WriteAllText (
 GetFilename (), serializedParks);
}

Implementing IFileHandler
We now need to create an implementation of IFileHandler that can be used by both
our projects. We will share the file handler implementation using the file linking
method from the previous sections.

To implement IFileHandler, perform the following steps:

1.	 In the NationalParks solution, create a new Library project named
NationalParks.IO and set the Target framework option to Mono/.NET 4.5.
This will serve as a shared project for our file handler implementation.

2.	 Remove the MyClass.cs file created by default and add a reference
to NationalParks.PortableData. This will give us access to the
IFileHandler interface we intend to implement.

The Sharing Game

[120]

3.	 Create a class named FileHandler in NationalParks.IO. Add a using
directive for the NationalParks.PortableData namespace and specify
that the class implements the IFileHandler interface.

4.	 Use the Implement interface menu item under Refactor to create stub
implementations for each method on the interface.

5.	 Implement each of the stub methods. The following code demonstrates
the required action:

#region IFileHandler implementation
public bool FileExists (string filename)
{
 return File.Exists (filename);
}
public async Task<string> ReadAllText (string filename)
{
 using (StreamReader reader =
 File.OpenText(filename)) {
 return await reader.ReadToEndAsync();
 }
}
public async Task WriteAllText (string filename,
 string content)
{
 using (StreamWriter writer =
 File.CreateText (filename)) {
 await writer.WriteAsync (content);
 }
}
#endregion

Updating NationalParks.Droid to use PCL
Now, it's time to update NationalParks.Droid in order to use our new PCL.

To update NationalParks.Droid in order to use NationalParks.PortableData,
perform the following steps:

1.	 In the NationalParks.Droid project, remove the NationalParks.Data
folder, create a new folder named NationalParks.IO, and add a reference
to NationalParks.PortableData.

2.	 In the NationalParks.IO folder, add Link to the FileHandler class.
3.	 In MainActivity.cs, add a using clause for NationalParks.IO and

NationalParks.PortableData.

Chapter 6

[121]

4.	 In MainActivity.OnCreate(), initialize the FileHandler property with an
instance of FileHandler, place an await instance on the call to Load(), and
move the assignment of NationalParksAdapter before the call to Load(),
as shown in the following code snippet:
_adapter = new NationalParksAdapter (this);
NationalParksData.Instance.FileHandler =
 new FileHandler ();
NationalParksData.Instance.DataDir =
 System.Environment.GetFolderPath (
 System.Environment.SpecialFolder.MyDocuments);
await NationalParksData.Instance.Load ();

5.	 Now that we are loading data asynchronously, the OnPause() method
will likely be called before the asynchronous return of OnCreate().
Thus we need to add a null check for the logic in OnPause() that calls
NotifyDataSetChanged(), as follows:
protected override void OnResume ()
{
 basse.OnResume ();
 if (_adapter != null)
 _adapter.NotifyDataSetChanged ();
}

6.	 In NationalParksAdapter.cs, DetailActivity.cs, and EditActivity.
cs, add a using clause for NationalParks.PortableData, and remove the
using directive for NationalParks.Data.

7.	 Compile and run the app.

Updating NationalParks.iOS to use PCL
Now, it's time to update NationalParks.IOS. For the most part, we go through
essentially the same steps.

To update NationalParks.iOS in order to use NationalParks.PortableData,
perform the following steps:

1.	 In the NationalParks.Droid project, remove the NationalParks.Data
folder, create a new folder named NationalParks.IO, and add a reference
to NationalParks.PortableData.

2.	 In the NationalParks.IO folder, add Link to the FileHandler class.
3.	 In MasterViewController.cs, add a using clause for NationalParks.IO

and NationalParks.PortableData, and remove the using directive for
NationalParks.Data.

The Sharing Game

[122]

4.	 In MasterViewController.ViewDidLoad(), initialize the FileHandler
property with an instance of FileHandler, place an await instance on
the call to Load(), and place a call to TableView.ReloadData() after the
assignment of the data source, as shown in the following code snippet:
NationalParksData.Instance.FileHandler =
 new FileHandler ();
NationalParksData.Instance.DataDir =
 Environment.CurrentDirectory;
await NationalParksData.Instance.Load ();
TableView.Source = dataSource = new DataSource (this);
TableView.ReloadData ();

5.	 In DetailViewController.cs and EditViewController.cs, replace
the using directive for NationalParks.Data with NationalParks.
PortableData.

6.	 Compile and run the app.

The pros and cons of the code-sharing
techniques
Now that we have some experience with two practical methods for sharing code
across Xamarin.iOS and Xamarin.Android apps, let's look at some pros and cons.
The following table summarizes some of the pros and cons of each approach:

Pros Cons
File linking •	 This allows for a

broader use of .NET
APIs, assuming
that these APIs are
supported by all the
platforms that will
use the shared code. If
you are only targeting
Xamarin.iOS and
Xamarin.Android, this
works pretty well.

•	 This requires source
code to be shared.

•	 These API
dependency issues
might not be known
until shared code
has been compiled
for each target
platform.

Portable Class Library •	 This ensures platform
API compatibility.

•	 This allows for
distribution of binary
code.

•	 This limits the
namespaces and
APIs available for
use in your code.

Chapter 6

[123]

Summary
In this chapter, we reviewed two practical approaches to share code across Xamarin
projects as well as other .NET solutions. In the next chapter, we will investigate
MvvmCross, a framework that simplifies implementing the Model-View-ViewModel
design pattern, increasing the amount of shared code across platforms.

Sharing with MvvmCross
In the previous chapter, we covered the basic approaches to reusing code across
projects and platforms. In this chapter, we will take the next step and look at how
the use of design patterns and frameworks can increase the amount of code that
can be reused. We will cover the following topics:

•	 An introduction to MvvmCross
•	 The MVVM design pattern
•	 Core concepts
•	 Views, ViewModels, and commands
•	 Data binding
•	 Navigation (ViewModel to ViewModel)
•	 The project organization
•	 The startup process
•	 Creating NationalParks.MvvmCross

It's more than a little ambitious to try to cover MvvmCross along with a working
example in a single chapter. Our approach will be to introduce the core concepts
at a high level and then dive in and create the national parks sample app using
MvvmCross. This will give you a basic understanding of how to use the framework
and the value associated with its use. With that in mind, let's get started.

Sharing with MvvmCross

[126]

Introducing MvvmCross
MvvmCross is an open source framework that was created by Stuart Lodge.
It is based on the Model-View-ViewModel (MVVM) design pattern and is
designed to enhance code reuse across numerous platforms, including Xamarin.
Android, Xamarin.iOS, Windows Phone, Windows Store, WPF, and Mac OS X.
The MvvmCross project is hosted on GitHub and can be accessed at https://
github.com/MvvmCross/MvvmCross.

The MVVM pattern
MVVM is a variation of the Model-View-Controller pattern. It separates logic
traditionally placed in a View object into two distinct objects, one called View and
the other called ViewModel. The View is responsible for providing the user interface
and the ViewModel is responsible for the presentation logic. The presentation logic
includes transforming data from the Model into a form that is suitable for the user
interface to work with and mapping user interaction with the View into requests
sent back to the Model. The following diagram depicts how the various objects
in MVVM communicate:

https://github.com/MvvmCross/MvvmCross
https://github.com/MvvmCross/MvvmCross

Chapter 7

[127]

While MVVM presents a more complex implementation model, there are significant
benefits of it, which are as follows:

•	 ViewModels and their interactions with Models can generally be tested
using frameworks (such as NUnit) that are much easier than applications
that combine the user interface and presentation layers

•	 ViewModels can generally be reused across different user interface
technologies and platforms

These factors make the MVVM approach both flexible and powerful.

Views
Views in an MvvmCross app are implemented using platform-specific constructs.
For iOS apps, Views are generally implemented as ViewControllers and XIB files.
MvvmCross provides a set of base classes, such as MvxViewContoller, that iOS
ViewControllers inherit from. Storyboards can also be used in conjunction with
a custom presenter to create Views; we will briefly discuss this option in the
section titled Implementing the iOS user interface later in this chapter.

For Android apps, Views are generally implemented as MvxActivity or
MvxFragment along with their associated layout files.

ViewModels
ViewModels are classes that provide data and presentation logic to views in an
app. Data is exposed to a View as properties on a ViewModel, and logic that can
be invoked from a View is exposed as commands. ViewModels inherit from the
MvxViewModel base class.

Commands
Commands are used in ViewModels to expose logic that can be invoked from the
View in response to user interactions. The command architecture is based on the
ICommand interface used in a number of Microsoft frameworks such as Windows
Presentation Foundation (WPF) and Silverlight. MvvmCross provides IMvxCommand,
which is an extension of ICommand, along with an implementation named
MvxCommand.

Sharing with MvvmCross

[128]

The commands are generally defined as properties on a ViewModel. For example:

public IMvxCommand ParkSelected { get; protected set; }

Each command has an action method defined, which implements the logic to
be invoked:

protected void ParkSelectedExec(NationalPark park)
{
 . . .// logic goes here
}

The commands must be initialized and the corresponding action method should
be assigned:

ParkSelected =
 new MvxCommand<NationalPark> (ParkSelectedExec);

Data binding
Data binding facilitates communication between the View and the ViewModel by
establishing a two-way link that allows data to be exchanged. The data binding
capabilities provided by MvvmCross are based on capabilities found in a number of
Microsoft XAML-based UI frameworks such as WPF and Silverlight. The basic idea
is that you would like to bind a property in a UI control, such as the Text property
of an EditText control in an Android app to a property of a data object such as the
Description property of NationalPark. The following diagram depicts this scenario:

Chapter 7

[129]

The binding modes
There are four different binding modes that can be used for data binding:

•	 OneWay binding: This mode tells the data binding framework to transfer
values from the ViewModel to the View and transfer any updates to
properties on the ViewModel to their bound View property.

•	 OneWayToSource binding: This mode tells the data binding framework
to transfer values from the View to the ViewModel and transfer updates
to View properties to their bound ViewModel property.

•	 TwoWay binding: This mode tells the data binding framework to transfer
values in both directions between the ViewModel and View, and updates on
either object will cause the other to be updated. This binding mode is useful
when values are being edited.

•	 OneTime binding: This mode tells the data binding framework to transfer
values from ViewModel to View when the binding is established; in this
mode, updates to ViewModel properties are not monitored by the View.

The INotifyPropertyChanged interface
The INotifyPropertyChanged interface is an integral part of making data binding
work effectively; it acts as a contract between the source object and the target object.
As the name implies, it defines a contract that allows the source object to notify the
target object when data has changed, thus allowing the target to take any necessary
actions such as refreshing its display.

The interface consists of a single event—the PropertyChanged event—that the target
object can subscribe to and that is triggered by the source if a property changes. The
following sample demonstrates how to implement INotifyPropertyChanged:

public class NationalPark : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler
 PropertyChanged;
 // rather than use "… code" it is safer to use
 // the comment form
 string _name;
 public string Name
 {

Sharing with MvvmCross

[130]

 get { return _name; }
 set
 {
 if (value.Equals (_name,
 StringComparison.Ordinal))
 {
 // Nothing to do - the value hasn't changed;
 return;
 }
 _name = value;
 OnPropertyChanged();
 }
 }
 . . .
 void OnPropertyChanged(
 [CallerMemberName] string propertyName = null)
 {
 var handler = PropertyChanged;
 if (handler != null)
 {
 handler(this,
 new PropertyChangedEventArgs(propertyName));
 }
 }
}

Binding specifications
Bindings can be specified in a couple of ways. For Android apps, bindings can
be specified in layout files. The following example demonstrates how to bind
the Text property of a TextView instance to the Description property in a
NationalPark instance:

<TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:id="@+id/descrTextView"
 local:MvxBind="Text Park.Description" />

For iOS, binding must be accomplished using the binding API. CreateBinding()
is a method than can be found on MvxViewController. The following example
demonstrates how to bind the Description property to a UILabel instance:

this.CreateBinding (this.descriptionLabel).
 To ((DetailViewModel vm) => vm.Park.Description).
 Apply ();

Chapter 7

[131]

Navigating between ViewModels
Navigating between various screens within an app is an important capability. Within
a MvvmCross app, this is implemented at the ViewModel level so that navigation
logic can be reused. MvvmCross supports navigation between ViewModels through
use of the ShowViewModel<T>() method inherited from MvxNavigatingObject,
which is the base class for MvxViewModel. The following example demonstrates how
to navigate to DetailViewModel:

ShowViewModel<DetailViewModel>();

Passing parameters
In many situations, there is a need to pass information to the destination ViewModel.
MvvmCross provides a number of ways to accomplish this. The primary method is
to create a class that contains simple public properties and passes an instance of the
class into ShowViewModel<T>(). The following example demonstrates how to define
and use a parameters class during navigation:

public class DetailParams
{
 public int ParkId { get; set; }
}

// using the parameters class
ShowViewModel<DetailViewModel>(
new DetailViewParam() { ParkId = 0 });

To receive and use parameters, the destination ViewModel implements an Init()
method that accepts an instance of the parameters class:

public class DetailViewModel : MvxViewModel
{
 . . .
 public void Init(DetailViewParams parameters)
 {
 // use the parameters here . . .
 }
}

Sharing with MvvmCross

[132]

Solution/project organization
MvvmCross solutions are organized in a way that is similar to how we organized
the PCL solution in Chapter 6, The Sharing Game. Each MvvmCross solution will
have a single core PCL project that houses the reusable code and a series of
platform-specific projects that contain the various apps. The following diagram
depicts the general structure:

The startup process
MvvmCross apps generally follow a standard startup sequence that is initiated by
platform-specific code within each app. There are several classes that collaborate
to accomplish the startup; some of these classes reside in the core project and some
of them reside in the platform-specific projects. The following sections describe the
responsibilities of each of the classes involved.

App.cs
The core project has an App class that inherits from MvxApplication. The App class
contains an override to the Initialize() method so that at a minimum, it can
register the first ViewModel that should be presented when the app starts:

RegisterAppStart<ViewModels.MasterViewModel>();

Chapter 7

[133]

Setup.cs
Android and iOS projects have a Setup class that is responsible for creating the App
object from the core project during the startup. This is accomplished by overriding
the CreateApp() method:

protected override IMvxApplication CreateApp()
{
 return new Core.App();
}

For Android apps, Setup inherits from MvxAndroidSetup. For iOS apps, Setup
inherits from MvxTouchSetup.

The Android startup
Android apps are kicked off using a special Activity splash screen that calls
the Setup class and initiates the MvvmCross startup process. This is all done
automatically for you; all you need to do is include the splash screen definition
and make sure it is marked as the launch activity. The definition is as follows:

[Activity(
 Label="NationalParks.Droid", MainLauncher = true,
 Icon="@drawable/icon", Theme="@style/Theme.Splash",
 NoHistory=true,
 ScreenOrientation = ScreenOrientation.Portrait)]
public class SplashScreen : MvxSplashScreenActivity
{
 public SplashScreen():base(Resource.Layout.SplashScreen)
 {
 }
}

The iOS startup
The iOS app startup is slightly less automated and is initiated from within the
FinishedLaunching() method of AppDelegate:

public override bool FinishedLaunching (
 UIApplication app, NSDictionary options)
{
 _window = new UIWindow (UIScreen.MainScreen.Bounds);

 var setup = new Setup(this, _window);
 setup.Initialize();
 var startup = Mvx.Resolve<IMvxAppStart>();
 startup.Start();

 _window.MakeKeyAndVisible ();

 return true;
}

Sharing with MvvmCross

[134]

Creating NationalParks.MvvmCross
Now that we have basic knowledge of the MvvmCross framework, let's put that
knowledge to work and convert the NationalParks app to leverage the capabilities
we just learned.

Creating the MvvmCross core project
We will start by creating the core project. This project will contain all the code
that will be shared between the iOS and Android app primarily in the form of
ViewModels. The core project will be built as a Portable Class Library.

To create NationalParks.Core, perform the following steps:

1.	 From the main menu, navigate to File | New Solution.
2.	 From the New Solution dialog box, navigate to C# | Portable Library,

enter NationalParks.Core for the project Name field, enter
NationalParks.MvvmCross for the Solution field, and click on OK.

3.	 Add the MvvmCross starter package to the project from NuGet. Select
the NationalParks.Core project and navigate to Project | Add Packages
from the main menu. Enter MvvmCross starter in the search field.

4.	 Select the MvvmCross – Hot Tuna Starter Pack entry and click on
Add Package.

Chapter 7

[135]

5.	 A number of things were added to NationalParks.Core as a result of
adding the package, and they are as follows:

°° A packages.config file, which contains a list of libraries (dlls)
associated with the MvvmCross starter kit package. These entries are
links to actual libraries in the Packages folder of the overall solution.

°° A ViewModels folder with a sample ViewModel named
FirstViewModel.

°° An App class in App.cs, which contains an Initialize() method
that starts the MvvmCross app by calling RegisterAppStart() to
start FirstViewModel. We will eventually be changing this to start
the MasterViewModel class, which will be associated with a View
that lists national parks.

Creating the MvvmCross Android app
The next step is to create an Android app project in the same solution.

To create NationalParks.Droid, complete the following steps:

1.	 Select the NationalParks.MvvmCross solution, right-click on it, and
navigate to Add | New Project.

2.	 From the New Project dialog box, navigate to C# | Android | Android
Application, enter NationalParks.Droid for the Name field, and click
on OK.

3.	 Add the MvvmCross starter kit package to the new project by selecting
NationalParks.Droid and navigating to Project | Add Packages from
the main menu.

4.	 A number of things were added to NationalParks.Droid as a result of
adding the package, which are as follows:

°° packages.config: This file contains a list of libraries (dlls)
associated with the MvvmCross starter kit package. These entries
are links to an actual library in the Packages folder of the overall
solution, which contains the actual downloaded libraries.

°° FirstView : This class is present in the Views folder, which
corresponds to FirstViewModel, which was created in
NationalParks.Core.

°° FirstView: This layout is present in Resources\layout, which is
used by the FirstView activity. This is a traditional Android layout
file with the exception that it contains binding declarations in the
EditView and TextView elements.

Sharing with MvvmCross

[136]

°° Setup: This file inherits from MvxAndroidSetup. This class is
responsible for creating an instance of the App class from the core
project, which in turn displays the first ViewModel via a call to
RegisterAppStart().

°° SplashScreen: This class inherits from MvxSplashScreenActivity.
The SplashScreen class is marked as the main launcher activity
and thus initializes the MvvmCross app with a call to Setup.
Initialize().

5.	 Add a reference to NationalParks.Core by selecting the References
folder, right-click on it, select Edit References, select the Projects tab, check
NationalParks.Core, and click on OK.

6.	 Remove MainActivity.cs as it is no longer needed and will create a build
error. This is because it is marked as the main launch and so is the new
SplashScreen class. Also, remove the corresponding Resources\layout\
main.axml layout file.

7.	 Run the app. The app will present FirstViewModel, which is linked to the
corresponding FirstView instance with an EditView class, and TextView
presents the same Hello MvvmCross text. As you edit the text in the
EditView class, the TextView class is automatically updated by means of
data binding. The following screenshot depicts what you should see:

Chapter 7

[137]

Reusing NationalParks.PortableData and
NationalParks.IO
Before we start creating the Views and ViewModels for our app, we first need to
bring in some code from our previous efforts that can be used to maintain parks.
For this, we will simply reuse the NationalParksData singleton and the
FileHandler classes that were created previously.

To reuse the NationalParksData singleton and FileHandler classes, complete the
following steps:

1.	 Copy NationalParks.PortableData and NationalParks.IO from the
solution created in Chapter 6, The Sharing Game, to the NationalParks.
MvvmCross solution folder.

2.	 Add a reference to NationalParks.PortableData in the NationalParks.
Droid project.

3.	 Create a folder named NationalParks.IO in the NationalParks.Droid
project and add a link to FileHandler.cs from the NationalParks.IO
project. Recall that the FileHandler class cannot be contained in the Portable
Class Library because it uses file IO APIs that cannot be references from a
Portable Class Library.

4.	 Compile the project. The project should compile cleanly now.

Implementing the INotifyPropertyChanged interface
We will be using data binding to bind UI controls to the NationalPark object and
thus, we need to implement the INotifyPropertyChanged interface. This ensures
that changes made to properties of a park are reported to the appropriate UI controls.

To implement INotifyPropertyChanged, complete the following steps:

1.	 Open NationalPark.cs in the NationalParks.PortableData project.
2.	 Specify that the NationalPark class implements INotifyPropertyChanged

interface.
3.	 Select the INotifyPropertyChanged interface, right-click on it, navigate to

Refactor | Implement interface, and press Enter. Enter the following code
snippet:
public class NationalPark : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler
 PropertyChanged;
 . . .
}

Sharing with MvvmCross

[138]

4.	 Add an OnPropertyChanged() method that can be called from each property
setter method:
void OnPropertyChanged(
 [CallerMemberName] string propertyName = null)
{
 var handler = PropertyChanged;
 if (handler != null)
 {
 handler(this,
 new PropertyChangedEventArgs(propertyName));
 }
}

5.	 Update each property definition to call the setter in the same way as it is
depicted for the Name property:
string _name;
public string Name
{
 get { return _name; }
 set
 {
 if (value.Equals (_name, StringComparison.Ordinal))
 {
 // Nothing to do - the value hasn't changed;
 return;
 }
 _name = value;
 OnPropertyChanged();
 }
}

6.	 Compile the project. The project should compile cleanly. We are now ready
to use the NationalParksData singleton in our new project, and it supports
data binding.

Implementing the Android user interface
Now, we are ready to create the Views and ViewModels required for our app. The
app we are creating will follow the same flow that was used in previous chapters:

•	 A master list view to view national parks
•	 A detail view to view details of a specific park
•	 An edit view to edit a new or previously existing park

Chapter 7

[139]

The process for creating views and ViewModels in an Android app generally
consists of three different steps:

1.	 Create a ViewModel in the core project with the data and event handlers
(commands) required to support the View.

2.	 Create an Android layout with visual elements and data binding
specifications.

3.	 Create an Android activity, which corresponds to the ViewModel and
displays the layout.

In our case, this process will be slightly different because we will reuse some
of our previous work, specifically, the layout files and the menu definitions.

To reuse layout files and menu definitions, perform the following steps:

1.	 Copy Master.axml, Detail.axml, and Edit.axml from the Resources\
layout folder of the solution created in Chapter 5, Developing Your First
Android App with Xamarin.Android, to the Resources\layout folder in the
NationalParks.Droid project, and add them to the project by selecting
the layout folder and navigating to Add | Add Files.

2.	 Copy MasterMenu.xml, DetailMenu.xml, and EditMenu.xml from the
Resources\menu folder of the solution created in Chapter 5, Developing Your
First Android App with Xamarin.Android, to the Resources\menu folder in the
NationalParks.Droid project, and add them to the project by selecting
the menu folder and navigating to Add | Add Files.

Implementing the master list view
We are now ready to implement the first of our View/ViewModel combinations,
which is the master list view.

Creating MasterViewModel
The first step is to create a ViewModel and add a property that will provide data
to the list view that displays national parks along with some initialization code.

To create MasterViewModel, complete the following steps:

1.	 Select the ViewModels folder in NationalParks.Core, right-click on it,
and navigate to Add | New File.

2.	 In the New File dialog box, navigate to General | Empty Class,
enter MasterViewModel for the Name field, and click on New.

Sharing with MvvmCross

[140]

3.	 Modify the class definition so that MasterViewModel inherits from
MvxViewModel; you will also need to add a few using directives:
. . .
using Cirrious.CrossCore.Platform;
using Cirrious.MvvmCross.ViewModels;
. . .
namespace NationalParks.Core.ViewModels
{
 public class MasterViewModel : MvxViewModel
 {
 . . .
 }
}

4.	 Add a property that is a list of NationalPark elements to MasterViewModel.
This property will later be data-bound to a list view:
private List<NationalPark> _parks;
public List<NationalPark> Parks
{
 get { return _parks; }
 set { _parks = value;
 RaisePropertyChanged(() => Parks);
 }
 }

5.	 Override the Start() method on MasterViewModel to load the _parks
collection with data from the NationalParksData singleton. You will
need to add a using directive for the NationalParks.PortableData
namespace again:
. . .
using NationalParks.PortableData;
. . .
public async override void Start ()
{
 base.Start ();
 await NationalParksData.Instance.Load ();
 Parks = new List<NationalPark> (
 NationalParksData.Instance.Parks);
}

6.	 We now need to modify the app startup sequence so that MasterViewModel
is the first ViewModel that's started. Open App.cs in NationalParks.Core
and change the call to RegisterAppStart() to reference MasterViewModel:

RegisterAppStart<ViewModels.MasterViewModel>();

Chapter 7

[141]

Updating the Master.axml layout
Update Master.axml so that it can leverage the data binding capabilities provided
by MvvmCross.

To update Master.axml, complete the following steps:

1.	 Open Master.axml and add a namespace definition to the top of the XML
to include the NationalParks.Droid namespace:
xmlns:local="http://schemas.android.com/apk/res/NationalParks.
Droid"

This namespace definition is required in order to allow Android to resolve
the MvvmCross-specific elements that will be specified.

2.	 Change the ListView element to a Mvx.MvxListView element:
<Mvx.MvxListView
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:id="@+id/parksListView" />

3.	 Add a data binding specification to the MvxListView element, binding
the ItemsSource property of the list view to the Parks property of
MasterViewModel, as follows:
 . . .
 android:id="@+id/parksListView"
 local:MvxBind="ItemsSource Parks" />

4.	 Add a list item template attribute to the element definition. This layout
controls the content of each item that will be displayed in the list view:
local:MvxItemTemplate="@layout/nationalparkitem"

5.	 Create the NationalParkItem layout and provide TextView elements
to display both the name and description of a park, as follows:
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 xmlns:local="http://schemas.android.com/apk/res/
 NationalParks.Droid"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:textSize="40sp"/>

Sharing with MvvmCross

[142]

 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:textSize="20sp"/>
</LinearLayout>

6.	 Add data binding specifications to each of the TextView elements:

. . .
 local:MvxBind="Text Name" />
. . .
 local:MvxBind="Text Description" />
. . .

Note that in this case, the context for data binding is an instance of
an item in the collection that was bound to MvxListView, for this
example, an instance of NationalPark.

Creating the MasterView activity
Next, create MasterView, which is an MvxActivity instance that corresponds with
MasterViewModel.

To create MasterView, complete the following steps:

1.	 Select the ViewModels folder in NationalParks.Core, right-click on it,
navigate to Add | New File.

2.	 In the New File dialog, navigate to Android | Activity, enter MasterView
in the Name field, and select New.

3.	 Modify the class specification so that it inherits from MvxActivity; you
will also need to add a few using directives as follows:
using Cirrious.MvvmCross.Droid.Views;
using NationalParks.Core.ViewModels;
. . .
namespace NationalParks.Droid.Views
{
 [Activity(Label = "Parks")]
 public class MasterView : MvxActivity
 {
 . . .
 }
}

Chapter 7

[143]

4.	 Open Setup.cs and add code to initialize the file handler and path for the
NationalParksData singleton to the CreateApp() method, as follows:
protected override IMvxApplication CreateApp()

{

 NationalParksData.Instance.FileHandler =

 new FileHandler ();

 NationalParksData.Instance.DataDir =

 System.Environment.GetFolderPath(

 System.Environment.SpecialFolder.MyDocuments);

 return new Core.App();

}

5.	 Compile and run the app; you will need to copy the NationalParks.json
file to the device or emulator using the Android Device Monitor. All the
parks in NationalParks.json should be displayed.

Implementing the detail view
Now that we have the master list view displaying national parks, we can focus
on creating the detail view. We will follow the same steps for the detail view as
the ones we just completed for the master view.

Creating DetailViewModel
We start creating DetailViewModel by using the following steps:

1.	 Following the same procedure as the one that was used to create
MasterViewModel, create a new ViewModel named DetailViewModel
in the ViewModel folder of NationalParks.Core.

2.	 Add a NationalPark property to support data binding for the view controls,
as follows:
protected NationalPark _park;
public NationalPark Park
{
 get { return _park; }
 set { _park = value;
 RaisePropertyChanged(() => Park);
 }
}

Sharing with MvvmCross

[144]

3.	 Create a Parameters class that can be used to pass a park ID for the park
that should be displayed. It's convenient to create this class within the
class definition of the ViewModel that the parameters are for:
public class DetailViewModel : MvxViewModel
{
 public class Parameters
 {
 public string ParkId { get; set; }
 }
 . . .

4.	 Implement an Init() method that will accept an instance of the Parameters
class and get the corresponding national park from NationalParkData:

public void Init(Parameters parameters)
{
 Park = NationalParksData.Instance.Parks.
 FirstOrDefault(x => x.Id == parameters.ParkId);
}

Updating the Detail.axml layout
Next, we will update the layout file. The main changes that need to be made are to
add data binding specifications to the layout file.

To update the Detail.axml layout, perform the following steps:

1.	 Open Detail.axml and add the project namespace to the XML file:
xmlns:local="http://schemas.android.com/apk/res/
 NationalParks.Droid"

2.	 Add data binding specifications to each of the TextView elements that
correspond to a national park property, as demonstrated for the park name:

<TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:id="@+id/nameTextView"
 local:MvxBind="Text Park.Name" />

Creating the DetailView activity
Now, create the MvxActivity instance that will work with DetailViewModel.

Chapter 7

[145]

To create DetailView, perform the following steps:

1.	 Following the same procedure as the one that was used to create
MasterView, create a new view named DetailView in the Views folder
of NationalParks.Droid.

2.	 Implement the OnCreateOptionsMenu() and OnOptionsItemSelected()
methods so that our menus will be accessible. Copy the implementation
of these methods from the solution created in Chapter 6, The Sharing Game.
Comment out the section in OnOptionsItemSelect() related to the Edit
action for now; we will fill that in once the edit view is completed.

Adding navigation
The last step is to add navigation so that when an item is clicked on in MvxListView
on MasterView, the park is displayed in the detail view. We will accomplish this
using a command property and data binding.

To add navigation, perform the following steps:

1.	 Open MasterViewModel and add an IMvxCommand property; this will be
used to handle a park that is being selected:
protected IMvxCommand ParkSelected { get; protected set; }

2.	 Create an Action delegate that will be called when the ParkSelected
command is executed, as follows:
protected void ParkSelectedExec(NationalPark park)
{
 ShowViewModel<DetailViewModel> (
 new DetailViewModel.Parameters ()
 { ParkId = park.Id });
}

3.	 Initialize the command property in the constructor of MasterViewModel:
ParkClicked =
 new MvxCommand<NationalPark> (ParkSelectedExec);

4.	 Now, for the last step, add a data binding specification to MvvListView in
Master.axml to bind the ItemClick event to the ParkClicked command
on MasterViewModel, which we just created:
local:MvxBind="ItemsSource Parks; ItemClick ParkClicked"

5.	 Compile and run the app. Clicking on a park in the list view should now
navigate to the detail view, displaying the selected park.

Sharing with MvvmCross

[146]

Implementing the edit view
We are now almost experts at implementing new Views and ViewModels. One last
View to go is the edit view.

Creating EditViewModel
Like we did previously, we start with the ViewModel.

To create EditViewModel, complete the following steps:

1.	 Following the same process that was previously used in this chapter to create
EditViewModel, add a data binding property and create a Parameters class
for navigation.

2.	 Implement an Init() method that will accept an instance of the Parameters
class and get the corresponding national park from NationalParkData in
the case of editing an existing park or create a new instance if the user has
chosen the New action. Inspect the parameters passed in to determine what
the intent is:

public void Init(Parameters parameters)
{
 if (string.IsNullOrEmpty (parameters.ParkId))
 Park = new NationalPark ();
 else
 Park =
 NationalParksData.Instance.
 Parks.FirstOrDefault(
 x => x.Id == parameters.ParkId);
}

Updating the Edit.axml layout
Update Edit.axml to provide data binding specifications.

To update the Edit.axml layout, you first need to open Edit.axml and add the
project namespace to the XML file. Then, add the data binding specifications to
each of the EditView elements that correspond to a national park property.

Creating the EditView activity
Create a new MvxActivity instance named EditView to will work with
EditViewModel.

Chapter 7

[147]

To create EditView, perform the following steps:

1.	 Following the same procedure as the one that was used to create
DetailView, create a new View named EditView in the Views folder
of NationalParks.Droid.

2.	 Implement the OnCreateOptionsMenu() and OnOptionsItemSelected()
methods so that the Done action will accessible from the ActionBar. You
can copy the implementation of these methods from the solution created in
Chapter 6, The Sharing Game. Change the implementation of Done to call the
Done command on EditViewModel.

Adding navigation
Add navigation to two places: when New (+) is clicked from MasterView and when
Edit is clicked in DetailView. Let's start with MasterView.

To add navigation from MasterViewModel, complete the following steps:

1.	 Open MasterViewModel.cs and add a NewParkClicked command property
along with the handler for the command. Be sure to initialize the command
in the constructor, as follows:
protected IMvxCommand NewParkClicked { get; set; }
protected void NewParkClickedExec()
{
 ShowViewModel<EditViewModel> ();
}

Note that we do not pass in a parameter class into ShowViewModel(). This
will cause a default instance to be created and passed in, which means that
ParkId will be null. We will use this as a way to determine whether a new
park should be created.

2.	 Now, it's time to hook the NewParkClicked command up to the actionNew
menu item. We do not have a way to accomplish this using data binding,
so we will resort to a more traditional approach—we will use the
OnOptionsItemSelected() method. Add logic to invoke the Execute()
method on NewParkClicked, as follows:

case Resource.Id.actionNew:
 ((MasterViewModel)ViewModel).
 NewParkClicked.Execute ();
 return true;

Sharing with MvvmCross

[148]

To add navigation from DetailViewModel, complete the following steps:

1.	 Open DetailViewModel.cs and add a EditParkClicked command
property along with the handler for the command. Be sure to initialize
the command in the constructor, as shown in the following code snippet:
protected IMvxCommand EditPark { get; protected set;}
protected void EditParkHandler()
{
 ShowViewModel<EditViewModel> (
 new EditViewModel.Parameters ()
 { ParkId = _park.Id });
}

Note that an instance of the Parameters class is created,
initialized, and passed into the ShowViewModel() method.
This instance will in turn be passed into the Init() method
on EditViewModel.

2.	 Initialize the command property in the constructor for MasterViewModel,
as follows:
EditPark =
 new MvxCommand<NationalPark> (EditParkHandler);

3.	 Now, update the OnOptionsItemSelect() method in DetailView to invoke
the DetailView.EditPark command when the Edit action is selected:
case Resource.Id.actionEdit:
 ((DetailViewModel)ViewModel).EditPark.Execute ();
 return true;

4.	 Compile and run NationalParks.Droid. You should now have a fully
functional app that has the ability to create new parks and edit the existing
parks. Changes made to EditView should automatically be reflected in
MasterView and DetailView.

Chapter 7

[149]

Creating the MvvmCross iOS app
The process of creating the Android app with MvvmCross provides a solid
understanding of how the overall architecture works. Creating the iOS solution
should be much easier for two reasons: first, we understand how to interact with
MvvmCross and second, all the logic we have placed in NationalParks.Core
is reusable, so that we just need to create the View portion of the app and the
startup code.

To create NationalParks.iOS, complete the following steps:

1.	 Select the NationalParks.MvvmCross solution, right-click on it, and navigate
to Add | New Project.

2.	 From the New Project dialog, navigate to C# | iOS | iPhone | Single View
Application, enter NationalParks.iOS in the Name field, and click on OK.

3.	 Add the MvvmCross starter kit package to the new project by selecting
NationalParks.iOS and navigating to Project | Add Packages from the
main menu.

4.	 A number of things were added to NationalParks.iOS as a result of adding
the package. They are as follows:

°° packages.config: This file contains a list of libraries associated with
the MvvmCross starter kit package. These entries are links to an
actual library in the Packages folder of the overall solution, which
contains the actual downloaded libraries.

°° FirstView: This class is placed in the Views folder, which
corresponds to the FirstViewModel instance created in
NationalParks.Core.

°° Setup: This class inherits from MvxTouchSetup. This class is
responsible for creating an instance of the App class from the core
project, which in turn displays the first ViewModel via a call to
RegisterAppStart().

°° AppDelegate.cs.txt: This class contains the sample startup code,
which should be placed in the actual AppDelete.cs file.

Sharing with MvvmCross

[150]

Implementing the iOS user interface
We are now ready to create the user interface for the iOS app. The good news is that
we already have all the ViewModels implemented, so we can simply reuse them.
The bad news is that we cannot easily reuse the storyboards from our previous
work; MvvmCross apps generally use XIB files. One of the reasons for this is that
storyboards are intended to provide navigation capabilities and an MvvmCross
app delegates that responsibility to ViewModel and presenter. It is possible to use
storyboards in combination with a custom presenter, but the remainder of this
chapter will focus on using XIB files, as this is the more common use. The screen
layouts as used in Chapter 4, Developing Your First iOS App with Xamarin.iOS, can be
used as depicted in the following screenshot:

We are now ready to get started.

Implementing the master view
The first view we will work on is the master view.

To implement the master view, complete the following steps:

1.	 Create a new ViewController class named MasterView by right-clicking on
the Views folder of NationalParks.iOS and navigating to Add | New File |
iOS | iPhone View Controller.

Chapter 7

[151]

2.	 Open MasterView.xib and arrange controls as seen in the screen layouts.
Add outlets for each of the edit controls.

3.	 Open MasterView.cs and add the following boilerplate logic to deal with
constraints on iOS 7, as follows:
// ios7 layout
if (RespondsToSelector(new
 Selector("edgesForExtendedLayout")))
 EdgesForExtendedLayout = UIRectEdge.None;

4.	 Within the ViewDidLoad() method, add logic to create
MvxStandardTableViewSource for parksTableView:
MvxStandardTableViewSource _source;
. . .
_source = new MvxStandardTableViewSource(
 parksTableView,
 UITableViewCellStyle.Subtitle,
 new NSString("cell"),
 "TitleText Name; DetailText Description",
 0);
parksTableView.Source = _source;

Note that the example uses the Subtitle cell style and binds the national
park name and description to the title and subtitle.

5.	 Add the binding logic to the ViewDidShow() method. In the previous step,
we provided specifications for properties of UITableViewCell to properties
in the binding context. In this step, we need to set the binding context for
the Parks property on MasterModelView:
var set = this.CreateBindingSet<MasterView,
 MasterViewModel>();
set.Bind (_source).To (vm => vm.Parks);
set.Apply();

6.	 Compile and run the app. All the parks in NationalParks.json should
be displayed.

Implementing the detail view
Now, implement the detail view using the following steps:

1.	 Create a new ViewController instance named DetailView.
2.	 Open DetailView.xib and arrange controls as shown in the following code.

Add outlets for each of the edit controls.

Sharing with MvvmCross

[152]

3.	 Open DetailView.cs and add the binding logic to the ViewDidShow()
method:

this.CreateBinding (this.nameLabel).
 To ((DetailViewModel vm) => vm.Park.Name).Apply ();
this.CreateBinding (this.descriptionLabel).
 To ((DetailViewModel vm) => vm.Park.Description).
 Apply ();
this.CreateBinding (this.stateLabel).
 To ((DetailViewModel vm) => vm.Park.State).Apply ();
this.CreateBinding (this.countryLabel).
 To ((DetailViewModel vm) => vm.Park.Country).
 Apply ();
this.CreateBinding (this.latLabel).
 To ((DetailViewModel vm) => vm.Park.Latitude).
 Apply ();
this.CreateBinding (this.lonLabel).
 To ((DetailViewModel vm) => vm.Park.Longitude).
 Apply ();

Adding navigation
Add navigation from the master view so that when a park is selected, the detail
view is displayed, showing the park.

To add navigation, complete the following steps:

1.	 Open MasterView.cs, create an event handler named
ParkSelected, and assign it to the SelectedItemChanged event on
MvxStandardTableViewSource, which was created in the ViewDidLoad()
method:
. . .
 _source.SelectedItemChanged += ParkSelected;
. . .
protected void ParkSelected(object sender, EventArgs e)
{
 . . .
}

2.	 Within the event handler, invoke the ParkSelected command on
MasterViewModel, passing in the selected park:
((MasterViewModel)ViewModel).ParkSelected.Execute (
 (NationalPark)_source.SelectedItem);

3.	 Compile and run NationalParks.iOS. Selecting a park in the list view
should now navigate you to the detail view, displaying the selected park.

Chapter 7

[153]

Implementing the edit view
We now need to implement the last of the Views for the iOS app, which is the
edit view.

To implement the edit view, complete the following steps:

1.	 Create a new ViewController instance named EditView.
2.	 Open EditView.xib and arrange controls as in the layout screenshots.

Add outlets for each of the edit controls.
3.	 Open EditView.cs and add the data binding logic to the ViewDidShow()

method. You should use the same approach to data binding as the approach
used for the details view.

4.	 Add an event handler named DoneClicked, and within the event handler,
invoke the Done command on EditViewModel:
protected void DoneClicked (object sender, EventArgs e)
{
 ((EditViewModel)ViewModel).Done.Execute();
}

5.	 In ViewDidLoad(), add UIBarButtonItem to NavigationItem for EditView,
and assign the DoneClicked event handler to it, as follows:

NavigationItem.SetRightBarButtonItem(
 new UIBarButtonItem(UIBarButtonSystemItem.Done,
 DoneClicked), true);

Adding navigation
Add navigation to two places: when New (+) is clicked from the master view and
when Edit is clicked on in the detail view. Let's start with the master view.

To add navigation to the master view, perform the following steps:

1.	 Open MasterView.cs and add an event handler named NewParkClicked.
In the event handler, invoke the NewParkClicked command on
MasterViewModel:
protected void NewParkClicked(object sender,
 EventArgs e)
{
 ((MasterViewModel)ViewModel).
 NewParkClicked.Execute ();
}

Sharing with MvvmCross

[154]

2.	 In ViewDidLoad(), add UIBarButtonItem to NavigationItem for
MasterView and assign the NewParkClicked event handler to it:

NavigationItem.SetRightBarButtonItem(
 new UIBarButtonItem(UIBarButtonSystemItem.Add,
 NewParkClicked), true);

To add navigation to the details view, perform the following steps:

1.	 Open DetailView.cs and add an event handler named EditParkClicked.
In the event handler, invoke the EditParkClicked command on
DetailViewModel:
protected void EditParkClicked (object sender,
 EventArgs e)
{
 ((DetailViewModel)ViewModel).EditPark.Execute ();
}

2.	 In ViewDidLoad(), add UIBarButtonItem to NavigationItem for
MasterView, and assign the EditParkClicked event handler to it:

NavigationItem.SetRightBarButtonItem(
 new UIBarButtonItem(UIBarButtonSystemItem.Edit,
 EditParkClicked), true);

Refreshing the master view list
One last detail that needs to be taken care of is to refresh the UITableView control
on MasterView when items have been changed on EditView.

To refresh the master view list, perform the following steps:

1.	 Open MasterView.cs and call ReloadData() on parksTableView within
the ViewDidAppear() method of MasterView:
public override void ViewDidAppear (bool animated)
{
 base.ViewDidAppear (animated);
 parksTableView.ReloadData();
}

2.	 Compile and run NationalParks.iOS. You should now have a fully
functional app that has the ability to create new parks and edit existing
parks. Changes made to EditView should automatically be reflected in
MasterView and DetailVIew.

Chapter 7

[155]

Considering the pros and cons
After completing our work, we now have the basis to make some fundamental
observations. Let's start with the pros:

•	 MvvmCross definitely increases the amount of code that can be reused across
platforms. The ViewModels house the data required by the View, the logic
required to obtain and transform the data in preparation for viewing, and the
logic triggered by user interactions in the form of commands. In our sample
app, the ViewModels were somewhat simple; however, the more complex
the app, the more reuse will likely be gained.

•	 As MvvmCross relies on the use of each platform's native UI frameworks,
each app has a native look and feel and we have a natural layer that
implements platform-specific logic when required.

•	 The data binding capabilities of MvvmCross also eliminate a great deal of
tedious code that would otherwise have to be written.

All of these positives are not necessarily free; let's look at some cons:

•	 The first con is complexity; you have to learn another framework on top of
Xamarin, Android, and iOS.

•	 In some ways, MvvmCross forces you to align the way your apps work
across platforms to achieve the most reuse. As the presentation logic is
contained in the ViewModels, the views are coerced into aligning with them.
The more your UI deviates across platforms; the less likely it will be that you
can actually reuse ViewModels.

With these things in mind, I would definitely consider using MvvmCross for a
cross-platform mobile project. Yes, you need to learn an addition framework and
yes, you will likely have to align the way some of the apps are laid out, but I think
MvvmCross provides enough value and flexibility to make these issues workable.
I'm a big fan of reuse and MvvmCross definitely pushes reuse to the next level.

Summary
In this chapter, we reviewed the high-level concepts of MvvmCross and worked
through a practical exercise in order to convert the national parks apps to use the
MvvmCross framework and the increase code reuse. In the next chapter, we will
follow a similar approach to exploring the Xamarin.Forms framework in order to
evaluate how its use can affect code reuse.

Sharing with Xamarin.Forms
In this chapter, we will discuss Xamarin.Forms, a cross-platform development
framework. With this in mind, we will cover the following areas:

•	 Pages, Views (Controls), and Layouts
•	 Navigation in Xamarin.Forms
•	 XAML and code-behind classes
•	 Data binding
•	 Renderers
•	 The DependencyService API
•	 App startup
•	 Project organization
•	 Converting the NationalParks app to use Xamarin.Forms

An insight into the Xamarin.Forms
framework
The Xamarin.Forms framework can be used to develop mobile apps for Android,
iOS, and Windows Phone. It uses virtually the same source code base for each
platform while still providing a platform-specific look and feel. Xamarin.Forms
is available for use from any of the paid licenses available at Xamarin or from the
30-day evaluation.

While we mention that Xamarin.Forms apps can run on Windows
Phone, the licensing, configuration, and development details for
Windows Phone are beyond the scope of this book.

Sharing with Xamarin.Forms

[158]

Unlike the approaches described previously in this book, Xamarin.Forms provides
you with a set of abstractions that cover the entire user interface, thus allowing
the UI code and specification to be reused across multiple platforms. At runtime,
Xamarin.Forms renders user interfaces using Controls that are native to each
platform, which allows apps to retain a native look and feel.

This chapter is divided into two main sections: in the first section, we cover
the core concepts that need to be understood prior to using Xamarin.Forms,
and in the second section, we will convert our NationalParks app to use
the Xamarin.Forms framework.

Pages
A Page is a visual element that organizes the content a user sees on the screen at a
single time. A Xamarin.Forms Page is essentially similar to an Android activity or
an iOS View controller. Xamarin.Forms provides the following base Pages for use
in your apps, where you can find a description accompanied with each type:

Type Description
ContentPage This allows you to organize a set of Controls, or Views, into a

Layout for display and interaction with the user

MasterDetailPage This manages two pages—a master and a detail page—and the
navigation between them

NavigationPage This manages navigation over a set of other pages

TabbedPage This manages a set of child pages and allows you to navigate
via tabs

CarouselPage This manages a set of child pages and allows you to navigate
via swipe

Views
A View is a visual control (or widget) that presents information and allows the user to
interact with your app (things such as buttons, labels, and edit boxes). These controls
generally inherit properties from the View class. The following table represents the list
of Views provided by Xamarin.Forms at the time of writing this book:

ActivityIndicator BoxView Button DatePicker

Editor Entry Image Label

ListView OpenGLView Picker ProgressBar

SearchBar Slider Stepper Switch

TableView TimePicker WebView

Chapter 8

[159]

Layouts
Controls are hosted within a special type of View called a Layout. There are two
different types of Layouts: managed and unmanaged. Managed Layouts are
responsible for arranging their hosted Controls, and unmanaged Layouts require
the developer to specify how controls should be arranged. Xamarin.Forms provides
the following Layouts:

Layout Description
ContentView This is a Layout that can contain child views. Generally,

ContentView is not used directly, but is used as a base for
other layouts.

Frame This is a Layout that can contain a single child view and
provide framing options such as padding.

ScrollView This Layout is capable of scrolling its child views.

AbsoluteLayout This Layout allows it's child views to be positioned by
absolute positions as requested by the app.

Grid This Layout allows content to be displayed in rows and
columns.

RelativeLayout This Layout positions views relative to other views it owns by
use of constraints.

StackLayout This Layout positions views horizontally or vertically in a
single line.

Cells
A Cell is a special type of Control used to arrange information in a list; specifically,
ListView or TableView. Cells derive from the Element class rather than the
VisualElement class and act as a template to create VisualElements.

Xamarin.Forms provides the following types of Cells:

Cell type Description
EntryCell This is a Cell with a label and single text entry field.

SwitchCell This is a Cell with a label and switch view (on/off).

TextCell This is a Cell with primary and secondary text. Generally,
the primary text is used as a title and the secondary text as a
subtitle.

ImageCell This is a TextCell that also includes an image.

Sharing with Xamarin.Forms

[160]

Navigation
Navigation in a Xamarin.Forms app is accomplished with the use of the navigation
property of VisualElement. This is generally accessed via a Page. The navigation
property is typed as the INavigation interface, which provides the following
methods:

Type Description
PushAsync() This method pushes a Page on the navigation stack

PushModalAsync() This method pushes a Page on the navigation stack as a modal
dialog

PopAsync() This method pops the current Page off the navigation stack

PopModalAsync() This method pops the current modal Page off the navigation
stack

PopToRootAsync() This method pops all the Pages off the navigation stack, except
the root Page

The beauty of navigation in Xamarin.Forms lies in its simplicity. To navigate to a
new Page and pass data into the new Page, all you need to do is create an instance
of the new Page passing the data in the constructor and then push this Page on the
navigation stack, as demonstrated by the following sample code snippet:

public partial class ParkDetailPage : ContentPage
{
 . . .
 public void EditClicked(object sender, EventArgs e)
 {
 Navigation.PushModalAsync (
 new ParkEditPage (_park));
 }
}

Defining Xamarin.Forms user interfaces
Like many UI frameworks, Xamarin.Forms allows two different approaches to create
user interfaces: declarative and programmatic:

•	 Programmatic approach: When using this approach, the developers embed
API calls to construct a UI, and control the size and placement

•	 Declarative approach: When using this approach, the developers create
XAML files that define the content and layout for a user interface

Chapter 8

[161]

Extensible Application Markup Language (XAML)
Extensible Application Markup Language (XAML) is an XML-based language
developed by Microsoft. XAML allows developers to use XML to specify a hierarchy
of objects to instantiate. It can be used in a number of ways, but most successfully
as a means to specify user's interfaces in Windows Presentation Foundation (WPF),
Silverlight, Windows Runtime, and now Xamarin.Forms.

XAML files are parsed at build time to verify objects that have been specified and
at runtime to instantiate the hierarchy of objects.

In addition to specifying a hierarchy of objects, XAML also allows developers to
specify property values and assign event handlers. However, it does not allow
you to embed code or logic.

The following XAML file defines the content for a ContentPage view:

<?xml version="1.0" encoding="UTF-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/...
 xmlns:x="http://schemas.microsoft.com/winfx...
 x:Class="NationalParks.ParkEditPage">
 <StackLayout Orientation="Vertical"
 HorizontalOptions="StartAndExpand">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Label
 Text="Name:"
 Grid.Row="0" Grid.Column="0" />
 <Entry
 x:Name="descriptionEntry"
 Text="{Binding Name}"
 Grid.Row="0" Grid.Column="1"
 HorizontalOptions="FillAndExpand" />
 . . .
 </Grid>
 <Button
 x:Name="doneButton"
 Text="Done"
 Clicked="DoneClicked" />
 </StackLayout>
</ContentPage>

Sharing with Xamarin.Forms

[162]

Take a look at the previous XAML specification:

•	 The class name is ParkEditPage and is specified in the ContentPage element
•	 A Grid Layout is used to organize the content in the Page
•	 Two components are assigned property names, nameEntry and doneButton
•	 The doneButton component is assigned a Clicked event handler named

DoneClicked

Code-behind classes
When you create a Page in a Xamarin.Forms app, two files are actually created: an
XAML file and a class file. Xamarin Studio nests the class files under the XAML files
in the Solution pad, as shown in the following screenshot:

The .xaml.cs files are sometimes referred to as code-behind classes. They are
created to contain all the app logic in event handlers that go hand in hand with
the Page definition. The following example shows the code-behind class for
ParkEditPage:

public partial class ParkEditPage : ContentPage
{
 NationalPark _park;
 public ParkEditPage()
 {
 InitializeComponent ();
 }
 protected void DoneClicked(object sender, EventArgs e)
 {
 // perform event handler logic
 }
}

Chapter 8

[163]

You should take note of the following aspects of the class definition:

•	 ParkEditPage is a partial class definition.
•	 The DoneClicked() event handler is defined within this class file. This

is the event handler that was assigned to the Done button in XAML.
•	 There are no property definitions defined in the earlier file.

So, where are the property definitions? Xamarin Studio generates a second
code file each time the app is built. For our example, the file will be named
ParkEditPage.xaml.g.cs and will contain the following code snippet:

public partial class ParkEditPage : ContentPage {
 private Entry nameEntry;
 . . .
 private Button doneButton;
 private void InitializeComponent() {
 this.LoadFromXaml(typeof(ParkEditPage));
 nameEntry =
 this.FindByName <Entry>("nameEntry");
 . . .
 doneButton =
 this.FindByName <Button>("doneButton");
 }
}

You should take note of the following points here:

•	 There are two properties defined on the ParkEditPage file: nameEntry
and doneButton. These are generated directly from the names found in
the XAML file.

•	 A method named InitializeComponent() is generated. This method must
be called from any constructors defined in ParkEditPage.xaml.cs.

•	 The InitializeComponent() method calls LoadFromXaml() to instantiate
all the objects defined by ParkEditPage.xaml.

•	 The InitializeComponent() method calls FindByName() to bind each
property to its corresponding instance.

Sharing with Xamarin.Forms

[164]

Data binding
The concepts behind data binding are covered in detail in Chapter 7, Sharing with
MvvmCross, under the section titled Data binding. Xamarin.Forms provides a data
binding capability that follows the same architecture as MvvmCross, Windows
Presentation Foundation (WPF), Silverlight, and Windows Runtime.

Within a Xamarin.Forms app, binding specifications are generally specified
in XAML. The following XAML specification demonstrates binding the Text
property of an Entry control to the Name property of a NationalPark object:

 <Entry x:Name="nameEntry"
 Text="{Binding Name}"
 Grid.Row="0" Grid.Column="1"
 HorizontalOptions="FillAndExpand" />

Generally, the binding context is set with code. The following example
demonstrates how to programmatically set the binding context at a Page
level to a NationalPark object:

public ParkEditPage (NationalPark park)
{
 InitializeComponent ();
 _park = park;
 BindingContext = _park;
}

In the previous example, the binding context was set for an entire Page. Sometimes,
Controls provide a binding context that needs to be set to accomplish data
binding. The following example demonstrates setting the binding context for a
ListView control:

parksListView.ItemsSource =
 NationalParksData.Instance.Parks;

Note that the binding context for the ListView control is a property
named ItemsSource.

Chapter 8

[165]

Using Renderers
Xamarin.Forms uses platform-native controls to render user interfaces that allow
apps to maintain a look and feel that the users would expect for each platform. This
is accomplished with the use of Renderers. Pages, Layouts, and Controls represent
the set of abstractions used to describe a user interface. Each of these elements is
rendered using a Renderer class, which in turn creates a native control based on
the platform the app is running on.

Developers can create their own Renderers in order to customize the way a
particular Control is rendered on a platform.

Native features and the DependencyService
API
Until now, we have primarily focused on working with abstractions that can be reused
across all platforms. What if you need access to platform-specific capabilities? That's
where the DependencyService API comes in. The DependencyService API is an API
that allows each platform to register a platform-specific service that can be called by
shared code through a common interface.

Using the DependencyService API involves the following three steps:

1.	 Firstly, you need to create an interface that exposes the platform-specific
methods that must be implemented for each platform the app will run on.

2.	 After this step, create an implementation of the interface for each platform
and register the implementation using an assembly attribute.

3.	 To conclude, call DependencyService.Get<MyInterface> from the shared
code to look up the appropriate implementation and invoke services on the
returned instance.

We will demonstrate the use of the DependencyService API later in this chapter in
the section titled Adding calls to DependencyService.

Sharing with Xamarin.Forms

[166]

App startup
Xamarin.Forms apps start up as native apps, meaning the traditional startup
sequence is followed. During the startup sequence, an app performs the following
two tasks:

1.	 Make a call to initialize the Xamarin.Forms runtime.
2.	 Start the first Page.

Shared App classes
By default, Xamarin.Forms apps have a shared App class created, which contains a
single static method that returns the first Page that should be presented when an app
starts up. The following code demonstrates this:

public class App
{
 public static Page GetMainPage()
 {
 return new HelloWorldPage();
 }
}

This simple approach allows the platform-specific startup code in each app to call the
GetMainPage() method in order to determine which Page to start with. Therefore, it
is only specified at one place.

iOS apps
In a Xamarin.Forms iOS app, initialization is performed in the
FinishedLaunching() method of the AppDelegate class, as shown in the following
sample demonstration:

[Register("AppDelegate")]
public partial class AppDelegate : UIApplicationDelegate
{
 UIWindow window;
 public override bool FinishedLaunching(UIApplication app,
NSDictionary options)
 {
 Forms.Init();
 window = new UIWindow(UIScreen.MainScreen.Bounds);
 window.RootViewController =
 App.GetMainPage().CreateViewController();

Chapter 8

[167]

 window.MakeKeyAndVisible();
 return true;
 }
}

Android apps
In a Xamarin.Forms Android app, initialization is done in the Activity instance
marked with the MainLauncher=true attribute. This is shown in the following
sample code snippet:

namespace HelloWorld.Android
{
 [Activity(Label="HelloWorld", MainLauncher=true)]
 public class MainActivity : AndroidActivity
 {
 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);
 Xamarin.Forms.Forms.Init(this, bundle);
 SetPage(App.GetMainPage());
 }
 }
}

Project organization
Xamarin.Forms projects are generally created using one of the following two project
templates, which can be found by navigating to C# | Mobile Apps of the New
Solution dialog box:

•	 Blank App (Xamarin.Forms Potable)
•	 Blank App (Xamarin.Forms Shared)

The difference between these two templates is the type of project created to house
the shared code. Using the first template, shared code is housed in a Portable Class
Library, and using the second template, shared code is housed in a shared project.
Shared projects allow all referencing projects to reuse the code it contains, but the
code is compiled specifically for each referencing project.

Sharing with Xamarin.Forms

[168]

If you plan to add a Windows Phone project to the solution at some
point, you will be well versed to go with the PCL solution. It will
require you to work within the restrictions of a PCL, but will ensure
your code is compatible with more platforms.

After creating a Xamarin.Forms solution, you will see that three actual projects were
created. The first project contains the shared code, the second project contains the
iOS code, and the third project contains the Android code. If we are successful with
Xamarin.Forms, the bulk of the code will end up in the shared project. The following
screenshot shows an example of a project created with the PCL template:

Creating the NationalParks Xamarin.
Forms app
Now that we have a solid understanding of Xamarin.Forms, let's convert our
NationalParks app to use the new framework. For this exercise, we will follow the
same app flow that we have used in the iOS app so far, meaning that we will have
a list page, a detail page to view, and an edit page to add and update.

Creating the solution
We will start by creating an entirely new project by performing the following steps:

1.	 To start with, access the File menu and navigate to New | New Solution.
2.	 In the New Solution dialog box, navigate to C# | Mobile Apps, select the

Blank App (Xamarin.Forms Portable) template, enter NationalParks in the
Name field, choose the appropriate Location value, and click on OK.

Chapter 8

[169]

3.	 Review the project structure. You will see the following pointers:
°° Open AppDelegate.cs in the NationalParks.iOS project. Note the

calls to Forms.Init() and App.GetMainPage().
°° Open MainActivity.cs in the NationalParks.Android project.

Note the calls to Forms.Init() and App.GetMainPage().
°° Open App.cs in the NationalParks project. Note the static method,

GetMainPage().

4.	 To finish, run the NationalParks.Android and NationalParks.iOS projects.

Adding NationalParks.PortableData
Our next step is to bring in the storage solution from Chapter 7, Sharing with
MvvmCross. Perform the following steps to add the storage solution to our
new Xamarin.Forms solutions:

1.	 Firstly, you need to copy the NationalParks.PortableData and
NationalParks.IO projects from the solution folder of Chapter 7,
Sharing with MvvmCross, to the new solution folder.

2.	 Add each project to the new solution folder by selecting the solution,
right-clicking on it, navigating to Add | Add Existing Project, and
selecting the project file, for example, NationalParks.IO.csproj.

3.	 Add the NationalParks.PortableData project to the new NationalParks,
NationalParks.Android, and NationalParks.iOS projects as a reference
by selecting the References folder in each of the projects, right-clicking
on them, choosing Edit References, and selecting NationalParks.
PortableData.

4.	 We now need to add a link to the FileHandler.cs file to both the
NationalParks.Android and NationalParks.iOS projects. For each
project, create a new folder named NationalParks.IO and add a link to
FileHandler.cs by selecting the new folder, right-clicking on it, navigating
to Add | Add Files, selecting FileHandler, choosing Open, selecting Add a
link to the file, and clicking on OK.

5.	 To verify all of the previous steps, you should compile the new solution.

Sharing with Xamarin.Forms

[170]

Implementing ParksListPage
We can now begin work on the user interface starting with a list view to display
the parks by performing the following steps:

1.	 Select the NationalParks project, right-click on it, and navigate
to Add | New File. From the New File dialog box, navigate to
Forms | Forms ContentPage Xaml, enter ParksListPage for the
Name field, and choose New.

2.	 You should now open ParkListPage.xaml. You will see an empty
ContentPage element. Add StackLayout, which is vertically oriented,
with a child ListView and Button instances, as follows:
<StackLayout Orientation="Vertical"
 HorizontalOptions="StartAndExpand">
 <ListView x:Name="parksListView"
 IsVisible="true"
 ItemSelected="ParkSelected">
 </ListView>
 <Button Text="New"
 Clicked="NewClicked" />
</StackLayout>

Take note of the ParkSelected event handler for parkListView
and the NewClicked event handler for the New button.

3.	 Now, let's add the row definitions for ListView. The ListView element has
a DataTemplate property that defines a layout for each row. The following
Layout should define a label for the name and description of the park. This
should be placed within the ListView element of the XAML:
<ListView.ItemTemplate>
 <DataTemplate>
 <ViewCell>
 <ViewCell.View>
 <StackLayout Orientation="Vertical"
 HorizontalOptions="StartAndExpand">
 <Label Text="{Binding Name}"
 HorizontalOptions="FillAndExpand" />
 </StackLayout>

Chapter 8

[171]

 </ViewCell.View>
 </ViewCell>
 </DataTemplate>
</ListView.ItemTemplate>

Note the binding specifications for the two Label views.

4.	 Open App.cs in the NationalParks project and change the main page to
ParksListPage. We also need to create NavigationPage as the owner of
ParksListPage to support push and pop navigation. The GetMainPage()
method should contain the following code:
public static Page GetMainPage ()
{
 NavigationPage mainPage =
 new NavigationPage(new ParksListPage());
 return mainPage;
}

5.	 Open AppDelegate.cs in the NationalParks.iOS project. You should then
add the following initialization of code to the FinishedLaunching() method
just before the Forms.Init() call:
// Initialize data service
NationalParksData.Instance.DataDir =
 Environment.CurrentDirectory;
NationalParksData.Instance.FileHandler =
 new FileHandler ();

6.	 Open MainActivity.cs in the NationalParks.Android project. Once
you're in, add the following initialization code to the OnCreate() method
just before the call to Forms.Init():
// Initialize data service
NationalParksData.Instance.DataDir =
 System.Environment.GetFolderPath(
 System.Environment.SpecialFolder.MyDocuments);
NationalParksData.Instance.FileHandler =
 new FileHandler ();

7.	 Open ParksListPage.xaml.cs, add a method to load the parks data, and set
the binding context:
public async Task LoadData()
{
 await NationalParksData.Instance.Load();
 parksListView.ItemsSource =
 NationalParksData.Instance.Parks;
}

Sharing with Xamarin.Forms

[172]

8.	 Add a call to LoadData() from the constructor:
 InitializeComponent ();
 LoadData ();

You will not be able to use await on the LoadData() method
because it's being called from a constructor. In this case, there is
actually no need to await the call.

9.	 The last step is to create two stub event handlers for NewClicked and
ParkSelected, which we will fill in later as we complete the app.

10.	 We are now ready to test our work. Compile and run both the
NationalParks.iOS and NationalParks.Android apps.

Implementing ParkDetailPage
Now, we need a page to display the details of a Park. To create ParkDetailPage,
perform the following steps:

1.	 Add a new ContentPage instance named ParkDetailPage.
2.	 For ParkDetailPage, we will display a series of Label views in Grid

and a set of Buttons below Grid to initiate actions. All this content will be
hosted within StackLayout, which is vertically oriented. Start by adding
StackLayout like we did in the previous section.

3.	 Add a Grid layout with a series of the Label view to display the properties
of NationalPark, as follows:
<Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Label Text="Name:"
 Grid.Row="0" Grid.Column="0" />
 <Label Text="{Binding Name}"
 Grid.Row="0" Grid.Column="1"
 HorizontalOptions="FillAndExpand" />
 . . .
</Grid>

Note the Grid.Row and Grid.Column specifications, which control
how the Label and Entry views are positioned.

Chapter 8

[173]

4.	 Now, add three Button definitions for the actions that can be taken from the
Page, as follows:
<Button Text="Edit"
 WidthRequest="175"
 HorizontalOptions="Center"
 Clicked="EditClicked" />
<Button Text="Directions"
 WidthRequest="175"
 HorizontalOptions="Center"
 Clicked="DirectionsClicked" />
<Button Text="Photos"
 WidthRequest="175"
 HorizontalOptions="Center"
 Clicked="PhotosClicked" />

5.	 Add a constructor that accepts a NationalPark instance to be displayed.
The following code sample demonstrates what is needed:
NationalPark _park;
public ParkDetailPage (NationalPark park)
{
InitializeComponent ();
 _park = park;
 BindingContext = _park;
}

Note that the last line in the constructor sets BindingContext. This
tells the Page how to resolve the binding specifications declared in
XAML.

6.	 Add stub event handlers for EditClicked, DirectionsClicked, and
PhotosClicked.

7.	 Now, we need to return to the ParksListPage class and add the navigation
logic. Open ParksListPage.xaml.cs and update the ParkSelected() event
handler to make a call to PushAsync() for ParkDetailPage, as follows:
protected void ParkSelected(object sender,
SelectedItemChangedEventArgs e)
{
 Navigation.PushAsync (new
 ParkDetailPage ((NationalPark) e.SelectedItem));
}

8.	 Compile and run both the NationalParks.iOS and NationalParks.
Android apps.

Sharing with Xamarin.Forms

[174]

Using DependencyService to show directions and
photos
As we discussed earlier, the DependencyService API allows apps to take advantage
of platform-specific features. We will demonstrate the use of DependencyService
to implement the ability to show directions and photos for a park.

Creating the interface
The first step is to create an interface in the shared project that describes the methods
that need to be supported. To create the IParkInfoServices interface, perform the
following steps:

1.	 To begin with, select the NationalParks project, right-click on it, and
navigate to Add | New File.

2.	 Navigate to General | Empty Interface, enter IParkInfoServices in the
Name field, and choose New.

3.	 You now need to create two methods on the interface, one to show directions
and one to show photos; each should accept NationalPark as a parameter:

public interface IParkInfoServices
{
 void ShowDirections(NationalPark park);
 void ShowPhotos(NationalPark park);
}

Creating the iOS implementation
Now, let's create an iOS implementation by performing the following steps:

1.	 Select the NationalParks.iOS project, right-click on it, and navigate to
Add | New File. In this dialog box, navigate to General | Empty Class in
the New File dialog box, enter iOSParkInfoServices in the Name field,
and choose New.

2.	 Add using clauses for the namespaces, Xamarin.Forms, NationalParks,
NationalParks.PortableData, and NationalParks.iOS.

3.	 Change the iOSParkInfoServices class specification so that it implements
IParkInfoServices.

4.	 Select IParkInfoService, right-click on it, navigate to Refactor |
Implement interface, and press Enter.

Chapter 8

[175]

5.	 You should then provide implementations for the two methods calls,
as follows:
public void ShowDirections(NationalPark park)
{
 if ((park.Latitude.HasValue) &&
 (park.Longitude.HasValue))
 {
 NSUrl url = new NSUrl (
 String.Format (
 "http://maps.apple.com/maps?daddr={0},{1}&saddr=Current
 Location", park.Latitude, park.Longitude));

 UIApplication.SharedApplication.OpenUrl (url);
 }
}
public void ShowPhotos(NationalPark park)
{
 UIApplication.SharedApplication.OpenUrl (
 new NSUrl(String.Format (
 "http://www.bing.com/images/search?q={0}",
 park.Name)));
}

6.	 Finally, add the following Dependency attribute to the class file outside
the namespace definition, as follows:

[assembly: Dependency (typeof (iOSParkInfoServices))]
namespace NationalParks.iOS
{
 . . .

The Dependency attribute registers the class with DependencyService so
that when Get() is called, a platform-specific implementation can be located.

Creating the Android implementation
Now, let's create an Android implementation by performing the following steps:

1.	 Select the NationalParks.Android project, right-click on it, and navigate to
Add | New File. You should then navigate to General | Empty Class in the
New File dialog box, enter AndroidParkInfoServices in the Name field,
and choose New.

2.	 Add using clauses for the namespaces, Xamarin.Forms, NationalParks,
NationalParks.PortableData, and NationalParks.Droid.

Sharing with Xamarin.Forms

[176]

3.	 Change the AndroidParkInfoServices class specification so that
it implements IParkInfoServices.

4.	 After this, select IParkInfoService, right-click on it, navigate to
Refactor | Implement interface, and press Enter.

5.	 Provide implementations for the two method calls, as follows:
public void ShowDirections(NationalPark park)
{
 if ((park.Latitude.HasValue) &&
 (park.Longitude.HasValue))
 {
 Intent mapIntent = new Intent (Intent.ActionView,
 Android.Net.Uri.Parse (
 String.Format ("geo:0,0?q={0},{1}&z=16 ({2})",
 park.Latitude, park.Longitude,
 park.Name)));
 Forms.Context.StartActivity (mapIntent);
 }
}
public void ShowPhotos(NationalPark park)
{
 Intent urlIntent = new Intent (Intent.ActionView);
 urlIntent.SetData (Android.Net.Uri.Parse (
 String.Format (
 "http://www.bing.com/images/search?q={0}",
 park.Name)));
 Forms.Context.StartActivity (urlIntent);
}

Note the use of Forms.Context. In the case of Android,
this contains the currently executing Activity; in our case,
MainActivity.

6.	 Add the following Dependency attribute to the class file outside the
namespace definition, as follows:

[assembly: Dependency (typeof (AndroidParkInfoServices))]
namespace NationalParks.iOS
{
 . . .

Chapter 8

[177]

Adding calls to DependencyService
Now, we need to add code to the shared project in order to actually
invoke ShowDirections() and ShowPhotos(). All you need to do is
open ParkDetailPage.xaml.cs and fill in the stub implementations
for DirectionsClicked() and PhotosClicked(), as follows:

public void DirectionsClicked(
 object sender, EventArgs e)
{
 DependencyService.Get<IParkInfoServices> ().
 ShowDirections (_park);
}
public void PhotosClicked(
 object sender, EventArgs e)
{
 DependencyService.Get<IParkInfoServices> ().
 ShowPhotos (_park);
}

Running the app
We are finally ready to run the app. While there were several steps, the
DependencyService API provided a very clean approach to separate shared and
platform-specific code. Run both the NationalParks.iOS and NationalParks.
Android apps.

Implementing ParkEditPage
Now, we need a Page to update the park information. To implement ParkEditPage,
perform the following steps:

1.	 To begin with, add a new ContentPage named ParkDetailsPage.
2.	 We will use a similar Layout for ParkEditPage as we did for

ParkDetailPage with the exception that we will use Entry views to allow
editing of the properties of NationalPark. Add a StackLayout and Grid
instance to ParkEditPage, and add a series of Label and Entry views for
each property of NationalPark, as shown in the following code snippet:
<Label Text="Name:"
 Grid.Row="0" Grid.Column="0" />
<Entry x:Name="nameEntry"
 Text="{Binding Name}"
 Grid.Row="0" Grid.Column="1"
 HorizontalOptions="FillAndExpand" />

Sharing with Xamarin.Forms

[178]

3.	 You can then add a Done button to complete the editing process, as follows:
<Button x:Name="doneButton"
 Text="Done"
 WidthRequest="175"
 HorizontalOptions="Center"
 Clicked="DoneClicked" />

4.	 Create two constructors, one that accepts a NationalPark instance and will
be used to edit existing parks, and one that does not accept a NationalPark
instance and will be used to create a new park, as shown in the following
code snippet:
public ParkEditPage()
{
InitializeComponent ();
 _park = new NationalPark ();
 BindingContext = _park;
}
public ParkEditPage (NationalPark park)
{
 InitializeComponent ();
 _park = park;
 BindingContext = _park;
}

5.	 Create the DoneClicked() event handler with a call to save the updated
park, and a navigation call to PopAsync() to return to the Page that
displayed ParkEditPage, as follows:
protected void DoneClicked(object sender, EventArgs e)
{
 NationalParksData.Instance.Save(_park);
 Navigation.PopAsync ();
}

6.	 We now need to add navigation logic to both ParkListPage and
ParkDetailPage. Open ParkDetailPage.xaml.cs and fill in the
EditClicked() event handler with a call to PushAsync() in order to display
ParkEditPage. Pass the park that is being viewed to the ParkEditPage
constructor, as follows:
public void EditClicked(object sender, EventArgs e)
{
 Navigation.PushAsync(new ParkEditPage(_park));
}

Chapter 8

[179]

7.	 Open ParkListPage.xaml.cs and fill in the NewClicked() event handler
with a call to PushAsync() in order to display ParkEditPage. Call the empty
ParkEditPage constructor so that a new park will be created, as follows:
protected void NewClicked(object sender, EventArgs e)
{
 Navigation.PushAsync(new ParkEditPage());
}

8.	 We are now ready with our app; compile and run both the NationalParks.
iOS and NationalParks.Android apps.

Considering the pros and cons
As we have seen from the exercise, Xamarin.Forms provides a solid approach to
dramatically increase the amount of code reused across your mobile apps; it has
many great features:

•	 XAML is a great way to define user interfaces and allows you to create
properties and assign event handlers in a convenient, concise way

•	 The data binding capabilities are great and eliminate a lot of tedious
mind-numbing code from being written

•	 The DependencyService API provides a great way to access
platform-specific capabilities

•	 The Renderer architecture provides for ultimate customizability

However, at the time of writing this book, Xamarin.Forms is still somewhat
immature, and there are some weaknesses:

•	 There is no visual designer for the XAML code, so you have to construct
your UI and run the app to see it visually rendered

•	 Due to the newness of the framework, there is a limited number of examples
available for reference, and many of the examples use code to construct the
UI rather than XAML

•	 Validation capabilities seem pretty weak

These criticisms should not be taken too strongly; cross-platform UI frameworks are
tough to build, and I feel confident that Xamarin is on the right track and will evolve
the framework rapidly.

Sharing with Xamarin.Forms

[180]

Summary
In this chapter, we reviewed the capabilities of Xamarin.Forms and converted our
existing NationalParks app to use the framework. In the next chapter, we will look
at the process of preparing an iOS app for distribution.

Preparing Xamarin.iOS Apps
for Distribution

In this chapter, we will discuss activities related to preparing a Xamarin.iOS app for
distribution and look at the various options for distributing apps. While many of the
activities we will discuss are an integral part of any iOS app deployment, we will try
and narrow the scope of our coverage to aspects that are unique to developing an
app with Xamarin.iOS. We will cover the following topics:

•	 App profiling
•	 iOS Build settings for distributing apps
•	 App distribution options

Preparing for distribution
At this point, our app is built and functioning the way we want; most of the work is
done. We now turn our attention to preparing our app for distribution. This section
discusses the following three aspects of preparing an app for distribution:

•	 App profiling: Here we will be looking at memory allocation issues and
performance bottlenecks

•	 iOS Application settings: Here we will be updating informational settings
such as version and build numbers

•	 iOS Build settings: Here we will be adjusting settings that affect the code
being generated based on target devices, desired performance characteristics,
and deployable size

Preparing Xamarin.iOS Apps for Distribution

[182]

Profiling Xamarin.iOS apps
Profiling allows developers to monitor their apps during execution and identify
issues related to memory allocation and performance bottlenecks. The activity of
profiling can be performed throughout the life cycle of developing an app, but it is
especially beneficial to incorporate profiling into the latter stages of the process as
a final verification prior to distribution.

Xamarin.iOS developers have two tools to choose from for profiling apps:
MonoTouch Profiler and Apple's Instruments app. We will not replicate the existing
documentation for these apps but simply provide the following links for reference:

Tool URL
MonoTouch Profiler http://docs.xamarin.com/guides/ios/deployment,_

testing,_and_metrics/monotouch_profiler/

Apple's Instruments
app

http://docs.xamarin.com/guides/ios/deployment,_
testing,_and_metrics/walkthrough_Apples_
instrument/

iOS Application (Info.plist) settings
It's likely that most of the settings you need to make in Info.plist will have already
been made by the time you are ready to start the distribution process. However,
there are a few settings you likely need to update, specifically, the version and build
settings. The following screenshot shows the iOS Application settings screen:

http://docs.xamarin.com/guides/ios/deployment,_testing,_and_metrics/monotouch_profiler/
http://docs.xamarin.com/guides/ios/deployment,_testing,_and_metrics/monotouch_profiler/
http://docs.xamarin.com/guides/ios/deployment,_testing,_and_metrics/walkthrough_Apples_instrument/
http://docs.xamarin.com/guides/ios/deployment,_testing,_and_metrics/walkthrough_Apples_instrument/
http://docs.xamarin.com/guides/ios/deployment,_testing,_and_metrics/walkthrough_Apples_instrument/

Chapter 9

[183]

iOS Build settings
Xamarin.iOS provides numerous options to optimize the build process based on the
devices that are being targeted, the size of the deployable app, and the execution
speed. The following sections discuss the most important settings related to
producing a final build for distribution.

SDK Options
The SDK version should be set to the minimum iOS version that the app can be
deployed to. It's likely that this setting would have already been established during
the development process.

Preparing Xamarin.iOS Apps for Distribution

[184]

Linker Options
The mTouch tool used to build Xamarin.iOS apps includes a linker, where the aim
of the linker is to reduce the size of the resulting app. The linker accomplishes this
by performing static analysis on the code in your app, evaluating which classes
and methods in the referenced assemblies are actually used, and removing classes,
methods, and properties that are not used.

Options for the linker can be set in Project Options | iOS Build under the General
tab, as shown in the following screenshot:

The following options can be set to control the linking process:

•	 Don't link: This option disables the linker and ensures that all referenced
assemblies are included without modification. You should note that this is
the default setting for builds that target the iOS simulator because excluding
the time-consuming static analysis process saves time. From this, the
resulting large DLLs can still be deployed relatively quickly to the simulator.

Chapter 9

[185]

•	 Link SDK assemblies only: This option tells the linker to operate on only the
SDK assemblies (which are the assemblies that ship with Xamarin.iOS). This
is the default setting for builds that target a device.

•	 Link all assemblies: This option tells the linker to operate on the entire
app as well as on all referenced assemblies. This allows the linker to use a
larger set of optimizations and results in the smallest possible application.
However, when the linker runs in this mode, there is a greater chance that it
will break portions of your code due to false assumptions made by the static
analysis process. In particular, static analysis can get tripped up through
usage of reflection, serialization, or any code where a type or member
instance is not statically referenced.

The following table summarizes the results of linking the two versions of the
NationalParks app produced in Chapter 6, The Sharing Game:

File linking version PCL version
Don't link 47.5 MB 48.4 MB
Link SDK assemblies only 6.7 MB 7.3 MB
Link all assemblies 5.8 MB 6.4 MB

As you can see from the table, the biggest difference in application size is achieved
when going from Don't link to Link SDK assemblies only.

Overriding the linker
The linker provides great benefits as demonstrated in the previous section. However,
there might be times when you need to override the default behavior of the linker as
the linker might remove type and member instances that are actually used by your
app. This will result in runtime exceptions relating to these types and/or member
not being found. The following table describes three ways to alter the behavior of the
linker in order to avoid losing important types and members:

Technique Description
Preserving code If you determine from testing that the linker is removing classes

or methods needed by your app, you can explicitly tell the linker
to always include them by using the Preserve attribute on a
class and/or method.
To preserve the entire type use:

[Preserve (AllMembers = true)]

To preserve a single member use:
[Preserve (Conditional=true)]

Preparing Xamarin.iOS Apps for Distribution

[186]

Technique Description
Skipping assemblies In some cases, you might need to tell the linker to skip entire

assemblies because you do not have the ability to modify the
source code (third-party libraries). This can be accomplished by
using the command line option linkskip. For example:

--linkskip=someassembly

Disable Link Away One optimization the linker employs is to remove code that is
very unlikely to be used on an actual device; those features that
are marked as unsupported or disallowed. On rare occasions,
these features might be needed for your app to function. This
optimization can be disabled by using the command line option
--nolinkaway.

Debugging options
Debugging options should always be disabled for release builds. Enabling debugging
can result in significantly larger binaries.

Code generation options
Code generation options control the code being created during the build process
based on the processor(s) being targeted and the performance characteristics desired.
The option we have under this setting are explained in the following sections.

Supported architectures
Supported architectures identify the processor architectures that should be
supported by the resulting build. The original iPhone through to the iPhone 3G,
used an ARMv6 CPU. Newer models of iPhone and iPad use either the ARMv7
or ARMv7s architecture while the iPhone 5s introduced the use of A7 processor
based on the ARMv8a architecture.

ARMv6 has not supported Xcode versions prior to Xcode 4.5. If you need to build
for older devices, you will need to use an earlier version of Xcode installed.

Chapter 9

[187]

LLVM optimizing compiler
Xamarin.iOS comes with two different code generation engines: the normal Mono
code generation engine and the one based on the LLVM optimizing compiler. The
LLVM engine produces both faster and smaller code than the Mono engine at the
cost of compile time. Thus, the Mono code generation engine is convenient to use
as you develop an app, whereas the LLVM engine is preferred for builds that will
be distributed.

ARM thumb instruction set
The ARM thumb instruction set is a more compact instruction set used by ARM
processors. By enabling the Thumb support, you can reduce the size of your executable
at the expense of slower execution times. Thumb is supported by ARMv6, ARMv7,
and ARMv7s.

Distributing Xamarin.iOS apps
Xamarin.iOS supports all of the traditional distribution methods that iOS developers
have access to. There is a great deal of information about distribution of iOS apps
on the Xamarin website and the Apple developer website. We make no attempt to
replicate those comprehensive repositories. The following sections are intended to
provide a general overview from a Xamarin.iOS perspective.

The Ad Hoc and enterprise distributions
The Ad Hoc distribution and enterprise distributions allow an app to be distributed
without going through the App Store. Ad Hoc is generally used to support testing
efforts leading up to a general release. Enterprise is used to distribute apps that are
not intended for the general public, but are instead intended for use by users within
a single enterprise. In either case, an iOS App Store Package (IPA) must be created.

Producing an enterprise distribution requires an Enterprise account
from Apple and an Enterprise Xamarin.iOS license.

To create an IPA, we will perform the following steps:

1.	 Create and install a distribution profile for your app on developer.apple.
com. Detailed instructions for this procedure can be found in the section titled
Creating and Installing a Distribution Profile at http://docs.xamarin.com/
guides/ios/deployment,_testing,_and_metrics/app_distribution_
overview/publishing_to_the_app_store/.

developer.apple.com
developer.apple.com
http://docs.xamarin.com/guides/ios/deployment,_testing,_and_metrics/app_distribution_overview/publishing_to_the_app_store/
http://docs.xamarin.com/guides/ios/deployment,_testing,_and_metrics/app_distribution_overview/publishing_to_the_app_store/
http://docs.xamarin.com/guides/ios/deployment,_testing,_and_metrics/app_distribution_overview/publishing_to_the_app_store/

Preparing Xamarin.iOS Apps for Distribution

[188]

2.	 Set the Provisioning profile option to be used for the build of the newly
installed profile by navigating to Project Options | Build | iOS Bundle
Signing, as shown in the following screenshot:

3.	 Set the Bundle Identifier option on the app to the same value that was used
while creating the distribution profile by navigating to Project Options |
Build | iOS Application, as shown in the following screenshot:

Chapter 9

[189]

4.	 Once the IPA has been created, simply navigate to the IPA in finder,
double-click on it, and it will be opened in iTunes. iTunes can now be
used to sync the app on devices.

TestFlight distribution
TestFlight is a cloud-based app distribution service used to distribute pre-released
versions of your app. Xamarin Studio provides its integration with the TestFlight
service so that Ad Hoc builds can be uploaded to TestFlight directly from within
the IDE. Prior to uploading a build, you must establish an account and define the
testing team(s) and app within the TestFlight service. This can be accomplished
by https://www.testflightapp.com.

https://www.testflightapp.com

Preparing Xamarin.iOS Apps for Distribution

[190]

To upload a build to TestFlight, perform the following steps:

1.	 Select Ad Hoc for the build type and navigate from Project | Publish to
TestFlight from the main menu.

2.	 Enter the API token and Team token values assigned by TestFlight when
you set up your app and team. You can click on the link next to these fields
to display the appropriate value in a browser.

3.	 Enter Release notes to let the testers know what has been fixed and/or
added in the new release.

4.	 Enter Distribution lists and turn on Notify team members to have an e-mail
notification sent out with the release notes.

5.	 Select the options, Replace existing binaries with the same name and
Upload dSYMs, and click on Publish. Xamarin Studio will build the app and
upload it to TestFlight.

Chapter 9

[191]

App Store submission
Distributing apps through the App Store is much the same for Xamarin.iOS apps as
any other iOS app. With the exception of producing a release build, most of the work
is done outside of Xamarin Studio. You do need to enter the Provisioning Profile
value in the iOS Bundle Signing section of the Project Options dialog box.

The following link provides detailed steps to publish a Xamarin.iOS app to the
App Store: http://docs.xamarin.com/guides/ios/deployment,_testing,_and_
metrics/app_distribution_overview/publishing_to_the_app_store/.

Summary
In this chapter, we discussed the activities related to preparing an app for
distribution, the distribution channels available, and the processes involved
in distributing an app. In the next chapter, we will look at the same aspects
of distributing a Xamarin.Android app.

http://docs.xamarin.com/guides/ios/deployment,_testing,_and_metrics/app_distribution_overview/publishing_to_the_app_store/
http://docs.xamarin.com/guides/ios/deployment,_testing,_and_metrics/app_distribution_overview/publishing_to_the_app_store/

Preparing Xamarin.Android
Apps for Distribution

In this chapter, we will discuss activities related to preparing a Xamarin.Android
app for distribution and look at the various options for distributing apps. Many of
the activities we will discuss are an integral part of any Android app deployment.
However, in this chapter, we will try to narrow the scope of our coverage to
aspects that are unique to developing with Xamarin.Android. We will cover
the following topics:

•	 App profiling
•	 Android Build settings for distributing apps
•	 App distribution options

Preparing for a release APK
Prior to publishing a signed APK file for release, there are a number of activities
that need to be completed. The following sections discuss topics that should be
considered prior to producing a release APK.

Preparing Xamarin.Android Apps for Distribution

[194]

Profiling Xamarin.Android apps
The Xamarin.Android Business license provides limited support to profile
Android apps. Profiling can be a very effective way to identify memory leaks
and process bottlenecks.

We will not cover profiling within this book, but the following
link provides an overview of using the profiling capabilities of
Xamarin.Android: http://docs.xamarin.com/guides/
android/deployment,_testing,_and_metrics/
profiling.

In addition to using the tools provided with Xamarin.Android, traditional Android
profiling tools such as Traceview and dmtracedump can be used. You can find more
information at http://developer.android.com/tools/debugging/debugging-
tracing.html.

Disabling debug
When developing a Xamarin.Android app, Xamarin Studio supports debugging
with the use of Java Debug Wire Protocol (JDWP). This feature needs to be
disabled in release builds as it poses a security risk. You have two different ways
to accomplish this:

•	 Changing the settings in AndroidManifest.xml
•	 Changing the settings in AssemblyInfo.cs

Changing the settings in AndroidManifest.xml
The first method can be done by using the following listing, which shows you how
to turn off JDWP debugging from the AndroidManifest.xml file:

 <application .. .
 android:debuggable="false" .. .
 </application>

Changing the settings in AssemblyInfo.cs
The alternative method is done by disabling JDWP through AssemblyInfo.cs.
This has the advantage of being based on the currently selected configuration.
The following listing shows how to use a conditional directive to turn JDWP
debugging off:

 #if RELEASE
 [assembly: Application(Debuggable=false)]

http://docs.xamarin.com/guides/android/deployment,_testing,_and_metrics/profiling
http://docs.xamarin.com/guides/android/deployment,_testing,_and_metrics/profiling
http://docs.xamarin.com/guides/android/deployment,_testing,_and_metrics/profiling
http://developer.android.com/tools/debugging/debugging-tracing.html
http://developer.android.com/tools/debugging/debugging-tracing.html

Chapter 10

[195]

 #else
 [assembly: Application(Debuggable=true)]
 #endif

Android Application (AndroidManifest.xml)
settings
By the time you start considering deployment of your app, you will have already
established most of the settings needed in AndroidManifest.xml. However, you will
need to update the version information. Keep in mind, the version number is used by
the Android platform during the installation process to determine whether an APK
is an update to an existing app. A version name is a free-form text and can be used
to track app versions in any manner desired. This can be accomplished by opening
the Project Options dialog box and navigating to Build | Android Application, or
by double-clicking on NationalParks/Properties/AndroidManifest.xml. The
following screenshot depicts the Android Application settings dialog box:

Preparing Xamarin.Android Apps for Distribution

[196]

Linker Options
During a build, Xamarin.Android performs static analysis of the assemblies that make
up an app and attempts to eliminate type and member instances that are not needed.
The settings that control this process can be viewed and set in the Project Options
dialog box under the Android Build section, as shown in the following screenshot:

Xamarin.Android supports the same linker options as Xamarin.iOS. When viewing
and adjusting the Linker Options settings, be sure to first select Release from the
Configuration drop-down box. The following linking options are available:

•	 Don't link: This option disables the linker and ensures that all
referenced assemblies are included without modification. This is the
default setting for builds that target the iOS Simulator. This eliminates
the time-consuming process of linking, and deploying a large file to the
simulator is relatively quick.

•	 Link SDK assemblies only: This option tells the linker to operate only on
the SDK assemblies; those assemblies that ship with Xamarin.iOS. This is
the default setting for builds that target a device.

Chapter 10

[197]

•	 Link all assemblies: This option tells the linker to operate on the entire app,
as well as all referenced assemblies. This allows the linker to use a larger set
of optimizations and results in the smallest possible application. However,
when the linker runs in this mode, there is a greater chance that it might
break portions of your code due to false assumptions made by the static
analysis process. In particular, the use of reflection and serialization can trip
up the static analysis.

The following table shows how the APK file size varies based on the linker setting:

File linking version PCL version
Don't link 26.4 MB 27.5 MB
Link SDK assemblies only 4.3 MB 4.3 MB
Link all assemblies 4.1 MB 4.2 MB

Overriding the linker
In some cases, the linking option can have negative side effects, such as important
types and/or members being accidentally eliminated. It is important for an
application that has been compiled and linked in release mode to be thoroughly
tested before distribution in order to identify such issues. In some situations, you
should conduct tests beyond the initial developer's testing, and this should be
conducted using an APK file produced in release mode.

In the event that you encounter any runtime exceptions related to missing types or
trouble locating specific methods, you can make use of one of the following methods
to give explicit instructions to the linker.

Preserving code with attributes
If you determine from testing that the linking is removing classes or methods needed
by your app, you can explicitly tell the linker to always include them by using the
Preserve attribute on a class and/or method.

To preserve the entire type, use the following command:

[Preserve (AllMembers = true)]

To preserve a single member, use the following command:

[Preserve (Conditional=true)]

Preparing Xamarin.Android Apps for Distribution

[198]

Preserving code with custom linker files
There are times when you might not have access to the source code, but still need to
preserve specific types and/or members. This can be accomplished with a custom
linker file. The following example instructs the linker to always include specific
members for a type:

<?xml version="1.0" encoding="UTF-8" ?>
<linker>
 <assembly fullname="Mono.Android">
 <type fullname="Android.Widget.AdapterView">
 <method name="GetGetAdapterHandler"/>
 <method name="GetSetAdapter_Landroid
 _widget_Adapter_Handler"/>
 </type>
 </assembly>
</linker>

You can add a custom-linking file to a project by adding a simple XML file and
populating it with similar content to the previous example; it does not really
matter where you place it in the project structure. After adding the file to the
project, select the file, open the Properties pad, and choose LinkDescription
for Build action, as shown in the following screenshot:

Skipping assemblies
You can also instruct the linker to skip entire assemblies so that all the types and
members will be retained. This can be accomplished in the following two ways:

•	 Using a command-line option linkskip, for example,
--linkskip=someassembly

Chapter 10

[199]

•	 Using the AndroidLinkSkip MSBuild property, as follows:
<PropertyGroup>
 <AndroidLinkSkip>Assembly1;Assembly2</AndroidLinkSkip>
</PropertyGroup>

Supported ABIs
Android supports a number of different CPU architectures. The Android platform
defines a set of Application Binary Interfaces (ABI) that corresponds to different CPU
architectures. By default, Xamarin.Android assumes that armeabi-v7a is appropriate
for most circumstances. To support additional architectures, check each option that
applies on the Project Options dialog box under the Android Build section.

Preparing Xamarin.Android Apps for Distribution

[200]

Publishing a release APK
Now that you have adjusted the setting needed to produce a release build, you are
ready to publish the actual APK. When we say publish, we simply mean to produce
an APK that can be uploaded to the Google Play Store. The following sections
discuss the steps of producing a signed APK from within Xamarin Studio.

Keystores
A keystore is a database of security certificates created and managed by the keytool
program from the Java SDK. You can create the keystore outside of Xamarin Studio
using the keytool command or from within Xamarin Studio that provides a UI that
interfaces with the keytool command. The next section takes you through the steps
to publish an APK and create a new keystore from within Xamarin Studio.

Publishing from Xamarin.Android
The following steps guide you through the creation of a new keystore as a part of
the process of creating a signed APK:

1.	 In the Configuration drop-down box, select Release.
2.	 Navigate to Project | Publish Android Application from the main menu;

note the Keystore selection page of the Publish Android Application
wizard, as shown in the following screenshot:

Chapter 10

[201]

3.	 Select Create new keystore, select a location including a filename for the
keystore, and enter the password and confirm it. The example keystore is
in the project folder named NationalParks.keystore and the password
is nationalparks.

4.	 Select Forward; you will see the Key creation page of the Publish Android
Application wizard, as shown in the following screenshot:

5.	 Enter all the relevant information. This example uses nationalparks for
the Alias field and Password.

Preparing Xamarin.Android Apps for Distribution

[202]

6.	 Select Forward; you will see the Select destination page of the Publish
Android Application wizard, as shown in the following screenshot:

7.	 Select the required Target directory option and click on Create. Xamarin
Studio will compile the app for release and generate a signed APK file.
You should see the following in the Publishing package pad:

The resulting APK is ready for final testing and potential distribution. Be sure to
secure and back up your keystore as it is critical to distributing future versions.

Chapter 10

[203]

Republishing from Xamarin.Android
Subsequent publications of an app should always use the original keystore. To
accomplish this, simply select Use existing keystore on the Keystore selection page
of the Publish Android Application wizard.

Publishing from Visual Studio
Publishing a signed APK from within Visual Studio essentially follows the same
process. To do so, simply navigate to Tools | Publish Android Application from
the main menu.

App distribution options
Distributing Xamarin.Android apps is no different from any other Android
app. They can be distributed through all the normal channels, app stores, e-mail
attachments, website links, thumb drive, and so on.

Summary
In this chapter, we have reviewed activities related to preparing for distribution of an
app and the process to actually produce a signed release APK file.

This chapter completes our book on Xamarin Essentials. We have tried to provide a
productive approach for experienced mobile developers to quickly come up to speed
on developing apps using the Xamarin platform. We have reviewed the Xamarin
architecture, developed functional apps for both iOS and Android, and looked at how
to maximize Xamarin's value by sharing code across mobile platforms using several
different approaches and frameworks. You are now ready to put Xamarin to work.

I hope you have found this book a useful resource and that it has generated some
excitement in you about developing great mobile apps with Xamarin.

Index
Symbols
.NET events, Objective-C delegates

mapping via 22, 23
.NET properties, Objective-C delegates

mapping via 23

A
AbsoluteLayout 159
action properties 31
Ad-Hoc and enterprise distribution 187-189
Ahead-of-Time compilation. See

AOT compilation
Android Application

(AndroidManifest.xml) settings 195
Android apps

developing, Visual Studio used 15
developing, Xamarin Studio used 13

Android apps, Xamarin.Forms 167
Android Device Monitor (ADM) 96
Android Emulator

running, with NationalParks.Droid 85-87
Android implementation,

DependencyService API
creating 175, 176

AndroidManifest.xml file
about 108
settings, changing 194

Android user interface, MvvmCross
Android app

implementing 138, 139
Android Virtual Devices (AVD) 85
AOT compilation

about 19

limitations 27, 28
URL 20

APK file
contents 109

AppDelegate.cs.txt class 149
app, DependencyService API

running 177
Apple's Instruments app

URL 182
Application Binary Interfaces (ABI) 199
ApplicationManifest.xml file

about 41
attributes 41, 42
editor 42

App profiling 181
app start up, Xamarin.Forms framework

about 166
Android apps 167
iOS apps 166
shared app class 166

ARM thumb instruction set 187
assemblies

skipping 198
AssemblyInfo.cs

settings, changing 194
automatic collections 45

B
binding libraries

creating 25
binding, modes

OneTime binding 129
OneWay binding 129
OneWayToSource binding 129
TwoWay binding 129

[206]

C
C#

about 11
URL 11

calls, DependencyService API
adding 177

CarouselPage 158
Cells

about 159
EntryCell 159
ImageCell 159
SwitchCell 159
TextCell 159

code
generating, for storyboard files 29
generating, for XIB 29
preserving, with attributes 197
preserving, with custom linker files 198

code-behind classes,
Xamarin.Forms 162, 163

Code Generation options
about 186
ARM thumb instruction set 187
LLVM optimizing compiler 187
supported architectures 186

code sharing techniques
cons 122
pros 122

collections
using, with Xamarin.Android

bindings 38, 39
commands 127, 128
Common Language Runtime (CLR) 7, 34
component store

URL 9
ContentPage 158
ContentView Layout 159
C# types

and type safety 21

D
Dalvik Virtual Machine (Dalvik VM) 34
data binding

about 128, 164
INotifyPropertyChanged interface 129

modes 129
specifications 130

data, sample national parks app
passing 69-71

debugging options 186
debug, Xamarin.Android apps

disabling 194
DeleteClicked action, sample

national parks app
implementing 68

Delete() method 91
DependencyService API

about 165
Android implementation, creating 175, 176
app, running 177
calls, adding 177
interface, creating 174
iOS implementation, creating 174, 175
used, for showing directions 174
used, for showing photos 174

designer files 29
DetailActivity view,

NationalParks.Droid app
ActionBar items, adding 97
creating 96, 97
navigation, adding 99
populating 98
Show Directions action, handling 99
Show Photos action, handling 98

Detail.axml layout
updating 144

DetailView activity
creating 145

DetailViewController, sample national
parks app

finishing 73, 74
DetailViewModel

creating 143
detail view, MvvmCross Android app

Detail.axml layout, updating 144
DetailView activity, creating 145
DetailViewModel, creating 143
implementing 143
navigation, adding 145

detail view, MvvmCross iOS app
implementing 151

[207]

developer environment
about 12
IDEs, comparing 16
version control 17, 18
Visual Studio environment, using 14
Visual Studio, used for developing

Android apps 15
Visual Studio, used for developing

iOS apps 15
Xamarin Studio environment, using 12
Xamarin Studio, used for developing

Android apps 13
Xamarin Studio, used for developing

iOS apps 14
Done.Clicked event handler, sample

national parks app
implementing 67, 68

Dynamic-Link Library (DLL) 111

E
EditActivity, NationalParks.Droid app

ActionBar items, adding 101
creating 100
Delete action, handling 104
Edit action, navigating 105
ListView, refreshing in MainActivity 106
navigation, adding 105
New action, navigating 105
populating 102
reference variables, creating

for widgets 102
Save action, handling 103

Edit.axml layout
updating 146

editor, ApplicationManifest.xml file 42
EditView activity

creating 147
EditViewController, sample national

parks app
adding 65-67
finishing 74, 75

EditViewModel
creating 146

edit view, MvvmCross Android app
Edit.axml layout, updating 146
EditView activity, creating 146

EditViewModel, creating 146
implementing 146
navigation, adding 147, 148

edit view, MvvmCross iOS app
implementing 153
master view list, refreshing 154
navigation, adding 153, 154

entity class, sample national parks app
creating 57

enumerations, Xamarin.Android
bindings 40

events
versus listeners 38

Extensible Application Markup
Language. See XAML

F
file linking

about 112
shared files using, NationalParks.Droid

updated for 115, 116
shared files using, NationalParks.iOS

updated for 116, 117
shared library project, creating 112-114

FirstView class 149
Frame Layout 159

G
garbage collection (GC)

about 25, 43, 45
automatic collection 45
direct references, reducing in

peer objects 45
JNI references 44
major collections 45
minor collections 45
Mono collections 44
peer objects, disposing 45

generated elements, NationalParks.Droid
AndroidManifest.xml file 108
APK file 108, 109
peer objects 107
reviewing 107

Genymotion
NationalParks.Droid, running with 87
URL 87

[208]

GetItemId() method 93
Git

about 18
for Visual Studio, URL 17

GitHub
URL 126

global reference, JNI 44
Grid Layout 159

I
IDEs

comparing 16
IFileHandler

implementing 119
inheritance

usage 21
INotifyPropertyChanged interface

about 129
implementing 137, 138

interface, DependencyService API
creating 174

interfaces, Xamarin.Android bindings 39
iOS apps

about 166
developing, Visual Studio used 15, 16
developing, Xamarin Studio used 14
settings 181

iOS App Store Package. See IPA
iOS Build settings

about 181
Code Generation options 186
debugging options 186
Linker Options 184
SDK Options 183

iOS implementation,
DependencyService API

creating 174, 175
iOS user interface, MvvmCross iOS app

implementing 150
IPA

creating 187

J
Java Native Interface (JNI) 34
Java objects 43

JNI references
global reference 44
weak reference 44

JSON-formatted file, sample national
parks app

adding 58
objects, loading from 59
objects, saving to 60

Json.NET, sample national parks app
adding 57

K
keystores 200

L
layouts

about 159
AbsoluteLayout 159
ContentView layout 159
Frame 159
Grid 159
RelativeLayout 159
ScrollView 159
StackLayout 159

linker options
about 184, 185, 196
Don't link option 184, 196
Link all assemblies option 185, 197
linker, overriding 185, 186, 197
Link SDK assemblies only option 185, 196

linker, overriding
assemblies, skipping 186, 198
code, preserving 185
code, preserving with attributes 197
code, preserving with custom linker

files 198
Link Away, disabling 186

listeners
versus events 38

LLVM optimizing compiler 187

M
MainActivity.cs file,

NationalParks.Droid app 82, 83

[209]

MainActivity, NationalParks.Droid app
action, adding to ActionBar 94, 95
adapter, creating 92-94
enhancing 91
ListView instance, adding 91
Main.xml file, editing 92
OnCreateOptionsMenu() method,

overriding 95
OnOptionsItemSelected() method,

overriding 95
Xamarin.Android Designer, touring 91

Main.axml file, NationalParks.Droid app 83
major collections 43, 45
Managed Callable Wrappers (MCW) 35
managed objects 43
Master.axml layout

updating 141, 142
MasterDetailPage 158
master list view, MvvmCross Android app

implementing 139
Master.axml layout, updating 141, 142
MasterView activity, creating 142, 143
MasterViewModel, creating 139, 140

MasterView activity
creating 142, 143

MasterViewModel
creating 139, 140

master view, MvvmCross iOS app
implementing 150, 151

memory management 25-27
minor collections 43, 45
Model-View-ViewModel (MVVM) 126
Mono assemblies

about 7, 20, 36
reference link 36

Mono CLR
about 7, 34
peer objects 35

Mono collections 44
Mono's simple generational

garbage collector
major collections 43
minor collections 43
URL 43

MonoTouch.Dialog (MT.D)
about 76
URL 76

MonoTouch Profiler
URL 182

MvvmCross Android app
Android user interface,

implementing 138, 139
creating 135, 136
detail view, implementing 143
edit view, implementing 146
INotifyPropertyChanged interface,

implementing 137, 138
master list view, implementing 139
NationalParks.IO, reusing 137
NationalParks.PortableData, reusing 137

MvvmCross core project
creating 134, 135

MvvmCross iOS app
cons 155
creating 149
detail view, implementing 151
edit view, implementing 153
iOS user interface, implementing 150
master view, implementing 150, 151
pros 155

MVVM pattern 126

N
NationalParksData singleton

creating 89, 90
NationalParks.Droid app

creating 80, 81
debugging, with Xamarin Studio 84
running 96, 100, 106
running, on physical device 87
running, with Android Emulator 85-87
running, with Genymotion 87
running, with Xamarin Studio 84
updated, for using PCL 120, 121
updated, for using shared files 115, 116

NationalParks.Droid app, extending
about 88
entity class, borrowing 89
JSON file, borrowing 89
Json.NET, adding 88
NationalParksData singleton,

creating 89, 90
national parks, storing 88

[210]

NationalParks.Droid app, reviewing
about 82
MainActivity.cs file 82, 83
Main.axml file 83
project folders 84
Resource.designer.cs file 82
Resources folder 82
Xamarin Studio preferences 84

NationalParks.Droid, extending
about 88
DetailActivity view, creating 96, 97
EditActivity, creating 100
MainActivity, enhancing 91
national parks, loading 88
national parks, storing 88

NationalParks.IO
reusing 137

NationalParks.iOS
updated, for using PCL 121, 122
updated, for using shared files 116, 117

NationalParks.MvvmCross
MvvmCross Android app, creating 135, 136
MvvmCross core project, creating 134, 135
MvvmCross iOS app, creating 149

NationalParks.PortableData
adding 169
creating 118, 119
reusing 137

NationalParks Xamarin.Forms app
creating 168
NationalParks.PortableData, adding 169
ParkDetailPage, implementing 172, 173
ParkEditPage, implementing 177-179
ParksListPage, implementing 170-172
solution, creating 168, 169

navigation
about 160
PopAsync() method 160
PopModalAsync() method 160
PopToRootAsync() method 160
PushAsync() method 160
PushModalAsync() method 160

navigation, MvvmCross Android app
adding 147, 148

navigation, MvvmCross iOS app
adding 152

NavigationPage 158

nested classes
mapping 40

non-designer files 30

O
Objective-C delegates

about 22
via .NET events 22, 23
via .NET properties 23
via strongly typed delegates 23, 24
via weakly typed delegates 24, 25

objects
disposing 27
Java objects 43
managed objects 43
peer objects 43
preventing, from destroyed 27

OnCreateOptionsMenu() method 95
OneTime binding 129
OneWay binding 129
OneWayToSource binding 129
OnOptionsItemsSelected() method 95
OS X

Xamarin, installing 12

P
packages.config file 149
Pages

about 158
CarouselPage 158
ContentPage 158
MasterDetailPage 158
NavigationPage 158
TabbedPage 158

ParkDetailPage
implementing 172, 173

ParkEditPage
implementing 177-179

ParksListPage
implementing 170-172

peer objects
about 35, 43
direct references, reducing 45
disposing 45

PopAsync() method 160

[211]

PopModalAsync() method 160
PopToRootAsync() method 160
Portable Class Libraries (PCL)

about 118
IFileHandler, implementing 119
NationalParks.PortableData, creating 118
using, NationalParks.Droid updated

for 120, 121
using, NationalParks.iOS updated

for 121, 122
product information

URL 9
product suite, Xamarin

about 8
business 8
component store 9
enterprise 8
indie 8
information 9
offerings 8
pricing 9
starter 8
Xamarin Test Cloud 9

project options,
NationalParks.Droid app 84

Project Options view, sample
national parks app

about 51
iOS Application 51
iOS Build 51
iOS Bundle Signing 51
iOS IPA Options 51

project, Xamarin.Forms framework
organizing 167, 168

PushAsync() method 160
PushModalAsync() method 160

R
RelativeLayout 159
release APK, preparing for

Android Application
(AndroidManifest.xml) settings 195

AndroidManifest.xml settings,
changing 194

Application Binary Interfaces (ABI) 199
AssemblyInfo.cs settings, changing 194

debug, disabling 194
Linker Options settings 196
Xamarin.Android apps, profiling 194

release APK, publishing
about 200
keystores 200
Visual Studio, publishing from 203
Xamarin.Android, publishing

from 200-202
Xamarin.Android, republishing from 203

renderers
using 165

Resource.designer.cs file,
NationalParks.Droid app 82

Resources folder,
NationalParks.Droid app 82

resources, Xamarin.Android bindings 41
Runnable interface

mapping 40

S
sample national parks app

about 48
creating 48-51
data, passing 69-71
DeleteClicked action, implementing 68, 69
detail view 48
DetailViewController, finishing 73, 74
Done.Clicked event handler,

implementing 67, 68
edit view 48
EditViewController, adding 65-67
EditViewController, finishing 74, 75
entity class, creating 57
extending 56
finishing 72
JSON-formatted file, adding 58
Json.NET, adding 57
list view 48
loading 56
MonoTouch.Dialog (MT.D) 76
objects, loading from JSON-formatted

file 59
objects, saving to JSON-formatted file 60
Project Options view 51
running 60, 72, 76

[212]

segues, adding 65-67
storing 56
UI, enhancing 60, 61
Xamarin.iOS Designer, touring 62-65
Xamarin Studio, debugging within 52-56
Xamarin Studio, running within 52-56

Save() method 90
ScrollView Layout 159
SDK Options 183
segues, sample national parks app

adding 65-67
Setup class 149
shared files

using, NationalParks.Droid updated
for 115, 116

using, NationalParks.iOS updated
for 116, 117

shared library project
creating 112-114

sharing game 111, 112
solution, NationalParks Xamarin.Forms app

creating 168, 169
StackLayout 159
startup process, MvvmCross apps

about 132
Android startup 133
App.cs 132
iOS startup 133
Setup.cs 133

storyboard files. See XIB
strongly typed delegates, Objective-C

delegates
mapping via 23, 24

Subversion 18

T
TabbedPage 158
Team Foundation Server (TFS)

about 17, 18
add-in for Xamarin Studio, URL 17

TestFlight distribution
about 189, 190
URL 190

TwoWay binding 129

U
UI, sample national parks app

app, running 72
data, passing 69-71
DeleteClicked action, implementing 67, 68
Done.Clicked event handler,

implementing 67, 68
EditViewController, adding 65-67
enhancing 60, 61
segues, adding 65-67
Xamarin.iOS Designer, touring 62-65

V
version control 17
View 126, 127, 158
ViewModels

about 126, 127
navigating between 131
parameters, passing 131
solution/project organization 132
startup process 132

Visual Studio
cons 16
pros 16
publishing from 203
used, for developing Android apps 15
used, for developing iOS apps 15, 16
Xamarin.Android projects, working

with 107
Visual Studio environment 14

W
weakly typed delegates, Objective-C

delegates
mapping via 24, 25

weak reference, JNI 44
Windows

Xamarin, installing 12
Windows Presentation Foundation

(WPF) 127, 161, 164

[213]

X
Xamarin

benefits 9, 10
drawbacks 10, 11
installing 11
installing, on OS X 12
installing, on Windows 12
product suite 8
URL 8

Xamarin.Android
folders 83
publishing from 200-202
republishing from 203

Xamarin.Android app
distribution, options 203
packaging 36
profiling 194
sample app, creating 80

Xamarin.Android bindings
about 36
collections 38, 39
design principles 37
enumerations 40
events, versus listeners 38
interfaces 39
nested classes, mapping 40
properties 37
resources 41
Runnable interface, mapping 40

Xamarin.Android Designer 46
Xamarin.Android projects

working, in Visual Studio 107
Xamarin.Forms framework

about 157, 158
app startup 166
cells 159
code-behind classes 162, 163
cons 179
data binding 164
DependencyService API 165
Layouts 159
native features 165
Navigation 160
Pages 158

project, organizing 167, 168
pros 179
renderers, using 165
Views 158

Xamarin.Forms, user interfaces
about 160
declarative approach 160
programmatic approach 160

Xamarin.iOS
about 19
runtime features, disabled 28
URL 20

Xamarin.iOS apps
iOS Application (Info.plist) settings 182
profiling 182
publishing, to App store 191

Xamarin.iOS apps, distributing
about 181, 187
Ad-Hoc and enterprise

distribution 187-189
App profiling 181
App Store submission 191
Code Generation options 186
debugging options 186
iOS Application settings 181
iOS Build settings 181, 183
Linker Options 184
SDK Options 183
TestFlight distribution 189, 190

Xamarin.iOS bindings
about 20
C# types and type safety 21
design principles 20, 21
inheritance, using 21

Xamarin.iOS Designer
about 31, 32
features 32
touring 62-65
URL 62

Xamarin Studio
cons 16
debugging, within 52-56
environment, using 12, 13
preferences 84
pros 16

[214]

running, within 53-56
used, for debugging Xamarin.Android

apps 84
used, for developing Android apps 13
used, for developing iOS apps 14
used, for running Xamarin.Android

apps 84
Xamarin Test Cloud

URL 9
XAML 161, 162
Xcode Interface Builder

Apple tutorial, URL 62
Xamarin tutorial, URL 62

XIB
action properties 31
code, generating for 29
designer files 29
generated classes 29
non-designer files 30
outlets properties 31

Thank you for buying
Xamarin Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Xamarin Cross-platform
Application Development
ISBN: 978-1-84969-846-7 Paperback: 262 pages

Develop production-ready applications for iOS and
Android using Xamarin

1.	 Write native iOS and Android applications
with Xamarin.

2.	 Add native functionality to your apps such as
push notifications, camera, and GPS location.

3.	 Learn various strategies for cross-platform
development.

Xamarin Mobile Application
Development for Android
ISBN: 978-1-78355-916-9 Paperback: 168 pages

Learn to develop full featured Android apps using
your existing C# skills with Xamarin.Android

1.	 Gain an understanding of both the Android
and Xamarin platforms.

2.	 Build a working multi-view Android app
incrementally throughout the book.

3.	 Work with device capabilities such as location
sensors and the camera.

Please check www.PacktPub.com for information on our titles

Xamarin Mobile Application
Development for iOS
ISBN: 978-1-78355-918-3 Paperback: 222 pages

If you know C# and have an iOS device, learn to use
one language for multiple devices with Xamarin

1.	 A clear and concise look at how to create your
own apps building on what you already know
of C#.

2.	 Create advanced and elegant apps by yourself.

3.	 Ensure that the majority of your code can also
be used with Android and Windows Mobile 8
devices.

iOS 7 Game Development
ISBN: 978-1-78355-157-6 Paperback: 120 pages

Develop powerful, engaging games with ready-to-use
utilities from Sprite Kit

1.	 Pen your own endless runner game using
Apple's new Sprite Kit framework.

2.	 Enhance your user experience with easy-to-use
animations and particle effects using Xcode 5.

3.	 Utilize particle systems and create custom
particle effects.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Xamarin and Mono – A Pathway to the Unnatural
	Understanding Mono
	The Xamarin product suite
	Evaluating whether Xamarin is the
right tool
	Learning C#
	Installing Xamarin
	Installing Xamarin on OS X
	Installing Xamarin on Windows

	Development environments
	Using the Xamarin Studio environment
	Using Xamarin Studio to develop Android apps
	Using Xamarin Studio to develop iOS apps
	Using the Visual Studio environment
	Using Visual Studio to develop Android apps
	Using Visual Studio to develop iOS apps

	Comparing IDEs
	Version control

	Summary

	Chapter 2: Demystifying Xamarin.iOS
	Xamarin.iOS and Ahead-of-Time compilation
	Understanding Mono assemblies
	Xamarin.iOS bindings
	The design principles
	C# types and type safety
	Use of inheritance
	Mapping Objective-C delegates
	Via .NET events
	Via .NET properties
	Via strongly typed delegates
	Via weakly typed delegates

	Creating binding libraries
	Memory management
	Disposing of objects
	Keeping objects around

	Limitations of using the AOT compilation
	Runtime features disabled

	Generating code for XIB and storyboard files
	Generated classes
	Designer files
	Non-designer files
	Outlets properties
	Action properties

	Xamarin.iOS Designer
	Summary

	Chapter 3: Demystifying Xamarin.Android
	Mono CLR and Dalvik VM – working side by side
	Introducing the Java Native Interface
	Peer objects

	Xamarin.Android application packaging
	Understanding Mono assemblies
	Xamarin.Android bindings
	The design principles
	Properties
	Events versus listeners
	Special help with collections
	Interfaces
	Mapping nested classes
	Mapping the Runnable interface
	Enumerations
	Resources

	Attributes for the ApplicationManifest.xml file
	Editor for the ApplicationManifest.xml file
	Garbage collection
	JNI global and weak references
	Mono collections
	Automatic collections
	Helping the GC

	Xamarin.Android Designer
	Summary

	Chapter 4: Developing Your First iOS App with Xamarin.iOS
	The sample national parks app
	Creating the sample app
	The Project Options view

	Running and debugging within Xamarin Studio
	Extending the sample app
	Storing and loading national parks
	Adding Json.NET
	Creating an entity class

	Adding a JSON-formatted file
	Loading objects from a JSON-formatted file
	Saving objects to a JSON-formatted file
	Running the app

	Enhancing the UI
	Touring the Xamarin.iOS Designer
	Adding EditViewController and segues
	Implementing the DoneClicked event handler
	Implementing the DeleteClicked action
	Passing data
	Running the app

	Finishing the sample app
	Finishing DetailViewController
	Finishing EditViewController
	Running the app

	MonoTouch.Dialog
	Summary

	Chapter 5: Developing Your First Android App with Xamarin.Android
	The sample app
	Creating NationalParks.Droid
	Reviewing the app
	Resources
	The Resource.designer.cs file
	The MainActivity.cs file
	The Main.axml file
	Project Options
	Xamarin Studio Preferences

	Running and debugging with Xamarin Studio
	Running apps with the Android Emulator
	Running apps on a physical device
	Running apps with Genymotion

	Extending NationalParks.Droid
	Storing and loading national parks
	Adding Json.NET
	Borrowing the entity class and JSON file
	Creating the NationalParksData singleton

	Enhancing MainActivity
	Adding a ListView instance
	Creating an adapter
	Adding the New action to the ActionBar
	Running the app

	Creating the DetailActivity view
	Adding ActionBar items
	Populating DetailActivity
	Handling the Show Photos action
	Handling the Show Directions action
	Adding navigation
	Running the app

	Creating EditActivity
	Adding ActionBar items
	Creating reference variables for widgets
	Populating EditActivity
	Handling the Save action
	Handling the Delete action
	Adding navigation
	Refreshing ListView in MainActivity
	Running the app

	Working with Xamarin.Android projects in Visual Studio
	Reviewing the generated elements
	Peer objects
	The AndroidManifest.xml file
	The APK file

	Summary

	Chapter 6: The Sharing Game
	Sharing and reuse
	Old school source file linking
	Creating a shared library project
	Updating NationalParks.Droid to use shared files
	Updating NationalParks.iOS to use shared files

	Portable Class Libraries
	Creating NationalParks.PortableData
	Implementing IFileHandler
	Updating NationalParks.Droid to use PCL
	Updating NationalParks.iOS to use PCL

	The pros and cons of the code-sharing techniques
	Summary

	Chapter 7: Sharing with MvvmCross
	Introducing MvvmCross
	The MVVM pattern
	Views
	ViewModels
	Commands
	Data binding
	The binding modes
	The INotifyPropertyChanged interface
	Binding specifications

	Navigating between ViewModels
	Passing parameters
	Solution/project organization
	The startup process

	Creating NationalParks.MvvmCross
	Creating the MvvmCross core project
	Creating the MvvmCross Android app
	Reusing NationalParks.PortableData and NationalParks.IO
	Implementing the Android user interface
	Implementing the master list view
	Implementing the detail view
	Implementing the edit view

	Creating the MvvmCross iOS app
	Implementing the iOS user interface
	Implementing the master view
	Implementing the detail view
	Implementing the edit view

	Considering the pros and cons
	Summary

	Chapter 8: Sharing with Xamarin.Forms
	An insight into the Xamarin.Forms framework
	Pages
	Views
	Layouts
	Cells
	Navigation
	Defining Xamarin.Forms user interfaces
	Extensible Application Markup Language (XAML)
	Code-behind classes

	Data binding
	Using Renderers
	Native features and the DependencyService API
	App startup
	Shared App classes
	iOS apps
	Android apps

	Project organization

	Creating the NationalParks Xamarin.Forms app
	Creating the solution
	Adding NationalParks.PortableData

	Implementing ParksListPage
	Implementing ParkDetailPage
	Using DependencyService to show directions and photos

	Implementing ParkEditPage

	Considering the pros and cons
	Summary

	Chapter 9: Preparing Xamarin.iOS Apps for Distribution
	Preparing for distribution
	Profiling Xamarin.iOS apps
	iOS Application (Info.plist) settings
	iOS Build settings
	SDK Options
	Linker Options
	Debugging options
	Code generation options

	Distributing Xamarin.iOS apps
	The Ad Hoc and enterprise distributions
	TestFlight distribution

	App Store submission

	Summary

	Chapter 10: Preparing Xamarin.Android Apps for Distribution
	Preparing for a release APK
	Profiling Xamarin.Android apps
	Disabling debug
	Changing the settings in AndroidManifest.xml
	Changing the settings in AssemblyInfo.cs

	Android Application (AndroidManifest.xml) settings
	Linker Options
	Overriding the linker

	Supported ABIs

	Publishing a release APK
	Keystores
	Publishing from Xamarin.Android
	Republishing from Xamarin.Android
	Publishing from Visual Studio

	App distribution options
	Summary

	Index

