

WiX Cookbook

Over 60 hands-on recipes packed with tips and tricks to
boost your Windows installations

Nick Ramirez

BIRMINGHAM - MUMBAI

WiX Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: January 2015

Production reference: 1230115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-321-2

www.packtpub.com

www.packtpub.com

Credits

Author
Nick Ramirez

Reviewers
Jiří Činčura

Chris Eelmaa

Christopher Painter

Ranjith Sundarrajan

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Owen Roberts

Content Development Editor
Susmita Sabat

Technical Editors
Shiny Poojary

Sebastian Rodrigues

Copy Editors
Roshni Banerjee

Pranjali Chury

Puja Lalwani

Gladson Monteiro

Jasmine Nadar

Adithi Shetty

Project Coordinator
Milton Dsouza

Proofreaders
Ameesha Green

Elinor Perry-Smith

Jonathan Todd

Indexer
Tejal Soni

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

About the Author

Nick Ramirez is a software developer living in Columbus, Ohio. As a believer that
deployment shouldn't be terrifying, he has become a big fan of technologies such as
WiX. His other related interests include build automation, software architecture,
and playing Minecraft. Nick lives with his wife and two cats.

I would like to thank the editors at Packt Publishing for making the process
of writing so much easier. They are superb at keeping things on track and
well organized. A big thanks goes to all those involved in the WiX community
for continuing to pour vitality into the project and keeping the discussions
going. There are many tireless volunteers who are always there to answer
a question or start a discussion. Those developers who contribute source
code to the WiX project deserve an extra bit of thanks for the hard work that
they do. Because of them, WiX continues to be the best deployment tool in
the market.

About the Reviewers

Jiří Činčura is an independent .NET developer who focuses on data access layers and
business layers as well as language constructs and databases. He is a project lead for ADO.
NET, provider for the Firebird project, and Entity Framework support maintainer for the NuoDB
database. He also creates custom large applications for various customers in Europe as
well as companies from other countries. He conducts trainings and consultations about new
technologies to provide customers the best information possible, to deliver applications in
a shorter time and with better maintainability. When he's not programming or teaching,
he spends time participating in ultra races.

Chris Eelmaa is a software engineer from Estonia, who has experience with a lot of
different languages and technologies, some of which include C#, C++, WPF, WiX, and
AngularJS. He works as a freelancer and contractor, interested in getting involved with
projects that involve WPF and MVVM.

He is very keen on solving challenging problems and likes to understand exactly how or why
something works; this has kept him in the engineering industry for over 8 years.

In his spare time, he likes to read about self-growth and meet similar people who aspire to
grow. Chris also blogs at http://chriseelmaa.com.

http://chriseelmaa.com

Ranjith Sundarrajan is a father of a lovely daughter, Rachna, and a lucky husband to
Vidya, a technologist at heart and an information scavenger. In his spare time, he enjoys
asking "why" questions and finding an answer for them, and listening to different genres
of music.

In the technology world, he is currently a technology expert at Tesco. He joined
Tesco (www.tesco.com) as a developer in 2008 with a bachelor's degree from
St. Joseph's College, Bangalore, and a master's degree in computer applications
from BMS College, Bangalore.

He preaches writing quality code in the team and works extensively on .Net Compact
Framework technologies, MS SQL Server, CI/CD, and TIBCO.

Being detail-oriented and data-driven, Ranjith is very passionate about technology and highly
committed to providing quality solutions and products.

www.tesco.com

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print, and bookmark content

 f On demand and accessible via a web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/

Table of Contents
Preface 1
Chapter 1: Organizing and Building WiX Projects 7

Introduction 7
Installing WiX and creating a new project in Visual Studio 2013 8
Referencing the output of a .NET console application in a WiX project by
using a preprocessor variable 11
Separating a portion of WIX markup into its own library 15
Compiling a WiX installer on a build machine using MSBuild 19
Building a WiX installer from the command line 23

Chapter 2: Installing Files and Directories 27
Introduction 27
Installing directories onto the target computer 28
Adding a file to a directory 31
Installing a 64-bit executable file to Program Files 33
Including one component or another depending on the condition 37
Using the heat.exe tool to generate components 40

Chapter 3: File and Folder Permissions 45
Introduction 45
Changing the permissions on a folder for a user 46
Changing the permissions on a file for a user 49
Marking a file as read only 51
Creating a file share 52
Setting the default program for a file type 56

ii

Table of Contents

Chapter 4: Shortcuts 61
Introduction 61
Adding an application shortcut to the Start menu 62
Adding an icon to a shortcut 67
Placing a shortcut on the desktop 70
Creating a shortcut to a folder 72
Creating an advertised shortcut that installs a feature on demand 74

Chapter 5: Editing XML Files during Installation 79
Introduction 79
Adding a new element to an XML file during installation 80
Setting the value of an attribute on an XML element 83
Inserting inner text into an XML element 86
Adding an XML element only if it does not already exist 89
Removing an XML element 91

Chapter 6: Custom Actions 93
Introduction 93
Creating a C# custom action and referencing it in your project 94
Passing information entered by a user to a deferred custom action 100
Preventing custom action data from being displayed in the install log 104
Running an executable as a custom action without showing a console
window by using CAQuietExec 107
Testing rollback custom actions with WixFailWhenDeferred 110

Chapter 7: Installing Wizards 117
Introduction 117
Adding a wizard to guide users through the installation 118
Changing the logo images and default license agreement text
of the wizard 120
Customizing the wizard by adding a new dialog window to it 123
Deciding which dialog to show next depending on the user's choices 130
Setting a property based on user input 135

Chapter 8: Users and Groups 137
Introduction 137
Creating a local user 138
Adding a new user to a new group 139
Adding a new user to an existing group 142
Adding an existing user to a new group 143
Adding a new user with the log on as a service security setting 146

iii

Table of Contents

Chapter 9: Handling Prerequisites 149
Introduction 149
Stopping the installation with a launch condition 150
Installing only to supported versions of Windows 153
Redistributing the .NET Framework with a bootstrapper 155
Executing either a 64-bit or 32-bit MSI depending on the user's
operating system 157
Downloading resources from the Web with a web installer 159

Chapter 10: Installing Websites 163
Introduction 163
Spinning up a new application pool in IIS 163
Adding a website to IIS that runs under your app pool 166
Creating a virtual directory 172
Adding a web application to IIS 176
Setting up a website to use SSL 180

Chapter 11: Linking to the Web 187
Introduction 187
Adding a hyperlink control to a wizard dialog 188
Opening an installed HTML file after a successful installation 192
Launching a web page when a user uninstalls our software 196
Installing a shortcut that opens a web page 197
Updating programs and features to show a link to our company's website 200

Chapter 12: Installing SQL Server Databases 203
Introduction 203
Installing a SQL Server instance with a bootstrapper 203
Adding a database to a SQL Server instance 208
Creating a table within a SQL Server database 209
Inserting data into a database table 212
Creating an ODBC data source for a SQL Server instance 214

Chapter 13: Admin Tasks 219
Introduction 219
Setting an environment variable 219
Creating a scheduled task 222
Defining a new event source for the Windows event viewer 225
Registering a performance counter 228
Adding an exception to Windows Firewall 233

Index 239

iv

Table of Contents

Preface
The race to get software developed and deployed is reaching a dizzying pace. As companies
accelerate their target release dates, topics such as continuous deployment, process
automation, and DevOps take center stage. The need for a reliable and reproducible
method of installing software is clear.

In this regard, it's easy to see where a tool like WiX can shine. Its XML syntax makes it easy
to read, edit, and store in source control. It creates a package that can either be installed by
nontechnical consumers with the click of a mouse or by a remote system administrator who
needs to work from the command line. Probably its greatest strength is that it takes tasks that
used to be performed by human beings and makes them automated. Think about installing
databases, creating websites, and editing configuration files. These are all jobs that WiX can
do at the time of installation. More than that, it can react to its environment, installing one file
or another depending on the operating system, pulling down missing resources from the Web,
and preventing installation on unsupported machines.

In this book, we'll cover many of these sorts of topics. Each chapter centers on a common
theme, but taken together, they'll provide a good general overview of WiX's capabilities. You'll
quickly see ways in which WiX can cut down on the time you might spend to manually set up
your software now. For those who have only limited experience with WiX, the first few chapters
should give you the background you need to be up and running. Those seeking to streamline
their deployment processes will find the chapters on Windows user and group creation, file
permissions, websites, and databases interesting. It's an exciting but challenging time for
installation, and I hope you'll find that the recipes presented here give you the running start
you'll need.

Preface

2

What this book covers
Chapter 1, Organizing and Building WiX Projects, helps you to build your WiX projects
right, whether that means from Visual Studio, the command line, or on a build server
with automation. We'll also see how to reference the output of other projects that will be
included in the installer and how to separate WiX markup into libraries.

Chapter 2, Installing Files and Directories, covers creating folders and files on the end user's
computer. We'll also see how to get heat.exe to generate this sort of markup for us and how to
make decisions during installation about which files to create.

Chapter 3, File and Folder Permissions, introduces recipes to set the permissions on installed
files and folders. We'll also see how to create file shares and choose a default program to use
when opening a custom file type.

Chapter 4, Shortcuts, digs into all things related to shortcuts. We'll see how to put an icon on
a shortcut, point a shortcut to a folder, as well as place a shortcut in the most popular places:
the Start menu and the desktop. We'll also touch on how to create an advertised shortcut that
will give users the ability to install features on demand.

Chapter 5, Editing XML Files during Installation, will come in handy especially when altering
XML-based configuration files for your software. We'll add XML elements, remove them, set
attributes, and insert inner text as part of our installation.

Chapter 6, Custom Actions, focuses on making well-behaved custom actions to extend the
WiX functionality. We'll see how to protect the privacy of data sent to custom actions and
open console windows without showing them, and rollback failures.

Chapter 7, Installing Wizards, puts a face on our installer by plugging in one of the wizards
that comes with the WiX toolset. We'll then see how to customize it with our own images,
license, and dialogs.

Chapter 8, Users and Groups, discusses adding users and groups to the target computer.
We'll also see how to marry the two by adding users to groups and grant users the log on
as a service security setting.

Chapter 9, Handling Prerequisites, includes tactics to only install our software to systems that
can support it. We'll examine ways to stop an installation if prerequisites aren't met, install
.NET Framework if it's missing, and download resources from the web during installation.

Chapter 10, Installing Websites, explores adding sites to IIS. We'll cover application pools,
websites, virtual directories, and web applications. We'll then top it off with a recipe to
secure a website with SSL.

Chapter 11, Linking to the Web, connects our installer to online resources. We'll see how to
open web pages, display hyperlinks, and install shortcuts to websites.

Preface

3

Chapter 12, Installing SQL Server Databases, is dedicated to recipes about deploying SQL
Server databases. If SQL Server isn't already installed on the target computer, we can install
it with a bootstrapper. We'll add tables, insert data, and register an ODBC data source.

Chapter 13, Admin Tasks, rounds up a collection of administrative chores, including installing
scheduled tasks, adding event sources, registering performance counters, and adding
exceptions to the Windows firewall.

What you need for this book
To practice the recipes in this book, you will need the following:

 f Visual Studio 2010 or newer (not the Express version)

 f The WiX toolset, which can be downloaded from http://wixtoolset.org

Who this book is for
Developers who are already familiar with WiX will have the easiest time, but those with less
experience will likely be able to follow along as well. If you are completely new to WiX and
Windows Installer, then I recommend beginning with WiX 3.6: A Developer's Guide to Windows
Installer XML, Nick Ramirez, Packt Publishing. It provides more context for the newcomer and
walks the reader through the basics of setting up an installer. Here, we'll head off the beaten
track and cover some topics relevant to more advanced scenarios.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, and user input are shown as follows: "Behind the scenes,
WiX introduces a new project type that has a .wixproj file extension."

A block of code is set as follows:

<ComponentGroup Id="SampleComponentGroup"
 Directory="SampleComponentsDirectory">
 <Component Id="cmpSampleTextFileTXT"
 Guid="{5382BC02-4484-4C9B-8734-A99D20632EA9}">
 <File Source="SampleTextFile.txt" />
 </Component>
</ComponentGroup>

http://wixtoolset.org

Preface

4

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

<ComponentGroup Id="SampleComponentGroup"
 Directory="SampleComponentsDirectory">
 <Component Id="cmpSampleTextFileTXT"
 Guid="{5382BC02-4484-4C9B-8734-A99D20632EA9}">
 <File Source="SampleTextFile.txt" />
 </Component>
</ComponentGroup>

Any command-line input or output is written as follows:

msiexec /i InstallPackageA.msi /l*v install.log

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "Select the Setup
Project template from the list of available project types."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

www.packtpub.com/authors

Preface

5

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded on our website, or added to any list of existing errata, under the Errata
section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

1
Organizing and Building

WiX Projects

In this chapter, we will cover the following topics:

 f Installing WiX and creating a new project in Visual Studio 2013

 f Referencing the output of a .NET console application in a WiX project by
using a preprocessor variable

 f Separating a portion of WiX markup into its own library

 f Compiling a WiX installer on a build machine using MSBuild

 f Building a WiX installer from the command line

Introduction
The trouble with any bit of code is handling the logistics of getting it from development to
production. How do we work on it in our favorite IDE initially and then allow it to be built
elsewhere? Perhaps on a build server that doesn't have access to the IDE?

WiX solves this problem for its own code by allowing it to be built using a variety of workflows.
As part of the WiX toolset, we get the compiler and linker needed to create an MSI installer.
If we're using Visual Studio then we also get project templates that use these tools on our
behalf so that the entire build process is effortless. If we're trying to fit WiX into an automated
deployment pipeline, we can either call the compiler and linker from the command line or use
ready-made MSBuild tasks.

The recipes in this chapter are designed to get you comfortable when working with a WiX
project in Visual Studio and also building it in various ways outside of the IDE. This way,
you'll know how to get it from development to production with ease.

Organizing and Building WiX Projects

8

Installing WiX and creating a new project in
Visual Studio 2013

It's possible to work with WiX outside of Visual Studio, but within it, you'll benefit from the
project templates; IntelliSense and shortcuts to the compiler and linker settings are available
on the project's properties. The only downside is that WiX doesn't work with Visual Studio
Express. However, its installer will give you the compiler and linker so that you can still get
work done even if you're using Notepad to write the markup. SharpDevelop, a free and open
source IDE, also supports WiX projects.

Getting WiX up and running starts with downloading and running its installer. This is a one-
stop shop to update Visual Studio, getting the compiler and linker as well as other utilities to
work with MSI packages. WiX supports Visual Studio 2005 and later, including Visual Studio
2013, which we'll cover here. In this recipe, we will download and install WiX and create our
first setup project.

Getting ready
To prepare for this recipe, install Visual Studio 2013 and close it before installing WiX.

How to do it…
Download and install the WiX toolset to get access to new project templates, IntelliSense,
and project properties in Visual Studio. The following steps will guide you:

1. Open a browser, navigate to http://www.wixtoolset.org, and follow the link to
the downloads page:

http://www.wixtoolset.org

Chapter 1

9

2. Once downloaded, launch the WiX installer and click on Install:

3. After completing the installation, open Visual Studio and go to File | New | Project |
Windows Installer XML.

4. Select the Setup Project template from the list of available project types. The version
of .NET that's displayed has no bearing on the project since it's comprised of XML
mark-up and not .NET code. Give the project a name and click on OK:

Organizing and Building WiX Projects

10

5. The project will initially include a file named Product.wxs, which contains the
skeleton markup you'll need to create an installer:

<?xml version="1.0" encoding="UTF-8"?>
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">
 <Product Id="*"
 Name="My Software"
 Language="1033"
 Version="1.0.0.0"
 Manufacturer="My Company"
 UpgradeCode="889e2707-5235-4d97-b178-cf0cb55d8ab8">
 <Package InstallerVersion="200"
 Compressed="yes"
 InstallScope="perMachine" />

 <MajorUpgrade DowngradeErrorMessage="A newer version of
[ProductName] is already installed." />
 <MediaTemplate />

 <Feature Id="ProductFeature"
 Title="MyFirstWixProject" Level="1">
 <ComponentGroupRef Id="ProductComponents" />
 </Feature>
 </Product>

 <Fragment>
 <Directory Id="TARGETDIR" Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="INSTALLFOLDER"
 Name="My Software" />
 </Directory>
 </Directory>
 </Fragment>

 <Fragment>
 <ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <!-- TODO: Remove the comments around this Component
 element and the ComponentRef below in order to add
 resources to this installer. -->
 <!-- <Component Id="ProductComponent"> -->
 <!-- TODO: Insert files, registry keys, and other
 resources here. -->
 <!-- </Component> -->
 </ComponentGroup>
 </Fragment>
</Wix>

Chapter 1

11

How it works…
The WiX team has always worked quickly to keep up with the latest versions of Visual Studio.
For example, WiX 3.9 supports Visual Studio 2013. When we launched the installer, it
checked which versions of Visual Studio were present and registered its project templates
with all that were compatible.

Behind the scenes, WiX introduces a new project type that has a .wixproj file extension.
This project file contains MSBuild markup, which points to the WiX compiler and linker.
Other IDEs, such as SharpDevelop, can take advantage of these project files to build
MSI packages too.

The Product.wxs file contains everything we need to get started with writing WiX markup.
The best coding practices for how to structure a WiX file have been defaulted for you.
For example, the Directory elements are separated into a Fragment element so that
directories are decoupled from the files that will go into them. A ComponentGroup has been
set up with a comment guiding you to add Component elements to it. Each version of WiX
brings a better Product.wxs file with it.

There's more…
If you were curious about what effect changing the version of the .NET framework listed in
the drop-down list at the top of the New Project window would have, the answer, at least for
setup projects, is nothing at all. A WiX file contains XML and is compiled with a specialized
WiX compiler, so the version of .NET that we select will ultimately be ignored. That's not to say
that it doesn't make a difference for any of the other project types. For example, C# Custom
Action Project will have a dependency on the version of .NET that's selected. Anyone who
uses the installer that in turn uses that custom action will need to have that version of
.NET installed.

Referencing the output of a .NET console
application in a WiX project by using a
preprocessor variable

After setting up our WiX project, the first thing we'll probably want to do is package up the
files that we plan to install. Since we're working in Visual Studio, we'll likely want to include
the output of other projects such as the .exe file that's created from a console application
project. At first, we could try hardcoding the path to the file:

<Component Id="cmpMyConsoleAppEXE"
 Guid="{882DB6AA-1363-4724-8C43-2950E7ABECD4}">

 <File Source="..\MyConsoleApp\bin\Debug\MyConsoleApp.exe" />

</Component>

Organizing and Building WiX Projects

12

Although this works, it's a bit brittle and will break if the path to the file changes. Instead,
we can use a preprocessor variable to store the path and allow Visual Studio to keep it
up-to-date through the power of project references. In this recipe, we'll reference a console
application's output and use a preprocessor variable to include that output in our installer.

Getting ready
To prepare for this recipe, create a new WiX setup project and name it ConsoleAppInstaller.

How to do it…
Use a preprocessor variable to get the path to a project's output with the following steps:

1. Add a new C# console application to the same solution as the
ConsoleAppInstaller setup project by right-clicking on the solution
in Solution Explorer, going to Add | New Project… | Visual C# | Console
Application and naming it TestApplication. The name matters as we'll
be referencing it later:

Chapter 1

13

2. Within the setup project, add a reference to TestApplication by right-clicking on
the References node in Solution Explorer, choosing Add Reference..., and finding
TestApplication under the Projects tab. Click on Add and then on OK:

Organizing and Building WiX Projects

14

3. Within the setup project, open Product.wxs and replace the ComponentGroup
markup inside the last fragment with the following code:
<ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component Id="cmpTestApplicationEXE"
 Guid="{6E2A6370-4784-4CF3-B42B-AA2D29EA5B1B}">
 <File Source="$(var.TestApplication.TargetDir)TestApplication.
exe" />
 </Component>
</ComponentGroup>

4. Build the project and TestApplication.exe will be included in the MSI file. Note
that you must set the EmbedCab attribute on the MediaTemplate element to yes
to include the CAB file that WiX creates, which is where our .exe file is stored, inside
the MSI. Also, this example assumes that TestApplication.exe is the only file
you'd like to include in the installer. Other files, such as DLLs, can be included in the
same way though.

How it works…
When we referenced the C# console application within the WiX setup project, the
preprocessor variable $(var.[ProjectName].TargetDir) was made available to us,
where ProjectName in this case is TestApplication. TargetDir points to the output
directory of the console application project where our compiled TestApplication.exe file
can be found.

Other preprocessor variables are also made available. For example, $(var.
[ProjectName].TargetFileName) gives you the name of the compiled application,
which for us would be TestApplication.exe. A full list of these variables can be found at
http://wixtoolset.org/documentation/manual/v3/votive/votive_project_
references.html.

Another benefit of referencing the console application project in this way is that it ensures
it is compiled before our setup project is. This way, our installer always includes the most
up-to-date version of the application.

http://wixtoolset.org/documentation/manual/v3/votive/votive_project_references.html
http://wixtoolset.org/documentation/manual/v3/votive/votive_project_references.html

Chapter 1

15

The GUID used for the Guid attribute on the Component element in
this example can be any GUID, not just the one listed. You can generate
a new one in Visual Studio by navigating to Tools | Create GUID. Use
Registry Format as the GUID's format. More information can be found
at http://wixtoolset.org/documentation/manual/v3/
howtos/general/generate_guids.html.
You can also set the Guid attribute to an asterisk (*) or omit it altogether
and WiX will set the GUID for you. You should choose your own if you
plan on authoring a patch file for the application in the future or if the
contents of Component don't contain an element that can be marked as
a KeyPath element.

Separating a portion of WIX markup into its
own library

As a project grows in complexity and size, we may end up with different teams building
different parts of the software in relative isolation. Each team may want to control how their
module will be installed or, during development, install only the modules that their code
depends upon into their dev environment. To handle these scenarios, we can split our
installer into chunks of WiX code called setup libraries.

A setup library can be compiled independently and plugged into the main, monolithic setup
project later. We can also include the library in a team-owned setup project that only contains
the modules required by the team. In essence, we can mix and match libraries wherever we
need them to create installers for different purposes.

You might also want to share some complex installer markup, such as a user interface, with
other installers, and a library is the perfect way to do this. Although it's outside the scope of
this book, setup libraries are also used when building custom WiX extensions. In this recipe,
we'll see how to create a setup library and include it in our setup project.

Getting ready
To prepare for this recipe, create a setup project and call it SetupLibraryInstaller.

http://wixtoolset.org/documentation/manual/v3/howtos/general/generate_guids.html
http://wixtoolset.org/documentation/manual/v3/howtos/general/generate_guids.html

Organizing and Building WiX Projects

16

How to do it…
Add a setup library to the solution and reference it in a setup project. The following steps show
how to do this:

1. Add a new setup library to the same solution as the setup project by right-clicking
on the solution in Solution Explorer and navigating to Add | New Project... |
Windows Installer XML | Setup Library Project. For this example, name the
project MySetupLibrary:

2. After it's created, right-click on the MySetupLibrary project in Solution Explorer
and go to Add | New Item… | Text File. Name the text file SampleTextFile.txt
and click on Add. Our library will install this single text file.

3. Right-click on the MySetupLibrary project in Solution Explorer again and select
Properties. Select the Tool Settings tab and add -bf, which stands for bind files,
to the librarian textbox, as shown in the following screenshot:

Chapter 1

17

4. Open Library.wxs and replace the existing markup with the following:
<?xml version="1.0" encoding="UTF-8"?>
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">
 <Fragment>
 <DirectoryRef Id="INSTALLFOLDER">
 <Directory Id="SampleComponentsDirectory"
 Name="Sample Components" />
 </DirectoryRef>

 <ComponentGroup Id="SampleComponentGroup"
 Directory="SampleComponentsDirectory">
 <Component Id="cmpSampleTextFileTXT"
 Guid="{5382BC02-4484-4C9B-8734-A99D20632EA9}">
 <File Source="SampleTextFile.txt" />
 </Component>
 </ComponentGroup>

 <Feature Id="SampleFeature">
 <ComponentGroupRef Id="SampleComponentGroup" />
 </Feature>
 </Fragment>
</Wix>

Organizing and Building WiX Projects

18

5. In the SetupLibraryInstaller project, add a reference to the setup library
by right-clicking on the References node in Solution Explorer and selecting Add
Reference…. Click on the Projects tab, highlight MySetupLibrary, click on
Add, and then on OK.

6. Open Product.wxs and add a FeatureRef element with an ID of
SampleFeature. This includes the feature we added to the Library.wxs
file of SetupLibrary in our installer. FeatureRef can go after the existing
Feature element as follows:

<Feature Id="ProductFeature"
 Title="ConsoleAppInstaller"
 Level="1">
 <ComponentGroupRef Id="ProductComponents" />
</Feature>
<FeatureRef Id="SampleFeature"/>

How it works…
Our setup library contains WiX markup to install a single text file called SampleTextFile.
txt. Ordinarily, when you build a library like this, the source files don't get stored within it.
Instead, only the WiX markup is compiled without any of the source files it refers to. In that
case, we would have had to copy SampleTextFile.txt to the setup project's directory too,
so that it can be found at link-time when compiling the installer.

However, because we added the -bf flag, which stands for bind files, to the Librarian settings,
the text file was serialized and stored within the library. The -bf flag will handle serializing and
storing any type of file including executables, images, and other binary data. Setup libraries
are compiled into files with a .wixlib extension.

The markup we added to the library created a component, directory, and feature for the text
file. To integrate the new directory with the existing directory structure as defined by our setup
project, we chose to reference INSTALLFOLDER with a DirectoryRef element. Just be
sure that there's a corresponding Directory element in your setup project that has this
name. At link time, the DirectoryRef element in the library is merged with the Directory
element in the setup project by matching their IDs. Once we had this, we were able to add a
new subdirectory within the INSTALLFOLDER directory called Sample Components. After
installation, we can see that the new directory was created and it contains our text file:

Chapter 1

19

To be sure that our library gets compiled before our setup project, we referenced it within the
setup project using the References node. Then, to create a link to the library, we included a
FeatureRef element in Product.wxs, which had an ID matching the Feature defined in
the library. This pulls the Feature with all of its components into the installer.

There's more…
The setup libraries might contain more than just components, features, and directories. For
example, they might define markup for a user interface using a UI element, which could then
be linked to our installer with a UIRef element. Basically, if you can find a corresponding
*Ref element, such as DirectoryRef, UIRef, ComponentGroupRef, or FeatureRef,
then you'll be able to separate that type of element into a library and use its *Ref element
to link it to the setup project.

Even if you can't find a corresponding *Ref element, as long as you have a reference of
some kind, such as Property and PropertyRef, the rest of the elements in the library
will be carried along with it into the installer. So, at the very least, you could include a
single Property in the library and use that as the link between the library elements
and the installer.

Compiling a WiX installer on a build machine
using MSBuild

The WiX Toolset places its compiler and linker in C:\Program Files (x86)\WiX
Toolset v3.9\bin. This is fine when compiling on your own machine but becomes a
concern when you'd like to share your project with others or have it compile on a build
server. WiX will have to be installed on each computer that builds the project.

Alternatively, we can store the WiX tools in source control, and then whoever needs to build
a setup project can get everything they need by cloning the repository. This will also help us
keep a handle on which version of WiX we're compiling against on a project-by-project basis.

Organizing and Building WiX Projects

20

In this recipe, we'll store the WiX binaries in a fictitious source control directory on the
C: drive. We'll then update the .wixproj file of a setup project to use the MSBuild tasks
stored there. I will be using a server with the Windows Server 2012 R2 operating system
installed on it. You should be able to follow along with other versions of Windows Server.

Getting ready
To prepare for this recipe, perform the following steps:

1. Install the .NET Framework 3.5. It's needed by the WiX build tasks. In Windows Server
2012 R2, it can be installed as a feature within Server Manager:

2. Next, we'll need the MSBuild engine, which is part of Microsoft Build Tools. It can be
downloaded from http://www.microsoft.com/en-us/download/details.
aspx?id=40760.

3. After installing MSBuild, add its installation directory to the computer's PATH
environment variable. Get there by right-clicking on This PC in file explorer and then
going to Properties | Advanced system settings | Environment Variables.... Scroll
through the list of system variables until you find the one labeled Path. Highlight
it, click on Edit..., and then add the path to the MSBuild directory into the Variable
value field, preceded by a semicolon. Then, click on OK:

http://www.microsoft.com/en-us/download/details.aspx?id=40760
http://www.microsoft.com/en-us/download/details.aspx?id=40760

Chapter 1

21

How to do it…
Download the WiX binaries and update your setup project to use the included MSBuild tasks:

1. Open a browser, navigate to http://www.wixtoolset.org, and follow the link to
the downloads page. Download wix39-binaries.zip:

2. Make sure that the ZIP file is unblocked by right-clicking on it, choosing Properties,
clicking on Unblock (if you don't see it, just continue to the next step), and then
on OK.

3. Extract the contents of the ZIP file to C:\SourceControl\WiX39. Perform this step
on both the server and on your own development computer so that our WiX projects
can be built in both places using the MSBuild tasks from this folder (note that in a
real-world scenario, our source control system would be responsible for copying the
binaries to each computer):

http://www.wixtoolset.org

Organizing and Building WiX Projects

22

4. We will build a simple setup project to confirm that we've got everything on the server
configured correctly. Create a setup project on your development machine and call it
BuildMachineInstaller.

5. Open the BuildMachineInstaller.wixproj file and add the WixToolPath,
WixTargetsPath, and WixTasksPath properties as shown, making sure that the
value of WixToolPath ends in a backslash:
<PropertyGroup>
 <Configuration Condition=" '$(Configuration)' == '' ">Debug</
Configuration>
 <Platform Condition=" '$(Platform)' == '' ">x86</Platform>
 <ProductVersion>3.9</ProductVersion>
 <ProjectGuid>f80ca9fc-8e42-406e-92f9-06e484e94d67</
ProjectGuid>
 <SchemaVersion>2.0</SchemaVersion>
 <OutputName>BuildMachineInstaller</OutputName>
 <OutputType>Package</OutputType>
 <WixToolPath>C:\SourceControl\WiX39\</WixToolPath>
 <WixTargetsPath>$(WixToolPath)wix.targets</WixTargetsPath>
 <WixTasksPath>$(WixToolPath)WixTasks.dll</WixTasksPath>
 <WixTargetsPath Condition=" '$(WixTargetsPath)' == '' AND
'$(MSBuildExtensionsPath32)' != '' ">$(MSBuildExtensionsPath32)\
Microsoft\WiX\v3.x\Wix.targets</WixTargetsPath>
 <WixTargetsPath Condition=" '$(WixTargetsPath)' == ''
">$(MSBuildExtensionsPath)\Microsoft\WiX\v3.x\Wix.targets</
WixTargetsPath>
</PropertyGroup>

6. Copy the BuildMachineInstaller solution folder and all of its subfolders to
C:\SourceControl on the build server.

7. Open a command prompt via Run | cmd, execute the following commands to change
the directory to the BuildMachineInstaller folder and compile the solution
using MSBuild:

cd C:\SourceControl\BuildMachineInstaller

msbuild BuildMachineInstaller.sln

How it works…
We started with a blank slate of a freshly installed Windows Server 2012 R2 operating
system. Therefore, we had to install all the required software including .NET Framework 3.5
and Microsoft Build Tools 2013. The latter gives us the MSBuild engine, whose path we
included in the computer's PATH environment variable.

Chapter 1

23

Next, we downloaded the WiX binaries and copied them to C:\SourceControl. With a
source control system, these files could be shared among all computers that need to compile
our setup projects. We also had to update our project's .wixproj file so that it knew
where to find these WiX binaries. This is accomplished by adding three MSBuild properties:
WixToolPath, WixTargetsPath, and WixTasksPath. The first property sets the path to
the WiX binaries, the second to the wix.targets file, and the third to WixTasks.dll. With
all of this setup out of the way, we opened a command prompt, navigated to the folder where
our solution file was on the build server, and compiled it using MSBuild.

Building a WiX installer from the
command line

WiX has excellent integration with Visual Studio, but that shouldn't stop you from using it
in other IDEs. We ought to be able to create an installer using only Notepad and the WiX
compiler and linker if we wanted to. Luckily, WiX gives us the freedom to do this. In this recipe,
we'll write a simple .wxs file and compile it into an MSI package using Candle, which is the
WiX compiler, and Light, which is the WiX linker.

Getting ready
To prepare for this recipe, perform the following steps:

1. Using a text editor such as Notepad, create a file called Product.wxs and add the
following markup to it:
<?xml version="1.0" encoding="UTF-8"?>
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">
 <Product Id="*"
 Name="My Software"
 Language="1033"
 Manufacturer="My Company"
 Version="1.0.0.0"
 UpgradeCode="8c7d85db-b0d1-4a9a-85ea-130836aeef67">

 <Package InstallerVersion="200"
 Compressed="yes"
 InstallScope="perMachine" />

 <MajorUpgrade DowngradeErrorMessage="A newer version of
[ProductName] is already installed." />
 <MediaTemplate EmbedCab="yes" />

 <Feature Id="ProductFeature"
 Title="The main feature"
 Level="1">
 <ComponentGroupRef Id="ProductComponents" />

Organizing and Building WiX Projects

24

 </Feature>
 </Product>

 <Fragment>
 <Directory Id="TARGETDIR" Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="INSTALLFOLDER"
 Name="My Software" />
 </Directory>
 </Directory>
 </Fragment>

 <Fragment>
 <ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component Id="cmpMyTextFileTXT"
 Guid="{A4540658-09B6-46DA-8880-0B1962E06642}">
 <File Source="MyTextFile.txt" />
 </Component>
 </ComponentGroup>
 </Fragment>
</Wix>

2. This installs a text file called MyTextFile.txt. So, add a text file with this name
to the same directory as Product.wxs. We will compile the two files from the
command line to create an installer.

How to do it…
Open a command prompt and use candle.exe and light.exe to compile and link our WiX
source file:

1. Open a command prompt by navigating to Run | cmd.

2. Change the directory to where the Product.wxs and MyTextFile.txt files are
using the following command line:
cd C:\MyProject

3. Use Candle to compile the .wxs file into a .wixobj file and then place it in an output
folder called obj. Be sure to surround the path to Candle, %WIX%bin\candle,
with quotes since it will contain spaces when it is expanded:
"%WIX%bin\candle" *.wxs -o obj\

4. Use Light to link the text file and the .wixobj file together to form an MSI:

"%WIX%bin\light" obj*.wixobj -o bin\CommandLineInstaller.msi

Chapter 1

25

How it works…
When we installed the WiX toolset, it gave us the WiX compiler, which is candle.exe,
and linker, which is light.exe. These are the only tools we need to create an MSI from
our WiX source file, Product.wxs. From the command line, we navigated to the directory
where our source file was and then used Candle and Light to compile and link the file to
create an MSI installer.

The first argument we passed to Candle was *.wxs. This selects all the .wxs files in the
current directory and includes them in the compilation. Next, the -o argument tells Candle
where to send the output of the compilation step. In this case, we sent it to a directory called
obj. Note that the directory name ends in a backslash so that Candle knows that it's a
directory. If it didn't exist before, it will be created.

The output of the Candle command was a file called Product.wixobj. This was an
intermediate file that was picked up by light.exe in the next step. The first argument
we passed to Light was the location of the .wixobj files: obj*.wixobj. By using
an asterisk, we select all the .wixobj files in the obj directory. The -o argument tells
Light where to create the MSI file and what to name it. In this case, we create a file called
CommandLineInstaller.msi.

Another file called CommandLineInstaller.wixpdb was also created. This can be
used when building patch files. You can learn more by reading Peter Marcu's blog post
WiX: Introducing the WixPdb at http://petermarcu.blogspot.com/2008/02/wix-
introducing-wixpdb.html.

There are a number of arguments that can be passed to Candle and Light that you might want
to get to know. Passing the -? flag to either will give you a list of all the available options:

"%WIX%bin\candle" -?

"%WIX%bin\light" -?

We used the %WIX% system environment variable to resolve the path to
the WiX bin directory, where candle.exe and light.exe are present.
This variable is added when you install the WiX toolset and resolves to
C:\Program Files (x86)\WiX Toolset v3.9. It will not be present
if you are using the WiX binaries directly without installing the WiX toolset.

http://petermarcu.blogspot.com/2008/02/wix-introducing-wixpdb.html
http://petermarcu.blogspot.com/2008/02/wix-introducing-wixpdb.html

2
Installing Files and

Directories

In this chapter, we will cover the following recipes:

 f Installing directories onto the target computer

 f Adding a file to a directory

 f Installing a 64-bit executable file to Program Files

 f Including one component or another depending on the condition

 f Using the heat.exe tool to generate components

Introduction
The WiX team has chosen to use XML as its modus operandi. It's a good thing that they have,
because the declarative syntax of XML lends itself well to changing the state of the end user's
computer without being tied to the details of how it was done. If they had chosen a procedural
language instead, such as C, then we would be obliged to write functions to perform
installation tasks. Other installers, such as NSIS, take the procedural route.

The problem with a procedural approach is that it's implementation-specific. If working with
a Windows XP filesystem is different than working with a Windows 10 filesystem, then we will
need to have branching logic to call a different function depending on where our installer
runs. XML lets us declare what we want the state of the system to look like and Windows
Installer takes care of the details of making it happen. Truth be told, the Windows Installer
platform is itself declarative. Behind the scenes, it creates tables of relational data that
declare the changes to make to the target system.

Installing Files and Directories

28

XML has another benefit, especially with regards to creating directories and files. It's great
for representing a hierarchy. We can easily nest the Directory elements inside of other
Directory elements to create subdirectories. Similarly, we can nest the File elements
inside the Directory elements to add files to a specific directory. In this chapter, we'll get
some practice creating directories, files, and components. We'll also see how useful the Heat
utility is, since it can create all of this markup for us.

Installing directories onto the target
computer

Before we can install any files to the end user's system, we have to specify the directories
where they'll go. These could be directories that already exist or new ones that we'll be
creating. Either way, we'll be using the Directory elements to form our folder structure.
Our Directory elements can be nested directly within our Product element or separated
into a Fragment. The Fragment approach has the advantage of being more modular, or in
other words, keeps the concerns of making a directory structure separate from other chores
such as installing files into those directories.

In this recipe, we will install some directories into the Program Files folder. To keep things
simple, we won't install any files yet. Since Windows Installer won't install empty directories,
we'll have to put some kind of placeholder in for now. We can use the CreateFolder
element for this. Its job is simply to ensure the directory gets created even though it's empty.

Getting ready
To prepare for this recipe, create a new setup project and call it DirectoryInstaller.

How to do it…
Define a Directory element that targets the Program Files folder and then nest
subdirectories within it. The following steps show you how it is done:

1. The default markup that we find in our Product.wxs file already contains the
skeleton of a directory structure. A Directory with an ID of ProgramFilesFolder
targets Program Files:
<Fragment>
 <Directory Id="TARGETDIR" Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="INSTALLFOLDER"
 Name="DirectoryInstaller" />
 </Directory>
 </Directory>
</Fragment>

Chapter 2

29

Downloading the example code
You can download the example code files for all Packt Publishing
books you have purchased from your account at http://www.
packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

2. Remove the directory that has an ID of INSTALLFOLDER, replacing it with the
following where each Directory element's ID is unique and the name is the
friendly name of the folder. This will create three folders—Config, Tools, and
Documentation—within a folder called My Software that's within a folder
called My Company:
<Directory Id="ProgramFilesFolder">
 <Directory Id="MyCompanyFolder" Name="My Company">
 <Directory Id="MySoftwareFolder" Name="My Software">
 <Directory Id="ConfigFolder" Name="Config" />
 <Directory Id="ToolsFolder" Name="Tools" />
 <Directory Id="DocFolder" Name="Documentation" />
 </Directory>
 </Directory>
</Directory>

3. To ensure our empty directories are created, update the ComponentGroup that's at
the bottom of the default Product.wxs file with the following Component elements.
Each contains the CreateFolder tag that will allow its directory to be installed:

<Fragment>
 <ComponentGroup Id="ProductComponents">
 <Component Id="cmpCreateConfigFolder"
 Guid="{21AC0239-87F9-4D8B-9F73-71665C491150}"
 Directory="ConfigFolder">
 <CreateFolder />
 </Component>
 <Component Id="cmpCreateToolsFolder"
 Guid="{7B75B591-58B7-41F4-A511-E221E243371C}"
 Directory="ToolsFolder">
 <CreateFolder />
 </Component>
 <Component Id="cmpCreateDocFolder"
 Guid="{B0BA1D63-110C-4169-9094-64F4103234E8}"
 Directory="DocFolder">
 <CreateFolder />
 </Component>
 </ComponentGroup>
</Fragment>

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Installing Files and Directories

30

How it works…
The first thing to notice is that the top-level Directory element has the ID TARGETDIR and
the name of SourceDir:

<Directory Id="TARGETDIR" Name="SourceDir">

This is how all directory structures should begin and is required by Windows Installer.
TARGETDIR identifies the hard drive where our installation will go and, by default, is set
to the largest drive on the system. That's usually the C: drive but even if it isn't, the child
Directory element with the ID ProgramFilesFolder leaves no doubt where the files
should go. From there, we can add subdirectories of our own. If you'd like to begin your
directory structure under a different existing folder, see the following link for information about
other built-in Directory elements: http://msdn.microsoft.com/en-us/library/
aa370905(v=vs.85).aspx#system_folder_properties. Note that predefined
directories such as ProgramFilesFolder don't get a Name attribute.

For new directories that you create, the ID can be anything as long as it follows a few rules:

 f It must be unique among other Directory elements

 f It should contain only letters, numbers, underscores, and periods

 f It must begin with either a letter or an underscore

Windows Installer uses this identifier internally, but the end user will never see it. The
Name attribute, on the other hand, sets the visible name of the folder after it's installed.
After installation, we can see that the directory structure was added to the computer under
Program Files:

http://msdn.microsoft.com/en-us/library/aa370905(v=vs.85).aspx#system_folder_properties
http://msdn.microsoft.com/en-us/library/aa370905(v=vs.85).aspx#system_folder_properties

Chapter 2

31

Adding a file to a directory
Markup to copy files to the end user's computer is probably going to make up the bulk of your
installer. That's because for each file you want to install, which may number in the hundreds,
there will be a corresponding XML element in your .wxs file to represent it. In this recipe, we'll
cover the basics—installing a single text file to a directory that we'll create under Program
Files. All file-types, whether plain text or binary, will follow this same pattern.

Getting ready
To prepare for this recipe, perform the following steps:

1. Create a setup project and call it FileInstaller.

2. Add a text file to the project and name it Sample.txt. Although we're adding the file
directly to the setup project, in most cases the source files we use will be from other
projects or folders.

3. Update the default directory structure to the following wherein a folder called My
Software is added to the Program Files directory:

<Fragment>
 <Directory Id="TARGETDIR" Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="INSTALLFOLDER" Name="My Software" />
 </Directory>
 </Directory>
</Fragment>

How to do it…
Use ComponentGroup to install a collection of files to a directory as shown in the
following steps:

1. By default, Product.wxs already contains a ComponentGroup that has a
Directory attribute set to INSTALLFOLDER. This is exactly the syntax we want
and will install any child Component elements to the My Software folder:
<Fragment>
 <ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 </ComponentGroup>
</Fragment>

Installing Files and Directories

32

2. Add a Component element to the ComponentGroup with an Id of your choosing
and generate a new GUID for the Guid attribute:
<ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component Id="cmpSampleTXT"
 Guid="{759CE9A8-F4DF-4DE7-B995-E5F0D926BE43}">
 </Component>
</ComponentGroup>

3. Within that component, add a File element that points to our Sample.txt file:
<Component Id="cmpSampleTXT"
 Guid="{759CE9A8-F4DF-4DE7-B995-E5F0D926BE43}">
 <File Source="Sample.txt" />
</Component>

4. Although the setup project template already sets it up for you, make sure that the Id
of the ComponentGroup is referenced by a ComponentGroupRef element inside of
a Feature element:

<Feature Id="ProductFeature" Title="The Software" Level="1">
 <ComponentGroupRef Id="ProductComponents" />
</Feature>

How it works…
ComponentGroup is a container for a group of Component elements. It's really handy when
declaring where the components should be installed to since it comes with a Directory
attribute for specifying this. Any child Component elements will go into that directory on the
target computer. It points to the Id of a Directory element.

Each component is in turn a container for a single File element and, through the use of its
GUID, allows the file to be tracked from version to version. For example, if we need to patch
the file in the future, we'll be able to match it by this identifier. The GUID uniquely identifies it
among all other components that have been installed to the end user's system. The ID is used
to differentiate the component within the MSI package. You can use any identifier you like, but
as a convention, I prefix mine with cmp.

The File element points to our source file on disk with its Source attribute. In this example,
we used the relative path Sample.txt, but we could have used an absolute path or a
preprocessor variable. Note that we added the text file directly to our setup project, but in
practice the files you reference do not need to be in the project. As long as the path to the file
is correct, the WiX linker will find it.

Chapter 2

33

There's more…
If all the files in the ComponentGroup can be found in the same directory on
your development computer then you can save yourself some typing by setting the
ComponentGroup element's Source attribute. In the following example, we use the
Source attribute to specify that all child components can be found in the SourceFiles
directory. For this to work, you must switch all File elements in the group to use the Name
attribute, rather than the Source attribute, to specify the name of the file. The code is
as follows:

<ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER"
 Source="..\SourceFiles">
 <Component Id="cmpSampleTXT"
 Guid="{759CE9A8-F4DF-4DE7-B995-E5F0D926BE43}">
 <File Name="Sample.txt" />
 </Component>
</ComponentGroup>

Installing a 64-bit executable file to Program
Files

The 64-bit revolution has come and gone. If you're still writing 32-bit applications, you should
make the switch if you can. Modern Windows operating systems have full support for it, but
for end users to see the benefits, the software needs to be updated to take advantage. The
64-bit programs have the potential for increased performance, better parallel processing, and
improved security. See the Technet article at http://technet.microsoft.com/en-us/
library/dd630755%28v=office.12%29.aspx for more information.

Once the decision has been made to convert software to 64 bits, the next step is ensuring it's
installed to the correct Program Files folder and that our installer identifies itself as being
compatible with the 64-bit architecture. In this recipe, we will build a console application that
targets the x64 platform and then include it in an MSI package that supports it.

http://technet.microsoft.com/en-us/library/dd630755%28v=office.12%29.aspx
http://technet.microsoft.com/en-us/library/dd630755%28v=office.12%29.aspx

Installing Files and Directories

34

Getting ready
To prepare for this recipe, perform the following steps:

1. Create a new setup project and call it SixtyFourBitInstaller.

2. Within the same solution, add a C# console application project and name it
ConsoleApp64Bits. Make sure that it targets .NET 4 or later, since we'll need it for
the utility method that checks whether we're running in a 64-bit process. To ensure it
will run in a 64-bit process on a 64-bit machine, make sure that Platform target on
the Build* tab of the project's properties is set to either x64 or Any CPU:

3. Update the application's Program.cs file with the following code:
using System;

namespace ConsoleApp64Bits
{
 class Program
 {
 static void Main(string[] args)
 {
 if (Environment.Is64BitProcess)
 {
 Console.WriteLine("Process is 64-bits!");
 }
 else
 {
 Console.WriteLine("Process is NOT 64-bits!");
 }

Chapter 2

35

 Console.ReadKey();
 }
 }
}

4. Add a reference to the console application in our setup project by right-clicking on the
References node in Solution Explorer and going to Add Reference… | Projects |
ConsoleApp64Bits | Add | OK.

How to do it…
Set the -arch flag to x64 and then set your files to install to the 64-bit program files:

1. Right-click on the setup project in Solution Explorer and go to Properties | Tool
Settings. Then, in the Compiler textbox, add -arch x64:

2. Replace the existing directory structure in Product.wxs with the following code,
making sure to use ProgramFiles64Folder instead of ProgramFilesFolder:
<Fragment>
 <Directory Id="TARGETDIR" Name="SourceDir">
 <Directory Id="ProgramFiles64Folder">
 <Directory Id="INSTALLFOLDER" Name="My Software" />
 </Directory>
 </Directory>

3. Add a Component and File element for the 64-bit console application, as shown in
the following code:
<Fragment>
 <ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component Id="cmpConsoleApp64BitsEXE"
 Guid="{7230A6C1-2920-43A0-B9BA-69E4B0A5450C}">

Installing Files and Directories

36

 <File Source="$(var.ConsoleApp64Bits.TargetDir)
ConsoleApp64Bits.exe" />
 </Component>
 </ComponentGroup>
</Fragment>

4. Run the installer and then check that ConsoleApp64Bits.exe was installed in C:\
Program Files\My Software. Run the application and see that it's running in a
64-bit process.

How it works…
An installer has some metadata in it that tells what platform it's targeting, or more accurately,
what platform the files it's installing are targeting. In this example, we are packaging up a 64-
bit console application. Therefore, the installer should convey that. That's where the -arch
flag comes in. By setting it to x64 in the Compiler settings, we're setting up that metadata.

On 64-bit Windows, there are two program files folders: Program Files for 64-bit software
and Program Files (x86) for 32-bit software. In our setup project, we swapped the
directory that, by default, has Id of ProgramFilesFolder with one that has Id of
ProgramFiles64Folder. As the name implies, this will reference the 64-bit Program
Files folder.

The next step was to install our application to this directory. The ComponentGroup element
has a Directory attribute to specify which directory to install its child components to. We set
it to INSTALLFOLDER and since that folder is a subdirectory of ProgramFiles64Folder,
we can be sure that it will install to the 64-bit Program Files.

There's more…
It's possible to include 32-bit executable files in your 64-bit installer and have them installed
to Program Files (x86). First, be sure that you've added the Directory elements for
both ProgramFilesFolder and ProgramFiles64Folder:

<Directory Id="ProgramFilesFolder">
 <Directory Id=" INSTALLFOLDER_X86" Name="My Software" />
</Directory>
<Directory Id="ProgramFiles64Folder">
 <Directory Id="INSTALLFOLDER" Name="My Software" />
</Directory>

Then, for those components that are meant to be installed to Program Files (x86),
set the Win64 attribute on the Component element to no. This alerts the installer that this
particular file is not 64-bits.

Chapter 2

37

Here's an example that installs a 32-bit executable to Program Files (x86):

<ComponentGroup Id="My32BitComponents"
 Directory="INSTALLFOLDER_X86">
 <Component Id="cmpConsoleApp32BitsEXE"
 Guid="{61F4DDB4-07B9-475C-BE34-07BA619DA86F}"
 Win64="no">
 <File Source="$(var.ConsoleApp32Bits.TargetDir)ConsoleApp32Bits.
exe" />
 </Component>
</ComponentGroup>

We store the 32-bit component in its own ComponentGroup that's separate from our other
components. Then, we can use the Directory attribute to install child components to
INSTALLFOLDER_X86.

Including one component or another
depending on the condition

An installer should be able to adapt to its surroundings, to mold itself to the operating system
or other constraints it detects. WiX has this sort of intelligence baked in. By using conditions,
we can prevent a component from being installed if it's not a good fit and simultaneously allow
a different component to be installed.

In this recipe, we'll store two XML files in the MSI and select only one of them to install based
on the target operating system. We'll be using a built-in property called VersionNT to get
the operating system, but this can be extended by defining our own custom properties. For
example, you might install a component if the user selects Yes for a radio button in the user
interface. Or, you might install debug versions of your DLLs depending on whether you're
installing to a development machine.

Getting ready
To prepare for this recipe, perform the following steps:

1. Create a setup project and name it ConditionalComponentsInstaller.

2. Add an XML file to the project and call it Windows7.xml.

3. Add a second XML file and call it Windows8.xml.

Installing Files and Directories

38

How to do it…
Add a Condition element to Component to install it only if the condition is true, such as if
the version of Windows matches our expectation:

1. Add a Component for each XML file:
<ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component Id="cmpWindows7XML"
 Guid="{1FDA4A47-B45B-4040-A486-56EDA4B036B8}">
 <File Source="Windows7.xml" />
 </Component>
 <Component Id="cmpWindows8XML"
 Guid="{2FF087CE-9483-4456-BF77-FB1F6D700A76}">
 <File Source="Windows8.xml" />
 </Component>
</ComponentGroup>

2. Add the Condition elements inside each component. Use the predefined
VersionNT property to check the version of Windows that's installed. For Windows
7, the value of this property will be automatically set to 601. For Windows 8, it will
be 602:

<Component Id="cmpWindows7XML"
 Guid="{1FDA4A47-B45B-4040-A486-56EDA4B036B8}">
 <File Source="Windows7.xml" />
 <Condition>VersionNT = 601</Condition>
</Component>
<Component Id="cmpWindows8XML"
 Guid="{2FF087CE-9483-4456-BF77-FB1F6D700A76}">
 <File Source="Windows8.xml" />
 <Condition>VersionNT = 602</Condition>
</Component>

How it works…
In this recipe, we're installing two XML files. However, the first will only be installed if the
operating system is Windows 7 and the second only if it's Windows 8. We started by adding
components in the way that we always have. The trick was to add the Condition elements
to each, comparing a property called VersionNT to a number that represents a version
of Windows.

Chapter 2

39

The VersionNT property is built into Windows Installer without you having to set it.
Each version of Windows gets a number that we can compare with this property to see
which operating system we're dealing with. Specific values for VersionNT can be found
on Microsoft's MSDN website at http://msdn.microsoft.com/en-us/library/
aa370556(v=vs.85).aspx. You might not find Windows 8.1 in the list, since it's so new, but
its value is 603. Other built-in properties can be found at http://msdn.microsoft.com/
en-us/library/aa370905(v=vs.85).aspx.

We used an equals sign (=) to do a comparison:

<Condition>VersionNT = 601</Condition>

We could have checked for any operating system greater than Windows 7 by using the
greater-than-or-equal-to operator (>=), such as:

<Condition>VersionNT >= 601</Condition>

Similarly, we could have checked whether the operating system was Windows 7 or older by
using the less-than-or-equal-to operator (<=):

<Condition><![CDATA[VersionNT <= 601]]></Condition>

In this case, we had to surround the statement with the CDATA tags so that our
less-than sign wouldn't be confused with the surrounding XML. We can also combine
two expressions to see if the operating system falls within a range, such as Windows 7
through Windows 8.1 inclusive:

<Condition>
 <![CDATA[VersionNT >= 601 AND VersionNT <= 603]]>
</Condition>

There's more…
The Component element has an attribute called Transitive that, when set to yes, will
cause any Condition within the Component to be re-evaluated if the installer is rerun,
as shown in the following code:

 <Component Id="cmpWindows7XML"
 Guid="{1FDA4A47-B45B-4040-A486-56EDA4B036B8}"
 Transitive="yes">

Here, if the child Condition evaluates to false the second time around, the component will
be removed from the end user's computer. Alternatively, if the condition evaluates to true,
the component will be installed even if it hadn't been before.

http://msdn.microsoft.com/en-us/library/aa370556(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa370556(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa370905(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa370905(v=vs.85).aspx

Installing Files and Directories

40

Using the heat.exe tool to generate
components

Sometimes, your software is going to require a lot of files: there's the main executable,
supporting libraries, images, configuration files, help documentation, and potentially more.
You might start out writing the Component elements by hand, but pretty soon it's going to
amount to more than you'd care to take on.

The WiX team has provided a tool called Heat to shoulder the burden. You can take this utility
and point it at a directory of files, and it will generate the WiX markup for you. In this recipe,
we'll try it out by creating a directory of text files and then run Heat to turn it into a .wxs file.
Heat is included in the WiX toolset.

Getting ready
To prepare for this recipe, perform the following steps:

1. On your desktop, create a folder named SourceFiles.

2. Add three text files to it and name them Sample1.txt, Sample2.txt,
and Sample3.txt.

How to do it…
Call heat.exe from the command line to convert a folder of files into the WiX markup using
the following steps:

1. Open a command prompt and change the directory to your Desktop folder:
cd Desktop

2. Invoke heat.exe on the folder with the following command:
"%WIX%bin\heat.exe" dir "SourceFiles" -cg MyComponentGroup
-dr INSTALLFOLDER -gg -sfrag -srd -var var.SourceFilesDir -out
"Components.wxs"

3. Check that a file called Components.wxs was created on your desktop. Create a
new WiX setup project and copy the Components.wxs file into it. You can do this by
dragging the file onto the Visual Studio Solution Explorer.

Chapter 2

41

4. Define a preprocessor variable called SourceFilesDir as the path to the
Desktop\SourceFiles folder by opening your setup project's properties and
selecting the Build tab. Then, add SourceFilesDir=C:\Users\Nick\Desktop\
SourceFiles to the textbox that's labeled Define preprocessor variables. You can
also use a relative path. Use the path to your own Desktop.

5. To reference our new components in the project, add a ComponentGroupRef
element to our project's Product.wxs file. Its ID should match the ID of
ComponentGroup that Heat generated for us in the Components.wxs file:

<Feature Id="ProductFeature" Title="HeatInstaller" Level="1">

 <ComponentGroupRef Id="ProductComponents" />

 <ComponentGroupRef Id="MyComponentGroup"/>

</Feature>

Installing Files and Directories

42

How it works…
Our call to Heat began with the dir harvest type. The term harvest means to generate WiX
markup from a source. There are several things that can be harvested, including Visual Studio
projects, single standalone files and, in this case, a whole directory; hence, the dir harvest
type is used. Immediately following the harvest type is the directory where the source files can
be found. In this case, we named the folder SourceFiles.

The -cg flag instructs heat.exe to create a ComponentGroup element and the Id to assign
to it; in this case, we used MyComponentGroup. All the components that Heat generates will
be included in this group.

Next, we set the -dr flag to INSTALLFOLDER so that our components can be installed to
that directory. The -gg flag generates GUIDs for the components. The -sfrag flag causes
all the components to be put into a single Fragment tag, rather than having each in its own
Fragment tag. The -srd flag tells Heat to not create a Directory element with the name
SourceFiles, which it would have done otherwise.

The -var flag causes each File element to have a Source attribute prefixed with a
preprocessor variable of our choice. Here's an example of a File element that would be
generated that is prefixed with the SourceFilesDir variable that we specified:

<File Id="filB6C392508320F3B45A8928D279282132"
 KeyPath="yes"
 Source="$(var.SourceFilesDir)\Sample2.txt" />

Having this variable in place allows us to specify the path to our text files dynamically by
setting its value in the WiX setup project's properties. The last flag we used was -out,
which gives a name to the .wxs file that Heat generates.

We copied the Components.wxs file to a setup project and defined the SourceFilesDir
preprocessor variable so that it pointed to the folder on our desktop. The reason that
we need to do this is that the .wxs file only contains markup to add the files. The actual
source files themselves must still be linked-in during compilation. Finally, we added a
ComponentGroupRef element within our Feature so that the new components would be
included in the MSI.

There's more…
In this recipe, we did all of our work from the command line. We can do the same job within a
setup project's .wixproj file using the MSBuild syntax. That way, the latest files will be pulled
in each time we build the project. The key is to use the HeatDirectory task.

Chapter 2

43

Here's an example where we've added a HeatDirectory task inside of the BeforeBuild
target in our .wixproj file:

<Target Name="BeforeBuild">
 <PropertyGroup>
 <WixToolPath>C:\Program Files (x86)\WiX Toolset v3.8\bin\</
WixToolPath>
 </PropertyGroup>
 <HeatDirectory ToolPath="$(WixToolPath)"
 Directory="$(ProjectDir)SourceFiles"
 ComponentGroupName="MyComponentGroup"
 DirectoryRefId="INSTALLFOLDER"
 GenerateGuidsNow="true"
 SuppressFragments="true"
 SuppressRootDirectory="true"
 PreprocessorVariable="var.SourceFilesDir"
 OutputFile="Components.wxs" />
</Target>

As before, the SourceFilesDir preprocessor variable would need to be defined in the
project's properties and MyComponentGroup should be added as ComponentGroupRef
within the feature. Also, we will need to add the Component.wxs file to the project after the
first time that it's generated. From then on, it will be automatically updated for you each time
you build the project.

If you're using a version control system such as TFS that locks your files
between checkouts, you may not want to check-in the Components.wxs
file itself, since it will constantly change.

More information about the HeatDirectory task can be found at http://wixtoolset.
org/documentation/manual/v3/msbuild/task_reference/heatdirectory.html.

http://wixtoolset.org/documentation/manual/v3/msbuild/task_reference/heatdirectory.html
http://wixtoolset.org/documentation/manual/v3/msbuild/task_reference/heatdirectory.html

3
File and Folder

Permissions

In this chapter, we will cover the following recipes:

 f Changing the permissions on a folder for a user

 f Changing the permissions on a file for a user

 f Marking a file as read only

 f Creating a file share

 f Setting the default program for a file type

Introduction
When it comes to security, your first line of defense is limiting the number of users who are
authorized to access or modify your software's files and folders. In Windows, access control
lists (ACL) enumerate the permissions each user has. A user in the list can either be granted
a permission directly or inherit it by being a member of a Windows group. For example, being
a member of the Administrators group gives full control to read, execute, and modify a file or
the contents of a folder.

In this chapter, we will see how to set the ACLs of files and folders. We'll then talk about some
other tricks that WiX has to offer, such as how to convert a regular folder into a file share and
how to assign the default program to be used when opening a type of file.

File and Folder Permissions

46

Changing the permissions on a folder for a
user

When you set permissions on a folder, all of the files that are created within that folder
after that point will inherit those permissions. This accommodates the Windows Installer's
sequence, which as luck would have it, creates folders first and then adds files to them. This
means we can set permissions once and let them trickle down. In this recipe, we'll give a user
named Joe full access to a folder.

Getting ready
To prepare for this recipe, perform the following steps:

1. Create a new setup project and name it FolderPermissionsInstaller.

2. Add a text file named Sample.txt to the project. After installation, we can verify that
the permissions that were set on the folder propagated to this file. Add a Component
element to include it in the installation:
<ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component Id="cmpSampleTXT"
 Guid="{79972677-2109-471C-A8FE-58A255CE43E3}">
 <File Source="Sample.txt" />
 </Component>
</ComponentGroup>

3. The user for whom we are setting permissions must already exist. Manually, create
a user named Joe on the target computer by right-clicking on This PC and going to
Manage | Local Users and Groups. Right-click on the Users node and select New
User. Set the user's name as Joe as shown here:

Chapter 3

47

How to do it…
Place util:PermissionEx inside a CreateFolder element to set permissions on a folder.
The following steps will show you how to do it:

1. Reference UtilExtension by right-clicking on the References node in
Solution Explorer, going to Add Reference… | Browse, and then adding
WixUtilExtension.dll.

2. Add the UtilExtension namespace to the Wix element in Product.wxs:
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"
xmlns:util="http://schemas.microsoft.com/wix/UtilExtension">

File and Folder Permissions

48

3. Within the ComponentGroup that's set to be installed to our installation directory,
add a Component that has a child element CreateFolder:
<ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component Id="cmpEmptyFolder"
 Guid="{292A233A-9C0E-479F-B83B-509F841B32D3}">
 <CreateFolder>
 </CreateFolder>
 </Component>
</ComponentGroup>

4. Add a util:PermissionEx element inside the CreateFolder element and set
the name of the user we're giving access to, and the type of permissions to allow.
The following code grants full access to the folder and the files it contains:

<CreateFolder>
 <util:PermissionEx User="Joe" GenericAll="yes" />
</CreateFolder>

How it works…
The PermissionEx element is stored in an assembly called WixUtilExtension.dll
that we must reference before we can use it. To make things easy, the Add Reference…
window takes us directly to the WiX bin folder where that file can be found. The second
step is to add the UtilExtension XML namespace to our Product.wxs file. To do so,
we added xmlns:util followed by the UtilExtension namespace, http://schemas.
microsoft.com/wix/UtilExtension, to our Wix element. Afterwards, any element from
WixUtilExtension.dll can be accessed by prefixing it with util.

By placing PermissionEx inside a CreateFolder element, which in turn is inside a
Component element, we're instructing WiX to update the permissions on the directory
that the component is being installed to. We can also use the CreateFolder element's
Directory attribute to identify a directory to set permissions on. In that case, the folder
that the component is being installed to doesn't matter.

The first attribute that we added to PermissionEx, User, identifies the user that our
installer will grant folder permissions to. This user must either already exist on the target
computer or be created by the installer. Otherwise, the installation will fail.

The second attribute, GenericAll, gives the user read, write, and execute permissions
on the folder. Alternatively, we can specify each one individually with the GenericRead,
GenericWrite, and GenericExecute attributes. More information about the
PermissionEx element can be found at http://wixtoolset.org/documentation/
manual/v3/xsd/util/permissionex.html and information about how Windows treats
the different permissions available on MSDN at http://msdn.microsoft.com/en-us/
library/bb727008.aspx.

http://schemas.microsoft.com/wix/UtilExtension
http://schemas.microsoft.com/wix/UtilExtension
http://wixtoolset.org/documentation/manual/v3/xsd/util/permissionex.html
http://wixtoolset.org/documentation/manual/v3/xsd/util/permissionex.html
http://msdn.microsoft.com/en-us/library/bb727008.aspx
http://msdn.microsoft.com/en-us/library/bb727008.aspx

Chapter 3

49

Although GenericAll, GenericWrite, and GenericExecute can be
set alone, GenericRead can't be the only permission. You can, however,
pair it with the Read attribute to give the user read-only access.

There's more…
There's another element, also called PermissionEx, that's included in the core WiX toolset
and is not part of UtilExtension. It only has two attributes: Id and Sddl. It allows you to
set the permissions on a file or folder using Security Descriptor Definition Language (SDDL).
Because it's more complex and the UtilExtension's version of PermissionEx will suit most of
your needs, I recommend that you only use this specialized element if your use case demands
a more fine-tuned approach. It will only work where Windows Installer 5.0 is installed, which
includes Windows 7 and newer operating systems.

There's also a Permission element in the core toolset that has many of the same attributes
as util:PermissionEx. However, while PermissionEx will keep any existing ACLs on the
folder, Permission wipes them all out and applies only those that you've explicitly set.

Changing the permissions on a file for a user
Although setting access at the folder level is good for quickly securing all of your files in one
fell swoop, we can still fine-tune permissions on a file-by-file basis. This might be useful, for
example, if you have a main executable that can be run by anyone but another administrative
utility that should only be run by certain users.

In this recipe, we'll install a text file and update its permissions so that our user Joe has
full access.

Getting ready
To prepare for this recipe, perform the following steps:

1. Create a new setup project and name it FilePermissionsInstaller.
2. Add a text file named Sample.txt to the project and then add a Component

element to include it in the installation:
<ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component Id="cmpSampleTXT"
 Guid="{FB746118-B1E5-42DC-AA76-862C4E1EABCF}">
 <File Source="Sample.txt">
 </File>
 </Component>
</ComponentGroup>

File and Folder Permissions

50

3. The user for whom we are setting permissions must already exist. Manually, create
a user named Joe on the target computer by right-clicking on This PC and going to
Manage | Local Users and Groups. Right-click on the Users node and select New
User. Set the user's name as Joe.

How to do it…
As shown in the following steps, include util:PermissionEx inside a File element to set
permissions on a file:

1. Reference UtilExtension by right-clicking on the References node in
Solution Explorer, going to Add Reference… | Browse, and then adding
WixUtilExtension.dll.

2. Add the UtilExtension namespace to the Wix element in Product.wxs:
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"
xmlns:util="http://schemas.microsoft.com/wix/UtilExtension">

3. Find the File element that you want to set permissions on and then add a
util:PermissionEx element inside it. Specify the user to whom you'd like to give
access and the type of permissions to allow. The following code grants full access to
the Sample.txt file for a user named Joe:

<File Source="Sample.txt">
 <util:PermissionEx User="Joe" GenericAll="yes"/>
</File>

How it works…
We began by adding a reference to WixUtilExtension.dll and including the
UtilExtension namespace, http://schemas.microsoft.com/wix/UtilExtension,
in the Wix element. This gives us access to the PermissionEx element.

By putting PermissionEx inside a File element, we're saying that we want to update the
permissions on this particular file after we've installed it. The User attribute selects the
user to give access to and the GenericAll attribute gives them read, write, and execute
permissions. You can learn more about the other attributes that are available at http://
wixtoolset.org/documentation/manual/v3/xsd/util/permissionex.html.

http://wixtoolset.org/documentation/manual/v3/xsd/util/permissionex.html
http://wixtoolset.org/documentation/manual/v3/xsd/util/permissionex.html

Chapter 3

51

You can view the permissions on a file by opening its properties and selecting the
Security tab:

Here, a user named Joe has been given full access to read, write, and modify the file.

Marking a file as read only
The primary reason for making a file read only is to prevent it from being accidentally
modified. This could apply to end-user license agreements, readme files, and other
documents that the user might open with a text editor such as Word.

In this recipe, we'll install a text file and then set its Read-only flag.

Getting ready
To prepare for this recipe, create a new setup project and name it ReadOnlyInstaller.

File and Folder Permissions

52

How to do it…
Set the ReadOnly attribute on a File element to prevent it from being accidentally modified
with the following steps:

1. Add a File element within Component to install a file called Sample.txt:
<ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component Id="cmpSampleTXT"
 Guid="{44BB2441-F98C-41F9-A1FE-EB732B626CF4}">
 <File Source="Sample.txt" />
 </Component>
</ComponentGroup>

2. Add the ReadOnly attribute to the File element to mark that file as read only:

<File Source="Sample.txt" ReadOnly="yes" />

How it works…
The File element has an attribute called ReadOnly that when set to yes, marks that file as
read only after it's been installed. You can see this setting on a file by opening its properties
and looking at the Attributes section:

Creating a file share
Sometimes, an application needs to allow others on the network to access its files. For
example, it may produce log files that should be available to anyone who wants to see them
without having to first log onto the computer where the application is installed. By putting
those files into a file share, others on the network can access them. In this recipe, we'll see
how to convert a normal directory into a file share and set the permissions on it.

Chapter 3

53

Getting ready
To prepare for this recipe, create a new setup project and call it FileShareInstaller.

How to do it…
To create a file share, use the FileShare element of UtilExtension and then configure
its permissions with the FileSharePermission element:

1. Reference UtilExtension by right-clicking on the References node in
Solution Explorer, going to Add Reference… | Browse, and then adding
WixUtilExtension.dll.

2. Add the UtilExtension namespace to the Wix element in Product.wxs:
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"
xmlns:util="http://schemas.microsoft.com/wix/UtilExtension">

3. Use the following Directory elements to add a folder called Shared Folder to
the end user's computer:
<Directory Id="TARGETDIR" Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="INSTALLFOLDER" Name="My Software">
 <Directory Id="FileShareDirectory"
 Name="Shared Folder" />
 </Directory>
 </Directory>
</Directory>

4. Create a ComponentGroup that targets that directory:
<ComponentGroup Id="SharedFilesComponents"
 Directory="FileShareDirectory">
</ComponentGroup>

5. Within the ComponentGroup, add a component that contains a util:FileShare
element. Be sure to mark Component with the KeyPath attribute:
<ComponentGroup ...>
 <Component Id="cmpFileShare"
 Guid="{6974184A-1F4F-4FBB-ADA6-826E9C947A7C}"
 KeyPath="yes">
 <util:FileShare Id="myFileShare"
 Description="Shares some stuff"
 Name="MyFileShare">
 </util:FileShare>
 </Component>
</ComponentGroup>

File and Folder Permissions

54

6. Within the same Component tag, add a util:User element that names an existing
user to whom we will give access to the file share. You can use the Everyone user to
grant access to everybody:
<Component ...>

 <util:FileShare ...>

 <util:User Id="everyoneUser"

 Name="Everyone"

 CreateUser="no"

 RemoveOnUninstall="no"/>

</Component>

7. Add a util:FileSharePermission element inside the util:FileShare
element to give the user we just referenced access to the folder:
<util:FileShare ...>
 <util:FileSharePermission User="everyoneUser"
 GenericAll="yes" />
</util:FileShare>

8. Add a ComponentGroupRef element within the existing Feature to reference our new
ComponentGroup:

<Feature Id="ProductFeature" Title="FileShareInstaller" Level="1">
<ComponentGroupRef Id="ProductComponents" />
<ComponentGroupRef Id="SharedFilesComponents" />
</Feature>

How it works…
A directory is converted to a network file share by including the FileShare and
FileSharePermission elements within it. These become available after referencing
WixUtilExtension.dll and adding the UtilExtension namespace to our Wix element.
We set up a hierarchy of Directory elements and chose one of them to become the file
share, identifying it as FileShareDirectory.

The FileShare element is wrapped in a Component that's installed to the target directory.
It takes the Id, Description, and Name attributes. The Id uniquely identifies the element
within the MSI database. Description gives you a chance to explain about its contents
and Name lets you label the file share, apart from the actual name of the folder as set by the
Directory element. For example, the actual name of the folder is Shared Folder, but
users on the network will access it through its share name, \\[PC_Name]\MyFileShare.

Chapter 3

55

It's required that we add a FileSharePermission element inside FileShare so that
it can be accessed by at least one user. Just prior to adding it, we referenced an existing
user called Everyone with a User element. Its Name attribute identifies the user to find.
Since Everyone is a built-in account that should already exist on the computer, we set
both CreateUser and RemoveOnUninstall to no. Using Everyone will allow anyone on
the network to access the folder. If your use case requires tighter control over who should
have access, you can select a different user—possibly one that you're creating as part of
the installation.

With the FileSharePermission element, we granted the Everyone user full access to
the folder by setting the GenericAll attribute to yes. It can be a little tricky figuring out
which attributes on the FileSharePermission element to set to get the desired result.
The following table sums up what you need to grant Full control, Change, and Read access:

Permission FileSharePermission attributes
Full control GenericAll

Change GenericWrite, GenericRead, Traverse, and Delete
Read GenericRead and Traverse

The file share permissions are different from the regular permissions on a folder. To see them,
right-click on the folder and go to Properties | Sharing | Advanced Sharing... | Permissions.

File and Folder Permissions

56

When it comes to adding files to a file share, remember that it's just a normal directory that
has been converted. You can add files in the normal way using the File and Component
elements. Also, the share will be removed along with the rest of your application during an
uninstall. Even if new files have been added to it, which would cause the directory itself to
remain after uninstalling, it will no longer be registered as a file share.

Setting the default program for a file type
Maybe you're packaging up a media player that processes MP3 files, or perhaps it's photo
editing software that must consume JPEG files. Many applications must interact with
specialized file types, and occasionally companies develop proprietary data formats that
are stored in files with custom extensions. For example, Photoshop files use the .psd
file extension.

In this recipe, we'll see how to set the application that we're installing as the default program
to use for a certain type of file. We'll use the extension .xyz. Our application will be opened
when the end user double-clicks on a file called test.xyz that we'll create.

Getting ready
To prepare for this recipe, perform the following steps:

1. Create a setup project and name it DefaultProgramInstaller.

2. Our application will process .xyz files. So, within the same Visual Studio solution,
add a C# Console Application project, name it XyzHandler, and replace the code in
Program.cs with the following:

using System;
using System.IO;

namespace XyzHandler
{
 class Program
 {
 static void Main(string[] args)
 {
 if (args.Length == 0 || string.IsNullOrEmpty(args[0]))
 {
 Console.WriteLine("No file name given.");
 }
 else
 {
 string fileName = args[0];
 if (File.Exists(fileName))
 {

Chapter 3

57

 Console.WriteLine(File.ReadAllText(fileName));
 }
 else
 {
 Console.WriteLine("File not found.");
 }
 }

 Console.WriteLine("Press any key to exit.");
 Console.ReadKey();
 }
 }
}

How to do it...
Use the ProgId, Extension, and Verb elements to set the default program to use for a type
of file:

1. Within the setup project, add a reference to the XyzHandler project.

2. Install the XyzHandler application using a Component and File element:
<Component Id="cmpXyzHandlerEXE"
 Guid="{C7F9458A-BFBF-4BB5-8DEC-3FD859B9C6EF}">
 <File Id="xyzHandlerEXE"
 Source="$(var.XyzHandler.TargetDir)XyzHandler.exe" />
</Component>

3. Add another Component tag that will establish XyzHandler.exe as the default
program for the .xyz files and set its KeyPath attribute to yes. Add a ProgId
element inside it:
<Component Id="cmpXyzHandlerProgId"
 Guid="{1FA51F40-88BD-4C0C-8B07-B9BF200D338E}"
 KeyPath="yes">
 <ProgId Id="xyzFile"
 Description="XYZ Document">
 </ProgId>
</Component>

4. Add an Extension element inside the ProgId. Its Id attribute will identify the file
type that our console application handles. Set its ContentType attribute to text/
plain:
<ProgId ...>
 <Extension Id="xyz" ContentType="text/plain">
 </Extension>
</ProgId>

File and Folder Permissions

58

5. Inside the Extension, add a Verb element that will open our application and pass it
the name of the file that the end user has double-clicked on:
<Extension ...>
 <Verb Id="open"
 TargetFile="xyzHandlerEXE"
 Argument=""%1"" />
</Extension>

6. After installation, open Notepad and write the following lines: You are processing
an XYZ file. Save it as test.xyz. Be sure that the file truly is saved with a .xyz file
extension and not as test.xyz.txt.

How it works...
First, we added a Component tag that includes XyzHandler.exe in our installer. We then
added a Component tag that contained a ProgId element. The ProgId element creates an
entry in the Windows registry on the end users' computer under HKEY_LOCAL_MACHINE\
SOFTWARE\Classes\.xyz. This is what registers our application as the program to use
when the end user double-clicks on a file that has the .xyz extension. Similarly, the value
we set in the Description attribute will be stored in the registry under HKEY_LOCAL_
MACHINE\SOFTWARE\Classes\xyzFile. We'll see this description when we hover our
cursor over an .xyz file.

We then added an Extension element inside the ProgId element. This is where we identify
the .xyz extension as the one that our application will handle. Since our .xyz file will
really just be a text file in disguise, we used the text/plain content type, or, as it's more
accurately called, media type. Internet Assigned Numbers Authority (IANA) maintains a list
of all registered media types. It can be found at http://www.iana.org/assignments/
media-types/media-types.xhtml. When an organization creates a new file extension,
it will often register it with IANA.

The Verb element opens XyzHandler.exe for any .xyz file. Its TargetFile element
references the File element in the cmpXyzHandlerEXE component. The Argument
attribute sets the parameters to pass to XyzHandler.exe. In this case, we are passing
the name of the clicked file, surrounded by double quotes.

If we have added a file called test.xyz that has You are processing an XYZ file
written to it, then we should see our program launch when we double-click on it:

http://www.iana.org/assignments/media-types/media-types.xhtml
http://www.iana.org/assignments/media-types/media-types.xhtml

Chapter 3

59

There's more...
If you'd like to associate a certain icon with the .xyz files, then add the Icon attribute to the
ProgId element. It should point to a File element that references an .ico file. For example,
after adding an .ico file to the project, we will add a new Component that references the
icon, as follows:

<Component Id="cmpRocketICO"
 Guid="{3B136AF8-BB3F-4B75-AC1B-F633DD79CE92}">
 <File Id="rocketICO"
 Source="rocket.ico" />
</Component>

We can then reference that icon on ProgId via its Icon attribute:

<ProgId Id="xyzFile"
 Description="XYZ Document"
 Icon="rocketICO">

Now, any .xyz file will display the icon that we've installed:

Note that after uninstalling, it may take a computer restart before the icon is removed from
the existing .xyz files.

4
Shortcuts

In this chapter, we will cover the following recipes:

 f Adding an application shortcut to the Start menu

 f Adding an icon to a shortcut

 f Placing a shortcut on the desktop

 f Creating a shortcut to a folder

 f Creating an advertised shortcut that installs a feature on demand

Introduction
Shortcuts offer a big convenience for users, allowing them to launch applications and open
directories without having to search through their C: drive to get to them. During installation,
we can add shortcuts to the Windows Start menu, the user's desktop, or any other directory
we choose. Shortcuts can be customized with icons and labels, and they can even specify
command-line switches to pass to the target application.

We can also create a special type of shortcut, called an advertised shortcut that acts as a
link to a feature that we haven't installed yet. When the user clicks on the shortcut for the
first time, the feature will be installed on demand. In this chapter, we'll explore several types
of shortcuts that are commonly used.

Shortcuts

62

Adding an application shortcut to the
Start menu

The Windows Start menu is probably the first place that a user will look for a shortcut. Things
got a little interesting with Windows 8, in which the traditional Start menu was removed and
Windows 8.1 in which it makes a return, but shows no application shortcuts. However, we can
still see shortcuts in the Apps view, which you can get to by going to the new Start screen and
clicking on the down arrow:

In short, remember to think about the version of Windows you're installing to when it comes to
the Start menu shortcuts.

In this recipe, we will create a shortcut to our application that is displayed on the Windows
Start menu. It will be installed for all users, meaning that any user that logs on will see it.
It's also possible, as we'll discuss, to install a shortcut only for the current user.

Getting ready
To prepare for this recipe, perform the following steps:

1. Create a new setup project and call it StartMenuShortcutInstaller.

2. Add a C# Console Application project to the same Visual Studio solution and call it
SampleApplication. Add the following code snippet to its Program.cs file:
using System;

namespace SampleApplication

Chapter 4

63

{
 public class Program
 {
 public static void Main(string[] args)
 {
 Console.WriteLine("Running the sample application");

 if (args.Length > 0 && !string.IsNullOrEmpty(args[0]))
 {
 // Print command-line argument if given
 Console.WriteLine(args[0]);
 }

 Console.ReadKey();
 }
 }
}

3. Reference the console application project in the setup project.

4. Add a Component element to it so that it will be included in the installation:

<ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component Id="cmpSampleApplicationEXE"
 Guid="{478BC1B5-9429-4E7D-A045-E97E6DBB9EEC}">
 <File Source="$(var.SampleApplication.TargetDir)
SampleApplication.exe" />
 </Component>
</ComponentGroup>

How to do it...
Add a Directory element targeting ProgramMenuFolder and then add a Component with
a Shortcut element to it. The following steps will show you how to do it:

1. Within your hierarchy of Directory elements, add one that has an ID of
ProgramMenuFolder. Components installed here will be displayed on the
Windows Start menu. The following snippet creates a subfolder in the Start
menu called My Company:
<Directory Id="TARGETDIR" Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="INSTALLFOLDER" Name="My Company" />
 </Directory>
 <Directory Id="ProgramMenuFolder">

Shortcuts

64

 <Directory Id="MyCompanyStartMenuFolder"
 Name="My Company" />
 </Directory>
</Directory>

2. Add a component with a Shortcut element in it. The Shortcut element's Target
attribute identifies the file to be launched and its Directory attribute defines where
to place the shortcut:
<ComponentGroup ...>
 <Component Id="cmpMyShortcut"
 Guid="{705722CC-89CC-451C-81CD-F0FA4453BC18}">
 <Shortcut Id="SampleApplicationShortcut"
 Name="Sample Application"
 Description="Runs the sample application"
 Directory="MyCompanyStartMenuFolder"
 Target="[INSTALLFOLDER]SampleApplication.exe" />
 </Component>
</ComponentGroup>

3. Within that same component, add a RemoveFolder element so that our Start
menu's subfolder is removed during uninstallation. Also, add a RegistryValue
element with a KeyPath attribute set to yes:

<Component ...>
 <Shortcut ... />
 <RemoveFolder Id="RemoveCompanyStartMenuFolder"
 Directory="MyCompanyStartMenuFolder"
 On="uninstall" />

 <RegistryValue Root="HKCU"
 Key="Software\My Company\Sample Application"
 Name="installed"
 Type="integer"
 Value="1"
 KeyPath="yes" />
</Component>

How it works...
In this example, we added a shortcut in the Start menu that will launch our simple console
application, which we installed in the Program Files folder. Our directory structure probably
already contains a Directory element for ProgramFilesFolder. We just need to add
another Directory element for ProgramMenuFolder, which translates to the Windows
Start menu.

Chapter 4

65

The Shortcut element has an Id attribute that uniquely identifies it within the installer, a
Name attribute that defines what the shortcut will be called, and Description that provides
an explanation about the shortcut's purpose, which the end user can see if they hover
their mouse over it. The heart of the element is the Target attribute. This is what links our
shortcut to the console application we're installing. In our example, the target points to the
location of our installed SampleApplication.exe file, which it finds by referencing the
INSTALLFOLDER directory surrounded by square brackets.

You may also set Target to the Id of a File element preceded
by a hash sign. For example, if the File element's Id had been
fileMyApp, then we could use the following syntax for the Target
attribute: Target="[#fileMyApp]".

The Shortcut element's Directory attribute specifies where we'd like our shortcut to go.
In this example, we set it to Id of our Start menu subfolder, MyCompanyStartMenuFolder.

We're required to add the RemoveFolder and RegistryValue elements to the component.
The RemoveFolder element ensures that our new Start menu directory is removed during
uninstallation. It has to do with handling the special case of cleaning up folders that were
installed to a user's roaming profile. A roaming profile allows a user to take their applications
with them, so to speak, when they log in to a computer other than their own, but still on the
same network. More information about this requirement can be found at http://msdn.
microsoft.com/en-us/library/aa369011%28v=vs.85%29.aspx.

The RegistryValue element serves as KeyPath for the component. To understand why,
let's dig a little deeper into what it means to set something as key-path. Most of the time,
a component contains a File element in it and that, by default, is key-path. This means
that the Windows installer uses this file as the indicator to check whether the component
is installed.

When it comes to shortcuts in the Start menu, we can't use a File element even if we had
one in the same component as the shortcut. This is because, for software that's installed only
for the current user, the key-path file may have been installed previously by another user on
the same computer. For example, if user Joe installs the application first, then he will have
created the application's files and a shortcut in his Start menu. Then, if user Alice logs in
using her own Windows profile and installs the same software, Windows installer will see that
that component is already present because it's checking the File element, which points to a
shared component within Program Files—we'll get to how you shouldn't install to Program
Files at all for per-user installations later. So, since the shortcut is in the same component
as the file and the file is deemed installed already, Alice won't get a shortcut for her own
Start menu.

http://msdn.microsoft.com/en-us/library/aa369011%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa369011%28v=vs.85%29.aspx

Shortcuts

66

The Shortcut element can't be key-path because it isn't really a file. It's just a link to
a file. Often, when nothing else serves the purpose, we can mark the component itself as
key-path. Doing so is shorthand for saying that the parent directory will be key-path.
When it's a shared directory, such as a folder under Program Files, then that could
cause the same problem as using a shared file for key-path.

The mandated solution is to add an entry to the current user's unique section of the
Windows registry and have it be key-path. This way, it's obvious to the Windows installer
that whether the component is installed depends on who the current user is. Why we can't
use a user-specific directory as key-path, such as the current user's Start menu folder
is hard to say. Regardless, the registry method is the only acceptable solution for the
Windows installer.

The Package element's InstallScope attribute determines whether
an application will be installed for all users or just the current one. When
set to perMachine, the application and its Start menu shortcuts will be
installed for all users. When it's set to perUser, it will be installed for the
current user only. Note that for per-user installations, we shouldn't add files
to the Program Files folder because it requires elevated privileges to
write to. We should use LocalAppDataFolder instead. However, the
ProgramMenuFolder directory can be used for both per-machine and per-
user installations. For per-machine scenarios, it automatically maps to the
shared Start menu folder: C:\ProgramData\Microsoft\Windows\
Start Menu. For per-user installations, it maps to a user-specific folder
such as C:\Users\Nick\AppData\Roaming\Microsoft\Windows\
Start Menu.

After running our installer, the end user will see a shortcut to our application in their
Start menu:

Chapter 4

67

There's more...
We can pass command-line arguments to our application when our shortcut is clicked. The
following example uses the Arguments attribute to pass a single parameter, ThisIsATest
to SampleApplication.exe:

<Shortcut Id="SampleApplicationShortcut"
 Name="Sample Application"
 Description="Runs the sample application"
 Target="[INSTALLFOLDER]SampleApplication.exe
 Arguments="ThisIsATest"
 Directory="MyCompanyStartMenuFolder" />

Our console application can now print the argument:

Adding an icon to a shortcut
Adding your own branded icons to your shortcuts will make them stand out. We can even have
different icons for different purposes, such as one to denote the help documentation and
another for a shortcut to the application itself. In this recipe, we'll see how to include an icon
in our installer and have it displayed on a shortcut.

Getting ready
To prepare for this recipe, perform the following steps:

1. Create a new setup project and call it IconShortcutInstaller.

2. Set up your directory structure to include a folder in the Start menu:
<Directory Id="TARGETDIR" Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="INSTALLFOLDER" Name="My Company" />
 </Directory>
 <Directory Id="ProgramMenuFolder">
 <Directory Id="MyCompanyStartMenuFolder"
 Name="My Company" />
 </Directory>
</Directory>

Shortcuts

68

3. Include a text file named Sample.txt in the project and add a Component element
to the Product.wxs file:
<ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component Id="cmpSampleTXT"
 Guid="{FED550CE-5F27-4729-B9D4-B6F71AABD4EE}">
 <File Id="fileSampleTXT" Source="Sample.txt" />
 </Component>
</ComponentGroup>

4. Choose an icon file (.ico) and add it to the project. In this recipe, we'll call
it logo.ico.

Various photo-editing software applications have a way to
create an .ico file. For example, you can convert PNG to an
icon in Photoshop by downloading the ICO format plugin at
http://www.telegraphics.com.au/sw/product/
ICOFormat#icoformat.

How to do it...
An Icon element that's placed inside a Shortcut will show up on that shortcut link after
installation. The following steps will show you how to do it:

1. Add a component that contains the Shortcut, RemoveFolder, and Registry
elements to install a shortcut to our Sample.txt file:
<Component Id="cmpShortcut"
 Guid="{14F99049-A277-45A9-B801-FB9F51CD5C5A}">
 <Shortcut Id="MyShortcut"
 Name="Sample Text"
 Description="Opens a text file"
 Directory="MyCompanyStartMenuFolder"
 Target="[#fileSampleTXT]">
 </Shortcut>

 <RemoveFolder Id="RemoveCompanyStartMenuFolder"
 Directory="MyCompanyStartMenuFolder"
 On="uninstall" />

 <RegistryValue Root="HKCU"
 Key="Software\My Company\Sample Application"
 Name="installed"
 Type="integer"
 Value="1"
 KeyPath="yes" />
</Component>

http://www.telegraphics.com.au/sw/product/ICOFormat#icoformat
http://www.telegraphics.com.au/sw/product/ICOFormat#icoformat

Chapter 4

69

2. Inside the shortcut element, add an Icon element that references logo.ico with
its SourceFile attribute:

<Shortcut ...>
 <Icon Id="MyShortcutIcon" SourceFile="logo.ico" />
</Shortcut>

How it works...
We began by adding a Shortcut element with a Target attribute that points to the Id
of the Sample.txt file. The usual suspects that we discussed in the last recipe make an
appearance including RemoveFolder and RegistryValue. These are required elements
that ensure that the shortcut is removed during uninstall and that there's an element to serve
as key-path for the component.

To add an icon to our shortcut, we simply introduce an Icon element. Its Id attribute uniquely
identifies the icon within the MSI and its SourceFile attribute references a .ico file to use.
After running our installer, the user will see our icon on the shortcut:

There's more...
Another way to add an icon to a shortcut is to use the Shortcut element's Icon attribute.
This can reference any Icon element in your project by Id. So, you can place an Icon
element in another Fragment, as follows:

<Fragment>
 <Icon Id="MyShortcutIcon" SourceFile="logo.ico" />
</Fragment>

Next, reference this element's Id attribute with the Shortcut element's Icon attribute:

<Shortcut Id="MyShortcut"
 Name="Sample Text"
 Description="Opens a text file"
 Directory="MyCompanyStartMenuFolder"
 Target="[#fileSampleTXT]"
 Icon="MyShortcutIcon">

This can come in handy if you prefer to define all of your icon resources in a separate
fragment for better modularity.

Shortcuts

70

Placing a shortcut on the desktop
The Start menu is the best place to place application shortcuts because it keeps them
organized and users only see them when they want to. The desktop comes in second
though, displaying a user's favorite links front and center.

In this recipe, we'll place a shortcut to our Sample.txt file on the user's desktop.
As we've discussed previously, who will see this shortcut depends on the value of the
Package element's InstallScope attribute. When it's set to perMachine, all users
will see the shortcut. When set to perUser, it will be installed only for the current user.

Getting ready
To prepare for this recipe, perform the following steps:

1. Create a new setup project and name it DesktopShortcutInstaller.

2. Include a text file named Sample.txt in the project and add a Component
element to the Product.wxs file:

<ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component Id="cmpSampleTXT"
 Guid="{EB57CD24-8DEE-41EC-8E3C-F9B6DF94B34D}">
 <File Id="fileSampleTXT" Source="Sample.txt" />
 </Component>
</ComponentGroup>

How to do it...
Add a Directory element that points to the Desktop folder and then reference it in a
Shortcut element. The following steps will show you how to do it:

1. Add a new Directory element that has an Id of DesktopFolder:
<Directory Id="TARGETDIR" Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="INSTALLFOLDER" Name="My Company" />
 </Directory>
 <Directory Id="DesktopFolder" />
</Directory>

Chapter 4

71

2. Add a Component containing a Shortcut element that has a Directory attribute
set to DesktopFolder:
<Component Id="cmpDesktopShortcut"
 Guid="{882D728B-F837-4C06-8BD7-69E9ABE51176}">
 <Shortcut Id="MyDesktopShortcut"
 Name="Sample Text"
 Description="Opens a text file"
 Directory="DesktopFolder"
 Target="[#fileSampleTXT] " />
</Component>

3. Within that same component, add a RegistryValue element to serve as KeyPath
for Component. Unlike other shortcuts you've created, you do not need to add a
RemoveFolder element:

<Component ...>
 <Shortcut ... />
 <RegistryValue Root="HKCU"
 Key="Software\My Company\Sample Application"
 Name="installed"
 Type="integer"
 Value="1"
 KeyPath="yes" />
</Component>

How it works...
We can access the Desktop folder by adding a Directory element with Id of
DesktopFolder:

<Directory Id="DesktopFolder" />

If we're installing our application for all users, then our shortcut will appear on the desktop
of every user that logs on to the computer. The setting that controls whether we are installing
for all users is the Package element's InstallScope attribute. A value of perMachine will
install for all users, whereas a value of perUser will install only for the current user:

<Package InstallerVersion="200"
 Compressed="yes"
 InstallScope="perMachine" />

Shortcuts

72

The Shortcut element's Target attribute points to the file to be opened when the user
clicks on the shortcut. Note that for this example I chose to use the [#fileSampleTXT]
syntax, which points to the Id of the File element. The Directory attribute sets where the
shortcut will be created. When the user runs our installer, a link to Sample.txt is added to
their desktop:

Creating a shortcut to a folder
In this recipe, we will create a shortcut to a folder and place it on the Start menu. Having a
shortcut to a folder makes it easy to get to child files and subfolders without having a shortcut
for each one. For example, if we're installing a suite of developer tools, we might provide a link
to a folder of sample projects. The shortcut will open the Windows file explorer so the user can
browse through the projects with ease. This also makes it easy for us to change what's in that
folder without worrying too much about updating the shortcuts.

We'll add a folder for logfiles under the C:\ProgramData folder, which is a machine-level
folder that's meant to store things such as logs, configuration settings, and other dynamic
files. To make things simple, we'll install our log files folder as an empty directory. Recall that
we'll need to use the CreateFolder element to ensure that the Windows installer adds the
directory even though it's empty.

Getting ready
To prepare for this recipe, perform the following steps:

1. Create a new setup project and name it FolderShortcutInstaller.

2. Set up a hierarchy of Directory elements. The following markup will create a folder
on the Start menu by referencing ProgramMenuFolder and another folder at C:\
ProgramData\My Company\Log Files by referencing CommonAppDataFolder:

<Directory Id="TARGETDIR" Name="SourceDir">
 <Directory Id="ProgramMenuFolder">
 <Directory Id="MyCompanyStartMenuFolder"
 Name="My Company" />
 </Directory>

Chapter 4

73

 <Directory Id="CommonAppDataFolder">
 <Directory Id="MyAppDataFolder" Name="My Company">
 <Directory Id="MyLogFiles" Name="Log Files" />
 </Directory>
 </Directory>
</Directory>

How to do it...
Set the Shortcut element's Directory attribute to the Id of the target Directory
element. The following steps will show you how to do it:

1. We will begin with installing an empty folder. To do this, add a CreateFolder
element within a component. Use its Directory attribute to identify the directory
that we're creating:
<ComponentGroup Id="ProductComponents"
 Directory="MyLogFiles">
 <Component Id="cmpMyFolderShortcut"
 Guid="{350D8A0D-4CF8-4129-A441-22BF80D97407}">
 <CreateFolder Directory="MyLogFiles" />
 </Component>
</ComponentGroup>

2. Within that same component, add a Shortcut element that uses its Target
attribute to point to the MyLogFiles directory. Its Directory attribute specifies
that the shortcut will be created within our Start menu folder:
<Component ...>
 <CreateFolder ... />
 <Shortcut Id="cmpLogFolderShortcut"
 Name="Log Files"
 Description="Opens log files folder"
 Directory="MyCompanyStartMenuFolder"
 Target="[MyLogFiles]" />
</Component>

3. Add the RemoveFolder and RegistryValue elements to the component, so that
our Start menu folder will be removed during uninstallation and we have a value in
the registry to serve as key-path for the component:

<Component ...>
 <CreateFolder ... />
 <Shortcut ... />

 <RemoveFolder Id="RemoveCompanyStartMenuFolder"
 Directory="MyCompanyStartMenuFolder"

Shortcuts

74

 On="uninstall" />

 <RegistryValue Root="HKCU"
 Key="Software\My Company\Sample Application"
 Name="installed"
 Type="integer"
 Value="1"
 KeyPath="yes" />
</Component>

How it works...
We started by creating a directory under C:\ProgramData that we could later add a shortcut
for. In our hypothetical scenario, this folder could be used to store logfiles that the application
generates. Since, at the time of installation, there won't be any log files yet, we added a
CreateFolder element to the component so that the folder will be created even though
it's empty.

We set the Shortcut element's Target attribute so that it references our MyLogFiles
directory. After running our installer, we'll see a link to our Log Files directory on the
Start menu, which, when clicked, will open the Windows file explorer:

Creating an advertised shortcut that installs
a feature on demand

Ordinarily, when the end user executes one of our installers, all of the components get
installed right away. However, when a component is tied to an advertised shortcut, it isn't
installed until the user clicks the shortcut that the associated file gets installed. This type
of shortcut provides a sort of install-on-demand functionality. You might use it to delay the
installation of a feature that many users wouldn't use right away, such as supplementary
tools or sample projects.

Chapter 4

75

Getting ready
To prepare for this recipe, perform the following steps:

1. Create a setup project and name it AdvertisedShortcutInstaller.

2. Add a C# Console Application project to the same Visual Studio solution and call it
SampleApplication. We will include this in our installer, paired with an advertised
shortcut so that it won't be installed until the user clicks on the shortcut. Add the
following code to its Program.cs file:
using System;

namespace SampleApplication
{
 public class Program
 {
 public static void Main(string[] args)
 {
 Console.WriteLine("Running the sample application.");
 Console.ReadKey();
 }
 }
}

3. Reference the console application project in the setup project and then add a
Component element to include it in the installation:

<ComponentGroup Id="AdvertisedComponents"
 Directory="INSTALLFOLDER">
 <Component Id="cmpSampleApplication"
 Guid="{3F213CF5-6402-4090-9E3E-5E3F4FCA3148}">
 <File Source="$(var.SampleApplication.TargetDir)
SampleApplication.exe" />
 </Component>
</ComponentGroup>

How to do it...
Update the Feature element so that it allows advertisement and include an advertised
shortcut so that its components are installed on demand. The following steps will show
you how:

1. Identify the feature that your advertised components will be included in, and set
its AllowAdvertise attribute to yes and its TypicalDefault attribute to
advertise:
<Feature Id="MyAdvertisedFeature"
 Title="Advertised Components"
 Level="1"

Shortcuts

76

 AllowAdvertise="yes"
 TypicalDefault="advertise">
 <ComponentGroupRef Id="AdvertisedComponents"/>
</Feature>

2. Define your Directory structure so that it includes a folder within
ProgramFilesFolder, since that is where our console application will be
installed, and ProgramMenuFolder to place our shortcut on the Start menu:
<Directory Id="TARGETDIR" Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="INSTALLFOLDER" Name="My Company" />
 </Directory>
 <Directory Id="ProgramMenuFolder">
 <Directory Id="MyCompanyStartMenuDirectory"
 Name="My Company" />
 </Directory>
</Directory>

3. Within that same component as our SampleApplication.exe, add a Shortcut
element. Set its Advertise attribute to yes and its Directory attribute to the Id
of our Start menu directory. You should omit the Target attribute:
<Component Id="cmpSampleApplication" ...>

 <File ... />

 <Shortcut Id="MyAdvertisedShortcut"

 Name="Install the Sample Application (optional)"

 Description="Installs advertised app"

 Directory="MyCompanyStartMenuDirectory"

 Advertise="yes" />

</Component>

4. Add a RemoveFolder element to the component so that our custom Start
menu directory will be removed during uninstallation. We do not need to add
a RegistryValue element:

<Component ...>
 <File ... />
 <Shortcut ... />

Chapter 4

77

 <RemoveFolder Id="RemoveMyShortcutDir"
 On="uninstall"
 Directory="MyCompanyStartMenuDirectory"/>
</Component>

How it works...
The first thing we did was add the AllowAdvertise attribute to our Feature element so
that it could support advertised components. We also set its TypicalDefault attribute
to advertise so that advertisement was turned on. In this example, we included one file,
SampleApplication.exe, in this feature. It won't be installed until the shortcut is clicked.

You may be wondering, "Do I need to associate every component that I'd like to install on
demand with an advertised shortcut?" Nope. You only need one shortcut for the entire
feature. Every other Component that's included in that feature will also be advertised. In
other words, advertisement happens at the Feature level. When the shortcut is clicked,
all of the components in that feature will be installed. Prior to that, none of them will be.
If you want to install other components immediately, they'll have to go into a separate,
non-advertised feature.

To create the advertised shortcut, we added a Shortcut element to the same component as
the File element and set its Advertise attribute to yes. This will set up the shortcut as the
trigger to install all components within the feature.

When the user runs our installer, the shortcut will be added to their Start menu:

At this point, if you were to look in Program Files, you wouldn't see our console application
or even the folder it goes into. It isn't until we click on the shortcut that the file and its parent
folder get installed.

Shortcuts

78

There's more...
One caveat to advertising a feature is that it relies on running the MSI a second time.
So, say you copy the MSI package to your desktop, install it, but wait to click on the
advertised shortcut. For now, none of the advertised components are installed. Later,
you click on the shortcut but by then you've deleted the MSI from your desktop. You'll be
greeted with the following error message:

The advertised shortcut tries to execute the MSI again to install the missing components.
However, it relies on the package being in the same place as it was before. One way to solve
this problem is to include the installer in a WiX Bootstrapper project. Bootstrappers keep their
MSI packages in a cache on the user's computer. This behavior will ensure that our installer
will always be present when it's needed by an advertised shortcut. So, if you're considering
using advertisement, you may be better off pairing it with a bootstrapper.

5
Editing XML Files

during Installation

In this chapter, we will cover the following recipes:

 f Adding a new element to an XML file during installation

 f Setting the value of an attribute on an XML element

 f Inserting inner text into an XML element

 f Adding an XML element only if it does not already exist

 f Removing an XML element

Introduction
Part of setting up an application is making sure that it's configured correctly for the
environment where it will run. For example, if we're installing to a development machine,
we'd set up our database connection strings differently than if we're installing to production.
With WiX, we can install an XML configuration file and then transform it on the fly.

In this chapter, we'll see several transformations that you can perform on XML, including
adding and removing elements, adding attributes and inner text, and creating an element
only if it doesn't already exist. All of these functionalities come from a versatile element
called XmlConfig that can be found in the WiX UtilExtension namespace.

Editing XML Files during Installation

80

You might be wondering how using WiX to transform an XML file at installation time stacks up
against the alternatives. One is to keep separate configuration files for each environment. The
benefit of this approach is that it's easy to start off with. It doesn't take much to copy one file
into a DEV folder and another into a PROD folder. The downside comes later as new settings
are added and you find yourself having to keep the two files in sync. The task becomes more
difficult as you add new environments that have their own subtle configuration differences,
especially if different teams are responsible for updating their own versions of the file.

Another alternative, if you're building an ASP.NET web application, is to use the
Web.config transformation feature that became available with Visual Studio 2010.
It allows you to associate a transform file with a particular build configuration, such as
Web.Debug.config for a debug build. When you build in debug mode, Web.config will
be updated to reflect the debug transforms. The benefit of this is that there's Visual Studio
support and the transforms can be viewed in Solution Explorer. The downside is that it
only works with ASP.NET and you have to maintain a different build configuration for each
environment that you want to deploy to.

The WiX transforms described here are versatile in that they can update any type of XML file
and they avoid the trap of having to maintain a distinct configuration file for each environment.
You can store a single file, without having to change build configurations, and simply transform
it during deployment to suit the needs of the environment. However, a disadvantage is that
the transforms are tucked away in a setup project, so it may not be obvious to everyone on
the team how they're being set. Weigh the pros and cons and see what's best for you.

Adding a new element to an XML file during
installation

In this recipe, we'll learn how to add an element to an XML file. One place where this might
be useful is to enable tracing in an ASP.NET web application. Tracing lets you see diagnostic
information about a running web application. We'll start with a basic Web.config file that
doesn't have any tracing configuration in it and add a trace element to set it up.

Getting ready
To prepare for this recipe, perform the following steps:

1. Create a new setup project and name it XmlElementInstaller.

2. So that we'll have something to modify, add an XML file to the project and call
it Web.config. Add the following markup to it:
<?xml version="1.0"?>
<configuration>
 <appSettings />

Chapter 5

81

 <connectionStrings />

 <system.web>
 <authentication mode="Windows" />
 </system.web>
</configuration>

3. Add a Component element to Product.wxs to include the file in the installation:

<ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component Id="cmpWebCONFIG"
 Guid="{64147F6A-BD21-414A-83DA-70855B615353}">
 <File Source="Web.config" />
 </Component>
</ComponentGroup>

How to do it...
Add an XmlConfig element with its Node attribute set to document and its inner text set to
the element that you'd like to create. Perform the following steps:

1. Add UtilExtension to the project by right-clicking on the References node in
Solution Explorer and going to Add Reference | WixUtilExtension.dll | Add | OK.

2. Add the UtilExtension namespace to your Wix element:
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"

 xmlns:util="http://schemas.microsoft.com/wix/UtilExtension">

3. Add a component that contains util:XmlConfig. Set the XmlConfig element's
Node attribute to document to insert new XML content into the specified file. Its
inner text defines the new element and its attributes, while its ElementPath tells
WiX where it will go within the existing markup. Be sure to mark the Component as
KeyPath:

<Component Id="cmpAddTracing"
 Guid="{07A2DF2B-B5AF-4277-9304-4D6CAEBF7BD5}"
 KeyPath="yes">
 <util:XmlConfig Id="addTracing"
 File="[INSTALLFOLDER]Web.config"
 Action="create"
 On="install"
 Node="document"
 ElementPath="//configuration/system.web"
 Sequence="1">
 <![CDATA[<trace enabled="true" />]]>
 </util:XmlConfig>
</Component>

Editing XML Files during Installation

82

How it works...
The UtilExtension namespace contains an element called XmlConfig that has
everything we need to interact with an XML document. We'll be using it throughout the
chapter; however, in this case, we're using it to add an element called trace to the
system.web section of the configuration file.

To begin with, we use the File element to install our Web.config file to the end user's
computer. The order of an installation goes like this: first the XML file is copied to its target
directory and then our XmlConfig element gets a chance to update that file after it has
been installed. If there's more than one XmlConfig element in the project, we can control
the order in which their changes are applied by setting each one's Sequence attribute.

The XmlConfig element's File attribute identifies the path to the file we're going to
update. By setting its Action attribute to create and its Node attribute to document,
we're saying that we want to add some new content to the file. We define that content
within the XmlConfig element as its inner text. ElementPath sets where to create the
new content: within the Web.config file. It uses the XPath syntax; you can learn more
about this at http://www.w3schools.com/xpath/xpath_syntax.asp.

When we run our installer, the Web.config file will be copied to its directory and, when all is
said and done, our trace element will have been added inside the system.web element:

<?xml version="1.0"?>
<configuration>
 <appSettings/>
 <connectionStrings/>

 <system.web>
 <authentication mode="Windows"/>
 <trace enabled="true"/>
 </system.web>
</configuration>

There's more...
There's another advantage to adding an element at installation time. We might choose to add
the element, or not add it, depending on some condition that can only be discerned during the
installation. By adding Condition within the same Component element as our XmlConfig
element, we can add a rule that decides whether or not to add the element.

For example, if we only wanted to create the XML element if we're in a DEV environment,
we could start by adding a property to our Product.wxs file as follows:

<Property Id="ENVIRONMENT" Value="DEV" />

http://www.w3schools.com/xpath/xpath_syntax.asp

Chapter 5

83

In a real-world scenario, the value of this property will probably be set by the user through an
install wizard. Nevertheless, the following Condition element checks the property to see
whether we should execute the XML transformation:

<Component Id="cmpAddTracing"
 Guid="{07A2DF2B-B5AF-4277-9304-4D6CAEBF7BD5}"
 KeyPath="yes">
 <util:XmlConfig Id="addTracing"
 File="[INSTALLFOLDER]Web.config"
 Action="create"
 On="install"
 Node="element"
 Name="trace"
 ElementPath="//configuration/system.web"
 Sequence="1">
 <![CDATA[<trace enabled="true" />]]>
 </util:XmlConfig>

 <Condition><![CDATA[ENVIRONMENT = "DEV"]]></Condition>
</Component>

Now, if we're installing somewhere other than DEV, such as to PROD, Web.config will not be
updated with the new element.

Setting the value of an attribute on an
XML element

Although settings can often be configured by adding entire elements, others can be configured
by setting an attribute on an already existing element. For example, we can replace a default
database connection string by setting the connectionString attribute on an add element.
By doing it at installation time, we're given the flexibility to collect the connection details from
the user or base them on the environment in which the installer is running. In this recipe,
we'll see how to use the XmlConfig element to change a default connection string to
something else.

Getting ready
To prepare for this recipe, perform the following steps:

1. Create a new setup project and name it XmlAttributeInstaller.

2. Add an XML file to the project and call it Web.config. Add the following markup to it:
<?xml version="1.0"?>
<configuration>
 <appSettings />

Editing XML Files during Installation

84

 <connectionStrings>
 <add name="mydb" providerName="System.Data.SqlClient"
connectionString="Data Source=devserver\MYDATABASE; Initial
Catalog=Customers; Integrated Security=SSPI" />
 </connectionStrings>

 <system.web>
 <authentication mode="Windows" />
 </system.web>
</configuration>

3. Add a Component element to Product.wxs to include the file in the installation:

<ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component Id="cmpWebCONFIG"
 Guid="{5812219F-D6B0-4AE8-A205-3E528D5006E5}">
 <File Source="Web.config" />
 </Component>
</ComponentGroup>

How to do it...
Update an XML attribute by setting an XmlConfig element's Node attribute to value,
its Name to the name of the attribute to be set, and its Value to the string to be used:

1. Add UtilExtension to the project by right-clicking on the References node in
Solution Explorer and going to Add Reference | WixUtilExtension.dll | Add | OK.

2. Add the UtilExtension namespace to your Wix element:
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"
 xmlns:util="http://schemas.microsoft.com/wix/UtilExtension">

3. The default connection string in Web.config uses devserver\MYDATABASE as
its datasource. We'll define a property to fill in the server at installation time. Add the
following line to your Product.wxs file:
<Property Id="DB_INSTANCE" Value="prodserver\MYDATABASE" />

4. Add a component with an XmlConfig element inside it to update the
connectionString attribute within our Web.config file. Instead of pointing to
devserver\MYDATABASE, it will point to prodserver\MYDATABASE. Be sure to
mark the component as KeyPath:

<Component Id="cmpUpdateSampleXML"
 Guid="{CE1F79BC-337A-44FA-9D41-7825564B5CC8}"
 KeyPath="yes">

Chapter 5

85

 <util:XmlConfig Id="setConnString"
 File="[INSTALLFOLDER]Web.config"
 Action="create"
 On="install"
 Node="value"
 Name="connectionString"
 Value="Data Source=[DB_INSTANCE]; Initial Catalog=Customers;
Integrated Security=SSPI" ElementPath="//configuration/
connectionStrings/add[\[]@name='mydb'[\]]"
 Sequence="1" />
</Component>

How it works...
Our Web.config file starts out with an add element that has an attribute called
connectionString pointing to devserver\MYDATABASE. In order to update this
value to prodserver\MYDATABASE at installation time, we include a component that
contains an XmlConfig element, whose ElementPath uses an XPath statement to
find the add element:

ElementPath="//configuration/connectionStrings/add[\[]@
name='mydb'[\]]"

The syntax here has one little quirk that differentiates it from your garden-variety XPath.
Ordinarily, if you wanted to find the add element that has a name attribute of mydb,
you'd append the following to your XPath:

add[@name='mydb']

In WiX, it looks like this:

add[\[]@name='mydb'[\]]

That's because the ElementPath attribute might make use of WiX properties. For example,
suppose we'd defined a Property named DB_NAME as follows:

<Property Id="DB_NAME" Value="mydb" />

We could then dynamically change which add element we're looking for by inserting this
property into ElementPath with the following code snippet:

add[\[]@name='[DB_NAME]'[\]]

As you can see, by surrounding the name of the property with square brackets, we're able to
substitute in its value. The DB_NAME property will be replaced with the value mydb. The other
square brackets that aren't directly surrounding the WiX property are meant to be parsed by
XPath and must be escaped so that there's no confusion. The way in which Windows Installer
escapes square brackets is by using [\[] instead of [and [\]] instead of].

Editing XML Files during Installation

86

Now, you'll notice that the connectionString attribute is made up of three key-value
pairs: Data Source, Initial Catalog, and Integrated Security. Our XmlConfig
element will replace the whole string, but because we're only interested in changing the data
source and can keep the rest the same, we can insert a DB_INSTANCE property for just that
key-value pair:

Data Source=[DB_INSTANCE]; Initial Catalog=Customers; Integrated
Security=SSPI

When the end user runs our installer, the connectionStrings sections of our Web.config
file will be updated to the following:

<connectionStrings>
 <add name="mydb" providerName="System.Data.SqlClient"
connectionString="Data Source=prodserver\MYDATABASE; Initial
Catalog=Customers; Integrated Security=SSPI" />
</connectionStrings>

Inserting inner text into an XML element
In some cases, an XML file might use the inner text of an element to configure a setting.
For example, if you view the properties of an ASP.NET project, there's a Settings tab where
you can add rows of named application settings:

These settings will be stored in Web.config under the applicationSettings node:

<configuration>
 <!--Other elements omitted for brevity-->

 <applicationSettings>
 <MyWebApp.Properties.Settings>
 <setting name="MySetting" serializeAs="String">
 <value>ValueA</value>

Chapter 5

87

 </setting>
 </MyWebApp.Properties.Settings>
 </applicationSettings>
</configuration>

As you can see, the value of the setting is stored as inner text in an element called value.
In this recipe, we'll update this inner text so that instead of saying ValueA, it will say ValueB.

Getting ready
To prepare for this recipe, perform the following steps:

1. Create a new setup project and name it XmlInnerTextInstaller.

2. So that we'll have something to modify, add an XML file to the project and name it
Web.config. Add the following markup to it:
<?xml version="1.0"?>
<configuration>
 <applicationSettings>
 <MyWebApp.Properties.Settings>
 <setting name="MySetting" serializeAs="String">
 <value>ValueA</value>
 </setting>
 </MyWebApp.Properties.Settings>
 </applicationSettings>
</configuration>

3. Add a Component element to Product.wxs to include the file in the installation:

<Component Id="cmpWebCONFIG"
 Guid="{1B527456-4367-4D3D-AAE4-7E5C22FB9192}">
 <File Source="Web.config" />
</Component>

How to do it...
Set the XmlConfig element's Node attribute to value and its Value attribute to the text
you'd like to insert as inner text. Perform the following steps to do so:

1. Add UtilExtension to the project by right-clicking on the References node in
Solution Explorer and going to Add Reference | WixUtilExtension.dll | Add | OK.

2. Add the UtilExtension namespace to the Wix element:
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"
 xmlns:util="http://schemas.microsoft.com/wix/UtilExtension">

Editing XML Files during Installation

88

3. Add a component, making sure to mark it with the KeyPath attribute; within that
element, add an XmlConfig element that has a Node attribute of value and its
Value attribute set to the inner text you'd like to use:

<Component Id="cmpSetInnerText"
 Guid="{C96824AC-1BC9-44A9-94AF-92218C341797}"
 KeyPath="yes">
 <util:XmlConfig Id="setInnerText"
 File="[INSTALLFOLDER]Web.config"
 Action="create"
 On="install"
 Node="value"
 Value="ValueB" ElementPath="//configuration/
applicationSettings/MyWebApp.Properties.Settings/setting[\[]@
name='MySetting'[\]]/value"
 Sequence="1" />
</Component>

How it works...
We began in the usual way by adding a reference to UtilExtension so that we will have
access to the XmlConfig element. The syntax to add inner text to an XML element is a
lot like adding a value to an attribute, but in this case we omit the Name attribute. Setting
Action to create and Node to value but omitting the Name attribute means that we'll be
creating inner text. ElementPath identifies the element to add inner text to and Value sets
the text to add.

After running the installer, the value element's inner text, which was ValueA, will be
replaced with ValueB. The updated XML file now contains the following:

<setting name="MySetting" serializeAs="String">
 <value>ValueB</value>
</setting>

There's more...
In the previous example, we added a simple string inside of the value element. We can also
insert more complex content, such as elements within elements and elements containing
their own inner text. First, remove the Value attribute from the XmlConfig element and
change the Node attribute to document. Then, add any XML markup that you'd like to include
inside of the XmlConfig element. The following example adds <myElement>This is a
test</myElement> as the inner text of the target element:

<util:XmlConfig Id="updateSomeXML"
 File="[INSTALLFOLDER]SomeFile.xml"

Chapter 5

89

 Action="create"
 On="install"
 Node="document" ElementPath="//parent/child[\[]@
name='section1'[\]]"
 Sequence="1">
 <![CDATA[<myElement>This is a test</myElement>]]>
</util:XmlConfig>

Adding an XML element only if it does not
already exist

In this recipe, we'll learn a technique of adding an XML element only if it isn't already present.
When updating a configuration file that's shared amongst applications, such as the machine-
level Web.config file, you might use this to keep old user settings intact or else create them
anew if they aren't already set. For this recipe, we'll check for the existence of an element
called add with a key attribute of UserSetting1 and add it if it isn't already there.

Getting ready
To prepare for this recipe, perform the following steps:

1. Create a new setup project and call it XmlElementExistsInstaller.

2. Add an XML file called Web.config with the following markup:
<?xml version="1.0"?>
<configuration>
 <appSettings>
 <add key="UserSetting1" value="abc" />
 </appSettings>
</configuration>

3. Add a Component element to Product.wxs to include the file in the installation:

<ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component Id="cmpWebCONFIG"
 Guid="{1B527456-4367-4D3D-AAE4-7E5C22FB9192}">
 <File Source="Web.config" />
 </Component>
</ComponentGroup>

Editing XML Files during Installation

90

How to do it...
Use the XmlConfig element's VerifyPath attribute to check for the existence of an
element before adding it:

1. Add UtilExtension to the project by right-clicking on the References node in
Solution Explorer and going to Add Reference | WixUtilExtension.dll | Add | OK.

2. Add the UtilExtension namespace to the Wix element:
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"
 xmlns:util="http://schemas.microsoft.com/wix/UtilExtension">

3. Add a component with an XmlConfig element that uses its VerifyPath attribute
to check whether the element exists before adding it:

<Component Id="cmpAddSettingIfNotExist"
 Guid="{6E92CD4E-1173-4D60-B7EE-49613FC42632}"
 KeyPath="yes">
 <util:XmlConfig Id="addSettingIfNotExist"
 File="[INSTALLFOLDER]Web.config"
 Action="create"
 On="install"
 Node="document"
 ElementPath="//configuration/appSettings"
VerifyPath="//configuration/appSettings/add[\[]@
key='UserSetting1'[\]]">
 <![CDATA[<add key="UserSetting1" value="def" />]]>
 </util:XmlConfig>
</Component>

How it works...
Setting Action to create and Node to document but omitting the Name attribute means
that we'll be inserting inner text into an existing element. In this case, we're adding our <add
key="UserSetting1" value="def" /> application setting.

ElementPath is an XPath expression that locates the node that we'd like to add an element
to. The VerifyPath attribute checks for a matching path in the document. In this example,
we're checking for an add element that has a key of UserSetting1. If it doesn't exist, then
the XML we've added inside the XmlConfig element will be created. However, if there's
already UserSetting1, then we won't overwrite it.

Chapter 5

91

Removing an XML element
In this recipe, we'll see how to remove an element from an XML document. You might use
this when updating a shared configuration file that has a setting that no longer applies.
We'll start out with a configuration file that has three add elements in it. During our
installation, we'll remove the middle one.

Getting ready
To prepare for this recipe, perform the following steps:

1. Create a new setup project and call it RemoveElementInstaller.

2. Add an XML file named Web.config to the project and add the following markup
to it:
<?xml version="1.0"?>
<configuration>
 <appSettings>
 <add key="UserSetting1" value="abc" />
 <add key="UserSetting2" value="def" />
 <add key="UserSetting3" value="ghi" />
 </appSettings>
</configuration>

3. Add a Component element to Product.wxs to include the file in the install:

<Component Id="cmpWebCONFIG"
 Guid="{1B527456-4367-4D3D-AAE4-7E5C22FB9192}
 <File Source="Web.config" />
</Component>

How to do it...
Set the XmlConfig element's Action to delete and use its ElementPath and
VerifyPath attributes to locate the element to remove:

1. Add UtilExtension to the project by right-clicking on the References node in
Solution Explorer and going to Add Reference | WixUtilExtension.dll | Add | OK.

2. Add the UtilExtension namespace to the Wix element:
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"
 xmlns:util="http://schemas.microsoft.com/wix/UtilExtension">

Editing XML Files during Installation

92

3. Add an XmlConfig element with an Action attribute set to delete to remove an
element from the XML file. Use the VerifyPath attribute to specify which element
to delete:

<Component Id="cmpRemoveElement"
 Guid="{71A5AE3D-7D1A-4CA2-8E82-081CF3A1F9C8}"
 KeyPath="yes">
 <util:XmlConfig Id="removeElement"
 File="[INSTALLFOLDER]Web.config"
 Action="delete"
 On="install"
 Node="element"
 ElementPath="//configuration/appSettings"
VerifyPath="//configuration/appSettings/add[\[]@
key='UserSetting2'[\]]"
 Sequence="1" />
</Component>

How it works...
Setting the XmlConfig element's Action to delete and Node to element means that
we'll be removing an element from the XML file. The ElementPath points to the parent
node of the element we want to delete and VerifyPath identifies the element itself.

After running the installer, our Web.config file will contain the following markup,
where the middle element that had a key of UserSetting2 has been removed:

<?xml version="1.0"?>
<configuration>
 <appSettings>
 <add key="UserSetting1" value="abc" />

 <add key="UserSetting3" value="ghi" />
 </appSettings>
</configuration>

Note that if the element that we're removing has child elements, they'll also be removed.

6
Custom Actions

In this chapter, we will cover the following recipes:

 f Creating a C# custom action and referencing it in your project

 f Passing information entered by a user to a deferred custom action

 f Preventing custom action data from being displayed in the install log

 f Running an executable as a custom action without showing a console window by
using CAQuietExec

 f Testing rollback custom actions with WixFailWhenDeferred

Introduction
An MSI installer has three distinct phases. The first, which is called the UI sequence, shows
a graphical user interface (if you don't have one, this phase will go really fast). During this
phase, the user can enter their preferences for things such as where the files will be installed,
which features to include, and whether the user accepts the end user license agreement.
No changes are made to the system at this point; we're just collecting information.

The next stage is called the immediate phase of the execute sequence, and this is where the
installer thinks about all of the changes that it's going to make to the computer. It makes a
list, so that it knows how to do that work in an orderly fashion and also how to undo it if an
error occurs. After all, the last thing we want to do is leave the user's computer in a halfway
state where only part of the installation took place. It's much better to undo the whole
thing. This immediate phase is the first thing to happen after the user has clicked on the
Install button.

Custom Actions

94

The third phase is called the deferred phase of the execute sequence. This is when all of the
system-modifying actions take place. This includes creating new files and folders, updating
registry keys, and anything else that the installer planned to do when it made its list during
the immediate stage. If one of these actions fails, the whole script will be run in reverse order,
thereby reverting any changes. Otherwise, if nothing goes wrong, we get to the end and the
user is shown a dialog that says everything went okay.

Windows installer comes with the knowledge of how to do all of the basic stuff, which includes
installing files, creating shortcuts, and writing to the registry, along with how to undo these
actions if a rollback occurs. So, what can we do when we need to do something out of the
norm? How do we perform some custom action during one of the three phases? The answer
is to write some new markup or code and have it included in one the sequences.

You can write custom actions in several ways. For basic stuff, such as changing the path of
a directory during installation, there are XML elements in place that we can leverage. In this
chapter, we'll focus on more complex scenarios that involve writing our actions as C# code.
For actions that change the user's system, we'll need to author our actions so that there's a
compensating action to roll it back if there's an error. We'll also take a look at gotcha, such
as how to pass data that the user entered during the UI sequence to an action that happens
during the deferred stage of the execute sequence. You can't just send the data, you have to
do it in a special way. Although we'll be using C#, custom actions can also be written using
VB.NET or C++.

Creating a C# custom action and referencing
it in your project

In this recipe, we'll see how to create a C# custom action that does something simple: get the
computer's time zone and store it in a WiX property. Often, we need to collect information like
this and either present it on the GUI or use it behind the scenes to make some decisions later
when the computer is modified.

Windows installer doesn't know how to use a C# custom action directly. It only understands
unmanaged code. However, WiX comes with a library called Deployment Tools Foundation
(DTF) that bridges the gap. The C# custom action project template that's installed in Visual
Studio with the WiX toolset starts out with a reference to the Microsoft.Deployment.
WindowsInstaller assembly. That's DTF.

The convention is to have a data-driven approach to custom actions. During the installation
sequence (or the immediate phase of the execute sequence), you can collect information
and set properties with it. Then, during the deferred phase of the execute sequence, use the
information in those properties to makes system changes. In this recipe, we will set the value
of a WiX property from within a C# custom action with the convention of collecting information
during the UI phase, and using it during the deferred portion of the execute sequence.

Chapter 6

95

In this recipe, we use C# to find the computer's time zone. This is great for
demonstration purposes but know that the same information can also be
found in the Windows registry under HKEY_LOCAL_MACHINE\SYSTEM\
CurrentControlSet\Control\TimeZoneInformation.

Getting ready
To prepare for this recipe, create a new setup project and call it CustomActionInstaller.

How to do it...
Use the C# custom action project template in Visual Studio to set up the skeleton of
the custom action and then add your task-specific code. After compiling, reference the
unmanaged version of the assembly—the one with CA in its name—in your setup project using
a Binary element. Use the CustomAction element to include the C# custom action in the
installer, and then schedule it into the installer sequence:

1. Add a custom action project by right-clicking on the solution in Solution Explorer
and going to Add | New Project... | C# Custom Action Project. Name it
TimeZoneCustomAction. Before clicking on OK to create the project, pay attention
to the version of the .NET Framework listed in the drop-down menu at the top of the
dialog. Users will need to have that version of .NET installed to run our custom action,
so use the lowest version you can get away with. For this example, .NET 2.0 is enough
to go on. Have a look at the following screenshot:

Custom Actions

96

2. Open CustomAction.cs and add the following code to it:
using Microsoft.Deployment.WindowsInstaller;
using System;

namespace TimeZoneCustomAction
{
 public class CustomActions
 {
 [CustomAction]
 public static ActionResult GetTimeZone(Session session)
 {
 string timeZoneName =
 TimeZone.CurrentTimeZone.StandardName;

 // store the time zone in a property
 session["TIME_ZONE"] = timeZoneName;

 return ActionResult.Success;
 }
 }
}

3. Add the custom action to the installer by right-clicking on the References node in the
setup project and going to Add Reference... | Projects | TimeZoneCustomAction |
Add | OK.

4. When we compile our custom action project, we'll get two DLLs as the output. The
first is a regular managed DLL that the Windows installer can't use. The second,
which will append a CA to the name of the DLL, is an unmanaged dynamic-link library
that wraps our C# code. We only need to reference the second one in our installer.
In Product.wxs, inside the Product element, add a Binary element that has a
SourceFile attribute pointing to TimeZoneCustomAction.CA.dll:
<Binary Id="TimeZoneCustomActionDLL" SourceFile="$(var.
TimeZoneCustomAction.TargetDir)TimeZoneCustomAction.CA.dll" />

5. Beneath that, add a CustomAction element that points to our C# custom action
method. Reference the Binary element with the BinaryKey attribute:
<CustomAction Id="CA_GetTimeZone"
 BinaryKey="TimeZoneCustomActionDLL"
 DllEntry="GetTimeZone"
 Execute="immediate"
 Return="check" />

Chapter 6

97

6. To schedule the action during the UI sequence, add a Custom element inside an
InstallUISequence element. Use the Custom element's Before and After
attributes to schedule it in relation to the other existing actions:
<InstallUISequence>
 <Custom Action="CA_GetTimeZone" After="LaunchConditions" />
</InstallUISequence>

7. In order to see that our custom action has run successfully, launch the compiled
installer from the command line with the flag /l*v install.log. This will create
a log that you can read through to see if our TIME_ZONE property was set:
msiexec /i CustomActionInstaller.msi /l*v install.log

8. Open install.log and verify that the TIME_ZONE property was set:

MSI (c) (4C!44) [15:56:03:109]: PROPERTY CHANGE: Adding TIME_ZONE
property. Its value is 'Eastern Standard Time'.

The installer that we've created in this recipe won't actually be
installed if you run it because we didn't include any files to be
installed. However, you should still be able to run it and get a
log of the installation.

How it works...
WiX makes it easy to create a C# custom action because there's a project template for it
in Visual Studio. Our C# file uses the Microsoft.Deployment.WindowsInstaller
namespace to hook on to the installer process and grab the session object. The session
object is what allows us to read and write to WiX properties. In this case, we're setting a
property called TIME_ZONE by using the indexer on the session object.

session["TIME_ZONE"] = timeZoneName;

If a property with that name doesn't exist, it will be created. Otherwise, it will overwrite the
existing property.

Our custom action method must return an object of type ActionResult. This can be set
to either ActionResult.Success or ActionResult.Failure to let the installer know
whether things went smoothly during the execution of the C# code. For us, since there's
no chance of encountering a problem while reading the TimeZone.CurrentTimeZone.
StandardName property, we simply return ActionResult.Success:

return ActionResult.Success;

Custom Actions

98

We can wrap riskier code in a try...catch block to trap exceptions and then return
ActionResult.Failure. Alternatively, we can allow exceptions to bubble up to the
installer. Either way, it will trigger a rollback to undo all of the work up to that point and then
quit the installation. Which method you choose will probably depend on how descriptive the
exception messages are and whether you'd be better off writing the details of the error to the
log yourself. You can call session.Log() to write messages to the install log throughout the
processing of your method.

Note that only the deferred phase of the execute sequence has rollback capabilities. The UI
sequence and the immediate phase of the execute sequence do not. That's okay because we
shouldn't be making any changes to the computer during those parts of the installation. Our
example, which only sets a property, is fine to run during the UI sequence.

To use this custom action, we referenced the TimeZoneCustomAction project and then
added a Binary element that points to the compiled TimeZoneCustomAction.CA.dll.
In order to invoke a specific method from that assembly, we added a CustomAction element
whose BinaryKey points to the Binary element we just created. Its DllEntry attribute
identifies the method to call, as follows:

<Binary Id="TimeZoneCustomActionDLL" SourceFile="$(var.
TimeZoneCustomAction.TargetDir)TimeZoneCustomAction.CA.dll" />

<CustomAction Id="CA_GetTimeZone"
 BinaryKey="TimeZoneCustomActionDLL"
 DllEntry="GetTimeZone"
 Execute="immediate"
 Return="check" />

We set the CustomAction element's Return attribute to ensure that our Success/
Failure status will be reviewed by the installer. In some cases, such as custom actions that
run during uninstallation—at which point you probably wouldn't want to prevent the user from
removing the software—you can set Return to ignore.

We set the CustomAction element's Execute attribute to immediate, which means
that the action will be called outside the rollback protected transaction that's used by our
installer. For custom actions that change the user's system, we should set Execute to
deferred and schedule it during InstallExecuteSequence somewhere between the
InstallInitialize and InstallFinalize actions. However, our GetTimeZone custom
action is scheduled during InstallUISequence:

<InstallUISequence>
 <Custom Action="CA_GetTimeZone" After="LaunchConditions" />
</InstallUISequence>

Chapter 6

99

The InstallUISequence element coincides when the GUI is shown. The Custom
element references our CustomAction element. It allows us to say where within
InstallUISequence we'd like our action to run. For this example, I put it right after the
LaunchConditions action. That's pretty much near the start of the installation process.
Use the Orca.exe file to open your MSI file and see the order of the actions in the
InstallUISequence and InstallExecuteSequence tables:

For other custom actions you make, refer to the following website for information
about different actions that already exist in the installer so that you can schedule
yours appropriately around them:

http://msdn.microsoft.com/en-us/library/aa372023(v=vs.85).aspx

For example, if your action depends on files already being copied to the end
user's computer, you might want to schedule it after the InstallFiles action in
InstallExecuteSequence. Once you've set up your first custom action, you can
schedule additional ones around it, as follows:

<InstallUISequence>
 <Custom Action="CA_GetTimeZone" After="LaunchConditions" />
 <Custom Action="CA_AnotherOne" After="CA_GetTimeZone" />
</InstallUISequence>

http://msdn.microsoft.com/en-us/library/aa372023(v=vs.85).aspx

Custom Actions

100

There's more...
Often, you'll only want to invoke a custom action under specific circumstances. For example,
you might only want it to run during installation and not during uninstallation. To accomplish
this, we can add a conditional statement inside the Custom element. The following example
tells the installer only to invoke the custom action if we're performing an initial installation:

<Custom Action="CA_AnInstallOnlyMethod"
 After="InstallInitialize">
 <![CDATA[NOT Installed]]>
</Custom>

The NOT Installed statement is only true during an installation. We can schedule an action
to run only during uninstallation by using the REMOVE ~= "ALL" statement. The following
code snippet illustrates this:

<Custom Action="CA_AnUninstallMethod"
 After="InstallInitialize">
 <![CDATA[REMOVE ~= "ALL"]]>
</Custom>

Passing information entered by a user to a
deferred custom action

When the end user provides information to the installer, either through a user interface or
the command line, we typically store it in WiX properties so that it can be used later during
InstallExecuteSequence. However, we cannot pass these properties directly to a custom
action that is scheduled as deferred during InstallExecuteSequence. If you try, you'll get
the following error in the install log:

Microsoft.Deployment.WindowsInstaller.InstallerException: Cannot
access session details from a non-immediate custom action

This is because deferred actions have a heightened level of security and only allow a few
properties to be accessed. In this recipe, we will discuss a way to pass our own properties
to a deferred custom action.

Chapter 6

101

Getting ready
To prepare for this recipe, perform the following steps:

1. Create a new setup project and name it PassingPropertyInstaller.

2. Add a text file to the project called Sample.txt and include it in the installer by
using the Component and File elements. The reason we're doing this is so that
when we try passing a property to a deferred custom action without using the steps
in this recipe, we'll see the error that occurs. If we don't install any files, we'll get a
different error for not installing any files. Use the following markup to include a file in
the installer:
<ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component Id="cmpSampleTXT"
 Guid="{D362EAE1-1219-4E4D-AD5D-048DAB82CAFE}">
 <File Source="Sample.txt" />
 </Component>
</ComponentGroup>

3. Add a C# custom action project named ReadPropertyCustomAction to the same
Visual Studio solution and save the following code to its CustomAction.cs file:
using Microsoft.Deployment.WindowsInstaller;

namespace ReadPropertyCustomAction
{
 public class CustomActions
 {
 [CustomAction]
 public static ActionResult ReadProperty(Session session)
 {
 // Try to read a property called USERNAME.
 // This will fail!
 string userName = session["USERNAME"];
 session.Log("Username is " + userName);

 return ActionResult.Success;
 }
 }
}

Custom Actions

102

4. Reference this project in your setup project and then add the Binary and
CustomAction elements to it, making sure to set the CustomAction
element's Execute attribute to deferred:
<Binary Id="ReadPropertyCustomActionDLL"
SourceFile="$(var.ReadPropertyCustomAction.TargetDir)
ReadPropertyCustomAction.CA.dll" />

<CustomAction Id="CA_ReadProperty"
 BinaryKey="ReadPropertyCustomActionDLL"
 DllEntry="ReadProperty"
 Execute="deferred"
 Return="check" />

5. Schedule the custom action during InstallExecuteSequence, after the
InstallInitialize action, as follows:
<InstallExecuteSequence>
 <Custom Action="CA_ReadProperty"
 After="InstallInitialize" />
</InstallExecuteSequence>

6. When our deferred custom action is invoked during InstallExecuteSequence,
it will attempt to read a property called USERNAME. The last thing to do is add a
Property element that sets USERNAME to a value. In a more real-world scenario, it
will be set by the user through the GUI or command line. Use the following code to set
the property:
<Property Id="USERNAME" Value="joe" />

7. After compiling the project, open a command prompt and run the installer with
logging turned on. You should see the exception, Cannot access details
from a non-immediate custom action, in the log. You can use the following
command to get an install log:

msiexec /i PassingPropertyInstaller.msi /l*v install.txt

How to do it...
Use the SetProperty element to set a property that has the same ID as our deferred
CustomAction element. Its Value attribute should include the property that we want to
pass. The deferred custom action method will then be able to access USERNAME through the
session object's CustomActionData property. Follow the given steps to pass information
entered by a user to a deferred custom action:

Chapter 6

103

1. Add a SetProperty element that has the same ID as our CustomAction element,
which in this case is CA_ReadProperty. Set its Value attribute to our USERNAME
property in the form propertyname=[propertyname]:
<SetProperty Id="CA_ReadProperty"
 Value="USERNAME=[USERNAME]"
 Sequence="execute"
 Before="CA_ReadProperty" />

2. Within our C# custom action, remove the following line:
string userName = session["USERNAME"];

3. Replace it with the following code wherein we use CustomActionData to access
the USERNAME property:
string userName = session.CustomActionData["USERNAME"];

4. In order to see that our custom action has run successfully, launch the compiled
installer from the command line with logging turned on. Review the log and verify that
the message Username is Joe is there. You can use the following command to
make a log of the installation:

msiexec /i PassingPropertyInstaller.msi /l*v install.log

How it works...
At first, we tried to access a property in a deferred custom action using the indexer on the
session object:

string userName = session["USERNAME"];

This fails because a property that is set with a Property element or set during the
immediate phase of the UI or execute sequence, will exist in a completely different context
than a deferred custom action within the execute sequence. Passing a property to that
type of custom action takes a little extra effort. If we're following the data-driven approach
of collecting information from the user through the GUI and then acting upon it during the
deferred stage of the execute sequence, then we'll run into this quite often.

In this recipe, we used the SetProperty element to create a new property during
installation that has the same ID as our deferred custom action. This is how data is put into
CustomActionData of a custom action. By using the key=[value] syntax for the Value
attribute, we're able to use CustomActionData like a hash:

string userName = session.CustomActionData["USERNAME"];

Custom Actions

104

When we use SetProperty, behind the scenes it creates a custom action for us—a Type 51
custom action—that sets up CustomActionData for us. This SetProperty element must
be scheduled to run before our deferred custom action does. Use its Sequence attribute
to put it into the execute sequence and its Before attribute to place it before our deferred
custom action.

We may also pass more than one value by separating them with semicolons, as in the
following example:

<SetProperty Id="CA_ReadProperty"
 Value="USERNAME=[USERNAME];PASSWORD=[PASSWORD]"
 Sequence="execute"
 Before="CA_ReadProperty" />

Then, in our custom action, access each property, as follows:

string userName = session.CustomActionData["USERNAME"];
string password = session.CustomActionData["PASSWORD"];

Preventing custom action data from being
displayed in the install log

When you install an MSI file with logging turned on, the Property elements that you've
set will be displayed in the log. To make things more secure, the first thing we should do is
add the Hidden attribute to each Property element that contains private information. For
example, say we had a property called PASSWORD and we set its Hidden attribute to yes,
as follows:

<Property Id="PASSWORD"
 Value="my_password"
 Hidden="yes" />

Now, the value of that property will be replaced with asterisks in the log:

Property(S): PASSWORD = **********

Unfortunately, if we pass that same property to a deferred custom action using the
CustomActionData technique shown in the previous recipe, such as the following:

<SetProperty Id="CA_ReadProperty"
 Value="PASSWORD=[PASSWORD]"
 Sequence="execute"
 Before="CA_ReadProperty" />

Chapter 6

105

Then the PASSWORD value will be visible. Here's a sample of what will be shown in the log
after the SetCA_ReadProperty custom action, which is created behind the scenes when
the SetProperty element is invoked:

Action start 22:17:53: SetCA_ReadProperty.
MSI (s) (B0:78) [22:17:53:316]: PROPERTY CHANGE: Adding CA_
ReadProperty property. Its value is 'PASSWORD=my_password'.

In this recipe, we will see how to prevent CustomActionData from displaying in the
install log.

Getting ready
To prepare for this recipe, perform the following steps:

1. Create a new setup project and call it HidingLogDataInstaller.

2. Add a text file called Sample.txt to the project and include it in the installer by
using the Component and File elements. If we don't install any files, we'll get an
error. Use the following markup to include the file in the installer:
<ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component Id="cmpSampleTXT"
 Guid="{D362EAE1-1219-4E4D-AD5D-048DAB82CAFE}">
 <File Source="Sample.txt" />
 </Component>
</ComponentGroup>

3. Include a C# custom action project in the same Visual Studio solution and call
it ReadPropertyCustomAction. Update its CustomAction.cs file with the
following code:
using Microsoft.Deployment.WindowsInstaller;

namespace ReadPropertyCustomAction
{
 public class CustomActions
 {
 [CustomAction]
 public static ActionResult ReadProperty(Session session)
 {
 string passworduserName =
 session.CustomActionData["PASSWORD"];

 return ActionResult.Success;
 }
 }
}

Custom Actions

106

4. Reference this project in your setup project and include it using the Binary and
CustomAction elements:
<Binary Id="ReadPropertyCustomActionDLL" SourceFile="$(var.
ReadPropertyCustomAction.TargetDir)ReadPropertyCustomAction.
CA.dll" />

<CustomAction Id="CA_ReadProperty"
 BinaryKey="ReadPropertyCustomActionDLL"
 DllEntry="ReadProperty"
 Execute="deferred"
 Return="check" />

5. Include the custom action in InstallExecuteSequence:
<InstallExecuteSequence>
 <Custom Action="CA_ReadProperty"
 After="InstallInitialize" />
</InstallExecuteSequence>

6. Add a Property element with ID as PASSWORD and assign it a value. Set its Hidden
attribute to yes:
<Property Id="PASSWORD"
 Value="my_password"
 Hidden="yes" />

7. Add a SetProperty element to create CustomActionData for our deferred
custom action:
<SetProperty Id="CA_ReadProperty"
 Value="PASSWORD=[PASSWORD]"
 Sequence="execute"
 Before="CA_ReadProperty" />

8. Now, if we were to run this installer, we'd see the PASSWORD property exposed in the
log. We're ready to see how to hide that information.

How to do it...
Add the HideTarget attribute to the CustomAction element so that any data that's sent to
it will be hidden. The following steps will show you how.

1. Locate the CustomAction element of the deferred custom action and set its
HideTarget attribute to yes:
 <CustomAction Id="CA_ReadProperty"
 BinaryKey="ReadPropertyCustomActionDLL"
 DllEntry="ReadProperty"

Chapter 6

107

 Execute="deferred"
 Return="check"
 HideTarget="yes"/>

2. To verify that the property has been hidden in the log, run the installer from the
command line with logging turned on. Use the following command:

msiexec /i HidingLogDataInstaller.msi /l*v install.log

How it works...
When you want to hide the value of a Property element that's passed to a deferred custom
action, add the HideTarget attribute to the CustomAction element itself. Any data that's
sent to that custom action will be hidden. Everywhere that the PASSWORD value is shown in
the log will now show only asterisks. Here's a sample of the updated log:

Action start 23:02:45: SetCA_ReadProperty.

MSI (s) (B0:94) [23:02:45:477]: PROPERTY CHANGE: Adding CA_ReadProperty
property. Its value is '**********'.

Running an executable as a custom action
without showing a console window by using
CAQuietExec

As you may know, it's possible to execute a Windows batch script as a custom action. Then
again, if you're able to not use a batch script, preferring a more robust mechanism such as
a C# custom action, then that's better. However, sometimes you just can't avoid it. In those
cases, one annoyance is that a console window will be displayed while the batch script is
running. In this recipe, we'll see how to hide it from the user.

Getting ready
To prepare for this recipe, perform the following steps:

1. Create a new setup project and call it QuietCustomActionInstaller.

2. We will create a batch script that prints a sequence of numbers to the console for a
few seconds, long enough to be noticeable. Open a text editor such as notepad and
enter the following code:
@ECHO OFF
FOR /L %%i IN (1,1,10000) DO ECHO %%i

Custom Actions

108

3. Save this file as BatchScript.cmd and put it in the same folder as your
setup project.

4. Reference it in your project by right-clicking on the QuietCustomActionInstaller
project in Solution Explorer and going to Add | Existing Item.... Then, on the Add
Existing Item window, change the file type selection box to display all files and select
the BatchScript.cmd file. Click on the Add button.

5. Include the batch script in the installer by adding the Component and File
elements that point to it. Be sure to give the File element an Id attribute
so that we can reference this particular File element later:

<ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component Id="cmpBatchScriptCMD"
 Guid="{14EF1451-3726-4598-A1FC-7E6556900340}">
 <File Id="fileBatchScriptCMD"
 Source="BatchScript.cmd" />
 </Component>
</ComponentGroup>

The reason I suggest using Notepad or a similar program to create
the batch file is that Visual Studio will often insert invisible unicode
characters into the file that will prevent the script from running correctly.
Once created by another editor, it's fine to add it to the project and work
with it from within Visual Studio.

How to do it...
Use the CAQuietExec custom action from UtilExtension to hide the console window
of a batch script that's executed during the installation:

1. Add UtilExtension to the project by right-clicking on the References node
in Solution Explorer and navigating to Add Reference... | WixUtilExtension.dll |
Add | OK.

2. Add a CustomAction element that has its BinaryKey attribute set to WixCA,
its DllEntry attribute set to CAQuietExec, and its Execute attribute set to
deferred:
<CustomAction Id="CA_RunBatchScript"
 BinaryKey="WixCA"
 DllEntry="CAQuietExec"
 Execute="deferred"
 Return="check" />

Chapter 6

109

3. Schedule the custom action to run during InstallExecuteSequence after the
InstallFiles action:
<InstallExecuteSequence>
 <Custom Action="CA_RunBatchScript" After="InstallFiles" />
</InstallExecuteSequence>

4. Use a SetProperty element to create CustomActionData for the CA_
RunBatchScript custom action. Its Value attribute will be the command we'd like
to run. The following snippet uses the ID of our batch script's File element to get the
full path to the file after it's been installed. We surround it with " entities so
that the path will have quotes around it, if it contains spaces:

<SetProperty Id="CA_RunBatchScript"
 Value=""[#fileBatchScriptCMD]""
 Sequence="execute"
 Before="CA_RunBatchScript" />

How it works...
We added our BatchScript.cmd file to the installer using the Component and File
elements. This installs it to the end user's computer so that we can execute it as part of our
installation. Note that we set the CustomAction element's BinaryKey to WixCA and its
DllEntry to CAQuietExec in order to invoke our script silently. The CAQuietExec action,
which is included in the WiX UtilExtension namespace, runs our commands for us. Since,
in most cases, running a batch script is meant to change the state of the end user's computer,
we set the custom action to run as deferred during InstallExecuteSequence.

To instruct the CAQuietExec custom action which commands to run, we must pass them
via CustomActionData. So, we added a SetProperty element to do just that, setting
its Value attribute to the ID of our batch script's File element preceded by a hash sign.
During installation, this placeholder will be replaced by the full path to our BatchScript.
cmd file. When the script is executed, the end user won't see its console window at all. Behind
the scenes, the CAQuietExec action launches the batch script in a process that has the
CREATE_NO_WINDOW process creation flag.

There's more...
If you need to pass arguments to your batch script, you can pass them as part of the
formatted string you assign to the SetProperty element's Value attribute, for example,
suppose you wanted to pass an IP address to the script. If the IP address is stored in a
property, it can be referenced by surrounding it with square brackets, as follows:

<Property Id="IPADDRESS" Value="127.0.0.1" />

<SetProperty

Custom Actions

110

 Id="CA_RunBatchScript"
 Value=""[#fileBatchScriptCMD]" [IPADDRESS]"
 Sequence="execute"
 Before="CA_RunBatchScript" />

Try it out by reading the argument within the batch script and printing it to the console.
Use the following code:

@ECHO OFF
SET IP_ADDRESS=%1
FOR /L %%i IN (1,1,10000) DO ECHO %%i - %IP_ADDRESS%

Now, the IP address will be included on each line that's printed to the console window.
You can run the installer with logging turned on to see this, since you won't actually see
any console window:

msiexec /i QuietCustomActionInstaller.msi /l*v install.log

Testing rollback custom actions with
WixFailWhenDeferred

For every custom action that changes the end user's system, you should also author a rollback
custom action that reverts those changes in the event of an error. The big question then is
how do we test that the rollback works? In this recipe, we'll briefly outline a scenario where
a rollback will be needed and then discuss how to trigger one for testing purposes.

In our example, there will be a file that already exists on the computer. Our installer updates a
value within it. However, if the installation fails for some reason and a rollback is triggered, the
file should be reverted to its original state.

Getting ready
To prepare for this recipe, perform the following steps:

1. On the computer where you'll be running the installer, add a file called Config.js.
Place it in the target machine's C: drive so that it's at C:\Config.js. Our installer
will update this file, but revert it to its original version if there's an error during
installation. Add the following to the file:
{
 "serverAddress" : "127.0.0.1"
}

2. Create a new setup project called RollbackTestingInstaller.

Chapter 6

111

3. Add the following markup, which will find the Config.js file on the C: drive and
store its full path in a WiX property called FILE_PATH:
<Property Id="FILE_PATH">
 <DirectorySearch Id="CDriveSearch"
 Path="[WindowsVolume]"
 Depth="0"
 AssignToProperty="no">
 <FileSearch Id="ConfigJsSearch" Name="Config.js" />
 </DirectorySearch>
</Property>

4. Add a text file to the project called Sample.txt and include it in the installer by
using the Component and File elements. If we don't install any files, we'll get
an error for not installing any files. Use the following markup to include a file in
the installer:
<ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component Id="cmpSampleTXT"
 Guid="{01AFDE2B-0A59-43D6-82B2-3A07998E08B7}">
 <File Source="Sample.txt" />
 </Component>
</ComponentGroup>

5. Add a C# custom action project to the same Visual Studio solution and call it
FileChangingCustomActions.

6. We are going to define three methods in the CustomActions.cs file. The first
method we'll call is StoreExistingFile. It will open the Config.js file that
already exists on the end user's computer and store the contents of that file in
CustomActionData, which we'll pass to our rollback custom action. This way,
if a rollback occurs, it will have the file's original contents to revert back to. Like
deferred actions, rollback actions can only read WiX properties that are passed via
CustomActionData. However, as you can see, we can set CustomActionData
from within an immediate custom action, such as our StoreExistingFile method.
Update CustomActions.cs with the following code:
using Microsoft.Deployment.WindowsInstaller;
using System;
using System.IO;

namespace FileChangingCustomActions
{
 public class CustomActions
 {
 [CustomAction]

Custom Actions

112

 public static ActionResult StoreExistingFile(
 Session session)
 {
 string filePath = session["FILE_PATH"];

 if (File.Exists(filePath))
 {
 string content = File.ReadAllText(filePath);

 // Set CustomActionData for rollback method
 CustomActionData data = new CustomActionData();
 data["FILE_CONTENT"] = content;
 data["FILE_PATH"] = filePath;
 session["CA_RollbackFile"] = data.ToString();
 }
 else
 {
 session.Log("File not found: " + filePath);
 return ActionResult.Failure;
 }

 return ActionResult.Success;
 }
 }
}

7. Next, define the ChangeFile custom action. This is the method that updates the
Config.js file as part of the normal installation. Add the following method to our
CustomActions.cs file:
[CustomAction]
public static ActionResult ChangeFile(Session session)
{
 string filePath = session.CustomActionData["FILE_PATH"];

 if (File.Exists(filePath))
 {
 string originalContent = File.ReadAllText(filePath);
 string updatedContent =
 originalContent.Replace(
 "\"serverAddress\" : \"127.0.0.1\"",
 "\"serverAddress\" : \"10.0.0.1\"");

 File.WriteAllText(filePath, updatedContent);
 }

 return ActionResult.Success;
}

Chapter 6

113

8. Then, define the custom action that will undo these changes in the event
of a rollback. We can call it RollbackFile. Add the following method to
CustomActions.cs:
[CustomAction]
public static ActionResult RollbackFile(Session session)
{
 string filePath = session.CustomActionData["FILE_PATH"];

 if (File.Exists(filePath))
 {
 string originalContent =
 session.CustomActionData["FILE_CONTENT"];

 File.WriteAllText(filePath, originalContent);
 }

 return ActionResult.Success;
}

9. Reference the custom action project in your setup project and then add a Binary
element for it:
<Binary Id="FileChangingCustomActionsDLL" SourceFile="$(var.
FileChangingCustomActions.TargetDir)FileChangingCustomActions.
CA.dll" />

10. Include the custom actions in the installer using the CustomAction elements. Note
the Execute attribute of each element and also that we're ignoring the Return
value of the rollback custom action so that if it fails, it won't prevent the rest of the
software from being rolled back:
<CustomAction Id="CA_StoreExistingFile"
 BinaryKey="FileChangingCustomActionsDLL"
 DllEntry="StoreExistingFile"
 Execute="immediate"
 Return="check" />

<CustomAction Id="CA_ChangeFile"
 BinaryKey="FileChangingCustomActionsDLL"
 DllEntry="ChangeFile"
 Execute="deferred"
 Return="check" />

<CustomAction Id="CA_RollbackFile"
 BinaryKey="FileChangingCustomActionsDLL"
 DllEntry="RollbackFile"
 Execute="rollback"
 Return="ignore" />

Custom Actions

114

11. Add the actions to the execute sequence and order them so that
StoreExistingFile is executed first, then RollbackFile,
and then ChangeFile, as follows:
<InstallExecuteSequence>
 <Custom Action="CA_StoreExistingFile"
 Before="InstallFinalize">
 <![CDATA[NOT Installed]]>
 </Custom>

 <Custom Action="CA_RollbackFile"
 After="CA_StoreExistingFile">
 <![CDATA[NOT Installed]]>
 </Custom>

 <Custom Action="CA_ChangeFile"
 After="CA_RollbackFile">
 <![CDATA[NOT Installed]]>
 </Custom>
</InstallExecuteSequence>

12. The ChangeFile method needs the path to the file. We can set
CustomActionData with a SetProperty element, as follows:
<SetProperty Id="CA_ChangeFile"
 Value="FILE_PATH=[FILE_PATH]"
 Sequence="execute"
 Before="CA_ChangeFile" />

13. If you compile and run the installer, it should find the Config.js file on the desktop
and update it so that it contains 10.0.0.1 instead of 127.0.0.1. However, we want to
test what would happen if a rollback were to occur. This recipe will show you how to
simulate one.

How to do it...
Use the WixFailWhenDeferred custom action from UtilExtension to manually invoke a
rollback, so that we can verify that our rollback custom action is working correctly:

1. Add UtilExtension to the project by right-clicking on the References node in
Solution Explorer and going to Add Reference... | WixUtilExtension.dll | Add | OK.

2. Add a CustomActionRef element that has an Id attribute of
WixFailWhenDeferred. This can go inside your Product element after the
Package element:
<CustomActionRef Id="WixFailWhenDeferred" />

Chapter 6

115

3. Run the installer from the command line but this time, pass
WIXFAILWHENDEFERRED=1 to it so that a rollback is triggered towards the
end of the installation:
msiexec /i RollbackTestingInstaller.msi WIXFAILWHENDEFERRED=1

4. The installation should fail and roll back. Check our Config.js file to make sure
that it has kept its original contents. It should contain 127.0.0.1 and not 10.0.0.1.

How it works...
The UtilExtension namespace contains a custom action called WixFailWhenDeferred,
which, when added to a project, will schedule itself within the execute sequence so that right
at the end, a rollback is triggered. However, you control whether to invoke the rollback by
passing WIXFAILWHENDEFERRED=1 on the command line; otherwise, it will continue without
a rollback.

It's a good idea to always include WixFailWhenDeferred in your setup projects. This
way, you always have a way to test a rollback. This sort of testing, along with verifying that
uninstallation works correctly, is an important part of assuring the quality of your installer.

7
Installing Wizards

In this chapter, we will cover the following:

 f Adding a wizard to guide users through the installation

 f Changing the logo images and default license agreement text of the wizard

 f Customizing the wizard by adding a new dialog window to it

 f Deciding which dialog to show next depending on the user's choices

 f Setting a property based on user input

Introduction
Before you add your own user interface, your MSI will give the minimum amount of feedback
during the installation. There will be a progress bar and a cancel button, but that's about it.
The user won't get any lead-up before their computer is suddenly being altered. This can be
pretty unnerving for the end user.

The good news is that we can add a UI using the same declarative XML syntax that we've used
in the rest of our setup project. Even better, the WiX toolset ships with several ready-made
install wizards that we can use as is or customize. A user interface doesn't have to mean
slowing down unattended, automated installs either. We can turn our UI off by running the
MSI from the command line with the /quiet flag, as follows:

msiexec /i MyInstaller.msi /quiet

In this chapter, we'll get familiar with using the WiX toolset's wizards and how to customize
them. We'll also see how to save the choices the user has made through the UI so that
we can use that information in later parts of the install.

Installing Wizards

118

Adding a wizard to guide users through
the installation
UIExtension is where we can find several premade user interfaces to guide users
through the installation. Here are five premade user interfaces: WixUI_Advanced, WixUI_
FeatureTree, WixUI_InstallDir, WixUI_Mondo, and WixUI_Minimal. Each has
some unique features. For example, WixUI_InstallDir lets you change the target install
directory and WixUI_Mondo gives users the option to install a typical, custom, or complete
setup. WixUI_Minimal is the easiest to get started with, since it only has one dialog. In this
recipe, we'll add it to our setup project to give you a feel of how it works.

Getting ready
To prepare for this recipe, perform the following steps:

1. Create a new setup project and call it InstallerWithWizard.

2. For the installer to complete successfully, you should add at least one file to it. Add a
file called Sample.txt and then include a Component and File element for it:

<ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component Id="cmpSampleTXT"
 Guid="{2D1D0EC9-7DD9-4948-A175-59C9B2001B12}">
 <File Source="Sample.txt" />
 </Component>
</ComponentGroup>

How to do it...
Add a UIRef element that points to one of the user interfaces that's defined in UIExtension
to display the UI during the installation. The following steps will show you how:

1. Add the UIExtension namespace to the project by right-clicking on the
References node in Solution Explorer and navigating to Add Reference... |
WixUIExtension.dll | Add | OK.

2. Add a UIRef element, either inside the Product element after the Package
element or within its own fragment, with Id set to WixUI_Minimal. Here's
an example:
<UIRef Id="WixUI_Minimal"/>

Chapter 7

119

3. Compile and run the installer to see the new user interface.

How it works...
The UIExtension contains the markup that defines the layout of several user interfaces.
The only thing you need to do is reference the one you want. If you were to look at the
source code of UIExtension, you'd see that it uses a UI element as the parent container
that assembles all the buttons, checkboxes, and text on each dialog. A UIRef element
makes an association with that UI element and pulls in all of its content. Its Id attribute
matches Id on the UI element.

There's more…
Some of these install wizards require extra setup, such as setting properties that will
be displayed in the UI. WixUI_Advanced needs you to give your installation's top-level
Directory element an ID of APPLICATIONFOLDER, as shown:

<Directory Id="TARGETDIR" Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="APPLICATIONFOLDER" Name="My Company" />
 </Directory>
</Directory>

Installing Wizards

120

You must also add two properties called ApplicationFolderName and WixAppFolder.
The first should be the name of the folder where our software is installed, as it will be
displayed to the end user. The second can be set to either WixPerMachineFolder or
WixPerUserFolder to control whether to default to an installation for all users or only
for the current one. The following example sets these two properties:

<UIRef Id="WixUI_Advanced"/>
<Property Id="ApplicationFolderName" Value="My Company" />
<Property Id="WixAppFolder" Value="WixPerMachineFolder" />

The WixUI_InstallDir wizard shows a dialog that lets the user change the install path
and expects you to set a property called WIXUI_INSTALLDIR to the Id of your software's
Directory element, as follows:

<UIRef Id="WixUI_InstallDir"/>
<Property Id="WIXUI_INSTALLDIR" Value="INSTALLFOLDER" />

Changing the logo images and default
license agreement text of the wizard

When you launch your installer with one of the user interfaces from the WiX Toolset,
you'll notice that it has a generic look and defaults to displaying the Common Public
License for the EULA. You'll want to customize this to show our own branded images and
company-specific license agreement. In this recipe, we will update WixUI_Minimal so that it
displays a new background and uses the GNU General Public License. This applies to all of the
default wizards.

Getting ready
To prepare for this recipe, perform the following steps:

1. Create a new setup project and call it CustomizedWizardInstaller.

2. For the installer to complete successfully, you should add at least one file to it. Add a
file called Sample.txt and then include a Component and File element in it:
<ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component Id="cmpSampleTXT"
 Guid="{A6F5F368-0FD3-4E75-AF3B-9FCB12AD1D86}">
 <File Source="Sample.txt" />
 </Component>
</ComponentGroup>

Chapter 7

121

3. Add a reference to the UIExtension namespace and then add a UIRef element
that points to WixUI_Minimal:

<UIRef Id="WixUI_Minimal"/>

How to do it...
Use the WixVariable elements to define image and RTF resources for the user interface:

1. Create a JPEG image that is 493 pixels wide and 312 pixels high. To match how the
default image that WiX uses does it, have the left 165 pixels of the background image
be a different color. Experiment with colors until you find some that blend well with
the checkboxes, labels, and other controls on the dialog:

2. Add this image to the setup project. Then, add a WixVariable element that has Id
set to WixUIDialogBmp and Value set to your image's path:
<UIRef Id="WixUI_Minimal"/>

<WixVariable Id="WixUIDialogBmp"
 Value="CustomBackground.jpg"/>

Installing Wizards

122

3. To change the license agreement, add your own to a rich text format (RTF) file using
a text editor like Wordpad. Microsoft Word, for some reason, doesn't make RTF files
in the correct format. Add this file to the setup project. If the file isn't RTF, or if it isn't
formatted correctly, the license won't show up when you run the installer.

4. Add a WixVariable element with Id of WixUILicenseRtf and Value that points
to the RTF file:
<UIRef Id="WixUI_Minimal"/>
<WixVariable Id="WixUIDialogBmp"
 Value="CustomBackground.jpg"/>
<WixVariable Id="WixUILicenseRtf"
 Value="CustomLicense.rtf"/>

5. Launch the installer to see the changes to the user interface. Here's an example that
uses a GPL and a background with a sidebar of smiley faces:

How it works...
The WiX team had customization in mind when they built the wizards that come with the
toolset. By simply adding the WixVariable elements with the right IDs, we can change
the look and content. In this example, we changed the background using a WixVariable
called WixUIDialogBmp, and the license agreement text using a WixVariable called
WixUILicenseRtf.

Chapter 7

123

There's one other image that, although it doesn't make an appearance in the
WixUI_Minimal wizard, does come into play in the others. It's an image that floats at
the top of other dialogs. It has a white background with a red box on its right-hand side
that contains a graphic of a CD. Here's the default look for the WixUI_Mondo wizard:

We can change this to another background with dimensions of 493 pixels by 58 pixels using
WixVariable with Id of WixUIBannerBmp:

<WixVariable Id="WixUIBannerBmp" Value="CustomBanner.jpg"/>

Customizing the wizard by adding a new
dialog window to it

The wizards that you get with the WiX toolset are great for getting started but probably aren't
a perfect fit for the information you hope to collect or display to the user. As you might expect,
we can customize them so that they include our own custom screens. For example, if you want
to collect a username and password from the user, you can add a screen that asks for this
information and stores it in WiX properties.

The WixUI_Minimal wizard, which we've used in the previous recipes, has only one screen
so it's ill-suited for customization. Let's use WixUI_InstallDir instead. It starts out with
a license agreement dialog, followed by a dialog that lets the user change the installation
directory, and ends with a screen that asks whether they're satisfied with their changes and
provides an Install button. We will insert a dialog that's mostly blank but includes the Next,
Back, and Cancel buttons. You'll be able to use this template for creating any kind of dialog
you want.

Installing Wizards

124

Getting ready
To prepare for this recipe, perform the following steps:

1. Create a new setup project and call it NewDialogInstaller.

2. For the installer to complete successfully, you should add at least one file to it. Add a
file called Sample.txt and then include a Component and File element for it:
<ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component Id="cmpSampleTXT"
 Guid="{A6F5F368-0FD3-4E75-AF3B-9FCB12AD1D86}">
 <File Source="Sample.txt" />
 </Component>
</ComponentGroup>

3. Add a reference to UIExtension and add a UIRef element that points to
WixUI_InstallDir:
<UIRef Id="WixUI_InstallDir"/>

4. This particular wizard requires us to set a property called WIXUI_INSTALLDIR so
that it matches the Id of our software's Directory element. Here's an example:

<Directory Id="TARGETDIR" Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="INSTALLFOLDER" Name="My Company" />
 </Directory>
</Directory>
<Property Id="WIXUI_INSTALLDIR" Value="INSTALLFOLDER" />

How to do it...
Override the navigation buttons of an existing user interface so that they take the user to your
new dialog. The following steps will show you how:

1. Download the source code for the WiX toolset from http://wix.codeplex.com/
SourceControl/latest. If you don't want to use the very latest set of code, you
can use the dropdown on the page to select your preferred version.

http://wix.codeplex.com/SourceControl/latest
http://wix.codeplex.com/SourceControl/latest

Chapter 7

125

2. Unzip the ZIP file and navigate within it to the src\ext\UIExtension\wixlib
directory.

3. Find the .wxs file that has the same name as the wizard we're using. We're using
WixUI_InstallDir, so look for WixUI_InstallDir.wxs. Copy it to the setup
project and rename it to something else, such as CustomInstallDir.wxs.
You can drag-and-drop files onto Visual Studio's Solution Explorer pane to copy
them to the project:

4. Open the new CustomInstallDir.wxs file and change its UI element to have Id of
CustomInstallDir instead of WixUI_InstallDir:
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">
 <Fragment>
 <UI Id="CustomInstallDir">

5. Within our Product.wxs file, update the UIRef element that we added earlier so
that it points to CustomInstallDir instead of WixUI_InstallDir:
<UIRef Id="CustomInstallDir"/>

Installing Wizards

126

6. When creating your own dialog, you can reuse the markup from one of the dialogs you
got with the WiX source code. Just remove the parts you don't need and add those
that you do. Here's a sample based on the InstallDirDlg.wxs file that displays a
mostly empty dialog with just the Back, Next, and Cancel buttons, and the banner at
the top. Save this to the project as MyCustomDlg.wxs:
<?xml version="1.0" encoding="UTF-8"?>

<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">

<Fragment>

 <UI>

 <Dialog Id="MyCustomDlg"

 Width="370"

 Height="270"

 Title="My Custom Dialog">

 <Control Id="Next"

 Type="PushButton"

 X="236"

 Y="243"

 Width="56"

 Height="17"

 Default="yes"

 Text="!(loc.WixUINext)" />

 <Control Id="Back"

 Type="PushButton"

 X="180"

 Y="243"

 Width="56"

 Height="17"

 Text="!(loc.WixUIBack)" />

 <Control Id="Cancel"

 Type="PushButton"

 X="304"

 Y="243"

 Width="56"

 Height="17"

 Cancel="yes"

 Text="!(loc.WixUICancel)">

 <Publish Event="SpawnDialog"

Chapter 7

127

 Value="CancelDlg">1</Publish>

 </Control>

 <Control Id="Description"

 Type="Text"

 X="25"

 Y="23"

 Width="280"

 Height="15"

 Transparent="yes"

 NoPrefix="yes"

 Text="My Custom Dialog" />

 <Control Id="Title"

 Type="Text"

 X="15"

 Y="6"

 Width="200"

 Height="15"

 Transparent="yes"

 NoPrefix="yes"

 Text="My Custom Dialog" />

 <Control Id="BannerBitmap"

 Type="Bitmap"

 X="0"

 Y="0"

 Width="370"

 Height="44"

 TabSkip="no"

 Text="!(loc.InstallDirDlgBannerBitmap)" />

 <Control Id="BannerLine"

 Type="Line"

 X="0"

 Y="44"

 Width="370"

 Height="0" />

 <Control Id="BottomLine"

 Type="Line"

Installing Wizards

128

 X="0"

 Y="234"

 Width="370" Height="0" />

 </Dialog>

 </UI>

</Fragment>

</Wix>

7. To insert this new dialog into the existing flow, open CustomInstallDir.wxs and
update the following lines so that the InstallDirDlg dialog's Next button and
the VerifyReadyDlg dialog's Back button takes the user to our custom dialog,
essentially inserting itself between the two:
<Publish Dialog="InstallDirDlg"
 Control="Next"
 Event="NewDialog"
 Value="MyCustomDlg"
 Order="4">
 WIXUI_DONTVALIDATEPATH OR WIXUI_INSTALLDIR_VALID="1"
</Publish>

<Publish Dialog="VerifyReadyDlg"
 Control="Back"
 Event="NewDialog"
 Value="MyCustomDlg"
 Order="1">
 NOT Installed
</Publish>

8. Add the following lines so that our own dialog's Next and Back buttons take the user
to the right places:
<Publish Dialog="MyCustomDlg"
 Control="Back"
 Event="NewDialog"
 Value="InstallDirDlg" Order="1">1</Publish>

<Publish Dialog="MyCustomDlg"
 Control="Next"
 Event="NewDialog"
 Value="VerifyReadyDlg" Order="1">1</Publish>

Chapter 7

129

9. Build the project to verify that our custom dialog now appears as a part of the user
interface's sequence of dialogs, as follows:

How it works...
When we reference the UIExtension namespace, we get access to several ready-to-go user
interfaces. However, we can also add our own master UI that ties together the constituent
dialogs in a different way. Then, we just update our UIRef element so that it points to our
custom UI element, which mostly reuses dialogs from WixUI_InstallDir.

The WixUI_InstallDir.wxs file is the navigational piece that ties all the dialogs
together. We can alter it to control how the screens are sequenced, as well as add our own.
The other wizards can be extended in the same way. For example, if we want to customize
WixUI_Mondo, we will download the source code and update WixUI_Mondo.wxs. Just
remember to rename the file once you've added it to the project.

To insert a new dialog, we updated the Publish elements in WixUI_InstallDir.wxs.
The Publish elements control the buttons on each of the dialogs. Specifically, they fire a
NewDialog event that causes the screen to transition from one dialog to another. The screen
that comes up next is determined by the Publish element's Value attribute. This makes it
possible to change the entire wizard's sequence by updating only one file.

Installing Wizards

130

Deciding which dialog to show next
depending on the user's choices

Sometimes, you'll want to display one dialog or another depending on choices that the user
has made up to that point. For example, suppose we ask them whether they want to install a
new SQL Server database or use an existing one. Depending on their decision, the next screen
they see will either be one that asks for details about the new database or a screen that asks
them to specify where the existing database can be found. In this recipe, we'll insert such a
dialog and change which dialog to show next depending on the choice the user makes.

Getting ready
To prepare for this recipe, perform the following steps:

1. Create a new setup project and name it SwitchingDialogsInstaller.

2. Use the technique discussed in the last recipe, wherein we copy WixUI_
InstallDir.wxs and rename it CustomInstallDir.wxs, to insert a dialog
called DatabaseChoice.wxs into an existing wizard. This new dialog will be where
the user chooses whether they want to create a new database or use an existing one.

3. Add another dialog and call it NewDatabase.wxs. It will be used in the event of the
user choosing to add a new database. Update its Dialog element so that it has Id
of NewDatabaseDlg. Also, change its Title control so that it says New Database
Screen. This way, we know which screen we've landed on. Here's the markup:
<?xml version="1.0" encoding="UTF-8"?>
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">
 <Fragment>
 <UI>
 <Dialog Id="NewDatabaseDlg" Width="370" Height="270"
Title="My Custom Dialog">
 <Control Id="Next" Type="PushButton" X="236" Y="243"
Width="56" Height="17" Default="yes" Text="!(loc.WixUINext)" />
 <Control Id="Back" Type="PushButton" X="180" Y="243"
Width="56" Height="17" Text="!(loc.WixUIBack)" />
 <Control Id="Cancel" Type="PushButton" X="304" Y="243"
Width="56" Height="17" Cancel="yes" Text="!(loc.WixUICancel)">
 <Publish Event="SpawnDialog" Value="CancelDlg">1</
Publish>
 </Control>

 <Control Id="Description" Type="Text" X="25" Y="23"
Width="280" Height="15" Transparent="yes" NoPrefix="yes"
Text="Create a database" />
 <Control Id="Title" Type="Text" X="15" Y="6" Width="200"
Height="15" Transparent="yes" NoPrefix="yes" Text="New Database"
/>

Chapter 7

131

 <Control Id="BannerBitmap" Type="Bitmap" X="0"
Y="0" Width="370" Height="44" TabSkip="no" Text="!(loc.
InstallDirDlgBannerBitmap)" />
 <Control Id="BannerLine" Type="Line" X="0" Y="44"
Width="370" Height="0" />
 <Control Id="BottomLine" Type="Line" X="0" Y="234"
Width="370" Height="0" />
 </Dialog>
 </UI>
 </Fragment>
</Wix>

4. Add another dialog and call it ExistingDatabase.wxs. It will be used in the event
of the user choosing to use an existing database. Update its Dialog element so that
it has Id of ExistingDatabaseDlg. Also, change its Title control so that it says
Existing Database Screen:

<?xml version="1.0" encoding="UTF-8"?>
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">
 <Fragment>
 <UI>
 <Dialog Id="ExistingDatabaseDlg" Width="370" Height="270"
Title="My Custom Dialog">
 <Control Id="Next" Type="PushButton" X="236" Y="243"
Width="56" Height="17" Default="yes" Text="!(loc.WixUINext)" />
 <Control Id="Back" Type="PushButton" X="180" Y="243"
Width="56" Height="17" Text="!(loc.WixUIBack)" />
 <Control Id="Cancel" Type="PushButton" X="304" Y="243"
Width="56" Height="17" Cancel="yes" Text="!(loc.WixUICancel)">
 <Publish Event="SpawnDialog" Value="CancelDlg">1</
Publish>
 </Control>

 <Control Id="Description" Type="Text" X="25" Y="23"
Width="280" Height="15" Transparent="yes" NoPrefix="yes"
Text="Specify an existing database" />
 <Control Id="Title" Type="Text" X="15" Y="6" Width="200"
Height="15" Transparent="yes" NoPrefix="yes" Text="Existing
Database" />
 <Control Id="BannerBitmap" Type="Bitmap" X="0"
Y="0" Width="370" Height="44" TabSkip="no" Text="!(loc.
InstallDirDlgBannerBitmap)" />
 <Control Id="BannerLine" Type="Line" X="0" Y="44"
Width="370" Height="0" />
 <Control Id="BottomLine" Type="Line" X="0" Y="234"
Width="370" Height="0" />
 </Dialog>
 </UI>
 </Fragment>
</Wix>

Installing Wizards

132

How to do it...
Add the Publish elements for each dialog the user could be taken to and decide which to
use based on conditions within these elements. Follow the given steps to do so:

1. On the DatabaseChoice dialog, we want to ask the question: create a new
database or use an existing one? Then beneath it add a radio button for each
choice, as shown in the following markup:
<Control Id="Title"
 Type="Text"
 X="15"
 Y="6"
 Width="200"
 Height="15"
 Transparent="yes"
 NoPrefix="yes" Text="Database Location" />

<Control Id="Description"
 Type="Text"
 X="25"
 Y="23"
 Width="280"
 Height="15"
 Transparent="yes"
 NoPrefix="yes"
 Text="Create a new database or use an existing one?" />

<Control Id="DatabaseRadioButtons"
 Type="RadioButtonGroup"
 Property="DatabaseChosen"
 X="20"
 Y="60"
 Width="200"
 Height="100">
 <RadioButtonGroup Property="DatabaseChosen">
 <RadioButton Value="new_database"
 Text="Create new database"
 Width="200"
 Height="17"
 X="0"
 Y="0" />
 <RadioButton Value="existing_database"
 Text="Use existing database"
 Width="200"

Chapter 7

133

 Height="17"
 X="0"
 Y="20"/>
 </RadioButtonGroup>

2. Add a property to the project that will select one of the radio buttons as the default.
Its ID should match the Property attribute on the RadioButtonGroup Control
element and the Property attribute on the RadioButtonGroup element. Its value
selects which of the RadioButton elements to use as the default:
<Property Id="DatabaseChosen"
 Value="new" />

3. Go to the CustomInstallDir.wxs file and update it so that it has two Publish
elements that control the Next button for the DatabaseChoice dialog. The
first, which navigates to the NewDatabaseDlg dialog, should contain the
condition DatabaseChosen = "new". The second, which navigates to the
ExistingDatabaseDlg dialog, should contain the condition DatabaseChosen =
"existing". Use the following markup:
<Publish Dialog="DatabaseChoiceDlg"
 Control="Next"
 Event="NewDialog"
 Value="NewDatabaseDlg"
 Order="1">
 DatabaseChosen = "new"
</Publish>

<Publish Dialog="DatabaseChoiceDlg"
 Control="Next"
 Event="NewDialog"
 Value="ExistingDatabaseDlg"
 Order="2">
 DatabaseChosen = "existing"
</Publish>

4. Be sure to update the Back and Next buttons for our NewDatabase and
ExistingDatabase screens too:
<Publish Dialog="NewDatabaseDlg"
 Control="Back"
 Event="NewDialog"
 Value="DatabaseChoiceDlg"
 Order="1">1</Publish>

<Publish Dialog="NewDatabaseDlg"
 Control="Next"
 Event="NewDialog"
 Value="VerifyReadyDlg"
 Order="1">1</Publish>

Installing Wizards

134

<Publish Dialog="ExistingDatabaseDlg"
 Control="Back"
 Event="NewDialog"
 Value="DatabaseChoiceDlg"
 Order="1">1</Publish>

<Publish Dialog="ExistingDatabaseDlg"
 Control="Next"
 Event="NewDialog"
 Value="VerifyReadyDlg"
 Order="1">1</Publish>

5. Add the following lines to the Product.wxs file:
<UIRef Id="CustomInstallDir"/>
<Property Id="WIXUI_INSTALLDIR" Value="INSTALLFOLDER" />

6. Launch the installer to verify that choosing a different radio button on the
DatabaseChoice dialog will change where the Next button takes you:

How it works...
A lot of this recipe went toward setting the stage: getting the radio buttons in place, defining a
property to hold the value of the radio buttons, and adding the new dialogs to the wizard. The
trick to show one dialog or another happened in the blink of an eye. It was when we added two
Publish elements to the CustomInstallDir.wxs file:

<Publish Dialog="DatabaseChoiceDlg"
 Control="Next"
 Event="NewDialog"
 Value="NewDatabaseDlg"

Chapter 7

135

 Order="1">
 DatabaseChosen = "new_database"
</Publish>

<Publish Dialog="DatabaseChoiceDlg"
 Control="Next"
 Event="NewDialog"
 Value="ExistingDatabaseDlg"
 Order="2">
 DatabaseChosen = "existing_database"
</Publish>

Ordinarily, we'd only have one Publish element for the Next button. In this case, we have
two, but only one is going to get the opportunity to take the user to the dialog specified in its
Value attribute. As you saw, the NewDialog event causes the current dialog to be replaced
with the one specified in the Publish element's Value attribute. Which Publish element
wins depends on what our DatabaseChoice property gets set to.

Each Publish element has a condition that checks the value of the DatabaseChoice
property. The first checks if it has been set to new_database and the second checks if it has
been set to existing_database. Also notice that each Publish element has an Order
attribute. This sets up which Publish element will be evaluated first. If its condition evaluates
to true, the wizard will navigate to that screen. Otherwise, the next Publish element gets a
chance to check its condition and navigate the user to its screen.

Setting a property based on user input
There are many user interface controls at your disposal including textboxes, radio buttons,
and checkboxes. The following MSDN article lists them all: http://msdn.microsoft.com/
en-us/library/aa368039(v=vs.85).aspx. Although there are a few that are static and
can't be interacted with, such as the Text control, which is simply a label, most of them take
in and store input from the user. Those that can be interacted with use Property elements
to store that data.

In this recipe, we'll cover one of the most useful controls: the Edit control, which is a textbox.
We'll see how to save its value to a Property so that it can be used during later parts of the
install. This is the same general pattern that can be applied to the other controls.

Getting ready
To prepare for this recipe, perform the following steps:

1. Create a new setup project and call it StoringInputInstaller.

http://msdn.microsoft.com/en-us/library/aa368039(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa368039(v=vs.85).aspx

Installing Wizards

136

2. As described in earlier recipes, reference UIExtension and add one of the default
wizards. Then, add a custom dialog to the project and override the navigation of the
wizard so that your dialog is displayed. During this recipe, we will add a textbox to the
dialog so that we can collect user input and store it in a property.

How to do it...
Set the Control element's Property attribute so that the value of the control will be saved
to a property with that name. Here's an example:

1. Add a Control element to the dialog that will display a textbox in which the user can
enter data . Set its Property attribute to the Id of a Property element in which to
store the data:
<Control Id="MyTextbox"
 Type="Edit"
 Property="MY_PROPERTY"
 X="20"
 Y="80"
 Width="100"
 Height="17" />

2. Run the installer with logging turned on and then check the log to see that a property
called MY_PROPERTY was created and set to whatever you typed into the textbox:

Action 21:13:43: MyCustomDlg. Dialog created

MSI (c) (C4:74) [21:13:59:428]: PROPERTY CHANGE: Adding MY_
PROPERTY property. Its value is 'test'.

How it works...
This example is a representative of all the Control elements that accept user input. It has a
Property attribute that collects the user's input and stores it in a property with that name.
If the property doesn't exist, it will be created. You can also set a default value for the control
by declaring a Property element with a matching ID ahead of time. The following Property
element sets a default value for our Edit control:

<Property Id="MY_PROPERTY" Value="my default value" />

Note that our property's ID is all uppercase. Only uppercase properties can be passed from
the UI sequence to the execute sequence.

8
Users and Groups

In this chapter, we will cover the following recipes:

 f Creating a local user

 f Adding a new user to a new group

 f Adding a new user to an existing group

 f Adding an existing user to a new group

 f Adding a new user with the log on as a service security setting

Introduction
In Windows, the resources that a person can access, such as files and folders, are restricted
by that person's user account and the groups that they're a member of. The same goes for
running processes since they adopt the privileges of whichever user launched them or in
the case of long-running, self-starting services, the user account they're configured to start
under. On every file and folder, there's a list of exactly who can read, modify, and execute
its contents.

To fit into this paradigm, WiX lets us update the accounts and group memberships of both
new and existing users. This way, we can sync a user's permissions with those required by a
resource. In this chapter, we'll cover several common scenarios involving users and groups.

Users and Groups

138

Creating a local user
There are plenty of times when you'll want to add a new user account for your software to use.
For example, a Windows service can be run as a user whose password never expires and has
access to only the parts of the system needed by your software. The same goes for a website
in IIS. You must decide which user these long-running processes will run as, but they'll typically
it will be a service account that only the machine interacts with. Our installer can set up a new
local user on the target machine for exactly this purpose.

When I say local user, I am referring to an account that is local to the target
computer and not a domain user or a Microsoft Live account.

Getting ready
To prepare for this recipe, create a new setup project and name it NewUserInstaller.

How to do it...
A User element from the UtilExtension namespace can be used to create a local user
account, as shown in the following steps:

1. Add UtilExtension to the project by right-clicking on the References node in
Solution Explorer and going to Add Reference... | WixUtilExtension.dll | Add | OK.

2. Add the UtilExtension namespace to the Wix element:
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"
xmlns:util="http://schemas.microsoft.com/wix/UtilExtension">

3. Add a util:User element within a Component element. Set its Name attribute to
the name of the new user you'd like to create and be sure to set the component's
KeyPath attribute to yes:

<Component Id="cmpAddUser"
 Guid="{2BF75950-F6C9-44F7-90FC-B4CCBC7CC22F}"
 KeyPath="yes">
 <util:User Id="myNewUser"
 Name="Joe"
 Password="myPassword123"
 PasswordNeverExpires="yes"
 UpdateIfExists="yes" />
</Component>

Chapter 8

139

How it works...
The UtilExtension namespace has an element called User that we can leverage to add
a new user account to a computer. Although the only required attributes are Id and Name,
we also assigned a password that will never expire and instructed the installer to update
the account if it already exists. After running the MSI, we'll be able to see the newly created
account on a Windows 8 machine by opening the Windows file explorer, right-clicking on
This PC, and going to Manage | Local Users and Groups | Users:

When our software is uninstalled, this user account will also be removed. However, if you want
to keep it permanently, set the User element's RemoveOnUninstall attribute to no.

Adding a new user to a new group
A Windows group is a collection of users who have the same permissions, via the group,
to a resource. This makes updating permissions easier and also lets us move users from
one group to another to change their access. For example, you could add a user to a
Supervisors group to give them full access to your software, including administration
utilities; alternatively, you could add them to an Employees group to restrict their access to
only certain files and folders. In this recipe, we'll begin by creating a user and a group and
then add that user to the group.

The UtilExtension namespace that ships with the WiX Toolset offers a lot of functionality
around users and groups, but one thing it doesn't have is a way to create a Windows group.
For that, we turn to Community MSI Extensions from AppSecInc. There are several extensions
in this library, but the one we're after is called UserPrivilegesExtension. It has elements
to create users and groups.

Getting ready
To prepare for this recipe, create a new setup project called NewUserAndGroupInstaller.

Users and Groups

140

How to do it...
Use the UserPrivilegesExtension from Community MSI Extensions to add a new user to
a new group. The following steps show how this can be done:

1. Download Community MSI Extensions from http://dblock.github.io/msiext/:

2. Unzip the downloaded ZIP file and open its WixExtensions folder. Copy
WixUserPrivilegesExtension.dll to your setup project's folder.

3. Using Solution Explorer, add the WixUserPrivilegesExtension.dll file as a
project reference.

4. Add the UserPrivilegesExtension XML namespace to the Wix element:
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"
xmlns:userPrivs="http://schemas.appsecinc.com/wix/
UserPrivilegesExtension">

5. Create a new user with the LocalUser element from Community MSI Extensions,
placing it within a component that has its KeyPath attribute set to yes:
<Component Id="cmpNewUserAndGroup"
 Guid="{1D8900F0-94C4-444C-8CF5-2B3C661E373C}"
 KeyPath="yes">
 <userPrivs:LocalUser Id="myLocalUser"
 Username="Joe"
 CreateOnInstall="yes"
 DeleteOnUnInstall="yes"
 CheckIfExists="yes" />
</Component>

http://dblock.github.io/msiext/

Chapter 8

141

6. To create a new group, add a LocalGroup element inside a separate component.
Make sure to set the Component element's KeyPath attribute:
<Component Id="cmpNewGroup"
 Guid="{18D99888-67FA-4F96-8FEC-D633D0F87302}"
 KeyPath="yes">
 <userPrivs:LocalGroup Id="supervisorsGroup"
 Name="Supervisors"
 Description="Supervises things"
 CreateOnInstall="yes"
 DeleteOnUnInstall="yes"
 CheckIfExists="yes" />
</Component>

7. Add the user to the group by placing a LocalGroupMember element that references
the LocalUser element inside LocalGroup. Note that we cannot associate a
user that was created with the User element from UtilExtension with the
LocalGroupMember element:

<userPrivs:LocalGroup ...>
 <userPrivs:LocalGroupMember Id="AddJoeToGroup"
 UserId="myLocalUser"
 AddOnInstall="yes"
 RemoveOnUnInstall="yes" />
</userPrivs:LocalGroup>

How it works...
Although we've already seen a way to create a user with the User element from
UtilExtension, that way won't mix well with the other elements from Community MSI
Extensions. If we plan to create a group and associate a user with it, we must use the
LocalUser element instead. Its CheckIfExists attribute ensures the user will only be
created if it doesn't already exist.

You can find more information about the LocalUser, LocalGroup, and
LocalGroupMember elements at http://dblock.github.io/
msiext/docs/1.4.

The LocalGroup element creates a new group on the computer. Use its Name attribute to
set the name of the group and Description to explain what the group is for. Then to add
our user Joe to the group, place a LocalGroupMember element inside LocalGroup. Its
UserId attribute should match the ID of the LocalUser element.

http://dblock.github.io/msiext/docs/1.4
http://dblock.github.io/msiext/docs/1.4

Users and Groups

142

On Windows 8, you can see a list of users that are installed by opening the Windows file
explorer, right-clicking on This PC, and going to Manage | Local Users and Groups | Users.
After running the MSI, you should see that our user Joe has been added to the
group Supervisors:

Adding a new user to an existing group
After creating a new user, you may want to add them to a group that already exists on the
computer. For example, members of the Users group can do basic things such as run
applications and access local and network printers. Adding your user to this group is a quick
way to give them this limited access. It's pretty simple to do this using the UtilExtension
namespace, as we'll see.

Getting ready
To prepare for this recipe, add a new setup project and name it
NewUserExistingGroupInstaller.

How to do it...
After referencing an existing group with the Group element, add a user to it with the
GroupRef element, as shown in the following steps:

1. Add UtilExtension to the project by right-clicking on the References node in
Solution Explorer and going to Add Reference... | WixUtilExtension.dll | Add | OK.

2. Add the UtilExtension namespace to the Wix element:
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"
xmlns:util="http://schemas.microsoft.com/wix/UtilExtension">

3. Add a Group element to reference the existing Windows group. It can be placed
inside a Fragment element or within the Product element. It should not be placed
in a component:
<util:Group Id="UsersGroup" Name="Users" />

Chapter 8

143

4. Add a User element within a component that has its KeyPath attribute set to
yes. Set the User element's Name attribute to the name of the new user you'd
like to create:
<Component Id="cmpAddUser"
 Guid="{2BF75950-F6C9-44F7-90FC-B4CCBC7CC22F}"
 KeyPath="yes">
 <util:User Id="myNewUser" Name="Joe" />
</Component>

5. Add a GroupRef element inside the User element that points to the Group element:

<util:User Id="myNewUser" Name="Joe">
 <util:GroupRef Id="UsersGroup"/>
</util:User>

How it works...
The Group element from UtilExtension doesn't create new groups, but references the existing
groups found on the target computer. So, if you want to add a new user to the Users group,
as we did in this example, you will first need to add a Group element with its Name set
to Users.

Users exists on every Windows computer. However, be aware it they might not be called
Users on non-English machines. You can solve this problem by adding a WiX localization file
that contains the translation of the group name, such as for the French version. Then, you can
swap your hardcoded Name attribute on the Group element for a reference to the localization
variable. More information about creating a localization file can be found at http://
wixtoolset.org/documentation/manual/v3/howtos/ui_and_localization/
make_installer_localizable.html.

After referencing the group, the next step was to add our user to it by adding a GroupRef
element inside the User element. The GroupRef element's Id attribute should match our
Group element's Id atribute. You can stack several GroupRef elements to add the user to
more than one group.

Adding an existing user to a new group
If you'd like to give an existing user access to your software, you'll need a way to reference
their account and then add it to the group you're creating. For example, user Alice already
exists on the system and you'd like to add her to a new group called Supervisors. As a side
note, you would typically ask for that username through a UI wizard. Then, save the username
to a WiX property. Properties can be accessed in other elements by using a square bracket
notation, as follows:

<util:User Id="myNewUser" Name="[USERNAME]" />

http://wixtoolset.org/documentation/manual/v3/howtos/ui_and_localization/make_installer_localizable.html
http://wixtoolset.org/documentation/manual/v3/howtos/ui_and_localization/make_installer_localizable.html
http://wixtoolset.org/documentation/manual/v3/howtos/ui_and_localization/make_installer_localizable.html

Users and Groups

144

The UtilExtension namespace doesn't include an element to create a new group. So, we'll
return to Community MSI Extensions. In this recipe, we'll locate an existing user account and
add it to our Supervisors group.

Getting ready
To prepare for this recipe, create a new setup project and call it
AddExistingUserToGroupInstaller.

How to do it...
Use the elements from UserPrivilegesExtension to find an existing user and add it to a
new group that you've created. The following steps show you how this is done:

1. Download Community MSI Extensions from http://dblock.github.io/msiext/.

2. Unzip the downloaded ZIP file and open its WixExtensions folder. Copy
WixUserPrivilegesExtension.dll to your setup project's folder.

3. Using Solution Explorer, add the WixUserPrivilegesExtension.dll file as a
project reference.

4. Add the UserPrivilegesExtension XML namespace to the Wix element:
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"
xmlns:userPrivs="http://schemas.appsecinc.com/wix/
UserPrivilegesExtension">

5. Let's define a Property called USERNAME so that it's a more realistic example,
wherein the username will be collected and stored in a property. This can go inside
our Product element or within a fragment:
<Property Id="USERNAME" Value="Alice" />

6. Find the existing user account with the LocalUser element of
UserPrivilegesExtension, setting its Username attribute to the name of the
user you want to find. Since this is an existing user, set CreateOnInstall and
DeleteOnUnInstall to no. Place this element within a component that has its
KeyPath attribute set to yes:
<Component Id="cmpFindExistingUser"
 Guid="{1D8900F0-94C4-444C-8CF5-2B3C661E373C}"
 KeyPath="yes">
 <userPrivs:LocalUser Id="findLocalUser"
 Username="[USERNAME]"
 CreateOnInstall="no"
 DeleteOnUnInstall="no" />
</Component>

http://dblock.github.io/msiext/

Chapter 8

145

7. To create a new group, add a LocalGroup element inside a separate component.
Make sure to set the Component element's KeyPath attribute:
<Component Id="cmpNewGroup"
 Guid="{7BCB9259-75BB-44E8-8C08-CE4D35077047}"
 KeyPath="yes">
 <userPrivs:LocalGroup Id="supervisorsGroup"
 Name="Supervisors"
 Description="Supervises things"
 CreateOnInstall="yes"
 DeleteOnUnInstall="yes"
 CheckIfExists="yes" />
</Component>

8. Add the user to the group by placing a LocalGroupMember element inside the
LocalGroup element:
<userPrivs:LocalGroup ...>
 <userPrivs:LocalGroupMember Id="AddUserToGroup"
 UserId="findLocalUser"
 AddOnInstall="yes"
 RemoveOnUnInstall="yes" />
</userPrivs:LocalGroup>

9. Create a user named Alice on the target computer and then run the installer.
Verify that Alice was added to the Supervisors group.

How it works...
The LocalUser element will find an existing user to update, as long as we set its
CreateOnInstall and DeleteOnUnInstall attributes to no. Its Username attribute
should match the user account you're trying to find, although that name can be stored in a
separate Property element. If you're updating the currently logged-in user, the changes
won't take effect until they've logged out and back in again. To reference the current user,
use the predefined LogonUser property, as follows:

<userPrivs:LocalUser Id="findCurrentUser"
 Username="[LogonUser]"
 CreateOnInstall="no"
 DeleteOnUnInstall="no" />

As we've seen, to create a new group, we use the LocalGroup element. Its Name attribute
specifies what to call the new group and Description sets a short explanation about it. The
CheckIfExists attribute tells the installer to only create the group if it doesn't already exist.

Users and Groups

146

To add the user to the group, we place a LocalGroupMember element inside LocalGroup
and identify the user with its UserId attribute. By setting AddOnInstall and
RemoveOnUnInstall to yes, we're saying that we would like the user to be
added to the group during installation and removed from it during uninstallation.

Adding a new user with the log on as a
service security setting

When you develop a Windows service and you want it to start automatically when the
computer is turned on, you'll need to run that service as a user that has the Log on as a
service security setting. In this recipe, you will learn how to apply this attribute to a new
user account that we will create.

Getting ready
To prepare for this recipe, create a new setup project and call it
LogonAsServiceInstaller.

How to do it...
Add the LogonAsService attribute to the User element, as outlined in the following steps:

1. Add UtilExtension to the project by right-clicking on the References node in
Solution Explorer and going to Add Reference... | WixUtilExtension.dll | Add | OK.

2. Add the UtilExtension namespace to the Wix element:
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"
xmlns:util="http://schemas.microsoft.com/wix/UtilExtension">

3. Add a User element within a component and set its Name attribute to the name of
the new user you'd like to create. Set its LogonAsService attribute to yes. Be sure
to set the Component element's KeyPath attribute to yes:

<Component Id="cmpNewUser"
 Guid="{2CFE6625-C866-483F-B3D6-614555743069}"
 KeyPath="yes">
 <util:User Id="myNewUser"
 Name="Joe"
 UpdateIfExists="yes"
 LogonAsService="yes" />
</Component>

Chapter 8

147

How it works...
After giving a new user the ability to log on as a service, it will be able to start up and run in
the background while you're logged on with your own user account. Setting it up is as simple
as adding the LogonAsService attribute to the User element.

You can verify that this setting has been added by opening the Security Settings Extension
snap-in and checking that our user, Joe, has been added to the Log on as a service
assignment. In Windows 8, open Control Panel and then navigate to Administrative Tools |
Local Security Policy | Local Policies | User Rights Assignment | Log on as a service.
You should see Joe among the entries:

9
Handling Prerequisites

In this chapter, we will cover the following recipes:

 f Stopping the installation with a launch condition

 f Installing only to supported versions of Windows

 f Redistributing the .NET Framework with a bootstrapper

 f Executing either a 64-bit or 32-bit MSI depending on the user's operating system

 f Downloading resources from the Web with a web installer

Introduction
We have several options when it comes to handling prerequisites needed by our installer.
When I say prerequisites, I mean frameworks such as .NET, databases such as SQL Server,
and the environment itself such as having the expected version of Windows. We can stop the
installation outright if our requirements aren't met. On the other hand, in some cases, we
may choose to download the missing items. For example, if the end user is missing the .NET
Framework, we can install it prior to installing our own software.

In this chapter, we'll cover several scenarios, including how to prevent installations to the
wrong environment, download components from the Web, and install either 32-bit or 64-bit
files depending on which architecture the operating system supports.

Handling Prerequisites

150

Stopping the installation with a launch
condition

A launch condition checks the user's computer to make sure that it can support our software.
If it can't, the installation is automatically stopped before the user can go any further. For
example, we may want to prevent the installation if the user doesn't have the necessary
version of .NET installed. In this recipe, we'll do just that by adding a condition that checks
for .NET Framework 4.5.

Windows 8 comes with .NET 4.5 preinstalled, but Windows 7 doesn't. We can use
NetFxExtension to check whether .NET 4.5 is preinstalled, and if it's missing, a message
is displayed telling the user that the installation cannot continue. A nice thing about launch
conditions is the ability to show the user a warning message explaining what went wrong.

Getting ready
To get started, perform the following steps:

1. Create a new setup project and name it LaunchConditionInstaller.

2. Add a reference to NetFxExtension by right-clicking on the References node
in Solution Explorer and going to Add Reference... | WixNetFxExtension.dll |
Add | OK.

3. Add a PropertyRef element that has an ID of NETFRAMEWORK45. This can go
inside the Product element and gives us access to that property, which is defined
in the WixNetFxExtension.dll library:

<PropertyRef Id="NETFRAMEWORK45"/>

How to do it...
Use a Condition element to prevent the installation from continuing if its conditional
statement evaluates to false. The following steps show how to do it:

1. Add a Condition element inside the Product element. Its Message attribute
defines what the user will see if the condition is false:
<Condition Message="You must install Microsoft .NET Framework 4.5
or higher">
</Condition>

Chapter 9

151

2. Inside the Condition element, add the conditional statement. To prevent any
characters in the statement from being parsed as XML, surround it with CDATA
tags. The following example uses the NETFRAMEWORK45 property that's defined
in NetFxExtension to check whether .NET 4.5 is installed. It also uses the
Installed property to ensure the condition is only checked during a
first-time installation:
<Condition Message="You must install Microsoft .NET Framework 4.5
or higher">
 <![CDATA[Installed OR NETFRAMEWORK45]]>
</Condition>

3. Compile and run the installer on a computer that does not have the .NET Framework
4.5 to see the warning message, as shown in the following screenshot:

How it works...
The Condition element creates a launch condition in our installer. If the statement nested
inside evaluates to false, then our warning message will be displayed to the user and the
installation will stop. This check happens very early in the installation process, even before a
UI wizard has been shown. So, it can't be used to validate a user's input. However, it can check
for the version of the operating system, whether a particular version of software is installed, or
any other check that relies on information already present in the system.

In this example, we looked for a property called NETFRAMEWORK45, which is only set if the
.NET Framework 4.5 is present. If you were to keep a log of the installation, you'd see that the
NETFRAMEWORK45 property is set to a release number if it's found, shown as follows:

MSI (c) (F4:60) [17:27:51:193]: PROPERTY CHANGE: Adding NETFRAMEWORK45
property. Its value is '#378758'.

If .NET 4.5 is not found, the condition is false and the warning message is displayed. You
can learn more about properties for other versions of .NET, as defined by NetFxExtension,
at http://wixtoolset.org/documentation/manual/v3/customactions/
wixnetfxextension.html#properties.

http://wixtoolset.org/documentation/manual/v3/customactions/wixnetfxextension.html#properties
http://wixtoolset.org/documentation/manual/v3/customactions/wixnetfxextension.html#properties

Handling Prerequisites

152

When developing your own properties for use in the launch conditions, you'll often make
use of the AppSearch queries. AppSearch is an umbrella term that includes searching the
registry and filesystem to get clues about whether some third-party tool is installed. For
example, you might check to see if Notepad++ is installed by searching for notepad++.
exe in Program Files. That's the sort of thing that NetFxExtension does. You can get a
better idea about how it works by reading about the RegistrySearch element at http://
wixtoolset.org/documentation/manual/v3/howtos/files_and_registry/
read_a_registry_entry.html.

We also included Installed OR in our condition, so that our check for the .NET Framework
will only be done if this is a first-time installation. This way, there's no chance that we'll
inadvertently prevent the user from uninstalling our software.

There's more...
In this recipe, we added a single launch condition to check whether the .NET Framework 4.5 is
installed. If you wanted to add more conditions, simply add more Condition elements. Note
that you can't ever know the order in which these conditions will be evaluated, so try to think
of each of them as being equally important. The following example checks for .NET 4.5 and
SQL Server 2014 Express:

<Condition Message="You must install Microsoft .NET Framework 4.5 or
higher">
 <![CDATA[Installed OR NETFRAMEWORK45]]>
</Condition>
<Condition Message="You must have SQL Server 2014 Express installed">
 <![CDATA[Installed OR SQL_EXPRESS2014]]>
</Condition>

To find out whether SQL Server Express is installed, we look for a property called
SQL_EXPRESS2014. We can use the RegistrySearch element to read the Windows
registry and set this property. Here's how it is done:

<Property Id="SQL_EXPRESS2014">
 <RegistrySearch Id="SearchForSqlExpress"
 Root="HKLM"
 Key="SOFTWARE\Microsoft\Microsoft SQL Server\
SQLEXPRESS\MSSQLServer\CurrentVersion"
 Name="CurrentVersion"
 Type="raw" />
</Property>

Note that whether our search finds the 32-bit or 64-bit SQL Server Express depends
on which architecture our installer targets. If we build our installer to target a 32-bit
architecture, it will not see keys in the 64-bit section of the registry. This is handled
automatically by the RegistrySearch element.

http://wixtoolset.org/documentation/manual/v3/howtos/files_and_registry/read_a_registry_entry.html
http://wixtoolset.org/documentation/manual/v3/howtos/files_and_registry/read_a_registry_entry.html
http://wixtoolset.org/documentation/manual/v3/howtos/files_and_registry/read_a_registry_entry.html

Chapter 9

153

Installing only to supported versions of
Windows

Once we're confident that our application works on a particular version of Windows, we may
want to prevent users from installing to other unsupported operating systems. Here, we can
use a launch condition. Launch conditions evaluate the state of the user's system and then
cancel the installation if our requirements aren't met. By checking the operating system
version, we can save the end user from trying to use our software on a system it was never
intended for.

Getting ready
Create a new setup project and name it SupportedWindowsInstaller.

How to do it...
Add a launch condition that checks the VersionNT property to see what the computer's
version of Windows is:

1. Add a Condition element inside the Product element. Its Message attribute will
explain that the current operating system is not supported, as follows:
<Condition Message="Only Windows 8 and up is supported">
</Condition>

2. Add a conditional statement inside that element that compares the VersionNT
property to a Windows version number in the form of major version * 100 + minor
version. So, version 6.2 would be 602, as shown in the following code:
<Condition Message="Only Windows 8 and up is supported">
 <![CDATA[Installed OR VersionNT >= 602]]>
</Condition>

3. If you attempt to install this to Windows 7, you'll see the following warning:

Handling Prerequisites

154

How it works...
The Condition element creates what's called a launch condition in our installer. It
prevents the user from installing our software if the given conditional statement evaluates
to false. In this case, we're using the built-in VersionNT property to check for a specific
version of Windows. The following table, which you can also find online at http://msdn.
microsoft.com/en-us/library/aa370556(v=vs.85).aspx, lists the possible values
of VersionNT:

Operating System VersionNT
Windows 2000 500
Windows XP 501
Windows Server 2003 502
Windows Vista 600
Windows 7 / Windows Server 2008 601
Windows 8 / Windows Server 2012 602
Windows 8.1 603

Our condition compares VersionNT to 602 using a greater-than or equal-to sign:

VersionNT >= 602

This means that we'll support Windows 8 or newer operating systems. You can find
information about other comparison operators at http://msdn.microsoft.com/en-us/
library/aa368012%28v=vs.85%29.aspx.

Using these operators, we can check for a variety of scenarios. For example, we can see
whether the current operating system is Windows XP through Windows 7 by placing AND
between two statements, as follows:

VersionNT >= 501 AND VersionNT <= 601

There's more...
The VersionNT property gives us the version of Windows that's installed, but if we
want to get really fine-grained, we can combine it with the ServicePackLevel property.
It tells us which service packs have been installed. For example, if we wanted to know
whether the current operating system is Windows 7 with Service Pack 1, we could write
the following condition:

<Condition Message="Only Windows 7 Service Pack 1 is supported">
 <![CDATA[VersionNT = 601 AND ServicePackLevel = 1]]>
</Condition>

http://msdn.microsoft.com/en-us/library/aa370556(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa370556(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa368012%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa368012%28v=vs.85%29.aspx

Chapter 9

155

You can also determine whether the system is a 64-bit one by checking for the VersionNT64
property. It's only set on a 64-bit machine.

Redistributing the .NET Framework with a
bootstrapper

A bootstrapper checks for prerequisites and installs them if they're missing. So, we could
install .NET or SQL Server if it's not present and then follow up by installing our own software.
WiX Toolset adds a Visual Studio project template called Bootstrapper Project. In this recipe,
we'll see how to deploy the .NET Framework with it.

Getting ready
Create a new setup project and call it InstallerThatNeedsDotNet. We'll use a
bootstrapper to bundle this MSI with the .NET Framework.

How to do it...
Add a bootstrapper project, reference NetFxExtension within it, and then include one of its
.NET packages in the bootstrapper:

1. Add a Bootstrapper Project to the solution by right-clicking on the solution in
Solution Explorer and going to Add | New Project... | Windows Installer XML |
Bootstrapper Project | OK:

Handling Prerequisites

156

2. NetFxExtension contains packages to install .NET. Add it to the project by right-
clicking on the References node in Solution Explorer and going to Add Reference...
| WixNetFxExtension.dll | Add | OK.

3. To include a specific .NET package, update the Bundle.wxs file by adding a
PackageGroupRef element inside its Chain element. Set the PackageGroupRef
element's Id attribute to one of the .NET package groups defined in
NetFxExtension, such as NetFx45Redist, which installs .NET 4.5:
<Chain>
 <PackageGroupRef Id="NetFx45Redist"/>
</Chain>

4. Have the bootstrapper also install our MSI by including it within the Chain element
after PackageGroupRef. The order of elements in Chain is the order in which
they'll be installed. If you add your setup project as a reference in the bootstrapper
project, you can use the $(var.NameofProject.TargetDir) preprocessor
variable as follows:

<Chain>
 <PackageGroupRef Id="NetFx45Redist"/>
 <MsiPackage SourceFile="$(var.InstallerThatNeedsDotNet.
TargetDir)InstallerThatNeedsDotNet.msi" />
</Chain>

How it works...
A Bootstrapper Project allows us to chain together installation packages and execute them
sequentially. When it comes to installing the .NET Framework, we can download the .NET
redistributable, define the proper elements to add it to our bootstrapper, and then set all the
necessary flags to run the package silently without triggering a computer restart. However, the
easier option is to do what we've done here, that is, reference NetFxExtension and use one
of its .NET packages groups. This way, all the heavy lifting is done for us. All we have to do is
add a PackageGroupRef element.

A PackageGroupRef references a PackageGroup element. PackageGroup may contain
other bootstrapper elements and is similar to Fragment in a setup project. It lets us split our
bootstrapper elements into modular chunks. Those from NetFxExtension contain .NET
redistributables. We used the one used for installing .NET 4.5, but we could have installed
.NET 4 by referencing the NetFx40Redist PackageGroup, or .NET 4.5.1 by referencing
NetFx451Redist.

After adding the .NET Framework to our bootstrapper, we followed it in Chain with our MSI
package. The order in which elements appear in the Chain element is the order in which
they'll be installed. So, our bootstrapper ensures .NET 4.5 will be present before our MSI
installation begins.

Chapter 9

157

When you run the bootstrapper, you'll see that it informs us that it's installing the .NET
Framework, as shown in the following screenshot:

Executing either a 64-bit or 32-bit MSI
depending on the user's operating system

An MSI can target a 64-bit or 32-bit processor architecture, but never both. An MSI contains
metadata called Template Summary that denotes which architecture it supports, and it can
only support one or the other at a time. However, there is a way to give the user a single
package that will install either 64-bit or 32-bit software, depending on their operating system.
In this recipe, we will build such a package, combining both architectures into a single
bootstrapper bundle.

Getting ready
To prepare for this recipe, follow these steps:

1. Create two new setup projects within the same Visual Studio solution.
The first is our 32-bit installer and is called ThirtyTwoBitInstaller.
It targets ProgramFilesFolder in its directory structure:
<Directory Id="TARGETDIR" Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="INSTALLFOLDER"
 Name="ThirtyTwoBitInstaller" />
 </Directory>
</Directory>

Handling Prerequisites

158

2. The second, which is our 64-bit installer, is called SixtyFourBitInstaller and
targets ProgramFiles64Folder:
<Directory Id="TARGETDIR" Name="SourceDir">
 <Directory Id="ProgramFiles64Folder">
 <Directory Id="INSTALLFOLDER"
 Name="SixtyFourBitInstaller" />
 </Directory>
</Directory>

3. For the 64-bit installer, add -arch x64 to the project's Compiler parameters found
by right-clicking on the project and going to Properties | Tool Settings.

4. Add at least one file to each project, such as a text file. Without something to install,
an MSI won't complete successfully.

How to do it...
Include both MSIs in a bootstrapper. Use the InstallCondition attribute on the
MsiPackage element to install only one of them:

1. Add Bootstrapper Project to the solution by right-clicking on the solution in Solution
Explorer and going to Add | New Project... | Windows Installer XML | Bootstrapper
Project | OK.

2. To ensure the projects are built in the correct order and also so that we can use
preprocessor variables to access the compiled MSIs, add references to each of the
setup projects within the bootstrapper project.

3. In the bootstrapper's Bundle.wxs file, add an MsiPackage element inside the
Chain for SixtyFourBitInstaller.msi. Set its InstallCondition attribute
to VersionNT64, which is only set on 64-bit machines:
<Chain>
 <MsiPackage InstallCondition="VersionNT64" SourceFile="$(var.
SixtyFourBitInstaller.TargetDir)SixtyFourBitInstaller.msi" />
</Chain>

4. Add a second MsiPackage element to the chain that points to
ThirtyTwoBitInstaller.msi. Set its InstallCondition attribute to NOT
VersionNT64:

<Chain>
 <MsiPackage ... />
 <MsiPackage InstallCondition="NOT VersionNT64"
SourceFile="$(var.ThirtyTwoBitInstaller.TargetDir)
ThirtyTwoBitInstaller.msi" />
</Chain>

Chapter 9

159

How it works...
We began by creating two setup projects: one for a 64-bit installation and the other for a
32-bit installation. We included both in a bootstrapper by referencing each project and then
adding the MsiPackage elements inside the Chain element. We gave each MsiPackage an
InstallCondition that examines the VersionNT64 variable.

VersionNT64 will only be defined on a 64-bit operating system. Therefore, the 64-bit
MsiPackage checks whether it has been set and the 32-bit MsiPackage checks whether it
has not been set. This way, which MsiPackage will be deployed is a decision that's made at
installation time based on the user's operating system.

When the bootstrapper runs, it will keep a log that you can find in the %TEMP% directory. Here,
you'll be able to see that InstallCondition is checked for each package, as shown in the
following snippet:

[09E0:09E4][2014-10-07T20:44:19]i052: Condition 'VersionNT64' evaluates
to true.

[09E0:09E4][2014-10-07T20:44:19]i052: Condition 'NOT VersionNT64'
evaluates to false.

[09E0:09E4][2014-10-07T20:44:19]i201: Planned package:
SixtyFourBitInstaller.msi, state: Absent, default requested: Present, ba
requested: Present, execute: Install, rollback: Uninstall, cache: Yes,
uncache: No, dependency: Register

[09E0:09E4][2014-10-07T20:44:19]i201: Planned package:
ThirtyTwoBitInstaller.msi, state: Absent, default requested: Absent, ba
requested: Absent, execute: None, rollback: None, cache: No, uncache: No,
dependency: None

You can see that, in this case, VersionNT64 evaluates to true, whereas the condition NOT
VersionNT64 evaluates to false. This causes SixtyFourBitInstaller.msi to get the
go-ahead to be installed, whereas ThirtyTwoBitInstaller.msi does not.

Downloading resources from the Web with a
web installer

A web installer is a bootstrapper that downloads some or all of its resources from the web
during installation. This way, the initial download of the bootstrapper is faster, since its file size
is much smaller. The main portion of it is hosted online where it's only downloaded when you
need it. The disadvantage is that end users will need an Internet connection when they run
the installer. However, in many cases, that's a small price to pay.

Handling Prerequisites

160

In this recipe, we'll need to have our resources hosted online. When I say resources, I'm
talking about MSI packages, other executable installers, and patch files. To give you an idea
about how it would work, we'll use an MSI file that's already on the Web: the Node.js installer.

Getting ready
To prepare for this recipe, perform the following steps:

1. Create a new bootstrapper project and call it WebInstaller.

2. Download the Node.js MSI from http://nodejs.org/download and copy it to the
directory of the bootstrapper project.

How to do it...
Use the MsiPackage element's DownloadUrl attribute to indicate that you'd like to
download an MSI from the Web. The following steps will help you do it:

1. In the Bundle.wxs file, add an MsiPackage element to the Chain element. Set
its SourceFile attribute so that it points to the Node.js MSI file you copied to the
project's directory. It should also have a DownloadUrl attribute set to the URL,
where the MSI package can be directly downloaded from the Web. At the time of
writing this book, the URL was http://nodejs.org/dist/v0.10.32/node-
v0.10.32-x86.msi. The following code snippet shows how to do so:
<Chain>
 <MsiPackage
 Id="NODEJS"
 SourceFile="node-v0.10.32-x86.msi"
 DownloadUrl="http://nodejs.org/dist/v0.10.32/node-
v0.10.32-x86.msi" />
</Chain>

2. Set Compressed to no to inform the bootstrapper that it should not embed the MSI,
since it's going to download it during installation. In this case, since the MSI adds files
to Program Files (x86), also set ForcePerMachine to yes so that the user will
be prompted to elevate:
<Chain>
 <MsiPackage
 Id="NODEJS"
 SourceFile="node-v0.10.32-x86.msi"
 DownloadUrl="http://nodejs.org/dist/v0.10.32/node-
v0.10.32-x86.msi"
 Compressed="no"
 ForcePerMachine="yes" />
</Chain>

http://nodejs.org/download
http://nodejs.org/dist/v0.10.32/node-v0.10.32-x86.msi
http://nodejs.org/dist/v0.10.32/node-v0.10.32-x86.msi

Chapter 9

161

3. Compile the project and look in the output folder. The MSI should not be embedded
within the bootstrapper:

4. When you run WebInstaller.exe, you'll see that its progress bar shows it
installing Node.js:

How it works...
For demonstration purposes, we needed an MSI file that's available for download on the Web.
So, we used the Node.js installer. When creating a web installer for your own software, you'll
need to host your MSI files online where your bootstrapper can access them. A copy of the
MSI is kept local to the project, otherwise it won't compile. However, by setting Compressed
to no, the compiled bootstrapper will not contain the MSI. It may retain some metadata about
it, but that's all. Note that you cannot compile against one version of an MSI and then host a
different version online. WiX compares a hash of the MSI packages and the bootstrapper will
fail if there's a mismatch.

Handling Prerequisites

162

The DownloadUrl attribute defines where we can get the MSI during installation. This URL
must be a direct link to the file. We also added the ForcePerMachine attribute, since
without it the installation fails due to insufficient privileges when the Node.js installer tries
to write to the Program Files folder. Setting ForcePerMachine causes Node.js to be
installed for all users on the computer and gives us the permissions we need to complete
the installation.

After completing the installation, if you open the installer's logfile found in the %TEMP%
directory, you'll see that the MSI was downloaded from the Web:

[0584:0C70][2014-10-08T23:02:17]i338: Acquiring package: NODEJS, payload:
NODEJS, download from: http://nodejs.org/dist/v0.10.32/node-v0.10.32-x86.
msi

When the user uninstalls our bootstrapper, Node.js will be uninstalled with it since it's part of
our bundle. However, if Node.js had already been installed, it would have been left as is. MSI
packages have reference counting built in.

10
Installing Websites

In this chapter, we will cover the following recipes:

 f Spinning up a new application pool in IIS

 f Adding a website to IIS that runs under your app pool

 f Creating a virtual directory

 f Adding a web application to IIS

 f Setting up a website to use SSL

Introduction
Setting up a website is often where control leaves the hands of a developer and enters the
hands of a system administrator or an end user. Unfortunately, that handoff doesn't always go
smoothly and things may not be configured the same way as the developer expects. With WiX,
we can provide an installer that will set up everything in IIS just the way we'd like it to be. It
can also ensure that development, QA, and production environments are set up consistently.
In this chapter, we'll see how to install application pools, websites, and virtual directories
to IIS.

Spinning up a new application pool in IIS
The first step when adding a website to IIS is to configure the application pool that it will run
in. This isolates the site from others on the server for better stability and security. On the
stability front, each app pool runs its own worker process that, should it die or be taken offline
intentionally, won't affect the others. As for security, you can customize the user account that
the app pool process runs as. This way, you can give one website more or less access
than another.

Installing Websites

164

Getting ready
Create a new setup project and name it AppPoolInstaller.

How to do it...
In this recipe, we will add a new application pool to IIS. We'll configure its name, version of the
.NET CLR to use, and the user account to run as. Perform the following steps:

1. Add IIsExtension to the project by right-clicking on the References node in
Solution Explorer and going to Add Reference... | WixIIsExtension.dll | Add | OK.

2. Add the IIsExtension namespace to the Wix element:
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"
xmlns:iis="http://schemas.microsoft.com/wix/IIsExtension">

3. Add a Component element that has its KeyPath attribute set to yes:
<ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component Id="cmpAppPool"
 Guid="{CBA59BDC-989C-4F77-B0F9-861AAB8E0DEB}"
 KeyPath="yes">
 </Component>
</ComponentGroup>

4. Add a WebAppPool element from IIsExtension inside Component:

<Component ...>
 <iis:WebAppPool Id="MyAppPool"
 Name="MyWebsiteAppPool"
 ManagedRuntimeVersion="v4.0"
 ManagedPipelineMode="integrated"
 Identity="applicationPoolIdentity" />
</Component>

How it works...
We began by adding a reference to IIsExtension that ships with the WiX Toolset. This
extension gives us a WebAppPool element that will create an application pool in IIS. Although
we can configure minute details of the app pool, including how often it should be recycled,
the maximum number of worker processes to use, and how many requests can be queued,
we can also leave them at their default settings and only set those that are most important
to us.

Chapter 10

165

More information about the available application pool settings can be found
at http://wixtoolset.org/documentation/manual/v3/xsd/
iis/webapppool.html.

The Id attribute is necessary to uniquely identify the WebAppPool element in the MSI.
Name sets what to call the application pool in IIS. The ManagedRuntimeVersion attribute
configures which version of the .NET Common Language Runtime to use. You can see it by
opening the IIS manager console by going to Run... | inetmgr, selecting the Application Pools
node, right-clicking on your app pool, and selecting Advanced Settings..., as shown in the
following screenshot:

The ManagedPipelineMode attribute should be set to integrated to give modern ASP.
NET websites full access to incoming requests for tasks such as authentication, caching, and
other filtering handled by HTTP modules. However, if you're running a version of IIS prior to IIS
7, you can still set it to Classic:

In this example, we set the WebAppPool element's Identity attribute to
applicationPoolIdentity. This attribute sets the user account under which the app
pool's worker process will run. The applicationPoolIdentity user, which is available
in IIS 7 and later, creates a virtual account tailor-made for the application pool, limiting its
access to other processes. Alternatively, you can specify one of the following built-in accounts:
localSystem, localService, or networkService. You can also specify a custom user by
setting this attribute to other and then adding the User attribute. User is set to the Id of a
corresponding User element.

http://wixtoolset.org/documentation/manual/v3/xsd/iis/webapppool.html
http://wixtoolset.org/documentation/manual/v3/xsd/iis/webapppool.html

Installing Websites

166

One thing to note is that if the application pool already exists, it will be updated with the new
settings. However, during an uninstallation, that app pool might be removed if your installer
is the only one to have installed that Component element. Placing WebAppPool within your
Product element or directly inside Fragment instead of in Component will allow you to
reference an existing application pool without creating it. However, there isn't a way to create
an application pool only if it does not exist. I recommend you to always create a new, uniquely
named application pool for each website.

Adding a website to IIS that runs under your
app pool

Adding a website to IIS lets us serve content, such as HTML pages, to users when they
navigate to a certain URL in their browsers. In this recipe, we'll add a website that contains a
Default.htm page. IIS looks for a page with this name to display first. Our website will run in
a new application pool.

Getting ready
Perform the following steps to prepare for this recipe:

1. Create a new setup project and name it WebsiteInstaller.

2. Add IIsExtension to the project by right-clicking on the References node in
Solution Explorer and going to Add Reference... | WixIIsExtension.dll | Add | OK.

3. Add the IIsExtension namespace to the Wix element:
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"
xmlns:iis="http://schemas.microsoft.com/wix/IIsExtension">

4. Add an application pool, as we did in the previous recipe, so that we can later assign
our website to it. Set its Id attribute to MyAppPool.

5. Add an HTML file to the project so that we'll have a page to show when we navigate to
our website. Here's a simple example that you can save as Default.htm:
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>My Website</title>
 </head>
 <body>
 <h1>My Website</h1>
 </body>
</html>

Chapter 10

167

6. Add the Component and File elements for Default.htm. Be sure that it is
installed in the INSTALLFOLDER directory by placing it within ProductComponents
ComponentGroup:

<ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component Id="cmpDefaultHTM"
 Guid="{3032BC5D-D0DB-4007-B8C1-FFC919C4F5A5}">
 <File Source="Default.htm" />
 </Component>

 <!--Other components-->
</ComponentGroup>

How to do it...
The WebSite, WebApplication, and WebAddress elements are used to add a site to IIS,
specify its application pool, and the port to use. Perform the following steps:

1. Add a Component element with its KeyPath attribute set to yes:
<Component Id="cmpMyWebsite"
 Guid="{95565B4A-C24A-4F64-9644-DE64973DE6B3}"
 KeyPath="yes">

</Component>

2. Within it, add a WebSite element from the IIsExtension. Set its Description
attribute to the name of the web site as you'd like it to appear in IIS. Set its
Directory attribute to the Id of a corresponding Directory element where
the web site's files will be stored. If you think the site may already exist, set
ConfigureIfExists to yes:
<iis:WebSite Id="website_MyWebsite"
 Description="MyWebsite"
 Directory="INSTALLFOLDER"
 ConfigureIfExists="yes">
</iis:WebSite>

3. Within the WebSite element, add a WebApplication element to set up which
application pool we'll use. Its WebAppPool attribute should match the Id of our
WebAppPool element:
<iis:WebSite ...>
 <iis:WebApplication Id="webapplication_MyWebsite"
 Name="MyWebApplication"
 WebAppPool="MyAppPool" />
</iis:WebSite>

Installing Websites

168

4. Also within the WebSite element, add a WebAddress that specifies the port where
the site will listen for incoming requests. For now, set this to port 8080:

<iis:WebSite ...>
 <iis:WebApplication ... />
 <iis:WebAddress Id="webaddress_MyWebsite"
 Port="8080" />
</iis:WebSite>

How it works...
After running the installer, open the IIS manager. You can do so by entering inetmgr in the
Run window. Verify that our website is listed under the Sites folder:

If we browse to our site at http://localhost:8080, we'll see our Default.htm
page displayed:

The Website element from IIsExtension creates the new website under the Sites
folder. Notice that its name is the same as we set for the Website element's Description
attribute. We can also right-click on the MyWebsite node and select Explore to open the
folder containing our HTML file, C:\Program Files (x86)\WebsiteInstaller, and see
that our Default.htm file is there. The Website element's Directory attribute configured
that this would be the place to find our files.

Chapter 10

169

We added two other elements inside the Website element: WebApplication and
WebAddress. The first element simply associates our website with the application pool we
created earlier. Note that we specified the required Name attribute in the WebApplication
element, but in this scenario, it has no bearing. The WebAddress element sets up the port
that our site will listen to. In this example, we used port 8080 so that there's less chance of it
interfering with the default website that's already installed and listening at port 80.

There's more...
So far in this recipe, we avoided giving our website a domain name or specific IP address.
As it stands, our website will be displayed if the user enters any of the following in their
browser's address bar (from the same machine):

 f http://localhost:8080

 f http://127.0.0.1:8080

 f http://10.0.2.15:8080 (using the network IP address of the machine)

 f http://mywebsite.com:8080 (if mywebsite.com has been mapped with
DNS to 10.0.2.15)

The common theme is that each explicitly uses port 8080. However, changing the port on
any of these addresses to 80, or leaving it out altogether, will bring up the default website.
The reason for this is that when we configured the WebAddress element, we only gave it a
Port attribute. Therefore, its port is the only thing that distinguishes it from other sites on
that server:

<iis:WebAddress Id="webaddress_MyWebsite"
 Port="8080" />

If we click on the Sites node in the IIS manager, we can see that the Binding properties for
the default website and our own are identical except for their ports. Both use an asterisk for
the address, as shown:

Installing Websites

170

Let's try updating the WebAddress element so that it specifies an IP address. I'll use
10.0.2.15, since that's the address that's assigned to me on my network:

<iis:WebAddress Id="webaddress_MyWebsite"
 IP="10.0.2.15"
 Port="80" />

Note that we're now using port 80 instead of 8080. After reinstalling, we'll see the
following bindings:

Now, any request for that IP address, such as http://10.0.2.15:80, or more simply,
since port 80 is the default, http://10.0.2.15 will yield MyWebsite:

However, a request to any other IP, such as http://127.0.0.1, will yield the default
website. That's because the asterisk in its binding picks up any other unassigned addresses.

We can also distinguish our website by a domain name. Update the WebAddress element to
the following:

<iis:WebAddress Id="webaddress_MyWebsite"
 Header="mywebsite.com"
 Port="80" />

Chapter 10

171

Our bindings should now look like this:

Both sites use port 80 and neither claims a specific IP address. However, MyWebsite
is bound to the mywebsite.com domain and will be returned for anyone who uses
mywebsite.com in the URL, such as http://mywebsite.com. This is assuming that
DNS has been set up to map mywebsite.com to this machine's IP address, which for
me is 10.0.2.15.

You can set up DNS on a Windows server locally for testing by editing
the C:\Windows\System32\drivers\etc\hosts file. You can
also set up a DNS entry using Windows DNS Server. To learn more about
setting up a DNS entry, see the following link to create a Forward Lookup
Zone: http://technet.microsoft.com/en-us/library/
cc771566.aspx; and see the following link to learn about creating a Host
(A) record: http://technet.microsoft.com/en-us/library/
cc779029(v=ws.10).aspx.
You may also need to update your network adapter to use the current
machine as its preferred DNS Server. More information can be found at
http://www.opennicproject.org/configure-your-dns/
how-to-change-dns-servers-in-windows-7/.

The user should see the following screen at http://mywebsite.com:

http://technet.microsoft.com/en-us/library/cc771566.aspx
http://technet.microsoft.com/en-us/library/cc771566.aspx
http://technet.microsoft.com/en-us/library/cc779029(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/cc779029(v=ws.10).aspx
http://www.opennicproject.org/configure-your-dns/how-to-change-dns-servers-in-windows-7/
http://www.opennicproject.org/configure-your-dns/how-to-change-dns-servers-in-windows-7/

Installing Websites

172

On the other hand, if the user enters an IP address explicitly, such as http://10.0.2.15,
they'll get the default website. The way that requests are routed in IIS is as follows:

1. If an IP address is given, find the site that is bound to it specifically. If none is found,
use the site that uses an asterisk as its IP. If more than one is bound to that IP
address or if more than one uses an asterisk, move on to step 2.

2. Find the site that is bound to the given port (defaulting to port 80). If none is found,
return a response indicating that the site could not be found. If more than one is
bound to that port, move on to step 3.

3. If a domain name is given, find the site that is bound to it. If none is found, return a
response indicating that the site could not be found.

Creating a virtual directory
A website in IIS maps to a directory on the computer. If there are subdirectories within that
folder, they'll show up in the IIS manager too. For example, the following website has the
Scripts and CSS folders inside its root folder:

If we right-click on MyWebsite and choose Explore, we'll see that the Scripts and CSS
directories sit squarely within the folder that the site is mapped to:

Chapter 10

173

What if we wanted to map to a directory that wasn't within the root folder of the website?
Maybe it's a folder at C:\Photos. To do this, we'll need to create a virtual directory. A virtual
directory simply maps to some place outside the normal website folder. In this recipe, we will
add a Photos directory to the C: drive and map it as a virtual directory in IIS.

Getting ready
To prepare for this recipe, perform the following steps:

1. Create a new setup project and name it VirtualDirectoryInstaller.

2. Add IIsExtension to the project by right-clicking on the References node in
Solution Explorer and going to Add Reference... | WixIIsExtension.dll | Add | OK.

3. Add the IIsExtension namespace to the Wix element:
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"
xmlns:iis="http://schemas.microsoft.com/wix/IIsExtension">

4. Add an application pool, as discussed previously.

5. Add a website, as discussed in the previous recipe.

6. Now, we can compare regular website directories to virtual directories; add the CSS
and Scripts folders using the Directory elements:
<Directory Id="INSTALLFOLDER"
 Name="VirtualDirectoryInstaller">
 <Directory Id="CssFolder" Name="CSS" />
 <Directory Id="ScriptsFolder" Name="Scripts" />
</Directory>

7. Add a component for each with CreateFolder inside so that they'll be
created even though they're empty. These should be placed outside the existing
ProductComponents ComponentGroup, since they declare their own
Directory attributes:
<Component Id="cmpCssFolder"
 Guid="{6E68FAE5-A498-4331-BABE-AF456CA245E3}"
 KeyPath="yes"
 Directory="CssFolder">
 <CreateFolder />
</Component>

<Component Id="cmpScriptsFolder"
 Guid="{E27D57AA-9507-40C3-B1F6-0A1238AD191B}"
 KeyPath="yes"
 Directory="ScriptsFolder">
 <CreateFolder />
</Component>

Installing Websites

174

8. Reference these components inside our Feature element so that they'll be included
in the installation:

<Feature Id="ProductFeature" Title="VirtualDirectoryInstaller"
Level="1">
 <ComponentGroupRef Id="ProductComponents" />
 <ComponentRef Id="cmpCssFolder"/>
 <ComponentRef Id="cmpScriptsFolder"/>
</Feature>

How to do it...
Register a folder as a virtual directory by using the WebVirtualDir element, as shown in the
following steps:

1. Add the Directory element, which will become our virtual directory. In this case,
we'll call it PhotosDir and place it within the TARGETDIR folder. This way, it will be
created directly on the C: drive:
<Directory Id="TARGETDIR" Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="INSTALLFOLDER"
 Name="VirtualDirectoryInstaller">
 <Directory Id="CssFolder" Name="CSS" />
 <Directory Id="ScriptsFolder" Name="Scripts" />
 </Directory>
 </Directory>

 <Directory Id="PhotosDir" Name="Photos" />
</Directory>

2. Add a Component with a CreateFolder element inside it to create the new
directory. CreateFolder ensures that it will be installed even though it is empty.
Alternatively, add a few files to the folder:
<Component Id="cmpPhotosFolder"
 Guid="{16088070-7806-49C4-AED1-E1B1DA63D6E9}"
 KeyPath="yes"
 Directory="PhotosDir">
 <CreateFolder />
</Component>

Chapter 10

175

3. Reference the Component in Feature element. You can use ComponentRef to
do this:
<Feature Id="ProductFeature" Title="VirtualDirectoryInstaller"
Level="1">
 <ComponentGroupRef Id="ProductComponents" />
 <ComponentRef Id="cmpCssFolder"/>
 <ComponentRef Id="cmpScriptsFolder"/>
 <ComponentRef Id="cmpPhotosFolder" />
</Feature>

4. Now that we have the folder set up to be installed, register it as a virtual directory
in the website by adding a WebVirtualDir element inside the WebSite element.
Its Directory attribute should match Id of the Directory element:

<Component Id="cmpMyWebsite"
 Guid="{4073CF09-CE65-40D9-A0FA-1CE88B317E88}"
 KeyPath="yes">
 <iis:WebSite Id="website_MyWebsite"
 Description="MyWebsite"
 Directory="INSTALLFOLDER"
 ConfigureIfExists="yes">
 <iis:WebApplication Id="webapplication_MyWebsite"
 Name="MyWebApplication"
 WebAppPool="MyAppPool" />

 <iis:WebAddress Id="webaddress_MyWebsite"
 Port="8080" />

 <iis:WebVirtualDir Id="webvirtualdir_MyWebsite"
 Alias="Images"
 Directory="PhotosDir" />
 </iis:WebSite>
</Component>

How it works...
Setting up the directory was nothing new. We added a Directory element so that it would
be created on the end user's computer. In this example, since we aren't including any files in
the folder, we placed CreateFolder within it to ensure that it is installed. Note that we used
the Component element's Directory attribute to configure which Directory element our
CreateFolder is associated with. The same purpose can be served by placing Component
within ComponentGroup and using that element's Directory attribute.

Installing Websites

176

To convert our normal C:\Photos directory to a virtual directory, we added a
WebVirtualDir element inside our WebSite element. The WebVirtualDir element's
Alias attribute will be the name of the folder shown in the IIS manager and can be different
than the actual name of the folder. Here, we called it Images. Its Directory attribute points
to our PhotosDir Directory element.

After running the installer, Images should now be displayed under the MyWebsite node.
Notice that it has a shortcut-style arrow on it to distinguish it from the other two directories
listed, as shown in the following screenshot:

Adding a web application to IIS
Inside a website, we can add two types of folders: virtual directories and web applications.
Virtual directories simply map to folders outside our website's root. Web applications, on the
other hand, are folders that can host entirely isolated modules. For example, we may develop
a web application for a login page and another for a shopping cart. Their URLs might be
mysite.com/Login and mysite.com/ShoppingCart. Each will get its own app domain
to run in and could be completely oblivious to the other, with its own configuration, application
pool, and worker process. However, to the end user, they will appear to be integrated parts of
the same site.

Getting ready
To prepare for this recipe, perform the following steps:

1. Create a new setup project and name it WebApplicationInstaller.

2. Add IIsExtension to the project by right-clicking on the References node in
Solution Explorer and going to Add Reference... | WixIIsExtension.dll | Add | OK.

Chapter 10

177

3. Add the IIsExtension namespace to the Wix element:
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"
xmlns:iis="http://schemas.microsoft.com/wix/IIsExtension">

4. Set up separate Directory elements for our website and the Web application.
We will keep them under a common folder called MyCompany:
<Directory Id="TARGETDIR" Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="CompanyFolder" Name="MyCompany">
 <Directory Id="MyWebsiteFolder" Name="MyWebsite" />
 <Directory Id="MyAppFolder" Name="MyApp" />
 </Directory>
 </Directory>
</Directory>

5. Add an HTML file called Default.htm to be displayed when the user navigates to
our web application.

6. Add the Component and File elements to include Default.htm in the installer.
Be sure to set the Component element's Directory attribute to MyAppFolder:
<Component Id="cmpWebAppDefaultHTM"
 Guid="{56F56AAB-F1E0-43A8-8023-30B566D1AE73}"
 KeyPath="yes"
 Directory="MyAppFolder">
 <File Source="Default.htm" />
</Component>

7. Include this Component element in our installer's feature:
<Feature Id="ProductFeature"
 Title="WebApplicationInstaller"
 Level="1">
 <ComponentGroupRef Id="ProductComponents" />
 <ComponentRef Id="cmpWebAppDefaultHTM" />
</Feature>

8. Add an app pool and website to the installer as described previously. The website will
serve as the parent to our application. Use the following markup:

<ComponentGroup Id="ProductComponents"
 Directory="MyWebsiteFolder">
 <Component Id="cmpMyAppPool"
 Guid="{27D7BA04-706A-4755-9ACF-D026C6A7C1E9}"
 KeyPath="yes">
 <iis:WebAppPool Id="MyAppPool"
 Name="MyWebsiteAppPool"

Installing Websites

178

 ManagedRuntimeVersion="v4.0"
 ManagedPipelineMode="integrated"
 Identity="applicationPoolIdentity" />
 </Component>

 <Component Id="cmpMyWebsite"
 Guid="{95565B4A-C24A-4F64-9644-DE64973DE6B3}"
 KeyPath="yes">
 <iis:WebSite Id="website_MyWebsite"
 Description="MyWebsite"
 ConfigureIfExists="yes"
 Directory="MyWebsiteFolder">
 <iis:WebApplication Id="webapplication_MyWebsite"
 Name="MyWebApplication"
 WebAppPool="MyAppPool" />
 <iis:WebAddress Id="webaddress_MyWebsite"
 Port="8080" />
 </iis:WebSite>
 </Component>
</ComponentGroup>

How to do it...
Add a virtual directory to the website and then include a web application within it.
The following steps will show you how to do it.

1. Within the WebSite element, add a WebVirtualDir element to create
a virtual directory. Set its Directory attribute to point to MyAppFolder:
<iis:WebSite ...>
 <iis:WebApplication ... />
 <iis:WebAddress ... />

 <iis:WebVirtualDir Id="webvirtualdir_MyApp"
 Alias="MyApp"
 Directory="MyAppFolder">

 </iis:WebVirtualDir>
</iis:WebSite>

2. Inside WebVirtualDir, add a WebApplication element:
<iis:WebVirtualDir ...>
 <iis:WebApplication Id="webapplication_MyApp"
 Name="MyWebApplication"
 WebAppPool="MyAppPool" />
</iis:WebVirtualDir>

Chapter 10

179

How it works...
We used the WebApplication element before when we nested it inside our WebSite
element. In that case, it only sets the app pool for the website. However, when we place
WebApplication inside WebVirtualDir, we're saying that this virtual directory hosts
an application that can be separated by a process boundary from the parent website.
In this example, we had the application use the same app pool as the website. However,
we could have chosen a different app pool so that the application would run in its own
isolated environment.

After installation, we'll see that our new web application, MyApp, is listed in the IIS manager
under MyWebsite, as follows:

If we open MyApp in a browser, we can see that it shares the same root URL as our website,
http://localhost:8080. However, our web application runs in the /MyApp subdirectory:

So, although it looks like a single, unified website to the end user, it's actually a website and
an isolated application running within that site. Of course, our application is only serving a
single HTML file, but it could easily host a full-fledged ASP.NET application.

Installing Websites

180

Setting up a website to use SSL
Secure Sockets Layer (SSL) is a protocol that uses certificates and keys to encrypt data while
it travels over a network. This way, private information is kept secret between two parties.
WiX gives us both a way to install certificates to the keystores of the target machine and to
associate one of those certificates with our website during installation to enable SSL.

In this recipe, we'll create a self-signed certificate and install it to the Trusted Root
Certification Authorities and Personal keystores. We'll then install a website and bind it
to the certificate. In a real-world scenario, you will have your certificate signed by a globally
trusted certificate authority. However, for demonstration purposes, self-signing works best.

Getting ready
To prepare for this recipe, perform the following steps:

1. Create a new setup project and name it SecureWebsiteInstaller.

2. Add IIsExtension to the project by right-clicking on the References node in
Solution Explorer and going to Add Reference... | WixIIsExtension.dll | Add | OK.

3. Add the IIsExtension namespace to the Wix element:
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"
xmlns:iis="http://schemas.microsoft.com/wix/IIsExtension">

4. Add an application pool to IIS using the WebAppPool element, as discussed
previously. Set Id to MyAppPool.

5. Add an HTML file called Default.htm to the project and include it in the installation
using the Component and File elements.

6. We will need a certificate to bind to our website's listening port. The makecert.exe
program from the Windows 8 SDK can be used to create a self-signed certificate.
Download and install the SDK from http://msdn.microsoft.com/en-us/
windows/desktop/hh852363.aspx. Then, open a Windows command prompt,
navigate to the C:\Program Files (x86)\Windows Kits\8.0\bin\x86
folder, and issue the following command:
makecert -r -pe -n "CN=mywebsite.com" -sv "C:\MyCertAuthority.pvk"
-sky exchange "C:\MyCertificate.cer"

7. You will be prompted twice to enter a password for the private key. Use
privatekey123 both times.

http://msdn.microsoft.com/en-us/windows/desktop/hh852363.aspx
http://msdn.microsoft.com/en-us/windows/desktop/hh852363.aspx

Chapter 10

181

8. The previous command created a private key and a public certificate and saved them
to C:\. Include both in a single password-protected PFX file using the pvk2pfx.
exe program, which is also included with the Windows SDK. The -po argument
protects the PFX file with a password. For this example, we'll set the password to
mypfxpassword:
pvk2pfx -po mypfxpassword -pvk "C:\MyCertAuthority.pvk" -spc "C:\
MyCertificate.cer" -pfx "C:\MyCertKeyPair.pfx"

9. You will be prompted for the private key that we set earlier. Enter privatekey123.

10. Copy the newly-created PFX file to your WiX project. We will include it in the
installation as part of this recipe.

11. On the server that you'll be installing to, make sure that DNS is set up to route
mywebsite.com to that machine's IP address. A DNS entry is required for SSL to
work. Note that the common name (CN) that we set in the certificate is mywebsite.
com to match the domain name we'll give to our website.

How to do it...
Install a PFX file using Certificate elements and then bind it to a website using the
WebAddress element's Port, Header, and Secure attributes and a CertificateRef
element. Follow these steps:

1. Inside the fragment that contains our components, add a Binary element that
points to our MyCertKeyPair.pfx file:
<Fragment>
 <Binary Id="binary_MyCertKeyPairPFX"
 SourceFile="MyCertKeyPair.pfx" />

 <!--ComponentGroups, etc. go here-->
</Fragment>

2. Add a component with two Certificate elements inside it. The first element
installs our PFX file in the Trusted Root Certification Authorities keystore on the end
user's machine. The second element installs the same PFX file in the Personal
keystore. Set the PFXPassword attribute to mypfxpassword since that's the phrase
we used to protect the file with a password when we used the pvk2pfx program:
<ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">

 <!--WebAppPool and Default.htm components omitted-->

Installing Websites

182

 <Component Id="cmpMyWebsite"
 Guid="{95565B4A-C24A-4F64-9644-DE64973DE6B3}"
 KeyPath="yes">
 <iis:Certificate Id="MyCertificateAuthority"
 BinaryKey="binary_MyCertKeyPairPFX"
 Name="MyCertificate"
 StoreLocation="localMachine"
 StoreName="root"
 PFXPassword="password"/>

 <iis:Certificate Id="MyWebsiteCertificate"
 BinaryKey="binary_MyCertKeyPairPFX"
 Name="MyCertificate"
 StoreLocation="localMachine"
 StoreName="personal"
 PFXPassword="mypfxpassword" />
 </Component>
</ComponentGroup>

3. Within the same component, add a WebSite element with a child WebApplication
and WebAddress element. Set the WebAddress element's Port attribute to 443, its
Header to mywebsite.com so that it matches our certificate's common name, and
Secure to yes. Be sure that you added a DNS entry for mywebsite.com or updated
your hosts file. Refer to the following snippet:
<iis:WebSite Id="website_MyWebsite"
 Description="MyWebsite"
 ConfigureIfExists="yes"
 Directory="INSTALLFOLDER">

 <iis:WebApplication Id="webapplication_MyWebsite"
 Name="MyWebApplication"
 WebAppPool="MyAppPool" />
 <iis:WebAddress Id="webaddress_MyWebsite"
 Port="443"
 Header="mywebsite.com"
 Secure="yes" />
</iis:WebSite>

Chapter 10

183

4. Add a CertificateRef element inside the WebSite element. Its Id attribute
should point to the Certificate element that we placed in the personal store:

<iis:WebSite ...>

 <iis:WebApplication ... />
 <iis:WebAddress ... />

 <iis:CertificateRef Id="MyWebsiteCertificate"/>
</iis:WebSite>

How it works...
To make a website secure, we must bind a public certificate private key pair to its port.
Our PFX is exactly that—a password-protected file containing both our CER and PVK file.
The important requirement for the certificate is that it should have a common name that
matches the hostname of our site. In this case, we used mywebsite.com, setting it in both
the certificate and the WebAddress element's Header attribute. If the two do not match, we'll
get an error that says the certificate was issued for a website with a different name, as shown
in the following screenshot:

Installing Websites

184

Beware, in IIS, there's a link labelled Server Certificates under the machine node:

After double-clicking on it, you'll see an option to the right to create a self-signed certificate.
I recommend you to not use this option since it doesn't give you a way to set the common
name of the certificate. Instead, use the makecert program from the Windows SDK so that
you can create a certificate with a common name that matches your site's address binding.

Once we created our PFX file, we referenced it in our installer using a Binary element.
This included it within the MSI, but to install it into a particular keystore on the end user's
computer, we used the Certificate element from IIsExtension. The first Certificate
element adds it as a certificate authority in the Trusted Root Certification Authorities keystore.
This way, the certificate that we install in the Personal keystore is trusted; it essentially
trusts itself, which is fine for a DEV environment. If we only installed it in the Personal store,
we'd see the following error when we visited the website:

Chapter 10

185

The final step was to associate the certificate in the Personal keystore with our website. So, we
added a WebSite element inside the same component as the two Certificate elements
and then set up a WebAddress element to use port 443, have a Header of mywebsite.
com, and Secure set to yes. Then, we added a CertificateRef element that points to our
second Certificate element. That's enough to configure the SSL binding in IIS, as shown:

Now, when we navigate to https://mywebsite.com, and notice that we're using HTTPS
and not HTTP, we get our Default.htm web page:

The website will now encrypt all requests and responses, ensuring that sensitive data is
kept confidential.

11
Linking to the Web

In this chapter, we will cover the following:

 f Adding a hyperlink control to a wizard dialog

 f Opening an installed HTML file after a successful installation

 f Launching a web page when a user uninstalls our software

 f Installing a shortcut that opens a web page

 f Updating programs and features to show a link to our company's website

Introduction
Often, the best place to put documentation, product information, and support is online. This
way, we can keep the information current and the amount of documents that we load onto the
end user's computer small. We just need a way to direct the users to the resources. With WiX,
we can show hyperlinks, open a website automatically, and add shortcuts that link to a web
page. Or, if we want to keep information offline, we can copy the HTML files locally and open
them from there. The following recipes will explore how we can connect our installation with
the Web.

Linking to the Web

188

Adding a hyperlink control to a wizard dialog
WiX contains a hyperlink control to create a link on a dialog. It was introduced in Windows
Installer 5.0, which is preinstalled on Windows 7, Windows Server 2008 R2, and later versions
of Windows. On older systems, such as Windows XP, if you try to run an install package that
uses a hyperlink, you'll get an error. If you'd like to prevent users from installing your MSI when
they don't have the required version of Windows Installer, then add 500 (which stands for
version 5.0) to the Package element's InstallerVersion attribute, as follows:

<Package InstallerVersion="500"
 Compressed="yes"
 InstallScope="perMachine" />

In this recipe, we'll replace the default license text on the WixUI_Minimal wizard with a
hyperlink to the GNU General Public License.

If you create an RTF file in WordPad to be used as your license agreement
and type the URL of a web page, WordPad will underline it and convert it
to a hyperlink. However, Windows Installer will fail to display it correctly
and it will not be clickable during installation. This is because the
ScrollableText control that displays the RTF file does not support this
behavior. The hyperlink control gives us a way to display a link.

Getting ready
To prepare for this recipe, perform the following steps:

1. Create a new setup project and name it HyperlinkInstaller.

2. Add UIExtension to the project by right-clicking on the References node in
Solution Explorer and navigating to Add Reference... | WixUIExtension.dll |
Add | OK.

3. Download the source code for the WiX toolset from http://wix.codeplex.com/
SourceControl/latest.

4. Unzip the ZIP file and navigate within it to the src\ext\UIExtension\wixlib
directory.

5. We'll be customizing the WixUI_Minimal wizard, so copy WixUI_Minimal.
wxs from the wixlib directory to your setup project and rename it CustomUI_
Minimal.wxs.

http://wix.codeplex.com/SourceControl/latest
http://wix.codeplex.com/SourceControl/latest

Chapter 11

189

6. In CustomUI_Minimal.wxs, change the UI element to have the Id value of
CustomUI_Minimal. This way it won't clash with the WXS file in the WiX toolset:
<UI Id="CustomUI_Minimal">

7. In the same file, update DialogRef that has Id of WelcomeEulaDlg to use
HyperlinkWelcomeEulaDlg instead:
<DialogRef Id="HyperlinkWelcomeEulaDlg" />

8. Update the Show elements inside InstallUISequence to use
HyperlinkWelcomeEulaDlg instead of WelcomeEulaDlg:
<InstallUISequence>
 <Show Dialog="WelcomeDlg"
 Before="HyperlinkWelcomeEulaDlg">
 Installed AND PATCH
 </Show>
 <Show Dialog="HyperlinkWelcomeEulaDlg"
 Before="ProgressDlg">
 NOT Installed
 </Show>
</InstallUISequence>

9. Copy WelcomeEulaDlg.wxs from the wixlib folder to your project and rename
it HyperlinkWelcomeEulaDlg.wxs.

10. In HyperlinkWelcomeEulaDlg.wxs, update the top-level Dialog element to
have Id of HyperlinkWelcomeEulaDlg.

11. In the same file, update the Show element inside InstallUISequence to use
HyperlinkWelcomeEulaDlg for its Dialog attribute:
<InstallUISequence>
 <Show Dialog="HyperlinkWelcomeEulaDlg"
 Before="ProgressDlg"
 Overridable="yes">
 NOT Installed
 </Show>
</InstallUISequence>

12. In your Product.wxs file, add a UIRef element that points to CustomUI_Minimal:

<UIRef Id="CustomUI_Minimal"/>

Linking to the Web

190

How to do it...
You can add a Hyperlink control that contains a Text element that specifies the URL to
which you'd like to link. The following steps will show you how to do it:

1. The welcome screen of your CustomUI_Minimal wizard, which we've renamed
HyperlinkWelcomeEulaDlg, contains a ScrollableText control to display
the end user license agreement. Since we'll be replacing it with a hyperlink,
remove it or comment it out:
<!--<Control Id="LicenseText" Type="ScrollableText" X="130" Y="36"
Width="226" Height="162" Sunken="yes" TabSkip="no">
 <Text SourceFile="!(wix.WixUILicenseRtf=$(var.licenseRtf))" />
</Control>-->

2. Add a Control element that has a Type attribute of Hyperlink. Set its X, Y,
Width, and Height attributes to the same values that the ScrollableText
control has so that it will be positioned in the same spot on the dialog:
<Control Id="HyperlinkLicense"
 Type="Hyperlink"
 X="130"
 Y="36"
 Width="226"
 Height="162">
</Control>

3. Inside that Control element, add a Text element that sets the target of the hyperlink.
Its inner text, which we'll surround with CDATA tags, should take the form of an HTML
anchor tag. In this example, we'll link to the GNU General Public License:

<Control ...>
 <Text>
 <![CDATA[GNU
General Public License]]>
 </Text>
</Control>

How it works...
Starting with Windows Installer 5.0, we have the ability to add a hyperlink to a WiX dialog.
In this recipe, we replaced the ScrollableText control that displayed the end user
license agreement with a hyperlink control that points to the web page of the GNU
General Public License:

Chapter 11

191

The Hyperlink control contains a Text element that specifies the target URL.
The Text element uses an HTML anchor tag with an href attribute to specify the
web page that should open:

<Text>
 <![CDATA[GNU General
Public License]]>
</Text>

The href attribute can point to a web page, a file share, an absolute or relative path on the
computer, or a WiX property within square brackets. Although this is HTML, the markup that
you can use is limited. You cannot add other HTML styling or layout elements. When a user
launches our installer and clicks on the link, a browser will open and display the GNU website:

Linking to the Web

192

Opening an installed HTML file after a
successful installation

Suppose we include a file called Changelog.html in our installer that outlines the recent
changes to our software. We can then display this file as soon as the installation has finished,
giving the user a quick guide as to what's new. The UtilExtension namespace contains a
custom action called WixShellExec that can open an HTML file in the user's default browser.

Conveniently, each of the UI wizards that ship with the WiX toolset ends with a dialog that can
optionally display a checkbox with a customizable label. We can control what happens when
the user clicks the checkbox. In this recipe, we'll add the Show Changelog label and launch
our HTML file when the user checks the box.

Getting ready
To prepare for this recipe, perform the following steps:

1. Create a new setup project and call it OpenHtmlDocumentInstaller.

2. Add UIExtension to the project by right-clicking on the References node in
Solution Explorer and navigating to Add Reference... | WixUIExtension.dll |
Add | OK.

3. Add one of the built-in wizards such as WixUI_Minimal to Product.wxs:
<UIRef Id="WixUI_Minimal"/>

4. Now the checkbox will be displayed and its label will be set to Show Changelog,
add a Property element called WIXUI_EXITDIALOGOPTIONALCHECKBOXTEXT,
as follows:
<Property Id="WIXUI_EXITDIALOGOPTIONALCHECKBOXTEXT"
 Value="Show Changelog" />

How to do it...
Use the WixShellExec custom action to open an HTML document after an installation,
as shown in the following steps:

1. Add an HTML file called ChangeLog.html to the project and then include it in the
installer with a Component and File element. Note that in this case we're adding
Id to the File element. This will allow us to reference it directly later on. If you wish,
you can add markup about fictitious changes to your software to the file with a few
bullet points :
<ComponentGroup Id="ProductComponents"

Chapter 11

193

 Directory="INSTALLFOLDER">
 <Component Id="cmpChangeLogHTML"
 Guid="{8B23C76B-F7D4-4030-8C46-1B5729E616B5}">
 <File Id="fileChangeLogHTML"
 Source="ChangeLog.html" />
 </Component>
</ComponentGroup>

2. Add UtilExtension to the project by right-clicking on the References node
in Solution Explorer and navigating to Add Reference... | WixUtilExtension.dll |
Add | OK so that we can access the WixShellExec custom action.

3. Add a property called WixShellExecTarget to your Product.wxs file. This sets
up which file to open after the installation. Set its Value attribute to the Id of the
File element of ChangeLog, preceded by a hash sign and surrounded by square
brackets. During installation, this will be expanded to the file's path:
<Property Id="WixShellExecTarget"
 Value="[#fileChangeLogHTML]" />

4. Add a CustomAction element that has its BinaryKey attribute set to WixCA,
its DllEntry attribute set to WixShellExec, and Impersonate set to yes:
<CustomAction Id="OpenChangeLog"
 BinaryKey="WixCA"
 DllEntry="WixShellExec"
 Impersonate="yes" />

5. Add the following UI and Publish elements so that the custom action is run at
the end of the installation only if the checkbox is checked. The Publish element's
Value attribute should match the ID of our CustomAction element. These can
go somewhere inside your Product.wxs file:
<UI>
 <Publish Dialog="ExitDialog"
 Control="Finish"
 Event="DoAction"
 Value="OpenChangeLog">
WIXUI_EXITDIALOGOPTIONALCHECKBOX = 1 and NOT Installed
 </Publish>
</UI>

Linking to the Web

194

6. Run the installer and at the end, you'll see the following dialog:

7. Check the box and click on Finish to see ChangeLog:

How it works...
The WixShellExec custom action from UtilExtension will open an HTML file for us in
the end user's default browser. We added our ChangeLog.html file to the installer and then
referenced it with a Property element named WixShellExecTarget. This sets up which
file to open when the action is called.

Next, we added a CustomAction element that targets the WixShellExec method in the
WixCA library, which is a part of UtilExtension:

<CustomAction Id="OpenChangeLog"
 BinaryKey="WixCA"
 DllEntry="WixShellExec"
 Impersonate="yes" />

Chapter 11

195

All that was left was to tie this custom action to the Finish button on the final dialog, which we
did by adding a Publish element that fired the DoAction event:

<Publish Dialog="ExitDialog"
 Control="Finish"
 Event="DoAction"
 Value="OpenChangeLog">

Note that we added a conditional statement inside the Publish element so that our action
will be executed only if the checkbox is checked:

WIXUI_EXITDIALOGOPTIONALCHECKBOX = 1 and NOT Installed

The NOT Installed statement ensures that our action will run only during an installation
and not during a repair, upgrade, or uninstallation.

There's more...
If you'd rather force the change log to open without asking the user to check a box, then we
can simply remove the WIXUI_EXITDIALOGOPTIONALCHECKBOXTEXT property, omit steps
5–7, and instead add our custom action to InstallExecuteSequence, as follows:

<InstallExecuteSequence>
 <Custom Action="OpenChangeLog"
 After="InstallFinalize">NOT Installed</Custom>
</InstallExecuteSequence>

Now, the checkbox won't be displayed at all and our ChangeLog.html file will open at the
end of the installation. In fact, the user won't even have to click on the Finish button.

Starting with Windows Installer 5.0, there is a control event called
MsiLaunchApp that does the same thing as the WixShellExec
custom action. You can use it to open an HTML file when the user
clicks a button, just like we did in this recipe. You can use this if you're
building your own dialogs from scratch. You can find more information
at http://msdn.microsoft.com/en-us/library/windows/
desktop/dd408008(v=vs.85).aspx.
Since Windows Installer 5.0 is required, this will only work on Windows
7, Windows Server 2008 R2 and newer operating systems. There is no
redistributable for Windows Installer 5.0, so you can't install it on, say,
Windows XP.

http://msdn.microsoft.com/en-us/library/windows/desktop/dd408008(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd408008(v=vs.85).aspx

Linking to the Web

196

Launching a web page when a user
uninstalls our software

When a user uninstalls our software, often we want to know why. In this recipe, we'll see how
to open a web page in surveymonkey.com after an uninstallation. We can use this site to
build a survey that asks the user why they're removing the software.

Getting ready
To prepare for this recipe, perform the following steps:

1. Create a new setup project and call it OpenWebPageAfterUninstallInstaller.

2. We have to add at least one file to our installer for the installation to complete
successfully. Add a file called Sample.txt to the project and add the Component
and File elements to include it in the installation:

<ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component Id="cmpSampleTXT"
 Guid="{71C66E47-B398-4F06-98C9-4143495772A4}">
 <File Source="Sample.txt" />
 </Component>
</ComponentGroup>

How to do it...
Schedule the WixShellExec custom action to run after InstallFinalize in
InstallExecuteSequence, but only during an uninstallation. The following steps
will show how to open the web page:

1. Add UtilExtension to the project by right-clicking on the References node in
Solution Explorer and navigating to Add Reference... | WixUtilExtension.dll |
Add | OK.

2. In your Product.wxs file, add a Property element with Id of
WixShellExecTarget and Value set to the URL of the website to open:
<Property Id="WixShellExecTarget"
 Value="https://www.surveymonkey.com" />

3. Add a CustomAction element with BinaryKey set to WixCA, DllEntry set to
WixShellExec, and Impersonate set to yes:
<CustomAction Id="OpenWebPage"
 BinaryKey="WixCA"

surveymonkey.com

Chapter 11

197

 DllEntry="WixShellExec"
 Impersonate="yes" />

4. Add the custom action to InstallExecuteSequence by using a Custom element.
Its Action attribute should match the Id of the CustomAction element and its
After attribute should be set to InstallFinalize. Inside the Custom element,
add the conditional statement REMOVE ~= ALL so that the action will only be run
during an uninstallation:

<InstallExecuteSequence>
 <Custom Action="OpenWebPage" After="InstallFinalize">
 REMOVE ~= "ALL"
 </Custom>
</InstallExecuteSequence>

How it works...
The WixShellExec custom action opens a web page that we have specified
with the WixShellExecTarget property. We scheduled this action to run during
InstallExecuteSequence. To ensure that the web page will only open when we want
it to, we check the value of the REMOVE property. It has a value of ALL during a complete
uninstallation. The tilde makes the verification case insensitive.

Installing a shortcut that opens a web page
In the previous recipes, we added a shortcut to our software on the Start menu. We can also
add a shortcut to a web page—perhaps one where the user can find information about other
related products. It's a great way to keep the resources front and center. In this recipe, we'll
add a shortcut to the Start menu that opens the website, http://www.packtpub.com.

Getting ready
To prepare for this recipe, create a new setup project and name it
WebPageShortcutInstaller.

How to do it...
Include an InternetShortcut element from UtilExtension to create a shortcut to a
website, as shown in the following steps:

1. Add UtilExtension to the project by right-clicking on the References node in
Solution Explorer and navigating to Add Reference... | WixUtilExtension.dll |
Add | OK.

http://www.packtpub.com

Linking to the Web

198

2. Add the util namespace to the Wix element:
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"
xmlns:util="http://schemas.microsoft.com/wix/UtilExtension">

3. Use the Directory elements to add a new folder to the Windows Start menu. This
is where our shortcut will go. In this example, we'll add a folder called My Software:
<Directory Id="TARGETDIR" Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="INSTALLFOLDER"
 Name="My Software" />
 </Directory>
 <Directory Id="ProgramMenuFolder">
 <Directory Id="MyStartMenuFolder"
 Name="My Software" />
 </Directory>
</Directory>

4. Add Component that contains an InternetShortcut element from the util
namespace. This will define where to place the shortcut and to which URL it will point:
<ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component Id="cmpWebPageShortcut"
 Guid="{5A1DF50C-F232-4EA5-9178-B371EE7E1375}">
 <util:InternetShortcut Id="shortcutWebPage"
 Directory="MyStartMenuFolder"
 Name="See Other Products"
 Target="https://www.packtpub.com"
 Type="url" />
 </Component>
</ComponentGroup>

5. Add a RemoveFolder element to the same component so that our Start menu
folder will be removed during an uninstall and add a RegistryValue element to
serve as the component's KeyPath attribute:

<Component ...>
 <util:InternetShortcut .../>

 <RemoveFolder Id="removeStartMenuFolder"
 Directory="MyStartMenuFolder"
 On="uninstall" />
 <RegistryValue Root="HKCU"
 Key="Software\MyCompany\MySoftware"

Chapter 11

199

 Name="installed"
 Type="integer"
 Value="1"
 KeyPath="yes" />
</Component>

How it works...
Although you can place a shortcut anywhere, we added it to the Windows Start
menu in this recipe. The UtilExtension namespace gives us an element called
InternetShortcut that will create a specialized shortcut that can open a web
page, as shown in the following screenshot:

The InternetShortcut element's Directory attribute specifies where the shortcut will
go. Its Name attribute is what will be displayed to the end user. Target sets the URL
to navigate to and Type declares that the target is a URL:

<util:InternetShortcut Id="shortcutWebPage"
 Directory="MyStartMenuFolder"
 Name="See Other Products"
 Target="https://www.packtpub.com"
 Type="url" />

Since we installed a new folder within the Windows Start menu, we must add a
RemoveFolder and RegistryValue element. This is standard procedure when adding
a folder to the Start menu, regardless of whether it includes InternetShortcut. They
ensure that the folder is removed during an uninstall and we have something to serve as
KeyPath for Component. After running the setup, the shortcut will be created and, when
it is clicked, it will open our web page in the end user's default browser.

Linking to the Web

200

Updating programs and features to show a
link to our company's website

We want to give a user every opportunity to get the most up-to-date information about our
software. Programs and Features, which is where users can remove software from their
system, is one place they might look for information. With WiX, we can customize how our
software is displayed there and provide links to our company's website, a support page,
and a page where users can find the latest downloads.

In this recipe, we will add three web page links for our software on the Programs and
Features screen. Here is the end result:

Getting ready
To prepare for this recipe, perform the following steps:

1. Create a new setup project and call it ProgramsAndFeaturesLinksInstaller.

2. Add a text file to the project and name it Sample.txt so that our installer has
something to install. Add a Component element and a File element to include
the file in the installer:

<ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component Id="cmpSampleTXT"
 Guid="{8E43E291-5F2F-4B62-B13E-E39DF145318D}">
 <File Source="Sample.txt" />
 </Component>
</ComponentGroup>

Chapter 11

201

How to do it...
Add the Property elements that define the links to be displayed in Programs and Features,
as shown in the following steps:

1. In your Product.wxs file, add the Property elements with the Id attributes
of ARPURLINFOABOUT, ARPHELPLINK, and ARPURLUPDATEINFO. The first points
to a page where the user can find more information about our company or software.
The second points to a page where the user can find support information. The third
points to a page where they can find the most up-to-date downloadable files for
the software:
<Property Id="ARPURLINFOABOUT"
 Value="http://www.mywebsite.com/about" />
<Property Id="ARPHELPLINK"
 Value="http://www.mywebsite.com/help" />
<Property Id="ARPURLUPDATEINFO"
 Value="http://www.mywebsite.com/downloads" />

2. When the installation has finished, navigate to Programs and Features and select
our application from the list of installed software. At the bottom of the screen, you'll
see the three URLs that we have set.

How it works...
After installation, the ARPURLINFOABOUT, ARPHELPLINK, and ARPURLUPDATEINFO properties
are stored in the Windows registry under HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\
Windows\CurrentVersion\Uninstall. This is where all the data to display entries in
Programs and Features is stored.

If you're interested in learning about other properties that affect how your software is
shown in Programs and Features, such as how to change the icon that's displayed, go to
http://msdn.microsoft.com/en-us/library/aa368032(v=vs.85).aspx.

http://msdn.microsoft.com/en-us/library/aa368032(v=vs.85).aspx

12
Installing SQL

Server Databases

In this chapter, we will cover the following topics:

 f Installing a SQL Server instance with a bootstrapper

 f Adding a database to a SQL Server instance

 f Creating a table within a SQL Server database

 f Inserting data into a database table

 f Creating an ODBC data source for a SQL Server instance

Introduction
Data is vital to most applications. So, it's likely that you'll want to set up a database at
installation time to store data. The WiX Toolset gives us a mechanism to add a new instance
of SQL Server and then add databases, table definitions, and data to it. In this chapter, we'll
cover these common tasks and also touch upon how to set up an ODBC data source, which
gives a standardized way for applications of various types to connect to the database.

Installing a SQL Server instance with a
bootstrapper

Unless you're sure that an instance of SQL Server is already installed on the end user's
computer, you'll probably want to install it yourself. A bootstrapper can check for the
existence of SQL Server and install it only if it isn't there, saving you the guesswork.
In this recipe, we will create a bootstrapper that will install SQL Server 2014 Express.
This is a free database offered by Microsoft.

Installing SQL Server Databases

204

How to do it...
Add PackageGroup for SQL Server 2014 Express to a bootstrapper project, as shown in
the following steps:

1. Create a new bootstrapper project and call it SqlServerBootstrapper.

2. Add the UtilExtension namespace to the project by right-clicking on the
References node in Solution Explorer and selecting OK after navigating to
Add Reference... | Browse | WixUtilExtension.dll | Add.

3. Add NetFxExtension to the project by right-clicking on the References node
in Solution Explorer and selecting OK after navigating to Add Reference... |
Browse | WixNetFxExtension.dll | Add.

4. SQL Server 2014 Express has a dependency on either .NET 3.5 or .NET 4. We can
get .NET 4 from NetFxExtension by opening our bootstrapper project's Bundle.
wxs file and adding a PackageGroupRef element with an Id attribute
of NetFx40Redist. Update the Chain element as follows:
<Chain>
 <PackageGroupRef Id="NetFx40Redist"/>
</Chain>

5. To keep our SQL Server markup separated, we'll add a new WXS file for it. Right-click
on the project and select Installer File after navigating to Add | New Item... and
then set its name to SqlServerPackageGroup.wxs:

Chapter 12

205

6. Download the 64-bit installer for SQL Server 2014 Express from http://
download.microsoft.com/download/E/A/E/EAE6F7FC-767A-4038-A954-
49B8B05D04EB/Express%2064BIT/SQLEXPR_x64_ENU.exe. If you prefer the
32-bit version, it can be found at http://download.microsoft.com/download/
E/A/E/EAE6F7FC-767A-4038-A954-49B8B05D04EB/Express%2032BIT/
SQLEXPR_x86_ENU.exe.

7. Copy the SQL Server installer, SQLEXPR_x64_ENU.exe, to the bootstrapper project's
directory so that it sits next to our SqlServerPackageGroup.wxs file.

8. Update SqlServerPackageGroup.wxs with the following markup:
<?xml version="1.0" encoding="UTF-8"?>
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"
xmlns:util="http://schemas.microsoft.com/wix/UtilExtension">

 <!--Instance name is limited to 16 characters-->
 <?define SqlInstanceName=MySqlInstance?>

 <?define SqlInstallCommand=/ACTION=Install /Q /
IACCEPTSQLSERVERLICENSETERMS /FEATURES=SQLEngine /
INSTANCENAME=$(var.SqlInstanceName) /SQLSYSADMINACCOUNTS=BUILTIN\
Administrators /SECURITYMODE=SQL /SAPWD=password123 ?>

 <?define SqlUninstallCommand=/ACTION=Uninstall /Q /
FEATURES=SQLEngine /INSTANCENAME=$(var.SqlInstanceName) ?>

 <?define SqlRepairCommand=/ACTION=Repair /Q /FEATURES=SQLEngine
/INSTANCENAME=$(var.SqlInstanceName) ?>

 <Fragment>
 <util:RegistrySearch Id="regsearchSqlInstanceFound"
 Root="HKLM"
 Key="SOFTWARE\Microsoft\Microsoft SQL
Server\Instance Names\SQL"
 Value="$(var.SqlInstanceName)"
 Result="exists"
 Variable="SqlInstanceFound"/>

 <PackageGroup Id="SqlServerPackageGroup">
 <ExePackage SourceFile="SQLEXPR_x64_ENU.exe"
 DetectCondition="SqlInstanceFound"
 InstallCommand="$(var.SqlInstallCommand)"
 UninstallCommand="$(var.SqlUninstallCommand)"
 RepairCommand="$(var.SqlRepairCommand)" />
 </PackageGroup>
 </Fragment>
</Wix>

http://download.microsoft.com/download/E/A/E/EAE6F7FC-767A-4038-A954-49B8B05D04EB/Express%2064BIT/SQLEXPR_x64_ENU.exe
http://download.microsoft.com/download/E/A/E/EAE6F7FC-767A-4038-A954-49B8B05D04EB/Express%2064BIT/SQLEXPR_x64_ENU.exe
http://download.microsoft.com/download/E/A/E/EAE6F7FC-767A-4038-A954-49B8B05D04EB/Express%2064BIT/SQLEXPR_x64_ENU.exe
http://download.microsoft.com/download/E/A/E/EAE6F7FC-767A-4038-A954-49B8B05D04EB/Express%2032BIT/SQLEXPR_x86_ENU.exe
http://download.microsoft.com/download/E/A/E/EAE6F7FC-767A-4038-A954-49B8B05D04EB/Express%2032BIT/SQLEXPR_x86_ENU.exe
http://download.microsoft.com/download/E/A/E/EAE6F7FC-767A-4038-A954-49B8B05D04EB/Express%2032BIT/SQLEXPR_x86_ENU.exe

Installing SQL Server Databases

206

9. In Bundle.wxs, reference PackageGroup that we just defined using a
PackageGroupRef element:
<Chain>
 <PackageGroupRef Id="NetFx40Redist"/>
 <PackageGroupRef Id="SqlServerPackageGroup"/>
</Chain>

10. Build and run the bootstrapper to verify that it installs SQL Server 2014 Express.

How it works...
SQL Server 2014 Express is available in a few different packages, such as bundled with SQL
Server Management Studio (SSMS) or as a standalone installation. In this case, we went
with the standalone option. However, you may want to install SSMS too during development
so that you can check the databases and tables that we'll be adding in the next few recipes.

The 64-bit SQL Server Express standalone installer is called SQLEXPR_x64_ENU.exe. It
relies on the .NET 3.5 or .NET 4 Framework. NetFxExtension can install .NET 4 for us if
we add PackageGroupRef that points to NetFx40Redist:

<Chain>
 <PackageGroupRef Id="NetFx40Redist"/>
</Chain>

With this in place, the .NET Framework will be installed prior to SQL Server Express, but only
if it's missing. Next, we added the SQL Server Express installer to our project and referenced
it with an ExePackage element. During compilation, this file will be compressed into our
bootstrapper executable.

Our bootstrapper sends command-line arguments to the SQL Server installation package to
configure parameters during the installation, uninstallation and repair processes. Preprocessor
variables are a convenient way to keep our long command-line arguments in one place. Note
that we have one of these just to store the name of our SQL Server instance since it happens
to be used in several places. Also note that the instance name has a maximum limit of 16
characters—just a limitation of SQL Server. Consider the following code snippet:

<?define SqlInstanceName=MySqlInstance?>

<?define SqlInstallCommand=/ACTION=Install /Q /
IACCEPTSQLSERVERLICENSETERMS /FEATURES=SQLEngine /INSTANCENAME=$(var.
SqlInstanceName) /SQLSYSADMINACCOUNTS=BUILTIN\Administrators /
SECURITYMODE=SQL /SAPWD=password123 ?>

Chapter 12

207

<?define SqlUninstallCommand=/ACTION=Uninstall /Q /FEATURES=SQLEngine /
INSTANCENAME=$(var.SqlInstanceName) ?>

<?define SqlRepairCommand=/ACTION=Repair /Q /FEATURES=SQLEngine /
INSTANCENAME=$(var.SqlInstanceName) ?>

After defining these preprocessor variables, we match them up with attributes on the
ExePackage element:

<PackageGroup Id="SqlServerPackageGroup">
 <ExePackage SourceFile="SQLEXPR_x64_ENU.exe"
 DetectCondition="SqlInstanceFound"
 InstallCommand="$(var.SqlInstallCommand)"
 UninstallCommand="$(var.SqlUninstallCommand)"
 RepairCommand="$(var.SqlRepairCommand)" />
</PackageGroup>

The DetectCondition attribute works a bit differently. It figures out whether the package
is already installed, which helps the bootstrapper decide which command—install,
uninstall, or repair—to run. It points to a variable defined by a RegistrySearch
element that we've included in the same fragment:

<util:RegistrySearch Id="regsearchSqlInstanceFound"
 Root="HKLM"
 Key="SOFTWARE\Microsoft\Microsoft SQL Server\
Instance Names\SQL"
 Value="$(var.SqlInstanceName)"
 Result="exists"
 Variable="SqlInstanceFound"/>

This will check the Windows registry whenever the bootstrapper is run to see whether our
named SQL instance is there. If it is, a variable called SQlInstanceFound is set and that's
what we will reference with the DetectCondition attribute.

The final step was to add PackageGroupRef inside the Chain element so that SQL Server
Express will be installed after the .NET Framework:

<Chain>
 <PackageGroupRef Id="NetFx40Redist"/>
 <PackageGroupRef Id="SqlServerPackageGroup"/>
</Chain>

Installing SQL Server Databases

208

Adding a database to a SQL Server instance
Once we have an instance of SQL Server running on the end user's computer, the next step
is to add a database to it. This will give us a place to store our application's data. With WiX,
we can define a new database in a declarative style rather than with an external SQL script.

Getting ready
Create a new setup project and name it NewDatabaseInstaller.

How to do it...
The following steps show how to create a new database with the SqlDatabase element:

1. Add SqlExtension to the project by right-clicking on the References node
in Solution Explorer and selecting OK after navigating to Add Reference... |
Browse | WixSqlExtension.dll | Add.

2. Add the SqlExtension namespace to the Wix element:
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"
xmlns:sql="http://schemas.microsoft.com/wix/SqlExtension">

3. Add a Component element that has KeyPath set to yes:
<ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component Id="cmpSqlDatabase"
 Guid="{F950605D-AA59-43E6-AB19-9452F6BEC649}"
 KeyPath="yes">
 </Component>
</ComponentGroup>

4. Inside of it, include a SqlDatabase element that will define the database to
add to an existing instance of SQL Server. The following creates a database
called MyDatabase within a SQL Server instance called MySqlInstance
that resides on the end user's computer:
<ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component Id="cmpSqlDatabase"
 Guid="{F950605D-AA59-43E6-AB19-9452F6BEC649}"
 KeyPath="yes">
 <sql:SqlDatabase Id="sqlDatabase_MyDatabase"

Chapter 12

209

 Server="[ComputerName]"
 Instance="MySqlInstance"
 Database="MyDatabase"
 CreateOnInstall="yes"
 DropOnUninstall="yes"
 ContinueOnError="yes" />
 </Component>
</ComponentGroup>

5. Run the installer and verify that the database was created. You can use SQL Server
Management Studio to check this.

How it works...
SqlExtension from the WiX Toolset gives us a new element called SqlDatabase that will
add a database to an instance of SQL Server. In this example, we're assuming that there's
a named instance called MySqlInstance installed on the end user's computer. Of course,
we could install it ourselves using a bootstrapper. The ComputerName property used in the
Server attribute will be expanded to the name of the computer. The Database attribute
sets up what to call our new database. Here, we called it MyDatabase.

With the CreateOnInstall and DropOnUninstall attributes, we were able to create
the database during installation and remove it during an uninstall. If the database already
exists, no action will be taken. The ContinueOnError attribute is set to yes to ensure that
if there is an error while performing these actions, the installer will be able to continue. It's
important not to get stuck on a SQL error, especially during the uninstallation since doing so
would prevent the user from removing our software. Unfortunately, there isn't a way to set
ContinueOnError to no and have it only affect installation.

Creating a table within a SQL Server
database

After creating a database on the end user's computer, you'll want to define its schema by adding
table definitions. WiX gives us a way to execute CREATE TABLE statements within the database
that we're installing. In this recipe, we will add a table definition with a few basic fields.

Getting ready
Create a new setup project and name it NewTableInstaller.

Installing SQL Server Databases

210

How to do it...
To create a table, add a SqlString element that specifies the CREATE TABLE
SQL statement:

1. Add SqlExtension to the project by right-clicking on the References node in
Solution Explorer and selecting OK after navigating to Add Reference... | Browse |
WixSqlExtension.dll | Add.

2. Add the SqlExtension namespace to the Wix element:
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"
xmlns:sql="http://schemas.microsoft.com/wix/SqlExtension">

3. Add a Component that has its KeyPath attribute set to yes. It should contain a
SqlDatabase element so that a database is set up for us to add a table to it:
<ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component Id="cmpSqlTable"
 Guid="{AB80A310-792B-40FF-8437-07BEAF75BFD5}"
 KeyPath="yes">
 <sql:SqlDatabase Id="sqlDatabase_MyDatabase"
 Server="[ComputerName]"
 Instance="MySqlInstance"
 Database="MyDatabase"
 CreateOnInstall="yes"
 DropOnUninstall="yes"
 ContinueOnError="yes">

 </sql:SqlDatabase>
 </Component>
</ComponentGroup>

4. Inside the SqlDatabase element, add a SqlString element that sets the SQL
statement to run. The following markup will add a table to the SqlDatabase
that it's nested under:
<sql:SqlDatabase ..>
 <sql:SqlString
 Id="sqlString_CreateTable"
 ExecuteOnInstall="yes"
 ContinueOnError="yes"
 SQL="IF NOT (EXISTS (SELECT *
 FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_SCHEMA = 'dbo'
 AND TABLE_NAME = 'MyTable'))
 BEGIN

Chapter 12

211

 CREATE TABLE MyTable (
 Id INT PRIMARY KEY IDENTITY,
 Name NVARCHAR(50) NOT NULL,
 Timestamp DATETIME DEFAULT CURRENT_TIMESTAMP)
 END"
 />
</sql:SqlDatabase>

5. Run the installer and verify that a table called MyTable is added to MyDatabase.

How it works...
After we've added a database using the SqlDatabase element of SqlExtension, we
can execute SQL statements against it, including one to create a table. To do this, we nest a
SqlString element within SqlDatabase. SqlString specifies a SQL attribute that defines
the statement to run. As we've done here, the value of the SQL attribute can span multiple lines:

SQL="IF NOT (EXISTS (SELECT *
 FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_SCHEMA = 'dbo'
 AND TABLE_NAME = 'MyTable'))
 BEGIN
 CREATE TABLE MyTable (
 Id INT PRIMARY KEY IDENTITY,
 Name NVARCHAR(50) NOT NULL,
 Timestamp DATETIME DEFAULT CURRENT_TIMESTAMP)
 END"

The ExecuteOnInstall attribute causes the statement to run only during an installation.
With what we have so far, the database is not removed during an uninstallation process. We
could have added a second SqlString element with its ExecuteOnUninstall attribute
set to yes and its SQL attribute defined as a DROP TABLE statement. However, since the
entire database is going to be dropped during the uninstallation process, there's no need.

To verify that the table is created, we can use SQL Server Management Studio to open the
database and check whether our table is listed:

Installing SQL Server Databases

212

Inserting data into a database table
During the installation, you may decide to populate your database tables with some seed
data. For example, you may have a list of U.S. states in which you do business that you'd like
to add as static data. In this recipe, we will create a database, add a table to it, and then
insert new rows into that table.

Getting ready
Create a new setup project and call it InsertingDataInstaller.

How to do it...
Include an INSERT statements in a SqlScript element to add rows of data to a database.
The following steps show how to do it.

1. Add SqlExtension to the project by right-clicking on the References node in
Solution Explorer and selecting OK after navigating to Add Reference... | Browse |
WixSqlExtension.dll | Add.

2. Add the SqlExtension namespace to the Wix element:
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"
xmlns:sql="http://schemas.microsoft.com/wix/SqlExtension">

3. We're going to store all our SQL commands in a file. So, use Notepad to create a
file called install_data.sql and add the following statements to it:
IF NOT (EXISTS (SELECT *
 FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_SCHEMA = 'dbo'
 AND TABLE_NAME = 'States'))
BEGIN
 CREATE TABLE States (
 Id INT PRIMARY KEY IDENTITY,
 Name NVARCHAR(20) NOT NULL);

 INSERT INTO [MyDatabase].[dbo].[States] (Name)
 VALUES (N'Alabama')
END

Chapter 12

213

4. Add this file to your setup project. You can drag it from the Windows Explorer to the
Visual Studio Solution explorer. Don't create it directly in Visual Studio since there's
a chance that invalid, invisible characters could be introduced.

5. Add a Binary element either inside of the Product element or the Fragment
element that contains ComponentGroup. Its SourceFile attribute should point
to our install_data.sql file:
<Binary Id="install_dataSQL"
 SourceFile="install_data.sql" />

6. Add a Component element with its KeyPath attribute set to yes and a
SqlDatabase element nested inside of it. This will create the database that
we will execute the SQL statements against:
<ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component Id="cmpInsertData"
 Guid="{A80B13D5-060C-4F95-84F0-7414AFE75F9B}"
KeyPath="yes">
 <sql:SqlDatabase Id="sqlDatabase_MyDatabase"
 Server="[ComputerName]"
 Instance="MySqlInstance"
 Database="MyDatabase"
 CreateOnInstall="yes"
 DropOnUninstall="yes"
 ContinueOnError="yes">
 </sql:SqlDatabase>
 </Component>
</ComponentGroup>

7. Within SqlDatabase, add a SqlScript element that references the Binary
element we've defined for our install_data.sql file. Set its ExecuteOnInstall
attribute to yes:
<sql:SqlDatabase ..>
 <sql:SqlScript Id="sqlScript_InsertData"
 BinaryKey="install_dataSQL"
 ExecuteOnInstall="yes"
 ContinueOnError="yes" />
</sql:SqlDatabase>

8. Run the installer and verify that a row of data is added to MyTable in MyDatabase.

Installing SQL Server Databases

214

How it works...
Although we can use SqlString elements to execute INSERT statements against a
database, it might involve many such elements. Instead, we can place all of our SQL into a
separate file and reference it with a Binary element. Our install_data.sql file included
the CREATE TABLE and INSERT statements so that the table is added and then populated.
This also guarantees that the statements are run in the correct order.

When we nest SqlScript within a SqlDatabase element, the SQL statements it points to are
executed against that database. The BinaryKey attribute identifies the Binary element to use
and by setting ExecuteOnInstall to yes, the script will only run during the installation.

In this example, we didn't handle the uninstallation process explicitly.
For example, we could have added another SqlScript with its
ExecuteOnUninstall attribute set to yes to remove rows from the
database or drop the table during the uninstallation process. However,
since the SqlDatabase element will drop the entire database anyway,
this step was not needed.

After running the installer, we can use SQL Server Management Studio to verify that a row
was added to our database table:

Creating an ODBC data source for a SQL
Server instance

Microsoft Open Database Connectivity (ODBC) is a long-standing and established API for
connecting to a database. Although there are alternative .NET-specific libraries, such as Entity
Framework, ODBC is more general purpose and fits well into an environment where a variety
of languages and technology stacks are used.

Many languages have libraries that can take advantage of ODBC. For example, C# can use
either ADO.NET or the classes under the System.Data.Odbc namespace to connect to an
ODBC data source. In this recipe, we will set up a data source to connect to a SQL Server
instance called MySqlInstance.

Chapter 12

215

Getting ready
Create a new setup project and call it OdbcDataSourceInstaller.

How to do it...
Using the ODBCDataSource element, create a data source for SQL Server, as shown in the
following steps:

1. Add a component to the project that will contain our ODBC data source:
<ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component Id="cmpOdbcDataSource"
 Guid="{B7D13BCD-A34C-4575-AE1E-4BA7D6A27D6C}">

 </Component>
</ComponentGroup>

2. Within this component, add an ODBCDataSource element that has its DriverName
attribute set to SQL Server, its Registration attribute set to machine, and its
KeyPath attribute set to yes. We can choose any name for it as long as it hasn't
already been used by another ODBC data source:
<Component ...>
 <ODBCDataSource Id="OdbcDataSource_MySqlDataSource"
 DriverName="SQL Server"
 Registration="machine"
 KeyPath="yes"
 Name="MySqlDataSource">
 </ODBCDataSource>
</Component>

3. Within the ODBCDataSource element, add the Property elements to define other
attributes of the ODBC data source, such as the SQL Server instance to connect to,
the default database to use, and whether to use Windows authentication:
<ODBCDataSource ...>
 <Property Id="Server"
 Value="[ComputerName]\MySqlInstance" />
 <Property Id="Database"
 Value="master" />
 <Property Id="Description"
 Value="A description about my ODBC data source" />

Installing SQL Server Databases

216

 <Property Id="Trusted_Connection"
 Value="yes" />
</ODBCDataSource>

4. Run the installer and verify that the data source was created. In Windows 8.1,
you can navigate to Control Panel | Administrative Tools | ODBC Data Sources
(32-bit) | System DSN. You can also type odbcad32 in the Run window.

How it works...
The ODBCDataSource element will create a new data source using the specified driver. There
are many drivers that come preinstalled on Windows 8, such as for Oracle, Microsoft Access,
and SQL Server. You can open the ODBC Data Sources Administrative Tools window to find
the names of others. For us, it's SQL Server. The Registration attribute can be either
machine or user. The former will create a system DSN record that can be accessed by all
users on the computer:

<ODBCDataSource Id="OdbcDataSource_MySqlDataSource"
 DriverName="SQL Server"
 Registration="machine"
 KeyPath="yes"
 Name="MySqlDataSource" >

Some attributes of the data source can't be set with the ODBCDataSource element
alone. For example, we need to define which instance of SQL Server to connect to and
which database to use by default. For this, we can nest the Property element inside
of ODBCDataSource. The following properties associate our data source with the
MySqlInstance SQL Server instance, set the master database as the default to
connect to, add a description for the data source, and allow Windows authentication:

<Property Id="Server"
 Value="[ComputerName]\MySqlInstance" />
<Property Id="Database"
 Value="master" />
<Property Id="Description"

Chapter 12

217

 Value="A description about my ODBC data source" />
<Property Id="Trusted_Connection"
 Value="yes" />

If you're curious about where the names of these properties came from and whether there
are others you could use, then take a look at the Windows registry. All of the attributes of an
ODBC data source can be found under HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\
ODBC. The following screenshot is what is set after running our installer:

The values listed under the Name column can be used as the Id attributes of your Property
elements. Try creating a data source through the ODBC Data Sources Administrative Tools
window and see what values get set in the registry.

13
Admin Tasks

In this chapter, we will cover the following:

 f Setting an environment variable

 f Creating a scheduled task

 f Defining a new event source for the Windows event viewer

 f Registering a performance counter

 f Adding an exception to the Windows Firewall

Introduction
There are a number of install-time chores that I would categorize as administrative tasks—jobs
that set up the user's environment. In this chapter, we'll lump a few of these items together and
see how to perform them with WiX. We'll cover the very simple chore of adding an environment
variable to more complex jobs such as creating a scheduled task or a performance counter.

Setting an environment variable
Environment variables, which are globally available to any software running on the system,
provide a means for storing useful information about your application that the end user
might reference—usually on the command-line. For example, you might install a variable
that contains the path to your software so that the end user could use it as a shortcut
when referencing the executable.

Admin Tasks

220

Getting ready
Create a new setup project and name it EnvironmentVariableInstaller.

How to do it...
Set an environment variable with the Environment element as described in the
following steps:

1. Add a Component element with its KeyPath attribute set to yes:
<Component Id="cmpEnvironmentVariable"
 Guid="{313075B5-BF2C-4012-9A6E-2F4E2C461306}"
 KeyPath="yes">
</Component>

2. Within that component, add an Environment element that defines the name
and value of the new environment variable. Set Action to set to overwrite
any existing value and System to yes to add it to the System collection of
environment variables:

<Component ...>
 <Environment Id="myEnvironmentVariable"
 Name="MyVariable"
 Value="some value"
 Action="set"
 System="yes" />
</Component>

How it works...
The Environment element will add a new environment variable to the end user's computer.
We can either install it to the User collection of variables, by setting the System attribute to
no, or to the System collection by setting System to yes. We defined the variable's name
and value with the Name and Value attributes. The Action attribute, when assigned a value
of set, will overwrite the variable's current value if it exists. To keep any existing value, set
Action to create instead.

To view environment variables in Windows 8.1, go to System | Advanced System Settings |
Environment Variables.... You'll see the list of installed variables, as shown:

Chapter 13

221

There's more...
In our example, we defined a new variable that didn't affect any existing variables. If we
wanted to append a value to the end of an existing variable, such as adding the path to our
application's executable to the built-in Path variable, then we would include the Part and
Separator attributes. Part should be set to last to append to the end of an existing
value. The Separator attribute defines the delimiter between values in the variable. The
following example adds our install directory to the end of the Path variable, separating it
with a semicolon:

<Environment Id="MyPathVariable"
 Name="Path"
 Value="[INSTALLFOLDER]"
 Action="set"
 System="yes"
 Part="last"
 Separator=";" />

Admin Tasks

222

Creating a scheduled task
Adding a scheduled task to the system allows us to perform some action, such as running an
executable, at a specific time each hour, day, or month. It might be to clean up old log files,
check for software updates, or process a batch file. With WiX, we can add a scheduled task
at the time of installation and remove it when our software is uninstalled.

In this recipe, we'll add a simple task that calls the calculator program once per day. We'll
also include markup to remove the task if the installation should fail, or if the user decides
to uninstall our software.

Getting ready
To prepare for this recipe, perform the following steps:

1. Create a new setup project and call it ScheduledTaskInstaller.

2. For an installer to succeed, it must install at least one file. Add a text file called
Sample.txt to the project and then add a Component and File element to it:

<ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component Id="cmpSampleTXT"
 Guid="{B63BA28A-0985-472B-828B-B5BD943D0633}">
 <File Source="Sample.txt" />
 </Component>
</ComponentGroup>

How to do it...
Add CustomAction elements that call the schtasks command-line utility to create a
scheduled task during installation. Then, create custom actions to remove the scheduled
task during uninstall and rollback:

1. Add a Directory element that has Id as SystemFolder. We must reference this
directory when calling the schtasks utility in our custom actions:
<Directory Id="TARGETDIR" Name="SourceDir">
 <Directory Id="ProgramFilesFolder">
 <Directory Id="INSTALLFOLDER"
 Name="ScheduledTaskInstaller" />
 </Directory>

Chapter 13

223

 <Directory Id="SystemFolder" />
</Directory>

2. Our scheduled task will run as the LocalSystem user. Since NT AUTHORITY\
SYSTEM doesn't translate on non-English computers, we can use a property from
UtilExtension to get the localized version of that username. Add a project reference
to UtilExtension and then add the following PropertyRef element to get access
to the localized LocalSystem user:
<PropertyRef Id="WIX_ACCOUNT_LOCALSYSTEM" />

3. Add a CustomAction element either inside of the Product element or within its
own fragment. Set its ExeCommand attribute to use the schtasks command-line
utility to create a new scheduled task. The following example adds a task that will
run the calculator program each day at 5 p.m. You will not see it, however, because
it will run in the background.
<CustomAction Id="CreateScheduledTask"
 Directory="SystemFolder"
 ExeCommand=""[SystemFolder]schtasks" /
Create /TN MyTaskName /SC DAILY /ST 17:00 /RU "[WIX_ACCOUNT_
LOCALSYSTEM]" /TR "C:\Windows\System32\calc.exe""
 Execute="deferred"
 Impersonate="no" />

4. So that our custom action is undone if there is an error during installation, add a
second CustomAction element to roll back the first. Its ExeCommand will pass
the /Delete argument to the schtasks utility:
<CustomAction Id="RollbackCreateScheduledTask"
 Directory="SystemFolder"
 ExeCommand=""[SystemFolder]schtasks" /
Delete /TN MyTaskName /F"
 Execute="rollback"
 Impersonate="no" />

5. Add a third CustomAction element to remove the scheduled task during
uninstallation. Its ExeCommand attribute is the same as our rollback custom action's:
<CustomAction Id="RemoveScheduledTask"
 Directory="SystemFolder"
 ExeCommand=""[SystemFolder]schtasks" /
Delete /TN MyTaskName /F"
 Execute="deferred"
 Impersonate="no" />

Admin Tasks

224

6. Schedule each of the custom actions during InstallExecuteSequence.
Set their conditions so that the create and rollback actions are performed
during installation and the remove process is run during uninstallation:

<InstallExecuteSequence>
 <Custom Action="CreateScheduledTask"
 Before="InstallFinalize">NOT Installed</Custom>
 <Custom Action="RollbackCreateScheduledTask"
 Before="CreateScheduledTask">NOT Installed</Custom>
 <Custom Action="RemoveScheduledTask"
 Before="InstallFinalize">REMOVE ~= "ALL"</Custom>
</InstallExecuteSequence>

How it works...
The schtasks utility, which is preinstalled on Windows, enables us to create or remove a
scheduled task. More information about its parameters can be found at http://msdn.
microsoft.com/en-us/library/windows/desktop/bb736357(v=vs.85).aspx.

For creating the scheduled task, within the CustomAction element's ExeCommand attribute,
use the /Create argument. When removing the task, use the /Delete argument. Note that
our create and remove actions have their Execute attributes set to deferred, whereas
the rollback action has its Execute attribute set to rollback.

All three custom actions are added to InstallExecuteSequence before the
InstallFinalize action. The create and rollback actions have their inner-text
conditional statements set to NOT Installed so that they'll be executed only during
installation. The remove action, which should run during uninstallation, has a condition
of REMOVE ~= "ALL".

Using the CustomAction elements in this way will show the
momentary flash of a console window when the schtasks utility
is called. You can use the CAQuietExec action, as described in
Chapter 6, Custom Actions, to execute a command silently.

After running the installer, you should see our scheduled task listed when you navigate to
Control Panel | Administrative Tools | Task Scheduler | Task Scheduler Library or type
taskschd.msc in the Run window:

http://msdn.microsoft.com/en-us/library/windows/desktop/bb736357(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/bb736357(v=vs.85).aspx

Chapter 13

225

Defining a new event source for the
Windows event viewer

The Windows event viewer is a centralized place where application messages are logged,
which system administrators can use to monitor the health of the machine. Registering an
event source gives us a chance to store hard-coded, localized strings for our own messages.
We can select one programmatically by its associated numeric ID. That way, the messages
stay consistent and system administrators have one place to go to, to find them.

In this recipe, we'll create a messages file and store it within a resource DLL. Then,
we'll register that file with an event source that's installed to the end user's computer.
An application can use this event source to log predefined messages to the event viewer.

Getting ready
Create a Setup project and call it EventSourceInstaller.

How to do it...
Add a resource file that defines the messages and categories to display in the Windows event
viewer. Then, register it with an EventSource element. Follow the given steps.

1. Create a file called messages.mc. Inside, we'll define the messages and categories
that we'll log in the event viewer when a problem occurs within our application.
Each definition ends with a period followed by a new line:
;// HEADER SECTION
MessageIdTypedef=DWORD

;// CATEGORY DEFINITIONS
MessageId=1
Language=English
Web service
.

;// MESSAGE DEFINITIONS
MessageId=100
Language=English
Max connections was exceeded.
.
MessageId=101
Language=English
Service utilization: %1
.

Admin Tasks

226

2. Open the Visual Studio command prompt by finding it within the Start menu at Visual
Studio 2013 | Visual Studio Tools | Developer Command Prompt for VS2013.

3. In the command prompt, navigate to the directory where you created the messages.
mc file and compile it with Message Compiler (mc.exe):
mc messages.mc

4. Convert the output RC file to a RES file with Resource Compiler (rc.exe):
rc messages.rc

5. Use the linker to bind the output RES and BIN files into a DLL file:
link -dll -noentry messages.res

6. Copy the output messages.dll to our setup project's directory and add a
Component element for it within the Product.wxs file:
<ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component Id="cmpMessagesDLL"
 Guid="{F868FE8E-8F1E-4AEC-82AE-B5AB012E152F}">
 <File Id="fileMessagesDLL" Source="messages.dll" />
 </Component>
</ComponentGroup>

7. Add UtilExtension to the project by right-clicking on the References node in
Solution Explorer and selecting Add Reference... | WixUtilExtension.dll | Add | OK.

8. Add the UtilExtension namespace to the Wix element:
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"
xmlns:util="http://schemas.microsoft.com/wix/UtilExtension">

9. Add a Component element with an EventSource element that points
to the messages.dll File element with its EventMessageFile and
CategoryMessageFile attributes:

<Component Id="cmpEventSource"
 Guid="{2E5A07EC-914B-454F-98C8-77A5F6073C52}">
 <util:EventSource
 KeyPath="yes"
 EventMessageFile="[#fileMessagesDLL]"
 CategoryMessageFile="[#fileMessagesDLL]"
 CategoryCount="1"
 Name="MyCustomEventSource"
 Log="Application" />
</Component>

Chapter 13

227

How it works...
A message file defines localizable strings that are tied to numeric IDs. Within our software,
we can choose which message to show in the Windows event log based on one of these
IDs. For example, to display the error, Max connections was exceeded, we could call the
WriteEvent static method on the System.Diagnostics.EventLog class, passing in
an instance of EventInstance. The EventInstance class constructor takes the message
ID as its first parameter, the category ID as its second, and an optional EventLogEntryType
to log the message at a certain severity level:

EventLog.WriteEvent(
 "MyCustomEventSource",
 new EventInstance(100, 1, EventLogEntryType.Error));

Since we passed 1 for the category parameter, the new event will be grouped within the
web service category as defined in our messages.mc file. Open the event viewer by typing
eventvwr in the Run window. Here's an example of what our message would look like:

The strings in the message file can also accept placeholders as follows:

MessageId=101
Language=English
Service utilization: %1
.

Admin Tasks

228

The WriteEvent method will accept an optional third parameter to fill in the placeholder:

EventLog.WriteEvent(
 "MyCustomEventSource",
 new EventInstance(101, 1, EventLogEntryType.Information),
 "75 percent");

In the event log, we'll see the message Service utilization: 75 percent. More information
about how to format message files can be found at http://msdn.microsoft.com/en-
us/library/windows/desktop/dd996906(v=vs.85).aspx.

To install our event source and its associated resource file, we added messages.dll to
a component so that it would be copied to the end user's computer. Next, we referenced
UtilExtension to get access to its EventSource element. The EventSource element's
EventMessageFile and CategoryMessageFile attributes point to the files that contain
our messages and categories. They can point to separate files, but in our case, we stored
our categories and messages all in one. CategoryCount is simply a count of the number
of categories in our file. The Name attribute gives our event source a name that we can
reference in our code. The log groups it with other similar events.

After installation, we can verify that our event source was added by opening the Windows
registry and looking for the HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Services\EventLog\Application\MyCustomEventSource key. There you'll find
the values that we set on the EventSource element:

Registering a performance counter
When trying to diagnose the health or performance of an application, there's usually
never enough information. It's always nice to provide more. Performance counters allow
us to continuously log the current state of our software and, with the help of tools like
Performance Monitor that are baked into Windows, provide a standard view of that data
for system administrators.

http://msdn.microsoft.com/en-us/library/windows/desktop/dd996906(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd996906(v=vs.85).aspx

Chapter 13

229

In this recipe, we'll add a new performance counter for logging the number of sandwiches
made for a school lunch program. We'll use Performance Monitor to see a live feed of this
data as it occurs. We'll write a simple console application to publish the sandwich count.

Getting ready
To prepare for this recipe, we'll install a test console application along with our performance
counter so that we can enter data and see it displayed in the Performance Monitor in real
time. Follow these steps to include the test app in our installer:

1. Create a new setup project and call it PerformanceCounterInstaller.

2. Within the same Visual Studio solution, add a C# Console Application project
and add the following code to its Program.cs file:
using System;
using System.Diagnostics;

namespace LunchPerformanceTestApp
{
 public class Program
 {
 const string perfCategory = "Lunch Counters";
 const string perfCounterName = "Sandwich Count";

 public static void Main(string[] args)
 {
 PerformanceCounter counter = null;

 if (PerformanceCounterCategory.Exists(perfCategory))
 {
 counter = new PerformanceCounter(
 perfCategory,
 perfCounterName,
 false);

 while (true)
 {
 Console.WriteLine("Enter number of sandwiches to make
(or 'q' to quit): ");

Admin Tasks

230

 string userInput = Console.ReadLine();

 if (userInput == "q")
 {
 break;
 }

 long numberOfSandwiches;
 if (long.TryParse(
 userInput,
 out numberOfSandwiches))
 {
 counter.RawValue = numberOfSandwiches;
 }
 }
 }
 else
 {
 Console.WriteLine("Performance Category not found.");
 }

 Console.ReadKey();
 }
 }
}

3. Add the console application as a reference in the
PerformanceCounterInstaller project and add a Component and File
element to include it in the installer:

<Component Id="cmpLunchPerformanceTestAppEXE"
 Guid="{B9FC6F0A-6D21-41F8-B2EA-951AD4FAA9CE}">
 <File
Source="$(var.LunchPerformanceTestApp.TargetDir)
LunchPerformanceTestApp.exe" />
</Component>

How to do it...
Add PerformanceCategory with child PerformanceCounter elements to set up a
new category with counters that can be viewed in the Windows Performance Monitor:

Chapter 13

231

1. Add the UtilExtension namespace to the project by right-clicking on the
References node in Solution Explorer and selecting Add Reference... |
WixUtilExtension.dll | Add | OK.

2. Add the UtilExtension namespace to the Wix element:
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"
xmlns:util="http://schemas.microsoft.com/wix/UtilExtension">

3. Add a Component element with its KeyPath attribute set to yes:
<Component Id="cmpPerformanceCounter"
 Guid="{D38B14AE-782E-491E-BE6F-197627BA3C29}"
 KeyPath="yes">
</Component>

4. Within that component, add a PerformanceCategory element that assigns a
name to our new category:
<Component ...>
 <util:PerformanceCategory Id="sandwichCategory"
 Name="Lunch Counters"
 Help="Logging of lunch data">
 </util:PerformanceCategory>
</Component>

5. Within PerformanceCategory, add one or more PerformanceCounter elements
that will define the names and data types of counters within the category:

<util:PerformanceCategory ...>
 <util:PerformanceCounter Name="Sandwich Count"
 Type="numberOfItems64"
 Help="Number of sandwiches made" />
</util:PerformanceCategory>

How it works...
The PerformanceCategory element from UtilExtension gives us the ability to define
new performance categories that contain one or more counters. Any PerformanceCounter
elements that we add within it can be used by our applications to log real-time data points.
Each counter is given a data type via its Type attribute. We have many data types to choose
from. An explanation of each can be found at http://msdn.microsoft.com/en-us/
library/system.diagnostics.performancecountertype(v=vs.90).aspx. In
this case, we chose to make it the numberOfItems64 type, which in C# is long.

http://msdn.microsoft.com/en-us/library/system.diagnostics.performancecountertype(v=vs.90).aspx
http://msdn.microsoft.com/en-us/library/system.diagnostics.performancecountertype(v=vs.90).aspx

Admin Tasks

232

After running the installer, we can start the Performance Monitor by opening the Run window
and typing perfmon. In its left-hand panel, right-click on the Performance Monitor node
under the Monitoring Tools folder and then select New Window from Here. This will
bring up a window that doesn't have any counters added to it yet:

Click the green + icon and scroll to the Lunch Counters category. Expand it, highlight
Sandwich Count, and then click on Add >> | OK, as follows:

Chapter 13

233

Then, navigate to our install directory and launch the LunchPerformanceTestApp console
application. It will ask you to enter a number. Each time that you do, it will be displayed in the
Performance Monitor, as shown in the following screenshot:

Adding an exception to Windows Firewall
Windows Firewall protects us from hackers that might try to connect to random ports on our
computer. However, if we want to allow our own programs to receive messages, we'll need
to add exceptions to the firewall to let them through. In this recipe, we'll install a console
application that listens on a certain port and then add this program to the list of applications
that are allowed to have incoming messages pass through the firewall.

Getting ready
So that we're able to test our firewall exception, let's create a console application that will
listen on a TCP port. Ordinarily, if anyone on a different computer tried to access that port to
send a request, it would be blocked by the firewall. Perform the following steps to set up the
application and include it in our installer:

1. Create a new C# Console Application project named PortListeningProgram
and add the following code to its Program.cs file:
using System;
using System.IO;
using System.Net;
using System.Net.Sockets;
using System.Text;

Admin Tasks

234

using System.Threading;

namespace PortListeningProgram
{
 public class Program
 {
 public static void Main(string[] args)
 {
 Console.WriteLine("Listening for incoming requests...");

 int port = 50000;
 IPEndPoint endpoint = new IPEndPoint(
 IPAddress.Any,
 port);

 TcpListener listener = new TcpListener(endpoint);
 listener.Start();

 while(true)
 {
 Thread.Sleep(10);

 // A client is connecting...
 using (TcpClient client = listener.AcceptTcpClient())
 {
 NetworkStream stream = client.GetStream();
 string helloMessage = "Connected to program. Type a
message to send...\n";

 stream.Write(
 Encoding.UTF8.GetBytes(helloMessage),
 0,
 helloMessage.Length);

 byte[] receivedBytes = new byte[128];

 // until they disconnect, print their messages
 while (client.Connected)
 {
 try
 {

Chapter 13

235

 Array.Clear(
 receivedBytes,
 0,
 receivedBytes.Length);

 stream.Read(
 receivedBytes,
 0,
 receivedBytes.Length);

 Console.WriteLine(
 Encoding.UTF8.GetString(receivedBytes));
 }
 catch (IOException)
 {
 Console.WriteLine("Client disconnected.");
 }
 }
 }
 }
 }
 }
}

2. Add a setup project to the same solution and call it
FirewallExceptionInstaller.

3. Within the setup project, add PortListeningProgram as a project reference and
then add a Component and File element to include it in the installer:

<ComponentGroup Id="ProductComponents"
 Directory="INSTALLFOLDER">
 <Component Id="cmpPortListeningProgramEXE"
 Guid="{BD7507FB-083F-498B-95C4-F599433A2FD6}">
 <File Id="filePortListeningProgram"
Source="$(var.PortListeningProgram.TargetDir)PortListeningProgram.
exe" />
 </Component>
</ComponentGroup>

Admin Tasks

236

How to do it...
Use the FirewallException element from FirewallExtension to allow connections
through the Windows Firewall:

1. Add FirewallExtension to the project by right-clicking on the References node
in Solution Explorer and selecting Add Reference... | WixFirewallExtension.dll |
Add | OK.

2. Add the FirewallExtension namespace to the Wix element:
<Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"
xmlns:fw="http://schemas.microsoft.com/wix/FirewallExtension">

3. Add a component that contains a FirewallException element that will allow
our program to receive incoming requests through the firewall:

<Component Id="cmpFirewallException"
 Guid="{DB1A8DBF-47DE-40DC-A5A2-3E08ECBA5D5B}"
 KeyPath="yes">
 <fw:FirewallException Id="MyFirewallException"
 Program="[#filePortListeningProgram]"
 Description="Lets requests through"
 Name="My Firewall Exception"
 Scope="any"
 Protocol="tcp" />
</Component>

How it works...
We started off by building a console application that will accept incoming requests on TCP
port 50000. Although the Windows Firewall will typically allow any outgoing messages to pass
through without any interference, it blocks any incoming messages unless an exception is
made for that port or the program that listens on that port. So by default, our application
will be cut off from the outside world.

To remedy this situation, we referenced FirewallExtension that ships with the WiX Toolset
and added a FirewallException element to our setup project. FirewallException takes
either a Port or Program attribute to know what to add an exception for. In our example, we
chose the latter, giving it the path to our PortListeningProgram console application. The
Description and Name attributes show up in the Windows Firewall control panel, which you
can see by opening the Run window and typing wf.msc. Select the Inbound Rules node to see
that our new firewall exception has been added:

Chapter 13

237

The FirewallException element's Scope attribute indicates whether incoming
requests can come from just our local network—with a value of localSubnet—or the
entire Internet—with a value of any. The Protocol attribute is set to tcp to designate
that our application has opened a TCP port, although it can alternatively be set to udp
to add an exception for a UDP port.

If we fire up the console application that we've installed, it will begin listening for incoming
requests on TCP port 50000. We can then send messages to that port from outside the
firewall, or in other words, from a different computer, as shown in the following screenshot:

Here, I'm using Oracle's VirtualBox, available at https://www.virtualbox.org, to set
up a virtual machine running Windows 8.1. I've set the virtual machine up with host-only
networking so that it has an IP address that is accessible from the host. Then, using Netcat
for Windows, which can be downloaded from http://joncraton.org/blog/46/netcat-
for-windows, I've sent a message to port 50000 on the virtual machine. I've used the
following Netcat command:

nc 192.168.56.101 50000

Whatever I type next will be immediately displayed on the other end in our
PortListeningProgram console application's window. This tells us that our
firewall exception is working, allowing messages to pass through.

https://www.virtualbox.org
http://joncraton.org/blog/46/netcat-for-windows
http://joncraton.org/blog/46/netcat-for-windows

Index
Symbols
32-bit installer, SQL Server 2014 Express

URL, for downloading 205
32-bit MSI

executing, depending on user's operating
system 157-159

64-bit executable file
installing, to Program Files 33-37

64-bit installer, SQL Server 2014 Express
URL, for downloading 205

64-bit MSI
executing, depending on user's

operating system 157-159
.NET Framework

redistributing, with bootstrapper 155, 156

A
access control lists (ACL) 45
advertised shortcut

about 78
creating 74-77

application pool
reference link, for settings 165
spinning, in IIS 163-166

application shortcut
adding, to Start menu 62-66

B
bootstrapper

.NET Framework, redistributing with 155, 156
SQL Server instance, installing with 203-207

built-in Directory elements
reference link 30

C
C# custom action

creating 94-99
referencing, in project 94-99

command line
WiX installer, building from 23-25

command-line arguments
adding, to application 67

common name (CN) 181
Community MSI Extensions

URL, for downloading 140
component

generating, heat.exe tool used 40-42
including, depending on condition 37-39

ComponentGroup 32
custom action

data, preventing from being
displayed 104-106

executable, running as 107-109
invoking 100

D
data

inserting, into database table 212-214
database

adding, to SQL Server instance 208, 209
database table

data, inserting into 212-214
data types, performance counter

reference link 231
default license agreement text

modifying, of wizard 120-123
default program

setting, for file type 56-59

240

deferred custom action
information, passing to 100-103

deferred phase, execute sequence 94
Deployment Tools Foundation (DTF) 94
desktop

shortcut, placing on 70-72
dialog

displaying, depending on user's
choices 130-135

directories
file, adding to 31, 32
installing, onto target computer 28-30

DNS Server
URL 171

E
element

adding, to XML file 80-83
environment variable

about 219
example 221
setting 220

event source
defining, for Windows event viewer 225-228

exception
adding, to Windows Firewall 233-237

executable
running, as custom action 107-109

existing group
new user, adding to 142, 143

existing user
adding, to new group 143-145

F
feature advertising

caveat 78
file

adding, to directory 31, 32
making, as read only 51, 52

file share
creating 53-56

file type
default program, setting for 56-59

folder
shortcut, creating to 72-74

Forward Lookup Zone
URL 171

G
GUID 15

H
HeatDirectory task

URL 43
using 43

heat.exe tool
used, for generating components 40-42

Host (A) record
URL 171

hyperlink control
adding, to wizard dialog 188-191

I
ICO format plugin

URL, for downloading 68
icon

adding, to shortcut 67-69
IIS

application pool, spinning in 163-166
web application, adding to 176-179
website, adding to 166-171

immediate phase, execute sequence 93
information

passing, to deferred custom
action 100-103

inner text
inserting, into XML element 86-88

installation
stopping, with launch condition 150-152
wizard, adding for guiding users 118, 119

installation, 64-bit executable file
to Program Files 33-37

installation, directories
onto target computer 28-30

installation, SQL Server instance
with bootstrapper 203-207

241

installation, WiX 8, 9
installed HTML file

opening, after successful
installation 192-195

installer
used, for downloading resources

from Web 159-162
Internet Assigned Numbers Authority (IANA)

about 58
URL 58

L
launch condition

adding, for installation verification 152
installation, stopping with 150-152

LocalGroup element
reference link 141

LocalGroupMember element
reference link 141

localization file
reference link 143

local user
creating 138, 139

LocalUser element
reference link 141

logo images
modifying, of wizard 120-123

log on as service security setting
new user, adding with 146, 147

M
message files, formatting

reference link 228
Microsoft Build Tools

URL 20
Microsoft Open Database

Connectivity (ODBC) 214
MSBuild

used, for compiling WiX installer on
build machine 19-22

MsiLaunchApp event 195

N
Netcat, for Windows

URL 237
new group

existing user, adding to 143-145
new user, adding to 139-142

new user
adding, to existing group 142, 143
adding, to new group 139-142
adding, with log on as service

security setting 146, 147
Node.js MSI

URL, for downloading 160

O
ODBC data source

creating, for SQL Server instance 214-217

P
parameters, schtasks utility

URL 224
performance counter

registering 228-233
PermissionEx element

about 49
reference link 48

permissions, MSDN
reference link 48

permissions, on file
modifying, for user 49, 50

permissions, on folder
modifying, for user 46-48

portion, of WIX markup
separating, into library 15-19

pre-processor variable
used, for referencing output of

.NET console 11-14
Program Files

64-bit executable file, installing to 33-37
Programs and Features screen

web page links, adding on 200, 201

242

project
C# custom action, referencing in 94-99
creating, in Visual Studio 2013 8-11

property
setting, based on user input 135, 136

R
read only

file, making as 51, 52
resources

downloading, from Web with
installer 159-162

rich text format (RTF) 122
roaming profile

reference link, for requisites 65
rollback custom actions

testing, with WixFailWhenDeferred 110-115

S
scheduled task

creating 222-224
schtasks utility 224
Secure Sockets Layer. See SSL
Security Descriptor Definition

Language (SDDL) 49
shortcut

creating, to folder 72-74
icon, adding to 67-69
installing, for opening web page 197-199
placing, on desktop 70-72

SQL Server database
table, creating within 209-211

SQL Server instance
database, adding to 208, 209
installing, with bootstrapper 203-207
ODBC data source, creating for 214-217

SQL Server Management Studio (SSMS) 206
SSL

about 180
website, setting up for usage 180-185

Start menu
application shortcut, adding to 62-66

supported versions, of Windows
installing to 153, 154

T
table

creating, within SQL Server
database 209-211

target computer
directories, installing onto 28-30

U
UIExtension namespace 118
UI sequence 93
uninstallation

web page, launching after 196, 197
user

permissions on file, modifying for 49, 50
permissions on folder, modifying for 46-48

UtilExtension namespace
about 139
reference link 48

V
value

setting, of attribute on XML element 83-86
VersionNT, MSDN Web site

URL 39
VirtualBox

URL 237
virtual directory

creating 172-175
Visual Studio 2013

project, creating in 8-11

W
Web

resources, downloading from 159-162
web application

adding, to IIS 176-179
web page

launching, after uninstallation 196, 197
links, adding on Programs and Features

screen 200, 201
website

adding, to IIS 166-171
setting up, for SSL usage 180-185

243

Windows 8 SDK
reference link 180

Windows event viewer
about 225
event source, defining for 225-228

Windows Firewall
about 233
exception, adding to 233-237

WiX
installing 8, 9

WixFailWhenDeferred
rollback custom actions, testing with 110-115

WiX file 11
WiX installer

building, from command line 23-25
compiling, on build machine 19,-22

WixPdb
URL, for blog post 25

WiX project
pre-processor variable, used for referencing

output of .NET console
application 11-14

WiX toolset
URL 8, 21
URL, for attributes 50
URL, for GUID 15
URL, for information on NetFxExtension 151

URL, for information on RegistrySearch
element 152

URL, for variable list 14
WixUI_InstallDir wizard 120
WixUI_Minimal wizard 123
wizard

adding, for guiding users through
install 118, 119

customizing 124-129
default license agreement text,

modifying of 120-123
logo images, modifying of 120-123

wizard dialog
hyperlink control, adding to 188-191

X
XML 27
XML element

adding 89, 90
inner text, inserting into 86-88
removing 91, 92
value, setting of attribute on 83-86

XML file
element, adding to 80-83

XPath syntax
reference link 82

Thank you for buying

WiX Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt open source brand, home
to books published on software built around open source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

WiX: A Developer's Guide to
Windows Installer XML
ISBN: 978-1-84951-372-2 Paperback: 348 pages

Create a hassle-free installer for your Windows software
using WIX

1. Package your software into a single MSI file for
easy installation.

2. Read and write to Windows Registry and
create, start, and stop Windows Services
during installation.

3. Write .NET code that performs specific tasks
during installation via custom actions.

4. Learn how the WiX command-line tools work to
build and link your project.

WiX 3.6: A Developer's Guide
to Windows Installer XML
ISBN: 978-1-78216-042-7 Paperback: 488 pages

An in-and-out, to-the-point introduction to Windows
Installer XML

1. Brings the reader up to speed on all of the major
features of WiX, including the new bootstrapper
engine, Burn.

2. Provides a richer understanding of the underlying
Windows Installer technology.

3. Showcases the flexibility and versatility of WiX,
with a few tips and tricks along the way.

Please check www.PacktPub.com for information on our titles

Getting Started with SOQL
ISBN: 978-1-78328-735-2 Paperback: 130 pages

Revolutionize the use of simple query strings to make
them more efficient using SOQL

1. Write optimized SOQL statements.

2. Discover the standards to follow while writing
SOQL statements.

3. Learn how to write SOQL statements without
hitting the limits set by Salesforce.com.

Chef Essentials
ISBN: 978-1-78398-304-9 Paperback: 218 pages

Discover how to deploy software, manage hosts,
and scale your infrastructure with Chef

1. Learn how to use Chef in a concise manner.

2. Learn ways to use Chef to integrate with cloud
services such as EC2 and Rackspace Cloud.

3. See advanced ways to integrate Chef into your
environment, develop tests, and even extend
Chef's core functionality.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Organizing and Building WiX Projects
	Introduction
	Installing WiX and creating a new project in Visual Studio 2013
	Referencing the output of a .NET console
	application in a WiX project by using a
preprocessor variable
	Separating a portion of WIX markup into its own library
	Compiling a WiX installer on a build machine using MSBuild
	Building a WiX installer from the
command line

	Chapter 2: Installing Files and Directories
	Introduction
	Installing directories onto the target computer
	Adding a file to a directory
	Installing a 64-bit executable file to Program Files
	Including one component or another depending on the condition
	Using the heat.exe tool to generate components

	Chapter 3: File and Folder Permissions
	Introduction
	Changing the permissions on a folder for a user
	Changing the permissions on a file for a user
	Marking a file as read only
	Creating a file share
	Setting the default program for a file type

	Chapter 4: Shortcuts
	Introduction
	Adding an application shortcut to the
Start menu
	Adding an icon to a shortcut
	Placing a shortcut on the desktop
	Creating a shortcut to a folder
	Creating an advertised shortcut that installs a feature on demand

	Chapter 5: Editing XML Files during Installation
	Introduction
	Adding a new element to an XML file during installation
	Setting the value of an attribute on an
XML element
	Inserting inner text into an XML element
	Adding an XML element only if it does not already exist
	Removing an XML element

	Chapter 6: Custom Actions
	Introduction
	Creating a C# custom action and referencing it in your project
	Passing information entered by a user to a deferred custom action
	Preventing custom action data from being displayed in the install log
	Running an executable as a custom action
	without showing a console window by using CAQuietExec
	Testing rollback custom actions with WixFailWhenDeferred

	Chapter 7: Installing Wizards
	Introduction
	Adding a wizard to guide users through
the installation
	Changing the logo images and default license agreement text of the wizard
	Customizing the wizard by adding a new dialog window to it
	Deciding which dialog to show next depending on the user's choices
	Setting a property based on user input

	Chapter 8: Users and Groups
	Introduction
	Creating a local user
	Adding a new user to a new group
	Adding a new user to an existing group
	Adding an existing user to a new group
	Adding a new user with the log on as a service security setting

	Chapter 9: Handling Prerequisites
	Introduction
	Stopping the installation with a launch condition
	Installing only to supported versions of Windows
	Redistributing the .NET Framework with a bootstrapper
	Executing either a 64-bit or 32-bit MSI depending on the user's operating system
	Downloading resources from the Web with a web installer

	Chapter 10: Installing Websites
	Introduction
	Spinning up a new application pool in IIS
	Adding a website to IIS that runs under your app pool
	Creating a virtual directory
	Adding a web application to IIS
	Setting up a website to use SSL

	Chapter 11: Linking to the Web
	Introduction
	Adding a hyperlink control to a wizard dialog
	Opening an installed HTML file after a successful installation
	Launching a web page when a user uninstalls our software
	Installing a shortcut that opens a web page
	Updating programs and features to show a link to our company's website

	Chapter 12: Installing SQL Server Databases
	Introduction
	Installing a SQL Server instance with a bootstrapper
	Adding a database to a SQL Server instance
	Creating a table within a SQL Server database
	Inserting data into a database table
	Creating an ODBC data source for a SQL Server instance

	Chapter 13: Admin Tasks
	Introduction
	Setting an environment variable
	Creating a scheduled task
	Defining a new event source for the Windows event viewer
	Registering a performance counter
	Adding an exception to Windows Firewall

	Index

