

Unity AI Programming
Essentials

Use Unity3D, a popular game development ecosystem,
to add realistic AI to your games quickly and effortlessly

Curtis Bennett

Dan Violet Sagmiller

BIRMINGHAM - MUMBAI

Unity AI Programming Essentials

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2014

Production reference: 1151214

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-355-6

www.packtpub.com

www.packtpub.com

Credits

Authors
Curtis Bennett

Dan Violet Sagmiller

Reviewers
Davide Aversa

Adam Boyce

Jesse Lu

Brent Owens

Angelo Tadres

Francisco Ureña

Commissioning Editor
Akram Hussain

Acquisition Editor
Subho Gupta

Content Development Editor
Prachi Bisht

Technical Editors
Tanvi Bhatt

Siddhi Rane

Copy Editors
Gladson Monteiro

Deepa Nambiar

Rashmi Sawant

Project Coordinator
Sageer Parkar

Proofreaders
Ameesha Green

Jonathan Todd

Indexer
Priya Sane

Graphics
Disha Haria

Production Coordinator
Komal Ramchandani

Cover Work
Komal Ramchandani

Foreword

Artificial intelligence can be one of the most challenging aspects of video game
development. Game AI encompasses difficult concepts such as spatial reasoning,
pathfinding, movement, awareness, and decision making, all with the goal of
combining these concepts into a realistic and lifelike experience for the player. It's
no wonder that so many game developers put off AI development to the end of the
project. This is a shame, because good AI can make or break the game experience
and great AI can make a player fall in love with your game and keep them coming
back again and again.

In recent years, AI has become more important than ever. Although the quality
of AI in games has increased steadily over time, the results have come more from
added attention and effort on the part of developers, rather than from significant
breakthroughs in technology. The impact of this is that "good" AI in games has
often been limited to projects and teams with large budgets and access to high-end
tools. Unity changed the industry by making high-end game development tools
available to all developers, big and small. Today's indie developers are creating
player experiences that rival those of AAA companies. Until recently, they lacked
the tools, knowledge, and know-how to add AI-driven characters that have the same
fidelity as the rest of the game. Now this has changed too, with the very best AI tools
becoming accessible to every developer.

This book serves an important role in the rise of AI in Unity. In these pages, you
will find the guidance, techniques, and examples you need to become a great AI
developer. For beginners, the book walks you step by step through the fundamentals
of concepts such as pathfinding, patrolling, and creating behaviors for common
scenarios such as attacking and crowd movement. You will also be introduced to the
numerous tools available for Unity that you'll need along the way. For experienced
developers, the book gives you access to best practices, tips, and techniques that will
take you from good to great.

I'm incredibly excited about the future of AI and its potential impact on games in the
coming years. Game developers are often at the forefront of innovation, and their
contributions to filling the world with believable AI will be significant. Go forth,
reader, and join the growing ranks of AI programmers!

Bill Klein (aka Prime)
CEO, Rival Theory

About the Authors

Curtis Bennett has been a developer in the games and computer graphics industry
for several years. He has worked on developing immersive virtual environments,
published research in visual simulation, taught college courses in game development,
and worked for various game studios, and he was also an engineer on early versions
of the RAIN AI plugin for Unity. Currently, he is the Technical Director for Creative
Services at Ideum, which focuses on creating interactive media projects.

I'd like to thank all the Unity AI plugin developers who make
implementing AI with Unity so easy.

Dan Violet Sagmiller has always had a strong passion for game development,
although most of his work leads him to senior business development roles. He
developed several games, including Teams RPG, a space shooter (which won a game
development competition at Technology Center of DuPage), and some casual games.
He started teaching game development at Heartland Community College in 2005,
taking over the existing course and expanding it to six courses. Later, he took a
position with Microsoft and expanded the game development curriculum for
Bellevue College, including classes on AI, physics, testing and designing using C#
and XNA. Later, he moved on to a senior position with Wizards of the Coast, where
he also taught game development and AI internally. He also has given talks at multiple
schools about getting into game development and programming as a career. More
recently, he released a game development book on C# and XNA, which had 2,000
downloads in the first week. He also runs Learn Build Play, a small private school
dedicated to teaching game development and design mostly with C# and Unity 3D.

He can be contacted at Dan.Sagmiller@LearnBuildPlay.com.

About the Reviewers

Davide Aversa graduated in Computer Science with a Master's degree in Artificial
Intelligence and Robotics. Currently, he is a PhD student at La Sapienza University of
Rome, where he works on game AI, character behavior, and computational creativity.

Adam Boyce is a software developer and independent game developer who
specializes in C# scripting, game design, and AI development. His experience
includes application support, software development, and data architecture
with various Canadian corporations. This is his first technical review for Packt
Publishing. You can read his development blog at www.gameovertures.ca and
follow him on Twitter at @AdamBoyce4.

I'd like to thank my wife, Gail, for her support through this process
and her patience with my late-night code review sessions.

Jesse Lu has been a Unity 3D programmer for 5 years. In these years,
he developed some games with Unity 3D, for example, 《王途霸业》,
《凡人修仙》, 《临兵斗者三国志》, and so on.

www.gameovertures.ca

Brent Owens is a full stack software engineer with more than 10 years of
professional experience. His drive to help the open source community has led
him to contribute to several open source projects, and become a core developer of
the Java game engine, jMonkeyEngine. During his career, he worked on numerous
game development tutorials and game projects and created the RTS game, Attack of
the Gelatinous Blob.

He has also contributed to the book, jMonkeyEngine 3.0 Beginner's Guide,
Packt Publishing.

I would like to thank Hilary for always supporting my endeavors
and long hours contributing to game development.

Angelo Tadres is a Chilean software engineer with more than 7 years of
professional experience. Hailing from Santiago, Chile, he began his career in R&D
for video games meant to assist the blind and visually impaired with their
orientation and mobility skills. After a quick pass through the telecommunications
industry—working in value-added services and mobile applications—he received
the opportunity to join the Santiago studio of DeNA, one of the world's largest
mobile video game companies. In 2013, Angelo was asked to move to Vancouver,
Canada, as a lead software engineer, where he helped to build the fledgling
Canadian studio to a team of 90, and in particular, championed Unity 3D, paving
the way for other teams' adoption and use of this technology. He's known for getting
things done, shooting first and asking questions later. When he is not coding and
pushing to GitHub, you'll find him playing table tennis or running along the sea
wall. Visit his website at http://angelotadres.com.

Francisco Ureña has a degree in Philosophy and is a backend programmer in
Realcom Code, for both mobile applications and servers. He is also an indie game
developer in a small independent studio in Seville called Plasma Toy Studios,
where he is currently developing the game Anarchy.

http://angelotadres.com

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Table of Contents
Preface	 1
Chapter 1: Pathfinding	 5

An overview	 5
Quick Path AI	 6
React AI	 8
RAIN AI	 12
Comparing AI solutions	 16
Summary	 17

Chapter 2: Patrolling	 19
Quick Path AI	 19
React AI	 21
RAIN AI	 23
Summary	 28

Chapter 3: Behavior Trees 	 29
An overview of behavior trees	 30
RAIN node types	 30
The behavior tree demo	 32
Summary	 44

Chapter 4: Crowd Chaos	 45
An overview of crowd chaos	 45
React AI	 46

Setting up a scene with React	 46
Building behavior trees in React	 49
Setting up wandering characters with React	 50

Table of Contents

[ii]

RAIN AI	 50
RAIN AI custom wander scripts	 52
Putting NPCs in the RAIN demo	 54

Summary	 54
Chapter 5: Crowd Control	 55

An overview of crowd control	 55
The Fame Crowd Simulation API	 56

Setting up a scene with Fame	 57
Setting up a group	 59
Adding obstacles to Fame	 61
Adding vector fields to Fame	 63

ANT-Op	 64
Summary	 66

Chapter 6: Sensors and Activities	 67
An overview of sensing	 67

Advanced visual sensor settings	 69
Advanced audio sensor settings	 70

Using senses with RAIN	 71
Setting up aspects in RAIN	 72
Setting up a visual sensor in RAIN	 74
Changing activities based on sensing	 75
RAIN sensor filters	 79

Summary	 80
Chapter 7: Adaptation	 81

An overview	 81
RAIN's demo	 84

Reacting to game events	 85
Using RAIN's motor directly	 87
Adding large game events	 90

The React AI	 91
Summary	 92

Chapter 8: Attacking	 93
An overview of attack AI	 93
The attack demo	 94
The chase and attack demo	 96
Creating cover AI	 99
Group attacks	 102
Summary	 103

Table of Contents

[iii]

Chapter 9: Driving	 105
An overview of driving	 105
Setting up a Smart Car vehicle	 106
The Smart Car AI demo	 107

Setting up a Unity test scene	 107
Using Unity's built-in NavMesh system	 108
Setting up waypoints	 110
Adding obstacles to driving	 111

Additional features	 113
Adding brake zones and drift zones	 113
Integrating with other AI systems	 114

Summary	 114
Chapter 10: Animation and AI	 115

An overview of animation	 115
The AI animation demo	 116

Configuring RAIN animations	 117
Using the animate node	 119
RAIN and the Mecanim demo	 121
Additional Mecanim nodes	 124

Summary	 125
Chapter 11: Advanced NavMesh Generation	 127

An overview of a NavMesh	 127
Advanced NavMesh parameters	 128
Culling areas	 133
Multiple navigation meshes	 136
Summary	 139

Index	 141

Preface
Welcome to Unity AI Programming Essentials. This book will guide you through
all the skills necessary to put realistic game AI into your Unity games. We won't
be spending much time discussing AI theory or how to implement popular AI
algorithms from scratch. Instead, we will take the more efficient approach of using
third-party Unity AI plugins to set up AI for your games easily. We will cover all the
essential game AI skills, such as pathfinding to have your characters navigate a game
scene, behavior trees to let them "think", and sensors so that they can react to their
environment. We'll also cover more specialized tasks such as setting up crowds and
cars for driving and integrating animation. By the end of the book, you should know
all the basic skills you need to create game AI with Unity.

What this book covers
Chapter 1, Pathfinding, covers how to set up basic pathfinding so that game characters
can navigate a game scene realistically.

Chapter 2, Patrolling, extends our pathfinding to have characters patrol routes in
a scene.

Chapter 3, Behavior Trees, explains behavior trees and how they are used to give AI
characters the ability to make decisions.

Chapter 4, Crowd Chaos, focuses on creating a wander behavior that can be used to
create ambient crowds.

Chapter 5, Crowd Control, demonstrates using specialized crowd plugins how to
generate groups of AI characters.

Chapter 6, Sensors and Activities, shows how to set up sensors and have AI characters
change their activity based on what they sense in the environment.

Chapter 7, Adaptation, shows how to have AI characters react and adapt to different
events in the game.

Preface

[2]

Chapter 8, Attacking, discusses different techniques to have an enemy AI attack
the player.

Chapter 9, Driving, shows how to set up driving AI that uses a car's physics to
generate realistic driving behavior.

Chapter 10, Animation and AI, discusses how to integrate character animation with
AI using both Unity's legacy and Mecanim animation systems.

Chapter 11, Advanced NavMesh Generation, discusses more advanced options for
setting up navigation meshes to handle mesh creation for different geometries
and multiple NavMeshs in a scene.

What you need for this book
This book uses Unity 4 with a standard license. Additionally, it uses RAIN, a
Unity AI plugin that is available for free from http://rivaltheory.com/rain/.
Additional plugins are used such as React AI and AI plugins for crowds and
driving that can be purchased from the Asset Store, for which details are provided
in the appropriate chapters.

Who this book is for
This book is aimed at developers who know the basics of game development with
Unity and want to learn how to add AI to their games. You do not need any previous
AI knowledge; this book will explain all the essential AI concepts and show you how
to add and use them in your games.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We
find all the NavigationTargetRig objects and store them in the coverPoints array."

A block of code is set as follows:

public override void Start(AI ai)
{

http://rivaltheory.com/rain/

Preface

[3]

 base.Start(ai);

 ai.WorkingMemory.SetItem("donePatrolling", true);
}

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "In the
AI game object/component that was added, from the Mind tab, set Behavior Tree
Asset to RandomWalk."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[4]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from: https://www.packtpub.
com/sites/default/files/downloads/3556OT_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/sites/default/files/downloads/3556OT_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/3556OT_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Pathfinding
Probably the most useful game AI is pathfinding. Pathfinding is all about making
your way from one point to another while navigating around obstacles. Unity excels
at linking the worlds of designers and programmers. AI is no different, and we'll see
how to make simple pathfinding AIs without ever touching the code. Pathfinding is
probably the most common AI game task, and there are many Unity plugins for it.
We will be looking at three different ones.

In this chapter, you will learn:

•	 Working with pathfinding
•	 Applying pathfinding in Quick Path, React, and RAIN AI packages
•	 Behavior trees
•	 Applying characters to Character Controller
•	 Unity's NavMesh

An overview
Pathfinding is a way to get an object from point A to point B. Assuming that there
are no obstacles, the object can just be moved in the direction of the target. But the
AI part of it is all about navigating the obstacles.

A poor AI might try walking a Non-Player Character (NPC) directly to the target.
Then, if it is blocked, it randomly tries to go to the right or left to look for a space
that might help. The character can get caught in different areas and become
permanently stuck.

Pathfinding

[6]

A better AI will walk an NPC in an intelligent way to a target, and will never get
stuck in different areas. To compute a good path for the NPC to walk, the AI system
will use a graph that represents the game level, and a graph search algorithm is
used to find the path. The industry-standard algorithm for pathfinding is A* (A
Star), a quick graph search algorithm that uses a cost function between nodes—in
pathfinding usually the distance—and the algorithm tries to minimize the overall
cost (distance) of the path. If you want to learn to code your own pathfinding AI, try
A* because it is simple to implement and has a lot of simple improvements that you
can apply for your game's needs.

The AIs we are about to discuss will take care of the pathfinding algorithms for you,
and ultimately reduce the time it takes to breathe AI life into your game. Now let's
look at Quick Path AI.

Quick Path AI
Alekhine Games' Quick Path is a $10 AI that you can pick up from the Unity Asset
Store. Although the next two AIs have more features, this AI is added because of
its blocky nature. This block approach creates a grid-based path and is used with
many types of games, but this AI works especially well with the excitement in the
voxel game genre; it is suited for cubed topography.

To start with, perform the following steps:

1.	 Create a new 3D scene and import the Quick Path AI from the Asset Store.
2.	 Next, set up some cubes, planes, or other objects as your terrain, and then

place all of these game objects into an empty game object. Name this game
object Terrain.

3.	 Next, on the Inspector panel, add a component, QuickPath | Grid.
Immediately, you should see a series of blue lines that show up on the
cubes. These indicate all the points where a character can move in the AI.

Chapter 1

[7]

4.	 Now, we need a character to move around the scene. Create a sphere, or any
object, and name it NPC.

5.	 Then, we'll add a Component, QuickPath | AI | Follow Mouse Object.
6.	 Now, when you run the scene, assuming it is lit up and has the camera

pointing where you want it to, you'll see NPC on Terrain.
7.	 Click somewhere on the Terrain object, and watch the NPC object move to

that point.

8.	 Although we might say that the pathfinding in this is clearly working,
we should also add an obstacle to the scene: something that shouldn't be
stepped on. To do this, add another cube somewhere. Go to the Inspector
panel for the obstacle and tag it with Obstacle by selecting that tag from
the drop-down, or if it is not an option select Add Tag... and add
Obstacle to the tag list.

9.	 Next, in the Terrain game object, in the Grid component, expand
Disallowed Tags, increase the size to 1 and enter Obstacle for the
new element.

Pathfinding

[8]

10.	 Next, click on the Bake button at the top of the Grid component. Now you
will see that the grid markers skipped the cube as an option. If you want to
test more, click somewhere else on the Terrain object and watch the NPC
object move to the clicked point avoiding the obstacle.

Now, we've seen how to set up pathfinding with Quick Path, so let's look at
another way to set up pathfinding with React AI.

React AI
Different Methods' React, a $45 AI, introduces a behavior tree and the use of a
navigation mesh, or NavMesh. A NavMesh is a series of interconnected polygons
forming a complex area used for travel. It creates a simplified graph of the level
that is inputted into the pathfinding system. This simplified graph that it creates is
smoother and tends to have characters that travel better than a grid-based graph.
A behavior tree is a parent-child structure used for making decisions in many AIs.
We will look at behavior trees and navigation meshes in more detail in the later
chapters. NavMesh is a basic feature available in Unity, but the behavior tree is
not. Unlike the other two AIs shown, this AI requires a bit more coding to get
started, but not much.

Chapter 1

[9]

To begin with, you'll need a new scene, as well as to import React AI from the Asset
Store. Perform the following steps:

1.	 Add a plane or another ground type. Then add several obstacle objects,
such as cubes. Make sure that each of the objects we just created are
marked static at the top of the Inspector, or the NavMesh won't identify
them later on. The scene should look like this:

2.	 Next, find the Window menu and select Navigation. At the bottom of the
Navigation tab, click on the Bake command. You have now generated a
simple navigation mesh for your characters to navigate. It will highlight
the areas that NavMesh AIs can walk, as seen here:

3.	 Let's add a player who can move around the world now. Add a capsule
and name it Player. Fortunately, the demo contains a simple script for
controlling a player who you can find (and add) by navigating to Add
Component | Scripts | Simple Player Control. Now, this doesn't move
the object around on its own; instead it drives a Character Controller object.

Pathfinding

[10]

Character Controller is a type of an object that you can inherit
in your code classes that many AIs can operate. In this case,
there is a basic Character Controller type to simply move a
given object around.

4.	 When adding the component, just start typing Character Controller in
the search box, and it will show you all the similar component names. Add
Character Controller. Now, the player should be controllable. You will
probably need to increase the speed to 1 to detect the player movement.

Make sure that the game object, and any body parts, do not have
collider components. Controllers detect colliders to determine
whether or not they can move to a given place.

5.	 Next, we'll add an enemy in the same way, with Capsule. The enemy needs
a component called Nav Mesh Agent, which is a component capable of using
a NavMesh to move around, so add it. Now, the game object has the ability
to walk around, but it has nowhere to go. To get it moving, we need to add
the enemy AI agent.

6.	 Next, we get to the AI for the enemy agent. In React, a behavior tree is
called a Reactable. To add a reactor, we start the Project explorer, in a
folder of our choice, by navigating to Create | Reactable.

7.	 Once created, rename it to EnemyMovement. In the Inspector, it has a list
of behaviors for it. We'll need to add a script, which can be found in the
book's contents: \Scripts\React AI\FollowThePlayer.cs. Without
going in-depth in the code, let me explain the following key points:

°° The C# file was copied from a sample script provided with React
AI that made a character move away from a target.

°° It was rebuilt to make the player the target destination, and also
to turn seeking on and off by using a button. It is not hard to
adapt these scripts.

°° Unlike normal mono behaviors, you use a special Go method. The
go method is called by React AI only if it is selected to be used.

°° In the Start method, we see it obtain the NavMeshAgent that
we attached to the enemy in the Inspector panel.

°° In the Go method, we see it feeding the destination to the
NavMeshAgent, and then checking to see whether it has
already found a path. Once it does, it just goes.

Chapter 1

[11]

°° All uses of that agent are still following standard Unity calls to use
NavMesh, and can be applied without using the AI, by placing this
code in a traditional behavior Update method.

This script needs to be added to the Inspector for the EnemyMovement
asset, and also to the Enemy game object.

8.	 Once the script is attached to the enemy, the Inspector will reveal that it
has a target. Drag the player from the Hierarchy panel into the player
attribute on the Inspector panel.

9.	 Finally, we have the behavior tree to set up. In the Project panel,
right-click on the EnemyMovement asset, and click on Edit Reactable.
A behavior tree pops up an editor, which is how we train our AI.

For this chapter, we'll just give it a one track mind to follow the player. With
Root selected, click on the Action button under Leaf, as shown in the
following screenshot:

Since we only have one action in the behavior list, it selects it by default. What
makes the behavior tree nice is that we can make decisions, or check whether the
target is within X distance then try to follow, otherwise do something else–all
from the designer. The next section on RAIN also uses a behavior tree, and
most of the same basic types are used in both RAIN and React.

This took more steps than the previous AI, but there is also more going on.
It is playable now.

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Pathfinding

[12]

RAIN AI
Rival Theory's RAIN AI is a very full-featured AI to use and it is free. It includes
a behavior tree with similar functionality to React, but has more features built in.
In fact, this one won't require any additional scripting to go from point A to point B.

To get this going, we'll need the following bases:

•	 A map to move around on
•	 A character to move around in the map
•	 A route (series of waypoints) for the character to follow
•	 A navigation mesh that knows what to avoid
•	 An AI to control the character
•	 A behavior tree to tell the AI what to do

To start with, you'll need to start a new Unity project, import Unity's Character
Controller, and import the RAIN AI package.

Don't get the RAIN AI package that is found in the Asset store. The
current release (at the time of writing this book) can be found at the
Rival Theory site, rivaltheory.com/rain/.

Perform the following steps:

1.	 To create our map, add a plane. Then, add a couple of objects to act as
obstacles. It is best if they create a U or V shape to potentially trap the player:

rivaltheory.com/rain/

Chapter 1

[13]

2.	 Next, drag the predefined character found in Project | Standard Assets |
Character Controllers | Sources | Prototype Character | "constructor" into
the scene. From the scene depicted in the preceding screenshot, I recommend
placing him (the character) on the back left-hand side of the plane.

3.	 Next, we need a route. Although there is more than one waypoint system in
RAIN, I found that the route will be the fastest for this demo. In the RAIN
menu, click on Create Waypoint Route. Name it's game object GreenPath.
We will need to call this later, so we want simple, easy names to remember.

4.	 In the Inspector panel for GreenPath, click on the Add (Ctrl W) button.
This adds a waypoint. In fact, we need to add three. Place the first one on
the inside of the V, the second on the tip of the V, and the last on the far
edge of the plane, as shown in the following screenshot:

5.	 Just as in React AI and Unity NavMesh, we need a navigation mesh for this
as well. We clearly defined the route, but as you can see, the path is blocked.
In the RAIN menu, click on Create Navigation Mesh. Align and stretch it so
that it surrounds the area where you want the paths to be determined.

Pathfinding

[14]

The Inspector panel for the NavMesh has a property called Ignored Tags.
Add Player to this list. (You might need to make sure that the player object
actually has that tag selected as well.) Otherwise, the NavMesh will not
generate where the player stands, and will prevent its ability to find a path.
Then click on Generate Navigation Mesh at the bottom of the Inspector
panel. The result should look like this:

6.	 Next, we need to add an AI to control the character. Select the player object
in the Hierarchy panel, and from the RAIN menu, click on Create AI.

7.	 Next, select the middle button of the character running in the AI Inspector
panel, then click on the Add Existing Animations button at the bottom.
This will add all the player's animations: idle, walk, jump, pose, and run.
You can refer to the following screenshot:

Chapter 1

[15]

8.	 Next, we need to add a behavior tree. Behavior trees are a way to define
decisions and actions for AI characters. We will discuss them in more detail
in Chapter 3, Behavior Trees. For now, add one by clicking on the head/brain
icon in the Inspector panel and then click on the Open Behaviour Editor
button. On the right-hand side is a behavior tree drop-down selector, so
click on it and choose Create New Behaviour Tree.

9.	 Name it FollowGreenRoad. It will already have one element, SEQ
(Sequence), under the root BT (behavior tree) node. Sequence it means
that it will run any child nodes in order. Right-click on the SEQ node and
navigate to Switch To | Parallel, which means that it will run all its child
nodes simultaneously.

10.	 Let's add the child nodes and then set them up. Right-click on the PAR node,
then navigate to Create | Actions | Animations. Right-click on PAR again
and navigate to Create | Actions | Choose Patrol Waypoints. Then right-
click on the new WAY node and navigate to Create | Actions | Move.

Because the decision is to run things in parallel, it will animate the character
and follow the waypoints at the same time.

11.	 Click on the green animate node, and set its animation state to walk. It is
case sensitive, but you can select which animation the character should use.

12.	 Next, select the WAY node. Here, you need to set Waypoint Route to use.
This was the navigation route we created earlier with the three waypoints.
We called it GreenPath.

13.	 For the loop type, we'll make it One Way so that the character only travels
to the end and stops there. Also, change the name of the loop to Follow
Green Path. This shows up next to the WAY node, and helps explain
what is happening.

Pathfinding

[16]

14.	 Finally, set the Move Target Variable to NextWayPoint. This is a variable
that we are setting with the next waypoint in the path. When it is reached,
the patrol route will set the variable to the next location in the path. We use
this in the Move node.

15.	 Select the move node, and in the properties, set the Move Target to
NextWayPoint, the variable that is being set by the patrol route we just
configured. And set the Move Speed to a number, such as 3. This is
how fast the character will move.

16.	 Now that we have created the behavior tree, we need to set the Character AI
to use it. Select the AI object under the player object in the Hierarchy panel.
On the Mind icon, for the Behavior Tree Asset, set it to FollowGreenRoad.
This can be found by navigating to Project | AI | Behavior Trees, or from
the selector in the Inspector panel, choose the Assets tab, and it should be
right on top.

The demo should be able to run now. The character will move around the block
and walk to the last waypoint in the path.

Comparing AI solutions
Each AI has its own strengths and weaknesses, ranging from price to flexibility
to designer friendliness. Also, each AI has more than one way to accomplish this
chapter's task of moving a character from point A to point B. We selected paths
that were faster and easier to start with, but keep in mind that each of them has
plenty of flexibility. All three proved to work well as terrain/trees as well as
simple planes and cubes.

Chapter 1

[17]

Experiences of working with all three:

•	 Quick Path is a good choice for a beginner. It has the fewest steps to do to
get going, and works easily. Quick Path is focused on just pathfinding and
the others are larger AI systems that can be expanded to many more areas
because of their use of behavior trees.

•	 RAIN has many features beyond pathfinding that we will discuss in future
chapters. The learning curve for RAIN is higher than Quick Path and unlike
other AI solutions, the source code is unavailable, but it is a good all-round
solution for game AI. And while RAIN has the ability to be customized
through user-defined scripts, the focus is on easy AI setup through the
Unity GUI without needing to write scripts often.

•	 React includes a behavior, but requires more code to get it running, which
is good if you are interested in coding more. You build all the actions it can
use, and let the designers focus on the tree. RAIN can do this too, but with
React, you are building the blocks from square one.

Overall, the best AI for you is the one best suited for your game and that you
enjoy using. We will be looking at these three and other AI systems in detail
throughout this book.

Summary
Our AI characters need to be able to move between different points in our scene in
an intelligent way, and we looked at pathfinding AI systems that helped us do that.
We tried three different ones: Quick Path, React, and RAIN. But our characters need
to be able to do more than just walk from one point to a second one in our levels.
In the next chapter, we will extend what we have learned about pathfinding here
by seeing how to set up patrolling behaviors for our characters. This will be the
start for having characters walk around a level in a realistic way.

Patrolling
Patrolling is a simple extension to pathfinding. Instead of just having a single target
in mind, we might have two or more points. We might go back and forth between
them, or travel in a never-ending loop.

In this chapter, you will learn about:

•	 How patrolling works
•	 Patrolling in Quick Path, React, and RAIN AI packages
•	 Getting to know more about behavior trees
•	 Creating patrols that go to different points in a level by not always

following the same path

Patrolling is a way to get an object from point A to point B and then to point C,
and so on. Pathfinding is still required to get from one waypoint to another,
but here, we daisy-chain them into a larger, more meaningful path.

Quick Path AI
Quick Path is back again, with built-in capabilities to handle patrol. With its
simple approach to AI, only a few straightforward steps are needed to get a
scene finished. Here is a breakdown of these steps:

•	 Making the world ready for patrol
•	 Setting up the patrol script

Patrolling

[20]

We'll start by expanding on our world from Chapter 1, Pathfinding the quick path
demo. Stretch out a couple of the blocks to make a larger surface area. Then, click on
the terrain object (the parent of all the cubes forming the terrain), and in the Inspector,
click on the Bake button. You can see what happens next in the following screenshot:

If the Bake function isn't covering all the areas, you'll need to check its grid
dimensions. X remains the same in the world space, but Y is actually the Z axis. You
might need to increase or decrease these numbers to cover everything in the scene:

Quick Path converts the values of the Y or Z axis values internally. By default, it is set
to Y as the Up/Down axis, but you can change this with the Up Direction parameter.

Now that we have a larger surface area to work with, we'll get the NPC object set up
to patrol. If the object still has the following script, you will need to remove it, but then
add the Quick Path patrol script. Then, the first thing to do in the Inspector panel for
the patrol script is change the speed to 2, as its default of 10 was rather fast.

Next, set Spill Distance to 0.1. Spill Distance is how close you have to be to a
waypoint before it picks the next waypoint as your target. If Ping Pong is checked,
the NPC will stop at the end of its path and backtrack. If it is unchecked, at the end
of its path, it will target the first position and start over.

Chapter 2

[21]

Pathfinding Between Points is an option that helps it navigate around obstacles
between waypoints. If your path is already clear, then you can keep this option off
and save extra processing.

Finally, we have Patrol Path, which houses the waypoints for the NPC to travel on.
Increase this to 3, and then set the waypoints. A trick to figure out the values is to
move your NPC in the scene to the waypoint positions that you want and then copy
its position to one of the waypoints. So, select three points for your NPC to travel on.
You can refer to the following screenshot for the settings:

Now, your game is ready to run, with your NPC navigating a course that you just
set up.

React AI
React AI doesn't come equipped with a patrol script, so we provided one. We'll start
with this behavior tree script and look at how it works and how to use it. Here are
the steps to reproduce it:

1.	 Create a patrol script.
2.	 Create a patrol AI.
3.	 Set up the NPC patrol.

To start with, we've provided a script for you to use. In it, I started with the last script
for pathfinding, and then I extended it to use a similar configuration to the patrol path
in Quick Path's patrol script. Here are a couple of key points about this script:

•	 It is based on the FollowThePlayer script from the previous chapter.
•	 You can find the code in the book's contents at \Scripts\React AI\Patrol.

cs.

Patrolling

[22]

•	 It stores a public array of Vector3, so the Inspector UI can allow designers to
set the waypoints.

•	 Instead of the target being a player, it is set to the next waypoint in the list.
Once we are close enough, it selects the next waypoint. Close Enough is the
float field that allows the inspector to find it.

•	 If there are no waypoints left to select, it starts over at the first waypoint.

However, now we need to create the user endpoint. Right-click on a folder in the
Project tab and choose Create | Reactable. Name the reactable PatrolAI. In its
Inspector UI, add the patrol script as one of the behaviors. Next, right-click on the
PatrolAI asset and select Edit Reactable.

In the reactable, right-click on the root element and select AddBranch | Sequence.
A sequence repeats all the steps in an order. Under the Sequence option, right-click
and navigate to Add | Leaf | Action. Assuming that you only added the patrol
script to its behaviors, it should automatically select Patrol.Go as its action. You can
add notes to each step to help write a better story of what the AI is doing. When it is
this simple, it does not matter so much, but many AIs will become more complex.

Next, the NPC needs to be set up to use this new patrol AI. Find the NPC in the
previous chapter's React AI project. You'll need to remove the following AI that
was on the NPC before, or create a new NPC. If you create a new NPC, do not
forget to add the NavMesh agent so that it can navigate.

Add two components to the NPC: Reactor and Patrol. In the Reactor component,
you will need to set the Reactable value to the Patrol AI asset that we created earlier.
Then, in the patrol script, add some waypoints. Like we did for the Quick Path patrol
script, we need to set the Vector locations for each of the waypoints.

Chapter 2

[23]

A tip to get exact numbers is to just move the NPC to the
waypoint positions you want and then copy the position
of the NPC to one of the waypoints.

Now your game should have a character who patrols from point to point.

RAIN AI
RAIN has this section put together pretty well. In reality, we only have one small
section to change from the pathfinding demo, especially because the pathfinding
demo had actually turned off the patrol feature.

Start with the project for RAIN AI from Chapter 1, Pathfinding. From the menu,
navigate to RAIN | Behavior Tree Editor. From the editor, select FollowGreenRoad.
Under Sequence is a patrol route node called waypointpatrol; select it. Finally,
we have a property called Loop Type. Presently, it is on One Way, which stops
at the last waypoint. You can switch it to Ping Pong or Loop, as shown in the
following screenshot:

Ping Pong bounces you back and forth on the path, while Loop connects the last
waypoint to the first to start over.

This works when creating a typical patrolling behavior, where a character loops
along a path. However, what if we want to have a character patrol an area by
walking around back and forth to different points without always following the
same route? In RAIN AI, we can do this by using a waypoint network instead of
a waypoint graph and updating our behavior tree to randomly pick different points
in the level to go to.

Patrolling

[24]

To illustrate this, create a new scene, and like in our current patrol example, add a
character and some blocks and create a navigation mesh. Separate the blocks a bit so
that we can add different paths in between them. You can refer to the next screenshot
to view this setup:

In this demo, we will have the character walk to different points outside the walls,
but when patrolling, the character won't go in a circle outside the walls; instead, it
will always walk through the middle. To do this, we will need a waypoint network
similar to the one shown in the following screenshot:

Chapter 2

[25]

To add a waypoint, navigate to RAIN | Create Waypoint Network. Then, set up
the network similar to how you set up a waypoint route, by creating different points.
However, unlike a waypoint route, with a waypoint network you can also connect
different points. To connect two waypoints, select them by pressing Ctrl + Shift and
left-clicking the mouse and then click on Connect in the RAIN Waypoint Network
component menu. Connect the points in a plus sign shape as illustrated in the previous
screenshot. With this network, to walk from the side of one wall to another, the
character will always need to walk through the middle of the scene.

The network waypoint describes how a character should walk to different spots
on a level, but it actually doesn't contain the different points we can tell the AI
character to go to. If we want to tell our character to go to a specific location, we
need what RAIN calls a navigation target. A navigation target is just an object
that contains a point in the scene that we can use with the rest of the AI system.
You can create navigation targets by navigating to RAIN | Create Navigation
Target and place them like you would place a waypoint. Create three navigation
targets and place them on the side of three walls. We will follow a convention
used in other RAIN examples and name the navigation targets Location1,
Location2, and Location3, as shown in the following screenshot:

Patrolling

[26]

The Inspector panel should look like the following screenshot:

This is all of the scene setup that we need to specify routes and locations for
the character to walk. However, we will need to customize the behavior tree to
randomly choose different points to patrol to.

Create a new behavior tree for our character and call it Patrol. Open the behavior
tree editor, and below the new root node, create a Random node by right-clicking
on the root and navigating to Create | Decisions | Random. This creates a node that
randomly selects one of its children to execute. Don't worry too much about how the
different nodes work in the RAIN behavior tree for now; we will go into more detail
about them in the next chapter. For now, create three expression nodes as children of
the Random node by right-clicking on Random and navigating to Create | Actions
| Expression. An expression node allows us to execute a single statement, which is
called an expression in RAIN. Rename the expression nodes Choose Location 1,
Choose Location 2, Choose Location 3. Then, in the expression field for the nodes,
set the first to location = navigationtarget(Location1), and do the same for the
other location expression nodes, using numbers 2 and 3. These expression nodes create
a variable location that is a randomly determined navigation target that we can use as
a target to walk to. The setup should look like this:

Chapter 2

[27]

All that is left is to add nodes to walk to the target. Right-click on the root node and
navigate to Create | Decisions | Waypoint Path (not waypoint patrol like last time).
In the waypoint path node, set the Waypoint Network field to PatrolNetwork (with
quotes) to tell it which network to use. Set the Path Target field to location (without
quotes), which is the variable we stored our random target to walk to. Finally, set up
the rest of the tree as shown earlier, with an animation node and a child Move node.
The final setup should look as shown in the following screenshot:

If you run the project now, the character will randomly patrol the area of the level
by randomly walking from one navigation target location to the next and always
walking through the middle of the level.

Patrolling

[28]

Summary
We were able to get patrolling operational in all three AIs. Each AI had its
own approach.

For patrol as well as pathfinding, Quick Path had very few steps. If your need is
mostly pathfinding, it does exactly what it claims to do easily. As for React, it does
not have patrol out of the box, as we saw in the last chapter. However, it was not
difficult to create a script that operates inside its behavior tree AI editor. This is a
powerful system that you can use to allow designers to easily access and apply your
awesome scripts, but you have to be comfortable programming to build the pieces
for it. For RAIN, which made this about as easy as a big red button. With one setting
changed, we changed the pathfinding AI into a patrolling AI. RAIN comes equipped
with a huge variety of prebuilt character controlling; we looked at how to use a
different waypoint system, a waypoint network, to give variety to our character
when patrolling.

This concludes our chapters on setting up basic character pathfinding and
movement. In later chapters, we will look in more detail at different aspects of
this, such as animation and creating navigation meshes. In the next chapter, we
will look at customizing our characters by investigating behavior trees in more
detail. We will also learn to create more advanced setups using behavior trees.

Behavior Trees
When creating AI for game characters, we want them to appear to behave in realistic
ways. This is done by defining different behaviors that a character can do, such
as walking, patrolling, attacking, or searching for something, as well as how the
character reacts to different items or events in the game environment. In addition
to defining a character's behaviors, we need to define when the different behaviors
occur. For example, instead of just following a path, we might want the character to
change behaviors at different times. This chapter will look at the most popular way
to define behaviors and when they occur: behavior trees. We have already looked at
behavior trees in the previous chapters, but here, we will go into more detail.

In this chapter, we will learn about:

•	 How behavior trees work
•	 Implementing complex behavior trees
•	 RAIN's behavior trees and the different options that we have to

configure them
•	 Setting up more advanced behavior trees with a character that has

multiple objectives

Behavior Trees

[30]

An overview of behavior trees
For game AI, we need to define logic for the different AI entity characters in the game,
that is, how they will act and react to different things in the game environment. The
traditional and simpler way to do this is to use Finite State Machines (FSMs). In this
approach, each character can be in a distinct state, and an FSM is a graph that defines
states (nodes) and their transitions (edges). A simple example would be an enemy
entity with two states, patrol and attack. The FSM will start in a patrol state, and when
it gets close to a player, it transitions to an attack state. FSMs work for very simple
state setups such as this, but they don't scale well, as the states and transitions have to
be manually configured, usually through code. What if instead of the two states, our
enemy character was more realistic and had 10 or even 100 different states, with many
transitions between each? This becomes very difficult to manage and implement.

The popular alternative to FSMs is behavior trees. Behavior trees are a different
way to define logic for characters that scale easily to having many states. Instead
of defining states and transitions, behavior trees focus on defining behaviors, also
called tasks, for characters. Each behavior is a node in the tree and can consist of
different sub-behaviors; so, instead of a general graph, a tree is created of different
behaviors, where each behavior is a node on the graph.

At every update for the character, the behavior tree is traversed, starting at the
root node and searching down the tree. The different behavior nodes execute and
return if the task is running, or has completed successfully or failed. If the node is
in a running state, it is updated. Behavior trees are built by creating and configuring
different behavior nodes.

We will focus on RAIN's behavior tree system in this chapter. We can use a different
behavior tree system or create one from scratch; the basic logic is the same for all
implementations. When using a behavior tree system, the most important thing to
know are the different node types that we can use; so, let's look at RAIN's different
behavior nodes.

RAIN node types
For the RAIN implementation of behavior trees, the behavior nodes are split into two
categories: decisions and actions. Actions tell the AI system to actually do something;
it is where the actual work of the AI is done. The most common action is the one we
saw in the previous chapters, move, which tells the AI system to move a character.
Besides move, here is a list of the current actions RAIN supports:

•	 The Choose patrol path and Choose path waypoints: These nodes help to
move the AI through a network of waypoints.

Chapter 3

[31]

•	 Detect: This finds other AI entities and areas marked in a scene. This node
will be covered in Chapter 6, Sensors and Activities.

•	 The Evaluate expression: This node evaluates some logic, using RAIN's
custom logic system. We will be discussing this node more in this chapter.

•	 Animate and Mechanism: These animation nodes manage different
animations playing on the entity. We'll look at this node type more in
Chapter 10, Animation and AI.

•	 Play audio: Plays an audio sound for the entity.
•	 Wait for timer: A timer that will pause for a given number of seconds.
•	 Yield: This node stops executing the behavior tree in the frame. This is

useful for spreading expensive AI computation over several frames.
•	 Custom action: This is used to create an action that can't be defined

with the other nodes.

Custom actions and decisions nodes are very useful to define
AI behaviors that are unavailable with the default node
types. We will look at an example of a custom action later in
this chapter. Although creating custom nodes is more work,
don't hesitate to use one if needed; part of making good AI is
customizing things specific for your game.

Decision nodes, as the name suggests, are used to decide how we traverse the tree.
Actions are the final things the AI does, and decisions are used to determine which
child nodes should be run:

•	 Sequential: This is the most straightforward decision node; it updates
its children in an order until one of them fails.

•	 Priority: This is an action node that lets you set a priority, both when it's
running and before it starts. A priority node will choose a child to run
based on the different priorities of its children.

•	 Selector: This node keeps running through child nodes until one of them
returns true.

•	 Parallel: This states to have its children nodes run at the same time. This is a
common and useful node, and for cases such as a character walking to a goal
and moving and animating the walk cycle, the entity needs to have a move
and animate decision node running at the same time.

•	 Iterator: This is a repeat node; it lets you specify that you want its children
updated, not just once in an update, but a specified number of times.

Behavior Trees

[32]

•	 Constraint: This node lets us define a logical expression, a statement that
returns true or false, to control the tree flow.

•	 Custom decision: Like a custom action, this lets you define a decision node
specific to your game.

The behavior tree demo
Now that we know about the different nodes we can use, we'll create a demo that
shows how to use the action and decision nodes. The demo will show how to have
a character perform multiple tasks. We will have an entity, an enemy spaceship,
patrolling an area, but only for a given amount of time; then, the ship will return
to its home base. The steps for this example might seem overly complicated and
we could do a similar AI ourselves without behavior trees with a simple script by
hardcoding the different states. However, remember that behavior trees are easily
extendible and scalable. With this demo, instead of two behaviors, we could take
time to create a more complex character, going up to about 30 behaviors easily, but
extending a script to do that would be pretty complicated and hard to maintain.

The start of this is similar to the pathfinding and patrol RAIN demos, except we will
use a spaceship model instead of a walking character. You'll need to create a simple
scene with a ship model (the examples have a ship.blend model you can use) and
an object for the home base. The initial setup should look something like this:

Chapter 3

[33]

Then, add RAIN to the scene, create a waypoint route to patrol the block, create a
navigation mesh, and add an AI to the ship. Remember that the ship model should
not interfere with the navigation mesh creation; you can set it to a different layer,
such as Ignore Raycast, and then in RAIN's navigation mesh menu, deselect this
layer from the Included Layers dropdown:

The scene after performing the given steps

In the AI for the ship, there is no behavior tree yet, so click on the Mind button in the
RAIN menu (the little head icon) and then click on Open Behavior Editor and create
a new behavior tree called ship:

Behavior Trees

[34]

Just like with the pathfinding demos, first we need to set up the behavior tree to have
a basic waypoint route follow system. Under the root node in the behavior tree, we
need to create a waypointpatrol node and a move node, with the waypointpatrol
node set to use our waypoint route and setting its move variable to the move node.
Do this by right-clicking on the root node and navigating to Create | Actions |
Choose Patrol Waypoints. Then, right-click on the new waypointpatrol node and
navigate to Create | Actions | Move. Then, set the waypointpatrol waypoint to
Patrol Route (with quotes), the Move Target Variable field to move the target,
and the Repeat type to Forever. The behavior tree should look like the following:

We'll speed up the ship movement, so select the move node and set the Move Speed
value to 5.

When we run the demo now, the ship will patrol around the block, similar to our
pathfinding demos. To extend this, we'll add an additional functionality of moving
to a home base after a given number of seconds. However, two things need to be
added to the scene before we make additions to the behavior tree. First, we need to
create a navigation point for the home base so that the RAIN AI system can know
where it is. In Unity, navigate to RAIN | Create Navigation Target. Rename both
the GameObject and the target name in the RAIN menu for it to gameBase, and place
it under our cylinder that visualizes our game base. This creates a new point RAIN
can navigate to:

Chapter 3

[35]

For our character logic, as we said we will have the entity patrol for a given number
of seconds, then return to the home base. We'll use a Boolean variable to track
whether the patrolling is done, but instead of just storing the variable in a script, we
will have RAIN's memory system to store it. The memory for a character is what it
remembers or knows. It is a way to store values that will be accessible to the other AI
systems on a character. The possible values for memory are basic primitive variables
such as bool, int, float, or vector, for example, Vector2, Vector3, Vector4, or a
GameObject. We'll use two memory variables for this demo. Select the AI component
of the ship and click on the Memory icon, which looks like a little light bulb, which
you can see in the following screenshot:

Behavior Trees

[36]

Then, add two variables for the memory. The first is a Boolean called donePatrolling,
which will initially be false but will become true when the 5-second timer runs
out, signaling the ship to return to the base. The second is a GameObject variable that
will store the navigation waypoint for the game base. Create gameBase and set it to
the game base GameObject.

Now that we have a memory set up, we can start modifying our behavior tree. We
already have part of the behavior tree set up that patrols the waypoint route. So, as a
next step, we will only let the ship continue to patrol if our donePatrolling Boolean
variable is false. Add a constraint node above the waypointpatrol node. The
recall constraint is the node that uses a logical expression and can evaluate success
or failure. Add the donePatrolling == false line to the constraint field in the
Constraint node. The Constraint node will look like this:

Chapter 3

[37]

The little e symbol in the Constraint field means that it can take an expression, a
one-line statement. This is done for simple checks and saves us from writing the code
for a custom action node. Besides the basic Boolean test in this example, many other
simple expressions can be created, for example, if we had an integer for an enemy's
ammo amount, it can do a check to see how much ammo the character has, and if it
is empty, it can stop attacking and instead go get more ammo. We can also have a
check on an entity's health or HP, and if it's too low, a character can run away
instead of fighting with the player. However, let's get back to our demo.

If we run the demo now, the ship will behave the same as before, but if we go into
the memory for the character and change donePatrolling to true, the ship will do
nothing when we start the demo:

The check in the preceding screenshot shows the Constraint node in action; however,
go ahead and change the value of donePatrolling back to false.

Behavior Trees

[38]

Our additional logic for the ship's behavior tree is to return home after 5 seconds
of patrolling. While the ship is patrolling, we want a timer running to 5 seconds.
When the timer is complete, the donePatrolling variable will be set to false,
stopping the patrol and the ship will start to move back to the gameBase navigation
point. The first step for this is to right-click on the root node and navigate to Switch
To | Parallel. Then, create a new sequencer node and add it to the root. The tree
should look like this:

With the parallel node at every update, both of its children will be updated, allowing
us to continue patrolling while we have a timer running. We want two things to
happen if donePatrolling is false: the ship should continue to patrol and the timer
should start to run. RAIN supports copying and pasting of nodes, so right-click on
the Constraint node and select Copy, then right-click on the sequencer node and
click on Paste. The node will be copied with its children, so delete the newly copied
waypointpatrol and the move node. Then, add a timer action node below the second
Constraint node, and set the time to 5 seconds. Now, the screen should look like this:

Chapter 3

[39]

After the timer node, we need a node that will set the donePatrolling variable to
true. We can do this using an expression node and using its Expression value to
set donePatrolling to true. We use as shown in the next screenshot:

Behavior Trees

[40]

However, the ability to customize AI nodes is important, so instead of using an
expression node again, we will use a Custom Action node. To create a Custom
Action node, right-click on the lower Constraint node and navigate to Create |
Actions | Custom Action. Change the name of the node (via the name field in the
node editor) to StopPatrolling. For the Class value, choose Create Custom Action.
The following screenshot will guide you through:

Set the name of Custom Action Name to StopPatrolling and leave the script type
to C Sharp. Then, close the behavior tree editor and open the StopPatrolling.cs
script from Assets | AI | Actions. The script contains an outline for an action that
the user can define. The code is as follows:

using UnityEngine;
using System.Collections;
using System.Collections.Generic;
using RAIN.Core;
using RAIN.Action;

[RAINAction]

Chapter 3

[41]

public class StopPatrolling : RAINAction
{
 public StopPatrolling()
 {
 actionName = "StopPatrolling";
 }

 public override void Start(AI ai)
 {
 base.Start(ai);
 }

 public override ActionResult Execute(AI ai)
 {
 return ActionResult.SUCCESS;
 }

 public override void Stop(AI ai)
 {
 base.Stop(ai);
 }
}

This contains the three basic methods you would expect to see in an action: one to
call when the action is started, another when it is stopped, and an Execute method
that is called when running the action that returns the state of the action node:
success, failure, or running. With this outline, you can create all kinds of custom
actions, but for now, all you need to do is set the donePatrolling variable in the
memory to true. Change the Start method to the following:

public override void Start(AI ai)
{
 base.Start(ai);

 ai.WorkingMemory.SetItem("donePatrolling", true);
}

This code does what we need, setting the donePatrolling variable to true.
The AI object in this code, just called ai, is the AI for the character. It contains
access to various AI classes, such as the AI's mind and senses. Here, we access
WorkingMemory and can get the different memory items as well as set values
for them. That is all the action needs to do so that ActionResult can leave
returning success.

Behavior Trees

[42]

If we run the project now, we should see the ship patrol for 5 seconds, but instead
of moving back to the game base, the ship just stops. The last thing we need to add
is a move node to the home base. Set the move target to "gameBase" (RAIN requires
the quotes), and as we want the ship to return home faster than it patrols, change
the speed to 10. And since we want the ship to stop as soon as it is near the base,
change the Repeat dropdown to Until Success and set a Close Enough distance to
0.1. This will make the ship go to the gameBase target and stop. The screen should
look as shown:

If we run the demo now, the ship will patrol for 5 seconds and then just stop again.
The issue here is the Sequencer node: it goes through its children returning on the
first fail. After the stopPatrolling node is activated, the constraint nodes will return
failure, so when the sequencer calls, it stops after the first constraint. To remedy
this, right-click on the sequencer node and change its type to Selector and rename
it to selector.

Chapter 3

[43]

As you can see in the preceding screenshot, recalling the selector node works
by going through its children returning on the first success instead of failure. So,
after patrolling is done and the constraint node under the selector returns false,
instead of the tree stopping, the move node can be called. If you run the demo now,
everything should work as expected: the ship will patrol for 5 seconds and then
quickly return to the game base as shown:

Behavior Trees

[44]

If you didn't end up with this result, try not to get frustrated. Setting up behavior
trees is pretty precise, and a misnamed variable or wrong node placement will
cause interruptions.

If things are not working for you, open the RAIN behavior tree editor while the
game is running (or paused). It will highlight the nodes with red for failure, green
for success, and yellow for running:

This is how the RAIN behavior tree editor will display the status of all the nodes.

Summary
In this chapter, we went through the most popular way to set up behaviors
for game entities and behavior trees. We went through the process of defining
behaviors, deciding the different actions the behaviors will perform and the
transitions between the actions. Then, we set up a character and run the game.
This is the process to create logic for your game characters, deciding what the
behaviors are and the different conditions that can cause them to become active.

In the next chapter, we will look at how to use behavior trees more with character
movement and see how to set up the wander behavior for crowd creation. We will
explore AIs that will control a large collection of NPCs moving in distinctly separate
low-repeating paths.

Crowd Chaos
Part of having a realistic game environment is having the nonplayer characters and
NPCs act in a believable way. Crowd chaos is all about keeping NPCs busy to create
crowded backgrounds for our games. Perhaps your game is set up in a mall, or a city,
or any other place where lots of NPCs need to wander around and look like they are
doing something. Crowds like these will be the subject of this chapter and the next.

In this chapter, you will learn about:

•	 Working with crowd chaos
•	 How to create crowd type characters in the React and RAIN AI packages
•	 Expanding our knowledge of behavior trees

An overview of crowd chaos
Crowd Chaos is all about giving separate interests to a large number of NPCs, so
they look like they are living their own lives. In its lightest form, this can be something
very simple, such as a whole bunch of NPCs picking random targets, walking to
them, possibly sitting still for a moment, and then starting over. This stands out in
real-time strategy games when buildings are constructed, and you see a construction
worker walking to random points of the structure and waving their arms about.

Every game that needs crowd chaos will typically have a basic wandering base, and
it can be extended as needed. Perhaps the crowd will form lines of more NPCs that
are waiting at a spot. Perhaps the targets have changing values and AIs prefer higher
values. They pick up a random block and put it somewhere else. The base wandering
behavior needed for these and other crowd behaviors is what we will implement in
both React and RAIN AI.

Crowd Chaos

[46]

React AI
For this demo, we will duplicate the path-following behavior demo in React from
Chapter 1, Pathfinding, and then update it to see some emergent behavior develop
from it. We will need to complete the following:

•	 Create a world with some walls
•	 Create target markers in the scene
•	 Create a script with a custom editor to find the targets
•	 Create the behavior
•	 Create NPCs and assign the behavior

Setting up a scene with React
To start out with, we will need a basic environment for characters to walk in. Create
a plane, call it Floor, and add some cubes, shaping them into walls. These will need
to be static so that Unity's navigation mesh can find them. Then, we'll need to select
the floor and add the navigation mesh. If you've forgotten how to do any of this, it
is all covered in the React tutorial in Chapter 1, Pathfinding.

Next, we need some targets. We'll use a different approach for this from our previous
demos and let GameObjects mark the targets. Create an empty GameObject and
call it Targets. Underneath it, add more empty GameObjects. Give them all a tag,
NpcActivityTarget, which you might need to create. Distribute these targets to
different locations on the screen like this:

The preceding screenshot shows how our basic React scene setup with targets should
look like.

Chapter 4

[47]

Now, we need a script that can find these locations. It will be based on our earlier
scripts and will contain three methods: one to find a target, one to move to a target,
and another to hang around.

You can find the completed script at Disk | Scripts | React AI | LookBusy.cs.
To get the tags to show up as a dropdown, we've also provided a custom editor,
which is also available at Disk | Scripts | React AI | TagOption.cs. You will need
to put this under Assets/Editor for it to work in Unity. TagOptions is a script that
does nothing more than give a drop-down selector for the tag to be used. LookBusy
uses the selected tag to find objects that are targets in the game.

Here are a couple of the methods inside the script. These are easy to reproduce or
modify on your own:

GameObject[] targets = GameObject.FindGameObjectsWithTag(this.
SelectedTag);
// If there are not at least two targets to choose from return an
error
if(targets.Length < 2)
{
 Debug.LogWarning("LookBusy.cs:FindTarget() --> There are less than
2 targets with the tag, '" + this.SelectedTag + "'. This script wants
more positions.");
 yield return NodeResult.Failure;
 yield break;
}
// From the targets randomly select one and if it is closer than our
minimum distance return it, otherwise keep trying a constant number of
times before failing
int attempts = 0;

while(Vector3.Distance(this.Destination.transform.position, this.
transform.position) < this.MinimumDistance)
{
 this.Destination = targets[Random.Range(0, targets.Length)];
if(attempts >= 25)
{
 Debug.LogWarning("LookBusy.cs:FindTarget() --> Could not find a
target farther than the mininum distance. Either lower the mininum
distance or space the targets farther apart.");
 yield return NodeResult.Failure;
 }
}
yield return NodeResult.Success;
}

Crowd Chaos

[48]

In this script, we first check whether we have at least two targets in the game tagged
to select from, and if we don't have them, the script reports an error. You'll notice
that the error doesn't break the game, it just gives a specific warning on the log of
what you need and where the log was posted from. Next, the script selects a random
position from the list of nodes, and if the position within a character's minimum
distance (and not the same target the character is already on), the script returns
the position. This random position is chosen from the list of nodes no more than a
constant number of times, that is, 25 times. This random choosing method doesn't
guarantee success, but it is a quick and easy way to choose a random target.

Besides picking a random place for a character to walk to, we also need a random
amount of time for the NPC to stay at the location they go to. The HangAround
method does this:

public Action HangAround()
{
 // Choose a random time to wait
 float randomtime = Random.Range(this.ShortWaitTime, this.
LongWaitTime);
 while(totalTime < randomtime)
 {
 totalTime += UnityEngine.Time.deltaTime;
 yield return NodeResult.Continue;
 }
 totalTime = 0;
 yield return NodeResult.Success;
}

The HangAround function just makes us wait a few seconds. First, it selects how
long to wait, and then, once this amount of time passes, returns a success. Notice
that we return NodeResult.Continue. This tells the script to wait until the next
update and then try to get, then see if it is finished yet. (Yield is used so the game
doesn't freeze up.)

The MoveToTarget function isn't given here as it is nearly identical to the function
we used in Chapter 1, Pathfinding, except that now we are going after the target
specified randomly from FindTarget.

Chapter 4

[49]

Building behavior trees in React
Now that we have our behavior methods, we can build the behavior tree. Right-click
on your project's Assets folder and navigate to Create | Reactable. Rename it to
LookBusyReactable. Then, right-click on it and select Edit Reactable:

The preceding is a screenshot of the behavior tree editor completed. Right-click on
Root and navigate to Add | Branch | Sequence. This is so it completes each step
before moving on to the next. Right-click on Sequence and navigate to Add | Leaf |
Action. Do this three times:

1.	 For the first one, click on the empty checkbox and navigate to Scripts |
LookBusy | FindTarget. This is part of the LookBusy.cs script that we
added earlier.

2.	 For the second one, do the same but instead navigate to Scripts | LookBusy
| MoveToTarget.

3.	 For the third one, navigate to Scripts | LookBusy | HangAround.

The AI will find a random target from the list of GameObjects with the correct tag,
NpcActivityTarget, as we set in the LookBusy script. Then, it moves to that target
and hangs around for 2 to 4 seconds.

Crowd Chaos

[50]

Setting up wandering characters with React
Finally, we will create the NPCs and assign a behavior. For this, you can use a
character similar to the first, just a sphere stretch 2x tall, with a small cube on the
front of it so that we can see the direction it is facing. Add the LookBusy script to
the NPC:

This is how the LookBusy script options look like.

Minimum Distance is how far away you can be from the target and still be
satisfied that you reached it. Short Wait Time and Long Wait Time are time
ranges (in seconds) you hang around for, and NpcActivityTarget is the tag that
the GameObjects have to identify as targets.

Next, add Nav Mesh Agent to the NPC so that it can navigate around the
level. Finally, add the Reactor script and set its Reactable property to
LookBusyReactable, which is the behavior tree we created earlier.

This completes all the steps needed to have NPC characters wander around in
a game using React. You should now be able to create as many characters as you
like and have them walk around a level.

RAIN AI
We have already looked at a basic wander behavior for RAIN in Chapter 2, Patrolling,
when creating patrolling AI, but there, we manually created each possible location
for the NPC to go to. In this demo, we will pick random points to wander to from
anywhere in the navigation mesh. The NPCs won't have any interaction, though
such features are not difficult to add. Here is a breakdown of the steps we will do
in this section:

•	 Set up a world
•	 Build the behavior tree
•	 Add a script to pick new points
•	 Add the NPCs
•	 Learn about the RAIN AI world and behavior tree setup

Chapter 4

[51]

First, we'll create a new world. Start with a large plane called floor, and add some
cubes shaped into walls. You will need to add a navigation mesh and bake it into
the scene. These are the same steps we have performed for RAIN demos in earlier
chapters. The following is an example of how the scene could look:

Next comes the behavior tree. From the RAIN menu, select Behavior Tree Editor.
Create a new tree called RandomWalk. The objective of this AI is broken into three
steps, taken in this order: select a target, walk to it, and then wait a moment. This
is a good case for the RAIN decision node sequenced. Under the root node, we will
right-click and go to Create | Decisions | Sequencer.

As there is no behavior tree node built into RAIN that will choose a random location,
we will use a custom action and write our own script. Right-click on the new SEQ
node and navigate to Create | Actions | Custom Action. Set the Repeat property
to Until Success because we want it to continue processing this node until it returns
a success and then move on to the next node. Name the custom action node Select
Next Target. You'll notice that you can put spaces in the name. This is useful as it
shows up in the behavior tree, making it easier to follow:

Crowd Chaos

[52]

We could add the script now, but we'll finish the rest of the nodes in the tree and
then come back; for now, we will assume that the script will find a spot to walk to.
The next action is to walk to it. This needs two things happening simultaneously,
animation and actual walking, which means that we will use the Parallel decision
node. Right-click on the sequence node and select Create | Decisions | Parallel.
Name it Walk to Target.

Under Walk to Target, right-click and go to Create | Actions | Animate. Name
it Appear Walking. Set the animation state to walk. Also under Walk to Target,
right-click and navigate to Create | Actions | Move. Name it Move. Set the Move
Speed property to 1, so it moves 1 meter per second. The Move Target value should
be set to TargetPoint without the quotes. TargetPoint doesn't exist yet; our script
will create it.

The last step that the NPC must perform is generate a wait moment. To give the NPC
more life, we will make sure that it uses an idle animation, which also means two
things must happen simultaneously. Right-click on the root sequence node (SEQ)
and go to Create | Decisions | Parallel. Name it Look Busy. Add an animation
action under this and set idle as its Animation State and Stand here as its name.

Also, under the Look Busy node, we will right-click and go to Create | Actions |
Wait for Timer. Name it For a couple seconds. Set the Seconds property to 2.

The behavior tree is now complete. All we need to do now is fill in the script that
gets our TargetPoint, so it knows where to move.

RAIN AI custom wander scripts
To start creating our needed wander scripts, first select the Select Next Target
action in the behavior tree. Under the Class property, set it to Create Custom
Action, which pops up a box to define the script. The following screenshot
shows what a RAIN custom action creation dialog looks like:

Chapter 4

[53]

Set the name to SelectRandomTarget and the script to CSharp. This will generate
the default custom action script file already filled with a few common methods.
In this demo, we only need to use the Execute function:

public override ActionResult Execute(AI ai)
{
 var loc = Vector3.zero;
 List<RAINNavigationGraph> found = new List<RAINNavigationGraph>();
 do
 {
 loc = ai.Kinematic.Position;
 loc.x += Random.Range(-8f, 8f);
 loc.z += Random.Range(-8f, 8f);
 found = NavigationManager.Instance.GraphsForPoints(
 ai.Kinematic.Position,
 loc,
 ai.Motor.StepUpHeight,
 NavigationManager.GraphType.Navmesh,
 ((BasicNavigator)ai.Navigator).GraphTags);
 }
 while (Vector3.Distance(loc, ai.Kinematic.Position) < 2f
 || found.Count == 0);
 ai.WorkingMemory.SetItem<Vector3>("TargetPoint", loc);
 return ActionResult.SUCCESS;
}

In this code, we try to find a good value for the loc variable, a location variable
that is set to a different random location, up to 18 meters away. The found variable
identifies whether a path exists or not. These two things are determined in a loop,
which ends as long as two conditions are met. First, the distance has to be greater
than 2, as the movement should be detected by the player and second, we see if the
points found is greater than zero. If it found none, then we would not be able to get
to that location.

Once the loc variable has a location that works, the next thing it does is use
RAIN's memory system and sets a memory entry, TargetPoint, to the new location.
Remember that we have the Move action in our behavior set to find TargetPoint,
so Move will go to our newly found location. Finally, we return a success.

This completes our behavior and script. The last thing we need to do is give that
behavior to some NPCs and run the game.

Crowd Chaos

[54]

Putting NPCs in the RAIN demo
Start by adding another simple NPC character to the game, like we did in the first
chapter. We don't need to add any scripts directly to it. Instead, make sure that the
NPC is selected in the hierarchy, and from the RAIN menu, select Create AI.

In the AI GameObject/component that was added, from the Mind tab, set the
Behavior Tree Asset value to RandomWalk, which is found in Assets. Under the
animation tab, click on the Add Existing Animations button.

Now, try the game. A single NPC should be walking around the screen, pausing,
and then walking to another location at random. To create a larger crowd, just
duplicate the NPC GameObject in the scene at several locations.

Summary
We were able to use scripting and behavior trees in both React AI and RAIN to
effectively create a wandering AI. Each AI had strengths and weaknesses, though
the weaknesses were more of a preference.

Behavior tree editors were used in both RAIN and React, and both work in a
similar fashion. In RAIN, you can start editing a tree from the menu, or from the
editor itself. (It had the option to select the behavior directly in the editor.) With
React, you can do this from the Project tab, by right-clicking and choosing to edit
it. React had premade scripts that can do nearly all the actions that were needed,
except that instead of selecting randomly from a list of targets with the tag, it
would select a target expecting only one object with that tag. With RAIN, we
made a custom action node to choose a location to go to.

Both React and RAIN AI are general AI systems that are useful for many different
types of game situations, so neither were designed specifically to handle crowds. In
the next chapter, we will look at different tools with more focus on creating crowd AI.

Crowd Control
In this chapter, you will learn how to build large crowds into your game. Instead
of having the crowd members wander freely, like we did in the previous chapter,
we will control the crowds better by giving them directions on what to do. This
material will be useful for a wide range of game use cases, such as planning
soldier attacks by groups or directing flows of traffic in a car game.

In this chapter, you will learn about:

•	 Crowd-steering behaviors
•	 Using the Fame Crowd Simulation API to manage crowds
•	 Exploring ANT-Op to create more goal-directed crowds

An overview of crowd control
In Chapter 4, Crowd Chaos, we looked at creating crowds using wandering
behaviors, where different crowd members worked individually to travel to
different points. This works well for ambient crowds, but there was no working
as a group. As there was no larger group-defined behavior or director managing
crowds, our previous implementations required creating and configuring character
AIs individually. Defining and configuring individual AIs is fine for smaller groups,
but not practical when creating much larger crowds. In the demos in this chapter,
we will look at crowds that work, or at least move, as a group. Moving AI characters
in groups, also called flocks, has been a popular subject in AI for many years. The
most popular system is called Boids, and it was designed in the 1980s by Craig
Reynolds, a renowned computer graphics and AI developer, and the basic design
is used in crowd AIs in most games today. In these systems, different simple steering
behaviors are defined, such as moving to a target position or following a path, as
well as behaviors to not collide with other agents or align to the same direction
of nearby agents.

Crowd Control

[56]

These simple behaviors are applied to large numbers of game characters
(or in the original system, Boids), and when they run together, they move as
groups the way you would expect them to. These simple behavior combinations
give surprisingly realistic results considering how simple the individual steering
behaviors are.

Steering algorithms are simple to implement, but instead of coding something from
scratch, we will use Unity plugins. The two plugins we will be focusing on, the Fame
Crowd Simulation API and ANT-Op, are not general-purpose AI systems like RAIN;
instead, they are focused just on crowd management. This is a popular trend in the
AI world. Sometimes, instead of a large AI system, it's best to look for specific tools
for specific AI tasks. Don't worry about combining multiple AI subsystems while
designing the AI for your games, as this can often give you the best result.

The Fame Crowd Simulation API focuses, as you might expect, on crowds with
a system design similar to Boids. It allows you to customize different values for
the various steering behaviors and has a GUI interface that makes forming and
directing crowds very straightforward. ANT-Op is based on simulating ants.
Looking at ants might sound strange, but ant simulation is actually a popular
topic in the AI world, since ants work really well as a group. Both of these
plugins are useful when creating controlled crowds.

More details about Craig Reynolds' original flocking and
steering systems can be found in his papers online:

•	 Steering Behaviors for Autonomous Characters:
http://www.red3d.com/cwr/papers/1999/
gdc99steer.html

•	 Flocks, Herds, and Schools: A Distributed Behavioral
Model: http://www.red3d.com/cwr/
papers/1987/boids.html.

The Fame Crowd Simulation API
The Fame Crowd Simulation API by TechBizXccelerator is available at Unity Asset
Store under the name Crowd Simulator API for $45 at the time of writing this book.
It allows you to create groups and customize steering behaviors. For our crowd
demo, we will create a demo with many spaceships traveling in a group.

http://www.red3d.com/cwr/papers/1999/gdc99steer.html
http://www.red3d.com/cwr/papers/1999/gdc99steer.html
http://www.red3d.com/cwr/papers/1987/boids.html
http://www.red3d.com/cwr/papers/1987/boids.html

Chapter 5

[57]

Setting up a scene with Fame
To create our demo, first create a new scene with a plane as the ground. Like most
of the AI plugins in this book, Fame Crowd Simulation also supports Unity's built-in
terrain system, but for this demo, a basic ground plane will be fine. Fame also uses a
singleton pattern that has one class that manages everything for crowd management,
so create an empty GameObject and call it Crowd Manager. Then, import Fame if it
is not already in your project, and attach the FameManager script from Fame Assets/
FameScripts/FameManager.cs to the Crowd Manager GameObject. This initial
setup is shown in the following screenshot:

The following should be the hierarchy:

Crowd Control

[58]

This is our basic Fame scene setup with a Crowd Manager object.

The FameManager object will be our main point of interaction with Fame, and we
can interact with it from anywhere in our game code.

Unlike the other systems we saw where we create the AI characters individually to
define our crowds, in Fame, we will define a group of characters, also called a flock.
Add the ship model from Chapter 3, Behavior Trees, and then create another empty
GameObject and call it Ships. Then, attach the FlockGroup.cs script to it from
Assets/FrameScripts.

To avoid the warning about not having a terrain in FAME
settings, disable Enable Terrain Effect in FameManager
and Get Info From Terrain GameObject in Fame terrain.

FlockGroup is the main class to hold a group of characters, and it has several settings
we can customize:

•	 Flock Type: This is Ground or Air and defines whether the AI characters
will move on a plane (ground) or move in all three axes (air). If set to Air,
characters will ignore any terrain. You might think we would set our ships
to air, but we want them to all hover at the same height, so keep this set
to ground.

•	 Num Agent: This is the number of agents (or AI characters) in the group.
This can be a very high number as Fame is efficient, but for our demo, we
will set this to 8.

•	 Avatar: This is the GameObject set to be the individual members of the
crowd. For our demo, this is the ship model.

•	 FlockMemberScript: You can create a custom script to define how the
members of your crowd will act. For this demo, we will keep things simple
and use Fame's default FlockMemberScript.cs script.

The following screenshot shows our Fame FlockGroup settings for the ship group:

Chapter 5

[59]

Setting up a group
Next, we need to create the initial formation we want our group to be in. With the
Ships GameObject selected, you will see three connected gizmos in the Unity 3D
view that represent the shape of the initial group. Go to Formation Shape in the
Inspector panel for Ships and click on Add Point. This creates a fourth point for
the shape of the group. Arrange the points into a pyramid-like shape and click
on Create Avatars. A set of ships in a group will be created:

Crowd Control

[60]

This is our group setup that shows the control points that define the boundary for
our group. You can see our ship group shape with eight ships has been created.

Creating a group object was really easy with Fame. Now, we need to set up a way
for our crowd to move. We will have the ships move across the plane to a target
point. Set the Z scale of the plane to a larger value, create a sphere object to be our
target position, and place it across the plane. The screen should look as follows:

You can see a group of ships with a target placed.

When we send the group, or flock, the command to move to the target location,
it will move the position of the flock to match it, which isn't necessarily the center
of the flock. In this demo, the center of the flock is the upper-left corner from the
camera view, which is why the target sphere is offset to the upper-left corner.

Now that we have a target element in the scene, we need to give Fame a command
to move the group to it. Fame supports path following, but as most of the time we
will want our groups to move dynamically, such as chasing a player, we will look
at how to move the crowd by code. We have a lot of ways to set up a script to
control the flock, but we'll take the simplest route and use a game manager.
Create another empty GameObject and call it GameManager. Then, create
a new script, GameManager.cs, and attach it to the GameManager object.

Chapter 5

[61]

Add the following code to it:

using UnityEngine;
using System.Collections;

public class GameManager : MonoBehaviour {

 public Transform target;

 void Start () {

 }

 void Update () {
 FlockGroup group = FameManager.GetFlockGroup(1); // Get first
flock

 group.MoveGroupAbs(target.position);
 }
}

In this code, we have a public variable for the target for the flock. In the Unity
editor, drag the Sphere target object to this field to set its value. Then, in the update,
we just get the flock group from Fame manager (which is a singleton class with
static methods, so we don't need a reference to it). Then, we just use MoveGroupAbs
that tells the group to move to a specific location. (There is also a method called
MoveGroup that takes in an offset instead of an absolute position you can use if you
want the crowd to move in a general direction instead of to a specific point.) If you
run the demo now, the ships will travel down the ground to the target point. As
you can see, setting up a crowd and giving directions for it to move is very easy
and straightforward with Fame.

Adding obstacles to Fame
Next, let's add an obstacle inbetween the ships and their target. Increase the size of
the ground plane by increasing its X scale. Then, add a cylinder to the middle of the
scene to be an obstacle for the ships. To have this obstacle recognized by Fame, add
the Fame obstacle script, FameObstacle.cs, to it. Fame allows two types of obstacles:
round (circles) and 2D polygons. You specify the polygon ones, the same as we did
for group shapes, by modifying control points. For our obstacle, we just need it to
match the radius of the cylinder. In this example, the cylinder has a scale of 50,
which makes its radius 25, so set the obstacle's radius to 25.

Crowd Control

[62]

The demo should now look like the following screenshot:

This is the obstacle setup for our ship group.

If you run the demo now, the ships will go to their target and smoothly avoid the
obstacle. You can see in the next screenshot how the ships avoid our obstacle:

Chapter 5

[63]

Adding vector fields to Fame
We just saw how to add obstacles to our Fame crowd scene. Right now, all of our
ships split when avoiding the cylinder, about half to the left and the other half to the
right. However, we want all of them to move to the left. To do this, we can vector
fields to the scene. Vector fields are a popular way of adding directional hints to a
scene, and they are defined areas that have directional vectors that are associated with
them. When a character is inside the field, the vector helps move the character in the
desired direction. Vector fields can be a powerful tool for level design and are easy to
add to your scene. To see how easy it is to add them to the scene, add a new empty
GameObject to the scene and name it Field. Then, attach the FameField.cs script
from Assets/Fame Assets/FameScripts to it. The field can be rectangular, called
Uniform or Circular. Select Uniform for the type and set x and z widths to 75. Then,
set the angle to 45 and the magnitude to 100. The white arrow visualizes the angle for
the vector field. Place the field over the initial positions for the ships, as shown:

If you run the demo now, ships will all veer to the left before avoiding the cylinder.
For larger levels, you can set up multiple vector fields; they are a good way to
control the general movement of AI characters.

Crowd Control

[64]

This Fame demo showed you the basics you'll need to create organized crowds for
most games: creating crowds, giving them directions to move, and adding obstacles
and vector fields. Next, we will look at another specialized AI plugin, ANT-Op. You
can see the ship group changing its direction because of the vector field. You can also
notice how our crowd uses the vector fields to direct ship movement to the left:

ANT-Op
Sometimes for your games, you might want to create crowd AIs that act in a very
unique way, and instead of using an existing AI plugin, you might want to create
a crowd AI from scratch. This would be done in the case of an ANT-Op AI. As we
mentioned before, ant behavior is a popular topic in AI research and computer
science in general. Initially, ants work independently and give off pheromones that
are sensed by other ants to communicate messages. For example, when ants start
searching for food, they give off pheromones as they search. When they find food,
they give off different pheromones as they bring it back to the colony, which directs
the next ants when searching for food. ANT-Op, by Gray Lake Studios, is available
on Unity Asset Store for $75, and it simulates this ant food search process. Unlike
the other AI plugins in this book, Ant-Op isn't really designed to be brought into an
existing game; it's more of a technical demonstration that is a simulation you can use
to see interesting AI at work and hopefully use it to inspire complex AI designs for
your games. To start the demo, import ANT-Op and double-click on Test Scene to
open it. The scene will initially be blank, but if you start the demo, you can see the
simulation start. In the following screenshot, you can see ANT-Op in action:

Chapter 5

[65]

You can see ANT-Op simulating an ant colony. The lines represent pheromones
from the ants.

The options on the right are different settings for the simulation. You can play by
changing the values, and these can be saved to an XML file for later reloading.
Running the simulation provides a complex visualization, which you can see in
the following screenshot:

Crowd Control

[66]

Again, this probably isn't something you would bring into your game as is; it's to
generate ideas for your AI. The source files can be reviewed for ideas on creating
your own AI. Don't underestimate what you can learn by looking at AI simulations
like this.

Summary
This concludes the last of two chapters on crowd AI. Where the previous chapter
focused on defining crowds by defining wander behaviors for different characters
individually, in this chapter we focused on defining groups as a whole. We discussed
steering-based group design and looked at the Fame Crowd Simulation API that you
can use to set up crowds easily, give them direction, and have them adjust steering
based on other factors in the environment, obstacles, and vector fields. We then
discussed defining your own crowd AI for more unique systems and looked at
ANT-Op as an example of this. This should give you all the info you need to
create all kinds of crowds for your games.

In the next few chapters, we will turn the focus to having AI characters interact
with their environment. In Chapter 6, Sensors and Activities, we will look
at having our characters sense things in the environment and react to them.

Sensors and Activities
In the previous chapters on pathfinding and behavior trees, we had AI characters
moving through our AI environments and changing states, but they didn't really
react to anything. They knew about the navigation mesh and different points in
the scene, but there was no way for them to sense different objects in the game and
react to them. This chapter changes that; we will look at how to tag objects in the
game so that our characters can sense and react to them.

In this chapter, you will learn about:

•	 Sensors and tagging game objects so that they can be sensed
•	 AI characters that use sensors in RAIN
•	 Advanced configuration of sensors in RAIN
•	 Having AI characters react to different objects and perform different

activities once they are sensed

An overview of sensing
A part of having good game AI is having the AI characters react to other parts
of the game in a realistic way. For example, let's say you have an AI character in
a scene searching for something, such as the player to attack them or items to
collect (as in the demo in this chapter). We could have a simple proximity check,
for example, if the enemy is 10 units from the player, it starts attacking. However,
what if the enemy wasn't looking in the direction of the player and wouldn't be able
to see or hear the player in real life? Having the enemy attack then is very unrealistic.
We need to be able to set up more realistic and configurable sensors for our AI.

Sensors and Activities

[68]

To set up senses for our characters, we will use RAIN's senses system. You might
assume that we will use standard methods to query a scene in Unity, such as
performing picking through Unity's ray casting methods. This works for simple cases,
but RAIN has several advanced features to configure sensors for more realism. The
senses RAIN supports are seeing and hearing. They are defined as volumes attached
to an object, and the AI might be able to sense objects only inside the volume. Not
everything in the volume can be sensed because there might be additional restrictions
such as not being able to see through walls. A visualization illustrates this volume
in the editor view to make configuring them easier. The following figure is based
on the visualization of a sense in a RAIN AI:

The early versions of RAIN included additional senses, such as smell,
with the idea that more senses meant more realism. However, adding
more senses was confusing for users and was used only in rare cases,
so they were cut from the current versions. If you need a sense such
as smell for something like the ant demo we saw in Chapter 5, Crowd
Control, try modifying how you use vision or hearing, such as using a
visual for smell and have it on a layer not visible to players in game.

While setting up characters to sense game objects in their environment, you might
think that the AI system would automatically analyze everything in the scene (game
objects and geometry) to determine what is sensed. This will work for small levels
but as we've seen before, we run into the problem of scaling if we have a very large
scene with many objects. Larger scenes will mostly have background items that our
AI doesn't care about, and we will need a more complex system to analyze all the
objects to be efficient. Typically, AI systems work using a simplified version of the
level, for example, how pathfinding uses navigation meshes to find a path instead
of using the geometry from the level directly because it is much more efficient.
Similarly, our senses don't work on everything; for an object to be sensed, it needs
to be tagged.

Chapter 6

[69]

In RAIN, the AI characters we create have an AIRig object, but for items we want
to detect in the scene, we add a RAIN Entity component to them. The RAIN menu
in Unity has a Create Entity option that is used to add an Entity component. The
tags that you can set on the entities are called aspects, and the two types of aspects
correspond to our two sensor types: visual aspects and audio aspects. So, a typical
workflow to make your AI characters sense the environment is to put Entity
components on game objects to detect, add aspects to those entities with the
different tags a sensor can detect, and create sensors on your AI characters.
We will look at a demo of this, but first let's discuss sensors in detail.

Advanced visual sensor settings
We've heard stories of people setting up their sensors—especially visual ones—and
starting the game, but nothing happens or it seems to work incorrectly. Configuring
the senses' advanced settings can help avoid issues such as these and make
development easier.

To see visual sensor settings, add a RAIN AI to a game object and click on the
eye icon, select Visual Sensor from the Add Sensor dropdown, and then click
on the gear icon in the upper-right corner and select Show Advanced Settings.
The following screenshot shows the Visual Sensor section in RAIN:

Sensors and Activities

[70]

Here are some of the properties of the sensor:

•	 Show Visual / Sensor Color: These are used to show how the sensor will
look in the Unity editor, not in the game.

•	 Is Active: This flag determines whether the sensor is currently trying to
sense aspects in the scene or whether it is disabled.

•	 Sensor Name: This shows the name of the sensor. This is useful when using
the sensor in behavior trees, which we will see in this chapter's demo.

•	 Mount Point: This is the game object the sensor is attached to.
•	 Horizontal Angle / Vertical Angle / Range: These three define the volume

of the sense; nothing outside of it will be picked up. The visualization of the
sense matches these dimensions. You will want to customize these settings
for different characters in your game. Unexpected behavior can occur from
setting these up incorrectly.

•	 Require Line of Sight: This flag requires a line from the character to the
aspect without intersecting other objects for the aspect to be seen. Without
this flag, a character could appear to have X-Ray vision.

•	 Can Detect Self / Line of Sight Ignores Self: These flag if the sensor should
ignore the AI character. This is important as it prevents a common problem.
For example, we can have several soldier characters with a soldier aspect
and then add a soldier from a different team that attacks the other soldiers.
However, the attacking soldier when sensing might pick up its own aspect
and try to start attacking itself, and this is definitely not what we want.

•	 Line of Sight Mask: To further help control what can be seen, layer masks
can be used. These work the same as Unity's ray casting masks.

Advanced audio sensor settings
The properties for the audio sensor is similar to that of the visual sensor, except it
doesn't have any line of sight properties and the volume of the sense is a radius
and doesn't have vertical or horizontal angle limits. The important properties are:

•	 Range: This specifies how far the sensor can detect

Chapter 6

[71]

•	 Volume Threshold: When listening for aspects, this is the lowest volume
that the sensor can hear

Now that we understand all of our sensor options, let's start the demo.

Using senses with RAIN
For this demo, we will use RAIN 2.14 and have a ship that patrols a path, looks for
pieces of gold, and picks them up. To start, we'll use a setup similar to that of the
demo in Chapter 3, Behavior Trees. You can start from there or recreate it; we just
need a ship, a wall, a path, with the ground being a little larger, and the objects
spread out a little.

When changing the base geometry of your game levels, you need to
regenerate the navigation mesh. This is done by selecting the Navigation
Mesh object in your scene and clicking on the Generate NavMesh button.

Here is our basic setup. The following image shows the starting point of our
sensor demo:

Sensors and Activities

[72]

We also just need the behavior tree for the ship to only patrol the path. Set up this
behavior like we did in Chapter 2, Patrolling, or if you are using the behavior tree
demo, delete the timer node functionality. The new behavior tree should look like
the following screenshot:

This will be the starting point of the behavior tree for our sensor demo. If you start
the demo now, the ship will just keep circling the wall.

Setting up aspects in RAIN
For our sensor demo, we will have the ship look for gold, which will be represented
by a simple game object. Create a Sphere object in Unity by navigating to Game
Object | Create Other | Sphere. Make it a little smaller by giving it Scale of 0.25
for X, Y, and Z, and change the material to a golden color. We'll be duplicating
the object later so if you want duplicating to be easier, make it a prefab. This is
our starting point, as illustrated in the following screenshot:

The starting point of our object (Sphere)

Chapter 6

[73]

To have an aspect, the game object needs an Entity component. With Gold selected,
go to RAIN | Create Entity. There are a few settings to customize, but for now just
change the Entity Name field to Gold. The other important setting is Form, which
is the game object attached to it; we can leave it to Sphere.

Click on the Add Aspect dropdown and select Visual Aspect. Set the aspect name
to Gold as well. The setting should look like the following screenshot:

We now have an entity with a visual aspect. Create a Prefab tab for this Gold object
and then add it to the opposite side of the wall as the ship. The scene should look
like the following screenshot:

A sensor demo with gold

Sensors and Activities

[74]

Setting up a visual sensor in RAIN
We have the gold aspect; next we need a visual sensor. Select Ship AI, click on the
eye icon for the sensors tab, and from the Add Sensor dropdown, select Visual
Sensor. Go to the Advanced Settings (selecting the gear icon) icon and adjust the
horizontal and vertical angles as well as the range until the sensor can see a bit in
front of the ship. Typically, you will make these very large so that the character can
see most of the level. For this demo, the sensor values are 120 for Horizontal Angle,
45 for Vertical Angle, and 15 for Range. Also, check the Require Line of Sight
option so that the ship can't see gold through the wall. The setup should look like
the following screenshot:

Chapter 6

[75]

If you run the demo now, you will see the ship moving with the sensor (in Editor
View). The ship with a visual sensor should look like the following image:

This completes setting up the sensor for our ship.

Changing activities based on sensing
We now have the ship sensing the gold as it passes by, but it still doesn't react to it.
To do this, we will update the behavior tree for the ship.

The first thing we want is a detect node as the ship is moving so it can know if
it sees Gold. Open the behavior tree for the ship and create a detect node. As the
detect node will be running continuously, change its Repeat type to Forever and
right-click on the root node and change its type to Parallel. For the detection part
of the detect node to work, set the Aspect field to "Gold" and set the sensor it will
be using to "Visual Sensor". Finally, we need to set the form of the aspect, the game
object attached. Set Form Variable to gold.

The whole quotes thing in RAIN can be confusing: why some fields need
quotes and others don't. This is planned to be improved in future versions
of RAIN, but for now for Expressions (fields with the little e symbol) a
value with quotes means the name of an object and without means the
value of a variable. So in our case, "Visual Sensor" and "Gold" were both
in quotes as they were referring to objects by name, but gold is an actual
variable we store data in, so it doesn't have quotes.

Sensors and Activities

[76]

Your setup should look like the following screenshot:

In the preceding screenshot, you can see the behavior tree with the detect node.

Now if you run the game, the gold will be detected, but the ship still doesn't move
to it yet. To do this, we will use a selector node similar to the original behavior tree
demo. Place a selector node under root and create a constraint node as a child with
a Constraint value of gold == null. Then, move the original patrol node to be a child
of the constraint. The setup should look the following screenshot:

The preceding screenshot shows a detection behavior tree with a constraint node.

Chapter 6

[77]

Now if you run the demo, when the ship sees the gold, the gold value will not be
null and it will stop moving. However, instead of stopping, we want it to move over
to the gold; so, add another constraint node with the Expressiongold != null value
and a move node below it that has a Move Target value of gold. Here is how the
behavior tree with the detect node settings will look:

If you run the demo now, the ship will move to the gold when it sees it. However,
let's change this so that the ship goes back to patrolling after the pickup. Make sure
that both root and selector nodes are set to Forever for their Repeat type. Then,
create a new custom action node (like in Chapter 3, Behavior Trees) and put it under
the move node for the gold. Create a new class for the custom action and call it
PickUpGold. Set its code to this:

using UnityEngine;
using RAIN.Core;
using RAIN.Action;

[RAINAction]
public class PickUpGold : RAINAction
{
 public PickUpGold()
 {
 actionName = "PickUpGold";
 }

 public override void Start(AI ai)
 {

Sensors and Activities

[78]

 base.Start(ai);

 GameObject gold =
 ai.WorkingMemory.GetItem<GameObject>("gold");

 ai.WorkingMemory.SetItem<GameObject>("gold", null);

 Object.Destroy(gold);
 }

 public override ActionResult Execute(AI ai)
 {
 return ActionResult.SUCCESS;
 }

 public override void Stop(AI ai)
 {
 base.Stop(ai);
 }
}

The important code here is in the Start method. We got the gold game object that
was sensed from the memory and then erased it from memory by setting the gold
value to null. Then, we destroyed the gold object, so it won't be sensed anymore.
If you run the code now, the ship will follow the path, pick up gold when it sees it,
and then go back to the path.

Next, try adding several more gold prefabs to the scene and run the demo, as shown
in the following image:

Chapter 6

[79]

Now in the demo, the ship will go and collect all the different gold pieces it sees and
then return to the path.

RAIN sensor filters
If you tried running the demo with multiple gold pieces, you must have seen a small
problem. The ship always goes to the first piece of gold it sees, but that might not
be the closest. If it sees a distant piece from the corner of its eye, it will go straight to
it even if there are ones closer to it. A quick fix for this is to add a filter to the RAIN
sensors. Filters are ways to manipulate the list of sensed objects, and RAIN might
have more in the future but for now, it just has one: NearestXFilter. Select Visual
Sensor in the ship and set the Size field to 1 and select NearestXFilter under the
Filters section. The following screenshot will show the settings of NearestXFilter
on the sensor:

Sensors and Activities

[80]

The NearestXFilter filter will send a given number of closest objects to the sensor.
In our case, we just leave it to one. If you run the demo now, the ship will always
pick up the gold that it can see and that is the closest to it first. This completes our
ship demo.

Summary
In this chapter, we looked at how to set up sensors for our AI characters so that they
can see the environment. We also saw how to tag objects with aspects so that they
are visible to our AI. We also saw how to change a character's activities based on
sensing, and we discussed different settings for sensors and how to tweak them.
Sensors and aspects can make your game's AI more realistic, but they need to be
carefully adjusted to give good results.

In the next chapter, we will look at taking our work with navigation and mind
development to make our characters react more to their environments. Specifically,
we will see how all of the AI we have used so far can make our AI characters adapt
to different game events and create more complex AI.

Adaptation
Having good AI for our characters is more than just giving them simple tasks to
perform; we'd like to have our characters realistically react to the game environment.
Game events such as seeing new objects appear or having a bomb go off in a scene
should cause a reaction in the AI. Having the AI adapt to the environment is a huge
topic, but we will focus on the basic ways to have AI adapt to the environment. In
this chapter, we will look at taking AI skills we learned in previous chapters and
combining them to create AI characters that adapt to the game environment in a
realistic way, changing their tasks based on game events.

In this chapter, you will be:

•	 Creating AI characters that react and adapt to multiple game events
•	 Setting up more complex AI characters in RAIN
•	 Getting to know the importance of creating larger AI scenes with REACT AI

An overview
In previous chapters, we looked at how to do different specific AI tasks. We learned
how to make characters patrol a path, have them wander an environment, change
state with behavior trees, and sense objects in the game environment. These are all
important, but it's more important to understand how we can combine these different
elements to make AI that works well in a large game environment. We will need
characters that can navigate an environment to perform tasks but then change based
on game events that occur. To do this, the game needs to be designed at a high level,
defining what the different AI character's main goals and actions are. These high-level
goals are things such as wanting an enemy to patrol an area until it sees the player and
then start to chase and attack him. From there, the different aspects of sensing need
to be designed for the level, deciding what objects need to be tagged, so they can be
used by the AI system. The characters then need sensors defined for the AI characters
and high-level goals can be created using existing nodes and custom actions.

Adaptation

[82]

One of the ways we can define our character's adaptive behavior with RAIN is using
RAIN's motor system. We have been using the motor system with the move node
but not directly. The motor system controls moving the character, and it is available
through the motion panel in RAIN, the icon with two feet. This is how the motion
panel in RAIN looks:

RAIN supports three different kinds of motors:

•	 A basic motor, which we will use for most cases
•	 A character controller that uses the standard Unity character controller

for movement
•	 A Mecanim controller (we will discuss Mecanim with RAIN in

Chapter 10, Animation and AI)

The movement is target based: you give the motor a target position to go to
and use the motor to get there.

Unity's character controller is very popular, but if you want to use
it with RAIN, stick with RAIN's character controller. There are
some known issues mixing Unity's basic character controller and
RAIN 2.1.4. These should be fixed in a future version.

Chapter 7

[83]

The fields for motors are pretty straightforward:

•	 Speed / Rotation Speed: This specifies how fast the character should
move and rotate.

•	 Close Enough Distance / Close Enough Angle: This specifies how close
the character needs to move to a target.

•	 Face Before Move Angle: This specifies how much of an angle the character
needs to be facing its target before moving. This prevents weird movements
with very close targets.

•	 Step Up Height: This specifies how much the character can step up; this is
used to customize behavior for things such as steep terrain and staircases. We
will discuss step up heights more in Chapter 11, Advanced NavMesh Generation.

We use the motor system from a Custom Action option in our demo, but you can
use motors to move the character from any component.

Here's a little snippet that shows how to move from a standard Unity character script:

AIRigaiRig = GetComponentInChildren<AIRig>();
…
aiRig.AI.Motor.UpdateMotionTransforms();

aiRig.AI.Motor.MoveTarget.VectorTarget = targetPositon;
aiRig.AI.Motor.Move();
aiRig.AI.Motor.ApplyMotionTransforms();

First, we get AIRig attached to the character. Then, we call
UpdateMotionTransforms() to make sure that the AI system has the latest transforms
(position and rotation) from the character before updating. Next, we set VectorTarget
to a Vector3 variable as targetPosition, so the AI system knows where we want
to go. Then, we call Move() to update the character's transforms in the AI system,
and finally, we call ApplyMotionTransforms() to update our game to show the
new transforms from the AI system. Using these methods, we can update game
characters at any time.

With customized movements, we can have our characters adapt in any way we
want. The best way to see how this works is to look at a demo. The demo that
we will look at in this chapter is an extension of the ship demo from Chapter 6,
Sensors and Activities. We will have a ship in a level searching for gold pieces,
but we'll extend it to make the gold pieces appear more random and dynamic
in the level over time. Then, we will have a bomb with a timer and when it goes
off all of ships will be destroyed and stop updating their AI. This will illustrate
how we can have AI characters react to game events.

Adaptation

[84]

RAIN's demo
The basic start of the demo will be similar to our others, a ground with several
walls around for our ships to travel. This is how the basic starting point of our
demo should look:

The basic starting point of our demo

One of the first things we will need is the ability to query a random location in the
scene to spawn and find points to travel to. Create a class called Ground and add it
to the ground plane. This class will be used to provide higher-level information
about the level, the first of which is being able to find a random position in the
level. Here is the Ground class with the random position chooser method:

Chapter 7

[85]

In the preceding code, we are able to ask for a random position at anytime from
anywhere in the game. In the Start method for the Ground class, we store the max
and min positions for it, and as we don't want positions on the very edge of the
level, it is scaled to 90 percent by multiplying by 0.9f. The min and max positions
are static, so we can add a static method, randomLevelPosition(), that returns a
random 2D position on the level with a constant height. We'll be using this method
in several other spots in the code.

We could do additional checks on this position finding to make sure
that the spot never overlaps any of the walls in the scene, but to make
the code simpler for this demo, we won't worry about this edge case.
However, you would do this in a production game.

Reacting to game events
Next, we want to have some ships chase gold pieces, but we'll make it more dynamic
than in the last demo. Create a Sphere object with a gold color and add a RAIN entity
to it (by navigating to RAIN | Create Entity) and add a Visual Aspect called Gold to
it so that AI characters can sense it. Turn this gold piece into a prefab. Instead of just
placing it manually in the scene, we want them to be spawned randomly; add the
code mentioned in the following screenshot to the Ground script:

In the Unity editor, drag the Gold prefab to the Transform gold in this script. This
script randomly spawns a gold piece somewhere in the level every 2 seconds by
tracking the time using Time.deltaTime. If you run the game now, you'll see a gold
piece created randomly every 2 seconds. Next, we need ships to collect these.

Adaptation

[86]

Our AI ship characters will pick a random spot on the level and travel there and then
after arriving, pick another random spot to go to; however, if they see a piece of gold
along the way, they will stop and pick it up. To do this, create a ship object with a
RAIN visual sensor with a horizontal angle of 120, a vertical angle of 45, and a range of
15. The behavior tree for the ship will be straightforward. Set the root node to parallel
and one Detect child set to look for Gold and store its form in the gold variable. Add
another child to the root with a constraint to test if gold == null. If gold is not null,
it should move to pick up the gold; if it is, pick a random spot on the level and move
there. To pick a random spot in the level, create a new Custom Action option with
a new script called ChooseRandomSpot. Set the following code for it:

Chapter 7

[87]

The Start method uses our static Ground method to find a random position in the
level and sets it to the moveTarget variable in the AI's memory. Next, add a move
node to go to the moveTarget variable. If you need a review of how to set up these
nodes, check Chapter 6, Sensors and Activities. The behavior tree for the ship should
look like the following screenshot:

Change the ship to a prefab and add a few ships to the level. Now if you run the
game, your ships will wander around, but if they see gold, they will race to pick
it up and the first one there collects it.

Using RAIN's motor directly
However, if you run the game now, you'll see a problem. As expected, the ship
will look for gold, and if it doesn't see any, it will pick a random position on the
level and move toward it. If it sees gold along the way, it doesn't stop to pick it
up; it keeps moving to its target location.

Adaptation

[88]

Our root node is a parallel type, so the character is always trying to detect
gold, but it still ignores it while traveling. This is because our move node will
keep running until it hits its destination, and even if it sees something, it is not
interrupted until it gets there. To fix this, delete the move node underneath
ChooseRandomSpot Custom Action. Then, change ChooseRandomAction
to the code shown in the following screenshot:

Chapter 7

[89]

This is a big change, so let's discuss what is going on. The Start method is the same
as before: store a random position to move to in memory. However, our action method
is different. The first thing it does is it queries the memory for gold. If we have gold,
we don't need to keep moving to our target, so we return failure. Then, we get our
moveTarget variable out of memory and check the position of the Body variable of
our AI. If it is within one unit of the goal, we say that this is close enough and return
success. Finally, if we don't have gold and aren't close to moveTarget, we call on
the AI's motor system to move to the target and keep updating it by returning the
running state.

With this update, we could have used a regular class variable to store
moveTarget, but we keep it in memory to keep things consistent.

If you run the demo now, we will see the ships moving around as new gold appears
in more expected ways, as shown in the following screenshot:

You can see the ships wandering and chasing gold in the preceding screenshot.

Adaptation

[90]

Adding large game events
As the last step of this demo, let's have a giant bomb go off in the scene and then have
all of our AI stop to simulate having them all destroyed. To start, create a large red
sphere to represent the bomb and turn it into a prefab. We will have the AI characters
react to this bomb in the standard way by adding a RAIN Entity component to it and
a visual aspect and have visual sensors on the ships detect it. But to show we can
access the AI systems directly, let's have the bomb go off using the Ground class:

Here, we added a bomb transform to the script, so drag the bomb prefab in the
Unity prefab over to it. There is also a field for a countdown that when it goes to 0,
the bomb goes off and is instantiated into the scene. At this point, we grab all the
AIs in the scene and send them a message, in this case, to disable it. We could have
made this more complex than a simple disabling; this just shows us that we can
have our game AI react to game events from anywhere. If you run the demo now,
the ships stop when the bomb goes off, as shown in the following screenshot:

Chapter 7

[91]

In the preceding screenshot, you can see the ships reacting to a bomb.

The React AI
We have been using RAIN for our adaption so far, but there is no reason you cannot
create a demo like the one we just did with React. The basic behavior tree and node
logic can stay the same. The main difference is that React doesn't use a built-in sensor
system; instead, users define sensing based on what they think is the best. This can be
done through Unity's built-in ray casting methods to query the scene. The following
is a method adapted from React's sample that can be used with React to determine
the visibility of a target. This code takes in a target and first does a simple test to see
whether the target is within the field of view by finding the vector of the target from
the player and comparing the angle of it and the forward direction of the AI character.

Adaptation

[92]

This is a simple and quick test that does a basic check, in terms of collision detection,
and this is called the broad phase. Then, the Unity physics system is used to ray
cast from the character to the target; this is quite expensive but a more accurate test.
Using this for sensing and React's built-in behavior tree demos, like the one in this
chapter, can be created.

Summary
In this chapter, we looked at how we can make our AI adapt to events in the game.
This was done using methods we learned in the previous chapters, and we also
took a look at RAIN's motor system to allow our adaptions to be more customizable.
Our demos in this chapter have been pretty straightforward, but there is no reason
why this demo couldn't be extended to have more events to send and more reactions
defined in the character behavior trees. However, our demos have been missing
one important thing, which is yet to be discussed: the player. In the next chapter,
we will discuss how AI characters attack by adding a player to our scene and
having our characters react and attack. We will discuss how to create enemies
for the player and have them attack the player.

Attacking
Fighting is an important part of a game's AI. For many games, fighting with
the player is the main game mechanic and the most noticeable AI in the game.
We will discuss the common methods for attack AI, how to make an enemy
character chase and attack the player, and then have the enemy character take
cover and hide from the player.

In this chapter, you will learn about:

•	 Designing attack AI in RAIN 2.1.4
•	 Creating basic chase attack AI
•	 Creating and covering attack AI
•	 Having AI attack in groups

An overview of attack AI
Attack AI is a large and much studied subject. When you start dealing with things
such as different attack moves based on different player actions or having enemies
coordinate attacks, the AI can become quite complex. However, designing good AI
that attacks is the same as designing for other AI scenarios we have looked at so far
in this book. First, we need sensors for our AI characters to perceive game events
and to create aspects in the game world, tagging what they can sense. Then, we
define behavior trees for the characters, directing them to change actions based
on sensor response or other game states, such as running out of ammo. Defining
different behaviors is the main part of setting up attack AI.

We'll look at two foundational AI attack behaviors in our demos in this chapter.
The first will use multiple sensors on the AI to determine when to chase and when
to stop and attack. The second behavior we will look at is the duck and cover type,
where the enemy attacker will retreat to a safe position after attacking, and this is
based on set navigation points. These are both best illustrated through demos,
so let's start one now.

Attacking

[94]

The attack demo
Like our previous demos, we will start with a basic scene with a ground and walls.
The demos here will involve an enemy ship attacking a player, so add a ship to
the scene, name it player, and add simple controls to move the ship around. Also,
tint the color of the material to make the player ship stand out from the enemy
ship that we'll add in a moment. Of course, the player ship isn't an AI, so it doesn't
need a RAIN AIRig, but it does need to have a RAIN Entity component. With the
player selected, go to RAIN | Create Entity. Next, it needs a visual aspect for the AI
enemies to see it; from the Add Aspect dropdown, select Visual Aspect and rename
the aspect to player. This provides a base for our attack demo. This is how the RAIN
attack demos will look with a player ship:

Next, we need an enemy for the attack. The enemies will also be ship models, and
as we are focusing on just the AI, we won't worry about the actual game mechanics
of attacking, such as having the ship fire projectiles at the player, then having the
player respond to being hit, and so on. Usually, these kind of attack AI states involve
playing different animations for the AI, and we will explore these more in Chapter 10,
Animation and AI; for now, we just need a simple visualization to illustrate the attack.
To visualize, we'll store a Boolean variable in RAIN's working memory flagging if
the enemy is attacking and if so, start blinking.

To set this up, add a ship to the scene and add an AIRig to it by going to RAIN
| Create AI. To add an attack flag, select the RAIN Memory tab on the ship AI
(the light bulb icon) and from Add Variable, select bool. Rename the variable
to isAttacking and leave it to the default value of false. The memory with the
isAttacking variable set should look like the following screenshot:

Chapter 8

[95]

To use this variable, create a new script called Enemy.cs and add it to the enemy
ship. Change the code to the following:

Here, we store the AIRig for the entity by retrieving it at the start. Then, we get
the isAttacking variable from the working memory, and if the enemy is attacking,
the ship starts blinking green. If it's not attacking, the ship stays its default color,
which is white. Create a new prefab in Unity named Enemy and drag the ship into
it. Now we have enemies that can start attacking the player, and we can start
setting up our AI.

Attacking

[96]

The chase and attack demo
In the first demo, we will build an enemy ship that senses for the player, and if it
sees the player, it starts moving toward it and then attacks it. A simple version of this
would be to have the enemy wander with a visual sensor to detect the player, and if
it sees the player, the enemy will move toward it and attack it. This would work but
it really wouldn't be any different from the demo from Chapter 7, Adaptation, where
the ship had to search for and collect gold. To make it a little different, we'll use a
two-sensor approach. We will have one larger sensor on the enemy that detects the
player, and if the enemy senses the player aspect, it will start chasing the player.
Then, there is a second smaller sensor that attacks the player, that is, if it senses the
player, then the enemy stops chasing and it instead attacks. This gives the effect
of chasing the player but when the enemy gets closer, it stops and starts attacking,
instead of just chasing and attacking at the same time.

To begin setting these up, go to the Perception tab on the enemy AI rig (the little
eye icon tab) and add a visual sensor called ChaseSensor. This should be pretty
large and cover most of the scene. Then, add a second visual sensor and call it
AttackSensor. Make this one about a third the size of ChaseSensor. The setup
should look something like the following screenshot:

Chapter 8

[97]

The preceding screenshot shows our enemy setup with two sensors: one will be used
to chase and the smaller one will be used to attack.

Using multiple sensors of the same type is a powerful tool to have
AI characters react to things differently based on how far away they are.

Now we have our sensor, we can work on the behavior tree for the enemy. Select the
Mind tab of the enemy AI rig and open the behavior editor. Create a new behavior
tree called ChaseAndAttack. The enemy will detect and chase or attack the player
at the same time, so right-click on the root node and change its type to Parallel.
Then, add two detect nodes, one for the chase sensor and one for the attack sensor.
For the chase detect node, set Sensor to "ChaseSensor", Aspect to "player", and
the form variable to playerChase (remember to watch out for the quotes). For the
attack sensor, set Sensor to "AttackSensor", Aspect also to "player", and the form
variable to playerAttack. Then, add a constraint node, which will go off if either
of the sensors has found something, so set its constraint to playerChase != null ||
playerAttack != null. Then, add a selector node under the constraint node that will
handle the attack and chase logic. The multiple visual sensors behavior tree should
look like the following screenshot:

Remember the selector node will continue to run its children until one succeeds, so
first we will check for attack. If playerAttack has a value (that is, it is not null), we
will set isAttacking to true, and if not, set it to false. Add a constraint node under
the selector that checks for attacks and set its constraint to playerAttack != null. As
the playerAttack variable is not null, add an expression node to start attacking
with an expression value of isAttacking, which is equal to true.

Attacking

[98]

Then, if playerAttack is null, we want the attack to stop, so add another expression
with isAttacking, which is equal to false. The attack setup on our enemy behavior
tree should look like the following screenshot:

If you run the demo now, when the player gets sensed by AttackSensor, the enemy
will start attacking and stop when the player is out of range.

Our attack behavior here is very simple; we are just flashing the ship.
However, there's no reason why you couldn't add additional attack
nodes and states to make the behavior more realistic.

Finally, we need to have the enemy chase the player if it is not attacking, so add a
custom node called Chase to the bottom of the selector. Create a Chase script for it
and set the Chase code to the following:

Chapter 8

[99]

This code first finds the player GameObject and then just moves to the player's
position. This is unlike the code in the demos in Chapter 7, Adaptation, where we
did a check to stop moving if the character gets very close to the moving target.
When the character gets close to the target, it will stop moving and start attacking,
so we don't need checks. If you run the demo now, the enemy will chase the player
and start attacking:

The preceding screenshot shows how an enemy attacking the player will look
at the end.

Creating cover AI
Our AI enemy will just keep attacking the player as long as it is close enough to
the ship. However, this isn't very realistic; we'd like the enemy ship to attack for a
little bit but then duck and head for cover. We could have this hiding behavior be
based on a response to the player fighting back, but for this demo, we will make it a
constant value of 5 seconds; after attacking the player for 5 seconds, it will hide.

To set this up, first we'll add an isHidingbool variable to our behavior tree that is
set to true after 5 seconds of attacking. Create a new constraint node under the root
parallel node with the playerAttack != null && isHiding == false expression. This
node's children start when playerAttack is valid and we are not already hiding
from the player. Add a sequencer node under this constraint so it will go through
all of its children. The first child needs to be a new timer node with the Seconds
value of 5 and Returns set to Success. Next, copy the don't attack node and add
it below the timer so that the enemy won't attack as it's running to hide.

Attacking

[100]

Then, add another expression node to set isHiding to true; its expression value
should be isHiding = true. The behavior tree should be like the following screenshot:

Finally, we need to have hiding spots to go to. These are often predefined; in
shooting games, hiding spots are defined based on paths the player is expected
to take. To do this, create a few navigation targets by going to RAIN | Create
Navigation Target and add them to some good cover spots for the enemy.
Here's how they can be arranged:

This is how we set up navigation targets for hiding spots.

Next, we need to have the AI choose a point to take cover. Lastly, we need to select
and move to a hiding spot. To organize the tree better, add a selector node above
the hiding constraint node. Then, add another constraint node below the selector
node and create a custom action node with a new ChooseHidingSpot class.

Chapter 8

[101]

The tree should look like the following screenshot:

When creating larger trees, giving the nodes descriptive names
helps keep the tree organized and easy to understand.

The following is the code for our action to choose a hiding spot:

Attacking

[102]

Here, when we start the action, we find all the NavigationTargetRig objects and
store them in the coverPoints array. Then, we go through each target and find the
one closest to the enemy. Once we have the closest target, we store it in hideTarget
and start moving to it.

As an addition to this, we can have the enemy start attacking again after hiding.
Add the following line right before ActionResult.SUCCESS is returned:

ai.WorkingMemory.SetItem("isHiding", false);

This just updates the memory to set the hiding value to false and the attack will
restart. This is a simple extension and the attack can be easily extended to better
attack behaviors.

Group attacks
We spent Chapter 4, Crowd Chaos, and Chapter 5, Crowd Control, looking at group
behaviors, and we won't go through a full demo of attacking in groups here, but
we should discuss a few main points. With the demo in this chapter, we can add
more ships and they will attack in a fairly believable manner. However, there are
ways to make it better by considering other enemy positions.

When the enemy ships choose a cover position, a simple method for a group is
to track each position if an enemy is already there. Then, when selecting a cover
position, each enemy won't go to one that is occupied, making the enemies more
diverse in their attacks.

Similarly, when attacking the player, instead of just going as close as possible,
the attack pattern can be coordinated. Instead of just going directly to the player,
a set of points can be defined radially around the player, so enemies surround
and attack it. The key to these group behaviors is enemies taking into account
the behavior of other enemies.

Chapter 8

[103]

Summary
In this chapter, we looked at attack AI, focusing on how to have enemies chase and
attack a player and then how to evade. These are basic attack behaviors and can be
extended to more complex and game-specific behaviors, and we discussed how to do
this when creating groups of enemies.

In the next chapter, we will look at another special AI case, which is driving and cars.
However, instead of using a general-purpose AI system such as RAIN or React AI,
we will use an AI plugin specifically designed for cars that takes into account physics
to create realistic driving.

Driving
In this chapter, we will look at another specialized AI, driving. The other AI we
have looked at so far had pretty simple movement for characters. However, car
movement needs to take into account physics, and this makes driving AI more
complex, which is why we need an AI system specially designed for driving.
The AI driving system we will use for our demos is Smart Car AI. Smart Car
uses Unity's built-in navigation mesh system, so we will also take a look at it.

In this chapter, you will learn about:

•	 Setting up the AI driving system
•	 Creating a Unity navigation mesh
•	 Using Smart Car to drive AI along a path
•	 Using Smart Car to drive and avoid obstacles

An overview of driving
When designing AI for our characters, one of the basic concepts is to have AI move
with the same rules as the player. If you ever played any old racing games, sometimes
the opponent cars wouldn't follow the same physics as the player, zooming along
unrealistically and therefore creating a bad player experience. So, it's important to
take car physics into account, including the shape of the car and four wheels, and
have the AI move in the same way as the player. This is the main reason for using
an AI system especially designed for autos and driving, instead of a general-purpose
game AI system we have been using such as RAIN.

The driving system we'll use is Smart Car AI by BoneBreaker, which at the time of
writing this book is available in Unity Asset Store for $10. It takes into account physics
for the car and uses ray casting to sense the car's environment. It actually uses two
systems for navigation, which are Unity's built-in navigation system to determine
paths along a road and ray casting to sense obstacles and make adjustments to the car.

Driving

[106]

Additionally, Smart Car uses four-wheel physics for realistic movement. Because
of the advanced use of physics, we can't just drop any car model in and have it
work automatically; we will need to configure Smart Car to use the model's wheel
colliders. Wheel colliders are a type of Unity's physics colliders that are specifically
made for vehicles. Let's look at how to set up a car.

Setting up a Smart Car vehicle
As Smart Car uses a realistic car setup, there are many options to configure your
vehicle. To create a Smart Car vehicle, you'll need a car model with different models
for wheels and Unity wheel colliders setup on them. After adding a car model to
your scene, import the Smart Car 2.3 package and attach the SmartAICar2_3.cs
script from SmartAICar2.3/Scripts. In the following screenshot, you can see some
of the Smart Car AI fields from the script:

Chapter 9

[107]

There are fields here you can customize such as Engine properties, including Engine
Torque Curve, and the distances for the ray casts used for sensing. Most of these
can be left to default values, but to run the script, you'll need to fill in the wheel
properties, dragging from your model the colliders for the four wheels to the Wheel_
FL, Wheel_FR, Wheel_RL, and Wheel_RR properties. You also need transforms for
the wheel set. Also, there needs to be a transform for center of mass (COM), a lower
point in the middle of the car. If COM is placed in the wrong position, the physics of
the car can be very unexpected. If you fill these out, the car is set up but it still won't
run in a game as it still needs waypoints and a Unity navigation mesh setup, which
we will add in the demo.

The Smart Car AI demo
Now, we'll start setting up our driving demo that will have a car driving along a
road and avoiding obstacles.

Setting up a Unity test scene
Besides needing Smart Car, we'll need an environment for our AI cars to drive in.
We'll use Car Tutorial v1.3 that is made by Unity, which you can download for free
from the Asset Store. Import the project and open TheTrack scene from the imported
Scenes folder. Next, add a car to the scene. The car prefab that comes with Car
Tutorial doesn't have the complete wheel physics setup, so you can configure it using
the steps in the last section or use the EnemyAICar prefab from Smart Car. To make
the car work better with the Tutorial scene, extend the rays a little, set Wide and
Tight Ray Distance both to 40 and Long Ray Distance to 50. This keeps the car from
hitting obstacles when going too fast and missing tight turns. Once you have a car in
the scene configured for Smart Car, select the Main_Camera object and set your car
to Target for the Car Camera script.

Driving

[108]

If you start the demo now, the car still won't run but the main camera in the scene
will follow it:

This screenshot is of the Main_Camera game object of Car Tutorial. These are the
settings for the TheTrack scene with Target set to the Smart Car prefab.

Another setting in the scene that can cause problems is the
TunnelSoundTrigger Sound Toggler script. As it isn't
important to use, select the TunneISoundTrigger script
and remove that component to avoid errors later.

Using Unity's built-in NavMesh system
The next thing we need for our car demo is a navigation mesh. Smart Car uses
Unity's built-in system. Unity's system is similar to RAIN's but we haven't used
it much yet as unlike other plugins, Unity does not have a built-in behavior tree
system. Fortunately, we don't need behavior trees for our car demos, so navigate
to Window | Navigation.

Chapter 9

[109]

This brings up the Navigation tab with three subtabs to help configure
the NavMesh:

•	 Object: This helps you filter what objects in the scene are part of the
navigation mesh. Any objects that are tagged with Navigation Static
will be included in the mesh as a walkable area.

•	 Bake: This has options to bake the mesh. The two most important options
are Radius and Height, which are dimensions for the character to navigate
on the mesh.

•	 Layers: This allows you to customize the placement of different navigation
meshes on different layers.

For our demo, we want only the roads to be navigable. Select the other building and
miscellaneous objects in the scene and set their static property (which is to the right
of their name in Inspector) to not have Navigation Static set. Then, for the different
road objects, such as Road_Coll, Road_Coll01, and so on, make sure that they have
Navigation Static checked. Then, go back to the Navigation tab and click on Bake. If
you have everything set correctly after you bake, you should see the navigation mesh
in the same area as the road:

This is how the road navigation mesh setup should look.

Driving

[110]

This should have been pretty quick to recreate, but depending on the character size
settings and the amount of geometry in the scene, this can take a bit of time. We will
discuss navigation meshes more and the algorithm behind how they are generated in
Chapter 11, Advanced NavMesh Generation.

NavMeshAgent is the built-in Unity component to create characters
that move on a navigation mesh. Smart Car uses this internally. We
won't be using this class directly but you can if you want to try more
of Unity's built-in navigation system; it is a good class to look at.

Setting up waypoints
The final step to get a car driving is to set up waypoints for the car to follow. The
NavMesh we created defines the area that the car can navigate to and the waypoints
define the general path the car should follow. Create a new empty game object and
name it Road Waypoints. Then, create a few more empties with the names waypoint
1, waypoint 2, waypoint 3, and so on. Place the waypoint empties at different parts
along the road. Note that the NavMesh for the road will define how to get from one
waypoint to the next, so the line between waypoints doesn't have to go through
the road. For instance, you could have one waypoint at the start of a curve and the
second at the end and the car would still go around the curve through the waypoints.
In the Smart AICar script, set the empties to the Waypoints field. After doing this,
the waypoints will be visualized in the edit or view to make adjusting their locations
easier. Refer to the following screenshot, and you can see how the visualization of
Smart car AI waypoints looks:

Chapter 9

[111]

If you run the demo after setting the waypoints, the car drives realistically across
the road. If you want to fine-tune the car more, remember there are many physics
settings with Smart Car that can be adjusted to change how the car acts.

Adding obstacles to driving
As Smart Car uses a combination of a NavMesh and ray casting, you can add
objects dynamically to the scene, and as long as they have colliders attached
(and are on a car's Recast Layers), the car will avoid them. To try this out, add
a few large cylinders to the road, as shown in the following screenshot:

Then, in the Recast Layers dropdown for your car, make sure that it is set to ray cast
on the same layer as the obstacles. Select a Cylinder object and in Inspector, select
Add Layer. We need to create an obstacles layer, so select the dropdown and in the
first slot for User Layer, set it to obstacles.

Driving

[112]

Then, for each cylinder, set its layer to obstacles:

Chapter 9

[113]

This is how the Inspector window should look after creating the obstacle layer.

Then, for Smart Car in the Raycast Layers dropdown, make sure that the obstacles
layer is selected. Once you have this set up, if you run the demo, the car will drive and
avoid the obstacles. The car still uses physics for its control, and sometimes if you place
the obstacles too close to one another, the car will run into one. Fortunately, in this
case, the car will back up and then drive past it, which is a nice touch Smart Car has.

The cylinders are static objects in our scene, but as ray casting is used, there is no
reason why you cannot script dynamic objects and the car will still avoid them. To
see this, run the demo and in the scene view, grab one of the obstacles and move it
around to block the car; the car will try to avoid it.

Additional features
We've just completed creating a driving demo with a car avoiding obstacles, but
there are a few more things you can do with driving AI. We can add brake and drift
zones to help configure the general behavior of the car as it drives around the scene,
and we can integrate Smart Car with other AI systems such as RAIN.

Adding brake zones and drift zones
Another interesting thing you can do with Smart Car is define zones in the level to
either cause the car to brake and slow down or adjust the friction of the car to make it
drift. These are similar to the vector fields we saw in Chapter 5, Crowd Control, where
we place them in the level to affect the AI, and they aren't visible to the player but
are good to use for scripting level experiences. To create a brake or drift zone in your
game, add a cube to the game (go to GameObject | Create Other | Cube) and scale
and translate the area you want to tag in the level. In the Inspector window for the
cube, set its tag to BrakeZone and for a drift zone set the tag to DriftZone. Next, in
Box Collider for the cube, check Is Trigger to true, so the car will get a message of
intersecting with a cube but won't stop and collide with it. Lastly, in the Inspector
window, uncheck Mesh Renderer so that the cube is invisible in the game. Now when
you run the demo, if the car's speed is 25 or over when it enters the brake zone, you
will see it slow down, and if its speed is 15 or over, you will see it drift in the drift zone.

Driving

[114]

Integrating with other AI systems
In this demo, we've seen that setting up an AI car that drives around is easy to do with
Smart Car. However, what if your game isn't just a driving game but has car driving as
one part of the game? If that's the case, you can mix Smart Car with another AI system
easily. For RAIN integration, import the RAIN package into your scene. Then, go to
RAIN | Create Entity and then select Add Aspect: Visual Aspects. This creates an
entity with an aspect that can be sensed by additional RAIN AI entities you can create
in the scene, making the car just one part of a larger AI system.

Summary
In this chapter, we looked at Smart Car, an AI system specifically for car AI.
We discussed why automotive AI is different than most AIs because of the physics
involved, and we also saw how to set up a car model, create a path for the car, and
add obstacles. We also looked at using Unity's built-in navigation mesh system,
instead of using third-party ones such as RAIN, and discussed additional features
for car AI and how we can integrate it with another AI system such as RAIN.

In the next two chapters, we will look at how to combine character animations
and AI to give them a realistic appearance and learn more about creating complex
navigation meshes for different AIs.

Animation and AI
Part of having realistic game AI is having characters play animations at times
appropriate to the AI character's state. In this chapter, we will look at animation
and how it is integrated with RAIN, both with Unity's legacy animation system
and Mecanim.

In this chapter, you will learn about the following:

•	 Why animation management is an important part of game AI
•	 Managing animation with behavior trees and Unity's legacy animation
•	 Managing animation by AI with Unity's Mecanim animation system

An overview of animation
When you think about game AI, first you probably think about things such as
creating virtual minds and making characters "think". When I first started learning
about game AI years ago, I didn't think animation was really important for game AI
since it wasn't part of creating a virtual mind. But then I attended some AI sessions
at the Game Developers Conference and found out that one of the most discussed
topics in AI was integrating AI with animation systems; this is when I realized it
really is an important part of game AI. This makes sense since game AI is about
modeling real thinking instead of focusing on giving characters the appearance
of thinking, so having the characters play animations that match their state is
important. We can think of animations as just a visual depiction of the current
state of the character.

The method we'll look at for integrating animations with the AI is RAIN's
animation integration with Unity. RAIN has an Animation tab (with an icon
of a running man) in its AIRig. In this tab, animation clips can be configured
using one of two RAIN animators.

Animation and AI

[116]

RAIN has a BasicAnimator option to configure clips with Unity's legacy animation
and a MecaninAnimator option used to set up Mecanim animations. Once these
animations are set up, RAIN has an animate node in its behavior tree system that
can be used to call different animation states. Usually, this is done in conjunction
with a parallel node with the animate node being one of its children. This way the
animation can run at the same time as the other logic is being executed in the tree.

The best way to see this is through demos. For these, we need to have two characters:
a legacy and a Mecanim setup. To do this, our demo project will use two demos that
are made by Unity and can be downloaded for free from the Asset Store. The first is
Penelope Complete Project v1.1. This contains the Penelope character we will use for
the Unity legacy demo. The other project is Mecanim Example Scenes v1.0 that will
be for the Mecanim setup character, Teddy. Create a new project and import both of
these and the latest RAIN package. Once these are set up, we can start building the
animation demo.

The AI animation demo
As the first step, create a new scene and add a plane to it with a scale of X equal to 10,
Y equal to 1, and Z equal to 10 to give us a floor where characters can walk around
(and if you want, change its material so it's not white). Then, add the penelope model
to your scene that's at Assets/Objects/penelopeFX. Next, we'll do our basic RAIN
setup and add a navigation mesh by going to RAIN | Create NavMesh. Make sure
the navigation mesh will cover the floor, so change its Size to 100 and then generate
the mesh. Next, create a waypoint route by going to RAIN | Create Waypoint Route,
rename it PenelopeRoute, and add a few points in front of the penelope model for
the character to walk. Lastly, add a RAIN AI object by selecting penelope and going
to RAIN | Create AI. Your screen should look similar to the following screenshot:

The scene for the AI animation demo

Chapter 10

[117]

If you need more details on how to set up a scene with a character
patrolling a path, refer to Chapter 2, Patrolling.

Now that we have a scene, let's create a behavior tree for Penelope; we want her
to just walk following the path and stopping at the end. Select Penelope's AI object
and open Behavior Editor. Create a new behavior tree called WalkPenelope and
add a patrol route node to the root. Set the route to "PenelopeRoute". We just want
Penelope to walk the route once and then stop, so set the Repeat field to Never
and the Loop Type field to One Way. Lastly, set the Move Target Variable field to
moveTarget and create a child move node that uses moveTarget to move. The tree
should look like the following screenshot:

If you run the demo now, Penelope will travel around the path, but there will be no
character animation; she will just slide on the ground. To fix this, we'll add animation
to our character.

Configuring RAIN animations
To configure animation for Penelope on her RAIN menu, select the Animation
tab. (Again, this is the tab with a little figure running on it.) RAIN supports two
animation systems: BasicAnimator and MecanimAnimator. Since the Penelope
character doesn't use Mecanim, leave the animator as basic. The Add Animation
State dropdown will then be automatically populated with the different animation
clips available. Choose the animation states run and idle.

Animation and AI

[118]

Your animation tab should look like the following screenshot:

Here are some of the animation parameters:

•	 State Name: This specifies the name of the animation clip; this is what we'll
use in the animate node in the behavior tree when calling animations.

•	 Animation Clip: This specifies the legacy animation clip associated with
this state.

•	 Fade in Time, Fade Out Time: This specifies the amount of time required
to fade in and out of the animation. This can be useful to create smooth
transitions between animation clips.

•	 Wrap Mode: This provides the wrap mode for the animation. This can be
left to default to use the clip's default settings. Other options are to loop
or to play the animation once and go to the beginning or end of the clip.

Chapter 10

[119]

Using the animate node
Now we need to configure the behavior tree to play the animations. As our first
step, let's get Penelope running. Right-click on the root node in the WalkPenelope
behavior tree and go to Switch To Parallel and then rename the node to parallel.
By being parallel, we can add an animate node and have it update the animation at
the same time as the patrol node is being executed. So add an animate node, rename
it to animate run, and set Animation State to run. Your setting should look like the
following screenshot:

If you run the demo now, you'll see the Penelope character perform the animation
while it's moving. But the timing seems a little off. Change the moving speed of
the move node to 3. Then slow down the animation a little by going back to the
Animation tab and setting the Speed field to 0.75. If you run the demo now, the
animation is a bit better. But when Penelope gets to the end of the route, the run
animation just keeps on playing. To fix this, let's track a variable in the memory
called stopped. When it is false, the run animation will play as it does now,
and when stopped is true, an idle animation will be played instead.

The first thing you need to do to fix the animation's issues with ending is add a
selector node as the new root. Remember, the selector node is used for the if/else
logic, so we'll use it to switch between its running state and playing an idle animation.
Add a constraint node under selector and rename it to is stopped. Set Constraint
to stopped == false. Then add a new animate node under the selector node, name it
animate idle, and set Animation State to idle. This will only start running when
stopped is true, so we need to add an expression node to run the expression node
after our moving is done. Make a new sequencer node and make it the parent of
waypointpatrol. Then add an expression node under the sequencer node with an
Expression value of stopped = true.

Animation and AI

[120]

This should look like the following screenshot:

To summarize, the selector acts as if/else using the stopped variable in
the memory, which is automatically created in the tree when we start using it.
Then the run animation is played in parallel while the character is moving, and
when the moving is done, the expression sets stopped = true and the idle animation
is played. If you run the animation now, Penelope will run and then switch to idle
at the end of the path.

However, there is one problem: the transition from the running to the idle state is
very abrupt. If you run the demo, you'll easily notice a visual jump from the running
to the idle state for Penelope at the end of the path. To help with this, you can adjust
the ramping parameters for the animations. Go back to RAIN's Animation tab and
set the Fade Out Time field of the run animation to 2. Now, if you run the animation,
Penelope will start to transition out of the running state for two seconds, and although
everything doesn't look perfect, the transition is much smoother than before. Feel free
to play with other ramp settings to get a better effect.

This shows how RAIN works with Unity's legacy animation system; now,
let's look at Mecanim.

Chapter 10

[121]

RAIN and the Mecanim demo
Mecanim is Unity's latest animation system that's able to play animations on
arbitrary characters. We won't go into detail on how Mecanim works and instead
focus just on RAIN's usage.

For this demo, we will use a character already set up for Mecanim from Unity's
sample. If you haven't already done so, download and import Unity's Mecanim
demo, Mecanim Example Scenes v1.0, which is free on the Asset Store. Add the
teddy bear character from Character/Teddy2/TeddyBar.fbx to your scene. Then,
in the Animator component for Teddy, set the Controller field to IdleRunJump
from Controllers. Then, add a RAIN AIRig to Teddy by going to RAIN | Create
AI. We'll have Teddy walk on a different route, so create a new waypoint patrol
route and name it TeddyRoute. Your scene should look like this:

In the preceding screenshot, you can see Teddy with a new path set up in
your scene.

Next, we need to configure animations for Teddy. Go to the Animation tab in
Teddy's RAIN AIRig and select MecanimAnimator. Then, we need to add states
for running and idling. Select Base Layer.Run and Base Layer.Idle from Add
Animation State.

Animation and AI

[122]

Your screen should look like the following:

These are the basic animations added to Teddy. Besides adding the states, we need
to set Mecanim parameters. From the teddy bear object's Animator component,
open Controller for IdleRunJump. The following is the Teddy Mecanim diagram:

Chapter 10

[123]

This shows the different parameters for the Teddy character; we'll only be setting
Speed. Go back to the Animation tab for Teddy to set up Start Parameter under
Base Layer.Run. Set the Parameter Name field to Speed and leave the Parameter
Type field to Float and the Parameter Value field to 1. Then, do the same for Base
Layer.Idle, except set the Parameter Value field to 0. The new settings should look
like this:

This sets up the animation. Now we can set up the behavior tree for Teddy.
Create a new behavior tree called WalkTeddy and recreate the behavior tree
from WalkPenelope.

With RAIN, you can copy and paste nodes from one part of a tree
to another and from one tree to a different one.

Animation and AI

[124]

From the animate node's perspective, it doesn't matter whether the animator
is Mecanim or not, so we only need to make a few simple changes. Change the
waypoint patrol node's waypoint route to "TeddyRoute". Then, in the animate run
node, set Animation State to Base Layer.Run and set animation idle's Animation
State field to Base Layer.Idle. And one important change for Mecanim is to set the
animate node's Repeat field to Forever. The following screenshot shows the new
behavior tree:

If you run the demo now, you'll see Teddy running along the path and then be in
the idle state at the end, just like Penelope. But there is one problem: Teddy is running
way too fast. The reason is that RAIN is moving the model and the animation system
is also applying movement to the character, making Teddy move fast artificially. To fix
this, go back to the Animator component of Teddy and uncheck Apply Root Motion.
This will keep the animation system from applying movement and Teddy will now
run at a better rate. Running the demo now, Teddy will run and idle at the end.

Additional Mecanim nodes
Besides using the animate node for Mecanim, RAIN has additional nodes specifically
for Mecanim, mostly useful in special cases. The nodes are as follows:

•	 Mecanim IK: This node is used to modify the inverse kinematics on part
of a model

•	 Mecanim State: This node is used to check the animation controller state
•	 Mecanim Parameter: This node is used to change a Mecanim parameter

These are less-used nodes but are good to know.

Chapter 10

[125]

Summary
In this chapter, we looked at how to integrate animation with our AI. We saw how
to use RAIN's animate node to change the character animation from its behavior tree
with both Unity's legacy animation system and Mecanim. In the next chapter, we
will go back to discussing character movement across a scene. We will look at more
advanced uses of navigation meshes and how to create them in more detail to give
our characters better movement.

Advanced NavMesh
Generation

Navigation mesh generation is one of the most important topics in game AI. We
have been using navigation meshes in almost all the chapters in this book, but
haven't looked at them in detail. In this chapter, we will provide a more detailed
overview of navigation meshes and look at the algorithm used to generate them.
Then, we'll look at different options of customizing our navigation meshes better.

In this chapter, you will learn about:

•	 The working of navigation mesh generation and the algorithm behind it
•	 Advanced options for customizing navigation meshes
•	 Creating advanced navigation meshes with RAIN

An overview of a NavMesh
To use navigation meshes effectively, also referred to as NavMeshes, the first
things we need to know are what exactly navigation meshes are and how they are
created. A navigation mesh is a definition of the area an AI character can travel to
in a level. It is a mesh, but it is not intended to be rendered or seen by the player;
instead, it is used by the AI system. A NavMesh usually does not cover all the area
in a level (if it did, we wouldn't need one) as it's just the area a character can walk.
The mesh is also almost always a simplified version of the geometry. For instance,
you could have a cave floor in a game with thousands of polygons along the bottom
that show different details in the rock; however, for the navigation mesh, the areas
would just be a handful of very large polygons that give a simplified view of the
level. The purpose of a navigation mesh is to provide this simplified representation
to the rest of the AI system as a way to find a path between two points on a level
for a character. This is its purpose; let's discuss how they are created.

Advanced NavMesh Generation

[128]

It used to be a common practice in the games industry to create navigation meshes
manually. A designer or artist would take the completed level geometry and create
one using standard polygon mesh modeling tools and save it. As you might imagine,
this allowed for nice, custom, efficient meshes, was also a time sink, as every time
the level changed, the navigation mesh would need to be manually edited and
updated. In recent years, there has been more research in automatic navigation
mesh generation.

There are many approaches to automatic navigation mesh generation, but the most
popular is Recast, originally developed and designed by Mikko Monomen. Recast
takes in level geometry and a set of parameters that define the character, such as
the size of the character and how big of steps it can take, and then does a multipass
approach to filter and creates the final NavMesh. The most important phase of this is
voxelizing the level based on an inputted cell size. This means the level geometry is
divided into voxels (cubes), creating a version of the level geometry where everything
is partitioned into different boxes called cells. Then, the geometry in each of these cells
is analyzed and simplified based on its intersection with the sides of the boxes and is
culled based on things such as the slope of the geometry or how big a step height is
between geometry. This simplified geometry is then merged and triangulated to
make a final navigation mesh that can be used by the AI system.

The source code and more information on the original
C++ implementation of Recast is available at https://
github.com/memononen/recastnavigation.

Advanced NavMesh parameters
Now that we know how navigation mesh generations works, let's look at the
different parameters you can set to generate them in more detail.

We'll look at how to do these parameters with RAIN using the following steps:

1.	 Open one of our previous scenes or create a new one with a floor and
some blocks for walls.

2.	 Then, go to RAIN | Create NavMesh. Also, right-click on the RAIN menu
and choose Show Advanced Settings. The setup should look something
like the following screenshot:

https://github.com/memononen/recastnavigation
https://github.com/memononen/recastnavigation

Chapter 11

[129]

The NavMesh setup

Now let's look at some of the important parameters:

°° Size: This is the overall size of the navigation mesh. You'll want
the navigation mesh to cover your entire level and use this parameter
instead of trying to scale up the navigation mesh through the Scale
transform in the Inspector window. For our demo here, set the Size
parameter to 20.

°° Walkable Radius: This is an important parameter to define the
character size of the mesh. Remember, each mesh will be matched to
the size of a particular character, and this is the radius of the character.
You can visualize the radius for a character by adding a Unity Sphere
Collider script to your object (by going to Component | Physics |
Sphere Collider) and adjusting the radius of the collider.

°° Cell Size: This is also a very important parameter. During the voxel
step of the Recast algorithm, this sets the size of the cubes to inspect
the geometry. The smaller the size, the more detailed and finer the
mesh, but the longer the processing time for Recast. A large cell size
makes computation fast but loses detail.

Advanced NavMesh Generation

[130]

For example, here is a NavMesh from our demo with a cell size of 0.01:

You can see the finer detail here. The following is the navigation mesh generated
with a cell size of 0.1:

Chapter 11

[131]

Note the difference between the two screenshots. In the former, walking through
the two walls lower down in our picture is possible, but in the latter with a larger cell
size, there is no path even though the character radius is the same. Problems like
this become greater with larger cell sizes. The following is a navigation mesh with
a cell size of 1:

As you can see, the detail becomes jumbled and the mesh itself becomes
unusable. With such differing results, the big question is how large should a cell
size be for a level? The answer is that it depends on the required result. However,
one important consideration is that as the processing time to generate one is done
during development and not at runtime, even if it takes several minutes to generate
a good mesh then it can be worth it to get a good result in the game.

Setting a small cell size on a large level can cause mesh processing
to take a significant amount of time and consume a lot of memory.
It is a good practice to save the scene before attempting to generate
a complex navigation mesh.

Advanced NavMesh Generation

[132]

The Size, Walkable Radius, and Cell Size parameters are the most important
parameters when generating the navigation mesh, but there are more that are
used to customize the mesh further:

•	 Max Slope: This is the largest slope that a character can walk on. This is
how much a piece of geometry that is tilted can still be walked on. If you
take the wall and rotate it, you can see it is walkable:

The preceding is a screenshot of a walkable object with a slope.

•	 Step Height: This is how high a character can step from one object to another.
For example, if you have steps between two blocks, as shown in the following
screenshot, this would define how far in height the blocks can be apart and
whether the area is still considered walkable:

Chapter 11

[133]

This is a screenshot of the navigation mesh with the step height set to connect
adjacent blocks.

•	 Walkable Height: This is the vertical height that is needed for the character
to walk. For example, in the previous screenshot, the second block is not
walkable underneath because of the walkable height. If you raise it to at least
one unit off the ground and set the walkable height to 1, the area underneath
would become walkable:

You can see a screenshot of the navigation mesh with the walkable height set to
allow going under the higher block.

These are the most important parameters. There are some other parameters related to
the visualization and to cull objects. We will look at culling more in the next section.

Culling areas
Being able to set up areas as walkable or not is an important part of creating a level.
To demo this, let's divide the level into two parts and create a bridge between the
two. Take our demo and duplicate the floor and pull it down. Then transform one
of the walls to a bridge. Then, add two other pieces of geometry to mark areas that
are dangerous to walk on, like lava.

Advanced NavMesh Generation

[134]

Here is an example setup:

This is a basic scene with a bridge to cross.

If you recreate the navigation mesh now, all the geometry will be covered and the
bridge won't be recognized. To fix this, you can create a new tag called Lava and
tag the geometry under the bridge with it. Then, in the navigation meshes' RAIN
component, add Lava to the unwalkable tags. If you then regenerate the mesh, only
the bridge is walkable. This is a screenshot of a navigation mesh with polygons that
are under the bridge culled out:

Chapter 11

[135]

To see this in action, create a new ship and add a target to the scene on different
sizes of the bridge. Set the ship's behavior tree to have a move node with the target,
as shown in the following screenshot:

The preceding screenshot shows a basic move node to a navigation point behavior tree.

If you run the demo now, you will see the ship cross the bridge:

The preceding screenshot shows the ship crossing the bridge to go to its navigation
target. Using layers and the walkable tag, you can customize navigation meshes.

Advanced NavMesh Generation

[136]

Multiple navigation meshes
So far, we have only looked at setting up a single navigation mesh in a scene,
but navigation meshes are designed to be per character and not just one for the
entire scene. We need multiple navigation meshes, but there is no field to directly
set which navigation mesh to use for a character. Instead, RAIN uses a field called
graph tags to correlate meshes with characters. To see how this works, let's add a
second bridge to our scene that is larger and a second ship with double the scale.
Here is an example setup:

This is a demo scene setup with an additional larger ship and larger bridge.
Regenerating the mesh gives us a path over both bridges:

Chapter 11

[137]

This is a navigation mesh with a smaller walkable radius that can cross both bridges.

Any character using this mesh will be able to go across either bridge. For our larger
character to not be able to cross the smaller bridge, we need to generate another mesh
with a smaller Walkable Radius. Create a second navigation mesh in the scene
(RAIN | Create NavMesh). Rename the first navigation mesh to Navigation Mesh
Small and the new one to Navigation Mesh Large. In the large one, set the Walkable
Radius parameter to 1.75. Generate this mesh and see how it goes over the second
bridge but not the first:

It is a navigation mesh with a larger walkable radius that can cross one bridge.

Then, to match the meshes with the characters for Navigation Mesh Small,
make sure that you are in Advanced Settings and in Graph Tags, add an
element called Small Ship.

Advanced NavMesh Generation

[138]

The following is a screenshot of a navigation mesh with a graph tag:

Do the same for Navigation Mesh Large with the Graph Tags field set to Large
Ship. Then, for the smaller ship character AI, go to the Navigator tab and set its
Graph Tags field to Small Ship:

Chapter 11

[139]

This is a ship navigator with a graph tag setup.

Do the same with Graph Tags for larger ships. With the graph tags matched, if you
run the demo now, the larger ship will not take the smaller bridge and go through
the smaller one:

This is a demo with two ships. Only the larger ship can cross the larger bridge.

Summary
Navigation meshes are an important part of game AI. In this chapter, we looked at
the different parameters to customize navigation meshes. We looked at things such as
setting the character size and walkable slopes and discussed the importance of the cell
size parameter. We then saw how to customize our mesh by tagging different areas as
not walkable and how to set up multiple navigation meshes for different characters.

We now have all the essential skills we need to create AI in Unity. We've seen how to
have a character move, navigate, and sense other characters in our game scenes as well
as how to set up behavior trees to make decisions and integrate animation. We also
looked at different AI use cases, such as crowds, driving, and had our characters attack
and change behavior based on game events. This covers a lot about AI, but game AI
is a huge and much studied topic and there is much more to learn. By doing some
searching, you'll find that there are many online articles, textbooks, and conference
talks that you can study to make even more advanced AI.

Index
A
actions, RAIN

Animate and Mechanism 31
Choose patrol path and Choose path

waypoints 30
Custom action 31
Detect 31
Evaluate expression 31
Play audio 31
Wait for timer 31
Yield 31

additional features, driving AI
about 113
brake zones, adding 113
drift zones, adding 113
other AI systems, integrating with 114

additional Mecanim nodes
about 124
Mecanim IK 124
Mecanim Parameter 124
Mecanim State 124

advanced audio sensor settings 70
advanced NavMesh parameters 128-133
advanced visual sensor settings 69
AI adapt

about 81
overview 81, 82

AI animation demo
about 116, 117
additional Mecanim nodes 124
animate node, using 119, 120
Mecanim demo 121-124
RAIN animations, configuring 117, 118
RAIN demo 121-124

AI solutions
comparing 16, 17

AI systems
integrating with 114

animate node
using 119, 120

animation
integrating, with AI 115
overview 115, 116

animation parameters
Animation Clip 118
Fade in Time 118
Fade Out Time 118
State Name 118
Wrap Mode 118

ANT-Op 64, 65
areas

culling 133-135
aspects

about 69
setting up, in RAIN 72, 73

attack AI 93
attack demo 94, 95
audio sensor

properties 70
Avatar 58

B
behavior tree

about 8, 30
building, in React AI 49
demo, creating 32-44

Boids 55
brake zones

adding 113

[142]

built-in NavMesh system
using 108-110

C
center of mass (COM) 107
Character Controller 10
chase and attack demo 96-99
cover AI

creating 99-102
crowd chaos

overview 45
crowd control 55, 56
custom wander scripts, RAIN AI 52, 53

D
decision nodes

Constraint 32
Custom decision 32
Iterator 31
Parallel 31
Priority 31
Selector 31
Sequential 31

demo, behavior tree
creating 32-44

demo, RAIN
about 84, 85
game events, reacting to 85-87
large game events, adding 90, 91
motor, using 87-89

drift zones
adding 113

driving
about 105, 106
obstacles, adding to 111-113

E
Execute method 41

F
Fame Crowd Simulation API

about 56
group, setting up 59-61
obstacles, adding to 61

scene, setting up with 57, 58
vector fields, adding to 63

Fame scene setup
with Crowd Manager object 58

Finite State Machines (FSMs) 30
flocking and steering systems

URL 56
FlockMemberScript 58
Flock Type 58
found variable 53

G
Go method 11
graph tags 136
group

setting up 59-61
group attacks 102

H
HangAround function 48

M
Mecanim demo 121-124
Mecanim Example Scenes v1.0 116, 121
motors

fields 83
types 82

MoveToTarget function 48
multiple navigation meshes 136-139

N
Navigation tab, built-in NavMesh system

Bake 109
Layers 109
Object 109

navigation targets
setting up 100

NavMesh
about 8, 127, 128
need for 127, 128

NavMeshAgent 110
NavMesh parameters

Cell Size 129
Max Slope 132

[143]

Size 129
Step Height 132
Walkable Height 133
Walkable Radius 129
with RAIN 128

NPCs
about 5
putting, in RAIN demo 54

Num Agent 58

O
obstacles

adding, to driving 111-113
adding, to Fame Crowd Simulation API 61
setup, for ship group 62

P
pathfinding 5, 6
patrolling 19
Penelope Complete Project v1.1 116

Q
Quick Path AI 6-8, 17-21

R
RAIN AI

about 12-17, 23-27, 50-52
aspects, setting up 72, 73
basic motor 82
character controller 82
custom wander scripts 52, 53
demo 84, 85
Mecanim controller 82
motors 82
NavMesh parameters, using 128, 129
NPCs, putting in RAIN demo 54
senses 68
senses, using with 71, 72
visual sensor, setting up 74, 75

RAIN animations
configuring 117, 118

RAIN demo
about 121-124
NPCs, putting in 54

RAIN node types 30, 31
RAIN sensor filters 79
Reactable 10
React AI

about 8-11, 17, 21-23, 46, 91, 92
behavior trees, building 49
importing, from Asset Store 9-11
scene, setting up with 46-48
wandering characters, setting up with 50

Recast
about 128
URL 128

Rival Theory site
URL 12

S
scene

setting up, with Fame Crowd
Simulation API 57, 58

setting up, with React AI 46-48
senses

setting up 68
senses, using with RAIN

about 71
activities, changing 75-78
aspects, setting up in RAIN 72, 73
RAIN sensor filters 79
visual sensor, setting up in RAIN 74, 75

sensing
overview 67-69

Smart Car AI demo
about 107
built-in NavMesh system, using 108-110
obstacles, adding to driving 111-113
Unity test scene, setting up 107, 108
waypoints, setting up 110, 111

Smart Car vehicle
setting up 106, 107

Start method 10
steering algorithms

implementing 56

T
TagOptions 47
tasks 30

[144]

U
Unity test scene

setting up 107, 108

V
vector fields

adding, to Fame Crowd Simulation API 63
visual sensor

properties 70
setting up, in RAIN 74, 75

visual sensor settings
viewing 69

W
wandering characters

setting up, with React AI 50
waypoints

setting up 110, 111

Thank you for buying
Unity AI Programming Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Unity 4.x Game AI Programming
ISBN: 978-1-84969-340-0 Paperback: 232 pages

Learn and implement game AI in Unity3D with a lot
of sample projects and next-generation techniques to
use in your Unity3D projects

1.	 A practical guide with step-by-step instructions
and example projects to learn Unity3D scripting.

2.	 Learn pathfinding using A* algorithms as well
as Unity3D pro features and navigation graphs.

3.	 Implement finite state machines (FSMs),
path following, and steering algorithms.

Mastering Unity 2D Game
Development
ISBN: 978-1-84969-734-7 Paperback: 474 pages

Become an expert in Unity3D's new 2D system,
and then join in the adventure to build an RPG
game framework!

1.	 Learn the advanced features of Unity 2D
to change and customize games to suit
your needs.

2.	 Discover tips and tricks for Unity2D's
new toolset.

3.	 Understand scripting, deployment, and
platform integration with an example at
each step.

Please check www.PacktPub.com for information on our titles

Unity 4 Game Development
HOTSHOT
ISBN: 978-1-84969-558-9 Paperback: 466 pages

Develop spectacular gaming content by exploring
and utilizing Unity 4

1.	 Understand the new 2D Sprite and Immediate
Mode GUI system (OnGUI()/GUI class) in Unity
4, and the difference between 2D and 3D worlds,
with clear instruction and examples.

2.	 Learn about Mecanim System, AI
programming, editor script, and Character
Controller programming including scripting
and how to adapt it to your needs.

3.	 Create a Menu for an RPG Game—Add
Powerups, Weapons, and Armor.

Unity 4.x Game Development by
Example: Beginner's Guide
ISBN: 978-1-84969-526-8 Paperback: 572 pages

A seat-of-your-pants manual for building fun, groovy
little games quickly with Unity 4.x

1.	 Learn the basics of the Unity 3D game
engine by building five small, functional
game projects.

2.	 Explore simplification and iteration
techniques that will make you more
successful as a game developer.

3.	 Take Unity for a spin with a refreshingly
humorous approach to technical manuals.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Pathfinding
	Overview
	Quick Path AI
	React AI
	RAIN AI
	Comparing AI solutions
	Summary

	Chapter 2: Patrolling
	Quick Path AI
	React AI
	RAIN AI
	Summary

	Chapter 3: Behavior Trees
	Overview of behavior trees
	RAIN node types
	The behavior tree demo
	Summary

	Chapter 4: Crowd Chaos
	Overview of crowd chaos
	React AI
	Setting up a scene with React
	Building behavior trees in React
	Setting up wandering characters with React

	RAIN AI
	RAIN AI custom wander scripts
	Putting NPCs in the RAIN demo

	Summary

	Chapter 5: Crowd Control
	An overview of crowd control
	The Fame Crowd Simulation API
	Setting up a scene with Fame
	Setting up a group
	Adding obstacles to Fame
	Adding vector fields to Fame

	ANT-Op
	Summary

	Chapter 6: Sensors and Activities
	An overview of sensing
	Advanced visual sensor settings
	Advanced audio sensor settings

	Using senses with RAIN
	Setting up aspects in RAIN
	Setting up a visual sensor in RAIN
	Changing activities based on sensing
	RAIN sensor filters

	Summary

	Chapter 7: Adaptation
	An overview
	RAIN's demo
	Reacting to game events
	Using RAIN's motor directly
	Adding large game events

	The React AI
	Summary

	Chapter 8: Attacking
	Overview of attack AI
	The attack demo
	The chase and attack demo
	Creating cover AI
	Group attacks
	Summary

	Chapter 9: Driving
	An overview of driving
	Setting up a Smart Car vehicle
	The Smart Car AI demo
	Setting up a Unity test scene
	Using Unity's built-in NavMesh system
	Setting up waypoints
	Adding obstacles to driving

	Additional features
	Adding brake zones and drift zones
	Integrating with other AI systems

	Summary

	Chapter 10: Animation and AI
	An overview of animation
	AI animation demo
	Configuring RAIN animations
	Using the animate node
	RAIN and the Mecanim demo
	Additional Mecanim nodes

	Summary

	Chapter 11: Advanced NavMesh Generation
	An overview of a navigation mesh
	Advanced NavMesh parameters
	Culling areas
	Multiple navigation meshes
	Summary

	Index

