

Unity 2D Game
Development
Cookbook

Over 50 hands-on recipes that leverage the features of
Unity to help you create 2D games and game prototypes

Claudio Scolastici

BIRMINGHAM - MUMBAI

Unity 2D Game Development Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2015

Production reference: 1120215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-359-4

www.packtpub.com

www.packtpub.com

Credits

Author
Claudio Scolastici

Reviewers
Marcieb Balisacan

Si Fleming (PhD)

Marcin Kamiński

Pranav Paharia (Game Nick: Fi.eol)

Robin Petersson

Commissioning Editor
Akram Hussain

Acquisition Editor
Subho Gupta

Content Development Editor
Sumeet Sawant

Technical Editor
Utkarsha S. Kadam

Copy Editors
Gladson Monteiro

Merilyn Pereira

Vikrant Phadke

Project Coordinator
Danuta Jones

Proofreaders
Simran Bhogal

Stephen Copestake

Maria Gould

Ameesha Green

Paul Hindle

Indexer
Tejal Soni

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

About the Author

Claudio Scolastici is an Italian game designer with a background as a researcher in the
fields of psychology, artificial intelligence, and cognitive science.

He is employed by Italian game developer SpinVector as Technical Game Designer and
Unity specialist.

In November 2013, he released a book titled Mobile Game Design Essentials for
Packt Publishing, as well as tutorials about AI modeling and scripting at Digital-Tutors.

To those who never told me to look elsewhere...

About the Reviewers

Marcieb Balisacan is an independent game developer, designer, and producer working
in the Philippines. With a background in computer science and multimedia, and more than
twelve years experience in development in the games industry, he has been releasing games
for various platforms and mobile devices. He has been previously invited as a technical
reviewer in publications from Packt Publishing covering game design and development topics
using CryEngine and Unity. He has cofounded a game development studio startup, Full Mana
Studios, and is the Lead Game Engineer at Synergy88 Studios, in which he is leading the
design and development of computer games.

Marcieb would like to acknowledge his newborn son, Aedan Chord, who kept
him awake during the review of this book and inspired him to move forward.

Si Fleming (PhD) is a senior engineer in the games industry with a career spanning over
a decade. He holds a PhD in computer science from the University of Sussex where his
research focused on distributed systems, ad hoc social networks, q&a, security, and
privacy. Dr. Fleming has taken part in game jams, including #OneGameAMonth,
and is currently working on several indie game projects.

Marcin Kamiński is working for Artifex Mundi as a senior programmer and also owns his
company Digital Hussars. Previously, he has worked for CI Games and Vivid Games. His main
fields of expertise are artificial intelligence and network programming. For 14 years, he helped
develop great games for PC, consoles, and mobiles.

Marcin was also the reviewer of Unity iOS Essentials, Packt Publishing.

Pranav Paharia is a game designer and developer with more than 2 years of experience
and expertise in technologies such as Unity3D and Cocos2d-x. He has experience working
with numerous game technologies such as RPG Maker, XNA Game Studio, Construct 2, and
more. He is proficient and passionate about gameplay and graphics programming. As well as
coding games, he likes to spend time on his own prototypes.

His passion for gaming comes from being a hardcore gamer with a true e-sports spirit. He has
spent over 6 years playing Counter-Strike, and has participated in many tournaments. He is
very dedicated to gaming and feels it’s the proudest part of his life.

He finished his Bachelor's degree in information technology from VIT University, Vellore,
where he was inspired to work on game development technologies. Determined to carry on
his passion and turn it into his profession, he then joined DSK Supinfocom International
Campus where he opted for the video game programming course. He spent a year in various
endeavours of designing and developing games before joining an indie game studio where
he worked on award-winning Song of Swords—a 2D RPG game showcased in NASSCOM GDC
2013. He also worked on 3D mobile games such as Chotta Bheem Laddoo Runner, Fish Gone
Mad, You Are a CEO, and more.

As well as games, he sometimes likes to work on other aspects of game development,
such as designing game loops, user acquisition strategies, and monetization models,
and content writing.

Being a game enthusiast, Pranav is always interested in new game technologies and how it
brings excitement to the lives people. You can contact him at pranavpaharia@hotmail.com
or visit his portfolio link: http://pranavpaharia.wix.com/portfolio.

Robin Petersson is a level designer from Sweden. Being a passionate gamer, he has
focused on game development almost all his life. He started out as a Flash developer, learning
ActionScript 3 and making small indie games for the Web. As a level designer, he uses both
his artistic skills as well as his scripting knowledge to create unbelievable gaming experiences
for players all around the world. If you are interested in Robin’s work, please visit his portfolio
at http://iamrobin.se/.

http://pranavpaharia.wix.com/portfolio
http://iamrobin.se/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital book
library. Here, you can search, access, and read Packt’s entire library of books.

Why subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/

Table of Contents
Preface	 1
Chapter 1: Importing 3D Models and Animations	 15

Introduction	 15
Setting up a scene in Maya	 16
Using groups to rotate FBX files	 20
Exporting FBX files from Maya 	 22
Configuring imported FBX files in Unity	 26
Exporting animations	 29
Configuring imported animations in Unity Inspector	 32

Chapter 2: 2D Assets for Unity	 39
Introduction	 39
Importing textures and setting them to Inspector	 42
Configuring transparency	 45
Creating materials	 48
Setting materials' names in Maya	 53
Setting the ambient light in Unity	 55
Texture atlases	 57
Animated materials	 62

Chapter 3: Animating a Game Character	 67
Introduction	 67
Creating the animation tree	 69
Dealing with transitions	 73
Coding the Boolean-based transitions	 77
Working with float parameters	 81
Coding the float-based transitions	 84
Creating Blend Tree	 86
Animation layers – creating masks	 89
Animation layers – adding a second animation layer	 94

ii

Table of Contents

Chapter 4: Taking Control	 99
Introduction	 99
Creating a bumped material	 100
Importing packages	 104
Setting the Character Controller	 107
Adding Rigidbody	 111
Coding physics controls	 114
Collision management	 117

Chapter 5: Building Up the Game Level	 123
Introduction	 123
Creating Prefabs	 125
Coding a scrolling background	 129
Adding platforms	 132
Programming the character controls	 137
Setting up an Animator	 142
Adding collectibles to the game level	 148
Camera setup and controls	 153

Chapter 6: Game Scenes and the Graphic Interface	 157
Introduction	 157
The game manager	 159
Loading a new scene at runtime	 163
Setting game exit conditions – character death	 166
Setting game exit conditions – goals met	 168
Using OnGUI() to display game data	 169
Display the number of collected items	 172
Game Won and Game Over	 176

Chapter 7: Improving Your Gaming Experience	 179
Introduction	 179
Importing audio clips	 180
The Audio Source component	 183
Coding audio	 186
Particle systems	 187
Instantiating a particle system at runtime	 194
Game options – volume level	 196
Game options – toggling audio	 198
Playing videoclips in the scene	 199

iii

Table of Contents

Chapter 8: Sprites, Spritesheets, and 2D Animation in Unity	 203
Introduction	 203
Setting up sprites	 204
Multiple sprites	 208
Animating with spritesheets	 213
Preparing the character sprites	 218
Parenting sprites	 224
Keyframe sprite animation	 228

Index	 235

iv

Table of Contents

Preface
There was a time when building games was a cumbersome and almost exclusive activity, as
you needed to program your own game engine or pay a good amount of money to license one.

Thanks to Unity, creating video games today is still a cumbersome activity, though less
exclusive and expensive!

With this book, we aim to provide you with a detailed guide to approach the development of
an actual 2D game with Unity. As it is a complex process that requires several operations to
be performed, we will do our best to support you at every step by providing all the relevant
information to help you successfully make games with Unity.

Packt cookbooks offer knowledge in the form of recipes that describe individual tasks and
how to perform them. This way, you are provided with a quick-reference guide that you can
read in whichever order you may see fit for your actual development needs.

We thus encourage you to freely move back and forth between chapters to take full advantage
of the flexible structure of cookbooks.

Enough of the premises, let's start by taking a look at the Unity interface!

The goal
In the last decade, a large section of the game development industry moved back to its
garage roots, so to say, and opened its arms to embrace small groups of very motivated
people who want to make games. The revolution of (almost) free 3D engines such as Unity
and UDK allowed these small groups with no money to invest to give birth to their gameplay
ideas and challenge the market by building up actual, professional games.

Preface

2

With this book, we plan to provide you with a detailed guide to approach game development
with Unity. As game making is a complex process that requires several operations to be
performed, we will do our best to support you in each step, providing all the relevant
information to help you successfully move through the creation of your next game with Unity.

This book provides knowledge in the form of recipes that describe individual tasks and the
steps required to perform them. This way, you are provided with a quick-reference guide that
can be checked in any order you see fit for your actual development needs.

We thus encourage you, the readers, to freely move back and forth between chapters and
take full advantage of the flexible structure of this book.

The mean
As a reference template to help you better understand the practical operations explained
throughout this book, we plan to create a game prototype, featuring 2D gameplay with
3D graphics.

We believe this solution nicely fits two distinct needs: on one side, 2D gameplay is lighter
to prototype, allowing us to describe the many features of Unity without the burdens of
3D mathematics.

On the other side, using 3D graphics (specifically for the game character and other game
objects), we have the opportunity to discuss very important Appendix features of Unity, which
would go unnoticed elsewhere. In the end, Unity is an engine to make 3D games, mainly!

The interface
With regard to the operations described and the pace we move between topics at, we assume
you are already familiar with the Unity interface and its basic operations. Anyway, for those
of you who may be a bit rusty with the Unity pipeline, let's begin our journey with a quick look
at the Unity interface and the operations required to start a new project and configure the
folders directory.

Preface

3

The preceding image shows the layout we are used to working with in Unity. Let's give a quick
description of the main panels and windows available:

ff Main Menu: This is where you Load\Save projects and game scenes, create and
import new assets, and create game objects of different types to be added to the
game scene. This is also the place where you add specific components to game
objects to improve their features.

Finally, this is where you configure the Render and Project Settings and where you
configure the Build Settings for your games.

ff Hierarchy panel: This panel lists all the objects that have been added to your game
scene so far. Here you can select a specific element to be manipulated in the game
scene or add components to improve its behavior and capabilities.

Preface

4

ff Project panel: This window lists the project folders and their contents. If you want
your Unity project to keep nice and clean, we suggest you make extensive use of
folders, by adding one specifically for each type of game asset (models, animations,
textures, audio clips, animator controllers, and so on) you plan to have in your game.
This way, whenever you need to access a certain asset, you know exactly where to
search for it!

The following image shows an example folder directory of a project of ours:

ff Editor window: This is the main Unity panel, the one that is used to actually
assemble the game. Any GameObject that is required by your game must at
some point be instantiated (by physical drag and drop or by code) here!

ff Game scene: This panel shows what the game looks like from the player's
perspective. It displays the output of the main camera from the game scene and it
is very useful to actually test what's happening, especially when you are studying
specific graphic solutions or the disposition of GUI elements on the screen.

ff Inspector panel: This panel allows you to edit the assets available in the Project
panel. It contains a lot of functionality, and we will often refer to the Inspector panel
and the object properties displayed here, especially upon importing new assets
(Models, Animations, Textures, and Audio clips) in our project.

If this super-quick description doesn't suffice, we recommend you go online and check for a
beginner's tutorial about Unity. There are plenty available, both for free and for a price (for
example on www.digitaltutors.com). Unity itself offers plenty of resources; you could
start with this one: http://unity3d.com/learn/tutorials/modules/beginner/
editor.

www.digitaltutors.com
http://unity3d.com/learn/tutorials/modules/beginner/editor
http://unity3d.com/learn/tutorials/modules/beginner/editor

Preface

5

The words
As mentioned, we assume you are familiar with this interface and know how to navigate
between panels. We also assume that you have a clear understanding of the basic
terminology of making games: you know what a mesh or a material is, you know what we
mean when we talk about animation clips and timelines, you know what a collision or a
particle system is and what GUI stands for...don't you?

The assistants
As Unity is not provided with an embedded editor to create graphic contents (both 2D and 3D)
or audio, we look to third-party software to accomplish these tasks.

With regard to graphics, we assume Photoshop (CS6) as the reference software for 2D images
and Maya (2014) as our 3D editor of choice. These are both worldwide industry standards,
and we believe that by taking this decision, we are actually helping you get familiar with tools
that, sooner or later, you will have to confront in game development.

Still, as this book focuses on Unity, we take care of providing you with the required graphic
assets to follow the recipes, as we cannot afford to provide you with a guide to powerful
software such as Photoshop, Maya, or Blender. We encourage you to learn at least the basic
operations with these software, as it will help you better deal and take advantage of the power
of the Unity engine.

Start a new project in Unity
We are now ready to start a new project and deal with the Unity project directory.

When starting a new project in Unity, we are asked to set a name for it and add what we need.
Follow us in the next recipe, which shows you how to perform this fundamental task.

Getting ready
Assuming you have already installed Unity, you are nicely ready to proceed.

How to do it...
1.	 Launch Unity. The Project Wizard window opens to start a new project.

2.	 In the NewProject tab, select a destination directory and type a name for the project.
Our choice is Unity_Cookbook.

Preface

6

3.	 No need to flag any packages from the list. We will import packages as we need them
through the development process. Simply hit Create. You can look at the following
image for reference:

How it works...
Well, this is fairly simple. Unity sets a new project in the chosen destination directory, creating
a file structure to store anything required to run the project, edit it, and upload additional
contents to be used in the scene.

Adding a folder to the project directory

Getting ready
We just need a new open project to perform this task, so you should be ready from our
last recipe.

Preface

7

The file structure
We are almost ready to begin working on our project. We would just like to have a look
at the structure of the directory we are using for this project and explain the criteria to
effectively manage it.

The following screenshot displays the structure of the directory with an example list of folders:

As you can see, we have a number of folders, one for every important asset that we are
planning to use for the game. We prefer having all different types of assets well separated in
a reasonable and meaningful number of folders, so we always know where to search for what.

For now, we just have one folder for the coding, one for the interface elements, one to save
our game scenes, and the last one for 2D textures.

If you think we don't have enough folders, well, you are totally right. But don't worry, the list is
going to grow very soon, starting with our next recipe!

With this next recipe, we'll show you how to add a folder to our project directory. Stick with us!

Preface

8

How to do it...
1.	 In the Project panel, right-click anywhere in the window and select Create\Folder,

as shown in the following screenshot:

2.	 Type a name for this folder. We recommend the name Models, so we can use this
folder to import Models by following the recipes of the next chapter:

Preface

9

How it works...
Unity is extremely flexible with regard to adding\moving folders\files into its Project structure.
Folders can be equally created inside or outside the software interface, and files can be both
imported or simply copied from one folder to another outside of the software environment.
When the focus gets back to Unity, it automatically updates changes we made. Thanks Unity,
we appreciate that!

What this book covers
Making a game from scratch is no easy task. Games, even those that look basic at first
glance, are a collection of elements, or assets, belonging to different fields of practice and
requiring distinctive skills to be assembled.

With this book, we aim to provide you with what you need to know to make games with Unity.

Each chapter covers a single topic and provides a set of practical recipes to learn how things
are actually done in Unity.

The following is the list of topics we cover with this cookbook:

Chapter 1, Importing 3D Models and Animations, deals with the process of exporting 3D
models from Maya into Unity and the operations required to correctly set up imported FBX
with models and animations in Unity Inspector.

Chapter 2, 2D Assets for Unity, explains how textures are imported in Unity, how to set them
up, and what a texture atlas is. It also deals with materials and how to add lights to a scene.

Chapter 3, Animating a Game Character, discusses Mecanim, the built-in tool to animate
characters in Unity, introduced with Unity 4. It explains how to import and configure animation
clips, how to create transitions between them, and how to blend animations.

Chapter 4, Taking Control, shows how to improve the graphic appeal of your character by
adding a normal map to its material, and it also introduces the topic of game controls,
explaining the difference between the Character Controller and the Rigidbody components.

Chapter 5, Building Up the Game Level, shows how to create the assets to build up an actual
game level made of platforms and gaps for the character to jump. We also implement the
game controls and improve the gameplay by adding collectible game objects.

Chapter 6, Game Scenes and the Graphic Interface, explains how multiple scenes are added
to a game. We also introduce the topic of finite state machines to control the screen flow of
the game. Finally, we explain the basics to create a Graphic User Interface.

Preface

10

Chapter 7, Improving the Gaming Experience, shows you how to add audio to the prototype, by
importing and configuring audio clips. We also introduce Particle Systems and show you how
video clips can be played in the scene.

Chapter 8, Sprites, Spritesheets, and 2D Animation in Unity, deals with sprites, spritesheets,
and sprite animation. It also explains the features of the built-in Sprite Editor of Unity.

What you need for this book
As Unity is not provided with an embedded editor to create graphics (both 2D and 3D), we look
to third-party software to accomplish these tasks.

We assume Photoshop (CS6) as the reference software for 2D graphics and Maya (2014
edition) as our 3D editor of choice. These software have world-wide industry standards and
we believe that by choosing these reference software, we are actually helping you get familiar
with tools that, sooner or later, you will probably have to confront.

Still, as this book focuses on Unity and we cannot afford to also offer a guide to such powerful
and feature-rich software, we took care of providing you with the required graphic assets
required to better follow our recipes.

That said, we encourage you to learn at least the basic operations with Maya and Photoshop,
as well as any other 2D and 3D software that are popular among artists and game
developers, as this will help you to take advantage of the power of the Unity engine.

Who this book is for
This book is intended for professionals, game developers, and hobbyists who are interested in
making games with Unity.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it…, How it works…, There's more…, and See also).

To give you clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software or
any preliminary settings required for the recipe.

Preface

11

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

(public class PacktController : MonoBehaviour {):
public float horAcceleration;
 public float cruiseSpeed; //max speed when not pressing
 public float maxSpeed; //max speed while pressing
 public float actualSpeed; //speed at given time
 public float limY; //limit on y, use as mathf.abs
 public float expon; //used to smooth vert movement speed
 public float alpha; //use to tweak the vert movement
 speed

Preface

12

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: The Bumped Diffuse
shader requires two textures, as we stated before: the diffuse map for the Base color and
Normalmap for the lighting details.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

13

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output. You
can download this file from: https://www.packtpub.com/sites/default/files/
downloads/3594OT.pdf

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem

https://www.packtpub.com/sites/default/files/downloads/3594OT.pdf
https://www.packtpub.com/sites/default/files/downloads/3594OT.pdf
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Importing 3D Models

and Animations

In this chapter, we prepare the assets to build up our game prototype, starting with the
process of exporting 3D models from Maya, our 3D editor of choice, into Unity. We also take
care of correctly setting up the imported models and animations in Unity Inspector once they
get imported.

In this chapter, we will cover the following recipes:

ff Setting up a scene in Maya

ff Using groups to rotate FBX files

ff Exporting FBX files from Maya

ff Configuring imported FBX files in Unity

ff Exporting animations

ff Configuring imported animations in Unity Inspector

Introduction
When building up a game, we usually start by importing the graphics assets to actually build
up and prototype the gameplay.

In this specific case, we decided to begin with 3D models. Before importing the models,
you should take care of bringing in the textures. Feel free to switch between Chapter 1 and
Chapter 2, 2D Assets for Unity, which focuses on textures and materials. A cookbook is
specifically designed to leave the readers free to access the contents in whichever order
they prefer.

Importing 3D Models and Animations

16

We assume that you have the assets to test the operations explained throughout this book;
in case you don't, you can download the contents available on Packt Publishing website.

When importing models from a 3D software into Unity, there are several settings to be
defined: scales, source materials and textures, rigging and animations, and many others.
We will discuss the most important setting soon.

For the importing process to be fully successful, it is also important that the scene in the 3D
editor is properly set. When modeling stuff with a 3D editor for a 3D engine, it is important
that scales, lights (if available), and cameras match between the scenes, or your models won't
fit the game levels properly.

For the recipes of this chapter, we decided to pick Maya as our reference 3D editor.
We do not mean that Maya is the best software, but there are plenty of reasons for this
choice. Native Maya files are supported by Unity, and the LT version of Maya allows you
to perform "one-click-exporting" of Maya scenes directly into Unity (http://videos.
autodesk.com/zencoder/content/dam/autodesk/www/products/
autodesk-maya-lt/video/send-to-unity-fbx-export-video-1280x720.mp4).

Maya is also an industry standard for 3D artists, and it is supported by both Windows and
OS X (while 3D Studio Max, for example, isn't). You can check out 3D forums to delve into the
differences between 3D software. The following is a list of very popular forums to begin with:

ff http://forums.cgsociety.org/

ff http://www.polycount.com/forum/

ff http://www.gameartisans.org/forums/forum.php

Setting up a scene in Maya
The first point to keep in mind when setting up a scene in Maya is that the standard unit in
Maya is 1 cm, while the standard unit in Unity is 1 m So, whenever you export an FBX file from
Maya into Unity, Unity scales it down to 0.01 percent of its original size.

Another very relevant point is that Maya and Unity are affected by strange kinds of
idiosyncrasies that put them on opposing sides, with regard to what left or right and front
or bottom mean. This is not something that only happens between Maya and Unity. Many
3D software disagree about the concepts of right and up. To get an idea, have a look at the
following image, taken from Unity's forum:

http://videos.autodesk.com/zencoder/content/dam/autodesk/www/products/autodesk-maya-lt/video/send-to-unity-fbx-export-video-1280x720.mp4
http://videos.autodesk.com/zencoder/content/dam/autodesk/www/products/autodesk-maya-lt/video/send-to-unity-fbx-export-video-1280x720.mp4
http://videos.autodesk.com/zencoder/content/dam/autodesk/www/products/autodesk-maya-lt/video/send-to-unity-fbx-export-video-1280x720.mp4
http://forums.cgsociety.org/
http://www.polycount.com/forum/
http://www.gameartisans.org/forums/forum.php

Chapter 1

17

As you can see, the red arrow, representing the left-right axis in the 3D world, may point to the
left or right on different software or file formats, and the green and blue axes may switch to
alternatively point to the forward or upward directions.

With Maya and Unity, what happens is that the front in Maya is the back in Unity. So you model
the front of a character in Maya, and when you import it into Unity, it shows its back.

How do we deal with this? There's more than one option available, and turning the camera by
180 degrees in Unity is not the only one. We will show you how to deal with this problem but,
before this, we need to learn how to actually export an FBX file from Maya and add it to a Unity
scene, which is what we will do in the first recipe of this chapter.

Getting ready
For this recipe, we need a Maya scene with a 3D model, any model with at least one material
applied to it. A textured model is provided with the contents of this book.

Importing 3D Models and Animations

18

How to do it...
In this recipe, we will show you how a model is exported from Maya using the default FBX
exporter panel and how the FBX file will get imported in Unity.

1.	 Open your model in Maya.

2.	 Open the outliner panel, and from the hierarchy, select the root node of your model.
Remember that it is good practice to name the root node with a meaningful name,
such as root. It can turn out to be useful, for example, when managing the exporting
process through scripts (as shown later).

3.	 Now, in the top menu window, navigate to File | Export Selection. The Maya exporter
panel will open, as shown in the following screenshot. Don't bother with the panel on
the right-hand side with the actual settings; we will get back to it in a while.

Chapter 1

19

4.	 Be sure that FBX export is selected from the drop-down menu at the bottom.

5.	 Put a name you like in the File name field.

6.	 Click on Export Selection to save the file in your destination folder.

7.	 Now open Unity and, in the project panel, right-click and select Import New Asset….
from the menu:

8.	 Select your saved FBX file from the Explorer window that opens and click on Import.

9.	 Alternatively, you could have directly exported the FBX file from Maya into the
Assets/Models directory of your Unity project.

Importing 3D Models and Animations

20

10.	 Now select the FBX file from the project panel and drag it onto the scene. The
following screenshot shows what happens in Unity:

How it works...
The operation of exporting FBX files from Maya is simple: select the actual root node in
the hierarchy and click on the Export button. But, as you can see, unless we use some
precautions, the result of importing an FBX file from Maya is that the model is flipped by 180
degrees on the the y axis in Unity. This happens because the blue arrow that represents the z
axis in Maya points in the opposite direction in Unity. As a consequence, the model shows its
back to Unity's camera.

As we write, there are rumors that this issue is going to be solved in forthcoming Unity
versions. For now, we will provide custom solutions we have used ourselves.

Using groups to rotate FBX files
An efficient solution to dealing with the discrepancy between Maya and Unity is to act on
Maya's side and rotate the model on its y axis there. Though, as we write, this problem is
going to be solved soon by Maya LT, we offer a solution here that prevents the imported FBX
file from acting strangely once they are turned into prefabs in Unity. The idea is to use the
so-called "groups" to apply the transformations required and yet get a clean hierarchy for the
prefab to appear in Unity. Let's see how to do it.

Chapter 1

21

Getting ready
Open the scene again with the model we used before and be ready to follow our instructions.

How to do it...
In this recipe, we will show you how to use groups and hierarchies in Maya to export a model
that will not show its back once it gets imported into Unity. Have the Maya scene open on
your screen.

1.	 From the outliner panel, select the root node of your model. Be sure that the model is
at the 0,0,0 position with 0,0,0 rotation.

2.	 With root node selected, press Ctrl+G to create a group in the hierarchy.

3.	 Double-click on the newly created group name to edit it and type rot_180
(this is actually just for reference so we know what the group means).

4.	 Set a value, namely 180, for the rotation on the y axis in the Transform
Attributes panel.

5.	 With the rot_180 group selected in the hierarchy, press Ctrl+G again to create
another group. Name this group export after double-clicking on the group name
in the hierarchy.

6.	 Now you can select the export node to export the selection in order to get an FBX file
out of this model.

How it works...
By using one group for flipping the model on the y axis and another to make a selection
featuring neither rotations nor translations for the export, we made sure that the FBX file
won't have any unexpected rotation or position offsets that will affect its behavior once it
gets scripted into the code in Unity.

Importing 3D Models and Animations

22

There's more...
Another technique we will only mention here is to use your programming skills and code an
AssetPostprocessor class to handle the process automatically.

AssetPostprocessor is a class in Unity, provided with several methods to act on the
pipeline for importing assets into Unity.

What one could do is add a custom attribute to the model in Maya, something like turn me
180 degrees on the y axis when imported, and let the AssetPostprocessor class read this
attribute and perform the transformation.

You can learn more about the AssetPostprocessor class by checking the
scripting reference guide at http://docs.unity3d.com/ScriptReference/
AssetPostprocessor.html.

Exporting FBX files from Maya
Now that we are done with our first import, we can approach the many settings available in
the Maya FBX exporter panel. There are several operations that require our attention,
so follow us in our next recipe.

Getting ready
For this recipe, you just need the Maya model we used so far.

How to do it...
1.	 Open the scene with the model in Maya.

2.	 From the outliner panel, select the root node of your model. Be sure that the model is
at the 0,0,0 position with 0,0,0 rotation.

3.	 In the top menu window, navigate to File | Export Selection and the Maya exporter
panel will open.

4.	 Be sure that FBX export is selected from the drop-down menu at the bottom of
the panel.

5.	 Put a name you like in the File name field.

6.	 From the Options... panel on the right-hand side, let's examine the first group of
settings. Edit the General Options, Reference Options, and Include Options tab,
as shown in the following screenshot:

http://docs.unity3d.com/ScriptReference/AssetPostprocessor.html
http://docs.unity3d.com/ScriptReference/AssetPostprocessor.html

Chapter 1

23

7.	 Now we can move to the next group of settings. In File Type Specific Options,
make sure that the Include and Geometry settings are configured as shown in
the following screenshot:

Importing 3D Models and Animations

24

8.	 Next comes the animation-related group of properties. Since we are not
importing animations with an FBX file, unflag the Animation option entirely. This
action will disengage all the following properties (see that they are barred in the
following screenshot).

9.	 Unflag Cameras, Lights, and Embed Media; we don't need any of them either.

10.	 Flag Input Connections in the Connections tab. Refer to the following screenshot for
the last three steps:

11.	 Finally, in the Advanced Options tab, check that Units is set to Automatic.

12.	 Check that Axis Conversion is set to Up Axis: Y.

13.	 Check that FBX File Format is set to the latest Maya version available for your Maya
installation (Binary FBX 2014, as we write). Refer to the following screenshot to be
sure you have set everything correctly:

Chapter 1

25

14.	 Set a destination directory for the export, most likely the Asset\FBX directory in
your Unity project.

15.	 You can now press Export Selection to have the FBX file saved and ready to be used
in Unity.

How it works...
As you can see, there is quite a lot that can be tweaked with regard to exporting FBX files from
Maya. What we offered here was a basic outline that will do for most cases. It is very likely
that, depending on the specific need that would rise with your own project, you may need to
use different settings on specific tabs. In such cases, we suggest you to refer to the official
Unity documentation, where an entire section dedicated to exporting from Maya is available.

Anyway, at some point, you will have determined the optimal settings configuration for your
project and won't need to reset them every time. Once you get your optimal configuration,
the only change will be with regard to the Animation tab. Don't worry about it now; we'll
get to importing animations soon.

Importing 3D Models and Animations

26

There's more...
If you check Unity's reference manuals (http://docs.unity3d.com/Manual/
HOWTO-ImportObjectMaya.html), you may learn that Unity actually imports native Maya
files, which means you can directly open Maya scenes (*.mb and *.ma files) in Unity. You can
therefore ask, Why export FBX files into Unity at all?

There is more than one reason actually; one that is worth $4,000 is that FBX files are far
more shareable than native Maya files. For example, to open a Maya scene in Unity, you must
have Maya installed or the file won't open. If you expect to exchange files between people on
their own PCs, you cannot assume that each one of them will have a Maya license. It will thus
be safer to use formats that don't require additional costly software, as is the case with Maya
(almost $4,000 per license).

That said, it is still quite useful to open Maya scenes in Unity. For example, in Unity you can
immediately check the result of modifications made on a file in Maya without the need to
export an FBX file with each new edit. Also, as already stated, Maya LT is going to export FBX
file directly into Unity.

Configuring imported FBX files in Unity
Whenever an FBX file is imported into Unity, it is possible to edit some of its properties
using Unity Inspector. Usually, these are operations that are required for setting things such
as the correct scale of the model, the materials settings, as well as animations and other
animation-related settings.

The following recipe provides useful hints on correctly specifying these settings using
Unity Inspector.

Getting ready
For this recipe, we will basically resume from where we left the previous recipe. After having
exported the model from Maya, launch Unity. By default, Unity always opens up to the last
project you worked on.

How to do it...
1.	 From the FBX folder in your Assets directory, select the FBX file you just imported.
2.	 In the Inspector panel, let's begin with the Model tab. Depending on the actual unit

system you set Maya with, you may need to set Scale Factor for Unity. By default,
Unity scales down imported FBX files to one-hundredth of their original size. If you
didn't consider this when modeling the object in Maya, you may need to scale it up
in Unity Inspector. In our case, we scale the model back to its original size, setting
Scale Factor to 1.

http://docs.unity3d.com/Manual/ HOWTO-ImportObjectMaya.html
http://docs.unity3d.com/Manual/ HOWTO-ImportObjectMaya.html

Chapter 1

27

3.	 Set both Normals and Tangents to Import from the drop-down menu.

4.	 Flag the Import Materials option.

5.	 From the drop-down menu, set Materials Naming to From Model's Materials.

6.	 For completeness, check that Material Search is set to Recursive-Up, which is the
default setting.

7.	 Click on the Apply button on the bottom-right corner. Check the following screenshot
to ensure you did everything right:

8.	 We can now move to the next tab, Rig. In the Avatar Definition field, select Create
From This Model from the drop-down menu. This setting is important in order to
animate the character. What we are stating here is that we want the Rig model for
this character to be created from this actual FBX file.

Importing 3D Models and Animations

28

9.	 In the Root node field, set the root node of your model, then click on Apply. Check
the following screenshot for reference. As stated previously, we took care of naming
our root node root earlier:

10.	 The last tab is called Animations. Since we are not importing the animations of
our model with this specific FBX file, we will unflag the Import Animation option,
as shown in the following screenshot:

11.	 Click on Apply to update the setting.

Chapter 1

29

How it works...
As already said with regard to the export settings in Maya, what we provided here was a
default reference to set an FBX file imported in Unity. You may need to change some of these
settings based on specific matters related to how you modeled your object in Maya and\or
how you exported and\or planned to use it as a Unity game object.

We suggest you experiment with Inspector settings to get a wider grasp of the meaning of
each setting and refer to the Unity documentation available at http://docs.unity3d.
com/Manual/HOWTO-exportFBX.html when you have questions.

Exporting animations
It is very likely that models are enriched with animations to improve the quality of their behavior
as game objects. In the following recipe, we will see how to export animations from Maya.

Getting ready
When exporting animations, two approaches are possible. One, which we will adopt in this
book, is to keep things on separate files. With this approach, we export one FBX file for the
model, the materials, and the rigging (as we did before), and one FBX file for each individual
animation, such as idle, run, jump, and the like.

The other approach is to export everything on a single file. In this case, the exported FBX file
will consist of the model, materials, rigging, and a timeline containing the frames for the entire
animation set of the character. We will discuss this second approach later.

As usual, we took care of providing the required assets (animated Maya scenes for the model)
in case you don't have any.

How to do it...
1.	 With the root node of the animated model selected in the outliner, navigate to

File | Export Selection as usual.

2.	 Select FBX File Format in the exporting panel and name your file. If you want Unity
to automatically read the animation name when it is imported, follow the official
naming convention that requires the animation file to be named modelName@
animationName (with @ before the animation name). Assuming that we are about
to export the idle animation for our character, name the file modelName@idle.

http://docs.unity3d.com/Manual/HOWTO-exportFBX.html
http://docs.unity3d.com/Manual/HOWTO-exportFBX.html

Importing 3D Models and Animations

30

3.	 Select the destination directory for the Animation file, which should be under
Animations in your Unity project.

4.	 In the Options... panel, we need to make some adjustments to import the animation
correctly. Under the Animation tab, flag the Animation option.

5.	 In the Bake Animation field, check that Bake Animation is flagged and that the
starting and ending frame for the current animation are selected (this should be
done automatically by Maya).

6.	 In the Deformed Models field, check that all the flags are selected. These settings
may change, depending on the specific requirements of each individual model and
animation set.

7.	 You don't need to change anything else with regard to the setting we defined to export
the static model, so you can click on Export Selection.

How it works...
As we will see in the following recipe, where we will edit the settings of the imported
animation in Unity, what we get is an FBX file containing an animation clip named idle,
which represents the idle animation for our character.

Chapter 1

31

As we said before, it is possible to trace the animation clips on a single file\timeline and
export all character animations in one FBX file; in this case, however, additional operations
are required when compared to the one-file-one animation technique.

With a single file containing all the clips, Unity is not capable, by default, to read the timeline
imported from Maya and automatically detecting the individual clips, and you end up with a
single, most likely long, timeline named track01 containing all the animations.

So you have to split the whole timeline by yourself, naming each clip individually and manually
setting the start and end frames for each one of them in Unity Inspector.

If you think about a typical working pipeline with different people taking care of different
operations, you may find your animators manually writing a text file of some sort with
information regarding animation clip names and their reference frames. The animators then
pass on this text file to someone responsible for taking care of importing animations in Unity.
This last guy would also be responsible for typing the data found in the text file into Unity
Inspector. A way of doing things that can easily lead to human errors, as you can imagine...

This is the reason why we prefer using separate FBX files for each animation clip.

It is also possible to automate the exporting process so it doesn't become a time-consuming
activity, but you may need a programmer for this.

The idea is to script a piece of code in MEL to handle the job. MEL is the scripting scaffold
of Maya: any operation you perform in the Maya editor has an equivalent instruction in MEL.
Since performing hardcoding in the MEL scripting language would go beyond the scope of
this book, we just provide a few references here for those interested. The list of MEL exporting
commands is available at http://download.autodesk.com/us/fbx/20112/Maya/_
index.html.

An example MEL script, courtesy of James Kyle, is available at http://www.jameskyle.
net/2013/03/maya-to-fbx-batch-export/.

There's more...
For those of you who are interested in automating the exporting process, there are ways,
pretty elegant too, that require advanced programming skills.

One way is to create a Maya Embedded Language (MEL) script that reads the scene in Maya
and exports what you need, based on the settings you define for the exporting process. MEL is
the programming language behind Maya; any operation performed in Maya can be converted
into a scripting instruction that will achieve exactly the same result. By using MEL, you can
thus create a script that automatically exports animation clips into Unity on one or more FBX
files, helping you save time (and reduce the risk of errors).

http://download.autodesk.com/us/fbx/20112/Maya/_index.html
http://download.autodesk.com/us/fbx/20112/Maya/_index.html
http://www.jameskyle.net/2013/03/maya-to-fbx-batch-export/
http://www.jameskyle.net/2013/03/maya-to-fbx-batch-export/

Importing 3D Models and Animations

32

Another option is to configure Maya to generate an XML file that describes the animation data
stored in the timeline of a model (animation names, starting\ending frames, and the like),
and then read this XML file from Unity to automatically create the required FBX files.

Both these approaches are very similar to using the post-processor to read custom attributes
from Maya, as we discussed earlier.

If you'd like to go that way, you can refer to the following links:

ff http://download.autodesk.com/global/docs/maya2014/en_us/index.
html?url=files/GUID-312387EC-2907-40D6-A0ED-1BE322106BBB.
htm,topicNumber=d30e68424

ff http://forum.unity3d.com/threads/saving-and-loading-data
-xmlserializer.85925/

Configuring imported animations in Unity
Inspector

Before we end this chapter about Maya and Unity, there is one last step we must take care of
configuring imported animations in Unity Inspector. This is the topic of our next recipe.

Getting ready
Again, we pick up from where we left the previous lesson. Open Unity and select the animated
FBX file in the project panel.

How to do it...
1.	 With the animated FBX file selected in the project panel, go to Inspector and access

the Model tab. Since we are only interested in the animation data stored in this file,
we will basically unflag most of the options that we set when we imported the static
model. Use the following screenshot as a reference and then click on Apply:

http://download.autodesk.com/global/docs/maya2014/en_us/index.html?url=files/GUID-312387EC-2907-40D6-A0ED-1BE322106BBB.htm,topicNumber=d30e68424
http://download.autodesk.com/global/docs/maya2014/en_us/index.html?url=files/GUID-312387EC-2907-40D6-A0ED-1BE322106BBB.htm,topicNumber=d30e68424
http://download.autodesk.com/global/docs/maya2014/en_us/index.html?url=files/GUID-312387EC-2907-40D6-A0ED-1BE322106BBB.htm,topicNumber=d30e68424
http://forum.unity3d.com/threads/saving-and-loading-data -xmlserializer.85925/
http://forum.unity3d.com/threads/saving-and-loading-data -xmlserializer.85925/

Chapter 1

33

2.	 Now we move on to the Rig tab. As the animation clip stored in this file is to be used
by the model we imported before, we need to set the Avatar Definition field as Copy
From Other Avatar.

Importing 3D Models and Animations

34

3.	 We also need to set the source avatar. Click on the small button to the right of the
Source field and add the avatar created from the static model to it, as shown in the
following screenshot:

4.	 Click on Apply and select the last tab, Animations.

5.	 In this tab, there is much to do. First of all, flag the Import Animations option,
which will make a group of related options that depend on this option visible:

Chapter 1

35

6.	 Scroll down the panel and look for the Root Transform Rotation. Flag Bake Into Pose
and select Root Node Rotation from the drop-down menu.

7.	 In the Root Transform Position (Y) group, flag Bake Into Pose and check that Root
Node Position (Y) is flagged. In the Root Transform Position (XZ) group, flag Bake
Into Pose and ensure that Root Node Position isn't flagged.

8.	 Notice that this is an idle animation and, as such, it should be set on looping by
flagging the Loop Time option. We didn't do this intentionally to provide a more
general example.

9.	 Click on Apply to end configuring the animation.

Importing 3D Models and Animations

36

How it works...
Let's begin with a few words on the topic of root motion, as Unity Inspector displays several
options about it.

Root motion has to do with controlling the actual position of the mesh with regard to its
collider while animations are being played. Most animations happen in place, meaning that
the mesh and the collider don't actually move around as the character is animated. This may
be the case for examples of walk and run animations.

There are other animations though that require the mesh and collider to actually move or
rotate in the 3D world as the animation is played. Actions such as strafing, jumping, and other
in-game specials require the mesh and the collider to change their position and rotation in the
3D world as the animation is performed.

By setting the properties of Root Rotation and Root Position groups, you control whether the
collider should rotate or move with the mesh during specific animation clips.

In a walk animation, the start and stop root orientations and positions in world space are
identical. In such cases where animations are acknowledged by Unity with a green light in
Unity Inspector, it is recommended to flag the Bake into Pose option in the Root Transform
Rotation group and set Root Node Rotation from the drop-down menu. Also, flag Bake Into
Pose in the Root Transform Position (Y) group and set Root Node Position from the menu.

As for the Root Transform Position (XZ) group of options, the manual recommends using
them for long, idle animations, where the repetition of many frames could lead the mesh
to drift from its collider in the long run. In such cases, it is recommended that you bake the
position on the x and z axes as well.

Latin speakers used to say "Repetita iuvant," meaning repetition helps. The settings provided
here are to be intended as general, default settings that may not fit into any situation. For
example, you may find yourself having to set Scale Factor in the Model tab for the animated
FBX file too in order to prevent the animation from not fitting the model rig. Alternatively, you may
need to tweak the Root Transform Rotation and Root Transform Position settings differently,
depending on how you rigged\animated your model with specific animation clips. As usual,
we recommend that you refer to the Unity documentation at http://docs.unity3d.com/
Manual/AnimationsImport.html whenever you have questions.

http://docs.unity3d.com/Manual/AnimationsImport.html
http://docs.unity3d.com/Manual/AnimationsImport.html

Chapter 1

37

There's more...
The Rig tab in Unity Inspector displays an option that we didn't mention here: Animation
Type. You configure this option to select whether you want your character to be animated
as a humanoid or a generic object, as it could be with a vehicle, a ball, or whatever.

Also, when a rigged FBX file is imported into a project, Unity automatically creates a so-called
avatar out of it. This task is generally performed automatically by Mecanim, the built-in tool
responsible for animation setting and management; we will discuss this in detail in Chapter 3,
Animating a Game Character.

Mecanim has routines that examine the skeletal configuration of a rigged model imported in
Unity and then recompute it into a general template it can interpret. This template is called the
avatar. Once an avatar has been created, other animation clips can be targeted to that same
avatar. This is how multiple animation clips are linked to a single character model in Unity.

In the recipe, we configured the model scale and material in the Model tab only for the static
version of the model; in the Rig tab, we set the Avatar Definition option to Create for this
model. For animated clips, on the other hand, we didn't configure the Model tab, and we
set Avatar Definition to Copy From Other Avatar with a reference to the static avatar.
This assumes Mecanim succeeds in interpreting the rigged model.

There are cases where for some reason Mecanim is unable to correctly compute the avatar;
alternatively, you may just want to make changes on your own. In such cases, it is possible to
manually edit the avatar in Unity Inspector and check that all bones required by Mecanim are
correctly named and in place.

A recipe about setting up the avatar would go beyond the scope of this book, as it has a lot to
do with modeling and rigging techniques, which are beyond the scope of this book.

Refer to the Unity manual at http://docs.unity3d.com/Manual/
AvatarCreationandSetup.html. Besides this, if you are interested in delving more into
this matter, we suggest the many tutorials available on websites about game development
and 3D graphics. For example, digital tutors offer many exceptional tutorials about Unity in
general and Mecanim in particular; we recommend you check them out.

http://docs.unity3d.com/Manual/AvatarCreationandSetup.html
http://docs.unity3d.com/Manual/AvatarCreationandSetup.html

2
2D Assets for Unity

In this chapter, we will cover the following recipes:

ff Importing textures and setting them to Inspector
ff Configuring transparency
ff Creating materials
ff Setting materials' names in Maya
ff Setting the ambient light in Unity
ff Texture atlases
ff Animated materials

Introduction
Whether your game is going to be 2D or 3D, you will deal with a number of 2D assets, mainly
textures. Therefore, before building a game, I will cover this topic and explain how textures and
other 2D assets are dealt within Unity.

Though we assume you are familiar with texturing-related matters and image file formats used
for texturing games, we are going to describe the most relevant aspects of the operations
throughout this chapter.

Some could say that textures should have been covered before importing 3D models into Unity.
As a matter of fact, when you export a model from a 3D editor like Maya, the exporting process
takes care of setting references between the exported model, its material, and the textures for
those materials. Once the model is imported, the material instances are recreated in Unity; if
the textures for those materials have already been imported into the project, the materials can
actually be read by Unity and the model will (almost) look like it did in Maya.

If the textures have not been imported onto the other side, Unity will miss the references and
the model will be displayed with a strong, unnatural, and pink diffused color.

2D Assets for Unity

40

If this is what you ended up with using the recipes described in Chapter 1, Importing 3D
Models and Animations, then you just need to go through this chapter and reimport the
models after the textures.

We decided to treat models before textures because it made sense to us to deal with models
first and then deal with the textures for the materials to be applied to those models.

We hope it didn't cause too much trouble!

About textures and materials
Textures are 2D images that go into the materials that are applied to 3D models. They are
responsible for the fine details featured by models: colors, bumps, reflections, and other
features of the so-called skin of a 3D model.

Materials, on the other hand, can be considered as the actual skin of the 3D model; imagine
it as a kind of very elastic and flexible coat that entirely covers the model geometry. Now
assume that you can selectively paint this coat so it displays all the details of clothes, be it
a suit, a tuxedo, fur, or whatever fits the game design.

This skin is versatile enough that artists can actually add many features to it to reproduce
the effect of light bouncing on its surface, thus allowing some parts to look like leather and
others like fur, metal, or a piece of a cartoon—anything you can think of.

This characteristic of materials is the result of a computation performed by a graphic program
called a shader. A shader is a piece of code that defines how light interacts with the color and
other characteristics of a surface in a game scene.

In case you need a summary of what we are saying here, we recommend you check
out the interesting article at: http://www.informit.com/articles/article.
aspx?p=2162089&seqNum=2.

From a quantitative point of view, a single 3D model usually requires more than one material
(usually two) and a single material usually requires a couple textures; that's why the Assets/
Textures folder in a Unity project is very likely to be the largest folder of the entire project!

File formats of textures
As a game requires a lot of textures, it is important to consider how to effectively manage
them from a memory-management perspective. Indie and mobile game development (the
reference business models we keep in mind as we write this book) especially require you
to optimize memory management, as the overall weight of a game in bytes can become a
decisive point for its popularity. The following section provides a few rules and hints for using
textures in Unity.

http://www.informit.com/articles/article.aspx?p=2162089&seqNum=2
http://www.informit.com/articles/article.aspx?p=2162089&seqNum=2

Chapter 2

41

Though images come in a different number of file formats in any range from very light to very
heavy, when working on an indie project in Unity, it is very likely that you turn to just a couple
of them. From Version 4.0, Unity supports PSD files, the native Photoshop file format. That
means you can work on an image in Photoshop and then save it directly into a Unity scene.
As we stated in Chapter 1, Importing 3D Models and Animations, when discussing Unity
supporting native Maya files, this is a handy feature to speed up the process of exporting
textures into Unity. Just remember that PSD files are flattened upon importing, so you only
get the upper layer of the PSD file you save in Unity. On the other hand, the original PSD file
in Photoshop won't be affected, so you can keep working on it and take advantage of layers.

The other very popular file type is PNG. PNG files are very light, so you can save memory
and also store the information about image transparency. As such, they are used to
create transparent materials. Another very good thing of PNG files is that it isn't a
proprietary format and you can export and import PNG files with any 2D editor!

Unity supports many file formats, namely TIFF, Targa, and BMP. Discussing all of them
goes beyond the scope of this chapter (and this entire fookbook, too!), so we won't go
there. You can refer to this link to Wikipedia to start your own research in this field:
http://en.wikipedia.org/wiki/Image_file_formats.

Finally, don't worry if you don't have an image library of your own; as usual, we provide the
images required for the recipes of this chapter!

Optimizing textures
When preparing textures for a Unity project, there are a number of good practices that are
recommended and a couple of rules that must be followed.

First of all, texture sizes should come in powers of two. A reasonable sequence of image sizes
in pixels for games made today is 256, 512, 1024, 2048, 4096.

It is not mandatory that textures are square, too, though Unity kindly appreciates that!
Whenever you can use square images, do it.

What Unity doesn't like at all, on the other hand, is textures larger than 4096 pixels; if
you try to import an image that is larger than 4096 pixels on any of its dimensions, it will
automatically reduce to a more comfortable size, most likely 1024 x 1024. Simply, the
software doesn't allow you to set an image larger than 4096 pixels. On the other hand, you
shouldn't worry about that; 4096 is a very high resolution image and it is more than enough
for any (indie or mobile) game.

http://en.wikipedia.org/wiki/Image_file_formats

2D Assets for Unity

42

Many other techniques are available to game artists to optimize graphic performances
while reducing the overall memory allocation. Mipmapping, for example, is a technique that
improves performance. Using normal maps to improve the look of low-poly models is another.
We suggest you research these topics if they are not familiar to you. This link from Wikipedia
should provide you with everything you need to know about them: http://en.wikipedia.
org/wiki/Texture_mapping.

Well then. Assuming you are clear with what we have discussed so far, let's jump into the core
of this chapter and start importing textures into our Unity project.

Importing textures and setting them to
Inspector

Importing textures into a Unity project is a fundamental activity, and you will perform it
several times. The following recipe explains two ways to import textures into Unity and
how to configure them for the materials of your 3D models.

Getting ready
For this recipe, you need any square texture that you may already have, or use the one we
provide. Anything will do, even a simple, checker texture; there are many available online.
We use the following image for this recipe:

http://en.wikipedia.org/wiki/Texture_mapping
http://en.wikipedia.org/wiki/Texture_mapping

Chapter 2

43

How to do it...
To import a texture in Unity, we begin with opening it into a 2D editor:

1.	 Open a PSD texture with Photoshop, or the alternative BMP file with any software
you like. If you don't have the required software, you can download XnView, which
can read PSD files. It is available at http://www.xnview.com/.

2.	 Name the file. We picked the name firstTexture.

3.	 Select the Assets/Textures destination folder in your Unity project.

4.	 Save the file. You can either leave it in its PSD original format or change it into a
PNG file. The following screenshot shows how to perform the operation of saving
the image as a PSD file:

http://www.xnview.com/

2D Assets for Unity

44

5.	 The following screenshot, on the other hand, shows how to save it as a PNG
file instead:

6.	 Now launch Unity. From the project panel, select our firstTexture PSD file.

7.	 Access Inspector and check that it is set as shown in the following image:

Chapter 2

45

8.	 Click on the Apply button to end this process. The following image shows how the
texture preview should look:

How it works...
Unity allows several texture types to be configured, depending on the use you expect to make
of textures for your project. For this recipe, we configured a simple diffuse texture. In the next
recipe, we will show you how to deal with transparent textures instead.

Configuring transparency
It is very common to have images that display transparency to add details and improve the
look of 3D models. PNG files store the information regarding the alpha channel of an image,
so that parts of the image itself can be displayed as transparent. The following recipe shows
you how to configure a transparent texture in Unity.

2D Assets for Unity

46

Getting ready
For this recipe, we use another image we have provided, the one named secondTexture.
As this image is already saved in PNG format, we jump straight into Unity and import it
from there.

How to do it...
1.	 From the Project panel in Unity, select the Assets/Textures folder.

2.	 Right-click anywhere and select Import New Assets, as shown in the
following screenshot:

3.	 Select the secondTexture image to upload it into Unity. Actually, Unity is flexible
enough that you can even simply copy and paste assets from one folder to another.

4.	 From the Inspector window, check that the texture settings are defined as in the
following screenshot:

Chapter 2

47

5.	 Click on Apply to save the settings we defined. The following screenshot shows
the result:

How it works...
This time, in the Inspector window, we flagged the options to use the grayscale of the image
to display its darkest parts as transparent. As a result, all black squares in the image aren't
rendered when this texture goes into a material.

2D Assets for Unity

48

Many other types are available: normal maps, sprites, reflection maps, and GUI elements.
In the following recipe, we'll create two distinct materials with the textures we just imported.

Creating materials
As we said, materials are the skin of a model and provide its distinctive look. In the
following recipe, we will create two materials that show the difference between a diffuse
and transparent material.

Getting ready
As we add an entirely new type of asset to our project in this recipe (didn't we tell you that we
were going to create many?), we need to create a folder to store our materials. Open Unity and
get ready to follow the instructions of the next recipe!

How to do it...
1.	 From the Project panel, select the Assets folder, then click anywhere and select

Create | Folder, as shown in the following screenshot:

2.	 Name the folder Materials, then double-click to open it.

3.	 Right-click anywhere on the panel and select Create | Material, as shown in the
following screenshot:

Chapter 2

49

4.	 Name the material as filled, then repeat this operation to create another material
and name it Transparent. At this point, you should have two gray materials in your
Materials folder, one named filled and the other named Transparent.

5.	 Select filled. In Inspector, check that Shader is set to Texture under Unlit.
This way, our materials won't be affected by light and will simply shine.

2D Assets for Unity

50

6.	 Click once on the Textures folder in the Project panel.

7.	 With filled selected in the Inspector window, drag and drop firstTexture onto the
empty Texture field, as shown in the following screenshot:

8.	 Now select transparent and repeat the dragging operation with secondTexture.

Chapter 2

51

9.	 This time, check that the Shader field is set to Unlit/Cutout, as shown in the
following screenshot:

10.	 You can act on the Alpha cutoff slider to adjust the transparency of the black
squares on the checker texture, from null to total. The following screenshot
shows how the material preview should look:

2D Assets for Unity

52

11.	 Add two cubes to your scene. This can be done by navigating to GameObject |
Create Other from the top menu, as shown in the following screenshot:

12.	 Duplicate the cube or create another so that you end up with two cubes in the
scene. We don't need to add a light to our scene, as we set out materials as
Unlit, which means they are not actually affected by light at all.

13.	 Now drag the material named filled onto one cube and transparent onto the other.
The following screenshot shows the result you should get:

Chapter 2

53

How it works...
By getting the info about transparency from the grayscale of secondTexture and setting
transparent as an Unlit/Transparent Cutout material, we caused the checkered cube to
appear empty where the dark squares were.

There's more...
Unity offers the possibility to define several other material types, allowing the use of normal
and specular maps and many other effects to improve the look of your models. A detailed
analysis of all such materials would go beyond the scope of this chapter about importing
2D assets, so we will stop here. We will delve more into materials in the later chapters.

Setting materials' names in Maya
When Unity imports a model, it also imports the materials linked to the model in the 3D editor.
By default, the materials are named based on the names of the textures used in the 3D editor
to build them.

If you remember from the previous chapter, upon importing a model into Unity, we set an
option in the Model tab to pick material names from a model's materials, instead of the
texture names. Refer to the following screenshot to checkout what we did in Chapter 1,
Importing 3D Models and Animations:

2D Assets for Unity

54

We adopt this solution because it helps keep our project clean and has each asset named
correctly. As our goal is to have the materials named with a meaningful convention that can
help us keep materials and their textures well separated, in the following recipe, we'll show
you how to add custom names to materials in Maya, to be exported into Unity.

Getting ready
For this recipe, we need a textured model to be opened in Maya. Use your own models or the
ones we have provided with this book.

How to do it...
1.	 Open Maya or your 3D editor of choice, then open the model file in the editor.
2.	 From the main menu, navigate to Window | RenderingEditors | Hypershade to

open Hypershade, the panel where materials and their properties are displayed.
3.	 Select a material in Hypeshade to display its properties in the Attribute Editor panel.
4.	 In the text field, type a name you want to assign to that material. Refer to the

following screenshot to check whether you are in the right panel/text field:

5.	 Click on Enter to save your edits.

Chapter 2

55

How it works...
When this model is exported into Unity and the materials' naming property is correctly set in
Inspector, a Materials folder will be automatically created to store the materials named
with the convention we set in Maya.

A drawback of this practice is that you end up with two instances of each material: one named
tex_TexName, which is automatically created by Unity, and another named mat_matName,
which is the name you get from applying the settings to the Inspector window. You can simply
follow this rule: materials whose name starts with tex* must be deleted from the project.

Setting the ambient light in Unity
Another useful operation we'd like to teach you is how to set the ambient light in your
Unity scene so you can quickly check the look of your materials in the game scene without
configuring an actual light.

Getting ready
For this recipe, we just need a scene in Unity with a textured model in it.

How to do it...
1.	 Create a new scene in Unity and drag textured model into the scene. Be sure no

lights are available in the scene and that the model's material is set to Diffuse in
the Inspector window. With these lighting conditions, the model should look
quite dark.

2.	 From the main menu, navigate to Edit | RenderSettings.

3.	 Now move to Inspector. Here, we can set several options for our ambient light.
The one we are interested in here is the ambient light color.

2D Assets for Unity

56

4.	 By default, Ambient Light is set to a dark gray. Click on the Ambient Light
panel to open the Color panel, as shown in the following screenshot:

5.	 Move the cursor to the white portion (the upper-right corner highlighted in red in
the screenshot) in the Color panel to set Ambient Light to white. Now your model
should look far more lighter than before!

Check out the following screenshot showing the difference between the two settings on
the material:

Chapter 2

57

How it works...
The ambient light is a standard illumination setting that defines a homogeneous light coming
from all directions, something that only happens in game editors. In the real world, lights
always come from a direction and hit objects at angles. As a matter of fact, good lighting has
to do specifically with recreating realistic lights for virtual environments, such as games.

Still, setting a useful ambient light can come in handy during the initial phases of game
prototyping, before you delve into the matters of actual lighting.

Texture atlases
As we are nearing the end of this chapter, there is one topic we would like to discuss.
Let's take a look at the following screenshot, courtesy of Gamasutra:

2D Assets for Unity

58

You may notice that it contains an arrangement of images and parts of images that are all
nicely deployed to better fill the whole space available. This is technically called a texture
atlas. A texture atlas is in fact a way to optimize memory management as you feed your
project with 2D textures. Instead of having an image for any differently colored mesh or
mesh part, an artist can align several chunks on a single texture, saving memory that
would otherwise go wasted.

Actually, in 2D gaming, texture atlases are extremely useful for backgrounds. To improve
the perspective illusion of 2D static backgrounds, it is a good practice to actually build
them as is done in theaters, by putting several screens on stage at different depths
(distance from the audience), each with its own piece of background.

Likewise, artists create pre-rendered backgrounds by putting several images on different
planes (or quads, more likely) that they scatter around on the game stage. On each of those
quads (quads, by the way, are very simple, single-faced 3D shapes, made of a rectangular
plane divided into two triangles), artists put an image selected from a texture atlas, which
contains all the images required to actually build up that background. Simple as that!

As it is an important subject for 2D games, in the next recipe, we show how to make a
texture atlas from a group of images.

Getting ready
This recipe requires two steps. The first is to create a proper texture atlas using a 2D
editor. Our choice is Photoshop, but you can do it with, I believe, any other editor.

The second step happens in Unity, where we configure the texture atlas in Inspector.
So be ready to open your Unity project, too.

How to do it...
1.	 Open your 2D editor of choice, ours is Photoshop.

2.	 Create a new file. This will be our actual atlas, to be filled with other images.
If you don't have other images, you can use the ones we have provided.

3.	 Make the file large, set the file size to 2048 x 2048 pixels, so it is a large texture.
A resolution of 72 points should be fine.

4.	 Set your editor so it displays the reference grid and set the grid to 256 px.
The following screenshot will clarify this:

Chapter 2

59

5.	 Now you are ready to start importing other images into this grid. In Photoshop,
several images can be added as so-called levels to another image. We are pretty
sure other software do this as well.

6.	 As you import new images, take care when deploying them so each one has its own
separate slice of image to occupy. You can use the grid to help you out with this.
The following screenshot shows the result we got:

2D Assets for Unity

60

7.	 Save the texture atlas. Since Unity needs the information about transparency
to effectively import the atlas, remove any default background from the original
image before saving it as a PNG file.

8.	 Now switch to Unity. Open the project and create a new folder inside the Assets\
Textures folder and name it Texture Atlas. We insist on this so your projects
are well organized, with different folders for different types of assets.

9.	 Double-click on the Texture Atlas folder to open it, then right-click inside the
Project panel window and select Import New Asset, as we did before.

10.	 Select the atlas PSD or BMP file in your destination folder and click on Import
to add it to the Unity project.

11.	 Next, select Texture Atlas in the Project panel in Unity; we need to set a few
properties in Inspector.

12.	 Set Texture Type to Sprite, Sprite Mode to Multiple, Max Size to 2048 (the size
of the original image we made), and Format to Truecolor. You can refer to the
following screenshot:

Chapter 2

61

13.	 Click on Apply to save these settings.

14.	 In Inspector, click on the Sprite Editor button to open the Sprite Editor window,
as shown in the following screenshot:

15.	 In this panel, click on the Slice button to open a panel. Check that the settings
are the same as those displayed in the following screenshot, then click on Slice:

16.	 If nothing bad happened, you should see a thin white line around each image in the
atlas, meaning that Unity has correctly identified and isolated each chunk of the atlas.

2D Assets for Unity

62

How it works...
Though it required several steps, building a texture atlas is quite simple and very useful.
The principle is simple: create a large image and fill it with other images. As long as you
use a transparent background and leave enough room between each image in the collection,
Unity is good enough to slice it up automatically.

About the settings we defined, we set the image as a sprite made out of multiple chunks to
allow automatic slicing. Setting the image to a non-compressed format is also required for
automatic slicing.

There's more...
There are more settings you can tweak for specific requirements, but we cannot explain all
of them here, so we have provided a bunch of useful links about texture atlases and their
management in Unity.

The first two are links from Unity manuals about texture settings and the Sprite Editor:

http://docs.unity3d.com/Manual/class-TextureImporter.html

http://docs.unity3d.com/Manual/SpriteEditor.html

The next link is a very interesting read about texture atlases from Gamasutra:

http://www.gamasutra.com/view/feature/2530/practical_texture_atlases.
php

Last is the link to a PDF manual from nVidia corporation about texture
optimization, for those of you who really want to dig into this topic:

http://http.download.nvidia.com/developer/NVTextureSuite/Atlas_Tools/
Texture_Atlas_Whitepaper.pdf

Animated materials
Another very useful thing that can be done with materials is to animate them by manipulating
their so called UVs to get interesting rendering effects.

U and V are the letters used to refer to the x and y axes of a 2D image that is going to be used
to texture a 3D mesh. As the X, Y, and Z letters are already in use for the model, the x and y
axes for the image are named with the letters U and V.

The process of putting a 2D image on a 3D model is consequently called UV mapping, and it
is a very basic activity for any 3D artist.

http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/SpriteEditor.html
http://www.gamasutra.com/view/feature/2530/practical_texture_atlases.php
http://www.gamasutra.com/view/feature/2530/practical_texture_atlases.php
http://http.download.nvidia.com/developer/NVTextureSuite/Atlas_Tools/Texture_Atlas_Whitepaper.pdf
http://http.download.nvidia.com/developer/NVTextureSuite/Atlas_Tools/Texture_Atlas_Whitepaper.pdf

Chapter 2

63

As a complete tour of UV mapping would go beyond the scope of this chapter, we suggest you
checkout this Wikipedia link to begin learning more about it: http://en.wikipedia.org/
wiki/UV_mappingt.

The next recipe describes how textures can be animated through code.

Getting ready
For this recipe, we need a texture, a game object, and a piece of code. We provided a nice
spiral texture for you to use, in case you don't already have one.

How to do it...
1.	 Start a new Unity scene.
2.	 Access the Assets/Textures folder and import the image named spiralTex,

or any other texture of your choice.
3.	 Create a new material in the Materials folder and name it mat_spiral.
4.	 Drag spiralTex onto mat_Spiral as we did before.
5.	 Create a Sphere in the scene by selecting GameObject | CreateOther | Sphere

from the main menu.
6.	 Now drag mat_spiral onto the sphere in your scene. The following screenshot

shows how the material should look:

http://en.wikipedia.org/wiki/UV_mappingt
http://en.wikipedia.org/wiki/UV_mappingt

2D Assets for Unity

64

7.	 For the next step, we need a script to be added to our sphere. Let's first create a new
folder in our Assets directory named Scripts to store the new asset (you should
remember how to do that from previous recipes).

8.	 In the Scripts folder, create a new C# script folder, as shown in the
following screenshot:

9.	 Name this script AnimateUV and double-click on it to open it in Monodevelop,
the default Unity script editor.

Chapter 2

65

10.	 Add the following code to the script:
using UnityEngine;
using System.Collections;
public class AnimateUV : MonoBehaviour {
 public float scrollSpeed = 0.5f;
 // Use this for initialization

 // Update is called once per frame
 void Update () {
 float offSetY=scrollSpeed*Time.time;
 myVector = new Vector2(0, offsetY);
 renderer.material.SetTextureOffset("_MainTex", myVector);
 }
}

11.	 Drag the animateUV script onto the sphere in the scene and click on the Play
button. What you should get is the spiral texture rotating around the y axis on the
game object. Don't fall asleep!

How it works...
With this script, we set a speed for the rotation of the texture (the scrollSpeed float
variable) and then use time passing by to make the texture rotate on the y axis of the
model (by multiplying scrollSpeed for time).

The instruction to actually rotate the texture UVs is renderer.material.
SetTextureOffset, which asks for a material component to operate on (in our case,
the diffuse component of the material, specified with the _MainTex conventional name)
and a Vector2 variable to define rotation on the x or y axis (or both, if you like). As a
matter of fact, in this recipe, we acted on the y axis.

There's more...
Though scripting is planned to be the topic of another chapter, we decided to add this recipe
here to show you an interesting example of how materials can be manipulated through
scripting. To learn more about advanced usage of textures and materials, we recommend you
check out the online Unity reference manual at http://docs.unity3d.com/Manual/
Textures.html.

http://docs.unity3d.com/Manual/Textures.html
http://docs.unity3d.com/Manual/Textures.html

3
Animating a Game

Character

In this chapter, we will cover the following recipes:

ff Creating an animation tree
ff Dealing with transitions
ff Coding the Boolean-based transitions
ff Working with float parameters
ff Coding the float-based transitions
ff Creating Blend Tree
ff Animation layers – creating masks
ff Animation layers – adding a second animation layer

Introduction
Now that we have imported the necessary graphic assets for a prototype, we can approach its
actual building in Unity, starting by making an animation set for our character.

Unity implements an easy-to-approach animation system, though quite powerful, called
Mecanim. Mecanim is a proprietary tool of Unity in which the animation clips belonging to a
character are represented as boxes connected by directional arrows. Boxes represent states,
which you can simply think of as idle, walk, run...you get the idea.

Arrows, on the other hand, represent the transitions between the states, which are responsible
for actually blending between one animation clip and the next. Thanks to transitions, we can
make characters that pass smoothly, for example, from a walking animation into a running one.

Animating a Game Character

68

The control of transitions is achieved through parameters: variables belonging to different types
that are stored in the character animator and are used to define and check the conditions
that trigger an animation clip. The types available are common in programming and scripting
languages: int, float, and bool. A distinctive type implemented in Mecanim is the trigger,
which is useful when you want a transition to be triggered as an all-or-nothing event. By the way,
an animator is a built-in component of Unity, strictly connected with the Mecanim system, which
is represented as a panel in the Unity interface. Inside this panel, the so-called animation tree of
a character is actually built-up and the control parameters for the transitions are set and linked
to the clips.

Time for an image to help you better understand what we are talking about! The following
picture shows an example of an animator of a standard game character:

As you can see, there are four states connected by transitions that configure the logic of the
flow between one state and another. Inside these arrows, the parameters and their reference
values to actually trigger the animations are stored.

With Mecanim, it's quite easy to build the animation tree of a character and create the
logic that determines the conditions for the animations to be played. One example is to
use a float variable to blend between a walking and a running cycle, having the speed
of the character as the control parameter. Using a trigger or a boolean variable to add
a jumping animation to the character is another fairly common example. These are the
subjects of our following two recipes, starting with trigger-based blending.

Chapter 3

69

We follow on from Chapter 1, Importing 3D Models and Animations, where you learned how to
import the animation clips for a game character. Follow us!

Creating the animation tree
In this recipe, we show you how to add animation clips to the animator component of a game
object (our game character). This being done, we will be able to set the transitions between
the clips and create the logic for the animations to be correctly played.

Getting ready
First of all, we need a set of animation clips, imported in Unity and configured in Inspector.
We explained these operations in Chapter 1, Importing 3D Models and Animations, so we
suggest going back to it in case you haven't checked that part yet. As usual, we provide the
Assets folder you need, in case you don't have your own to use.

Before we proceed, be sure you have these four animation clips imported into your Unity
project as FBX files: Char@Idle, Char@Run, Char@Jump, and Char@Walk.

How to do it...
The first operation is to create a folder to store the Animator Controller.

1.	 From the project panel, select the Assets folder and create a new folder for the
Animation Controller. Name this folder Animators.

2.	 In the Animators folder, create a new Animator Controller option by navigating
to Create | Animator Controller, as shown in the following screenshot:

Animating a Game Character

70

3.	 Name the asset Character_Animator, or any other name you like.

4.	 Double-click on Character_Animator to open the Animator panel in Unity.
Refer to the following screenshot; you should have an empty grid with a single
magenta box called Any State:

5.	 Access the Models/Animations folder and select Char@Idle. Expand its
hierarchy to access the actual animation clip named Idle; animation clips are
represented by small play icons. Refer to the following screenshot for more clarity:

Chapter 3

71

6.	 Now drag the clip into the Animator window. The clip should turn into a box inside
the panel (colored in orange to represent that). Being the first clip imported into the
Animator window, it is assumed to be the default animation for the character. That's
exactly what we want!

Animating a Game Character

72

7.	 Repeat this operation with the clip named Jump, taken from the Char@Jump FBX file.
The following screenshot shows what should appear in the Animator window:

How it works...
By dragging animation clips from the project panel into the Animator editor, Mecanim creates
a logic state for each of them. As states, the clips are available to connect through transitions
and the animation tree of the character can come to life.

Chapter 3

73

With the Idle and Jump animations added to the Animator window, we can define the logic to
control the conditions to switch between them.

In the following recipe, we create the transition to blend between these two animation clips.

Dealing with transitions
In this recipe, we create and set up the transition for the character to switch between the Idle
and Jump animation clips. For this task, we also need a parameter, which we will call bJump,
to trigger the jump animation through code.

Getting ready
We will build on the previous recipe. Have the Animator window open, and be ready to follow
our instructions.

How to do it...
1.	 As you move to the Animator panel in Unity, you should see a orange box

representing the Idle animation, from our previous recipe. If it is not, right-click on it,
and from the menu, select Set As Default. You can refer to the following screenshot:

Animating a Game Character

74

2.	 Right-click on the Idle clip and select Make Transition from the menu, as shown in
the following screenshot:

3.	 Drag the arrow that appears onto the Jump clip and click to create the transition.
It should appear in the Inspector window, to the right of the Animator window.
Check the following screenshot to see whether you did it right:

Chapter 3

75

4.	 Now that we have got the transition, we need a parameter to switch between Idle
and Jump. We use a boolean type for this, so we first need to create it. In the
bottom-left corner of the Animator window, click on the small +, and from the
menu that appears, select Bool, as shown in the following screenshot:

5.	 Name the newly created parameter bJump (the "b" stands for the boolean type;
it's a good habit to create meaningful variable names).

6.	 Click on the white arrow representing the transition to access its properties in
Inspector. There, a visual representation of the transition between the two clips
is available.

7.	 By checking the Conditions section in Inspector, you can see that the transition
is right now controlled by Exit Time, meaning that the Jump clip will be played only
after the Idle clip has finished playing. The 0.97 value tells us that the transition is
actually blending between the two clips for the last 3 percent of the idle animation.
For your reference, you can adjust this value if you want to blend it a bit more or a
bit less. Please refer to the following screenshot:

Animating a Game Character

76

8.	 As we want our bJump parameter to control the transition, we need to change Exit
Time using the tJump parameter. We do that by clicking on the drop-down menu on
Exit Time and selecting tJump from the menu, as shown in the following screenshot:

9.	 Note that it is possible to add or remove conditions by acting on the small +
and - buttons in the interface if you need extra conditions to control one single
transition. For now, we just want to be sure that the Atomic option is not flagged
in the Inspector panel. The Atomic flag interrupts an animation, even if it has not
finished playing yet. We don't want that to happen; when the character jumps,
the animation must get to its end before playing any other clip.

The following screenshot highlights these options we just mentioned:

Chapter 3

77

How it works...
We made our first transition with Mecanim and used a boolean variable called bJump to
control it. It is now possible to link bJump to an event, for example, pressing the spacebar
to trigger the Jump animation clip.

Coding the Boolean-based transitions
With the transition between Idle and Jump configured in the Animator window, we can script
a piece of code to trigger it. With the following recipe, we show how simple it is to control
animations through scripting with Unity.

Getting ready
As usual, we follow on from the last recipe. You just need to add a C# script in the Scripts
folder of the project (as you learned in Chapter 2, Importing 3D Graphics) and name it
Char_Animator.

How to do it...
1.	 Access the Scripts folder in your Project panel and double-click on the newly

created script to open it in Monodevelop, the default Unity script editor.

2.	 Let's begin by creating an Animator type variable to store the reference to the
character animator and add the following line at the top of the script:
private Animator charAnimator;

3.	 Get inside the Start() function; here we need to address the charAnimator
variable we created to the actual animator that we will attach to the character.
We do that by adding the following line to the script:
charAnimator=this.GetComponent<Animator>();

4.	 Now we define an event to trigger the Jump clip. In the Update() function, add the
following lines to intercept the pressing of the bar and set tJump:
if(Input.GetKey(KeyCode.Space)){
charAnimator.SetBool ("bJump", true);
}

Animating a Game Character

78

Refer to the following screenshot to check whether your code is correct:

5.	 Now, we need to add this script and the Animator controller to the character,
but to do that, we first need to complete two steps:

�� The first is to instantiate the character itself into the game scene, which we
haven't done yet. Select Character in the project panel and drag it into the
hierarchy or directly into the game scene. You can see this in the following
screenshot. Also, be sure that translations and rotations from Inspector
are all set to 0; it is strongly recommended!

Chapter 3

79

�� The second step is to add the Animator component to the character in
the scene. You can do that from the top menu or in Inspector (we go for
the first solution). With Character selected in the scene, go to the menu
and navigate to Component | Miscellaneous | Animator, as shown in
the following screenshot:

Animating a Game Character

80

6.	 Now drag Packt_Animator from the Animator folder in the project panel in the
Controller field of the Animator component into the Inspector window, which
should display None in the Controller option field right now. Please refer to the
following screenshot:

7.	 Next, drag Char_Animator from the Scripts folder onto the character in the
scene. If you did things right, with the character selected, you should see both
components displayed in the Inspector panel, as shown in the following screenshot:

Chapter 3

81

8.	 Press the Play button to start your game scene in the editor. If you press the
spacebar, the character jumps, playing the correct clip.

How it works...
Once transitions are set up, code is required to trigger them so that the animation clips are
played. The logic to follow is pretty straightforward; we cover it here.

The character needs an animator component to store an animator controller. The controller
holds the clips, represented as states; the transitions between them; and a number of control
parameters to manage the logic. The script contains the instructions that trigger the clips in
the animator controller, thanks to the control parameters.

All this information may seem overwhelming at first, but with practice, you'll see it makes
perfect sense and you'll get used to it!

Working with float parameters
In the following recipe, we will show you how to use a float type to switch between clips
based on a value that changes continuously, such as the character speed.

Let's assume we have an animation loop for the walking state of the character and another
for running. As the character speed increases, it switches between the two states. How can
we achieve that? Check out the following recipe to know.

Getting ready
As usual, we follow on from the previous recipe. Have the FBX files named Char@Walk and
Char@Run imported and available in the project panel and the Animator window open in
the editor.

How to do it...
1.	 Go to the Project panel and find the Walk and Run clips of your character. Drag them

from the Project panel into the Animator window.

2.	 Right-click on the Walk animation and make a transition to Run and another back
from Run to Walk.

Animating a Game Character

82

3.	 Create a new parameter, this time a float variable, and name it fSpeed.
The following screenshot shows the result you should have so far:

4.	 Click on the transition field to access its properties in the Inspector window.

5.	 Set fSpeed as the parameter to blend between Walk and Jump.

6.	 Once we set a float variable as the condition for the transition, we are also
required to refine the condition itself by setting whether we want the transition to
be performed once the value gets larger or smaller than a threshold we set. Set the
threshold condition for our float parameter to Greater and set its value to 0.5.
This way, the running clip is played as the character speed grows. Please refer to the
following screenshot:

Chapter 3

83

7.	 This time, we also flag the Atomic option, because we want this transition to be
interrupted whenever the character meets the threshold we set.

Animating a Game Character

84

How it works...
We added some complexity to the animation system of our character by adding a transition
controlled by a float value. We used the float value to blend between the Walk and Run
clips, based on the character speed. Assuming an analog control system, with this setup,
the character switches between the Walk and Run clips based on the player's input.

Coding the float-based transitions
With this recipe, we show you how to use the actual speed of the character to update the
value of a float variable. Once the values grow beyond the 0.5 threshold we defined in
the Animator window, the Run clip is played.

Getting ready
Open the script named Char_Animator and be ready to edit the new lines we need to add the
controls to switch between the walk and run clips.

How to do it...
1.	 First of all, we need to add a Transform variable to store a reference to the character

in the scene:
private Transform charRef;

2.	 In the Start() function, we initialize our Transform variable:
charRef = this.GetComponent<Rigidbody>();

3.	 The Rigidbody function in the formula is a built-in component of Unity that allows
physics to affect the game object. We will discuss this in a later chapter.

4.	 Next, we can add this single line in the Update() function of the script to make
the fSpeed parameter equal to the character's horizontal speed, so that the proper
animation clip is played depending on how fast the character is moving:
charAnimator.SetFloat("fSpeed", charRef.rigidbody.velocity.z);

5.	 Next, we add another if() cycle to check whether the character is playing the
Idle2 animation, and in such a case, we reset the fWait parameter to 0.0.

6.	 Please refer to the following screenshot, where the entire script is displayed,
so you can be sure you coded it right:

Chapter 3

85

How it works...
As you can see, coding the transition based on a float parameter was pretty easy, thanks
to that Rigidbody component that stores the actual speed of a game object. We will discuss
the Rigidbody component in detail in Chapter 4, Taking Control; what is important here is
that we can equal the float parameter to the actual speed of the character to switch
between clips.

There's more....
There is another relevant method available with Animators that is worth a mention, called
GetCurrentAnimatorStateInfo.

This method takes an int parameter to specify the animator layer we are addressing to,
which in our case is 0, as we are only using one layer of animations for the character.

GetCurrentAnimatorStateInfo has a method of its own, called IsName, which allows
you to check which animation clip is actually playing through a string parameter with the
actual clip name.

The instruction would read like this:

charAnimator.GetCurrentAnimatorStateInfo(int).IsName("string");

Checking the actual state (animation clip) a game character is performing at any moment can
be useful, for example, if you plan to chain clips together and allow the second to be triggered
only if the first is already playing. Can you imagine a game situation where you would need this?

Animating a Game Character

86

Creating Blend Tree
A very useful feature of the Mecanim system is the Blend Tree, which allows you to easily
blend between two or more clips that can be controlled by a single float value. In fact,
what if we plan to have our character switch between the idle, walk, and run states? With
a Blend Tree, we can have the character's speed value take control of the conditions to
switch between them, more or less as we did to switch between walking and running.

Follow us with the next recipe to learn how to use Blend Trees!

Getting ready
As we don't want to mess up the clips and transitions we created in the previous recipes,
let's assume we are working with a clean animator controller. You can create a new one or
clear the one we worked on before.

How to do it...
Access the Animator panel in Unity.

1.	 Right-click anywhere in the window (which should only contain the Any State box) and
select From New Blend Tree under Create State, as shown in the following screenshot:

Chapter 3

87

2.	 Double-click on the Blend Tree you just created to access its properties and
configure it.

3.	 Move to Inspector and click on the small + icon in the Motion field. Then, select
Add Motion Field from the menu, as shown in the following screenshot:

Animating a Game Character

88

4.	 Do this two more times, then start dragging the animation clips from the project panel
into the Motion fields we just created in the order shown in the following screenshot:

5.	 We now need to set the thresholds to decide at which speed the character stops
being idle and goes walking, and from there to running. Click anywhere on the blue
area representing the transitions to activate the Threshold fields and type in these
values, as shown in the following screenshot: 0.2, 0.5, and 0.6. The following
screenshot shows the Motion section displayed in the Inspector window. Also,
be sure that the fSpeed parameter we created before is selected from the
Parameter drop-down menu!

Chapter 3

89

6.	 You can check the result in the Preview window by clicking on the small play button.
If the no model is available message appears, simply drag the character model into
the window.

How it works...
With the help of a Blend Tree, we now have a very efficient way to control the animations
of the character with regard to its speed. By checking its value, we can smoothly switch
between idle, walk, and run. And it only took a few steps to achieve it!

We suggest you experiment with this tool and maybe repeat this last lesson to get more
acquainted with Blend Trees.

Animation layers – creating masks
With Mecanim, it is also possible to blend animations for different body parts of a character.
Let's see an example. You have a character that runs with a gun in its hand and you have
a reload animation that the character performs each time its weapon is empty. When the
character reloads, you want his upper body, actually its arms, to perform the reload action,
while the lower body of the character, its legs, should keep running.

Animating a Game Character

90

To achieve that in Unity, Mecanim features what are known as layers. Layers allow you
to create masks for specific body parts of a character and apply animation clips only on
those parts. A running animation that involves legs and arms can be blended with a reload
animation that only involves the character's arms, the result being that the character keeps
running with its legs, while its arms reload the weapon!

As layers require masks to work, in the next recipe, we will show you how to make one.

Getting ready
As we are not prototyping a 3D shooter here, we are not going to use actual animation clips
for this recipe. We only show the required steps to use layers, for the time you will be willing
to use them.

Have your project open in Unity; we left it with the Animator control panel containing the
animations we scripted so far: Idle, Run, Walk, and Jump.

How to do it...
1.	 If you take a look at the top-left corner of the Animator panel, you should see a box

telling you we are working on Base Layer, as shown in the following screenshot:

Chapter 3

91

2.	 The first thing to do is create an Avatar Mask out of the character avatar we are
already using. Let's begin by creating a new folder in the project and name it Masks.
We have done this operation several times; you won't need a reference picture…

3.	 Now create a new Avatar Mask in this folder by right-clicking on the project panel
and navigating to Create | Avatar Mask, as shown in the following screenshot:

4.	 Name the mask UpperBody.

5.	 We now need to configure the mask by selecting the body parts that we want to be
affected by our theoretical reload animation clip.

6.	 Select UpperBody in the project panel and move it to Inspector. You should see two
menu buttons: Humanoid (this is because we set our avatar to Humanoid when we
imported this character's animation clips in Chapter 1, Importing 3D Models and
Animations) and Transform.

Animating a Game Character

92

7.	 In the Humanoid panel, we have a representation of the character body. Right now,
all body parts should be green, meaning that there is no selection made by the mask,
yet. In this panel, green means that those parts are inside the mask and they will be
affected by the layered animation clip, while red parts are out of the mask and the
layered animation clip won't affect them. Clear enough?

8.	 Click on the head, body, legs, and shadow under the feet and the four small IK red
dots to exclude them from the mask, as shown in the following screenshot. Basically,
only the arms and hands must be green.

9.	 Now expand the Transform menu by clicking on it. You should have an empty field in
the Use skeletal from parameter (displaying None (Avatar)!), meaning no reference
avatar is available to create the mask, yet.

10.	 Click on the small button to the right to display the avatars available in your project
and select one. At this point, you should have a CharAvatar available. Please refer
to the following screenshot:

Chapter 3

93

11.	 The mask is now saved and ready to be applied to a character.

How it works...
The principle to make masks is quite easy: starting from the actual avatar of your character,
you can add or remove body parts to be included or excluded from those affected by
specific animation clips. Thanks to Mecanim, the operation is quite transparent for the
user! Still, many more settings are available that we didn't mention here, and we encourage
you to refer to the manual, available at http://docs.unity3d.com/Manual/class-
AvatarBodyMask.html.

http://docs.unity3d.com/Manual/class-AvatarBodyMask.html
http://docs.unity3d.com/Manual/class-AvatarBodyMask.html

Animating a Game Character

94

Animation layers – adding a second
animation layer

With the mask ready and set up, we can move back to the Animator panel to add a second
animation layer. Be ready to follow our instructions.

Getting ready
We follow on from where we left off . The avatar mask is ready to be used with the second
animation layer.

How to do it...
1.	 With the Animator editor open in Unity, click on the small + on the widget in

the top-left corner of the window to add a new layer, as shown in the
following screenshot:

2.	 Click on the Name field and name this layer UpperBody, the same as the mask.

3.	 Set the Weight parameter to 1. This is sort of a default value; you may need to
tweak it according to each of your actual animation clips.

4.	 Now click on the small button in the Mask field to select Mask from the panel, among
the various options available in the project. Right now, you should see the UpperBody
mask we created in the previous recipe. Please refer to the following screenshot
for these last three steps:

Chapter 3

95

5.	 The last setting we are defining here is the blending mode we want for this
UpperBody layer to work. If you click on the Blending drop-down menu, you can
select two options: Override and Additive. In this case, we want Override to be set,
because, thinking about the reloading while running case, we actually want the
arms to reload instead of running.

6.	 Additive is fine, on the other hand, when you want the final animation to be the
result of both clips mixed together. This is not what we want now. Please refer
to the following screenshot:

Animating a Game Character

96

7.	 Let's now focus our attention on the actual Animator panel. Right now, we don't have
any state here, though we need two, at least: a default state, actually empty, and the
reload animation clip (which we don't have for real!). Let's begin by adding an Empty
state, as we did before. You can refer to the following screenshot and remember that
this state must be colored orange, as it is the default state for this layer:

8.	 Now, assuming you actually have a reload animation to use, drag it from the project
panel into the Animator editor, as shown in the following screenshot:

Chapter 3

97

9.	 With the Reload clip added to the UpperBody animation layer, the next steps would
be to create a new parameter, a trigger, or a boolean parameter like we used
before; make a transition between the default state of UpperBody and reload; and
finally, add instructions to the AnimController script to trigger the animation upon
reloading the weapon.

10.	 Assuming you are going to use a boolean parameter called bReload, the line of
code to be added would be:
charAnimator.SetBool ("bReload", true);

11.	 We won't repeat the steps here to perform these operations, as they follow the
same logic we described in the previous recipe. Try to do this on your own this time!

How it works...
Mask blending and displacing animation clips on different layers is a technique that both
allows you to create more complex animation trees for game characters while keeping the
number of actual clips to be crafted at a minimum. In our case, we set a new layer to act only
on the arms of the character and applied a reload animation clip to them, while the rest of
the character's body keeps running, walking, or whatever.

As usual, we recommend you check out the manual for the more advanced settings,
available at http://docs.unity3d.com/Manual/AnimationLayers.html.

There's more...
Mecanim is one of the most relevant improvements to Unity in recent years. There is really
very much you can achieve with it, especially if you plan to use humanoid characters for full
3D games.

An option we didn't discuss in this chapter is retargeting, which allows you to adapt a complete
animation set to different characters with similar skeletal configurations. Retargeting is an
efficient and economic way, for example, to offer your players the option to choose between
male or female characters to play with. Instead of making a complete new animation set for
the additional characters, you just retarget the set you have!

We suggest you refer to the Unity documentation to learn more about the animator
component, its features, and its methods. The manual is available at http://docs.
unity3d.com/Manual/AnimationSection.html.

We suggest this tutorial (http://www.digitaltutors.com/lesson/27480) about
character animation.

It is hosted by Digital Tutors: it is excellent, clear and quickly puts you on the track,
though it comes with a price!

http://docs.unity3d.com/Manual/AnimationLayers.html
http://docs.unity3d.com/Manual/AnimationSection.html
http://docs.unity3d.com/Manual/AnimationSection.html
http://www.digitaltutors.com/lesson/27480

4
Taking Control

In this chapter, we will cover the following recipes:

ff Creating a bumped material

ff Importing packages

ff Setting the Character Controller

ff Adding Rigidbody

ff Coding physics controls

ff Collision management

Introduction
After we add an animation set for the character, we can finalize it before moving on to building
an actual game level.

The character lacks a proper graphic aspect, game controls, and the capability to react
to physics.

We are going to deal with these one at a time, starting with textures and materials.
In Chapter 2, 2D Assets for Unity, we described how simple materials are imported and
created in Unity. Now that we have a true character for the prototype, we can discuss
materials in more detail. In the following recipe, we create a material that requires
two textures.

Taking Control

100

The material for the character we are working with requires two textures: one to provide the
basic color of the mesh and another for the details of bumps and lights falling onto the mesh.
The first texture or map is technically called the diffuse map of the character and, simply put,
contains the information on how colors are distributed on the mesh surface without any lighting.
The second is usually addressed as the normal map and it is the result of a computation to
determine how light would strike the surface of the model, based on a very detailed version
of that model commonly named high poly (meaning the model is made out of a large number
of polygons). When creating video games, it is crucial to save as much memory as possible.
Simulating the effect of lights on a mesh by using a map that applies the information obtained
from a very detailed model to a low poly version of it is a commonly used technique to achieve
such a result. This technique is called normal mapping.

Normal maps and texture mapping, in general, are two wide topics. For those of you
who want to delve more into the matter, we suggest starting with these Wikipedia links:
http://en.wikipedia.org/wiki/Texture_mapping and http://en.wikipedia.
org/wiki/Normal_mapping.

Sorry for the parenthesis; it was necessary to at least introduce the subject before the
recipe. Let's see how to create detailed materials to be applied to a game character.

Creating a bumped material
Technically speaking, we need to create a bumped diffuse material and use a diffuse texture
and a normal map. The textures are provided along with this book, in the Texture folder of the
package, so we just need to import them and use them for our detailed material.

Getting ready
In case you haven't done it yet, import the textures named construcor_diffuse and
constructor_normals into the Textures folder of your Unity project.

How to do it...
1.	 Go to the Project panel in Unity and drag an instance of the constructor model into

the scene. We modified it so it comes with a test checker texture attached to it.

2.	 In the Materials folder of your Project, create a new material by right-clicking on
the folder and selecting Material under Create in the menu.

http://en.wikipedia.org/wiki/Texture_mapping
http://en.wikipedia.org/wiki/Normal_mapping
http://en.wikipedia.org/wiki/Normal_mapping

Chapter 4

101

3.	 Name this material mat_constructor.

4.	 Select mat_constructor in the Project panel to access its properties in the
Inspector window.

5.	 From the drop-down menu, change the Shader type from Diffuse to Bumped Diffuse,
as shown in the following screenshot:

Taking Control

102

6.	 The Bumped Diffuse shader requires two textures, as we stated before: the diffuse
map for the Base color and Normalmap for the lighting details. Click on the small
Select button on the Base Texture slot and add the constructor_diffuse
texture as the base map for the character.

7.	 Now repeat the operation for the normal map slot and add the constructor_
normals textures to provide the character with fine details.

8.	 Drag the mat_constructor material onto the constructor model in the game scene
to see the new material we just created. Be sure to also drag the material onto the
wrench on the right-hand side of the model. The character finally looks like it is ready
to be used in a game:

Chapter 4

103

How it works...
A material can be intended as the result of the computation made by a (usually short) piece
of code named a shader. The shader we used for this recipe, for example, takes two textures,
the so called diffuse and normal maps. It then interpolates them according to an algorithm
and finally produces the result we see on screen: a character model with a suit representing
both the basic colors and the effect of light bouncing on its surface.

If you scroll through the shader options available in the Material panel of Unity Inspector, you
can yourself check how many possibilities are available to create different types of materials
for your game assets.

See also
Materials could cover an entire book of their own as it is a rich topic that deals with image
crafting and programming at the same time.

Taking Control

104

Moreover, besides the built-in shaders available with Unity, new shaders can be added,
bought, or programmed; the best hint we can give is to checkout the manual and forums if you
want to delve deeper into materials. A good start is http://docs.unity3d.com/Manual/
Materials.html and http://docs.unity3d.com/Manual/class-Material.html.

Taking control of the game character
With the materials added, we now need to subject the character to our will, implementing
the game controls for our prototype.

When dealing with game controls in Unity, there are two approaches we can follow: we can use
a Character Controller, which is a standard asset of Unity specifically implemented to control
characters in first- and third-person perspectives, or we can rely on physics and take control of
the character by applying forces to it with a Rigidbody, a built-in component of the Unity editor.

Character Controllers and Rigidbodies share a couple features that come in very handy
when controlling a character, as they both provide collision detection and the means to move
the character around. But this is where their similarities end—the two differ under all other
aspects, especially with regard to movement, precision, and fluidity.

Character Controllers are excellent for shooters because they provide very responsive controls
that don't take physics forces into much consideration, so to say. This is exactly what players
require in games that mostly rely on reflexes! Think of any first-person shooter you have
played; do you believe a real person could run all the time, strafe in the blink of an eye,
or turn around so quickly?

On the other hand, Rigidbodies work fine, for example, for racing games that usually
implement detailed physics models to simulate the actual behavior of vehicles in realistic
environments. When you drive in a simulation game, you feel (or at least you should!) that
the vehicle behavior is affected by acceleration, direction, vehicle setup, and maybe even
the weather conditions, for the most advanced games.

Character Controllers and Rigidbodies are both valid choices with advantage points
and drawbacks, so let's look at a couple of recipes to highlight the actual differences
between them.

The important thing to stress upon is that one is designed for cases while the other is
usually not. In other words, using a Rigidbody means you don't want to use a Character
Controller, and vice versa!

Importing packages
The Character Controller package is a standard package provided with Unity and it can be
added to a new project upon creating it, or it can be added in a later stage. As a starter,
our next recipe shows how to import a package into an already existing project.

http://docs.unity3d.com/Manual/Materials.html
http://docs.unity3d.com/Manual/Materials.html
http://docs.unity3d.com/Manual/class-Material.html

Chapter 4

105

A large number of packages, such as the Character Controller package, are provided with Unity
and more can be bought from the Asset Store. It's always worth taking a look to see what is
available there whenever you need extra stuff for your projects. If you are lucky, you may find
what you need for free. Otherwise, you can consider paying for quality stuff and save the time it
would take to make it yourself.

Getting ready
Have your existing project opened in Unity and be ready to follow our instructions.

How to do it...
1.	 Access the Project panel and right-click anywhere. From the menu, select Import

Package under Character Controller, as shown in the following screenshot:

Taking Control

106

2.	 The importing panel opens. If you inspect it, you can see that the package is made
of several components, including Prefabs, Models, Textures, Scripts, and so on.
By flagging any of these components, you can decide what to actually import from a
package and what not to import. In our case, we keep things easy and simply import
everything contained in the package:

You should now have a new Standard Assets folder in the project, containing a Character
Controller folder with the assets we need. The following screenshot displays what the
project should now look like:

Chapter 4

107

How it works...
The package is imported into the project and the Character Controller component can now
be added to our game character. By inspecting the package in the Project panel, you can see
that it contains several types of Assets, including Prefabs, Textures, and Scripts, as shown in
the following screenshot:

The topic of our next recipe is to add Character Controller and set it up.

Setting the Character Controller
The Character Controller is designed for the first- and third-person control systems. It comes
with movement control in all four directions, jump controls, and independent control of the
camera, so the player can run in one direction and shoot in another.

A pretty clear way to describe the Character Controller is by saying that it is very precise with
regard to movement, though it lacks fluidity: the character accelerates to maximum speed in
the blink of an eye, turns on a dime, and stops the very moment you release the button.
In other words, the feeling you get using a Character Controller is not very realistic, and to
make it more fluid so it looks realistic, you need to turn to coding.

The Character Controller also doesn't implement physics by itself. It detects collisions but
doesn't push or apply forces to the other GameObjects in the scene unless you program it
to do so. As a matter of fact, it wouldn't even be affected by gravity if the scripts attached
to it didn't make it!

As for collisions, the Character Controller only works with static Capsule Colliders. This
means that it is specifically designed for things that resemble humanoid characters and
that the Capsule Collider attached to the controller cannot be rotated when the mesh does.

Taking Control

108

On the other hand, the Character Controller has a pretty useful parameter called isGrounded
that states whether a character has its feet on the ground. The variable is linked to another
parameter called Slope Limit to set the maximum verticality of the surfaces we want the
character to be able to climb on. Basically, it is a system that automatically prevents the
character from walking on walls. Such a useful feature is not available with a Rigidbody.

Step Offset is another very useful parameter provided with Character Controllers that takes
care of stating whether the character can step over an object or not. Thanks to this, we
can allow the character to step over things such as steps or crates. With a Rigidbody,
such elementary behavior must be specifically coded!

Many other properties are available to set up the Character Controller. With the next recipe,
we show the most important ones, as we attach and set up a platforming-style Character
Controller to our game character. Our plan is to prototype a side-scroller, and Unity offers
exactly what we need. If you inspect the folder where we imported the Character Controller
package, you should see a JS script named PlatformInputController in the Scripts folder.
That's the script we are going to attach to the game character.

Getting ready
By dragging PlatformInputController onto the game character in the scene, four new
elements appear in the Inspector panel: a component, the Character Controller itself,
and two scripts—CharacterMotor and PlatformInputController. They are responsible for
providing the character with the standard capabilities required by side-scrolling platform
games, and by setting their properties, we define the behavior of our game character.

How to do it...
1.	 Access the Scripts folder in the Project panel. Select PlatformInputController in the

Scripts folder of the Character Controller and drag it onto the game character in
the scene.

Chapter 4

109

2.	 The Character Controller, the Character Motor, and the Platform Input Controller
components are added to our character. Now we can tweak their properties one by
one to get the controls we like.

3.	 Let's begin by inspecting the Character Controller component. The Slope Limit
parameter defines how steep the ground is so that the character is able to walk
on it. Surfaces steeper than this value in degrees are considered walls and
block the character. Very useful!

Taking Control

110

4.	 The Step Offset field defines the maximum height of objects that the character
can step over. Unity manually suggests to keep this value between 0.1 and 0.4,
assuming a standard character with a height of 2.0 in Unity units. And so we do!

5.	 The Skin Width field is a crucial parameter to prevent the character from getting
stuck on walls and other obstacles should their respective colliders compenetrate
each other. Very large values my cause the character to pierce into obstacles, while
very small values may lead to no collision detection at all, so tweaking may become
necessary with this parameter.

6.	 Center, Radius, and Height are pretty self-explanatory. Center defines the origin of
the capsule collider that surrounds the mesh. Radius and Height are used to tweak
the dimensions of the capsule to adapt it to the character model.

Take a look at the following screenshot to check the configuration of the Character
Controller component:

7.	 The Character Motor and Platform Input Controller scripts are predefined scripts
that have been added with the package to the project. Character Motor defines the
actual behavior of the character by controlling parameters such as its horizontal speed
and acceleration, as well as jump height. Platform Input Controller, on the other
hand, takes care of taking the input from the player and turning it into actual character
actions on screen. We suggest you check out the forums to know more about these two
important scripts. The following links are good ones to start with:

�� http://forum.unity3d.com/threads/unity-3-character-
motor-documentation.63917/

�� http://answers.unity3d.com/questions/747207/side-
scroller-controller-advice.html

http://forum.unity3d.com/threads/unity-3-character-motor-documentation.63917/
http://forum.unity3d.com/threads/unity-3-character-motor-documentation.63917/
http://answers.unity3d.com/questions/747207/side-scroller-controller-advice.html
http://answers.unity3d.com/questions/747207/side-scroller-controller-advice.html

Chapter 4

111

How it works...
Adding Character Controller to a character basically means equipping the character with means
to interact with the game world by defining its collider and how it walks on surfaces. Then, two
scripts take care of the rest: Character Motor defines the behavior of the character, how fast
it walks, accelerates, runs, or jumps, while Platform Input Controller takes care of turning the
input from the player into character controls, specifically designed for platform games.

There is more...
By inspecting the properties of the Character Motor script, you may have noticed that a
parameter called Gravity is available. You tweak this value to increase or decrease how
strong the ground attracts the character when it falls.

We stated previously that the Character Controller doesn't implement gravity by itself,
and that is still the case—while the Character Controller simulates physics through custom
coding instructions of a script attached to the GameObject itself, gravity with the Rigidbody is
based on the Unity physics engine, the renewed NVIDIA PhysX.

Adding Rigidbody
Another approach to control a game character is to use a Rigidbody component and make it
subject to physics.

The Rigidbody adds several features to make a character behave as if it were a real physical
object—it tends to fall down, it is pushed by other objects, and pushes them as well. If you
want your game to have a realistic feel, then a Rigidbody is what you need.

The problem is that, more often than you may think, realism doesn't necessarily mean fun
and engagement. As a matter of fact, the control style dependent on a Rigidbody is pretty
realistic, but it is also not very precise. Momentum, friction, weight... these are all examples
of variables you need to manage and appropriately tweak to get optimal game controls. In
other words, with a Rigidbody you get fluidity, but you need to be comfortable with physics and
have excellent programming skills to get true control.

With regard to gravity management, a Rigidbody has a parameter called Mass that defines
how strong the character is attracted by the ground based on its physics properties. Imagine
you have several GameObjects in your scene, each with its own Rigidbody. Should you decide
to change the physics model as a consequence of a game event, you can change the defintion
of gravity in your game and your changes will affect all Rigidbodies in the scene. With a
Character Controller, you couldn't do that!

Taking Control

112

Another difference is that Rigidbodies allow us to use physics materials. A Rigidbody offers
the opportunity to create special surfaces where the character slides as if it were ice, or slows
down, or anything you may think of. This can be pretty useful for a platform game; however,
the Character Controller doesn't support it!

With this recipe, we show you how you can add a Rigidbody component to a game character
and how to tweak its parameters for a platform game.

Getting ready
Clean the game scene of any former character and add a new one. Follow the recipe to know
what to do next.

How to do it...
1.	 Go to the Project panel and access the Prefabs folder. Now drag a new Character

prefab into the scene and be sure it has no Character Controller attached to it.

2.	 With Character selected in the Hierarchy, click on the Component menu item and
navigate to Physics|Rigidbody from the menu, as shown in the following screenshot:

Chapter 4

113

3.	 If you now move to the Inspector window, you can take a look at the parameters to
control the behavior of the Rigidbody. Mass represents...well, the mass of a game
object—how much it is subject to physics forces. Objects with high mass tend to fall
down quickly, keep their momentum if they collide, and push other objects.
An important thing to say about Mass is that it may happen that your imported
models act strangely when added with a Rigidbody. The reason may be that the
scale of your imported model is wrong. Always consider that in Unity, 1 unit = 1
meter, and that the physics engine works on the same exact scale.

4.	 Drag is another important parameter that defines the inertia of a game object.
Low values of drag mean that the object is heavy, while high values mean it is light.
Checking the manual, you may learn that 0.001 means a solid block of metal, while
a value of 10 corresponds to a feather. Please refer to http://docs.unity3d.
com/Manual/class-Rigidbody.html for an explanation of the Drag parameter.

5.	 Is Kinematic is an interesting option if you want a game object to detect collisions
but don't want it to react to physics. For example, a classic 2D shooter requires
collision detection but doesn't implement physics forces. Since an Rigidbody
component may be necessary for detecting the collisions on a game object
(check the collision detection tables at: http://docs.unity3d.com/Manual/
CollidersOverview.html), the Is Kinematic option is a welcome feature of the
Rigidbody component.

6.	 Finally, we have a set of properties called Constraints. By flagging these properties,
we decide which axis the character can move to and rotate on. For example, for a
side-scrolling game, you may want the character to not move on the Z axis, and
freeze its rotations on the X and Z axes.

The following screenshot shows the settings to use a Rigidbody in our platform game:

http://docs.unity3d.com/Manual/class-Rigidbody.html
http://docs.unity3d.com/Manual/class-Rigidbody.html
http://docs.unity3d.com/Manual/CollidersOverview.html
http://docs.unity3d.com/Manual/CollidersOverview.html

Taking Control

114

How it works...
A Rigidbody is one of those components you will keep making use of as you work with Unity.
Game objects with Rigidbodies attached to them fall, push and can be pushed, have mass,
provide a large collection of methods to interact with them, and can be fully controlled through
physics. The settings we previously defined are those that meet the needs of our prototype;
you may find yourself experimenting with them to find yours! With the Rigidbody component
added to the character, we now have physics, but we still miss control. If we want to use
physics forces interacting with the Rigidbody component to control the character, we need to
script them. This is the topic of our next recipe.

Coding physics controls
In this recipe, we show you how to create a custom script to control a game object based on
physics. It is not the final controller for the character of our prototype: it's a small piece of code
that can be used for a classic 2D shooter, based on physics.

Getting ready
In the Scripts folder in the Project panel, create a new C# script and name it
PacktController. Then, double-click on it to open it in Monodevelop.

How to do it...
1.	 First we need a bunch of variables to control the forces applied to the GameObject.

Add the following lines at the beginning of the script, right below the usual line with
the script class declaration:
(public class PacktController : MonoBehaviour {):
public float horAcceleration;
 public float cruiseSpeed; //max speed when not pressing
 public float maxSpeed; //max speed while pressing
 public float actualSpeed; //speed at given time
 public float limY; //limit on y, use as mathf.abs
 public float expon; //used to smooth vert movement speed
 public float alpha; //use to tweak the vert movement
 speed

2.	 Now get into the Start() function and add the following line. We need to initialize
horAcceleration:
horAcceleration = 4.0f;

Chapter 4

115

3.	 Next we add a function to the script. Whenever you make use of physics, you should
always put instructions into the FixedUpdate() function instead of Update(). The
manual states that FixedUpdate should be used instead of Update when dealing
with Rigidbodies. For example, when adding a force to a Rigidbody, you have to apply
the force for every fixed frame inside FixedUpdate() instead of every frame inside
Update. The reason is that FixedUpdate() is called at fixed time intervals and is
not subjected to frame rate, thus providing better reliability with physics control.

4.	 These lines provide the actual speed of our character and set a parameter to
smooth its movement:
 actualSpeed = Rigidbody.velocity.x
 expon = Time.time * alpha;

5.	 With regard to the x component of the Rigidbody.velocity vector we used, it
assumes that the character model has been imported front-faced, as we learned in
the first chapter of this book. Should you decide to do otherwise for any reason, just
remember to take notice of that. With a character rotated 90 degrees on its Y axis,
for example, the z component would affect speed, instead of the x component.

6.	 The following lines take care of controlling the left\right acceleration of the character
by using the left and right arrow keys:
 /* control left\right acceleration */
 if (Input.GetKey (KeyCode.RightArrow) && Mathf.Abs (actualSpeed)
< maxSpeed)
 rigidbody.AddForce (Vector3.right * horAcceleration,
 ForceMode.VelocityChange);

 if (Input.GetKey (KeyCode.LeftArrow) && Mathf.Abs (actualSpeed)
< maxSpeed)
 rigidbody.AddForce (Vector3.left * horAcceleration,
 ForceMode.VelocityChange);

 if (Input.GetAxis ("Horizontal") != 0 && Mathf.Abs (actualSpeed)
> cruiseSpeed) {
 Vector3 v = rigidbody.velocity;
 v.x = (-v.x);
 rigidbody.AddForce (v, ForceMode.Acceleration);
 }

7.	 Now we add the controls to have the game object fly up or down using the input
coming from the Left and Right arrow keys. We also implemented a control to prevent
the character from getting out of the top and bottom boundaries of the level:
//control up\down acceleration
 if (Input.GetKey (KeyCode.UpArrow)) {
 Vector3 v=rigidbody.velocity;
 v.y=(1-(Mathf.Exp(-expon)))*limY;

Taking Control

116

 rigidbody.AddForce(v,ForceMode.VelocityChange);
 }

 if (Input.GetKey (KeyCode.DownArrow)) {
 Vector3 v=rigidbody.velocity;
 v.y=(-1)*(1-(Mathf.Exp(-expon)))*limY;
 rigidbody.AddForce(v,ForceMode.VelocityChange);
 }

8.	 You can add the script to the character in the scene to apply this control system to it.
The following screenshot shows the complete script:

Chapter 4

117

How it works...
This script basically does two things. With regard to left\right acceleration, it provides a
max speed that is reached while pressing the Left or Right arrow keys, whether the player
is moving left or right. As the player releases the keys, the character slows down to a cruise
speed, regardless of direction.

The script also prevents the character from going too far up or down. It sets a limit on the Y axis
and then uses an asymptotic function to smooth down vertical speed upon reaching that limit.

You may have noticed that the function we are using to code our instructions is
FixedUpdate(). When using Rigidbody, this is the function you must use,
instead of popularUpdate().

The other thing you should notice is that Rigidbody controls are coded as forces applied to
the object as a consequence of the player input. In our case, we used the Rigidbody.
AddForce method, which requires a vector to set the direction of the force applied to the
R component (v) and the type of force applied (ForceMode.VelocityChange). We suggest
you check out the manual for a thorough description of this method, available at http://
docs.unity3d.com/ScriptReference/Rigidbody.AddForce.html.

Collision management
While describing the differences between Character Controller and Rigidbody, we have
mentioned several times that both these components provide collision detection for the game
objects they are attached to. Since collision detection is a fundamental task that must be
performed by any game (at least, any game we can think of!) and it can be a hard dude to deal
with, in the following recipe, we provide a few examples to show you how collisions actually
work in Unity.

If you want to detect whether a collision happens between two game objects, you need both of
them to be equipped with a Collider. A Collider is a sort of cage that contains the game object
to check whether another game object enters its boundaries. When this happens, a collision
message is sent to the system. Unfortunately, two colliders hitting each other won't generate
a detection!

The minimal requirement for a collision detection in Unity is that one has both a Collider and
a Rigidbody, and the other has at least the Collider. The Unity manual offers a table to show
the minimal requirements for collision detection in Unity at http://docs.unity3d.com/
Manual/CollidersOverview.html.

Getting ready
We use an entire new scene for our next recipe: create a new empty scene in your existing
Unity project and be ready to follow our instructions!

http://docs.unity3d.com/ScriptReference/Rigidbody.AddForce.html
http://docs.unity3d.com/ScriptReference/Rigidbody.AddForce.html
http://docs.unity3d.com/Manual/CollidersOverview.html
http://docs.unity3d.com/Manual/CollidersOverview.html

Taking Control

118

How to do it...
1.	 Let's begin by creating a new Scene in the Unity project and adding a Plane game

object to it.

2.	 Move Plane to the bottom of your game scene and resize it as you see fit so it
acts as the floor for your scene.

3.	 Create a Cube and move it to the left and above the plane. You will notice that Unity
automatically adds a Box Collider to it:

Chapter 4

119

4.	 Add a Rigidbody component to the cube; we described how to achieve that in
be specific.

5.	 Play your scene: the cube falls on the plane due to gravity and stops as it comes
in contact with the plane because when we added the plane to the scene, Unity
automatically added the Collider component to it, too.

6.	 To detect the collision, we need a script. Create a new C# script in the Scripts folder
of the Project panel and name it CollisionDetection.

7.	 Double-click on the script to open it in Monodevelop.

8.	 Reach for the bottom of the script, outside the Start and Update functions, and
add the following function:
void OnCollisionEnter(Collision collision)
{
 Debug.Log("Collision detected!");
}

9.	 Save the file, go back to Unity, and drag it from the Project panel to the Cube in the
Hierarchy panel. The script should appear in the Inspector panel as a component of
the Cube:

10.	 Run the application: as the cube touches the plane, the log message confirming that
the collision has been detected is displayed.

Taking Control

120

11.	 Now add another GameObject to your scene, a sphere, and move it to the right side
of the scene, with the same y and z coordinates as the cube.

12.	 Go back to the CollisionDetection script in Monodevelop and add the following
line inside the Update function:
void FixedUpdate () {

 rigidbody.AddForce(8*Vector3.right,ForceMode.Acceleratio
 n);

}

With this line, we are instructing our cube to slowly move right on the x axis, towards
the sphere we just added.

13.	 Go back to Unity, uncheck the UseGravity flag on the Rigidbody component of the
Cube, and play the scene. The cube moves right and stops as it touches the sphere.
The debug message is played as well.

Chapter 4

121

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

How it works...
What happens is that the cube and the sphere collide, but upon collision, the cube stops,
because the sphere has no physical properties, except in its physical existence as an
obstacle in the path of the cube.

If we want the sphere to be influenced by the collision, a Rigidbody component must be
added to the sphere, too. Do that and you'll see that when the cube hits the sphere, the
latter will start moving as a consequence of the force it received from the collision!

There is more...
We don't fear repetitions: collision detection is a crucial component of games and it can be
pretty harsh to deal with. Unity forums are exuberant with knowledge on the matter, so please
refer to it whenever you have difficulties with collisions and the OnCollisionEnter()
function in general at http://docs.unity3d.com/ScriptReference/Collider.
OnCollisionEnter.html.

Also, remember that no solution is always good, so the best thing to do is to learn how to
take advantage of the assets provided by Unity, depending on each specific condition.

We extensively discussed the differences between Character Controller and Rigidbody, so
you can now decide which one better fits your needs. Finding the optimal balance between
realism and fun is hard work and requires smart intuition. It is not by chance that this is
one of the most important aspects in game design and balancing, which means that a
lot of practice and experimentation are key to find that balance!

http://www.packtpub.com
http://www.packtpub.com/support
http://docs.unity3d.com/ScriptReference/Collider.OnCollisionEnter.html
http://docs.unity3d.com/ScriptReference/Collider.OnCollisionEnter.html

5
Building Up the

Game Level

In this chapter, we will cover the following recipes:

ff Creating Prefabs

ff Coding a scrolling background

ff Adding platforms

ff Programming the character controls

ff Setting up an Animator

ff Adding collectibles to the game level

ff Camera setup and controls

Let's get to work!

Introduction
With the character basically finished from a graphic standpoint, we can now start building up
a game level for it to run around. This chapter is thus dedicated to creating an actual game
level for our prototype and the logic to make it work as a side scrolling game.

Level design
Though we didn't discuss a design document for the prototype we are working on, with every
new chapter we provided hints about the kind of game we plan to prototype. For those who
didn't notice that, we will offer a recap here.

Building Up the Game Level

124

Our plan is to create a side scrolling running game. The character runs both left and right.
There are platforms to jump on and collectible objects to gather. Gathering all collectibles
means you beat the level, whereas falling from platforms more than a given number of times
gets the player to the Game Over screen.

The camera displays the character from a side perspective and follows the character as it
runs. Controls are standard and quite simple: left and right arrow buttons to move and the
spacebar to jump.

The game has a background that procedurally recreates itself so the character can
endlessly run in any direction: the background will always be there! Platforms are also
created procedurally with criteria, so the character always has another platform close
enough to jump on. The hard part with platforms is to create them so they are reachable
by the character, based on its relative position.

Making the background for the prototype
We want the background elements for the game to be endlessly repeatable: for as far as
the character can run in a direction, there will always be a piece of background behind it. To
achieve that, we designed a background made of three panels: one stays in the middle and is
centered on the player; the other two stay on the left and right of the central element. As the
player runs, the farther element is replaced ahead of the character and this routine repeats
as long as the game session goes on. The following screenshot shows what we mean:

The first thing we need is the actual panels; let's see how to make them.

Chapter 5

125

Creating Prefabs
When you are working with Unity and need to instantiate a game object clone at runtime,
you can take advantage of Prefabs. Prefabs are game object templates that can be configured
however you like with regard to shape, material, behavior, and anything else you may need.
These templates can then be saved in your project. Whenever you need that prefab in the game
scene at runtime, you can use a function called Instantiate() that takes a prefab as a
parameter and puts it in the game. The following recipe shows how to create Prefabs in Unity.

Getting ready
Start a new scene in your project and follow the instructions.

How to do it...
To make a prefab you first need to create a GameObject. Once you put everything you need
into the GameObject, you can save it as a prefab.

1.	 Create a new GameObject in the scene, Cube. You should know by now how to do it.
2.	 Add the material called checker to Cube by dragging the material from the Project

panel onto the object in the scene or into the Material slot in the Hierarchy (with the
cube selected in the Hierarchy). You can refer to the following screenshot:

Building Up the Game Level

126

3.	 In the Assets folder of your project, create a new folder and name it Prefabs.
Creating a folder is like creating any other type of asset: right-click on the Assets
folder and from the menu, select Folder under Create.

4.	 Select the Prefab folder and right-click on it to create a new Prefab, as shown in the
following screenshot:

5.	 Name the Prefab back_prefab.

Chapter 5

127

6.	 Check whether the cube in the scene is at the 0,0,0 position and with 0,0,0 rotation;
then, drag it from Hierarchy into back_prefab in the Project panel, as shown in the
following screenshot. If you did things right, the small square icon of back_prefab
should turn from gray to light blue.

Building Up the Game Level

128

7.	 back_prefab is now ready to be instantiated at will in our game level. You can
delete the cube from the scene, as we don't need it anymore and in the Inspector,
check whether back_prefab is actually a cube with a checkered material,
as shown in the following screenshot:

How it works...
The procedure to make prefabs is always the same, regardless of the actual characteristics
of the game asset itself: create a game object in the scene, add anything you want/need/like
to it to define its graphic aspect and behavior, then drag the game object onto a prefab and
delete the game object from the scene. Voilà!

Chapter 5

129

The prefab to be used for the background is ready, so we now need to script its behavior to
use it for the prototype. This is what we will do in the next recipe.

Coding a scrolling background
We will keep going with the same game scene we left at the end of the previous recipe, so just
stick with the instructions!

How to do it...
1.	 In the Scripts folder of your Project panel create a new C# script and name it

Back_Manager.

2.	 Double-click on the script to open it in Monodevelop.

3.	 Let's begin by creating the required variables: we need one public Transform variable
to store the reference to the prefab to be used as the background panels and a
few private vars to define things like the scale of the panels, the distance from the
character, and a reference to the game character.

From a game logic perspective, the most important variable we are adding to the
script is an Array[] variable type that we use to manage the three panels that
repeat endlessly in the background. To achieve that, add the following lines at the
beginning of the script:

public Transform backBrick;

private Transform[] backArray=new Transform[3];
private Transform thisChar;
private float distance;
private float farDistance;
private Vector3 brickScale;

4.	 In the Start() function we put the instructions to initialize the variables and create
a service float variable to help us make longer lines of code more readable. These
instructions could be added to an Awake() function instead of Start(), but to keep
things easy, we prefer to use the Start() function.

5.	 Add the following lines to the Start() function of the script:
thisChar = GameObject.Find ("Constructor").
GetComponent<Transform>();
farDistance = 30.0f;
brickScale=new Vector3(60,60,1);
float xPosition;

Building Up the Game Level

130

6.	 Now we add a for() cycle to instantiate the panels in the scene; add them to the
array and set their scale. The following code goes into the Start() function too:
for (int i=0; i<3; i++) {

 xPosition=(brickScale.x*i);
 backArray[i]=(Transform)Instantiate(backBrick,new Vector3
 (xPosition,0,farDistance),Quaternion.identity);
 backArray[i].localScale=brickScale;
}

7.	 In the Update() function we plan to run a routine that keeps repeating and checks
the horizontal distance between the character and the background panels. For this
reason, instead of coding the routine into the Update() function itself, we make a
custom function and then call that function in Update(). The custom function name
is CheckDistance() and this is the code to be added to it:
void CheckDistance(){

 for (int i=0; i<3; i++) {

 distance=thisChar.transform.position.x
 backArray[i].transform.position.x;

 if(Mathf.Abs (distance) > (brickScale.x * 1.5) &&
 distance > 0){
 backArray[i].Translate(3* brickScale.x,0,0);
 break;
 }

 if(Mathf.Abs (distance) > (brickScale.x * 1.5) &&
 distance < 0){
 backArray[i].Translate(-3*brickScale.x,0,0);
 break;
 }
 }
}

8.	 Access the Update() function and add a call to CheckDistance() there using the
following lines:
void Update () {
 CheckDistance ();
}

Chapter 5

131

In case you are missing something, the following screenshot shows the complete
BackgroundManager script:

9.	 Go back to Unity, create an empty GameObject in the scene and name it
back_manager. You can refer to the following screenshot:

Building Up the Game Level

132

10.	 Now drag Back_Manager onto the back_manager game object in the scene.
The attached script, called Back Brick, should appear in Inspector as it's
one public variable.

11.	 Drag back_prefab from the Project panel onto the Back Brick slot of the
BackgroundManager script in the Inspector, as shown in the following screenshot:

How it works...
The scripts attached to back_manager in the scene take care of instantiating the panels
with the right position and scale. As the character moves left or right, the scripts check
their position and decide how to translate the background panels so one is always behind
the player. It just needs us to manually create a reference to the prefab to be used for the
background panels, which is what we did with the last step of the recipe.

Adding platforms
We can now move on to building and coding the platforms we need for the character to jump
on. In this prototype, we want platforms to be created according to the character's direction,
left or right. This is consistent with the idea of building a two-way side-scrolling game. We also
want to add a bit of variety so we code platforms of random length and with random vertical
and horizontal gaps between them as well.

As for the elements we used for the background, we need a prefab and a piece of code.

Chapter 5

133

Getting ready
Let's begin by making the Prefab. Follow the same steps described in the first recipe of this
chapter to make a prefab called plat_prefab and add a material of your choice to it. You
know how to do it.

For your reference, we have added a screenshot here to show you what a platform in the
scene should look like:

Next, we can write the script.

How to do it...
1.	 In the Scripts folder of your project, create a new C# script and name it

PlatManager; then open it in Monodevelop.
2.	 As usual, we declare the public and private variables at the top of the script. This time

we need plenty: transforms for the character and the platforms to be instantiated in
the scene and several float values and vectors to define positions and gaps. Add the
following lines to PlatManager:
public Transform platBrick;
private Transform thisChar;
private Transform actualPlat, prevPlat, nextPlat;
private Vector3 platScale;
private Vector3 nextPos;
private float charX, charY, charZ;
private float gap, delta, yGap;
private float maxY, minY;

Building Up the Game Level

134

3.	 In the Start() function we initialize the variable storing the reference to the
character, use float to handle level boundaries and intervals, and create the first
platform right below the character spawning point. Add the following lines to the
script. The SetScalesAndGaps() function is defined at the bottom of the script:
void Start(){

 thisChar = GameObject.Find("runner").
GetComponent<Transform>();

 maxY = 30f;
 minY = -10f;
 delta = 4; //we use this to define intervals
 nextPos = new Vector3(charX, charY - 1.5f, charZ);
 actualPlat = (Transform)Instantiate(platBrick, nextPos,
 Quaternion.identity);
 SetScalesAndGaps();
 actualPlat.localScale = platScale;
 prevPlat = null;
 nextPlat = null;
}

4.	 The SetScalesAndGaps() function is meant to generate all random values we
need to scale the platforms and set horizontal and vertical gaps between them. We
decided to put all the instructions in a single function so the script is more compact.
The CheckYGap() is a small function to check that the yGap random generated
value lies between the top and bottom limits we defined for our game level:
void SetScalesAndGaps(){
 platScale = new Vector3(Random.Range(20,28),1,1);
 gap = Random.Range(8f,16f);
 if(prevPlat != null){
 yGap = prevPlat.transform.position.y + (Random.Range (
 delta,delta));
 CheckYGap();
 }
}

5.	 What follows is the code for the CheckYGap() function, which takes advantage of
the minY and maxY variables we set before:
void CheckYGap(){ //we set top and bottom vertical limits
 if (yGap > maxY){
 yGap = maxY;
 }
 if(yGap < minY){
 yGap = minY;
 }
}

Chapter 5

135

6.	 There is a last function we created to update the actual character position. It is called
UpdateCharPos() and these are the lines to put into it:
void UpdateCharPos(){ //update char pos
 charX = thisChar.transform.position.x;
 charY = thisChar.transform.position.y;
 charZ = thisChar.transformposition.z;
}

7.	 Now we can address the FixedUpdate() function of the script. As you may
remember, the FixedUpdate() function should be used instead of Update()
whenever you want to use Rigidbodies and physics in the scene. In our case, we
first update the character position, then we check whether it is going left or right.
That done, we define the scales and gaps, calculate the next position and finally
instantiate a platform using the prefab we made earlier. Add the following code
to the FixedUpdate() function:
UpdateCharPos();

if(actualPlat != null && charX > actualPlat.transform.position.x +
delta){
 float strict = actualPlat.transform.position.x;
 prevPlat = actualPlat;
 actualPlat = null;
 SetScalesAndGaps();
 nextPos = new Vector3(strict + platScale.x + gap, yGap,
 charZ);
 nextPlat = (Transform)Instantiate(platBrick, nextPos,
 Quaternion.identity);
 nextPlat.localScale = platScale;
}

if(actualPlat != null && charX < actualPlat.transform.position.x -
delta){
 float strict = actualPlat.transform.position.x;
 prevPlat = actualPlat;
 actualPlat = null;
 SetScalesAndGaps();
 nextPos = new Vector3(strict - platScale.x - gap, yGap,
 charZ);
 nextPlat = (Transform)Instantiate(platBrick, nextPos,
 Quaternion.identity);
 nextPlat.localScale = platScale;
}

Building Up the Game Level

136

8.	 Next we check whether the character has reached the next platform, or if it, instead,
inverted its direction using a couple of if() statements:
if(prevPlat != null){
 float strict = prevPlat.transform.position.x;
 if(charX > strict - delta && charX < strict + delta){
 Destroy(nextPlat.gameObject);
 nextPlat = null;
 actualPlat = prevPlat;
 prevPlat = null;
 }
}

if(nextPlat != null){
 float strict = nextPlat.transform.position.x;
 if(charX > strict - delta && charX < strict + delta){
 actualPlat = nextPlat;
 nextPlat = null;
 Destroy(prevPlat.gameObject);
 }
}

9.	 The coding for this recipe ends here. The next step is to drag the script from the
Project folder onto a game object in the scene. As we did for back_manager,
add an empty GameObject to the scene, name it platform_manager, and
drag the PlatManager script onto it.

10.	 Now drag the plat_prefab asset in the Prefabs folder of the project into the
platBrick variable slot of platform_manager in the Inspector panel.
These are the exact same steps we performed for the previous recipe.

How it works...
In this implementation, platforms are created depending on the direction of the character,
once it gets beyond the center of the platform it is actually on, at any moment.

The script also considers the possibility that the player changes their mind and inverts the
direction the character is running in. In such a case, the last platform created is destroyed
and the cycle repeats.

Chapter 5

137

We encourage you to experiment with alternative methods to control platforms and improve
our prototype system. For example, you may want the platforms to disappear after a short
time interval so the player is forced to keep running.

Also, you can use an entirely different method to manage platforms: there's this technique
called object pooling that is actually more efficient, as it doesn't require you to destroy
and create platforms every time. The following links are a good starting point to learn
this methodology:

ff http://gamedevelopment.tutsplus.com/tutorials/object-pools-
help-you-reduce-lag-in-resource-intensive-games--gamedev-651

ff http://gameprogrammingpatterns.com/object-pool.html

There's more...
Another interesting thing you could do to improve the gameplay of this prototype is to take
advantage of so-called physics materials to create platforms that affect the responsiveness
of the character controls, for example, slowing it down or making it slide like it's running on
ice. We suggest you take a look at the following link: file:///C:/Program%20Files%20
(x86)/Unity/Editor/Data/Documentation/Documentation/Components/class-
PhysicMaterial.html.

Programming the character controls
Though we already mentioned a few examples of game controls with Rigidbody and Character
Controller, in the following recipe, we will code the actual controls for the game character of
our prototype. We couldn't do this before we had working platforms in the prototype! In the
following recipe, we will make use of the Rigidbody component and its physics features, plus
add in a few simple instructions.

Getting ready
Open up your project. We need a new script for this, so create one as usual in the Scripts
folder of your project and name it Runner.

http://gamedevelopment.tutsplus.com/tutorials/object-pools-help-you-reduce-lag-in-resource-intensive-games--gamedev-651
http://gamedevelopment.tutsplus.com/tutorials/object-pools-help-you-reduce-lag-in-resource-intensive-games--gamedev-651
http://gameprogrammingpatterns.com/object-pool.html
//192.168.0.200/Program Files (x86)/Unity/Editor/Data/Documentation/Documentation/Components/class-PhysicMaterial.html
//192.168.0.200/Program Files (x86)/Unity/Editor/Data/Documentation/Documentation/Components/class-PhysicMaterial.html

Building Up the Game Level

138

How to do it...
1.	 As usual, the script begins with the variable declarations. We need a reference to the

Animator attached to the character for the animations, variables for horizontal and
vertical acceleration, and a Boolean variable to take notice whether the character is
touching the ground, among the others.

Add the following lines at the bottom of the script:

public static float distTraveled;
public static bool bIsTouch;
private float horAcceleration;
private Animator charAnimator;
private Vector3 jumpVel;
private Transform nextPlat;

2.	 In the Start() function, we initialize the variables we need at the beginning of the
script with the following lines:
void Start () {
 charAnimator = GameObject.Find("runner").

GetComponent<Animator>();
 horAcceleration = 4f;

 bIsTouch = false;

 jumpVel = new Vector3 (0,10,0);

}

3.	 In the Update() function, we control the speed of the character so that it stays
below an arbitrary value that fits our gameplay and also takes into account of the
distance traveled by the character, as it may be useful later. Since we are using
a Rigidbody component, the relevant code for character controls goes into the
FixedUpdate() function.

Add the following lines into the Update() function:

void Update () {

 if(rigidbody.velocity.x > 6f){
 Vector3 v = new Vector3(6f, 0, 0);
 rigidbody.velocity=v;
 }
 if(rigidbody.velocity.x < -6f){
 Vector3 v = new Vector3(-6f, 0, 0);
 rigidbody.velocity=v;
 }

 distTraveled=transform.localPosition.x;
}

Chapter 5

139

4.	 Before getting to FixedUpdate(), let's take a look at the OnCollisionEnter()
and OnCollisionExit() functions that we use to set bIsTouch to control
whether the character is actually touching a platform. We also set a variable on the
Animator to trigger the jump animation clip. Add the following lines to the script:
void OnCollisionEnter(Collision c){

 if(c.gameObject.tag == "platform"){
 bIsTouch = true;
 charAnimator.SetBool("bJump",false);
 }
}

void OnCollisionExit(Collision c){
 Debug.Log(bIsTouch);

 if(c.gameObject.tag == "platform"){
 bIsTouch = false;
 charAnimator.SetBool("bJump",true);
 }
}

5.	 To get these functions to work, we need to define a tag and assign it to the platform
triggering the collision, referenced to as Collision c in the script. To do that,
select plat_prefab in the Project panel, then move to Inspector, and click on the
drop-down menu in the Tag field. Select Add Tag... from the menu, as shown in the
following screenshot:

Building Up the Game Level

140

6.	 Set Size to 2 and name the first empty field platform, as shown in the
following screenshot:

7.	 Now select plat_prefab again in the Project panel and, from the Tag menu in
Inspector, select the platform tag that should now be available. You can refer
to the following screenshot:

Chapter 5

141

8.	 Back to the script now. In the FixedUpdate() function, we take the player input
(left or right) and use it to add a horizontal speed to the character. We also use the
horizontal speed of the character to trigger the running animation.

Add the following lines into the FixedUpdate() function:

rigidbody.velocity = new Vector3 (Input.GetAxis("Horizontal") *
horAcceleration,
 rigidbody.velocity.y, rigidbody.velocity.z);
charAnimator.SetFloat("fSpeed",rigidbody.velocity.x);

9.	 Next we control the horizontal speed of the character to switch between the left or
right running animation with these lines:
if(rigidbody.velocity.x > 0f){
 Quaternion rot = Quaternion.Euler(new Vector3(0,90,0));
 rigidbody.rotation = rot;
}
if(rigidbody.velocity.x < 0f){
 Quaternion rot = Quaternion.Euler(new Vector3(0,-90,0));
 rigidbody.rotation = rot;
}

10.	 Finally, we allow the player to use the spacebar to make the character jump. In doing
so, we check whether the character is actually touching the ground; we then add
the jumpVel vector to the character velocity and set bIsTouch to false. Add the
following lines at the end of FixedUpdate():
if(bIsTouch == true && Input.GetKeyDown(KeyCode.Space)){
 rigidbody.AddForce(jumpVel,ForceMode.VelocityChange);
 bIsTouch=false;
}

11.	 The following screenshot shows the complete FixedUpdate() function of the script:

Building Up the Game Level

142

How it works...
What we implemented is a fairly basic control system based on physics. We add a force to the
character when the player hits the left or right button and we prevent the speed from getting
too high. We also check whether the character is actually touching the ground before allowing
jumps, and whether it prevents the player from jumping while in midair.

When you apply a force to a Rigidbody with the Rigidbody.AddForce() method, there are
several options available with regards to the type of force applied. In this case, we use the
VelocityChange type, which determines an instant change of force, which is useful for our
prototype to have the character instantly change the direction it is running in. Other options
are available: we suggest you check the manual available at http://docs.unity3d.com/
ScriptReference/ForceMode.html.

There's more...
This control system needs many refinements. Still we think we got to the point of how to
approach the problems related to side-scrolling with physics. You can move on and refine it
yourself. What about providing the character with a max speed parameter and adjusting the
jump distance to that value?

When we approached the character Animator for the first time, we provided examples on
how to take advantage of its features. Now that we have a fully animated character, we can
fine-tune the Animator to trigger the animation clips we need, when we need them. This is the
topic of our next recipe!

Setting up an Animator
Double-click on Packt_Animator from the Project panel to open the Animator panel in
Unity. If you messed up a little with it, delete anything except the default Idle node.

How to do it...
1.	 Create three new empty states by right-clicking anywhere in the Animator window,

then select Create State and Empty, as shown in the following screenshot. Name
them runRight, runLeft, Idle and Jump.

http://docs.unity3d.com/ScriptReference/ForceMode.html
http://docs.unity3d.com/ScriptReference/ForceMode.html

Chapter 5

143

2.	 Add the run animation clip to both runRight and runLeft states, as shown in
the following screenshot:

Building Up the Game Level

144

3.	 Lastly, add the jump_pose clip to the Jump state. Here's a screenshot, just in case:

4.	 Now we can take care of the transitions. First of all we need two variables: a float
called fSpeed to check whether we should trigger the left or the right sided running
animation, and a Boolean called bJump for jumping. You should remember how to do
this. The following screenshot shows what you are searching for:

5.	 Create a new transition from Idle to runRight, and in the Inspector panel, set the
condition to fSpeed greater than 0.2, as shown in the following screenshot:

Chapter 5

145

6.	 We also need to create a transition back from runRight to Idle and set the condition
for triggering the transition as follows: we trigger the animation when the fSpeed
parameter has a value below 0.2. Check the following screenshot to be sure you
are doing things right:

Building Up the Game Level

146

7.	 Repeat the same operation with Idle and runLeft, but this time the enter condition
is that fSpeed is less than -0.2, while the exit condition is that fSpeed is greater
than -0.2.

The reason for this is that when the character runs left, it is going towards negative
values on the x axis and thus we need to check for negative values of fSpeed!

Chapter 5

147

8.	 For the Jump animation, we use the bJump parameter. Create a transition from
Idle to Jump and set bJump to true as its entering condition, as shown in the
following screenshot:

9.	 As for the exit transition, create a new one back from Jump to Idle and set bJump to
false as its condition. You can refer to the following screenshot:

Building Up the Game Level

148

10.	 Repeat the same operations connecting runRight and runLeft to Jump to complete
the task.

How it works...
With the Animator updated, the character now triggers the right running animations
depending on its direction and a jump pose upon jumping. For the prototype, we don't
need anything more than this.

Adding collectibles to the game level
Running on platforms is not enough for the prototype; we need to provide a player with a
goal. Let's say that our prototype level is complete once the player has gathered a number
of collectibles that we randomly scatter in the level.

To achieve that, we add a few lines to the PlatManager script and create a new prefab to be
instantiated as our collectible game object.

Getting ready
Open the PlatManager script in Monodevelop and be ready to add the lines described here.

How to do it...
1.	 We need two extra variables to make the collectibles: a public Transform to store

the reference to the collectible prefab and a private one to instantiate it. Do this by
adding the following lines to the script:
public Transform collectPref;
private Transform collectible;

2.	 Next we create a new function called TossCollectible() that casts a random
result to decide whether to instantiate a collectible on the next platform to be created
in the level. Add the following lines to the script:
void TossCollectible(){
 float f = Random.Range(0f,1f);
 Debug.Log(f);
 if (f > 0.5){
 Vector3 v = new Vector3 (nextPos.x, nextPos.y + delta,
 0);
 collectible = (Transform)Instantiate(collectPref, v,
 Quaternion.identity);
 }
}

Chapter 5

149

3.	 Now we can add a call to TossCollectible() when we instantiate a new platform
in the level. What follows is the complete updated FixedUpdate() function,
with the new lines highlighted:
void FixedUpdate(){
 UpdatePos();
 if(actualPlat != null && charX >
 actualPlat.transform.position.x + delta){
 float strict = actualPlat.transform.position.x;
 prevPlat = actualPlat;
 actualPlat = null;
 SetScalesAndGaps();
 nextPos = new Vector3(strict + platScale.x + gap, yGap,
 charZ);
 nextPlat = (Transform)Instantiate(platBrick, nextPos, 	
 Quaternion.identity);
 nextPlat.localScale = platScale;
 TossCollectible();
 }
 if(actualPlat != null && charX <
 actualPlat.transform.position.x - delta){
 float strict = actualPlat.transform.position.x;
 prevPlat = actualPlat;
 actualPlat = null;
 SetScalesAndGaps();
 nextPos = new Vector3(strict - platScale.x - gap, yGap,
 charZ);
 nextPlat = (Transform)Instantiate(platBrick, nextPos,
 Quaternion.identity);
 nextPlat.localScale = platScale;
 TossCollectible();
 }
 if(prevPlat != null){
 float strict = prevPlat.transform.position.x;
 if(charX > strict - delta && charX < strict + delta){
 Destroy(nextPlat.gameObject);
 nextPlat = null;
 actualPlat = prevPlat;
 prevPlat = null;
 }
 }
 if(nextPlat != null){
 float strict = nextPlat.transform.position.x;
 if(charX > strict - delta && charX < strict + delta){
 actualPlat = nextPlat;

Building Up the Game Level

150

 nextPlat = null;
 Destroy(prevPlat.gameObject);
 }
 }
}

4.	 Next we need to edit the Runner script to manage the collisions between the
character and the collectibles. Open the script in Monodevelop. We begin with
declaring a new public int variable to store the number of items collected so far.
We will display this data in the GUI, later. Add the following declaration at the top
of the script:
public int collected;

5.	 In the Start() function, we initialize collected to 0, with one simple instruction.
To make things more clear, we add the full Start() function as follows:
void Start () {
 charAnimator = GameObject.Find("runner").
GetComponent<Animator>();
 horAcceleration = 4f;
 bIsTouch = false;
 jumpVel = new Vector3 (0,10,0);

 collected = 0;
}

6.	 Finally, we modify the OnCollisionEnter() function by adding a check for a
second tag, named collectible, that we will create pretty soon. If we get a positive
check with the tag, we can destroy the collectible instance and add 1 to the number
of collected items. What follows is the updated OnCollisionEnter() function:
void OnCollisionEnter(Collision c){
 if(c.gameObject.tag == "platform"){
 bIsTouch = true;
 charAnimator.SetBool("bJump",false);
 }
 if(c.gameObject.tag == "collectible"){
 Destroy(c.gameObject);
 collected += 1;
 }
}

Chapter 5

151

7.	 Now back to Unity, we need to create the prefab to be instantiated as the collectible.
Let's start by adding Sphere GameObject to the scene. Scale it down to .35 on all
axes and be sure that its position is reset to 0 on all axes.

8.	 Add any material you like to the sphere. We picked a red material, but anything you
like will do the task.

9.	 Next, create a new prefab in the Prefabs folder of your project and name
it coll_prefab. Then drag the sphere onto the prefab, as shown in the
following screenshot:

Building Up the Game Level

152

10.	 You can now delete Sphere from the scene. Select coll_prefab in the Project panel,
then move to Inspector. In the Tag field, open the scrolling menu and add a new tag
called collectible, as we did before, and set that tag for coll_prefab. You can refer to
the following screenshot:

11.	 Last step: select plat_manager in Scene, then drag coll_prefab to the empty Collect
Pref field, which represents the public variable we added to the PlatManager script.
The following screenshot shows the operation:

Chapter 5

153

12.	 You can now run the prototype and run around to collect items that appear above
the platforms.

How it works...
The collectible objects are spawned with a random chance on platforms that get instantiated
at runtime. Upon collision with the game character, they get destroyed and their count is
increased by one.

There's more...
In the previous script, we used the OnCollisionEnter() function to detect when the
character hits a collectible. Unity offers another method called OnTriggerEnter() that
detects when two objects collide without generating a collision. The OnTriggerEnter()
function is useful when you don't want two colliding objects to physically react upon collision.
You can check out this link for a description of the difference between OnCollisionEnter()
and OnTriggerEnter(): http://answers.unity3d.com/questions/790724/what-
is-the-difference-between-oncollisionenter-an.html.

To complete our working prototype we need to add a control for the game camera so it follows
the character. There is already a camera in the scene called Main Camera, so we will take
advantage of it.

Camera setup and controls
Select Main Camera in Scene. We need to set it up and add a script to have it follow
the character.

http://answers.unity3d.com/questions/790724/what-is-the-difference-between-oncollisionenter-an.html
http://answers.unity3d.com/questions/790724/what-is-the-difference-between-oncollisionenter-an.html

Building Up the Game Level

154

How to do it...
1.	 With MainCamera selected in Scene, move to the Inspector panel and access the

Camera settings. Be sure that the Field Of Vision, Far, and Near clipping planes are
set as shown in the following screenshot:

2.	 Now create a new C# script in the Scripts folder, name it Camera Control and open it
in Monodevelop.

3.	 In the script, we set a reference to the character and in the Update() function we
align the camera position with that of the character.

What follows is the code for the script:

using UnityEngine;
using System.Collections;

public class CameraControl : MonoBehaviour {

 public int distance;
 private Transform follow;

Chapter 5

155

 // Use this for initialization
 void Start () {

 follow = GameObject.Find("runner").GetComponent<Transform>();
 }

 // Update is called once per frame
 void Update () {

 Vector3 v = new Vector3 (follow.position.x, follow.position.y,
distance);
 transform.position = v;
 }
}

4.	 Next, we save the script and move back to Unity. Drag the script from the Project
panel onto the Main Camera in the scene.

5.	 Set the Distance public variable in Inspector to a value you like. We picked a value of
-15 to begin with. Check out the following screenshot that illustrates this:

How it works...
This camera simply keeps the same character x and y, so the character itself is always at the
center of the camera focus.

Please take into consideration that this script could be improved, for example, by allowing
the player to look a bit ahead of the character before taking a leap. To delve more into the
properties of Cameras in Unity, you can refer to the manual at http://docs.unity3d.
com/Manual/class-Camera.html.

http://docs.unity3d.com/Manual/class-Camera.html
http://docs.unity3d.com/Manual/class-Camera.html

Building Up the Game Level

156

There's more...
In case you didn't do it yet, we recommend you add a Directional light to your scene
so materials will look better on screen. You should know how to do that: from the top
menu, navigate to GameObject | Create Other | Directional Light, as shown in the
following screenshot:

Now you can rotate the directional light using the gizmo as you see fit for your taste. Being a
Directional Light, it will cast its rays independently from its actual position and distance from
the character.

6
Game Scenes and the

Graphic Interface

In this chapter, we will cover the following recipes:

ff The game manager

ff Loading a new scene at runtime

ff Setting game exit conditions – character death

ff Setting game exit conditions – goals met

ff Using OnGUI() to display game data

ff Displaying the number of collected items

ff Game Won and Game Over

Introduction
Projects in Unity can be structured as collections of scenes, and scenes can be thought of as
the different screens that are displayed while the game runs.

Upon launching, a game generally starts with a so-called main screen or home screen. This
screen displays the relevant options to interact with the game. There is usually a Play button
to launch the game, a button to edit game options such as audio and graphics, another button
to launch a multiplayer session, and so on.

Game Scenes and the Graphic Interface

158

In this example, the home screen will be a scene in the Unity project, and each stage of the
actual game will be a scene of its own, such as the Game Won and Game Lost screens.
The following diagram shows the screen flow of our prototype:

Scenes and their contents are loaded when required at runtime through scripting. When a
scene is loaded, all the game objects and components that were saved in that scene when
creating the game are loaded as well.

On the other hand, when the scene is unloaded, all game objects that were in that scene are
destroyed, so a problem may arise. As a game runs, a collection of data about the player's
actions and achievements is made, for example, the level they are playing, how they are
performing, whether they edited any game option, and the like.

If game objects in the scenes are destroyed upon switching from one scene to another,
how do we keep track of this data from the start to the end of the game?

Video games are usually designed as so-called Finite state machines. Finite state machines
are a technique to restructure complex processes into a collection of states. Each state
describes a specific condition that the process may enter, and it interacts with other states
by getting and passing small pieces of information to them.

Each state is thus a sort of black box that autonomously gets data, processes it, and then
sends it to another state, with no state knowing what the other states actually do.

The advantage of this approach when designing software, such as video games, is that if you
need to make heavy modifications to an important game function, you just have to edit the
state that takes care of that function, without affecting the rest of your project.

Chapter 6

159

With regard to the prototype we are building up, we plan to organize it as a finite state
machine made up of different scripts that take care of each specific game state. So, we can
get back to the beginning of this introduction: a finite state machine requires one object to be
the manager that controls the flow of information and gives control to the appropriate state as
the game runs. But we stated earlier that when a scene is unloaded, all game objects in that
scene are destroyed. So how do we save the game manager?

Unity features two important methods, called Application.LoadLevel() and
DontDestroyOnLoad(), that allow us to load new game scenes at runtime and prevent
game objects from being destroyed upon loading a new scene.

Application.LoadLevel() is called to load a new scene at runtime. It accepts either a
string parameter with the scene name or an int parameter for the scene index.

You can read more about the Application.LoadLevel() method by referring to the link
http://docs.unity3d.com/ScriptReference/Application.LoadLevel.html.

DontDestroyOnLoad() takes a game object as a parameter and prevents that game
object from being destroyed. More details about this method can be found at http://docs.
unity3d.com/ScriptReference/Object.DontDestroyOnLoad.html.

In the following recipe, we create the game manager for the prototype and use it to switch
between the main and the game scenes.

The game manager
To create the game manager functionality, we need a script to initialize a new scene and the
state manager. We also need a second scene to be added to our project, to switch between
scenes (named Home and Game). Another script is required to create a button that sends the
application from the home scene to the game scene. Finally, we need a game object to attach
the scripts to, which we are preserving as we switch between scenes. Let's get to work!

Getting ready
Open your project in Unity. We begin by adding a new script to the Scripts folder.

How to do it...
1.	 Access the Scripts folder in the Project panel and create a new C# script.

Name the script StateManager.

2.	 Double-click on the file to open it in Monodevelop.

http://docs.unity3d.com/ScriptReference/Application.LoadLevel.html
http://docs.unity3d.com/ScriptReference/Object.DontDestroyOnLoad.html
http://docs.unity3d.com/ScriptReference/Object.DontDestroyOnLoad.html

Game Scenes and the Graphic Interface

160

3.	 Add the following lines to the script:
 using UnityEngine;
 using System.Collections;
 public class StateManager : MonoBehaviour {
 private static StateManager instance
 public static StateManager Instance
 {
 get
 {
 if(instance == null)
 {
 instance = new
 GameObject("StateManager").AddComponent<StateManager>
 ();
 }
 return instance;
 }
 }
 public void OnApplicationQuit()
 {
 instance = null;
 }
 public void StartState()
 {
 Debug.Log ("New scene is being created...");
 }
 }

4.	 Save the script.

5.	 Save the scene we built so far and name it level_01. As we haven't mentioned this
before, we advise you to create a new folder in the Project panel before saving, and
name it Scenes. Use this folder to save the level_01 game scene and any other
game scene you may create.

6.	 From the top menu, navigate to File | NewScene to create a new empty game scene.

7.	 Save this game scene too with the name home.

8.	 From the top menu, navigate to GameObject | Create Empty. We've added a
screenshot showing this in case you don't remember how to do it:

Chapter 6

161

9.	 Name this object game_starter from the Hierarchy panel.

10.	 Now create a new C# script and name it the same as the object we will attach
it to—GameStarter.

11.	 Open the script in Monodevelop. First, we need a function to create a button with
a label on the screen so that we can launch the lev_01 game scene at runtime.
Add the following lines to the script:
 void OnGUI(){
 if(GUI.Button(new Rect (120, 120, 150, 30), "Start Game"))
 {
 StartGame();
 }
 }

In the previous piece of code, we call a StartGame() function on pressing the
button. We need to add this function to the script with the following lines:
 void StartGame(){
 print("starting game...");
 DontDestroyOnLoad(StateManager.Instance);
 StateManager.Instance.StartState();
 }

Now drag the GameStart script onto the GameStarter game object, inside the home
scene of your project.

Game Scenes and the Graphic Interface

162

12.	 Run the game. You should see an empty scene with a Start Game button, as shown
in the following screenshot. Press it to launch the game scene we have built so far.

How it works…
The home scene is the launching game screen of our prototype. The script attached to
the GameStarter game object in the scene creates a button. Upon pressing this button,
an instance of a game object with the StateManager script is added to the scene. The
DontDestroyOnLoad() method takes care of preventing this script from being destroyed
whenever we switch between game scenes.

There's more...
State machines is a fascinating topic for anyone interested in science in general. For game
developers, even more for AI developers, it is a must! We recommend digging into this matter,
starting with http://en.wikipedia.org/wiki/Finite-state_machine.

http://en.wikipedia.org/wiki/Finite-state_machine
http://en.wikipedia.org/wiki/Finite-state_machine

Chapter 6

163

Loading a new scene at runtime
With a state manager that handles multiple games scenes, we can now move on to loading
those scenes in the game. In the next recipe, we add the level_1 scene to our project and
modify the code so that level_01 is loaded upon pressing the interface button displayed in
the game_starter scene.

Getting ready
We keep up from where we left at the end of previous recipe. Just be sure that you have
the game_starter scene loaded in your project and that an empty game object called
game_starter is present in the scene, with the GameStart script attached to it.
You can refer to the following screenshot:

Game Scenes and the Graphic Interface

164

How to do it…
1.	 With Game Start scene loaded in Unity, navigate to File | Build Settings to open the

Build Settings panel.

2.	 Click on AddCurrent to add the loaded scene to the game build, as shown in
this screenshot:

Chapter 6

165

3.	 Now load the scene called level_01. Refer to the following screenshot to check out
the scene that contains the right game object:

4.	 Add this scene too to the Build Settings panel, just as we did before.

5.	 With a second scene added to the prototype, we need to enter the instructions to
actually load level_01 when the button in the Game Start scene is pressed.
Open the GameStart script in Monodevelop and modify the GameStart()
function as follows:
 void GameStart(){
 print("starting game...");

 DontDestroyOnLoad(StateManager.Instance);
 Application.LoadLevel("level_1");");
 StateManager.Instance.StartState();
 }

6.	 Save the script and go back to Unity.

7.	 Load Game Start scene into the Editor.

Game Scenes and the Graphic Interface

166

How it works…
If you run the game now, it should begin with Game Start scene, which only consists of an
empty scene and a button.

When you press the button, level_01 is loaded and the game begins.

When working with Unity, you generally build up a project of several scenes. Each scene
should be designed to host a relevant game phase such as the launching screen, the actual
game levels, a "game over" scene, or anything you may need for your game.

It is important to learn how to switch between these scenes efficiently and how to create them
in such a way that they remain manageable as the project grows.

DontDestroyOnLoad() and Application.LoadLevel() are the most important
functions used to actually build up such a system.

Setting game exit conditions – character
death

The prototype still lacks a Heads-Up Display (HUD) completely. Heads-up display is a
term used to refer to the collection of game information that is available for the player
on the screen.

Health bars, lives indicators, speed references, and position references are all examples of
common game HUD elements.

For this prototype, we plan to display two types of information on the screen: the number
of collectibles gathered from the beginning of the match, and the number of available lives
before the game ends. It's not by chance that we chose these two elements, as they are linked
to the relevant variables to decide whether the player is winning or losing the game.

Before we can work on a game interface, however, we need to define the two exit conditions
for our game: the "game over" and the "game won" conditions.

The plan is to have the game sending a Game Over message if the player loses three
lives, and a Game Won message if they gather five collectibles. Let's begin with setting the
condition for losing the game.

Getting ready
Let's say we want the player to lose a life whenever the character falls from a platform.
This can be set up by adding a few lines to our PlatManager script.

Chapter 6

167

How to do it…
1.	 Open PlatManager in Monodevelop.

2.	 In the Start() function, we already have a reference to the game character thanks
to this line:
 thisChar =
 GameObject.Find("runner").GetComponent<Transform>();

With this reference already set, we add a public variable to count the lives available
to the player:

 public int lives;

3.	 We also need a public float variable to store a reference value for our character's
position. We will use it to check whether the character is falling:
harpublic float yOffsetC

4.	 We now can set the value of lives and yOffset to their default values. Add these
lines to the Start() function of the script:
 lives = 3;
yOffset = -37;

5.	 Now scroll down to the FixedUpdate() function and add the following if()
statement at the end of it. The if() statement check whether the character is
falling down and, in case it does, it moves it back above the platform closest to it.
 if(thisChar.position.y < -yOffset){

 lives -= 1;

 Vector3 v = new Vector3 (0,0,0);
 if(nextPlat){
 v = nextPlat.position;
 }
 else{
 v = actualPlat.position;
 }

 v.y += 40;
 thisChar.position = v;
 }

Game Scenes and the Graphic Interface

168

How it works…
The if() statement in FixedUpdate() checks at every frame the character's y position.
If this value goes beyond the threshold provided with yOffset (-37 in our case), it means
that the character is falling, so the script takes 1 away from the number of available lives and
moves the character back to a safe position.

Setting game exit conditions – goals met
To set the winning conditions for the level, we need to count the items collected and check
that value against a default number of items we want the level to end with. Once the number
of items collected equals the goal, the player receives a message.

This is the topic of our next recipe.

Getting ready
We have already counted the number of items collected in the runner script, through the
collected int variable. Thus we can take advantage of the code we already implemented
and improve it to manage the additional functionality.

How to do it…
1.	 Open the runner script in Monodevelop. In the upper section with the variable

declaration, modify the declaration for collected, as shown here:
 public int collected, levelGoal;

2.	 In the Start() function, add the initialization for levelGoal with the value of 5:
 collected = 0;
 levelGoal= 5;

3.	 In the Update() function, add the following lines to check whether the winning
conditions are met, and send a message to the player if they are met:
 if(collected == levelGoal){
 Time.timeScale = 0;
 Debug.Log("level complete!");
 }

4.	 If you try the game now, you should see that upon collecting five items, the game
stops and the Level complete! message is displayed in the Console.

Chapter 6

169

How it works…
The logic is pretty easy here; whenever the player collects an item, the number of total items
collected is increased by one. When this number equals the goal value we set for the level,
the game ends.

In this book, we will gradually work to improve the feedback provided for the player and the
game flow.

Using OnGUI() to display game data
As we are gathering game data about the player's performance, we can display that
information on screen to the player's advantage.

Unity offers a collection of functions and constructs to display game data on the screen and
create the Graphic User Interface (GUI) of your game. OnGUI() is an important method
available in Unity and used to create and control GUI elements to be displayed on the screen.
Inside the function, it is possible to put lines of code that create interface controls such as text
fields, buttons, and sliders at runtime. We advise you to check out the following link:

http://docs.unity3d.com/Manual/gui-Basics.html

In this recipe, we will use the OnGUI() function to display game data. We will create a script
to access the number of lives and the items collected, and display them on the screen.

We need a couple of screenshots to be used as icons too, so get ready to follow
our instructions.

Getting ready
The first step is to import the images to be used to display the information on the screen.
The plan is to have a small character icon in the bottom-left corner for every available life,
and an icon and a number in the top-right corner to display the number of collected items.

To display both of these pieces of information on screen we make use of a method called
Graphics.DrawTexture(). It creates a rectangular area on the screen and draws a texture
inside it. The texture to be displayed can be passed as a global Texture type variable. Several
extra parameters can be set for the rectangle area, and their details have been explained in
the manual available at http://docs.unity3d.com/ScriptReference/Graphics.
DrawTexture.html.

Let's do it!

http://docs.unity3d.com/Manual/gui-Basics.html
http://docs.unity3d.com/ScriptReference/Graphics.DrawTexture.html
http://docs.unity3d.com/ScriptReference/Graphics.DrawTexture.html

Game Scenes and the Graphic Interface

170

How to do it…
1.	 Access the Texture folder in your project and right-click anywhere inside the window

to open the menu. Select Import New Asset, as shown in this screenshot:

2.	 Select the images named lifeIcon and collIcon from the package provided with this
book. Alternatively, you can create your own images to use. In that case, remember to
save them in PNG format.

3.	 Select lifeIcon from the folder and check its Alpha is Transparency property,
as shown in the following screenshot:

Chapter 6

171

4.	 Repeat the operation to import and set up the collIcon PNG image.

5.	 Next, we create a new script in the Scripts folder and name it GUI as well.
Then we open it in Monodevelop.

6.	 We begin by declaring two public variables of the Texture type to store the references
to these pics, and two private variables to store the references to the scripts where
we take the data to be displayed on screen. Add the following lines to the script:
 public Texture lifeIcon;
 public Texture collIcon;
 private PlatManager platScript;
 private Runner runScript;

Game Scenes and the Graphic Interface

172

In the Start() function, as usual, we initialize the variables by getting the
plat_manager and runner references. The following instructions must be
added to the script:

 // Use this for initialization
 void Start () {
 platScript =
 GameObject.Find("plat_manager").GetComponent<PlatManager>();
 runScript = GameObject.Find ("runner").GetComponent<Runner>();
 }

7.	 The next step is to use the OnGUI() function to draw the icons on the screen.
We use a for loop to draw a life icon for each available life. Add the following
lines to the script:

 void OnGUI(){
 for(int i=0; i<platScript.lives; i++){
 Graphics.DrawTexture(new Rect(10 + (60*i), 600, 50,
 50), lifeIcon);
 }
 }

How it works…
The logic to display a number of icons based on a numeric parameter is pretty straightforward;
we loop between the number of lives in the OnGUI() function itself. As OnGUI() is called at
least once per frame (actually, it can be called more than once per cycle), the number of icons
displayed on screen is always updated with the actual number of lives.

There's more...
The OnGUI() function is called before the GUI elements on the screen are rendered,
and after events such as an input from the player (mouse, buttons, and so on). As a
consequence, OnGUI() may be called several times during an update cycle. For that reason,
it is not advisable to put game controls in the OnGUI() function. There is an interesting
article about this available at http://answers.unity3d.com/questions/197798/
clarification-on-updates-physics-events-order-and.html.

Display the number of collected items
We need to draw an icon for the collected items and text to show the player the updated
number of items collected. We put this information in the top-right corner, close to the
spherical icon.

http://answers.unity3d.com/questions/197798/clarification-on-updates-physics-events-order-and.html
http://answers.unity3d.com/questions/197798/clarification-on-updates-physics-events-order-and.html

Chapter 6

173

Getting ready
Open the GUI script in Monodevelop and be ready to follow our instructions.

How to do it…
1.	 Add these lines to the OnGUI() function:

 void OnGUI(){
 for(int i=0; i<platScript.lives; i++){
 Graphics.DrawTexture(new Rect(30 + (60*i), 700, 50,
 50), lifeIcon);
 }

 Graphics.DrawTexture(new Rect(880, 28, 30, 30),
 collIcon);
 }

2.	 To display the text telling the player how many items they have collected, we need
to do some extra work. First of all, create a new TextMesh in the game scene by
navigating to GameObject | Create Other | 3D Text, as shown in this screenshot:

Game Scenes and the Graphic Interface

174

3.	 Name this text collText and drag it onto MainCamera in the scene so it becomes
a child of MainCamera. We do this so that once we have set the desired position
of the text with regard to the camera, the text moves along with it, keeping its
relative position.

4.	 Set the position of the text in the World Space. In the following screenshot, we provide
the values we set for our prototype, considering the fact that we are displaying it with
our viewport set as 1024 x 768 and Standalone:

5.	 Go back to the GUI script in Monodevelop. We need a few additions to it. There
are actually two ways to display that text on the screen. One way is to add a public
variable to the script to store a reference to the text in the scene and drag the 3D
Text game object into the variable.

The other way is to create two private variables: one to store a reference to the
camera, and another to store the reference to the 3D Text attached to that camera.
Then, in the Start() function, we instantiate the two variables to access the content
we are searching for.

The first approach is easier and more straightforward, so we pick that. Add the
following variable declaration at the beginning of the GUI script:

 public TextMesh tm;

Chapter 6

175

6.	 Now go to the Update() function and add the following line to it:
 void Update () {
 tm.text = runScript.collected + " / 5";
 }

7.	 The last step consists of dragging the 3D Text game object into the tm slot in the
script attached to GUI from the Inspector panel, as shown in this screenshot:

8.	 If you play the game now, the icons representing the available lives are displayed in
the bottom-left corner of the screen, while the icon and the number of items collected
are displayed on the top-right corner. You may need to resize the game scene or the
numeric parameters to display them correctly. The following screenshot shows the
output we get on the screen:

Game Scenes and the Graphic Interface

176

How it works…
Our approach to display the text on screen is pretty efficient; we use a single public variable
to store the reference to 3D Text, and set the text we want to be displayed in the Update()
function using the tm.text = runScript.collected + " / 5" line. We made the
3D text a child of MainCamera so it moves along the screen, keeping its relative position
to the camera.

Game Won and Game Over
Before we end this chapter, we need to do a last thing: add the Game Won and Game Over
screens to the prototype. At this point, our project consists of two screens: the home screen,
where the game starts, and level_01, our actual game stage. Now we are going to add two
more scenes: a Game Over screen to send the application to if the player loses, and a Game
Won scene to be displayed if the player completes the game goals. For each new screen, we
need a new scene and a script. In each screen we add, we plan to display a message and a
button to send the application back to the Home screen.

Let's get to work!

Getting ready
Save your project and the scenes you built so far, which should be two: the Home screen and
level_01.

How to do it…
1.	 From the top menu, create a new scene by navigating to File | New Scene (or press

Ctrl + N).

2.	 Name this scene game_won.

3.	 Add 3D Text to the scene as we did before, by going to GameObject | Create Other |
3D Text.

4.	 Select the text in the scene and name it message_won.

5.	 With the text selected in the scene, move to the Inspector to access its properties.
Set the values as what you consider fit for your camera and scene settings. The
following screenshot shows the settings I used with my game camera:

Chapter 6

177

6.	 If you want more than one text line in the message, you can do so in two ways.

You can duplicate the 3D Text in the scene, change its text (and its font size and style
too), set the position for the second line, and then make it a child of the first line,
or add a script to the 3D Text game object with a line like this:
 public class Texter : MonoBehaviour {
 private string wonText;
 void Start () {
 wonText = "Congratulations \n Level Complete";
 GetComponent<TextMesh>().text = wonText;
 }
 }

The \n operator is used to tell the parser that it must go to a new line.

Game Scenes and the Graphic Interface

178

7.	 Let's also add to this script the code used to display a button to send the application
back to the Home screen.

8.	 Please add the following lines to the OnGUI() section of the script:
 void OnGUI() {
 if(GUI.Button(new Rect (120, 120, 150, 30), "Home")){
 Application.loadedLevel("home");
 }
 }

9.	 The operations to make the Game Over screen are exactly the same as those
required to make the Game Won screen. Create the scene, name it game_lost,
add the 3D Text to it, and drag a script onto the text. The code to be added is
as follows:

 public class Texter : MonoBehaviour {

 private string lostText;
 void Start () {
 lostText = "Too bad, you run out of lives! \n Play
 again";
 GetComponent<TextMesh>().text = lostText;
 }
 void OnGUI() {
 if(GUI.Button(new Rect (120, 120, 150, 30), "Home")){
 Application.loadedLevel("home");
 }
 }
 }

How it works…
We keep up with the logic we implemented so far. Each game state sends the application
to a different scene. Each scene handles itself autonomously and provides options to send
the application to the next state depending on the player's input. Should we need to change
anything from any state, our changes won't affect the other states.

There's more…
The 3D Text game object is a newcomer with the latest Unity version, and it is a welcome
addition for many HUD- and interface-related needs. Refer to http://docs.unity3d.com/
Manual/class-TextMesh.html for a detailed description of the control parameters of
TextMesh.

http://docs.unity3d.com/Manual/class-TextMesh.html
http://docs.unity3d.com/Manual/class-TextMesh.html

7
Improving Your Gaming

Experience

In this chapter, we will cover the following recipes:

ff Importing audio clips

ff The Audio Source component

ff Coding audio

ff Instantiating Particle Systems at runtime

ff Game options—audio volume

ff Game options—toggling audio

ff Playing video clips in the scene

It seems we have enough dough to work with! Let's start by adding sounds to the prototype.

Introduction
In this chapter, we add details and extra functionality to our prototype, starting with audio.
Audio in video games is, in our opinion, a sort of ambiguous matter. On one side, audio is an
important part of any video game, as it is complements its graphics to immerse the player
into the actual game world and game action. There are so many games that are mostly
popular because of their soundtrack, and there is good literature on this subject too. If you'd
like to delve into the theory of audio in games, you can check out an interesting read about
the diegesis theory, available at http://devmag.org.za/2012/04/19/video-game-
audio-diegesis-theory-2/.

http://devmag.org.za/2012/04/19/video-game-audio-diegesis-theory-2/
http://devmag.org.za/2012/04/19/video-game-audio-diegesis-theory-2/

Improving Your Gaming Experience

180

On the other side, audio in video games is generally taken care of by an audio designer— a
contractor who is rarely a permanent member of the development team. Most of the time, the
audio designer starts working on a project towards its end. The main negative consequence
of this industry habit is that audio rarely gets the attention it would require during the
preproduction phase of a project.

The rise of mobile gaming didn't help the cause of audio designers, as the casual style of
mobile gaming, which encourages playing everywhere while doing anything, tends to make
players prefer disabling the game audio entirely.

That said, we begin this chapter with two recipes about managing audio files in Unity.

The other main topic we will discuss in this chapter is particle effects. Particle effects are
bits of graphics that are displayed on screen to improve the visual appeal of a video game.
Explosions, smoke puffs, glitters, and rainfall are all examples of particle effects applied to
video games.

Besides the visual impact, particles may also be very important from a design perspective, as
they provide a tool to improve the player's feedback on the consequences of their own game
actions. Well-designed particle effects can definitely help a player understand whether they
are performing well or badly, while playing.

In the second part of this chapter, we will show you how to create particle effects in Unity and
how to implement them in the prototype.

Importing audio clips
Audio in Unity is managed according to the same easy philosophy that is applied to
importing and managing graphics. The most common audio formats such as MPEG, WAV,
AIFF, and MP3 are supported, and once imported, audio clips can be easily configured in the
Inspector panel.

With regard to the file format, the general rule is to use large WAV files for background music
and small MP3 files for sound effects.

The compression setting is the other basic configuration of an audio clip in Unity, as Unity
allows audio clips to be set as Native or Compressed. By setting a clip as Native, we ensure
that the clip won't need to be decoded at runtime. The file will be larger, but it sounds nicer
and won't slow down the application once it gets played. The native setting is recommended
for short sound effects that are usually imported as MP3 files, and thus not recompressed
once they get imported in Unity.

Chapter 7

181

Setting a clip as Compressed results in a smaller project file, but that file must be decoded
before playing the sound at runtime. Decompressing audio files many times per frame
would impair the performance of an application. To prevent this, it is recommended to use
compressed audio files for the game backgrounds and music carpets, which don't change so
often while playing. Moreover, to prevent the compression from affecting the quality of audio,
it is also recommended that you compress only native file formats such as wav and aiff. Refer
to the following diagram to know more about the use of compressed and uncompressed audio
files in Unity:

For those of you specifically interested in digital audio, there is a detailed introduction
to this subject available at http://www.jiscdigitalmedia.ac.uk/guide/an-
introduction-to-digital-audio.

Importing audio works like all other imports we have done so far. We provided selection clips
to be used for the recipes. If you like to use yours, just be sure to have a small MP3 file for the
sound effect and a larger (possibly looped) WAV or MP3 file for the background music.

Getting ready
Open your project in Unity and load the actual game scene. Then create a new folder in
the Project panel and name it Audio. We will use this folder to store the audio clips to
be imported.

How to do it...
1.	 Access the Project panel in Unity and right-click on the Audio folder. Select Import

New Asset from the menu.

2.	 Select the MP3 file named sfx_01 and click on Import in the Import window.

3.	 With the clip selected in the Project panel, move to the Inspector window and check
the Audio Format parameter is set to Native. We do this because the audio clip is
already a compressed MP3 file, so there's no need to compress it again!.

http://www.jiscdigitalmedia.ac.uk/guide/an-introduction-to-digital-audio
http://www.jiscdigitalmedia.ac.uk/guide/an-introduction-to-digital-audio

Improving Your Gaming Experience

182

4.	 We also want to set the sound as a 2D sound. In our prototype, the character can't
move on the z axis, and the camera follows the character as it runs left or right. As
the distance between the character and the camera doesn't change while playing,
there is no point in burdening the CPU with extra calculations to determine the
distance between the camera and the game action at runtime.

5.	 We also select the Load into memory option to improve performance. This sound
effect will be loaded in the memory when the application starts, and thus won't
require any additional loading operation at runtime. Should a project get larger in size
(from a memory management perspective), it could make sense saving that amount
of memory and letting the file be loaded at runtime when required by setting it as
Stream from Disc.

The following screenshot displays the audio clip settings we explained so far.

6.	 Now we import a larger file, and we will compress it in the Inspector window. Import a
new asset; this time, pick the file named bkgd_01. We use a WAV file so that we have
a better source to compress.

7.	 Set the clip properties in Inspector, as shown in the following screenshot.
For better performance, we store the compressed file in the memory so that
Unity doesn't need to decompress it at runtime.

Chapter 7

183

8.	 Don't forget to click on Apply in the Inspector panel to save the settings.

How it works...
These simple operations are all that's required to import and set up audio clips in Unity.
Compressed files are smaller but require a decoding operation at runtime, which could, on
the long run, slow down the application. Uncompressed files are larger but perform better
at runtime. That said, we used a small, uncompressed MP3 file for the sound effects, and a
large, compressed WAV file for the background music. Now that we have audio clips imported
in the project, we can move on and add them to our game objects.

The Audio Source component
When a new scene is created in Unity, a Main Camera object is created as well, and included
in the scene. This camera is responsible, by default, for displaying the actual game scene
when we press the Play button in the Unity Editor. Among the components the camera comes
attached with by default, there is a component named Audio Listener (you can check it out
in the Inspector panel). This component allows sounds to be heard by the player through the
built-in speakers of their device or through a headset.

Improving Your Gaming Experience

184

The Audio Listener constitutes the receiving half of the audio system implemented in Unity,
the other half (the source half) being another Unity component called Audio Source. While
the Audio Listener is generally attached to the main camera in the scene, Audio Source is
attached to game objects in the scene that emit sounds, be they short sound effects or long,
looped background music. In other words, to hear game sounds in Unity, you need to have at
least one Audio Listener in the scene and (likely) several Audio Sources with an audio clip
linked to them. Let's now see how the Audio Source component is attached to a game object.

Getting ready
Open the game scene in Unity.

How to do it...
1.	 Move to the Project panel and access the Prefabs folder, then drag coll_prefab into

the game scene.
2.	 With coll_prefab selected in Scene, navigate to Component | Audio | Audio Source,

as shown in this screenshot:

3.	 Ensure that coll_prefab is still selected in the scene. From the Project panel, access
the Audio folder and drag sfx_01 onto the Audio Clip slot of Audio Source in the
Inspector window, as shown in the following screenshot:

Chapter 7

185

4.	 As for the parameters, we only take care of unflagging the Play On Awake option.
With this option flagged, the clip would be played whenever a collectible is created in
the game scene, which is not what we want for now. Instead, our plan is to play the
sound effect when the character gets the collectible.

How it works...
The audio clip dragged into the Audio Source component is now ready to be played on our
command. As previously stated, we plan to play this sound when the player collects an item.
In the next recipe, we will show you how to code the audio clip to be played accordingly.

Improving Your Gaming Experience

186

There's more...
There are two more components of the Audio System in Unity that are worth mentioning,
for the sake of completeness. One of them is Audio Filters. This is a feature available only
with Unity Pro, and it consists of additional audio components that can be attached to Audio
Source or Audio Listener to apply special effects to sounds, such as reverberation, chorus,
echo, and so on. More details about these effects are available at http://docs.unity3d.
com/Manual/class-AudioEffect.html.

The other component is the reverb zone. This can be attached to an Audio Source to define
a faraway area where that sound can't be heard, a closer area where the sound is heard
according to a gradient based on distance, and a proximity area where the sound is fully
audible. To know more about Reverb Zones, you can refer to http://docs.unity3d.com/
Manual/class-AudioReverbZone.html.

Coding audio
With the Audio Source attached to the collectible prefab, the obvious idea would be to play
the sound when a collision occurs between the character and the item.

This can be done by adding a few lines to the Runner script.

In the OnCollisionEnter() function of the script, we write this if statement to check
whether the character hit a collectible:

if(c.gameObject.tag == "collectible"){
 Destroy(c.gameObject);
 collected += 1;
 Debug.Log(collected);
}

If we want the audio clip to be played when the character collides with a collectible,
we can apparently put the following line inside the if() statement:

c.gameObject.audio.Play();

Unfortunately, we can't do that! If we did, the collectible game object would be destroyed the
very moment it begins playing the sound, and the player would hear nothing.

http://docs.unity3d.com/Manual/class-AudioEffect.html
http://docs.unity3d.com/Manual/class-AudioEffect.html
http://docs.unity3d.com/Manual/class-AudioReverbZone.html
http://docs.unity3d.com/Manual/class-AudioReverbZone.html

Chapter 7

187

This is a common problem, but there are many solutions to overcome it. The solution
we provide is a creative way to achieve the result we want, and it involves using another
important Unity asset we didn't mention yet.

Particle systems
To solve the problem of playing the audio and destroying the game object at the same time,
we will use a particle system. A particle system is a complex game object that emits so-called
particles in the game scene. Particle effects are largely used in video games for various
graphic touches—game object trails, glitter, smoke, explosions, rain, snow, and so on.

Particles, by themselves, are multiple instances of (usually) tiny game objects with a
mesh, transparent texture, and direction in the World Space. These particles sprout
from a component of the particle system called Emitter.

The Emitter emits a large number of particles over time, and then these particles fly through
the scene, according to several user-defined parameters. We can define the size and shape of
the area where the particles tend to crowd as they emerge; the lifetime of individual particles
before they get destroyed; the change in shape, color, or direction of the particles as they fly
through the scene; and much more.

Using particle systems in Unity is not very hard, provided you have the right assets and a clear
idea of the result you want to achieve. In the following recipe, we will show you how to add and
set up a particle system to be used when the player collects an item.

The particle system we are going to create covers two purposes. The first purpose is to enrich
the visuals and the feedback coming from the game. A nice puff that appears when the
collectible is gathered by the character helps the player to understand what just happened,
and will hopefully make them smile for what they've done!

The other purpose of the particle system is to play the sound we want to be heard by the
player when a collectible is gathered, and then destroy itself. To do this, we first need to move
Audio Source and its attached clip from the collectible prefab to the the new particle system
we are about to create.

Getting ready
Let's begin by editing coll_prefab and removing Audio Source from it. Open the project scene
and be ready to follow our instructions.

Improving Your Gaming Experience

188

How to do it...
1.	 To remove a component from a prefab, we begin by dragging the prefab itself into the

scene. Drag coll_prefab from the Prefabs folder in the Project panel into the scene.

2.	 Select coll_prefab in the scene and move to the Inspector window. Scroll down in the
list of components until you find Audio Source. then click on the small wheel icon to
open the component menu. Select Remove Component, as shown in this screenshot:

Chapter 7

189

3.	 Click on the Apply button to save the edits as shown in the following screenshot:

4.	 You can now remove coll_prefab from the scene.

5.	 Add a new game object from the scene. From the menu, navigate to GameObject |
Create Other | Particle System, as shown in the following screenshot:

Improving Your Gaming Experience

190

6.	 Name the particle system sparkles.

7.	 The particle system in the scene should be already emitting particles. If you now
move to the Inspector window, you will see the many submenus that are available to
fine-tune the particle system in the scene. Let's just take care of the most relevant
submenus here.

The Particle System menu contains general settings for the particle system and
several parameters related to shape, lifetime, color, and speed of the particles
when they are first created. You can set this group of parameters as shown in
this screenshot:

8.	 The Emission submenu is meant to control the number of particles we want to be
emitted per second or the number of particles that must be emitted with each burst.
Let's use a value of 1 in the Rate settings, for this.

9.	 Now click on the small + icon on the right side to add a burst of 15 particles,
as shown in the next screenshot.

10.	 The Shape menu is used to set the shape of the emission in the 3D world. There are
a number of predefined shapes, and there is also the ability to define a custom mesh
to be used as the shape. In our case, we pick a Sphere shape of Radius 0.01.

Chapter 7

191

11.	 The Color menu allows us to control the change of the particles' color over time. It
also allows us to set color opacity over time. This feature, in particular, is useful for
us to create that puff effect we mentioned, because we actually want the puffs to
progressively disappear by getting more and more transparent as time passes by.

12.	 Check the Color over Lifetime box. Then click on the white bar to open Gradient
Editor, and apply the settings displayed in this screenshot:

13.	 The Renderer menu allows to customize the shape and material of individual
particles and set whether particles should have and receive shadows, among the
others. Before we set it up, let's import a texture to make a material for the particle
system we are creating.

14.	 In the Project panel, access the Textures folder and import Texture named tex_ps
to the project.

Improving Your Gaming Experience

192

15.	 Set Texture in the Inspector window, as shown in the following screenshot:

16.	 Now create a new material in the Materials folder and name it mat_ps. Drag tex_ps
into the the texture slot of the material and set Shader for this material as Particles\
Additive, as shown in this screenshot:

Chapter 7

193

17.	 Finally, we can finish editing Renderer of our Particle System by dragging mat_smoke
into the material slot in the Renderer menu of the Particle System, as shown in the
following screenshot:

18.	 There are a couple of more steps before we end this recipe. The first is to add an
Audio Source to the particle system to play the sfx_01 clip. We did this operation in
the previous recipe, so we have to repeat those same steps. Add the Audio Source to
the particle systems and drag the sfx_01 audio clip into it.

19.	 What we didn't do earlier but need to do now is to select the Play On Awake option in
the Audio Source component. This way, the audio will be played the very moment the
PS is created in the scene, which is what we want.

How it works...
A particle system is collection of components that are used to create graphic effects for
your game scenes. It consists of a part called Emitter. This part emits tiny, flat meshes with
a transparent texture, called particles. Particles fly through the game scene and behave
according to a large number of parameters that set their movement, direction, duration,
color, opacity, and so on.

There's more...
Particle systems are an important component of almost any video game, and once you
get used to the settings the several submenus, they are very funny to experiment with!
A thorough explanation of their many properties and uses goes beyond the scope of this
manual, so you can to refer to the guide at http://docs.unity3d.com/Manual/class-
ParticleSystem.html and to experiment a lot.

http://docs.unity3d.com/Manual/class-ParticleSystem.html
http://docs.unity3d.com/Manual/class-ParticleSystem.html

Improving Your Gaming Experience

194

Instantiating a particle system at runtime
In this recipe, we take care of instantiating a particle system prefab in the place of a collected
item that disappears, and also use the particle system to play the sound effect we set for this
specific game event.

To achieve this, we need a new script and need to make some modifications to the Runner
script, so let's begin.

Getting ready
Keep your project ready to add the new assets we need.

How to do it
1.	 Create a new C# script in the Scripts folder of your project and name it PS_Manager.

2.	 Edit the Update() function so that it contains the following lines. They tell the PS to
destroy itself once the audio attached to it has finished playing:
void Update () {
 if(!audio.isPlaying){
 Destroy(this.gameObject);
 }
}

3.	 Now open the Runner script in Monodevelop, if you did not open before.

4.	 To begin with, we need a public GameObject variable to store the reference to the
particle system prefab we are going to create in the scene. Add the following line to
the script:
public GameObject ps;

5.	 Add this line to the collectible's if() statement inside the OnCollisionEnter()
function. It takes care of creating the PS in the place of the collectible, which can
then be destroyed:
Instantiate(ps, c.transform.position, Quaternion.identity);

6.	 For extra clarity, we are displaying the complete, updated OnCollisionEnter()
function of the Runner script:
void OnCollisionEnter(Collision c){

 if(c.gameObject.tag == "platform"){
 bIsTouch = true;
 charAnimator.SetBool("bJump",false);
 }

Chapter 7

195

 if(c.gameObject.tag == "collectible"){
 Instantiate(ps, c.transform.position,
 Quaternion.identity);
 GameObject.Destroy(c.gameObject);
 collected += 1;
 }
 }

7.	 Save both Runner and PS_Manager in Monodevelop.

8.	 Drag PS_Manager from the Project panel onto the PS on the scene.

9.	 Now create a new prefab in the Prefabs folder and name it coll_ps_prefab. Then
drag the particle system from the scene onto coll_ps_prefab in the Project panel.
With that done, the particle system in the scene can be removed.

10.	 The last step is to select the runner character in Scene to access its Runner script in
the Inspector panel, and from there, drag coll_ps_prefab into the Ps slot we created,
with the ps public variable.

You can refer to the following screenshot that shows the operation we just described:

Improving Your Gaming Experience

196

How it works...
Using the particle system, we solved our problem of playing an audio clip on a game object
that is about to be destroyed. Instead of putting the audio clip in the collectible item, we put it
in a particle system prefab that we instantiate in the scene whenever a collectible is gathered
by the player.

At the same time, we provide clear, consistent feedback to the player that they achieve
something good when the character hits a collectible.

Game options – volume level
Among the extra features we are adding to the prototype, we'd like to provide an example of
options screen functionality by showing you how to set up a horizontal slider to control the
volume of the background music carpet.

Getting ready
For this recipe, we will use the bkgd_01 audio clip we imported at the beginning of this
chapter. Open your project in Unity and ensure that bkgd_01 is configured in the Inspector
window, as we did in the first recipe of this chapter.

How to do it...
1.	 To make Option Screen for the prototype, we begin by creating a new scene and

naming it Option Screen.

2.	 Next, add an empty game object to the scene and name it GUI.

3.	 Add an Audio Source component to the GUI game object in the scene. Remember
that whenever you want a game object to play a sound, an Audio Source component
must be attached to it.

4.	 Now we add a script to the game object, with the instructions to draw the interface
and control its functionality. Create a new C# script and name it VolumeController.

5.	 Double-click on the script to open it in Monodevelop.

6.	 First of all, we need two public variables, one to store the reference to the audio clip
we want to be played, and the other to store the actual volume level based on the
position of the horizontal slider. We make this second variable static so that we can
access its value anywhere. Add the following lines to the script:
public AudioClip bkgdClip;
static private float volumeLevel;

Chapter 7

197

7.	 Now we need the OnGUI() function to draw the slider on screen and set the volume
level. Add these lines to the script:
void OnGUI(){
 volumeLevel = GUI.HorizontalSlider(new Rect(30,30,110, 30),
volumeLevel, 0.0f, 			 10.0f);
}

8.	 To end with scripting, we need to add a line to the Update() function to check
whether the volume at which the sound is played is the same as the volume that is
set on the slider. This is done with the following instruction in the Update() function:
void Update () {

 audio.volume = volumeLevel;

}

9.	 The final step is to drag the audio clip asset named bkgd_01 from the Project panel
into the Audio Clip slot of the script, as shown in the following screenshot:

Improving Your Gaming Experience

198

How it works...
The horizontal slider works as expected. By moving the cursor left or right you adjust
the volume the background music is played at, in a range that goes from volume = 0 to
volume = 10.

Let's improve the Options Screen functionality by allowing the user to toggle the audio clip on
or off with the next recipe.

Game options – toggling audio
In this recipe, we will show you how toggle buttons for the user interface of games made with
Unity can be created and managed.

Getting ready
Like the previous recipe, you must have the Options Screen scene loaded in the Editor and
the GUI script open in Monodevelop.

How to do it...
1.	 Let's begin by creating a bool variable to control whether the toggle is on or off.

We do this by adding the following declaration at the top of the script:
private bool toggleAudio = true;

2.	 Next, we create the toggle button on the screen by adding the following line inside
the OnGUI() function:
toggleAudio = GUI.Toggle(new Rect(100, 30, 10, 10),
 toggleAudio, "Toggle Audio");

3.	 Now, in the Update() function, we add a line to ensure that the audio is enabled,
depending on the toggleAudio value:
audio.enabled = toggleAudio;

4.	 The following screenshot provides the complete GUI script we used for the
Options Screen scene:

Chapter 7

199

Playing videoclips in the scene
In the last recipe of this chapter, we'll learn how a video can be displayed in the game scene.
It is a useful feature—very handy for computer graphics scenes or cut scenes or if you want to
include a monitor displaying a video clip in your game scene.

Getting ready
You need two things for this recipe. Firstly, install QuickTime on your PC, if you don't have it
already. Without QuickTime, Unity cannot import video clips properly. The QuickTime installer
can be downloaded from http://www.apple.com/quicktime/download/.

Next, we need a video clip. If you don't have a clip to use, you can load the video clip we have
provided with the content of this book.

http://www.apple.com/quicktime/download/

Improving Your Gaming Experience

200

How to do it...
1.	 Exit and launch Unity again, after QuickTime is installed.

2.	 Create a new folder in your project and name it Videos.

3.	 Access the folder and right-click to import a new asset, as we did many times.

4.	 Unity imports all major video file formats. In this case, we opted for an MPEG file.
Select the file named video_01 (or any other video you want to use) and import
it into the project.

5.	 Leave the settings in the Inspector window alone for now. We don't need to
edit them.

6.	 Next, we need a game object to project the video on. Let's use Quad for this. Quads
are single-faced, rectangular surfaces that are instantiated in the game scene like
any other polygon available in the GameObject menu of Unity (cubes, spheres, and
cylinders). Quads are made of just two triangles/faces, so they are very light game
objects that provide a flat surface that proves useful when we need to display flat
textures, plain text, or video clips in the game scene.

7.	 Create Quad in the scene by navigating to GameObject | Create Other | Quad, as
shown in the following screenshot:

Chapter 7

201

8.	 Name the Quad screen, place it in front of the camera, and size it as you please.
Take into consideration the fact that the video we have provided is designed to be
displayed in HD resolution.

9.	 Now drag the movie clip from the Project panel onto Quad in the scene, as you would
do with a material, as shown in this screenshot:

10.	 Create a new C# script and name it VideoPlayer.
11.	 Open the script in Monodevelop.
12.	 Assuming we are fine with playing the video as the scene begins, we can play it by

adding the following lines to the Start() function of the script:
void Start () {

 MovieTexture mt =
 (MovieTexture)renderer.material.mainTexture;
 mt.Play();

}

13.	 To complete the task, drag the script onto the Quad in the scene (named Screen).

Improving Your Gaming Experience

202

How it works...
Video clips are added to game objects in the scene as you would do with any other material.
The difference is that, with video clips, the material is obtained from a video clip, instead of
a texture.

That said, a very important aspect when dealing with videos is to correctly code them. On one
side, you need quality, and on the other side, you need to keep the file as small as possible.
Take into consideration the fact that importing long videos in Unity can take several minutes,
and that whenever you change settings in the Inspector window, the clip is reimported and
processed. This means you may find yourself waiting and waiting for the processing to be
done, before being able to getting back to work!

There's more...
With Unity, it is pretty easy to add videos and create the controls to pause, play, or stop the
video. We recommend referring to the manual at http://docs.unity3d.com/Manual/
class-MovieTexture.html to delve more into this matter.

http://docs.unity3d.com/Manual/class-MovieTexture.html
http://docs.unity3d.com/Manual/class-MovieTexture.html

8
Sprites, Spritesheets,

and 2D Animation
in Unity

In this chapter, we'll cover the following recipes:

ff Setting up sprites

ff Multiple sprites

ff Animating with spritesheets

ff Preparing character sprites

ff Parenting sprites

ff Keyframe sprite animation

Introduction
Though Unity is basically a three-dimensional engine, it provides several excellent tools to
create full two-dimensional games as well. As most indie games are 2D, we think you can
take advantage of learning at least the basics of managing sprites in Unity. With this chapter,
we aim to make you proficient with sprites, spritesheets, and 2D animation techniques.

Sprites can be defined as 2D images that get animated in a larger scene. Think of any
classic 2D platform video game, such as Nintendo's Super Mario Bros. There is a background
image (usually static), and there is a character running and jumping across the screen.
That character is a sprite.

A sprite is created by importing a texture in the project and setting it as a Sprite type.

Sprites, Spritesheets, and 2D Animation in Unity

204

Setting up sprites
In this recipe, we explore the operations required to set up a 2D image as a Sprite type in Unity.

Getting ready
You can start an entirely new project for this chapter, or open the project we are already
working on. In either case, add a new folder to the Assets directory of the project and name
it Sprites. As we already did this operation in the previous chapters, we won't repeat the
steps here.

How to do it...
1.	 Import the 2D_Sprites package we have provided with the contents of this book

to your project. If you don't remember how to do it, right-click on the Sprites folder
you just created and select Import Package/Custom Package... from the menu,
as shown in this screenshot:

Chapter 8

205

2.	 The package contains two images named 2D_pose and 2D_walk. Ensure that
both are selected in the Import panel and then hit Import, as shown in the
following screenshot:

3.	 Once the importing process is complete, access the Sprites folder and select the first
picture, 2D_pose.

4.	 Go to the Inspector window and set the Texture Type property to Sprite.

5.	 A Sprite Mode property should appear, right below Texture Type. Select Single from
the drop-down menu.

Sprites, Spritesheets, and 2D Animation in Unity

206

The Pixel to Units property defines how many pixels in the sprite are there in one unit
(1 unit is 1 meter in Unity) in the game world. We don't need to edit this property; you
can leave it at its default value of 100. Remember, however, that this gets important
if you plan to use physics in your game. We recommend the guide at http://
answers.unity3d.com/questions/736142/what-is-good-practice-to-
set-pixels-to-units-to-an.html for this matter. Click on Apply to save these
settings. You can refer to the following screenshot to understand the last steps:

http://answers.unity3d.com/questions/736142/what-is-good-practice-to-set-pixels-to-units-to-an.html
http://answers.unity3d.com/questions/736142/what-is-good-practice-to-set-pixels-to-units-to-an.html
http://answers.unity3d.com/questions/736142/what-is-good-practice-to-set-pixels-to-units-to-an.html

Chapter 8

207

6.	 The base sprite for our 2D character is ready. Create new Empty GameObject in
Scene and name it 2DCharacter, as shown in this screenshot:

7.	 Now you can drag the sprite named 2D_pose onto 2DCharacter in the scene. Once
you do so, a Sprite Renderer component is automatically attached to 2DCharacter,
and a Default-Sprite material is created, with the 2D_pose sprite as the Material
entry of the component, as shown in the following screenshot:

Sprites, Spritesheets, and 2D Animation in Unity

208

How it works...
A sprite is a 2D image applied to a flat object on a screen. We set our sprite as Single Mode in
the Inspector window, as this sprite contains only one image, representing the static pose of
our 2D character. Then we applied the sprite through a material to an empty game object on
screen, as we already did with 3D assets.

There's more...
The Sprite Renderer component, which Unity automatically applied to the game object we
dragged the image on, is a default component of Unity, and its task is to display images on the
screen. It requires a sprite texture to render and refers to a default sprite material that can be
instantiated at will in the game scene, displaying different textures for different game objects.
This way you don't have to worry about creating several materials when you have many sprites
on screen. They will all use the same material with different textures!

The Sprite Renderer also allows us to define the depth order in which sprites must be
rendered on the screen. Though 2D games don't operate in the third dimension (z), it may still
come in handy to put different sprites in a specific order if the flat images overlap at some
points and you want one specific chunk of the sprite to be rendered above the others. We
will discuss these features in the following recipes, but those of you who want to delve more
into the Sprite Renderer component right now can check out the manual at http://docs.
unity3d.com/Manual/class-SpriteRenderer.html.

Multiple sprites
Though sprites can consist of a single image, they generally require many. In traditional sprite
animation, animation clips are obtained by displaying several images in a sequence, each
representing a stage (or keyframe) of the complete animation. These groups of images in
sequence are referred to as spritesheets and they are the building blocks of sprite animation.

In the following recipe, we show you how to set a Multiple Mode Sprite Texture to create a
cycle that shows our 2D sprite walking.

Getting ready
You should have already imported both the sprites we provided during the previous lesson,
so do it now if you haven't.

http://docs.unity3d.com/Manual/class-SpriteRenderer.html
http://docs.unity3d.com/Manual/class-SpriteRenderer.html

Chapter 8

209

How to do it...
1.	 Move to the Project panel and access the Sprites folder. Now select 2D_walk to

access the image properties in the Inspector window.

2.	 Set Texture Type to Sprite as we did before, but this time, set Sprite Mode to
Multiple, as this sprite contains several steps of the walking cycle. You can refer
to the following screenshot:

Sprites, Spritesheets, and 2D Animation in Unity

210

3.	 To open the Sprite Editor panel, click on the Sprite Editor button that just appeared.

4.	 Here, we can make arrangements so that Unity splits the image the way we need it to
work for the animation cycle. Right now, the image is displayed as whole containing
many instances of Mario. What we want is that each instance in the image gets nicely
separated from the others by a selection box. To do this, hit the Slice button in the
top-left corner of the panel, as shown in this screenshot:

5.	 Set the Type property to Automatic, the Pivot property to Center, and the Method
property to Delete Existing.

6.	 Don't bother about the Minimum Size property, for now. Instead, hit Slice to apply
the slicing process. As a result, each Mario instance in the image should now be
surrounded by a thin white line, as shown in the following screenshot:

Chapter 8

211

7.	 Now hit Apply in the top-right corner of the panel to apply the edits to our multiple
sprites, as shown in this screenshot:

Sprites, Spritesheets, and 2D Animation in Unity

212

8.	 The sprite has been now split into 17 chunks, each representing a step, or frame, of
the cycle of the animation of walking. You can verify this by expanding the hierarchy
of 2D_walk in the Project panel, as shown here:

How it works...
As we discussed in a previous chapter, combining several small images into a larger image
is an efficient technique to save memory when making video games. It also allows us to
have several sprites on the same image rendered with a single draw call (a technique
usually referred to as batching). See http://gamedev.stackexchange.com/
questions/32910/what-is-the-technical-definition-of-sprite-batching for
more information.

Sprites can be animated by putting several frames, each representing a stage of the complete
animation, in sequence on a single image, which is called spritesheet or texture atlas. After
importing such an image, it can be set in the Inspector window as a multiple sprite, and then
we can use that sequence to animate the sprite. This is the topic of our next recipe.

There's more...
If the automatic slicing process doesn't work perfectly when splitting a multiple sprite, it is
possible to slice a multiple sprite based on based on a grid defined by the user. This technique
works fine when all frames in the multiple sprite are of the same width and height, which
was not our case with the walking animation for Mario. To know more about the Sprite Editor
features, refer to http://docs.unity3d.com/Manual/SpriteEditor.html. In the
following recipe, we will show you how to perform this task.

http://gamedev.stackexchange.com/questions/32910/what-is-the-technical-definition-of-sprite-batching
http://gamedev.stackexchange.com/questions/32910/what-is-the-technical-definition-of-sprite-batching
http://docs.unity3d.com/Manual/SpriteEditor.html

Chapter 8

213

Animating with spritesheets
Now that the spritesheet with the animation cycle is correctly split up, we can use the multiple
sprites to create a walking animation for our character.

In this recipe, we will use the spritesheet we set up in the previous recipe to create an
animation cycle for a character sprite.

Getting ready
We keep up from where we left, so have Unity open and be ready to follow our leads!

How to do it...
1.	 Let's start with a clean game scene. Remove all game objects from the scene, except

for Main Camera.

2.	 Create a new game object in the scene and name it 2D_Walker.

3.	 Drag the 2D_walk sprite from the Project panel onto 2D_Walker in the scene,
as shown in the following screenshot:

Sprites, Spritesheets, and 2D Animation in Unity

214

4.	 The Sprite Renderer component has now been added to 2D_Walker. In the Sprite
property, you should have a frame named 2D_walk_0. If you don't, you can click
on the small button in the bottom-right corner of the Sprite Renderer panel in the
Inspector window, and select the frame named 2D_walk_0 from the window that
opens, as shown in this screenshot:

5.	 The next step is to add an animation clip to the object to store the frames of the
walking cycle. From top main menu of Unity, navigate to Window | Animation to
open the Animation panel, as shown in the following screenshot:

Chapter 8

215

6.	 Click on the small arrows in the left-top corner of the panel to add a new clip,
as shown here:

Sprites, Spritesheets, and 2D Animation in Unity

216

7.	 A window opens, where we need to set a destination folder to save the animation clip.
Name the clip walk and save it in the Anims folder inside Assets, which is in Sprites,
as shown in the following screenshot:

8.	 Now expand the hierarchy of 2D_walk in the Project panel to display all its frames,
and select them by pressing Shift and clicking, as shown in the following screenshot:

Chapter 8

217

9.	 Drag all the frames onto the Animation panel, as shown here:

10.	 Check whether the Sample parameter is set to 24 frames (instead of the default
value of 60, because 60 frames per second would be too much for this walking
cycle), as displayed in the previous screenshot.

11.	 Click on the small red recording button in the Animation panel so that the clip gets
saved. When you hit the play button to launch the game in Unity, you should see
Mario walking in a looped cycle.

How it works...
Once a spritesheet is split into several frames, Unity is automatically capable of displaying
them within an animation clip in a given order and at a given frame rate. The clip is then
attached to the Animation component of a game object so that the game object can perform
the animation clip defined in the spritesheet.

There's more...
Using spritesheets is not the only way to animate sprites. Actually, there are cases where
keyframe animation may be preferred.

Sprites, Spritesheets, and 2D Animation in Unity

218

With keyframe animation, a clip is obtained as a sequence of keyframes on a timeline. In each
keyframe, the character is set in a pose that is a step of the final animation we aim to create.
Unity takes care of interpolating the movement of each individual animated part of the sprite
between one keyframe and the next. Thus, when we play the animation clip on the timeline,
the result we get is coherent, progressive animation.

This is the same concept of spritesheet animation after all; the difference is that no predrawn
spritesheet is required with skeletal animation and the character can be directly animated. As
such, animating sprites with keyframe animation is actually an optimization technique, as it
reduces the amount of data required to store several spritesheets in the project. We suggest
you visit the following links to go deeper into this matter:

ff http://www.reddit.com/r/gamedev/comments/27ede3/sprite_
animation_vs_skeletal_animation/

ff http://www.ganggarrison.com/forums/index.php?topic=27445.0

ff http://www.gamasutra.com/view/news/176663/5_tips_for_making_
great_animations_for_2D_games.php

In order to use skeletal animation, the character must be provided with so-called joints. This is
the topic of our next recipe.

Preparing the character sprites
In this recipe, we will see how the individual sprites belonging to a character are prepared for
keyframe animation.

Getting ready
We are going to create an entirely new character for this recipe, so start by creating a new
scene in your Unity project.

Next, import the keyframe_anim PNG image we have provided with the contents of this book
to the Sprites folder located in Assets. We've done this many times so far. The image contains
the blocks to actually build up two characters, an orc and a knight. We will use the knight for
this recipe, and once you have learned the process, you can make the orc or even mix the two
characters to get something original!

How to do it...
1.	 Select the PNG image you just imported. Then set Texture Type to Sprite and Sprite

Mode to Multiple in the Inspector window, as shown in the following screenshot:

http://www.reddit.com/r/gamedev/comments/27ede3/sprite_animation_vs_skeletal_animation/
http://www.reddit.com/r/gamedev/comments/27ede3/sprite_animation_vs_skeletal_animation/
http://www.reddit.com/r/gamedev/comments/27ede3/sprite_animation_vs_skeletal_animation/
http://www.ganggarrison.com/forums/index.php?topic=27445.0
http://www.ganggarrison.com/forums/index.php?topic=27445.0
http://www.gamasutra.com/view/news/176663/5_tips_for_making_great_animations_for_2D_games.php
http://www.gamasutra.com/view/news/176663/5_tips_for_making_great_animations_for_2D_games.php
http://www.gamasutra.com/view/news/176663/5_tips_for_making_great_animations_for_2D_games.php

Chapter 8

219

2.	 Click on the Sprite Editor button to open Sprite Editor.

3.	 Use the Slice menu, which is set to Automatic, to slice the image into its individual
chunks, as we did before. If the automatic slicing method fails, you can edit the
image manually by dragging the corners of each chunk. Refer to the following
screenshot, showing a failed slice that we are going to fix manually:

Sprites, Spritesheets, and 2D Animation in Unity

220

4.	 To fix Slice, select Sprite by clicking on it to display its slicing boundaries.
Then drag one of its corners to resize the boundaries themselves, as shown
in the following screenshot:

5.	 When the sprite is selected, a small panel opens in the corner of the window. Hit the
Trim button to have Unity finalize the resized boundary.

Chapter 8

221

6.	 In the same panel, it is possible to enter a name for each individual sprite chunk.
Once you are done resizing the slicing boundaries, name each part of the knight
we are going to use as follows: Head, Body, Arm_L, Arm_R, Foot_L, and Foot_R.
Remember that the right arm is the arm with the stick. You shouldn't have problems
assigning the other names.

Sprites, Spritesheets, and 2D Animation in Unity

222

7.	 Another operation required is to correctly set the so-called pivot point of each
sprite. The pivot point is the spot on the sprites that acts as reference point for any
translation and rotation of the sprite. Depending on each individual part, it may be
necessary to move the pivot point from the center to another position; for example,
the pivot point of the head goes where the neck is supposed to be, the arm's pivot
goes on the shoulder, and so on. This screenshot should help you understand what
we mean:

Chapter 8

223

To move the pivot, simply select it and drag it where you want. The following
screenshot shows what we did:

Sprites, Spritesheets, and 2D Animation in Unity

224

8.	 Hit Apply in the top-right corner when you are done with editing the sprites. If you
expand the hierarchy of keyframe_anim in the Project panel, you should see the
parts we named, as shown in this screenshot:

How it works...
In this recipe, we saw how to slice a spritesheet with the Sprite Editor. We also saw the
operations required to resize the slicing boundaries, place the pivot points on the sprites,
and name the individual chunks.

In the next recipe, we will learn how to parent these chunks to actually animate an
assembled character.

Parenting sprites
Inverse kinematics is a technique consisting of placing joints between elements that move
together so that the movement of one element influences the other elements it is attached
to. Our body, for example, is a collection of parts connected with joints that move according to
rules of inverse kinematics. When we raise an arm, the arm, forearm and the hand, as well as
the individual fingers, all follow according to their joints.

By setting the pivot points on the sprite chunks at the end of the previous recipe, we actually
defined the joints to build the inverse kinematics for the character. Now we will parent the
pieces together by their pivot points so that we can finally animate the character.

Chapter 8

225

Getting ready
We keep up from where we left, so have your project open and be ready to follow
our instructions.

How to do it...
1.	 Let's start by creating new Empty GameObject in the scene and naming it Character.

2.	 Select all pieces of the knight (six in total) and drag them onto Character in
the scene.

3.	 Unity opens a window asking us to save the animation clip we are about to create.
Go to Assets | Sprites | Anims and name the clip attack, as shown in the
following screenshot:

4.	 Uncheck Root Motion and check Animate Physics in the Animator panel in the
Inspector window, (just as we did before) as shown in this screenshot (if you don't
remember what root motion is, you can check it out in Chapter 1, Importing 3D
Models and Animations):

Sprites, Spritesheets, and 2D Animation in Unity

226

5.	 Now we can actually parent the pieces belonging to the knight. All the chunks should
be in the scene by now. If they are not, drag them one at a time into the scene.

6.	 Let's start by parenting Body to Character. Select Body in the Hierarchy window and
drag it onto Character.

7.	 Body will be our reference for all other pieces. Now drag Head onto Body.

8.	 Then drag Arm_L and Arm_R onto body.

9.	 Finally, drag Foot_L and Foot_R similarly. The following screenshot shows Hierarchy
you should see in your own editor:

10.	 If you check out your character in the editor scene or the game scene, you may notice
that the body parts of the knight actually overlap and produce a few perspective
glitches. As we learned in the recipe titled Setting Up Sprites of this chapter, when
a sprite is instantiated in the game scene, Unity automatically provides it with a
Sprite Renderer component. By inspecting the Sprite Render panel in the Inspector
window, you should see two properties we didn't mention so far: Sorting Layer and
Order in Layer.

Chapter 8

227

11.	 Sorting Layer defines the order in which the sprites are rendered on screen on a
macro scale, so to say. You can use layers to send all background elements of a
scene to the back so that animated sprites can be drawn above them. To create
a new sorting layer, click on the drop-down menu in the panel (which should
be on default right now) and select Add Sorting Layer..., as shown in the
following screenshot:

12.	 Order in Layer defines the order inside a layer created by the user: the higher the
number, the closer the sprite to the eyes of the player.

13.	 In our case, we could assign indexes as follows: 0 to Body, 1 to Head and Foot_R, 2
to Arm_R, and -1 to Arm_L and Foot_L. Here is a screenshot that shows the result
we should get:

Sprites, Spritesheets, and 2D Animation in Unity

228

How it works...
Parenting game objects in Unity is really easy; all it takes is to drag one object onto another in
the Hierarchy panel. Once two or more objects are parented together, you can move, rotate, or
scale the entire group by manipulating the highest element in the hierarchy, but you can also
manipulate the individual child objects by selecting them. The Sprite Renderer component
also allows you to set single sprites from the same image in the correct rendering order by
defining positive or negative indexes.

With the pivot points set and the parts correctly parented together, we are ready to finally
animate the knight, which we will cover in our next recipe.

Keyframe sprite animation
Now, let's learn how to create a simple attack animation clip for our sprite character using
keyframes instead of a spritesheet.

Keyframe animation is a complex topic, and we cannot fully address it in a single recipe.
Nevertheless, we'll use this opportunity to cover the basic principles so that you can get a
grasp of the procedure.

Getting ready
Again, we keep up from where we left. Have your project open and be ready to follow
our instructions.

How to do it...
1.	 Open the Animation panel by going to Window | Animation, as shown in the

following screenshot:

Chapter 8

229

2.	 Select Character in Scene. Then click on the drop-down menu in the Animation
panel to set attack as the active clip, as shown in this screenshot:

Sprites, Spritesheets, and 2D Animation in Unity

230

3.	 Set a reasonable number of keyframes for the attack clip; 24 frames per seconds is a
good starting point. Then hit the recording button to start recording the clip. You can
refer to the following screenshot to ensure that you are doing it right:

4.	 With the record button pressed, move the timeline cursor to half the clip, that is,
at 12 seconds, as shown in the following screenshot:

Chapter 8

231

5.	 Go to the Scene, select Arm_R (in Scene or from the Hierarchy window) and move
the cursor close to the corner of the boundary (the blue dots). The cursor should
change to a rotating icon. Grab the corner and rotate the arm around the pivot
we set earlier. Here is a screenshot that shows the result you should get:

6.	 By doing so, we created two keyframes for Arm_R: one frame in the position it was at
0 seconds of the clip, and another frame at 12 seconds, with the rotation we applied.
To close this attacking loop, we need to set the final position keyframe, which is at the
same position we started with.

Sprites, Spritesheets, and 2D Animation in Unity

232

Set the time line at frame 24 (by setting the value as we did before). Then click
on the small button with a rhombus and a + icon to add a keyframe at second 24.
Please refer to the following screenshot:

7.	 Now, with Arm_R still selected in the scene, move to the Animation panel and select
the frame at 0:00. Then go to the Transform component panel in the Inspector
window and copy (right-click and select Copy) the Rotation value on the z axis,
as shown in this screenshot:

Chapter 8

233

8.	 The last step is to paste the Rotation value at 0:00 on the frame at 24:00. Select the
frame and then paste (right-click and select Paste) the rotation value on the z axis. If
you did this right, the arm should get back to its starting position. Please refer to the
following screenshot:

9.	 You can now test the result. Disable the record button and then try hitting play on
the Animation panel. Hopefully, the knight will start swinging the stick it holds in its
right-hand!

How it works...
With respect to its general principles, keyframe animation is easy to understand, as it
consists of setting keyframes and then moving single body parts in the position we want
at that keyframe. Unity takes care of making the transitions between frames so that at the
end of the animation process, we perceive a meaningful sequence instead of a collection of
static frames.

The hard part comes with tweaking the animations to make them part of the characterization,
which goes beyond the scope of this book.

The interface of the Animation panel may not look friendly at a first glance, so we recommend
repeating this last group of recipes and creating an animated orc with the other sprites
available in the sprite atlas we have provided.

Sprites, Spritesheets, and 2D Animation in Unity

234

There's more...
We have just scratched the surface of animation and keyframe animation here, as several
other options and tools are available; for example, transitions between frames can be
adjusted using curves to slow movements down (or speed them up), and make animations
nicer and more believable. Animation curves have recently gone legacy (so they are still
supported but not recommended anymore), but the manual at http://docs.unity3d.
com/Manual/animeditor-AnimationCurves.html still provides all the explanations
you will require to make the most out of them.

For those of you who are interested in animation in general, we recommend the following links
to begin with:

ff http://en.wikipedia.org/wiki/Key_frame

ff http://graphics.cs.cmu.edu/nsp/course/15-464/Spring11/lectures/
lec02.pdf

Dudes, animation is massive topic!

There is also this link that I love, at http://the12principles.tumblr.com/.

Last, but absolutely not least, is the king of animation manuals: The Animator's Survival Kit by
former Disney's Richard Williams. It is available at popular online stores.

http://docs.unity3d.com/Manual/animeditor-AnimationCurves.html
http://docs.unity3d.com/Manual/animeditor-AnimationCurves.html
http://en.wikipedia.org/wiki/Key_frame
http://graphics.cs.cmu.edu/nsp/course/15-464/Spring11/lectures/lec02.pdf
http://graphics.cs.cmu.edu/nsp/course/15-464/Spring11/lectures/lec02.pdf
http://the12principles.tumblr.com/

Index
Symbols
2D assets 39
2D editor

used, for creating texture atlases 58-61
3D Text game object 178

A
ambient light 57
animation

exporting 29-31
references 218, 234

animation, 3D forums
references 16

animation curves
URL 234

animation layers
URL, for advanced settings manual 97

animation tree
creating 69-73

animator
setting up 142-148

animator example, standard game character
diagrammatic representation 68

Application.LoadLevel() method
about 159
URL 159

arrows 67
AssetPostprocessor class

about 22
reference link 22

audio
about 179
coding 186-193

audio clips
importing 180-183

audio effects
URL 186

Audio Filters 186
Audio Listener 184-186
Audio Source component

about 183-185
working 185

avatar mask 94

B
background

making, for prototype 124
Blend Tree

creating 86-89
boolean-based transitions

coding 77-81
bumped material

creating 100-103

C
camera setup 154, 155
character animation

URL, for tutorials 97
Character Controller

about 104
isGrounded parameter 108
setting 107-111
Slope Limit parameter 108
Step Offset parameter 108

character controls
programming 137-142

236

Character Motor documentation
URL 110

Character Motor script
Gravity parameter 111

character sprites
preparing 218-224

clarification on updates, physics events order
and frequency

URL, for articles 172
collectibles

adding, to game level 148-153
Collider components

URL, for manual 113
collision detection

about 121
URL, for description 117

collision management 117-120
controls 154, 155

D
diegesis theory

URL, for article 179
digital audio

URL 181
Directional light

adding, to scene 156
DontDestroyOnLoad() method

about 159
URL 159

E
environmental light

setting, in Unity 55-57

F
FBX file

exporting, from Maya 22-25
rotating, groups used 21

file formats, textures 40, 41
Finite State Machines

about 158, 162
URL 162

FixedUpdate() function 115

float-based transitions
coding 84, 85

float parameters
working with 81-83

ForceMode
URL, for manual 142

G
game 157
game character

control, taking of 104
game data

displaying, OnGUI() method used 169-172
game development

references 137
game exit conditions

character death, setting 166-168
winning conditions, setting for level 168, 169

game level
collectibles, adding to 148-153

Game Lost screen 158
game manager

about 159
creating 159-162

game objects 158
game options

toggling audio 198
volume level 196-198

Game Over screen
adding 176-178

Game Won screen
about 158
adding 176-178

GetCurrentAnimatorStateInfo 85
Graphics.DrawTexture()

URL, for manual 169
Graphic User Interface (GUI)

about 169
URL 169

groups
about 20
used, for rotating FBX file 21

237

H
Heads-Up Display (HUD) 166

I
image file formats

URL, for wiki 41
imported animations

configuring, in Unity Inspector 32-36
imported FBX file

configuring, into Unity 26-29
Inspector panel 4
Instantiate() function 125
interface

about 2
Editor window 4
Game scene 4
Hierarchy panel 3
Inspector panel 4
Main Menu 3
Project panel 4

inverse kinematics 224

K
keyframe animation 217
keyframe sprite animation

used, for creating simple attack
animation clip 228-233

L
layers 90
level design 123

M
masks

creating 90-93
materials

about 40, 48
animating 63-65
creating 48-53
names, setting in Maya 53-55
URL, for articles 40
URL, for manual 104

Maya
about 16
FBX file, exporting from 22-25
names, setting of materials 53-55
references 16
scene, setting up in 16-20
URL, for user guide 32

Maya Embedded Language. See MEL
Maya LT 20
Mean 2
Mecanim 37, 67, 68, 97
MEL

about 31
URL, for list of exporting commands 31

MEL script
URL, for example 31

Movie Texture
URL 202

Multiple Mode Sprite Texture
setting 208-212

N
new scene

loading, at runtime 163-166
normal maps

URL, for Wikipedia links 100
number, of collected items

displaying 172-176

O
object pooling 137
OnCollisionEnter() function

URL, for description 121
OnCollisionEnter() function,

versus OnTriggerEnter()
reference link 153

OnGUI() method
used, for displaying game data 169-172

P
packages

importing 105-107
particles 187

238

particle systems
about 187, 193
instantiating, at runtime 194, 195
purpose 187
URL, for guide 193

physics controls
coding 114-117

Pixels to Units, setting
URL, for guide 206

platforms
adding 132-136

PNG files 41
Prefabs

creating 125-128
Project panel 4
prototype

background, making for 124

Q
QuickTime installer

URL, for downloading 199

R
Reverb Zones

URL 186
Rigidbody

about 104
adding 111-114
Mass parameter 111
URL, for manual 113

Rigidbody.AddForce
URL, for description 117

Rig tab, Unity Inspector 37
runtime

new scene, loading at 163-166
particle system, instantiating at 194-196

S
scene

about 158
setting up, in Maya 16-20
videoclips, playing in 199-201

scrolling background
coding 129-132

second animation layer
creating 94-97

shader
about 40
URL, for articles 40

side scroller controller advice
URL 110

simple attack animation clip, sprite character
creating, keyframe sprite

animation used 228-233
sprite batching

URL 212
Sprite Editor

URL, for features 212
Sprite Renderer component

about 208
URL, for manual 208

sprites
about 203
parenting 225-228
setting up 204-208

spritesheets
about 212
animating with 213-217

T
Text Mesh

URL 178
texture atlases

about 57, 58, 212
configuring, in Unity Inspector 58-61
creating, 2D editor used 58-61

texture atlases, Gamasutra
URL 62

texture mapping
URL, for wiki 42

texture optimization, nVidia corporation
URL 62

textures
about 40
file formats 40, 41

239

importing 42-45
optimizing 41, 42
setting, to Unity Inspector 42-45
URL, for articles 40

transitions
about 68
dealing with 73-77

transparency
configuring 45-47

U
Unity

environmental light, setting in 55-57
imported FBX file, configuring into 26-29
URL, for documentation 29
URL, for forums 32
URL, for manual 37
URL, for Sprite Editor manuals 62
URL, for Textures settings manuals 62
URL, for tutorials 4

Unity Inspector
imported animations, configuring in 32-36
Rig tab 37
texture atlases, configuring in 58-61
textures, setting to 42-45

UV mapping
about 62
URL, for wiki 63

V
videoclips

playing, in scene 199-202

X
XML file 32
XnView

URL 43

Thank you for buying
Unity 2D Game Development
Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Unity 3D UI Essentials
ISBN: 978-1-78355-361-7 Paperback: 280 pages

Leverage the power of the new and improved UI system
for Unity to enhance your games and apps

1.	 Discover how to build efficient UI layouts coping
with multiple resolutions and screen sizes.

2.	 In-depth overview of all the new UI features that
give you creative freedom to drive your game
development to new heights.

3.	 Walk through many different examples of UI
layout from simple 2D overlays to in-game 3D
implementations.

Unity Game Development
Scripting
ISBN: 978-1-78355-363-1 Paperback: 202 pages

Write efficient C# scripts to create modular key game
elements that are usable for any kind of Unity project

1.	 Write customizable scripts that are easy to adjust
to suit the needs of different projects.

2.	 Combine your knowledge of modular scripting
elements to build a complete game.

3.	 Build key game features, from player inventories
to friendly and enemy artificial intelligence.

Please check www.PacktPub.com for information on our titles

Unity Game Development
Blueprints
ISBN: 978-1-78355-365-5 Paperback: 318 pages

Explore the various enticing features of Unity and learn
how to develop awesome games

1.	 Create a wide variety of projects with Unity in
multiple genres and formats.

2.	 Complete art assets with clear step-by-step
examples and instructions to complete all tasks
using Unity, C#, and MonoDevelop.

3.	 Develop advanced internal and external
environments for games in 2D and 3D.

Learning Unity 2D Game
Development by Example
ISBN: 978-1-78355-904-6 Paperback: 266 pages

Create your own line of successful 2D games with Unity!

1.	 Dive into 2D game development with no
previous experience.

2.	 Learn how to use the new Unity 2D toolset.

3.	 Create and deploy your very own 2D game
with confidence.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Importing 3D Models and Animations

	Introduction
	Setting up a scene in Maya
	Using groups to rotate FBX files
	Exporting FBX files from Maya
	Configuring imported FBX files in Unity
	Exporting animations
	Configuring imported animations in Unity Inspector

	Chapter 2
: 2D Assets for Unity
	Introduction
	Importing textures and setting them to Inspector
	Configuring transparency
	Creating materials
	Setting materials' names in Maya
	Setting the ambient light in Unity
	Texture atlases
	Animated materials

	Chapter 3
: Animating a Game Character
	Introduction
	Creating the animation tree
	Dealing with transitions
	Coding the Boolean-based transitions
	Working with float parameters
	Coding the float-based transitions
	Creating Blend Tree
	Animation layers – creating masks
	Animation layers – adding a second animation layer

	Chapter 4
: Taking Control
	Introduction
	Creating a bumped material
	Importing packages
	Setting the Character Controller
	Adding Rigidbody
	Coding physics controls
	Collision management

	Chapter 5
: Building Up the
Game Level
	Introduction
	Creating Prefabs
	Coding a scrolling background
	Adding platforms
	Programming the character controls
	Setting up an Animator
	Adding collectibles to the game level
	Camera setup and controls

	Chapter 6
: Game Scenes and the Graphic Interface
	Introduction
	The game manager
	Loading a new scene at runtime
	Setting game exit conditions – character death
	Setting game exit conditions – goals met
	Using OnGUI() to display game data
	Display the number of collected items
	Game Won and Game Over

	Chapter 7
: Improving Your Gaming Experience
	Introduction
	Importing audio clips
	The Audio Source component
	Coding audio
	Particle systems
	Instantiating a particle system at runtime
	Game options – volume level
	Game options – toggling audio
	Playing videoclips in the scene

	Chapter 8
: Sprites, Spritesheets, and 2D Animation
in Unity
	Introduction
	Setting up sprites
	Multiple sprites
	Animating with spritesheets
	Preparing the character sprites
	Parenting sprites
	Keyframe sprite animation

	Index

