

Swift Essentials

Get up and running lightning fast with this practical
guide to building applications with Swift

Dr Alex Blewitt

BIRMINGHAM - MUMBAI

Swift Essentials

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2014

Production reference: 1201214

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-670-1

www.packtpub.com

www.packtpub.com

Credits

Author
Dr Alex Blewitt

Reviewers
Nate Cook

Arvid Gerstmann

James Robert

Anil Varghese

Commissioning Editor
Sarah Crofton

Acquisition Editor
Sam Wood

Content Development Editor
Arwa Manasawala

Technical Editor
Faisal Siddiqui

Copy Editors
Dipti Kapadia

Shambhavi Pai

Project Coordinator
Danuta Jones

Proofreaders
Simran Bhogal

Ameesha Green

Paul Hindle

Indexer
Rekha Nair

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

About the Author

Dr Alex Blewitt has over 20 years of experience in Objective-C and has been using
Apple frameworks since NeXTSTEP 3.0. He upgraded his NeXTstation for a TiBook
when Apple released Mac OS X in 2001 and has been developing on it ever since.

Alex currently works for a financial company in London and writes for the online
technology news site InfoQ. He has authored two other books for Packt Publishing.
He also has a number of apps on the App Store through Bandlem Limited. When
he's not working on technology and the weather is nice, he likes to go flying from the
nearby Cranfield airport.

Alex writes regularly on his blog http://alblue.bandlem.com as well tweets
regularly on Twitter, @alblue.

http://alblue.bandlem.com

Acknowledgments

This book would not have been possible without the ongoing love and support of my
wife, Amy, who has helped me through the highs and lows of life. She gave me the
freedom to work during the many late nights and weekends that it takes to produce
a book and its associated code repository. She truly is the gem of my life.

I'd also like to thank my parents, Ann and Derek, for their encouragement and
support during my formative years. It was their work ethics that allowed me to start
my career in technology as a teenager and to incorporate my first company before I
was 25. I'd also like to congratulate them on their 50th wedding anniversary in 2015,
and I look forward to reaching this milestone with Amy.

Thanks is due especially to the reviewers of the book, Nate Cook, James Robert,
Arvid Gerstmann, and Anil Varghese, who provided excellent feedback on the
contents of this book during development and caught many errors in both the text
and code. Any remaining errors are my own.

I'd also like to thank CodeClub, with whom I have been volunteering to teach young
children how to code, and Akeley Wood, for allowing me to be a part of it. I hope
both Sam and Holly enjoy it as much as I do.

Finally, I'd like to thank Ben Moseley and Eren Kotan who introduced me to NeXT in
the first place and set my career going on a twenty-year journey to this book.

About the Reviewers

Nate Cook is an independent web and application developer who works on
projects of all sizes, from websites and blogs for non profit organizations to
customized Enterprise applications for Fortune 500 companies. He frequently writes
about topics in Swift at http://www.natecook.com/blog.

Arvid Gerstmann is a 20-year-old software developer with a strong interest in
mobile platforms and game development. He started experimenting with software
development around 2006 and is one of the early adopters of the mobile age.
Currently, he lives in Hamburg, Germany, and works as a lead developer in a
company focused on mobile applications and games.

You can find him at http://arvid-gerstmann.de.

James Robert is a technologist who follows his curiosity. He's the CTO of Media
Predict and a maintainer of several open source projects, including Pydub, which
is an open source audio processing library. He's also the cohost of the Biz vs Dev
podcast and writes about technology under the moniker "jiaaro."

http://www.natecook.com/blog
http://arvid-gerstmann.de

Anil Varghese is an enthusiastic software engineer from Kerala, India, who is
currently focusing on iOS application development. He is constantly striving to learn
new technologies and learn better and faster ways to solve problems. He is keenly
looking forward to working with the future of iOS, Swift. He always finds time to
help fellow programmers and is an active member of developer communities, such
as Stack Overflow (http://stackoverflow.com/users/2021193/anil).

You can contact him at anilvarghese@icloud.com.

http://stackoverflow.com/users/2021193/anil

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Table of Contents
Preface	 1
Chapter 1: Exploring Swift	 7

Getting started with Swift	 7
Numeric literals	 8
Floating point literals	 9
String literals	 10
Variables and constants	 11
Collection types	 12
Optional types	 13
Nil coalescing operator	 14

Conditional logic	 15
If statements	 15
Switch statements	 17

Iteration	 18
Iterating over keys and values in a dictionary	 21
Iteration with for loops	 21
Break and continue	 22

Functions	 23
Named arguments	 24
Optional arguments and default values	 25
Anonymous arguments	 26
Multiple return values and arguments	 26
Returning structured values	 29

Command-line Swift	 31
Interpreted Swift scripts	 31
Compiled Swift scripts	 32

Summary	 33

Table of Contents

[ii]

Chapter 2: Playing with Swift	 35
Getting started with playgrounds	 36

Creating a playground	 36
Viewing the console output	 38
Viewing the timeline	 39

Displaying objects with QuickLook	 41
Showing colored labels	 41
Showing images	 42

Advanced techniques	 44
Capturing values explicitly	 44
Running asynchronous code	 46

Playgrounds and documentation	 47
Learning with playgrounds	 47
Understanding the playground format	 49
Adding a new documentation section	 51
Styling the documentation	 53
Adding resources to a playground	 54
Additional entries in the header	 54
Generating playgrounds automatically	 56

Markdown	 56
AsciiDoc	 57

Limitations of playgrounds	 57
Summary	 58

Chapter 3: Creating an iOS Swift App	 59
Understanding iOS applications	 59
Creating a single view iOS application	 60

Removing the storyboard	 62
Setting up the view controller	 63

Swift classes, protocols, and enums	 65
Classes in Swift	 65
Subclasses and testing in Swift	 67
Protocols in Swift	 68
Enums in Swift	 70

Raw values	 70
Associated values	 71

Creating a master-detail iOS application	 72
The AppDelegate class	 74
The MasterViewController class	 77
The DetailViewController class	 79

Summary	 82

Table of Contents

[iii]

Chapter 4: Storyboard Applications with Swift and iOS	 83
Storyboards, scenes, and segues	 84

Creating a storyboard project	 84
Scenes and view controllers	 85
Adding views to the scene	 86
Segues	 88

Adding a navigation controller	 90
Naming scenes and views	 91

Swift and storyboards	 92
Custom view controllers	 93
Connecting views to outlets in Swift	 94
Calling actions from interface builder	 97
Triggering a segue with code	 99
Passing data with segues	 100

Using Auto Layout	 101
Understanding constraints	 101
Adding constraints	 101

Adding a constraint with the drag and drop method	 102
Adding constraints to the Press Me scene	 103
Adding missing constraints	 105

Summary	 107
Chapter 5: Creating Custom Views in Swift	 109

An overview of UIView	 109
Creating new views with interface builder	 110

Creating a table view controller	 110
Showing data in the table	 112
Defining a view in a XIB file	 114
Wiring a custom view class	 115
Dealing with intrinsic size	 118

Creating views by subclassing UIView	 119
Auto Layout and custom views	 120
Constraints and the visual format language	 122
Adding the custom view to the table	 123

Custom graphics with drawRect	 123
Drawing graphics in drawRect	 125
Responding to orientation changes	 126

Custom graphics with layers	 126
Creating a ProgressView from layers	 128
Adding the stop square	 129
Adding a progress bar	 130
Clipping the view	 133

Table of Contents

[iv]

Testing views in Xcode	 134
Responding to change	 135

Summary	 136
Chapter 6: Parsing Networked Data	 137

Loading data from URLs	 137
Dealing with errors	 139
Dealing with missing content	 140
Nested if and switch statements	 141
Networking and user interfaces	 143
Running functions on the main thread	 143

Parsing JSON	 144
Handling errors	 146

Parsing XML	 147
Creating a parser delegate	 148
Downloading the data	 149
Parsing the data	 149

Direct network connections	 152
Opening a stream connection	 153
Synchronous reading and writing	 154

Writing data to an NSOutputStream	 154
Reading from an NSInputStream	 155
Reading and writing hexadecimal and UTF8 data	 156
Implementing the git protocol	 158
Listing git references remotely	 160
Integrating the network call into the UI	 161

Asynchronous reading and writing	 162
Reading data asynchronously from an NSInputStream	 162
Creating a stream delegate	 163
Dealing with errors	 164
Listing references asynchronously	 166
Displaying asynchronous references in the UI	 167
Writing data asynchronously to an NSOutputStream	 167

Summary	 169
Chapter 7: Building a Repository Browser	 171

An overview of the GitHub API	 171
The root endpoint	 172
The user resource	 172
The repositories resource	 173

The RepositoryBrowser project	 173
URI templates	 174
Background threading	 176

Table of Contents

[v]

Parsing JSON dictionaries	 177
Parsing JSON arrays of dictionaries	 179

Creating the client	 179
Talking to the GitHub API	 179
Returning repositories for a user	 181
Accessing data through the AppDelegate	 183

Accessing repositories from view controllers	 184
Adding users	 186
Implementing the detail view	 189
Transitioning between the master and detail views	 191
Loading the user's avatar	 192
Displaying the user's avatar	 194

Summary	 195
Appendix: Appendix	 197

Language	 197
Twitter users	 198
Blogs and tutorial sites	 200
Meetups	 200
Afterword	 201

Index	 203

Preface
Swift Essentials provides an overview of the Swift language and the tooling necessary
to write iOS applications. From simple Swift commands on the command line to
interactively testing graphical content in the Playground editor, the Swift language
and syntax is introduced by examples.

The book also introduces end-to-end iOS application development by showing you
how a simple iOS application can be created, followed by how to use storyboards
and custom views to build a more complex networked application.

The book concludes by providing a worked example from scratch that builds up a
GitHub repository browser.

What this book covers
Chapter 1, Exploring Swift, presents the Swift read-evaluate-print-loop (REPL)
and introduces the Swift language through examples on standard data types,
functions, and looping.

Chapter 2, Playing with Swift, demonstrates Swift Playgrounds as a means to
interactively play with the Swift code and obtain graphical results. It also introduces
the playground format and shows how playgrounds can be created automatically
from Markdown and AsciiDoc files.

Chapter 3, Creating an iOS Swift App, shows you how to create and test an iOS
application built in Swift using Xcode, along with an overview of the Swift classes,
protocols, and enums.

Chapter 4, Storyboard Applications with Swift and iOS, introduces the concept of
Storyboards as a means to create a multiscreen iOS application and shows how
views in Interface Builder can be wired to Swift outlets and actions.

Preface

[2]

Chapter 5, Creating Custom Views in Swift, covers custom views in Swift using
custom table views, laying out nested views, drawing custom graphics, and
layered animations.

Chapter 6, Parsing Networked Data, demonstrates how Swift can talk to networked
services, using both HTTP and custom stream-based protocols.

Chapter 7, Building a Repository Browser, uses the techniques described in this
book to build a repository browser that can display information about users'
GitHub repositories.

Appendix provides additional references and resources to continue learning
about Swift.

What you need for this book
The exercises in this book are written and tested for Swift 1.1, which is bundled with
Xcode 6.1. To run the exercises, you need to have a Mac OS X computer running 10.9
or above with Xcode 6.1 or higher. If newer versions of Swift are released, check the
book's GitHub repository or the book's errata page at PacktPub for details about any
changes that might affect the book's content.

Xcode can be installed via the App Store as a free download; search for Xcode in the
search box. Alternatively, Xcode can be downloaded from https://developer.
apple.com/xcode/downloads/, which is referenced from the iOS Developer Center
at https://developer.apple.com/devcenter/ios/.

Once Xcode is installed, it can be launched from /Applications/Xcode.app or from
Finder. To run the command-line based exercises, Terminal can be launched from
/Applications/Utilities/Terminal.app, and if Xcode is installed successfully,
Swift can be launched by running xcrun swift.

The iOS applications can be developed and tested in the iOS simulator that comes
bundled with Xcode. It is not necessary to have an iOS device to write or test code.
However, if you want to run the code on an iOS device, then you need to join the iOS
developer program. More information is available at https://developer.apple.
com/programs/ios/.

https://developer.apple.com/xcode/downloads/
https://developer.apple.com/xcode/downloads/
https://developer.apple.com/devcenter/ios/

Preface

[3]

Who this book is for
This book is aimed at developers who are interested in learning the Swift
programming language and how to write iOS applications using Swift. No prior
programming experience for iOS is assumed, although a basic level of programming
experience in a dynamically or statically typed programming language is expected.
It is assumed that you are familiar with navigating and using Mac OS X and in the
cases where Terminal commands are required, you have experience of simple shell
commands or can pick them up quickly from the examples given.

Developers who are familiar with Objective-C will know many of the frameworks
and libraries mentioned; however, an existing knowledge of Objective-C and its
frameworks is neither necessary nor assumed.

The sources are provided in a GitHub repository at https://github.com/alblue/
com.packtpub.swift.essentials/ and can be used to switch between the content
of chapters using the tags in the repository. A knowledge of Git is helpful if you
want to navigate between different versions; alternatively, the web-based interface at
GitHub can be used instead. It is highly recommended that you become familiar with
Git, as it is the standard version control system for Xcode and the de facto standard
for open source projects. You are invited to read the Git topics at the author's blog,
http://alblue.bandlem.com/Tag/git/, if you are unfamiliar and interested in
learning more.

Trademarks
GitHub is a trademark of GitHub Inc., and the examples in this book have not been
endorsed, reviewed, or approved by GitHub Inc. Mac and OS X are trademarks of
Apple Inc., registered in the U.S. and other countries. iOS is a trademark or registered
trademark of Cisco in the U.S. and other countries and is used under license.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

https://github.com/alblue/com.packtpub.swift.essentials/
https://github.com/alblue/com.packtpub.swift.essentials/
http://alblue.bandlem.com/Tag/git/

Preface

[4]

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

@IBInspectable var progressAmount: CGFloat = 0.5 {
 didSet {
 setNeedsLayout()
 }
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

case "entry":
inEntry = true
case "link":
link = attributes.objectForKey("href") as String?
default break;

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

 /etc/asterisk/cdr_mysql.conf

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this:
"Clicking the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Exploring Swift
Apple announced Swift at WWDC 2014 as a new programming language that
combines experience with the Objective-C platform and advances in dynamic and
statically typed languages over the last few decades. Before Swift, most code written
for iOS and OS X applications was in Objective-C, a set of object-oriented extensions to
the C programming language. Swift aims to build upon patterns and frameworks of
Objective-C but with a more modern runtime and automatic memory management.

This chapter will present the following topics:

•	 How to use the Swift REPL to evaluate Swift code
•	 The different types of Swift literals
•	 How to iterate through arrays, dictionaries, and sequences
•	 Functions and the different types of function arguments
•	 Compiling and running Swift from the command line

Getting started with Swift
Swift provides a runtime interpreter that executes statements and expressions. The
Swift interpreter is called swift and can be launched from the Xcode 6 tools using the
xcrun command in a Terminal.app shell:

$ xcrun swift
Welcome to Swift! Type :help for assistance.
>

Exploring Swift

[8]

The xcrun command allows a toolchain command to be executed; in this case, it finds
/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.
xctoolchain/usr/bin/swift. The swift command sits alongside other compilation
tools such as clang and ld, and permits multiple versions of the commands and
libraries to be installed on the same machine without conflicting. The Swift prompt
displays > for new statements and . for continuation. Statements and expressions
typed into the interpreter are evaluated and immediately displayed. Anonymous
values are given references, so they can be used subsequently:

> "Hello " +
. "World"
$R0: String = "Hello World"
> 3 + 4
$R1: Int = 7
> $R0
$R2: String = "Hello World"
> $R1
$R3: Int = 7

Numeric literals
Numeric types in Swift can represent both signed and unsigned integral values with
sizes 8, 16, 32, or 64 bits, as well as signed 32 or 64 bit floating point values. Numbers
can include underscores to provide better readability; so 68_040 is the same as
68040:

> 3.141
$R0: Double = 3.141
> 299_792_458
$R1: Int = 299792458
> -1
$R2: Int = -1
> 1_800_123456
$R3: Int = 1800123456

Numbers can also be written in binary, octal, or hexadecimal using prefixes 0b, 0o
(zero and the letter "o") or 0x. Note that Swift does not inherit C's use of a leading zero
(0) to represent an octal value, unlike Java and JavaScript which do. Examples include:

> 0b1010011
$R0: Int = 83
> 0o123
$R1: Int = 83
> 0123

Chapter 1

[9]

$R2: Int = 123
> 0x7b
$R3: Int = 123

Floating point literals
There are three types of floating point values available in Swift, which use the
IEEE754 floating point standard. The Double type represents 64 bits worth of data
whilst Float stores 32 bits of data. In addition, Float80 is a specialized type that
stores 80 bits worth of data.

Some CPUs internally use 80 bit precision to perform math
operations, and the Float80 type allows this accuracy to be used
in Swift. Not all architectures support Float80 natively, so this
should be used sparingly.

By default, floating point values in Swift have the Double type. As floating point
representation cannot represent some numbers exactly, some values will be
displayed with a rounding error; for example:

> 3.141
$R0: Double = 3.141
> Float(3.141)
$R1: Float = 3.1400003

Floating point values can be specified in decimal or hexadecimal. Decimal floating
point uses e as the exponent for base 10, whereas hexadecimal floating point uses p
as the exponent for base 2. A value of AeB has the value A*10^B and a value of 0xApB
has the value A*2^B:

> 299.792458e6
$R0: Double = 299792458
> 299.792_458_e6
$R1: Double = 299792458
> 0x1p8
$R2: Double = 256
> 0x1p10
$R3: Double = 1024
> 0x4p10
$R4: Double = 4096
> 1e-1
$R5: Double = 0.10000000000000001
> 1e-2

Exploring Swift

[10]

$R6: Double = 0.01
> 0x1p-1
$R7: Double = 0.5
> 0x1p-2
$R8: Double = 0.25
> 0xAp-1
$R9: Double = 5

String literals
Strings can contain escaped characters, unicode characters, and interpolated
expressions. Escaped characters use a slash (\) and can be one of:

•	 \\ Literal slash \
•	 \0 The null character
•	 \' Literal single quote '
•	 \" Literal double quote "
•	 \t Tab
•	 \n Line feed
•	 \r Carriage return
•	 \u{NNN} Unicode character such as the Euro symbol \u{20AC} or smiley

\u{1F600}

An interpolated string has an embedded expression which is evaluated, converted
into a string, and concatenated into the result. These interpolated strings can capture
local variables or expressions:

> "3+4 is \(3+4)"
$R0: String = "3+4 is 7"
> 3+4
$R1: Int = 7
> "7 x 2 is \($R1 * 2)"
$R2: String = "7 x 2 is 14"

Expressions in interpolated strings cannot contain double quotes. If
the expression requires double quotes, assign the value to a constant
first and then use that constant in the interpolated string.

Chapter 1

[11]

Variables and constants
Swift distinguishes between variables (which can be modified) and constants
(which cannot be changed after assignment). Identifiers start with an underscore or
alphabetic letter, followed by an underscore or alphanumeric character. In addition,
other Unicode character points (such as emoji) can be used, although box lines and
arrows are not allowed. Consult the Swift language guide for the full set of allowable
Unicode characters. Generally, private use areas are not allowed and identifiers
cannot start with a combining character (such as an accent).

Variables are defined with the var keyword and constants are defined with the let
keyword. If the types are not specified, they are automatically inferred:

> let pi = 3.141
pi: Double = 3.141
> pi = 3
error: cannot assign to 'let' value 'pi'
> var i = 0
i: Int = 0
> ++i
$R0: Int = 1

Types can be explicitly specified. For example, to store a 32 bit floating point value,
the variable can be defined as a Float, or to store a value as an unsigned 8 bit
integer, UInt8:

> let e:Float = 2.718
e: Float = 2.71799994
> let ff:UInt8 = 255
ff: UInt8 = 255

To convert a number to a different type, it can be converted using the type
initializer or assigned to a variable of a different type, provided it does not
underflow or overflow:

> let ooff = UInt16(ff)
ooff: UInt16 = 255
> Int8(255)
error: integer overflows when converted from 'Int' to 'Int8'
Int8(255)
^
> UInt8(Int8(-1))
error: negative integer cannot be converted to unsigned type 'UInt8'
UInt8(Int8(-1))
^

Exploring Swift

[12]

Collection types
Swift has two collection types: Array and Dictionary. They are strongly typed and
generic, which ensures that the values of types assigned are compatible with the
element type. The literal syntax for arrays uses [] to store a comma-separated list,
while dictionaries use a comma-separated [key:value] format for entries. Collections
defined with var are mutable; collections defined with let are immutable.

> var shopping = ["Milk", "Eggs", "Coffee",]
shopping: [String] = 3 values {
 [0] = "Milk"
 [1] = "Eggs"
 [2] = "Coffee"
}
> var costs = ["Milk":1, "Eggs":2, "Coffee":3,]
costs: [String : Int] = {
 [0] = { key = "Coffee" value = 3 }
 [1] = { key = "Milk" value = 1 }
 [2] = { key = "Eggs" value = 2 }
}

For readability, array and dictionary literals can have a trailing
comma. This allows initialization to be split over multiple lines, and if
the last element ends with a trailing comma, adding new items does
not result in an SCM diff to the previous line.

Arrays and dictionaries can be indexed using subscript operators, reassigned, and
added to as follows:

> shopping[0]
$R0: String = "Milk"
> costs["Milk"]
$R1: Int? = 1
> shopping.count
$R2: Int = 3
> shopping += ["Tea"]
> shopping.count
$R3: Int = 4
> costs.count
$R4: Int = 3
> costs["Tea"] = "String"
error: '@lvalue $T5' is not identical to '(String, Int)'

Chapter 1

[13]

> costs["Tea"] = 4
> costs.count
$R5: Int = 4

Optional types
In the previous example, the return type of costs["Milk"] is Int? and not Int. This
is an optional type; it represents the possibility of an Int existing. For a dictionary
of type T, the return type will be T?. If the value doesn't exist in the dictionary, then
the returned value will be nil. Other object-oriented languages, such as Objective-C,
C++, Java, and C#, have optional types by default; any object value (or pointer) can
be null. By expressing optionality in the type system, Swift can determine whether a
value really has to exist or might be nil:

> var cannotBeNil:Int = 1
cannotBeNil: Int = 1
> cannotBeNil = nil
error: type 'Int' does not conform to protocol 'NilLiteralConvertible'
cannotBeNil = nil
> var canBeNil:Int? = 1
canBeNil: Int? = 1
> canBeNil = nil
> canBeNil
$R0: Int? = nil

Optional types can be explicitly created using the Optional
constructor. Given a value x of type X, an optional X? value can be
created using Optional(x).

The value can be tested against nil to find out whether it contains a value and then
unpacked with opt!.

As an example, here is how to create and unwrap an optional value:

> var opt: Int? = 1
opt: Int? = 1
> opt == nil
$R1: Bool = false
> opt!

$R2: Int = 1

Exploring Swift

[14]

If a nil value is unpacked, an error occurs:

> opt = nil
> opt!
fatal error: unexpectedly found nil while unwrapping an Optional value
Execution interrupted. Enter Swift code to recover and continue.
Enter LLDB commands to investigate (type :help for assistance.)

Particularly when working with Objective-C based APIs, it is common for values to
be declared as optional, although they are always expected to return a value. It is
possible to declare such variables as implicitly unwrapped optionals; these variables
behave as optional values (they may contain nil), but when the value is accessed,
they are automatically unwrapped on demand:

> var implicitlyUnwrappedOptional:Int! = 1
implicitlyUnwrappedOptional: Int! = 1
> implicitlyUnwrappedOptional + 2
3
> implicitlyUnwrappedOptional = nil
> implicitlyUnwrappedOptional + 2
fatal error: unexpectedly found nil while unwrapping an Optional value

In general, implicitly unwrapped optionals should be avoided
as they are likely to lead to errors. They are mainly useful for
interaction with existing Objective-C APIs when the value is
known to have an instance.

Nil coalescing operator
Swift has a nil coalescing operator, which is similar to Groovy's ?: operator or C#'s
?? operator. This provides a means to specify a default value if an expression is nil:

> 1 ?? 2
$R0: Int = 1
> nil ?? 2
$R1: Int = 2

Chapter 1

[15]

The nil coalescing operator can also be used to unwrap an optional value. If the
optional value is present, it is unwrapped and returned; if it is missing, then the
right-hand side of the expression is returned. Like the shortcut || and && operators,
the right-hand side is not evaluated unless necessary:

> costs["Tea"] ?? 0
$R2: Int = 4
> costs["Sugar"] ?? 0
$R3: Int = 0

Conditional logic
There are two key types of conditional logic in Swift (known as branch statements in
the grammar): the if statement and the switch statement. Unlike other languages,
the body of the if must be surrounded with braces {}, and if typed in at the
interpreter, the opening brace { must be on the same line as the if statement. The
literal values true and false can be used as well as other boolean expressions.

If statements
Conditionally unpacking an optional value is so common that a specific Swift pattern
has been created to avoid evaluating the expression twice:

var shopping = ["Milk", "Eggs", "Coffee", "Tea",]
var costs = ["Milk":1, "Eggs":2, "Coffee":3, "Tea":4,]
var cost = 0
if let cm = costs["Milk"] {
. cost += cm
. }
> cost
$R0: Int = 1

The if block only executes if the optional value exists. The definition of the constant
cm only exists for the body of the if block, and does not exist outside that scope.
Furthermore, cm is a non-optional type, so it is guaranteed to not be nil.

Exploring Swift

[16]

To execute an alternative block if the item cannot be found, an else block can
be used:

> if let cb = costs["Bread"] {
. cost += cb
. } else {
. println("Cannot find any Bread")
. }
Cannot find any Bread

Other boolean expressions can include any expression that conforms to the
BooleanType protocol, the equality operators == and !=, the identity operators
=== and !==, as well as the comparison operators <, <=, >, >=. The is type operator
provides a test to see whether an element is of a particular type.

The difference between the equality operator and the identity operator
is relevant for classes or other reference types. The equality operator asks
"Are these two values equivalent to each other?" whereas the identity
operator asks "Are these two references equal to each other?"

There is a boolean operator specific to Swift, which is the ~= pattern match operator.
Despite the name, this isn't anything to do with regular expressions; rather, it's
a way of asking whether a pattern matches a particular value. This is used in the
implementation of the switch block, which is covered in the next section.

In addition to the if statement, there is a ternary if expression similar to other
languages. After a condition, a question mark (?) is used, followed by an expression
to be used if the condition is true, then a colon (:) followed by the false expression:

> var i = 17
i: Int = 17
> i % 2 == 0 ? "Even" : "Odd"
$R0: String = "Odd"

Chapter 1

[17]

Switch statements
In addition to if/else, Swift also has a switch statement, similar to C and Java's
switch. However, it differs in two important ways. Firstly, case statements no
longer have a default fall-through behavior (so there are no bugs introduced by
missing a break statement) and secondly, the value of the case statements can be
expressions instead of values, pattern matching on type and range. At the end of the
corresponding case, the evaluation jumps to the end of the switch block, unless the
fallthrough keyword is used. If no case statements match, the default statement
is executed:

> var position = 21
position: Int = 21
> switch position {
. case 1: println("First")
. case 2: println("Second")
. case 3: println("Third")
. case 4...20: println("\(position)th")
. case position where (position % 10) == 1:
. println("\(position)st")
. case let p where (p % 10) == 2:
. println("\(p)nd")
. case let p where (p % 10) == 3:
. println("\(p)rd")
. default: println("\(position)th")
. }
21st

In the preceding example, the expression prints out First, Second, or Third if the
position is 1, 2, or 3 respectively. For numbers between 4 and 20 (inclusive), it prints
out the position with a th ordinal. Otherwise, for numbers that end with 1, it prints
st; for numbers that end with 2, it prints nd; and for numbers that end with 3, it
prints rd. For all other numbers, it prints th.

Exploring Swift

[18]

The 4...20 range expression in a case statement represents a pattern. If the value
of the expression matches that pattern, then the corresponding statements will
be executed:

> 4...10 ~= 4
$R0: Bool = true
> 4...10 ~= 21
$R1: Bool = false

There are two range operators in Swift: an inclusive or closed range, and an
exclusive or half-open range. The closed range is specified with three dots; 1...12
will give a list of integers between one and twelve. The half-open range is specified
with two dots and a less than operator; so 1..<10 will provide integers from 1 to 9
but exclude 10.

The where clause in the switch block allows an arbitrary expression to be evaluated,
provided that the pattern matches. These are evaluated in-order, in the sequence
they are in the source file. If a where clause evaluates to true, then the corresponding
set of statements will be executed.

The let variable syntax can be used to define a constant that refers to the value
in the switch block. This local constant can be used in the where clause or the
corresponding statements for that specific case. Alternatively, variables can be used
from the surrounding scope.

If multiple case statements need to match the same pattern, they
can be separated with commas in the form of an expression list.
Alternatively, the fallthrough keyword can be used to allow the
same implementation to be used for multiple case statements.

Iteration
Ranges can be used to iterate a fixed number of times, for example, for i in
1...12. To print out these numbers, a loop such as the following can be used:

> for i in 1...12 {
. println("i is \(i)")
. }

Chapter 1

[19]

If the number is not required, then the underscore (_) can be used as a hole to act as a
throwaway value. An underscore can be assigned to, but not read:

> for _ in 1...12 {
. println("Looping...")
. }

However, it is more common to iterate over a collection's contents using a for...
in pattern. This steps through each of the items in the collection, and the body of the
for loop is executed over each one:

> var shopping = ["Milk", "Eggs", "Coffee", "Tea",]
> var costs = ["Milk":1, "Eggs":2, "Coffee":3, "Tea":4,]
> var cost = 0
> for item in shopping {
. if let itemCost = costs[item] {
. cost += itemCost
. }
. }
> cost
cost: Int = 10

To iterate over a dictionary, it is possible to extract the keys or the values and process
them as an array:

> Array(costs.keys)
$R2: [String] = 4 values {
 [0] = "Coffee"
 [1] = "Milk"
 [2] = "Eggs"
 [3] = "Tea"
}
> Array(costs.values)
$R3: [Int] = 4 values {
 [0] = 3
 [1] = 1
 [2] = 2
 [3] = 4
}

Exploring Swift

[20]

Note that the order of keys in a dictionary are not guaranteed; if
the dictionary changes size, the order may change.

Converting a dictionary's values to an array is not performant, as this will result
in a copy of the data being made. Instead, the underlying values are of a type
MapCollectionView, which provides an iterable internal view of the data structure:

> costs.keys
$R4: LazyBidirectionalCollectionMapCollectionView<[String : Int],
String>> = {
 _base = {
 _base = {
 [0] = { key = "Coffee" value = 3 }
 [1] = { key = "Milk" value = 1 }
 [2] = { key = "Eggs" value = 2 }
 [3] = { key = "Tea" value = 4 }
 }
 _transform =
 }
}

To print out all the keys in a dictionary, the keys property can be used with a for...
in loop:

> for item in costs.keys {
. println(item)
. }
Coffee
Milk
Eggs
Tea

Chapter 1

[21]

Iterating over keys and values in a dictionary
Traversing a dictionary to obtain all of the keys and then subsequently looking up
values will result in searching the data structure twice. Instead, both the key and
the value can be iterated at the same time using a tuple. A tuple is like a fixed-sized
array, but one that allows assigning pairs (or triplets and so on) of values at a time:

> var (a,b) = (1,2)
a: Int = 1
b: Int = 2

Tuples can be used to iterate pairwise over both the keys and values of a dictionary:

> for (item,cost) in costs {
. println("The \(item) costs \(cost)")
. }
The Coffee costs 3
The Milk costs 1
The Eggs costs 2
The Tea costs 4

Both Array and Dictionary conform to the SequenceType protocol, which allows
them to be iterated with a for...in loop. Collections (as well as other objects such
as Range) that implement SequenceType have a generate method, which returns a
GeneratorType that allows the data to be iterated over. It is possible for custom Swift
objects to implement SequenceType to allow them to be used in a for...in loop.

Iteration with for loops
Although the most common use of the for operator in Swift is in a for...in loop, it
is also possible to use a more traditional form of for loop. This has an initialization, a
condition that is tested at the start of each loop, and a step operation that is evaluated
at the end of each loop. Although the parentheses around the for loop are optional,
the braces for the block of code are mandatory.

Calculating the sum of integers between 1 and 10 without using the range operator
can be done as follows:

> var sum = 0
. for var i=0; i<=10; ++i {
. sum += i
. }
sum: Int = 55

Exploring Swift

[22]

If multiple variables need to be updated in the for loop, Swift has an expression list
that is a set of comma-separated expressions. To step through two sets of variables in
a for loop, the following can be used:

> for var i = 0,j = 10; i<=10 && j >= 0; ++i,--j {
. println("\(i), \(j)")
. }
0, 10
1, 9
…
9, 1
10, 0

Apple recommends the use of ++i instead of i++ (and conversely,
--i instead of i--) because they will return the result of i after the
operation, which may be the expected value.

Break and continue
The break statement leaves the innermost loop early, and control jumps to the end
of the loop. The continue statement takes execution to the top of the innermost loop
and the next item.

To break or continue from nested loops, a label can be used. Labels in Swift can
only be applied to a loop statement such as while or for. A label is introduced
by an identifier and a colon just before the loop statement:

> var deck = [1...13, 1...13, 1...13, 1...13]
> suits: for suit in deck {
. for card in suit {
. if card == 3 {
. continue // go to next card in same suit
. }
. if card == 5 {
. continue suits // go to next suit
. }
. if card == 7 {
. break // leave card loop

Chapter 1

[23]

. }

. if card == 13 {

. break suits // leave suit loop

. }

. }

. }

Functions
Functions can be created using the func keyword, which takes a set of arguments and
a body that can be invoked. The return statement can be used to leave a function:

> var shopping = ["Milk", "Eggs", "Coffee", "Tea",]
> var costs = ["Milk":1, "Eggs":2, "Coffee":3, "Tea":4,]
> func costOf(items:[String], costs:[String:Int]) -> Int {
. var cost = 0
. for item in items {
. if let cm = costs[item] {
. cost += cm
. }
. }
. return cost
. }
> costOf(shopping,costs)
$R0: Int = 10

The return type of the function is specified after the arguments with an arrow (->).
If missing, the function cannot return a value; if present, the function must return a
value of that type.

Functions with positional arguments can be called with parentheses, such as
the costOf(shopping,costs) call. If a function takes no arguments, then the
parentheses are still required.

The foo() expression calls the function foo with no arguments. The
expression foo is the function itself, so an expression such as let
copyOfFoo = foo results in a copy of the function; so copyOfFoo()
and foo() have the same effect.

Exploring Swift

[24]

Named arguments
Swift also supports named arguments, which can either use the name of the variable
or can be defined with an external parameter name. To modify the function to support
calling with basket and prices as argument names, the following can be done:

> func costOf(basket items:[String], prices costs:[String:Int]) -> Int
{
. var cost = 0
. for item in items {
. if let cm = costs[item] {
. cost += cm
. }
. }
. return cost
. }
> costOf(basket:shopping, prices:costs)
$R1: Int = 10

This example defines external parameter names basket and prices for the function.
The function signature is often referred to as costOf(basket:prices:) and is useful
when it may not be clear what the arguments are for (particularly if they are for the
same type).

A shorthand is available to use the same external name as the parameter name, by
prefixing it with a hash (#). These are called shorthand external parameter names:

> func costOf(#items:[String], #costs:[String:Int]) -> Int {
. var cost = 0
. for item in items {
. if let cm = costs[item] {
. cost += cm
. }
. }
. return cost
. }
> costOf(items:shopping, costs:costs)
$R2: Int = 10

Chapter 1

[25]

Refactoring shorthand external parameter names will lead to API breakage. If it is
necessary to change the name internally in a function, convert it from a shorthand
name to a separate external and internal parameter name.

Optional arguments and default values
Swift functions can have optional arguments by specifying default values in the
function definition. When the function is called and an optional argument is missing,
the default value for that argument is used.

Note that an optional argument is one that can be omitted in the
function call, rather than a required argument that takes an optional
value. This naming is unfortunate. It may help to think of these as
default arguments rather than optional arguments.

A default parameter value is specified after the type in the function signature,
with an equal sign (=) and then the expression. The expression is re-evaluated each
time the function is called without a corresponding value. Default arguments are
implicitly named so that the hash (indicating a named argument) is superfluous and
will generate warnings.

In the costOf example, instead of passing the value of costs each time, it could be
defined with a default parameter as follows:

> func costOf(#items:[String], costs:[String:Int] = costs) -> Int {
. var cost = 0
. for item in items {
. if let cm = costs[item] {
. cost += cm
. }
. }
. return cost
. }
> costOf(items:shopping)
$R3: Int = 10
> costOf(items:shopping, costs:costs)
$R4: Int = 10

Exploring Swift

[26]

Note that in the first expression, the captured costs variable is bound when the
function is defined. If costs is re-assigned at a later stage, then the function will
not be updated.

Anonymous arguments
Swift requires that arguments with default values are named, as are arguments that
are used in initializers for classes (which are covered in the Classes in Swift section in
Chapter 3, Creating an iOS Swift App).

In some cases, this is unnecessary or unhelpful. To disable requiring a named
argument for a parameter, the special value underscore (_) can be used:

> func costOf(items:[String], _ costs:[String:Int] = costs) -> Int {
. var cost = 0
. for item in items {
. if let cm = costs[item] {
. cost += cm
. }
. }
. return cost
. }
> costOf(shopping)
$R0: Int = 10
> costOf(shopping,costs)
$R1: Int = 10

Multiple return values and arguments
So far, the examples of functions have all returned a single type. What happens if
there is more than one return result from a function? In an object-oriented language,
the answer is to return a class; however, Swift has tuples, which can be used to
return multiple values. The type of a tuple is the type of its constituent parts:

> var pair = (1,2)
pair: (Int, Int) ...

This can be used to return multiple values from the function; instead of just returning
one value, it is possible to return a tuple of values.

Chapter 1

[27]

Swift also has in-out arguments, which will be seen
in the Handling Errors section in Chapter 6, Parsing
Networked Data.

Separately, it is also possible to take a variable number of arguments. A function
can easily take an array of values with [], but Swift provides a mechanism to allow
calling with multiple arguments, using variadic functions. The last argument in a
function signature can be variadic, which means that it has ellipses after the type.
The value can then be used as an array in the function.

Taken together, these two features allow the creation of a minmax function, which
returns both the minimum and maximum from a list of integers:

> func minmax(numbers:Int...) -> (Int,Int) {
. var min = Int.max
. var max = Int.min
. for number in numbers {
. if number < min {
. min = number
. }
. if number > max {
. max = number
. }
. }
. return(min,max)
. }
> minmax(1,2,3,4)
$R0: (Int, Int) = {
 0 = 1
 1 = 4
}

The numbers:Int... indicates that a variable number of arguments can be passed
into the function. Inside the function, it is processed as an ordinary array; in this case,
iterating through using a for...in loop.

Exploring Swift

[28]

The Int.max constant represents the largest Int value, and Int.
min is a constant representing the smallest Int value. Similar
constants exist for specific integral types, such as UInt8.max and
Int64.min.

What if no arguments are passed in? If run on a 64 bit system, then the output will be
as follows:

> minmax()
$R1: (Int, Int) = {
 0 = 9223372036854775807
 1 = -9223372036854775808
}

This may not make sense for a minmax function. Instead of returning an error value
or a default value, the type system can be used. By making the tuple optional, it is
possible to return a nil value if it doesn't exist, or a tuple if it does:

> func minmax(numbers:Int...) -> (Int,Int)? {
. var min = Int.max
. var max = Int.min
. if numbers.count == 0 {
. return nil
. } else {
. for number in numbers {
. if number < min {
. min = number
. }
. if number > max {
. max = number
. }
. }
. return(min,max)
. }
. }
> minmax()
$R2: (Int, Int)? = nil
> mimmax(1,2,3,4)

Chapter 1

[29]

$R3: (Int, Int)? = (0 = 1, 1 = 3)
> var (minimum,maximum) = minmax(1,2,3,4)!
minimum: Int = 1
maximum: Int = 4

Returning an optional value allows the caller to determine what should happen in
cases where the maximum and minimum values are not present.

If a function does not always have a valid return value, use an
optional type to encode that possibility into the type system.

Returning structured values
A tuple is an ordered set of data. The entries in the tuple are ordered, but it can
quickly become unclear as to what data is stored, particularly if they are of the same
type. In the minmax tuple, it is unclear which value is the minimum and which is the
maximum, and this can lead to subtle programming errors later on.

A structure is like a tuple, but with named values. This allows members to be
accessed by name instead of by position, leading to fewer errors and greater
transparency. Named values can be added to tuples as well. In essence, tuples with
named values are anonymous structures.

Structs are passed in a copy-by-value manner, like tuples. If two
variables are assigned the same struct or tuple, then changes to
one do not affect the value of another.

A struct is defined with the keyword struct and has variables or values in the body:

> struct MinMax {
. var min:Int
. var max:Int
. }

Exploring Swift

[30]

This defines a MinMax type, which can be used in place of any of the types seen so
far. It can be used in the minmax function to return a struct instead of a tuple:

> func minmax(numbers:Int…) -> MinMax? {
. var minmax = MinMax(min:Int.max, max:Int.min)
. if numbers.count == 0 {
. return nil
. } else {
. for number in numbers {
. if number < minmax.min {
. minmax.min = number
. }
. if number > minmax.max {
. minmax.max = number
. }
. }
. return minmax
. }
. }

The struct is initialized with a type constructor; if MinMax() is used, then the
default values for each of the structure members are used (based on the structure
definition), but these defaults can be overridden explicitly if desired, with
MinMax(min:-10,max:11). For example, if the MinMax struct is defined as
struct MinMax { var min:Int = Int.max; var max:Int = Int.min },
then MinMax() would return a structure with the appropriate maximum and
minimum values filled in.

When a structure is initialized, all the fields must be assigned. They
can be passed in as named arguments in the initializer, or specified
in the structure definition.

Swift also has classes; these are covered in the Swift classes section in the next chapter.

Chapter 1

[31]

Command-line Swift
As Swift can be interpreted, it is possible to use it in shell scripts. By setting the
interpreter to swift with a hashbang, the script can be executed without requiring a
separate a compilation step. Alternatively, Swift scripts can be compiled to a native
executable that can be run without the overhead of an interpreter.

Interpreted Swift scripts
Save the following as hello.swift:

#!/usr/bin/env xcrun swift
println("Hello World")

After saving, make the file executable by running chmod a+x hello.swift. The
program can then be run by typing ./hello.swift, and the traditional greeting
will be seen:

Hello World

Arguments can be passed in from the command line and interrogated in the process
using the Process class through the arguments constant. As with other Unix
commands, the first element (0) is the name of the process executable; the arguments
passed on in the command line start from one (1).

The program can be terminated using the exit function; however, this is defined
in the Foundation framework and so it needs to be imported in order to call this
function. Modules in Swift correspond to Frameworks in Objective-C and give
access to all functions defined as public API in the module. The syntax to import all
elements from a module is import module, although it's also possible to import a
single function using import func module.functionName.

A Swift program to print arguments in uppercase can be implemented as follows:

#!/usr/bin/env xcrun swift
import Foundation
let args = Process.arguments[1..<countElements(Process.arguments)]
for arg in args {
 println("\(arg.uppercaseString)")
}
exit(0)

Exploring Swift

[32]

Running this with hello world results in the following:

$./upper.swift hello world
HELLO
WORLD

Conventionally, the entry point to Swift programs is via a script called main.swift.
If starting a Swift-based command-line application project in Xcode, a main.swift
file will be created automatically. Scripts do not need to have a .swift extension. For
instance, the previous example could be called upper and it would still work.

Compiled Swift scripts
While interpreted Swift scripts are useful for experimenting and writing, each time
the script is started, it is interpreted using the Swift command-line tool and then
executed. For simple scripts (such as converting arguments to upper case), this can
be a large proportion of the script's execution time.

To compile a Swift script into a native executable, use the swiftc command with the
-o output flag to specify a file to write to. This will then generate an executable that
does exactly the same as the interpreted script, only much faster. The time command
can be used to compare the running time of the interpreted and compiled versions:

$ time ./upper.swift hello world # Interpreted
HELLO
WORLD
real 0m0.145s
$ xcrun swiftc -o upper upper.swift # Compile step
$ time ./upper hello world # Compiled
HELLO
WORLD
real 0m0.012s

Of course, the numbers will vary and the initial step only happens once, but startup
is very lightweight in Swift. The numbers mentioned earlier are not meant to be
taken in magnitude but rather as relative to each other.

The compile step can also be used to link together many individual Swift files into
one executable, which helps create a more organized project; Xcode will encourage
having multiple Swift files as well.

Chapter 1

[33]

Summary
The Swift interpreter is a great way of learning how to program in Swift. It allows
expressions, statements, and functions to be created and tested along with a
command line history that provides editing support.

The basic collection types of arrays and collections and the standard data types, such
as strings, numbers, collection types, optional values, and structures were presented.
Control flow and functions with positional, named, and variadic arguments, along
with default values were also presented. Finally, the ability to write Swift scripts and
run them from the command line was also demonstrated.

The next chapter will look at the other way of working with Swift code—through the
Xcode playground.

Playing with Swift
Xcode ships with both a command line interpreter (covered in Chapter 1, Exploring
Swift) and a graphical interface called playground that can be used to prototype and
test Swift code snippets. Code typed into the playground is compiled and executed
interactively, which permits a fluid style of development. In addition, the user
interface can present a graphical view of variables as well as a timeline, which can
show how loops are executed. Finally, playgrounds can mix and match code and
documentation, leading to the possibility of providing example code as playgrounds
and using playgrounds to learn how to use existing APIs and frameworks.

This chapter will present the following topics:

•	 How to create a playground
•	 Displaying values in the timeline
•	 Presenting objects with Quick Look
•	 Running asynchronous code
•	 Using playground live documentation
•	 Generating playgrounds with Markdown and AsciiDoc
•	 Limitations of playgrounds

Playing with Swift

[36]

Getting started with playgrounds
When Xcode is started, a welcome screen is shown with various options, including
the ability to create a playground. Playgrounds can also be created from the File |
New | Playground menu.

Creating a playground
Using either the Xcode welcome screen (which can be opened by navigating to
Window | Welcome to Xcode) or navigating to File | New | Playground, create
MyPlayground in a suitable location targeting iOS. Creating the playground on the
Desktop will allow easy access to test Swift code, but it can be located anywhere on
the filesystem.

Playgrounds can be targeted either towards OS X applications or towards iOS
applications. This can be configured when the playground is created, or by switching
to the Utilities view by navigating to View | Utilities | Show File Inspector or
pressing Command + Option + 1 and changing the dropdown from OS X to iOS or
vice versa.

Chapter 2

[37]

When initially created, the playground will have a code snippet that looks as follows:

// Playground - noun: a place where people can play
import UIKit
var str = "Hello, playground"

Playgrounds targeting OS X will read
import Cocoa instead.

On the right-hand side, a column will show the value of the code when each line is
executed. In the previous example, the word Hello, playgr... is seen, which is the
result of the string assignment. By grabbing the vertical divider between the Swift
code and the output, the output can be resized to show the full text message:

Alternatively, by moving the mouse over the right-hand side of the playground, the
Quick Look icon (the eye symbol) will appear; if clicked on, a pop-up box will show
the full details:

Playing with Swift

[38]

Viewing the console output
The console output can be viewed on the right-hand side by opening the Assistant
Editor. This can be opened by pressing Command + Option + Enter or by navigating
to View | Assistant Editor | Show Assistant Editor. This will show the result of any
println statements executed in the code.

Add a simple for loop to the playground and show the Assistant Editor:

for i in 1...12 {
 println("I is \(i)")
}

The output is shown on the right-hand side:

The assistant editor can be configured to be displayed
in different locations, such as at the bottom, or stacked
horizontally or vertically by navigating to the View |
Assistant Editor menu.

Chapter 2

[39]

Viewing the timeline
The timeline shows what other values are displayed as a result of executing the code.
In the case of the print loop shown previously, the output was displayed as Console
Output in the timeline. However, it is possible to use the playground to inspect the
value of an expression on a line, without having to display it directly. In addition,
results can be graphed to show how the values change over time.

Add another line above the println statement to calculate the result of executing an
expression, (i-6)*(i-7), and store it in a variable, j:

for i in 1...12 {
 var j = (i-7) * (i-6)
 println("I is \(i)")
}

On the line next to the variable definition, click on the add variable history symbol
(+), which is in the right-hand column (visible when the mouse moves over that area).
After it is clicked on, it will change to a (o) symbol and display the graph on the right-
hand side. The same can be done for the println statement as well:

Playing with Swift

[40]

The slider at the bottom, indicated by the red tick mark, can be used to slide the
vertical bar to see the exact value at certain points:

To show several values at once, use additional variables to hold the values and
display them in the timeline as well:

for i in 1...12 {
 var j = (i-7) * (i-6)
 var k = i
 println("I is \(i)")
}

When the slider is dragged, both values will be shown at the same time.

Chapter 2

[41]

Displaying objects with QuickLook
The playground timeline can display objects as well as numbers and simple strings.
It is possible to load and view images in a playground using classes such as UIImage
(or NSImage on OS X). These are known as QuickLook supported objects, and by
default include:

•	 Strings (attributed and unattributed)
•	 Views
•	 Class and struct types (members are shown)
•	 Colors

It is possible to build support for custom types in Swift, by
implementing a debugQuickLookObject method that
returns a graphical view of the data.

Showing colored labels
To show a colored label, a color needs to be obtained first. When building against
iOS, this will be UIColor; but when building against OS X, it will be NSColor. The
methods and types are largely equivalent between the two, but this chapter will
focus on the iOS types.

A color can be acquired with an initializer or by using one of the predefined colors
that are exposed in Swift using methods:

import UIKit // AppKit for OS X
let blue = UIColor.blueColor() // NSColor.blueColor() for OS X

The color can be used in a UILabel, which displays a text string in a particular size
and color. The UILabel needs a size, which is represented by a CGRect, and can
be defined with an x and y position along with a width and height. The x and y
positions are not relevant for playgrounds and so can be left as zero:

let size = CGRect(x:0,y:0,width:200,height:100)
let label = UILabel(frame:size)// NSLabel for OS X

Finally, the text needs to be displayed in blue and with a larger font size:

label.text = str // from the first line of the code
label.textColor = blue
label.font = UIFont.systemFontOfSize(24) // NSFont for OS X

Playing with Swift

[42]

When the playground is run, the color and font are shown in the timeline and
available for quick view. Even though the same UILabel instance is being shown, the
timeline and the QuickLook values show a snapshot of the state of the object at each
point, making it easy to see what has happened between changes.

Showing images
Images can be created and loaded into a playground using the UIImage constructor
(or NSImage on OS X). Both take a named argument, which is used to find an image
with the given name from the playground's Resources folder.

To download a logo, open Terminal.app and run the following commands:

$ mkdir MyPlayground.playground/Resources

$ curl http://alblue.bandlem.com/images/AlexHeadshotLeft.png >
MyPlayground.playground/Resources/logo.png

Chapter 2

[43]

An image can now be loaded in Swift with:

let logo = UIImage(named:"logo")

The location of the Resources associated with a playground
can be seen in the File Inspector utilities view, which can be
opened by pressing Command + Option + 1.

The loaded image can be displayed using QuickLook or by adding it to the
value history:

It is possible to use a URL to acquire an image by creating an
NSURL with NSURL(string:"http://..."), then loading the
contents of the URL with NSData(contentsOfURL:), and finally
using UIImage(data:) to convert it to an image. However, as
Swift will keep re-executing the code over and over again, the URL
will be hit multiple times in a single debugging session without
caching. It is recommended that NSData(contentsOfURL:) and
similar networking classes be avoided in playgrounds.

Playing with Swift

[44]

Advanced techniques
The playground has its own framework, XCPlayground, which can be used to
perform certain tasks. For example, individual values can be captured during loops
for later analysis. It also permits asynchronous code to continue to execute once the
playground has finished running.

Capturing values explicitly
It is possible to explicitly add values to the timeline by importing the XCPlayground
framework and calling XCPCaptureValue with a value that should be displayed in
the timeline. This takes an identifier, which is used both as the title and for group-
related data values in the same series. When the value history button is selected, it
essentially inserts a call to XCPCaptureValue with the value of the expression as
the identifier.

For example, to add the logo to the timeline automatically:

import XCPlayground
XCPCaptureValue("logo",logo)

Chapter 2

[45]

It is possible to use an identifier to group the data that is being shown in a loop with
the identifier representing categories of the values. For example, to display a list of
all even and odd numbers between 1 and 6, the following code could be used:

for n in 1...6 {
 if n % 2 == 0 {
 XCPCaptureValue("even",n)
 XCPCaptureValue("odd",0)
 } else {
 XCPCaptureValue("odd",n)
 XCPCaptureValue("even",0)
 }
}

The result, when executed, will look as follows:

Playing with Swift

[46]

Running asynchronous code
By default, when the execution hits the bottom of the playground, the execution
stops. In most cases, this is desirable, but when asynchronous code is involved,
execution might need to run even if the main code has finished executing. This might
be the case if networking data is involved or if there are multiple tasks whose results
need to be synchronized.

For example, wrapping the previous even/odd split in an asynchronous call will
result in no data being displayed:

dispatch_async(dispatch_get_main_queue()) {
 for n in 1...6 {
 // as before
 }
}

This uses one of Swift's language features: the dispatch_async
method is actually a two-argument method that takes a queue and a
block type. However, if the last argument is a block type, then it can be
represented as a trailing closure rather than an argument.

To allow the playground to continue executing after reaching the bottom, add the
following call:

XCPSetExecutionShouldContinueIndefinitely()

Although this suggests that the execution will run forever, it
is limited to 30 seconds of runtime, or whatever is the value
displayed at the bottom-right corner of the screen. This timeout can
be changed by typing in a new value or using the + and – buttons
to increase/decrease time by one second.

Chapter 2

[47]

Playgrounds and documentation
Playgrounds can contain a mix of code and documentation. This allows a set of code
samples and explanations to be mixed in with the playground itself. Although there
is no way of using Xcode to add sections in the UI at present, the playground itself is
an XML file that can be edited using an external text editor such as TextEdit.app.

Learning with playgrounds
As playgrounds can contain a mixture of code and documentation, it makes them an
ideal format for viewing annotated code snippets. In fact, Apple's Swift Tour book
can be opened as a playground file.

Playing with Swift

[48]

Xcode documentation can be searched by navigating to the Help | Documentation
and API Reference menu, or by pressing Command + Shift + 0. In the search field that
is presented, type Swift Tour and then select the first result. The Swift Tour book
should be presented in Xcode's help system:

A link to download and open the documentation as a playground is given in the first
section; if this is downloaded, it can be opened in Xcode as a standalone playground.
This provides the same information, but allows the code examples to be dynamic
and show the results in the window:

Chapter 2

[49]

A key advantage of learning through playground-based documentation is that the
code can be experimented with. In the Simple Values section of the documentation,
where myVariable is assigned, the right-hand side of the playground shows the
values. If the literal numbers are changed, the new values will be recalculated and
shown on the right-hand side.

Some examples are presented solely in playground form; for example, the
Balloons demo, which was used in the introduction of Swift in the WWDC 2014
keynote, is downloadable as a playground from https://developer.apple.com/
swift/resources/.

Note that the Balloons playground requires OS X 10.10 and
Xcode 6.1 to run.

Understanding the playground format
A playground is an OS X bundle, which means that it is a directory that looks like a
single file. If a playground is selected either in TextEdit.app or in Finder, then it
looks like a regular file:

Under the covers, it is actually a directory:

$ ls -F
MyPlayground.playground/

Inside the directory, there are a number of files:

$ ls -1 MyPlayground.playground/*
MyPlayground.playground/Resources
MyPlayground.playground/contents.xcplayground
MyPlayground.playground/section-1.swift
MyPlayground.playground/timeline.xctimeline

https://developer.apple.com/swift/resources/
https://developer.apple.com/swift/resources/

Playing with Swift

[50]

The files are as follows:

•	 The Resources directory, which was created earlier to hold the logo image
•	 The contents.xcplayground file, which is an XML table of contents of the

files that make up the playground
•	 The section-1.swift file, which is the Swift file created by default when

a new playground is created, and contains the code that is typed in for any
new playground content

•	 The timeline.xctimeline file, which is an automatically generated file
containing timestamps of execution, which the runtime generates when
executing a Swift file and the timeline is open

The table of contents file defines which runtime environment is being targeted (for
example, iOS or OS X), a list of sections, and a reference to the timeline file:

<playground version='3.0' sdk='iphonesimulator'>
 <sections>
 <code source-file-name='section-1.swift'/>
 </sections>
 <timeline fileName='timeline.xctimeline'/>
</playground>

This file can be edited to add new sections, provided that it is not open in Xcode at
the same time.

An Xcode playground directory is deleted and recreated whenever
changes are made in Xcode. Any Terminal.app windows open in
that directory will no longer show any files. As a result, using external
tools and editing the files in place might result in changes being lost.
In addition, if you are using ancient versions of control systems, such
as SVN and CVS, you might find your version control metadata being
wiped out between saves. Xcode ships with the industry standard Git
version control system, which should be preferred instead.

Chapter 2

[51]

Adding a new documentation section
To add a new documentation section, ensure that the playground is not open in Xcode
and then edit the contents.xcplayground file. The file itself can be opened by right-
clicking on the playground in Finder and choosing Show Package Contents:

This will open up a new Finder window, with the contents displayed as a top-level
set of elements. The individual files can then be opened for editing by right-clicking
on the contents.xcplayground file, choosing Open With | Other..., and selecting
an application, such as TextEdit.app.

Alternatively, the file can be edited from the command line using an editor such as
pico, vi, or emacs.

Although there are few technology debates more contentious than whether
vi or emacs is better, the recommended advice is to learn how to be
productive in at least one of them. Like learning to touch-type, being
productive in a command-line editor is something that will pay dividends
in the future if the initial learning challenge can be overcome. For those
who don't have time, pico (also known as nano) can be a useful tool in
command-line situations, and the on-screen help makes it easier to learn to
use. Note that the carat symbol (^) means control, so ^X means Control + X.

Playing with Swift

[52]

To add a new documentation section, create a directory called Documentation, and
inside it, create a file called hello.html. The HTML file is an HTML5 document,
with a declaration and a body. A minimal file looks like:

<!DOCTYPE html>
<html>
 <body>
 <h1>Welcome to Swift Playground</h1>
 </body>
</html>

The content needs to be added to the table of contents (contents.xcplayground)
in order to display it in the playground itself, by adding a documentation element
under the sections element:

<playground version='3.0' sdk='iphonesimulator'>
 <sections>
 <code source-file-name='section-1.swift'/>
 <documentation relative-path='hello.html'/>
 </sections>
 <timeline fileName='timeline.xctimeline'/>
</playground>

The relative-path attribute is relative to the Documentation directory.

All content in the Documentation directory is copied between
saves in the timeline and can be used to store other text content
such as CSS files. Binary content, including images, should be
stored in the Resources directory.

When viewed as a playground, the content will be shown in the same window as
the documentation:

Chapter 2

[53]

If the content is truncated in the window, then a horizontal rule can
be added at the bottom with <hr/>, or the documentation can be
styled, as shown in the next section.

Styling the documentation
As the documentation is written in HTML, it is possible to style it using CSS. For
example, the background of the documentation is transparent, which results in the
text overlapping both the margins as well as the output.

To add a style sheet to the documentation, create a file called stylesheet.css in the
Documentation directory and add the following content:

body {
 background-color: white
}

To add the style sheet to the HTML file, add a style sheet link reference to the head
element in hello.html:

<head>
 <link rel="stylesheet" type="text/css" href="stylesheet.css"/>
</head>

Now when the playground is opened, the text will have a solid white background
and will not be obscured by the margins:

Playing with Swift

[54]

Adding resources to a playground
Images and other resources can also be added to a playground. Resources need to
be added to a directory called Resources, which is copied as is between different
versions of the playground.

To add an image to the document, create a Resources folder and then insert an
image. For example, earlier in this chapter, an image was downloaded by using the
following commands:

$ mkdir MyPlayground.playground/Resources

$ curl http://alblue.bandlem.com/images/AlexHeadshotLeft.png >
MyPlayground.playground/Resources/logo.png

The image can then be referred to in the documentation using an img tag and a
relative path from the Documentation directory:

Other supported resources (such as JPEG and GIF) can be added to the Resources
folder as well. It is also possible to add other content (such as a ZIP file of examples)
to the Resources folder and provide hyperlinks from the documentation to the
resource files.

Download contact card

Additional entries in the header
The previous example showed the minimum amount of content required for
playground documentation. However, there are other meta elements that can be
added to the document that have specific purposes and which might be found in
other playground examples on the internet. Here is a more comprehensive example
of using meta elements:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8"/>
 <link rel="stylesheet" type="text/css" href="stylesheet.css"/>
 <title>Welcome to Swift Playground</title>
 <meta name="xcode-display" content="render"/>
 <meta name="apple-mobile-web-app-capable" content="yes"/>
 <meta name="viewport" content="width=device-width,maximum-
scale=1.0"/>

Chapter 2

[55]

 </head>
 <body>...</body>
</html>

In this example, the document is declared as being written in English (lang="en" on
the html element) and in the UTF-8 character set.

The <meta charset="utf-8"/> should always be the first element
in the HTML head section, and the UTF-8 encoding should always
be preferred for writing documents. If this is missed, it will default to
a different encoding, such as ISO-8859-1, which can lead to strange
characters appearing. Always use UTF-8 for writing HTML documents.

The link and title are standard HTML elements that associate the style sheet
(from before) and the title of the document. The title is not displayed in Xcode,
but it can be shown if the HTML document is opened in a browser instead. As the
documentation is reusable between playgrounds and the web, it makes sense to
give it a sensible title.

The link should be the second element after the charset definition. In
fact, all externally linked resources—such as style sheets and scripts—
should occur near the top of the document. This allows the HTML parser
to initiate the download of external resources as soon as possible. This
also includes the HTML5 prefetch link type, which is not supported in
Safari or playground at the time of writing.

The meta tags are instructions to Safari to render it in different ways (Safari is the
web engine that is used to present the documentation content in playground). Safari-
specific meta tags are described at https://developer.apple.com/library/
safari/documentation/AppleApplications/Reference/SafariHTMLRef/
Articles/MetaTags.html and include the following:

•	 The xcode-display=render meta tag, which indicates that Xcode should
show the content of the document instead of the HTML source code when
opening in Xcode

•	 The apple-mobile-web-app-capable=yes meta tag, which indicates that
Safari should show this fullscreen if necessary when running on a
mobile device

•	 The viewport=width=device-width,maximum-scale=1.0 meta tag, which
allows the document body to be resized to fit the user's viewable area
without scaling

https://developer.apple.com/library/safari/documentation/AppleApplications/Reference/SafariHTMLRef/Articles/MetaTags.html
https://developer.apple.com/library/safari/documentation/AppleApplications/Reference/SafariHTMLRef/Articles/MetaTags.html
https://developer.apple.com/library/safari/documentation/AppleApplications/Reference/SafariHTMLRef/Articles/MetaTags.html

Playing with Swift

[56]

Generating playgrounds automatically
The format of the playground files are well known, and several utilities have been
created to generate playgrounds from documentation formats, such as Markdown
or AsciiDoc. These are text-based documentation formats that provide a standard
means to generate output documents, particularly HTML-based ones.

Markdown
Markdown (a word play on markup) was created to provide a standard syntax to
generate web page documentation with links and references in a plain text format.
More information about Markdown can be found at the home page (http://
daringfireball.net/projects/markdown/), and more about the standardization
of Markdown into CommonMark (used by StackOverflow, GitHub, Reddit, and
others) can be found at http://commonmark.org.

Embedding code in documentation is fairly common in Markdown. The file is
treated as a top-level document, with sections to separate out the documentation and
the code blocks. In CommonMark, these are separated with back ticks (```), often
with the name of the language to add different script rendering types:

Markdown Example
This is an example CommonMark document.

Blank lines separate paragraphs. Code blocks are introduced with three
back-ticks and closed with back-ticks:

```swift
println("Welcome to Swift")
```

Other text and other blocks can follow below.

The most popular tool for converting Markdown/CommonMark documents into
playgrounds (at the time of writing) is Jason Sandmeyer's swift-playground-builder
at https://github.com/jas/swift-playground-builder/. The tool uses Node
to execute JavaScript and can be installed using the npm install -g swift-
playground-builder command. Both Node and npm can be installed from
http://nodejs.org.

Once installed, documents can be translated using playground --platform ios
--destination outdir --stylesheet stylesheet.css. If code samples should
not be editable, then the --no-refresh argument should be added.

http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/
http://commonmark.org
https://github.com/jas/swift-playground-builder/
http://nodejs.org

Chapter 2

[57]

AsciiDoc
AsciiDoc is similar in intent to Markdown, except that it can render to more
backends than just HTML5. AsciiDoc is growing in popularity for documenting
code, primarily because the standard is much more well defined than Markdown
is. The de facto standard translation tool for AsciiDoc is written in Ruby and can be
installed using the sudo gem install asciidoctor command.

Code blocks in AsciiDoc are represented by a [source] block. For Swift, this will be
[source, swift]. The block starts and ends with two hyphens (--):

.AsciiDoc Example
This is an example AsciiDoc document.

Blank lines separate paragraphs. Code blocks are introduced with a
source block and two hyphens:

[source, swift]
--
println("Welcome to Swift")
--

Other text and other code blocks can follow below --.

AsciiDoc files typically use the ad extension, and the ad2play tool can be installed
from James Carlson's repository at https://github.com/jxxcarlson/ad2play.
Saving the preceding example as example.ad and running ad2play example.ad
will result in the generation of the example.playground file.

More information about AsciiDoc, including the syntax and backend, can be found
at the AsciiDoc home page at http://www.methods.co.nz/asciidoc/ or on the
Asciidoctor home page at http://asciidoctor.org.

Limitations of playgrounds
Although playgrounds can be very powerful for interacting with code, there are
some limitations that are worth being aware of. There is no debugging support in the
playground. It is not possible to add a breakpoint and use the debugger and find out
what the values are. Given that the UI allows tracking values—and that it's very easy
to add new lines with just the value to be tracked—this is not much of a hardship.
Other limitations of playgrounds include:

•	 Only the simulator can be used for the execution of iOS-based playgrounds.
This prevents the use of hardware-specific features that might only be
present on a device.

https://github.com/jxxcarlson/ad2play
http://www.methods.co.nz/asciidoc/
http://asciidoctor.org

Playing with Swift

[58]

•	 The performance of playground scripts is mainly driven based on how many
lines are executed and how much output is saved by the debugger. It should
not be used to test the performance of performance-sensitive code.

•	 Although the playground is well suited to present user interface components,
it cannot be used for user input.

•	 Anything requiring entitlements (such as in-app purchases or access to
iCloud) is not possible in playground at the time of writing.

Note that while earlier releases of playground did not support
custom frameworks, Xcode 6.1 permits frameworks to be
loaded into playground, provided that the framework is built
and marked as public and that it is in the same workspace as
the playground.

Summary
This chapter presented playgrounds, an innovative way of running Swift code
with graphical representations of values and introspection of running code. Both
expressions and the timeline were presented as a way of showing the state of the
program at any time, as well as graphically inspecting objects using QuickLook.
The XCPlayground framework can also be used to record specific values and allow
asynchronous code to be executed.

Being able to mix code and documentation into the same playground is also a
great way of showing what functions exist, and how to create self-documenting
playgrounds was presented. In addition, tools for the creation of such playgrounds
using either AsciiDoc or Markdown (CommonMark) were introduced.

The next chapter will look at how to create an iOS application with Swift.

Creating an iOS Swift App
With the release of Xcode 6 in 2014, it is possible to build Swift applications for
iOS and OS X and submit them to the App Store for publication. This chapter will
present both a single view application and a master-detail application, and use these
to explain the concepts behind iOS applications as well as introduce classes in Swift.

This chapter will present the following topics:

•	 How iOS applications are structured
•	 Single view iOS applications
•	 Creating classes in Swift
•	 Protocols and enums in Swift
•	 Using XCTest to test Swift code
•	 Master-detail iOS applications
•	 The AppDelegate and ViewController classes

Understanding iOS applications
An iOS application is a compiled executable, along with a set of supporting files in a
bundle. The application bundle is packaged into an archive file for installing onto a
device or uploading to the App Store.

Xcode can be used to run iOS applications in a simulator, but running
an application on a device requires a developer signing key, which
is included as part of the iOS developer program at https://
developer.apple.com.

https://developer.apple.com
https://developer.apple.com

Creating an iOS Swift App

[60]

Most iOS applications to date have been written in Objective-C, a crossover between
C and Smalltalk. With the advent of Swift, it is likely that many developers will
move at least parts of their applications to Swift for performance and maintenance
reasons. Although Objective-C is likely to be around for a while, it is clear that Swift
is the future of iOS development, and probably OS X as well.

Applications contain a number of different types of files, which are used both at
compile time and also at runtime. These files include:

•	 The Info.plist file, which contains information about which languages
the application is localized for, what the identity of the application is, and
the configuration requirements, such as the supported interface types (iPad,
iPhone, and Universal) and orientations (Portrait, Upside Down, Landscape
Left, and Landscape Right)

•	 Zero or more interface builder files with a .xib extension, which contain
user interface screens (which supersedes the previous .nib files)

•	 Zero or more image asset files with a .xcassets extension, which store
groups of related icons at different sizes, such as the application icon or
graphics for display on screen (which supersedes the previous .icns files)

•	 Zero or more storyboard files with a .storyboard extension, which are used
to coordinate between different screens in an application

•	 One or more .swift files that contain application code

Creating a single view iOS application
A single view iOS application is one where the application is presented in a single
screen, without any transitions or other views. This section will show how to create
an application that uses a single view without storyboards. (Storyboards are covered
in Chapter 4, Storyboard Applications with Swift and iOS.)

When Xcode starts, it displays a welcome message that includes the ability to create a
new project. This welcome message can be redisplayed at any time by navigating to
Window | Welcome to Xcode or by pressing Command + Shift + 1.

Chapter 3

[61]

Using the welcome dialog's Create a new Xcode project option, by navigating
to File | New | Project..., or by pressing Command + Shift + N, create a new
project and select Single View Application as the template, as shown in the
following screenshot:

When the Next button is pressed, the new project dialog will ask for more details.
The product name here is SingleView with appropriate values for Organization
Name and Identifier. Ensure that the language selected is Swift and the device type
is Universal:

The Organization Identifier is a reverse domain name representation
of the organization, and the Bundle Identifier is the concatenation
of the Organization Identifier with the Product Name. Publishing
to the App Store requires that the Organization Identifier be owned
by the publisher and is managed in the online developer center at
https://developer.apple.com/membercenter/.

When Next is pressed, Xcode will ask where to save the project and whether a
repository should be created. The selected location will be used to create the product
directory, and an option to create a Git repository will be offered.

https://developer.apple.com/membercenter/

Creating an iOS Swift App

[62]

In 2014, Git became the most widely used version control system,
surpassing all other distributed and centralized version control
systems. It is foolish not to create a Git repository when creating a
new Xcode project.

When Create is pressed, Xcode will create the project, set up template files, and then
initialize the Git repository locally or on a shared server.

Press the triangular play button at the top-left of Xcode to launch the simulator:

If everything has been set up correctly, the simulator will start with a white
screen and the time and battery shown at the top of the screen:

Removing the storyboard
The default template for a single view application includes a storyboard. This creates
the view for the first (only) screen and performs some additional setup behind the
scenes. To understand what happens, the storyboard will be removed and replaced
with code instead.

Most applications are built with one or more storyboards.
It is being removed here for demonstration purposes only;
see the next chapter, Storyboards, Scenes, and Segues, for more
information on how to use storyboards.

The storyboard can be deleted by going to the project navigator, finding the Main.
storyboard file, and pressing the Delete key or selecting Delete from the context-
sensitive menu. When the confirmation dialog is shown, select the Move to Trash
option to ensure that the file is deleted rather than just being removed from the list of
files that Xcode knows about.

Chapter 3

[63]

To see the project navigator, press Command + 1 or navigate to View
| Navigators | Show Project Navigator.

Once Main.storyboard has been deleted, it needs to be removed from Info.
plist to prevent iOS from trying to open it at startup. Open Info.plist under the
Supporting Files folder of SingleView. A set of key-value pairs will be shown;
clicking on the Main storyboard file base name row will present the (+) and (-)
options. Clicking on the delete icon (-) will remove the line.

Now, when the application is started, a black screen will be shown.

There are two Info.plist files created by Xcode's template; one file
is used for the real application, while the other file is used for the test
application that gets built when running tests. Testing is covered in the
Subclasses and testing in Swift section later in this chapter.

Setting up the view controller
The view controller is responsible for setting up the view when it is activated.
Typically, this is done through either the storyboard or the interface file. Since
these have been removed, the window and the view controller need to be
instantiated manually.

Creating an iOS Swift App

[64]

When an iOS application starts, application:didFinishLaunchingWithOptions:
is called on UIApplicationDelegate. The optional window variable is initialized
automatically when it is loaded from an interface file or a storyboard, but it needs to
be explicitly initialized if the user interface is being implemented in code.

Implement the application:didFinishLaunchingWithOptions: method in the
AppDelegate class as follows:

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {
 var window: UIWindow?
 func application(application: UIApplication,
 didFinishLaunchingWithOptions launchOptions:
 [NSObject:AnyObject]?) -> Bool {
 window = UIWindow()
 window?.rootViewController = ViewController()
 window?.makeKeyAndVisible()
 return true
 }
}

To open a class by name, press Command + Shift + O and type
in the class name. Alternatively, File | Open Quickly.... can be
used instead

The final step is to create the view's content, which is typically done in the
viewDidLoad method of the ViewController class. As an example user interface,
UILabel will be created and added to the view. Each view controller has an
associated view property, and child views can be added with the addSubview
method. To make the view stand out, the background of the view will be changed to
black and the text color will be changed to white:

class ViewController: UIViewController {
 override func viewDidLoad() {
 super.viewDidLoad()
 view.backgroundColor = UIColor.blackColor()
 var label = UILabel(frame:view.bounds)
 label.textColor = UIColor.whiteColor()
 label.textAlignment = .Center
 label.text = "Welcome to Swift"
 view.addSubview(label)
 }
}

Chapter 3

[65]

This creates a label, which is sized to the full size of the screen, with a white text
color and a centered text alignment. This displays Welcome to Swift on the screen.

Typically views will be implemented in their own class rather than
being in-lined into the view controller. This allows the views to be
reused in other controllers. This technique will be demonstrated in
the next chapter.
When the screen is rotated, the label will be rotated off
screen. Logic would need to be added in a real application
to handle rotation changes in the view controller, such as
willRotateToInterfaceOrientation, and to appropriately
add rotations to the views using the transform property of the
view. Usually, an interface builder file or storyboard would be
used so that this is handled automatically.

Swift classes, protocols, and enums
Almost all Swift applications will be object oriented. Chapter 1, Exploring Swift, and
Chapter 2, Playing with Swift, both demonstrated functional and procedural Swift
code. Classes such as Process from the CoreFoundation framework, and UIColor
and UIImage from the UIKit framework were used to demonstrate how classes can
be used in applications. This section describes how to create classes, protocols, and
enums in Swift.

Classes in Swift
A class is created in Swift using the class keyword and braces are used to enclose
the class body. The body can contain variables called properties as well as functions
called methods, which are collectively referred to as members. Instance members
are unique to each instance, while class members are shared between all instances of
that class.

Classes are typically defined in a file named for the class; so a GitHubRepository class
can be defined in the GitHubRepository.swift file. A new Swift file can be created by
navigating to File | New | File… and selecting the Swift option under iOS:

class GitHubRepository {
 var id:UInt64 = 0
 var name:String = ""
 func detailsURL() -> String {
 return "https://api.github.com/repositories/\(id)"
 }
}

Creating an iOS Swift App

[66]

This class can be instantiated and used as follows:

var repo = GitHubRepository()
repo.id = 1
repo.name = "Grit"
repo.detailsURL() // returns https://api.github.com/repositories/1

It is possible to create class members, which are the same for all instances of a class.
In the GitHubRepository class, the api URL is likely to remain the same for all
invocations, so it can be refactored into a class property:

class GitHubRepository {
 // does not work in Swift 1.0 or 1.1
 class let api = "https://api.github.com"
 …
 func detailsURL() -> String {
 return "\(api)/repositories/\(id)"
 }
}

Now, if the api URL needs to be changed (for example, to support mock testing or
to support an in-house GitHub Enterprise server), there is a single place to change it.

In Xcode 6.1 with Swift 1.1, an error message the class variables are
not yet supported may be seen.

To use class variables in Swift 1.1, a different approach must be used. It is possible
to define computed properties, which are not stored but are calculated on demand.
These have a getter (also known as an accessor) and optionally a setter (also known
as a mutator). The previous example can be rewritten as:

class GitHubRepository {
 class var api:String {
 get {
 return "https://api.github.com"
 }
 }
 func detailsURL() -> String {
 return "\(GitHubRepository.api)/repositories/\(id)"
 }
}

Chapter 3

[67]

Although this is logically a read-only constant (there is no associated set block), it is
not possible to define let constants with accessors.

To refer to a class variable, use the type name—which in this case is
GitHubRepository. When the expression GitHubRepository.api is evaluated, the
body of the getter is called.

Subclasses and testing in Swift
A simple Swift class with no explicit parent is known as a base class. However,
classes in Swift frequently inherit from another class by specifying a superclass. The
syntax for this is class SubClass:SuperClass{...}.

Tests in Swift are written using the XCTest framework, which is included by default
in Xcode templates. This allows an application to have tests written and then
executed in place to confirm that no bugs have been introduced.

XCTest replaces the previous testing
framework OCUnit.

The XCTest framework has a base class called XCTestCase that all tests inherit from.
Methods beginning with test (and that take no arguments) in the test case class
are invoked automatically when the tests are run. Test code can indicate success
or failure by calling the XCTAssert* functions, such as XCTAssertEquals and
XCTAssertGreaterThan.

Tests for the GitHubRepository class conventionally exist in a corresponding
GitHubRepositoryTest class, which will be a subclass of XCTestCase. It can be
implemented as:

import XCTest
class GitHubRepositoryTest: XCTestCase {
 func testRepository() {
 var repo = GitHubRepository()
 repo.id = 1
 repo.name = "Grit"
 XCTAssertEqual(
 repo.detailsURL(),
 "https://api.github.com/repositories/1",
 "Repository details"
)
 }
}

Creating an iOS Swift App

[68]

Make sure that the GitHubRepositoryTest class is added to the test target by
selecting the file and pressing Command + Option + 1 to show the File Inspector. The
checkbox next to the test target should be selected. Tests should never be added to
the main target. The GitHubRepository class should be added to both targets:

When the tests are run by pressing Command + U or by navigating to Product | Test,
the results of the test will be shown. Changing either the implementation or the
expected test result will demonstrate whether the test is being executed correctly.

Always check whether a failing test causes the build to fail; this
will confirm that the test is actually being run. For example, in the
GitHubRepositoryTest class, modify the URL to remove https
from the front and check whether a test failure is shown. There is
nothing more useless than a correctly implemented test that never runs.

Protocols in Swift
A protocol is similar to an interface in other languages; it is a named type that has
method signatures but no method implementations. Classes can implement zero or
more protocols; when they do, they are said to adopt or conform to the protocol. A
protocol might have a number of methods that are either required (the default) or
optional (marked with the optional keyword).

Optional protocol methods are only supported when the protocol is
marked with the @objc attribute. This declares that the class will be
backed by an NSObject class for interoperability with Objective-C.
Pure Swift protocols cannot have optional methods.

Chapter 3

[69]

The syntax for defining a protocol looks like:

protocol GitHubDetails {
 func detailsURL() -> String
 // protocol needs @objc if using optional protocols
 // optional doNotNeedToImplement()
}

Note that protocols cannot have functions with default arguments.
Protocols can be used against the struct, class, and enum types
unless the @objc class attribute is used, in which case they can only
be used against Objective-C classes or enums.

Classes conform to protocols by listing the protocol names after the class name,
similar to a superclass.

When a class has both a superclass and one or more
protocols, the superclass should be listed first.

class GitHubRepository: GitHubDetails {
 func detailsURL() -> String {
 // implementation as before
 }
}

The GitHubDetails protocol can be used as a type in the same places as an existing
Swift type, such as a variable type, method return type, or argument type.

Protocols are widely used in Swift to allow callbacks from frameworks
that would otherwise not know about specific callback handlers. If
a superclass was required instead, then a single class could not be
used to implement multiple callbacks. Common protocols include
UIApplicationDelegate, Printable, and Comparable.

Creating an iOS Swift App

[70]

Enums in Swift
The final concept to understand in Swift is enumeration, or enum for short. An
enum is a closed set of values, such as North, East, South, and West or Up and Down.

An enumeration is defined using the enum keyword followed by a type name
and a block, which contains case keywords followed by comma-separated values:

enum Suit {
 case Clubs, Diamonds, Hearts // many on one line
 case Spades // or each on separate lines
}

Unlike C, enumerated values do not have a specific type by default, so they cannot
be converted to and from an integer value. Enumerations can be defined with raw
values that allow conversion to and from integer values. Enum values are assigned
to variables using the type name and the enum name:

var suit:Suit = Suit.Clubs

However, if the type of the expression is known, then the type prefix does not need
to be explicitly specified. So the following form is much more common in Swift code:

var suit:Suit = .Clubs

Raw values
For enum values that have specific meanings, it is possible to extend the enum from a
different type, such as Int. These are known as raw values.

enum Rank: Int {
 case Two = 2, Three, Four, Five, Six, Seven, Eight, Nine, Ten
 case Jack, Queen, King, Ace
}

A raw value enum can be converted to and from its raw value with the rawValue
property and the failable initializer Rank(rawValue:) as follows:

Rank.Two.rawValue == 2
Rank(rawValue:14)! == Rank.Ace

Chapter 3

[71]

Note that the failable initializer returns an optional enum
value, because the equivalent Rank might not exist. The
expression Rank(rawValue:0) will return nil, for example.

Associated values
Enums can also have associated values, such as a value or case class in other
languages. For example, a combination of a Suit and a Rank can be combined to
form a Card:

enum Card {
 case Face(Rank, Suit)
 case Joker
}

Instances can be created by passing values into an enum initializer:

var aceOfSpades: Card = .Face(.Ace,.Spades)
var twoOfHearts: Card = .Face(.Two,.Hearts)
var theJoker: Card = .Joker

The values of an enum cannot be extracted (as they can with a struct), but the enum
value can be accessed by pattern matching in a switch statement:

var card = aceOfSpades // or theJoker or twoOfHearts ...
switch card {
 case .Face(var rank, var suit):
 println("Got a face card \(rank) of \(suit)");
 case .Joker:
 println("Got the joker card")
}

The Swift compiler will ensure that the switch statement is exhaustive. Since the
enum only contains these two types, no default block is needed. If another enum
value is added to Card in the future, the compiler will report an error in this
switch statement.

Creating an iOS Swift App

[72]

Creating a master-detail iOS application
Having covered how classes, protocols, and enums are defined in Swift, a more
complex master-detail application can be created. A master-detail application is
a specific type of iOS application that initially presents a table view, and when an
individual element is selected, a secondary details view will show more information
about the selected item.

Using the Create a new Xcode project option from the welcome screen, navigate
to File | New | Project... or press Command + Shift + N, and select Master-Detail
Application from the iOS Application category:

In the subsequent dialog, enter appropriate values for the project, such as the name
(MasterDetail), the organizational identifier (typically based on the reverse DNS
name), ensure that the Language drop-down reads Swift and that it is targeted for
Universal devices.

When the project is created, an Xcode window will open, containing all the files
created by the wizard itself, including the MasterDetail.app and MasterDetailTests.
xctest products. The MasterDetail.app is a bundle that is executed by the simulator
or a connected device, while the MasterDetailTests.xctest product is used to
execute unit tests for the application's code.

Chapter 3

[73]

The application can be launched by pressing the triangular play button on the top-
left corner of Xcode or by pressing Command + R, which will run the application
against the currently selected target.

After a brief compile and build cycle, the iOS Simulator will open with a master page
that contains an empty table:

The default MasterDetail application can be used to add items to the list, by
clicking on the add (+) button on the top-right corner of the screen. This will add a
new timestamped entry to the list.

When this item is clicked, the screen will switch to the details view, which in this
case presents the time in the center of the screen:

Creating an iOS Swift App

[74]

This kind of master-detail application is common in iOS applications to display a
top-level list (such as a shopping list, a set of contacts, to-do notes, and so on) while
allowing the user to tap to see the details.

There are three main classes in the master-detail application:

•	 AppDelegate: This class is defined in the AppDelegate.swift file, and is
responsible for starting the application and setting up the initial state

•	 MasterViewController: This class is defined in the
MasterViewController.swift file, and is used to manage the first (master)
screen's content and interactions

•	 DetailViewController: This class is defined in the
DetailViewController.swift file, and is used to manage the second
(detail) screen's content

In order to understand what the classes do in more detail, the next three sections will
present each one of them in turn.

The code generated in this section was created from Xcode 6.1, so the
templates might differ slightly if using a different version of Xcode. An
exact copy of the corresponding code can be acquired from the Packt
website or from the book's GitHub repository at https://github.
com/alblue/com.packtpub.swift.essentials/.

The AppDelegate class
The AppDelegate class is the main entry point to the application. When a set of Swift
source files are compiled, if the main.swift file exists, it is used as the entry point for
the application by running that code. However, to simplify setting up an application
for iOS, a special attribute @UIApplicationMain exists which will both synthesize
the main method and set up the associated class as the application delegate.

The AppDelegate class for iOS extends the UIResponder class, which is the parent
of all the UI content on iOS. It also adopts two protocols, UIApplicationDelegate
and UISplitViewControllerDelegate, which are used to provide callbacks when
certain events occur:

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate,
 UISplitViewControllerDelegate {
 var window: UIWindow?
 ...
}

https://github.com/alblue/com.packtpub.swift.essentials/
https://github.com/alblue/com.packtpub.swift.essentials/

Chapter 3

[75]

On OS X, the AppDelegate class will be a
subclass of NSApplication and will adopt the
NSApplicationDelegate protocol.

The synthesized main function calls the UIApplicationMain method that reads
the Info.plist file. If the UILaunchStoryboardName key exists and points to a
suitable file (the LaunchScreen.xib interface file in this case), it will be shown as
a splash screen before doing any further work. After the rest of the application has
loaded, if the UIMainStoryboardFile key exists and points to a suitable file (the
Main.storyboard file in this case), the storyboard is launched and the initial view
controller is shown.

The storyboard has references to the MasterViewController and
DetailViewController classes. The window variable is assigned to the
storyboard's window.

Once the application has been loaded, the application:didFinishLaunching
WithOptions: callback is called with a reference to the UIApplication instance and
a dictionary of options that notifies how the application has been started:

func application(
 application: UIApplication,
 didFinishLaunchingWithOptions launchOptions:
 [NSObject: AnyObject]?) -> Bool {
 // Override point for customization after application launch.
 ...
}

In the sample MasterDetail application, the application:didFinishLaunching
WithOptions: method acquires a reference to the splitViewController from the
explicitly unwrapped optional window, and the AppDelegate is set as its delegate:

let splitViewController =
 self.window!.rootViewController as UISplitViewController
splitViewController.delegate = self

The syntax … as UISplitViewController performs a type cast so
that the generic rootViewController can be assigned to the more
specific type; in this case, UISplitViewController.

Creating an iOS Swift App

[76]

Finally, the navigationController is acquired from the splitViewController,
which stores an array of viewControllers. This allows the DetailView to show a
button on the left-hand side to expand the details view, if necessary:

let navigationController = splitViewController.viewController
 [splitViewController.viewControllers.count-1]
 as UINavigationController
navigationController.topViewController
 .navigationItem.leftBarButtonItem =
 splitViewController.displayModeButtonItem()

The only difference this makes is when running on a wide-screen device, such as
an iPhone 6 Plus or an iPad, where the views are shown side-by-side in landscape
mode. This is a new feature in iOS 8 applications.

Otherwise, when the device is in portrait mode, it will be rendered as a standard
back button:

The method concludes with return true to let the OS know that the application
opened successfully.

Chapter 3

[77]

The MasterViewController class
The MasterViewController class is responsible for coordinating the data
shown on the first screen (when the device is in portrait orientation) or the
left-half of the screen (when a large device is in landscape orientation). This
is rendered with a UITableView, and data is coordinated through the parent
UITableViewController class:

class MasterViewController: UITableViewController {
 var objects = NSMutableArray()
 override func viewDidLoad() {…}
 func insertNewObject(sender: AnyObject) {…}
 …
}

The viewDidLoad method is used to set up or initialize the view after it has loaded.
In this case, a UIBarButtonItem is created so that the user can add new entries to
the table. The UIBarButtonItem takes a @selector in Objective-C, and in Swift,
is treated as a string literal convertible (so that "insertNewObject:" will result
in a call to the insertNewObject method). Once created, the button is added to
the navigation on the right-hand side, using the standard .Add type which will be
rendered as a + sign on the screen:

override func viewDidLoad() {
 super.viewDidLoad()
 let addButton = UIBarButtonItem(
 barButtonSystemItem: .Add, target: self,
 action: "insertNewObject:")
 self.navigationItem.rightBarButtonItem = addButton
 self.navigationItem.leftBarButtonItem = self.editButtonItem()
}

The objects are NSDate values and are stored inside the class as an NSMutableArray.
The insertNewObject method is called when the + button is pressed, and creates
a new NSDate instance, which is then inserted into the array. The event sender
is passed as an argument of the AnyObject type, which will be a reference to the
UIBarButtonItem (although it is not needed or used here):

func insertNewObject(sender: AnyObject) {
 objects.insertObject(NSDate.date(), atIndex: 0)
 let indexPath = NSIndexPath(forRow: 0, inSection: 0)
 self.tableView.insertRowsAtIndexPaths(
 [indexPath], withRowAnimation: .Automatic)
}

Creating an iOS Swift App

[78]

The UIBarButtonItem class was created before blocks were available
on iOS devices, so it uses the older Objective-C @selector mechanism.
A future release of iOS might provide an alternative that takes a block, in
which case Swift functions can be passed instead.

The parent class contains a reference to the tableView, which is automatically
created by the storyboard. When an item is inserted, the tableView is notified that
a new object is available. Standard UITableViewController methods are used to
access the data from the array:

override func numberOfSectionsInTableView(
 tableView: UITableView) -> Int {
 return 1
}
override func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return objects.count
}
override func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell{
 let cell = tableView.dequeueReusableCellWithIdentifier(
 "Cell", forIndexPath: indexPath) as UITableViewCell
 let object = objects[indexPath.row] as NSDate
 cell.textLabel?.text = object.description
 return cell
}
override func tableView(tableView: UITableView,
 canEditRowAtIndexPath indexPath: NSIndexPath) -> Bool {
 return true
}

The numberOfSectionsInTableView function returns 1 in this case, but a tableView
can have multiple sections, for example, to permit a contacts application having
a different section for A, B, C through Z. The numberOfRowsInSection method
returns the number of elements in each section; in this case, since there is only one
section, the number of objects in the array.

The reason why each method is called tableView and takes a
tableView argument is a result of the Objective-C heritage of
UIKit. The Objective-C convention combined the method name as
the first named argument, so the original method was [delegate
tableView:UITableView, numberOfRowsInSection:
NSInteger]. As a result, the name of the first argument is reused
as the name of the method in Swift.

Chapter 3

[79]

The cellForRowAtIndexPath method is expected to return a UITableViewCell
for an object. In this case, a cell is acquired from the tableView using the
dequeueReusableCellWithIdentifier method (which caches cells as they go off
screen to save object instantiation) and then the textLabel is populated with the
object's description (which is a String representation of the object; in this case,
the date).

This is enough to display elements in the table, but in order to permit editing (or just
removal, as in the sample application), there are some additional protocol methods
that are required:

override func tableView(tableView: UITableView,
 canEditRowAtIndexPath indexPath: NSIndexPath) -> Bool {
 return true
}
override func tableView(tableView: UITableView,
 commitEditingStyle editingStyle: UITableViewCellEditingStyle,
 forRowAtIndexPath indexPath: NSIndexPath) {
 if editingStyle == .Delete {
 objects.removeObjectAtIndex(indexPath.row)
 tableView.deleteRowsAtIndexPaths([indexPath],
 withRowAnimation: .Fade)
 }
}

The canEditRowAtIndexPath method returns true if the row is editable; if all the
rows can be edited, then this will return true for all the values.

The commitEditingStyle method takes a table, a path, and a style which
is an enumeration that indicates which operation occurred. In this case,
UITableViewCellEditingStyle.Delete is passed in order to delete the item from
both the underlying object array and also from the tableView. (The enumeration
can be abbreviated to .Delete because the type of the editingStyle is known to be
UITableViewCellEditingStyle.)

The DetailViewController class
The detail view is shown when an element is selected in the MasterViewController.
The transition is managed by the storyboard controller; the views are connected with
a segue (pronounced segway; the product of the same name based it on the word
segue which is derived from the Italian word for follows).

Creating an iOS Swift App

[80]

To pass the selected item between controllers, a property exists in the
DetailViewController class called detailItem. When the value is changed,
additional code is run, which is implemented in a didSet property notification:

class DetailViewController: UIViewController {
 var detailItem: AnyObject? {
 didSet {
 self.configureView()
 }
 }
 …
}

When the DetailViewController has the detailItem set, the configureView
method will be invoked. The didSet body is run after the value has been changed,
but before the setter returns to the caller. This is triggered by the segue in the
MasterViewController:

class MasterViewController: UIViewController {
 …
 override func prepareForSegue(
 segue: UIStoryboardSegue, sender: AnyObject?) {
 super.prepareForSegue(segue, sender: sender)
 if segue.identifier == "showDetail" {
 if let indexPath =
 self.tableView.indexPathForSelectedRow() {
 let object = objects[indexPath.row] as NSDate
 let controller = (segue.destinationViewController
 as UINavigationController)
 .topViewController as DetailViewController
 controller.detailItem = object
 controller.navigationItem.leftBarButtonItem =
 self.splitViewController?.displayModeButtonItem()
 controller.navigationItemleftItemsSupplementBackButton =
 true
 }
 }
 }
}

Chapter 3

[81]

The prepareForSegue method is called when the user selects an item in the table. In
this case, it grabs the selected row index from the table and uses this to acquire the
selected date object. The navigation controller hierarchy is searched to acquire the
DetailViewController, and once this has been obtained, the selected value is set
with controller.detailItem = object, which triggers the update.

The label is ultimately displayed in the DetailViewController through the
configureView method, which stamps the description of the object onto the label
in the center:

class DetailViewController {
 ...
 @IBOutlet weak var detailDescriptionLabel: UILabel!
 function configureView() {
 if let detail: AnyObject = self.detailItem {
 if let label = self.detailDescriptionLabel {
 label.text = detail.description
 }
 }
 }
}

The configureView method is called both when the detailItem is changed and
when the view is loaded for the first time. If the detailItem has not been set, then
this has no effect.

The implementation introduces some new concepts, which are worth highlighting:

•	 The @IBOutlet attribute indicates that the property will be exposed in
interface builder and can be wired up to the object instance. This will be
covered in more detail in Chapter 4, Storyboard Applications with Swift and iOS,
and in Chapter 5, Creating Custom Views in Swift.

•	 The weak attribute indicates that the property will not store a strong
reference to the object; in other words, the detail view will not own the
object but merely reference it. Generally, all @IBOutlet references should be
declared as weak to avoid cyclic dependency references.

•	 The type is defined as UILabel!, which is an implicitly unwrapped optional.
When accessed, it performs an explicit unwrapping of the optional value;
otherwise the @IBOutlet would be wired up as a UILabel? optional type.
Implicitly unwrapped optional types are used when the variable is known to
never be nil at runtime, which is usually the case for @IBOutlet references.
Generally, all @IBOutlet references should be implicitly unwrapped optionals.

Creating an iOS Swift App

[82]

Summary
This chapter presented two sample iOS applications, one in which the UI was created
programmatically and another in which the UI was loaded from a storyboard.
Together with an overview of classes, protocols, and enums and an explanation of
how iOS applications start, this chapter gives a springboard to understand the Xcode
templates that are frequently used to start new projects.

The next chapter, Storyboard Applications with Swift and iOS, will go into more detail
about how storyboards are created and how an application can be built from scratch.

Storyboard Applications with
Swift and iOS

Storyboards were introduced in Xcode 4.2 with iOS 5.0. Storyboards solved the
problem of being able to graphically present the flow of screens in an iOS application
and also provided a way to edit the content of those screens in one place instead
of many separate xib files. Storyboards work in the same way with Swift as with
Objective-C, and the Swift and Storyboards section shows how to integrate Swift code
with storyboard transitions.

This chapter will present the following topics:

•	 How to create a storyboard project
•	 Creating multiple scenes
•	 Using segues to navigate between scenes
•	 Writing custom view controllers
•	 Connecting views to outlets in Swift
•	 Laying out views with Auto Layout
•	 Using constraints to build resizable views

Storyboard Applications with Swift and iOS

[84]

Storyboards, scenes, and segues
By default, Xcode 6 creates a Main.storyboard file instead of a MainWindow.
xib file for newly-created iOS projects. A new UIMainStoryboardFile key in the
Info.plist file points to the application's main storyboard name (without the
extension). When the application starts up, Main.storyboard is loaded instead
of the NSMainNib entry. Prior versions of Xcode allowed developers to opt in or
out of storyboards, but with Xcode 6, storyboards are the default and developers
cannot easily opt out. It is still possible to use xib files for individual sections of
an application or to use them to load custom classes for prototype table cells. In
addition, Xcode 6 creates a LaunchScreen.xib to display as a splash screen (on iOS
8 and higher) while the application is loading, in preference to pre-rendered screens
at fixed resolutions. This allows devices with many different resolutions (including
future unannounced ones) to render pixel-perfect splash screens without having to
be rendered at different resolutions for each new device size.

A storyboard is a collection of scenes (separate screens) that are connected with
segues (pronounced segways). Each scene is represented by a view controller,
which has an associated view. Segues transition between different scenes, with a
customizable user interface transition such as a slide or fade, and can be triggered
from a UI control or programmatically.

Creating a storyboard project
Since the default templates with Xcode 6 use storyboards by default, any of the
existing templates will work. In fact, each of the application templates set up a
specific type of view controller and template code. The simplest template to work
with and customize is the Single View Application, which can be selected by going to
the File | New | Project... menu. Create a project called Storyboards, which uses a
single view application, for experimentation with this chapter. (Refer to the Creating
a single view iOS application section in Chapter 3, Creating an iOS Swift App, for more
details on how to create a new application.)

Chapter 4

[85]

Scenes and view controllers
Standard view controllers can be used to build up an application, which include:

•	 Split views using a UISplitViewController class, which can contain any of
the below, but may not be embedded in any other view controller

•	 Tabbed views using a UITabBarController class, which can contain any
of the below, but may only be embedded in a split view or used as the root
controller

•	 Navigational controls can be added to existing controllers with a
UINavigationController class, which can contain any of the below and
may be embedded in any of the above or used as a root view controller

•	 Paginated views using a UIPageViewController class, which provide both
sliding and page curling display options

•	 Tabular views using a UITableViewController class
•	 Grid views using a UICollectionViewController class
•	 Audio-visual content using a AVPlayerViewController class
•	 OpenGL ES content using a GLKViewController class
•	 Custom controller content can be represented in a UIViewController class

or a custom subclass

These classes can be mixed, but there is an explicit ordering that must be followed to
satisfy the Apple Human Interface Guidelines (also known as the HIG). These are
all optional, but if combined, they need to obey this ordering:

In addition to the standard view controller classes, custom subclasses can be used
as well. This is covered in more detail in the Custom view controllers section later in
this chapter.

Storyboard Applications with Swift and iOS

[86]

Adding views to the scene
The Main.storyboard file can be opened by double-clicking on the file in the project
navigator. An editor will open, which shows the storyboard as a set of scenes, along
with the document outline on the left. In a single page application, only one view
controller will exist.

The arrow to the left of the view controller indicates that this scene is the initial view
controller. This can also be set with the Is Initial View Controller checkbox, which
can be seen by selecting the View Controller from the scene and navigating to the
attributes inspector (go to View | Utilities | Show Attributes Inspector, or press
Command + Option + 4). The initial view controller can also be changed to a different
scene by dragging and dropping the arrow to point to a different scene. Views are
added by dragging and dropping them from the object library on the bottom-right
of Xcode. The object library can be shown by navigating to View | Utilities | Show
Object Library or by pressing Command + Option + Control + 3. Click on a view such
as the Label, and drag it into the view:

Chapter 4

[87]

The label's text content can be modified by double-clicking on the label in the
view and typing, or by selecting the object and editing the text attribute in the
attributes inspector:

When the element is dragged around, blue guide lines may be seen. These suggest
locations for the views; the standard is to have a 20 pt gap between the views and the
edge of the screen and an 8 pt gap between adjacent views.

Drag the Welcome to Swift label to the top-left of the scene and then drag a Button
from the object library into the scene. Rename the button's title to Press Me. The
button should be a standard space (8 pt) away from the label and aligned at the
baseline (the level at which the text naturally sits).

At this point, the text in the views is hard-coded in the user interface
file and the alignment is manual, which means that the views will
not resize if the parent view is modified. These problems will be
addressed in the Connecting views to outlets in Swift and Using Auto
Layout sections later in this chapter.

To view the storyboard in the simulator, click on the Play button at the top or press
Command + R to run the application. A window should be shown with Welcome to
Swift and Press Me. At this stage, pressing the button will have no effect, which will
be fixed in the next section.

Storyboard Applications with Swift and iOS

[88]

Segues
A segue is a transition to a different scene in a storyboard. Segues can be hooked
up to views on the screen or can be shown indirectly via code. The most common
transitions are when the user has selected a view in the user interface, such as a
button, a table row, or a details icon, and a new scene is displayed.

To demonstrate a segue, a new scene is required. Drag a View Controller from
the object library and drop it onto the storyboard. The exact location of the view
controller doesn't matter, but conventionally, scenes are organized from left-to-right
in the order in which they will be viewed, so dropping it on the right-hand side of
the existing view controller is recommended, as shown here:

Once the view controller has been added, drop a label onto the top-left and change
the text to Please do not press this button again. This will present a visual clue that
the screen has changed when the segue is followed.

Now, select the Press Me button and press the Control key while dragging the mouse
to the newly created view controller. When the mouse button is released, a pop-up
menu will be shown with a number of options, grouped into Action Segue and Non-
Adaptive Action Segue. The former should be used in Xcode 6; the latter is only
there for backward compatibility and might be removed in the future.

Chapter 4

[89]

Alternatively, the object can be selected from the document outline
on the left, and dragged to the object below in the document outline. It
is possible to drag from the view in the editor area to an object in the
document outline and vice versa. Dragging to the document outline
is sometimes faster and more accurate, especially when there are
multiple scenes in a storyboard. The document outline can be shown
by navigating to Editor | Show Document Outline if it is not visible or
by clicking on the icon in the bottom-left of the editor.

Choose the show option and a segue will be created between the two views. This is
represented as an arrow connecting them and another object in the document outline.
The icon inside the circular segue line shows what kind of transition will occur; push
will have an arrow pointing to the left, while present modally will be represented as a
square box. The popover type will show a small popover icon in the segue.

Storyboard Applications with Swift and iOS

[90]

Run the application in the simulator and click on the Press Me button. A window
should slide up and display the second message.

There will be no way to dismiss or exit the second screen. This is
intentional and will be fixed in the next section.

Adding a navigation controller
When there are multiple screens to be displayed, a parent controller is required
to keep track of which screen is currently being shown and what the next step (or
previous step) is. This is the purpose of a navigation controller; although it has no
direct visual representation, it is represented as a scene in a storyboard and can affect
the layout of the individual elements in the storyboard.

To embed the initial scene into a navigation controller, select the initial view and
navigate to Editor | Embed In | Navigation Controller. This will create a new
navigation controller view and place it to the left-hand side of the first scene. It will
also change the initial view controller to be the navigation controller and set up
a relationship segue with the name root view controller between the navigation
controller and the first scene, represented by an icon similar to a percent symbol but
with the line rotated the other way, as shown here:

It will be necessary to move the label and button below the newly added navigation
bar so that they are still visible. This can either be done before the navigation
controller is introduced or by selecting through overlapping objects.

Chapter 4

[91]

To temporarily hide the navigation bar, delete the relationship segue between the
navigation controller and the welcome scene, and the navigation bar will disappear.
This will allow the objects to be selected and moved elsewhere temporarily in order
to be repositioned. To add it back again, press the Control key and drag the mouse
cursor from the navigation controller to the welcome scene and choose root view
controller under Relationship Segue.

Alternatively, to select through overlapping objects, first select the object in the
document outline so that the location is shown with the drag boxes. Then, press
down the Shift key and right-click on it for a pop-up menu of the objects under the
mouse position at any depth. From here, the object can be selected and then moved
with the arrow keys to reposition it elsewhere.

Now, when the application is run and the Press Me button is tapped, the message
will be shown again but with a < Back navigation menu item as well, as shown here:

Naming scenes and views
When working with many scenes, calling all of them View Controller Scene is
not helpful. To distinguish between them, the controllers can be renamed in the
storyboard editor.

Storyboard Applications with Swift and iOS

[92]

To change the name of a scene, select its view controller in the document outline and
go to View | Utilities | Show Attributes Inspector, or press Command + Option + 3
and then drill down to the Document section, where the label hint will read Xcode
Specific Label. Typing in another value, such as Press Me, Message, or Initial will
rename both the view controller and the scene in the document outline:

By default, the name of the element in the document outline is taken
from the text value of the element or the type if no text value is present.
This means that updates to the label or button text will be automatically
reflected in the outline. However, it is possible to add document labels
to any view in the document outline.

Swift and storyboards
So far in this chapter, the storyboard content does not involve any Swift or other
programming content—it used the drag and drop capabilities of the storyboard
editor. Fortunately, it is easy to integrate Storyboard and Swift using a custom
view controller.

Chapter 4

[93]

Custom view controllers
Each standard view controller has a corresponding superclass (listed in the Scenes
and view controllers section previously in this chapter). This can be replaced with a
custom subclass, which then has the ability to influence and change what happens
in the user interface. To replace the message in the Message Scene, create a new file
named MessageViewCotroller.swift with the following content:

import UIKit
class MessageViewController: UIViewController {
}

Having created the class, it can be associated with the view controller by selecting
it in the storyboard and then switching to the identity inspector by navigating to
View | Utilities | Show Identity Inspector or pressing Command + Option + 3. In
the Custom Class section, the Class will show UIViewController as a hint; entering
MessageViewController here will associate the custom controller with the
view controller:

This will have no visible impact to the message scene; running the application will
be the same as before. To show a difference, create a viewDidLoad method with an
override keyword and then create a random color for the background:

override func viewDidLoad() {
 super.viewDidLoad()
 let red = CGFloat(drand48())
 let green = CGFloat(drand48())
 let blue = CGFloat(drand48())
 view.backgroundColor = UIColor(
 red:red,
 green:green,

Storyboard Applications with Swift and iOS

[94]

 blue:blue,
 alpha:1.0
)
}

Running the application and pressing the Press Me button results in a differently
colored view being created each time.

This does not demonstrate good user experience, but is used
here to demonstrate the fact that viewDidLoad is called each
time the segue occurs. It is typically used to set up view state
just before showing the view to the user.

Connecting views to outlets in Swift
Each view controller has an implicit relationship with its view, and each view has
its own backgroundColor property. This example will work regardless of what the
view happens to be. What if the view controller needs to interact with the view's
content in some way? The view controller could walk the view programmatically,
looking for a certain type of view or for a view with a particular identifier, but there
is a better way to do this.

Both interface builder and storyboard have the concept of outlets, which are a
predefined point in a class that can be exposed and can have connections between
the UI and the code. In Objective-C, this was done with an IBOutlet qualifier. In
Swift, this is done with an @IBOutlet attribute. In effect, they are variables that can
be bound to the UI.

When defining a class with an @IBOutlet attribute, the @objc attribute
is also implicitly added, marking this Swift class as using the Objective-C
runtime. Since all the UIKit classes are already Objective-C types, this
doesn't matter; but for types where the Objective-C runtime should not be
used, care should be taken when adding attributes such as @IBOutlet.
The @objc attribute can also be used for non-UI classes that need to use
the Objective-C runtime.

The following steps are required to create an outlet in a Swift view controller:

1.	 Define an outlet in the view controller code with @IBOutlet weak var of an
optional type of the connected view.

2.	 Connect the outlet in the view controller to the view by pressing Control and
dragging the mouse cursor from the view to the outlet.

Chapter 4

[95]

To do this, open the assistant editor by pressing Command + Option + Enter or by
going to View | Assistant Editor | Show Assistant Editor. This will show a side-
by-side view of the associated source file. This is useful for showing the associated
custom view controller for a selected view in the storyboard (or the interface file).

Once the assistant editor is shown, open the Message Scene from the storyboard
and press Control while dragging the mouse cursor from the message label to the
assistant editor and dropping it just after the class declaration:

A pop-up dialog will ask what to call the field and present some other information;
ensure Outlet is selected, name it message, and ensure that it has a Weak
storage type:

This will result in the following line being added to the MessageViewController
class, and will wire up the label to the property:

class MessageViewController: UIViewController {
 @IBOutlet weak var message: UILabel!
 …
}

Storyboard Applications with Swift and iOS

[96]

The @IBOutlet attribute (defined in UIKit) allows interface builder to bind to the
property. The weak storage type—which can be changed in the pop-up dialog—
indicates that this class will not hold a strong reference to the object so that when the
view is dismissed, the controller will not own it.

Generally, all @IBOutlet connections should be marked as weak,
because the storyboard or xib file is the owner of the object, not the
controller. Ownership does not pass when assigning properties from
interface builder. Changing it to something other than weak might lead
to circular references. Since Swift uses a reference counting approach to
determine when an object is no longer referenced, a circular reference
between strong references can cause memory leaks.

The exclamation mark on the end of the type UILabel! indicates that it is an
implicitly unwrapped optional. The property is stored as an optional type, but
the accessor code will automatically unwrap it at the point of use. Since the view
controller will not have a reference to the message at the point of initialization, it
will be nil, so it must be stored as an optional. However, since accessing the value
is known to not be nil after the view has been loaded, the implicitly unwrapped
optional saves the ?. calls that will otherwise have to be used each time it is used.

An implicitly unwrapped optional is still an optional value under the
covers; it is syntactic sugar for unwrapping it at the point of use each
time the value is accessed. When the view is loaded, but before the
viewDidLoad method is called, the outlet's value will be wired to
the instantiated view on screen.

The connections can be seen in the connections inspector, which can be shown by
selecting the message label and pressing Command + Option + 6 or by navigating to
View | Utilities | Show Connections Inspector. The inspector can also be used to
remove existing connections or add new ones.

Chapter 4

[97]

Now that the connection has been made between the message view and the custom
controller, instead of changing the background color of the view, change the
background color of the message instead:

message.backgroundColor = UIColor(...)

Run the application and the message will have the background color changed each
time the scene is shown:

Calling actions from interface builder
In the same way that outlets are variables for interface builder to assign to (or read
from), actions are methods/functions that can be triggered from a view in interface
builder. The @IBAction attribute is used to annotate a method or function that can
be wired up.

As with @IBOutlet, using @IBAction on a function causes the
compiler to implicitly add an @objc attribute to the class, in order to
force it to use the Objective-C runtime.

To change the message when a button is invoked, a suitable changeMessage is
required. Historically, the signature for an action method was one that returned
void, marked with IBAction, and took a sender argument, which could be any
object. In Swift, this signature translates to:

@IBAction func changeMessage(sender:AnyObject) { … }

However, with Swift, the sender is no longer a required argument. It is therefore
possible to bind an action with the following signature:

@IBAction func changeMessage() { … }

If the signature is changed, any existing bindings must be deleted and recreated as
an error will be reported otherwise.

Storyboard Applications with Swift and iOS

[98]

It is difficult to convert from a func that doesn't take an argument to
one that takes an argument. It is easier to have a func that takes an
argument that isn't required. If not sure, choose the function signature
that takes a sender object and then just ignore it.

The changeMessage function can randomly select a message and set the text on
the label:

let messages = [
 "Ouch, that hurts",
 "Please don't do that again",
 "Why did you press that?",
]
@IBAction func changeMessage() {
 message.text = messages[
 Int(arc4random_uniform(
 UInt32(messages.count)))]
}

When the function is invoked, the message text will change to a value defined in the
array. To call the function, it needs to be wired up in the storyboard editor. Add a
new Button from the object library to the message scene, with a Change Message
label. To connect it to the action, press Control and drag the mouse cursor from the
Change Message button in the Message Scene and drop it in the Message view
controller at the top:

Chapter 4

[99]

A pop-up menu will then be shown of the outlets and actions that this can be
connected to. Select the changeMessage from the list:

If changeMessage isn't listed, check that the view
controller is defined to be the MessageViewController
and verify that the @IBAction attribute is added to the
changeMessage function.

Now, when the application is run and the Change Message button is pressed, the
label will change to one of the hard-coded values.

The message label will not change in size, since the view has
no automatic layout associated with it. The Using Auto Layout
section in this chapter explains how to fix this problem.

Triggering a segue with code
A segue can be triggered programmatically from code, if additional setup is required
or there are data parameters that need to be passed from one view controller to
another (such as the currently selected object).

Segues have named segue identifiers, which are used in code to trigger specific
segues. To test this out, drag a new View Controller from the library (by pressing
Command + Option + Control + 3 or by navigating to View | Utilities | Show Object
Library) onto the main storyboard and name it About. Drag a Label and give it the
text About this App.

Storyboard Applications with Swift and iOS

[100]

Next, create a segue by pressing Control and dragging the mouse cursor between the
Message scene to the new scene. The named identifier can be set as about through
the attributes inspector (shown by pressing Command + Option + 4 or by navigating
to View | Utilities | Show Attributes Inspector):

Finally, drag a new Button to the Change Message scene and call it About. Instead of
directly calling the segue, create a new @IBAction called about. When this button is
pressed, the following code will be run:

@IBAction func about(sender: AnyObject) {
 performSegueWithIdentifier("about", sender: sender)
}

When the About button is pressed, the about screen will be displayed.

Passing data with segues
Typically in a master-detail application, data needs to be passed from one scene to
the next. This might be the currently selected object, or it might require additional
information to be processed. When the segue is called, the view controller's
prepareForSegue method is called, with the destination segue and the sending object.
This allows any internal state of the view controller to be passed to the new segue.

The UIStoryboardSegue contains an identifier, which was set in the
previous section. Since the prepareForSegue method might be called on the
MessageViewController for any number of segues, it is common for a switch
statement to be used on the identifier so that the right action can be taken. For a
single segue, an if statement can be used:

override func prepareForSegue(segue: UIStoryboardSegue,
 sender: AnyObject?) {
 if segue.identifier == "about" {
 let dest = segue.destinationViewController as UIViewController
 dest.view.backgroundColor = message.backgroundColor
 }
}

Chapter 4

[101]

Here, the prepareForSegue method is called with segue, which contains the
destination (the scene) and the identifier. The if statement ensures that the correct
identifier is matched. In this case, the background color of the message label (which
is chosen randomly when the view is loaded) is passed to the destination view's
background color; however, any property on either the view controller or the view
can be set here.

Using Auto Layout
Auto Layout has been part of Xcode for the last few releases, and it was added to
support an evolution from the previous springs and struts approach that predated
Mac OS X. First released on iOS in 6.0, it has evolved to the point where size-
independent displays can now be created as the default.

Understanding constraints
In Xcode 5, interface builder enabled Auto Layout by default for the first time.
When a label was dragged to the top or bottom of the parent view, a dotted blue
line would indicate that the label was correctly spaced, and a constraint would
be generated.

However, in many cases, the constraints weren't created correctly or had undesired
effects. For example, positioning a button in the center at the top might not maintain
the location depending on whether the constraint being added was absolute (200 px
from the right) or relative (in the center of the screen). In both cases, the button might
look like it was positioned correctly, only to fail when the device's screen orientation
rotates or it is run on a screen of different size.

In Xcode 6, although the guidelines are still shown as views are moved around,
relative constraints are not created. Instead, each view is given an exact hardcoded
position that does not change with screen rotation or with a change of display size.

Constraints must be added manually to the views in order to restore the right
behavior, and as manual constraints are added, absolute constraints are removed.

Adding constraints
In the example application, the Welcome to Swift label and the Press Me button are
next to each other, a small distance from the top. However, when the screen is rotated
in the simulator, by pressing Command and the left or right arrow keys, the spacing
between the labels and the top doesn't change, so the labels look further away.

Storyboard Applications with Swift and iOS

[102]

The desired outcome is that the label remain a standard distance away from the top-
left and the button remain aligned to the label's baseline.

There are two separate constraints that need to be applied to the label:

•	 Be a standard vertical distance away from the top of the parent view
•	 Be a standard horizontal distance away from the left of the parent view

 There are also two constraints that need to be applied to the button:

•	 Be aligned with the label's baseline
•	 Be a standard vertical distance away from the label

There are different ways of adding a constraint, which are covered in the
following sections.

Adding a constraint with the drag and drop method
A quick way to add a constraint is to press Control and drag the mouse cursor
from the view to the top of the container. Depending on the direction of the drag,
different options will be shown. Dragging vertically upwards presents the vertical
alignment options:

The Top Space to Top Layout Guide option will insert a recommended break
between the navigation bar and the label. There is a Center Horizontally in
Container option, which is also a vertical separation but not appropriate in this case.

The other types that are active—Equal Widths, Equal Heights, and Aspect Ratio—
allow multiple views to be sized relative to each other.

Chapter 4

[103]

Dragging horizontally will show a different set of options at the top, including
Leading Space to Container Margin and Center Vertically in Container:

If the mouse is dragged at an angle, both sets of options will be shown:

Adding constraints to the Press Me scene
To set the constraints for the welcome label, press Control and drag the mouse cursor
from the label to the left and select Leading Space to Container Margin. An orange
line will appear, and a dotted outline will be shown at the top of the screen.

Storyboard Applications with Swift and iOS

[104]

The orange line indicates an ambiguous constraint, which indicates
some constraints have been added to the view but are not enough to
uniquely position the label. In this case, the label is positioned from the
left of the container, but it could be anywhere with respect to the top or
bottom of the screen. The red dotted lines show where the Auto Layout
algorithm will put the view with the constraints currently specified.

To resolve this problem, press Control and drag the mouse pointer from the label
to the top and select Top Space to Top Layout Guide. Once this is done, two
constraints will be shown in blue, which represent the constraints about the object:

The constraints can also be seen in the document outline on the left-hand side:

If the application is run now and rotated, the label is correctly repositioned but the
button is not:

Chapter 4

[105]

Adding missing constraints
To find which views have no constraints, click through the views one by one in
the document outline and check the size inspector (which can be seen by pressing
Command + Option + 5 or by navigating to View | Utilities | Show Size Inspector).
For views that have constraints set, there will be content shown under the
Constraints section:

If a view has no constraints associated with it, then this section will be empty.

Interface builder has an option to create missing constraints for selected views,
which can be accessed by navigating to Editor | Resolve Auto Layout Issues | Add
Missing Constraints or from the Resolve Auto Layout Issues menu at the bottom-
right, which looks like a triangle between two vertical lines.

When selected, the options in the top-half apply to selected views only, while the
options in the bottom-half work on all the views in the selected view controller.

Storyboard Applications with Swift and iOS

[106]

The options include:

•	 Update Frames: This is based on the current constraints; it automatically
repositions and resizes the views to correspond to what will happen
at runtime

•	 Update Constraints: This is based on the current positions of the objects and
attempts to recalculate the existing constraints (but not create new ones)

•	 Add Missing Constraints: This is based on the approximate positioning of
the components and adds constraints that create the same result

•	 Reset to Suggested Constraints: This is equivalent to clearing all the
constraints associated with the views and then readding missing constraints

•	 Clear Constraints: This removes all the constraints associated with the views

To add constraints to the Press Me button, click on the view and then navigate to
Editor | Resolve Auto Layout Issues | Selected Views | Add Missing Constraints.
There should be two constraints added: a baseline alignment with the label and a
horizontal space to the label.

To see the effect of the Update Frames operation, move the label and the button
to different places in the view controller. Orange lines and dotted outlines will be
shown, indicating that there is an ambiguous constraint. Navigate to Choose Editor
| Resolve Auto Layout Issues | All Views in View Controller | Update Frames,
and the views will automatically move to the right places and resize.

The views are sized to their intrinsic size, which is the size that just
fits the content. For example, a label's intrinsic size is the size in which
the text can fit into the space in the current font. This can be used to fix
the size of the label in the Message Scene; by adding constraints, the
changing text will result in the intrinsic size being recalculated, and the
background color will be correctly sized.

Now, run the application and rotate the device by pressing Command and the left and
right arrow keys to see the view resize itself correctly.

Chapter 4

[107]

Summary
This chapter introduced the concept of storyboards as a sequence of scenes that
are connected with segues, which can either be wired with the GUI or driven
programmatically. Finally, Auto Layout can be used to build applications that
respond to differences in screen orientation or size as well as respond to changes in
view size or other properties.

The next chapter will present how to create custom views in Swift.

Creating Custom
Views in Swift

User interfaces can be built by combining standard views and view controllers
through interface builder, storyboard editor, or custom code. However, it will
eventually become necessary to break apart a user interface into smaller, reusable,
and easier-to-test segments. These are known as custom views.

This chapter will present the following topics:

•	 Customizing table views
•	 Building and laying out custom view subclasses
•	 Drawing graphical views with drawRect
•	 Creating layered graphics with animation

An overview of UIView
All iOS views are rooted in an Objective-C class called UIView, which comes from
the UIKit framework/module. The UIView class represents a rectangular space that
might be associated with UIWindow or constructed to represent an off-screen view.
Views that perform user interactions are generally subclasses of UIControl. Both
UIView and UIViewController inherit from the UIResponder class, which in turn
inherits from NSObject.

Creating Custom Views in Swift

[110]

On Mac OS X, views are rooted in NSView and come
from the AppKit framework. Otherwise, the two
implementations are very similar.

A new Xcode project will be used to create custom view classes. Create a new
project with a Tabbed View Application template called CustomViews. To start
with a blank sheet, delete the generated view controllers and the associated
FirstViewController and SecondViewController classes.

Creating new views with interface builder
The easiest way of creating a custom view is to use interface builder to drag and drop
the contents. This is typically done with a UITableView and a prototype table cell.

Creating a table view controller
Drag in the table view controller from the object library onto the main storyboard,
and drag and drop from the tab bar controller to the newly created table view
controller to create a relation segue called view controllers. (Segues are covered
in more detail in the Storyboards, Segues, and Scenes section in Chapter 4, Storyboard
Applications with Swift and iOS)

By default, the table view controller will have dynamic property content—that is, it
will be able to display a variable number of rows. This is defined in the Table View
section of the Attributes Inspector.

There is an option for tables to have static content; a fixed number
of rows in the table. This is sometimes useful when creating
scrollable content that can be partitioned into slices, even if it
doesn't look like a table. Most of the elements in the iOS settings are
represented as a fixed-size table view.

Chapter 5

[111]

At the top of the table view are one or more prototype cells. These are used to
define the look and feel of the table items. By default, a UITableViewCell is used,
which has a label and an image, but a prototype cell can be used to add more data
to the entries.

The prototype cell can be used to provide additional information or views. For
example, two labels can be dragged into the view; one label can be centered at the
top and can be displayed in the headline font, while the second can be left aligned.

Drag two labels from the object library into the prototype cell. Arrange them using
Auto Layout appropriately.

To change a label's font, select the label in the editor and go to the Attributes
Inspector. In the Label section, click on the font chooser icon and select
Headline or Subhead, as appropriate.

When finished, the prototype cell will look like:

Creating Custom Views in Swift

[112]

When the application is run, an empty table will be seen. This is because the table
doesn't have any items displayed at the moment. The next section shows how to add
data to a table so that it binds and displays items to the prototype cell.

Showing data in the table
A UITableView acquires data from a UITableViewDataSource. The
UITableViewController class already implements the UITableViewDataSource
protocol, so only a small number of methods are required to provide data for the table.

Because UITableView was originally implemented in Objective-C,
the methods defined in the protocol take a tableView. As a result,
all of the UITableViewDataSource delegate methods in Swift end
up being called tableView with different arguments.

Create a new SampleTable class that extends UITableViewController. Implement
the class as follows:

import UIKit
class SampleTable: UITableViewController {
 var items = [
 ("First", "A first item"),
 ("Second", "A second item"),
]
 required init(coder:NSCoder) {
 super.init(coder:coder)
 }
 override func tableView(tableView: UITableView,
 numberOfRowsInSection section:Int) -> Int {
 return items.count
 }
 override func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath)
 -> UITableViewCell {
 let cell = tableView.
 dequeueReusableCellWithIdentifier("prototypeCell")
 as UITableViewCell
 // configure labels
 return cell
 }
}

Chapter 5

[113]

Once the data source methods are implemented, the labels need to be configured
to display the data from the array. There are three things that need to be done: the
prototype cell must be acquired from the xib file; the labels need to be extracted;
and finally the table view controller needs to be associated with the custom
SampleTable class.

Firstly, the cellForRowAtIndex function needs an identifier for reusable cells.
The identifier is set on the prototype cell in the main storyboard. To set it, select
the prototype cell and go to the Attributes Inspector. Enter prototypeCell in the
Identifier of the Table View Cell section:

The identifier is used in the dequeueReusableCellWithIdentifier method of the
tableView. When a xib is used to load the cell, the return value will either reuse a
cell that has gone off-screen earlier or a new cell will be instantiated from xib.

Each label can be given a non-zero integer tag so that the label can be extracted from
the prototype cell using the viewWithTag method:

let titleLabel = cell.viewWithTag(1) as UILabel
let subtitleLabel = cell.viewWithTag(2) as UILabel

To assign tags to the views, select the heading label, navigate to the Attributes
Inspector, and change the Tag to 1. Do the same thing for the subheading label
with the tag 2.

Creating Custom Views in Swift

[114]

Now the text values for the row can be set:

let (title,subtitle) = items[indexPath.row]
titleLabel.text = title
subtitleLabel.text = subtitle

Finally, the SampleTable needs to be associated with the table view controller.
Click on the table, go to the Identity Inspector, and enter SampleTable in the
Custom Class section.

When the application is run, the following view will be shown:

To hide the status bar, add or change Status bar is initially
hidden to YES and View controller-based status bar
appearance to NO in the Info.plist file.

Defining a view in a XIB file
It is possible to create a view using interface builder, save it as a xib file, and
then instantiate it on demand. This is what happens under the covers with the
UITableView—there is a method registerNib:forCellReuseIdentifier: which
takes an xib file and an identifier (which corresponds to prototypeCell in the
previous example).

Create a new interface file CounterView.xib to represent the view, by navigating
to File | New | File | iOS | User Interface | View. When opened, it will show
as an empty view with no content and in a 600 x 600 square. To change the size to
something that is a little more reasonable, go to the Attributes Inspector and change
the size from Inferred to Freeform. At the same time, change the Status Bar, Top
Bar, and Bottom Bar to None. Then, change to the Size Inspector and modify the
view's Frame Rectangle to 300 x 50.

Chapter 5

[115]

This should resize the view so that it is displayed as 300 x 50 instead of the previous
600 x 600, and the status bar and other bars should not be seen. Now, add a Stepper
from the object library by dragging it to the left-hand side of the view and dragging
a Label to the right. Adjust the size and add the missing constraints so that the view
looks similar to the following screenshot:

Wiring a custom view class
Create a new CounterView class that extends UIView, define an @IBOutlet for the
label and an @IBAction change method that takes a sender. Wire the stepper's
valueChanged event to the change method and connect the label outlet. Implement
the change function such that the label text is changed when the stepper is picked:

import UIKit
class CounterView: UIView {
 @IBOutlet weak var label:UILabel!
 @IBAction func change(sender:AnyObject) {
 let count = (sender as UIStepper).value
 label.text = "Count is \(count)"
 }
}

Creating Custom Views in Swift

[116]

The CounterView will be added to the table header of the SampleTable. Each
UITableViewController has a reference to its associated UITableView, and each
UITableView has an optional headerView (and footerView) that is used for the
table as a whole.

The UITableView also has a sectionHeader and a sectionFooter,
which are used to separate different sections of the table. A table can
have multiple sections—for example, one section per month—and a
separate header and footer can be used per section.

To create a CounterView, the xib file must be loaded. This is done by instantiating a
UINib with a nibName and a bundle. The most appropriate place to do this is in the
viewDidLoad method of the SampleTable class:

class SampleTable: UITableViewController {
 override func viewDidLoad() {
 let xib = UINib(nibName:"CounterView", bundle:nil)
 // continued

Once the xib is loaded, the view must be created. The instantiateWithOwner
method allows the object(s) in the xib to be deserialized.

It is possible to store multiple objects in a xib file (for example,
to define a separate view that is suitable for a small display
device versus a big display device) but in general a xib file only
contains one view.

The owner is passed to the view so that any connections can be wired up to the
File's Owner in the interface. This is typically either self or nil if there are
no connections.

 // continued from before
 let objects = xib.instantiateWithOwner(self, options:nil)
 // continued

This returns an array of AnyObject instances, so casting the first element to a UIView
is a common step.

It is possible to use objects[0], but this will cause a failure
if the array is empty. Instead, use objects.first to get an
optional value containing the first element.

Chapter 5

[117]

Using the as? cast, it is possible to convert the optional value to a more specific type,
and from that perform the assignment to the tableHeaderView:

 // continued from before
 let counter = objects.first as? UIView
 tableView.tableHeaderView = counter
 }

When the application is run in the simulator, the header is seen at the top of the table:

One of the advantages of having a xib for representing the user interface is that it
can be reused in many places with a single definition. For example, it is possible to
use the same xib to instantiate another view for the footer of the table:

tableView.tableFooterView =
 xib.instantiateWithOwner(self,options:nil).first as? UIView

When the application is run now, counters are created at the top and bottom of
the table:

Creating Custom Views in Swift

[118]

Dealing with intrinsic size
When a view is added into a view that is being managed with Auto Layout, its
intrinsic content size is used. Unfortunately, views defined in interface builder have
no way of setting their intrinsic size programmatically or of specifying it in interface
builder. The Size Inspector allows this value to be changed, but as Xcode notes, this
has no effect at runtime:

If a custom class is associated with the view, then an appropriate intrinsic size can be
defined. Add a method to CounterView that overrides the intrinsicContentSize
method and returns a CGSize, and to allow for some xib customization, return the
maximum of the label's intrinsic size and a value such as (300,50):

override func intrinsicContentSize() -> CGSize {
 let height = max(50,label.intrinsicContentSize().height)
 let width = max(300,label.intrinsicContentSize().width)
 return CGSize(width: width, height: height)
}

Now when the CounterView is added into a view that is managed by Auto Layout, it
will have an appropriate initial size, although it can grow larger.

The size should take into account the size of the various views
contained inside as well as any font sizes or themes, which
might change the view. Using the label's intrinsicSize to
calculate a maximum is a good idea.

Chapter 5

[119]

Creating views by subclassing UIView
Although xib files offer a mechanism to customize classes, the majority of UIKit
views outside of standard frameworks are implemented in custom code. This makes
it easier to reason what the intrinsic size should be as well as to receive code patches
and understand diffs from version control systems. The downside of this approach is
when using Auto Layout, writing the constraints can be a challenge and the intrinsic
sizes are often misreported or return the unknown value (-1,-1).

A custom view can be implemented as a subclass of UIView. Subclasses of UIView
are expected to have two initializers; one that takes frame:CGRect and one that takes
a coder:NSCoder. The frame is generally used in code, and the rect specifies the
position on screen (0,0 is the top-left) along with the width and height. The coder
is used when deserializing from a xib file.

To allow custom subclasses to be used in either interface builder or instantiated
from code, it is a best practice to ensure that both the initializers create the necessary
views. This can be done by using a third method, called something similar to
setupUI, that is invoked from both.

Create a class called TwoLabels that has two labels in a view:

import UIKit
class TwoLabels: UIView {
 var left:UILabel = UILabel()
 var right:UILabel = UILabel()
 required init(coder:NSCoder) {
 super.init(coder:coder)
 setupUI()
 }
 override init(frame:CGRect) {
 super.init(frame:frame)
 setupUI()
 }
 // ...
}

The setupUI call will add the subviews to the view. Code that goes in here should be
executed only once. There isn't a standard name, and often example code will put the
setup in one or other of the init methods instead.

Creating Custom Views in Swift

[120]

It is conventional to have a separate method such as updateUI to populate the UI
with the current set of data. This can be called repeatedly based on the state of the
system; for example, a field might be enabled or disabled based on some condition.
This code should be repeatable so that it does not modify the view hierarchy:

func setupUI() {
 addSubview(left)
 addSubview(right)
 updateUI()
}
func updateUI() {
 left.text = "Left"
 right.text = "Right"
}

In an explicitly sized environment (where the text label is being set and placed at a
particular location), there is a layoutSubviews method that is called to request the
view to be laid out correctly. However, there is a better way to do this, which is to
use Auto Layout and constraints.

Auto Layout and custom views
Auto Layout is covered in the Using Auto Layout section of Chapter 4, Storyboard
Applications with Swift and iOS. When creating a user interface explicitly, views must
be sized and managed appropriately. The most appropriate way to manage this is to
use Auto Layout, which requires constraints to be added in order to set up the views.

Constraints can be added or updated in the updateConstraints method. This
is called after setNeedsUpdateConstraints is called. Constraints might need to
be updated if views become visible or the data is changed. Typically, this can be
triggered by placing a call at the end of the setupUI method:

func setupUI() {
 // addSubview etc
 setNeedsUpdateConstraints()
}

The updateConstraints method needs to do several things. To prevent
auto-resizing masks being translated into constraints, each view needs to call
setTranslatesAutoresizingMaskIntoConstraints with an argument of false.

Chapter 5

[121]

To facilitate the transition between springs and struts (also known
as auto-resizing masks) and Auto Layouts, views can be configured
to translate springs and struts into Auto Layout constraints. This
is enabled by default for all views in order to provide backward
compatibility for existing views, but should be disabled when
implementing Auto Layouts.

Either the constraints can be incrementally updated or the existing constraints can
be removed. A removeConstraints method allows existing constraints to be
removed first:

override func updateConstraints() {
 setTranslatesAutoresizingMaskIntoConstraints(false)
 left.setTranslatesAutoresizingMaskIntoConstraints(false)
 right.setTranslatesAutoresizingMaskIntoConstraints(false)
 removeConstraints(constraints())
 // add constraints here
}

Constraints can be added programmatically using the NSLayoutConstraint
class. The constraints added in interface builder are also instances of the
NSLayoutConstraint class.

Constraints are represented as an equation; properties of two objects are related as an
equality (or inequality) of the form:

// object.property = otherObject.property * multiplier + constant

To declare that both labels are of equal width, the following can be added to the
updateConstraints method:

// left.width = right.width * 1 + 0
let equalWidths = NSLayoutConstraint(
 item: left,
 attribute: .Width,
 relatedBy: .Equal,
 toItem: right,
 attribute: .Width,
 multiplier: 1,
 constant: 0)
addConstraint(equalWidths)

Creating Custom Views in Swift

[122]

Constraints and the visual format language
Although adding individual constraints gives ultimate flexibility, it can be tedious to
set up programmatically. The visual format language can be used to add multiple
constraints to a view. This is an ASCII-based representation that allows views to be
related to each other in position and extrapolated into an array of constraints.

Constraints can be applied horizontally (the default) or vertically. The | character
can be used to represent either the start or end of the containing superview, and
– is used to represent the space that separates views, which are named in [] and
referenced in a dictionary.

To constrain the two labels that are next to each other in the view, H:|-[left]-
[right]-| can be used. This can be read as a horizontal constraint (H:) with a gap
from the left edge (|-) followed by the left view ([left]), a gap (-), a right view
([right]), and finally a gap from the right edge (-|). Similarly, vertical constraints
can be added with a V: prefix.

The constraintsWithVisualFormat method on the NSLayoutConstraint class
can be used to parse visual format constraints. It takes a set of options, metrics,
and a dictionary of views referenced in the visual format. An array of constraints is
returned, which can be passed into the addConstraints method of the view.

To add constraints that ensure the left and right views have equal widths, a space
between them, and a vertical space between the top of the view and the labels, the
following code can be used:

override func updateConstraints() {
 // ...
 let namedViews = ["left":left,"right":right]
 addConstraints(NSLayoutConstraint.
 constraintsWithVisualFormat("H:|-[left]-[right]-|",
 options: nil, metrics: nil, views: namedViews))
 addConstraints(NSLayoutConstraint.
 constraintsWithVisualFormat("V:|-[left]-|",
 options: nil, metrics: nil, views: namedViews))
 addConstraints(NSLayoutConstraint.
 constraintsWithVisualFormat("V:|-[right]-|",
 options: nil, metrics: nil, views: namedViews))
 super.updateConstraints()
}

Chapter 5

[123]

If there are ambiguous constraints, then an error will be printed
to the console when the view is shown. Messages that include the
NSAutoresizingMaskLayout constraints indicate that the view
has not disabled the automatic translation of auto-resizing mask
into constraints.

Adding the custom view to the table
The TwoLabels view can be tested by adding it as a footer to the SimpleTable
created previously. The footer is a special class, UITableViewHeaderFooterView,
which needs to be created and added to the tableView. The TwoLabels view can
then be added to the footer's contentView:

let footer = UITableViewHeaderFooterView()
footer.contentView.addSubview(TwoLabels(frame:CGRect.zeroRect))
tableView.tableFooterView = footer

Now, when the application is run in the simulator, the custom view will be seen:

Custom graphics with drawRect
Subclasses of UIView can implement their own custom graphics by providing a
drawRect method that implements the custom drawing routines. The drawRect
method takes a CGRect argument, which indicates the area to draw in, but
the actual drawing commands are performed on a Core Graphics context,
which is represented by the CGContext class and can be obtained by a call to
UIGraphicsGetCurrentContext.

Creating Custom Views in Swift

[124]

The Core Graphics context represents a drawable area in iOS and is used for
printing as well as drawing graphics. Each view is responsible for drawing itself; the
rectangle will either be the full area (for example, the first time that a view is drawn)
or it might be a subset of the area (for example, when a dialog has been shown and
then subsequently removed).

Core Graphics is a C-based interface (rather than Objective-C based), so the API is
exposed as a set of functions beginning with the UIGraphics prefix. As with other
drawing APIs, the program can set the current drawing color, draw lines, set a fill
color, fill rectangles, and so on.

To test this, create a class called SquaresView that is a subclass of UIView in a
new Swift file.

All views have the standard init methods; delegate them to the superclass'
implementation. Finally, create a drawRect method that takes a CGRect. This will be
where the custom drawing occurs. The skeleton will look like:

import UIKit
class SquaresView: UIView {
 required init(coder: NSCoder) {
 super.init(coder:coder)
 setupUI()
 }
 override init(frame: CGRect) {
 super.init(frame:frame)
 setupUI()
 }
 func setupUI() {
 }
 override func drawRect(rect: CGRect) {
 // drawing code goes here
 }
}

Open the Main.storyboard and drag in another UIViewController, and set
the custom class of the view to SquaresView in the Identity Inspector. Drag in a
relationship segue between the tabbed view controller and the new view controller,
and set the tab bar item to Squares, which will allow testing to move to a different
view. If the application is run, a blank view will be seen in the Squares tab.

Chapter 5

[125]

Drawing graphics in drawRect
To draw graphics in the view, it is necessary to acquire a CGContext and then set
a drawing (stroke) color. A UIColor can be acquired and then converted into a
CGColor to be able to set it on the graphics context.

A rectangle can be drawn with CGContextStrokeRect:

override func drawRect(rect: CGRect) {
 let context = UIGraphicsGetCurrentContext()
 let red = UIColor.redColor().CGColor
 CGContextSetStrokeColorWithColor(context, red)
 CGContextStrokeRect(context,
 CGRect(x:50, y:50, width:100, height:100))
}

When this is run in the simulator, a red rectangle will be shown on the Squares tab.

To draw a green square with a black outline in the middle requires a filled green
square to be drawn first, followed by a black square afterwards. (Drawing them in
the opposite order will result in the solid green square obliterating the black square.)

There are two different colors in a Core Graphics context: the stroke color, which is
used to draw lines and paths; and the fill color, which is used when creating a filled
path. Although the CGContextSetFillColorWithColor function exists, in Swift
there is an easier way of setting this directly with UIColor, using the setFill or
setStroke methods. The following will create the green square with a black border:

UIColor.greenColor().setFill()
UIColor.blackColor().setStroke()
CGContextFillRect(context,
 CGRect(x:75, y:75, width:50, height:50))
CGContextStrokeRect(context,
 CGRect(x:75, y:75, width:50, height:50))

Now when the application is run, the following screenshot will be seen:

Creating Custom Views in Swift

[126]

Responding to orientation changes
When the screen rotates, the view is stretched and squashed, resulting in the square
turning into a rectangle. The drawRect call is not called when the view changes
orientation; the existing display is squashed and stretched automatically.

To prevent this, the content mode of the view can be changed. There is a
UIViewContentMode enumeration which can be specified to cause different
behaviors. Using Redraw will result in the drawRect being called when the
orientation changes or when the bounds changes size.

The squares can be centered on the screen; instead of starting at the position 50,50,
the view's center property can be accessed to find what the position is. Modify the
code as follows:

func setupUI() {
 contentMode = .Redraw
}
override func drawRect(rect: CGRect) {
 let context = UIGraphicsGetCurrentContext()
 let red = UIColor.redColor().CGColor
 CGContextSetStrokeColorWithColor(context,red)
 CGContextStrokeRect(context,
 CGRect(x:center.x-50, y:center.y-50, width:100, height:100))
 UIColor.greenColor().setFill()
 UIColor.blackColor().setStroke()
 CGContextFillRect(context,
 CGRect(x:center.x-25, y:center.y-25, width:50, height:50))
 CGContextStrokeRect(context,
 CGRect(x:center.x-25, y:center.y-25, width:50, height:50))
}

Now when the application is run, the squares will be centered in the screen. If the
screen rotates, the drawRect will be invoked again and the display will be redrawn.

Custom graphics with layers
Drawing graphics by overriding drawRect is not very performant, because all the
drawing routines are executed on the CPU. Offloading the graphics drawing to the
GPU is both more performant and more power efficient.

Chapter 5

[127]

iOS has a concept of layers, which are Core Graphics optimized drawing contents.
Operations composed on a layer, including adding a path, can be translated into
code that can execute on the GPU and be rendered efficiently. In addition, Core
Animation can be used to animate changes on layers efficiently.

Core Animation is provided in the QuartzCore framework/
module; the two terms are interchangeable. It is more generally
known as Core Animation.

The download progress icon on iOS can be recreated as a ProgressView containing
layers for the circular outline, a layer for the square stop button in the middle, and a
layer for the progress arc. The final view will composite these three layers together to
provide the finished view.

Every UIView has an implicit associated layer, which can have sublayers added to
it. As with views, newly added layers overlay existing layers. There are several core
animation layer classes that can be used, which are subclasses of CALayer:

•	 The CAEAGLLayer class provides a way to embed OpenGL content into
a view

•	 The CAEmitterLayer class provides a mechanism to generate emitter effects,
such as smoke and fire

•	 The CAGradientLayer class provides a way to create a background with a
gradient color

•	 The CAReplicatorLayer class provides a means to replicate the existing
layers with different transformations, which allows effects such as reflections
and coverflow to be shown

•	 The CAScrollLayer class provides a way to perform scrolling
•	 The CAShapeLayer class provides a means to draw and animate a single path
•	 The CATextLayer class allows text to be displayed
•	 The CATiledLayer class provides a means to generate tiled content at

different zoom levels, such as a map
•	 The CATransformLayer class provides a means to transform layers into 3D

views, such as a coverflow style image animation

Creating Custom Views in Swift

[128]

Creating a ProgressView from layers
Create another view class called ProgressView, which extends UIView. Set it up
with the default init methods, a setupUI and an updateUI method:

import UIKit
class ProgressView: UIView {
 required init(coder: NSCoder) {
 super.init(coder:coder)
 setupUI()
 }
 override init(frame: CGRect) {
 super.init(frame:frame)
 setupUI()
 }
 func setupUI() {
 updateUI()
 }
 func updateUI() {
 }
}

Create a new Layers Scene in the Main.storyboard by dragging a View Controller
from the object library onto the storyboard. Connect it to the tab bar controller by
dragging a relationship segue to the newly created layers view controller. Add the
ProgressView by dragging a View from the object library and giving it a Custom
Class of ProgressView. Size it with an approximate location of the middle of
the screen.

Now add an instance variable to the ProgressView class called circle and create
a new instance of CAShapeLayer. In setupUI set the strokeColor as black
and the fillColor as nil. Finally, add the circle layer to the view's layer so that it
is shown:

let circle = CAShapeLayer()
func setupUI() {
 circle.strokeColor = UIColor.blackColor().CGColor
 circle.fillColor = nil
 self.layer.addSublayer(circle)
 updateUI()
}

Chapter 5

[129]

A CAShapeLayer has a path property, which is used to perform all the drawing. The
easiest way to use this is to create a UIBezierPath and then use the CGPath accessor
to convert it to a CGPath. Unlike the UIGraphics* methods, there are no separate
draw* and fill* operations; instead, either the fillColor or strokeColor is set
and then the path is filled or stroked (drawn). The UIBezierPath can be constructed
by adding segments, but there are several initializers that can be used to draw
specific shapes. For example, circles can be drawn with the ovalInRect initializer:

func updateUI() {
 let rect = self.bounds
 circle.path = UIBezierPath(ovalInRect: rect).CGPath
}

Now when the application is run, a small black circle will be seen on the layers tab:

Adding the stop square
The stop square can be added by creating another layer. This will allow the stop
button to be turned on or off as necessary. (For example, during a download, the
stop button can be shown, and when the download is completed, it can be
animated away.)

Add a new constant called square of type CAShapeLayer. It will help to create a
constant black as well, since it will be used again elsewhere in the class:

class ProgressView: UIView {
 let circle = CAShapeLayer()
 let square = CAShapeLayer()
 let black = UIColor.blackColor().CGColor
}

Creating Custom Views in Swift

[130]

The setupUI method can now be updated to deal with additional layers. Since it
is common to set them up in the same way, using a loop is a quick way to set up
multiple layers:

func setupUI() {
 for layer in [square, circle] {
 layer.strokeColor = black
 layer.fillColor = nil
 self.layer.addSublayer(layer)
 }
 updateUI()
}

The path for the square can be created using the rect initializer of UIBezierPath.
To create a rectangle that will be centered inside the circle, use the rectByInsetting
method with an appropriate value:

func updateUI() {
 let rect = self.bounds
 let sq = rect.rectByInsetting(
 dx: rect.width/3, dy: rect.height/3)
 square.fillColor = black
 square.path = UIBezierPath(rect: sq).CGPath
 circle.path = UIBezierPath(ovalInRect: rect).CGPath
}

Now when the application is run, the following will be seen:

Adding a progress bar
The progress bar can be drawn as an arc representing the amount of data
downloaded so far. On other iOS applications, the progress bar starts at the 12
o'clock position and then moves clockwise.

Chapter 5

[131]

There are two ways to achieve this: using an arc that is drawn up to some particular
amount, or by setting a single path that represents the entire circle and then using
strokeStart and strokeEnd to define which segment of the path should be drawn.
The advantage of using strokeStart and strokeEnd is that they are animatable
properties, which allow some animated effects.

The arc needs to be drawn from the top, moved clockwise to the right, and then back
up again. The strokeStart and strokeEnd are CGFloat values between 0 and 1, so
these can be used to represent the progress of the download.

Easy as Pi
Although circles are often split into 360 degrees (mainly because 360 has
a lot of factors and is easily divisible into different numbers), computers
tend to work in radians. There are 2pi radians in a circle; so half a circle
is pi, and a quarter of a circle is pi/2.

There is a UIBezierPath convenience initializer that can draw an arc; the center
and radius are specified along with a startAngle and endAngle point. The start
and end point are both specified in radians, with 0 being the 3 o'clock position and
going clockwise or anticlockwise as specified.

To draw progress starting from the top of the circle, the start point must be specified
as -pi/2. Drawing clockwise from here around the complete circle takes it to -pi/2
+ 2pi, which is 3 * pi/2.

Computers use pi a lot, defined in usr/include/math.h, which is
included transitively from UIKit through the Darwin module. The
constants M_PI, M_PI_2 (pi/2) and M_PI_4 (pi/4) and the inverses
M_1_PI (1/pi) and M_2_PI (2/pi) are available.

Creating Custom Views in Swift

[132]

The middle of the diagram can be calculated by accessing self.center, and the
radius of the circle will be half the minimum width or height. To add the path,
create a new CAShapeLayer called progress, and optionally give it a different width
and color to distinguish it from the background:

class ProgressView: UIView {
 let progress = CAShapeLayer()
 var progressAmount: CGFloat = 0.5
 …
 func setupUI() {
 for layer in [progress, square, circle] {
 …
 }
 progress.lineWidth = 10
 progress.strokeColor = UIColor.redColor().CGColor
 updateUI()
 }
 func updateUI() {
 …
 let radius = min(rect.width, rect.height) / 2
 let center = CGPoint(x:rect.midX, y:rect.midY)
 progress.path = UIBezierPath(
 arcCenter: center,
 radius: radius,
 startAngle: CGFloat(-M_PI_2),
 endAngle: CGFloat(3*M_PI_2),
 clockwise: true
).CGPath
 progress.strokeStart = 0
 progress.strokeEnd = progressAmount
 }
}

When this is run, the progress bar will be seen behind the circle:

Chapter 5

[133]

Clipping the view
The problem with the progress line is that it extends beyond the circular boundary
of the progress view. A simple approach might be to try and calculate a half-width
distance from the radius and redraw the circle, but this is fragile as changes to the
line width might result in the diagram not looking right in the future.

A better approach is to mask the graphics area so that the drawing does not go
outside a particular shape. By specifying a mask, any drawing that occurs within the
mask is shown; graphics that are drawn outside the mask are not shown.

A mask can be defined as a rectangular area or the result of a filled layer. Creating
a circular mask requires creating a new mask layer and then setting a circular path
as before.

A mask can only be used by a single layer. If the same mask is needed
for more than one layer, either the mask layer needs to be copied or the
mask can be set on a common parent layer.

Create a new CAShapeLayer that can be used for the mask, and create a path based
on the UIBezierPath with an ovalInRect. The mask can then be assigned to the
mask layer of the progress layer:

class ProgressView: UIView {
 let mask = CAShapeLayer()
 func updateUI() {
 …
 mask.path = UIBezierPath(ovalInRect:rect).CGPath
 progress.mask = mask
 }
}

Now when the display is shown, the progress bar does not bleed over the edge:

Creating Custom Views in Swift

[134]

Testing views in Xcode
To test the view in interface builder directly, the class can be marked as
@IBDesignable. This gives permission for Xcode to instantiate and run the
view as well as update it for any changes that are made. If the class is marked as
@IBDesignable, then Xcode will attempt to load the view and display it in
storyboard and xib files.

However, when the class loads the UI will not be displayed properly, because the
frame size needs to be initialized correctly. Override the layoutSubviews method
to call updateUI, which ensures that the view is properly redrawn when the view
changes size or is shown for the first time:

@IBDesignable class ProgressView: UIView {
 …
 override func layoutSubviews() {
 setupUI()
 }
}

Now when the ProgressView is added or shown in interface builder, it will be
rendered in place. Build the project, then open the Main.storyboard, and click on
the progress view; after a brief delay, it will be drawn.

Xcode can also be used to edit different attributes of an object in interface builder.
This allows the view to be tested without running the application.

To allow interface builder to edit properties, they can be marked as @IBInspectable:

@IBDesignable class ProgressView: UIView {
 @IBInspectable var progressAmount: CGFloat = 0.5
 …
}

Chapter 5

[135]

After building the project, open the storyboard, select the Progress View, and go to the
Attributes Inspector. Just above the View section will be a Progress View section with
the Progress Amount field based on the @IBInspectable field of the same name.

Responding to change
If a UISlider is added to the Layers View, changes can be triggered by adding an
@IBAction to allow the valueChanged event to propagate the value to the caller.

Create an @IBAction function setProgress, which takes a sender, and then
depending on the type of that sender, extract a value:

@IBAction func setProgress(sender:AnyObject) {
 switch sender {
 case let slider as UISlider: progressAmount =
 CGFloat(slider.value)
 case let stepper as UIStepper: progressAmount =
 CGFloat(stepper.value)
 default: break
 }
}

Using a switch statement based on the type allows
additional views to be added in the future.

The valueChanged event on the UISlider can now be connected to the setProgess
on the ProgressView.

Creating Custom Views in Swift

[136]

Assigning the progressAmount value alone has no visible effect, so a property
observer can be used to trigger display changes whenever the field is modified.
A property observer is a block of code that gets called before (willSet) or after
(didSet) a property is changed:

@IBInspectable var progressAmount: CGFloat = 0.5 {
 didSet {
 setNeedsLayout()
 }
}

Now when the application is run and the slider value is moved, the download
amount will be updated in the view. Observe that the changes to the
progressAmount are animated automatically, so if the slider is quickly moved from
one end to the other, the download arc will smoothly animate.

The property observer uses setNeedsLayout to trigger a call to
layoutSubviews in order to achieve the change in display. Since
changes only need to be picked up when a size change occurs or
when a property is changed, this is more efficient than implementing
other methods such as drawRect, which will be called every time the
display needs to be updated.

Summary
In this chapter, we looked at several different ways of how to create views in iOS.
The first approach was to use interface builder to build the view graphically and
some of the problems that this can cause. We then looked at subclassing UIView and
adding other views to build up a custom view. Finally, we presented two different
ways of drawing custom graphics; first with drawRect and subsequently with layers.

The next chapter will show how to use networking APIs in iOS to download
networked data.

Parsing Networked Data
Many iOS applications need to communicate with other servers or devices. This
chapter presents both HTTP and non-HTTP networking in Swift and how data can
be parsed from either JSON or XML. It first demonstrates how to load data efficiently
from URLs followed by how to stream larger data responses. It then concludes
with how to perform both synchronous and asynchronous network requests over
protocols other than HTTP.

This chapter will present the following topics:

•	 Loading data from URLs
•	 Updating the user interface from a background thread
•	 Parsing JSON and XML data
•	 Stream-based connections
•	 Asynchronous data communication

Loading data from URLs
The most common way to load data from a remote network source is to use an
HTTP (or HTTPS) URL of the form https://raw.githubusercontent.com/
alblue/com.packtpub.swift.essentials/master/CustomViews/CustomViews/
SampleTable.json.

URLs can be manipulated with the NSURL class, which comes from the Foundation
module (which is transitively imported from the UIKit module). The main NSURL
initializer takes a String initializer with a full URL, although other initializers exist
for creating relative URLs or for references to file paths.

https://raw.githubusercontent.com/alblue/com.packtpub.swift.essentials/master/CustomViews/CustomViews/SampleTable.json
https://raw.githubusercontent.com/alblue/com.packtpub.swift.essentials/master/CustomViews/CustomViews/SampleTable.json
https://raw.githubusercontent.com/alblue/com.packtpub.swift.essentials/master/CustomViews/CustomViews/SampleTable.json

Parsing Networked Data

[138]

The NSURLSession class is typically used to perform operations with URLs, and
individual sessions can be created through the initializer or the standard shared
session can be used.

The NSURLConnection class was used in older versions of iOS and
Mac OS X. References to this class might still be seen in some tutorials,
or might be required if Mac OS X 10.8 or iOS 6 needs to be supported;
otherwise, the NSURLSession class should be preferred.

The NSURLSession class provides a means to create tasks. These include:

•	 Data task: This can be used to process network data programmatically
•	 Upload task: This can be used to upload data to a remote server
•	 Download task: This can be used to download to a local storage or to resume

a previous or partial download

Tasks are created from the NSURLSession class methods and can take a URL argument
and an optional completion handler. A completion handler is a lot like a delegate,
except that it can be customized per task, and is usually represented as a function.

Tasks can be suspended or resumed to stop and start the process. Tasks are created in
a suspended state by default, so they have to be initially resumed to start processing.

When a data task is completed, the completion handler is called back with three
arguments: an NSData object, which represents the returned data; an NSURLResponse
object, which represents the response from the remote URL server; and an optional
NSError object if anything failed during the request.

With this in place, the SampleTable created in the previous chapter can load data
from a network URL by obtaining a session, initiating a data task, and then resuming
it. The completion handler will be called when the data is available, which can be
used to add the content to the table.

Modify the viewDidLoad method of the SampleTable class to load the
SampleTable.json file as follows:

let url = NSURL(string: "https://raw.githubusercontent.com/
 alblue/com.packtpub.swift.essentials/master/
 CustomViews/CustomViews/SampleTable.json")!
let session = NSURLSession.sharedSession()
let encoding = NSUTF8StringEncoding
let task = session.dataTaskWithURL(url,completionHandler:

Chapter 6

[139]

 {data,response,error -> Void in
 let contents = String(NSString(data:data,encoding:encoding)!)
 self.items += [(url.absoluteString!,contents)]
 // table data won't reload – needs to be on ui thread
 self.tableView.reloadData()
})
task.resume()

This creates an NSURL and an NSURLSession, and then creates a data task and
immediately resumes it. After the content is downloaded, the completion handler is
called, which passes the data as an NSData object. The NSString initializer is used to
decode UTF8 text from the NSData object and is explicitly cast to a String so that it
can be added to the items list.

The NSURLSession class also provides other factory methods,
including one that takes a configuration argument that includes
options such as whether responses should be cached, whether network
connections should go over the cellular network, and whether any
cookies or other headers should be sent with the task.

Finally, the item is added to the items and the tableView is reloaded to show the new
data. Note that this does not work immediately if it is not run on the main UI thread;
the table has to be rotated or moved in order to redraw the display. Running on the UI
thread is covered in the Networking and user interface section later in this chapter.

Dealing with errors
Errors are a fact of life, especially on mobile devices with intermittent connectivity.
The completion handler is called with a third argument, which represents any error
raised during the operation. If this is nil then the operation was a success; if not then
the localizedDescription property of the error can be used to notify the user.

For testing purposes, if an error is detected add the localizedDescription to the
items in the list. Modify the viewDidLoad method as follows:

let task = session.dataTaskWithURL(url, completionHandler:
 {data,response,error -> Void in
 if (error == nil) {
 let contents = String(NSString(data: data,encoding:encoding)!)
 self.items += [(url.absoluteString!,contents)]
 } else {
 self.items += [("Error",error.localizedDescription)]

Parsing Networked Data

[140]

 }
 // table data won't reload – needs to be on UI thread
 self.tableView.reloadData()
})

An error can be simulated using a nonexistent hostname or an unknown protocol in
the URL.

Dealing with missing content
Errors are reported if the remote server cannot be contacted, such as when the
hostname is incorrect or the server is down. If the server is operational, then an error
will not be reported. It is still possible that the file requested is not found or the
server experiences an error while serving the request. These are reported with HTTP
status codes.

If an HTTP URL is not found, the server sends back a 404 status code.
This can be used by the client to determine whether a different file
should be accessed or whether another server should be queried. For
example, browsers will often ask the server for a favicon.ico file and
use this to display a small logo; if it is missing, then a generic page icon
is shown instead. In general, 4xx responses are client errors, while 5xx
responses are server errors.

The NSURLResponse object doesn't have the concept of an HTTP status code,
because it can be used for any protocol, including ftp. However, if the request used
HTTP, then the response is likely to be HTTP and so the request can be cast to an
NSURLHttpResponse, which has a statusCode property. This can be used to provide
more specific feedback when the file is not found. Modify the code as follows:

if (error == nil) {
 let httpResponse = response as NSHTTPURLResponse
 let statusCode = httpResponse.statusCode
 if (statusCode >= 400 && statusCode < 500) {
 self.items += [("Client error \(statusCode)",
 url.absoluteString!)]
 } else if (statusCode >= 500) {
 self.items += [("Server error \(statusCode)",
 url.absoluteString!)]
 } else {
 let contents = String(NSString(data:data,encoding:encoding)!)
 self.items += [(url.absoluteString!,contents)]
 }
} else {...}

Chapter 6

[141]

Now if the server responds but indicates that either the client made a bad request or
the server suffered a problem, the user interface will be updated appropriately.

Nested if and switch statements
Sometimes, the error handling logic can get convoluted by handling different cases,
particularly if there are different values that need to be tested. In the previous
section, both the NSError and HTTP statusCode needed to be checked.

An alternative approach is to use a switch statement with where clauses. These
can be used to test multiple different conditions and also show which part of the
condition is being tested. Although a switch statement requires a single expression,
it is possible to use a tuple to group multiple values into a single expression.

Another advantage of using a tuple is that it permits the cases to be matched on
types. In the case of networking, some URLs are based on http or https, which
means that the response will be of an NSHTTPURLResponse type. However, if the URL
is of a different type (such as a file or ftp protocol), then it will be of a different
subtype of NSURLResponse. Unconditionally casting to NSHTTPURLResponse with as
will fail in these cases and cause a crash.

The tests can be rewritten as a switch block as follows:

switch (data,response,error) {
 case (_,_,let e) where e != nil:
 self.items += [("Error",error.localizedDescription)]
 case (_,let r as NSHTTPURLResponse,_)
 where r.statusCode >= 400 && r.statusCode < 500:
 self.items += [("Client error \(r.statusCode)",
 url.absoluteString!)]
 // see note below
 case (_,let r as NSHTTPURLResponse,_)
 where r.statusCode >= 500:
 self.items += [("Server error \(r.statusCode)",
 url.absoluteString!)]
 default:
 let contents = String(NSString(data: data,encoding:encoding)!)
 self.items += [(url.absoluteString!,contents)]
}

In this example, the default block is used to execute the success condition and the
prior case statements are used to match the error conditions that can be seen.

Parsing Networked Data

[142]

The final case statement causes Swift 1.1 in Xcode 6.1 to hang with 100
percent CPU utilization; as a result, it is commented out in the GitHub
repository. A future version of Xcode is likely to fix this behavior. This
bug occurs because the second and third case statements match the same
expression with different where clauses.

The case (_,_,let e) where e != nil pattern is an example of a conditional
pattern match. The underscore, which is called a wildcard pattern in Swift (also
known as a hole in other languages), is something that will match any value. The
third parameter, let e, is a value binding pattern and has the effect of let e =
error in this case. Finally, the where clause adds the test to ensure that this case only
occurs when e is not nil.

It is possible to use the error identifier instead of let e in the case
statement; using case (_,_,_) where error != nil will have
the same effect. However, it is a bad practice to capture values outside
the switch statement for case matching purposes, since if the error
variable is renamed, then the case statement might become invalid.
Generally use let patterns inside case statements to ensure that the
correct expression value is being matched.

The second and third cases perform a let assignment, a type test, and conversion.
When case (_,let r as NSHTTPURLResponse,_) is matched, not only is
the value of this part in the tuple assigned the constant r, but it is also cast to
NSHTTPURLRepsonse. If the value is not of type NSHTTPURLResponse, then the
case statement is automatically skipped. This is equivalent to an if test with an is
expression, followed by a cast with as.

Although the patterns are the same in both, the where clauses are different. The first
where clause looks for the case where r.statusCode is 400 or greater and less than
500, while the second is matched where r.statusCode is 500 or greater. (Note that
as described earlier, the duplicate case causes an infinite loop in the Swift compiler
for Xcode Version 6.1.)

Regardless of whether nested if statements or the switch statement
is used, the code that performs the test is likely to be very similar. It
typically comes down to developer preference, but more developers are
likely to be familiar with nested if statements. In Swift, the switch
statement is more powerful than in other languages, so this kind of
pattern is likely to become more popular.

Chapter 6

[143]

Networking and user interfaces
One outstanding problem with the current callback approach is that the callback
cannot be guaranteed to be called from the main thread. As a result, user interface
operations might not work correctly or might throw errors. The right solution is to
set up another call using the main thread.

Accessing the main thread in Swift is done in the same way as in Objective-C: using
Grand Central Dispatch or GCD. The main queue can be accessed with dispatch_
get_main_queue, which is used by the thread that all UI updates should occur on.
Background tasks are submitted with dispatch_async to a queue. To invoke the
reloadData call on the main thread, wrap it as follows:

dispatch_async(dispatch_get_main_queue(), {
 self.tableView.reloadData()})

This style of call will be valid for both Objective-C and Swift (although Objective-C
uses the ^ (caret) as a block prefix). However, Swift has a special syntax to deal with
functions that take blocks; the block can be promoted out of the function's argument
and left as a trailing argument. This is known as a trailing closure:

dispatch_async(dispatch_get_main_queue()) {
 self.tableView.reloadData()
}

Although this is a minor difference, it makes it look like dispatch_async is more
like a keyword such as if or switch which takes a block of code. This can be used
for any function whose final argument is a function; there is no special syntax needed
in the function definition. Additionally, the same technique works for functions
defined outside of Swift; in the case of dispatch_async, the function is defined as a
C language function and can be transparently used in a portable way.

Running functions on the main thread
Whenever the UI needs to be updated, the update must be run on the main thread.
This can be done using the previous pattern to perform updates, since they will
always be threaded. However, it can be a pain to remember to do this each time
it is required.

Parsing Networked Data

[144]

It is possible to build a Swift function that takes another function and runs it on
the main thread automatically. NSThread.isMainThread can be used to determine
whether the current thread is the UI thread or not, so to run a block of code on the
main thread, regardless of whether it's on the main thread or not, the following can
be used:

func runOnUIThread(fn:()->()) {
 if NSThread.isMainThread() {
 fn()
 } else {
 dispatch_async(dispatch_get_main_queue(), fn)
 }
}

This allows the code to be submitted to the background thread simply:

self.runOnUIThread(self.tableView.reloadData)

Note that due to the lack of parenthesis, the reloadData function is
not called, but it is passed in as a function pointer. It is dispatched to
the correct thread inside the runOnUIThread function.

If there is more than one function that needs to be called, an inline block can be
created. Since this can be passed as a trailing closure to the runOnUIThread method,
the parenthesis are optional:

self.runOnUIThread {
 self.tableView.backgroundColor = UIColor.redColor()
 self.tableView.reloadData()
 self.tableView.backgroundColor = UIColor.greenColor()
}

Parsing JSON
The most popular mechanism to send structured data over a network is to encode it
in JSON, which stands for JavaScript Object Notation. This provides a hierarchical
tree data structure that can store simple numeric, logical, and string-based types
along with the array and dictionary representations.

Chapter 6

[145]

Both Mac OS X and iOS come with a built-in parser for JSON documents, in the
NSJSONSerialization class. This provides a means to parse a data object and return
an NSDictionary that contains the key/value pairs of a JSON object or an NSArray
to represent JSON arrays. Other literals are parsed and represented as the NSNumber
or NSString values.

The JSON parser uses JSONObjectWithData to create an object from an NSData
object containing a string. This is typically the format returned by network APIs and
can be created from an existing string using dataUsingEncoding with one of the
built-in encoding types, such as NSUTF8StringEncoding.

A simple JSON array of numbers can be parsed as follows:

let array = "[1,2,3]".dataUsingEncoding(NSUTF8StringEncoding)!
let parsed = NSJSONSerialization.JSONObjectWithData(
 data:array, options:nil, error:nil)

The return type of this is an optional AnyObject. The optionality represents the fact
that the data content might not be valid JSON data. It can be cast to an appropriate
type using the as keyword; if there is a parsing failure, then an error
will be thrown.

The options can be used to indicate whether the return type should be mutable
or not. Mutable data allows the caller to add or delete items after being returned
from the parsing function; if not specified, the return value will be immutable. The
NSJSONReadingOptions options include MutableContainers (containing data
structures that are mutable), MutableLeaves (the child leaves are mutable), and
AllowFragments (allow non-object, nonarray values to be parsed). Since these are
bit flags, they can be combined with | (the bitwise or operator). For example, to
specify that both the containers and leaves should be mutable, .MutableContents|.
MutableLeaves should be used as the options value.

The SampleTable.json file (referred to in the viewDidLoad method) stores an array
of entries, with the title and content fields holding text data per entry:

[{"title":"Sample Title","content":"Sample Content"}]

To parse the JSON file and entries to the table, replace the default clause in
SampleTable with the following:

default:
 let parsed = NSJSONSerialization.JSONObjectWithData(
 data, options:nil, error:nil) as NSArray!
 for entry in parsed {
 self.items +=

Parsing Networked Data

[146]

 [(entry["title"] as String,
 entry["content"] as String)]
 }

Running the application will show the Sample Title and Sample Content entries in
the table, which have been loaded and parsed from the book's GitHub repository.

Handling errors
If there are problems parsing the JSON data, then the return type of the
JSONObjectWithData function will return a nil value. If the type is implicitly
unwrapped then accessing the element will cause an error.

The error is known as an inout argument; by passing a reference to an optional
NSError value, the function can assign an instance in addition to the normal
return value:

var error:NSError? = nil
if let parsed = NSJSONSerialization.JSONObjectWithData(data,
 options:nil, error:&error) {
 // do something with parsed
} else {
 self.items += [("Error",
 "Cannot parse JSON \(error!.localizedDescription)")]
 // show message to user
}

The optional error is passed into the function with an & (ampersand) symbol.
In C, this is used to pass the address of an object, but in Swift, this is limited to
inout function parameters. It's mainly used for interoperability with existing C or
Objective-C functions; generally using Option to indicate errors is the preferred way
in Swift. When the function returns, the error will be not nil if parsed is nil and
vice versa.

Since the error is declared an optional value, it must be
forcefully unwrapped when being processed in the else clause.
This is done with error! in the string literal that calculates
localizedDescription.

Chapter 6

[147]

The parsed value will be of the type AnyObject?, although the let block will
implicitly unwrap the value, known as optional binding. In the previous section, the
code was cast to an NSArray directly, but if the returned result is of a different type
(for example, an NSDictionary or one of the fragment types such as NSNumber or
NSString), then casting to an incorrect type will cause a failure.

The type of the object can be tested with if [object] is [type]. However, since
the next step is usually to cast it to a different class with as, an as? shorthand form
can perform both the test and the cast in one step:

if let array = parsed as? NSArray {
 for entry in array {
 // process elements
 }
} else {
 self.items += [("Error", "JSON is not an array")]
}

A switch statement can be used to check the type of multiple values at the same
time. Since the values are optional NSString objects, they need to be converted to a
String before they can be used in Swift:

for entry in array {
 switch (entry["title"], entry["content"]) {
 case (let title as String, let content as String):
 self.items += [(title,content)]
 default:
 self.items += [("Error", "Missing unknown entry")]
 }
}

Now when the application is run, errors are detected and handled without the
application crashing.

Parsing XML
Although JSON is more commonly used, there are still many XML-based network
services. Fortunately, XML parsing has existed in iOS since version 5 in the
NSXMLParser class and is simple to access from Swift. For example, some data feeds
(such as blog posts) use XML documents such as Atom or RSS.

Parsing Networked Data

[148]

The NSXMLParser is a stream-oriented parser; that is, it reports individual elements
as they are seen. The parser calls the delegate to notify when the elements are seen
and have finished. When an element is seen, the parser also includes any attributes
that were present; for text nodes, it includes the string content.

Thus, the parsing of an XML file involves some state management in the parser. The
example used in this section will parse an Atom (news feed) file, whose (simplified)
structure looks as follows:

<feed xmlns="http://www.w3.org/2005/Atom">
 <title>AlBlue's Blog</title>
 <link href="http://alblue.bandlem.com/atom.xml" rel="self"/>
 <entry>
 <title type="html">Swift - classes></title>
 <link href="http://alblue.bandlem.com/2014/10/swift-classes-
overview.html"/>
 ...
 </entry>
 ...
</feed>

In this case, the goal is to extract all the entry elements from the feed; specifically the
title and link. This presents a few challenges that will become apparent later on.

Creating a parser delegate
Parsing an XML file requires creating a class that conforms to the
NSXMLParserDelegate protocol. To do this, create a new class, FeedParser, that
extends NSObject and conforms to the NSXMLParserDelegate protocol.

It should have an init method that takes an NSData and an items property that will
be used to acquire the results after they have been parsed:

class FeedParser: NSObject, NSXMLParserDelegate {
 var items:[(String,String)] = []
 init(_ data:NSData) {
 // parse XML
 }
}

The NSXMLParserDelegate class requires the object to also conform
to NSObjectProtocol. The easiest way to do this is to subclass
NSObject. Note that the first mentioned supertype is the superclass;
the second and subsequent supertypes must be protocols.

Chapter 6

[149]

Downloading the data
The XML parser can either parse a stream of data as it is downloaded or it can take
an NSData object that has been downloaded previously. On successful download, the
FeedParser can be used to parse the NSData instance and return a list of items.

Although individual expressions can be assigned temporary values similar to the
last time, the statement can be written in a single line (although note that error
handling is not present). Add the following to the end of the viewDidLoad method
of SimpleTable:

session.dataTaskWithURL(

 NSURL(string:"http://alblue.bandlem.com/Tag/swift/atom.xml")!,
 completionHandler: {data,response,error -> Void in
 if data != nil {
 self.items += FeedParser(data).items
 self.runOnUIThread(self.tableView.reloadData)
 }
}).resume()

This will download the Atom XML feed for the Swift posts from the author's blog at
http://alblue.bandlem.com. Currently, the data is not parsed, so nothing will be
added to the table in this step.

Make sure that both the download operation and the parsing are handled
off the main thread, as both of these operations might take some time.
Once the data is downloaded it can be parsed, and after it is parsed the
UI can be notified to redisplay the contents.

Parsing the data
To process the downloaded XML file, it is necessary to parse the data. This involves
writing a parser delegate to listen for the title and link elements. However, the
title and link elements exist both at the individual entry level and also at the
top level of the blog. Therefore, it is necessary to represent some kind of state in the
parser, which detects when the parser is inside an entry element to allow the correct
values to be used.

http://alblue.bandlem.com

Parsing Networked Data

[150]

Elements are reported with the parser:didStartElement: method and the
parser:didEndElement: method. This can be used to determine whether the
parser is inside an entry element by setting a boolean value when an entry element
starts and resetting it when the entry element ends. Add the following to the
FeedParser class:

var inEntry:Bool = false
func parser(parser: NSXMLParser,
 didStartElement elementName: String,
 namespaceURI: String!, qualifiedName:
 String!, attributes: NSDictionary!) {
 switch elementName {
 case "entry":
 inEntry = true
 default: break
 }
}

The values of the namespaceURI, qualifiedName, and attributes
might be nil. If they are not declared as implicitly unwrapped
optionals, then the parser will fail with an EXC_BAD_ACCESS when
calling the parse method.

The link stores the value of the references in an href attribute of the element. This
is passed when the start element is called, so is trivial to store. At this point, the
title might not be known, so the value of the link has to be stored in an
optional field:

var link:String?
...
// in parser:didStartElement method
case "entry":
 inEntry = true
case "link":
 link = attributes.objectForKey("href") as String?
default break;

Chapter 6

[151]

The title stores its data as a text node, which needs to be implemented with
another boolean flag, indicating whether the parser is inside a title node. Text
nodes are reported with the parser:foundCharacters: delegate method. Add the
following to the FeedParser:

var title:String?
var inTitle: Bool = false
...
// in parser:didStartElement method
case "entry":
 inEntry = true
case "title":
 inTitle = true
case "link":
...
func parser(parser: NSXMLParser, foundCharacters string:String) {
 if inEntry && inTitle {
 title = string
 }
}

By storing the title and link as optional fields, when the end of the entry element
is seen, the fields can be appended into the items list, followed by resetting the state
of the parser:

func parser(parser: NSXMLParser,
 didEndElement elementName: String,
 namespaceURI: String!, qualifiedName: String!) {
 switch elementName {
 case "entry":
 inEntry = false
 if title != nil && link != nil {
 items += [(title!,link!)]
 }
 title = nil
 link = nil
 case "title":
 inTitle = false
 default: break
 }
}

Parsing Networked Data

[152]

Finally, having implemented the callback methods, the remaining steps are to
create an NSXMLParser from the data passed in previously, set the delegate (and
optionally the namespace handling), and then to invoke the parser:

init(_ data:NSData) {
 let parser = NSXMLParser(data: data)
 parser.shouldProcessNamespaces = true
 super.init()
 parser.delegate = self
 parser.parse()
}

Note that the assignment of self to the delegate cannot
be done until after the super.init has been called.

Now when the application is run, a set of news feed items will be displayed.

Direct network connections
Although most application networking will involve downloading content over
standard protocols such as HTTP(S) and using standard representations, there are
times when having a specific data stream protocol is required. In this case, a stream
oriented process will allow individual bytes to be read or written, or a datagram or
packet oriented process can be used to send individual packets of data.

There are networking libraries to support both; an NSStream higher-level Objective-C
based class provides the mechanism to drive stream-based responses, and although
lower-level packet connections are possible with the CoreFoundation or the POSIX
layer, local multiplayer gaming using the MultipeerConnectivity module is often
appropriate.

Local networking with the MultipeerConnectivity module involves
creating an MCSession, followed by sendData to send NSData
objects to connected peers and using the MCSessionDelegate to
receiveData from connected peers. This is often used to synchronize
the state of the world, such as the player's current location or health.

Chapter 6

[153]

Opening a stream connection
A stream is a reliable, ordered sequence of bytes, which is used by most internet
protocols. Streams can be created from a network host and port using the NSStream
class method getStreamsToHostWithName, added in iOS 8 and part of Mac OS X.
This allows an NSInputStream and NSOutputStream to be acquired at the same time.

Since this is an existing Objective-C API, the streams are
returned via inout parameters. In Swift, this translates to the
parameters being passed back with an ampersand (&) and
declaring the variables as optional.

The input and output streams can then be used to send data asynchronously or
synchronously. Asynchronous mechanisms involve scheduling the data processing
on the application's run-loop and is covered in the Asynchronous reading and writing
section. Synchronous mechanisms use read and write to receive or send buffers
of data.

Once the streams have been acquired, they need to be open in
order to receive or send data. Forgetting this step will result in,
no networking data being sent.

To simplify the process of acquiring streams, the following can be created as an
extension of the NSStream class. An extension makes a method appear to come
from an original class but is implemented externally to that class. Add the following
StreamExtensions.swift file to the CustomViews project with the following content:

extension NSStream {
 class func open(host:String,_ port:Int)
 -> (NSInputStream, NSOutputStream)? {
 var input:NSInputStream?
 var output:NSOutputStream?
 NSStream.getStreamsToHostWithName(
 host, port: port,
 inputStream: &input,
 outputStream: &output)
 if input == nil || output == nil {
 return nil
 } else {
 output!.open()

Parsing Networked Data

[154]

 input!.open()
 return (input!,output!)
 }
 }
}

A connection to a remote host can be obtained by calling NSStream.
open(host,port), which returns an open pair of input/output streams.

Synchronous reading and writing
The NSInputStream method read allows bytes to be read from a stream
synchronously, while the NSOutputStream method write allows bytes to be written
to a stream. These take different types, but the most common approach is to create an
array of bytes [UInt8] in Swift as the buffer, and then read into it or from it with an
UnsafeMutablePointer (equivalent to an ampersand in C).

The read and write methods both return a number of bytes read/written. This
can be negative (in the case of an error), zero, or positive in the case of bytes having
been processed. Both calls take a buffer and a maximum length, though it is not
guaranteed that the full maximum length will be processed.

Always check the return value of write or read, since it is possible that
only part of the buffer has been written. A best practice (for synchronous
connections) is to wrap the call in a while loop or have some other form
of retry in order to ensure that all the data is written.

Writing data to an NSOutputStream
To make it easier to write NSData content to streams, an extension method on
NSOuptutStream can be created that performs a full write, based on the size of
the data:

extension NSOutputStream {
 func writeData(data:NSData) -> Int {
 let size = data.length
 var completed = 0
 while completed < size {
 var wrote = write(UnsafePointer(data.bytes) +
 completed, maxLength:size - completed)
 if wrote < 0 {
 return wrote

Chapter 6

[155]

 } else {
 completed += wrote
 }
 }
 return completed
 }
}

The code takes an NSData and writes it to the underlying stream, returning the
number of bytes written (or a negative value if there are problems). The return value
of the write method is checked, and if the value is negative, returned to the caller
directly. Otherwise, the completed counter is incremented with the number of
bytes written.

If the number of written bytes reaches the size of the data requested, then the value is
returned. Otherwise the loop recurs, this time starting at the point it left off.

Although uncommon in Swift, pointer arithmetic is possible by
acquiring UnsafePointer to the data.bytes array and then
incrementing by the number of bytes already written. The length of the
remaining bytes is calculated with size-completed.

Reading from an NSInputStream
A similar approach can be used to read a full buffer from an NSInputStream by
creating a readBytes method that returns an array of bytes of a known size and a
means to convert this to an NSData for easier processing/parsing:

extension NSInputStream {
 func readBytes(size:Int) -> [UInt8]? {
 let buffer = Array<UInt8>(count:size,repeatedValue:0)
 var completed = 0
 while completed < size {
 let read = self.read(
 UnsafeMutablePointer(buffer) + completed,
 maxLength: size - completed)
 if read < 0 {
 return nil
 } else {
 completed += read
 }
 }
 return buffer

Parsing Networked Data

[156]

 }
 func readData(size:Int) -> NSData? {
 if let buffer = readBytes(size) {
 return NSData(
 bytes: UnsafeMutablePointer(buffer),
 length: buffer.count)
 } else {
 return nil
 }
 }
}

The readData method returns an NSData, while the readBytes method returns an
array of UInt8 values. The NSData approach is useful in some cases (particularly, for
creating a String from the returned data), and in other cases being able to process
the bytes directly is useful (for example, parsing binary formats). Having both allows
either of these to be used as appropriate.

Synchronous reads can block forever; if the client application requests
exactly 10 bytes but the server only sends 9 bytes, then it will hang
permanently until the tenth byte is sent. It is a better practice to use
asynchronous reads, which cannot block in this way.

Reading and writing hexadecimal and UTF8 data
Being able to process data as UTF8 values or hexadecimal values can be useful in
some protocols. Although both NSString and NSData provide means to convert
to and from UTF8, the syntax is overly verbose, as it is based on preexisting
Objective-C methods.

To facilitate the conversions, extension methods can be created to provide a simple
way of converting to and from UTF8 representations. In addition to class and
instance functions, it is possible to use extensions to add dynamic properties to an
existing object. This can be used to create the utf8data and utf8string properties
on NSData and String by adding extensions in a file Extensions.swift as follows:

extension NSData {
 var utf8string:String {
 return NSString(data:self,
 encoding:NSUTF8StringEncoding)!
 }
}
extension String {

Chapter 6

[157]

 var utf8data:NSData {
 return self.dataUsingEncoding(
 NSUTF8StringEncoding, allowLossyConversion: false)!
 }
}

This allows expressions such as data.utf8string and string.utf8data, which
are much more compact. Each time the expression is evaluated, the associated getter
function will be called.

There is no standard convention for naming extensions in Swift at
the time this book was written. If there are extensions to a single
type of data—such as the streams previously—then the file can be
named [Type]Extensions.swift. Alternatively, the name can
be used for the type of methods called; for example, in this case
UTF8Extensions.swift could have been used.

Parsing hexadecimal data from strings and integers can also be added to the String
and Int types, as follows:

extension String {
 func fromHex() -> Int {
 var result = 0
 for c in self {
 result *= 16
 switch c {
 case "0":result += 0 case "1":result += 1
 case "2":result += 2 case "3":result += 3
 case "4":result += 4 case "5":result += 5
 case "6":result += 6 case "7":result += 7
 case "8":result += 8 case "9":result += 9
 case "a","A":result += 10 case "b","B":result += 11
 case "c","C":result += 12 case "d","D":result += 13
 case "e","E":result += 14 case "f","F":result += 15
 default: break
 }
 }
 return result;
 }
}
extension Int {

Parsing Networked Data

[158]

 func toHex(digits:Int) -> String {
 return NSString(format:"%0\(digits)x",self)
 }
}

This allows hex values to be created with int.toHex and string.fromHex.

Implementing the git protocol
It is possible to write a client to query a remote git server using the git:// protocol
to determine the hashes of remote tags/branches/references.

The git:// protocol works by sending packet lines of data, with
each line prefixed with four hexadecimal digits in ASCII, indicating
the length of the rest of the data (including the four initial digits).
Sending a git-upload-pack request will return a list of references
on the remote repository.

Since the git:// protocol uses packet lines, create a PacketLineExtensions.swift
file with the following content:

extension NSOutputStream {
 func writePacketLine(_ message:String = "") -> Int {
 let data = message.utf8data
 let length = data.length
 if length == 0 {
 return writeData("0000".utf8data)
 } else {
 let prefix = (length + 4).toHex(4).utf8data
 return self.writeData(prefix) + self.writeData(data)
 }
 }
}

When an empty NSData object is passed, the special packet line 0000 is written,
indicating the end of the conversation. When a non-empty NSData is written, the
length of the data is written as a hexadecimal value (including the 4 bytes for the
length) followed by the data itself.

Chapter 6

[159]

This will result in a protocol conversation like:

> 004egit-upload-pack /alblue/com.packtpub.swift.essentials.
git\0host=github.com\0
< 00dfadaa46b98ce211ff819f0bb343395ad6a2ec6ef1 HEAD\0multi_ack
thin-pack side-band side-band-64k ofs-delta shallow no-progress
include-tag multi_ack_detailed symref=HEAD:refs/heads/master
agent=git/2:2.1.1+github-611-gd89bd9f
< 003fadaa46b98ce211ff819f0bb343395ad6a2ec6ef1 refs/heads/master
> 0000
< 0000

Reading a packet line is similar:

extension NSInputStream {
 func readPacketLine() -> NSData? {
 if let data = readData(4) {
 let length = data.utf8string.fromHex()
 if length == 0 {
 return nil
 } else {
 return readData(length - 4)
 }
 } else {
 return nil
 }
 }
 func readPacketLineString() -> NSString? {
 if let data = self.readPacketLine() {
 return data.utf8string
 } else {
 return nil
 }
 }
}

In this case, the first 4 bytes are read to determine what the remaining length is. If it
is zero, a nil value is returned to indicate the end of the stream. If it is non-zero, the
data is read (less the 4 that is used for the packet line length header). An additional
readPacketLineString is provided to allow an easy creation of the packet line as
an NSString.

Parsing Networked Data

[160]

Listing git references remotely
To remotely query a git repository for references, the git-upload-pack command
needs to be sent, along with a reference to the repository in question and optionally
a host as well. To provide an API to query this programmatically, create a
RemoteGitRepository class with an initializer that stores the host, port, and
repository; and a lsRemote function, which returns the value of the references:

class RemoteGitRepository {
 let host:String
 let repo:String
 let port:Int
 init(host:String, repo:String, _ port:Int = 9418) {
 self.host = host
 self.repo = repo
 self.port = port
 }
 func lsRemote() -> [String:String] {
 var refs = [String:String]()
 // load the data
 return refs
 }
}

To load the data from the repository, a connection to the remote host needs
to be made on the default port (in this case, 9418 is the default for the git://
protocol). Once the streams have been opened, the git-upload-pack
[repository]\0host=[host]\0 packet line is sent, and subsequently, lines can be
read of the form hash reference:

if let (input,output) = NSStream.open(host,port) {
 output.writePacketLine(
 "git-upload-pack \(repo)\0host=\(host)\0")
 while true {
 if let response = input.readPacketLineString() {
 let hash = String(response.substringToIndex(41))
 let ref = String(response.substringFromIndex(41))
 if ref.hasPrefix("HEAD") {
 continue
 } else {
 refs[ref] = hash
 }
 } else {
 break

Chapter 6

[161]

 }
 }
 output.writePacketLine()
 input.close()
 output.close()
}

Calling the lsRemote function on a RemoteGitRepository instance with an
appropriate host and repo will return a list of hashes by reference.

Integrating the network call into the UI
Since the network can introduce delays or can even result in a complete failure,
network calls should never be performed on the UI thread. Previously, the
SampleTable was used to introduce a runOnUIThread function. A similar approach
can be used to run a function on a background thread:

func runOnBackgroundThread(fn:()->()) {
 dispatch_async(
 dispatch_get_global_queue(
 DISPATCH_QUEUE_PRIORITY_DEFAULT, 0)
 ,fn)
}

This will permit viewDidLoad to invoke a call in order to query the remote
references from the repository and add them to the table. As before, the call to
update the table must be called from the UI thread. Add the following to the end
of the viewDidLoad method:

runOnBackgroundThread {
 let repo = RemoteGitRepository(host: "github.com",
 repo: "/alblue/com.packtpub.swift.essentials.git")
 for (ref,hash) in repo.lsRemote() {
 self.items += [(ref,hash)]
 }
 self.runOnUIThread(self.tableView.reloadData)
}

Now, when the application is launched, entries corresponding to the branches and
tags in the remote repository should be added to the table.

Parsing Networked Data

[162]

Asynchronous reading and writing
Besides synchronous reading and writing, it is also possible to perform
asynchronous reading and writing. Instead of spinning in a while loop, the
application can use callbacks scheduled on the application's run loop.

To receive callbacks, a class that implements NSStreamDelegate must be created
and assigned to the stream's delegate field. When events occur, the stream method
is called, to which the type of event as well as the associated stream are passed.

The stream is registered with scheduleInRunLoop (using NSRunLoop.mainRunLoop()
with a NSDefaultRunLoopMode mode). Finally, the stream can be opened.

If the stream is opened before the delegate is set or
scheduled in the run loop, then events will not be delivered.

Events are defined in the NSStreamEvent class and include HasSpaceAvailable
(for output streams) and HasBytesAvailable (for input streams). By responding to
callbacks, the application can process results asynchronously.

When using Swift, the NSStreamDelegate is treated as a weak delegate
on the input or output stream. This poses problems when using an inline
class to provide input parsing; doing so will result in an EXC_BAD_ACCESS,
as the delegate is automatically reclaimed by the runtime. This can be
avoided by storing a strong circular reference to self in the initializer and
assigning it to nil when the streams are closed.

Reading data asynchronously from an
NSInputStream
This is especially useful for asynchronous protocols, such as XMPP, which might
send additional messages at arbitrary times. It also allows battery-powered devices
to not spin the CPU, should the remote server be slow or hang.

To receive data asynchronously, a delegate must implement the NSStreamDelegate
method stream(stream:handleEvent). When data is available, the
HasBytesAvailable event will be sent, and data can be read accordingly.

Chapter 6

[163]

To convert the previous example to an asynchronous form, a few changes need to be
made. Firstly, the open extension method created in the Opening a stream connection
section needs to be augmented with a connect method, which does not perform the
open immediately:

class func open(host:String,_ port:Int)
 -> (NSInputStream, NSOutputStream)? {
 if let (input,output) = connect(host,port) {
 input.open()
 output.open()
 return (input,output)
 } else {
 return nil
 }
}
class func connect(host:String,_ port:Int)
 -> (NSInputStream, NSOutputStream)? {
… // as before but with open commented out
 // input!.open()
 // output!.open()
…
}

In order to receive events asynchronously, the delegate must be
set and the stream must be scheduled on a run loop before the
stream is opened.

Creating a stream delegate
To create a stream delegate, create a file called PacketLineParser.swift with the
following content:

class PacketLineParser: NSObject, NSStreamDelegate {
 let output:NSOutputStream
 let callback:(NSString)->()
 var capture:PacketLineParser?
 init(_ output:NSOutputStream, _ callback:(NSString) -> ()) {
 self.output = output
 self.callback = callback
 super.init()
 capture = self
 }
 func stream(stream: NSStream, handleEvent: NSStreamEvent) {

Parsing Networked Data

[164]

 let input = stream as NSInputStream
 if handleEvent == NSStreamEvent.HasBytesAvailable {
 if let line = input.readPacketLineString() {
 callback(line)
 } else {
 output.writePacketLine()
 input.close()
 output.close()
 capture = nil
 }
 }
 }
}

This parser has a callback that is invoked for each packet line read; when the
HasBytesAvailable event is sent, the line is read (using the same synchronous
mechanism as before) and then passed to the callback. Unlike the synchronous
approach, there is no while loop here—when data is available, it triggers the
parsing of the data.

Since this will be assigned to an input stream delegate (which holds
a weak reference), it is necessary to capture a cyclic reference to itself
with capture = self in order to avoid the runtime from evicting
the instance. When the streams are closed, the capture will be set to
nil, which will release the instance.

The readPacketLine returns a nil to indicate either an error or a completed stream;
in this case, an empty packet line is sent (to tell the remote server that no further
interaction is required) and then both the streams are closed.

Dealing with errors
It is necessary to clean up the streams and remove them from run loops, both when
the stream content is successful or when communication errors occur. In addition to
the HasBytesAvailable event, there are events that are sent when the stream's end
is encountered or an error occurs.

These should be handled in the same way as when the connection comes to a natural
end; resources should be tidied, and in particular, the streams should be removed
from run loop processing. Finally, the cyclic reference should be removed to permit
the delegate object to be removed.

Chapter 6

[165]

The existing close code can be moved to its own separate function, and additional
cases of the stream ending or errors occurring can perform the same cleanup:

func stream(stream: NSStream, handleEvent: NSStreamEvent) {
 let input = stream as NSInputStream
 if handleEvent == NSStreamEvent.HasBytesAvailable {
 if let line = input.readPacketLineString() {
 callback(line)
 } else {
 closeStreams(input,output)
 }
 }
 if handleEvent == NSStreamEvent.EndEncountered
 || handleEvent == NSStreamEvent.ErrorOccurred {
 closeStreams(input,output)
 }
}
func closeStreams(input:NSInputStream,_ output:NSOutputStream) {
 if capture != nil {
 capture = nil
 output.removeFromRunLoop(NSRunLoop.mainRunLoop(),
 forMode: NSDefaultRunLoopMode)
 input.removeFromRunLoop(NSRunLoop.mainRunLoop(),
 forMode: NSDefaultRunLoopMode)
 input.delegate = nil
 output.delegate = nil
 if output.streamStatus != NSStreamStatus.Closed {
 output.writePacketLine()
 output.close()
 }
 if input.streamStatus != NSStreamStatus.Closed {
 input.close()
 }
 }
}

Parsing Networked Data

[166]

Listing references asynchronously
To provide a list of references asynchronously, the delegate has to be set up with a
suitable callback that will parse the returned data. Instead of the method returning
a dictionary (which would require synchronous blocking), a callback will be passed
which can be called with references as they are found.

Note that there are two separate callbacks: the PacketLineParser
callback (which reads in the network data and returns the NSString
instances on a per packet line basis) and the reference parsing callback
(which translates the NSString into a (String,String) tuple).

To start the process, the git-upload-pack needs to be sent synchronously, after
which subsequent responses will be processed asynchronously. This can be done
by creating a new method, lsRemoteAsync, which takes a callback function for the
(String,String) tuple:

func lsRemoteAsync(fn:(String,String) -> ()) {
 if let (input,output) = NSStream.connect(host,port) {
 input.delegate = PacketLineParser(output) {
 (response:NSString) -> () in
 let hash = String(response.substringToIndex(41))
 let ref = String(response.substringFromIndex(41))
 if !ref.hasPrefix("HEAD") {
 fn(ref,hash)
 }
 }
 input.scheduleInRunLoop(NSRunLoop.mainRunLoop(),
 forMode: NSDefaultRunLoopMode)
 input.open()
 output.open()
 output.writePacketLine(
 "git-upload-pack \(repo)\0host=\(host)\0")
 }
}

This creates a connection (but without opening the streams), sets the delegate and
schedules the run loop for the input stream, and finally opens both the streams for
interaction. Once this is done, the initial git-upload-pack message is sent as before.
At this point, the lsRemoteAsync method returns, and subsequent events occur
when input data is received from the server.

Chapter 6

[167]

When a line is received through the PacketLineParser callback, it is split into
a reference and a hash and then hands the results to the callback passed into the
argument in the first place.

Asynchronous programming often involves many callbacks. Instead of
a synchronous program that might look like A;B;C; an asynchronous
program often looks like A(callback:B(callback:C)). When
an input trigger occurs—a network request, user interaction, or timer
firing—a sequence of actions can occur via these nested callbacks.

Asynchronous pipelines are generally preferred for battery performance reasons, as
blocking in a while spin loop will waste CPU energy until the condition is satisfied.

Displaying asynchronous references in the UI
To display the asynchronous data to the screen, the callback must be modified to
allow individual elements to update the GUI.

In SampleTable, instead of calling repo.lsRemote (which performs a synchronous
lookup) use repo.lsRemoteAsync. This requires a callback, which can be used to
update the table data and can cause the view to reload the contents:

// for (ref,hash) in repo.lsRemote() {
// self.items += [(ref,hash)]
// }
repo.lsRemoteAsync() { (ref:String,hash:String) in
 self.items += [(ref,hash)]
 self.runOnUIThread(self.tableView.reloadData)
}

Now when the application is run, the references will be updated asynchronously and
the UI will not be blocked by a slow or hung server.

Writing data asynchronously to an NSOutputStream
Asynchronous sending is not as useful as asynchronous reading unless large uploads
are required. If there is a lot of data, then it is unlikely to be written synchronously in
a single write call. It is better to perform any additional writes asynchronously.

Parsing Networked Data

[168]

To write data asynchronously requires storing the completed count as a variable
outside the function. The write method can be used to replace the while loop as
before, by writing a segment of the data on each iteration of the stream method.
Although code isn't needed in this example, this is how the code could look:

…
self.data = data
// initial write to kick off subsequent events
completed = output.write(UnsafePointer(data.bytes),
 maxLength: data.length
…
var completed:Int
var data:NSData?
func stream(stream: NSStream, handleEvent: NSStreamEvent) {
 let output = stream as NSOutputStream
 if handleEvent == NSStreamEvent.HasSpaceAvailable
 && data != nil {
 let size = data!.length
 completed += output.write(
 UnsafePointer(data!.bytes) + completed,
 maxLength: size – completed)
 if completed == size {
 completed = 0
 data = nil
 }
 }
}

Asynchronous data always starts with a call to synchronously write the data. If
not all of the data is written (in other words, completed < size), then subsequent
callbacks will occur on the NSStreamDelegate. This can then pick up where the data
value left off, using a similar technique to the synchronous case but without a while
loop. Instead of the iteration blocking to write the whole data value, the stream call
will be called multiple times (in effect replacing each iteration of the while loop).
In the final run, when completed == size, the data is released and the completion
counter is reset.

Chapter 6

[169]

The stream callback is called enough number of times to write all the data.
If no data is written, then events are no longer called. New data is only
written when an additional value is passed. Care must be taken when
writing data from different threads, since the data value is processed
as an instance variable and overwriting it might cause data to be lost.
The reader is invited to extend the single element data into an array of
outstanding data elements so that they can be queued up appropriately.

Summary
This chapter presented the common techniques to deal with networked data in Swift-
based applications, with a particular focus on how to maximize battery usage on
portable devices using asynchronous techniques to access data.

Since most network requests are likely to provide either a JSON or XML based
representation over HTTP(S), the first section of this chapter covered using
NSURLSession and the asynchronous dataTask operations to pull data down from
a remote server. The second and third sections then presented how this data can be
parsed from either JSON or XML, depending on the format required.

The last section presented how to make network connections directly in order to
deal with protocols other than HTTP, and as an example, showed how a remote git
command can be executed to find out which references are available in a remote git
repository. This was presented in two forms: as a synchronous API (to demonstrate the
technique of how to work with streams and to explain the git protocol) followed by its
conversion to an asynchronous API. This can be used to minimize CPU cycles and thus
battery usage, to allow other such translations to be performed in the future.

The final chapter will present how to integrate all the ideas covered in this book into
an iOS application to display GitHub repositories.

Building a Repository
Browser

Having covered how to integrate the components necessary to build an application,
this chapter will create a repository browser that allows user repositories to be
displayed using the GitHub API.

This chapter will present the following topics:

•	 An overview of the GitHub API
•	 Talking to the GitHub API with Swift
•	 Creating a repository browser
•	 Maintaining selection between view controllers

An overview of the GitHub API
The GitHub API provides a REST-based interface using JSON to return information
about users and repositories. Version 3 of the API is documented at https://
developer.github.com/v3/ and is the version used in this book.

The API is rate limited; at the time of writing, anonymous requests can
be made up to sixty times per hour, while logged in users have a higher
limit. The code repository for this book has sample responses that can be
used for testing and development purposes.

https://developer.github.com/v3/
https://developer.github.com/v3/

Building a Repository Browser

[172]

The root endpoint
The main entry point to GitHub is the root endpoint. For the main GitHub site this
is https://api.github.com and for GitHub Enterprise installations it is https://
hostname.example.org/api/v3/ along with user credentials. The endpoint
provides a collection of URLs that can be used to find specific resources:

{
 ...
 "issue_search_url": "https://api.github.com/search/issues?q={query}
{&page,per_page,sort,order}",
 "issues_url": "https://api.github.com/issues",
 "repository_url": "https://api.github.com/repos/{owner}/{repo}",
 "user_url": "https://api.github.com/users/{user}", "user_
repositories_url": "https://api.github.com/users/{user}/
repos{?type,page,per_page,sort}",
 ...}

The services are URI templates. Text in braces {} is replaced on demand with the
values of parameters; text that starts with {?a,b,c} is expanded to form ?a=&b=&c=
if present and missing otherwise. For example, with a user of alblue, the user_url
of the user resource at https://api.github.com/users/{user} becomes
https://api.github.com/users/alblue.

The user resource
The user resource for a specific user contains information about their repositories
(repos_url), name, and other information, such as a location and blog (if provided).
In addition, the avatar_url provides a URL to an image which can be used to display
the user's avatar. For example, https://api.github.com/users/alblue contains:

{
 ...
 "login": "alblue",
 "avatar_url": "https://avatars.githubusercontent.com/u/76791?v=2",
 "repos_url": "https://api.github.com/users/alblue/repos",
 "name": "Alex Blewitt",
 "blog": "http://alblue.bandlem.com",
 "location": "Milton Keynes, UK",
 ...
}

The repos_url link can be used to find the user's repositories. This is the same that
is reported at the root endpoint as the user_repositories_url with the {user}
already replaced with the username.

https://api.github.com
https://hostname.example.org/api/v3/
https://hostname.example.org/api/v3/

Chapter 7

[173]

The repositories resource
Repositories for a user can be accessed via the repos_url or user_repositories_
url references. This returns an array of JSON objects containing information such as:

[{
 "name": "com.packtpub.e4.swift.essentials",
 "html_url":

 "https://github.com/alblue/com.packtpub.swift.essentials",
 "clone_url":
 "https://github.com/alblue/com.packtpub.swift.essentials.git",
 "description": "Swift Essentials",
},{
 "name": "com.packtpub.e4",
 "html_url":

 "https://github.com/alblue/com.packtpub.e4",
 "clone_url":
 "https://github.com/alblue/com.packtpub.e4.git",
 "description":
 "Eclipse Plugin Development by Example: Beginners Guide",
},{
 "name": "com.packtpub.e4.advanced",
 "html_url":

 "https://github.com/alblue/com.packtpub.e4.advanced",
 "clone_url":
 "https://github.com/alblue/com.packtpub.e4.advanced.git",
 "description":
 "Advanced Eclipse plug-in development",
}...]

The RepositoryBrowser project
The client is a Master Detail application called RepositoryBrowser. This sets
up a template that can be used on a large device with a split view controller, or a
navigator view controller on a small device. In addition, actions to add entries
are created.

To build the APIs necessary to display content, several utility classes are needed:

•	 The URITemplate class processes URI templates with a set of key/value pairs
•	 The Threads class allows functions to be run in the background or in the

main thread

https://github.com/alblue/com.packtpub.swift.essentials
https://github.com/alblue/com.packtpub.e4
https://github.com/alblue/com.packtpub.e4.advanced

Building a Repository Browser

[174]

•	 The NSURLExtensions class provides easy parsing JSON objects from a URL
•	 The DictionaryExtensions class provides a means of creating a Swift

dictionary from a JSON object
•	 The GitHubAPI class provides access to the GitHub remote API

URI templates
URI templates are defined in RFC 6570 at https://tools.ietf.org/html/rfc6570.
They can be used to replace sequences of text surrounded by {} in a URI. Although
GitHub's API uses optional values {?...}, the example client presented in this
chapter will not need to use these, and so they can be ignored in this implementation.

The template class replaces the parameters with values from a dictionary. To create
the API, it is useful to write a test case first, following test-driven development. A
test case class can be created by navigating to File | New | File... | iOS | Source |
Test Case Class and creating a subclass of XCTestCase in Swift. The test code
will look like:

import XCTest
class URITemplateTests: XCTestCase {
 func testURITemplate() {
 let template = "http://example.com/{blah}/blah/{?blah}"
 let replacement = URITemplate.replace(
 template,values: ["blah":"foo"])
 XCTAssertEqual("http://example.com/foo/blah/",
 replacement,"Template replacement")
 }
}

The replace function requires string processing. Although the function could be a
class function or an extension on String, having it as a separate class makes testing
easier. The function signature looks like:

import Foundation
class URITemplate {
 class func replace(template:String, values:[String:String])
 -> String {
 var replacement = template
 while true {
 // replace until no more {…} are present
 }
 return replacement
 }
}

https://tools.ietf.org/html/rfc6570

Chapter 7

[175]

Make sure that the URITemplate class is added to the test
target as well; otherwise, the test script will not compile.

The parameters are matched using a regular expression such as {[^}]*}. To search
or access this from a string involves a Range of String.Index values. These are
like integer indexes into the string, but instead of referring to a character by its byte
offset, the index is an abstract representation. (Some character encodings such as
UTF-8 use multiple bytes to represent a single character.)

The rangeOfString method takes a string or regular expression and returns a range
if there is a match present (or nil if there isn't). This can be used to detect whether a
pattern is present, or to break out of the while loop:

// replace until no more {…} are present
if let parameterRange = replacement.rangeOfString(
 "\\{[^}]*\\}",
 options: NSStringCompareOptions.RegularExpressionSearch) {
 // perform a replacement of parameterRange
} else {
 break
}

The parameterRange contains a start and end index that represent the locations
of the { and } characters. The value of the parameter can be extracted with
replacement.substringWithRange(parameterRange). If it starts with {?, it is
replaced with an empty string:

// perform a replacement of parameterRange
var value:String
let parameter = replacement.substringWithRange(parameterRange)
if parameter.hasPrefix("{?") {
 value = ""
} else {
 // substitute with real replacement
}
replacement.replaceRange(parameterRange, with: value)

Building a Repository Browser

[176]

Finally, if the replacement is of the form {user}, then the value of user is acquired
from the dictionary and used as the replacement value. To get the name of the
parameter, startIndex has to be advanced to the successor, and endIndex has to
be reversed to the predecessor to account for the { and } characters:

// substitute with real replacement
let start = parameterRange.startIndex.successor()
let end = parameterRange.endIndex.predecessor()
let name = replacement.substringWithRange(
 Range<String.Index>(start:start,end:end))
value = values[name] ?? ""

Now, when the test is run by navigating to Product | Test or by pressing Command +
U, the string replacement will pass.

The ?? is an optional test that is used to return the first argument, if
it is present, and the second argument, if it is nil.

Background threading
Background threading allows functions to be trivially launched on the UI thread or
on a background thread, as appropriate. This was explained in Chapter 6, Parsing
Networked Data, in the Networking and user interface section. Add the following as
Threads.swift:

import Foundation
class Threads {
 class func runOnBackgroundThread(fn:()->()) {
 dispatch_async(dispatch_get_global_queue(
 DISPATCH_QUEUE_PRIORITY_DEFAULT, 0),fn)
 }
 class func runOnUIThread(fn:()->()) {
 if(NSThread.isMainThread()) {
 fn()
 } else {
 dispatch_async(dispatch_get_main_queue(), fn)
 }
 }
}

Chapter 7

[177]

The Threads class can be tested with the following test case:

import XCTest
class ThreadsTest: XCTestCase {
 func testThreads() {
 Threads.runOnBackgroundThread {
 XCTAssertFalse(NSThread.isMainThread(),
 "Running on background thread")
 Threads.runOnUIThread {
 XCTAssertTrue(NSThread.isMainThread(),
 "Running on UI thread")
 }
 }
 }
}

When the tests are run by pressing Command + U, the tests should pass.

Parsing JSON dictionaries
As many network responses are returned in JSON format, and to make JSON parsing
easier, extensions can be added to the NSURL class to facilitate acquiring and parsing of
content loaded from network locations. Instead of designing a synchronous extension
that blocks until data is available, using a callback function is better practice. Create a
file named NSURLExtensions.swift with the following content:

extension NSURL {
 func withJSONDictionary(fn:[String:String] -> ()) {
 let session = NSURLSession.sharedSession()
 session.dataTaskWithURL(self) {
 data,response,error -> () in
 if let json = NSJSONSerialization.JSONObjectWithData(
 data, options: nil, error: nil) as? [String:AnyObject] {
 // fn(json)
 } else {
 fn([String:String]())
 }
 }.resume()
 }
}

Building a Repository Browser

[178]

This provides an extension for an NSURL to provide a JSON dictionary. However, the
data type returned from the JSONObjectWithData method is [String:AnyObject],
not [String:String]. Although it might be expected that it could just be cast to the
right type, the as will perform a test and if there are mixed values (such as a number
or nil) then the entire object is considered invalid. Instead, the JSON data structure
must be converted to a [String:String] type. Add the following as a standalone
function to NSURLExtensions.swift:

func toStringString(dict:[String:AnyObject]) -> [String:String] {
 var result:[String:String] = [:]
 for (key,value) in dict {
 if let valueString = value as? String {
 result[key] = valueString
 } else {
 result[key] = "\(value)"
 }
 }
 return result
}

This can be used to convert [String:AnyObject] in the JSON function:

fn(toStringString(json))

The function can be tested with a test class using the data: protocol by passing in a
base64 encoded string representing the JSON data. To create a base64 representation,
create a string, convert it to a UTF-8 data object, and then convert it back to a string
representation with a data: prefix:

import XCTest
class NSURLExtensionsTest: XCTestCase {
 func testNSURLJSON() {
 let json = "{\"test\":\"value\"}".
 dataUsingEncoding(NSUTF8StringEncoding)!
 let base64 = json.base64EncodedDataWithOptions(nil)
 let data = NSString(data: base64,
 encoding: NSUTF8StringEncoding)!
 let dataURL = NSURL(string:"data:text/plain;base64,\(data)")!
 dataURL.withJSONDictionary {
 dict in
 XCTAssertEqual(dict["test"] ?? "", "value",
 "Value is as expected")
 }
 }
}

Chapter 7

[179]

Parsing JSON arrays of dictionaries
A similar approach can be used to parse arrays of dictionaries (such as those
returned by the list repositories resource). The differences here are the type
signatures (which have extra square brackets [] to represent the array) and the fact
that a map is being used to process the elements in the list:

func withJSONArrayOfDictionary(fn:[[String:String]] -> ()) {
 …
 if let json = NSJSONSerialization.JSONObjectWithData(
 data, options: nil, error: nil) as? [[String:AnyObject]] {
 fn(json.map(toStringString))
 } else {
 fn([[String:String]]())
 }

The test can be extended as well:

let json = "[{\"test\":\"value\"}]".
 dataUsingEncoding(NSUTF8StringEncoding)!
…
dataURL.withJSONArrayOfDictionary {
 dict in XCTAssertEqual(dict[0]["test"] ?? "", "value",
 "Value is as expected")
}

Creating the client
Now that the utilities are complete, the GitHub client API can be created. Once that
is complete, it can be integrated with the user interface.

Talking to the GitHub API
A Swift class will be created to talk to the GitHub API. This will connect to the root
endpoint host and download the JSON for the service URLs so that subsequent
network connections can be made.

Building a Repository Browser

[180]

To ensure that network requests are not repeated, an NSCache will be used to save
the responses. This will automatically be emptied when the application is under
memory pressure:

import Foundation
class GitHubAPI {
 let base:NSURL
 let services:[String:String]
 let cache = NSCache()
 class func connect() -> GitHubAPI? {
 return connect("https://api.github.com")
 }
 class func connect(url:String) -> GitHubAPI? {
 if let nsurl = NSURL(string:url) {
 return connect(nsurl)
 } else {
 return nil
 }
 }
 class func connect(url:NSURL) -> GitHubAPI? {
 if let data = NSData(contentsOfURL:url) {
 if let json = NSJSONSerialization.JSONObjectWithData(
 data,options:nil,error:nil) as? [String:String] {
 return GitHubAPI(url,json)
 } else {
 return nil
 }
 } else {
 return nil
 }
 }
 init(_ base:NSURL, _ services:[String:String]) {
 self.base = base
 self.services = services
 }
}

As Swift 1.0 doesn't support conditional initializers, the pattern of using
a class function to perform the initialization and return an optional value
is a common one. With Swift 1.1, the implementation can be written as a
convenience initializer init?, which can return an instance or nil.

Chapter 7

[181]

This can be tested by saving the response from the main GitHub API site at
https://api.github.com into an api/index.json file, by creating an api directory
in the root level of the project and running curl https://api.github.com >
index.json from a Terminal prompt. Inside Xcode, add the api directory to the
project by navigating to File | Add Files to Project... or by pressing Command +
Option + A, and ensure it is associated with the test target.

It can then be accessed with an NSBundle:

import XCTest
class GitHubAPITests: XCTestCase{
 func testApi() {
 let bundle = NSBundle(forClass:GitHubAPITests.self)
 if let url = bundle.URLForResource("api/index",
 withExtension:"json") {
 if let api = GitHubAPI.connect(url) {
 XCTAssertTrue(true,"Created API")
 } else {
 XCTAssertFalse(true,"Failed to parse \(url)")
 }
 } else {
 XCTAssertFalse(true,"Failed to find sample API")
 }
 }
}

The dummy API should not be part of the main application's
target, but rather of the test target. As a result, instead of using
NSBundle.mainBundle to acquire the application's bundle,
NSBundle(forClass) is used.

Returning repositories for a user
The APIs returned from the services lookup include user_repositories_url,
which is a template that can be instantiated with a specific user. It is possible to add a
method to the GitHubAPI class that will return the URL of the user's repositories
as follows:

func getURLForUserRepos(user:String) -> NSURL {
 let userRepositoriesURL = services["user_repositories_url"]!
 let userRepositoryURL = URITemplate.replace(

https://api.github.com

Building a Repository Browser

[182]

 userRepositoriesURL, values:["user":user])
 let url = NSURL(string:userRepositoryURL, relativeToURL:base)!
 return url
}

As this might be called multiple times, the URL should be cached based on the user:

func getURLForUserRepos(user:String) -> NSURL {
 let key = "r:\(user)"
 if let url = cache.objectForKey(key) as? NSURL {
 return url
 } else {
 // acquire url as before
 cache.setObject(url, forKey:key)
 return url
 }
}

Once the URL is known, data can be parsed as an array of JSON objects using an
asynchronous callback function to notify when the data is ready:

func withUserRepos(user:String, fn:([[String:String]]) -> ()) {
 let key = "repos:\(user)"
 if let repos = cache.objectForKey(key) as? [[String:String]] {
 fn(repos)
 } else {
 let url = getURLForUserRepos(user)
 url.withJSONArrayOfDictionary {
 repos in
 self.cache.setObject(repos,forKey:key)
 fn(repos)
 }
 }
}

This can be tested using a simple addition to the GitHubAPITests class:

api.withUserRepos("alblue") {
 array in
 XCTAssertEqual(22,array.count,"Number of repos")
}

Chapter 7

[183]

The sample data contains 22 repositories in the following file, but the
GitHub API might contain a different value for this user in the future:
https://raw.githubusercontent.com/alblue/com.packtpub.
swift.essentials/master/RepositoryBrowser/api/users/
alblue/repos.json.

Accessing data through the AppDelegate
When building an iOS application that manages data, deciding where to declare the
variable is the first decision to be made. When implementing a view controller, it is
common for view-specific data to be associated with that class; but if the data needs
to be used across multiple view controllers, there is more choice.

A common approach is to wrap everything into a singleton, which is an object
that is instantiated once. This is typically achieved with private var in the
implementation class, with class func that returns (or instantiates on demand)
the singleton.

The Swift private keyword ensures that the variable is only visible in
the current source file. The default visibility is internal, which means
that code is only visible in the current module; the public keyword
means that it is visible outside of the module as well.

Another approach is to use the AppDelegate itself. This is in effect already a
singleton that can be accessed with UIApplication.sharedApplication().
delegate, and is set up prior to any other object accessing it.

The AppDelegate is used to store the reference to the GitHubAPI, which could use a
preference store or other external means to define what instance to connect to, along
with the list of users and a cache of repositories:

class AppDelegate {
 var api:GitHubAPI!
 var users:[String] = []
 var repos:[String:[String]] = [:]
 func application(application: UIApplication,
 didFinishLaunchingWithOptions: [NSObject: AnyObject]?)
 -> Bool {
 api = GitHubAPI.connect()

https://raw.githubusercontent.com/alblue/com.packtpub.swift.essentials/master/RepositoryBrowser/api/users/alblue/repos.json
https://raw.githubusercontent.com/alblue/com.packtpub.swift.essentials/master/RepositoryBrowser/api/users/alblue/repos.json
https://raw.githubusercontent.com/alblue/com.packtpub.swift.essentials/master/RepositoryBrowser/api/users/alblue/repos.json

Building a Repository Browser

[184]

 users = ["alblue"]
 return true
 }
}

To facilitate loading repositories from view controllers, a function can be added to
AppDelegate to provide a list of repositories for a given user:

func loadRepoNamesFor(user:String, fn:()->()) {
 repos[user] = []
 api.withUserRepos(user) {
 results in
 self.repos[user] = results.map {
 (r:[String:String]) -> String
 in r["name"]!
 }
 fn()
 }
}

Accessing repositories from view
controllers
In the MasterViewController (created from the Master Detail template; or a new
subclass of a UITableViewController), define an instance variable AppDelegate
that is assigned in the viewDidLoad method:

class MasterViewController:UITableViewController {
 var app:AppDelegate!
 override func viewDidLoad() {
 app = UIApplication.sharedApplication().delegate
 as? AppDelegate
 …
 }
}

The table view controller provides data in a number of sections and rows. The
numberOfSections method will return the number of users, with the section title
being the username (indexed by the users list):

override func numberOfSectionsInTableView(tableView: UITableView)
 -> Int {
 return app.users.count

Chapter 7

[185]

}
override func tableView(tableView: UITableView,
 titleForHeaderInSection section: Int) -> String? {
 return app.users[section]
}

The numberOfRowsInSection function is called to determine how many rows are
present in each section. If the number is not known, 0 can be returned while running
a background query to find the right answer:

override func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 let user = app.users[section]
 if let repos = app.repos[user] {
 return repos.count
 } else {
 app.loadRepoNamesFor(user) {
 Threads.runOnUIThread {
 tableView.reloadSections(
 NSIndexSet(index: section),
 withRowAnimation: .Automatic)
 }
 }
 return 0
 }
}

Remember to reload the section on the UI thread, as otherwise the
updates won't display correctly.

Finally, the repository name needs to be shown in the value of the cell. If a default
UITableViewCell function is used, then the value can be set on the textLabel;
if it is loaded from a storyboard prototype cell, then the content can be accessed
appropriately using tags:

override func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath)
 -> UITableViewCell {
 let cell = tableView.dequeueReusableCellWithIdentifier(
 "Cell", forIndexPath: indexPath) as UITableViewCell
 let user = app.users[indexPath.section]

Building a Repository Browser

[186]

 let repo = app.repos[user]![indexPath.row]
 cell.textLabel.text = repo
 return cell
}

When the application is run, the list of repositories will be shown, grouped by
the user.

Adding users
At the moment, the list of users is hard-coded into the application. It would be
preferable to remove this hard-coded list and allow users to be added on demand.
Create an addUser function in the AppDelegate class:

func addUser(user:String) {
 users += [user]
 users.sort({ $0 < $1 })
}

This allows the detail controller to call the addUser function and ensure that the list
of users is ordered alphabetically.

The $0 and $1 are anonymous parameters expected by the sort
function. This is a shorthand form of users.sort({ user1, user2
in user1 < user2}).

Chapter 7

[187]

The add button can be created in the MasterDetailView in the viewDidLoad
method, such that the insertNewObject method is called when tapped:

override func viewDidLoad() {
 super.viewDidLoad()
 let addButton = UIBarButtonItem(barButtonSystemItem: .Add,
 target: self, action: "insertNewObject:")
 self.navigationItem.rightBarButtonItem = addButton
 …
}

When the add button is selected, a UIAlertView dialog can be shown with a
delegate that will be called back to add the user. As before, the delegate must
maintain a reference to itself until it completes, as otherwise, the object will be
deallocated immediately.

There is a replacement for UIAlertView in iOS 8 called
UIAlertController. This can be considered if iOS 8 and
above are being targeted.

Add (or replace) the insertNewObject function in the MasterViewController
as follows:

func insertNewObject(sender: AnyObject) {
 let alert = UIAlertView(title: "Add user",
 message: "Please select a user to add",
 delegate: AddAlertDelegate(app,tableView),
 cancelButtonTitle: "Cancel",
 otherButtonTitles: "Add")
 alert.alertViewStyle = .PlainTextInput
 alert.textFieldAtIndex(0)?.placeholder = "Username"
 alert.show()
}

Building a Repository Browser

[188]

The AddAlertDelegate performs two functions; when completed, it calls the addUser
on the AppDelegate; and secondly, it invokes the reloadData on the table, which
ensures that the data is correctly shown. To do this, the delegate needs to have
references to both the app delegate and the tableView, which are passed in
the initializer:

class AddAlertDelegate: NSObject, UIAlertViewDelegate {
 var capture:AddAlertDelegate?
 var tableView:UITableView
 var app:AppDelegate
 init(_ app:AppDelegate,_ tableView:UITableView) {
 self.app = app
 self.tableView = tableView
 super.init()
 capture = self // prevent immediate deallocation
 }
 func alertView(alertView: UIAlertView,
 clickedButtonAtIndex buttonIndex: Int) {
 if buttonIndex == 1 {
 if let user = alertView.textFieldAtIndex(0)?.text {
 app.addUser(user)
 Threads.runOnUIThread {
 self.tableView.reloadData()
 }
 }
 }
 capture = nil
 }
}

Chapter 7

[189]

Now the users can be added in the UI by clicking the add (+) button on the top-right
of the application. Each time the application is launched, the users array will be
empty, and users can be re-added.

Users could be persisted between launches using NSUserDefaults.
standardUserDefaults and the setObject:forKey and
stringArrayForKey methods. The implementation of this is left to
the reader.

Implementing the detail view
The final step is to implement the detail view, so that when a repository is selected
per-repository information is shown. At the time the repository is selected from the
master screen, the username and repository name are known. These can be used to
pull more information from the repository and add items into the detail view.

Update the view in the storyboard to add four labels and four label titles for
username, repository name, number of watchers, and number of open issues. Wire
these into outlets in the DetailViewController:

@IBOutlet weak var userLabel: UILabel?
@IBOutlet weak var repoLabel: UILabel?
@IBOutlet weak var issuesLabel: UILabel?
@IBOutlet weak var watchersLabel: UILabel?

Building a Repository Browser

[190]

To set content on the details view, user and repo will be stored as (optional) strings,
and the additional data will be stored in string key/value pairs. When they are
changed, the setupUI method should be called to redisplay content:

var user: String? { didSet { setupUI() } }
var repo: String? { didSet { setupUI() } }
var data:[String:String]? { didSet { setupUI() } }

The setupUI call will also need to be called after the viewDidLoad method is called,
to ensure that the UI is set up as expected:

override func viewDidLoad() { setupUI() }

In the setupUI method, the labels might not have been set, so they need to be tested
with an if let statement before setting the content:

func setupUI() {
 if let label = userLabel { label.text = user }
 if let label = repoLabel { label.text = repo }
 if let label = issuesLabel {
 label.text = self.data?["open_issues_count"]
 }
 if let label = watchersLabel {
 label.text = self.data?["watchers_count"]
 }
}

If using the standard template, the splitViewController of the AppDelegate needs
to be changed to use return true after the detail view is amended:

func splitViewController(
 splitViewController: UISplitViewController,
 collapseSecondaryViewController
 secondaryViewController:UIViewController!,
 ontoPrimaryViewController
 primaryViewController:UIViewController!) -> Bool {
 return true
}

splitViewController:collapseSecondaryViewController
determines whether or not the first page shown is the master (true) or
detail (false) page.

Chapter 7

[191]

Transitioning between the master and detail
views
The connection between the master view and the detail view is triggered by the
showDetail segue. This can be used to extract the selected row from the table, which
can then be used to extract the selected row and section:

override func prepareForSegue(segue: UIStoryboardSegue,
 sender: AnyObject?) {
 if segue.identifier == "showDetail" {
 if let indexPath = self.tableView.indexPathForSelectedRow() {
 // get the details controller
 // set the details
 }
 }
}

The details controller can be accessed from the segue's destination controller—except
that the destination is the navigation controller, so it needs to be unpacked one
step further:

// get the details controller
let controller = (segue.destinationViewController as
 UINavigationController).topViewController
 as DetailViewController
// set the details

Next, the details need to be passed in, which can be extracted from the indexPath as
in the prior parts of the application:

let user = app.users[indexPath.section]
let repo = app.repos[user]![indexPath.row]
controller.repo = repo
controller.user = user

The data needs to be acquired asynchronously using the withUserRepos method
created previously. As this returns an array of repositories, it is necessary to filter out
the one with the desired name:

app.api.withUserRepos(user) {
 repos -> () in
 controller.data = repos.filter({$0["name"] == repo}).first
}

Building a Repository Browser

[192]

Finally, to ensure that the application works in split mode with a
SplitViewController, the back button needs to be displayed if in split mode:

controller.navigationItem.leftBarButtonItem =
 self.splitViewController?.displayModeButtonItem()
controller.navigationItem.leftItemsSupplementBackButton = true

Running the application now will show a set of repositories and when one is
selected, the details will be shown:

If a crash is seen when displaying the detail view, check in the
Main.storyboard that the connector for a non-existent field is
not defined. Otherwise, an error similar to this class is not key
value coding-compliant for the key detailDescriptionLabel
might be seen, which is caused by the Storyboard attempting to
assign a missing outlet in the code.

Loading the user's avatar
The user might have an avatar or icon that they have uploaded to GitHub. This
information is stored in the user info, which is accessible from a separate lookup in
the GitHub API. Each user's avatar will be stored as a reference with avatar_url
in the user info document such as https://api.github.com/users/alblue,
as follows:

{
 …
 "avatar_url": "https://avatars.githubusercontent.com/u/76791?v=2",
 …
}

https://api.github.com/users/alblue

Chapter 7

[193]

This URL represents an image that can be used in the header for the
user's repository.

To add support for this, the user info needs to be added to the GitHubAPI class:

func getURLForUserInfo(user:String) -> NSURL {
 let key = "ui:\(user)"
 if let url = cache.objectForKey(key) as? NSURL {
 return url
 } else {
 let userURL = services["user_url"]!
 let userSpecificURL = URITemplate.replace(userURL,
 values:["user":user])
 let url = NSURL(string:userSpecificURL, relativeToURL:base)!
 cache.setObject(url,forKey:key)
 return url
 }
}

This looks up the user_url service from the GitHub API, which returns the
following URI template:

 "user_url": "https://api.github.com/users/{user}",

This can be instantiated with the user, and then the image can be loaded
asynchronously:

import UIKit
...
func withUserImage(user:String, fn:(UIImage -> ())) {
 let key = "image:\(user)"
 if let image = cache.objectForKey(key) as? UIImage {
 fn(image)
 } else {
 let url = getURLForUserInfo(user)
 url.withJSONDictionary {
 userInfo in
 if let avatar_url = userInfo["avatar_url"] {
 if let avatarURL = NSURL(string:avatar_url,
 relativeToURL:url) {
 if let data = NSData(contentsOfURL:avatarURL) {
 if let image = UIImage(data: data) {
 self.cache.setObject(image,forKey:key)
 fn(image)
} } } } } } }

Building a Repository Browser

[194]

Once the support to load the user's avatar has been implemented, it can be added to
the view's header to display in the user interface.

Displaying the user's avatar
The table view that presents the repository information by user can be amended
so that along with the user's name, it also shows their avatar at the same time.
Currently this is done in the tableView:titleForHeaderInSection method, but an
equivalent tableView:viewForHeaderInSection method is available that provides
more customization options.

Although the method signature indicates that the return type is UIView, in fact it
must be a subtype of UITableViewHeaderFooterView. Unfortunately there is no
support for editing or customizing these in Storyboard, so they must be implemented
programmatically.

To implement the viewForHeaderInSection method, obtain the username as before,
and set it to the textLabel of a newly created UITableViewHeaderFooterView.
Then, in the asynchronous image loader, create a frame that has the same origin but
a square size for the image, and then create and add the image as a subview of the
header view. The method will look like:

override func tableView(tableView: UITableView,
 viewForHeaderInSection section: Int) -> UIView? {
 let cell = UITableViewHeaderFooterView()
 let user = app.users[section]
 cell.textLabel.text = user
 app.api.withUserImage(user) {
 image in
 let minSize = min(cell.frame.height, cell.frame.width)
 let squareSize = CGSize(width:minSize, height:minSize)
 let imageFrame = CGRect(origin:cell.frame.origin,
 size:squareSize)
 Threads.runOnUIThread {
 let imageView = UIImageView(image:image)
 imageView.frame = imageFrame
 cell.addSubview(imageView)
 cell.setNeedsLayout()
 cell.setNeedsDisplay()
 }
 }
 return cell
}

Chapter 7

[195]

Now when the application is run, the avatar will be shown overlaying the
user's repositories.

Summary
This chapter has shown how to integrate the subjects created in this book to integrate
into a functional application for interacting with a remote network service such as
GitHub and be able to present that information in a tabular way.

By ensuring that all network requests are implemented on background threads, and
returned data is updated on the UI thread, the application will remain responsive to
the user's input. Graphics and custom views can be created to provide headings, or
the Storyboard could be modified to include more graphics for each repository.

Appendix
Learning any language initially focusses on the syntax and semantics of the
language, but it quickly moves on to learning the suite of both standard and
additional libraries that allow programmers to be productive. A single book cannot
hope to list all the possible libraries that will be needed; this book is intended to be
the start of a learning journey.

For further reading, this appendix presents a number of additional resources that
might be useful to the reader in order to continue the journey. In addition, look out
for other books by Packt Publishing that present the different aspects of Swift. This
list of resources is necessarily incomplete; new resources will become available after
the publication of this book, but you might be able to find new developments as they
occur by following the feeds and posts of the resources below.

Language
The Swift language is developed by Apple, and a number of documents are available
from the Swift developer page at https://developer.apple.com/swift/. This
includes a language reference guide and an introduction to the standard library:

•	 The Swift programming language: https://developer.apple.com/
library/ios/documentation/Swift/Conceptual/Swift_Programming_
Language/

•	 The Swift standard library reference: https://developer.
apple.com/library/ios/documentation/General/Reference/
SwiftStandardLibraryReference/

•	 Integrating Swift and Cocoa: https://developer.apple.com/library/
ios/documentation/Swift/Conceptual/BuildingCocoaApps/

•	 Swifter provides a list of all the Swift functions: http://swifter.natecook.
com

https://developer.apple.com/swift/
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/
https://developer.apple.com/library/ios/documentation/General/Reference/SwiftStandardLibraryReference/
https://developer.apple.com/library/ios/documentation/General/Reference/SwiftStandardLibraryReference/
https://developer.apple.com/library/ios/documentation/General/Reference/SwiftStandardLibraryReference/
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/BuildingCocoaApps/
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/BuildingCocoaApps/
http://swifter.natecook.com
http://swifter.natecook.com

Appendix

[198]

Twitter users
There are a lot of active Twitter users who use Swift; in many cases, posts will
be marked with the #swift hashtag and can be found at http://twitter.
com/search?q=%23swift. Popular users that the author follows include (in an
alphabetical order of their Twitter handle names):

•	 @AirspeedSwift: A good selection of tweets and re-tweets of
Swift-related subjects

•	 @ChrisEidhof: The author of the Functional Swift book and @objcio
•	 @CodeWithChris: A collection of tutorials on iOS programming
•	 @CodingInSwift: Crossposts by a collection of Swift resources
•	 @CompileSwift: Posts on Swift
•	 @cwagdev: Chris Wagner writes some of the iOS tutorials with Ray

Wenderlich
•	 @FunctionalSwift: A selection of functional snippets along with a

Functional Swift book
•	 @LucasDerraugh: The creator of video tutorials on YouTube
•	 @NatashaTheRobot: A great summary of what's happening along with

newsletters and cross references
•	 @nnnnnnnn: Nate Cook, who reviewed this book and provides the Swifter list

above
•	 @PracticalSwift: A good collection of blog posts that talk about the

Swift language
•	 @rwenderlich: Ray Wenderlich has many posts related to iOS development,

a wealth of information, and more recently Swift topics as well
•	 @SketchyTech: A collection of blog posts on Swift
•	 @SwiftCastTV: Video tutorials of Swift
•	 @SwiftEssentials: The Twitter feed for this book
•	 @SwiftLDN: Swift meetups based in London, who also invite great Swift talks

and presenters

http://twitter.com/search?q=%23swift
http://twitter.com/search?q=%23swift

Appendix

[199]

In addition to the Swift-focused Twitter users, there are a number of other Cocoa
(Objective-C) developers who blog regularly on topics related to the iOS and OSX
platforms. Given that any Objective-C framework can be integrated into a Swift app
(and vice versa), quite often there will be useful information that you can get by
reading these posts:

•	 @Cocoanetics: Oliver Drobnik writes about iOS and provides training
•	 @CocoaPods: CocoaPods is a dependency management system for

Objective-C frameworks (pods) and is being extended into the Swift domain
•	 @Mattt: Matt Thompson writes about many iOS subjects and is the author of

the AFNetworking and Alamofire networking libraries
•	 @MikeAbdullah: Mike Abdullah writes about general iOS development
•	 @MikeAsh: Mike Ash knows everything there is to know, and for what he

doesn't know, he finds out
•	 @MZarra: Marcus S Zarra has written a lot about Core Data and syncing
•	 @NSHipster: A collection of assembled iOS and Cocoa posts, organized by

Matt Thompson
•	 @objcio: A monthly publication on Objective-C topics, with some Swift
•	 @PerlMunger: Matt Long posts about Swift, Cocoa, and iOS

The reviewers of this book are:

•	 @AnilVrgs: Anil Varghese
•	 @ArvidGerstmann: Arvid Gerstmann
•	 @jiaaro: James Robert
•	 @nnnnnnnn: Nate Cook

The author's personal and book twitter accounts are:

•	 @AlBlue: The author's twitter account
•	 @SwiftEssentials: The book's twitter account

Meetups such as @SwiftLdn keep a track of interesting Swift writers in a Twitter
list at https://twitter.com/SwiftLDN/lists/swift-writers/members, which
might have more up-to-date recommendations than this section, as well as of the Ray
Wenderlich team at https://twitter.com/rwenderlich/lists/raywenderlich-
com-team/members.

https://twitter.com/SwiftLDN/lists/swift-writers/members
https://twitter.com/rwenderlich/lists/raywenderlich-com-team/members
https://twitter.com/rwenderlich/lists/raywenderlich-com-team/members

Appendix

[200]

Blogs and tutorial sites
•	 https://developer.apple.com/swift/blog/: This is the official

Apple Swift blog
•	 http://airspeedvelocity.net: This is the blog for @AirspeedSwift
•	 http://alblue.bandlem.com/Tag/swift/: This is the author's blog

on Swift
•	 http://mikeabdullah.net: This is Mike Abdullah's blog
•	 http://mikeash.com: Here, you can find the Friday Q&A series on all

things iOS and OSX
•	 http://natecook.com/blog/tags/swift/: This is Nate Cook's blog

on Swift
•	 http://nshipster.com: This is the blog for @NSHipster
•	 http://objc.io: This is the blog for @objcio
•	 http://practicalswift.com: This is collected by @PracticalSwift
•	 http://sketchytech.blogspot.co.uk: This is a collected blog of Swift

articles by @SketychTech
•	 http://swiftnews.curated.co: This is collected by @NatashaTheRobot
•	 http://www.cimgf.com: This presents a collection of topics on Cocoa, by

Marcus S Zarra and others
•	 http://www.raywenderlich.com: This has a collection of tutorials about

iOS development, including both Cocoa and Swift

Meetups
A number of local iOS developer groups existed before Swift was created; they have
since then been supplanted by Swift-specific groups. These will, of course, vary by
geographic location, but a few meetup sites exist such as Eventbrite at http://www.
eventbrite.co.uk and Meetup at http://www.meetup.com.

It is also likely that there are Twitter groups or meetups near you; for example, in
London, there is @SwiftLDN at https://twitter.com/SwiftLDN who have regular
meetings listed at http://www.meetup.com/swiftlondon/. In New York, the
http://www.meetup.com/NYC-Swift-Developers/ group is fairly active. In San
Francisco, both http://www.meetup.com/swift-language/ and http://www.
meetup.com/San-Francisco-SWIFT-developers/ are active.

https://developer.apple.com/swift/blog/
http://airspeedvelocity.net
http://alblue.bandlem.com/Tag/swift/
http://mikeabdullah.net
http://mikeash.com
http://natecook.com/blog/tags/swift/
http://nshipster.com
http://objc.io
http://practicalswift.com
http://sketchytech.blogspot.co.uk
http://swiftnews.curated.co
http://www.cimgf.com
http://www.raywenderlich.com
http://www.eventbrite.co.uk
http://www.eventbrite.co.uk
http://www.meetup.com
https://twitter.com/SwiftLDN
http://www.meetup.com/swiftlondon/
http://www.meetup.com/swift-language/
http://www.meetup.com/San-Francisco-SWIFT-developers/
http://www.meetup.com/San-Francisco-SWIFT-developers/

Appendix

[201]

Afterword
A journey of a thousand miles begins with a single step. Your journey to writing
great Swift applications has just begun. As with any journey, traveling companions
can provide support, assistance, and encouragement, and many of the companions
listed here can provide connections to many more. I hope you enjoy your journey.

Index
Symbols
 ad2play tool

URL 57
@IBAction attribute 97
@IBOutlet attribute 81, 94, 97
.icns files 60
@NatashaTheRobot

URL 200
@NSHipster blog

URL 200
@objc attribute 94
@objcio blog

URL 200
@PracticalSwift blog

URL 200
@SketychTech

URL 200
@SwiftLDN

URL 200
.xcassets extension 60
 XCTest framework 67

A
addSubview method 64
advanced techniques, playground

about 44
asynchronous code, running 46
values, capturing 44, 45

ambiguous constraint 104
animatable properties 131
anonymous arguments 26
AppDelegate class

about 74-76
data, accessing 183, 184

Apple Swift blog
URL 200

App Store
about 59-61
URL 61

argument
used, for multiple return values 26

array, collection types 12
AsciiDoc

about 57
URL 57

associated values, enum 71
asynchronous reading

about 162
errors, dealing with 164, 165
of data, from NSInputStream 162

asynchronous references
displaying, in UI 167

asynchronous writing
about 162
errors, dealing with 164, 165
of data, to NSInputStream 167, 169

attributes inspector 86
Auto Layout

and custom views 120, 121
constraints 101
using 101

AVPlayerViewController class 85

B
background threading 176
base class 67
break statement 22
Bundle Identifier 61

[204]

C
CAEAGLLayer class 127
CAEmitterLayer class 127
CAGradientLayer class 127
CAReplicatorLayer class 127
CAScrollLayer class 127
CAShapeLayer class 127
CATextLayer class 127
CATiledLayer class 127
CATransformLayer class 127
classes, master-detail iOS application

AppDelegate 74
DetailViewController class 74
MasterViewController 74

classes, Swift
creating 65-67

client
creating 179-181
data, accessing through

AppDelegate class 183
user repositories, returning 181

closed range, Swift range operators 18
collection types

array 12
dictionary 12

colored labels
displaying, with QuickLook 41

CommonMark
URL 56

compiled Swift scripts 32
completion handler 138
computed properties 66
conditional logic

about 15
if statement 15
switch statements 17

console output, playground
viewing 38

constants 11
constraints, Auto Layout

about 122, 123
adding 101, 102
adding, to Press Me scene 103
missing constraints, adding 105

continue statement 22
Core Animation 127

Core Graphics 124
custom graphics

change, responding to 135, 136
drawing, in drawRect 125
implementing, with drawRect 124
layers, using 126, 127
orientation changes, responding to 126
progress bar, adding 130-132
ProgressView, creating from layers 128, 129
stop square, adding 129, 130
view, clipping 133

custom view controllers
using 93, 94

custom views, creating
about 109
adding, to table 123
and Auto Layout 120, 121
class, wiring 115-117
constraints 122, 123
data, displaying in table 112-114
interface builder used 110
intrinsic content size 118
table view controller, creating 110, 111
UIView, subclassing 119, 120
view, defining in xib file 114
visual format language 122, 123

D
data

displaying, in table 112-114
reading, asynchronously from

NSInputStream 162, 163
reading, from NSOutputStream 155, 156
writing ,asynchronously to

NSInputStream 168
writing, to NSOutputStream 154

datagram 152
data, loading from URLs

about 137-139
errors, dealing with 139
functions, running on main thread 143
missing content, dealing with 140
nested if 141
networking 143
switch statements 141
user interfaces 143

[205]

detail view
implementing 189, 190

DetailViewController class 74-81
dictionary, collection types 12
direct network connections

about 152
asynchronous reading 162
asynchronous writing 162
stream connection, opening 153
synchronous reading 154
synchronous writing 154

documentation header
entries, adding 54, 55

documentation section, playground
adding 51, 52
styling 53

document outline 89
drawRect

graphics, drawing in 125
used, for implementing

custom graphics 123, 124
dynamic property content 110

E
enum (enumeration), Swift

associated values 71
creating 70
raw values 70

equality operator
differentiating, with identity operator 16

Eventbrite
URL 200

expression list 22
extension 153
external parameter name 24

F
fill color 125
floating point literals 9
for loops

iteration, using with 21
functions, Swift

anonymous arguments 26
arguments 26
creating 23
default values 25

multiple return values 26
named arguments 24
optional arguments 25
structured values, returning 29

G
getter (accessor) 66
GitHub API

overview 171
repositories resource 173
root endpoint 172
URL 171, 181
user resource 172

GitHub repository
URL 74

git protocol
implementing 158, 159

git references
remote listing 160, 161

Grand Central Dispatch (GCD) 143

H
half-open range, Swift range operators 18
hashbang 31
hole 142
HTTP

URL 137
Human Interface Guidelines (HIG) 85

I
identifier 113
identity operator

differentiating, with equality operator 16
if statement 15, 16
image asset files 60
images

displaying, with QuickLook 42
Info.plist file 60
initial view controller 86
inout argument 146
interface builder

actions, calling from 97, 99
files 60
used, for creating custom views 110

[206]

interpolated string 10
interpreted Swift scripts 31
intrinsic content size

about 118
dealing with 106

iOS application 59, 60
iOS developer program

URL 59
iteration

about 18, 20
break statement 22
continue statement 22
over keys 21
over values 21
using, with for loops 21

J
JavaScript Object Notation (JSON)

errors, handling 146
parsing 145, 146

JSON arrays of dictionaries
parsing 179

JSON dictionaries
parsing 177, 178

K
keys

iterating 21

L
label 22
layers

custom graphics with 127

M
main queue 143
main thread

about 143
functions, running on 144

map 179
Markdown 56

master-detail iOS application
AppDelegate class 74
creating 72-74
DetailViewController class 79
MasterViewController class 77

Meetup
about 200
URL 200

members 65
methods 65
missing constraints

adding 105, 106
missing content

dealing with 140
multiple values

returning 26-29

N
named arguments 24
navigation controller

adding 90, 91
scenes, naming 92
views, naming 92

nested if statement 141, 142
network call

integrating, into UI 161
nil coalescing operator 14
Node

URL 56
npm

URL 56
NSInputStream

data, asynchronous reading 162, 163
reading from 155

NSOutputStream
asynchronous data, writing 167
data, writing to 154

NSURL class 137
NSURLSession class 138, 139
NSXMLParserDelegate protocol 148
numeric literals

about 8
binary format 8
hexadecimal format 8
octal format 8

[207]

O
object library 86
objects

displaying, with QuickLook 41
optional arguments 25, 26
optional binding 147
optional protocol methods 68
optional type 13, 14
OS X bundle 49
outlets

about 94
view controller, connecting to 94-97

P
packet lines 158
parser delegate, XML

creating 148
pattern match operator (~=) 16
playground

about 35
advanced techniques 44
AsciiDoc 57
console output, viewing 38
creating 36, 37
documentation 47
documentation section, adding 51, 52
documentation section, styling 53
entries, adding in documentation

header 54, 55
format 49, 50
generating automatically 56
limitations 57, 58
Markdown 56
overview 36
resources, adding 54
timeline, viewing 39, 40
used, for learning 47-49

positional arguments 23
Press Me scene

constraints, adding 103, 104
Product Name 61
progress bar

adding 130-132
ProgressView

creating, from layers 128

properties 65
property observer 136
protocol, Swift

creating 68
GitHubDetails protocol 69
optional method 68
required method 68

prototype cells 111
prototype table cell 110

Q
QuickLook

used, for displaying colored labels 41
used, for displaying images 42
used, for displaying objects 41

QuickLook icon 37
QuickLook supported objects 41

R
rangeOfString method 175
raw values, enum 70
references

asynchronous listing 166, 167
relationship segue 90
repositories, accessing from view controllers

about 184, 185
detail view, implementing 189, 190
master and detail views,

transitioning between 191, 192
users, adding 186-189
user's avatar, displaying 194
user's avatar, loading 192, 193

repositories, for user
returning 181, 182

repositories resource, GitHub API 173
RepositoryBrowser project

about 173, 174
background threading 176
JSON arrays of dictionaries, parsing 179
JSON dictionaries, parsing 177
URI templates 174

root endpoint, GitHub API
about 172
URL 172

run loop 162

[208]

S
Safari-specific meta tags

URL 55
scenes

about 84
naming 91
using 85
views, adding 86, 87

segue
about 79, 84, 89
triggering, with code 99, 100
used, for passing data 100, 101

segue identifiers 99
SequenceType protocol 21
setter (mutator) 66
shared session 138
shorthand external parameter names 24
singleton 183
single view iOS application

creating 60, 61, 62
storyboard, removing 62
view controller, setting up 63

static content 110
stop square

adding 129, 130
storyboard

about 84
integrating, with Swift 92
removing 62, 63

storyboard files 60
storyboard project

creating 84
stream connection

opening 153, 154
stream delegate

creating 163, 164
string literals

about 10
stroke color 125
struct 29
structured values

returning 29, 30
subclasses, Swift 67
Swift

about 7, 8
classes, creating 65

collection types 12
conditional logic 15
constants 11
enum, creating 70
floating point literals 9
functions 23
integrating, with storyboard 92
nil coalescing operator 14
numeric literals 8
optional type 13
protocol, creating 68
string literals 10
subclasses 67
testing 68
tests 67
URL 49
variables 11
view controller, connecting

to outlets 94-97
Swift blog

URL 200
Swift functions

URL 197
Swift, integrating with storyboard

action, calling from interface builder 97
custom view controllers, using 93, 94
data, passing with segue 100
segue, triggering with code 99
views, connecting to outlets 94

Swift language
about 197
URL 197

swift-playground-builder
URL 56

Swift range operators
closed range 18
half-open range 18

Swift scripts
about 31
compiled Swift scripts 32
interpreted Swift scripts 31

Swift standard library reference
URL 197

switch statements 17, 18, 141, 142
synchronous reading

about 154
from NSOutputStream 155

[209]

hexadecimal 156, 158
UTF8 data 156, 158

synchronous writing
about 154
of data, to NSOutputStream 154

T
table

data, displaying 112, 113
table view controller

creating 110, 111
tasks

data task 138
download task 138
resumed 138
suspended 138
upload task 138

ternary if expression 16
timeline, playground

viewing 39, 40
trailing closure 143
tuple 21, 141
Twitter users

about 198
@AirspeedSwift 198
@ChrisEidhof 198
@CodeWithChris 198
@CodingInSwift 198
@CompileSwift 198
@cwagdev 198
@FunctionalSwift 198
@LucasDerraugh 198
@NatashaTheRobot 198
@nnnnnnnn 198
@PracticalSwift 198
@rwenderlich 198
@SketchyTech 198
@SwiftCastTV 198
@SwiftEssentials 198
@SwiftLDN 198

U
UI

asynchronous references, displaying 167
network call, integrating 161

UICollectionViewController class 85
UINavigationController class 85
UIPageViewController class 85
UISplitViewController class 85
UITableView class 116
UITableViewController class 85
UIView class

about 109, 110
subclassing, for creating

new views 119, 120
UIViewController class 85
URI templates, RepositoryBrowser project

about 174-176
URL 174

URLs
data, loading from 137-139

user resource, GitHub API 172
users

adding 186-189
user's avatar

displaying 194, 195
loading 192-194

UTF8 data
synchronous reading 158
synchronous writing 156, 158

V
value-binding pattern 142
values

iterating 21
variables 11
variadic functions 27
view

clipping 133
defining, in xib file 114, 115
testing, in Xcode 134, 135

view controller
about 84
adding, to scenes 86, 87
grid views 85
naming 92
paginated views 85
repositories, accessing 184, 185
setting 63-65
split views 85
tabbed views 85

[210]

tabular views 85
using 85

viewDidLoad method 77
visual format language 122, 123

W
weak attribute 81
weak storage type 96
wildcard pattern 142

X
Xcode 59
xcrun command 7
xib file

view, defining 114, 115
XML

data, downloading 149
data, parsing 149-152
parser delegate, creating 148
parsing 147

Thank you for buying
Swift Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Xamarin Mobile Application
Development for iOS
ISBN: 978-1-78355-918-3 Paperback: 222 pages

If you know C# and have an iOS device, learn to use
one language for multiple devices with Xamarin

1.	 A clear and concise look at how to create your
own apps, building on what you already know
of C#.

2.	 Create advanced and elegant apps by yourself.

3.	 Ensure that the majority of your code can
also be used with Android and Windows
Mobile 8 devices.

Learning iPhone Game
Development with Cocos2D 3.0
ISBN: 978-1-78216-014-4 Paperback: 434 pages

Harness the power of Cocos2D to create your own
stunning and engaging games for iOS

1.	 Find practical solutions to many real-world
game development problems.

2.	 Create games from start to finish by writing
code and following detailed step-by-step
instructions.

3.	 Full of illustrations and diagrams, practical
examples, and tips for deeper understanding of
game development in Cocos2D for iPhone.

Please check www.PacktPub.com for information on our titles

iOS Development with Xamarin
Cookbook
ISBN: 978-1-84969-892-4 Paperback: 386 pages

Over 100 exciting recipes to help you develop iOS
applications with Xamarin

1.	 Explore the new features of Xamarin and learn
how to use them.

2.	 Step-by-step recipes give you everything you
need to get developing with Xamarin.

3.	 Full of useful tips and best practices on creating
iOS applications.

Cocos2d-x Game Development
Essentials
ISBN: 978-1-78398-786-3 Paperback: 136 pages

Create iOS and Android games from scratch
using Cocos2d-x

1.	 Create and run Cocos2d-x projects on iOS and
Android platforms.

2.	 Find practical solutions to many real-world
game development problems.

3.	 Learn the essentials of Cocos2d-x by writing
code and following step-by-step instructions.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Exploring Swift
	Getting started with Swift
	Numeric literals
	Floating point literals
	String literals
	Variables and constants
	Collection types
	Optional types
	Nil coalescing operator

	Conditional logic
	If statements
	Switch statements

	Iteration
	Iterating over keys and values in a dictionary
	Iteration with for loops
	Break and continue

	Functions
	Named arguments
	Optional arguments and default values
	Anonymous arguments
	Multiple return values and arguments
	Returning structured values

	Command-line Swift
	Interpreted Swift scripts
	Compiled Swift scripts

	Summary

	Chapter 2: Playing with Swift
	Getting started with playgrounds
	Creating a playground
	Viewing the console output
	Viewing the timeline

	Displaying objects with Quick Look
	Showing colored labels
	Showing images

	Advanced techniques
	Capturing values explicitly
	Running asynchronous code

	Playgrounds and documentation
	Learning with playgrounds
	Understanding the playground format
	Adding a new documentation section
	Styling the documentation
	Adding resources to a playground
	Additional entries in the header
	Generating playgrounds automatically
	Markdown
	AsciiDoc

	Limitations of playgrounds
	Summary

	Chapter 3: Creating an iOS Swift App
	Understanding iOS applications
	Creating a single view iOS application
	Removing the storyboard
	Setting up the view controller

	Swift classes, protocols, and enums
	Classes in Swift
	Subclasses and testing in Swift
	Protocols in Swift
	Enums in Swift
	Raw values
	Associated values

	Creating a master-detail iOS application
	The AppDelegate class
	The MasterViewController class
	The DetailViewController class

	Summary

	Chapter 4: Storyboard Applications with Swift and iOS
	Storyboards, scenes, and segues
	Creating a storyboard project
	Scenes and view controllers
	Adding views to the scene
	Segues

	Adding a navigation controller
	Naming scenes and views

	Swift and storyboards
	Custom view controllers
	Connecting views to outlets in Swift
	Calling actions from interface builder
	Triggering a segue with code
	Passing data with segues

	Using Auto Layout
	Understanding constraints
	Adding constraints
	Adding a constraint with the drag and drop method
	Adding constraints to the Press Me scene
	Adding missing constraints

	Summary

	Chapter 5: Creating Custom
Views in Swift
	An overview of UIView
	Creating new views with interface builder
	Creating a table view controller
	Showing data in the table
	Defining a view in a xib file
	Wiring a custom view class
	Dealing with intrinsic size

	Creating views by subclassing UIView
	Auto Layout and custom views
	Constraints and the visual format language
	Adding the custom view to the table

	Custom graphics with drawRect
	Drawing graphics in drawRect
	Responding to orientation changes

	Custom graphics with layers
	Creating a ProgressView from layers
	Adding the stop square
	Adding a progress bar
	Clipping the view
	Testing views in Xcode
	Responding to change

	Summary

	Chapter 6: Parsing Networked Data
	Loading data from URLs
	Dealing with errors
	Dealing with missing content
	Nested if and switch statements
	Networking and user interfaces
	Running functions on the main thread

	Parsing JSON
	Handling errors

	Parsing XML
	Creating a parser delegate
	Downloading the data
	Parsing the data

	Direct network connections
	Opening a stream connection
	Synchronous reading and writing
	Writing data to an NSOutputStream
	Reading from an NSInputStream
	Reading and writing hexadecimal and UTF8 data
	Implementing the git protocol
	Listing git references remotely
	Integrating the network call into the UI

	Asynchronous reading and writing
	Reading data asynchronously from an NSInputStream
	Creating a stream delegate
	Dealing with errors
	Listing references asynchronously
	Displaying asynchronous references in the UI
	Writing data asynchronously to an NSOutputStream

	Summary

	Chapter 7: Building a Repository Browser
	Overview of the GitHub API
	The root endpoint
	The user resource
	The repositories resource

	The RepositoryBrowser project
	URI templates
	Background threading
	Parsing JSON dictionaries
	Parsing JSON arrays of dictionaries

	Creating the client
	Talking to the GitHub API
	Returning repositories for a user
	Accessing data through the AppDelegate

	Accessing repositories from view controllers
	Adding users
	Implementing the detail view
	Transitioning between the master and the detail views
	Loading the user's avatar
	Displaying the user's avatar

	Summary

	Appendix
	Language
	Twitter users
	Blogs and tutorial sites
	Meetups
	Afterword

	Index

