

R High Performance
Programming

Overcome performance difficulties in R with a range
of exciting techniques and solutions

Aloysius Lim

William Tjhi

BIRMINGHAM - MUMBAI

R High Performance Programming

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2015

Production reference: 1230115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-926-3

www.packtpub.com

www.packtpub.com

Credits

Authors
Aloysius Lim

William Tjhi

Reviewers
Richard Cotton

Kirill Müller

John Silberholz

Commissioning Editor
Kunal Parikh

Acquisition Editor
Richard Brookes-Bland

Content Development Editor
Susmita Sabat

Technical Editor
Shiny Poojary

Copy Editor
Neha Vyas

Project Coordinator
Milton Dsouza

Proofreaders
Ameesha Green

Clyde Jenkins

Jonathan Todd

Indexer
Tejal Soni

Graphics
Sheetal Aute

Valentina D'silva

Production Coordinator
Komal Ramchandani

Cover Work
Komal Ramchandani

About the Authors

Aloysius Lim has a knack for translating complex data and models into
easy-to-understand insights. As cofounder of About People, a data science and
design consultancy, he loves solving problems and helping others to find practical
solutions to business challenges using data. His breadth of experience—7 years in
the government, education, and retail industries—equips him with unique
perspectives to find creative solutions.

My deepest thanks go to God for the opportunity to write this
book and share the knowledge that I have been given. My lovely
wife, Bethany, has been a tremendous source of support and
encouragement throughout this project. Thank you dear, for all
your love. Many thanks to my partner William for his wonderful
friendship. He has been a source of inspiration and insights
throughout this journey.

William Tjhi is a data scientist with years of experience working in academia,
government, and industry. He began his data science journey as a PhD candidate
researching new algorithms to improve the robustness of high-dimensional data
clustering. Upon receiving his doctorate, he moved from basic to applied research,
solving problems among others in molecular biology and epidemiology using
machine learning. He published some of his research in peer-reviewed journals and
conferences. With the rise of Big Data, William left academia for industry, where he
started practicing data science in both business and public sector settings. William
is passionate about R and has been using it as his primary analysis tool since his
research days. He was once part of Revolution Analytics, and there he contributed
to make R more suitable for Big Data.

I would like to thank my coauthor, Aloysius. Your hard work,
patience, and determination made this book possible.

About the Reviewers

Richard Cotton is a data scientist with a mixed background in proteomics, debt
collection, and chemical health and safety, and he has worked extensively on tools
to give nontechnical users access to statistical models. He is the author of the book
Learning R, O'Reilly, and has created a number of popular R packages, including
assertive, regex, pathological, and sig. He works for Weill Cornell Medical College
in Qatar.

Kirill Müller holds a diploma in computer science and currently works as a
research assistant at the Institute for Transport Planning and Systems of the Swiss
Federal Institute of Technology (ETHZ) in Zurich. He is an avid R user and has
contributed to several R packages.

John Silberholz is a fourth year PhD student at the MIT Operations Research
Center, working under advisor Dimitris Bertsimas. His thesis research focuses on
data-driven approaches to design novel chemotherapy regimens for advanced cancer
and approaches to identify effective population screening strategies for cancer. His
research interests also include analytical applications in the fields of bibliometrics
and heuristic evaluation. John codeveloped 15.071x: The Analytics Edge, a massive
open online course (MOOC), which teaches machine learning and optimization
using R and spreadsheet solvers.

Before coming to MIT, John completed his BS degree in mathematics and computer
science from the University of Maryland. He completed internships as a software
developer at Microsoft and Google, and he cofounded Enertaq, an electricity
grid reliability start-up.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials
for immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Table of Contents
Preface	 1
Chapter 1: Understanding R's Performance – Why Are R
Programs Sometimes Slow?	 9

Three constraints on computing performance – CPU, RAM,
and disk I/O	 10
R is interpreted on the fly	 12
R is single-threaded	 13
R requires all data to be loaded into memory	 14
Algorithm design affects time and space complexity	 15
Summary	 18

Chapter 2: Profiling – Measuring Code's Performance	 19
Measuring total execution time	 20

Measuring execution time with system.time()	 20
Repeating time measurements with rbenchmark	 22
Measuring distribution of execution time with microbenchmark	 24

Profiling the execution time	 24
Profiling a function with Rprof()	 25
The profiling results	 27

Profiling memory utilization	 28
Monitoring memory utilization, CPU utilization, and disk I/O using
OS tools	 31
Identifying and resolving bottlenecks	 32
Summary	 35

Chapter 3: Simple Tweaks to Make R Run Faster	 37
Vectorization	 38
Use of built-in functions	 39
Preallocating memory	 41

Table of Contents

[ii]

Use of simpler data structures	 43
Use of hash tables for frequent lookups on large data	 45
Seeking fast alternative packages in CRAN	 46
Summary	 47

Chapter 4: Using Compiled Code for Greater Speed	 49
Compiling R code before execution	 49

Compiling functions	 50
Just-in-time (JIT) compilation of R code	 53

Using compiled languages in R	 54
Prerequisites	 54
Including compiled code inline	 54
Calling external compiled code	 58
Considerations for using compiled code	 61

R APIs	 61
R data types versus native data types	 62
Creating R objects and garbage collection	 62
Allocating memory for non-R objects	 63

Summary	 64
Chapter 5: Using GPUs to Run R Even Faster	 65

General purpose computing on GPUs	 66
R and GPUs	 66

Installing gputools	 67
Fast statistical modeling in R with gputools	 68
Summary	 72

Chapter 6: Simple Tweaks to Use Less RAM	 73
Reusing objects without taking up more memory	 74
Removing intermediate data when it is no longer needed	 78
Calculating values on the fly instead of storing them persistently	 81
Swapping active and nonactive data	 83
Summary	 84

Chapter 7: Processing Large Datasets with Limited RAM	 85
Using memory-efficient data structures	 85

Smaller data types	 88
Sparse matrices	 89
Symmetric matrices	 90
Bit vectors	 91

Using memory-mapped files and processing data in chunks	 92
The bigmemory package	 92
The ff package	 96

Summary	 100

Table of Contents

[iii]

Chapter 8: Multiplying Performance with Parallel Computing	 101
Data parallelism versus task parallelism	 102
Implementing data parallel algorithms	 106
Implementing task parallel algorithms	 109

Running the same task on workers in a cluster	 109
Running different tasks on workers in a cluster	 111

Executing tasks in parallel on a cluster of computers	 113
Shared memory versus distributed memory parallelism	 115
Optimizing parallel performance	 119
Summary	 120

Chapter 9: Offloading Data Processing to Database Systems	 121
Extracting data into R versus processing data in a database	 122
Preprocessing data in a relational database using SQL	 122
Converting R expressions to SQL	 127

Using dplyr	 127
Using PivotalR	 129

Running statistical and machine learning algorithms in a database	 132
Using columnar databases for improved performance	 136
Using array databases for maximum scientific-computing
performance	 139
Summary	 140

Chapter 10: R and Big Data	 141
Understanding Hadoop	 142
Setting up Hadoop on Amazon Web Services	 143
Processing large datasets in batches using Hadoop	 146

Uploading data to HDFS	 147
Analyzing HDFS data with RHadoop	 148
Other Hadoop packages for R	 153

Summary	 153
Index	 155

Preface
In a world where data is becoming increasingly important, business people and
scientists need tools to analyze and process large volumes of data efficiently. R is one
of the tools that have become increasingly popular in recent years for data processing,
statistical analysis, and data science. While R has its roots in academia, it is now used
by organizations across a wide range of industries and geographical areas.

But the design of R imposes some inherent limits on the size of the data and the
complexity of computations that it can manage efficiently. This can be a huge
obstacle for R users who need to process the ever-growing volume of data in
their organizations.

This book, R High Performance Programming, will help you understand the situations
that often pose performance difficulties in R, such as memory and computational
limits. It will also show you a range of techniques to overcome these performance
limits. You can choose to use these techniques alone, or in various combinations
that best fit your needs and your computing environment.

This book is designed to be a practical guide on how to improve the performance
of R programs, with just enough explanation of why, so that you understand the
reasoning behind each solution. As such, we will provide code examples for every
technique that we cover in this book, along with performance profiling results that
we generated on our machines to demonstrate the performance improvements.
We encourage you to follow along by entering and running the code in your
own environment to see the performance improvements for yourself.

If you would like to understand how R is designed and why it has performance
limitations, the R Internals documentation (http://cran.r-project.org/doc/
manuals/r-release/R-ints.html) will provide helpful clues.

http://cran.r-project.org/doc/manuals/r-release/R-ints.html
http://cran.r-project.org/doc/manuals/r-release/R-ints.html

Preface

[2]

This book is written based on open source R because it is the most widely used
version of R and is freely available to anybody. If you are using a commercial
version of R, check with your software vendor to see what performance
improvements they might have made available to you.

The R community has created many new packages to improve the performance
of R, which are available on the Comprehensive R Archive Network (CRAN)
(http://cran.r-project.org/). We cannot analyze every package on
CRAN—there are thousands of them—to see if they provide performance
enhancements for specific operations. Instead, this book focuses on the most common
tasks for R programmers and introduces techniques that you can use on any R project.

What this book covers
Chapter 1, Understanding R's Performance – Why Are R Programs Sometimes Slow?,
kicks off our journey by taking a peek under R's hood to explore the various ways
in which R programs can hit performance limits. We will look at how R's design
sometimes creates performance bottlenecks in R programs in terms of computation
(CPU), memory (RAM), and disk input/output (I/O).

Chapter 2, Profiling – Measuring Code's Performance, introduces a few techniques that
we will use throughout the book to measure the performance of R code, so that we
can understand the nature of our performance problems.

Chapter 3, Simple Tweaks to Make R Run Faster, describes how to improve the
computational speed of R code. These are basic techniques that you can use in
any R program.

Chapter 4, Using Compiled Code for Greater Speed, explores the use of compiled code
in another programming language such as C to maximize the performance of our
computations. We will see how compiled code can perform faster than R, and look
at how to integrate compiled code into our R programs.

Chapter 5, Using GPUs to Run R Even Faster, brings us to the realm of modern
accelerators by leveraging Graphics Processing Units (GPUs) to run complex
computations at high speed.

Chapter 6, Simple Tweaks to Use Less RAM, describes the basic techniques to
manage and optimize RAM utilization of your R programs to allow you to
process larger datasets.

http://cran.r-project.org/

Preface

[3]

Chapter 7, Processing Large Datasets with Limited RAM, explains how to process
datasets that are larger than the available RAM using memory-efficient data
structures and disk resident data formats.

Chapter 8, Multiplying Performance with Parallel Computing, introduces parallelism
in R. We will explore how to run code in parallel in R on a single machine and
on multiple machines. We will also look at the factors that need to be considered
in the design of our parallel code.

Chapter 9, Offloading Data Processing to Database Systems, describes how certain
computations can be offloaded to an external database system. This is useful to
minimize Big Data movements in and out of the database, and especially when
you already have access to a powerful database system with computational
power and speed for you to leverage.

Chapter 10, R and Big Data, concludes the book by exploring the use of Big Data
technologies to take R's performance to the limit.

If you are in a hurry, we recommend that you read the following chapters first, then
supplement your reading with other chapters that are relevant for your situation:

•	 Chapter 1, Understanding R's Performance – Why Are R Programs
Sometimes Slow?

•	 Chapter 2, Profiling – Measuring Code's Performance
•	 Chapter 3, Simple Tweaks to Make R Run Faster
•	 Chapter 6, Simple Tweaks to Use Less RAM

What you need for this book
All the codes in this book were developed in R 3.1.1 64-bit on Mac OS X 10.9.
Wherever possible, they have also been tested on Ubuntu desktop 14.04 LTS
and Windows 8.1. All code examples can be downloaded from https://github.
com/r-high-performance-programming/rhpp-2015.

To follow along the code examples, we recommend you to install R 3.1.1 64-bit
or a later version in your environment.

We also recommend you to run R in a Unix environment (this includes Linux and
Mac OS X). While R runs on Windows, some packages that we will use, for example,
"bigmemory" runs only in a Unix environment. Whenever there are differences
between Unix and Windows in our code examples, we will indicate them.

https://github.com/r-high-performance-programming/rhpp-2015
https://github.com/r-high-performance-programming/rhpp-2015

Preface

[4]

You will need the 64-bit version of R, as certain operations (for example, creating a
vector with 231 or more elements) are not possible in the 32-bit version. Also, the
64-bit version of R can make use of as much memory as is available on your system,
whereas the 32-bit version is limited to not more than 4 GB of memory (on some
operating systems, the limit can be as low as 2 GB).

You will also need to install packages in your R environment, as the examples in
several chapters will depend on additional packages.

The examples in some chapters require other software or packages to run. These
will be listed in the respective chapters along with installation instructions.

If you do not have access to some of the software and tools required for the
examples, you can run them on Amazon Web Services (AWS). In particular, the
examples in Chapter 5, Using GPUs to Run R Even Faster, require a computer with an
NVIDIA GPU with CUDA capabilities; those in Chapter 9, Offloading Data Processing
to Database Systems, require various database systems; and those in Chapter 10, R and
Big Data, require Hadoop.

To use AWS, log in to http://aws.amazon.com/ with your Amazon account.
Create an account if you do not have one. Creating an account is free, but there
are charges for using servers, storage, and other resources. Consult the AWS
website for the latest prices in your preferred region.

AWS services are provided in different regions around the world. At the time of
writing this book, there are eight regions—three in the United States, one in Europe,
three in the Asia Pacific, and one in South America. Pick any region you like, such as
the one closest to where you are or the one with the lowest prices. To select a region,
go to AWS Console (http://console.aws.amazon.com) and select the region in the
upper-right corner. Once you have selected a region, use the same region for all the
AWS resources you need for the examples in this book.

Before setting up any compute resource, such as a server or Hadoop cluster, you
need a key pair to log in to the server. If you do not already have an AWS Elastic
Compute Cloud (EC2) key pair, follow these steps to generate one:

1.	 Go to AWS Console and click on EC2.
2.	 Click on Key Pairs in the menu on the left.
3.	 Click on Create Key Pair.
4.	 Enter a name for the new key pair (for example, mykey).
5.	 Once you click on Create, the private key (for example, mykey.pem)

will be downloaded on your computer.

http://aws.amazon.com/
http://console.aws.amazon.com

Preface

[5]

On Linux and Mac OS X, change the permissions of the private key file to allow
only the read access to the owner; this can be done with chmod 400 mykey.pem
in a Terminal window.

Who this book is for
If you are already an R programmer and you want to find ways to improve the
efficiency of your code, then this book is for you. While you need to be familiar
with and comfortable using R, you do not need deep expertise in the language.
The skills that you need to benefit from this book are:

•	 Installing, upgrading and running R on your computer
•	 Installing and upgrading CRAN packages within your R environment
•	 Creating and manipulating basic data structures like vectors, matrices,

lists, and data frames
•	 Using and converting between different R data types
•	 Performing arithmetic, logical, and other basic R operations
•	 Using R control statements such as if, for, while, and repeat
•	 Writing R functions
•	 Plotting charts using R Graphics

If you are new to R and want to learn how to write R programs, there are many
books, online courses, tutorials, and other resources available. Just search for
them using your favorite search engine.

Conventions
In this book, you will find a number of styles of text that distinguish among
different kinds of information. Here are some examples of these styles, and
an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "To
compile the function, we will use the cmpfun() function in the compiler package."

Preface

[6]

A block of code is set as follows:

fibonacci_rec <- function(n) {
 if (n <= 1) {
 return(n)
 }
 return(fibonacci_rec(n - 1) + fibonacci_rec(n - 2))
}

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Be sure
to select the Package authoring installation and Edit the system PATH options
in the installation wizard."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[7]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works, in any form, on the Internet,
please provide us with the location address or website name immediately so that
we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Understanding R's
Performance – Why Are R

Programs Sometimes Slow?
R is a great tool used for statistical analysis and data processing. When it was first
developed in 1993, it was designed as a tool that would teach data analysis courses.
Because it is so easy to use, it became more and more popular over the next 20 years,
not only in academia, but also in government and industry. R is also an open source
tool, so its users can use it for free and contribute new statistical packages to the
R public repository called the Comprehensive R Archive Network (CRAN). As
the CRAN library became richer with more than 6,000 well-documented and
ready-to-use packages at the time of writing this book, the attractiveness of
R increased even further. In these 20 years, the volume of data being created,
transmitted, stored, and analyzed, by organizations and individuals alike, has also
grown exponentially. R programmers who need to process and analyze the ever
growing volume of data sometimes find that R's performance suffers under such
heavy loads. Why does R sometimes not perform well, and how can we overcome
its performance limitations? This book examines the factors behind R's performance
and offers a variety of techniques to improve the performance of R programs, for
example, optimizing memory usage, performing computations in parallel, or even
tapping the computing power of external data processing systems.

Before we can find the solutions to R's performance problems, we need to
understand what makes R perform poorly in certain situations. This chapter
kicks off our exploration of the high-performance R programming by taking a
peek under the hood to understand how R is designed, and how its design can
limit the performance of R programs.

Understanding R's Performance – Why Are R Programs Sometimes Slow?

[10]

We will examine three main constraints faced by any computational task—CPU,
RAM, and disk input/output (I/O)—and then look at how these play out specifically
in R programs. By the end of this chapter, you will have some insights into the
bottlenecks that your R programs could run into.

This chapter covers the following topics:

•	 Three constraints on computing performance—CPU, RAM, and disk I/O
•	 R is interpreted on the fly
•	 R is single-threaded
•	 R requires all data to be loaded into memory
•	 Algorithm design affects time and space complexity

Three constraints on computing
performance – CPU, RAM, and disk I/O
First, let's see how R programs are executed in a computer. This is a very
simplified version of what actually happens, but it suffices for us to understand
the performance limitations of R. The following figure illustrates the steps required
to execute an R program.

RAM

CPU

Hard Disk

2 5

1 4 7

Steps to execute an R program

Chapter 1

[11]

Take for example, this simple R program, which loads some data from a CSV file,
computes the column sums, and writes the results into another CSV file:

data <- read.csv("mydata.csv")
totals <- colSums(data)
write.csv(totals, "totals.csv")

We use the numbering to understand the preceding diagram:

1.	 When we load and run an R program, the R code is first loaded into RAM.
2.	 The R interpreter then translates the R code into machine code and loads the

machine code into the CPU.
3.	 The CPU executes the program.
4.	 The program loads the data to be processed from the hard disk into RAM

(read.csv() in the example).
5.	 The data is loaded in small chunks into the CPU for processing.
6.	 The CPU processes the data one chunk at a time, and exchanges chunks of

data with RAM until all the data has been processed (in the example, the
CPU executes the instructions of the colSums() function to compute the
column sums on the data set).

7.	 Sometimes, the processed data is stored back onto the hard drive
(write.csv() in the example).

From this depiction of the computing process, we can see a few places where
performance bottlenecks can occur:

•	 The speed and performance of the CPU determines how quickly computing
instructions, such as colSums() in the example, are executed. This includes
the interpretation of the R code into the machine code and the actual
execution of the machine code to process the data.

•	 The size of RAM available on the computer limits the amount of data that
can be processed at any given time. In this example, if the mydata.csv
file contains more data than can be held in the RAM, the call to read.csv()
will fail.

•	 The speed at which the data can be read from or written to the hard disk
(read.csv() and write.csv() in the example), that is, the speed of the
disk input/output (I/O) affects how quickly the data can be loaded into
the memory and stored back onto the hard disk.

Understanding R's Performance – Why Are R Programs Sometimes Slow?

[12]

Sometimes, you might encounter these limiting factors one at a time. For example,
when a dataset is small enough to be quickly read from the disk and fully stored
in the RAM, but the computations performed on it are complex, then only the CPU
constraint is encountered. At other times, you might find them occurring together
in various combinations. For example, when a dataset is very large, it takes a long
time to load it from the disk, only one small chunk of it can be loaded at any given
time into the memory, and it takes a long time to perform any computations on it. In
either case, these are the symptoms of performance problems. In order to diagnose
the problems and find solutions for them, we need to look at what is happening
behind the scenes that might be causing these constraints to occur.

Let's now take a look at how R is designed and how it works, and see what the
implications are for its performance.

R is interpreted on the fly
In computer science parlance, R is known as an interpreted language. This means
that every time you execute an R program, the R interpreter interprets and executes
the R code on the fly. The following figure illustrates what happens when you run
any R code:

R(interpreted language)

C(compiled language)

Only 1 step:
Execute
> R myapp.r

Parse

On-the-fly interpretation & execution

Evaluate

Source code
myapp.r

Step 2:
Execute

> myapp.exe
Step 1:
CompileSource code

myapp.c

Machine
code on disk

myapp.exe

R internal
object in

RAM

Machine
code in RAM
(executed by

CPU)

Machine
code in RAM
(executed by

CPU)

Interpreted language versus compiled language

R first parses your source code into an internal R object representation of all the
statements and expressions in your R code. R then evaluates this internal R object
to execute the code.

Chapter 1

[13]

This is what makes R such a dynamic and interactive programming language. You
can type R statements into the R console and get results immediately because the R
interpreter parses and evaluates the code right away. The downside of this approach
is that R code runs relatively slow because it is reinterpreted every time you run it,
even when it has not changed.

Contrast this with a compiled language such as C or Fortran. When you work with a
compiled language, you compile your source code into the machine code before you
execute it. This makes compiled languages less interactive because the compilation
step can take several minutes for large programs, even when you have made just a
tiny change to the code. On the other hand, once the code has been compiled, it runs
very quickly on the CPU since it is already in the computer's native language.

Due to R being an interpreted language, every time you run an R program, the
CPU is busy doing two things: interpreting your code and executing the instructions
contained in it. Therefore, the CPU's speed can limit the performance of R programs.
We will learn how to overcome CPU limitations in chapters 3 to 5.

R is single-threaded
Another way in which R is CPU limited is that, by default, it runs only on a single
thread on the CPU. It does not matter if you install R on a powerful server with 64
CPU cores, R will only use one of them. For example, finding the sum of a numeric
vector is an operation that can be made to run in parallel in the CPU quite easily. If
there are four CPU cores available, each core can be given roughly one quarter of
the data to process. Each core computes the subtotal of the chunk of data it is given,
and the four subtotals are then added up to find the total sum of the whole dataset.
However in R, the sum() function runs serially, processing the entire dataset on one
CPU core. In fact, many Big Data operations are of a similar nature to the summation
example here, with the same task running independently on many subsets of data.
In such a scenario, performing the operation sequentially would be an underuse of
today's mostly parallel computing architectures. In Chapter 8, Multiplying Performance
with Parallel Computing, we will learn how to write parallel programs in R to
overcome this limitation.

Understanding R's Performance – Why Are R Programs Sometimes Slow?

[14]

R requires all data to be loaded into
memory
All data that is processed in R has to be fully loaded into the RAM. This means that
once the data has been loaded, all of it is available for processing by the CPU, which is
great for performance. On the other hand, it also means that the maximum size of data
that you can process depends on the amount of free RAM available on your system.
Remember that not all the RAM on your computer is available to R. The operating
system, background processes, and any other applications that are running in the
CPU also compete for the RAM. What is available for R to use might be a fraction
of the total RAM installed on the system.

On top of that, R also requires free RAM to store the results of its computations.
Depending on what kinds of computations you are performing, you might need
the available RAM to be twice or even more times as large as the size of your data.

32-bit versions of R are also limited by the amount of RAM they can access.
Depending on the operating system, they might be limited to 2 GB to 4 GB of RAM
even when there is actually more RAM available. Furthermore, due to memory
address limits, data structures in 32-bit versions of R can contain at most 231-1 =
2,147,483,647 elements. Because of these limits, you should use the 64-bit versions
of R whenever you can.

In all versions of R prior to 3.0, even 64-bit versions, vectors and other
data structures faced this 2,147,483,647-element limit. If you have data
that exceeds this size, you need to use a 64-bit version of R 3.0 or one of
its later versions.

What happens when we try to load a dataset that is larger than the available RAM?
Sometimes, the data loads successfully, but once the available RAM is used up, the
operating system starts to swap the data in RAM into a swapfile on the hard disk.
This is not a feature of R; it depends on the operating system. When this happens,
R thinks that all the data has been loaded into the RAM when in fact the operating
system is hard at work in the background swapping data between RAM and the
swapfile on the disk. When such a situation occurs, we have a disk I/O bottleneck
on top of the memory bottleneck. Because disk I/O is so slow (hard drive's speed is
typically measured in milliseconds, while RAM's speed in nanoseconds), it can cause
R to appear as if it is frozen or becomes unresponsive. Of the three performance
limitations we looked at, disk I/O often has the largest impact on R's performance.

Chapter 6, Simple Tweaks to Use Less RAM and Chapter 7, Processing Large Datasets with
Limited RAM will discuss how to optimize memory usage and work with datasets
that are too large to fit into the memory.

Chapter 1

[15]

Algorithm design affects time and space
complexity
There is one other performance factor that we have not discussed—your code.
The types of computations and algorithms that you run can have a huge impact
on performance. Computer scientists describe the performance characteristics of
programs in terms of complexity. In particular, we are concerned about two types
of complexities:

•	 Time complexity: This refers to the computing time required to run an R
program in relation to the size of the data being processed

•	 Space complexity: This refers to the memory that is required to run an R
program in relation to the size of the data being processed

Let's look at an example of time complexity. Suppose that we need to write a function
to compute the nth Fibonacci number, that is, a number in the sequence 0, 1, 1, 2, 3, 5, 8,
13, … where each number is the sum of the previous two numbers. A simple way to
do this would be to write a recursive function such as:

fibonacci_rec <- function(n) {
 if (n <= 1) {
 return(n)
 }
 return(fibonacci_rec(n - 1) + fibonacci_rec(n - 2))
}

Since the nth Fibonacci number is the sum of the (n-1)th and (n-2)th Fibonacci
numbers, this function simply calls itself to compute the previous two numbers,
then adds them up. Let's see how long it takes to compute the 25th Fibonacci number
using the microbenchmark() function from the microbenchmark package, which
can be downloaded and installed from CRAN (we will take a closer look at how
to use this function in Chapter 2, Measuring Code's Performance):

microbenchmark(fibonacci_rec(25), unit = "ms")
Unit: milliseconds
expr min lq mean median uq
fibonacci_rec(25) 170.1014 179.8 191.4213 183.5275 197.5833
max neval
253.1433 100

Understanding R's Performance – Why Are R Programs Sometimes Slow?

[16]

It took a median of 184 milliseconds. Because of the way the recursion works,
there is a lot of unnecessary repetition. For example, to compute the 25th Fibonacci
number, we need to compute the 23rd and 24th numbers in the sequence. But,
computing the 24th number also involves computing the 23rd number, so the 23rd
number is computed twice. And the 22nd number is needed to compute both the
23rd and 24th numbers, and so on.

We can reduce this repetition by computing each number only once. The following
code presents an alternative implementation of the Fibonacci function that does just
that. It computes the Fibonacci numbers in sequence from smallest to largest and
remembers the numbers that it has computed in the numeric vector fib. Thus,
each Fibonacci number is computed only once:

fibonacci_seq <- function(n) {
 if (n <= 1) {
 return(n)
 }
 # (n+1)th element of this vector is the nth Fibonacci number
 fib <- rep.int(NA_real_, n + 1)
 fib[1] <- 0
 fib[2] <- 1
 for (i in 2:n) {
 fib[i + 1] <- fib[i] + fib[i - 1]
 }
 return(fib[n + 1])
}

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.
com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

By benchmarking this sequential function, we see that it takes a median of 0.04
milliseconds to run, a reduction of 99.98 percent from the recursive version!

microbenchmark(fibonacci_seq(25), unit = "ms")
Unit: milliseconds
expr min lq mean median uq
fibonacci_seq(25) 0.03171 0.036133 0.0446416 0.0405555 0.04459
max neval
0.114714 100

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Chapter 1

[17]

To demonstrate the concept of time complexity, we ran the benchmark for different
values of n ranging from 0 to 50. The median execution times are shown in the
following figure:

Execution time of recursive versus sequential versions of Fibonacci function

As we increase the value of n, the execution time of the recursive version of
the Fibonacci function increases exponentially. It is roughly proportional to
1.6n—every time n increases by 1, it gets multiplied by about 1.6 times. The
execution time increased so fast that it took too long to compute the Fibonacci
numbers after the 50th one. On the other hand, though it is imperceptible from
the chart, the execution time of the sequential version increases linearly—
every increase in n increases the execution time by 1.3 microseconds. Since the
computational complexity of the sequential version is much lower than that of the
recursive version, it will perform much better as n increases. As a case in point, with
a modest value of n=50, the sequential version took a fraction of a millisecond to get
computed while the recursive version took over eight hours!

Though we will not do it here, a similar exercise can be conducted in order to compare
the space complexity of different algorithms. Given a certain amount of computational
resources, your choice of algorithm and the design of your code can have a big impact
on your R program's ability to achieve the desired level of performance.

Understanding R's Performance – Why Are R Programs Sometimes Slow?

[18]

Summary
In this chapter, we saw how R programs can sometimes encounter the three
constraints faced by computing performance—CPU, RAM, and disk I/O. We looked
into R's design and learned how its interpreted and single-threaded nature can cause
it to run slowly, and how it can encounter memory and disk I/O limitations when
data becomes too big to fit into the RAM. Finally, we looked at how the design of R
code plays an important role in determining the performance using a comparison
between two implementations of the Fibonacci function with very different
performance characteristics.

These performance issues are not insurmountable. The rest of this book will show
you different ways to overcome or work around them and unlock the hidden
potential of R.

Profiling – Measuring
Code's Performance

The first step to improve the performance of R programs is to identify where the
performance bottlenecks are occurring. To do this, we profile or measure the
performance of an R program as it runs with respect to various measures such as
execution time, memory utilization, CPU utilization, and disk I/O. This gives us
a good idea of how the program and its parts perform, so that we can tackle the
biggest bottlenecks first. This chapter will show you how to use a few simple tools to
measure the performance of R programs.

The 80/20 rule is applied here. 80 percent of the possible performance improvements
can usually be achieved by tackling 20 percent of the largest performance problems.
We will look at how to determine which problems to solve first in order to get
maximum improvement in the least amount of time and effort.

This chapter covers the following topics:

•	 Measuring the total execution time
•	 Profiling the execution time
•	 Profiling the memory utilization
•	 Monitoring memory utilization, CPU utilization, and disk I/O using OS tools
•	 Identifying and resolving bottlenecks

Profiling – Measuring Code's Performance

[20]

Measuring total execution time
When people say that their program is not performing well, they are often referring
to the execution time or the time it takes to complete the execution of the program.
Execution time is probably the most important performance measure in many
contexts as it is has a direct impact on people and processes. A shorter execution time
means the R programmer can perform his or her analysis more quickly to derive
insights faster.

It turns out that execution time is also the easiest performance characteristic that
can be measured accurately and in detail (though not always the easiest to solve).
Therefore, we will start learning about the way to profile an R code by learning to
measure the execution time of R programs. We will learn three different tools to do
this: system.time(), benchmark(), and microbenchmark().

Measuring execution time with system.time()
The first profiling tool we will learn about is system.time(). It is a very useful tool
that we can use to measure the execution time of any R expression.

Say we want to find out how long it takes to generate 100 million uniform random
variables. Take a look at the following statement and the output when it is run in
the R console:

system.time(runif(1e8))
user system elapsed
2.969 0.166 3.138

The runif(1e8) expression generates 100 million random values between 0 and
1. In order to measure how long it takes to run this command, we simply pass this
expression to system.time().

The output contains three elements, all measured in seconds:

•	 User time: This element is the CPU time charged for the execution of user
instructions of the given expression, for example, looping through an array.
It does not include CPU time used by other processes (for example, if the
computer happens to be running a virus scan in the background, the CPU
time taken by it is not counted).

•	 System time: System time is the CPU time charged for the execution of
system instructions on behalf of the given expression, for example, opening
and closing files, or allocating and freeing memory. This does not include
CPU time used by other processes.

Chapter 2

[21]

•	 Elapsed time: Elapsed time is the total clock time taken to execute the given
expression. It includes the time that the CPU has spent on other processes
and time spent in waiting (for example, waiting for a file to be opened for
reading). Sometimes, elapsed time is longer than the sum of user time and
system time because the CPU is multitasking on other processes, or it has to
wait for resources such as files and network connections to be available. At
other times, elapsed time is shorter than the sum of user time and system
time. This can happen when multiple threads or CPUs are used to execute
the expression. For example, a task that takes 10 seconds of user time can be
completed in 5 seconds if there are two CPUs sharing the load.

Most of the time, we are interested in the total elapsed time to execute the given
expression. When the expression is executed on a single thread (the default for R), the
elapsed time is usually very close to the sum of the user time and system time. If that is
not the case, either the expression has spent time waiting for resources to be available,
or there were many other processes on the system competing for the CPU's time.

It is best to shut down any unnecessary programs and
processes on the system before running system.time() in
order to reduce the competition for the CPU's time and to get
an accurate measurement. Of course, the antivirus software or
any other critical system software should not be turned off.

The system.time() declaration actually returns a vector
with five elements but its print() function displays only
the first three. To see all the five elements, we can call
print(unclass(system.time(expr))). The other two
elements are the system and user times for the execution of
any child processes spawned by expr. On Windows machines,
these are not available and will always be given as NA.

This is what happens when we run system.time() a few more times with the
same expression:

system.time(runif(1e8))
user system elapsed
2.963 0.160 3.128
system.time(runif(1e8))
user system elapsed
2.971 0.162 3.136
system.time(runif(1e8))
user system elapsed
2.944 0.161 3.106

Profiling – Measuring Code's Performance

[22]

By running system.time() repeatedly, we get slightly different results each time
because R's overheads, OS caching mechanisms, other running processes, and many
other factors might have a slight impact on the execution time.

Repeating time measurements with
rbenchmark
It is sometimes helpful to run the same expression multiple times and get the average
execution time, or even the distribution of execution times over multiple runs. The
rbenchmark CRAN package lets us do this easily.

First, install and load the rbenchmark package:

install.packages("rbenchmark")
library(rbenchmark)

Next, use benchmark() to run the same random number generation task 10 times,
by specifying replications=10:

bench1 <- benchmark(runif(1e8), replications=10)
bench1
test replications elapsed relative user.self
1 runif(1e+08) 10 32.38 1 29.781
sys.self user.child sys.child
1 2.565 0 0

The results show the total elapsed system and user time taken to generate 100
million uniform random variables over 10 repetitions. We can find the mean times
taken per repetition using within() to divide the time measurements by the number
of repetitions:

within(bench1, {
 elapsed.mean <- elapsed/replications
 user.self.mean <- user.self/replications
 sys.self.mean <- sys.self/replications
 })
test replications elapsed relative user.self
1 runif(1e+08) 10 32.38 1 29.781
sys.self user.child sys.child sys.self.mean user.self.mean
1 2.565 0 0 0.2565 2.9781
elapsed.mean
1 3.238

Chapter 2

[23]

What if we want to know the execution times for each repetition, or the distribution of
execution times over the repetitions? We can pass a vector instead of a single number
as the replications parameter. For each element of this vector, benchmark() will
execute the given expression the specified number of times. So we can get 10 samples
of the execution of the random number generation once, as shown in the following
code. In addition to the elapsed user and system time, benchmark() returns an
additional column, relative, which indicates how each repetition's elapsed time is
compared with the fastest one. For example, the first repetition took 1.011 times as
long as the fastest repetition (the fourth one), or 1.1 percent longer to run:

benchmark(runif(1e8), replications=rep.int(1, 10))
test replications elapsed relative user.self
1 runif(1e+08) 1 3.162 1.011 2.971
2 runif(1e+08) 1 3.145 1.005 2.951
3 runif(1e+08) 1 3.141 1.004 2.949
4 runif(1e+08) 1 3.128 1.000 2.937
5 runif(1e+08) 1 3.261 1.043 3.021
6 runif(1e+08) 1 3.207 1.025 2.993
7 runif(1e+08) 1 3.274 1.047 3.035
8 runif(1e+08) 1 3.174 1.015 2.966
9 runif(1e+08) 1 3.172 1.014 2.970
10 runif(1e+08) 1 3.230 1.033 3.004
sys.self user.child sys.child
1 0.187 0 0
2 0.191 0 0
3 0.189 0 0
4 0.190 0 0
5 0.228 0 0
6 0.210 0 0
7 0.230 0 0
8 0.207 0 0
9 0.201 0 0
10 0.224 0 0

Profiling – Measuring Code's Performance

[24]

Measuring distribution of execution time with
microbenchmark
The CRAN package microbenchmark provides yet another way to measure the
execution time of an R expression. Though its microbenchmark() function only
measures the elapsed time and not the user time or system time, it gives an idea of
how the execution times across repeated runs are distributed. It also automatically
corrects for the overheads related to the execution of the timing tests. The
microbenchmark() function is very handy to measure short running tasks over
many repetitions provided you do not need to measure the user or system times.
We will use this tool many times throughout this book.

Install and load the microbenchmark package:

install.packages("microbenchmark")
library(microbenchmark)

Now, run the same random number generation task 10 times using
microbenchmark():

microbenchmark(runif(1e8), times=10)
Unit: seconds
expr min lq median uq max
runif(1e+08) 3.170571 3.193331 3.25089 3.299966 3.314355
neval
10

The statistics shows the minimum, lower quartile, median, upper quartile, and
maximum values of the elapsed time over 10 repetitions. This gives us an idea of the
distribution of the elapsed times over different repetitions of the same expression.

Profiling the execution time
So far, we have seen how to measure the execution time of a whole R expression.
What about a more complex expression with multiple parts such as calls to other
functions? Is there a way to dig deeper and profile the execution time of each of the
parts that make up the expression? R comes with the profiling tool Rprof() that
allows us to do just that. Let's see how it works.

Chapter 2

[25]

Profiling a function with Rprof()
In this example, we write the following sampvar() function to calculate the unbiased
sample variance of a numeric vector. This is obviously not the best way to write this
function (in fact R provides the var() function to do this), but it serves to illustrate
how code profiling works:

Compute sample variance of numeric vector x
sampvar <- function(x) {
 # Compute sum of vector x
 my.sum <- function(x) {
 sum <- 0
 for (i in x) {
 sum <- sum + i
 }
 sum
 }

 # Compute sum of squared variances of the elements of x from
 # the mean mu
 sq.var <- function(x, mu) {
 sum <- 0
 for (i in x) {
 sum <- sum + (i - mu) ^ 2
 }
 sum
 }

 mu <- my.sum(x) / length(x)
 sq <- sq.var(x, mu)
 sq / (length(x) - 1)
}

Within sampvar(), we define two utility functions:

•	 my.sum(): This computes the sum of a vector by looping over the elements of
the vector.

•	 sq.var(): This computes the sum of the squared deviations of a vector from
a given mean, by looping over the elements of the vector.

The sampvar() function first computes the sample mean, then the sum of squared
deviations from that mean, and then the sample variance by dividing that sum by n-1.

Profiling – Measuring Code's Performance

[26]

We can profile the sampvar() function as follows:

x <- runif(1e7)
Rprof("Rprof.out")
y <- sampvar(x)
Rprof(NULL)
summaryRprof("Rprof.out")
$by.self
self.time self.pct total.time total.pct
"sq.var" 4.38 58.24 5.28 70.21
"my.sum" 1.88 25.00 2.24 29.79
"^" 0.46 6.12 0.46 6.12
"+" 0.44 5.85 0.44 5.85
"-" 0.28 3.72 0.28 3.72
"(" 0.08 1.06 0.08 1.06
##
$by.total
total.time total.pct self.time self.pct
"sampvar" 7.52 100.00 0.00 0.00
"sq.var" 5.28 70.21 4.38 58.24
"my.sum" 2.24 29.79 1.88 25.00
"^" 0.46 6.12 0.46 6.12
"+" 0.44 5.85 0.44 5.85
"-" 0.28 3.72 0.28 3.72
"(" 0.08 1.06 0.08 1.06
##
$sample.interval
[1] 0.02
##
$sampling.time
[1] 7.52

This is how the code works:

1.	 The runif(1e7) expression generates a random sample of 10 million
numbers.

2.	 The Rprof("Rprof.out") expression tells R to begin profiling. Rprof.out is
the name of a file in which the profiling data is stored. It will be stored in R's
current working directory unless another file path is specified.

3.	 The sampvar(x) expression calls the function we just created.

Chapter 2

[27]

4.	 The Rprof(NULL) expression tells R to stop profiling. Otherwise, it
will continue to profile other R statements that we run but do not intend
to profile.

5.	 The summaryRprof("Rprof.out") expression prints the results of
the profiling.

The profiling results
The results are broken down into a few measures:

•	 The self.time and self.pct columns represent the elapsed time for
each function, excluding the elapsed time of other functions that are called
by the function.

•	 The total.time and total.pct columns represent the total elapsed time for
each function including the time spent inside function calls.

From the profiling data, we get some interesting observations:

•	 The sampvar() function's self.time is negligible (reported as zero),
indicating that almost all the time taken to run sampvar is contributed by the
functions that it calls.

•	 While sampvar() spent a total of 7.52 seconds, 5.28 seconds of this time was
contributed by sq.var(), and 2.24 seconds by my.sum() (see total.time of
sq.var() and my.sum()).

•	 The sq.var() function took the largest chunk of time (70.21 percent) to get
executed and looks like a good place to start improving the performance.

•	 The R operators -, +, and * were extremely quick, taking not more than a
total of 0.46 seconds each, even though they were executed millions of times.

Rprof() works by observing R's call stack as the R expression is running, and taking
a snapshot of the call stack at fixed intervals (every 0.02 seconds by default) to see
which function is currently executing. From these snapshots, summaryRprof() can
compute how much time was spent in each function.

For a more intuitive view of the profiling data, we can use the proftools
package. We will also need to install the graph and Rgraphviz packages from the
Bioconductor repository:

install.packages("proftools")
source("http://bioconductor.org/biocLite.R")
biocLite(c("graph", "Rgraphviz"))
library(proftools)
p <- readProfileData(filename="Rprof.out")
plotProfileCallGraph(p, style=google.style, score="total")

Profiling – Measuring Code's Performance

[28]

The plotProfileCallGraph() function generates an intuitive visual plot of the
profile data. We use the google.style template which shows functions with
longer self.time in bigger boxes. We also specify score="total" to color the
boxes according to total.time. The following figure shows the output of the same
profiling data:

sampvar
0 (0%)

of 376 (100%)

112 264

sq.var
219 (58.24%)

of 264 (70.21%)

my.sum
94 (25%)

of 112 (29.79%)

+
22 (5.85%

of 22 (5.85%)

-
14 (3.72%)

of 14 (3.72%)

(
4 (1.06%)

of 4 (1.06%)

^
23 (6.12%)

of 23 (6.12%)

18 4 14 4 23

Profiling data for sampvar() rendered by plotProfileCallGrah()

We can see from sampvar() that it has the longest total.time of 100 percent. This
is expected since it is the function that is being profiled. The next longest-running
function is sq.var(), which accounts for 70.21 percent of the elapsed time. sq.var()
also happens to have the longest self.time, which can be seen from the size of its
box. Thus, sq.var() seems like a good candidate for the first step in addressing
performance problems.

The Rprof() function is a useful tool to understand the performance of different
parts of R programs and quickly spot bottlenecks that we can address to improve the
overall performance of our R code.

Profiling memory utilization
Next, let's consider how to profile the memory utilization of R code.

Chapter 2

[29]

One approach is to use Rprof() by setting the memory.profiling argument and the
corresponding memory argument to summaryRprof():

Rprof("Rprof-mem.out", memory.profiling=TRUE)
y <- sampvar(x)
Rprof(NULL)
summaryRprof("Rprof-mem.out", memory="both")
$by.self
self.time self.pct total.time total.pct mem.total
"sq.var" 4.16 54.88 5.40 71.24 1129.4
"my.sum" 1.82 24.01 2.18 28.76 526.9
"^" 0.56 7.39 0.56 7.39 171.0
"+" 0.44 5.80 0.44 5.80 129.2
"-" 0.40 5.28 0.40 5.28 140.2
"(" 0.20 2.64 0.20 2.64 49.7
##
$by.total
total.time total.pct mem.total self.time self.pct
"sampvar" 7.58 100.00 1656.2 0.00 0.00
"sq.var" 5.40 71.24 1129.4 4.16 54.88
"my.sum" 2.18 28.76 526.9 1.82 24.01
"^" 0.56 7.39 171.0 0.56 7.39
"+" 0.44 5.80 129.2 0.44 5.80
"-" 0.40 5.28 140.2 0.40 5.28
"(" 0.20 2.64 49.7 0.20 2.64
##
$sample.interval
[1] 0.02
##
$sampling.time
[1] 7.58

The output now shows an additional column mem.total reporting the memory
utilization of each function. For this example, it seems that it took 1,656 MB of
memory to run sampvar()! This seems exceptionally high for computations on a
numeric vector with 10 million elements, which would measure only 76.3 MB in the
memory (you can check this by running print(object.size(x), units="auto")).

Profiling – Measuring Code's Performance

[30]

Unfortunately, mem.total is a misleading measure because Rprof() attributes the
memory usage to the function that happens to be running when it takes a snapshot,
but the memory could have been used by other functions and not have been released
yet. Furthermore, R's garbage collector regularly releases unused memory to the
operating system, so the actual memory being used at any given time might be vastly
different from that reported by Rprof(). In other words, Rprof() gives an indication
of the total amount of memory allocated while running an R code, but does not take
into account the memory freed by the garbage collector.

To see how garbage collection affects memory utilization, we can run the following:

> gcinfo(TRUE)
y <- sampvar(x)
Garbage collection 945 = 886+43+16 (level 0) ...
31.1 Mbytes of cons cells used (59%)
82.8 Mbytes of vectors used (66%)
Garbage collection 946 = 887+43+16 (level 0) ...
31.1 Mbytes of cons cells used (59%)
82.8 Mbytes of vectors used (66%)
##... (truncated for brevity) ...
gcinfo(FALSE)

The gcinfo(TRUE) expression tells R to inform us every time the garbage collector
releases memory. On our machine, the garbage collector was activated 272 times
while running sampvar()! Although Rprof() reported that 1.7 GB of the memory
was allocated in total, the garbage collector was hard at work to release unused
memory so that R's total memory consumption stayed manageable at around 113.9
MB (31.1 MB + 82.8 MB).

Because Rprof() measures the cumulative allocated memory without accounting for
garbage collection, it is not suited for determining whether an R program will exceed
the available memory on a system. gcinfo() provides a clearer picture, albeit still
an approximate one, by providing a snapshot of the memory consumption at every
garbage collection interval.

The gcinfo() and gc() functions give pretty good estimates
of memory utilization in this case because our code uses only
standard R operations. Some R packages use custom memory
allocators that gcinfo() and gc() are not able to track, so
memory utilization can be underreported.

Chapter 2

[31]

Monitoring memory utilization, CPU
utilization, and disk I/O using OS tools
Unlike execution time, R does not provide any good tools to profile CPU utilization
and disk I/O. Even the memory profiling tools in R might not provide a complete
or accurate picture. This is where we turn to OS-provided system monitoring tools
to keep an eye on the computational resources as we run R programs. They are task
manager or resource monitor in Windows, activity monitor in Mac OS X, and top
in Linux. When running these tools, look for the processes that represent R (usually
called R or rsession).

The information that we get varies depending on the operating system, but here are
the key measures of R's resource utilization to keep an eye on:

•	 % CPU or CPU usage: The percentage of the system's CPU time used by R
•	 % memory, resident memory, or working set: The percentage of the system's

physical memory used by R
•	 Swap size or page outs: The size of memory used by R that is stored in the

operating system's swapspace
•	 Bytes read or written per second: The rate of data being read or written

from/to disk by R

In addition, we might also want to monitor these system-wide resource
utilization measures:

•	 % free memory: The percentage of the system's physical memory that is
available for use

•	 Swap size or page outs: The total size of memory that is stored in the
OS's swapspace

The preceding measures are helpful in troubleshooting R's performance problems:

•	 High CPU utilization: A CPU is likely the main bottleneck of R's
performance. Use the profiling techniques in this chapter to identify which
parts of the code are taking most of the CPU's time.

•	 Low CPU utilization, low free system memory with large swap size, and
high disk I/O: The system is likely running out of physical memory and
is thus swapping memory onto the disk. Use the memory management
techniques in Chapters 6, Simple Tweaks to Use Less RAM, and Chapter 7,
Processing Large Datasets with Limited RAM, to reduce the memory required
by the R program.

Profiling – Measuring Code's Performance

[32]

•	 Sufficient free system memory with high disk I/O: The program writes/
reads to disk very often. Check for any unnecessary I/O operations and store
intermediate data in the memory if there is sufficient free memory.

Identifying and resolving bottlenecks
Now that we have covered the basic techniques to profile an R code, which
performance bottlenecks should we try to solve first?

As a rule of thumb, we first try to improve the pieces of code that are causing the
largest performance bottlenecks, whether in terms of execution time, memory
utilization, or other measures. These can be identified with the profiling techniques
covered earlier. Then we work our way down the list of the largest bottlenecks until
the overall performance of the program is good enough.

As you can recall, the varsamp() example that we profiled using Rprof(). The
function with the highest self.time was sq.var(). How can we make this function
run faster? We can write it in the form of a vector operation my.sum((x - mu) ^ 2)
rather than looping through each element of x. As we will see in the next chapter,
converting loops to vectorized operations is a good way to speed up many R
operations. In fact, we can even remove the function altogether since the new vector
expression fits in one line:

Compute sample variance of numeric vector x
sampvar <- function(x) {
 # Compute sum of vector x
 my.sum <- function(x) {
 sum <- 0
 for (i in x) {
 sum <- sum + i
 }
 sum
 }

 mu <- my.sum(x) / length(x)
 sq <- my.sum((x - mu) ^ 2)
 sq / (length(x) - 1)
}

Chapter 2

[33]

x <- runif(1e7)
Rprof("Rprof-mem.out", memory.profiling=TRUE)
y <- sampvar(x)
Rprof(NULL)
summaryRprof("Rprof-mem.out", memory="both")
$by.self
self.time self.pct total.time total.pct mem.total
"my.sum" 3.92 85.22 4.60 100.00 1180.6
"+" 0.66 14.35 0.66 14.35 104.2
"-" 0.02 0.43 0.02 0.43 83.1
##
$by.total
total.time total.pct mem.total self.time self.pct
"my.sum" 4.60 100.00 1180.6 3.92 85.22
"eval" 4.60 100.00 1180.6 0.00 0.00
"sampvar" 4.60 100.00 1180.6 0.00 0.00
"source" 4.60 100.00 1180.6 0.00 0.00
"withVisible" 4.60 100.00 1180.6 0.00 0.00
"+" 0.66 14.35 104.2 0.66 14.35
"-" 0.02 0.43 83.1 0.02 0.43
##
$sample.interval
[1] 0.02
##
$sampling.time
[1] 4.6

This change shaved 2.98 seconds off the elapsed time and 477 MB off the total
memory allocated while running the function.

Now the my.sum() function contributes to a significant 85 percent of the total elapsed
time. Let's replace it with the sum() function from R, which runs much faster:

Compute sample variance of numeric vector x
sampvar <- function(x) {
 mu <- sum(x) / length(x)
 sq <- sum((x - mu) ^ 2)
 sq / (length(x) - 1)
}

Profiling – Measuring Code's Performance

[34]

x <- runif(1e7)
Rprof("Rprof-mem.out", memory.profiling=TRUE)
y <- sampvar(x)
Rprof(NULL)
summaryRprof("Rprof-mem.out", memory="both")
$by.self
self.time self.pct total.time total.pct mem.total
"-" 0.08 100 0.08 100 76.2
##
$by.total
total.time total.pct mem.total self.time self.pct
"-" 0.08 100 76.2 0.08 100
"sampvar" 0.08 100 76.2 0.00 0
##
$sample.interval
[1] 0.02
##
$sampling.time
[1] 0.08

Voila! In two simple steps, we reduced the elapsed time of sampvar() from
7.58 seconds to 0.08 seconds (a 99 percent reduction). Furthermore, the memory
utilization as reported by Rprof() was also reduced from over 1.6 GB to a mere
76.2 MB (a 95.4 percent reduction). This reduction in memory allocation and
garbage collection also played a significant part in speeding up our code.

Let's compare how fast our code runs compared to the R function var(), which is
written in C for optimal performance (we will learn in Chapter 4, Using Compiled
Code for Greater Speed):

library(microbenchmark)
microbenchmark(sampvar(x), var(x))
Unit: milliseconds
expr min lq median uq max neval
sampvar(x) 44.31072 44.90836 50.38668 62.14281 74.93704 100
var(x) 35.62815 36.60720 37.04430 37.88039 42.85260 100

With a median elapsed time of 50 milliseconds, our function takes only 36 percent
more time than the optimized C version that has a median of 37 milliseconds.

The preceding exercise illustrates how code profiling can be used as part of a workflow
to identify, prioritize, and fix performance issues in R programs. The rest of this book
will cover techniques that we can use to solve specific performance problems.

Chapter 2

[35]

Summary
In this chapter, we learned how to measure the execution time of R expressions
using system.time(), benchmark() (from the rbenchmark package) and
microbenchmark() (from the microbenchmark package). We examined how to
profile the execution time and memory usage of different parts of an R program
using Rprof() and summaryRprof() and to display the results in an intuitive visual
form using the proftools package.

We also saw the role of OS-provided monitoring tools to understand the overall
performance of R programs and how these system measures can provide clues about
the performance bottlenecks that our R programs might be facing.

Finally, we learned how to apply the profiling techniques in a practical, iterative
workflow to identify, prioritize and resolve performance related problems in an
R code.

In the next chapter, we will learn some simple tweaks to improve R code so that it
runs faster.

Simple Tweaks to Make
R Run Faster

Improving the speed of an R code does not necessarily involve advanced optimization
techniques like parallelizing the code or making it run in the database. Indeed, there
are a number of simple tweaks that, while not always obvious, can make R run
significantly faster. In this chapter, some of these tweaks are described. By no means
do they capture all possible simple means to optimize the R code. However, they
constitute some of the most fundamental, and hence often-encountered, opportunities
to gain some speedups.

This chapter presents these tweaks in the order of decreasing generality—the more
general ones are those found in almost all R codes, regardless of their application. Each
tweak is accompanied by an example code that is intentionally kept simple so as not to
obscure the explanation of the intended concept with unnecessary application-specific
knowledge. In all these examples, artificial datasets are generated using random
functions in R.

This chapter covers the following topics:

•	 Vectorization
•	 Use of built-in functions
•	 Preallocating memory
•	 Use of simpler data structures
•	 Use of hash tables for frequent lookups on large data
•	 Seeking fast alternative packages in CRAN

Simple Tweaks to Make R Run Faster

[38]

Vectorization
Most R users should have encountered this first tweak. In essence, vectorization
allows R operators to take vectors as arguments for quick processing of multiple
values. This is unlike some other programming languages such as C, C++, and Java,
in which the processing of multiple values is usually done by iterating through
and applying operators on each element of a vector (or array). R, being a flexible
language, allows users to program using either iteration or vectorization. However,
most of the time, iteration incurs significant and unnecessary computational cost
because R is an interpreted, not compiled, language.

Take for example, the following simple code. Its goal is simply to calculate the
square of every element in the random vector data. The first approach is to set up
a for loop through every element of data and square it individually. Many would
be tempted to take this approach because this is how it is done typically in other
programming languages. Yet, a far more optimized approach in R is to apply the
square operator on the data vector directly. This gives exactly the same output as
the for loop, but much faster:

N <- 1E5
data <- sample(1:30, size=N, replace=T)
system.time({
 data_sq1 <- numeric(N)
 for(j in 1:N) {
 data_sq1[j] <- data[j]^2
 }
})
user system elapsed
0.144 0.011 0.156
system.time(data_sq2 <- data^2)
user system elapsed
0 0 0

The following table shows the performance gains as the vector size increases (in
logarithmic scale) from 100,000 to 100,000,000. Notice that the compute time of
the non-vectorized approach is about 200 times that of the vectorized approach,
regardless of the vector size.

Vector size 100,000 1,000,000 10,000,000 100,000,000
Non-vectorized 120 ms 1.19 s 11.9 s 117 s
Vectorized 508 μs 5.67 ms 52.5 ms 583 ms

Chapter 3

[39]

When R executes a code, it has to take many steps behind the scenes. One example
is type checking. R objects such as vectors do not need to be strictly defined to be of
a particular type, such as an integer or a character. One can append a character to an
integer vector without triggering any error—R converts the vector into a character
vector automatically. Every time an operator is applied on a vector, R needs to check
the type of the vector only once, but with the use of the iteration approach, this type
checking happens as many times as the number of iterations, which incurs some
computational costs.

Use of built-in functions
As a programming language, R comes with low-level operators, such as basic
arithmetic operators that can be used to construct more complex operators or
functions. While R provides the flexibility to define functions, a performance
comparison between an R function versus an equivalent function in a compiled
language would almost always favor the latter. However, R and some CRAN
packages provide a rich set of functions that are implemented in compiled
languages such as C/C++. It is usually preferable to use these functions rather
than to write custom R functions to perform the same task.

Consider a simple example of how to calculate the sums of the rows of the following
random matrix data. A code to perform these functions can be constructed by calling
the apply() function, and setting the margin to 1 (representing a row operation) and
by setting the FUN (or function) argument to sum. Alternatively, R provides a built-
in function for this purpose called rowSums. The computational time of the former
approach, as measured by system.time, is 11 times longer than that of the latter
approach, which is an optimized and precompiled C function:

data <- rnorm(1E4*1000)
dim(data) <- c(1E4,1000)
system.time(data_sum1 <- apply(data, 1, sum))
user system elapsed
0.241 0.053 0.294
system.time(data_sum2 <- rowSums(data))
user system elapsed
0.026 0.000 0.026

Simple Tweaks to Make R Run Faster

[40]

Speaking of optimized functions, our effort to improve the speed of an R code should
not stop at precompiled functions that come with R. Over the years, the open source
community has developed optimized libraries of specific functions that R can leverage.
Take Basic Linear Algebra Subprograms (BLAS) for example (for more information
refer to http://www.netlib.org/blas/). It was developed in the 1970s for Fortran
and has since gained wider use by other languages (including R) because matrix
operations make up the building blocks of many algorithms in various fields. There
are now many implementations of BLAS, some of which include the capability to
execute matrix operations in a multithreaded manner.

For example, the Mac OS X version of R comes enabled with BLAS. The
implementation of BLAS that is used is the reference BLAS from R called
libRblas.0.dylib. Mac OS X however comes with its own version of BLAS,
libBLAS.dylib, which is optimized for its hardware. R can be configured to
use the optimized BLAS by executing the following commands in Terminal:

$ cd /Library/Frameworks/R.framework/Resources/lib
$ ln -sf /System/Library/Frameworks/Accelerate.framework/Frameworks/
vecLib.framework/Versions/Current/libBLAS.dylib libRblas.dylib

To test the effect of using different BLAS libraries, the following R code performs
a simple matrix multiplication on a large random matrix. Using R's default BLAS
library, it took about 7 seconds for us to complete the task. After pointing R to the
optimized BLAS, the same task was completed in about a tenth of the time:

data <- rnorm(1E7)
dim(data) <- c(1E4, 1E3)
system.time(data_mul <- t(data) %*% data)
user system elapsed
7.123 0.015 7.136
system.time(data_mul <- t(data) %*% data) # with optimized BLAS
user system elapsed
1.304 0.005 0.726

There are BLAS versions of Windows and Linux available for you to download. If
R is compiled with an enabled BLAS, that is, by setting the configuration option to
--enable-BLAS-shlib while compiling R from its source, swapping between BLAS
versions is done in a similar manner as in Mac OS X: by replacing the default BLAS
library file with the new one. In Windows, the default library is located in R_HOME\
bin\x64\Rblas.dll; while in Linux, it is in R_HOME/lib/libRblas.so.

http://www.netlib.org/blas/

Chapter 3

[41]

Preallocating memory
Most strongly typed programming languages like C, C++, and Java generally
require a vector (or array) to be declared prior to any operation applied on it. This
declaration in effect preallocates the memory space that the vector requires. There
are special occasions where dynamic memory allocation is used, but this is seldom
the first choice mainly because dynamic memory allocation slows down a program.
Every time a vector is resized, the program needs to perform extra steps that include
copying the vector to a larger or smaller memory block and deleting the old vector.
These steps are not needed if the memory is preallocated.

When it comes to preallocating memory, R is no different from the other programming
languages. However, being an interpreted language, it imposes less control, thus it is
easy for users to overlook this—R will not throw any compilation error if a vector's
memory is not preallocated. Nevertheless, not preallocating memory in R can result
in significantly longer execution times, especially when the vector is large.

To demonstrate this, let's have a look at the following R code. It shows you two
approaches to generate a series of random numbers, where each vector element is
defined as the value of the previous element +/- a random integer between -5 to 5.
The first approach (stores the results in data_series1) bypasses the preallocation of
the vector's memory, that is, it starts with a vector of a single element and appends a
new element at each iteration. The second approach (with results in data_series2)
preallocates the memory by declaring a numeric vector of size N. The preallocated
space, as represented by the vector's index, is filled in at every iteration. By
preallocating the memory, the computation time on a vector of 10,000 elements is 10
times faster than the dynamic allocation. A benchmark exercise by varying the vector
size, captured in the upcoming table, shows that while the computation time increases
linearly when memory is preallocated, it increases super linearly when memory is
dynamically allocated. It is critical for performance therefore to avoid unnecessary
dynamic memory allocation in R:

N <- 1E4
data_series1 <- 1
system.time({
 for (j in 2:N) {
 data_series1 <- c(data_series1,
 data_series1[j-1]+sample(-5:5, size=1))
 }
})
user system elapsed
0.254 0.004 0.257

Simple Tweaks to Make R Run Faster

[42]

data_series2 <- numeric(N)
data_series2[1] <- 1
system.time({
 for (j in 2:N) {
 data_series2[j] <- data_series2[j-1]+sample(-5:5, size=1)
 }
})
user system elapsed
0.066 0.003 0.068

Vector size 10 100 1000 10,000
Dynamic allocation 0 0.006 0.288 25.373
Preallocated 0.001 0.006 0.062 0.577

At this point, it is interesting to compare the apply family of functions versus loops
in R. Most R users would be familiar with the apply() function and its variants,
including lapply(), sapply(), and tapply(). They provide the means to perform
the same operation repeatedly on individual elements of a collection (for example,
data.frame, list, or vector/matrix). Effectively, the apply family serves as a
possible substitute of looping in R, provided there are no dependencies between
one iteration and another. Besides simplifying the expression (it is often possible
to express a multiline for loop as a single line apply() call), the apply family
offers the benefit of automatically taking care of the memory preallocation and
other housekeeping activities like deleting loop indices.

But does apply offer performance advantages over looping? The following code
offers an answer to this. Two different approaches are used to generate a list of
normally distributed random vectors whose sizes are also randomly set to values
between 1 and 30. The first approach uses a for loop while the second uses
lapply(). Applying system.time() on both approaches shows that lapply()
is significantly faster than the for loop:

N <- 1E5
data <- sample(1:30, size=N, replace=T)
data_rand1 <- list()
system.time(for(i in 1:N) data_rand1[[i]] <- rnorm(data[i]))
user system elapsed
33.891 1.241 35.120
system.time(data_rand2 <- lapply(data, rnorm))
user system elapsed
0.597 0.037 0.633

Chapter 3

[43]

But note that the for loop is implemented naively without preallocating the
memory. The following code modifies it now with the preallocated memory.
Its computation time has significantly been reduced to be just a tenth of a
second slower than lapply():

data_rand3 <- vector("list", N)
system.time(for(i in 1:N) data_rand3[[i]] <- rnorm(data[i]))
user system elapsed
0.737 0.036 0.773

To establish this more convincingly, the comparison was repeated using
microbenchmark() to run each expression 100 times. The results indicate
that lapply() offers a slight performance advantage over a for loop:

microbenchmark(data_rand2 <- lapply(data, rnorm),
 for(i in 1:N) data_rand3[[i]] <- rnorm(data[i]))
Unit: milliseconds
expr min
data_rand2 <- lapply(data, rnorm) 441.1108
for (i in 1:N) data_rand3[[i]] <- rnorm(data[i]) 531.1212
lq mean median uq max neval
459.9666 498.1296 477.4583 517.4329 634.7849 100
555.8512 603.7997 581.5236 662.2536 745.4247 100

Based on this, the general view of replacing for loops with apply in R whenever
possible is valid, but perhaps the performance gain would not be dramatic. In Chapter
6, Simple Tweaks to Use Less RAM, another benefit of apply will be discussed—that it
reveals parts of R code that can be parallelized.

Use of simpler data structures
Many R users would agree that data.frame as a data structure is the workhorse
of data analysis in R. It provides an intuitive way to represent a typical structured
dataset with rows and columns representing observations and variables respectively.
A data.frame object also allows more flexibility than a matrix by allowing variables
of different types (such as character and numeric variables in a single data.frame).
Furthermore, in cases where a data.frame stores only variables of the same type, basic
matrix operations conveniently become applicable to it without any explicit coercing
required. This convenience, however, can come with performance degradation.

Simple Tweaks to Make R Run Faster

[44]

Applying a matrix operation on a data.frame is slower than on a matrix. One of
the reasons is that most matrix operations first coerce the data.frame into a matrix
before performing the computation. For this reason, where possible, one should use
a matrix in place of a data.frame. The next code demonstrates this point. The goal
is simply to perform row summation on a matrix and its equivalent data.frame
representation. Using a matrix representation results in about 3x speedup compared
to using a data.frame representation:

data <- rnorm(1E4*1000)
dim(data) <- c(1E4,1000)
system.time(data_rs1 <- rowSums(data))
user system elapsed
0.026 0.000 0.026
data_df <- data.frame(data)
system.time(data_rs2 <- rowSums(data_df))
user system elapsed
0.060 0.015 0.076

In many cases of R however, the use of data.frame is unavoidable, for example,
when a dataset has mixed variable types. In this case, there is also a simple tweak
that can improve the speed of one of the most frequently used operations on a data.
frame, subsetting. Subsetting a data.frame is commonly done by conditioning its
rows (or columns) through a logical test as in the following code:

data <- rnorm(1E5*1000)
dim(data) <- c(1E5,1000)
data_df <- data.frame(data)
system.time(data_df[data_df$X100>0 & data_df$X200<0,])
user system elapsed
2.436 0.221 2.656

An alternative to this is to wrap the condition by the which function. The speed is
improved significantly as shown follows:

system.time(data_df[which(data_df$X100>0 & data_df$X200<0),])
user system elapsed
0.245 0.086 0.331

Chapter 3

[45]

Use of hash tables for frequent lookups
on large data
One common task in data analysis is data lookup, which is often implemented via a list
in R. For example, to look up customers' ages, we can define a list, say, cust_age, with
values set to customer ages and names set to the corresponding customer names (or
IDs), that is names(cust_age) <- cust_name. In this case, to look up John Doe's age,
the following can be called: cust_age[["John_Doe"]]. However, the implementation
of lists in R is not optimized for lookup; it incurs O(N) time complexity to perform
a lookup on a list of N elements. This means that the values indexed later in the list
require more time to look up. As N grows, this effect gets stronger. When a program
requires frequent lookups, the cumulative effect can be significant. An alternative to
lists that offers a more optimized data lookup is a hash table. In R, this is available
from the CRAN package hash. A hash table's lookup incurs O(1) time complexity.

The next code demonstrates the benefit of lookups in hash tables over lists. It simulates
1,000 lookups from a random list and its equivalent hash table representation. The total
computation time required for the list is 6.14 seconds, while for the hash table is 0.31
seconds. One trade-off is that it takes more time to generate a hash table than a list.
But for a program that requires frequent lookups on large data, this overhead can
be insignificant:

data <- rnorm(1E6)
data_ls <- as.list(data)
names(data_ls) <- paste("V", c(1:1E6), sep="")
index_rand <- sample(1:1E6, size=1000, replace=T)
index <- paste("V", index_rand, sep="")
list_comptime <- sapply(index, FUN=function(x){
 system.time(data_ls[[x]])[3]})
sum(list_comptime)
[1] 6.144
library(hash)
data_h <- hash(names(data_ls), data)
hash_comptime <- sapply(index, FUN=function(x){
 system.time(data_h[[x]])[3]})
sum(hash_comptime)
[1] 0.308

Simple Tweaks to Make R Run Faster

[46]

Seeking fast alternative packages in
CRAN
One key advantage of R is its rich and active open source community, CRAN. As of
the time of writing, there are over 6,000 R packages in CRAN. Given this, it is common
that multiple packages offer the same functionalities. Some of these alternatives are
designed specifically to improve the performance of a base or an existing CRAN
package's performance. Others do not target performance improvement explicitly,
but nevertheless achieve it as a by-product.

An example of an alternative fast package developed to achieve performance gains
is the fastcluster package. It was developed to improve the speed of hierarchical
clustering provided by the base package through the hclust function. Depending on
how the distance matrix gets updated after every branch merging in the hierarchical
clustering procedure, its time complexity can vary significantly. The fastcluster
package is developed using an optimized C++ code that improves the speed
significantly compared to the routines implemented in hclust. The following R code
compares the performance of the two functions on a random matrix with 10,000 rows
and 100 columns:

data <- rnorm(1E4*100)
dim(data) <- c(1E4,100)
dist_data <- dist(data)
system.time(hc_data <- hclust(dist_data))
user system elapsed
3.488 0.200 4.081
library(fastcluster)
system.time(hc_data <- hclust(dist_data))
user system elapsed
1.972 0.123 2.127

An example of a function that has more than one implementation, where one
happens to be faster than the others as a by-product is Principal Component
Analysis (PCA). PCA is a dimensionality reduction technique that achieves its
goal by projecting a dataset onto orthogonal axes (called principal components)
that maximize the dataset's variance. The most common approach to PCA is
via the Eigenvalue decomposition of the dataset's covariance matrix. But there
are alternative methods. In R, two of these alternatives materialize in two PCA
functions called prcomp and princomp (both are parts of the stats package). A
quick comparison on a random matrix with 100,000 rows and 100 columns as in
the following code demonstrates that princomp is close to 2x faster than prcomp:

data <- rnorm(1E5*100)

Chapter 3

[47]

dim(data) <- c(1E5,100)
system.time(prcomp_data <- prcomp(data))
user system elapsed
4.101 0.091 4.190
system.time(princomp_data <- princomp(data))
user system elapsed
2.505 0.071 2.576

There are other examples of fast packages both explicitly and implicitly.
They include:

•	 fastmatch: This provides a faster version of base R's match function
•	 RcppEigen: This includes a faster version of linear modeling lm
•	 data.table: This offers faster data manipulation operations compared

to the standard data.frame operations
•	 dplyr : This offers a set of tools to manipulate data frame-like

objects efficiently

Summary
This chapter described a few simple tweaks to improve the speed of an R code. Some
of the tweaks are well known, but often overlooked in practice; others are less obvious.
Regardless of their nature, and despite their simplicity, these low hanging fruits can
offer significant performance gains and sometimes even more than the advanced
optimization discussed in subsequent chapters. As such, these tweaks should be
taken as the first steps in order to optimize an R code.

In the next chapter, we will see how to take R's performance even further by using
compiled code.

Using Compiled Code for
Greater Speed

So far, we have looked at how to optimize the computational performance of
an R code. What if, after optimizing the code, it still runs too slowly? In this
chapter, we will look at how to overcome the performance limitations caused by
on-the-fly interpretation of an R code using a compiled code. Many CRAN packages
use compiled code to offer optimum performance, so a simple way to take advantage
of a compiled code is to use these packages. Sometimes, however, a specific task
needs to be performed for which no package exists. It is useful to know how to write a
compiled code for R in order to make R programs run faster.

We will first see how to compile R code before its execution, then we will explore
how to integrate compiled languages like C/C++ into R so that we can run R
programs at native CPU speed.

This chapter covers the following topics:

•	 Compiling an R code before execution
•	 Using compiled languages in R

Compiling R code before execution
In Chapter 1, Understanding R's Performance – Why Are R Programs Sometimes Slow?
we saw how R, being an interpreted language, has to parse and evaluate code every
time an R program is run. This takes a lot of CPU time and slows down the execution
of R programs. R provides the compiler package to somewhat reduce this issue.
The functions in this package allow us to compile R code beforehand and save R
a step or two when we execute the code. Let's see how this works.

Using Compiled Code for Greater Speed

[50]

Compiling functions
Let's define a mov.avg() function that calculates the moving average of a
numeric series:

Compute the n-period moving average of x
mov.avg <- function(x, n=20) {
 total <- numeric(length(x) - n + 1)
 for (i in 1:n) {
 total <- total + x[i:(length(x) - n + i)]
 }
 total / n
}

Given a numeric vector x and period n, we first calculate the n element's window
sum of the elements of x. For example, if x is [1, 2, 1, 3, 5] and n is 2, then we
calculate total as [1+2, 2+1, 1+3, 3+5] = [3, 3, 4, 8]. We do this by looping
n times over x, selecting a moving window of the elements of x, and adding those
elements to total. Finally, we compute the moving average by dividing total by n.

To compile the function, we will use the cmpfun() function in the compiler package.
The compilation functions provided by the compiler package operate on four
different levels of optimization, numbered 0 to 3; the higher the number, the more
the compiled code is optimized for performance.

Let's compile mov.avg() at different levels to see the differences in execution time.
Here, we create four copies of the mov.avg() function compiled at different levels
of optimization by passing the optimize argument to cmpfun():

library(compiler)
mov.avg.compiled0 <- cmpfun(mov.avg, options=list(optimize=0))
mov.avg.compiled1 <- cmpfun(mov.avg, options=list(optimize=1))
mov.avg.compiled2 <- cmpfun(mov.avg, options=list(optimize=2))
mov.avg.compiled3 <- cmpfun(mov.avg, options=list(optimize=3))

Next, we benchmark the performance of the original mov.avg() function and the
four compiled versions by computing the 20-period moving average of a numeric
vector with 100 elements:

library(microbenchmark)
x <- runif(100)
bench <- microbenchmark(mov.avg(x),

Chapter 4

[51]

 mov.avg.compiled0(x),
 mov.avg.compiled1(x),
 mov.avg.compiled2(x),
 mov.avg.compiled3(x))
bench
Unit: microseconds
expr min lq median uq max
mov.avg(x) 34.257 37.6865 41.3630 72.3015 131.101
mov.avg.compiled0(x) 33.500 36.9065 41.9995 72.8770 2605.917
mov.avg.compiled1(x) 34.643 36.8615 41.0650 71.8480 117.632
mov.avg.compiled2(x) 24.050 25.9040 28.3060 51.8685 3693.741
mov.avg.compiled3(x) 23.399 24.6540 27.7670 49.6385 89.595
neval
100
100
100
100
100

Looking at the median execution times, the original function took 41.4 μs. The
compiled functions at optimization levels 0 and 1 took about the same time, coming
in at 42.0 μs and 41.1 μs respectively. However those at optimization levels 2 and
3 performed well, at 28.3 μs and 27.8 μs. They reduced the execution time by 32
percent and 33 percent respectively.

The minimum lower quartile and upper quartile statistics shows a similar pattern
with mov.avg.compiled2() and mov.avg.compiled3() executing in less time
than mov.avg(), mov.avg.compiled0(), and mov.avg.compiled1().

We should not rely on the maximum statistics because it can be
unstable, producing a wide range of values every time we run
microbenchmark(). This is due to the outliers when R's garbage
collection takes place, or when the execution of the functions are
slowed down by other processes competing for CPU time.

The following chart shows the distributions of the benchmarking results in an
intuitive visual form.

Using Compiled Code for Greater Speed

[52]

Generate an intuitive visualization of the benchmarking results by using
the autoplot() function. The ggplot2 package is needed for this:

library(ggplot2)

autoplot(bench)

 Autoplot of microbenchmark() results for moving average functions

The performance gain when R code is compiled depends on what kinds of R
expressions are contained in the code. In our example, we achieved modest
performance gains because the for loop and the arithmetic operations in the mov.
avg() function could be optimized. However, compiling code that mostly calls
other functions that have already been optimized for performance (such as sum())
would not result in significant performance gains.

Chapter 4

[53]

The compiler package provides different functions to compile
different types of R code:

•	 cmpfun() compiles an R function.
•	 compile() compiles an R expression.
•	 cmpfile() compiles an R expression stored in a file.

Just-in-time (JIT) compilation of R code
R also supports just-in-time (JIT) compilation. When JIT compilation is enabled,
R will automatically compile any code that is executed without explicitly having
called one of the compile functions. This is convenient, as any existing R code can
enjoy the performance gains of code compilation without any modification.

To activate JIT compilation, use the enableJIT() function in the compiler package:

library(compiler)
enableJIT(level=3)

The level argument tells R how much code to compile before execution. Valid
values for level are:

•	 0: It disables JIT.
•	 1: It compiles functions before their first use.
•	 2: In addition, it compiles functions before they are duplicated. This is

useful for some packages like lattice that store functions in lists.
•	 3: It compiles loops before they are executed.

Let's benchmark the (uncompiled) mov.avg() function with the JIT compilation:

microbenchmark(mov.avg(x))
Unit: microseconds
expr min lq median uq max neval
mov.avg(x) 23.164 24.009 24.519 25.128 6097.067 100

The JIT compilation reduced the median execution time of mov.avg() from 41.4 μs
to 24.5 μs—a 41 percent improvement!

JIT compilation can also be enabled by setting the R_ENABLE_JIT
environment in the operating system before starting R. The value of
R_ENABLE_JIT should be set to the value of the level argument.

Using Compiled Code for Greater Speed

[54]

Using compiled languages in R
Code compilation can provide modest gains in computational performance, but there
are limits to these gains because the compiled code still needs to be evaluated by R
in a dynamic fashion. For example, we explained in Chapter 3, Simple Tweaks to Make
R Run Faster, how R, being a dynamically typed language, needs to check the type
of an object before applying any operations. In the case of mov.avg(), every time
R encounters the + operator, it needs to check that x is a numeric vector, as it could
have been modified between each iteration of the for loop. In contrast, a statically
typed language performs these checks at compile time, resulting in much faster
run time performance.

For this and many other reasons, R's dynamic nature poses barriers to computational
performance. The only way to break through these barriers is to turn to compiled
languages such as C and use them from within R. This section assumes that you
have some basic knowledge of compiled languages such as C/C++, including pointers
and arrays.

Prerequisites
In order to compile the examples in this chapter, a set of development tools,
including a C/C++ compiler are needed.

Windows users should download and install Rtools from http://cran.r-project.
org/bin/windows/Rtools/. Pick the version of Rtools that corresponds to your
version of R. Be sure to select the Package authoring installation and Edit the system
PATH options in the installation wizard.

On Mac OS X, download and install the Xcode Command Line Tools. If you are using
Mac OS X 10.9 Mavericks or a later version, simply run xcode-select –install
in terminal. For earlier versions of Mac OS X, create a developer account at http://
developer.apple.com/. Then sign in, go to https://developer.apple.com/
downloads/index.action and search for command-line tools for Xcode for your
OS version.

Most Linux distributions offer an easy way to install the standard development tools;
consult the documentation of your distribution for instructions. If you are using
Debian or Ubuntu, you can just install r-base-dev to get all the tools you need.

Including compiled code inline
The inline CRAN package allows us to embed C, C++, Objective-C, Objective-C++,
and Fortran code within R. This is handy for speeding up small R functions with a
bit of compiled code.

http://cran.r-project.org/bin/windows/Rtools/
http://cran.r-project.org/bin/windows/Rtools/
http://developer.apple.com/
http://developer.apple.com/
https://developer.apple.com/downloads/index.action
https://developer.apple.com/downloads/index.action

Chapter 4

[55]

Here is an example of how to implement mov.avg()in C using the inline package:

library(inline)
mov.avg.inline <- cfunction(
 sig=signature(x="numeric", n="integer"),
 body="
 /* Coerce arguments to the correct types needed.
 x needs to be a numeric vector (type REALSXP), and n
 needs to be an integer vector (type INTSXP). */
 SEXP x2 = PROTECT(coerceVector(x, REALSXP));
 SEXP n2 = PROTECT(coerceVector(n, INTSXP));

 /* Create accessors to the actual data being pointed to by
 the two SEXP's. */
 double *x_p = REAL(x2);
 int n_val = asInteger(n2);

 // Vector lengths
 int x_len = length(x2);
 int res_len = x_len - n_val + 1;

 /* Create and initialize a numeric vector (type REALSXP)
 of length res_len, using allocVector().
 Since memory is allocated, use PROTECT to protect the
 object from R's garbage collection. */
 SEXP res = PROTECT(allocVector(REALSXP, res_len));
 double *res_p = REAL(res);
 for (int i = 0; i < res_len; i++) {
 res_p[i] = 0;
 }

 // Compute window sum
 for (int j = 0; j < n_val; j++) {
 for (int k = 0; k < res_len; k++) {
 res_p[k] += x_p[j + k];
 }
 }

 // Compute moving average
 for (int l = 0; l < res_len; l++) {
 res_p[l] /= n_val;
 }

 // Unprotect allocated memory and return results

Using Compiled Code for Greater Speed

[56]

 UNPROTECT(3);
 return res;
 ',
 language="C"
)

We load the inline package and define mov.avg.inline() using cfunction().
A number of arguments are taken by cfunction()(look up the documentation for
more details), but we need only three here:

•	 sig=signature(x="numeric", n="integer"): This defines the signature
of the function. In this case, it will look like mov.avg.inline(x, n), where
x has the numeric class and the n has integer class.

•	 body: The body argument contains the code for the function's body in the
programming language of your choice.

•	 language="C": This specifies the programming language of the code in body.
Valid values are C, C++, Fortran, F95, ObjectiveC, and ObjectiveC++.

The first step of the function is to make sure that the arguments supplied to the
function are of the correct type by calling coerceVector(). This function returns an
SEXP (s-expression) pointer, which is how all R objects are represented in C and C++.
These pointers point to SEXPREC (s-expression) record structures that store the data
along with some header information. The first two lines of code define two new SEXP
variables, x2 and n2, that store pointers to new R objects created by coercing the
function arguments.

Because coerceVector() creates new data structures in memory to store the data
in the specified types, we wrap the calls to coerceVector() in the macro function
PROTECT(), which protects the newly created data structures from R's garbage
collection mechanisms. This is necessary because R does not know when variables
are no longer needed in C, and might be overzealous in freeing memory for objects
that are still needed. PROTECT() needs to be called every time memory is allocated
for a new R object.

Now x2 and n2 contain SEXP pointers of R objects that represent the coerced
arguments. Because x2 and n2 point to SEXPREC structures, we still do not have
direct access to the C arrays that store the data. There are a couple of ways to
get access to the data. In double *x_p = REAL(x2);, the REAL() macro returns
a double* pointing to the first element of the double array. The int n_val =
asInteger(n2); declaration takes a different approach by calling the asInteger()
convenience function to return the first integer value in the array pointed to by
n2. Notice the difference here; x_p is a pointer to a double array while n_val is an
integer containing the actual value of the argument. Both styles of access to the R
data can be used depending on which is more convenient.

Chapter 4

[57]

Next, we compute the length res_len of the numeric vector in which we will store
the results, and create the vector using allocVector(). Again, this is wrapped in
PROTECT() because memory is being allocated for a new object. The result of this
expression is a SEXP pointing to the new R numeric vector. REAL(res) provides
access to the underlying C double array, as before.

The next pair of nested for loops computes the window sum with the n_val period.
Then, the moving average is computed by dividing each element of the results array
by n_val.

Before returning the results, there is some housekeeping that is required.
UNPROTECT(3) tells R that the three objects for which memory was allocated in C, do
not need protection from garbage collection anymore. The argument to UNPROTECT()
must match the number of calls to PROTECT() in the function. In this case, it is likely
that the the garbage collector will free the memory for x2 and n2. The res object,
however, is passed back to R, where the normal garbage collection mechanisms apply.

Let's do a simple test to ensure that our code works correctly by calling the
original mov.avg() function alongside mov.avg.inline() and ensuring that
the values match:

x <- runif(100)
all(mov.avg(x, 20) == mov.avg.inline(x, 20))
[1] TRUE

How much quicker will the C code run than the original uncompiled R function?
This is shown, as follows:

microbenchmark(mov.avg(x, 20), mov.avg.inline(x, 20))
Unit: microseconds
expr min lq median uq max
mov.avg(x, 20) 32.909 34.113 34.8240 35.6975 130.155
mov.avg.inline(x, 20) 1.347 1.423 1.5535 1.7015 14.169
neval
100
100

The C code took an average of just 1.55 μs compared with 34.8 μs for the R code—a 96
percent reduction in execution time! Even the maximum execution time in C (14.2 μs)
is less than half of the minimum execution time in R (32.9 μs). These savings of a few
microseconds might not seem like much, but the difference becomes significant when
we have to process larger datasets or compute moving averages with larger periods:

y <- runif(1e7)
microbenchmark(mov.avg(y, 20), mov.avg.inline(y, 20))
Unit: milliseconds

Using Compiled Code for Greater Speed

[58]

expr min lq median uq
mov.avg(y, 20) 2046.4608 2198.6103 2252.7003 2318.721
mov.avg.inline(y, 20) 272.8686 280.2837 283.3647 292.587
max neval
3606.3911 100
374.0193 100

When the data contains 10 million numbers, the difference is more pronounced;
over 2 seconds in R and only 0.28 seconds in C. In some business contexts,
every millisecond counts, and a latency of 2 seconds is not acceptable. In such
situations, writing key pieces of data processing code in a compiled language
like C or Fortran and embedding them into R using inline will give a huge boost
to computational performance.

Calling external compiled code
We have seen how to use a compiled language to define functions in R. When
we want to implement more complex functionality using compiled code, such as
creating entire R packages or linking to external libraries, it might be easier
to develop the code externally and to call it from R.

R provides a few interfaces to call the external compiled code:

•	 .C(): This calls C or C++ code with a maximum of 65 arguments. Type
checking and coercion must be done in R before calling the C function.
Functions called by .C() should not return any values; instead, when the
function is called, the results stored by data structures should be supplied
to the function. For example, if we were to implement mov.avg() using
the .C() interface, the function call might look like .C("mov_avg_C",
as.numeric(x), as.integer(n), numeric(length(x) - n + 1)).

•	 .Fortran(): This is similar to .C() except it calls Fortran code.
•	 .Call(): This also calls C or C++ code with a maximum of 65 arguments.

Type checking and coercion can be done in R or in C/C++ (as in the mov.
avg.inline() example). Functions called by .Call() can return an R
object. If multiple return values are needed, an R list can be returned.
For example, ma <- .Call("mov_avg_C", x, n).

•	 .External(): This is similar to .Call() except all arguments are
passed in a single SEXP. As a result, functions called with .External()
can accept a variable number of arguments and a practically unlimited
number of arguments.

Chapter 4

[59]

The functions provided by the inline package are actually wrappers for some of the
lower-level interfaces that make it easier for developers to embed a compiled code in R.

It is beyond the scope of this book to explain in detail how to use these interfaces.
To learn more, read the System and foreign language interfaces and The R API sections
of the Writing R Extensions manual (for more information visit http://cran.r-
project.org/doc/manuals/r-release/R-exts.html).

For Java programmers, the rJava package on CRAN provides
an interface to Java code.

Instead, we would like to introduce the Rcpp package that provides a convenient,
higher-level API to the .Call() interface for C++ code. Here is the moving average
function implemented using Rcpp. Save this code in the mov_avg_Rcpp.cpp file:

#include <Rcpp.h>

// [[Rcpp::export]]
Rcpp::NumericVector mov_avg_Rcpp(Rcpp::NumericVector x,
 int n=20) {
 // Vector lengths
 int x_len = x.size();
 int res_len = x_len - n + 1;

 // Create and initialize vector for results
 Rcpp::NumericVector res(res_len);

 // Compute window sum
 for (int j = 0; j < n; j++) {
 for (int k = 0; k < res_len; k++) {
 res[k] += x[j + k];
 }
 }

 // Compute moving average
 for (int l = 0; l < res_len; l++) {
 res[l] /= n;
 }

 // Return results
 return res;
}

http://cran.r-project.org/doc/manuals/r-release/R-exts.html
http://cran.r-project.org/doc/manuals/r-release/R-exts.html

Using Compiled Code for Greater Speed

[60]

The first line #include <Rcpp.h> imports the headers required to use Rcpp classes
and functions. The comment // [[Rcpp::export]] is an Rcpp attribute. It tells
Rcpp that the following function should be exported to R.

SEXP pointers are not used in mov_avg_Rcpp(). Instead, Rcpp provides classes
that represent the standard R classes. We can even specify that n is a single integer
and not an integer vector. Whenever mov_avg_Rcpp() is called from R, Rcpp will
automatically check that the supplied arguments are of the correct type.

Notice that there are no calls to PROTECT() or UNPROTECT() here. When
Rcpp::NumericVector res(res_len); creates a new numeric vector for the
results, Rcpp takes care of the memory allocation and protection from garbage
collection. It even initializes the values of the new vector to zeroes.

Rcpp also provides direct access to the data in the x argument and the results
vector res without having to ask for pointers to the data.

Using Rcpp, we can write more succinct and readable code than possible using
the native .C() or .Call() interfaces.

Let's now see how to call this function from within R. Besides loading the Rcpp
library, the only other thing to do is to call sourceCpp(), which will compile the
C++ code and export the function to R:

library(Rcpp)
sourceCpp('mov_avg_Rcpp.cpp")

Now, we can call mov_avg_Rcpp() and benchmark it against our previous versions:

x <- runif(100)
microbenchmark(mov.avg(x, 20),
 mov.avg.inline(x, 20),
 mov_avg_Rcpp(x, 20))
Unit: microseconds
expr min lq median uq max

mov.avg(x, 20) 33.902 35.779 37.472 49.7340 101.325
mov.avg.inline(x, 20) 1.327 1.513 1.718 1.9655 14.129
mov_avg_Rcpp(x, 20) 2.382 2.727 2.874 3.9705 11.424
neval
100
100
100

Chapter 4

[61]

The Rcpp version runs a little slower than the inline version, but it is still much faster
than our pure R code. It provides a good level of performance with a much simpler
API than the other interfaces provided by R.

Rcpp provides many more features than we can cover in this book such as package
authoring tools, the sugar functions for common operations such as vector operations,
and more. For more details, code examples, and resources, look up the Rcpp website
at http://www.rcpp.org/. One of the creators of Rcpp, Dirk Eddelbuettel, has also
written the Seamless R and C++ Integration with Rcpp (use R!) book that provides a
comprehensive guide.

Considerations for using compiled code
There are a few things to bear in mind while using compiled code in R. We
will explain the common ones here; the Writing R Extensions manual provides
a comprehensive treatment of these topics.

R APIs
The C functions and macros used so far are from the header file Rinternals.h,
found in R_INCLUDE_DIR which defaults to R_HOME/include in any standard R
installation. This file, together with R.h and other header files in R_INCLUDE_DIR,
provides various APIs for C/C++ code to interface with R. Together they provide
a rich set of functions for:

•	 Manipulating R objects (for example, sorting vectors)
•	 Managing memory allocation and deallocation
•	 Math (for example, trigonometric functions)
•	 Mathematical constants
•	 Random number generation
•	 Statistical distributions (for example, rnorm and punif)
•	 BLAS, LAPACK, and LINPACK linear algebra routines
•	 And much more

It is worthwhile to explore these files in order to see which functionality is available
for C/C++ code. Some of these can be called from Fortran as well. The Organization
of header files section of Writing R Extensions describes each header file.

http://www.rcpp.org/

Using Compiled Code for Greater Speed

[62]

R data types versus native data types
While working in compiled languages, it is useful to know how R types map
to different native data types, as shown in the following table:

R storage mode C type Fortran type
logical int * INTEGER

integer int * INTEGER

double double * DOUBLE PRECISION

complex Rcomplex * DOUBLE COMPLEX

character char ** CHARACTER*255

raw unsigned char * none

When dealing with SEXP pointers in C/C++ or type classes in Rcpp, here are the most
commonly used types (look up the documentation for R or Rcpp for a complete list):

R type SEXP Type Rcpp type
numeric REALSXP NumericVector / NumericMatrix

integer INTSXP IntegerVector / IntegerMatrix

complex CPLXSXP ComplexVector / ComplexMatrix

logical LGLSXP LogicalVector / LogicalMatrix

character STRSXP CharacterVector / CharacterMatrix

list VECSXP List

data.frame none DataFrame

Creating R objects and garbage collection
We have seen how R objects can be created and memory can be allocated for them by
calling allocVector() and coerceVector(). Rinternals.h defines other memory
allocation functions as well, such as allocList() and allocArray(). Any call to
the alloc*() functions or coerceVector() needs to be wrapped in PROTECT().

In the mov.avg.inline() example, UNPROTECT() is used to remove garbage
collection protection right before returning the results. UNPROTECT() can also
be called at any point in a function to allow the garbage collector to release R
objects that are no longer needed. The protection mechanism is stack-based, so
UNPROTECT(n) removes the protection from the last n objects that were protected.
Alternatively, UNPROTECT_PTR(p) can be used to unprotect the specific object that
SEXP p points to, even if it is not at the top of the stack.

Chapter 4

[63]

In complex C/C++ code that creates many R objects, it is good practice to unprotect
them once they are not needed, so that the garbage collector can do its job efficiently.
However, it is the programmer's responsibility to make sure that those unprotected
objects are never used again in the code, to prevent any memory errors.

Finally, always remember to match the number of the PROTECT() calls with the total
number of objects unprotected by UNPROTECT() or UNPROTECT_PTR().

Allocating memory for non-R objects
Sometimes, memory is needed to store the results of intermediate computations
that do not need to be accessed from R. R provides two ways of allocating memory
like this in C/C++.

The first method, transient storage allocation, allows you to allocate memory that is
automatically reclaimed by R at the end of the call to .C(), .Call() or .External().
To do this, use the char *R_alloc(size_t n, int size) function, which allocates
n units of size bytes each and returns a pointer to the allocated memory. A typical
usage might look like:

int *x = (int *) R_alloc(100, sizeof(int));

There is no need to free the allocated memory within the C/C++ function, as R will
take care of that when the function execution ends.

The user-controlled memory mechanism provides more control over the allocation
and freeing of memory. This allows memory to be freed between different parts of
C/C++ code. For example, in an iterative algorithm where each stage of computation
produces large amounts of intermediate data, memory from previous iterations can
be freed to ensure that there is sufficient free memory to complete future iterations.
There are three functions in this interface:

•	 type* Calloc(size_t n, type): This allocates memory of the specified
size and type

•	 type* Realloc(any *p, size_t n, type): This changes the size of the
memory allocated at *p to the specified size and type

•	 void Free(any *p): This frees the memory at *p

These functions are analogous to the C functions calloc(), realloc(), and free(),
with additional error handling by R. If they return, then the memory has been
successfully allocated or freed.

Using Compiled Code for Greater Speed

[64]

Summary
In this chapter, we covered a variety of techniques to leverage code in compiled
languages for a near-native CPU performance. While the examples focused on C
and C++, similar approaches can be used with Fortran or Java.

We first saw how compiling an R code before its execution by using the compile
package can provide modest performance gains, especially for code with many
loops and basic operations. JIT compilation does the same automatically for
executing any R code. There is a limit, however, to how much an R code can be
optimized because R is a dynamic language at its core.

Looking beyond R, we used C and C++ to achieve dramatic performance
improvements. We learned how to define a C function from within R, using the
inline package, and how to use Rcpp to call an external C++ function from R.

In the process, we learned about how R represents different types of data in C/C++
using SEXP pointers and SEXPREC record structures, and how to manipulate R
objects using these constructs. We also learned about the intricacies of allocating
memory, freeing memory, and garbage collection while working in C/C++.

Finally, we took a quick tour of the R APIs that provide rich R functionality from
within C, C++, or Fortran.

This chapter covered advanced techniques to achieve optimized computational
performance in R, using compiled languages. These techniques allow R programmers
to tap into the power and speed of compiled languages while enjoying the simplicity
and flexibility of R as a data processing environment. The huge performance
gains from using compiled languages come with an equally huge responsibility to
understand in detail how these techniques work, so that they can be used safely and
effectively. Whole books could be written on this topic; we encourage you to look
up other resources including the Writing R Extensions manual for a deeper and more
comprehensive treatment.

In the next chapter, we will look at how to leverage the computing power of
Graphics Processing Units (GPUs) for certain types of computations.

Using GPUs to Run R
Even Faster

In this chapter, we will look at another means to speed up the execution of an R code
using a technology that is often untapped, although it is part of most computers—the
Graphics Processing Unit (GPU), otherwise known as a graphics card. When we
think of a GPU, we often think of the amazing graphics it can produce. In fact, GPUs
are powered by technologies with highly parallel processing capabilities that are like
the top supercomputers in the world. In the past, programming with GPUs was very
difficult. However, in the last few years, this barrier has been removed with GPU
programming platforms like CUDA and OpenCL that make programming with
GPUs accessible for many programmers. Better still, the R community has developed
a few packages for R users to leverage the computing power of GPUs.

To run the examples in this chapter, you will need an NVIDIA GPU with
CUDA capabilities.

This chapter covers:

•	 General purpose computing on GPUs
•	 R and GPUs
•	 Fast statistical modeling in R with gputools

Using GPUs to Run R Even Faster

[66]

General purpose computing on GPUs
Historically, GPUs were designed and used to render high-resolution graphics
such as for video games. To be able to render millions of pixels every second, GPUs
utilize a highly parallel architecture that specializes in the types of computations
required to render graphics. At a high level, the architecture of a GPU is similar to
that of a CPU—it has its own multi-core processor and memory. However, because
GPUs are not designed for general computation, individual cores are much simpler
with slower clock speeds and limited support for complex instructions, compared
to CPUs. In addition, they typically have less RAM than CPUs. To achieve real-time
rendering, most GPU computations are done in a highly parallel manner, with many
more cores than CPUs—a modern GPU might have more than 2,000 cores. Given
that one core can run multiple threads, it is possible to run tens of thousands of
parallel threads on a GPU.

In 1990s, programmers began to realize that certain computations outside of
graphics rendering can benefit from the highly parallel architecture of GPUs.
Remember the embarrassingly parallel nature of vectorized operations in R from
Chapter 3, Simple Tweaks to Make R Run Faster; imagine the potential speedup if they
were done simultaneously by thousands of GPU cores. This awareness gave rise
to general purpose computing on GPUs (GPGPU).

But it was challenging to program GPUs. Using low-level interfaces provided by
standards like DirectX and OpenGL, programmers had to trick the GPUs to compute
on numbers as if they were rendering graphics. Realizing this challenge, efforts sprung
up to develop proper programming languages and the supporting architectures for
GPGPU. The chief outcomes from these efforts are two technologies called CUDA,
developed by NVIDIA, and OpenCL, developed by Apple and now maintained by
Khronos. While CUDA is proprietary and works only on NVIDIA GPUs, OpenCL is
brand agnostic and is even able to support other accelerators like Field Programmable
Gate Arrays (FPGAs).

R and GPUs
The R community has developed a few packages for R programmers to leverage
GPUs. The vectorized nature of R makes the use of GPUs a natural fit. The packages
vary in the level of encapsulation and hence the required familiarity with the native
CUDA or OpenCL languages. A selection of R packages for GPU programming
are listed here:

Chapter 5

[67]

•	 gputools: This provides R functions that wrap around GPU-based
algorithms for common operations, such as linear models and matrix
algebra. It requires CUDA, and hence an NVIDIA GPU.

•	 gmatrix: This provides the gmatrix and gvector classes to represent
matrices and vectors respectively in NVIDIA GPUs. It also provides
functions for common matrix operations such as matrix algebra, and
random number generation and sorting.

•	 RCUDA: This provides a low-level interface to load and call a CUDA kernel
from an R session. Using RCUDA requires a good understanding of the
CUDA language, but allows more flexibility and code optimization. More
information about t can be found at http://www.omegahat.org/RCUDA/.

•	 OpenCL: This is similar to RCUDA, but interfaces with OpenCL. It caters
to users that have non-NVIDIA GPUs like ATI, Intel, or AMD GPUs.

Other CRAN packages are available for more specialized functions on GPUs, such
as linear regression. For a list of these packages, see the GPUs section of CRAN
Task View: High-Performance and Parallel Computing with R, maintained by Dirk
Eddelbuettel on the CRAN website at http://cran.r-project.org/web/views/
HighPerformanceComputing.html.

In this chapter, we will focus only on gputools and use a few examples from this
package to illustrate how GPUs can speed up computations in R.

Installing gputools
These are the steps to install gputools:

1.	 Make sure that your computer has a CUDA-enabled GPU card. For the
list of CUDA-enabled GPUs, refer to https://developer.nvidia.com/
cuda-gpus.

2.	 Download and install CUDA toolkit from https://developer.nvidia.
com/cuda-downloads.

3.	 Set a few environment variables as specified in the gputools installation
note http://cran.r-project.org/web/packages/gputools/INSTALL.

4.	 Open an R session and run install.packages("gputools").

http://www.omegahat.org/RCUDA/
http://cran.r-project.org/web/views/HighPerformanceComputing.html
http://cran.r-project.org/web/views/HighPerformanceComputing.html
https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
http://cran.r-project.org/web/packages/gputools/INSTALL

Using GPUs to Run R Even Faster

[68]

If you do not have an NVIDIA GPU with CUDA capabilities, Amazon
Web Services (AWS) offers GPU instances, called g2.2xlarge instances, that
come with (at the time of writing) NVIDIA GRID K520 GPUs with 1,536 CUDA cores
and 4 GB of video memory. You can use these instances together with
Amazon Machine Images (AMIs) provided by NVIDIA that are preloaded
with the CUDA toolkit and drivers. Both Windows and Linux AMIs are available
at https://aws.amazon.com/marketplace/seller-profile/ref=sp_mpg_
product_vendor?ie=UTF8&id=c568fe05-e33b-411c-b0ab-047218431da9.
For this chapter, we used the Linux AMI version 2014.03.2.

Fast statistical modeling in R with
gputools
gputools provides a convenient way to execute statistical functions on a GPU,
without CUDA programming. All the heavy lifting, including copying data from
RAM to GPU memory and setting the number of cores to use have been encapsulated
within the functions (in fact, gputools relies on the well-encapsulated CUBLAS library,
which provides linear algebra functions for GPUs). For example, to perform linear
modeling on the mtcars dataset on a CPU, we use the lm(): lm(mpg~cyl+disp+hp,
data=mtcars) function. To run it on a GPU, we call the gpuLm() function from
gputools: gpuLm(mpg~cyl+disp+hp, data=mtcars). The output of gpuLm()
follows the same format as lm().

To demonstrate the speedup that we can expect from a GPU, we will calculate Kendall
correlations on random datasets having 100 variables. We will use a varying number
of observations from 100, 200, … to 500 records in order to observe the speedup in
comparison to the CPU version. The code is as follows:

library(gputools)
A <- lapply(c(1:5), function(x) {
 matrix(rnorm((x*1e2) * 1e2), 1e2, (x*1e2))})
cpu_k_time <- sapply(A, function(x) {
 system.time(cor(x=x, method="kendall"))[[3]]})
gpu_k_time <- sapply(A, function(x) {
 system.time(gpuCor(x=x, method="kendall"))[[3]]})
K <- data.frame(cpu=cpu_k_time, gpu=gpu_k_time)

We tested this code on an NVIDIA GRID K520 GPU from AWS; the performance
you get depends on your GPU. The computational times are plotted on the following
figure. We see that the CPU version of the cor() correlation function scales super
linearly with the number of records. On the other hand, the GPU version shows a
very small increase in computation time as the number of records increases, as
evident from the almost flat red line.

https://aws.amazon.com/marketplace/seller-profile/ref=sp_mpg_product_vendor?ie=UTF8&id=c568fe05-e33b-411c-b0ab-047218431da9
https://aws.amazon.com/marketplace/seller-profile/ref=sp_mpg_product_vendor?ie=UTF8&id=c568fe05-e33b-411c-b0ab-047218431da9

Chapter 5

[69]

Computational times of calculating Kendall correlations in GPU versus CPU

Next, we will run timing comparisons for a few other functions available in
gputools: linear model (gpuLm()), generalized linear model (gpuGlm()), distance
matrix calculation (gpuDist()), and matrix multiplication (gpuMatMult()). The
datasets used for these tests have 1,000 observations and 1,000 variables, except for
gpuLm, where a dataset with 10,000 observations and 1,000 variables is used. The
microbenchmark() function is used to compare the execution times of the CPU
and GPU versions of these algorithms:

library(microbenchmark)
A <- matrix(rnorm(1e7), 1e4, 1e3)
A_df <- data.frame(A)
A_df$label <- rnorm(1e4)
microbenchmark(lm(label~., data=A_df),
 gpuLm(label~., data=A_df),
 times=30L)
Unit: seconds
expr min lq median uq
lm(formu,...) 18.153458 18.228136 18.264231 18.274046
gpuLm(formu,...) 9.310136 9.424152 9.467559 9.507548
max
18.32938
10.25019

A <- matrix(rnorm(1e6), 1e3, 1e3)

Using GPUs to Run R Even Faster

[70]

A_df <- data.frame(A)
A_df$label <- rbinom(1e3, size=1, prob=0.5)
microbenchmark(glm(label~., data=A_df, family=binomial),
 gpuGlm(label~., data=A_df, family=binomial),
 times=30L)
Unit: seconds
expr min lq median uq max
glm(formu,...) 23.64777 23.68571 23.73135 23.82055 24.07102
gpuGlm(formu,...) 15.14166 15.30302 15.42091 15.50876 15.71143

microbenchmark(dist(A), gpuDist(A), times=30L)
Unit: milliseconds
expr min lq median uq max
dist(A) 11113.4842 11141.2138 11167.81 11194.852 11287.2603
gpuDist(A) 191.1447 203.6862 222.79 229.408 239.9834

B <- matrix(rnorm(1E6), 1E3, 1E3)
microbenchmark(A%*%B, gpuMatMult(A, B), times=30L)
Unit: milliseconds
expr min lq median uq
A%*%B 921.68863 934.64234 945.74926 955.33485
gpuMatMult(A,B) 33.28274 33.59875 33.70138 37.35431
max
1029.75887
38.29123

The test results show the power of using GPU computations in R. However, just like
any other parallel program, not all functions will enjoy faster performance when
executed in a GPU. For example, running the correlation comparison for Pearson's
correlations (by changing the method argument from kendall to pearson), the GPU
performs slower than the CPU as shown in the upcoming figure. Due to the extra
sorting operations required by the Kendall correlation, it is known to be much more
computationally intensive than the Pearson correlation (our benchmark here shows
that computing the Kendall correlation is hundreds of times slower than computing
the Pearson correlation). However, it seems that this implementation of the Kendall
correlation algorithm is well suited for the highly parallel architecture of the GPU,
resulting in the performance gains we saw in the first example of this chapter. The
algorithm for computing the Pearson correlation, on the other hand, suffers when we
switch from CPU to GPU suggesting that it is not suited for the GPU's architecture. It
is difficult to pinpoint exactly the reason for the differences in performance between
the two algorithms without studying the details of the underlying CUDA code and
the GPU's architecture. Before deciding to use GPUs for a specific task, it is best to
benchmark the relative performance of GPUs versus CPUs, as we have done here:

Chapter 5

[71]

Computation times of calculating Pearson correlations in GPU versus CPU

In general, these factors can affect the GPU's performance:

•	 GPUs work best for data parallel problems (see Chapter 8, Multiplying
Performance with Parallel Computing for a definition of data parallelism).
They are not suited for tasks that require large amounts of synchronization
between threads.

•	 GPU's performance depends on the amount of data transferred between
the main memory (RAM) and the GPU's memory, because the connection
between the RAM and GPU's memory has a low bandwidth. Good GPU
programming should minimize this data transfer.

Addressing these factors requires programming in the low-level GPU interfaces
provided by RCUDA or OpenCL. Other efforts are being made to minimize the
efforts required by programmers to optimize a CUDA or OpenCL code. For
example, to address the RAM-GPU memory bottleneck, AMD has released a
GPU that combines the RAM and GPU memories in a single card.

Using GPUs to Run R Even Faster

[72]

Summary
In this chapter, we learned how to speed certain computations in R by leveraging
GPUs. Given that most computers today come with a GPU, this gives a quick
opportunity to improve the performance of R programs. This is especially true with
the growing number of packages that interface R with GPUs. Some, such as gputools,
require no knowledge of CUDA or OpenCL at all. GPUs do not guarantee improved
performance for all tasks.

In the next chapter, we will turn our attention to address RAM-related issues in
R programs.

Simple Tweaks to Use
Less RAM

So far, we have learned the techniques to overcome CPU limitations and improve the
speed of R programs. As you can recall from Chapter 1, Understanding R's Performance
– Why Are R Programs Sometimes Slow? that another key constraint of R is memory.
All the data that an R program needs to perform its tasks on must be loaded into the
computer's memory or RAM. RAM is also needed for any intermediate computations,
so the amount of RAM needed to process a given dataset can be many times the size
of the dataset, depending on the type of tasks or algorithms being executed. This can
become a problem when a large dataset needs to be processed, or when there is little
RAM available to complete the tasks.

In this chapter and the next, we will learn how to optimize the RAM utilization of
R programs so that memory-intensive tasks can be executed successfully.

This chapter covers:

•	 Reusing objects without taking up more memory
•	 Removing intermediate data when it is no longer needed
•	 Calculating values on the fly instead of storing them persistently
•	 Swapping active and nonactive data

Simple Tweaks to Use Less RAM

[74]

Reusing objects without taking up more
memory
The first tweak takes advantage of how R manages the memory of objects using
a copy-on-modification model. In this model, when a copy of an object x is made,
for example with y <- x, it is not actually copied in the memory. Rather, the new
variable y simply points to the same block of memory that contains x. The first time
when y is modified, R copies the data into a new block of memory so that x and y
have their own copies of the data. That is why this model of memory management
is called copy-on-modification. What this means is that new objects can sometimes
be created from existing objects without taking up additional memory. To identify
potential memory bottlenecks and manage the memory utilization of R programs,
it is helpful to understand when R copies data and when it does not.

Take for example the following code, which generates a numeric vector x with 1
million elements and creates a list y that contains two copies of x. We can examine
the size of the objects using the object.size() function:

x <- runif(1e6)
print(object.size(x), units = "auto")
7.6 Mb
y <- list(x, x)
print(object.size(y), units = "auto")
15.3 Mb

At first glance, it looks like there are two objects: x, which takes up 7.6 MB of the
memory, and y, which takes up 15.3 MB. However, the memory utilization can be
measured in a different way, and with surprising results:

library(pryr)
object_size(x)
8 MB
object_size(y)
8 MB

The object_size() function from the CRAN package pryr measures the sizes of
x and y slightly differently and more accurately than object.size() from the base
R. It reports that y, which contains two numeric vectors takes up only 8 MB—the
same as x, which is a single numeric vector of the same length. How can that be?
The address() function from the pryr package reveals the actual blocks of memory
that each object points to:

address(x)
[1] "0x10f992000"

Chapter 6

[75]

address(y)
[1] "0x7ff18b30e478"
address(y[[1]])
[1] "0x10f992000"
address(y[[2]])
[1] "0x10f992000"

As expected, y, a list, points to a different memory location than x, a numeric vector,
indicating that it is a different object. But the two elements of y point to the original
object x in the memory. R is smart about not copying objects unnecessarily. In this
case, it simply created two pointers in y that point to x. This is so efficient that in
fact, x and y combined together take up only 8 MB, which is the size of x!

object_size(x, y)
8 MB

Actually, a tiny bit of extra memory is needed to store y and its pointers
to x, but that is negligible and does not show up in this measurement.

When one of the vectors in y is modified, R creates a new copy, since this vector is
now different from x:

y[[1]][1] <- 0
address(x)
[1] "0x10f992000"
address(y[[1]])
[1] "0x110134000"
address(y[[2]])
[1] "0x10f992000"
object_size(y)
16 MB
object_size(x, y)
16 MB

The y[[1]] vector now points to a different vector in the memory than x and
y[[2]]. As a result, y takes up 16 MB of RAM while x and y combined still take
up only 16 MB (since y[[2]] still points to x). Another way to track this is when
an object is copied to use tracemem(), which gives an alert whenever the object
being tracked is copied. See what happens to y[[2]] when it is modified:

tracemem(y[[2]])
[1] "<0x10f992000>"
y[[2]][1] <- 0
tracemem[0x10f992000 -> 0x1108d6000]:
untracemem(y[[2]])

Simple Tweaks to Use Less RAM

[76]

The tracemem[0x10f992000 -> 0x1108d6000] line indicates that a copy of vector
y[[2]] was made when it was modified and gives the memory address of the new
copy. Now, x, y[[1]], and y[[2]] are different objects in memory, hence the total
memory used by x and y is 24 MB:

address(x)
[1] "0x10f992000"
address(y[[1]])
[1] "0x110134000"
address(y[[2]])
[1] "0x1108d6000"
object_size(y)
16 MB
object_size(x, y)
24 MB

When an element of y is modified, a copy of x needs to be made so that the
original object x is unmodified. Otherwise, modifying one object will cause
unintended modifications to the other, resulting in errors in the program that
might be difficult to find.

The way in which R determines whether an object should be copied is by tracking
whether other objects refer to it. When y was created, R knew that x is being used
elsewhere and a copy needs to be made when it is modified.

R counts only up to two references, which is sufficient for it to determine
whether to copy an object or not. As long as two or more variables refer
to the same object, R will make a copy of it when it is modified.

Now, when we modify x for the first time, R makes a copy of it because x had been
referred to by y before. Even though y now has its own copies of the data, R errs on
the side of caution and makes a copy of x to avoid potential conflicts. Subsequent
modifications to x, however, do not lead to unnecessary copying, as the new copy
of x is not being used anywhere else, as this example shows:

tracemem(x)
[1] "<0x10f992000>"
x[1]<- 1
tracemem[0x10f992000 -> 0x111078000]:

Chapter 6

[77]

x[1]<- 1
x[1]<- 0.5
x[2] <- 0.3
untracemem(x)

In general, as long as a vector has not been referred to by any other object, R allows
it to be modified in place, avoiding the CPU and RAM overheads to make copies of
the vector.

This example does not work in RStudio:
tracemem(x)

[1] "<0x10e73c000>"

x[1] <- 0

tracemem[0x10e73c000 -> 0x110d66000]:

x[2] <- 1

tracemem[0x110d66000 -> 0x115478000]:

x[3] <- 0.5

tracemem[0x115478000 -> 0x115c79000]:

untracemem(x)

This is because RStudio keeps a reference of every object in its own
environment, so R thinks that x is being referred to elsewhere. It
creates a copy of x every time it is modified, to be safe.

Now that we understand when R copies data, we can optimize R programs in
order to avoid copying the data unnecessarily. For example, say we have two
vectors containing the ages and genders of 1 million customers:

customer.age <- sample(18:100, 1e6, replace=TRUE)
customer.gender <- sample(c("Male", "Female"), 1e6, TRUE)

The retailer uses "cust #" for customer IDs. We want to label each vector with the
customer IDs so that we can easily look up the information by the customer ID,
using expressions like customer.age["cust 1"]. One way to do this is to separately
construct the names for each vector. The two vectors combined will then take up
84 MB of memory:

names(customer.age) <- paste("cust", 1:1e6)
names(customer.gender) <- paste("cust", 1:1e6)
object_size(customer.age, customer.gender)
84 MB

Simple Tweaks to Use Less RAM

[78]

Alternatively, the names can be stored in a separate vector that the age and
gender vectors then can refer to:

customer.names <- paste("cust", 1:1e6)
names(customer.age) <- customer.names
names(customer.gender) <- customer.names
object_size(customer.age, customer.gender, customer.names)
76 MB

This simple change resulted in a saving of 8 MB of memory. On larger, more complex
data structures, these savings from not copying data unnecessarily can be significant.

The same copy-on-modification behavior applies to function arguments. When an
object is passed to a function, it is not copied; R simply provides a pointer to the object.
If, however, the object is modified within the function, R creates a copy of that object
in the function's environment so that the original object is not modified in any way
outside the function. In programming language parlance, this is called pass by value
because functions are given the value of their arguments. This is part of R's design
as a functional programming language. Contrast this with pass by reference, which is
sometimes used in other programming languages, such as Java and C/C++, where
functions can be given references or pointers to the memory's addresses. In this case,
functions can modify their arguments without creating additional copies in memory,
and the modifications persist even after the functions exit.

A consequence of R's pass by value model for functions means that many
functions need to make a copy of the data they are given. For example, calling
sort(x) returns a new vector with the sorted values of x, rather than sorting the
values in place (which is often the practice in Java and C/C++). Calling functions
like sort() often requires additional free memory that is at least as large as the
original data and sometimes more.

Removing intermediate data when it is
no longer needed
In large R programs, objects are created in many places. Often, an object that is
created in an earlier part of the program is not needed in later parts of the program.
When faced with memory limits, it is useful to free up memory taken up by objects
when they are no longer needed, so that subsequent parts of the program can
run successfully.

Chapter 6

[79]

The main tool for this is the rm() function that removes a given list of objects from
the current R environment.

In the following example, we have a data frame containing 500,000 transactions
from a retail store and the items within each transaction. Each row of the data
frame represents a unique transaction-item pair that occurred in a sales database.
Although, we have to generate the data for this example in a real business context,
this data could be extracted from a retailer's sales database:

trans.lengths <- rpois(5e5, 3) + 1L
trans <- rep.int(1:5e5, trans.lengths)
items <- unlist(lapply(trans.lengths, sample.int, n = 1000))
sales.data <- data.frame(trans = trans, item = items)

The data looks like this where, for example, the first nine rows indicate that
transaction 1 includes items 680, 846, 196, and so on (the data that you generate
might look different):

head(sales.data, 15)
trans item
1 1 680
2 1 846
3 1 196
4 1 191
5 1 20
6 1 852
7 1 623
8 1 206
9 1 775
10 2 624
11 2 31
12 2 718
13 2 190
14 3 482
15 3 946

Our task is to find common baskets of items, that is, items that appear frequently
together in the same transactions, or frequent itemsets. The apriori() function in
the arules CRAN package can be used to find these frequent itemsets. But it does
not accept data in the form of transaction-item pairs that we can extract from a sales
database. Instead, arules defines the transactions class that it accepts as input.
We need to split the items column of the data frame into the different transactions
and then coerce the resulting list into a transactions object:

library(arules)

Simple Tweaks to Use Less RAM

[80]

trans.list <- split(sales.data$item, sales.data$trans)
trans.arules <- as(trans.list, "transactions")

We can now call the apriori() function to find the frequent itemsets. In this
example, we want itemsets that have a support of at least 0.3, that is, sets of items
that appear in at least 30 percent of the transactions.

freq.itemsets <- apriori(trans.arules, list(support = 0.3))

When we started with the data frame of transaction-item pairs, we had to convert
it into a few different formats before the data could be used by apriori(). Each
of these intermediate data structures takes up valuable memory:

object_size(sales.data)
16 MB
object_size(trans.list)
62.1 MB
object_size(trans.arules)
44 MB

When the dataset is large or when memory is scarce, apriori() might fail to execute
as it runs out of memory. In such situations, rm() can be used to free up memory
by deleting unneeded objects before calling apriori() or even between each data
transformation step. The following code illustrates this:

trans.list <- split(sales.data$item, sales.data$trans)
rm(sales.data)
trans.arules <- as(trans.list, "transactions")
rm(trans.list)
freq.itemsets <- apriori(trans.arules, list(support = 0.3))

Another technique to automatically remove temporary variables is to encapsulate
code in functions. This way, any variables created in the function will automatically be
deleted when the function exists. For example, say we only need to remove temporary
variables before calling apriori(), because that is when the code tends to run into
memory limits. We can encapsulate all the previous lines of codes in a function:

Automatically remove temporary variables by encapsulating code
in a function
prepare_data <- function(sales.data) {
 trans.list <- split(sales.data$item, sales.data$trans)

Chapter 6

[81]

 trans.arules <- as(trans.list, "transactions")
 return(trans.arules)
}
trans.arules <- prepare_data(sales.data)
freq.itemsets <- apriori(trans.arules, list(support = 0.3))

After calling prepare_data(), any temporary variables created within it are deleted
without having to explicitly call rm(). In this case, only one temporary variable,
trans.list is deleted. But the same technique can be used when more temporary
variables are declared in the function. Not only is this means of removing temporary
variables convenient, it also makes the code more readable and easier to maintain.

In large R programs, periodic removal of large data structures can help to minimize
overall memory usage. When rm() is called, the memory might not be freed
and returned to the operating system immediately. Rather, R's garbage collector
automatically frees the memory when it is needed, or when the amount of memory
from removed objects exceeds a threshold.

Calculating values on the fly instead of
storing them persistently
While executing an R program, it is sometimes convenient to cache all the data
needed by the program, including the results of intermediate computations into
a RAM prior to execution. During the execution, as and when the program needs
to access any part of the data, it can be done very rapidly as all the data has been
loaded into the R workspace. Caching intermediate results in RAM can save
computational time significantly, especially when they are accessed frequently,
as unnecessary recalculation of the data is avoided.

This is not a problem when the cached data can fit into RAM. However, it becomes
a problem when there is not enough memory space to contain the data. The good
news is, in many cases, the program does not need all parts of the data at the
same time. One solution is to swap in and out portions of the data between RAM
and the hard disk. Because disk I/O is slow, as we have established in Chapter 1,
Understanding R's Performance – Why Are R Programs Sometimes Slow?, this approach
might result in a slow execution. A better solution is to calculate and recalculate
portions of the data that are needed at the moment. Yes, calculation
costs computational time, but it is often less costly than disk I/O.

Simple Tweaks to Use Less RAM

[82]

Let's look at an example from a common task in data science: hierarchical clustering.
In some commonly used variants of hierarchical clustering, such as the single,
complete, and average linkage, one important step in the algorithm is to calculate the
distance matrix between every pair of observations in the dataset, and then decide
which pair of observations is the closest to each other. This step can be accomplished
by the following code, in which we have artificially created a random dataset A, with
10,000 observations (rows) and 10 features (columns). The code first calculates the
distance matrix of A, sets the diagonal element of the distance matrix to NA because
an observation is always closest to itself and finally finds the closest pair using the
which() function. In this instance, observations 6778 and 6737 are found to be the
closest pair. To execute this program, about 801 MB of RAM is required, as can be
seen from the outputs of object_size() in the following code. This is because
even though the dataset only occupies 800 KB, its distance matrix needs about a
quadratic amount of the original space because it is storing all the pairwise distances:

A <- matrix(rnorm(1E5), 1E4, 10)
dist_mat <- as.matrix(dist(A))
diag(dist_mat) <- NA
res1 <- which(dist_mat == min(dist_mat, na.rm=T), arr.ind = T)[1,]
res1
row col
6778 6737
object_size(A)
800 kB
object_size(dist_mat)
801 MB

On close inspection, we do not actually need the whole distance matrix at once to find
the closest pair. It is possible to calculate the set of pairwise distances between the first
observation and the rest of the observations to get the minimum pair for this set; repeat
the process for the second observation and then compare the minimum of the two sets
and so on. Doing this incurs additional steps and hence longer computational time,
but it demands only a small fraction of RAM compared to that of the preceding code
(because only a chunk of the distance matrix is maintained at a given time). The code
to do this is shown below. It first calculates the distances between all the observations
in A with the observation 1 in A (using the pdist package) and then finds and saves the
closest pair only for this chunk to a temporary list output. This process is repeated for
the observations 2, 3, …, 10,000 in A using lapply. The set of closest pairs from every
chunk is stored in the temp_res list. The final step is to find the minimum pair among
this set and store it in the variable res2. Evaluating the output of res2 reveals the
same result as the one found using the preceding code. However, this
time we need only 2.7 MB of memory for the temp_res list.

library(pdist)

Chapter 6

[83]

temp_res <- lapply(1:nrow(A), function(x) {
 temp <- as.matrix(pdist(X = A, Y = A[x,]));
 temp[x] <- NA;
 output_val <- min(temp, na.rm=T);
 output_ind <- c(x, which(temp == output_val));
 output <- list(val = output_val, ind = output_ind);
})
val_vec <- sapply(temp_res, FUN=function(x) x$val)
ind_vec <- sapply(temp_res, FUN=function(x) x$ind)
res2 <- ind_vec[, which.min(val_vec)]
res2
[1] 6778 6737
object_size(temp_res)
2.72 MB
object_size(val_vec)
80 kB
object_size(ind_vec)
80.2 kB

Indeed the time needed by the second approach is longer. We can speed this up by
parallelizing the code, for example by substituting lapply() with parLApply() of
the parallel package (see Chapter 8, Multiplying Performance with Parallel Computing).
In practice, for a specific case of finding the closest pair of observations efficiently
without storing a full distance matrix, we can leverage optimized k-nearest neighbor
functions, like the knn() function in the FNN package. Where such an alternative
optimized package is unavailable, the approach of calculating values on the fly
as illustrated in the preceding code is useful to reduce memory use.

Swapping active and nonactive data
In some situations, large objects that are removed to free up memory are needed
later in the program. R provides tools to save data to the disk and reload them
later when enough memory is available. Returning to the retail sales data example,
suppose that we need the sales.data data frame for further processing after
mining for frequent itemsets. We can save it to the disk using saveRDS() and
reload it later using readRDS():

trans.list <- split(sales.data$item, sales.data$trans)
saveRDS(sales.data, "sales.data.rds")
rm(sales.data)
trans.arules <- as(trans.list, "transactions")
rm(trans.list)
freq.itemsets <- apriori(trans.arules, list(support = 0.3))
sales.data <- readRDS("sales.data.rds")
Perform further processing with sales.data

Simple Tweaks to Use Less RAM

[84]

The saveRDS() and readRDS() functions save one object at a time without the
name of the object. For example, the name sales.data is not saved. However,
the column names trans and items are saved. As an alternative, the save() and
load() functions can be used to handle multiple objects or even all objects in an
environment, along with their variable names.

Summary
In this chapter, we learned about the copy-on-modification semantics of R's
memory management. A good understanding of how this works enables us to
find opportunities to reduce the memory consumption of R programs.

We also saw how temporary variables and intermediate computations can be
removed from the environment when they are no longer needed, to free up memory
for subsequent computations. Besides removing temporary variables explicitly, we
learned two other ways to manage temporary variables automatically. First, on the
fly computations produce intermediate data without creating variables that persist
in the memory. Second, functions are a useful way to group related operations and
automatically remove temporary variables when exiting the functions.

Finally, we saw how to save data to the disk to free up memory and reload
them later when needed.

In the next chapter, we will explore more advanced techniques in order to
optimize memory consumption and allow R programs to work with larger
datasets, even data that is too big to fit in the memory.

Processing Large Datasets
with Limited RAM

In the previous chapter, we learned how to optimize the memory consumption
of R programs by reducing the copying of data and by removing temporary data.
Sometimes, that is still not enough. We might have data that is too large to even fit
into memory, let alone perform any computations on them, or even if the data can
fit into memory, there is not much free memory left for the analyses that we need
to perform.

In this chapter, we will learn advanced techniques to overcome memory limitations
and process large datasets.

This chapter covers:

•	 Using memory-efficient data structures
•	 Using memory-mapped files and processing data in chunks

Using memory-efficient data structures
One of the first things to consider when you work with a large dataset is whether
the same information can be stored and processed using more memory-efficient
data structures. But first we need to know how data is stored in R. Vectors are the
basic building blocks of almost all data types in R. R provides atomic vectors of
logical, integer, numeric, complex, character and raw types. Many other data structures
are also built from vectors. Lists, for example, are essentially vectors in R's internal
storage structures. They differ from atomic vectors in the way that they store pointers
to other R objects rather than atomic values. That is why lists can contain objects
of different types.

Processing Large Datasets with Limited RAM

[86]

Let's examine how much memory is required for each of the atomic data types.
To do that, we will create vectors of each type with 1 million elements and measure
their memory consumption using object.size() (for character vectors, we will
call rep.int(NA_character_, 1e6), which will create a truly empty character vector
containing the NA values, which as we shall see shortly, takes up less memory than
a character vector containing empty strings):

object.size(logical(1e6))
4000040 bytes
object.size(integer(1e6))
4000040 bytes
object.size(numeric(1e6))
8000040 bytes
object.size(complex(1e6))
16000040 bytes
object.size(rep.int(NA_character_, 1e6))
8000040 bytes
object.size(raw(1e6))
1000040 bytes
object.size(vector("list", 1e6))
8000040 bytes

These results were taken from a 64-bit version of R. Notice that all these vectors
take up memory in multiples of 1 million plus an extra 40 bytes. These 40 bytes
are taken up by the headers of the vectors that R uses to store information about
the vectors, such as the lengths and data types. The remaining space is taken up
by the data stored in the vectors.

By dividing these numbers by 1 million, we see that raw values take up 1 byte
each, logical and integer values 4 bytes, numeric values 8 bytes, and complex
values 16 bytes. The following figure depicts the structure and memory required
for these types of vectors:

Internal structure of logical, integer, numeric, and complex vectors

Chapter 7

[87]

Character vectors and lists are a little different because they do not store the actual
data within their vectors. Instead, they store pointers to other vectors that contain the
actual data. In the computer's memory, each element of a character vector or list is a
pointer that occupies 4 bytes in a 32-bit R and 8 bytes in a 64-bit R. This is depicted
in the following figure:

Internal structure of lists and character vectors

Let's examine character vectors more closely to see how they are stored. To do this,
we will generate three different character vectors, all having 1 million strings with 10
characters each. The first vector simply contains 1 million copies of the "0123456789"
string, generated using the formatC() function to take up ten characters. The second
vector contains 1,000 copies of 1,000 unique strings, generated using formatC() to
take up 10 characters. The third vector contains 1 million unique strings with 10
characters each. Because these vectors contain the same number of strings with the
same length, we would expect them to take up the same amount of memory. Let's
test this hypothesis:

object.size(rep.int("0123456789", 1e6))
8000096 bytes
object.size(rep.int(formatC(seq_len(1e3), width = 10), 1e3))
8056040 bytes
object.size(formatC(seq_len(1e6), width = 10))
64000040 bytes

It turns out that the three character vectors take up vastly different amounts of
memory, depending on the actual content of the strings. This is because R stores
only one copy of each unique string in its CHARSXP cache in order to save memory.
The character vectors that we created actually store pointers to the strings in this
cache, rather than the strings themselves.

Processing Large Datasets with Limited RAM

[88]

Furthermore, each of the strings in this cache is a full-fledged R vector with a 24- or
40-byte header (in a 32-bit and 64-bit R respectively) and exactly one string. The null
character is appended to the end of the string, and the total vector length is rounded
up to the nearest multiple of eight. So, for example, the string 0123456789 would be
stored as 0123456789\0 (where \0 is the null character) plus five more bytes to make
a total of 16 bytes. Adding on the 40-byte header in a 64-bit R, this 10-character string
occupies 56 bytes of memory.

Turning back to the results, the first vector with 1 million copies of 0123456789
requires 8,000,040 bytes for the character vector itself that contains pointers and
another 56 bytes for storing the string itself. This makes for a total of 8,000,096 bytes,
as reported by object.size().

The second vector contains 1,000 unique strings, so it uses a total of 8,000,040 + 1,000
× 56 = 8,056,040 bytes of memory.

The third vector contains 1 million unique strings, so it uses a total of 8,000,040 +
1,000,000 × 56 = 64,000,040 bytes of memory.

Evidently the memory consumption of character vectors depends on the number
of unique strings contained in the vector.

Smaller data types
Having understood how atomic vectors are stored in R, we now look at some simple
strategies to reduce the memory footprint of large datasets so that they might fit in
memory for analysis.

One way is to coerce data to smaller data types, where possible. For example, if a
dataset contains only integer values, storing them in an integer instead of numeric
vector reduces memory consumption by about half:

object.size(as.numeric(seq_len(1e6)))
8000040 bytes
object.size(as.integer(seq_len(1e6)))
4000040 bytes

This also applies to character strings. Where there are many duplicated strings in a
character vector, converting it to a factor vector can reduce the memory consumption,
since factors are actually integer vectors that index a character vector of the unique
strings (the levels of the factor) that appear in the data:

strings <- rep.int(formatC(seq_len(1e4), width = 1000), 100)

Chapter 7

[89]

factors <- factor(strings)
object.size(strings)
18480040 bytes
object.size(factors)
14560400 bytes

These same techniques can be applied to the components of other data structures,
such as matrices, data frames, and lists that are built on atomic vectors.

Sparse matrices
Sometimes the data might be very sparse, that is, it contains a lot of zeroes or empty
values. Instead of storing a full vector of matrix in memory, using sparse matrices can
significantly reduce the amount of memory required to represent the data. Sparse
matrices are provided by the Matrix package that comes with R.

Say we have a 1,000 by 1,000 matrix of numbers (1 million elements in total) with
about 70 percent zeroes. We can use the Matrix() function to create either dense
or sparse matrices from this data, depending on the sparse argument:

library(Matrix)
n <- rnorm(1e6)
n[sample.int(1e6, 7e5)] <- 0
m.dense <- Matrix(n, 1e3, 1e3, sparse = FALSE)
m.sparse <- Matrix(n, 1e3, 1e3, sparse = TRUE)
object.size(n)
8000040 bytes
object.size(m.dense)
8001112 bytes
object.size(m.sparse)
3605424 bytes

The dense matrix requires about the same amount of memory as the numeric vector
of raw data. The sparse matrix reduces the size of the data by 55 percent.

Sparse matrices are also very useful for binary data (TRUE/FALSE, 0/1, "yes"/"no",
"hot"/"cold", and so on). Simply convert the binary data into logical values, where
the majority class is FALSE (if the majority class if TRUE, just invert the data). We can
then create sparse matrices that only store information about where the TRUE values
occur in the matrix. Again, let's test this on a 70 percent sparse matrix of 1 million
logical values:

l <- sample(c(FALSE, TRUE), 1e6, TRUE, c(0.7, 0.3))

Processing Large Datasets with Limited RAM

[90]

m2.dense <- Matrix(l, 1e3, 1e3, sparse = FALSE)
m2.sparse <- Matrix(l, 1e3, 1e3, sparse = TRUE)
object.size(l)
4000040 bytes
object.size(m2.dense)
4001112 bytes
object.size(m2.sparse)
2404384 bytes

The sparse logical matrix is even more compact than the sparse numeric matrix,
being 33 percent smaller.

Symmetric matrices
Symmetric matrices, that is, matrices that are equal to their transpose are used in
many statistical methods. Some examples include distance matrices, correlation
matrices, and graph adjacency matrices. It is possible to save memory by keeping
only half of the matrix, including the diagonal, since we can generate the other half
of the matrix by taking the mirror image of the half matrix. The Matrix package
provides the dspMatrix class to efficiently store symmetric matrices:

library(Matrix)
data <- matrix(rnorm(1E5), 1E2, 1E3)
A <- cor(data)
isSymmetric(A)
[1] TRUE
B <- as(A, "dspMatrix")
object.size(A)
8000200 bytes
object.size(B)
4005320 bytes

Beyond sparse and symmetric matrices, the Matrix package provides several other
efficient matrix-type data structures including triangular matrices and diagonal
matrices. Depending on the type of data, some of these data structures might be
even more memory-efficient than the generic sparse or symmetric matrices used in
the preceding examples. Furthermore, the package makes it such that basic matrix
operations, such as matrix multiplication (%*%), are applicable for both dense and
sparse matrices. Hence, in most cases, we do not need to manually port matrix
operations from their dense to sparse versions. Consult the documentation of the
Matrix package for more details.

Chapter 7

[91]

Bit vectors
Binary data can be represented in an even more efficient way, using bit vectors.
Unlike logical values in R that take up four bytes or 32 bits, bit vectors store each
logical value using only one bit. This reduces the memory consumption of logical
values by a factor of 32. Bit vectors, however, cannot store the NA value, so they
are not suitable for data that contains the NA values.

In R, bit vectors are provided by the bit package on CRAN. Let's compare the sizes
of a logical vector and the equivalent bit vector:

library(bit)
l <- sample(c(TRUE, FALSE), 1e6, TRUE)
b <- as.bit(l)
object.size(l)
4000040 bytes
object.size(b)
126344 bytes

As expected, the bit vector is 3.2 percent, or 1/32 as large as the logical vector.

Bit vectors also allow for much quicker logical operations:

library(microbenchmark)
l2 <- sample(c(TRUE, FALSE), 1e6, TRUE)
b2 <- as.bit(l2)
microbenchmark(!l, !b)
Unit: microseconds
expr min lq median uq max neval
!l 1201.993 1452.2925 1566.966 2951.0405 23045.003 100

!b 51.145 64.7185 107.065 113.2045 461.624 100
microbenchmark(l & l2, b & b2)
Unit: microseconds
expr min lq median uq max neval
l & l2 22808.696 23104.647 23309.7475 24473.137 38334.65 100

b & b2 60.948 64.615 78.5025 135.126 13732.20 100
microbenchmark(l == l2, b == b2)
Unit: microseconds
expr min lq median uq max neval
l == l2 1954.402 2208.3235 2227.8980 2320.104 16825.13 100

b == b2 60.263 63.2235 87.7245 121.448 14184.91 100

When dealing with large amounts of logical or binary data, bit vectors not only save
memory but also provide a speed boost when they are operated on.

Processing Large Datasets with Limited RAM

[92]

Using memory-mapped files and
processing data in chunks
Some datasets are so large that even after applying all memory optimization
techniques and using the most efficient data types possible, they are still too large
to fit in or be processed in the memory. Short of getting additional RAM, one way to
work with such large data is to store them on a disk in the form of memory-mapped
files and load the data into the memory for processing one small chunk at a time.

For example, say we have a dataset that would require 100 GB of RAM if it is fully
loaded into the memory and another 100 GB of free memory for the computations that
need to be performed on the data. If the computer on which the data is to be processed
only has 64 GB of RAM, we might divide the data into four chunks of 25 GB each. The
R program will then load the data into the memory one chunk at a time and perform
the necessary computations on each chunk. After all the chunks have been processed,
the results from each chunk-wise computation will finally be combined in order to
compute the final results. Whether this can be done easily depends on the nature of
the algorithm that is being run on the data. Some algorithms can easily be converted
to compute on chunks of data, while others might require substantial effort to do so.

There are two CRAN packages that provide memory-mapped files to work with large
datasets in this manner: bigmemory and ff. We will look at each of these in turn.

The bigmemory package
The bigmemory CRAN package provides a matrix-like data structure called big.
matrix. Data stored in big.matrix objects can be of type double (8 bytes, the
default), integer (4 bytes), short (2 bytes), or char (1 byte).The big.matrix
objects can exist in RAM or in the form of memory-mapped files, and they can
be manipulated in very much the same way as standard R matrices.

At the time of writing, bigmemory is not supported on Windows,
but the package authors are working to fix this.

To create a big.matrix object, we can either call big.matrix() to create a new
object, or as.big.matrix() to coerce a matrix into big.matrix. For the next
example, we will create a new big.matrix object with 1 billion rows and 3
columns in R's temporary folder:

library(bigmemory)

Chapter 7

[93]

bm <- big.matrix(1e9, 3, backingfile = "bm",
 backingpath = tempdir())
bm
An object of class "big.matrix"
Slot "address":
<pointer: 0x7fac1950a4a0>

Running this might take a while, but when it is done, we have a new object bm
that stores a pointer to the new memory-mapped file. We can find the new file
called bm in the temporary directory with a size of 22 GB:

aloysius@localhost RtmpG0CQdS $ ls -lh
total 46875024
-rw-r--r-- 1 aloysius staff 22G Sep 18 08:02 bm
-rw-r--r-- 1 aloysius staff 452B Sep 18 08:02 bm.desc

Such a large dataset would not have fit into the main memory of most computers.
Another file, bm.desc, was created alongside the data file. This is used to retrieve the
memory-mapped file at a later time or by another R program by calling something
like my.bm <- attach.big.matrix(file.path(tempdir(), "bm.desc")).

The big.matrix objects support many of the same operations as standard R matrices:

typeof(bm)
[1] "double"
dim(bm)
[1] 1e+09 3e+00
nrow(bm)
[1] 1e+09
ncol(bm)
[1] 3
length(bm)
[1] 3e+09
bm[1:5,]
[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1
[4,] 0 0 0
[5,] 0 0 0
bm[1:3,] <- diag(3)
bm[1:5,]
[,1] [,2] [,3]
[1,] 1 0 0

Processing Large Datasets with Limited RAM

[94]

[2,] 0 1 0
[3,] 0 0 1
[4,] 0 0 0
[5,] 0 0 0

When the subsetting operator [is used, bigmemory materializes the selected
portion of the data into the RAM as a matrix. As different parts of a big.matrix are
used, bigmemory automatically loads the relevant portions of the data into the RAM
and removes portions that are no longer needed. Because everything selected by [is
loaded into the memory, care must be taken to ensure that the selected data can fit into
the available memory. Calls such as bm[,] will likely lead to out of memory errors.

Let's now see how an R program might work with big.matrix by processing one
chunk of it at a time. First we will fill it with random data, one chunk at a time. The
first column will contain integers from the Poisson distribution with a mean of 1,000.
The second column will contain binary data represented by ones and zeroes. The third
will contain real numbers uniformly distributed between 0 and 100,000. The following
code fills in bm with these random numbers in 100 chunks of 10 million rows at a time:

chunksize <- 1e7
start <- 1
while (start <= nrow(bm)) {
 end <- min(start + chunksize - 1, nrow(bm))
 chunksize <- end - start + 1
 bm[start:end, 1] <- rpois(chunksize, 1e3)
 bm[start:end, 2] <- sample(0:1, chunksize, TRUE,
 c(0.7, 0.3))
 bm[start:end, 3] <- runif(chunksize, 0, 1e5)
 start <- start + chunksize
}

Another example of a chunked computation is to find the standard deviation of
each column. Calling sd(bm[1,]) might not work, as even a single column of
data can exceed available memory. Two passes through the data are needed:
one to compute the mean of each column, and another to compute the squared
deviations from the mean.

The data can be split into chunks of 10 million rows, as before. In the first pass,
the column means are computed:

col.sums <- numeric(3)
chunksize <- 1e7
start <- 1
while (start <= nrow(bm)) {
 end <- min(start + chunksize - 1, nrow(bm))

Chapter 7

[95]

 col.sums <- col.sums + colSums(bm[start:end,])
 start <- start + chunksize
}
col.means <- col.sums / nrow(bm)

The code iterates through each chunk of data and computes the column sums of
each chunk using the colSums() function. This is added to the global column sums,
stored in col.sums. Once all the chunks have been processed, the column means are
computed by dividing col.sums by the number of rows in the data.

In the second pass, the squared deviations of the observations from the column
means are computed:

col.sq.dev <- numeric(3)
start <- 1
while (start <= nrow(bm)) {
 end <- min(start + chunksize - 1, nrow(bm))
 col.sq.dev <- col.sq.dev +
 rowSums((t(bm[start:end,]) - col.means) ^ 2)
 start <- start + chunksize
}
col.var <- col.sq.dev / (nrow(bm) - 1)
col.sd <- sqrt(col.var)

Each chunk of data is first transposed using t() so that col.means can be subtracted
from each column of the transposed data to calculate the deviations from the
means. The deviations are then squared and summed over the rows as the data was
transposed.

Once all the chunks have been processed, the total squared deviations of each
column are then divided by n-1 to compute the variance of each column. Finally, the
square roots of the column variances give the column standard deviations.

The authors of bigmemory also wrote a companion package biganalytics that
provides common statistical functions for big.matrix objects. We can compare the
results of the preceding exercise with the colsd() function from biganalytics:

library(biganalytics)
col.sd
[1] 3.162261e+01 4.582687e-01 2.886805e+04
big.col.sd <- colsd(bm)
all.equal(col.sd, big.col.sd)
[1] TRUE

Processing Large Datasets with Limited RAM

[96]

We have seen how to perform computations over chunks of data using big.matrix
objects. The authors of bigmemory have also created other CRAN packages that
provide useful functions that operate over big.matrix objects. These are listed in
the following table:

Package Samples of functions provided
biganalytics Statistics: colmean(), colmin(), min(), colmax(), max(),

colrange(), range(), colvar(), colsd(), colsum(), sum(),
colprod(), prod(), and colna()
Apply: apply()
Linear models: biglm.big.matrix(), bigglim.big.matrix()
Clustering: bigkmeans()

bigtabulate Table and tapply: bigtabulate(), bigtable(),
bigtsummary()

Split: bigsplit()
bigalgebra Arithmetic operations

The ff package
While big.matrix is useful for data that can be coerced to the same type, sometimes
a more data frame-like memory-mapped format is required while dealing with
heterogeneous data types. The ff CRAN package provides this capability.

The ff CRAN package supports more data types than bigmemory. The following
table shows the different data types, called vmodes, that can be stored in ff vectors,
arrays and data frames.

Data type or vmode Description
Boolean 1-bit logical without NA
Logical 2-bit logical with NA
Quad 2-bit unsigned integer without NA
Nibble 4-bit unsigned integer without NA
Byte 8-bit signed integer with NA
Ubyte 8-bit unsigned integer without NA
Short 16-bit signed integer with NA
Ushort 16-bit unsigned integer without NA
Integer 32-bit signed integer with NA
Single 32-bit float
Double 64-bit float

Chapter 7

[97]

Data type or vmode Description
Complex 2 x 64 bit float
Raw 8-bit unsigned char
Factor Factor (stored as integer)
Ordered Ordered factor (stored as integer)
POSIXct POSIXct (stored as a double)
Date Date (stored as double)

The ff objects can be created by passing a vector of values to the ff() function:

i <- ff(1:1e6)
i
ff (open) integer length=1000000 (1000000)
[1] [2] [3] [4] [5] [6]
1 2 3 4 5 6
[7] [8] [999993] [999994] [999995]
7 8 : 999993 999994 999995
[999996] [999997] [999998] [999999] [1000000]
999996 999997 999998 999999 1000000
filename(i)
[1] "/private/var/folders/xw/xp2p4mjd3nb6n6h30w67jkdc0000gn/T/
RtmptxP4qw/ff449847497df9.ff"

Because no filename was specified, ff() automatically creates a new file in R's
temporary directory. The filename can also be specified using the filename
argument, as shown in the next example.

If a scalar is passed to ff() along with the dimensions for the new ff object,
the scalar value will be used to initialize the object:

j <- ff(FALSE, dim = c(50, 100),
 filename = file.path(tempdir(), "j.ff"))
j
ff (open) logical length=5000 (5000) dim=c(50,100)
dimorder=c(1,2)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,100]
[1,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE : FALSE
[2,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE : FALSE
[3,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE : FALSE
[4,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE : FALSE
[5,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE : FALSE
: : : : : : : : : : :
[46,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE : FALSE

Processing Large Datasets with Limited RAM

[98]

[47,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE : FALSE
[48,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE : FALSE
[49,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE : FALSE
[50,] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE : FALSE

The vmode argument sets the storage mode of the ff object:

q <- ff(sample(0:3, 1e6, TRUE), vmode = "quad")
q
ff (open) quad length=1000000 (1000000)
[1] [2] [3] [4] [5] [6]
2 2 2 2 0 1
[7] [8] [999993] [999994] [999995]
1 0 : 1 0 1
[999996] [999997] [999998] [999999] [1000000]
0 1 0 0 0

Data frames can be constructed using ffdf(). Here, we create a new ffdf object
using the integer and quad ff vectors created in the preceding code:

d <- ffdf(i, q)
d[1:5,]
i q
1 1 2
2 2 2
3 3 2
4 4 2
5 5 0
vmode(d)
i q
"integer" "quad"

The ff objects provide the convenient chunk() function to split up the data
into chunks based on the available memory. With its default arguments,
chunk() recommends to load the entire data frame d in one chunk:

chunk(d)
[[1]]
range index (ri) from 1 to 1000000 maxindex 1000000

The maximum chunk size in bytes can also be set using the BATCHBYTES argument.
When it is set to 2 million bytes, chunk() recommends splitting the data into
four chunks:

ch <- chunk(d, BATCHBYTES = 2e6)
ch

Chapter 7

[99]

[[1]]
range index (ri) from 1 to 250000 maxindex 1000000
##
[[2]]
range index (ri) from 250001 to 500000 maxindex 1000000
##
[[3]]
range index (ri) from 500001 to 750000 maxindex 1000000
##
[[4]]
range index (ri) from 750001 to 1000000 maxindex 1000000

In general, it is desirable to have smaller number chunks, as every chunk incurs
an (typically small) I/O overhead that is required every time an R session needs
to read data from disk.

The indices returned by chunk() can be used to index the rows of an ffdf or ff
object. The following code iterates through each chunk of data, selecting the chunk
with d[idx,] and q[idx], and performs some computations on the chunk.

total <- numeric(2)
quad.table <- integer(4)
names(quad.table) <- 0:3
for (idx in ch) {
 total <- total + colSums(d[idx,])
 quad.table <- quad.table + table(q[idx])
}
total
i q
500000500000 1500191
quad.table
0 1 2 3
249939 249964 250064 250033

The ff CRAN package has a companion package, ffbase, that provides useful
functions for manipulating ff and ffdf objects. Here is a sample of these functions:

•	 Mathematics: abs(), sign(), sqrt(), ceiling(), floor(), log(), exp(),
cos(), cosh(), sin(), sinh(), gamma()

•	 Summaries: all(), any(), max(), min(), cumsum(), cummin()
•	 Uniqueness: duplicated(), unique()
•	 Apply: ffdfdply()

Processing Large Datasets with Limited RAM

[100]

When we are finished with the ff or ffdf objects, we can delete the files using
delete() and remove the R variables using rm():

delete(d)
[1] TRUE
delete(lm)
[1] TRUE
rm(d)
rm(lm)

Because the underlying vectors i and q are also deleted while deleting the data
frame d, attempting to delete the vectors will result in an error. We can simply
remove the R objects:

delete(i)
[1] FALSE
Warning message:
In file.remove(attr(physical, "filename")) :
cannot remove file '/private/var/folders/xw/
xp2p4mjd3nb6n6h30w67jkdc0000gn/T/RtmptxP4qw/ff449847497df9.ff',
reason 'No such file or directory'
rm(i)
rm(q)

Summary
In this chapter, we learned how R stores vectors in memory, and how to estimate the
amount of memory required for different types of data. We also learned how to use
more efficient data structures like sparse matrices and bit vectors in order to store
some types of data, so that they can be fully loaded and processed in the memory.

For datasets that are still too large, we used big.matrix, ff, and ffdf objects to store
memory on disk using memory-mapped files and processed the data one chunk at a
time. The bigmemory and ff packages, along with their companion packages, provide
a rich set of functionality for memory-mapped files that cannot be covered fully, in
this book. We encourage you to look up the documentation for these packages to learn
more about how to take advantage of the power of memory-mapped files when you
handle large datasets.

In the next chapter, we will look beyond running R in a single process or thread,
and learn how to run R computations in parallel.

Multiplying Performance with
Parallel Computing

In this chapter, we will learn how to write and execute a parallel R code, where
different parts of the code run simultaneously. So far, we have learned various
ways to optimize the performance of R programs running serially, that is in a single
process. This does not take full advantage of the computing power of modern CPUs
with multiple cores. Parallel computing allows us to tap into all the computational
resources available and to speed up the execution of R programs by many times. We
will examine the different types of parallelism and how to implement them in R, and
we will take a closer look at a few performance considerations when designing the
parallel architecture of R programs.

This chapter covers the following topics:

•	 Data parallelism versus task parallelism
•	 Implementing data parallel algorithms
•	 Implementing task parallel algorithms
•	 Executing tasks in parallel on a cluster of computers
•	 Shared memory versus distributed memory parallelism
•	 Optimizing parallel performance

Multiplying Performance with Parallel Computing

[102]

Data parallelism versus task parallelism
Many modern software applications are designed to run computations in parallel
in order to take advantage of the multiple CPU cores available on almost any
computer today. Many R programs can similarly be written in order to run in
parallel. However, the extent of possible parallelism depends on the computing
task involved. On one side of the scale are embarrassingly parallel tasks, where
there are no dependencies between the parallel subtasks; such tasks can be made
to run in parallel very easily. An example of this is, building an ensemble of
decision trees in a random forest algorithm—randomized decision trees can be built
independently from one another and in parallel across tens or hundreds of CPUs,
and can be combined to form the random forest. On the other end of the scale are
tasks that cannot be parallelized, as each step of the task depends on the results
of the previous step. One such example is a depth-first search of a tree, where the
subtree to search at each step depends on the path taken in previous steps. Most
algorithms fall somewhere in between with some steps that must run serially and
some that can run in parallel. With this in mind, careful thought must be given
when designing a parallel code that works correctly and efficiently.

Often an R program has some parts that have to be run serially and other parts
that can run in parallel. Before making the effort to parallelize any of the R code, it
is useful to have an estimate of the potential performance gains that can be achieved.
Amdahl's law provides a way to estimate the best attainable performance gain when
you convert a code from serial to parallel execution. It divides a computing task into
its serial and potentially-parallel parts and states that the time needed to execute the
task in parallel will be no less than this formula:

T(n) = T(1)(P + (1-P)/n), where:

•	 T(n) is the time taken to execute the task using n parallel processes
•	 P is the proportion of the whole task that is strictly serial

The theoretical best possible speed up of the parallel algorithm is thus:

S(n) = T(1) / T(n) = 1 / (P + (1-P)/n)

For example, given a task that takes 10 seconds to execute on one processor, where
half of the task can be run in parallel, then the best possible time to run it on four
processors is T(4) = 10(0.5 + (1-0.5)/4) = 6.25 seconds.

Chapter 8

[103]

The theoretical best possible speed up of the parallel algorithm with four processors
is 1 / (0.5 + (1-0.5)/4) = 1.6x.

The following figure shows you how the theoretical best possible execution time
decreases as more CPU cores are added. Notice that the execution time reaches a
limit that is just above five seconds. This corresponds to the half of the task that
must be run serially, where parallelism does not help.

Best possible execution time versus number of CPU cores

In general, Amdahl's law means that the fastest execution time for any parallelized
algorithm is limited by the time needed for the serial portions of the algorithm. Bear
in mind that Amdahl's law provides only a theoretical estimate. It does not account
for the overheads of parallel computing (such as starting and coordinating tasks) and
assumes that the parallel portions of the algorithm are infinitely scalable. In practice,
these factors might significantly limit the performance gains of parallelism, so use
Amdahl's law only to get a rough estimate of the maximum speedup possible.

There are two main classes of parallelism: data parallelism and task parallelism.
Understanding these concepts helps to determine what types of tasks can be
modified to run in parallel.

Multiplying Performance with Parallel Computing

[104]

In data parallelism, a dataset is divided into multiple partitions. Different partitions
are distributed to multiple processors, and the same task is executed on each
partition of data. Take for example, the task of finding the maximum value in a
vector dataset, say one that has one billion numeric data points. A serial algorithm
to do this would look like the following code, which iterates over every element
of the data in sequence to search for the largest value. (This code is intentionally
verbose to illustrate how the algorithm works; in practice, the max() function in
R, though also serial in nature, is much faster.)

serialmax <- function(data) {
 max = -Inf
 for (i in data) {
 if (i > max)
 max = i
 }
 return max
}

One way to parallelize this algorithm is to split the data into partitions. If we have
a computer with eight CPU cores, we can split the data into eight partitions of 125
million numbers each. Here is the pseudocode for how to perform the same task in
parallel:

Run this in parallel across 8 CPU cores
part.results <- run.in.parallel(serialmax(data.part))
Compute global max
global.max <- serialmax(part.results)

This pseudocode runs eight instances of serialmax()in parallel—one for each
data partition—to find the local maximum value in each partition. Once all the
partitions have been processed, the algorithm finds the global maximum value
by finding the largest value among the local maxima. This parallel algorithm
works because the global maximum of a dataset must be the largest of the local
maxima from all the partitions.

The following figure depicts data parallelism pictorially. The key behind data
parallel algorithms is that each partition of data can be processed independently
of the other partitions, and the results from all the partitions can be combined
to compute the final results. This is similar to the mechanism of the MapReduce
framework from Hadoop. Data parallelism allows algorithms to scale up easily
as data volume increases—as more data is added to the dataset, more computing
nodes can be added to a cluster to process new partitions of data.

Chapter 8

[105]

Serial execution

Data parallel execution

Partitions of data are processed
independently in parallel

Merge
resultsStart End

Data is processed in sequence

Start End

Data parallelism

Other examples of computations and algorithms that can be run in a data parallel
way include:

•	 Element-wise matrix operations such as addition and subtraction:
The matrices can be partitioned and the operations are applied to each
pair of partitions.

•	 Means: The sums and number of elements in each partition can be added
to find the global sum and number of elements from which the mean can
be computed.

•	 K-means clustering: After data partitioning, the K centroids are distributed
to all the partitions. Finding the closest centroid is performed in parallel
and independently across the partitions. The centroids are updated by first,
calculating the sums and the counts of their respective members in parallel,
and then consolidating them in a single process to get the global means.

•	 Frequent itemset mining using the Partition algorithm: In the first pass,
the frequent itemsets are mined from each partition of data to generate
a global set of candidate itemsets; in the second pass, the supports of the
candidate itemsets are summed from each partition to filter out the
globally infrequent ones.

Multiplying Performance with Parallel Computing

[106]

The other main class of parallelism is task parallelism, where tasks are distributed
to and executed on different processors in parallel. The tasks on each processor
might be the same or different, and the data that they act on might also be the same
or different. The key difference between task parallelism and data parallelism is
that the data is not divided into partitions. An example of a task parallel algorithm
performing the same task on the same data is the training of a random forest model.
A random forest is a collection of decision trees built independently on the same
data. During the training process for a particular tree, a random subset of the data
is chosen as the training set, and the variables to consider at each branch of the tree
are also selected randomly. Hence, even though the same data is used, the trees are
different from one another. In order to train a random forest of say 100 decision trees,
the workload could be distributed to a computing cluster with 100 processors, with
each processor building one tree. All the processors perform the same task on the
same data (or exact copies of the data), but the data is not partitioned.

The parallel tasks can also be different. For example, computing a set of summary
statistics on the same set of data can be done in a task parallel way. Each process
can be assigned to compute a different statistic—the mean, standard deviation,
percentiles, and so on.

Pseudocode of a task parallel algorithm might look like this:

Run 4 tasks in parallel across 4 cores
for (task in tasks)
 run.in.parallel(task)
Collect the results of the 4 tasks
results <- collect.parallel.output()
Continue processing after all 4 tasks are complete

Implementing data parallel algorithms
Several R packages allow code to be executed in parallel. The parallel package
that comes with R provides the foundation for most parallel computing capabilities
in other packages. Let's see how it works with an example.

This example involves finding documents that match a regular expression.
Regular expression matching is a fairly computational expensive task, depending
on the complexity of the regular expression. The corpus, or set of documents, for this
example is a sample of the Reuters-21578 dataset for the topic corporate acquisitions
(acq) from the tm package. Because this dataset contains only 50 documents, they are
replicated 100,000 times to form a corpus of 5 million documents so that parallelizing
the code will lead to meaningful savings in execution times.

library(tm)

Chapter 8

[107]

data("acq")
textdata <- rep(sapply(content(acq), content), 1e5)

The task is to find documents that match the regular expression \d+(,\d+)? mln
dlrs, which represents monetary amounts in millions of dollars. In this regular
expression, \d+ matches a string of one or more digits, and (,\d+)? optionally
matches a comma followed by one more digits. For example, the strings 12 mln
dlrs, 1,234 mln dlrs and 123,456,789 mln dlrs will match the regular
expression. First, we will measure the execution time to find these documents
serially with grepl():

pattern <- "\\d+(,\\d+)? mln dlrs"
system.time(res1 <- grepl(pattern, textdata))
user system elapsed
65.601 0.114 65.721

Next, we will modify the code to run in parallel and measure the execution time
on a computer with four CPU cores:

library(parallel)
detectCores()
[1] 4
cl <- makeCluster(detectCores())
part <- clusterSplit(cl, seq_along(textdata))
text.partitioned <- lapply(part, function(p) textdata[p])
system.time(res2 <- unlist(
 parSapply(cl, text.partitioned, grepl, pattern = pattern)
))
user system elapsed
3.708 8.007 50.806
stopCluster(cl)

In this code, the detectCores() function reveals how many CPU cores are available
on the machine, where this code is executed. Before running any parallel code,
makeCluster() is called to create a local cluster of processing nodes with all four
CPU cores. The corpus is then split into four partitions using the clusterSplit()
function to determine the ideal split of the corpus such that each partition has
roughly the same number of documents.

The actual parallel execution of grepl() on each partition of the corpus is carried
out by the parSapply() function. Each processing node in the cluster is given a
copy of the partition of data that it is supposed to process along with the code to
be executed and other variables that are needed to run the code (in this case, the
pattern argument). When all four processing nodes have completed their tasks,
the results are combined in a similar fashion to sapply().

Multiplying Performance with Parallel Computing

[108]

Finally, the cluster is destroyed by calling stopCluster().

It is good practice to ensure that stopCluster() is always called
in production code, even if an error occurs during execution. This
can be done as follows:

doSomethingInParallel <- function(...) {

 cl <- makeCluster(...)

 on.exit(stopCluster(cl))

 # do something
}

In this example, running the task in parallel on four processors resulted in a 23 percent
reduction in the execution time. This is not in proportion to the amount of compute
resources used to perform the task; with four times as many CPU cores working on
it, a perfectly parallelizable task might experience as much as a 75 percent runtime
reduction. However, remember Amdahl's law—the speed of parallel code is limited
by the serial parts, which includes the overheads of parallelization. In this case, calling
makeCluster() with the default arguments creates a socket-based cluster. When
such a cluster is created, additional copies of R are run as workers. The workers
communicate with the master R process using network sockets, hence the name.
The worker R processes are initialized with the relevant packages loaded, and data
partitions are serialized and sent to each worker process. These overheads can be
significant, especially in data parallel algorithms where large volumes of data needs
to be transferred to the worker processes.

Besides parSapply(), parallel also provides the parApply()
and parLapply() functions; these functions are analogous to
the standard sapply(), apply(), and lapply() functions,
respectively. In addition, the parLapplyLB() and parSapplyLB()
functions provide load balancing, which is useful when the execution
of each parallel task takes variable amounts of time. Finally,
parRapply() and parCapply() are parallel row and column
apply() functions for matrices.

On non-Windows systems, parallel supports another type of cluster that often
incurs less overheads—forked clusters. In these clusters, new worker processes are
forked from the parent R process with a copy of the data. However, the data is not
actually copied in the memory unless it is modified by a child process. This means
that, compared to socket-based clusters, initializing child processes is quicker and
the memory usage is often lower.

Chapter 8

[109]

Another advantage of using forked clusters is that parallel provides a convenient
and concise way to run tasks on them via the mclapply(), mcmapply(), and mcMap()
functions. (These functions start with mc because they were originally a part of the
multicore package) There is no need to explicitly create and destroy the cluster, as
these functions do this automatically. We can simply call mclapply() and state the
number of worker processes to fork via the mc.cores argument:

system.time(res3 <- unlist(
 mclapply(text.partitioned, grepl, pattern = pattern,
 mc.cores = detectCores())
))
user system elapsed
127.012 0.350 33.264

This shows a 49 percent reduction in execution time compared to the serial version,
and 35 percent reduction compared to parallelizing using a socket-based cluster.
For this example, forked clusters provide the best performance.

Due to differences in system configuration, you might see very
different results when you try the examples in this chapter in your
own environment. When you develop parallel code, it is important
to test the code in an environment that is similar to the one that it
will eventually run in.

Implementing task parallel algorithms
Let's now see how to implement a task parallel algorithm using both socket-based
and forked clusters. We will look at how to run the same task and different tasks
on workers in a cluster.

Running the same task on workers in a
cluster
To demonstrate how to run the same task on a cluster, the task for this example is to
generate 500 million Poisson random numbers. We will do this by using L'Ecuyer's
combined multiple-recursive generator, which is the only random number generator
in base R that supports multiple streams to generate random numbers in parallel.
The random number generator is selected by calling the RNGkind() function.

Multiplying Performance with Parallel Computing

[110]

We cannot just use any random number generator in parallel because
the randomness of the data depends on the algorithm used to generate
random data and the seed value given to each parallel task. Most other
algorithms were not designed to produce random numbers in multiple
parallel streams, and might produce multiple highly correlated streams
of numbers, or worse, multiple identical streams!

First, we will measure the execution time of the serial algorithm:

RNGkind("L'Ecuyer-CMRG")
nsamples <- 5e8
lambda <- 10
system.time(random1 <- rpois(nsamples, lambda))
user system elapsed
51.905 0.636 52.544

To generate the random numbers on a cluster, we will first distribute the task evenly
among the workers. In the following code, the integer vector samples.per.process
contains the number of random numbers that each worker needs to generate on a
four-core CPU. The seq() function produces ncores+1 numbers evenly distributed
between 0 and nsamples, with the first number being 0 and the next ncores
numbers indicating the approximate cumulative number of samples across the
worker processes. The round() function rounds off these numbers into integers
and diff() computes the difference between them to give the number of random
numbers that each worker process should generate.

cores <- detectCores()
cl <- makeCluster(ncores)
samples.per.process <-
 diff(round(seq(0, nsamples, length.out = ncores+1)))

Before we can generate the random numbers on a cluster, each worker needs a
different seed from which it can generate a stream of random numbers. The seeds
need to be set on all the workers before running the task, to ensure that all the
workers generate different random numbers.

For a socket-based cluster, we can call clusterSetRNGStream() to set the seeds
for the workers, then run the random number generation task on the cluster.
When the task is completed, we call stopCluster() to shut down the cluster:

clusterSetRNGStream(cl)
system.time(random2 <- unlist(

Chapter 8

[111]

 parLapply(cl, samples.per.process, rpois,
 lambda = lambda)
))
user system elapsed
5.006 3.000 27.436
stopCluster(cl)

Using four parallel processes in a socket-based cluster reduces the execution time
by 48 percent. The performance of this type of cluster for this example is better
than that of the data parallel example because there is less data to copy to the worker
processes—only an integer that indicates how many random numbers to generate.

Next, we run the same task on a forked cluster (again, this is not supported on
Windows). The mclapply() function can set the random number seeds for each
worker for us, when the mc.set.seed argument is set to TRUE; we do not need
to call clusterSetRNGStream(). Otherwise, the code is similar to that of the
socket-based cluster:

system.time(random3 <- unlist(
 mclapply(samples.per.process, rpois,
 lambda = lambda,
 mc.set.seed = TRUE, mc.cores = ncores)
))
user system elapsed
76.283 7.272 25.052

On our test machine, the execution time of the forked cluster is slightly faster, but
close to that of the socket-based cluster, indicating that the overheads for this task
are similar for both types of clusters.

Running different tasks on workers in a
cluster
So far, we have executed the same tasks on each parallel process. The parallel package
also allows different tasks to be executed on different workers. For this example, the
task is to generate not only Poisson random numbers, but also uniform, normal, and
exponential random numbers. As before, we start by measuring the time to perform
this task serially:

RNGkind("L'Ecuyer-CMRG")
nsamples <- 5e7
pois.lambda <- 10
system.time(random1 <- list(pois = rpois(nsamples,

Multiplying Performance with Parallel Computing

[112]

 pois.lambda),
 unif = runif(nsamples),
 norm = rnorm(nsamples),
 exp = rexp(nsamples)))
user system elapsed
14.180 0.384 14.570

In order to run different tasks on different workers on socket-based clusters, a list
of function calls and their associated arguments must be passed to parLapply().
This is a bit cumbersome, but parallel unfortunately does not provide an easier
interface to run different tasks on a socket-based cluster. In the following code, the
function calls are represented as a list of lists, where the first element of each sublist
is the name of the function that runs on a worker, and the second element contains
the function arguments. The function do.call() is used to call the given function
with the given arguments.

cores <- detectCores()
cl <- makeCluster(cores)
calls <- list(pois = list("rpois", list(n = nsamples,
 lambda = pois.lambda)),
 unif = list("runif", list(n = nsamples)),
 norm = list("rnorm", list(n = nsamples)),
 exp = list("rexp", list(n = nsamples)))
clusterSetRNGStream(cl)
system.time(
 random2 <- parLapply(cl, calls,
 function(call) {
 do.call(call[[1]], call[[2]])
 })
)
user system elapsed
2.185 1.629 10.403
stopCluster(cl)

On forked clusters on non-Windows machines, the mcparallel() and mccollect()
functions offer a more intuitive way to run different tasks on different workers.
For each task, mcparallel() sends the given task to an available worker. Once all
the workers have been assigned their tasks, mccollect() waits for the workers to
complete their tasks and collects the results from all the workers.

mc.reset.stream()
system.time({
 jobs <- list()
 jobs[[1]] <- mcparallel(rpois(nsamples, pois.lambda),

Chapter 8

[113]

 "pois", mc.set.seed = TRUE)
 jobs[[2]] <- mcparallel(runif(nsamples),
 "unif", mc.set.seed = TRUE)
 jobs[[3]] <- mcparallel(rnorm(nsamples),
 "norm", mc.set.seed = TRUE)
 jobs[[4]] <- mcparallel(rexp(nsamples),
 "exp", mc.set.seed = TRUE)
 random3 <- mccollect(jobs)
})
user system elapsed
14.535 3.569 7.972

Notice that we also had to call mc.reset.stream() to set the seeds for random
number generation in each worker. This was not necessary when we used
mclapply(), which calls mc.reset.stream() for us. However, mcparallel()
does not, so we need to call it ourselves.

Executing tasks in parallel on a cluster
of computers
By using the parallel package, we are not limited to running parallel code on
a single computer; we can also do it on a cluster of computers. This allows much
larger computational tasks to be performed, irrespective of whether we use data
parallelism or task parallelism. Only socket-based clusters can be used for this
purpose, as processes cannot be forked onto a different computer.

There are many ways to set up a cluster of computers to work with R. To keep
things simple, all computers in the cluster should have the same configuration for
R—the same version of R, installed in the same directories, installed with the same
versions of any packages required, and running on the same operating system. The
examples in this section have been tested on a cluster of three computers running
Ubuntu 14.04—one master node and two worker nodes.

The master and worker nodes should be on the same network and able to
communicate with each other via SSH (port 22) and one other port for exchanging
data and code. This communications port can be set with the R_PARALLEL_PORT
environment variable. If it is not set, R will randomly choose a port in the range
11000 to 11999.

By default, SSH is used to launch R on the workers. First, ensure that the SSH
server is set up and running on all the worker nodes.

Multiplying Performance with Parallel Computing

[114]

For Windows worker nodes, download and install Cygwin from http://www.
cygwin.com. When prompted to install additional packages, install the openssh
package. Then, right-click on the Cygwin icon and select Run as Administrator.
In the terminal window that opens, run the following code to set up the SSH
server. The ssh-host-config command configures the SSH server with the
default settings. The chmod 400 command sets the permissions on the generated
security keys so that only the user who owns the keys can read them, and
cygrunsrv -S sshd starts the SSH server.

$ ssh-host-config -y -c "tty ntsec"
$ chmod 400 /etc/ssh_*_key
$ cygrunsrv -S sshd

Other operating systems like Linux normally come with an installed SSH server.
Consult the documentation of your operating system for how to set it up.

The master node should be able to connect to the worker nodes using key-based
authentication, as using password-based authentication to run a cluster might not
always work. Use the following commands to set up key-based authentication.
Windows users should run this from within a Cygwin terminal.

Run all these commands on the master node
Generate an RSA key pair without password
$ ssh-keygen -t rsa
$ chmod 400 .ssh/id_rsa
Copy public key to worker node (run for every worker)
$ ssh-copy-id -i .ssh/id_rsa.pub worker_username@worker_address
Test connection (run for every worker)
$ ssh worker_username@worker_address
You should be able to log in without entering a password

Once all the computers are set up, we can run parallel tasks on the cluster just
as before. The only change needed is in the call to makeCluster(), where the IP
addresses or domain names of the worker nodes must be provided instead of the
number of workers to create local workers. In the following example, replace the
IP addresses with the IP addresses of your master and worker nodes.

workers <- c("192.168.213.225", "192.168.213.226")
nworkers <- length(workers)
cl <- makeCluster(workers, master = "192.168.213.138")

http://www.cygwin.com
http://www.cygwin.com

Chapter 8

[115]

If you are having trouble to start the cluster by automatically using
makeCluster(), add the manual=TRUE argument to the call to
makeCluster(), then follow the instructions given, to start the
worker processes on each of the worker nodes.

The code that sends the tasks to the workers for execution is then the same as before:

clusterSetRNGStream(cl)
samples.per.process <- c(2.5e8, 2.5e8)
lambda <- 10
random <- unlist(
 parLapply(cl, samples.per.process,
 function(n, lambda) rpois(n, lambda),
 lambda)
)
stopCluster(cl)

Because a cluster of computers has to communicate over a network, the bandwidth
and latency of the network connections play a critical role in the performance of the
whole cluster. It is best that the nodes are in the same location, connected by a high-
speed network where data and code can be exchanged between the master
and worker nodes speedily.

Shared memory versus distributed
memory parallelism
In the examples that we have seen so far, data is copied from the master process or
node to each worker. This is called distributed memory parallelism, where each
process has its own memory space. In other words, each process needs to have its
own copy of the data that it needs to work on, even if multiple processes are working
on the same data. This is the typical way to distribute data in a cluster of computers
because the workers in the cluster cannot access each other's RAM, so they need
their own copy of the data.

However, this can result in huge redundancies when you run a parallel code
on multiple processes on a single computer. If a dataset takes up 5 GB of memory,
then running four parallel processes could result in five copies of the data in
memory—one for the master and four for the workers—occupying a total of 25
GB. Earlier, we saw that forked clusters might not suffer from this problem, as
most operating systems do not make copies of the data in the memory unless
it is modified by one of the workers. However, this is not guaranteed. On
socket-based clusters, because new instances of R are created, new copies of
the data are made for each worker.

Multiplying Performance with Parallel Computing

[116]

Contrast this with shared memory parallelism, where all the workers share a single
copy of the data. This not only saves the memory, but also reduces the time needed
to initialize and shut down the cluster, as the data does not need to be copied.

Although the parallel package does not provide support for shared memory
parallelism by default, we can achieve it by using the right data structures. One
example for this is big.matrix from the bigmemory package that we learned about
in the previous chapter (not available for Windows at the time of writing). In Chapter
7, Processing Large Datasets with Limited RAM, we used big.matrix for its memory-
mapped file capabilities; in this chapter, we will take advantage of it as a shared
memory object for parallel workers. Besides taking the form of memory-mapped files
on disk, big.matrix objects can also be fully in-memory objects that behave just like
standard R matrices. The key difference is that big.matrix objects are not copied
according to the usual R rules for copying objects that we examined in Chapter 6,
Simple Tweaks to Use Less RAM. Instead, they are only copied when a call to
deepcopy() is made. Let's see what this looks like in practice. First, we will
create a big.matrix a, then a new variable b that points to a.

library(bigmemory)
a <- big.matrix(3, 3)
a[,]
[,1] [,2] [,3]
[1,] NA NA NA
[2,] NA NA NA
[3,] NA NA NA
b <- a
b[,]
[,1] [,2] [,3]
[1,] NA NA NA
[2,] NA NA NA
[3,] NA NA NA

Next, we will modify the contents of b. Under R's normal data copying rules,
the data should be copied in the memory so that the contents of a are not
modified. However, that is not the case:

b[,] <- diag(3)
b[,]
[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

Chapter 8

[117]

a[,]
[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

Clearly, a and b are the same object. A peek under their hoods at their pointers
to the data confirms this:

a
An object of class "big.matrix"
Slot "address":
<pointer: 0x7fab5e2b8750>
b
An object of class "big.matrix"
Slot "address":
<pointer: 0x7fab5e2b8750>

Now, let's see how this impacts the performance of parallel code. This example
uses a matrix with two variables and 50 million observations and the equivalent
big.matrix:

r <- 5e7
m <- matrix(rnorm(r * 2), r, 2)
bm <- as.big.matrix(m)

The task here is to compute the absolute difference for each pair of numbers. First,
we will measure the execution time using a socket-based cluster on the matrix:

cl <- makeCluster(detectCores())
part <- clusterSplit(cl, seq_len(r))
system.time(res <- unlist(
 parLapply(cl, part,
 function(part, data) {
 abs(data[part, 1] - data[part, 2])
 },
 m)
))
user system elapsed
5.199 1.856 10.590
stopCluster(cl)

Multiplying Performance with Parallel Computing

[118]

It took 10.6 seconds on four CPU cores, and each thread consumed 1.01 GB of RAM,
as shown in the following screenshot taken from Mac OS X's Activity Monitor:

Memory consumption of socket-based cluster using matrix data

Now, let's use big.matrix to see if there is a difference in speed and memory
efficiency. In order to pass big.matrix to each worker process, we need to use
describe() to pass the metadata of big.matrix to each process. Within each
process, attach.big.matrix() must be called to access big.matrix. Also notice
that library(bigmemory) is called within the function. This is required because
each worker is a new R process so any packages required to run the task must be
loaded on the workers as well.

cl <- makeCluster(detectCores())
system.time(res2 <- unlist(
 parLapply(cl, part,
 function(part, data.desc) {
 library(bigmemory)
 data <- attach.big.matrix(data.desc)
 abs(data[part, 1] - data[part, 2])
 },
 describe(bm))
))
user system elapsed
1.278 0.692 2.956
stopCluster(cl)

This version ran must faster with a 72 percent saving in the execution time from
not making copies of the matrix! Furthermore, each R process took up only about
373 MB of memory, as shown in the following figure in the Private Mem column.
774 MB of the memory was shared from the parent process, most of which was the
big.matrix object.

Memory consumption of forked cluster using big.matrix data.

Chapter 8

[119]

Shared memory parallelism worked in this case because the worker processed only
read from the data but did not write to it. Designing parallel algorithms that write
to shared memory is much trickier and outside the scope of this book. Much care
must be take to avoid race conditions, which are conflicts and programming errors
that arise when worker processes that read from and write to the same memory
locations are not properly coordinated. This can lead to the data being corrupted.

Optimizing parallel performance
Throughout the examples in this chapter, we saw various factors that affect the
performance of parallel code.

One overhead in running a parallel R code is in setting up the cluster. By default,
makeCluster() instructs the worker processes to load the methods package when
they start. This can take a good amount of time, so if the task to be run does not require
methods, this behavior can be disabled by passing methods=FALSE to makeCluster().

One of the biggest obstacles to parallel performance is the copying and transmission
of data between the master process and the worker process. This obstacle can be
large when you run parallel tasks on a cluster of computers, as many factors such as
limited network bandwidth, and data encryption slow down the transmission of data
even before any computations can be done. Even on a single computer, unnecessary
copying of data in memory takes up precious seconds that can multiply as the data
grows. This can also happen the other way around, for example in the random number
generation examples, where the input data is small but the output is large.

One way to minimize these data communication overheads is to use shared memory
objects, as we saw in the preceding section. Data compression can also help in some
circumstances, provided the computational time to compress and decompress the
data is relatively short. Another option is to store the data, including the results of
any intermediate computations, at each worker node, and reserve internode data
communication to only what is required to coordinate the tasks. An example of this
is MapReduce from Hadoop, which we will explore in Chapter 10, R and Big Data.

Although there are ways to minimize the costs of data communication, sometimes
these overheads far exceed the gains from parallelization, and we are better off
running the code in series. It can be difficult to calculate the trade-offs between the
performance gains and increased overheads of parallelizing code. When in doubt,
conduct small experiments like we have done in this chapter.

Multiplying Performance with Parallel Computing

[120]

Summary
In this chapter, we learned about two classes of parallelism: data parallelism and
task parallelism. Data parallelism is good for tasks that can be performed in parallel
on partitions of a dataset. The dataset to be processed is split into partitions and each
partition is processed on a different worker processes. Task parallelism, on the other
hand, divides a set of similar or different tasks to amongst the worker processes. In
either case, Amdahl's law states that the maximum improvement in speed that can
be achieved by parallelizing code is limited by the proportion of that code that can
be parallelized.

R supports both types of parallelism using the parallel package. We learned how
to implement both data parallel and task parallel algorithms using socket-based
clusters and forked clusters. We also learned how to run tasks in parallel on a
cluster of computers using socket-based clusters.

The examples in this chapter demonstrated that the improvement in performance
by parallelizing code depends on a great variety of factors—the type of cluster,
whether the task is run on a single computer or on a cluster, the volume of data
exchanged between nodes, the complexity of the individual subtasks, and so on.
While techniques such as shared-memory parallelism can mitigate some of the
bottlenecks, parallel computing is a complex discipline that takes much experience
and skill to get well executed. Used correctly, the payoffs in speed and efficiency
can be significant.

For a deeper look at parallel computing in R, see Parallel R by Q. Ethan McCallum
and Stephen Weston.

In the next chapter, we will look beyond the boundaries of R to tap on the processing
power of specialized data processing platforms like analytical databases.

Offloading Data Processing
to Database Systems

We have learned many different ways to optimize the performance of an R code
for speed and memory efficiency. But sometimes R alone is not enough. Perhaps,
a very large dataset is stored in a data warehouse. It would be infeasible to extract
all the data into R for processing. We might even wish to tap into the power of
specially-designed analytical databases that can perform computations on data
much more efficiently than R can. In this chapter, we will learn how to tap into
the power of external database systems from within R and combine that power
with the flexibility and ease of use of the R language.

This chapter covers the following:

•	 Extracting data into R versus processing data in a database
•	 Preprocessing data in a relational database using SQL
•	 Converting R expressions into SQL
•	 Running statistical and machine learning algorithms in a database
•	 Using columnar databases for improved performance
•	 Using array databases for maximum scientific computing performance

Offloading Data Processing to Database Systems

[122]

Extracting data into R versus processing
data in a database
Most R programmers are familiar with and very comfortable manipulating data in R
using R data structures and packages. This requires moving all the data into R whether
in memory or on a disk, on a single computer or on a cluster. In some situations, this
might not be efficient especially if the data constantly changes and needs to be updated
often—extracting data out of a database or data warehouse every time it needs to be
analyzed takes a lot of time and computational resources. In some cases, it might not
be feasible at all to move terabytes or more of data from their sources into R.

Instead of moving the data into R, another approach is to move the computational
tasks to the data. In other words, we can process the data in the database and
retrieve only the results into R, which are usually much smaller than the raw data.
This reduces the amount of network bandwidth required to transmit the data and
the local storage and memory required to process the data in R. It also allows R
programmers to tap into powerful databases that are purpose-built for analytical
workloads on large datasets.

In order to perform in-database computations and analyses, a new set of tools is
needed. At the foundation of all in-database tools is the SQL language, which most
relational databases support. While this book is not about SQL, knowing how to run
even simple SQL statements in a database can help speed up many tasks in R. Other
tools such as dplyr build on SQL to provide easy and familiar interfaces such as data
frame-like objects in order to manipulate the data in the database. Yet other tools
like MonetDB.R and SciDB allow us to tap into databases that are designed for
high-performance analytical workloads such as columnar and array databases.
We shall look at these tools in the following sections.

Preprocessing data in a relational
database using SQL
We will start by learning how to run SQL statements in the database from R.
The first few examples show how processing data in a database instead of moving
all the data into R can result in faster performance even for simple operations.

To run the examples in this chapter, you will need a database server supported
by R. The CRAN package, RJDBC provides an interface to JDBC drivers that
most databases come with. Alternatively, search on CRAN for packages such as
RPostgreSQL, RMySQL, and ROracle that offer functionalities and optimizations
specific to each database.

Chapter 9

[123]

The following examples are based on a PostgreSQL database and the RPostgreSQL
package as we will need them later in this chapter when we learn about the PivotalR
package and MADlib software. Feel free, however, to adapt the code to the database
that you use.

Configuring PostgreSQL to work with R involves setting up both the server and
the client. First, we need to set up the PostgreSQL database server. This can be on
a different computer than the one running R to simulate tapping into an existing
database from R; or it can be on the same computer for simplicity. In our case, we
will set up a Linux virtual machine to host the PostgreSQL database server and
use Mac OS X as the client. Here are the steps to set up the database server:

1.	 Download PostgreSQL from http://www.postgresql.org/download/
and follow the installation instructions for your operating system.

2.	 Enable username/password authentication on the database server by
adding the following command line to pg_hba.conf (in the PostgreSQL
data folder):
host all all 0.0.0.0/0 md5

3.	 Create a user account and password that can be used to connect to the
database from R by running the following command line (you might
need to be the root or the postgres user to run this):
$ createuser --pwprompt ruser

4.	 Create a database for the examples in this chapter by running the
following command line (you might need to be the root or the
postgres user to run this):
$ createdb --owner=ruser rdb

5.	 Ensure that the database is accessible via a network connection from the
computer that runs R by adding the following lines to postgresql.conf
(in the PostgreSQL data folder):
listen_address = '*'
port = 5432

6.	 Restart the PostgreSQL server for the changes to take effect (you might
need to be the root user to do this).

http://www.postgresql.org/download/

Offloading Data Processing to Database Systems

[124]

Next, we will set up the client by installing the RPostgreSQL package on the
computer that runs R:

1.	 Non-Windows only: install libpq, the PostgreSQL C libraries, that are
needed to install RPostgreSQL. If you have installed the PostgreSQL server
on the same computer as R, the libraries are already in the system, so you
can skip this step. Otherwise, make sure that the version of the libraries
matches the version of the PostgreSQL server:
On Mac OS X (using Homebrew)

$ brew install postgresql

On Debian / Ubuntu

$ sudo apt-get install libpq-dev

On Redhat / CentOS

$ sudo yum install postgresql-devel

On Windows: this step is not needed

2.	 Run R and install the RPostgreSQL CRAN package from its source code:
On platforms other than Windows
install.packages("RPostgreSQL", type="source")
On Windows
install.packages("RPostgreSQL")

3.	 Test the database connection from R by substituting the details with the
correct information for your database:
library(RPostgreSQL)
db.drv <- PostgreSQL()
db.conn <- dbConnect(db.drv, host = "hostname",
 port = 5432, dbname = "rdb",
 user = "ruser",
 password = "rpassword")
dbListTables(db.conn)
character(0)

Once the database is set up, we will generate some sales data for the examples to
follow. The example database has two tables, sales and trans_items. The sales
table contains information about sales transactions in a retail chain, including the
transaction ID, customer ID, and store ID. The trans_items table records the
individual items in each transaction and the total price for each item. Once the
data is generated in R, we will use dbWriteTable() to write the data into new
tables in the database, as follows:

ntrans <- 1e5
ncust <- 1e4

Chapter 9

[125]

nstore <- 100
sales <- data.frame(
 trans_id = seq_len(ntrans),
 cust_id = sample.int(ncust, ntrans, TRUE),
 store_id = sample.int(nstore, ntrans, TRUE))
dbWriteTable(db.conn, "sales", sales)
trans.lengths <- rpois(ntrans, 3) + 1L
trans.items <- data.frame(
 trans_id = rep.int(seq_len(ntrans), trans.lengths),
 item_id = unlist(lapply(trans.lengths, sample.int, n = 1000)),
 price = exp(rnorm(sum(trans.lengths))))
dbWriteTable(db.conn, "trans_items", trans.items)

The first task is to calculate the total sales for each store. Let's compare two different
ways of doing this. The first way is to extract all the store IDs along with the prices
of the items associated with each store by joining the sales and trans_items tables.
Once this data is in R, the sales for each store is computed by summing the item
prices for each store ID using tapply(). The second way to compute the same data
is to perform the aggregation in the database using the SQL GROUP BY clause and
SUM() function. We will use microbenchmark() to compare the execution times for
both methods:

library(microbenchmark)
microbenchmark({
 res <- dbGetQuery(
 db.conn,
 'SELECT store_id, price
 FROM sales INNER JOIN trans_items USING (trans_id);')
 res <- tapply(res$price, res$store_id, sum)
}, times = 10)
Unit: milliseconds
min lq median uq max neval
740.7533 745.2563 771.3706 775.3665 780.3819 10
microbenchmark({
 res <- dbGetQuery(
 db.conn,
 'SELECT store_id, SUM(price) as total_sales
 FROM sales INNER JOIN trans_items USING (trans_id)
 GROUP BY store_id;')
}, times = 10)
Unit: milliseconds
min lq median uq max neval
244.779 248.6401 251.1465 255.3652 279.6666 10

Offloading Data Processing to Database Systems

[126]

In this simple test, performing the computations in the database takes only 33
percent of the time to do the same by extracting the data into R. Let's take a look at
another example. The second task is to get a list of the top ten customers who have
spent the most money, in decreasing order. Again, we will compare the speed of
performing the computations in R versus in the database:

microbenchmark({
 res <- dbGetQuery(
 db.conn,
 'SELECT cust_id, price
 FROM sales INNER JOIN trans_items USING (trans_id);')
 res <- tapply(res$price, res$cust_id, sum)
 res <- sort(res, decreasing = TRUE)
 res <- head(res, 10L)
}, times = 10)
Unit: milliseconds
min lq median uq max neval
814.2492 828.7774 843.1869 846.4235 952.1318 10
microbenchmark({
 res <- dbGetQuery(
 db.conn,
 'SELECT cust_id, SUM(price) as spending
 FROM sales INNER JOIN trans_items USING (trans_id)
 GROUP BY cust_id
 ORDER BY spending DESC
 LIMIT 10;')
}, times = 10)
Unit: milliseconds
min lq median uq max neval
259.1621 260.5494 260.9566 265.1368 294.1732 10

Again, running the computations in the database instead of in R has resulted in a 70
percent reduction in the execution time.

Once we are done, we need to disconnect from the database:

dbDisconnect(db.conn)

These tests were conducted on the same computer with the database server running
in a virtual machine. Even on such a small dataset and over a very small network
(the virtual network between the host computer and the virtual machine), the
differences in the performance were dramatic. These tests clearly demonstrate
that minimizing the amount of data being copied out of the database can provide
a big performance boost. On larger datasets and powerful analytical databases,
the performance difference can be even more pronounced.

Chapter 9

[127]

Converting R expressions to SQL
While SQL is a powerful and flexible language used to manipulate data in a database,
not everyone is proficient in it. Fortunately, the R community has developed a few
packages that translate familiar R syntax into SQL statements that are then executed
on the database. We will look at two of them—dplyr and PivotalR.

Using dplyr
The dplyr package is a handy package designed to allow the manipulation of
table-like data with a standard set of operations and transformations, no matter
where the data is stored—in a data frame, data table, or database. It supports SQLite,
PostgreSQL, MySQL, Amazon RedShift, Google BigQuery, and MonetDB databases.

The dplyr package provides a way to specify a set of operations to be performed
on the data without actually performing the computations on the database server
until we instruct R to do so, by calling the collect()function. By pooling a few
operations together (as opposed to executing them one by one), the database server
can optimize the execution. This in turn helps to minimize computational load of
the server. Let's see how this works with an example.

First, we need to establish a connection with the database, as before. Here, we
will use the src_postgres() function provided by dplyr. The syntax is slightly
different from dbConnect() of RPostgreSQL, but the arguments are similar.
After establishing the connection, we will create references to the sales and
trans_items tables in the database using the tbl() function:

library(dplyr)
db.conn <- src_postgres(dbname = "rdb", host = "hostname",
 port = 5432, user = "ruser",
 password = "rpassword")
sales.tb <- tbl(db.conn, "sales")
trans_items.tb <- tbl(db.conn, "trans_items")

Let's recreate the previous example using dplyr:

joined.tb <- inner_join(sales.tb, trans_items.tb, by = "trans_id")
cust.items <- group_by(joined.tb, cust_id)
cust.spending <- summarize(cust.items, spending = sum(price))
cust.spending <- arrange(cust.spending, desc(spending))
cust.spending <- select(cust.spending, cust_id, spending)

Offloading Data Processing to Database Systems

[128]

The first step is to join the sales and trans_items tables using inner_join().
Then, group_by() groups the items according to customer ID, and summarize()
sums the total spending for each customer. Finally, we will use arrange() to sort
the customer in decreasing order of spending, and select() to select only the
columns we want.

The output of each of these steps is a tbl object:

class(cust.spending)
[1] "tbl_postgres" "tbl_sql" "tbl"

These are virtual tables that are an accumulation of all the operations applied so
far. Up to this point, no SQL has been sent to the database server and no computation
has been performed on it. We can examine the SQL query that will be executed
when the results are retrieved by retrieving the query member of the tbl object:

cust.spending$query
<Query> SELECT "cust_id" AS "cust_id", "spending" AS "spending"
FROM (SELECT "cust_id", SUM("price") AS "spending"
FROM (SELECT "row.names" AS "row.names.x", "trans_id" AS
"trans_id", "cust_id" AS "cust_id", "store_id" AS "store_id"
FROM "sales") AS "nsthygziij"
##
INNER JOIN
##
(SELECT "row.names" AS "row.names.y", "trans_id" AS "trans_id",
"item_id" AS "item_id", "price" AS "price"
FROM "trans_items") AS "cuwpqadrgf"
##
USING ("trans_id")
GROUP BY "cust_id") AS "_W8"
ORDER BY "spending" DESC
<PostgreSQLConnection:(11726,2)>

Normally, the collect() function is used to run the SQL statement and retrieve
the results:

custs.by.spending <- collect(cust.spending)

Since we want only the top 10 customers and not all the customers, we can use
head() to minimize the data being transferred from the database into R:

top.custs <- head(cust.spending, 10L)

Chapter 9

[129]

As more complex data manipulation operations are constructed in dplyr, the
individual R statements and temporary variables created can get unwieldy. The
dplyr package provides the %>% operator to chain operations together.
The preceding construct can be rewritten more succinctly as:

top.custs <-
 sales.tb %>% inner_join(trans_items.tb, by = "trans_id") %>%
 group_by(cust_id) %>%
 summarize(spending = sum(price)) %>%
 arrange(desc(spending)) %>%
 select(cust_id, spending) %>%
 head(10L)

The dplyr package provides other useful operations like filter() for filtering
rows, and mutate() for defining new columns as functions of the existing columns.
These operations can be combined in many creative and useful ways to process
data in a database before retrieving the results into R.

Using PivotalR
The PivotalR package provides similar capabilities as dplyr, but with a
different syntax. Because it was developed by Pivotal Software Inc., it supports
only PostgreSQL or Pivotal (Greenplum) databases.

As usual, the first step in using the package is to establish a connection to
the database:

library(PivotalR)
db.conn <- db.connect(host = "hostname", port = 5432,
 dbname = "rdb", user = "ruser",
 password = "rpassword")

If you have not installed MADlib on the PostgreSQL database (see the
next section of this chapter), you might get a warning that says "MADlib
does not exist in database." This is not a problem for the examples in
this section as they do not cover the MADlib functions.

The next step is to create references to the database tables using db.data.frame():

sales.tb <- db.data.frame("sales", db.conn)
trans_items.tb <- db.data.frame("trans_items", db.conn)

Offloading Data Processing to Database Systems

[130]

The db.data.frame objects behave similar to standard R data frames in many
ways, except that they are wrappers for SQL queries that need to be executed on
the database. Many of the standard R information and statistical functions are
supported. In order to execute the SQL and retrieve the results, use the lookat()
function (or the shorthand lk()). For example:

dim(sales.tb)
[1] 1e+05 4e+00
names(sales.tb)
[1] "row.names" "trans_id" "cust_id" "store_id"
lookat(count(sales.tb$cust_id))
[1] 1e+05
lookat(min(trans_items.tb$price))
[1] 0.009554177
lookat(max(trans_items.tb$price))
[1] 121.3909

To see the SQL query that will be executed on the database server, use the
content() method:

content(max(trans_items.tb$price))
[1] "select max(\"price\") as \"price_max\"
from \"trans_items\""

If you get the error message "Invalid SciDB object", it could
mean that some of the PivotalR functions are being masked
by functions of the same name in the SciDB package, which
we will cover later in this chapter. In particular, both packages
provide the count() function. To run the examples in
this section successfully, unload the scidb package with
detach("package:scidb", unload=TRUE).

New columns can be computed from existing columns by using the familiar R
syntax without affecting the data on the database; instead, the transformations
are translated into SQL functions that compute the new columns on the fly. In
the following example, we will compute a new column foreign_price that
is returned to R in memory and not stored in the database:

trans_items.tb$foreign_price <- trans_items.tb$price * 1.25
content(trans_items.tb)

Chapter 9

[131]

[1] "select \"row.names\" as \"row.names\", \"trans_id\" as
\"trans_id\", \"item_id\" as \"item_id\", \"price\" as
\"price\", (\"price\") * (1.25) as \"foreign_price\" from
\"trans_items\""

Let's take a look at a full example of how to construct a query in PivotalR. Say we
want to compute some statistics to understand the purchasing patterns of consumers
at the transaction level. We have to group the data by transactions and then group it
again by customers to compute the statistics for each customer:

trans <- by(trans_items.tb["price"], trans_items.tb$trans_id, sum)
sales.value <- merge(sales.tb[c("trans_id", "cust_id",
 "store_id")],
 trans, by = "trans_id")
cust.sales <- by(sales.value, sales.value$cust_id,
 function(x) {
 trans_count <- count(x$trans_id)
 total_spend <- sum(x$price_sum)
 stores_visited <- count(x$store_id)
 cbind(trans_count, total_spend,
 stores_visited)
 })
names(cust.sales) <- c("cust_id", "trans_count", "total_spend",
 "stores_visited")
lookat(cust.sales, 5)
cust_id trans_count total_spend stores_visited
1 1 9 44.73121 9
2 2 7 41.90196 7
3 3 13 87.37564 13
4 4 11 58.34653 11
5 5 15 95.09015 15

The first call to by() aggregates the item-level sales data into transactions; summing
up the total value of each transaction. Next, merge() joins the sales table with the
aggregated transaction data to match the customers with how much they have spent.
Then, we will use by() again to aggregate all the transactions by customer. For each
customer, we will calculate the number of transactions they made, the total value of
those transactions, and the number of stores they visited.

Offloading Data Processing to Database Systems

[132]

Instead of returning the results, they can also be stored into a new database table
by using as.db.data.frame(). This is useful for lengthy computations with many
intermediate steps. Storing intermediate results in the database helps to reduce the
amount of data being transferred between R and the database.

cust_sales.tb <- as.db.data.frame(cust.sales, "cust_sales")

Further statistics can be computed from the intermediate data, such as the minimum,
maximum, mean and standard deviation of customer spending:

lookat(min(cust_sales.tb$total_spend))
[1] 0.4961619
lookat(max(cust_sales.tb$total_spend))
[1] 227.8077
lookat(mean(cust_sales.tb$total_spend))
[1] 66.16597
lookat(sd(cust_sales.tb$total_spend))
[1] 26.71887

When the intermediate data is no longer required, it can be deleted from the database:

delete(cust_sales.tb)

Both dplyr and PivotalR provide flexible easy ways to manipulate data in a database
using R functions and syntax. They allow us to tap into the processing power and
speed of high-performance databases to query large datasets and integrate the results
of the queries into other analyses in R. Because they are quite similar in capabilities,
choosing between the two is largely a matter of compatibility with existing database
systems and personal preference for one syntax over the other.

Running statistical and machine learning
algorithms in a database
So far, the examples in this chapter have performed simple computations on data in
a database. Sometimes we need to perform more complex computations than that.
Several database vendors have begun to build advanced statistics or even machine
learning capabilities into their database products, allowing these advanced algorithms
to run in the database using highly optimized code for maximum performance. In this
chapter, we will look at one open source project, MADlib (http://madlib.net/),
whose development is supported by Pivotal Inc., that brings advanced statistics and
machine learning capabilities to PostgreSQL databases.

http://madlib.net/

Chapter 9

[133]

MADlib adds a host of statistical capabilities to PostgreSQL, including descriptive
statistics, hypothesis tests, array arithmetic, probability functions, dimensionality
reduction, linear models, clustering models, association rules, and text analysis.
New models and statistical methods are constantly being added to the library to
expand its capabilities.

At the moment, MADlib binaries are only available for Mac OS X
and Red Hat/CentOS Linux. For other operating systems, https://
github.com/madlib/madlib/wiki/Building-MADlib-from-
Source provides instructions to build MADlib from source. MADlib
does not support Windows at the time of writing.

Before installing MADlib, ensure that the plpython module from PostgreSQL
is installed. On Redhat/CentOS, run this command by substituting the package
name with one that matches the version of PostgreSQL:

$ yum install postgresql93-plpython

On Mac OS X, check the documentation for your PostgreSQL installation method.
For example, using Homebrew, the following command installs PostgreSQL with
plpython support:

$ brew install postgresql --with-python

Once PostgreSQL has been set up with plpython, follow the instructions at
https://github.com/madlib/madlib/wiki/Installation-Guide to install
MADlib. The user account being used to install MADlib needs superuser privileges,
which can be granted by running ALTER ROLE ruser WITH SUPERUSER; in
PostgreSQL.

Now, return to R and connect to PostgreSQL using the RPostgreSQL package:

db.drv <- PostgreSQL()
db.conn <- dbConnect(db.drv, host = "hostname",
 port = 5432, dbname = "rdb",
 user = "ruser",
 password = "rpassword")

Say we want to mine our sales database for association rules. As you can remember
from Chapter 6, Simple Tweaks to Use Less RAM, the arules package provides
functions to mine for frequent itemsets and association rules. In order to use the
arules package, the entire trans_items table would need to be extracted into R
and converted into a transactions object. If the dataset is large, this might take
a long time, or might not be possible at all.

https://github.com/madlib/madlib/wiki/Building-MADlib-from-Source
https://github.com/madlib/madlib/wiki/Building-MADlib-from-Source
https://github.com/madlib/madlib/wiki/Building-MADlib-from-Source
https://github.com/madlib/madlib/wiki/Installation-Guide

Offloading Data Processing to Database Systems

[134]

Alternatively, we can mine the association rules in the database using MADlib
functions. The data does not need to be copied out of the database at all, and all
the computations can take place in the database as long as the database server
or cluster has sufficient capacity.

Running the association rules mining algorithm is as simple as calling the madlib.
assoc_rules() function in an SQL SELECT statement:

dbGetQuery(
 db.conn,
 "SELECT *
 FROM madlib.assoc_rules(
 0.001, -- support
 0.01, -- confidence
 'trans_id', -- tid_col
 'item_id', -- item_col
 'trans_items', -- input_table
 'public', -- output_schema
 TRUE -- verbose
);")
INFO: finished checking parameters
CONTEXT: PL/Python function "assoc_rules"
INFO: finished removing duplicates
CONTEXT: PL/Python function "assoc_rules"
Output truncated
INFO: 6 Total association rules found. Time: 0.00557494163513
CONTEXT: PL/Python function "assoc_rules"
output_schema output_table total_rules total_time
1 public assoc_rules 6 00:01:21.860964

The preceding code includes comments that describe the arguments to madlib.
assoc_rules(). Here, the algorithm is asked to search for association rules with a
support of at least 0.001 and confidence of at least 0.01. The name of the input table
and columns are specified, as well as the name of the schema in which you can store
the results. In this case, the results will be stored in a table called assoc_rules in
the public schema.

Every time the function is run, the assoc_rules table will be overwritten; so if you
would like to keep a copy of the results, you will have to make a copy of the table.

Chapter 9

[135]

Let's retrieve the results, that is, the association rules that meet the minimum support
and confidence:

dbGetQuery(
 db.conn,
 'SELECT * FROM assoc_rules;')
ruleid pre post support confidence lift conviction
1 1 {353} {656} 1e-04 0.02272727 5.516328 1.019040
2 2 {656} {353} 1e-04 0.02427184 5.516328 1.020366
3 3 {770} {420} 1e-04 0.02444988 6.022137 1.020901
4 4 {420} {770} 1e-04 0.02463054 6.022137 1.021059
5 5 {755} {473} 1e-04 0.02469136 6.203859 1.021236
6 6 {473} {755} 1e-04 0.02512563 6.203859 1.021619

The results indicate the items on the left- and right-hand sides of each association
rule, along with the statistics for each rule such as the support, confidence, lift,
and conviction.

Most of the other MADlib functions work in a similar way—data is supplied to a
function in a database table, the function is called with the appropriate arguments,
and the results are written to a new database table in the specified schema.

Because Pivotal, Inc. developed both the PivotalR package and
MADlib, it is natural that PivotalR provides interfaces to some
MADlib functions such as linear models, ARIMA time series models
and decision trees. It also provides useful functions to extract
information such as regression coefficients from the MADlib output.
Unfortunately, PivotalR does not provide wrappers to all the
MADlib functions such as the madlib.assoc_rules() function
used in the preceding code. For maximum flexibility in using the
MADlib library, use SQL statements to call the MADlib functions.

In-database analytics libraries such as MADlib allow us to harness the power of
advanced analytics in large databases and bring the results of the algorithms into
R for further analysis and processing.

Offloading Data Processing to Database Systems

[136]

Using columnar databases for improved
performance
Most relational databases use a row-based data storage architecture—the data is stored
in the database row by row. Whenever the database performs a query, it retrieves the
relevant rows for the query before processing the query. This architecture is well suited
for business transactional uses, where complete records (that is, including all columns)
are written, read, updated, or deleted, a few rows at a time. For most statistical or
analytical use cases, however, many rows of data, often with only a few columns, need
to be read. As a result, row-based databases are sometimes inefficient at analytical
tasks because they read entire records at a time regardless of how many columns are
actually needed for analysis. The following figure depicts how a row-based database
might compute the sum of one column.

SELECT SUM(coI1) FROM table;

1. Read all rows 2. Select col1 3. SUM(col1)

Computing the sum of one column in a row-based database

The increase in demand for data analysis platforms in recent years has led to
the development of databases that use alternative storage architectures that are
optimized for data analysis instead of business transactions. One such architecture
is columnar storage. Columnar databases store data in columns instead of rows.
This is very similar to R data frames where each column of a data frame is stored in
a contiguous block of memory in the form of an R vector. When computing the sum
of one column, a columnar database needs to read only one column of data, as shown
in the following figure:

Chapter 9

[137]

SELECT SUM(coI1) FROM table;

1. Read col1 2. SUM(col1)

Computing the sum of one column in a columnar database

One example of a columnar database is MonetDB, which can be downloaded from
https://www.monetdb.org/Downloads. Follow the instructions there to install it.
After installation, take the following steps to initialize and start the database.

On Linux or Mac OS X, run the following commands in a terminal window:

Create a new database farm
(Replace the path with a location of your choice)
$ monetdbd create /path/to/mydbfarm
Start the database server
$ monetdbd start /path/to/mydbfarm
Create a new database within the farm
$ monetdb create rdb
Release the new database from administration locks
$ monetdb release rdb

On Windows, initialize and start the server by going to Start | Programs |
MonetDB | Start server.

Because MonetDB is based on SQL, connecting to and working with MonetDB from
R is similar to working with PostgreSQL. We can either execute SQL statements
using the MonetDB.R CRAN package or use dplyr. For example, we can load the
same sales and transaction data into MonetDB using MonetDB.R:

library(MonetDB.R)
db.drv <- MonetDB.R()
db.conn <- dbConnect(db.drv, host = "hostname",

https://www.monetdb.org/Downloads

Offloading Data Processing to Database Systems

[138]

 port = 50000, dbname = "rdb",
 user = "monetdb",
 password = "monetdb")
dbWriteTable(db.conn, "sales", sales)
dbWriteTable(db.conn, "trans_items", trans.items)

Now, let's benchmark the query performance for the same SQL queries used in the
RPostgreSQL examples:

library(microbenchmark)
microbenchmark({
 res <- dbGetQuery(
 db.conn,
 'SELECT store_id, SUM(price) as total_sales
 FROM sales INNER JOIN trans_items USING (trans_id)
 GROUP BY store_id;')
}, times = 10)
Unit: milliseconds
min lq median uq max neval
112.1666 113.0484 113.9021 114.4349 114.7049 10
microbenchmark({
 res <- dbGetQuery(
 db.conn,
 'SELECT cust_id, SUM(price) as spending
 FROM sales INNER JOIN trans_items USING (trans_id)
 GROUP BY cust_id
 ORDER BY spending DESC
 LIMIT 10;')
}, times = 10)
Unit: milliseconds
min lq median uq max neval
114.2376 115.4617 116.515 117.1967 118.4736 10

Compared to PostgreSQL, MonetDB took 55 percent less time for both queries (as you
can remember from before that the median times needed by PostgreSQL for the first
and second queries were 251.1 and 260.1 milliseconds, respectively). Of course, this
is not a comprehensive or rigorous comparison between row-based and columnar
databases, but it gives an indication of the performance gains that can be achieved
by selecting the right database architecture for the task at hand.

Chapter 9

[139]

Using array databases for maximum
scientific-computing performance
Columnar databases provide good query performance for datasets that resemble
R data frames, for example, most data from business IT systems. These datasets
are usually two dimensional and can contain heterogeneous data types. On the
other hand, scientific data sometimes contain homogeneous data types but are
multidimensional. An example of this is weather readings in different points in time
and space. For such applications, a new type of database called the array database
provides even better query and scientific computing performance. One example of
this is SciDB, available for download at http://www.scidb.org/. SciDB provides a
massively parallel processing (MPP) architecture that can perform queries in parallel
on petabytes of array data. It supports in-database linear algebra, graph operations,
linear models, correlations, and statistical tests. It also offers an R interface through
the SciDB package that is available on CRAN.

To download and install SciDB, follow the instructions at https://github.com/
Paradigm4/deployment. Then, install shim (https://github.com/paradigm4/
shim) on the SciDB server, which is needed for R in order to communicate with
SciDB. Finally, install the scidb package from CRAN.

Connect to the SciDB database using the scidbconnect() function:

library(scidb)
scidbconnect(host = "hostname", port = 8080)

We can then load some data into the database using as.scidb():

A <- as.scidb(matrix(rnorm(1200), 40, 30), name = "A")
B <- as.scidb(matrix(rnorm(1200), 30, 40), name = "B")

scidb provides familiar R syntax to manipulate SciDB matrices and arrays:

Matrix multiplication
A %*% B
Transpose and addition / subtraction
A + t(B)
Scalar operations
A * 1.5

http://www.scidb.org/
https://github.com/Paradigm4/deployment
https://github.com/Paradigm4/deployment
https://github.com/paradigm4/shim
https://github.com/paradigm4/shim

Offloading Data Processing to Database Systems

[140]

We can even mix SciDB matrices/arrays with R matrices/arrays:

C <- matrix(rnorm(1200), 30, 40)
A %*% C

As with the other database packages, operations are not actually performed until
the results are retrieved. In the case of SciDB, the [] operator causes the database
to perform the computations and return the results:

Filter only the positive elements of A, and materialize the
results into R
(A > 0)[]

SciDB supports many other common array/matrix operations such as subsetting,
comparison, filtering, apply, joining, aggregation, and sorting. It is a powerful tool
for working with large, multidimensional numerical data.

Summary
In this chapter, we took a tour of various database systems and the R packages
that allow us to interface with them, and saw how in-database querying and
analysis can provide better performance than copying the data into R to do the
same analysis. This is especially true for large datasets that cannot be easily
processed in R; using a database that is tuned for querying and analysis can help to
avoid performance issues in R. As technology improves, more and more advanced
analysis and algorithms can be run in databases providing more options for R
programmers who face the challenge of analyzing large datasets efficiently. These
powerful data processing tools can complement R very nicely—they provide the
computing muscle to analyze large datasets, while R provides easy interfaces for
data manipulation and analysis. R can also help to bring together different threads
of analyses, regardless of the tool used, to present a coherent and compelling
picture of the data using tools such as data visualization.

In the next and final chapter, we will go to the frontiers of Big Data and take a look
at how R can be used alongside Big Data tools to process extremely large datasets.

R and Big Data
We have come to the final chapter of this book where we will go to the very limits
of large-scale data processing. The term Big Data has been used to describe the ever
growing volume, velocity, and variety of data being generated on the Internet in
connected devices and many other places. Many organizations now have massive
datasets that measure in petabytes (one petabyte is 1,048,576 gigabytes), more
than ever before. Processing and analyzing Big Data is extremely challenging
for traditional data processing tools and database architectures.

In 2005, Doug Cutting and Mike Cafarella at Yahoo! developed Hadoop, based
on earlier work by Google, to address these challenges. They set out to develop a
new data platform to process, index, and query billions of web pages efficiently.
With Hadoop, the work which would have previously required very expensive
supercomputers can now be done on large clusters of inexpensive standard servers.
As the volume of data grows, more servers can simply be added to a Hadoop cluster
to increase the storage capacity and computing power. Since then, Hadoop and its
ecosystem of tools has become one of the most popular suites of tools to collect, store,
process and analyze large datasets. In this chapter, we will learn how to tap into the
power of Hadoop from R.

This chapter covers the following topics:

•	 Understanding Hadoop
•	 Setting up Hadoop on Amazon Web Services
•	 Processing large datasets in batches using RHadoop

R and Big Data

[142]

Understanding Hadoop
Before we learn how to use Hadoop (for more information refer to http://hadoop.
apache.org/) and related tools in R, we need to understand the basics of Hadoop.
For our purposes, it suffices to know that Hadoop comprises two key components:
the Hadoop Distributed File System (HDFS) and the MapReduce framework to
execute data processing tasks. Hadoop includes many other components for task
scheduling, job management, and others, but we shall not concern ourselves with
those in this book.

HDFS, as the name suggests, is a virtual filesystem that is distributed across a
cluster of servers. HDFS stores files in blocks, with a default block size of 128 MB.
For example, a 1 GB file is split into eight blocks of 128 MB, which are distributed
to different servers in the cluster. Furthermore, to prevent data loss due to server
failure, the blocks are replicated. By default, they are replicated three times—there
are three copies of each block of data in the cluster, and each copy is stored on a
different server. That way, even if a few servers in the cluster fail, the data is not
lost and can be re-replicated to ensure high availability.

MapReduce is the framework to process the data stored in HDFS in a data parallel
way. Notice how the distributed nature of data storage makes Hadoop a good fit for
data parallel algorithms that we learned about in Chapter 8, Multiplying Performance
with Parallel Computing—the chunks of data stored on each worker node are processed
simultaneously in parallel, and then the results from each node are combined to
produce the final results. MapReduce works very similarly to the data parallel
algorithms in Chapter 8, Multiplying Performance with Parallel Computing, except that
the data already resides in the worker nodes; it does not have to be distributed every
time a task is run as was the case with a cluster of servers that run R. Map refers to the
step of performing computations on the data in each worker node, or mapping data to
their corresponding output. Reduce refers to the process of combining, or reducing the
results of the worker nodes into the final results.

Data in MapReduce is represented as key-value pairs. Every MapReduce operation is
essentially a transformation from one set of key-value pairs to another set of key-value
pairs. A mapper might, for example, read a single customer record from a database
and produce a key-value pair such as ("Alice ", 32) that contains the name of a
customer ("Alice") as the key and the reward points she or he collected in a given
week (32) as the corresponding value. After the map step, all the key-value pairs are
sorted by the key, and the pairs with the same key are given to individual reducers. So,
for example, there would be one reducer for all pairs with the key "Alice", another
reducer for the key "Bob", and another for "Charlie". A reducer takes all the key-
value pairs it is given, performs computations on them, and returns the results as
another key-value pair.

http://hadoop.apache.org/
http://hadoop.apache.org/

Chapter 10

[143]

The reducers in our simple example could compute the mean of weekly reward points
collected by all customers. The MapReduce system then collects the results of all the
reducers as the final output, which could be something like [("Alice", 26.5),
("Bob", 42.3), ("Charlie", 35.6), ...].

While HDFS and MapReduce are the foundation of Hadoop, they are not suited for
all data processing tasks. One key reason is that data stored in HDFS resides on the
hard drives of the servers. Each time a MapReduce task is performed, the data has to
be read from the disk, and the results of the computations are written back to the disk.
Thus, HDFS and MapReduce perform reasonably well for sizeable batch processing
tasks where the time to complete the computational tasks exceeds the overheads of
reading/writing data and other overheads of running a Hadoop cluster.

Setting up Hadoop on Amazon Web
Services
There are many ways to set up a Hadoop cluster. We can install Hadoop on a single
server in pseudo-distributed mode to simulate a cluster, or on an actual cluster
of servers, or virtual machines in fully distributed mode. There are also several
distributions of Hadoop available from the vanilla open source version provided by
the Apache Foundation to commercial distributions such as Cloudera, Hortonworks,
and MapR. Covering all the different ways of setting up Hadoop is beyond the scope
of this book. We instead provide instructions for one way to set up Hadoop and
other relevant tools for the purpose of the examples in this chapter. If you are using
an existing Hadoop cluster or setting up one in a different way, you might have to
modify some of the steps.

Because Hadoop and its associated tools are mostly developed for
Linux/Unix based operating systems, the code in this chapter will
probably not work on Windows. If you are a Windows user, follow
the instructions in this chapter to set up Hadoop, R, and the required
packages on Amazon Web Services.

Amazon Web Services (AWS) has a service called Elastic MapReduce (EMR) that
allows us to rent and run a Hadoop cluster on an hourly basis. Creating a Hadoop
cluster is as simple as specifying the number of servers in the cluster, the size of each
server, and the instructions to set up the required tools on each server. To set up an
account with AWS, follow the instructions in Preface. Running the examples in this
chapter on AWS will cost some money for as long as the EMR cluster is running.
Check this link out http://aws.amazon.com/elasticmapreduce/pricing/ for
the latest EMR prices.

http://aws.amazon.com/elasticmapreduce/pricing/

R and Big Data

[144]

We also need a script that sets up the required tools on each server. Save the following
script as emr-bootstrap.sh. This scripts installs the R packages needed for this
chapter, including rhdfs, rmr2, and R.utils on every server in the Hadoop cluster.

#!/bin/bash
Set unix environment variables
cat << EOF >> $HADOOP_HOME/.bashrc
export HADOOP_CMD=$HADOOP_HOME/bin/hadoop
export HADOOP_STREAMING=$HADOOP_HOME/contrib/streaming/hadoop-
streaming.jar
EOF
. $HADOOP_HOME/.bashrc
Fix hadoop tmp permission
sudo chmod 777 -R /mnt/var/lib/hadoop/tmp
Install dependencies
sudo yum install -y libcurl-devel
Install R packages
sudo –E R CMD javareconf
sudo –E R --no-save << EOF
install.packages("R.utils", repos="http://cran.rstudio.com")
EOF
Install HadoopR dependencies
sudo –E R --no-save << EOF
install.packages(
 c("bitops", "caTools", "digest", "functional", "plyr", "Rcpp",
 "reshape2", "rJava", "RJSONIO", "stringr"),
 repos="http://cran.rstudio.com")
EOF
Install rhdfs package
wget https://raw.githubusercontent.com/RevolutionAnalytics/rhdfs/
master/build/rhdfs_1.0.8.tar.gz
sudo -E R CMD INSTALL rhdfs_1.0.8.tar.gz
Install rmr2 package
wget https://raw.githubusercontent.com/RevolutionAnalytics/rmr2/
master/build/rmr2_3.2.0.tar.gz
sudo –E R CMD INSTALL rmr2_3.2.0.tar.gz

Upload emr-bootstrap.sh into the AWS Simple Storage Service (S3) so that the
EMR servers can pick it up during the first run. To do this:

1.	 Go to the AWS console, and click on S3.
2.	 Create a new bucket to store the script in by clicking on Create Bucket.
3.	 Click on the bucket that was just created and click on Upload to upload

the script.

Chapter 10

[145]

Next, follow these steps to create the Hadoop cluster:

1.	 Go to the AWS Console and click on EMR.
2.	 Click on Create cluster.
3.	 Under Software Configuration, select the Amazon Hadoop distribution

(the examples in this chapter were tested with Amazon Machine Image
(AMI) version 3.2.1).

4.	 Remove Hive and Pig from the applications list, as they are not needed.
5.	 Under Hardware Configuration, select the instance types for the Hadoop

servers. The instance types for both the master and core nodes should have
at least 15 GB of RAM, such as the m1.xlarge or m3.xlarge instance types.
Enter the number of nodes you would like in the cluster. Given the default
HDFS replication factor of three, there should be at least three core nodes.
Task nodes are optional.

6.	 Under Security and Access, select the EC2 key pair to log in to the
cluster with.

7.	 Under Bootstrap Actions, select Custom action, then click on Configure
and add. In the dialog box that appears under S3 location, enter or browse
for the S3 location where emr-bootstrap.sh was uploaded.

8.	 (Optional) Enable logging under Cluster Configuration to have all Hadoop
logs automatically stored in the S3 bucket. To use this option, first create an
S3 bucket to store the logs in, and enter the name of the bucket in the Log
folder S3 location field. While optional, storing Hadoop logs is useful for
tracing errors and debugging, which can be challenging without the logs,
as an executed program gets spawned across multiple processes and
computer nodes in Hadoop.

9.	 Click on Create cluster and wait a few minutes while the cluster is being
set up.

Once the EMR cluster is ready, get the Master Public DNS from the cluster details
page, and log in to the master server from the command line using your AWS EC2
security key (replace hadoop.pem with the name of your key):

$ ssh –i hadoop.pem root@master-public-dns

Once you are logged in, run R, which comes preinstalled with the EMR cluster:

$ R

R and Big Data

[146]

Processing large datasets in batches
using Hadoop
Batch processing is the most basic type of task that HDFS and MapReduce can
perform. Similar to the data parallel algorithms in Chapter 8, Multiplying Performance
with Parallel Computing, the master node sends a set of instructions to the worker
nodes, which execute the instructions on the blocks of data stored on them. The
results are then written to the disk in HDFS.

When an aggregate result is required, both the map and reduce steps are performed
on the data. For example, in order to compute the mean of a distributed dataset,
the mappers on the worker nodes first compute the sum and number of elements
in each local chunk of data. The reducers then add up all these results to compute
the global mean.

At other times, only the map step is performed when aggregation is not required.
This is common in data transformation or cleaning operations where the data
is simply being transformed form one format to another. One example of this is
extracting email addresses from a set of documents. In this case, the results of the
mappers on the worker nodes are stored as new datasets in HDFS, and reducers
are not needed.

The R community has developed several packages to perform MapReduce tasks from
R. One of these is the RHadoop family of packages developed by Revolution Analytics
(for more information refer to https://github.com/RevolutionAnalytics/
RHadoop). RHadoop includes the packages rhdfs, which provides functions to
manipulate files and directories in HDFS, and rmr2, which exposes the functionality
of MapReduce as R functions. These functions make it easy to use MapReduce without
having to program with the Hadoop Java APIs. Instead, rmr2 runs a copy of R on
every worker node, and the mappers and reducers are written as R functions to
be applied on each chunk of data.

If you did not use the Hadoop setup instructions in the preceding section, follow
the installation instructions for rhdfs and rmr2 at https://github.com/
RevolutionAnalytics/RHadoop/wiki.

https://github.com/RevolutionAnalytics/RHadoop
https://github.com/RevolutionAnalytics/RHadoop
https://github.com/RevolutionAnalytics/RHadoop/wiki
https://github.com/RevolutionAnalytics/RHadoop/wiki

Chapter 10

[147]

Uploading data to HDFS
The first thing to do for this is to get data into HDFS. For this chapter, we will use
the Google Books Ngrams data (for more information refer to http://storage.
googleapis.com/books/ngrams/books/datasetsv2.html). Here, n-grams are
consecutive words that appear in the text where n represents the number of words
in a phrase—a 1-gram is simply a word (for example, "Batman"), a 2-gram is two
consecutive words (for example, "Darth Vader"), and a 6-gram is six consecutive words
(for example, "Humpty Dumpty sat on a wall"). We will use the data of 1-grams for
our examples.

The dataset for this chapter is large enough to test the performance
of Hadoop on a small cluster, but it is still relatively small compared
to many other real-world datasets. Tools such as ffdf (Chapter 7,
Processing Large Datasets with Limited RAM) can probably be used to
process this dataset on a single machine. But when the data size gets
much larger, Hadoop or other Big Data tools might be the only way
to process the data.

The following code downloads the 1-grams data and uploads them into HDFS.
Google provides the data in separate files, with one file for each letter of the alphabet
containing the words that start with that letter. In this code, hdfs.init() first
initializes the connection to HDFS. Then, hdfs.mkdir() creates the directory /
ngrams/data in HDFS where the data will be stored. The code in the for loop
downloads each file, decompresses it, and uploads it to HDFS using hdfs.put():

library(rhdfs)
library(R.utils)
hdfs.init()
hdfs.mkdir("/ngrams/data")
files <- paste0("googlebooks-eng-all-1gram-20120701-", letters)
for (f in files) {
 gzfile <- paste0(f, ".gz")
 url <- paste0("http://storage.googleapis.com/",
 "books/ngrams/books/",
 gzfile)
 download.file(url, destfile = gzfile)
 gunzip(gzfile)
 hdfs.put(f, paste0("/ngrams/data/", f))
 file.remove(f)
}

http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

R and Big Data

[148]

We can check that all the files have been uploaded successfully into HDFS:

hdfs.ls("/ngrams/data")
permission owner group size modtime
1 -rw-r--r-- hadoop supergroup 1801526075 2014-10-05 09:59
2 -rw-r--r-- hadoop supergroup 1268392934 2014-10-05 10:00
3 -rw-r--r-- hadoop supergroup 2090710388 2014-10-05 10:01
4 -rw-r--r-- hadoop supergroup 1252213884 2014-10-05 10:01
5 -rw-r--r-- hadoop supergroup 1085415448 2014-10-05 10:02
file
1 /ngrams/data/googlebooks-eng-all-1gram-20120701-a
2 /ngrams/data/googlebooks-eng-all-1gram-20120701-b
3 /ngrams/data/googlebooks-eng-all-1gram-20120701-c
4 /ngrams/data/googlebooks-eng-all-1gram-20120701-d
5 /ngrams/data/googlebooks-eng-all-1gram-20120701-e
$ hdfs dfs -du -h /ngrams
Output truncated

Analyzing HDFS data with RHadoop
Now that the data is loaded into HDFS, we can use MapReduce to analyze the
data. Say we want to compare the popularity of Batman versus Superman since
the 1950s. The Google Ngrams data might provide some insight into that.

Each line of the Ngrams data is a tab-seperated list of values, starting with the
Ngram, followed by the year, number of occurrences of that Ngram, and number
of books that the Ngram appeared in. For example, the following command line
indicates that in 1978, the word "mountain" appeared 1,435,642 times in 1,453
books in the Google Books library.

mountain 1978 1435642 1453

To compare the popularity of Batman and Superman, we need to find the
lines of code that represent these two words from 1950 onwards and collate
the occurrence values.

Since the data consists of tab-separated text files, we need to specify the input
format so that the rmr2 functions know how to read the files. This can be done
using the make.input.format() function:

library(rmr2)
input.format <- make.input.format(
 format = "csv", sep = "\t",
 col.names = c("ngram", "year", "occurrences", "books"),
 colClasses = c("character", "integer", "integer", "integer"))

Chapter 10

[149]

For delimited text files such as comma-separated values or tab-separated values,
make.input.format() accepts most of the same arguments as read.table().
In fact, rmr2 uses read.table() to read each chunk of data into a data frame.

Besides delimited text files, rmr2 can also read/write data as raw text (format =
"text"), JSON ("json"), R's internal data serialization format ("native"), Hadoop
SequenceFiles ("sequence.typedbytes"), HBase tables ("hbase"), and Hive or Pig
("pig.hive"). See the package documentation for the arguments associated with
these data types.

The map step of our analysis involves filtering each line of data to find the relevant
records. We will define a mapper function, as shown in the following code, that
accepts a set of keys and a set of values as arguments. Since the Ngrams data does
not contain keys, the keys argument is NULL. The argument values is a data frame
that contains a chunk of data. The mapper function looks for rows of the data frame
that contain the words we are interested in, for the year 1950 or later. If any relevant
rows are found, the keyval() function is called to return key-value pairs that will
be passed to the reduce function. In this case, the keys are the words and the values
are the corresponding years and occurrence counts:

mapper <- function(keys, values) {
 values$ngram <- tolower(values$ngram)
 superheroes <- values$ngram %in% c("batman", "superman") &
 values$year >= 1950L
 if (any(superheroes)) {
 keyval(values$ngram[superheroes],
 values[superheroes, c("year", "occurrences")])
 }
}

If you are familiar with MapReduce, you might have noticed that
rmr2 allows the mapper to accept and emit key-value pairs as lists
and data frames that represent a whole chunk of data instead of one
record at a time, as is the case with classical MapReduce. This can
help with R's performance; vectorized R operations can be used to
process the whole chunk of data.

The next step occurs behind the scenes, where MapReduce collects all the data
emitted by the mappers and groups them by key. In this example, it will find two
groups that correspond to the "batman" and "superman" keys. MapReduce then
calls the reducer function to process one group of data at a time.

R and Big Data

[150]

The job of the reducer, given the data for a particular superhero, is to sum the
number of occurrences of this superhero's name by year, using tapply(). This is
required because the words in the Ngrams dataset are case sensitive. So, for example,
we need to add up the number of times that "Batman", "batman", and "BATMAN"
appear in each year. The reducer then returns the superhero's name as the key, and
a data frame that contains the total number of occurrences by year as the value.
The code for the reducer is shown here:

reducer <- function(key, values) {
 val <- tapply(values$occurrences, values$year, sum)
 val <- data.frame(year = as.integer(names(val)),
 occurrences = val)
 keyval(key, val)
}

Now that we have defined our mapper and reducer functions, we can execute the
MapReduce job using mapreduce(). We will call this function, specify the input
directory and data format, the output directory where the results are to be written,
and the mapper and reducer functions.

job <- mapreduce(input = "/ngrams/data",
 input.format = input.format,
 output = "/ngrams/batmanVsuperman",
 map = mapper, reduce = reducer)

When this MapReduce job executes, the resultant key-value pairs are written
to HDFS in the /ngrams/batmanVsuperman folder. We can use from.dfs() to
retrieve the results from HDFS into R objects. This function returns a list with two
components: key and value. In this case, key is a character vector that specifies the
superhero's name for each row of data, and val is a data frame that contains the
corresponding years and occurrence counts.

results <- from.dfs(job)
batman <- results$val[results$key == "batman",]
head(batman)
year occurrences
1950 1950 153
1951 1951 105
1952 1952 173
1953 1953 133

Chapter 10

[151]

1954 1954 359
1955 1955 150
superman <- results$val[results$key == "superman",]
head(superman)
year occurrences
1950 1950 1270
1951 1951 1130
1952 1952 1122
1953 1953 917
1954 1954 1222
1955 1955 1087

Let's plot the results in order to compare how popular these two superheroes have
been over the years:

Popularity of Batman versus Superman since the 1950s, according to Google Books

While both the superheroes popularity steadily increased over the years, there is an
interesting spike in the number of times Superman was mentioned in books in the
1970s. This could be due to the release of the multi Academy Award-winning film,
Superman starring Christopher Reeve in 1978. However, this surge in popularity was
short-lived.

R and Big Data

[152]

The time it takes to complete the MapReduce algorithm depends on the size of the
data, the complexity of the task, and the number of nodes in the cluster. We tested
this example using the m1.xlarge AWS servers, which have 4 CPUs and 15 GB of
RAM each, with cluster sizes ranging from 4 to 32 core nodes (in EMR terminology,
these are nodes that store data and process them). The following figure shows how
the execution time decreases as more nodes are added to the cluster:

Execution time as cluster size increases

Because rmr2 starts an instance of R on each Hadoop node to process the data, the
efficiency of the MapReduce task depends on that of the R code for the mapper and
reducer functions. Many of the techniques in this book to improve the performance
of serial R programs can be applied when you design the mapper and reducer
functions too. Furthermore, every MapReduce job incurs overheads of starting a new
job, reading data from the disk, and coordinating the execution of the job across the
cluster. Where possible, combining individual tasks into larger MapReduce tasks
that can be executed at one go will help to improve the overall performance by
reducing these overheads.

Once you are done using the Hadoop cluster, remember to terminate the cluster
from the AWS EMR console to prevent unexpected charges.

Chapter 10

[153]

Other Hadoop packages for R
While the scope of this book allows us to cover only a few R packages that
interface with Hadoop, the community has developed many more packages to
bring the power of Hadoop to R. Here are a few more packages that can be useful:

Besides rhdfs and rmr2, RHadoop also provides other packages:

•	 plyrmr: It provides functionality similar to plyr on MapReduce
•	 rhbase: It provides functions to work with HBase data
•	 ravro: It provides reading/writing of data in the Avro format

Another family of packages called RHIPE (for more information refer to
http://www.datadr.org/) provides similar MapReduce capabilities with
a slightly different syntax:

•	 RHIPE: This package provides the core HDFS and MapReduce functionality
•	 datadr: It provides data manipulation capabilities similar to plyr/dplyr
•	 Trelliscope: It provides visualization of large datasets in HDFS

At the time of writing, RHIPE does not support YARN or MapReduce 2.0. An older
version of Hadoop is required to use the RHIPE packages until this is fixed.

Another package, Segue (for more information refer to https://code.google.
com/p/segue/) takes a different approach. It does not provide full MapReduce
capabilities. Rather, it treats Amazon's EMR as an additional computational resource
for computationally heavy R tasks. This is similar to cluster computing in Chapter 8,
Multiplying Performance with Parallel Computing, but using EMR as the computational
cluster. The Segue package provides the emrlapply() function that performs a
parallel lapply operation on an EMR cluster; this is analogous to mclapply() from
the parallel package.

Summary
In this chapter, we learned how to set up a Hadoop cluster on Amazon Elastic
MapReduce, and how to use the RHadoop family of packages in order to analyze
data in HDFS using MapReduce. We saw how the performance of the MapReduce
task improves dramatically as more servers are added to the Hadoop cluster, but the
performance eventually reaches a limit due to Amdahl's law (Chapter 8, Multiplying
Performance with Parallel Computing).

http://www.datadr.org/
https://code.google.com/p/segue/
https://code.google.com/p/segue/

R and Big Data

[154]

Hadoop and its ecosystem of tools is rapidly evolving. Other tools are being actively
developed to make Hadoop perform even better. For example, Apache Spark (http://
spark.apache.org/) provides Resilient Distributed Datasets (RDDs) that store data
in memory across a Hadoop cluster. This allows data to be read from HDFS once and
to be used many times in order to dramatically improve the performance of interactive
tasks like data exploration and iterative algorithms like gradient descent or k-means
clustering. Another example is Apache Storm (http://storm.incubator.apache.
org/) that allows you to process real-time data streams. Because these tools and their
associated R interfaces are being actively developed, they will likely change by the
time you read this book, so we have decided not to include them here. But they are
worth looking into if you have specific needs like in-memory analytics or real-time
data processing.

We have come to the end of the book. It has been an exhilarating journey looking at
a whole spectrum of techniques to improve the performance of R programs, from
optimizing memory utilization and computational speed to multiplying computational
power with parallel programming and cluster computing. What we have covered here
is only the basics; there is much more to learn about writing more efficient R code.
There are other resources that dive into specific topics in far greater detail than we
can here. Package documentation is always useful to read, though sometimes cryptic;
sometimes, the only way to find out what works is to try. Of course, there is the great
community of R users in online forums, mailing lists and other places, who are always
eager to help with answers and tips.

We hope that you have enjoyed this book and learned from it as much as we have
writing it. Thank you for joining us in this journey, and we wish you the very best
in exploring the world of R high-performance computing.

http://spark.apache.org/
http://spark.apache.org/
http://storm.incubator.apache.org/
http://storm.incubator.apache.org/

Index
A
active data

and nonactive data, swapping 83, 84
Amazon Machine Images (AMIs) 68
Amazon Web Services (AWS)

about 68
Hadoop, setting on 143-145

Amdahl's law 102
array databases

using 139, 140

B
batch processing 146
Big Data 141
big.matrix object 92
bigmemory package

using 92-96
bit vectors

using 91
built-in functions

using 39, 40

C
columnar databases

using 136-138
columnar storage 136
compiled code

considerations 61
garbage collection 62, 63
memory, allocating for non-R objects 63
R APIs 61
R data types, versus native data types 62
R objects, creating 62, 63

compiled code inline
including 54-58

compiled languages
about 13
compiled code, considerations 61
compiled code inline, including 54-58
external compiled code, calling 58-61
prerequisites 54
using 54

compiler package 53
Comprehensive R Archive Network

(CRAN) 9
computing performance

bottlenecks 11
CPU 10
disk I/O 10
RAM 10

copy-on-modification model 74
CPU utilization

monitoring 31
CUDA-enabled GPU card

URL 67
CUDA toolkit

URL, for downloading 67

D
data

preprocessing in relational database, SQL
used 122-125

processing, in chunks 92
uploading, into HDFS 147, 148

database
machine learning algorithm,

executing 132-135
statistical algorithm, executing 132-135

[156]

datadr package 153
data extraction, R

versus data processing, database 122
data parallel algorithms

implementing 106-109
data parallelism

about 104
examples 105
versus task parallelism 102-106

disk I/O
monitoring 31

distributed memory parallelism
about 115
versus shared memory parallelism 115-119

dplyr package
about 127
used, for converting R expressions 127-129

dynamically typed language 54

E
Elastic MapReduce (EMR)

about 143
URL, for prices 143

execution time
about 20
distribution, measuring with

microbenchmark 24
function, profiling with Rprof() 25-27
measuring 20
measuring, with system.time() 20-22
profiling 24
profiling results 27, 28
time measurements, repeating with

rbenchmark 22, 23
external compiled code

calling 58-61

F
fast alternative packages, in CRAN 46, 47
ffbase package

about 99
functions 99

ffdf tool 147
ff package

using 96-100

ff package, data types
Boolean 96
Byte 96
Complex 97
Date 97
Double 96
Factor 97
Integer 96
Logical 96
Nibble 96
Ordered 97
POSIXct 97
Quad 96
Raw 97
Short 96
Single 96
Ubyte 96
Ushort 96

Field Programmable Gate Arrays
(FPGAs) 66

forked clusters 108

G
garbage collection 62, 63
garbage collector 81
gmatrix 67
Google Books Ngrams data

URL 147
gputools

about 67
installing 67, 68
URL, for installation 67
used, for statistical modeling 68-71

Graphics Processing Unit (GPU)
about 65
general purpose computing 66
gputools, installing 67, 68
performance affecting factors 71
with R 66

H
Hadoop

about 142, 143
data, uploading into HDFS 147, 148
HDFS data, analyzing with

RHadoop 148-152

[157]

R packages 153
setting, on Amazon Web Services

(AWS) 143-145
URL 142
used, for processing large datasets 146

Hadoop Distributed File
System (HDFS) 142

hash tables
using, for frequent lookups 45

I
inline package

using 54
installation

gputools 67, 68
MADlib 133
Rtools 54
SciDB 139
Xcode Command Line Tools 54

interfaces, external compiled code
.C() 58
.Call() 58
.External() 58
.Fortran() 58

intermediate data
removing 78-81

J
just-in-time (JIT) compilation 53

K
key measures, resource utilization 31

L
Linux AMIs

URL 68

M
machine learning algorithm

executing 132-135
MADlib

installing 133
URL 132
URL, for installation guide 133

Map 142
MapReduce 142
massively parallel processing (MPP) 139
Matrix package 89
measures, performance problems

troubleshooting 31
memory

allocating, for non-R objects 63
preallocating 41-43

memory-efficient data structures
bit vectors, using 91
smaller data types, using 88, 89
sparse matrices, using 89, 90
symmetric matrices, using 90
using 85-88

memory-mapped files
about 92
bigmemory package, using 92-96
ff package, using 96-100
using 92

memory utilization
monitoring 31
profiling 28-30

MonetDB
about 137
URL, for downloading 137

O
objects

creating 62, 63
pass by reference 78
pass by value 78
reusing 74-78

OpenCL 67

P
parallel computing

about 101
performance, optimizing 119

performance bottlenecks
identifying 32-34
resolving 32-34

PivotalR package
about 129
used, for converting R expressions 129-132

plyrmr package 153

[158]

PostgreSQL
setting up 123
URL, for downloading 123

Principal Component Analysis (PCA) 46

R
R

about 9
data, loading into memory 14
GPU 66
running, single-threaded on CPU 13

R APIs
about 61
features 61

R code
compiling, before execution 49
executing 12, 13
functions, compiling 50-53
just-in-time (JIT) compilation 53

R data types
versus native data types 62

R expressions
converting, dplyr package used 127-129
converting, into SQL 127
converting, PivotalR package used 129-132

R packages, for GPU
gmatrix 67
gputools 67
OpenCL 67
RCUDA 67

RAM optimization
active and nonactive data, swapping 83, 84
intermediate data, removing 78-81
objects, reusing 74-78
values, calculating 81-83

ravro package 153
Rcpp package

about 60
URL 61

RCUDA 67
Reduce 142
relational database

data preprocessing, SQL used 122-126
RHadoop

about 146
datadr package 153

plyrmr package 153
ravro package 153
rhbase package 153
rhdfs package 146
RHIPE package 153
rmr2 package 146
Segue package 153
Trelliscope package 153
URL 146
used, for analyzing HDFS data 148-152

rhbase package 153
rhdfs package

about 146
URL, for installation 146

RHIPE package
about 153
URL 153

rmr2 package
about 146
URL, for installation 146

Rprof()
about 28
used, for profiling function 25

Rtools
installing 54
URL, for downloading 54

S
SciDB

about 139
installing 139
URL, for downloading 139

Segue package
about 153
URL 153

SEXP pointers 60
shared memory parallelism

about 116
versus distributed memory

parallelism 115-119
shim

URL, for installing 139
simpler data structures

using 43, 44
smaller data types

using 88, 89

[159]

socket-based cluster 108
space complexity 15
sparse matrices

using 89, 90
SQL

R expressions, converting 127
used, for data preprocessing in relational

database 122-126
statically typed language 54
statistical algorithm

executing 132-135
statistical modeling

with gputools 68-71
symmetric matrices

using 90
system.time() function, output elements

elapsed time 21
system time 20
user time 20

system-wide resource utilization measure
monitoring 31

T
task parallel algorithms

implementing 109
multiple tasks, executing 111, 112
same task, executing 109-111

task parallelism
about 106
versus data parallelism 102-106

tasks
executing, in parallel on cluster of

computers 113-115
time complexity

about 15
demonstrating 17
example 15, 16

transient storage allocation 63
Trelliscope package 153

U
user-controlled memory

about 63
type* Calloc(size_t n, type) function 63
type* Realloc(any *p, size_t n, type)

function 63
void Free(any *p) function 63

V
vectorization 38, 39

X
Xcode Command Line Tools

installing 54
URL, for downloading 54

Thank you for buying
R High Performance Programming

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

R Object-Oriented Programming
ISBN: 978-1-78398-668-2 Paperback: 190 pages

A practical guide to help you learn and understand
the programming techniques necessary to exploit
the full power of R

1.	 Learn and understand the programming
techniques necessary to solve specific problems
and speed up development processes for
statistical models and applications.

2.	 Explore the fundamentals of building
objects and how they program individual
aspects of larger data designs.

3.	 Step-by-step guide to understand how
OOP can be applied to application and
data models within R.

Instant R Starter
ISBN: 978-1-78216-350-3 Paperback: 54 pages

Jump into the R programming language and go
beyond "Hello World!"

1.	 Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

2.	 Basic concepts of the R language.

3.	 Discover tips and tricks for working
with R.

4.	 Learn manipulation of R objects to easily
customize your code.

Please check www.PacktPub.com for information on our titles

R for Data Science
ISBN: 978-1-78439-086-0 Paperback: 364 pages

Learn and explore the fundamentals of data science
with R

1.	 Familiarize yourself with R programming
packages and learn how to utilize
them effectively.

2.	 Learn how to detect different types of
data mining sequences.

3.	 A step-by-step guide to understanding R
scripts and the ramifications of your changes.

R Graph Essentials [Video]
ISBN: 978-1-78216-546-0 Duration: 01:57 hrs

A visual and practical approach to learning how
to create statistical graphs using R

1.	 Learn the basics of R graphs and how to
make them.

2.	 Customize your graphs according to
your specific needs without using
overcomplicated techniques/packages.

3.	 Step-by-step instructions to create a wide
range of professional-looking graphs.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Understanding R's Performance – Why Are R Programs Sometimes Slow?
	Three constraints on computing performance – CPU, RAM, and disk I/O
	R is interpreted on the fly
	R is single-threaded
	R requires all data to be loaded into memory
	Algorithm design affects time and space complexity
	Summary

	Chapter 2: Profiling – Measuring Code's Performance
	Measuring the total execution time
	Measuring execution time with system.time()
	Repeating time measurements with rbenchmark
	Measuring distribution of execution time with microbenchmark

	Profiling the execution time
	Profiling a function with Rprof()
	The profiling results

	Profiling the memory utilization
	Monitoring memory utilization, CPU utilization, and disk I/O using OS tools
	Identifying and resolving bottlenecks
	Summary

	Chapter 3: Simple Tweaks to Make R Run Faster
	Vectorization
	Use of built-in functions
	Preallocating memory
	Use of simpler data structures
	Use of hash tables for frequent lookups on large data
	Seek fast alternative packages in CRAN
	Summary

	Chapter 4: Using Compiled Code for Greater Speed
	Compiling R code before execution
	Compiling functions
	Just-in-time (JIT) compilation of R code

	Using compiled languages in R
	Prerequisites
	Including compiled code inline
	Calling external compiled code
	Considerations for using compiled code
	The R APIs
	R data types versus native data types
	Creating R objects and garbage collection
	Allocating memory for non-R objects

	Summary

	Chapter 5: Using GPUs to Run R Even Faster
	General purpose computing on GPUs
	R and GPUs
	Installing gputools

	Fast statistical modeling in R with gputools
	Summary

	Chapter 6: Simple Tweaks to Use Less RAM
	Reusing objects without taking up more memory
	Removing intermediate data when it is
no longer needed
	Calculating values on the fly instead of storing them persistently
	Swapping active and non-active data
	Summary

	Chapter 7: Processing Large Datasets with Limited RAM
	Using memory-efficient data structures
	Smaller data types
	Sparse matrices
	Symmetric matrices
	Bit vectors

	Using memory-mapped files and processing data in chunks
	The bigmemory package
	The ff package

	Summary

	Chapter 8: Multiplying Performance with Parallel Computing
	Data parallelism versus task parallelism
	Implementing data parallel algorithms
	Implementing task parallel algorithms
	Running the same task on workers in a cluster
	Running different tasks on workers in a cluster

	Executing tasks in parallel on a cluster
of computers
	Shared memory versus distributed memory parallelism
	Optimizing parallel performance
	Summary

	Chapter 9: Offloading Data Processing to Database Systems
	Extracting data into R versus processing data in a database
	Preprocessing data in a relational database using SQL
	Converting R expressions into SQL
	Using dplyr
	Using PivotalR

	Running statistical and machine learning algorithms in a database
	Using columnar databases for improved performance
	Using array databases for maximum scientific-computing performance
	Summary

	Chapter 10: R and Big Data
	Understanding Hadoop
	Setting up Hadoop on Amazon Web Services
	Processing large datasets in batches using Hadoop
	Uploading data into HDFS
	Analyzing HDFS data with RHadoop
	Other Hadoop packages for R

	Summary

	Index

