

PowerShell for SQL Server
Essentials

Manage and monitor SQL Server administration and
application deployment with PowerShell

Donabel Santos

P U B L I S H I N G

professional expert ise dist i l led

BIRMINGHAM - MUMBAI

PowerShell for SQL Server Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2015

Production reference: 1200215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-149-2

www.packtpub.com

Credits

Author
Donabel Santos

Reviewers
Mark Andrews

Peter Johnson

Rahul Singla

Acquisition Editors
Rebecca Pedley

Meeta Rajani

Content Development Editor
Akshay Nair

Technical Editors
Pragnesh Bilimoria

Taabish Khan

Copy Editors
Gladson Monteiro

Veena Mukundan

Alfida Paiva

Project Coordinator
Mary Alex

Proofreaders
Ting Baker

Simran Bhogal

Paul Hindle

Indexer
Monica Ajmera Mehta

Graphics
Valentina D'silva

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

About the Author

Donabel Santos (SQL Server MVP) is a business intelligence architect,
trainer/instructor, consultant, author, and principal at QueryWorks Solutions,
based in Vancouver, Canada. She works primarily with SQL Server for database/
data warehouse, reporting, and ETL solutions. She scripts and automates tasks with
PowerShell and creates dashboards and visualizations with Tableau and Power BI.

She is a Microsoft Certified Trainer (MCT). She provides consulting and corporate
training to clients. She is also the lead instructor for SQL Server and Tableau (Visual
Analytics) courses at British Columbia Institute of Technology (BCIT).

Donabel is an MCITP DBA and a developer for SQL Server and MCTS for
SharePoint. She is also a Tableau Desktop 7 Core Certified and a Tableau Desktop
8 Certified Professional. She is currently working on her SQL Server 2012 (and
upcoming 2014) certifications.

She is a self-confessed data geek. She loves working with data and thinks SQL
Server is a lot of fun and Tableau is just amazing at delivering insights. She authored
SQL Server 2012 with PowerShell V3 Cookbook, Packt Publishing, and contributed to
PowerShell Deep Dives, Manning Publications. She blogs at www.sqlbelle.com and
tweets at @sqlbelle.

Acknowledgments

I didn't think I had it in me to write another book. However, my niece came along
after the first book was published and she wasn't in my acknowledgements. So,
I wanted to have an opportunity to mention her in another book.

To my dearest Chiyo: I hope you always remember that Tita loves you very much.
Tita will always be there for you whenever you need her.

In my first book, I apologized for the lengthy acknowledgements. In this second
book, I will do the same.

To Eric: thank you for still being here with me through the ups and downs, the
happy times, and the crazy times. I am looking forward to many more adventures,
side by side, hand in hand. I love you.

To Papa and Mama: you always give me strength and inspiration. I keep on going
because of you. Thank you for everything that you've done for us, and I am so happy
that your granddaughter gives you a lot of joy. I love you both very much.

To JR and RR: you will always be my baby brothers, and I am so proud to be your
elder sister.

To Lisa: you're my sister, and I wouldn't have it any other way. I'm there for you and
will be there to support you as best as I can.

To my in laws: Mom Lisa, Dad Richard, Ama, Aunt Rose, Catherine, David, Jayden,
and Kristina; thank you for being my family. Thank you for all the fun times and all
the support all these years. Thank you for being there whenever I needed you; words
cannot express my gratitude. Jayden and Kristina, Agim and Agu love you two very
much, and we'll be there for you to play with you, teach you, and support you. We
just want hugs and kisses in return.

To my BCIT family: Kevin Cudihee, Joanne Atha, Elsie Au, Cynthia van Ginkel,
Steve Eccles, Dean Hildebrand, and to all my students, past and present; thank you.
BCIT is my second home. It has paved the way for many good things in my life and
I will always be grateful.

To my UBC family: my super wonderful boss extraordinaire, Pradeep Nair, and
my superb teammates Joe Xing, Min Zhu, George Firican, Mary Mootatamby, Jason
Metcalfe, Tom Yerex, and Suzanne Landry. I love going to work everyday. You are
all awesome; we have a great team and it is a privilege to work with all of you.

To the Packt team: Meeta Rajani for contacting me to author this book and Akshay
Nair, who has helped me throughout the process; thank you.

I didn't do this alone. I have learned so much from so many other people, all the SQL
Server and PowerShell MVPs, and each technology's communities and bloggers. The
Tableau community is also quite inspiring, from Zen masters (Joe Mako, Jonathan
Drummey, Kelly Martin, and Dan Murray) to all the bloggers and vizzers. Special
thank you to Dan Murray, Tim Costello, Jason Schumacher, John Pain, and Liz Feller.
Thank you all for making learning fun again.

There are so many other people who inspired and helped me along the way,
including friends, students, and acquaintances. Thank you.

Most importantly, thank you Lord for all the miracles and blessings in my life.

About the Reviewers

Mark Andrews has had a varied career in technology. Over the last 18 years,
he has held several different positions, ranging from customer service to quality
assurance. Throughout all these positions, the responsibility of configuration
management and build management has always fallen either on Mark personally
or on one of the groups that he managed. Because of his "keeping a hand in"
management style, he has been involved closely with the scripting and automation
framework for these areas. Creating scripted frameworks that intercommunicate
across machine / operating system / domain boundaries is a passion for him.

He has worked on PowerShell 3.0 Advanced Administration Handbook, Packt Publishing,
and Windows PowerShell 4.0 for .NET Developers, Packt Publishing.

Peter Johnson has over 34 years of enterprise computing experience. He started
working with PowerShell when it first surfaced from Microsoft as Monad. He has
been working with Java for 17 years, and for the last 12 years, he has been heavily
involved in Java performance tuning. He is a frequent speaker on Java performance
topics at various conferences, including the Computer Measurement Group annual
conference, JBoss World, and Linux World. He is a moderator for the IDE and
WildFly/JBoss forums at Java Ranch. He is also the coauthor of the book JBoss in
Action, Manning Publications, and has been a reviewer on numerous books on topics
ranging from Java to Windows PowerShell.

Rahul Singla is the founder of Imbibe Technologies Private Limited
(http://imbibe.in), an independent software services vendor located at
Karnal, India, and serves as its managing director and chief solutions architect.

Having worked with a wide spectrum of technologies and platforms, he sees
technology as a means and not an end. He has helped companies, big and small,
rethink their IT strategies and streamline their operations. As a developer, he has
delivered solutions that work for today's enterprises and provided all sorts of
integrations, ranging from payment gateways, geomapping APIs, custom COM
SDKs, and a variety of cloud services.

Currently, he also serves as a senior consultant to a couple of multinational IT
organizations and has previously served in similar roles for government projects
and other organizations.

You can find more about him on his portal at http://www.rahulsingla.com.
You can also find useful PowerShell-related stuff and other technical material on
his blog (http://www.rahulsingla.com/blog). He can be contacted directly at
rs@rahulsingla.com.

As always, I dedicate my work first to the Almighty, who gave me
the strength, perseverance, and opportunity to reach here, and then
to the three most important people in my life: my father, my mother,
and Rmi (my brother).

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter or the Packt Enterprise Facebook page.

www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Table of Contents
Preface 1
Chapter 1: Getting Started with PowerShell 7

A brief history of PowerShell 8
The PowerShell environment 9

The PowerShell console 10
The PowerShell ISE 10
Running PowerShell as an administrator 11
The execution policy 13

PowerShell versions 14
PowerShell cmdlets 16

Cmdlet naming convention 17
Cmdlet parameters 18
Cmdlet aliases 20

PowerShell providers 20
Snap-ins and modules 22
PowerShell Pipeline 23
Scripting basics 24
Running PowerShell scripts 28
Getting help 28

Getting help from other cmdlets 31
Summary 32

Chapter 2: Using PowerShell with SQL Server 33
SQL Server via PowerShell 33

Mini-shell (or the sqlps utility) 34
The SQLPS module 36
SQL Server snap-ins 39
SQL Server assemblies 39

SQL Server-specific cmdlets 40

Table of Contents

[ii]

SQL Server Management Objects 43
Creating SMO objects 45

Summary 48
Chapter 3: Profiling and Configuring SQL Server 49

Current server resources 49
Getting processor (CPU) information 51
Checking server memory 53
Checking disk space 55
Checking network settings 57

Hotfixes and service packs 57
Current SQL Server instances 59
Services and service accounts 60
SQL Server error logs 60
Current instance configuration 63
Changing configurations 65

Start or stop services 65
Changing a service account 66
Changing instance settings 68

Summary 73
Chapter 4: Basic SQL Server Administration 75

Listing databases and tables 76
Listing database files and filegroups 79

Adding files and filegroups 82
Listing the processes 84

Checking enabled features 85
Scripting database objects 86
Attaching and detaching databases 89

Detaching databases 90
Backing up and restoring databases 92

Backing up 92
Restoring 96

Reorganizing or rebuilding indexes 97
Managing logins, users, and permissions 100

Permissions 102
Adding a login 104
Adding database users 106

Policies 109
Managing jobs 111
Summary 114

Table of Contents

[iii]

Chapter 5: Querying SQL Server with PowerShell 115
To PowerShell or not to PowerShell 115
Sending queries to SQL Server 116

SQL Server Management Objects 116
The Invoke-Sqlcmd cmdlet 117
ADO.NET 121
The Invoke-Expression cmdlet 122
Sending simple queries to SQL Server – different variations 122

Fixing orphaned users 126
Getting fragmentation data 127
Backing up and restoring databases 128
Exporting data using bcp 129
Summary 130

Chapter 6: Monitoring and Automating SQL Server 131
Getting to know helpful cmdlets 131

The Send-MailMessage cmdlet 132
The ConvertTo-Html cmdlet 132
The Export-Csv cmdlet 132
The Write-EventLog cmdlet 133
Additional cmdlets 133

Scheduling PowerShell scripts 133
Checking logs 133
Monitoring failed jobs 136
Alerting on disk space usage 137
Logging blocked processes 140
Getting performance metrics 142
Summary 151

Appendix: Implementing Reusability with Functions
and Modules 153

Functions 153
Simple functions 153
Advanced functions 155
Best practices 160

Modules 161
Script modules 161

Summary 163
Index 165

Preface
PowerShell is Microsoft's platform for task automation. It comes with both a shell
and scripting language, and is now more deeply integrated with Microsoft's suite
of products. Microsoft applications such as Windows, Exchange, and SharePoint
have increased their PowerShell support, and many tasks can now be done without
having to go through the user interface. These automated and streamlined tasks
equate to time savings and increased productivity for developers, administrators,
and IT professionals.

As a database professional, you can also leverage PowerShell in your work. This
book introduces you to PowerShell and taps into how you can use PowerShell in
the context of SQL Server.

What this book covers
Chapter 1, Getting Started with PowerShell, introduces you to PowerShell and its
importance in server management and automation. This chapter is a good starting
point for readers who are new to PowerShell and want to get started with its
environment and other components.

Chapter 2, Using PowerShell with SQL Server, dives into using SQL Server-specific
PowerShell support in different operating systems and SQL Server versions. You
will learn about SQL Server-specific modules, cmdlets, and SQL Management
Objects (SMO).

Chapter 3, Profiling and Configuring SQL Server, covers how to quickly profile SQL
Server and change SQL Server configurations using PowerShell. You will learn more
about Get-WmiObject and the SMO Server object.

Preface

[2]

Chapter 4, Basic SQL Server Administration, covers the tasks in a DBA's checklist. These
tasks include getting space/memory usage, backup/restore, enabling features, jobs,
alerts, and so on.

Chapter 5, Querying SQL Server with PowerShell, shows the methods to query SQL
Server from within PowerShell, its pros and cons, and how to export results.

Chapter 6, Monitoring and Automating SQL Server, teaches you how to perform SQL
Server usage and performance monitoring, logging, alerting, and error checking
using PowerShell.

Appendix, Implementing Reusability with Functions and Modules, shows some snippets
required to accomplish the task at hand. It covers the basics of creating and
deploying functions and modules.

What you need for this book
For the purpose of this book, the requirements are as follows:

• Windows Server 2012 R2 Standard
• SQL Server 2014 Developer Edition

The system requirements for Windows PowerShell 4.0 and 3.0 are as follows:

• The OS needs to be Windows 8.1, Windows Server 2012 R2, Windows 7 with
Service Pack 1, Windows Server 2008 R2 with Service Pack 1, or Windows
Server 2008 (for PowerShell 3.0 only)

• Microsoft .NET Framework requirements are 4.5 for PowerShell 4.0 and 4 for
PowerShell 3.0

• WS-Management 3.0
• Windows Management Instrumentation 3.0
• Common Language Runtime 4.0

Who this book is for
This book is written for SQL Server administrators and developers who want to
leverage PowerShell to work with SQL Server. Some background with scripting will
be helpful but not necessary.

Preface

[3]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The -Leaf option provides the filename part of the full path."

A block of code is set as follows:

$server.EnumProcesses() |
Where-Object IsSystem -eq $false |
Select-Object Spid, Database |
Format-Table -AutoSize

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

$server.EnumProcesses() |
Where-Object IsSystem -eq $false |
Select-Object Spid, Database |
Format-Table -AutoSize

Any command-line input or output is written as follows:

Get-Help Get-ChildItem -Online

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "You can
click on the CPU or Memory option to sort data according to those metrics."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[5]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

Getting Started
with PowerShell

PowerShell is an object-based Microsoft scripting language that comes with its own
console and GUI-based environments. PowerShell provides building blocks for
automation and system integration. You can think of PowerShell as glue that can
keep different Microsoft components and applications together (and make them play
nicely with each other).

Knowing PowerShell can lead to power (pun intended). Treat PowerShell like a new
member of your high performance team. To achieve high performance, you need to
get to know PowerShell and learn its strengths before you can expect to maximize
your results.

The list of topics that you will come across in this chapter is as follows:

• A brief history of PowerShell
• The PowerShell environment
• Cmdlets
• PowerShell providers
• Snap-ins and modules
• PowerShell Pipeline
• Scripting basics
• Running PowerShell scripts
• Getting help

Getting Started with PowerShell

[8]

A brief history of PowerShell
Before PowerShell, systems and network administrators managing Microsoft
software stacks had to resort to using different tools, languages, and technologies to
enable automation and integration tasks. For some tasks, administrators used batch
files that could be run using Command Prompt (or DOS Shell, for those of you who
still remember this term). For other tasks, maybe Visual Basic Scripting Edition
(VBScript) was used. Yet, for additional tasks, maybe Windows Scripting Host
(WSH) was used. The list goes on.

In a lot of ways, administrators had to be creative because there was not one single
language and tool they could use to bridge different Microsoft (and non-Microsoft)
tasks together. Unix and Linux administrators, on the other hand, always had C-shell
and trusty bash to rely on. At that time, Microsoft just did not have that powerful a
command-line tool.

Enter PowerShell. PowerShell was born out of this need for integration and
automation. Jeffrey Snover, the inventor of PowerShell, initially incubated
PowerShell under the project named Monad. He originally described Monad
as the next generation platform for automation.

You can read the Monad Manifesto written by Jeffrey
Snover in 2002 at http://www.jsnover.com/Docs/
MonadManifesto.pdf.

More than 10 years after this manifesto was written, PowerShell has already
improved and matured in leaps and bounds and has indeed become the platform
for automation and integration for Microsoft products (and even non-Microsoft
packages).

As of today, many Microsoft products have adopted PowerShell and delivered
numerous cmdlets (we will talk about them later) with their respective product
installations. Windows Server, Active Directory, Exchange, SharePoint, SQL Server
are products that support PowerShell (to different extents), but the support has
widened through the years.

http://www.jsnover.com/Docs/MonadManifesto.pdf
http://www.jsnover.com/Docs/MonadManifesto.pdf

Chapter 1

[9]

The PowerShell environment
There are two environments that come with PowerShell when you install it: the
PowerShell console and the PowerShell Integrated Scripting Environment (ISE).
These environments have improved a lot since the first version and should be more
than sufficient for you to start working with PowerShell. If you prefer a different
environment, there are other PowerShell editors out there. Some editors are free and
some commercial. Some vendors that provide PowerShell editors are Idera (PowerShell
Plus), Dell (PowerGUI), and SAPIEN Technologies (PowerShell Studio 2014).

This book uses the current released version at the time of
writing, which is PowerShell v4. The screenshots you will
see in this book reflect the screens in PowerShell v4.

In a 64-bit system, PowerShell will come in two flavors: 32 bit and 64 bit. The
32-bit version has the label suffix (x86). Note that 64-bit add-ons and snap-ins for
PowerShell will only load in the 64-bit console or ISE. The following screenshot
shows the result of searching PowerShell in Windows:

Getting Started with PowerShell

[10]

The PowerShell console
The PowerShell console is very similar to the Command Prompt. By default, the
interface is blue, compared to the usual black of the Command Prompt:

The PowerShell console is great for administrators and IT professionals who prefer to
work on a purely command-line environment. The console is also great for running
predefined scripts either manually or through a job via the Windows task scheduler
or SQL Server Agent.

The PowerShell ISE
A standard installation of PowerShell also comes with an Integrated Scripting
Environment (ISE). The PowerShell ISE is a more Graphical User Interface (GUI)
way of working with PowerShell and comes with a few handy features, including
IntelliSense and syntax help, as shown in the following screenshot:

Chapter 1

[11]

Some of the compelling features that the ISE has are listed as follows:

• The script editor and PowerShell console in a single environment
• The autocomplete and on-hover usage/syntax guide
• A command pane that allows you to visually fill in parameters and transfer

the syntax over to your editor
• Multiple tabs that allows the opening of multiple scripts at the same time
• A zoom slider, which is great for presentations or just basic readability

We will use the PowerShell ISE for most examples in this book.

Running PowerShell as an administrator
Most of the time, you will use PowerShell to perform administrative tasks, so you
will need to run it as an administrator. You can do this by right-clicking on the
application (console or ISE) and clicking on Run as administrator.

Getting Started with PowerShell

[12]

You will know you've successfully run the application as the administrator by
looking at the title bar. It should show Administrator: Windows PowerShell:

If you do not run your PowerShell environment as the administrator, you might not
have sufficient permission to run some of your commands or scripts. You will most
likely get Access Denied errors.

A useful trick to identify whether you are running the shell as the administrator is to
change the appearance of the shell based on the elevation status of the session. This can
be accomplished by adding a snippet of code to your profile that checks whether the
session is run by an administrator and then changing some properties accordingly.

First you need to check whether your profile exists. You can check the path to your
profile by typing the following command:

$profile

If this file doesn't exist, you can simply create it by typing the following:

New-Item -ItemType File $profile -Force

The $profile command is equivalent to $profile.CurrentUserCurrentHost,
which means the settings you provided will only work on the current host. Note
that your console and ISE will each have its own profile, so you may need to create
one for each. The values you can specify with the profile are AllUUsersAllHosts,
AllUsersCurrentHost, CurrentUserAllHosts, and CurrentUserCurrentHost.

Here is a simple snippet you can add to your profile that changes the background
and foreground color of your shell if you running the shell as an administrator:

if ($host.UI.RawUI.WindowTitle -match "Administrator")

{

 $host.UI.RawUI.BackgroundColor = "DarkRed"

 $host.UI.RawUI.ForegroundColor = "White"

}

Chapter 1

[13]

The execution policy
At the risk of sounding like a dictionary, I will define execution policy as the policy
applied to determine whether a script can be executed by PowerShell. Execution
policies do not make the scripts more secure. They simply lay the ground rules
before a script is executed.

The available execution policies are provided in the following table:

Policy Runs a
command?

Runs a local script? Runs a remote script?

Restricted Yes No No
AllSigned Yes Must be signed Must be signed
RemoteSigned Yes Yes Must be signed
Unrestricted Yes Yes Yes—prompts before

running downloaded
scripts

Bypass Yes Yes Yes—no warnings or
prompts

The default execution policy depends on the operating system you are using.
For Windows 8, Windows Server 2012, and Windows 8.1, the default policy is
Restricted. For Windows Server 2012 R2, it is RemoteSigned.

Should you need to sign your scripts, you can refer to Scott Hanselman's blog post
available at http://www.hanselman.com/blog/SigningPowerShellScripts.
aspx. Although this was written a few years ago, the content is still relevant. Patrick
Fegan from Risual also has a good, more recent tutorial on self-signing PowerShell
scripts at http://consulting.risualblogs.com/blog/2013/09/20/signing-
powershell-scripts/.

To get more information about execution policies, including
risks and suggestions on how to manage them, you can
type Get-Help about_Execution_Policies in the
command-line window, or you can visit the TechNet page at
http://technet.microsoft.com/en-us/library/
hh847748.aspx for more detailed descriptions.

If you want to check which execution policy you are running on, you can use the
following command:

Get-ExecutionPolicy

http://www.hanselman.com/blog/SigningPowerShellScripts.aspx
http://www.hanselman.com/blog/SigningPowerShellScripts.aspx
http://consulting.risualblogs.com/blog/2013/09/20/signing-powershell-scripts/
http://consulting.risualblogs.com/blog/2013/09/20/signing-powershell-scripts/
http://technet.microsoft.com/en-us/library/hh847748.aspx
http://technet.microsoft.com/en-us/library/hh847748.aspx

Getting Started with PowerShell

[14]

If you want to change it, use the following command:

Set-ExecutionPolicy

The following is a screenshot of what you can expect when you run these
two cmdlets:

It would be good to read more on execution policies, evaluate the risks that come
with the different settings, and evaluate your needs before deciding which setting
you should use.

PowerShell versions
PowerShell has matured since its inception and has undergone several version
upgrades. At the time of writing of this book, the most recent version is PowerShell V4.

The following table shows the different PowerShell versions that Microsoft released,
operating systems that support them, required .NET Framework version, and some
of the notable features:

PowerShell version OS support .NET version Notable features/
additions

Version 1, which is a
separate download

Windows XP, Windows
Server 2003, and
Windows Vista

.NET
Framework 2.0

Over 130 cmdlets

Chapter 1

[15]

PowerShell version OS support .NET version Notable features/
additions

Version 2, which is
part of WMF 2.0

• Integrated with
Windows 7 and
Windows Server
2008 R2

• Available for XP
and Windows
Server 2003

• Can be
downloaded
separately as part
of WMF 2.0

.NET
Framework
2.0 or .NET
Framework 3.5
SP1

Over 240 cmdlets,
which includes
PowerShell ISE,
remoting, eventing,
background jobs,
script debugging, and
modules

Version 3, which is
part of WMF 3.0

• Integrated with
Windows 8 and
Windows Server
2012

• Available for 7
and Windows
Server 2008 and
later

.NET
Framework 4.0
full

• Over 400
cmdlets

• Workflows,
improved
sessions,
scheduled
jobs, and the
Update-Help
cmdlet

• PowerShell ISE
improvements,
which include
IntelliSense,
command
pane, and
collapsible
regions

Version 4, which is
part of WMF 4.0

• Integrated with
Windows 8.1 and
Windows Server
2012 R2

• Available for
Windows 7 and
Windows Server
2008 and later

.NET
Framework 4.5
full

• Over 520
cmdlets

• Desired state
configuration

• Shell and
scripting
improvements

Version 5, which is
part of WMF 5.0

At the time of writing
this, a CTP version
is available with
Windows Management
Framework 5.0

NA NA

Getting Started with PowerShell

[16]

PowerShell matures with every release and the requirements and features will
change with different operating systems.

Please visit http://technet.microsoft.com/en-us/
library/hh847769.aspx for official PowerShell requirements
required for your Windows OS.

To determine which PowerShell version you are using, you can type in
$PSVersionTable in your console or ISE:

If you have PowerShell v3 or v4, you can also downgrade your PowerShell session.
You can do this by supplying the -Version parameter when you start your session:

Powershell.exe -Version 2

PowerShell cmdlets
At the heart of PowerShell is a cmdlet (pronounced as commandlet). A cmdlet is
described in MSDN (available at http://msdn.microsoft.com/en-us/library/
ms714395(v=vs.85).aspx) as:

"… a lightweight command that is used in the Windows PowerShell environment.

… cmdlets perform an action and typically return a Microsoft .NET Framework
object to the next command in the pipeline."

http://technet.microsoft.com/en-us/library/hh847769.aspx
http://technet.microsoft.com/en-us/library/hh847769.aspx
http://msdn.microsoft.com/en-us/library/ms714395(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms714395(v=vs.85).aspx

Chapter 1

[17]

In other words, cmdlets get the job done in PowerShell. You can think of cmdlets
as small commands—very specific commands—which you can use to accomplish
your task.

To explore the cmdlets available in your PowerShell version, you can use the
Get-Command cmdlet. You can filter the results as well. For example, if you want
to look for log-related cmdlets, you can use the following command:

Get-Command –Name "*Log*"

Cmdlet naming convention
Cmdlets have a very specific naming convention. They follow the Verb-Noun format
and they are typically self-explanatory. More specifically, it is Verb-SingularNoun.

The following are some example cmdlets available in PowerShell:

• Get-Service

• Test-Path

• Set-Content

• ConvertTo-Csv

Note that cmdlet names are self-documenting. You don't really have to guess what
the Get-Service cmdlet does; it gets the corresponding services in your system.

You can get a list of legal, endorsed verbs by Microsoft using the Get-Verb cmdlet.
Granted, not all the terms you see are really verbs, but for our purposes, we will treat
them as such. For example, Microsoft uses the New verb to create new items:

• New-Service

• New-Event

• New-Object

Another verb that Microsoft considers is Out, mostly used for output. Take a look at
the following examples:

• Out-File

• Out-GridView

• Out-Null

Getting Started with PowerShell

[18]

Cmdlet parameters
Note that cmdlets can accept parameters or switches. This makes cmdlets quite
flexible. You can supply parameters to cmdlets by specifying a dash followed by a
parameter name, space, and the parameter value:

Cmdlet -ParameterName ParameterValue -ParameterName ParameterValue

It will be easier to understand how parameters work if we go through an example.
Let's take a look at the usage syntax for Get-Service:

Each block in the help section, shown in the preceding screenshot, represents a
parameter set. Each parameter set specifies different combinations of parameters
and switches that are all valid when you use Get-Service.

Anything in square brackets is optional; anything between
angle brackets is mandatory.

Let's consider the following first line of command:

 Get-Service [[-Name] <String[]>] [-ComputerName <String[]>]

Chapter 1

[19]

The [[-Name] <String[]>]part means that you can specify -Name, which should be
your parameter name:

Get-Service –Name *SQL*

Since [[-Name] <String[]>] is surrounded by square brackets, it means it's
optional. This parameter name can be left out and you can provide just the value.
This makes it positional, meaning the value you provide will map to the parameter
defined for that cmdlet at that position. In the following example, the first value will
be mapped to the first parameter for Get-Service:

Get-Service *SQL*

The next part [-ComputerName <String[]>] is still overall an optional parameter.
However, if you decide to supply the value, you have to specify the parameter name,
which is ComputerName. Note that there is no square bracket around ComputerName.

When you specify parameter names, you can also take shortcuts. You can specify just
the first few characters of the parameter name, and as long as it's unique, PowerShell
will figure out which parameter you are referring to:

Get-Service –Na *SQL*

Although it's quite tempting to use shortcuts, when you
are first learning how to use PowerShell, try to always
completely spell out the parameter names. This will make
your code more readable and easier for the rest of your
team to work with your code.

If you have a cmdlet that requires input and you don't provide it, you will be
prompted for the values interactively:

Getting Started with PowerShell

[20]

Cmdlet aliases
Some of the cmdlets also have aliases by default. This means these cmdlets can be
invoked by using a different name than their formal cmdlet name. For example, the
following screenshot shows the aliases for Get-ChildItem:

You can also create your own aliases using New-Alias. Aliases can be useful because
in some ways, they allow you to use some of the terms you may already be familiar
with and leverage them in PowerShell. Aliases also let you personalize PowerShell
to your liking. Be careful not to create too many of these though; it may make your
PowerShell scripts confusing and even unreadable to others.

PowerShell providers
Simply put, a PowerShell provider provides a way for PowerShell to access a data
store. To get a visual of a provider, think of the file system. The file system is a data
store that contains information about files and folders and their properties. We can
access the file system via the Command Prompt, PowerShell console, or Windows
Explorer. Now try to apply this concept to another data store, for example, SQL
Server. Imagine that you can navigate through the objects of SQL Server just the way
you navigate your file system.

Learning about providers is important because this allows you to extend what you
can do with PowerShell. To list the current providers in your system, use the Get-
PSProvider cmdlet:

Chapter 1

[21]

What you see in the preceding screenshot are the default available providers that
come with PowerShell v4 on a Windows Server 2012 R2 Standard server. A lot of the
providers are accessed using what is called drives. To list the current drives, you can
use Get-PSDrive:

In a file system, if you wanted to change drives, you can use the cd command, which
is an alias for Set-Location:

C:\> cd J:\

To navigate to a different provider, you can use the same concept. For example, if you
want to navigate the HKLM registry hive (which stands for HKEY_LOCAL_MACHINE), you
can use the following command lines:

C:\> cd HKLM:

HKLM:\>

Getting Started with PowerShell

[22]

To work with items in PSDrive, Microsoft has provided a number of Item cmdlets
that are generic enough to perform the task regardless of which drive you are in. To
get a list of these cmdlets, you can type Get-Command *Item*. For example, if you
are using a file system, you can use the New-Item cmdlet to create a new folder or
file. If you are in the registry, it will create a new registry entry.

The recent releases of Microsoft products come with their own PowerShell providers,
which you can readily use. You can also create your own providers if you prefer.

MSDN has some documentation on how you can create your
own provider available at http://msdn.microsoft.com/
en-us/library/ee126192(v=vs.85).aspx. There are
even tutorials on how to create providers for non-Microsoft
data stores. For example, the version control system Git by
@manojlds is available at http://stacktoheap.com/
blog/2012/12/01/writing-a-git-provider-for-
windows-powershell-part-1/.

Snap-ins and modules
You can extend PowerShell by loading snap-ins and modules. Snap-ins or
PSSnapins are dynamic linked library (DLLs) compiled from .NET code, which
may contain additional cmdlets and PSProvider. The PSSnapins are old school—they
are primarily how you extend version 1, but still supported in version 2, version 3,
and version 4. Although considered old school, you can still create snap-ins. Refer to
http://msdn.microsoft.com/en-us/library/ms714450(v=vs.85).aspx on how
to do this.

The related snap-in cmdlets are as follows:

• Add-PSSnapin

• Get-PSSnapin

• Remove-PSSnapin

Instead of snap-ins, the recommended way of extending the PowerShell functionality
from version 2 onwards is using modules. Modules are similar to snap-ins when
it comes to extending functionality, but unlike snap-ins, modules can also add
functions. Modules also support autoloading, which means the module can be
loaded as soon as one of its cmdlets/functions/PSDrive are used.

Modules can be script-based or binary-based. A script module uses PowerShell
code saved in a .psm1 file. A binary module is more similar to PSSnapin, where it
references a .NET DLL.

http://msdn.microsoft.com/en-us/library/ee126192(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ee126192(v=vs.85).aspx
http://stacktoheap.com/blog/2012/12/01/writing-a-git-provider-for-windows-powershell-part-1/
http://stacktoheap.com/blog/2012/12/01/writing-a-git-provider-for-windows-powershell-part-1/
http://stacktoheap.com/blog/2012/12/01/writing-a-git-provider-for-windows-powershell-part-1/
http://msdn.microsoft.com/en-us/library/ms714450(v=vs.85).aspx

Chapter 1

[23]

Modules are the new school way of extending PowerShell, from version 2 onwards.
Related cmdlets are listed as follows:

• Import-Module

• Get-Module

• Remove-Module

If you want to write PowerShell extensions, Microsoft recommends that you create
modules instead of snap-ins.

PowerShell Pipeline
A pipeline is defined in www.TheFreeDictionary.com as follows:

"a linked series of pipes with pumps and valves for flow control, used to transport
crude oil, water, etc., esp. over great distances."

I think this definition is very fitting to a pipeline in PowerShell. Instead of crude oil
or water, what PowerShell transports is pieces of information. PowerShell also has
these pumps and valves for flow control—we will see more of these in the later chapters.

The pipe symbol in PowerShell is |, also called a bar. You can pipe multiple cmdlets
together. When you pipe these cmdlets, the output of one cmdlet becomes the input
of the next cmdlet:

When you are writing your scripts, you may want to add a new line after the pipe
and continue typing the next cmdlet on the new line:

Many script authors also prefer to indent the succeeding lines a little bit to
emphasize that these are all part of the same block.

www.TheFreeDictionary.com

Getting Started with PowerShell

[24]

Scripting basics
Let's get a few syntax basics down. This section is not meant to be an exhaustive
tutorial on PowerShell's syntax but should serve as a good, brief introduction.

Let's walk through the following script:

$currdate = (Get-Date -Format "yyyyMMdd hhmmtt")

$servers = @("ROGUE", "CEREBRO")

#save each server's running services into a file

$servers |

ForEach-Object {

 $computername = $_

 Write-Host "`n`nProcessing $computername"

 $filename = "C:\Temp\$($computername) - $($currdate).csv"

 Get-Service -ComputerName $computername |

 Where-Object -Property Status -EQ "Running" |

 Select-Object Name, DisplayName |

 Export-Csv -Path $filename -NoTypeInformation

}

Even if you are not very familiar with PowerShell yet, you may already be able to
tell what the preceding script is trying to accomplish. Simply put, the script iterates
over the listed servers and saves the list of running services into a file that acts as
a timestamp.

This line creates a variable called $currdate that gets the current system date in the
"yyyyMMdd hhmmtt" format:

$currdate = (Get-Date -Format "yyyyMMdd hhmmtt")

The snippet with an at (@) sign, @("ROGUE", "CEREBRO"), creates an array, which is
then stored in another variable called $servers:

$servers = @("ROGUE", "CEREBRO")

Chapter 1

[25]

Since $servers contains multiple values, when you pipe it to the Foreach-Object
cmdlet, each value is fed into the script block inside Foreach-Object:

#save each server's running services into a file

$servers |

ForEach-Object {

}

You are also introduced to a few concepts inside the Foreach-Object block.

To get the current pipeline object, you can use $_. The $_, also referred to as
$PSItem, is a special variable. It is part of what PowerShell calls automatic variables.
This variable only exists and can only be used in the content of a pipeline. The $_
variable contains the current object in the pipeline, allowing you to perform specific
actions on it during the iteration:

 $computername = $_

A backtick is an escape character, for example, to add a newline. It is also a line
continuation character:

 Write-Host "`n`nProcessing $computername"

Note that the strings are enclosed in double quotes:

 Write-Host "`n`nProcessing $computername"

Strings in PowerShell can also be enclosed in single quotes. However, if you have
variables you want to be evaluated within the string, as in the preceding example,
you will have to use double quotes. Single quotes will simply output the variable
name verbatim.

PowerShell has a subexpression operator, $(). This allows you to embed another
variable or expression inside a string in double quotes, and PowerShell will still
extract the variable value or evaluate the expression:

$filename = "C:\Temp\$($computername) - $($currdate).csv"

Here is another example that demonstrates when subexpressions will be useful.
The expression to get the date that is 10 days from today is as follows:

(Get-Date).AddDays(10)

If we want to display the value this expression returns, you may be tempted to use:

Write-Host "10 days from now is (Get-Date).AddDays(10)"

Getting Started with PowerShell

[26]

However, this simply redisplays the expression; it doesn't evaluate it. One way to
get around this without using a subexpression would be to create a new variable
and then use it in the double-quoted string:

$currdate = (Get-Date).AddDays(10)

Write-Host "10 days from now is $currdate"

With the subexpression, you don't need to create the new variable:

Write-Host "10 days from now is $((Get-Date).AddDays(10))"

The example we walked through should give you a taste of simple scripting in
PowerShell.

The following is a table that outlines some of these common scripting components
and operators:

Component Symbol Description/examples
Single line
comment

This component allows you to include any comments or
documentation about your code; text after # in a line is not
executed, for example, #get the current date.

Multiline
comment

<#

#>

This allows you to create comments that span multiple
lines, as shown in the following example:
<#

 get the current

 date

#>

Backtick ` Backtick can be used as an escape character:
$name = "Hello `n world!"

This is also a line continuation character; it allows you to
break a command into multiple lines—some find it more
readable, but beware that some will find it less readable
because the backtick character can be conspicuous:
Get-Service `

 -Name *SQL* `

 -ComputerName ROGUE

Dollar sign $ By default, variables in PowerShell are loosely typed (that
is, the data type changes based on the value stored by the
variable):
$dt = Get-Date

Single quotes ' This component allows you to enclose string literals:
$name = 'sqlbelle'

Chapter 1

[27]

Component Symbol Description/examples
Double quotes " This component allows you to enclose string literals:

$name = "sqlbelle"

This component also allows you to expand variables (that
is, replace variable names within the string to their values)
or interpret escape characters:
$name = "sqlbelle"

$message = "Hello `n $name"

Plus + This component is a string concatenation operator:
$name = "sqlbelle"

$message = "Hello " + $name

Dot . This component allows you to access properties or methods
with the corresponding object:
$dt.AddDays(10)

Subexpression $() This component allows you to embed a variable or
expression in a double-quoted string; PowerShell evaluates
the expression inside this operator:
Write-Host "Date: $($dt.AddDays(10))"

At sign @() This component is an array subexpression operator:
@("ROGUE", "CEREBRO")

Square
brackets

[] This component is an index operator. It allows you to access
indexed collections (arrays and hash tables):
$servers = @("ROGUE", "CEREBRO")

$servers[0]

It also acts as a casting operator:
[datetime]$dt

Here-String @"

"@

This component allows you to create a multiline string to
assign to a variable without having to break the string into
multiple string expressions concatenated by a plus (+) sign.
It starts with @" and must end with "@ in a line by itself (no
characters or spaces before ending "@):
$x = "@

Hello $name.

This is a multiline

string

"@

Getting Started with PowerShell

[28]

The table is not a comprehensive list of operators or syntax about PowerShell.
As you learn more about PowerShell, you will find a lot of additional components
and different variations from what has been presented here.

To learn more about operators, use Get-Help *Operator*
and go through all the available topics. You can also go to the
TechNet page specifically for operators, which is available at
http://technet.microsoft.com/en-us/library/
hh847732.aspx.

Running PowerShell scripts
Once you've written your script, save your script in a file with a .ps1 extension.
From the PowerShell console, you can run the script by specifying the full path
to the script:

PS C:\> C:\Scripts\Get-RunningServices.ps1

Note that your scripts can also be parameterized so that it can take an incoming
value when invoked. If this is the case, you can specify the parameter the same
way you specify it in a regular cmdlet:

PS C:\> C:\Scripts\Get-RunningServices.ps1 -ComputerName ROGUE

If you are at the script directory, you don't have to specify the path. You can also use
a dot-sourcing operator to run the script. Dot sourcing a script means that any of the
variables and functions in the script are loaded into the current scope and available
for use in the same console session:

PS C:\Scripts> .\Get-RunningServices.ps1

PS C:\Scripts> .\Get-RunningServices.ps1 -ComputerName ROGUE

Note that depending on your execution policy settings, the script may run or get
access denied errors. If this is the case, you may either need to adjust your execution
policy or sign your script.

Getting help
PowerShell used to come bundled with help documentation. If you've worked with
*nix systems, it's similar to the man page.

http://technet.microsoft.com/en-us/library/hh847732.aspx
http://technet.microsoft.com/en-us/library/hh847732.aspx

Chapter 1

[29]

Starting with PowerShell v3, however, the help files/system were not installed with
PowerShell. One of the chronic problems with a help system that comes bundled
with an application is that the contents get outdated right away. Applications are
continuously being patched, improved, and changed, and thus the documentation
needs to be updated. You will need to consciously download and install the help files
when you are ready.

Once ready, run PowerShell as an administrator and just type in the following
command:

Update-Help

This will connect you to a Microsoft server to download the most recent version of
PowerShell help:

When you need to look for syntaxes or examples from the help system, you can use
Get-Help and then the cmdlet name. For example, if you want to get ChildItem,
you can use the following command:

Get-Help Get-ChildItem

Getting Started with PowerShell

[30]

Other switches available for Get-Help that you might find useful are as follows:

• Get-Help Get-ChildItem -Detailed

• Get-Help Get-ChildItem -Examples

• Get-Help Get-ChildItem -Full

Get-Help can also be simply referred to as help.

Sometimes you may prefer to open the local help system in a different window, in
which case you can use the following command:

Get-Help Get-ChildItem -ShowWindow

The result is shown in the following screenshot:

Having the help document in a different window allows you to do simultaneous
tasks, that is, write your script and refer to the syntaxes and examples. The help
window also allows for searching and highlighting keywords.

Chapter 1

[31]

If what you prefer is to view the help online and get the most recent version to date,
you can use the following command instead:

Get-Help Get-ChildItem -Online

This will open the corresponding Microsoft TechNet entry in your default browser:

Getting help from other cmdlets
In addition to Get-Help, there are two other trusty cmdlets you should know if
you want to know PowerShell a lot better. If you need to use a command but only
remember the name or part of the name or if you want to get a list of commands
based on parameters, you can use Get-Command. For example, as introduced earlier
in the chapter, you can get log-related cmdlets using the following command:

Get-Command –Name "*Log*"

Getting Started with PowerShell

[32]

If you need to know what properties and methods are available for an object—for
example, a variable or the result returned by a cmdlet—you can use Get-Member,
as shown in the following example:

$message = "Hello World!"

$message | Get-Member

Since a message is a string, the preceding snippet returns all the properties and
methods supported for a string data type.

Two risk-mitigation parameters that you should also get acquainted with are
-WhatIf and -Confirm. You can add these two parameters to most cmdlets, and
they can help you avoid really stressful "oops" situations.

The -WhatIf parameter describes the effect of a command instead of executing it.
The -Confirm parameter forces a prompt before executing the command. It pays to
be careful before you run scripts in your environment. It pays to be extra careful; as
much as possible, test your scripts in a test environment first.

Downloading the example code
You can download the example code files for all
Packt books you have purchased from your account
at http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
files e-mailed directly to you.

Summary
This chapter has provided a very basic introduction to PowerShell, from a brief
history to environments, cmdlets, and pipelines. This should be enough to get you
familiarized with PowerShell fundamentals, a skill you will need to work with
the next chapters. It is also important to remember how you can learn more about
PowerShell using cmdlets such as Get-Help, Get-Command, and Get-Member. The
more comfortable you are looking for resources on your own, the faster and better
it will be for you when it comes to learning PowerShell.

This chapter is not meant to be an exhaustive, one-stop shop for PowerShell.
There are a number of excellent PowerShell books out there that dig deeper into
PowerShell's technicalities, syntaxes, and advanced features.

In the next chapter, we will look at how PowerShell can be integrated with
SQL Server.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Using PowerShell
with SQL Server

A number of Microsoft applications have increased their PowerShell support with
each new release. Enterprise applications, such as Microsoft Windows Server,
Exchange, SharePoint, and SQL Server, all have PowerShell support through cmdlets
and providers that come with their default installations. Even cloud solutions, such
as Windows Azure, have PowerShell support.

In this chapter, we will specifically look at components and pre-requisites required
for working with SQL Server using PowerShell. Before you run the scripts in this
chapter, remember to run your PowerShell console or ISE as an administrator and set
the execution policy to the appropriate one in your environment. The topics included
in the chapter are as follows:

• Mini-shell (or the sqlps utility)
• SQLPS module
• SQL Server snap-ins
• SQL Server assemblies
• SQL Server-specific cmdlets
• SQL Server Management Objects (SMO)

SQL Server via PowerShell
There are several ways to work with SQL Server via PowerShell. The way you
choose to work will largely depend not only on what version of SQL Server and
PowerShell you have, but also on what you want to do with SQL Server.

Using PowerShell with SQL Server

[34]

Mini-shell (or the sqlps utility)
Starting from SQL Server 2008, SQL Server was shipped with what used to be called
a mini-shell (the sqlps utility). Back then, the mini-shell was a limited PowerShell
console specifically bundled with SQL Server, which preloaded the sqlps utility,
which in turn preloaded the session with the SQL Server PowerShell providers
and cmdlets.

The mini-shell can be invoked in a couple of ways. One way is to go to SQL Server
Management Studio (SSMS) and right-click on a SQL Server object and choose Start
PowerShell. The following screenshot shows what you will see on a SQL Server 2014
interface, which is not that different from what you will see in SQL Server 2008, SQL
Server 2008 R2, and SQL Server 2012:

Chapter 2

[35]

Once you click on the Start PowerShell option, you will see a new PowerShell
console window appear. The starting path of the console will be the node you
right-clicked on, so the path will change based on where you invoked the mini-shell.
In the following screenshot, notice that the starting path is AdventureWorks2014.
This indicates that we right-clicked on the AdventureWorks2014 database in SQL
Server Management Studio when we launched PowerShell:

When the mini-shell is open, you can start navigating and working with SQL Server
objects using commands that you may already be familiar with, such as dir to list
the current directory. The dir command is an alias for the Get-ChildItem cmdlet.
Prior to SQL Server 2012, mini-shell used a PowerShell v1 shell and did not allow
the loading of any other extensions such as snap-ins and other .NET assemblies. This
restricted what you can do with that console and session.

Starting from SQL Server 2012, your system's current PowerShell version is loaded
and the restriction of adding additional snap-ins and modules have been lifted. Note
that Microsoft recommends that you don't use the sqlps utility anymore, as this is
slated to be removed in a future SQL Server version. Instead of the sqlps utility, the
newer, improved SQLPS module should be used. You can load this module from a
full PowerShell console.

Learn more about the sqlps utility, including supported
parameters, examples, and associated DLLs, from TechNet
at http://msdn.microsoft.com/en-us/library/
cc280450(v=sql.120).aspx.

http://msdn.microsoft.com/en-us/library/cc280450(v=sql.120).aspx
http://msdn.microsoft.com/en-us/library/cc280450(v=sql.120).aspx

Using PowerShell with SQL Server

[36]

To see which version of PowerShell your mini-shell is using, you can use the
$PSVersionTable special PowerShell variable:

The SQLPS module
The way to interact with SQL Server has been redefined in SQL Server 2012. Instead
of using the sqlps utility, a SQLPS module has been made available. The SQLPS
module loads and registers SQL Server snap-ins and related assemblies.

Starting from SQL Server 2012, when you launch the mini-shell from SSMS, it loads
a full PowerShell console and loads the SQLPS module by default. Instead of going
through the mini-shell, you can also alternatively pull up a regular PowerShell
console (or ISE) and import the SQLPS module using the Import-Module cmdlet
introduced in PowerShell v2:

Chapter 2

[37]

Before importing SQLPS, you should set the Execution Policy setting to at
least RemoteSigned (or the less restrictive, Unrestricted), otherwise you will
encounter errors.

When you import SQLPS, you will notice a warning message appear about
unapproved verbs. This is because some cmdlets in this module have unapproved
names; that is, some verbs used in the cmdlets are not listed in the official verbs that
Microsoft endorses in the Get-Verb cmdlet. The specific cmdlets that violate these
rules are Encode-Sqlname and Decode-Sqlname.

To avoid seeing these unapproved verb errors, you can use the
DisableNameChecking switch:

Import-Module SQLPS –DisableNameChecking

PowerShell modules also support the autoloading of modules. This feature allows
a module to be imported automatically if any cmdlets or functions are used, even
without explicitly importing the module. The only requirement is that this module
needs to be in a directory listed in the $PSModulePath environment variable (notice
$PSModulePath is an environment variable, not a special PowerShell variable unlike
$PSVersionTable). The SQLPS module path is added to this variable by default:

Using PowerShell with SQL Server

[38]

Once the SQLPS module is imported, you will see that the SqlServer provider has
been loaded as a PSProvider option in your session:

The same is true for PSDrive. Once the module is imported, you will be able to see
a new SQLSERVER type, PSDrive, in your session:

Chapter 2

[39]

SQL Server snap-ins
PowerShell snap-ins, as introduced in Chapter 1, Getting Started with PowerShell, are
binaries or dynamic linked libraries (DLLs) that were compiled from .NET code.
They contain additional cmdlets, functionalities, and even PowerShell providers.

There were two snap-ins provided for SQL Server specifically in SQL Server 2008:
SqlServerCmdletSnapin100 and SqlServerProviderSnapin100. Note that the
number "100" stands for SQL Server 2008 (or version 10.0). There aren't any other
version-specific snap-ins made available for other SQL Server versions.

If you are still working with SQL Server 2008 or SQL Server 2008 R2, you will need
to add these snap-ins within the full PowerShell console to use SQL Server-specific
cmdlets. You cannot add these snap-ins using the mini-shell (or sqlps) utility that
comes with SQL Server 2008/R2 because of the built-in constraints in the mini-shell.

To check whether snap-ins have already been loaded, you can use the following
commands:

Get-PSSnapin SqlServerCmdletSnapin100

Get-PSSnapin SqlServerProviderSnapin100

If they are not loaded yet, you can add them using the Add-PSSnapin cmdlet:

Add-PSSnapin SqlServerCmdletSnapin100

Add-PSSnapin SqlServerProviderSnapin100

Remember that if you are working with SQL Server 2012 onwards and PowerShell
V2 and later, you do not need to add these snap-ins. You can just load the SQLPS
module in a full PowerShell console, which loads the same SQL Server-related
functionalities into your shell.

SQL Server assemblies
Yet another way to work with SQL Server is by loading SQL Server-related
assemblies directly. If you were working with SQL Server 2005 and PowerShell V1,
when neither the sqlps utility nor module were available, this may be the only way
to work with PowerShell and SQL Server.

Loading assemblies, however, is not limited to SQL Server-related DLLs. Regardless
of the SQL Server version you're working with, you may still want to load other
.NET assemblies and use them in your PowerShell session. For example, you may
want to load System.Windows.Forms if you are utilizing any Windows form
components in your PowerShell script.

Using PowerShell with SQL Server

[40]

You can use the same method if you want to load any other .NET assemblies and
make use of them in your PowerShell session.

In PowerShell v1, the popular way to load assemblies is by using the
LoadWithPartialName() method from the Reflection.Assembly class. It loads
the specified assembly from the application directory or the Global Assembly
Cache (GAC).

To load the assemblies, you can use the following command:

[void][Reflection.Assembly]::LoadWithPartialName
 ("Microsoft.SqlServer.Smo")

Note that LoadWithPartialName() is obsolete as of .NET
3.5. LoadWithPartialName() is only being shown here in
case you need to use it in an older system or if you see it in
older books or documentation.

Another, and still valid, way of loading assemblies is by using the Load() method
from the same Reflection.Assembly class. This is an overloaded method, meaning
you can provide different sets of parameters for the same method, as long as the
parameter signatures are valid and match exactly one overloaded method definition.

Here is an example of loading an assembly called Microsoft.SqlServer.Smo for
SQL Server 2005. Note the assembly's fully qualified name has been provided to
the method:

[void][Reflection.Assembly]::Load("Microsoft.SqlServer.Smo,
Version=9.0.242.0,
 Culture=neutral, PublicKeyToken=89845dcd8080cc91")

If you are using PowerShell v2 and later, you can use the Add-Type cmdlet instead of
using the Load() method:

Add-Type -AssemblyName "Microsoft.SqlServer.Smo"

Note that starting from SQL Server 2012, you can simply import the SQLPS module,
and it will load these assemblies in your PowerShell session.

SQL Server-specific cmdlets
To get the cmdlets and functions that come with SQL Server-related modules, you
can use the following command:

Get-Command –Module *SQL*

Chapter 2

[41]

The following table lists the cmdlets included in the SQLPS module in a typical SQL
Server 2014 installation. You can use this as a reference when you are looking up
SQL Server cmdlets. You will notice that there are two SQL Server modules: SQLPS
and SQLASCMDLETS. SQLPS contains mostly database engine cmdlets, while the
SQLASCMDLETS module contains cmdlets related to SQL Server Analysis Services.

Module name Command type Name
SQLPS Function SQLSERVER:

SQLASCMDLETS Cmdlet Add-RoleMember

SQLPS Cmdlet Add-SqlAvailabilityDatabase

SQLPS Cmdlet
Add-SqlAvailabilityGroupListenerStati
cIp

SQLPS Cmdlet Add-SqlFirewallRule

SQLASCMDLETS Cmdlet Backup-ASDatabase

SQLPS Cmdlet Backup-SqlDatabase

SQLPS Cmdlet Convert-UrnToPath

SQLPS Cmdlet Decode-SqlName

SQLPS Cmdlet Disable-SqlAlwaysOn

SQLPS Cmdlet Enable-SqlAlwaysOn

SQLPS Cmdlet Encode-SqlName

SQLPS Cmdlet Get-SqlCredential

SQLPS Cmdlet Get-SqlDatabase

SQLPS Cmdlet Get-SqlInstance

SQLPS Cmdlet Get-SqlSmartAdmin

SQLASCMDLETS Cmdlet Invoke-ASCmd

SQLPS Cmdlet Invoke-PolicyEvaluation

SQLASCMDLETS Cmdlet Invoke-ProcessCube

SQLASCMDLETS Cmdlet Invoke-ProcessDimension

SQLASCMDLETS Cmdlet Invoke-ProcessPartition

SQLPS Cmdlet Invoke-Sqlcmd

SQLPS Cmdlet Join-SqlAvailabilityGroup

SQLASCMDLETS Cmdlet Merge-Partition

SQLASCMDLETS Cmdlet New-RestoreFolder

SQLASCMDLETS Cmdlet New-RestoreLocation

SQLPS Cmdlet New-SqlAvailabilityGroup

SQLPS Cmdlet New-SqlAvailabilityGroupListener

SQLPS Cmdlet New-SqlAvailabilityReplica

Using PowerShell with SQL Server

[42]

Module name Command type Name
SQLPS Cmdlet New-SqlBackupEncryptionOption

SQLPS Cmdlet New-SqlCredential

SQLPS Cmdlet New-SqlHADREndpoint

SQLASCMDLETS Cmdlet Remove-RoleMember

SQLPS Cmdlet Remove-SqlAvailabilityDatabase

SQLPS Cmdlet Remove-SqlAvailabilityGroup

SQLPS Cmdlet Remove-SqlAvailabilityReplica

SQLPS Cmdlet Remove-SqlCredential

SQLPS Cmdlet Remove-SqlFirewallRule

SQLASCMDLETS Cmdlet Restore-ASDatabase

SQLPS Cmdlet Restore-SqlDatabase

SQLPS Cmdlet Resume-SqlAvailabilityDatabase

SQLPS Cmdlet Set-SqlAuthenticationMode

SQLPS Cmdlet Set-SqlAvailabilityGroup

SQLPS Cmdlet Set-SqlAvailabilityGroupListener

SQLPS Cmdlet Set-SqlAvailabilityReplica

SQLPS Cmdlet Set-SqlCredential

SQLPS Cmdlet Set-SqlHADREndpoint

SQLPS Cmdlet Set-SqlNetworkConfiguration

SQLPS Cmdlet Set-SqlSmartAdmin

SQLPS Cmdlet Start-SqlInstance

SQLPS Cmdlet Stop-SqlInstance

SQLPS Cmdlet Suspend-SqlAvailabilityDatabase

SQLPS Cmdlet Switch-SqlAvailabilityGroup

SQLPS Cmdlet Test-SqlAvailabilityGroup

SQLPS Cmdlet Test-SqlAvailabilityReplica

SQLPS Cmdlet Test-SqlDatabaseReplicaState

SQLPS Cmdlet Test-SqlSmartAdmin

Chapter 2

[43]

SQL Server Management Objects
The SQLPS module exposes over 50 SQL Server-related cmdlets as of SQL Server
2014. This may seem more than a handful, but these cmdlets only cover a fraction of
what you may want to do with SQL Server. There will be times when you may want
to programmatically manage SQL Server, and SMO may be the most flexible way to
do this.

SMO allows you to have programmatic access to SQL Server objects using languages
such as VB.NET, C#, and PowerShell.

To learn more about SMO classes and how to program
specific tasks, visit the SMO documentation page from
TechNet at http://msdn.microsoft.com/en-us/
library/ms162169.aspx.

To install SMO, you need to run the SQL Server setup binary and select Client Tools
SDK in the Features Selection window:

Once installed, the SMO namespaces that become available with SQL Server 2014 are
as follows:

• Microsoft.SqlServer.Management.Smo

• Microsoft.SqlServer.Management.Common

http://msdn.microsoft.com/en-us/library/ms162169.aspx
http://msdn.microsoft.com/en-us/library/ms162169.aspx

Using PowerShell with SQL Server

[44]

• Microsoft.SqlServer.Management.Smo.Agent

• Microsoft.SqlServer.Management.Smo.Wmi

• Microsoft.SqlServer.Management.Smo.RegisteredServers

• Microsoft.SqlServer.Management.Smo.Mail

• Microsoft.SqlServer.Management.Smo.Broker

SMO is also available as a separate download. You can search Microsoft Download
Center for version-specific packages. Use the term, Microsoft SQL Server Feature
Pack. The package for SQL Server 2014 can be downloaded from http://www.
microsoft.com/en-us/download/details.aspx?id=42295.

If you are using SMO assemblies in scripts that do not use the SQL Server
PowerShell provider, this is how you can load the SMO assemblies, as documented
in the TechNet (http://msdn.microsoft.com/en-us/library/hh245202.aspx):

#

Loads the SQL Server Management Objects (SMO)

#

$ErrorActionPreference = "Stop"

$sqlpsreg="HKLM:\SOFTWARE\Microsoft\PowerShell\1\ShellIds\
 Microsoft.SqlServer.Management.PowerShell.sqlps"

if (Get-ChildItem $sqlpsreg -ErrorAction "SilentlyContinue")

{

 throw "SQL Server Provider for Windows PowerShell is not
 installed."

}

else

{

 $item = Get-ItemProperty $sqlpsreg

 $sqlpsPath = [System.IO.Path]::GetDirectoryName($item.Path)

}

$assemblylist =

"Microsoft.SqlServer.Management.Common",

"Microsoft.SqlServer.Smo",

"Microsoft.SqlServer.Dmf ",

"Microsoft.SqlServer.Instapi ",

"Microsoft.SqlServer.SqlWmiManagement ",

http://www.microsoft.com/en-us/download/details.aspx?id=42295
http://www.microsoft.com/en-us/download/details.aspx?id=42295
http://msdn.microsoft.com/en-us/library/hh245202.aspx

Chapter 2

[45]

"Microsoft.SqlServer.ConnectionInfo ",

"Microsoft.SqlServer.SmoExtended ",

"Microsoft.SqlServer.SqlTDiagM ",

"Microsoft.SqlServer.SString ",

"Microsoft.SqlServer.Management.RegisteredServers ",

"Microsoft.SqlServer.Management.Sdk.Sfc ",

"Microsoft.SqlServer.SqlEnum ",

"Microsoft.SqlServer.RegSvrEnum ",

"Microsoft.SqlServer.WmiEnum ",

"Microsoft.SqlServer.ServiceBrokerEnum ",

"Microsoft.SqlServer.ConnectionInfoExtended ",

"Microsoft.SqlServer.Management.Collector ",

"Microsoft.SqlServer.Management.CollectorEnum",

"Microsoft.SqlServer.Management.Dac",

"Microsoft.SqlServer.Management.DacEnum",

"Microsoft.SqlServer.Management.Utility"

foreach ($asm in $assemblylist)

{

 $asm = [Reflection.Assembly]::LoadWithPartialName($asm)

}

Push-Location

cd $sqlpsPath

update-FormatData -prependpath SQLProvider.Format.ps1xml

Pop-Location

Note that for SQL Server 2012 and later, you do not need to load SMO assemblies
explicitly. Importing the SQLPS module loads these assemblies for you. With
PowerShell V3 onwards, since these versions support the autoloading of a module,
you also don't have to explicitly import SQLPS (although it's strongly recommended
you do this). Simply using cmdlets or functions inside the module will autoload the
SQLPS module.

Creating SMO objects
To use SMO effectively, you need to know how to create and access SQL Server
objects you need and how to explore the methods and properties that are available
with each one.

Using PowerShell with SQL Server

[46]

When working with SMO, you will need to create and instantiate SQL Server objects.
The following is a simple example:

Import-Module SQLPS -DisableNameChecking

#default SQL Server 2014 instance, ie servername

#if the default instance is in your local machine,

#you can simply type "localhost"

$instance = "ROGUE" #or localhost

#instantiate an SMO server object

$server = New-Object `

 -TypeName Microsoft.SqlServer.Management.Smo.Server `

 -ArgumentList $instance

#list some server properties

$server |

Select Name, Version, Status, `

 ConnectionContext, ComputerNamePhysicalNetBIOS

Your result will look similar to the following screenshot:

Let's walk through the script. PowerShell scripts that work with SQL Server usually
start with a line that imports the SQLPS module:

Import-Module SQLPS -DisableNameChecking

Once loaded, you will often need to create an SMO server object. For many tasks, you
will need a server object, which can be created as shown in the following snippet:

$server = New-Object `

 -TypeName Microsoft.SqlServer.Management.Smo.Server `

 -ArgumentList $instance

Chapter 2

[47]

To create the object, you need to use the Microsoft.SqlServer.Management.Smo.
Server class and provide it with a server instance name. Remember that backticks
are line continuation characters only. They are included here for readability, but you
can also opt to put this code into a single, non-breaking line if you prefer.

Once created, the server object allows you to browse properties, methods, and other
objects that belong to the server. You can pipe the server object to a Select-Object
cmdlet (or simply use Select if you want to use the shortened version) to view only
a few properties and methods:

#list some properties

$server |

Select-Object Name, Version, Status, ConnectionContext, `

 ComputerNamePhysicalNetBIOS

Alternatively, you can use the Get-Member cmdlet to see the complete list of related
properties, methods, functions, and objects:

$server | Get-Member

Technet provides an SMO Object Model Diagram (available at http://msdn.
microsoft.com/en-us/library/ms162209.aspx) that can guide you through
the object hierarchy:

http://msdn.microsoft.com/en-us/library/ms162209.aspx
http://msdn.microsoft.com/en-us/library/ms162209.aspx

Using PowerShell with SQL Server

[48]

The preceding screenshot should give you an idea of how expansive the SMO class
hierarchy is. This also suggests that we can programmatically access and manage
many SQL Server objects. This is good because this means we can accomplish many
tasks through scripting with PowerShell.

Summary
In this chapter, we covered different ways to work with PowerShell with SQL Server
using PowerShell. The approach you will take will depend on the version of SQL
Server and PowerShell that is available in your environment. Loading the SQLPS
module is the current de facto way to go to load SQL Server-specific modules and
providers. If you need more programmatic access and flexibility, SMO can take you
a long way.

In the next chapter, we will cover how to profile and configure SQL Server using
PowerShell.

Profiling and Configuring
SQL Server

When working with SQL Server, usually one of the first tasks is to profile the current
instance(s) and environment. This chapter will cover how to quickly profile SQL Server
and identify services, instances, settings, and current resources and configurations.
This chapter will also introduce you to using Windows Management Instrumentation
(WMI) and SQL Server SMO classes to profile and configure SQL Server.

The snippets in this chapter will require the full PowerShell console, run with
administrative privileges. Some of the topics we'll cover include how to:

• Check server resources (such as CPU, memory, disk space, and network)
• Check hotfixes and service packs
• Check current SQL Server instances
• Check services and service accounts
• Check SQL Server logs
• List current instance configurations
• Change configurations
• Start or stop services
• Change service accounts
• Change instance settings

Current server resources
One of the first things you might want to check out before profiling SQL Server instances
is the general health of the server. There are a number of metrics you can check, but
usually there are four that you almost always need to check first: processor usage,
available disks and their usage, available memory and its usage, and the network.

Profiling and Configuring SQL Server

[50]

The Task Manager option in Windows can often provide a good at-a-glance view
of resources. One way to launch this tool is by right-clicking on the task bar and
selecting Task Manager, as shown in the following screenshot:

When the Task Manager window comes up, you can select the Processes tab to see
the CPU and memory usage right away. The following screenshot shows what Task
Manager looks like in Windows Server 2012 R2. This window will look slightly
different if you are using a different Windows version:

Chapter 3

[51]

This window can provide a very quick way to figure out which processes are taking
up the most CPU or memory. You can click on the CPU or Memory option to sort
data according to those metrics.

Getting processor (CPU) information
The number of processors in a server and their usage can indicate whether SQL
Server can perform well on a current server. It is also important to know this when
you tune SQL Server later for parallelism.

We can take advantage of the WMI cmdlets and classes available in PowerShell
while querying CPU information.

WMI provides management data and metrics for Windows
servers and applications. You can learn more about WMI classes,
requirements, and use cases from http://msdn.microsoft.
com/en-us/library/aa394582(v=vs.85).aspx.

First, let's identify how many physical processors and cores there are in the server.
We can do this by using the Get-WmiObject cmdlet with the Win32_ComputerSystem
WMI class:

#current server name

#this can be the machine name (in my case ROGUE)

#or simply localhost, if the default instance is installed

$servername = "ROGUE" #or localhost

Get-WmiObject -Class Win32_ComputerSystem `

 -ComputerName $servername |

Select-Object Name,

 Domain,

 NumberOfProcessors,

 NumberOfLogicalProcessors |

Format-List

http://msdn.microsoft.com/en-us/library/aa394582(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa394582(v=vs.85).aspx

Profiling and Configuring SQL Server

[52]

The preceding script displays the current server name and domain. In addition,
the NumberOfProcessors property indicates the physical processors detected, and
NumberOfLogicalProcessors indicates the number of cores. Your result will look
like the following screenshot:

To query the CPU usage, we can use the Win32_Processor WMI class. This class
exposes the LoadPercentage property for each processor, which can be aggregated
to get an average value.

Please visit http://msdn.microsoft.com/en-us/
library/aa394373(v=vs.85).aspx to learn more about
the syntax, properties, and enumeration values available with
the Win32_processor WMI class.

The following is the snippet that gets you the current CPU usage:

#current server name

$servername = "ROGUE"

Get-WmiObject -Class Win32_Processor -ComputerName $servername |

Measure-Object -Property LoadPercentage –Average

A sample result looks like the following screenshot:

We piped the result of the Get-WmiObject cmdlet to the Measure-Object cmdlet.
The Measure-Object cmdlet allows you to generate quick statistics in PowerShell.
In the preceding snippet, we got the average LoadPercentage value from two
physical processors.

http://msdn.microsoft.com/en-us/library/aa394373(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa394373(v=vs.85).aspx

Chapter 3

[53]

The Measure-Object cmdlet is useful when you are measuring LoadPercentage from
multiple physical processors because each one will have its own LoadPercentage
value. If you have a single processor, you can simply use the following:

$(Get-WmiObject -Class Win32_Processor -
 ComputerName $servername).LoadPercentage

Checking server memory
In addition to CPU usage, we also want to see how much physical memory is
available on the server that SQL Server is sitting on and how much memory is
being used. Using the Get-WmiObject cmdlet and this time with the Win32_
OperatingSystem class, we can check this information using PowerShell.

First, let's check what types of memory we can query from this class. Note that you
need to run the following sample in a full PowerShell console. The following snippet
also uses a new Where-Object syntax, available only with PowerShell v3 and later:

Get-WmiObject -Class Win32_OperatingSystem `

 -ComputerName $servername |

Get-Member -MemberType Property |

Where-Object Name -Like "*Mem*" |

Select-Object Name

You will get a few properties in the Win32_OperatingSystem WMI class related
to memory:

Note that there are other WMI classes that can get you additional memory metrics
and properties, such as Win32_PhysicalMemory and Win32_MemoryDevice. For
our script, let's use Win32_OperatingSystem WMI class's properties, namely
TotalVisibleMemorySize and FreePhysicalMemory, and calculate MemoryUsage.

Profiling and Configuring SQL Server

[54]

TotalVisibleMemorySize provides the total physical memory in KB installed and
accessible to the operating system. FreePhysicalMemory is the current free memory
available in KB. From these two metrics, we can calculate the memory usage:

MemoryUsage = ((TotalVisibleMemorySize – FreePhysicalMemory) * 100)/

 TotalVisibleMemorySize

The following is the PowerShell snippet that returns the aforementioned
three values:

Get-WmiObject -Class Win32_OperatingSystem -
 ComputerName $servername |

Select-Object @{Name="TotalVisibleMemorySize (GB)";
 Expression={"{0:N1}" -f (($_.TotalVisibleMemorySize)/1024/1024)}},

@{Name="FreePhysicalMemory (GB)";Expression={"{0:N1}" -
 f (($_.FreePhysicalMemory)/1024/1024)}},

@{Name="MemoryUsage %";Expression={ "{0:N2}" -
 f ((($_.TotalVisibleMemorySize - $_.FreePhysicalMemory)*100)
 / $_.TotalVisibleMemorySize) }} |

Format-List

Don't worry if the preceding snippet looks a little bit confusing. We will walk
through parts of the code. The snippet uses an advanced PowerShell construct called
calculated properties, which is used with Select-Object and allows you to create
(that is, calculate) a property that an object may not inherently have.

Let's look at one part of the code:

Select-Object @{Name="TotalVisibleMemorySize (GB)";
 Expression={"{0:N1}" -f (($_.TotalVisibleMemorySize)/1024/1024)}}

Right besides Select-Object is an expression that looks like the following:

@{Name="Name";Expression={"Expression" -f format}}

This is the calculated property. It has a name-value pair, enclosed in @{}. The value
you provide in Name will be the new property name, and the value (or expression) in
the Expression field will be the new property value.

To learn more about PowerShell's calculated properties and
check out additional examples, you can visit http://technet.
microsoft.com/en-us/library/ff730948.aspx.

http://technet.microsoft.com/en-us/library/ff730948.aspx
http://technet.microsoft.com/en-us/library/ff730948.aspx

Chapter 3

[55]

Thus, in our code, we create three new properties (with formatted values) that the
Win32_OperatingSystem class does not inherently have: TotalVisibleMemorySize
(GB), FreePhysicalMemory (GB), and MemoryUsage %. To make
TotalVisibleMemorySize (GB) and FreePhysicalMemory (GB) more readable,
the values were in Gigabyte (GB) units, for example:

Expression={"{0:N1}" -f (($_.TotalVisibleMemorySize)/1024/1024)}}

The result that you get will look like the following screenshot:

The -f operator is a string formatting operator. What we've done is created a
placeholder "{0:N1}" and indicated a replacement value, which is the expression
that follows -f. There is a good reference available at http://blogs.technet.
com/b/heyscriptingguy/archive/2013/03/11/understanding-powershell-
and-basic-string-formatting.aspx that talks about different ways of formatting
strings in PowerShell.

Checking disk space
To figure out the available disk drives and disk space in your server, you can use the
Win32_LogicalDisk WMI class. We can list the DeviceID, DriveType, Size, and
FreeSpace. From Size and FreeSpace, we can calculate the percentage of disk space
that's still free.

The snippet to get the disk information is presented as follows:

#current server name

$servername = "ROGUE"

Get-WmiObject -Class Win32_LogicalDisk `

 -ComputerName $servername |

Select-Object @{Name="DeviceID";Expression={$_.DeviceID}},

 @{Name="DriveType";

 Expression={switch ($_.DriveType)

 {

 0 {"Unknown"}

 1 {"No Root Directory"}

 2 {"Removable Disk"}

http://blogs.technet.com/b/heyscriptingguy/archive/2013/03/11/understanding-powershell-and-basic-string-formatting.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2013/03/11/understanding-powershell-and-basic-string-formatting.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2013/03/11/understanding-powershell-and-basic-string-formatting.aspx

Profiling and Configuring SQL Server

[56]

 3 {"Local Disk"}

 4 {"Network Drive"}

 5 {"Compact Disc"}

 6 {"RAM Disk"}

 }};

 },

 @{Name="Size (GB)";Expression={"{0:N1}" -f($_.Size/1GB)}},

 @{Name="Free Space (GB)";Expression={"{0:N1}" -
 f($_.FreeSpace/1GB)}},

 @{Name="Free Space (%)";

 Expression={

 if ($_.Size -gt 0)

 {

 "{0:P0}" -f($_.FreeSpace/$_.Size)

 }

 else

 {

 0

 }

 }

 } |

Format-Table -AutoSize

In the code, we replaced the DriveType value with a more readable description, as
described in MSDN (available at http://msdn.microsoft.com/en-us/library/
aa394173(v=vs.85).aspx). We also represented the Size and FreeSpace values in
GB. When calculating the percentage of free space, we want to avoid a division-by-
zero error. This is why we first checked whether the size was greater than zero (0).

The result should look as shown in the following screenshot:

In the preceding example, we simply listed all the drives in the system. You can
narrow the script down to only look at local or non-removable disks by adding a
filter to your Get-WmiObject invocation:

Get-WmiObject -Class Win32_LogicalDisk –Filter "DriveType=3" `

 -ComputerName $servername

http://msdn.microsoft.com/en-us/library/aa394173(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa394173(v=vs.85).aspx

Chapter 3

[57]

Checking network settings
To get the network interfaces in your server, you can use the Win32_NetworkAdapter
Configuration WMI class. There are a number of properties that can be queried,
including the network card description, IP address, and MAC address:

Get-WmiObject -Class Win32_NetworkAdapterConfiguration `

 -ComputerName $servername `

 -Filter IPEnabled=True |

Select-Object Description, DHCPEnabled,

 IPEnabled, IPAddress,

 MACAddress

This script will list out all IP-enabled network interfaces because we added the
filter IPEnabled=True and display a number of fields, including the IP and MAC
address values:

Hotfixes and service packs
We can use PowerShell to figure out the operating system the server is running on
and on which service pack. The Win32_OperatingSystem WMI class contains the
OS service pack information. The following script performs this query:

#current server name

$servername = "ROGUE"

Get-WmiObject -Class Win32_OperatingSystem `

 -ComputerName $servername |

Select-Object CSName, Caption,

 ServicePackMajorVersion,

 ServicePackMinorVersion |

Format-List

Profiling and Configuring SQL Server

[58]

Your result should include the computer name and the service pack information. If
you get a zero (0) value, it means no service packs have been applied to the system yet.

In addition to service pack information, you can also use PowerShell to query
which hotfixes and updates have been installed on the system. You can use the
Win32_QuickFixEngineering WMI class to do this. The following is an example
of how you can use this class:

#current server name

$servername = "ROGUE"

Get-WmiObject -Class Win32_QuickFixEngineering `

 -ComputerName $servername |

Sort-Object -Property InstalledOn -Descending |

Format-Table –AutoSize

Your result will look similar to the following screenshot:

The results will most likely exceed the scrollable limit of your PowerShell window,
so you may want to pipe the results to a file to get the complete list. Be careful,
however. Win32_QuickFixEngineering does not report all updates and hotfixes.
According to MSDN, updates via Microsoft Installer (MSI) or the Windows Update
site are not reported by this class.

Chapter 3

[59]

This is the definition of the class in MSDN (available at http://msdn.microsoft.
com/en-us/library/aa394391(v=vs.85).aspx):

"The Win32_QuickFixEngineering WMI class represents a small system-wide
update, commonly referred to as a quick-fix engineering (QFE) update, applied to
the current operating system. Starting with Windows Vista, this class returns only
the updates supplied by Component Based Servicing (CBS). These updates are not
listed in the registry. Updates supplied by Microsoft Windows Installer (MSI) or
the Windows update site (http://update.microsoft.com) are not returned by
Win32_QuickFixEngineering."

Current SQL Server instances
You should also check how many SQL Server instances are installed on the
server and their names for non-default instances. To do this, we can use SQL
Management Objects (SMO) with PowerShell and then use the ServerInstances
member property:

#below should be a single line of code

$managedComputer = New-Object "Microsoft.SqlServer.Management.
 Smo.Wmi.ManagedComputer" $servername

#list SQL Server instances

$managedComputer.ServerInstances |

Select-Object Name, State, ServerProtocols, Urn |

Format-List

The preceding script simply lists the instances installed. Note that MSSQLSERVER is
the name you'll see for a default instance:

http://msdn.microsoft.com/en-us/library/aa394391(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa394391(v=vs.85).aspx
http://update.microsoft.com

Profiling and Configuring SQL Server

[60]

Services and service accounts
Once you have identified the instances, you may want to know the SQL Server-related
services for each one of the instances. You can use the same SMO class to query the
services related to a SQL Server instance. The Microsoft.SqlServer.Management.
Smo.Wmi.ManagedComputer class has a property called Services that lists the services:

Import-Module SQLPS -DisableNameChecking

#current server name

$servername = "ROGUE"

$managedComputer = New-Object "Microsoft.SqlServer.Management.Smo.Wmi.
ManagedComputer" $servername

$managedComputer.Services |

Select-Object Name, ServiceAccount, DisplayName |

Format-Table -AutoSize

You should see a result similar to the following screenshot:

You can see that in my instance, I have many services installed, including SQL Server
Agent, SQL Server Integration Services, SQL Server Analysis Services, and SQL
Server Reporting Services.

SQL Server error logs
You can view error logs in SQL Server Management Studio (SSMS). To view SQL
Server-specific errors, you can open up SSMS and expand the SQL Server Agent
node. Under the Error Logs folder, you can see the most recent error and the most
recent archived error:

Chapter 3

[61]

Alternatively, you can go to Management and expand SQL Server Logs. When you
double-click on any one of the error logs, a log file viewer appears. You can select an
option to view additional logs from the left-hand side pane. To view the most recent
SQL Server-specific logs, check SQL Server on the left-hand side pane and then the
Current checkbox:

Profiling and Configuring SQL Server

[62]

Using SMO, you can also query this same information. This requires creating an
SMO server object that references the instance you are working with. Once your
server variable is instantiated, you can invoke the ReadErrorLog() method. The
following snippet shows how you can display the five most recent entries in the
SQL Server log:

#assuming you already created your SMO server object

$server = New-Object "Microsoft.SqlServer.Management.Smo.Server"
$servername

#display most recent 5 entries

$server.ReadErrorLog() |

Select-Object LogDate, ProcessInfo, Text, HasErrors -Last 5 |

Format-List

The preceding script should give you a result similar to the following screenshot:

You will have to tweak this script. Most likely, you will want more than just the most
recent five entries. You can either change the -Last parameter to show more logs or
tweak the code and add additional properties and filters based on your needs. For
example, if you want to get only the ones that were recorded as errors, then you will
have to pipe the result of $server.ReadErrorLog() to Where-Object HasErrors
-eq $true before passing the result to the Select-Object cmdlet:

$server.ReadErrorLog() |

Where-Object HasErrors -eq $true

Chapter 3

[63]

Current instance configuration
PowerShell makes it easy to query a SQL Server instance and export current
configurations. We can make use of the SMO server object and query all the
properties. The following is an example script that performs this export:

#current server name

$servername = "ROGUE"

$server = New-Object "Microsoft.SqlServer.Management.Smo.
 Server" $servername

$server |

Get-Member |

Where-Object Name -ne "SystemMessages" |

Where-Object MemberType -eq "Property" |

Select-Object Name,

 @{Name="Value";Expression={$server.($_.Name)}} |

Format-Table -AutoSize

Once the script runs, you should find all the instance properties and corresponding
values displayed on your screen:

Profiling and Configuring SQL Server

[64]

Let's walk through the script. The preceding sample script creates an SMO server
object based on the SQL Server instance named ROGUE:

#current server name

$servername = "ROGUE" #or localhost

$server = New-Object "Microsoft.SqlServer.Management.Smo.
 Server" $servername

Once the SMO server object is created, in our case $server, all the properties of the
server are queried except for any system messages:

$server |

Get-Member |

Where-Object Name -ne "SystemMessages" |

Where-Object MemberType -eq "Property"

The last lines in the block of the preceding snippet display the property name
and the value of that property. All of these are displayed in table format in the
PowerShell console:

Select-Object Name,

 @{Name="Value";Expression={$server.($_.Name)}} |

Format-Table -AutoSize

Displaying these properties onscreen is well and good for a visual check. However,
if you want to keep track of all these configurations and analyze changes over time,
you will need to keep this in a more permanent format. One way to do this is to
save the results to a file and safely archive it. To save the results, you simply need to
pipe most part of the preceding block, but instead of using Format-Table as the last
cmdlet, you can use Export-Csv as the final action:

$folder = "C:\Temp"

$currdate = Get-Date -Format "yyyy-MM-dd_hmmtt"

#example filename: ROGUE_2014-10-04_1009AM

$filename = "$($servername)_$($currdate).csv"

$fullpath = Join-Path $folder $filename

$server |

Chapter 3

[65]

Get-Member |

Where-Object Name -ne "SystemMessages" |

Where-Object MemberType -eq "Property" |

Select-Object Name,

 @{N="Value";E={$server.($_.Name)}} |

Export-Csv -Path $fullpath -NoTypeInformation

The preceding script is simply an example of how to take the configuration results
and save it to a CSV file. There are a variety of other options available, such as saving
this to an XML or JSON file or even storing it into a SQL Server table.

Changing configurations
PowerShell can help not only audit your current instance configurations, but can
also help if you need to manage and change configurations, such as changing service
accounts and default backup folders and turning on (or off) some instance- and
database-level features.

Start or stop services
There are a handful cmdlets that work with services. To get these cmdlets, you can
use the following command:

Get-Command -Name "*Service*" -CommandType "Cmdlet"

The result you will get is similar to the following screenshot:

Profiling and Configuring SQL Server

[66]

To start or stop services, you can use the Start-Service and Stop-Service cmdlets.
The following snippet is an example of how you can use these cmdlets. In the
following example, we are targeting the SQL Server Agent service of a named instance
called SQL2014. This service can be referred to as SQLAgent$SQL2014. Since the $ sign
is a special character in PowerShell that signifies variable names, the $ sign in the
service name needs to be escaped with a backtick, that is, "SQLAgent`$SQL2014". An
alternative is to use single quotes around the named instance's name, which will not
require the escape character, that is, 'SQLAgent$SQL2014':

$servicename = "SQLAgent`$SQL2014"

Stop-Service -Name $servicename

Start-Service -Name $servicename

You can start using these service-related cmdlets in any PowerShell scripts you may
have that need to go through a list of services and start/stop/restart based on some
parameters or conditions.

Changing a service account
Service accounts may need to be updated and changed every now and then. You
can see the currently set service accounts if you open up SQL Server Configuration
Manager and select SQL Server Services from the left-hand side pane. The service
account can be found in the Log On As column option:

Chapter 3

[67]

Should you need to change the service accounts for any SQL Server services, you can
use PowerShell to streamline the task so you don't even have to open SQL Server
Configuration Manager.

You can create a Microsoft.SqlServer.Management.Smo.Wmi.ManagedComputer
object. To change the service account, you can use the SetServiceAccount()
method. Instead of passing the service account name and password in clear text,
you can use the Get-Credential cmdlet. This cmdlet opens a logon dialog box and
prompts you for the account and password to use.

Here is an example script that changes the service account for SQLAgent$SQL2014
from QUERYWORKS\sqlservice to QUERYWORKS\sqlagentservice:

Import-Module SQLPS -DisableNameChecking

#current server name

$servername = "ROGUE"

$managedComputer = New-Object "Microsoft.SqlServer.Management.Smo.
 Wmi.ManagedComputer" $servername

$servicename = "SQLAgent`$SQL2014"

$sqlservice = $managedComputer.Services |

 Where-Object Name -EQ $servicename

#check current service account

$sqlservice.ServiceAccount

#set new service account

$newserviceaccount = "QUERYWORKS\sqlagentservice"

$credential = Get-Credential -Credential $newserviceaccount

$sqlservice.SetServiceAccount($credential.UserName,
 $credential.GetNetworkCredential().Password)

#check new service account

$sqlservice.ServiceAccount

Profiling and Configuring SQL Server

[68]

Once the script is finished, you can confirm from SQL Server Configuration
Manager that the service account has indeed been updated. You might need to
refresh the SQL Server Configuration Manager view if you had it opened already
before you changed the service account:

Changing instance settings
The SMO server class contains many member properties and methods. Some
properties are accessible right from the object, but for some, you may need to
navigate properties that contain other properties/classes. The best way to explore
is by taking the SMO server object and listing down all the members, their methods
and properties. You can also use IntelliSense in the PowerShell ISE if you want to
explore the properties and methods while you code. All of these properties are also
documented in the MSDN link available at http://msdn.microsoft.com/en-us/
library/microsoft.sqlserver.management.smo.server.aspx.

Many of the properties are updateable. However, there are also a number of
properties that are marked as read-only; therefore, they cannot be updated. Just
be aware of this.

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.server.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.server.aspx

Chapter 3

[69]

For the most part, once you've identified an updateable property, you can set the
property to the new value and use the Alter() method of the server object to make
the changes permanent.

The following example shows how you can change the default backup directory of
the server. Note that for this example, we will access the BackupDirectory member
property directly from the $server variable:

Import-Module SQLPS -DisableNameChecking

#current server name

$servername = "ROGUE"

$server = New-Object "Microsoft.SqlServer.Management.Smo.Server"
$servername

#check current backup directory

$server.BackupDirectory

#change backup directory

$dir = "C:\Temp"

$server.BackupDirectory = $dir

$server.Alter()

#check current backup directory

$server.BackupDirectory

Profiling and Configuring SQL Server

[70]

Once executed, you can also check the BackupDirectory property when you go to
SQL Server Management Studio and right-click on the instance and select Properties:

The Microsoft.SqlServer.Management.Smo.Server class also has a
Configuration property. From this property, you can change settings that you can
normally change using the system-stored procedure, namely sp_configure.

The following script shows you how you can enable xp_cmdshell using PowerShell:

$server.Configuration.XPCmdShellEnabled.ConfigValue = 1

$server.Configuration.Alter()

$server.Configuration.XPCmdShellEnabled

Chapter 3

[71]

Once completed, you should see that for xp_cmdshell, RunValue will be 1 (meaning
it's enabled) and ConfigValue will be 1 (meaning it's effective, similar to having run
RECONFIGURE after sp_configure):

Note that we are turning the xp_cmdshell option on for demonstration purposes only.
Since xp_cmdshell allows the running of programs and commands from within SQL
Server, it is highly recommended that you keep this setting disabled in your system.

For the last example, let's check the settings under the Settings property. Once
you've created an SMO server object, you can display the properties using the
following command:

$server.Settings

The following screenshot shows the values under Settings:

Profiling and Configuring SQL Server

[72]

In the next screenshot of the script, we are going to change the AuditLevel value
of the instance from Failure to All. This will change the logging behavior of the
instance, that is, instead of logging only failed login attempts, both successful and
failed login attempts will be recorded.

The property we will change is Settings.AuditLevel. This needs to be set to
a valid AuditLevel enumeration. Normally, this will require that you look up
the valid enumeration values from TechNet or MSDN. However, the autocomplete
option in PowerShell ISE comes in handy. When you do this in PowerShell ISE,
the valid enumeration values will appear once you type in two colons (::) after
the class name:

The script to change the audit level from Failure to All looks similar to the
following:

$server.Settings.AuditLevel = [Microsoft.SqlServer.Management.Smo.
AuditLevel]::All

#make changes permanent

$server.Settings.Alter()

#display new settings

$server.Settings

Chapter 3

[73]

Once the script is done, you should be able to see the new value, as shown in the
following screenshot:

You can test this snippet using other configuration settings in your own instances.
Usually, it is just a matter of giving the setting a new value and invoking the
Alter() method.

Summary
In this chapter, we saw a number of snippets that allow us to scope out our SQL
Server instance. A combination of WMI cmdlets and SMO script come in handy
when using PowerShell to profile the instance and its environment. WMI can be
quite helpful, especially when looking at system resources (such as CPU, memory,
network, and disk space), while SMO is indispensable when programmatically
listing or changing SQL Server properties. Using SMO, we saw how to list current
instance settings, query SQL Server error logs, change service accounts, change
audit-level settings, and adjust an instance's default backup directory property. This
is just a glimpse of what you can do with SQL Server using PowerShell.

In the next chapter, we will look at how to do basic SQL Server administration tasks
using PowerShell and SMO.

Basic SQL Server
Administration

In this chapter, we will look at how to accomplish typical SQL Server administration
tasks by using PowerShell. Although you were introduced to SQL Server-specific
cmdlets in the previous chapters, these cmdlets are still quite few. Many of the tasks
that we will see can be accomplished by using SQL Server Management Objects
(SMO). As we encounter new SMO classes, it is best to verify the properties and
methods of that class using Get-Help, or by directly visiting the TechNet or
MSDN website.

The topics covered in this chapter include how to perform the following tasks:

• Listing databases and tables
• Adding files and filegroups
• Scripting database objects
• Attaching and detaching databases
• Backing up and restoring databases
• Reorganizing or rebuilding indexes
• Managing logins, users, and permissions
• Listing policies
• Managing jobs

Basic SQL Server Administration

[76]

Listing databases and tables
Let's start out by listing the current databases. The SMO Server class has access to
all the databases in that instance, so a server variable will have to be created first.
To create one using Windows Authentication, you can use the following snippet:

Import-Module SQLPS -DisableNameChecking

#current server name

$servername = "ROGUE"

#below should be a single line of code

$server = New-Object "Microsoft.SqlServer.Management.
 Smo.Server" $servername

If you need to use SQL Server Authentication, you can set the LoginSecure property
to false, and prompt the user for the database credentials:

#with SQL authentication, we need

#to supply the SQL Login and password

$server.ConnectionContext.LoginSecure=$false;

$credential = Get-Credential

$server.ConnectionContext.set_Login($credential.UserName)

$server.ConnectionContext.set_SecurePassword($credential.Password)

Another way is to create a Microsoft.SqlServer.Management.Common.
ServerConnection object and pass the database connection string:

#code below is a single line

$connectionString = "Server=$dataSource;uid=$username;
 pwd=$passwordd;Database=$database;Integrated Security=False"

$connection = New-Object System.Data.SqlClient.SqlConnection

$connection.ConnectionString = $connectionString

To find out how many databases are there, you can use the Count property of the
Databases property:

$server.databases.Count

Chapter 4

[77]

In addition to simply displaying the number of databases in an instance, we can
also find out additional information such as creation data, recovery model, number
of tables, stored procedures, and user-defined functions. The following is a sample
script that pulls this information:

#create empty array

$result = @()

$server.Databases |

Where-Object IsSystemObject -eq $false |

ForEach-Object {

 $db = $_

 $object = [PSCustomObject] @{

 Name = $db.Name

 CreateDate = $db.CreateDate

 RecoveryModel = $db.RecoveryModel

 NumTables = $db.Tables.Count

 NumUsers = $db.Users.Count

 NumSP = $db.StoredProcedures.Count

 NumUDF = $db.UserDefinedFunctions.Count

 }

 $result += $object

}

$result |

Format-Table -AutoSize

A sample result looks like the following screenshot:

In this script, we have manipulated the output a little. Since we want information
in a format different from the default, we created a custom object using the
PSCustomObject class to store all this information. The PSCustomObject class was
introduced in PowerShell V3.

Basic SQL Server Administration

[78]

You can also use PSCustomObject to draw data points from different objects and
pull them together in a single result set. Each line in the sample result shown in
the preceding screenshot is a single PSCustomObject. All of these, in turn, are stored
in the $result array, which can be piped to the Format-Table cmdlet for a little
easier display.

After learning these basics about PSCustomObject, you can adapt this script
to increase the list of properties you are querying and change the formatting
of the display. You can also export these to a file if you need to. We will use
PSCustomObject a fair bit in the book, to create the output that we need.

To find out additional properties, you can pipe $server.Databases to the
Get-Member cmdlet:

$server.Databases |

Get-Member |

Where-Object MemberType –eq "Property"

Once you execute this, your resulting screen should look similar to the
following screenshot:

To find out which methods are available for SMO database objects, we can use a very
similar snippet, but this time, we will filter based on methods:

$server.Databases |

Get-Member |

Where-Object MemberType –eq "Method"

Chapter 4

[79]

Once you execute this, your resulting screen should look similar to the
following screenshot:

Listing database files and filegroups
Managing databases also incorporates monitoring and managing of the files and
filegroups associated with these databases. Still, using SMO, we can pull this
information via PowerShell.

You can start by pulling all non-system databases:
$server.Databases |

Where-Object IsSystemObject -eq $false

The preceding snippet iterates over all the databases in the system. You can use the
Foreach-Object cmdlet to do the iteration, and for each iteration, you can get a
handle to the current database object. The SMO database object will have access to
a Filegroups property, which you can query to find out more about the filegroups
associated with each database:

ForEach-Object {

 $db = $_

 $db.FileGroups

}

Basic SQL Server Administration

[80]

This FileGroups class, in turn, can access all the files in that specific filegroup.

Here is the complete script that lists all files and filegroups for all databases. Note
that we use Foreach-Object several times: once to loop through all databases, then
to loop through all filegroups for each database, and again to loop through all files in
each filegroup:

Import-Module SQLPS -DisableNameChecking

#current server name

$servername = "ROGUE"

$server = New-Object "Microsoft.SqlServer.Management.Smo.
 Server" $servername

$result = @()

$server.Databases |

Where-Object IsSystemObject -eq $false |

ForEach-Object {

 $db = $_

 $db.FileGroups |

 ForEach-Object {

 $fg = $_

 $fg.Files |

 ForEach-Object {

 $file = $_

 $object = [PSCustomObject] @{

 Database = $db.Name

 FileGroup = $fg.Name

 FileName = $file.FileName | Split-Path -Leaf

 "Size(MB)" = "{0:N2}" -f ($file.Size/1024)

 "UsedSpace(MB)" = "{0:N2}" -f ($file.UsedSpace/1MB)

 }

 $result += $object

 }

Chapter 4

[81]

 }

}

$result |

Format-Table -AutoSize

A sample result looks like the following screenshot:

We have adjusted the result to make the display a bit more readable. For the
FileName property, we extracted just the actual filename and did not report the
path by piping the FileName property to the Split-Path cmdlet. The -Leaf option
provides the filename part of the full path:

$file.FileName | Split-Path -Leaf

With Size and UsedSpace, we report the value in megabytes (MB). Since the default
sizes are reported in kilobytes (KB), we have to divide the value by 1024. We also
display the values with two decimal places:
"Size(MB)" = "{0:N2}" -f ($file.Size/1024)

"UsedSpace(MB)" = "{0:N2}" -f ($file.UsedSpace/1MB)

If you simply want to get the directory where the primary datafile is stored, you can
use the following command:

$db.PrimaryFilePath

If you want to export the results to Excel or CSV, you simply need to take $result
and instead of piping it to Format-Table, use one of the Export or Convert cmdlets.

Basic SQL Server Administration

[82]

Adding files and filegroups
Filegroups in SQL Server allow for a group of files to be managed together. It is
almost akin to having folders on your desktop to allow you to manage, move, and
save files together.

To add a filegroup, you have to use the Microsoft.SqlServer.Management.Smo.
Filegroup class. Assuming you already have variables that point to your server
instance, you can create a variable that references the database you wish to work
with, as shown in the following snippet:

$dbname = "Registration"

$db = $server.Databases[$dbname]

Instantiating a Filegroup variable requires the handle to the SMO database object
and a filegroup name. We have shown this in the following screenshot:

#code below is a single line

$fg = New-Object "Microsoft.SqlServer.Management.Smo.
 Filegroup" $db, "FG1"

When you're ready to create, invoke the Create() method:

$fg.Create()

Adding a datafile uses a similar approach. You need to identify which filegroup this
new datafile belongs to. You will also need to identify the logical filename and actual
file path of the new file. The following snippet will help you do that:

#code below is a single line

$datafile = New-Object "Microsoft.SqlServer.Management.Smo.DataFile" $fg,
"data4"

$datafile.FileName = "C:\DATA\data4.ndf"

$datafile.Create()

Chapter 4

[83]

You can verify the changes visually in SQL Server Management Studio when you
go to the database's properties. Under Files, you will see that the new secondary file,
data4.ndf, has been added:

If, at a later time, you need to increase any of the files' sizes, you can use SMO
to create a handle to the file and change the Size property. The Size property is
allocated by KB, so you will need to calculate accordingly. After the Size property
is changed, invoke the Alter() method to persist the changes. The following is an
example snippet to do this:

$db = $server.Databases[$dbname]

$fg = $db.FileGroups["FG1"]

$file = $fg.Files["data4"]

$file.Size = 2 * 1024 #2MB

$file.Alter()

Basic SQL Server Administration

[84]

Listing the processes
SQL Server has a number of processes in the background that are needed for a
normal operation. The SMO server class can access the list of processes by using the
method EnumProcesses(). The following is an example script to pull current non-
system processes, the programs that are using them, the databases that are using
them, and the account that's configured to use/run them:

Import-Module SQLPS -DisableNameChecking

#current server name

$servername = "ROGUE"

$server = New-Object "Microsoft.SqlServer.Management.Smo.Server"
$servername

$server.EnumProcesses() |

Where-Object IsSystem -eq $false |

Select-Object Spid, Database,

IsSystem, Login, Status,

Cpu, MemUsage, Program |

Format-Table -AutoSize

The result that you will get looks like the following screenshot:

You can adjust this script based on your needs. For example, if you only need
running queries, you can pipe it to the Where-Object cmdlet and filter by status.
You can also sort the result based on the highest CPU or memory usage by piping
this to the Sort-Object cmdlet.

Should you need to kill any process, for example when some processes are blocked,
you can use the KillProcess() method of the SMO server object. You will need to
pass the SQL Server session ID (or SPID) to this method:

$server.KillProcess($blockingSpid)

Chapter 4

[85]

If you want to kill all processes in a specific database, you can use the
KillAllProcesses() method and pass the database name:

$server.KillAllProcesses($dbname)

Be careful though. Killing processes should not be done lightly.
Before you kill a process, investigate what the process does, why
you need to kill it, and what potential effects killing it will have
on your database. Otherwise, killing processes could result in
varying levels of system instability.

Checking enabled features
SQL has many features. We can find out if certain features are enabled by using
SMO and PowerShell. To determine this, you need to access the object that owns
that feature. For example, some features are available to be queried once you create
an SMO server object:

Import-Module SQLPS -DisableNameChecking

#current server name

$servername = "ROGUE"

$server = New-Object "Microsoft.SqlServer.Management.Smo.Server"
$servername

$server |

Select-Object IsClustered, ClusterName,

FilestreamLevel,

IsFullTextInstalled,

LinkedServers,

IsHadrEnabled,

AvailabilityGroups

In the preceding script, we can easily find out the following parameters:

• Is the server clustered (IsClustered)?
• Does it support FileStream and to what level (FilestreamLevel)?
• Is FullText installed (IsFullTextInstalled)?
• Are there any configured linked servers in the system (LinkedServers)?
• Is AlwaysOn enabled (IsHadrEnabled) and are any availability groups

configured (AvailabilityGroups)?

Basic SQL Server Administration

[86]

There are also a number of cmdlets available with the SQLPS module that allow you
to manage the AlwaysOn parameter:

Replication can also be managed programmatically using the
Replication Management Objects assembly. More information
can be found at http://msdn.microsoft.com/en-us/
library/ms146869.aspx.

Scripting database objects
Being able to script database objects is a powerful capability. There may be times
when you'll need to have scripts handy, whether for versioning purposes or simply
to provide them to your developers.

SMO largely drives this scripting capability. There is a class called Microsoft.
SqlServer.Management.Smo.Scripter, which can be passed a collection of SMO
objects to script:

$script.Script($smoObjects)

For example, if you need to script all stored procedures, you can add all the stored
procedures into an array and pass this array to the Scripter object. You need to
ensure that you are passing the actual stored procedure object and not just the names.

http://msdn.microsoft.com/en-us/library/ms146869.aspx
http://msdn.microsoft.com/en-us/library/ms146869.aspx

Chapter 4

[87]

The Scripter object also accepts ScriptingOptions. There are a number of options
that can be set. They include the following options:

• DriAll

• DriIndexes

• DriNonClustered

• DriPrimaryKey

• DriUniqueKeys

• Encoding

• SchemaQualify

• ScriptDrops

• ScriptOwner

The complete documentation for all properties that can
be set using the ScriptingOptions object can be
found at http://msdn.microsoft.com/en-us/
library/microsoft.sqlserver.management.smo.
scriptingoptions_properties.aspx.

The following is an example snippet on how you can script all table objects for a
particular database and save the script to a file:

Import-Module SQLPS -DisableNameChecking

#current server name

$servername = "ROGUE"

$server = New-Object "Microsoft.SqlServer.Management.Smo.
 Server" $servername

$dbname = "Chinook"

$db = $server.Databases[$dbname]

$script = New-Object "Microsoft.SqlServer.Management.Smo.
 Scripter" $server

$scriptOptions = New-Object "Microsoft.SqlServer.Management.Smo.
 ScriptingOptions"

$scriptOptions.AllowSystemObjects = $false

$scriptOptions.DriAll = $true

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.scriptingoptions_properties.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.scriptingoptions_properties.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.scriptingoptions_properties.aspx

Basic SQL Server Administration

[88]

$scriptOptions.ToFileOnly = $true

$script.Options = $scriptOptions

$smoObjects = @()

$filename = "C:\DATA\$($dbname)_tables_export.sql"

$script.Options.FileName = $filename

$db.Tables |

Where-Object IsSystemObject -eq $false |

Foreach-Object {

 $smoObjects += $_

}

$script.Script($smoObjects)

Your file will contain the T-SQL statements required to recreate your tables:

Chapter 4

[89]

Should you want to script out all stored procedures, for example, all you need to
do is store all the stored procedures in the $smoObjects array and pass this to the
Script() method:

$smoObjects = @()

$filename = "C:\DATA\$($dbname)_sp_export.sql"

$script.Options.FileName = $filename

$db.StoredProcedures |

Where-Object IsSystemObject -eq $false |

Foreach-Object {

 $smoObjects += $_

}

$script.Script($smoObjects)

If you need to copy the whole database using SMO, you can use the Microsoft.
SqlServer.Management.SMO.Transfer class. To instantiate this, you are required
to pass in an SMO database object along with the database you want to copy:

#code below is a single line

$transfer = New-Object -TypeName Microsoft.SqlServer.Management.SMO.
Transfer -ArgumentList $sourcedatabase

This SMO Transfer object has a number of option properties attached to it, similar
to what you can find in the ScriptingOptions class. Once you've set your options,
you can create just the script that transfers the database objects by using the
ScriptTransfer() method, or you can choose to do the actual transfer, including
data, using the TransferData() method. You can learn more about the SMO
transfer class at http://msdn.microsoft.com/en-us/library/microsoft.
sqlserver.management.smo.transfer.aspx.

Be careful about copying whole databases via SMO scripting, though. This could
place a lot of load in your source system, especially when you are dealing with
databases that have a lot of objects and/or data.

Attaching and detaching databases
Attaching and detaching databases can also be done programmatically using
SMO. The SMO server object provides methods that allow you to perform this
task quite simply.

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.transfer.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.transfer.aspx

Basic SQL Server Administration

[90]

Detaching databases
Before you detach a database, you must first check for a few conditions that might
prevent the database from being detached. For example, if the database is currently
being replicated or if the database has some existing snapshots, the database cannot
be detached. Once these conditions are cleared, you can use the DetachDatabase()
method to detach the database. The following is an example snippet:

Import-Module SQLPS -DisableNameChecking

#current server name

$sourcename = "ROGUE"

$sourceserver = New-Object "Microsoft.SqlServer.Management.Smo.Server"
$sourcename

$dbname = "Chinook"

$sourceserver.DetachDatabase($dbname, $true, $true)

Once this script has executed, you can confirm in SSMS whether the database has
indeed been detached from the instance. Attaching the database requires a few more
steps than detaching it. Firstly, you will need to check what files are required before
you can attach and copy these files to your destination folder or server. In many
cases, you will have more than just the primary datafile to attach. If you already
know which files need to be attached, you can certainly hardcode each of those files
in your script. However, it would be ideal if we can extract this information instead.

To find out which files are involved, you can pass the current mdf file to the
EnumDetachedDatabaseFiles() and EnumDetachedLogFiles() methods:

$sourceserver.EnumDetachedDatabaseFiles($mdf)

$sourceserver.EnumDetachedLogFiles($mdf)

These methods will identify all data and logfiles related to the mdf file. You
will need to store all of the file information that these two methods return
in a StringCollection object. This collection can, in turn, be passed to the
AttachDatabase() method of the SMO server object to complete the database
attachment. The following is an example script that accomplishes the task:

Import-Module SQLPS -DisableNameChecking

#current server name

$destinationname = "ROGUE\SQL2014"

Chapter 4

[91]

$destinationserver = New-Object "Microsoft.SqlServer.Management.Smo.
Server" $destinationname

$destinationserver.Name

$dbname = "Chinook"

$mdf = "C:\DATA\Chinook.mdf"

#this is where we will store all primary, secondary

#and log file information

$files = New-Object System.Collections.Specialized.StringCollection

#assuming we need the attach process to point to

#a different path than what's stored in the mdf

#we can specify a data path, and rebuild all the

#paths before we store in our collection

$datapath = "C:\DATA"

#collect all data file information

$sourceserver.EnumDetachedDatabaseFiles($mdf) |

ForEach-Object {

 #update location of file to new path

 $newfile = Join-Path $datapath (Split-Path $_ -Leaf)

 $files.Add($newfile)

}

#collect all log file information

$destinationserver.EnumDetachedLogFiles($mdf) |

ForEach-Object {

 #update location of file to new path

 $newfile = Join-Path $datapath (Split-Path $_ -Leaf)

 $files.Add($newfile)

}

$destinationserver.AttachDatabase($dbname, $files)

Basic SQL Server Administration

[92]

A number of options are also available to attach AttachOptions, which you can
pass to the AttachDatabase() method. If you are using the ISE, an autocomplete
dropdown appears once you type in [Microsoft.SqlServer.Management.Smo.
AttachOptions]::, and it allows you to choose which options you need when
attaching your database:

Backing up and restoring databases
Backing up and restoring can be accomplished using SQL Server Management
Objects (SMO) or by using the cmdlets available in the SQLPS module. As there are
cmdlets available, in this section, we will focus on how to use these cmdlets.

Backing up
The Backup-SqlDatabase cmdlet that comes with the SQLPS modules allows
you to perform database backups using different options. When you run Get-
Help Backup-SqlDatabase, you should get a full list of syntax and examples. The
options you get with this cmdlet are similar to the options you have with the BACKUP
DATABASE T-SQL command. The following is an example script that performs a full
database backup on a timestamped backup file:

Import-Module SQLPS -DisableNameChecking

#current server name

$servername = "ROGUE"

#$server = New-Object "Microsoft.SqlServer.Management.Smo.
 Server" $servername

Chapter 4

[93]

$dbname = "Chinook"

$currdate = Get-Date -Format yyyyMMddHHmmss

$backupfolder = "C:\BACKUP\"

#generate backup file path and name

$fullbackupfilename = "$($dbname)_Full_$($currdate).bak"

$fullbackupfile = Join-Path $backupfolder $fullbackupfilename

#example filename that gets generated is:

#C:\BACKUP\Chinook_Full_20141023235306.bak

Backup-SqlDatabase -ServerInstance $servername
 -Database $dbname -BackupFile $fullbackupfile -Checksum
 -Initialize -BackupSetName "$dbname Full Backup"

Write-Output "Database has been backed up $fullbackupfile"

Creating a differential backup using the Backup-SqlDatabase cmdlet is not much
different from a full backup, with the exception of the -Incremental option:

$diffbackupfilename = "$($dbname)_Diff_$($currdate).bak"

$diffbackupfile = Join-Path $backupfolder $diffbackupfilename

Backup-SqlDatabase -ServerInstance $servername -Database $dbname -
 BackupFile $diffbackupfile -Incremental -Checksum -Initialize -
 BackupSetName "$dbname Diff Backup"

Write-Output "Database has been backed up $diffbackupfile"

A transaction log backup requires a different BackupAction value:

$logbackupfilename = "$($dbname)_Log_$($currdate).trn"

$logbackupfile = Join-Path $backupfolder $logbackupfilename

Backup-SqlDatabase -ServerInstance $servername -Database $dbname -
 BackupFile $logbackupfile -BackupAction Log -Checksum -Initialize -
 BackupSetName "$dbname Txn Backup"

Write-Output "Database has been backed up $logbackupfile"

Basic SQL Server Administration

[94]

The Backup-SqlDatabase cmdlet also supports the -Script option, which generates
the T-SQL equivalent of the backup command that you have specified. The following
example displays this:

Backup-SqlDatabase -ServerInstance $servername -Database $dbname -
 BackupFile $logbackupfile -BackupAction Log -Checksum -Initialize -
 BackupSetName "$dbname Txn Backup" -Script

The preceding script will display the following output:

BACKUP LOG [Chinook] TO DISK =
 N'C:\BACKUP\Chinook_Log_20141023235841.trn' WITH NOFORMAT, INIT,
 NAME = N'Chinook Txn Backup', NOSKIP, REWIND, NOUNLOAD, STATS =
 10, CHECKSUM

GO

To check the backup sets in a backup file, similar to what RESTORE HEADERONLY does
in T-SQL, you have to use an SMO restore object. It supports some methods that pull
the backup metadata. You will have to add the files to the SMO Restore object using
the AddDevice() method:

$restore.Devices.AddDevice($backupfile,
 [Microsoft.SqlServer.Management.Smo.DeviceType]::File)

The following is an example script that retrieves the backup header information:

Import-Module SQLPS -DisableNameChecking

#current server name

$servername = "ROGUE"

$server = New-Object "Microsoft.SqlServer.Management.Smo.
 Server" $servername

$dbname = "Chinook"

$restore = New-Object "Microsoft.SqlServer.Management.Smo.Restore"

$backupfile = "C:\BACKUP\Chinook_Full_20141023235841.bak"

$restore.Devices.AddDevice($backupfile,
 [Microsoft.SqlServer.Management.Smo.DeviceType]::File)

$restore.ReadBackupHeader($server)

Chapter 4

[95]

The result of the preceding script looks like the following screenshot:

If you want to check out the file list, you can use the following command:

$restore.ReadFileList($server) |

Select Type, LogicalName, PhysicalName, FileGroupName, Size

This will give you the files involved in that database backup, as shown in the
following screenshot:

Basic SQL Server Administration

[96]

If you want to get the information about the media header, you can use the
ReadMediaHeader() method:

$restore.ReadMediaHeader($server)

This will provide you with all the media metadata, as shown in the following
screenshot:

Restoring
As with the Backup-SqlDatabase cmdlet, the best way to get to know the Restore-
SqlDatabase cmdlet is to use the Get-Help method. It supports a number of
parameter sets, with options similar to the RESTORE DATABASE T-SQL command.
Before you restore a database, you will need to find and figure out which database
files you want to restore.

To restore a single full backup file, and leave the database in the Restoring state,
you can use the following script as a reference:

Import-Module SQLPS -DisableNameChecking

#current server name

$servername = "ROGUE"

$dbname = "Chinook"

$backupfile = "C:\BACKUP\Chinook_Full_20141023235841.bak"

Chapter 4

[97]

#code below is a single line

Restore-SqlDatabase -Database $dbname -ReplaceDatabase -
 ServerInstance $servername -BackupFile $backupfile -NoRecovery

If the database files need to be relocated to a different folder, use the -Relocate file
option. To restore a differential file on top of this Chinook database in the previous
example, specify the differential backup file. If you plan to restore more transaction
log backup files after this, you can keep the -NoRecovery option:

$backupfile = "C:\BACKUP\Chinook_Diff_20141023235841.bak"

Restore-SqlDatabase -Database $dbname -ReplaceDatabase -ServerInstance
$servername -BackupFile $backupfile -NoRecovery

To restore to a point in time, you can restore your transaction log backup file and
specify the -TopPointInTime parameter:

$backupfile = "C:\BACKUP\Chinook_Log_20141023235841.trn"

Restore-SqlDatabase -Database $dbname -ReplaceDatabase -
 ServerInstance $servername -BackupFile $backupfile
 -ToPointInTime "2014-10-23 23:58:42"

If you are restoring multiple files, you will need to use the Restore-SqlDatabase
cmdlet for each file, ensuring a -NoRecovery option until you have restored the last
file. As you need to iterate over a number of files, you can integrate other PowerShell
cmdlets such as Get-ChildItem, Sort-Object, and Foreach-Object:

Get-ChildItem $dir -Filter *.bak |

Sort-Object -Property CreationTime |

Foreach-Object{

 #do the restore here

}

Reorganizing or rebuilding indexes
Indexes are structures that can help speed up your queries. You can list all the
indexes in your database tables and provide additional information such as the
name, type, and fragmentation. To get all the indexes, you will have to get a handle
to each table and access the Indexes property:

$table.Indexes

Basic SQL Server Administration

[98]

Each index, in turn, has its own methods and properties. Some properties that
you may be interested in are Name, IndexType, Pages, FillFactor, PadIndex,
and SpaceUsed. It also has a method EnumFragmentation(), which retrieves the
current fragmentation value. Here is an example script to retrieve indexes and some
properties, including fragmentation information:
Import-Module SQLPS -DisableNameChecking

#current server name

$servername = "ROGUE"

$server = New-Object "Microsoft.SqlServer.Management.Smo.
 Server" $servername

$dbname = "Chinook"

$result = @()

$db = $server.Databases[$dbname]

$db.Tables |

ForEach-Object {

 $table = $_

 $table.Indexes |

 Sort-Object -Property Name |

 ForEach-Object {

 $index = $_

 $frag = $index.EnumFragmentation()

 $object = [PSCustomObject] @{

 Table = $table.Name

 Index = $index.Name

 Type = $frag.IndexType

 Pages = $frag.Pages

 "AvgFragmentation %" = "{0:N2}" -f ($frag.AverageFragmentation)

 "SpaceUsed(KB)" = $index.SpaceUsed

 }

 $result += $object

 }

}

$result |

Format-Table

Chapter 4

[99]

Your result will look similar to the following screenshot:

After you identify the indexes, you might need to do some house cleaning by way
of rebuilding or reorganizing your indexes. Typically, you consider fragmentation
percentage with the number of pages. There are some rough guidelines, but your
mileage might vary, so you should benchmark and see what numbers are right for
your environment.

Let's assume you want to reorganize indexes if fragmentation is between 10 and
30 percent, and with at least 1000 pages. If fragmentation exceeds 30 percent and
pages are at least 1000, you want to reorganize. The following snippet will help you
accomplish this task:

#$indexFrag is an object resulting from EnumFragmentation()

if ($indexFrag.AverageFragmentation -ge 10 -and
 $indexFrag.AverageFragmentation -le 30 -and $indexFrag.Pages
 -ge 1000)

{

 $index.Reorganize()

}

elseif ($indexFrag.AverageFragmentation -ge 30 -and
 $indexFrag.Pages -ge 1000)

{

 $index.Rebuild()

}

Basic SQL Server Administration

[100]

Managing logins, users, and permissions
PowerShell and SMO can help pull a list of SQL Server logins, database users, and
permissions. Since a login is an instance-level object, you can use the SMO Server
object to pull information about every login registered in your instance. You can also
list all the server roles this login belongs to, as shown in the following snippet:

Import-Module SQLPS -DisableNameChecking

#current server name

$servername = "ROGUE"

$server = New-Object "Microsoft.SqlServer.Management.Smo.Server"
$servername

$result = @()

$server.Logins |

Where-Object IsSystemObject -EQ $false |

ForEach-Object {

 $login = $_

 $object = [pscustomobject] @{

 Login = $login.Name

 LoginType = $login.LoginType

 CreateDate = $login.CreateDate

 ServerRoles = $login.ListMembers()

 }

 $result += $object

}

$result |

Format-Table -AutoSize

Chapter 4

[101]

A sample output is provided in the following screenshot:

Each SMO login object also has access to additional methods such as
EnumCredentials() and EnumDatabaseMappings(). To list all database users, we
need to iterate over all the databases in the server or only in the database you want
to query. An SMO user object has properties such as Name, UserType, Login, and
LoginType, which will allow us to get all the database mappings. If you want to
identify orphaned users in your database, simply check the UserType property.
A value of NoLogin indicates an orphaned user:

Import-Module SQLPS -DisableNameChecking

#current server name

$servername = "ROGUE"

$server = New-Object "Microsoft.SqlServer.Management.Smo.
 Server" $servername

$result = @()

$server.Databases |

Where-Object IsSystemObject -EQ $false |

ForEach-Object {

 $db = $_

 $db.Users |

 Where-Object IsSystemObject -eq $false |

 ForEach-Object {

 $dbuser = $_

 $object = [PSCustomObject] @{

 Database = $db.Name

 DBUser = $dbuser.Name

 Orphaned = if ($dbUser.UserType -eq "NoLogin")
 {"Yes"} else {"No"}

Basic SQL Server Administration

[102]

 Login = $dbuser.Login

 LoginType = $dbUser.LoginType

 }

 $result += $object

 }

}

$result |

Format-Table -AutoSize

What you will get is the list of database users and the logins that they map to:

Permissions
It is also important to keep tabs of what permissions have been issued to your
database users. Using the same Users property of your SMO database object, you
can list the objects and permissions that have been issued, including the type, that is,
grant, deny, or revoke:

Import-Module SQLPS -DisableNameChecking

#current server name

$servername = "ROGUE"

$dbname = "Chinook"

$server = New-Object "Microsoft.SqlServer.Management.Smo.
 Server" $servername

$result = @()

$server.Databases |

Where-Object IsSystemObject -EQ $false |

Where-Object Name –eq $dbname |

ForEach-Object {

 $db = $_

Chapter 4

[103]

 $db.Users |

 Where-Object IsSystemObject -eq $false |

 ForEach-Object {

 $dbuser = $_

 $object = [PSCustomObject] @{

 Database = $db.Name

 DBUser = $dbuser.Name

 Orphaned = if ($dbUser.UserType -eq "NoLogin")
 {"Yes"} else {"No"}

 Login = $dbuser.Login

 LoginType = $dbUser.LoginType

 DBRoles = $dbuser.EnumRoles()

 ObjectPermissions = ($db.EnumObjectPermissions
 ($dbuser.Name) | SELECT @{N="P";E={$_.ObjectName + " " +
 $_.PermissionState + " " + $_.PermissionType }})

 }

 $result += $object

 }

}

$result |

Format-List

What you will get will look similar to the following screenshot:

We can improve the formatting of the object permissions. If we want, we can list the
permissions for each database user by using the EnumObjectPermissions() method
and piping the results to a Select-Object cmdlet. This will provide a tabular view
of the permissions, one permission per line:

$db.EnumObjectPermissions($dbuser.Name) |

Select-Object ObjectName, PermissionState, PermissionType |

Format-Table -AutoSize

Basic SQL Server Administration

[104]

The result will look like the following screenshot:

Adding a login
A login is an instance-level principal. To access an instance's logins, we can use
the SMO server variable. To add a new login using SMO, we have to first create a
Microsoft.SqlServer.Management.Smo.Login object. We then have to identify what
type of login it is. This can be specified using the Microsoft.SqlServer.Management.
Smo.LoginType enumeration. There are five valid values, which are listed as follows:

• AsymmetricKey

• Certificate

• SqlLogin

• WindowsGroup

• WindowsUser

Anytime you need to enter the password, you can use the Read-Host cmdlet, so you
don't have to hardcode it in your script. Instead, you are prompted on the fly. You
can also use the -AsSecureString to mask the entered password. After you have all
this information, you can call the login's Create() method. Here is an example script
that adds a new SQL login called kurapika:

Import-Module SQLPS -DisableNameChecking

#current server name

$servername = "ROGUE"

$server = New-Object "Microsoft.SqlServer.Management.Smo.
 Server" $servername

$loginname = "kurapika"

Chapter 4

[105]

#for this example, we will check if login exists

#and if it does we will drop it

if ($server.Logins.Contains($loginname))

{

 $server.Logins[$loginname].Drop()

}

$login = New-Object "Microsoft.SqlServer.Management.Smo.
 Login" $server, $loginname

$login.LoginType = [Microsoft.SqlServer.Management.Smo.LoginType]::
 SqlLogin

$login.PasswordExpirationEnabled = $false

#prompt for password

$password = Read-Host "Password: " -AsSecureString

$login.Create($password)

You can confirm this in SQL Server Management Studio by navigating to
Security | Logins, or by re-running the prior script that lists the logins:

To add this login to a server-level role, you can use the AddToRole() method and
specify the server role:

#add to server roles

$server.Logins[$loginname].AddToRole("dbcreator")

Basic SQL Server Administration

[106]

To confirm this in SQL Server Management Studio, open the login's properties and
check the Server Roles page:

Adding database users
In addition to adding and managing logins, you can also add and manage database
users using PowerShell and SMO using the Microsoft.SqlServer.Management.
Smo.User object. A database user needs to be mapped to a valid login, which can be
set using the Login property of the SMO user object. Similar to the login creation,
once all this information has been provided, you can invoke the Create() method of
the SMO user object to persist the changes:

#add database mapping

$dbname = "Chinook"

$dbusername = "kurapika"

$db = $server.Databases[$dbname]

if ($db.Users.Contains($dbusername))

{

 $db.Users[$dbusername].Drop()

}

Chapter 4

[107]

$dbuser = New-Object "Microsoft.SqlServer.Management.Smo.
 User" $db, $dbusername

$dbuser.Login = $loginname

$dbuser.Create()

To confirm the task just performed in SQL Server Management Studio, go to the
Security folder of the database you used, and confirm whether the user exists in
the list:

To add this database user to a database role, you can use the SMO database's Roles
property to specify the database role and its AddMember() method to add the
database user:

#add database role

$db.Roles["db_datareader"].AddMember($dbuser.Name)

Basic SQL Server Administration

[108]

You can confirm this change by opening the database user's properties in SQL
Server Management Studio and going to the Membership page:

You can also assign specific permissions to your database users. This will require
creating a Microsoft.SqlServer.Management.Smo.ObjectPermissionSet object
and adding the specific permissions. The permission that you add has to be a valid
Microsoft.SqlServer.Management.Smo.ObjectPermission enumeration value.
You can check out all the permissible values from http://msdn.microsoft.com/en-
us/library/microsoft.sqlserver.management.smo.objectpermission.aspx.

Once the permission is set up, you can use a specific database object's Grant(),
Deny(), or Revoke() method to complete the assignment:

#initial permission is View Definition

$permissionset = New-Object "Microsoft.SqlServer.Management.Smo.
ObjectPermissionSet"
 ([Microsoft.SqlServer.Management.Smo.ObjectPermission]::
 ViewDefinition)

#add additional permission: Alter

$permissionset.Add([Microsoft.SqlServer.Management.Smo.
 ObjectPermission]::Alter)

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.objectpermission.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.objectpermission.aspx

Chapter 4

[109]

#add permission set to the database view vwAlbums

$db.Views["vwAlbums"].Grant($permissionset, $dbuser.Name)

You can confirm this in SQL Server Management Studio by going to the database
user's properties and checking out the Securables page:

Policies
We can check out policies in a SQL Server instance as well, by using PowerShell.
Instead of using SMO, we can use the SQLSERVER PSDrive. You can first change your
location to the SQLPolicy node:

Set-Location "SQLSERVER:\SQLPolicy\YourSqlServerMachineName"

Basic SQL Server Administration

[110]

You can use dir or Get-ChildItem to navigate to the available instances:

Change the location to the instance you are working with. When you list the current
items, you should find all the policy-related objects:

If you navigate to Policies, you will be able to see all the policies that are currently
installed in the instance (if you have any already installed):

There are more properties and methods to a Policy object, so you can use the
Get-Member cmdlet to explore. Just before the list of properties and methods, you
should also find that each policy is a Microsoft.SqlServer.Management.Dmf.
Policy object. Knowing this information will enable you to work with policies
programmatically, the same way we've used SMO in previous sections:

Chapter 4

[111]

To invoke a policy, you can use the Invoke-PolicyEvaluation cmdlet. While you
are still in the Policies node, you can choose one or multiple policies and pipe them
to the Invoke-PolicyEvaluation cmdlet:

Get-Item "Trustworthy Database" |
 Invoke-PolicyEvaluation –TargetServerName "ROGUE"

You should get immediate feedback as shown in the following screenshot after you
execute the preceding line:

Managing jobs
You can list information on the current job server and the related jobs. Once the SMO
server is set up, you can list the properties by using the following command:

$server.JobServer | Select-Object *

Basic SQL Server Administration

[112]

A long list of properties will be displayed. A partial list looks like the following
screenshot:

Notice that information on the job server includes the service account, job categories,
alerts, operators, jobs, proxy accounts, and shared schedules.

To list details about the jobs, you can use the same JobServer object and iterate over
all the jobs in that collection. Each SMO Job object contains information about the job
name, last run date, last run outcome, and each step's individual outcome. A sample
script that lists the job details is as follows:

Import-Module SQLPS -DisableNameChecking

#current server name

$servername = "ROGUE" # or localhost

$server = New-Object "Microsoft.SqlServer.Management.Smo.Server"
$servername

$result = @()

Chapter 4

[113]

$server.JobServer.Jobs |

Foreach-Object {

 $job = $_

 $job.JobSteps |

 ForEach-Object {

 $jobstep = $_

 $object = [PSCustomObject] @{

 Name = $job.Name

 LastRunDate = $job.LastRunDate

 LastRunOutcome = $job.LastRunOutcome

 Step = $jobstep.Name

 LastStepOutcome = $jobstep.LastRunOutcome

 }

 $result += $object

 }

}

$result |

Format-Table

Your result will look like the following screenshot:

Should you want to display more columns, you might need to pass the $result
variable to Format-List instead of Format-Table. Otherwise, Format-Table will
not be able to display the complete details. Notice from the preceding screenshot
that some fields have been truncated and replaced by multiple dots (…) to signify that
they are incompletely displayed.

Basic SQL Server Administration

[114]

Summary
Many SQL Server administration tasks can be accomplished using PowerShell.
In this chapter, we covered tasks ranging from listing databases and files, attaching
and detaching databases, monitoring and managing logins and users, to checking
jobs and invoking policies.

The SQLPS module comes with some cmdlets that can be used, for example
Backup-SqlDatabase and Restore-SqlDatabase, as well as a number of cmdlets
related to AlwaysOn. However, the number of cmdlets in SQLPS is still quite few.
Often, accomplishing tasks more effectively via scripting will require you to use
SMO, especially for tasks where appropriate cmdlets are not available.

In the next chapter, we will explore different ways to send queries to SQL Server
via PowerShell.

Querying SQL Server
with PowerShell

We can query SQL Server from within PowerShell. This chapter illustrates different
ways in which we can send and execute queries in SQL Server using PowerShell, and
also evaluate when it is appropriate to use this method to do the job.

The topics that will be covered in this chapter are as follows:

• To PowerShell or not to PowerShell
• Sending queries to SQL Server
• Fixing orphaned users
• Getting fragmentation data
• Backing up and restoring databases
• Exporting data using bcp

To PowerShell or not to PowerShell
The great debate is—why would you use PowerShell to send queries to SQL Server?
This is a valid question. What is important to understand is that PowerShell is yet
another tool that can help you perform certain tasks. However, by no means is
PowerShell the only tool, nor is PowerShell the best tool for all cases.

As a rule of thumb, it is best to use native, set-based T-SQL statements when possible.
When you use SMO or ADO.NET, be aware that you are adding one more layer of
translation before the query gets to SQL Server, which may not always be efficient.

Querying SQL Server with PowerShell

[116]

Running the T-SQL scripts from PowerShell could be useful, especially when it is
part of a bigger PowerShell scripting solution. For example, it is useful if you are
integrating this into an automation solution between SharePoint, Active Directory,
Exchange, and SQL Server, like a script that automatically builds a SharePoint farm.
Let's look at a few more cases.

Creating databases and tables would be simpler and faster if done directly in SQL
Server, as with creating SQL Server Agent jobs or policies. If you wrap this in
PowerShell code, you will end up with a lot of code, and perhaps be less efficient.

If you are sending queries to multiple servers, where the values for parameters are
coming from a file, then PowerShell may be a good solution. If you are collecting
metrics and exporting these to a file or even back to SQL Server, PowerShell may still
be a good candidate.

Sending queries to SQL Server
Querying is a typical task we do with SQL Server. Normally we would open SQL
Server Management Studio (SSMS) and type and execute our queries from there. If
we are using PowerShell, that routine needs to be slightly adjusted. The few ways we
can send queries to SQL Server using PowerShell are as follows:

• SQL Server Management Objects (SMO)
• Invoke-Sqlcmd

• ADO.NET
• Invoke-Expression

SQL Server Management Objects
We have been using SQL Server Management Objects (SMO) for a few chapters
now. Although it's indirect, when we create SMO objects, use properties, and invoke
methods, we are technically sending queries to SQL Server. Let us take the following
snippet, for example:

$servername = "ROGUE" # or localhost

$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.

Server -ArgumentList $servername

$dbname = "TestDB"

$db = New-Object -TypeName Microsoft.SqlServer.Management.Smo.

Database($server, $dbname)

$db.Create()

Chapter 5

[117]

What we are really doing here is connecting to the instance ROGUE and sending a
CREATE DATABASE statement to the server.

The Invoke-Sqlcmd cmdlet
The Invoke-Sqlcmd cmdlet allows you to send most types of queries to SQL Server.
Invoke-Sqlcmd is the cmdlet equivalent to the sqlcmd utility, which is a lightweight
utility that allows you to invoke queries, batch files, and commands. sqlcmd
comes in two flavors: one that is integrated in SSMS and one that can be invoked
from the command.

The one that is integrated from within SSMS can be toggled on or off from the Query
menu item and the SQLCMD Mode option:

Querying SQL Server with PowerShell

[118]

When toggled on, the SQLCMD Mode menu allows for a limited set of the sqlcmd
commands to be entered and invoked from SSMS Query Editor.

See the complete list of the sqlcmd commands supported
in the SSMS Query Editor at http://msdn.microsoft.
com/en-us/library/ms162773.aspx.

For example, !! allows you to execute any operating system commands. You will also
notice that once the command is recognized, the whole line becomes shaded in gray:

The other flavor of sqlcmd is one that is invoked from the command prompt. You
can open up the command prompt and type in sqlcmd. Once connected, you can
execute any valid T-SQL statements. If you want the statements to be executed right
away, type the GO terminator after each statement:

http://msdn.microsoft.com/en-us/library/ms162773.aspx
http://msdn.microsoft.com/en-us/library/ms162773.aspx

Chapter 5

[119]

In the example shown in the preceding screenshot, since we haven't provided any
parameters, the connection uses some default values. Invoking sqlcmd without
parameters will attempt to connect to the default SQL Server instance using your
Windows credentials. Your connection will be successful if you indeed have a
default instance and if your Windows credential is mapped to a login in the default
instance. Otherwise, you will receive an error message and will have to provide the
correct values for the parameters.

These are the parameters available for sqlcmd, which you can get by executing the
command sqlcmd /? in the Command Prompt window:

A lot of the parameters listed in the full sqlcmd help result shown in the preceding
screenshot are the same parameters you will see in the Invoke-Sqlcmd cmdlet:

Invoke-Sqlcmd

[[-Query] <String>]

[-AbortOnError]

[-ConnectionTimeout <Int32>]

Querying SQL Server with PowerShell

[120]

[-Database <String>]

[-DedicatedAdministratorConnection]

[-DisableCommands]

[-DisableVariables]

[-EncryptConnection]

[-ErrorLevel <Int32>]

[-HostName <String>]

[-IgnoreProviderContext]

[-IncludeSqlUserErrors]

[-InputFile <String>]

[-MaxBinaryLength <Int32>]

[-MaxCharLength <Int32>]

[-NewPassword <String>]

[-OutputSqlErrors <Boolean>]

[-Password <String>]

[-QueryTimeout <Int32>]

[-ServerInstance <PSObject>]

[-SeverityLevel <Int32>]

[-SuppressProviderContextWarning]

[-Username <String>]

[-Variable <String[]>]

[<CommonParameters>]

Sending a really simple query to the server will take a format similar to the
following command:

Invoke-Sqlcmd -ServerInstance $servername -Database $database -Query
$query

Most of the time, you will have to specify the server and database you are connecting
to, along with your credentials. The parameters you specify will vary depending
on your requirements and configurations. But overall, it's a fairly straightforward
command.

If you encounter issues running Invoke-SqlCmd, with errors indicating that it's not
recognized, this could be the result of processor version incompatibility. You can
try running the 32-bit PowerShell console or ISE to see if this resolves the issue.
The other alternative is explicitly installing the PSProvider DLLs, as described
at http://www.systemcentercentral.com/fix-invoke-sqlcmd-is-not-
recognized-in-powershell-on-windows-8-1-and-2012/.

http://www.systemcentercentral.com/fix-invoke-sqlcmd-is-not-recognized-in-powershell-on-windows-8-1-and-2012/
http://www.systemcentercentral.com/fix-invoke-sqlcmd-is-not-recognized-in-powershell-on-windows-8-1-and-2012/

Chapter 5

[121]

There have been some issues reported with the QueryTimeout
parameter of Invoke-Sqlcmd. The QueryTimeout value is
in seconds and needs to be between 1 and 65535. In SQL Server
2008 and earlier, it has been reported that the QueryTimeout of
0 (which should mean no timeout) is not honored. Check out the
Microsoft Connect item at https://connect.microsoft.
com/SQLServer/feedback/details/551799/invoke-
sqlcmd-querytimeout-0-still-times-out. There are
some workarounds, including a function called Invoke-
Sqlcmd2 provided by Chad Miller, which is also posted in the
Microsoft Connect item.

ADO.NET
It is possible to use ADO.NET within PowerShell to pass queries and commands to
SQL Server. If you have done some ADO.NET with C# or VB.NET, then the code
will look similar, except for the fact that it's in PowerShell.

When using ADO.NET, you are required to use the System.Data.SqlClient class.
Here is an example of how you would connect to SQL Server and retrieve records
from a table:

$conn = New-Object System.Data.SqlClient.SqlConnection

$conn.ConnectionString = "Server=ROGUE;Database=Chinook;
 Integrated Security=True"

$cmd = New-Object System.Data.SqlClient.SqlCommand

$cmd.CommandText = "SELECT * FROM Album"

$cmd.Connection = $conn

$adapter = New-Object System.Data.SqlClient.SqlDataAdapter

$adapter.SelectCommand = $cmd

$dataset = New-Object System.Data.DataSet

$adapter.Fill($dataset)

$conn.Close()

$dataset.Tables[0]

The preceding example uses the SqlDataAdapter class to issue the command and
the DataSet class to capture the results.

https://connect.microsoft.com/SQLServer/feedback/details/551799/invoke-sqlcmd-querytimeout-0-still-times-out
https://connect.microsoft.com/SQLServer/feedback/details/551799/invoke-sqlcmd-querytimeout-0-still-times-out
https://connect.microsoft.com/SQLServer/feedback/details/551799/invoke-sqlcmd-querytimeout-0-still-times-out

Querying SQL Server with PowerShell

[122]

An overview of the features, security, and behavior of SQL Server
and ADO.NET is provided at http://msdn.microsoft.com/
en-us/library/kb9s9ks0(v=vs.110).aspx. To learn more
about populating an ADO.NET DataSet from a DataAdapter,
visit http://msdn.microsoft.com/en-us/library/
bh8kx08z(v=vs.110).aspx.

Using straight up ADO.NET may not be the ideal way to send your queries, since
your script will end up being more code-heavy than it needs to be. If it is doable with
Invoke-Sqlcmd, it may be simpler to use this cmdlet to send your queries. We will
see a number of examples regarding the same later in this chapter.

The Invoke-Expression cmdlet
Yet another alternative to sending queries and commands to SQL Server is the
Invoke-Expression cmdlet. The Invoke-Expression cmdlet syntax is pretty short.
It just requires the command and the parameters:

Invoke-Expression [-Command] <String> [<CommonParameters>] If
you are invoking an executable—for example, the SQL Server bcp utility—the
Invoke-Expression cmdlet can be utilized. A short snippet looks like the following
command:

Invoke-Expression $bcp

In the preceding command, we assume $bcp contains the full command and options
we require when running the bcp (bulk copy) utility. We will discuss this in more
detail later in the chapter.

Sending simple queries to SQL
Server – different variations
To send simple queries to SQL Server, you can use the Invoke-Sqlcmd cmdlet with
the instance name, database name, and query. The query can be wrapped in a here-
string parameter to make it easier to read and edit.

The following is an example that passes a simple SELECT statement to SQL Server
using the current Windows context:

Import-Module SQLPS -DisableNameChecking

$servername = "ROGUE" # or localhost

http://msdn.microsoft.com/en-us/library/kb9s9ks0(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/kb9s9ks0(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/bh8kx08z(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/bh8kx08z(v=vs.110).aspx

Chapter 5

[123]

$database = "Chinook"

#query inside a here-string

$query = @"

SELECT

 TOP 10 *

FROM

 dbo.Album

"@

#if not providing username and password

#then uses current context

Invoke-Sqlcmd -ServerInstance $servername -Database
 $database -Query $query | Format-Table

The results will be displayed on the PowerShell console as shown in the following
screenshot:

If you need to use a SQL login, you should supply values to the Username and
Password parameters as well. If you want to capture the results in a file, you can
pipe the command to an Out-File cmdlet:

Invoke-Sqlcmd -ServerInstance $servername -Database
 $database -Query $query | Out-File "C:\Temp\results.rpt"

Piping the command to the Out-File cmdlet simply captures the results that were
supposed to be displayed onscreen into the file. However, if you want the results
captured in a formatted format—for example, a comma separated value (CSV)—you
can use an export cmdlet such as Export-Csv:

Invoke-Sqlcmd -ServerInstance $servername -Database $database
 -Query $query | Export-Csv –NoTypeInformation
 –Path "C:\Temp\results.csv"

Querying SQL Server with PowerShell

[124]

We have to specify -NoTypeInformation so that the first line of the CSV file does
not contain metadata about the results. You don't have to hardcode the query in your
script. Invoke-Sqlcmd can get the query from a file as long as it's properly identified
in the InputFile parameter:

Invoke-Sqlcmd -ServerInstance $servername -Database $database -InputFile
$file

The sqlcmd utility supports variables and values can be passed into the query or the
file when sqlcmd is invoked. This capability is also supported in the Invoke-Sqlcmd
cmdlet.

For example, if the input file contains the following script:

SELECT *

FROM Album

WHERE AlbumId = $(AlbumId)

In the preceding script, $(AlbumId) is a variable and the value can be replaced on
execution time. To do this in PowerShell, you have to list the variable and its value
and pass it to Invoke-Sqlcmd using the -Variable parameter:

$variables = "AlbumId = 2"

Invoke-Sqlcmd -ServerInstance $servername -Database
 $database -InputFile $file -Variable $variables

PowerShell really shines when we can start stitching multiple cmdlets together—
in this case, both SQL Server-specific and non-SQL Server-specific cmdlets. For
example, we can have a list of servers in a text file. With PowerShell, it is fairly easy
to read the contents of this text file using the Get-Content cmdlet. We can then
iterate through this list using the ForEach-Object cmdlet and execute a query (or
multiple queries) to each of the instances.

Here is a simple example that illustrates sending a query to multiple servers:

#get a list of instances from a file

$file = "C:\Temp\servers.txt"

#execute query to multiple instances

Get-Content $file |

ForEach-Object {

 Invoke-Sqlcmd -ServerInstance $_ -Database $database
 -Query $query

}

Chapter 5

[125]

What if you want to not just display results, but also capture the results so you can
work with the returned rows? With PowerShell, you can store the results in a variable:

$variables = "AlbumId = 2"

$results = Invoke-Sqlcmd -ServerInstance $servername -Database $database
-InputFile $file -Variable $variables

If we pipe this variable to Get-Member, we will discover that the data type it takes on
is System.Data.DataRow. The same is displayed in the following screenshot:

What we will also see, as we scroll down the list of properties, is that the columns of
the result set are converted into properties. In the following screenshot, you will see
AlbumId, ArtistId, and Title as properties:

This is good news, because this tells us we can easily access the columns by treating
them as properties. To work on each record in the result set, you can pipe the results
variable into a ForEach-Object cmdlet. Here is a starter snippet you can use:

$results |

ForEach-Object {

 #get current row

 $row = $_

 #get the title

Querying SQL Server with PowerShell

[126]

 $row.Title

 #your other code here

}

Fixing orphaned users
In Chapter 4, Basic SQL Server Administration, we talked about how we can list
orphaned users in SQL Server. An orphaned user is a database user that is no longer
mapped to a valid instance login. Using SMO, you may be tempted to do something
like the following snippet:

#unfortunately this doesn't work

$user.Login = "JDoe";

$user.Alter();

$user.Refresh();

In the preceding script, we are simply assigning a new login to an SMO database
user object and invoking the Alter() method. Syntactically and logically, this
should work. However, it doesn't. In this case, we will need to resort to sending an
actual ALTER T-SQL command to SQL Server to fix an orphaned user. The snippet
that can accomplish this task is as follows:

$username = "kurapika"

$query = @"

 ALTER USER $($username)

 WITH LOGIN = $($login)

"@

Invoke-Sqlcmd -ServerInstance $server -Database
 $database -Query $query

Once this code finishes executing, you can verify that the database user has indeed
been mapped to the login you specified.

Chapter 5

[127]

Getting fragmentation data
In a previous chapter, we listed fragmentation information using the
EnumFragmentation() method. Using the EnumFragmentation() method can be
quite slow. An alternative to using this method is using the Dynamic Management
Views (DMVs) and the Dynamic Management Functions (DMFs) related to
fragmentation. The following is an example of using the DMF dm_db_index_
physical_stats() to query the average fragmentation for all indexes in a database:

Import-Module SQLPS -DisableNameChecking

#current server name

$servername = "ROGUE"

$database = "Chinook"

$query = @"

SELECT

 OBJECT_NAME(phys_stats.OBJECT_ID) AS [Object],

 idx.name AS [Index Name],

 phys_stats.index_type_desc [Index Type],

 phys_stats.avg_fragmentation_in_percent [Fragmentation %],

 phys_stats.page_count [# Pages]

FROM

 sys.dm_db_index_physical_stats(DB_ID(),NULL, NULL, NULL ,
 N'LIMITED') AS phys_stats

 INNER JOIN sys.indexes AS idx WITH (NOLOCK)

 ON phys_stats.[object_id] = idx.[object_id]

 AND phys_stats.index_id = idx.index_id

WHERE

 phys_stats.database_id = DB_ID()

ORDER BY

 phys_stats.avg_fragmentation_in_percent DESC;

"@

Invoke-Sqlcmd -ServerInstance $servername -Database $database
 -Query $query | Format-Table -AutoSize

Querying SQL Server with PowerShell

[128]

A sample result provides the object name, index name, type, fragmentation
percentage, and number of index pages:

When managing your databases, it's important to know these metrics so that you
can selectively pick indexes that need to be reorganized, rebuilt, or left alone. As
a rule of thumb, you want to reorganize indexes with at least 10 to 30 percent age
fragmentation and at least a certain number of pages. You can start with at least 1000
pages, and, as you monitor your environment, you may vary this number.

Backing up and restoring databases
Even backup and restore can be done through Invoke-Sqlcmd. It is just a matter of
passing the actual BACKUP and RESTORE command to Invoke-Sqlcmd. The following
is an example:

Import-Module SQLPS -DisableNameChecking

#current server name

$servername = "ROGUE" # or localhost

$database = "Chinook"

$query = @"

BACKUP DATABASE Chinook

TO DISK='Z:\Backups\Chinook.bak'

WITH

 FORMAT,

 COMPRESSION

"@

Chapter 5

[129]

#code below in one line

Invoke-Sqlcmd -ServerInstance $servername -Database $database
 -Query $query

Although this is possible, it would be more elegant to use the Backup-SqlDatabase
and Restore-SqlDatabase cmdlets (which were discussed in Chapter 4, Basic SQL
Server Administration) since these are already provided with the SQLPS module.

Exporting data using bcp
SQL Server has a number of command prompt utilities that assist with
database operations. All of these can be invoked from PowerShell using the
Invoke-Expression cmdlet.

bcp is a well-known utility that allows for the fast import and export of data. The
data transfer can be fairly straightforward; for example, if taking all the records from
a table to a CSV file. It could also be more complex, which will require supplying a
format file to specify the structure of the data. If we wanted to export all the records
from the Album table in the Chinook database using a trusted connection with
character data type, the bcp command will look like the following:

bcp Chinook.dbo.Album out C:\Temp\results.txt -T -c

To do this within PowerShell, we can compose the same command expression and
pass it to Invoke-Expression:

$database = "Chinook"

$schema = "dbo"

$table = "Album"

$filename = "C:\Temp\results.txt"

$bcp = "bcp $($database).$($schema).$($table) out $filename -T -c"

Invoke-Expression $bcp

Once invoked, the following is the result you will see, which is typical of what you
would see from a bcp operation:

Querying SQL Server with PowerShell

[130]

Summary
In this chapter, we looked at different ways of sending queries and commands to
SQL Server using PowerShell. We saw that, in addition to using the cmdlets Invoke-
Sqlcmd and Invoke-Expression, we can also utilize ADO.NET and SMO. We also
learned to that although in most cases we can use PowerShell to query SQL Server,
we have to consider if there are better tools to assist us in accomplishing our task.

In the next chapter, we will look at tasks that help monitor and automate SQL Server,
and see how these are accomplished using PowerShell.

Monitoring and Automating
SQL Server

This chapter covers how SQL Server usage and performance monitoring, logging,
alerting, and error checking can be done with PowerShell. The topics covered in this
chapter include the following:

• Getting to know helpful cmdlets
• Scheduling PowerShell scripts
• Checking logs
• Monitoring failed jobs
• Alerting on disk space usage
• Logging blocked processes
• Getting performance metrics

Getting to know helpful cmdlets
Before we start covering any SQL Server-specific snippets, it's good to identify
cmdlets that are frequently used when you are monitoring and logging any activities.
The cmdlets described in this section are the ones you will (most likely) frequently
use. Remember to use Get-Help to get the full documentation on syntax, parameter
sets, and examples.

Monitoring and Automating SQL Server

[132]

The Send-MailMessage cmdlet
Simply stated, the Send-MailMessage cmdlet allows you to e-mail something from
PowerShell, which is a pretty useful action when you are monitoring something and
want to get some alerts or reports via e-mail. This is the syntax of Send-MailMessage
from TechNet:

Send-MailMessage [-To] <String[]> [-Subject] <String>
 [[-Body] <String>] [[-SmtpServer] <String>] -From <String>
 [-Attachments <String[]>] [-Bcc <String[]>] [-BodyAsHtml]
 [-Cc <String[]>] [-Credential <PSCredential>]
 [-DeliveryNotificationOption <DeliveryNotificationOptions>]
 [-Encoding <Encoding>] [-Port <Int32>]
 [-Priority <MailPriority>] [-UseSsl] [<CommonParameters>]

The ConvertTo-Html cmdlet
When sending e-mail messages, you may want some messages to be formatted in
HTML. This will come in handy when you are e-mailing tables of values within the
e-mail body. Here is one of the parameter sets for ConvertTo-Html from TechNet:

ConvertTo-Html [[-Property] <Object[]>] [[-Head] <String[]>]
 [[-Title] <String>] [[-Body] <String[]>] [-As <String>]
 [-CssUri <Uri>] [-InputObject <PSObject>]
 [-PostContent <String[]>] [-PreContent <String[]>]
 [<CommonParameters>]

The Export-Csv cmdlet
Alternatively, you may want to store some reports in a CSV file and, later on,
either open it in a spreadsheet or import it into a database. When that's the case,
the Export-Csv cmdlet is your friend. It converts your results into comma separated
value (CSV) strings and stores them in a file. The following is the syntax of Export-
Csv from TechNet:

Export-Csv [[-Path] <String>] [[-Delimiter] <Char>]
 -InputObject <PSObject> [-Append] [-Encoding <String>] [-Force]
 [-LiteralPath <String>] [-NoClobber] [-NoTypeInformation]
 [-Confirm] [-WhatIf] [<CommonParameters>]

Chapter 6

[133]

The Write-EventLog cmdlet
If, instead of exporting to a file or sending an e-mail out, you want all the alerts in
your event log, PowerShell offers a cmdlet that allows you to do so. The Write-
EventLog cmdlet allows you to insert an entry into an existing event log on your
system. The source, however, must have been registered already for the event log.
The following is the syntax of Write-EventLog from TechNet:

Write-EventLog [-LogName] <String> [-Source] <String> [-EventId]
 <Int32> [[-EntryType] <EventLogEntryType>] [-Message] <String>
 [-Category <Int16>] [-ComputerName <String>] [-RawData <Byte[]>]
 [<CommonParameters>]

Additional cmdlets
There are a number of other cmdlets that can be used to log or store any information
you collect while monitoring SQL Server. Explore Out-File and Add-Content for
saving data to a file. You can also use Invoke-SqlCmd, especially if you're going to be
storing information in SQL Server tables or sending queries over to your database.

Scheduling PowerShell scripts
Many of the examples covered in this chapter can be run ad hoc. However, to
enable more continuous monitoring, you will need to schedule these scripts to run
regularly. You can use a number of options for scheduling. You can take advantage
of SQL Server Agent and you can create a job that uses either a PowerShell step or
an Operating System (CmdExec) step. Alternatively, you can use Windows Task
Scheduler or vendor-specific schedulers, if they are available to you.

Checking logs
We can use SQL Server Management Objects (SMO) to check the SQL Server error
log. The script that picks out anything in the logs that have the words failed or error
looks like the following:

$content = ($server.ReadErrorLog() |

Where-Object {$_.Text -like "*failed*" -or $_.Text -like "*error*"})

Monitoring and Automating SQL Server

[134]

We can wrap this in code that allows us to send these entries to our DBA (or DBA
team) via e-mail. Sending e-mail in PowerShell can be done using the cmdlet Send-
MailMessage. Send-MailMessage will accept sender and recipient e-mail addresses,
mail server information, subject, content, and, optionally, attachments. The content
can either be in text or HTML format. If you are sending an HTML e-mail, you can
convert the message into HTML by using ConvertTo-Html. Optionally, you can
specify an external CSS with ConvertTo-Html using the -CssUri parameter.

The full script that picks out and e-mails the last 10 entries using a Windows
authenticated local account is as follows:

Import-Module SQLPS -DisableNameChecking

#current server name

$servername = "ROGUE" # or localhost

$server = New-Object "Microsoft.SqlServer.Management.Smo.
 Server" $servername

#get the last 10 error entries, and convert to HTML

$content = ($server.ReadErrorLog() |

Where-Object {$_.Text -like "*failed*" -or $_.Text -like "*error*"
 -or $_.HasErrors -eq $true} |

Select-Object LogDate, ProcessInfo, Text, HasErrors -Last 10 |

ConvertTo-Html)

#email settings

$currdate = Get-Date -Format "yyyy-MM-dd hmmtt"

$smtp = "mail.rogue.local"

$to = "DBA <administrator@rogue.local>"

$from = "DBMail <dbmail@administrator.local>"

$subject = "Last 10 Errors as of $currdate"

#send the email

Send-MailMessage -SmtpServer $smtp -To $to -from $from -Subject
 $subject -Body "$($content)" -BodyAsHtml

Chapter 6

[135]

What you should expect in your mailbox is an e-mail that looks like the following one:

If you want to use a mail server such as Gmail, you will need to adjust your server
and port settings. Most other providers will also use Secure Socket Layer (SSL).
Instead of hardcoding the credentials, you should also prompt for the credentials
using the Get-Credential cmdlet. Here is a sample snippet, with the pertinent
code highlighted:

#email settings

$currdate = Get-Date -Format "yyyy-MM-dd hmmtt"

$smtp = "smtp.gmail.com"

$port = "587"

$to = "recipient@YourDomain.com"

$from = "sender@gmail.com"

$subject = "Last 10 Errors as of $currdate"

Monitoring and Automating SQL Server

[136]

$attachment = "C:\path\to\attachment.txt"

#send the email

#code below should be in a single line

Send-MailMessage -SmtpServer $smtp -port $port -UseSSl -Credential
 (Get-Credential) -To $to -from $from -Subject $subject -Body
 "$($content)" -BodyAsHtml -Attachments $attachment

Monitoring failed jobs
We can monitor and be alerted on failed jobs as well. This is the basic snippet that
gets this information:

$server.JobServer.Jobs |

Where-Object LastRunOutcome -eq "Failed"

In the following sample, we are listing all failed jobs and sending an e-mail report out:

Import-Module SQLPS -DisableNameChecking

#current server name

$servername = "ROGUE"

$server = New-Object "Microsoft.SqlServer.Management.Smo.
 Server" $servername

#get a list of jobs that failed, and convert to HTML

$content = ($server.JobServer.Jobs |

Where-Object LastRunOutcome -eq "Failed" |

Select-Object Name, LastRunDate |

ConvertTo-Html)

#email settings

$currdate = Get-Date -Format "yyyy-MM-dd hmmtt"

$smtp = "mail.rogue.local"

$to = "DBA <administrator@rogue.local>"

$from = "DBMail <dbmail@administrator.local>"

$subject = "Failed Jobs as of $currdate"

Send-MailMessage -SmtpServer $smtp -To $to -from $from -Subject
 $subject -Body "$($content)" -BodyAsHtml

Chapter 6

[137]

The e-mail that gets sent out will look like the following:

Alerting on disk space usage
In this example, we will do something a little bit different from the first two
snippets. Here, we are going to report on disk usage. The basic snippet that gets
this information is as follows:

Get-WmiObject -Class Win32_LogicalDisk -ComputerName $servername

If you want to report on only physical drives, you can add the following filter:

Where-Object DriveType -eq 3

In the e-mail we send out, however, we will add a little bit more formatting. We
can do this by providing an inline CSS in the table we are constructing. In addition
to general formatting, we are also creating a CSS class that we will assign to a row
when that row's free disk space falls below a critical threshold that we assign.

The script is provided here. The script is a little bit long because of the HyperText
Markup Language (HTML) and Cascading Style Sheet (CSS) construction. But
some inline comments have been provided to explain the code:

#current server name

$servername = "ROGUE"

#if free space % falls below this threshold,

#assign CSS class "critical" which makes font red

$criticalthreshold = 10

#inline css for styling

Monitoring and Automating SQL Server

[138]

$inlinecss = @"

<style>

 table

 {

 margin: 0px;

 border: 1px solid #7e7e7e;

 background-color: #fafafa;

 border-collapse: collapse;

 }

 #every other row has different color

 tr:nth-child(even) /* doesnt work in IE8 */

 {

 background-color: #d5e4f4;

 }

 th, td

 {

 width: 100px;

 text-align: left;

 }

 th

 {

 background-color:#a6bdd6;

 font-weight:bold;

 }

 #anything marked as critical is styled bold and red

 .critical, .critical td

 {

 color: red;

 font-weight: bold;

 }

</style>

"@

#construct the html content

$htmlhead = "<head><title>Disk Space Report </title>$($inlinecss)</head>"

$htmlbody = "<body>"

Chapter 6

[139]

$htmlbody += "<p>$($subject)</p>"

#below creates table headers

$htmlbody += "<table><tbody>"

$htmlbody += "<th>Device ID</th>"

$htmlbody += "<th>Size (GB)</th>"

$htmlbody += "<th>Free Space (GB)</th>"

$htmlbody += "<th>Free Space (%)</th>"

#table content is dynamically generated from Get-WmiObject

#here we extract disk usage

#to look only at Local Disk, add filter for DriveType -eq 3

Get-WmiObject -Class Win32_LogicalDisk -ComputerName $servername |

ForEach-Object {

 $disk = $_

 $size = "{0:N1}" -f ($disk.Size/1GB)

 $freespace = "{0:N1}" -f ($disk.FreeSpace/1GB)

 if ($disk.Size -gt 0)

 {

 $freespacepercent = "{0:P0}" -f ($disk.FreeSpace/$disk.Size)

 }

 else

 {

 $freespacepercent = ""

 }

 if ($freespacepercent -ne "" -and $freespacepercent -le
 $criticalthreshold)

 {

 $htmlbody += "<tr class='critical'>"

 }

 else

 {

 $htmlbody += "<tr>"

 }

 $htmlbody += "<td>$($disk.DeviceID)</td>"

 $htmlbody += "<td>$($size)</td>"

 $htmlbody += "<td>$($freespace)</td>"

 $htmlbody += "<td>$($freespacepercent)</td>"

 $htmlbody += "</tr>"

}

Monitoring and Automating SQL Server

[140]

$htmlbody += "</tbody></table></body></html>"

#compose full html content

$htmlcontent = $htmlhead + $htmlbody

#email settings

$currdate = Get-Date -Format "yyyy-MM-dd hmmtt"

$smtp = "mail.rogue.local"

$to = "DBA <administrator@rogue.local>"

$from = "DBMail <dbmail@administrator.local>"

$subject = "Disk Space Report for $servername as of $currdate"

Send-MailMessage -SmtpServer $smtp -To $to -from $from -Subject
 $subject -Body "$($htmlcontent)" -BodyAsHtml

The result looks like the following screenshot. Notice in the following sample that D
drive's free space percentage falls below the threshold we set (which was 10), which
is why the entry is in bold and in red:

Logging blocked processes
In this example, we are going to see log blocking processes in the Windows Event
Log. You will need to ensure that you are running this script with elevated privileges,
that is, as administrator. This is the snippet to check for blocking processes:

$server.EnumProcesses() |

Where-Object IsSystem -eq $false |

Where-Object BlockingSpid -gt 0

Chapter 6

[141]

To log using a custom source, you can add the following block to check if the source
name exists, and, if not, create it:

#check if Event Log source exists, otherwise create

if(!([System.Diagnostics.EventLog]::SourceExists($source)))

{

 New-EventLog -LogName $logname -Source $source

}

The cmdlet that writes to the event log is Write-EventLog, and it requires the log
name, source, event type, event ID, entry type, and message. The following is the
whole script:

Import-Module SQLPS -DisableNameChecking

$logname = "Application"

$source = "SQL Server Custom"

#current server name

$servername = "ROGUE"

$server = New-Object "Microsoft.SqlServer.Management.Smo.
 Server" $servername

$blockedprocesses = $server.EnumProcesses() |

Where-Object IsSystem -eq $false |

Where-Object BlockingSpid -gt 0 |

Select-Object Spid, Database, BlockingSpid,

Login, Status

#check if Event Log source exists, otherwise create

if(!([System.Diagnostics.EventLog]::SourceExists($source)))

{

 Write-Output "Creating a new source"

 New-EventLog -LogName $logname -Source $source

}

#compose message

Monitoring and Automating SQL Server

[142]

$message = "Blocked Process Identified `r`n`r`n" + $blockedprocesses

#write to event log with custom source

Write-EventLog -LogName $logname -Source $source -EventId 1
 -EntryType Warning -Message $message

Once this script runs, and if there are any blocked processes, you should find a
Warning entry in your Windows Event Viewer about a blocked process (as shown
in the following screenshot):

Getting performance metrics
We can also programmatically create Data Collector Sets in Performance Monitor
and choose to start, run, and/or schedule them in PowerShell. We can list all the
counter sets by running the following script, which uses the SMO server object:

#current server name

$servername = "ROGUE" # or localhost

Get-Counter -ComputerName $servername -ListSet * |

Sort-Object CounterSetName |

Select-Object CounterSetName |

Format-Table

Chapter 6

[143]

This will be a long list of counter sets. But some of the typical ones we usually look at
are as follows:

• Memory
• Network Interface
• LogicalDisk
• PhysicalDisk
• Processor

When you go through the list, note that you will also find instance-specific counters.
Here are some of the instance-specific counters I have in my system for my named
instance SQL2014:

• MSSQL$SQL2014:Access Methods
• MSSQL$SQL2014:Availability Replica
• MSSQL$SQL2014:Backup Device
• MSSQL$SQL2014:Batch Resp Statistics
• MSSQL$SQL2014:Broker Activation
• MSSQL$SQL2014:Broker Statistics
• MSSQL$SQL2014:Broker TO Statistics
• MSSQL$SQL2014:Broker/DBM Transport
• MSSQL$SQL2014:Buffer Manager
• MSSQL$SQL2014:Buffer Node
• MSSQL$SQL2014:Catalog Metadata
• MSSQL$SQL2014:CLR
• MSSQL$SQL2014:Cursor Manager by Type
• MSSQL$SQL2014:Cursor Manager Total
• MSSQL$SQL2014:Database Mirroring
• MSSQL$SQL2014:Database Replica
• MSSQL$SQL2014:Databases
• MSSQL$SQL2014:Deprecated Features
• MSSQL$SQL2014:Exec Statistics
• MSSQL$SQL2014:FileTable
• MSSQL$SQL2014:General Statistics
• MSSQL$SQL2014:HTTP Storage
• MSSQL$SQL2014:Latches
• MSSQL$SQL2014:Locks

Monitoring and Automating SQL Server

[144]

If you want to look at the actual counters in each counter set, you can use the Get-
Counter cmdlet:

(Get-Counter -ListSet Memory).Counter

The following screenshot shows a partial view of what you should see:

At this point, you may be overwhelmed with the number of counters we just
looked at. Indeed, there are a lot of counters. But when we are monitoring and
troubleshooting our databases, it is best to know which counters to look at or
focus on when troubleshooting specific issues.

Quest Software, now part of Dell, previously published a poster that identified the
relevant counters for SQL Server, what they mean, and what you should look out for.
At the time of writing of this book, this poster was still available for download. Just
bring up your favorite search engine and look for perfmon counters of interest
or Quest perfmon poster. Either search should yield a link to the PDF version of
the post.

Chapter 6

[145]

Just to give you an idea, this is what the poster looks like at a glance:

Each different section/block represents counters for specific areas. Three sections/
blocks are mentioned for the sake of examples as follows:

• Buffer & Memory Performance Counters
• Workload Performance Counters
• OS CPU & Processor Counters

To create a Data Collector Set in PowerShell, we will have to use a Performance
Logs and Alerts (PLA) DataCollectorSet object. You can read more about
PLA from http://msdn.microsoft.com/en-us/library/windows/desktop/
bb509354%28v=vs.85%29.aspx.

http://msdn.microsoft.com/en-us/library/windows/desktop/bb509354%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/bb509354%28v=vs.85%29.aspx

Monitoring and Automating SQL Server

[146]

PLA DataCollectorSets have some enumerations that we will need to use when
we are programmatically creating Data Collector Sets. We have to familiarize
ourselves with the actual values before we can use them. Here are some of the
available enumerations with partial screenshot-captures from their official TechNet
documentation pages:

• AutoPathFormat enumeration: This enumeration is used for the subdirectory
names/format, which allows you to specify in what format the generated
subdirectory and filenames will be in. For example, plaYearMonth will give
you a format like 201411 for November 2014. The hexadecimal values are the
actual values of the enumeration, which we need to pass in our script:

Chapter 6

[147]

• FileFormat enumeration: This enumeration allows you to choose the format of
the file, whether it's text (tab delimited, comma separated, or SQL) or binary:

• CommitMode enumeration: This enumeration specifies what should
happen when Data Collector Set is committed in the script. For example,
plaCreateOrModify will create a new Data Collector Set if it doesn't exist,
or modify an existing one if it already does:

Monitoring and Automating SQL Server

[148]

The script that creates Data Collector Set that captures a few key processor, memory,
network, and physical disk counters is presented next. Note the comments included
in the script that help describe what the different blocks do:

#current server name

$servername = "ROGUE" # or localhost

#data collector set name

$dcsname = "SQL Performance Metrics"

$dcs = New-Object -COM Pla.DataCollectorSet

$dcs.DisplayName = $dcsname

#subdirectory format will have year and month

#enum value is plaYearMonth, which is 0x0800

$dcs.SubdirectoryFormat = 0x0800

#specify path where data collector set will be stored

#typically this will be in the system drive

$dcs.RootPath = "%systemdrive%\PerfLogs\Admin\" + $dcsname

#now need to set up each file

$datacollector = $dcs.DataCollectors.CreateDataCollector(0)

#file format is binary

#enum is plaBinary = 3

$datacollector.LogFileFormat = 3

$datacollector.FileName = $dcsname + "_"

#filename format will have year, month and day

#enum value is plaYearMonthDay 0x1000

$datacollector.FileNameFormat = 0x1000

$datacollector.SampleInterval = 15

$datacollector.LogAppend = $true

#these are the counters we want to capture

#you can add more to this, or can pull this from a file

$counters = @(

 "\Memory\Available MBytes",

Chapter 6

[149]

 "\Network Interface(*)\Bytes Received/sec",

 "\Network Interface(*)\Bytes Sent/sec",

 "\PhysicalDisk\Avg. Disk Sec/Read",

 "\PhysicalDisk\Avg. Disk Sec/Write",

 "\PhysicalDisk\Avg. Disk Queue Length",

 "\Processor(_Total)\% Processor Time"

)

#add the counters to the data collector

$datacollector.PerformanceCounters = $counters

$dcs.DataCollectors.Add($datacollector)

#save datacollectorset

#name, server, commit mode, createnewormodify

$dcs.Commit("$dcsname" , $servername , 0x0003)

Once you run the script and start Data Collector Set, you can open up Performance
Monitor. One way is to type perfmon in your Windows search. You should see a
new entry under the User Defined node under Data Collector Sets:

Notice that the folder and filename follows what we specified in the script—
plaYearMonth for subdirectory format and plaYearMonth for filename format. If
you don't see the file yet, check that the data collector set is started. The file will not
appear before then:

Monitoring and Automating SQL Server

[150]

If you double-click on this entry, a properties window should appear where you can
double-check all the entries you provided in your script:

When you are ready to start collecting your data, you can run the following:

#asynchronous, don't need to wait for process to end

 $dcs.start($false)

The $false value parameter just specifies asynchronous, meaning that we don't
need to wait for the process to end before we script returns. When you want to stop,
you can issue the corresponding stop() method.

You can also programmatically schedule when the data collector will run.
For each data collector set object, you can use the schedules property and the
CreateSchedule() method within that. Assuming you've created a variable called
$startdate, you can use the following snippet to schedule your data collector set:

$schedule = $dcs.schedules.CreateSchedule()

$schedule.StartDate = $startdate

Chapter 6

[151]

Alternatively, you can also run these perfmon counters using logman, which
is a utility that comes with Windows that can run and manage schedules for
performance counters and event trace logs. This is the basic syntax for logman:

logman [create | query | start | stop | delete| update | import |
 export | /?] [options]

You can learn more about logman at http://technet.microsoft.com/en-ca/
library/cc753820.aspx.

Summary
We covered a few examples of how you could monitor and automate SQL Server tasks
in this chapter. Albeit small, this knowledge should open up a world of possibilities
for you when you decide to monitor and automate using PowerShell. These are a few
items you could consider monitoring: backup jobs, database connectivity, service pack
installations, schema changes, and tracking suspicious logins.

PowerShell would also be great with administrative tasks, such as exporting
information to files and managing files (deleting or archiving files older than x
number of days for instance).

Remember, however, that PowerShell is still just another tool. There may be better
or worse tool options for what you are trying to accomplish. Just make sure that you
evaluate the trade-offs and go with the one that offers the most benefit to you or your
project/company.

If you choose to stay in the PowerShell path however, you are most likely to be
impressed with its capabilities. It's a maturing platform, and more and more Microsoft
applications are being released that support cmdlets, which makes PowerShell even
more powerful. This is just the beginning of your adventure. So don't be afraid to
experiment and push the boundaries of what you can do with PowerShell.

http://technet.microsoft.com/en-ca/library/cc753820.aspx
http://technet.microsoft.com/en-ca/library/cc753820.aspx

Implementing Reusability
with Functions and Modules

We have covered quite a few PowerShell snippets throughout the book. Instead
of re-typing these snippets over and over again however, we can start writing and
organizing them in a way that makes them reusable. In this appendix, we will
explore how to create functions and script modules in PowerShell.

Functions
One way to wrap your script into something reusable and flexible is by converting it
into a function. A function, also called a subroutine in other programming languages,
is defined as a named group of statements that perform a specific task.

A PowerShell function does exactly that. It wraps lines of code into a single
named construct and does a specific task. You can create simple or advanced
PowerShell functions.

Simple functions
The simplest function you can create just requires the function keyword, the
function name, and your code wrapped in curly braces:
#--#

simple function skeleton

#--#

function <function name>

{

 #your code here

}

Implementing Reusability with Functions and Modules

[154]

Here is an example of a very simple function that gets a list of tables for a
specific database:

#--

simple function definition

#--

function Get-Tables

{

 Import-Module SQLPS -DisableNameChecking

 $servername = "ROGUE" # or localhost

 $databasename = "AdventureWorks2014"

 $server = New-Object "Microsoft.SqlServer.Management.Smo.Server"
$servername

 $server.Databases[$databasename].Tables

}

#--

invoke

#--

Get-Tables

Notice that this code isn't very different from the code you would write in a regular
ad hoc script, except for the function keyword that envelopes the whole code.

When naming your functions, observe the Noun-Verb convention,
and, as much as possible, use only the approved verbs. You can
find the approved verbs at http://msdn.microsoft.com/
en-us/library/ms714428(v=vs.85).aspx.

http://msdn.microsoft.com/en-us/library/ms714428(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms714428(v=vs.85).aspx

Appendix

[155]

Advanced functions
A more flexible, advanced function will incorporate a few more components,
including the CmdletBinding attribute, parameters with names and options, and
comment-based help. Here is an example skeleton that you can use as a reference.
Note the embedded comments that describe some of the sections:

function <function name>

{

 <#

 comment based help

 #>

 [CmdletBinding()]

 param

 (

 #parameter options, validation, default values

)

 begin

 {

 #pre-processing

 #code executed once, only at the beginning

 }

 process

 {

 #code executed once for each item that

 #is passed to the pipeline

 #use exception handling

 try

 {

 }

 catch

 {

 throw

 }

 finally

 {

 }

Implementing Reusability with Functions and Modules

[156]

 }

 end

 {

 #post-processing

 #code executed once, before function terminates

 }

}

As with any other programming language, it is best to comment and document the
code you write. PowerShell supports comment-based help, which means you can use
comments to describe the function in more detail.

Comment-based help can be placed as follows:

• At the top of the script, before the function keyword
• At the beginning of the function body
• At the end of the function body

Comment-based help has to follow certain conventions; for example, every topic or
keyword must be preceded by a dot. Here are some of the common keywords you
are going to find in a comment-based help:

<#

.SYNOPSIS

 Synopsis here

.DESCRIPTION

 description here

.PARAMETER parametername

 parameter description here

.EXAMPLE

 Example usage here

.INPUTS

.OUTPUTS

.NOTES

.LINK

#>

Appendix

[157]

Once you have incorporated comment-based help in your function definition, you can
start using the Get-Help cmdlet with your function name to display the help, just as
you would with other native PowerShell cmdlets. Learn more about comment-based
help at http://technet.microsoft.com/en-us/library/hh847834.aspx.

When working with functions, usually you will find the CmdletBinding
attribute after the function header. The CmdletBinding attribute, as per MSDN
(http://msdn.microsoft.com/en-us/library/hh847872.aspx) is:

"… an attribute of functions that makes them operate like compiled cmdlets that are
written in C#, and it provides access to features of cmdlets."

To make functions extensible and flexible, you will have to code it so that it uses
parameters. Parameters are values that are passed to the function that the function
uses for further processing. As with function definitions, you can make your
parameter definitions either simple or more complex. A very simple way of creating
parameters is to enclose your parameters in param(), and define them simply with a
datatype and name:

function functionname

{

 param(

 [string]$param1,

 [string]$param2

)

 #rest of function code here

 #that uses the parameters

}

You can create more complex parameter definitions by specifying
different arguments. Some arguments that are supported
include Mandatory, Position, ParameterSetName,
ValueFromPipeline, HelpMessage, and Switch. You can
learn more about advanced parameters at http://technet.
microsoft.com/en-us/library/hh847743.aspx.

http://technet.microsoft.com/en-us/library/hh847834.aspx
http://msdn.microsoft.com/en-us/library/hh847872.aspx
http://technet.microsoft.com/en-us/library/hh847743.aspx
http://technet.microsoft.com/en-us/library/hh847743.aspx

Implementing Reusability with Functions and Modules

[158]

Here is an example of a function that incorporates comment-based help and some of
the parameter arguments mentioned just mentioned:

function Get-Tables

{

<#

.SYNOPSIS

 Function that retrieves tables from a database

.DESCRIPTION

 Function that retrieves tables from a database

.PARAMETER servername

.PARAMETER databasename

.EXAMPLE

 Get-Tables -servername "Rogue" -databasename "Registration"

.EXAMPLE

 Get-Tables "Rogue" "Registration"

.EXAMPLE

 "Rogue", "Registration" | Get-Tables

.INPUTS

 System.String,System.String

.OUTPUTS

.NOTES

.LINK

#>

 [CmdletBinding()]

 param

 (

 #parameter 1

 [parameter(

 Mandatory=$true,

 ValueFromPipeline=$true,

 ValueFromPipelineByPropertyName=$true,

 HelpMessage='Which server are you using?')]

 [Alias('host')]

 [string]$servername,

 #parameter 2

Appendix

[159]

 [parameter(

 Mandatory=$true,

 ValueFromPipeline=$true,

 ValueFromPipelineByPropertyName=$true,

 HelpMessage='Which database are you using?')]

 [Alias('database')]

 [string]$databasename

)

 begin

 {

 Import-Module SQLPS -DisableNameChecking

 $server = New-Object "Microsoft.SqlServer.Management.Smo.Server"
$servername

 }

 process

 {

 try

 {

 $server.Databases[$databasename].Tables

 }

 catch

 {

 Write-Warning $error

 }

 finally

 {

 }

 }

 end

 {

 }

}

Implementing Reusability with Functions and Modules

[160]

#--

invoke

#--

"Rogue", "pubs" | Get-Tables

#--

get help

#--

Get-Help Get-Tables -full

Best practices
Here are some good practices to observe when creating functions:

• Don't try to make your functions do too much. Your functions should do one
task and do that one task well.

• Follow the standard naming conventions. Use the approved verbs. Otherwise,
warnings will be generated when the unconventionally named functions
are used. It might also cause confusion among the other administrators or
developers in your team.

• Use the CmdletBinding attribute to make the function behave like a
native cmdlet.

• Document your code. Use comment-based help.
• Add validation and exception handling to your code. If it encounters error,

code it so that it exits gracefully and cleanly.
Ed Wilson, who runs the Hey, Scripting Guy! blog posted a best practices series
for functions. These blog posts contain golden nuggets of advice and highly
recommended reading resources, if you want to improve your PowerShell
function-scripting skills:

• PowerShell best practices: simple functions available at http://blogs.
technet.com/b/heyscriptingguy/archive/2014/05/29/powershell-
best-practices-simple-functions.aspx

• PowerShell best practices: advanced functions available at http://blogs.
technet.com/b/heyscriptingguy/archive/2014/05/30/powershell-
best-practices-advanced-functions.aspx

http://blogs.technet.com/b/heyscriptingguy/archive/2014/05/29/powershell-best-practices-simple-functions.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2014/05/29/powershell-best-practices-simple-functions.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2014/05/29/powershell-best-practices-simple-functions.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2014/05/30/powershell-best-practices-advanced-functions.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2014/05/30/powershell-best-practices-advanced-functions.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2014/05/30/powershell-best-practices-advanced-functions.aspx

Appendix

[161]

Modules
PowerShell modules are another way to implement reusability in your scripting. A
PowerShell module is more extensive than a function because it can contain multiple
items like functions, variables, providers, workflows, and so on. Modules can also
persist on a disk, and can be referenced or imported by other scripts.

There are four types of modules as of PowerShell V4:

• A script module is created from a PowerShell script code.
• A binary module is based on a dynamic linked library (dll) file.
• A manifest module is a module that includes a manifest, which describes what

a module contains and how it is processed (visit http://msdn.microsoft.
com/en-us/library/dd878337(v=vs.85).aspx).

• A dynamic module is one that is not persisted to a disk. These can be created
using the New-Module cmdlet.

In this appendix, we are only going to focus on script modules. However, if you are
interested in creating the other types of modules, you can refer to http://msdn.
microsoft.com/en-us/library/dd878324(v=vs.85).aspx.

Script modules
As I just mentioned, one type of module we can create is called script module. This
allows you to create modules purely from your PowerShell script code – either an
existing one, or one you're about to write.

The steps to create script modules are as follows:

1. Save your .ps1 file to .psm1.
2. Optionally, create a folder in one of the standard modules folder. This has to

have the same name as your module file.
3. Import the module.

Modules, by default, are saved in a few default folders. To see these folders, you
can use the environment variable $env:PSModulePath. This returns a semicolon-
delimited string. To see each directory in its own line, you can use the split method:

($env:PSModulePath -split ";")

http://msdn.microsoft.com/en-us/library/dd878337(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/dd878337(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/dd878324(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/dd878324(v=vs.85).aspx

Implementing Reusability with Functions and Modules

[162]

The following screenshot shows the result I got in my environment:

Here is a simple illustration of how you can convert your script files into a module.
Assume we have a file called Custom.ps1 that contains some PowerShell scripts.
Usually, we run this file before we can use the functions inside it. To convert this into
a script module, take the following steps:

1. Rename the Custom.ps1 file to Custom.psm1.
2. Create a folder called Custom in one of the standard module folders. Let's

choose C:\Windows\system32\WindowsPowerShell\v1.0\Modules.
3. Save the Custom.psm1 file in the Custom folder:

4. Open your PowerShell console or ISE and import the module using the
Import-Module cmdlet. Recall though that starting from PowerShell V3,
module autoloading is supported, meaning that you don't have to explicitly
import the module. Once you use the functions in that module, the module is
essentially imported (as long as the module is stored in one of the
standard folders):

In the preceding screenshot, the -Verbose switch was used to show that the
.psm1 file was imported from the Custom folder.

Appendix

[163]

5. Test; in other words, use the function inside the module:

Summary
It is considered good practice to wrap scripts that you often use into something more
reusable and extensible. Functions and modules are two PowerShell constructs that
help you do that. This chapter provided an introduction to creating functions and
script modules in PowerShell. You can build up on the basics that you learned from
here to create more advanced functions or implement other types of modules.

Index
Symbols
-Confirm parameter 32
-WhatIf parameter 32

A
ADO.NET

URL 122
used, for sending queries 121, 122

assemblies, SQL Server 39, 40

B
backing up 92-95
Backup-SqlDatabase cmdlet 92
bcp

used, for exporting data 129
binary module 161

C
CmdletBinding attribute

URL 157
cmdlets

about 131
additional 133
ConvertTo-Html cmdlet 132
Export-Csv cmdlet 132
Send-MailMessage cmdlet 132
Write-EventLog cmdlet 133

comment-based help 156
configurations, changing

about 65
instance settings, changing 68-73
service account, changing 66-68
services, starting 65, 66

ConvertTo-Html cmdlet 132

D
data

exporting, bcp used 129
database

attaching 89-92
backing up 128, 129
detaching 89-92
filegroups, listing 79
files, listing 79-81
listing 76-78
objects, scripting 86-89
restoring 128, 129
users, adding 106-109

disk space
usage, altering 137-140

dynamic linked libraries (DLLs) 22, 39
Dynamic Management Functions

(DMFs) 127
Dynamic Management Views (DMVs) 127
dynamic module 161

E
execution policies 13
Export-Csv cmdlet 132

F
failed jobs

monitoring 136, 137
filegroups

adding 82
listing 79-81

[166]

files
adding 82, 83
listing 79-81

fragmentation data
obtaining 127, 128

functions
about 153
advanced 155-158
best practices 160
simple 153, 154

G
Graphical User Interface (GUI) 10

H
hotfixes

and service packs 57-59

I
indexes

about 97
rebuilding 97-99
reorganizing 97-99

Integrated Scripting Environment (ISE) 10
Invoke-Expression cmdlet

used, for sending queries 122
Invoke-Sqlcmd cmdlet

used, for sending queries 117-121

J
jobs

managing 111-113

L
log blocking processes 140-142
logins

adding 104-106
managing 100, 101

logman
URL 151

logs
checking 133-135

M
manifest module 161
Microsoft Installer (MSI) 58
mini-shell (sqlps utility) 34-36
modules

about 23, 161
binary module 161
dynamic module 161
manifest module 161
script module 161
types 161
URL 161

Monad Manifesto
URL 8

MSDN
about 22
URL 56, 68

N
Noun-Verb convention

URL 154

O
Operating System (CmdExec) step 133
orphaned users

fixing 126

P
parameters

URL 157
Performance Logs and Alerts (PLA) DataC-

ollectorSet object
about 145
AutoPathFormat enumeration 146
CommitMode enumeration 147-151
URL 145

performance metrics
obtaining 142-145

permissions
about 102-104
managing 100
values, URL 108

pipeline 23

[167]

policies 109
PowerShell

about 7, 115, 116
best practices, URL 160
cmdlets 16, 17
configurations, changing 65
console 10
environment 9
execution, policy 13, 14
help 28-30
help, getting from cmdlets 31, 32
history 8
ISE 10
pipeline 23
providers 20-22
running, as administrator 11, 12
scripts, running 28
scripts, scheduling 133
scripts, URL 13
versions 14-16

PowerShell cmdlets
aliases 20
naming conventions 17
parameters 18, 19
URL 157

PowerShell Integrated Scripting
Environment (PowerShell ISE)

about 10
features 11

processes
listing 84, 85

PSProvider DLLs
URL 120

Q
queries

sending, to SQL Server 116
simple queries, sending 122-125

queries, sending
ADO.NET used 121, 122
Invoke-Expression cmdlet used 122
Invoke-Sqlcmd cmdlet 117-120
SQL Server Management

Objects used 116, 117

R
replication

URL 86
resources, SQL Server

current 49-51
disk space, checking 55, 56
memory, checking 53-55
network settings, checking 57
processor (CPU) information,

obtaining 51-53
restoring 96, 97

S
scripting

basics 24, 25
components 26-28

ScriptingOptions object
URL 87

script modules 161-163
Send-MailMessage cmdlet 132
Server Management Objects (SMO)

about 43-46, 75
objects, creating 45-48
used, for sending queries 116, 117

service packs
and hotfixes 57-59

services
account, changing 66
and service accounts 60
error logs 61, 62
starting 65
stopping 65

SMO transfer class
URL 89

snap-ins
about 22, 39
cmdlets 22
URL 22

SQL
enabled features, checking 85, 86

SQLPS module 36-38
SQL Server

assemblies 39, 40
error logs 60
instance configuration 63-65
instances 59

[168]

V
Visual Basic Scripting Edition (VBScript) 8

W
Win32_processor WMI class

URL 52
Windows Management Instrumentation

(WMI)
about 49
URL 51

Windows Scripting Host (WSH) 8
Write-EventLog cmdlet 133

queries, sending 116
services and service accounts 60
snap-ins 39
specific cmdlets 40, 41
via PowerShell 33

SQL Server Management Studio (SSMS) 34
SQL Server, via PowerShell

mini-shell (sqlps utility) 34-36
SQLPS module 36-38
SQL Server snap-ins 39-43

SSMS Query Editor
URL 118

T
tables

listing 76-78

U
users

managing 100, 101

Thank you for buying
PowerShell for SQL Server Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly
focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including
(but not limited to) IBM, Microsoft, and Oracle, often for use in other corporations. Its titles
will offer information relevant to a range of users of this software, including administrators,
developers, architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

SQL Server 2014 Development
Essentials
ISBN: 978-1-78217-255-0 Paperback: 214 pages

Design, implement, and deliver a successful database
solution with Microsoft SQL Server 2014

1. Discover SQL Server 2014's new in-memory
OLTP engine and performance-related
improvements.

2. Explore the fundamentals of database planning
and the Server Transact-SQL language syntax.

3. Gain hands-on experience with the use of scalar
and table-valued functions, branching, and
more advanced data structures.

Getting Started with SQL Server
2014 Administration
ISBN: 978-1-78217-241-3 Paperback: 106 pages

Optimize your database server to be fast, efficient,
and highly secure using the brand new features of
SQL Server 2014

1. Design your SQL Server 2014 infrastructure
by combining both on-premise and Windows
Azure-based technology.

2. Implement the new InMemory OLTP database
engine feature to enhance the performance of
your transaction databases.

3. This is a hands-on tutorial that explores the
new features of SQL Server 2014 along with
giving real world examples.

Please check www.PacktPub.com for information on our titles

PowerShell 3.0 Advanced
Administration Handbook
ISBN: 978-1-84968-642-6 Paperback: 370 pages

A fast-paced PowerShell guide with real-world
scenarios and detailed solutions

1. Discover and understand the concept of
Windows PowerShell 3.0.

2. Learn the advanced topics and techniques for
a professional PowerShell scripting.

3. Explore the secret of building custom
PowerShell snap-ins and modules.

4. Take advantage of PowerShell integration
capabilities with other technologies for better
administration skills.

SQL Server 2012 with PowerShell
V3 Cookbook
ISBN: 978-1-84968-646-4 Paperback: 634 pages

Increase your productivity as a DBA, developer, or IT
Pro, by using PowerShell with SQL Server to simplify
database management and automate repetitive,
mundane tasks

1. Provides over a hundred practical recipes that
utilize PowerShell to automate, integrate and
simplify SQL Server tasks.

2. Offers easy to follow, step-by-step guide
to getting the most out of SQL Server and
PowerShell.

3. Covers numerous guidelines, tips, and
explanations on how and when to use
PowerShell cmdlets, WMI, SMO, .NET
classes or other components.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
with PowerShell
	A brief history of PowerShell
	The PowerShell environment
	The PowerShell console
	The PowerShell ISE
	Running PowerShell as an administrator
	Execution policy

	PowerShell versions
	PowerShell cmdlets
	Cmdlet naming convention
	Cmdlet parameters
	Cmdlet aliases

	PowerShell providers
	Snap-ins and modules
	PowerShell Pipeline
	Scripting basics
	Running PowerShell scripts
	Getting help
	Getting help from other cmdlets

	Summary

	Chapter 2: Using PowerShell
with SQL Server
	SQL Server via PowerShell
	Mini-shell (or the sqlps utility)
	The SQLPS module
	SQL Server snap-ins
	SQL Server assemblies

	SQL Server-specific cmdlets
	SQL Server Management Objects
	Creating SMO objects

	Summary

	Chapter 3: Profiling and Configuring
SQL Server
	Current server resources
	Getting processor (CPU) information
	Checking server memory
	Checking disk space
	Checking network settings

	Hotfixes and service packs
	Current SQL Server instances
	Services and service accounts
	SQL Server error logs
	Current instance configuration
	Changing configurations
	Start or stop services
	Changing a service account
	Change instance settings

	Summary

	Chapter 4: Basic SQL Server Administration
	Listing databases and tables
	Listing database files and filegroups

	Adding files and filegroups
	Listing the processes

	Checking enabled features
	Scripting database objects
	Attaching and detaching databases
	Detaching databases

	Backing up and restoring databases
	Backing up
	Restoring

	Reorganizing or rebuilding indexes
	Managing logins, users, and permissions
	Permissions
	Adding a login
	Adding database users

	Policies
	Managing jobs
	Summary

	Chapter 5: Querying SQL Server
with PowerShell
	To PowerShell or not to PowerShell
	Sending queries to SQL Server
	SQL Server Management Objects
	The Invoke-Sqlcmd cmdlet
	ADO.NET
	The Invoke-Expression cmdlet
	Sending simple queries to SQL
Server – different variations

	Fixing orphaned users
	Getting fragmentation data
	Backing up and restoring databases
	Exporting data using bcp
	Summary

	Chapter 6: Monitoring and Automating the SQL Server
	Getting to know helpful cmdlets
	The Send-MailMessage cmdlet
	The ConvertTo-Html cmdlet
	The Export-Csv cmdlet
	The Write-EventLog cmdlet
	Additional cmdlets

	Scheduling PowerShell scripts
	Checking logs
	Monitoring failed jobs
	Alerting on disk space usage
	Logging blocked processes
	Getting performance metrics
	Summary

	Appendix: Implementing Reusability with Functions and Modules
	Functions
	Simple functions
	Advanced functions
	Best practices

	Modules
	Script modules

	Summary

	Index

