

Mastering Entity Framework

Effortlessly produce data-driven applications for .NET
to address the competing demands of data storage and
data modeling with Entity Framework

Rahul Rajat Singh

P U B L I S H I N G

professional expert ise dist i l led

BIRMINGHAM - MUMBAI

Mastering Entity Framework

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2015

Production reference: 1190215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-100-3

www.packtpub.com

www.packtpub.com

Credits

Author
Rahul Rajat Singh

Reviewers
Abhishek Luv

Jason De Oliveira

Zsolt Soczo

Commissioning Editor
Amarabha Banerjee

Acquisition Editors
Richard Gall

Gregy Wild

Content Development Editor
Shubhangi Dhamgaye

Technical Editors
Mrunal M. Chavan

Shiny Poojary

Ryan Kochery

Copy Editors
Rashmi Sawant

Stuti Srivastava

Ashwati Thampi

Project Coordinator
Harshal Ved

Proofreaders
Paul Hindle

Stephen Silk

Indexer
Tejal Soni

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

About the Author

Rahul Rajat Singh has over 9 years of experience in developing software
applications and websites. After completing his bachelor's degree in computer
engineering in 2005, he started working with Tata Consultancy Services (TCS), where
he worked on developing audio/video playback engines using C++ for a multimedia
company. During this period, he also developed a few small applications using C#
and that was the beginning of his love for C#.

After working with TCS for more than 4 years, he took up an independent
software assignment and worked on developing a Windows Forms application
using C#. During this period, he also started lecturing on programming languages
for engineering students. This teaching assignment encouraged him to share
his knowledge through more channels, and he started sharing articles on
www.codeproject.com.

He started working on web applications when he joined MPOnline Limited.
MPOnline Limited, being the best e-governance portal of the country, gave him
immense opportunities to learn and implement a lot of web technologies, such as
ASP.NET, ADO.NET, JavaScript, SQL Server, Web services, and WCF services.

Currently, he is working with a Danish company called Headfitted Solutions as a
technical architect, where he develops applications using ASP.NET MVC, Entity
Framework, scalable REST-based services using WCF and ASP.NET Web API, and
Single-Page Applications (SPAs) using Backbone.js. He is currently learning more
about software architecture and enterprise architecture.

www.codeproject.com

Rahul loves software development, and his interests involve system programming,
website development, and learning/teaching subjects related to computer
science / information systems. He was also awarded CodeProject MVP in 2013
and DZone MVB in 2014. He blogs regularly about technology on his blog
(www.rahulrajatsingh.com).

I would like to thank my wife and daughter for their love and
support and being patient with the long working hours that
enabled me to write this book. I would like to thank my parents for
everything they have done for me. Everything I am today is because
of them. Finally, I would like to thank a couple of my mentors Mr.
Himanshu Agnihotri and Mr. Amalraj P for supporting me during
my struggle period and showing me the right path.

www.rahulrajatsingh.com

About the Reviewers

Abhishek Luv has been developing and designing websites and web applications
for the last 2 years. During these years, Abhishek has been involved in technologies
such as C#, ASP.NET, ASP.NET MVC, Visual Studio, and Entity Framework, and
now he is mostly working on Microsoft stack.

He is currently working to become an Orchard CMS expert; that aside, he is presently
a software engineer at Develop2Deploy (http://www.develop2deploy.com/).

He is a founder of the Orchard CMS India Community website (http://www.
orchardproject.net.in/) and a contributor to the official Orchard CMS
documentation website and has created numerous online courses on Orchard CMS.

Outside of the normal day-to-day activities, he is also a cofounder of a video training
start-up (http://www.thevideotrainer.in/). You can reach him at abhishek@
abhishekluv.in.

Jason De Oliveira works as the CTO for Cellenza (http://www.cellenza.
com), an IT consulting company specializing in Microsoft technologies and Agile
methodology in Paris, France. He is an experienced manager and senior solutions
architect, with advanced skills in software architecture and enterprise architecture.

Jason works for big companies and helps them to realize complex and challenging
software projects. He frequently collaborates with Microsoft, and you can find him
quite often at the Microsoft Technology Center (MTC) in Paris.

He loves sharing his knowledge and experience via his blog, by speaking at
conferences, writing technical books, writing articles in the technical press, giving
software courses as an MTC, and coaching coworkers in his company.

http://www.develop2deploy.com/
http://www.orchardproject.net.in/
http://www.orchardproject.net.in/
http://www.thevideotrainer.in/
http://www.cellenza.com
http://www.cellenza.com

Microsoft awarded him with the Microsoft Most Valuable Professional (MVP
C#) Award in 2011 for his numerous contributions to the Microsoft community.
Microsoft seeks to recognize the best and brightest from technology communities
around the world with the MVP Award. These exceptional and highly respected
individuals come from more than 90 countries, serving their local online and offline
communities and have an impact worldwide. Jason is very proud to be one of them.

Please feel free to contact him via his blog if you need any technical assistance or want
to exchange information on technical subjects (http://www.jasondeoliveira.com).

Jason has worked on the following books:

• .NET Framework 4.5 Expert Programming Cookbook (English), Packt Publishing
• WCF 4.5 Multi-Layer Services Development with LINQ to Entities (English), Packt

Publishing
• .NET 4.5 Parallel Extensions Cookbook (English), Packt Publishing
• WCF Multi-layer Services Development with Entity Framework (English), Packt

Publishing
• Visual Studio 2013: Concevoir, développer et gérer des projets Web, les gérer avec

TFS 2013 (French), ENI

I would like to thank my lovely wife, Orianne, and my beautiful
daughters, Julia and Léonie, for supporting me in my work and
accepting long days and short nights during the weeks and
sometimes even during the weekends. My life would not be the
same without them!

Zsolt Soczo received his MSc degree in electrical engineering and currently works
as an independent software developer, a mentor, and a consultant for enterprise
companies. Since 2000, he has been involved in .NET- and SQL-Server-based
development. Zsolt has a passion for solving complex problems by applying his
extensive .NET and SQL Server skills. He enjoys optimizing slow databases and
architecting large enterprise systems. In his spare time, he loves to develop and
execute algorithmic trading strategies on financial markets.

http://www.jasondeoliveira.com

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter or the Packt Enterprise Facebook page.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Table of Contents
Preface 1
Chapter 1: Introduction to Entity Framework 7

Entity Framework modeling and persistence 8
Understanding the Entity Data Model 9
Understanding the ObjectContext class 9

Development styles and different Entity Framework approaches 10
Comparing the development styles 11

The Database First approach 11
The Model First approach 12
The Code First approach 12

Entity Framework Database First approach 12
Entity Framework Model First approach 22
Entity Framework Code First approach 30
Performing CRUD operations using Entity Framework 32

Reading a list of items 32
Reading a specific item 33
Creating a new item 34
Updating an existing item 35
Deleting an item 37

Choosing persistence approaches 38
Summary 38

Chapter 2: Entity Framework DB First – Managing Entity
Relationships 39

Understanding database relationships 39
One-to-many relationship 40
One-to-one relationship 40
Many-to-many relationship 41

Creating the Entity model 43

Table of Contents

[ii]

Modeling a one-to-many relationship 44
Modeling a one-to-one relationship using Entity Framework 47
Modeling a many-to-many relationship using Entity Framework 49
Using navigation properties for data access 51

Retrieving a specific item 51
Retrieving a list of items 52
Adding an item 53
Updating an item 54
Deleting an item 55

Entity Framework – behind the scenes 56
Summary 57

Chapter 3: Entity Framework DB First – Performing
Model Validations 59

Model validations using Entity Framework 59
Model validations using partial class methods 60

Understanding partial methods 60
Using partial methods to perform model validations 62

Model validations using data annotations 66
Specifying validation rules using data annotations 67
Validating the required fields 67

Validating the length of fields 68
Regular expression-based validations 69

Triggering validations using data annotations 70
Trigger validations in data binding environments 70
Trigger validations in non-data binding environments 70
Implementing custom validations using data annotations 72

Summary 74
Chapter 4: Entity Framework DB First – Inheritance
Relationships between Entities 75

Domain modeling using inheritance in Entity Framework 75
The Table per Type inheritance 76

Generating the default Entity Data Model 77
Deleting default relationships 78
Adding inheritance relationships between entities 79
Using the entities via the DBContext object 81

The Table per Class Hierarchy inheritance 82
Generating the default Entity Data Model 84
Adding concrete classes to the Entity Data Model 84
Mapping the concrete class properties to the respective tables
and columns 87
Making the base class entity abstract 90

Table of Contents

[iii]

Using the entities via the DBContext object 90
The Table per Concrete Class inheritance 92

Generating the default Entity Data Model 93
Creating the abstract class 94
Modifying the CDSL to cater to the change 95
Specifying the mapping to implement the TPT inheritance 96
Using the entities via the DBContext object 98

Choosing the inheritance strategy 99
Summary 100

Chapter 5: Entity Framework DB First – Using Views, Stored
Procedures, and Functions 101

Using views, procedures, and functions 101
Using Entity Framework with views 102
Using Entity Framework with stored procedures 106

Defining stored procedures 106
Using Entity Framework with functions 112

Using scalar functions 112
Using table valued functions 114

Summary 117
Chapter 6: Entity Framework Code First – Domain Modeling
and Managing Entity Relationships 119

Understanding the Entity Framework Code First approach 120
Understanding the Code First conventions and configurations 121
Implementing Entity Framework Code First 121

More on domain class configurations 124
Managing Entity relationships using the Code First approach 126

Implementing one-to-many relationships 126
Implementing one-to-one relationships 131
Implementing many-to-many relationships 135

Inheritance with the Entity Framework Code First approach 140
Implementing the TPT inheritance 140
Implementing the TPH inheritance 145
Implementing the TPC inheritance 150

Summary 154
Chapter 7: Entity Framework Code First – Managing Database
Creation and Seeding Data 155

Managing database connections 155
Managing connections using a configuration file 156
Using the existing ConnectionString 158
Using an existing connection 158

Table of Contents

[iv]

Managing database initialization 159
Setting the initialization strategy 160

Seeding data 161
Summary 165

Chapter 8: Querying the Entity Data Model – LINQ to Entities 167
Understanding LINQ to Entities 167
Querying data using LINQ to Entities 169
Using LINQ to Entities – an example-based approach 172

Executing simple queries 173
Using the navigation properties with LINQ to Entities 174
Filtering data using LINQ to Entities 175
Using LINQ projections with LINQ to Entities 177
Grouping using LINQ to Entities 178
Ordering using LINQ to Entities 179
Aggregate operators with LINQ to Entities 181

Count 181
Sum 183
Min 183
Max 184
Average 185

Partitioning/paging data using LINQ to Entities 185
Skip 186
Take 187
Implementing paging 187

Implementing join using LINQ to Entities 188
Lazy loading and eager loading 189

Lazy loading 189
Eager loading 192

Summary 192
Chapter 9: Querying the Object Model – Entity SQL 193

Understanding Entity SQL 193
Understanding EntityConnection 194

Entity SQL with ObjectQuery 196
Querying data using Entity SQL with ObjectQuery 198
Executing parameterized Entity SQL with ObjectQuery 199
Navigation properties using Entity SQL with ObjectQuery 201
Aggregate functions with Entity SQL using ObjectQuery 202

Count 203
Sum 203
Min 204
Max 205
Average 205

Table of Contents

[v]

Ordering data with Entity SQL using ObjectQuery 206
Grouping data using Entity SQL with ObjectQuery 207
Partitioning/paging data using Entity SQL ObjectQuery 208

Skip 208
Limit 209
Implementing paging 209

Using Entity SQL with EntityCommand 210
Querying data using Entity SQL with EntityCommand 210
Parameterized Entity SQL with EntityCommand 211

Summary 213
Chapter 10: Managing Concurrency Using Entity Framework 215

Understanding concurrency 215
Understanding optimistic concurrency 217

Ignore the conflict/forcing updates 217
Partial updates 217
Warn/ask the user 217
Reject the changes 217

Understanding pessimistic concurrency 218
Implementing optimistic concurrency using Entity Framework 219

Entity Framework's default concurrency 219
Designing applications to handle field level concurrency 222
Implementing field level concurrency 226
Implementing RowVersion for concurrency 229

Entity Framework and pessimistic concurrency 231
Summary 232

Chapter 11: Managing Transactions Using Entity Framework 233
Understanding transactions 233
Setting up the test environment 234
Entity Framework's default transaction handling 235

Using TransactionScope to handle transactions 237
Managing transactions using Entity Framework 6 238

Using an existing transaction 239
Choosing the appropriate transaction management 241
Summary 242

Chapter 12: Implementing a Small Blogging Platform Using
Entity Framework 243

Understanding the application requirements 243
Visualizing our database design 244
Creating the Entity Data Model 245

Creating the entity classes 246
The User entity 246

Table of Contents

[vi]

The Role entity 246
The Category entity 247
The Blog entity 247
The Comment entity 248

Creating relationships and navigation properties 248
The User entity 249
The Role entity 250
The Category entity 250
The Blog entity 251
The Comment entity 252

Implementing the DbContext class 253
Performing data access 255

Understanding the Repository pattern 255
Understanding Unit of Work 259
Managing categories 261

Listing categories 262
Adding a category 262
Updating a category 264
Deleting a category 265

Managing blogs 266
Adding a new blog 266
Updating a blog 268
Deleting a blog 269
Listing blogs on the home page 270
Showing a single blog 273

Managing comments 275
Listing categories 275
Adding a comment 277
Deleting a comment 278

Using other Entity Framework approaches 279
Summary 280

Index 281

Preface
Software developers using .NET technologies have been using ADO.NET for data
access for more than a decade. It was with the release of .NET Framework 3.5 that
Microsoft provided one more data access technology—Entity Framework. Entity
Framework is an Object Relational Mapper (ORM) that sits on top of ADO.NET.
Entity Framework lets the developer write the data access code in terms of models
rather than SQL queries, which makes creating the data access layer much simpler
and easier.

This book is for the .NET developers who develop data-driven applications using
ADO.NET or other data access technologies. This book will give them everything
that is required to effectively develop and manage data-driven applications using
Entity Framework. We will learn the various approaches that Entity Framework
provides us and which approach should be used for which scenario. We will
learn how to perform domain modeling, validations, transaction and concurrency
handling using Entity Framework.

We will also take a look at the various ways of querying the data using Entity
Framework. We will see how we can reuse database procedures using Entity
Framework. We will also take a look at passing dynamic queries from the application
using Entity Framework. This book will help developers build all the skills required
to effectively develop and manage data-driven applications using Entity Framework.

What this book covers
Chapter 1, Introduction to Entity Framework, introduces the user to Entity Framework.
We will show how a data-centric application can benefit from the Database First
approach and a domain-centric application can benefit from a Model First or Code
First approach.

Preface

[2]

Chapter 2, Entity Framework DB First – Managing Entity Relationships, discusses how
relationships can be managed using Entity Framework (one-to-one, one-to-many,
and many-to-many).

Chapter 3, Entity Framework DB First – Performing Model Validations, discusses
how model validations can be performed using the Entity Framework provided
partial methods.

Chapter 4, Entity Framework DB First – Inheritance Relationships between Entities,
discusses the Table per Type, Table per Hierarchy, and Table per Concrete Class
inheritance relationships in Entity Framework.

Chapter 5, Entity Framework DB First – Using Views, Stored Procedures, and Functions,
discusses how we can use Entity Framework with stored procedures and functions.

Chapter 6, Entity Framework Code First – Domain Modeling and Managing Entity
Relationships, discusses how we can map the domain entities to the database tables.
We will learn how to manage the relationships between models by using the Code
First conventions and configurations.

Chapter 7, Entity Framework Code First – Managing Database Creation and Seeding Data,
discusses how we can manage the database creation process and insert some dummy
data into the database.

Chapter 8, Querying the Entity Data Model – LINQ to Entities, discusses how we can
query the object model using LINQ to Entities.

Chapter 9, Querying the Object Model – Entity SQL, discusses how we can query the
object model using Entity SQL

Chapter 10, Managing Concurrency Using Entity Framework, covers various concurrency
management techniques using Entity Framework.

Chapter 11, Managing Transactions Using Entity Framework, discusses how to manage
transactions using Entity Framework.

Chapter 12, Implementing a Small Blogging Platform Using Entity Framework, introduces
a complete sample application using the Entity Framework Code First approach to
demonstrate all the concepts in action.

Preface

[3]

What you need for this book
The following software is required to complete the practice exercises:

• Windows 7 or higher
• SQL Server Developer Edition or Express edition
• Visual Studio 2010 or higher
• .NET Framework 4.0 or higher
• Entity Framework 4.0 or higher

Who this book is for
This book is for .NET developers who develop data-driven applications using
ADO.NET or other data access technologies. This book will give you everything
you need to effectively develop and manage data-driven applications using
Entity Framework.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Using IQueryable, gives you a chance to create a complex LINQ query using
multiple statements without executing the query at the database level."

A block of code is set as follows:

using(SampleDbEntities db = new SampleDbEntities())
{
 IEnumerable<Employee> employees = db.Employees
 .Where(employee => employee.LastName == "Singh");
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

public partial class Role
{
 public Role()
 {

Preface

[4]

 Users = new HashSet<User>();
 }

 public int Id { get; set; }

 [Required]
 [StringLength(256)]
 public string Name { get; set; }

 public virtual ICollection<User> Users { get; set; }
}

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Using this
approach will check for concurrency issues for only those fields that are marked with
Concurrency Mode as Fixed."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[5]

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Introduction to
Entity Framework

Entity Framework is an Object Relational Mapper (ORM) from Microsoft that
lets the application's developers work with relational data as business models. It
eliminates the need for most of the plumbing code that developers write (while
using ADO.NET) for data access. Entity Framework provides a comprehensive,
model-based system that makes the creation of a data access layer very easy for
the developers by freeing them from writing similar data access code for all the
domain models. The initial release of Entity Framework was Entity Framework 3.5.
It was released with .NET Framework 3.5 SP1 and Visual Studio 2008 SP1. Entity
Framework has evolved a lot since then, and the current version is 6.0.

Entity Framework eases the task of creating a data access layer by enabling the access
of data, by representing the data as a conceptual model, that is, a set of entities and
relationships. The application can perform the basic CRUD (create, read, update, and
delete) operations and easily manage one-to-one, one-to-many, and many-to-many
relationships between the entities.

Here are a few benefits of using Entity Framework:

• The development time is reduced since the developers don't have to write all
the ADO.NET plumbing code needed for data access

• We can have all the data access logic written in a higher-level language such
as C# rather than writing SQL queries and stored procedures

• Since the database tables cannot have advanced relationships (inheritance) as
the domain entities can, the business model, that is, the conceptual model can
be used to suit the application domain using relationships among the entities.

Introduction to Entity Framework

[8]

• The underlying data store can be replaced relatively easily if we use an
ORM since all the data access logic is present in our application instead of the
data layer. If an ORM is not being used, it would be comparatively difficult
to do so.

Let's try to visualize the Entity Framework architecture:

The Entity Framework architecture

From the preceding diagram, we can see that Entity Framework is written on top of
the ADO.NET framework, and underneath, it is still using the ADO.NET methods
and classes to perform the data operations.

Entity Framework modeling and
persistence
Entity Framework relies on the conceptual data model for all its working. Let's try to
understand what the Entity Data Model (EDM) is and how Entity Framework uses
it to manage the database operations.

Chapter 1

[9]

Understanding the Entity Data Model
The conceptual data model is the heart of Entity Framework. To use Entity
Framework, we have to create the conceptual data model, that is, the EDM. The EDM
defines our conceptual model classes, the relationships between those classes, and
the mapping of those models to the database schema.

Once our EDM is created, we can perform all the CRUD operations (create, retrieve,
update, and delete) on our conceptual model, and Entity Framework will translate
all these object queries to database queries (SQL). Once these queries are executed,
the results will again be converted to conceptual model object instances by Entity
Framework. Entity Framework will use the mapping information stored in the EDM
to perform this translation of object queries to SQL queries, and the relational data to
conceptual models.

Once our EDM is ready, we can perform the CRUD operations using the model objects.
To be able to perform the CRUD operations, we have to use the ObjectContext class.
Let's try to understand what the ObjectContext class is and how it can be used to
perform the CRUD operations.

Understanding the ObjectContext class
Once I have my EDM created, I will have all the entities that I can use in my
application. However, I still need a central arbitrator that will let me perform
various operations on these entities. This arbitrator in Entity Framework is the
ObjectContext class.

The ObjectContext class is the main object in Entity Framework. It is the class that
is responsible for:

• Managing database connection
• Providing support to perform CRUD operations
• Keeping track of changes in the models so that the models can be updated in

the database

The ObjectContext class can be thought of as an orchestrator that will manage
all the entities in the EDM, and lets us perform all of the database operations for
these entities.

Introduction to Entity Framework

[10]

There is another class, DbContext, that is very similar to the
ObjectContext class. In fact, the DbContext class is just
a wrapper on top of the ObjectContext class. It is a rather
newer API, and it provides a better API to manage database
connections and perform CRUD operations.
Since DbContext is a better API, we will be using DbContext
to perform all the database operations.

The ObjectContext class has a SaveChanges method that we have to call when we
want to save the new or changed objects to the database.

Development styles and different Entity
Framework approaches
Before we start looking at the various options to create the EDM, let's talk about the
development styles followed by the developers. Some organizations have separate
teams working on the application and the database. In such cases, the database
design is done first and then the application development starts. Another reason for
doing the database design first is when the application being developed is a data
centric application itself.

Instead, it might be possible that the application demands the creation of the
conceptual domain models first. Then, based on these conceptual domain models,
the database tables will be created, and the application will implement the business
logic in terms of these conceptual business models.

Another possibility is that we are creating an application that is highly domain-centric,
and the application contains the domain models implemented as classes. The database
is needed only to persist these models with all the relations.

There are a range of different scenarios you might find yourself in—different
approaches become appropriate according to the demands of your situation.

Entity Framework provides support for all these development styles and scenarios.
We know that Entity Framework operates on the EDM, and lets us create this EDM
in three ways in order to cater to the different development styles:

• Database First: This is the approach that will be used with an existing
database schema. In this approach, the EDM will be created from the database
schema. This approach is best suited for applications that use an already
existing database.

Chapter 1

[11]

• Code First: This is the approach where all the domain models are written
in the form of classes. These classes will constitute our EDM. The database
schema will be created from these models. This approach is best suited
for applications that are highly domain-centric and will have the domain
model classes created first. The database here is needed only as a persistence
mechanism for these domain models.

• Model First: This approach is very similar to the Code First approach, but in
this case, we use a visual EDM designer to design our models. The database
schema and the classes will be generated by this conceptual model. The
model will give us the SQL statements needed to create the database, and
we can use it to create our database and connect up with our application.
For all practical purposes, it's the same as the Code First approach, but in
this approach, we have the visual EDM designer available.

Comparing the development styles
Before we start looking at these development styles in detail, let's try to do
a comparative analysis of these styles. It will help us in understanding these
styles in detail.

The Database First approach
In a Database First approach, the main benefit that the developers have is that if the
database is created, they will spend very little time writing the data access layer.
The EDM can be created from the database and then we can change it as per our
application needs; our data access layer is ready to use. Here are a few scenarios
where the Database First approach is very useful:

• When we are working with a legacy database.
• When we are working in a scenario where the database design is being done

by another team of DBAs, and once the database is ready, the application
development starts.

• When we are working on a data centric application, that is, the application
domain model is the database itself, and it is being changed frequently to
cater to new requirements. For instance, when the tables are being updated
regularly and new columns are being added to it frequently then we can
simply use this approach, and the application code will not break. We simply
have to write the code to cater to the newly added columns.

Introduction to Entity Framework

[12]

The Model First approach
Similar to the Database First approach, in the Model First approach, we ultimately
end up with the EDM. Using this EDM, we can create our conceptual model and
the database. The only reason to choose the Model First approach is that we really
want to use the Visual Entity Designer. There is no other strong reason to choose this
approach over the other two.

The Code First approach
The Code First approach is usually helpful where all the business logic is
implemented in terms of classes, and the database is simply being used as a
persistence mechanism for these models. Here are a few reasons why one might
want to choose the Code First approach:

• The database is simply a persistence mechanism for the models, that is, no
logic is in the database.

• Full control over the code, that is, there is no auto-generated model and
context code.

• The database will not be changed manually. The model classes will always
change and based on this, the database should change itself.

Entity Framework Database First
approach
This approach has been available since the first version of Entity Framework. In
this approach, we start with an already existing database and start creating our
EDM from the existing database. Let's try to see how this works using the Entity
Framework Database First approach with our ToDo sample. To use the Entity
Framework Database First approach, we have to add a new ADO.NET EDM to
our project:

Chapter 1

[13]

Add a new ADO.NET EDM

Let's start by defining a database for the ToDo application. Let's create a simple table
that will keep a track of all the ToDo items:

A table schema for the sample ToDo application

The application requirements state that it should be possible to perform the
following activities on the ToDos:

• Read the list of ToDos
• Create a ToDo item
• Read a specific ToDo item
• Update the status of a ToDo item
• Delete a ToDo item

Introduction to Entity Framework

[14]

When we add the EDM, it asks us whether we want to create the conceptual model
from the existing database, or if we want to create an empty model. For the Database
First approach, we need to select an existing database. The following screenshot
shows the wizard step that asks you to select the database:

ADO.NET EDM wizard step 1—generate from the database

Chapter 1

[15]

Once we choose to add the EDM, we need to specify the database that should be
used to create it. So, the next step in the wizard will ask you for the connection to the
database. Let's see what this wizard step looks like:

ADO.NET EDM wizard step 2—select the database

Introduction to Entity Framework

[16]

Once the connection is successfully established, the wizard shows us all the tables,
views, procedures, and functions that we will want to access from our application.
Using this wizard, we can also choose to include the foreign key relations in our
conceptual model and singularization of the model name, in case the table name
is plural in our conceptual model:

ADO.NET EDM wizard step 3—select the schema elements to be included in the EDM

Chapter 1

[17]

Once the conceptual model is created, the EDM will be created for use in our
application. The application will create a .EDMX file that contains all the information
about our conceptual entity model and its mapping to the database tables:

Visual Entity Designer showing the default model

Introduction to Entity Framework

[18]

We can modify the conceptual model and change the mapping using entity designer.
Let's try to change the property ToDo1 to ToDoItem in our conceptual model. Note
that only the class property has been changed, and not the column name:

Visual Entity Designer showing the customized model

If we open the EDMX file, we can find the following three sections:

• Conceptual schema definition: This specifies how a strongly typed model for
our conceptual model will be created:
<edmx:ConceptualModels>
 <Schema Namespace="ToDoDBModel" Alias="Self" annotation:UseStron
gSpatialTypes="false" xmlns:annotation="http://schemas.microsoft.
com/ado/2009/02/edm/annotation" xmlns="http://schemas.microsoft.
com/ado/2009/11/edm">
 <EntityType Name="ToDo">
 <Key>

Chapter 1

[19]

 <PropertyRef Name="Id" />
 </Key>
 <Property Name="Id" Type="Int32" Nullable="false" />
 <Property Name="TodoItem" Type="String" MaxLength="Max"
FixedLength="false" Unicode="true" Nullable="false" />
 <Property Name="IsDone" Type="Boolean" Nullable="false" />
 </EntityType>
 <EntityContainer Name="ToDoDBEntities" annotation:LazyLoadingEna
bled="true">
 <EntitySet Name="ToDos" EntityType="Self.ToDo" />
 </EntityContainer>
 </Schema>
</edmx:ConceptualModels>

• Storage schema definition: This specifies how the storage model is created,
that is, how the values are stored in the database:
<edmx:StorageModels>
 <Schema Namespace="ToDoDBModel.Store" Provider="System.
Data.SqlClient" ProviderManifestToken="2012" Alias="Self"
xmlns:store="http://schemas.microsoft.com/ado/2007/12/edm/
EntityStoreSchemaGenerator" xmlns="http://schemas.microsoft.com/
ado/2009/11/edm/ssdl">
 <EntityType Name="ToDos">
 <Key>
 <PropertyRef Name="Id" />
 </Key>
 <Property Name="Id" Type="int" Nullable="false" />
 <Property Name="Todo" Type="nvarchar(max)" Nullable="false" />
 <Property Name="IsDone" Type="bit" Nullable="false" />
 </EntityType>
 <EntityContainer Name="ToDoDBModelStoreContainer">
 <EntitySet Name="ToDos" EntityType="Self.ToDos" Schema="dbo"
store:Type="Tables" />
 </EntityContainer>
 </Schema>
</edmx:StorageModels>

• Mapping: This specifies the mapping between the conceptual model and the
storage model:
<edmx:Mappings>
 <Mapping Space="C-S" xmlns="http://schemas.microsoft.com/
ado/2009/11/mapping/cs">
 <EntityContainerMapping StorageEntityContainer="ToDoDBModelStore
Container" CdmEntityContainer="ToDoDBEntities">
 <EntitySetMapping Name="ToDos">

Introduction to Entity Framework

[20]

 <EntityTypeMapping TypeName="ToDoDBModel.ToDo">
 <MappingFragment StoreEntitySet="ToDos">
 <ScalarProperty Name="Id" ColumnName="Id" />
 <ScalarProperty Name="TodoItem" ColumnName="Todo" />
 <ScalarProperty Name="IsDone" ColumnName="IsDone" />
 </MappingFragment>
 </EntityTypeMapping>
 </EntitySetMapping>
 </EntityContainerMapping>
 </Mapping>
</edmx:Mappings>

We should always prefer to change these values from the
Visual Entity Designer. We can modify this XML manually to
change it as per our needs, but Visual Entity Designer allows
us to perform most of the modifications, and unless we need
to make a change that is not supported by entity designer,
we should try not to make them manually.

Once the EDM is created, we will get a class generated for each model object present
in our conceptual model. We will also get the DBContext class that will let's use these
strongly typed models:

Solution Explorer showing the generated DbContext and Model class

The generated DBContext class will look like this:

public partial class ToDoDBEntities : DbContext
{
 public ToDoDBEntities()
 : base("name=ToDoDBEntities")
 {
 }

 public virtual DbSet<ToDo> ToDos { get; set; }
}

Chapter 1

[21]

The generated model class will look like this:

public partial class ToDo
{
 public int Id { get; set; }
 public string TodoItem { get; set; }
 public bool IsDone { get; set; }
}

Now we are ready to write typed queries against the generated conceptual model, and
Entity Framework will execute our queries on the database, and return the results in
the form of these strongly typed models. Creating new data or updating the existing
data is also very easy, because Entity Framework automatically tracks the changes we
make in our models, and lets us save the changes to the database. This can simply be
done by calling the SaveChanges method on the DBContext class. One important thing
to note here is that the read operation can utilize Language-Integrated Query (LINQ)
to query the object data model, and Entity Framework will take care of converting it to
the appropriate SQL query and retrieve the results.

If our application is a data-centric application, and all we need is to be able to
perform CRUD operations using strongly typed objects, this is all that we are going
to need. However, one of the great benefits of Entity Framework is being able
to modify the conceptual models to better adapt to our domain needs, and then
use the mappings to map the domain model to the database tables. We can have
relationships between our domain models and still let them persist the data in a
given set of tables.

In the Database First approach, the Entity Model is able to
incrementally update the conceptual model if the database
schema is updated. We just need to right-click on the visual
designer and chose Update Model from Database.

In the later chapters, we will see how to manage multiple models, how we can define
relationships between the entities, introduce inheritance hierarchies, customize
entities, and much more. This will give you a good foundation to get started with
the Entity Framework Database First approach if you haven't used it before, and will
refresh your memory if you have.

Introduction to Entity Framework

[22]

Entity Framework Model First approach
The Model First approach is useful when we don't have a database to start with.
Using this approach, we can create our models directly in the Visual Entity Designer,
and then create the database schema based on our model. In this approach too, we
can create entities and their properties, define relationships and constraints between
the entities, and create inheritance relationships.

In this approach, we will first create the conceptual model, and based on this the
database and the strongly typed objects will be created. To start with the Model First
approach, we first need to add an ADO.NET EDM.

Let's try to add an ADO.NET EDM in our application:

Add a new ADO.NET EDM

Chapter 1

[23]

Since we are planning to start with an empty model, we have to select an empty
model in the wizard. The following screenshot shows the wizard step that asks you
to select the option. We have to select Empty model in this step:

ADO.NET EDM wizard step 1—select the Model First approach

Introduction to Entity Framework

[24]

Once we choose the empty model, Entity Framework will show us the Visual Entity
Designer. Now we can add the entities and relations to the designer area from the
toolbar. The Entity Designer and the toolbar will look something like this:

An empty Visual Entity Designer after selecting the Model First approach

Let's try to add a new entity to our ToDo application and add properties to that
model. Let's add a few properties to our ToDo model:

Adding a new property from Visual Entity Designer

Chapter 1

[25]

Let's add the scalar properties needed for our ToDo model. Let's make the ID field a
primary key field, a string property for ToDoItem, and a Boolean property for IsDone:

Visual Studio's Property panes showing the properties of a conceptual model

The created entity will look something like this:

The final model created from the Visual Entity Designer

Introduction to Entity Framework

[26]

Once we have the conceptual model created for our application, we have to create
the database from this conceptual model. This can be done by right-clicking on the
entity and choosing Generate Database from Model:

Generating database scripts from the Visual Entity Designer

Chapter 1

[27]

This will prompt you to select the database connection. This wizard will not create
the actual database, but it will generate the DDL for us, and we will have to use that
DDL to create the database ourselves:

Wizard step to select the connection string to be used for a generated database script

Introduction to Entity Framework

[28]

After we select the database connection, the wizard will give us the SQL to create the
database on the specified connection:

Wizard step showing the create database script

Chapter 1

[29]

We can now copy this SQL and create the database. The Entity Framework has
already created connectionString to use this connection, and wired up the
DBContext class to perform the operations on this database. Let's take a look at the
generated DbContext class:

public partial class ToDoModelContainer : DbContext
{
 public ToDoModelContainer()
 : base("name=ToDoModelContainer")
 {
 }

 public virtual DbSet<ToDo> ToDoes { get; set; }
}

The strongly typed objects will also be generated from the conceptual model. Let's
take a look at our generated ToDo class:

public partial class ToDo
{
 public ToDo()
 {
 this.IsDone = false;
 }

 public int Id { get; set; }
 public string ToDoItem { get; set; }
 public bool IsDone { get; set; }
}

If we are using the Model First approach, one important thing to consider is that
the incremental changes in our model will not perform the incremental updates
to the database. Rather, it will give us the SQL to create the updated database from
the ground up.

If we want to perform incremental updates to the database,
we can use the Database Generation Power Pack from Microsoft
(https://visualstudiogallery.msdn.microsoft.com/
df3541c3-d833-4b65-b942-989e7ec74c87/). Using this,
we can perform incremental updates to the database.

https://visualstudiogallery.msdn.microsoft.com/df3541c3-d833-4b65-b942-989e7ec74c87/
https://visualstudiogallery.msdn.microsoft.com/df3541c3-d833-4b65-b942-989e7ec74c87/

Introduction to Entity Framework

[30]

Entity Framework Code First approach
Now, let's take a look at the Entity Framework Code First approach. In this approach,
we will start by creating the model classes ourselves. We will then implement our
business logic against these classes, and then if we need to persist these models, we
can use the Entity Framework Code First framework to save these models to the
database. Thus, the Entity Framework Code First approach enables us to write simple
C# classes, that is, Plain Old CLR Objects (POCOs) for our models, and then lets us
persist them in a data store by defining a DbContext class for our model classes.

So, if we want to implement our ToDo application using the Code First approach, we
will first have to create the ToDo model ourselves. Let's create a simple ToDo class
that will keep track of our ToDo items:

public class ToDo
{
 public int Id { get; set; }
 public string ToDoItem { get; set; }
 public bool IsDone { get; set; }
}

Once we have the ToDo class ready, we need to start thinking about how the
database will be created from our classes. We need to tell Entity Framework how to
use our classes and generate the database accordingly. We want to tell the database
generation module about all the persistence information, such as table names, key
columns, and so on. We can do this in our model classes. So, if we try to put these
attributes in our model class, our resultant ToDo model will look like this:

[Table("ToDo")] // Table name
public class ToDo
{
 [Key] // Primary key
 public int Id { get; set; }

 [Column("ToDoItem", TypeName="ntext")]
 public string ToDoItem { get; set; }

 [Column("IsDone", TypeName="bit")]
 public bool IsDone { get; set; }
}

Chapter 1

[31]

In the preceding code, we updated our class with a table attribute passing in the
table name. This will tell the Entity Framework that a table should be created for this
class. Each property of the class can be updated with the Column attribute, and we
can specify the name of the column this property should be mapped to and the data
type. The Key attribute will be used to specify the property that should be used as a
primary key.

Entity Framework uses the DBContext class to save the models to the database. In
the Code First approach, we need to create the DBContext class ourselves too. Let's
see how we can implement our DBContext class:

public partial class ToDoDBContext : DbContext
{
 public ToDoDBContext()
 : base("name=ToDoConnectionString")
 {
 }

 public DbSet<ToDo> ToDoes { get; set; }
}

The context class that we are creating should be derived from the DbContext class.
The context class will also keep DbSet of ToDos that will represent the list of ToDo
items being retrieved from the table. The constructor of the context class will pass the
name of connectionString to the base DbContext class. This connectionString
will be used to connect to the database.

Another possibility is to keep the name of the connectionString the same as the
DbContext class name. The Entity Framework will be able to use the corresponding
DbContext class with this connectionString to persist the data. This is an example
of the Convention over configurations principle. However, this is also flexible, so that
we have the possibility of giving custom names to the connectionStrings.

Now to be able to use Entity Framework to persist the data, we just need to create
this connectionString in the XML configuration, and Entity Framework will
take care of creating the database and performing the CRUD operations on their
respective models.

This has shown you how to use the Code First approach using a single model. In
later chapters, you will see how to use multiple models and have relationships
between them, how we can define complex types, and customize models as per our
application requirements.

Introduction to Entity Framework

[32]

We have looked at how Entity Framework supports various development
approaches and lets us create the conceptual model and data access logic very easily.
We have seen that Entity Framework depends on the EDM to perform the database
CRUD operations, and we have also looked at the various ways to create the
conceptual model and map it to the database using the Database First, Model First,
and Code First approaches.

To fully understand the benefits of Entity Framework over ADO.NET, we must
also look at how easy and efficient it is to use Entity Framework to perform the
actual operations. This will also show how performing CRUD operations is the
same, irrespective of the approach we take. Let's now see how we can perform
CRUD operations using Entity Framework to fully understand the benefits of
Entity Framework.

Performing CRUD operations using
Entity Framework
We will perform CRUD operations on our ToDo model using the Entity Framework
DbContext class.

It doesn't matter which approach we select to create the
database and conceptual model (Database First, Code First, or
Model First); from the code perspective, it's the same code that
the developers need to write in order to use Entity Framework.

Now let's say we have a model for our ToDo item, that is, ToDo. We also have the
DbContext class created to perform CRUD operations on the ToDo model. Let's take a
look at how we can use Entity Framework to perform CRUD operations on our ToDo
model. The important thing to note in these examples would be the use of LINQ. We
will write all our queries in LINQ, and Entity Framework will take care of converting
it to the appropriate SQL and return the results.

Reading a list of items
The way Entity Framework works is that using the DbContext class, we can retrieve
all the data by simply accessing the model collection associated with the view. So, to
fetch a list of items, we just need to get the model collection from the context class:

using(ToDoDBEntities db = new ToDoDBEntities())
{
 IEnumerable<ToDo> todoItems = db.ToDos;
}

Chapter 1

[33]

Let's try to understand the preceding code:

1. We created an object of the DbContext class:
ToDoDBEntities db = new ToDoDBEntities();

2. We then used the DbContext object to fetch the ToDo entities:
IEnumerable<ToDo> todoItems = db.ToDos;

After this call, the list of ToDo items will be available in the ToDo items
collection if we enumerate ToDo items. Entity Framework will internally
perform the following activities for us to fetch the result:

3. Parsed our request for the data.
4. Generated the needed SQL query to perform this action.
5. Used the context class to wire up the SQL to the database.
6. Fetched the results from the database.
7. Created the strongly typed models from the retrieved results and return

them to the user.

If we need to perform eager loading, we can do this by calling
ToList() on the collection as: IEnumerable<ToDo>
todoItems = db.ToDos.ToList();.

Reading a specific item
If we want to retrieve a single item from the model collection, we have many ways
of doing it. Typically, we can use any LINQ function to fetch the single record from
the model collection. Also, if we want to fetch the result using the primary key, we
can use the Find method to do it. Let's look at a few ways in which we can retrieve a
single item using Entity Framework:

using (ToDoDBEntities db = new ToDoDBEntities())
{
 ToDo todo1 = db.ToDos.Find(id);

 ToDo todo3 = db.ToDos.FirstOrDefault(item => item.TodoItem == "Test
item");
 ToDo todo2 = db.ToDos.SingleOrDefault(item => item.TodoItem == "Test
item");

}

Introduction to Entity Framework

[34]

Let's try to understand the preceding code:

1. We created an object of the DbContext class:
ToDoDBEntities db = new ToDoDBEntities()

2. Retrieved an item by passing the key values, that is, using the Find function:
ToDo todo1 = db.ToDos.Find(id);

3. Retrieved an item by passing a non-key value using the FirstOrDefault
function:
ToDo todo2 = db.ToDos.SingleOrDefault(item => item.TodoItem ==
"Test item");

4. Retrieved an item by passing a non-key value using the SingleOrDefault
function:
ToDo todo2 = db.ToDos.SingleOrDefault(item => item.TodoItem ==
"Test item");

The FirstOrDefault and SingleOrDefault functions
will return the first occurrence of the item if it is found, else
it will return null. We should always check for the null
values before using the item retrieved using these functions.
SingleOrDefault will throw an exception if it finds multiple
items matching the request criteria.

Creating a new item
To create an item, we simply need to create the model, assign the values in the model
properties, and then call the SaveChanges method on Entity Framework. Now let's
see how we can create a ToDo item using Entity Framework:

using (ToDoDBEntities db = new ToDoDBEntities())
{
 ToDo todoItem = new ToDo();
 todoItem.TodoItem = "This is a test item.";
 todoItem.IsDone = false;
 db.ToDos.Add(todoItem);

 db.SaveChanges();
}

Chapter 1

[35]

Let's try to understand the preceding code:

1. We created an object of the DbContext class:
ToDoDBEntities db = new ToDoDBEntities()

2. Created a new ToDo item:
ToDo todoItem = new ToDo();

3. Populated the ToDo item properties with the desired values:
todoItem.TodoItem = "This is a test item.";
todoItem.IsDone = false;

4. Added the item to the context class:
 db.ToDos.Add(todoItem);

5. Called Entity Framework's SaveChanges method to persist these changes in
the database:
db.SaveChanges();

Entity Framework's DbContext class is able to identify a new
model and generate the respective insert query for it to create
a new record on the database.

Updating an existing item
To update an existing item, there are two possibilities. The first possibility is that we
will fetch the model, update some of the properties of the model, and then save the
updated model in the database. To do this, we just need to fetch the required model
using the DbContext class, update its properties, and then call the SaveChanges
method on the DbContext object. Let's try to update a model with the ID 3:

using (ToDoDBEntities db = new ToDoDBEntities())
{
 int id = 3;
 ToDo todo = db.ToDos.Find(id);

 todo.TodoItem = "This has been updated";
 todo.IsDone = false;
 db.SaveChanges();
}

Introduction to Entity Framework

[36]

Let's try to understand the preceding code:

1. We created an object of the DbContext class:
ToDoDBEntities db = new ToDoDBEntities()

2. Fetched the item with id = 3:
int id = 3;
ToDo todo = db.ToDos.Find(id);

3. Updated the model properties:
todo.TodoItem = "This has been updated";
todo.IsDone = false;

4. Called Entity Framework's SaveChanges method to persist these changes in
the database:
db.SaveChanges();

What is happening in the preceding code is that the DbContext class was still in
scope when the entity was being updated and saved. The DbContext class is able
to track the changes in the entity if it is in scope. However, this approach is rarely
useful, because in real applications in a typical n-tier application, the entities will be
passed through multiple layers, and any layer can update this entity, and at the time
of updating the entity, objects are usually disconnected from the context.

So to perform the updates in such a disconnected environment, we need to attach
the updated entity back to let the DbContext class identify the modifications made
in the entity, and then generate the appropriate update SQL accordingly and persist
the updates in the database. This can be done by attaching the entity back to the
DbContext class. Let's see how a ToDo model can be attached to the DbContext class
if it is being passed from a different tier:

using (ToDoDBEntities db = new ToDoDBEntities())
{
 db.Entry(todo).State = EntityState.Modified;
 db.SaveChanges();
}

Let's try to understand the preceding code:

1. We created an object of the DbContext class:
ToDoDBEntities db = new ToDoDBEntities()

2. Attached the model to the DbContext class and marked this model
as modified:
db.Entry(todo).State = EntityState.Modified;

Chapter 1

[37]

3. Called Entity Framework's SaveChanges method to persist these changes in
the database:
db.SaveChanges();

In the preceding code, the ToDo model is being modified and
passed from some other layer. This is a fairly advanced topic
and if it is not clear at this stage, please move on; this will be
covered in detail in further chapters.

Deleting an item
To delete an item, we just need to fetch the item that needs to be deleted, call the
Remove method on the model collection, and call the SaveChanges method on the
DbContext class. Let's try to delete a model with the ID 3:

using (ToDoDBEntities db = new ToDoDBEntities())
{
 int id = 3;
 ToDo todo = db.ToDos.Find(id);
 db.ToDos.Remove(todo);
 db.SaveChanges();
}

Let's try to understand the preceding code:

1. We created an object of the DbContext class:
ToDoDBEntities db = new ToDoDBEntities()

2. Fetched the item with id = 3:
int id = 3;
ToDo todo = db.ToDos.Find(id);

3. Removed the item from the collection:
db.ToDos.Remove(todo);

4. Called Entity Framework's SaveChanges method to persist these changes in
the database:
db.SaveChanges();

It is also possible that the model entities are getting created and deleted
while being disconnected from the DbContext class. In these cases, we
need to attach the models to the DBContext class, and mark them using
the EntityState property.

Introduction to Entity Framework

[38]

Choosing persistence approaches
Now, we saw the three options to create the EDM and the DbContext class. Which
approach should be used in which scenario, is often a question that many developers
ask. There is no definite reason for choosing any particular approach, but here is a
small checklist that the developers might find very useful while deciding on which
approach to choose. If at any point, the answer to any question is yes, then that
approach should be used without even looking at the next question in the checklist:

Question Approach
Is there a legacy database or does the database already exist? Database First
Will we be getting a database created by the DBAs before starting the
development?

Database First

Will there be frequent database changes, based on which our
application should change?

Database First

Do we want to use the Visual Entity Designer to generate the database
and model classes?

Model First

Do we have the model classes already and we need the database to
save the data only?

Code First

Do we want to write all the model classes, implement them, and then
think about the database storage later?

Code First

We don't want to deal with the auto-generated classes and would
prefer to write them ourselves

Code First

Is the answer to all the preceding questions "no"? Database First

Summary
In this chapter, we talked about the ORMs and how ORMs can ease the task of
writing data access code. We saw what Entity Framework is and how it works. We
then saw the various approaches for using Entity Framework. We performed CRUD
operations on a simple model to see Entity Framework in action. Finally, we looked
at which approach would better fit our needs based on the given scenario.

In the next chapter, we will see how we can use the Entity Framework Database First
approach to model complex relationships between database tables as relationships
between the domain models. We will also see how to work with these related models
using Entity Framework.

Entity Framework DB
First – Managing Entity

Relationships
In this chapter, we will see how to model relationships between tables in our Entity
Data Model and use Entity Framework to work with these related entities. We will
look at the types of relationship between the tables, and then we will see how this
can be modeled in our Entity Data Model. We will then see how we can perform
CRUD operations by utilizing these relationships.

Understanding database relationships
In a very simple application, it is possible to have a single table. However, as the
complexity of the application grows and the need to store data increases, the number
of tables also increases. If we are trying to store a complex related set of data, then
these tables will also relate to each other using foreign keys. To model our database
correctly and have a properly normalized database, we will end up with a set of
related tables. Let's look at the various types of relationship that can exist between
tables in a database.

There are three types of relationship that can exist between tables:

• One-to-many relationship
• One-to-one relationship
• Many-to-many relationship

Let's try to understand these relationships from a real-world perspective. We will
then see how these relationships are realized in the database.

Entity Framework DB First – Managing Entity Relationships

[40]

One-to-many relationship
This type of relationship is needed when a row from one table is related to many
rows in another table. One typical example of this is the employer-employee
relationship. One organization has many employees, that is, for each row in the
Employers table, there will be many rows in the Employees table. Alternatively,
every employee in the Employees table will these belong to only one employer in
the Employers table. It means that an Employer can have 0…* Employees but that an
Employee has to be attached to an Employer.

To implement a one-to-many relationship, we have to create a foreign key in the
table that is on the many end, Employees in our case. This will refer to the Employers
table's primary key. The primary key of the table at the one end of relationship,
that is, the Employers table will have a unique constraint. Let's try to visualize this
relationship by looking at the database schema created for it.

A one-to-many relationship between tables

In the preceding screenshot, the key symbol shows the one side
of the relationship and the infinity symbol represents the many
side of the relationship. This means that every record in the
Employees table should have a related record in the Employers
table, and for every record in the Employers table, there could
be many related records in the Employees table.

One-to-one relationship
This is not a very common scenario, but it is possible. In this scenario, a row from
one table will be related to only one row in another table. Employees and Passports
are examples of this. One employee can have only one passport. So, every row in the
Employees table will be related to a single row in the Passports table.

Chapter 2

[41]

One way to implement a one-to-one relationship in the database is to have a foreign
key in the related table, that is, the Passports table in our case. These foreign key
columns will have a unique constraint to ensure that for every passport, there is only
one relation to the Employees table.

Unfortunately, the Entity Framework does not support this way of creating a
one-to-one relationship. There is another way to create a one-to-one relationship and
that is by making both the tables involved in the relationship share a primary key.
So, if we create a one-to-one relationship by creating both the Passports table and the
Employees table share a primary key, then our schema will look like this:

A one-to-one relationship between tables

In the preceding screenshot, both the tables will have the
key symbol, as it is a one-to-one relationship.

Many-to-many relationship
This is a very common scenario where one row from a table could be related to many
rows of another table and vice versa. An example of this type of relationship could
be the EmployeeReports relationship. One report can be written by many employees
and alternatively, an employee may have written many reports.

Entity Framework DB First – Managing Entity Relationships

[42]

To implement a many-to-many relationship, we need to create a third table. This
table is often called a join table or a junction table. The primary keys of this table
consist of the foreign keys from both the tables involved in the relationship. Let's
try to visualize this relationship by looking at the database schema created for it.

A many-to-many relationship between tables

In the preceding screenshot, both the tables involved
in the relationship are mapped as one-to-many with
our join table, which would effectively give us a
many-to-many relationship between these two tables.

Downloading the example code
You can download the example code files for all
Packt books you have purchased from your account
at http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 2

[43]

Creating the Entity model
Once we have all the relationships created in the database, the complete database
will look like this:

The database schema for the sample application

We will be using this database to create a sample
application to understand how to model all the
relationships using Entity Framework.

Entity Framework DB First – Managing Entity Relationships

[44]

Now, let's add a new ADO.NET Entity Data Model in our application, and then,
using this existing database, we will create the Entity Data Model, that is, the
conceptual model for our application.

Entity Data Model generated using the Database First approach

We will now start looking at how these relationships are modeled in the conceptual
model and how we can use them to perform operations on related entities.

Modeling a one-to-many relationship
Now, let's start our discussion by looking at the models that have one-to-many
relationships. If we look at the Employer and Employee relation, we can see that
the Entity Frameworks Entity Data Model generator was able to figure out the
one-to-many relationship between the database tables and was able to create the
same relationship in the conceptual Entity Data Model as well.

Chapter 2

[45]

A one-to-many relationship between entities

Also, the relationship in the Entity Data Model is represented by 1 with the
entity at the one end of the relationship and by * with the entity on the many
end of the relationship.

If we look at our Entity Data Model, we can see that the Entity Framework created
Navigation Properties in the entities. The entity at the one end of the relationship
will have a navigation property of the collection type to hold multiple entities on the
many end. Similarly, the Entity on the many end of the relation will have a navigation
property that will let us access the entity related to it on the one end.

In our current example, the Employer model contains a navigation property,
Employees, using which we can retrieve/update the list of employees associated with
Employer. The Employee model also contains a navigation property, Employer, using
which we can retrieve/update the Employer information for a given Employee.

If we look at the EDMX XML markup, we can see that the SSDL contains the
information about the one-to-many relationship between the tables.

SSDL showing a one-to-many relationship

Entity Framework DB First – Managing Entity Relationships

[46]

The same relationship is also mentioned in the CSDL to indicate the one-to-many
relationship between the entities.

CSDL showing a one-to-many relationship

The MSL in this case will simply contain the mapping information of both the tables
involved in the relationship to respective database columns.

MSL showing the Employees and Employer entity mapping

Chapter 2

[47]

Modeling a one-to-one relationship using
Entity Framework
Now, let's look at the models that have one-to-one relationships. The Employees
table and Passports table has a one-to-one relationship. If we look at the Employee
and Passport relationship, we can see that the Entity Framework Entity Data Model
generator was able to figure out the one-to-one relationship between these tables and
was able to create the same relationship in the conceptual Entity Data Model as well.

A one-to-one relationship between entities

Also, one-to-one relationships in the Entity Data Model are represented by 1 with the
Employee entity, because this is the main entity in the relation. The Passport entity
shows 0..1, which means that there could be either 0 or 1 entries in the Passport
table for each employee.

Entity Framework also created Navigation Properties in the entities. Navigation
properties are properties that link the entities to related entities. Using navigation
properties, we can access the entities related to a given entity. The Employee model
contains a navigation property, Passport, using which we can access the related
Passport entity and similarly, the Passport model contains a navigation property,
Employee, using which we can access the Employee object related to Passport.

Entity Framework DB First – Managing Entity Relationships

[48]

If we look at the EDMX XML markup, we can see that the SSDL contains the
information about this one-to-one relationship between the tables.

SSDL showing a one-to-one relationship

The same relationship is also mentioned in the CSDL to indicate the one-to-one
relationship between these entities.

CSDL showing a one-to-one relationship

MSL in this case will simply contain the mapping information of both the tables
involved in the relationship to the respective database columns.

MSL showing Reports entity mapping

Chapter 2

[49]

Modeling a many-to-many relationship
using Entity Framework
Now, let's look at the models that have many-to-many relationships. The Employees
table and the Reports table have a many-to-many relationship. If we look at the
Employer and Report relationship, we can see that the Entity Framework Entity
Data Model generator was able to figure out this many-to-many relationship
between these tables and was able to create the same relationship in the conceptual
Entity Data Model as well.

The important thing to notice here is that the Entity Framework was also able
to understand that the EmployeeReports table was created solely to manage a
many-to-many relationship, and is actually not needed in the conceptual model.

Entity Framework is able to figure out this many-to-many
relationship and omit the joining table when the joining table has
only PK columns for both tables.
Not having the joining table as a separate entity is actually beneficial
as the entities will then have direct navigation properties to the
related entities, thus eliminating the need for us to navigate to the
related entity ourselves.
If we have other columns in the joining table, then Entity
Framework will not be able to figure out this many-to-many
relationship, and it will create all the entities as normal entities. In
such a scenario, we have to manually join the entities in our object
query to achieve the desired results and fetch the appropriate data.

A many-to-many relationship between entities

Entity Framework DB First – Managing Entity Relationships

[50]

Also, the relationship in the Entity Data Model is represented by * with both the
entities to denote a many-to-many relationship. Entity Framework also created
Navigation Properties in the entities. The Employee model contains a Navigation
property, Reports, using which we can access the related records from the Reports
table and similarly, the Report model contains a navigation property, Employees,
using which we can access Employee records related to Reports.

If we look at the EDMX XML markup in the following diagram, we can see that the
SSDL contains information about this many-to-many relationship between the tables.

SSDL showing a many-to-many relationship

The same relationship is also mentioned in the CSDL to indicate the many-to-many
relationship between these entities.

CSDL showing a many-to-many relationship

Chapter 2

[51]

Now, as the Entity Framework is not showing the joining table and is able to create
navigation properties directly in the entities participating in the many-to-many
relationship, the mapping part of the EDMX contains information about the joining
table that is responsible for facilitating this many-to-many relationship. This is done
by defining AssociationSet in the mapping as follows:

Mapping showing how the joining table has been mapped to facilitate a many-to-many relationship

Using navigation properties for
data access
We have just discussed that the Entity Framework creates navigation properties to
facilitate the data access operations on related entities. Let's now look at how we can
use these navigation properties to perform CRUD operations on related entities.

We will only be working with entities involved in one-to-many
relationships, that is, the Employer and Employee entity.
However, using navigation properties to perform CRUD
operation is more or less similar for all relationships.

Retrieving a specific item
If we have the entity at the many end of the application and we want to retrieve
the entity at the one end, we can use the navigation property to do this. From our
sample application's perspective, we will see how we can retrieve the employer for
a given employee. This can be achieved by using the Employer navigation property,
available in the Employer object. Let's see how this can be done in code:

public Employer GetEmployerByEmployee(int employeeId)
{
 Employer employer = null;
 using (SampleDbEntities db = new SampleDbEntities())
 {
 Employee employee = db.Employees.Find(employeeId);
 if (employee != null)
 {

Entity Framework DB First – Managing Entity Relationships

[52]

 employer = employee.Employer;
 }
 }

 return employer;
}

In the preceding code, we create a DbContext object, and using this context object,
fetch the Employee by the given employeeId. If we find an Employee object for this,
we retrieve the Employer object associated with it. We do this by using the navigation
properties. Internally, what Entity Framework does is that it creates a SQL query to
fetch the employer associated with the employee with a given employeeId.

Retrieving a list of items
Let's start by looking at how we can use the entity at the one end of the relationship
and retrieve the list of all the related entities at the many end. From our sample
application's perspective, we will see how we can retrieve a list of employees if we
have the employer object. This can be achieved by using the navigation property,
Employees, available in the Employer object. Let's see how this can be done in code:

public List<Employee> GetEmployeesByEmployer(int employerId)
{
 List<Employee> employeeList = null;
 using (SampleDbEntities db = new SampleDbEntities())
 {
 Employer employer = db.Employers.Find(employerId);
 if (employer != null)
 {
 employeeList = employer.Employees.ToList();
 }
 }

 return employeeList;

}

In the preceding code, we create the DbContext object and using this object, we fetch
the Employer by the given employerId function. If we find an Employer object with
this ID, we retrieve the Employees associated with it. Internally, Entity Framework
is generating a SQL to fetch all the employees associated with this employerid and
return all the records as a collection of Employee entities.

Chapter 2

[53]

If the requirement was to find a particular Employee instead
of the list, we can further query the Employee list retrieved.

Adding an item
If we want to add an entity in a relationship, we can simply assign it or add it to the
Navigation property. For example, if we want to associate Employee with Employer,
we just need to add the employee object to the employer's Employee collection. Let's
see how this can be done in code:

public void AddEmployee(Employee employee, int employerId)
{
 using (SampleDbEntities db = new SampleDbEntities())
 {
 Employer employer = db.Employers.Find(employerId);
 employer.Employees.Add(employee);
 db.SaveChanges();
 }
}

In the preceding code, we create the DbContext object and using this object, we fetch
Employer by the given employerId. If we find an Employer object with this ID, we
add the Employee object to the employer's Employee collection and finally save the
changes to database with db.SaveChanges();. What happens here is that if this
Employee entity points to an existing Employee record in the table, the EmployerId
value for that employee record will be updated to the ID of the new Employer. If this
Employee record does not exist in the database, then a new record for this Employee
will be created, and it will have the EmployerId of the given Employer object.

If this employee object that we are adding to the employer
already exists in the database, only the EmployerId value
will be updated in that record. If this employee record did
not exist, a new record will be created for it.

Entity Framework DB First – Managing Entity Relationships

[54]

Updating an item
Now, let's say that we want to update a related entity using the main entity, that is,
the entity that is associated via the navigation property with the current entity we
are using. For example, we want to update an Employee record using an Employer
object that is related to this employee. Let's see how this can be done:

public void UpdateEmployee(Employee modifiedEmployee, int employerId)
{
 using (SampleDbEntities db = new SampleDbEntities())
 {
 Employer employer = db.Employers.Find(employerId);
 Employee employee = employer.Employees.FirstOrDefault
 (emp => emp.ID == newEmployee.ID);

 if (employee != null)
 {
 employee.EmployeeName = modifiedEmployee.EmployeeName;
 }
 else
 {

 employer.Employees.Add(employee);
 }

 db.SaveChanges();
 }
}

In the preceding code, we create the DbContext, and using this object, we fetch the
Employer by the given employerId. If we find an Employer object with this ID, we
find the existing Employee by using the ID in the new Employee object. Once the
Employee is found, we update the object with new values and save the changes to
the database with db.SaveChanges();.

The preceding code shows a very contrived example
of updating the related entity. If we have an Employee
object, then we can directly update it by associating it with
the DbContext class and marking its state as updated.
However, the intention of the preceding code was to explain
how the related entities can be updated.

Chapter 2

[55]

Deleting an item
Now, let's say that we want to delete an associated entity from the many end
provided that we have the entity at the one end and the ID of one of the many
elements to be deleted. From our sample application's perspective, let's see how we
can delete an Employee with a given ID by using the Employer entity:

public void DeleteEmployee(int employeeId, int employerId)
{
 using (SampleDbEntities db = new SampleDbEntities())
 {
 Employer employer = db.Employers.Find(employerId);
 Employee employee = employer.Employees.FirstOrDefault(emp =>
emp.ID == employeeId);

 if(employee != null)
 {
 employer.Employees.Remove(employee);
 db.SaveChanges();

 }
 }
}

Let's try to understand the preceding code:

1. Create DbContext:
SampleDbEntities db = new SampleDbEntities()

2. Fetch the Employer by the given employerId:
Employer employer = db.Employers.Find(employerId);

3. Find the existing Employee by using the ID in the new Employee object:
Employee employee = employer.Employees.FirstOrDefault(emp => emp.
ID == employeeId);

4. If the Employee is found, delete Employee:
employer.Employees.Remove(employee);

5. Save the changes. Please note that it is very important to call save
changes since otherwise there will be no modifications to the data.
db.SaveChanges();

Entity Framework DB First – Managing Entity Relationships

[56]

The preceding code will remove the records from the table. If we
don't want to remove the records from the table and just want to
remove the relationship between the entities, then we can assign
null to the navigation properties and save the changes. This will
remove the relation between the entities:

employer.Employees = null;
db.SaveChanges();

Entity Framework – behind the scenes
Let's try to understand how Entity Framework used these navigation properties
to retrieve the data. Let's look at the same example that we saw while retrieving
Employer by using the Employee entity. In this scenario, our Employee entity
contains a navigation property, Employer, using which we can access Employer
related to Employee. The Employer entity also contains a navigation property,
Employees, which will let us access the employees related to the given employer.
So, if we need to access Employer related to Employee, it can be done as follows:

using (SampleDbEntities db = new SampleDbEntities())
{
 Employee employee = db.Employees.SingleOrDefault
(employeeId);
 if (employee != null)
 {
 employer = employee.Employer;
 }
}

What happens behind the scenes is that Entity Framework generates SQL based on
our queries and retrieves the data from the tables.

Let's see what Entity Framework is doing behind the scenes to make this work:

1. Analyze our object query. In our example, we are simply querying all the
results, but this could very well be a complicated LINQ query as well.

2. Check the database mapping of the Employee entity.
3. Use the navigation property and find the database mappings of the

Employer entity.
4. Use the one-to-many relationship to create an Inner Join statement.
5. Generate the appropriate SQL and retrieve the data.
6. Populate the retrieved data into the Employer and Employee models.

Chapter 2

[57]

If we look at the generated SQL, it will look like this:

SELECT
..[Extent2].[ID] AS [ID],
..[Extent2].[EmployerName] AS [EmployerName]
FROM
..[dbo].[Employees] AS [Extent1]
INNER JOIN
..[dbo].[Employers] AS [Extent2] ON [Extent1].[EmployerId] =
 [Extent2].[ID]
WHERE
..([Extent1].[ID] = @p__linq__0) AND (@p__linq__0 IS NOT NULL)

To see the SQL query generated by Entity Framework, we can
use a ToString() query on a DbQuery object. Unfortunately,
this can only be done if we use the query syntax to retrieve the
data. To look at the generated SQL for the preceding code, we
first need to write the equivalent query syntax for this and then
perform ToString() on that:

var _employer = from c in db.Employees
 where c.ID == employeeId
 select c.Employer;

var sql = _employer.ToString();

We can also use SQL Profiler to look at the Entity-Framework-
generated queries.

Summary
In this chapter, we looked at how we can manage database table's relationships in
our conceptual model using the Entity Framework Database First approach. We also
looked at how Entity Framework keeps track of the relationships between entities
and lets us use the relationships effectively by providing navigation properties in
entities. We also saw how we can perform database operations in related entities
using the navigation properties. In the next chapter, we will look at how we can
perform model validations using Entity Framework to ensure that only valid values
get persisted in the database.

Entity Framework DB First –
Performing Model Validations

In this chapter, we will see how we can perform model validations using Entity
Framework. We will take a look at the various approaches available for model
validations, and implement a small sample application to validate the models using
each approach. Finally, we will take a look at which approach should be used in
which scenario. Model validations discussed in this chapter are not specific to the
Database First approach. It is a functionality related to entities so it is applicable to
all three approaches of Entity Framework.

Model validations using Entity Framework
Every application will have certain business rules associated to maintain the
consistency of the data that is being saved in the database. It is our application's
responsibility to perform the business rule validations while inserting or updating
the data in a database.

Classic ADO.NET applications contain these validations in either the presentation
layer or business logic layer. Using Entity Framework's validation features, we can
perform model validations in the presentation and business logic layers. The best
approach from the application perspective would be to use a combination of both
presentation layer validations and business logic layer validations. Validations in
the presentation layer will provide quick feedback to the user, and complex business
rules can be validated in the business logic layer.

Entity Framework DB First – Performing Model Validations

[60]

There are two ways in which we can perform model validations using
Entity Framework:

• Model validations using partial class methods
• Model validations using data annotations

Each of these approaches has its pros and cons in usage and both can be used
simultaneously based on the validation requirements. Let's take a look at both these
approaches one by one and try to implement a sample application for each approach
to understand the concepts in detail.

Model validations using partial class methods
When we use Entity Framework's Database First approach, Entity Framework is
responsible for generating entities. To facilitate validations for these generated
entities, which Entity Framework generates, it also creates partial methods that will
be invoked when the entity's property value is changed. The methods are named
OnPropertyNameChanging, and we can use these methods as hooks to perform
custom validations whenever the property values are updated.

Before we start looking at this approach for validation, let's try to understand the
concept of partial methods.

Understanding partial methods
In C#, it is possible to split class definitions across multiple files by creating partial
classes. We can simply split the class definition across multiple places using the
partial keyword. This feature is particularly useful when we are dealing with
generated code, as we don't have to modify the generated code. However, we can
still add custom code to the class, and it will work in unison with the generated code.
The following code (1003EN_03_1_code.txt) shows how this can be implemented:

partial class Contact
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
}

partial class Contact
{
 public DateTime DateOfBirth { get; set; }
}

Chapter 3

[61]

The concept of partial methods takes this approach one step further. It is possible to
create partial methods in such a way that the method declaration can reside in one
partial class and its definition can be put in another partial class.

The benefit of this feature is that one partial class can declare a method and specify
where it will be called and another partial class can specify the definition such as the
behavior when this function is called. So, if we try to modify the preceding Contact
class to have a partial method that will be called every time the LastName value is
changed, the code will look as follows:

partial class Contact
{
 public string FirstName { get; set; }

 private string m_LastName;
 public string LastName
 {
 get
 {
 return m_LastName;
 }
 set
 {
 OnLastNameChanging(value);
 m_LastName = value;
 }
 }

 partial void OnLastNameChanging(string newValue);
}

If we don't provide the definition for this partial method in any of the partial classes,
the function call will be ignored. However, if we specify the definition of the partial
method, it will be invoked whenever the method is called. Let us write the definition
of the partial function OnLastNameChanging in our second partial class, and try to
avoid setting values that are more than 50 characters in length:

partial class Contact
{
 public DateTime DateOfBirth { get; set; }

 partial void OnLastNameChanging(string newValue)
 {
 if(newValue.Length > 50)

Entity Framework DB First – Performing Model Validations

[62]

 {
 throw new Exception("LastName - length exceeded");
 }
 }
}

These partial methods are very useful to perform custom validations using
Entity Framework's Database First approach. The generated code will have the
OnPropertyChanging partial method declarations, and the partial methods will be
called whenever the property value changes. Let's see how we can use these partial
methods to perform custom validations.

One important thing to note here is that the partial methods and the
method calls will only be generated when we are using EntityObject
based generators. Entity Framework's default generator uses POCO
classes, and this generator does not generate these partial functions.
We can also modify the T4 generator files to achieve this.
To use partial functions, we have to use the EntityObject generator,
which can be done by removing the existing tt classes under the
EDMX file, and then selecting Add code generation item from the
context menu and adding EF 6.x EntityObject Generator.

Using partial methods to perform model validations
Let's now take a look at how we can use these partial methods to perform model
validations. Let's create a simple People table in the database. We will try to insert
data in this table, and see how we can perform model validations before inserting
the data in this table.

Schema for the People table

Chapter 3

[63]

Once the table is created, let's use Entity Framework's Database First approach with
EF 6.x EntityObject Generator, and generate the Entity Data Model for this table. The
generated entity for this table will look like the following screenshot.

Generated Entity model, Person, for the People table

If we take a look at the generated entity's code, we can see that the entity class
contains partial methods such as OnPropertyChanging and OnPropertyChanged.
For example, for the LastName property, it contains partial methods such as
OnLastNameChanging and OnLastNameChanged.

The OnPropertyChanging partial method will be called before the value of the
property is changed. This gives us the possibility of validating the proposed value
before it is assigned. The OnPropertyChanged method will be called after the
property value is changed. This is helpful when we need to take some action once
the property of an entity is changed.

Let's implement a simple validation where we will try to validate the e-mail ID
format to ensure that this field will only contain valid e-mail IDs. For this, we will
implement the partial class for our model, Person, and inside this partial class,
we will implement the OnEmailIDChanging partial method.

In this method, we will use a simplified regular expression to validate the format of
the e-mail. If the e-mail is not in a proper format, we will raise an exception, which
the UI layer can handle, and let the user know about the problem. Let's see how we
can implement this partial method:

partial class Person
{
 partial void OnEmailIDChanging(string value)
 {
 bool isEmail = Regex.IsMatch(value, @"^\w+@[a-zA-Z_]+?\.
[a-zA-Z]{2,3}$", RegexOptions.IgnoreCase);

Entity Framework DB First – Performing Model Validations

[64]

 if(isEmail == false)
 {
 throw new InvalidArgumentException
("Invalid email address");

 }
 }
}

In the preceding code, first, we implemented a partial class for our model Person.
Inside this partial class, we implemented the OnEmailIDChanging partial method.
Entity Framework will call this function whenever a new value is set for the EmailID
property. We will use the regular expression based method, Regex.IsMatch, to check
whether the new value is a valid e-mail or not. If the new value is not a valid e-mail,
then we throw an exception stating that the e-mail supplied is in an invalid format.

If we don't want to throw an exception, in cases of invalid data, then we use
another method to let the application know about the error by implementing
IValidatableObject in our partial class. Property-change-based validation is
like a trigger-based validation. It reacts immediately, and generally it validates a
single property only. IValidatableObject is mainly used for multiple property
validations, when there are business rules that are based on relationships between
the properties:

partial class Person : IValidatableObject
{
 List<ValidationResult> validationErrors = new
List<ValidationResult>();

 public IEnumerable<ValidationResult> Validate(ValidationContext
validationContext)
 {
 return validationErrors;
 }
}

When we implement the IValidatableObject interface, we need to implement the
Validate method. This Validate method will be called from the UI layer, and it will
return any validation errors to the presentation layer. This method will also be called
when we call the SaveChanges method on the DbContext class.

Now we need to hook this Validate method with our partial method validation.
To do this, we need to add the error message in this ValidationResult collection
from our partial method. So, if we implement our partial method to add the
validation errors in this collection, our class will look like this:

Chapter 3

[65]

partial class Person : IValidatableObject
{
 List<ValidationResult> validationErrors = new
List<ValidationResult>();

 public IEnumerable<ValidationResult> Validate(ValidationContext
validationContext)
 {
 return validationErrors;
 }

 partial void OnEmailIDChanging(string value)
 {
 validationErrors.Clear();

 bool isEmail = Regex.IsMatch(value, @"^\w+@[a-zA-Z_]+?\.
[a-zA-Z]{2,3}$", RegexOptions.IgnoreCase);

 if (isEmail == false)
 {
 ValidationResult vResult = new ValidationResult("Invalid
email address", new string[] { "EmailID" });
 validationErrors.Add(vResult);
 }
 }
}

In this new implementation, whenever we get invalid data in our partial method,
we create an object of ValidationResult, and add it to the ValidationResult
collection that is available at entity level. Whenever the application calls validate, the
validation results will be passed to the application.

The first step in the OnEmailIDChanging method is to clear the
collection that holds the errors. This is to remove the previous
validation errors from the collection before returning.
From a best practices perspective, we should not even store the
errors in the collection. We can directly yield them too.

One might ask why we need to put the validation logic in the entities, as this can
easily be done in the UI layer too. Putting the validation logic there is useful because
it decouples the entity validation logic from the UI layer. If our entity class is being
used by many applications, then putting the validation logic inside the entities will
ensure the consistency of validation rules across all the applications.

Entity Framework DB First – Performing Model Validations

[66]

To decide what validations should be put in the entities and what
validations should be put in UI, we should try to analyze whether the
validation rule applies to individual properties of an entity or whether
it checks values across multiple entities. If the validation rule applies to
an individual property of an entity, it should be put inside the entity,
otherwise it should be put on the layer above the entity, for example,
the business logic layer or perhaps the UI layer.

Model validations using data annotations
We can also perform validations using data annotations on your entity class. This is
even possible when Entity Framework is generating the entities. The major benefit
of using data annotation-based validations is that it makes it very easy for us to
perform validations by simply adding attributes to model properties. It is also
helpful in scenarios where we want to use POCO generators with our Database
First approach, where we will not have the partial methods made available to
perform the validations.

Validations using data annotations can also be used in Entity
Framework's Code First approach to perform model validations.

To perform model validations using data annotations, we need to add the validation
attributes to our entity class. The first question that comes to mind now is how can
we add the attributes to the entity classes since our entity classes are autogenerated
by Entity Framework.

To add the validation attributes to our generated entity classes, we need to create
a partial class for our generated entity. In this partial class, we have to add the
MetadataType attribute and point this attribute at a class that is responsible for
applying Data Annotations to our entity's properties.

Let's create a MetaDataType class for our Person entity:

[MetadataType(typeof(PersonMetaData))]
partial class Person
{
}
class PersonMetaData
{
}

Chapter 3

[67]

In the preceding code, we updated the Person class with the MetaDataType
attribute and specified that all the data annotation attributes will be defined
in the PersonMetaData class.

In the case of Entity Framework's Code First approach, we don't need
to create this MetaDataType (PersonMetaData) class, as we can put
the data annotations in the entity class itself.

Now that we have created a MetaDataType class, let's try to add some validation
logic using the data annotation attributes.

Specifying validation rules using data
annotations
Let's now see how we can use data annotation attributes to implement validation
logic for our entity class. Let's try to implement the following validation rules in our
Person entity:

• All the properties are required
• The length of each property should not exceed a given length
• PhoneNumber should contain only numbers
• Email should be in the proper e-mail format

Let's see how we can implement these rules in our PersonMetaData class.

Validating the required fields
Let's start by looking at how we can use data annotations to validate a required
field. To validate a required field, we have to decorate the property with a Required
attribute. Let's see how we do this with the properties of the PersonMetaData entity:

class PersonMetaData
{
 [Required(ErrorMessage = "First Name is required")]
 public string FirstName { get; set; }

 [Required(ErrorMessage = "Last Name is required")]
 public string LastName { get; set; }

 [Required(ErrorMessage = "Phone number is required")]
 public string PhoneNumber { get; set; }

Entity Framework DB First – Performing Model Validations

[68]

 [Required(ErrorMessage = "Email ID is required")]
 public string Email { get; set; }
}

The Required attribute also has a property called ErrorMessage, which can be
used to specify the error message that should be passed to the application when
the validation rule for the associated entity property fails.

Validating the length of fields
We can also validate the entity properties for maximum allowed length using the
StringLength attribute. Let's try to put these StringLength validations in our
PersonMetaData class:

class PersonMetaData
{
 [Required(ErrorMessage = "First Name is required")]
 [StringLength(100, ErrorMessage = "First Name length should be
less than 100")]

 public string FirstName { get; set; }

 [Required(ErrorMessage = "Last Name is required")]
 [StringLength(100, ErrorMessage = "Last Name length should be less
than 100")]

 public string LastName { get; set; }
 [Required(ErrorMessage = "Phone number is required")]
 [StringLength(15, ErrorMessage = "Phone number length should be
less than 15")]

 public string PhoneNumber { get; set; }

 [Required(ErrorMessage = "Email ID is required")]
 [StringLength(35, ErrorMessage = "eMail Length should be less than
35")]

 public string Email { get; set; }
}

The first argument in the StringLength attribute specifies the maximum length
allowed for the property, and the ErrorMessage argument specifies the error that
will be passed to the application if the validation rule for the associated property fails.

Chapter 3

[69]

Regular expression-based validations
If we want to validate our entity properties with some regular expressions, we can
use the RegularExpression attribute. Let's try to validate the PhoneNumber and
EmailID properties using RegularExpression attribute:

class PersonMetaData
{
 [Required(ErrorMessage = "First Name is required")]
 [StringLength(100, ErrorMessage = "First Name length should be
less than 100")]
 public string FirstName { get; set; }

 [Required(ErrorMessage = "Last Name is required")]
 [StringLength(100, ErrorMessage = "Last Name length should be less
than 100")]
 public string LastName { get; set; }

 [Required(ErrorMessage = "Phone number is required")]
 [StringLength(15, ErrorMessage = "Phone number length should be
less than 15")]
 [RegularExpression(@"^[0-9]{0,15}$", ErrorMessage = "Phone Number
should contain only numbers")]

 public string PhoneNumber { get; set; }

 [Required(ErrorMessage = "Email ID is required")]
 [StringLength(35, ErrorMessage = "eMail Length should be less than
35")]
 [RegularExpression(@"^\w+@[a-zA-Z_]+?\.[a-zA-Z]{2,3}$",
ErrorMessage = "E Mail is not in proper format")]

 public string Email { get; set; }
}

Now the PhoneNumber and Email properties should also conform to the given
regular expression. If they don't conform to the specified regular expression, the
ErrorMessage will be propagated to the application.

Since the properties of our PersonMetaData class are specified with
multiple attributes, all the validation rules will apply to the properties,
that is, all the properties are now required and have certain maximum
string length to conform to. Also, the PhoneNumber and Email fields
should conform to the given regular expression too.

Entity Framework DB First – Performing Model Validations

[70]

Triggering validations using data annotations
Once we have specified the data annotation attributes, we need to trigger them to
validate the actual model. The trigger method will actually depend on the type of
application that is using Entity Framework. There are two types of applications:

• Applications that support data binding environments and data annotations
such as ASP.NET MVC and Silverlight applications

• Applications/frameworks that don't support data annotations explicitly such
as Windows Forms, Web services, or any other .NET application

Let's see how we can trigger the validations in these types of application.

Trigger validations in data binding environments
In the case of applications that support data binding environments with data
annotations support, we don't have to do anything explicitly to trigger the
validations. The validations will get triggered automatically. These applications are
configured to pull the validation rules automatically either from the entity class itself
(Code First approach) or from another class that is associated with the entity class
via the MetaDataType attribute (Database First or Model First approach). In such
applications, whenever the entity is being created or updated, the metadata will be
pulled and in the case of validation failure, the error message will be passed to the UI
layer automatically.

Trigger validations in non-data binding environments
If we are working on an application that does not support data binding environments,
we need to explicitly trigger the validations. There are two scenarios based on where
the data annotations are specified:

• The data annotation attributes are in the entity class itself (Code First approach)
• The data annotation attributes are in another class associated with the entity

class via the MetaDataType attribute

In the first case, where the entity class itself contains the data annotation attributes,
we just need to do the following to explicitly trigger the validations for our
Person entity:

Person person = new Person();

ValidationContext context = new ValidationContext(person);

Chapter 3

[71]

List<ValidationResult> results = new List<ValidationResult>();

bool isValid = Validator.TryValidateObject(person, context, results);

In the preceding code, we created a new object for ValidationContext that will be
used to perform the validations. We then created a list of ValidationResults to
hold the validation errors. Finally, we called the Validator.TryValidateObject
function to trigger the validations. This function will return true if the validation is
successful, otherwise it will return false. In case the validation fails, the validation
errors will be found in the result, that is, the collection of ValidationResult.

In Entity Framework's Code First approach, the data annotation
attributes will be specified in the entity class itself. So the preceding
code will suffice to trigger the validations.

The challenge lies in triggering the validation rules in the second scenario where
the data annotation attributes are defined in the MetaData class and not in the
actual model.

In this scenario, we need to somehow let ValidationContext know that the
data annotations are specified in another class. This can be done by letting
TypeDescriptor know about the class that contains the data annotation
attributes, as follows:

var descProvidor = new AssociatedMetadataTypeTypeDescriptionProvider(t
ypeof(Person), typeof(PersonMetaData));
TypeDescriptor.AddProviderTransparent(descProvidor, typeof(Person));

In the preceding code, we created the
AssociatedMetadataTypeTypeDescriptionProvider object to create a mapping
that tells the PersonMetaData class contains the data annotation attributes for
the Person class. This provider is then passed to TypeDescriptor to let the data
annotations ValidationContext know that the validation attributes for the Person
entity should be used from the PersonMetaData class.

This needs to be done only once when the application is starting.

Once this is done we can use ValidationContext to explicitly trigger the validations,
as shown in the previous section.

Entity Framework DB First – Performing Model Validations

[72]

Implementing custom validations using data
annotations
We can use data annotations for validating a Required field, having a string
conform to a maximum length using the StringLength attribute, and regular
expression-based validations using the RegularExpression attribute. There are
a few other data attributes such as EnumDataTypeAttribute that is used to map an
enum value to a property and ultimately to the database column, DataTypeAttribute,
to map a data type to the database column, and RangeAttribute that can be used to
specify the range constraints for the value of a data field. From the usage perspective,
they are quite similar to the ones we saw earlier and thus we will not discuss them in
detail here.

What if we need to perform some custom validation along with these three validations?

Partial methods provide you with greater flexibility to perform custom validations,
but the problem with the partial method validation technique is that it will not be
available if we are using POCO generators with our Entity Framework's Database
First or Model First approach, or if we are using Code First approach. In this case,
the only option available to perform custom validations is writing custom data
annotation attributes.

Let's see how we can perform custom validations for entity properties using data
annotations, that is, implementing custom data annotation validation attributes.
Let's say we want to implement a custom validation where we will check whether
the e-mail provided by the user is already present in the system or not. If the e-mail
is already present, we will raise a validation error.

To implement a custom validation attribute, we need to create a class that is derived
from the ValidationAttribute abstract class. We need to implement the IsValid
method in this class. This IsValid method will be called whenever the validations
are triggered. Let's write a class UniqueEmailAttribute that will contain our
custom validation logic:

public class UniqueEmailAttribute : ValidationAttribute
{
 protected override ValidationResult IsValid(object value,
ValidationContext validationContext)
 {
 string email = value as string;

 if (email != null)
 {
 using (SampleDbEntities db = new SampleDbEntities())
 {

Chapter 3

[73]

 var personWithEmailFound = db.People.Any(item => item.
Email == email);
 if (personWithEmailFound == true)
 {
 return new ValidationResult("This email already
exists in the system.");
 }

 }
 }

 return ValidationResult.Success;
 }
}

In the preceding code, we retrieved the new value of email from the value
parameter. Then we checked whether there are any records in the database with
this email. If we are able to find any record in the database with this email, we raise
a validation error that this email is already present in the system.

This attribute will not work properly because when we check whether
email already exists in the system, the result of the entity being
updated will also be returned. Since the e-mail ID is found in the entity
itself, which we are trying to update, we will get a validation error. To
circumvent this, we need to check which entity is being updated:

Person person = validationContext.ObjectInstance as
Person;

However, while checking whether the e-mail exists in the system or
not, we need to exclude this entity. This can be done as follows:

var personWithEmailFound =
 db.People.Any(item => item.Email == email && item.
ID != person.ID);

if (personWithEmailFound == true)

{

 return new ValidationResult("This email already
exists in the system.");
}

This way we can ensure that our custom validation will work in an
update scenario also.

Entity Framework DB First – Performing Model Validations

[74]

Now, to use this custom validation, we just need to update our entity's property with
this attribute. So the Email property in our PersonMetaData class will look like the
following after implementing this custom validation attribute:

[Required(ErrorMessage = "Email ID is required")]
[StringLength(35, ErrorMessage = "eMail Length should be less than
35")]
[RegularExpression(@"^\w+@[a-zA-Z_]+?\.[a-zA-Z]{2,3}$", ErrorMessage =
"E Mail is not in proper format")]
[UniqueEmail]
public string Email { get; set; }

Now when the model validations are triggered our custom validation logic will also
be executed.

We can also specify the error message while updating the EmailID
property of the PersonMetaData class, because the base class already
defines it:

[UniqueEmail(ErrorMessage = "Email ID already exists
in the system.")]
public string EmailID { get; set; }

To use this error message, we just need to use this property while
creating the ValidationResult object in our attribute class:

return new ValidationResult(this.ErrorMessage);

Summary
In this chapter, we looked at a few ways of performing validations for generated
entities using partial methods and data annotations. We have also seen how we
can trigger the validations in non-data binding environments, and how we can
write custom data annotation attributes to perform custom validations. The data
annotation-based validations are very useful in the usual validation scenarios,
and we should try to use them for those. In case we need custom validations,
we can do this using the partial method approach.

In the next chapter, we will take a look at advanced domain modeling techniques
using Entity Framework's Database First approach using an inheritance relationship
between entities.

Entity Framework DB First
– Inheritance Relationships

between Entities
So far, we have seen how we can use various approaches of Entity Framework, how
we can manage database table relationships, and how to perform model validations
using Entity Framework. In this chapter, we will see how we can implement the
inheritance relationship between the entities. We will see how we can change the
generated conceptual model to implement the inheritance relationship, and how it
will benefit us in using the entities in an object-oriented manner and the database
tables in a relational manner.

Domain modeling using inheritance in
Entity Framework
One of the major challenges while using a relational database is to manage the
domain logic in an object-oriented manner when the database itself is implemented
in a relational manner. ORMs like Entity Framework provide the strongly typed
objects, that is, entities for the relational tables. However, it might be possible that
the entities generated for the database tables are logically related to each other,
and they can be better modeled using inheritance relationships rather than having
independent entities.

Entity Framework DB First – Inheritance Relationships between Entities

[76]

Entity Framework lets us create inheritance relationships between the entities, so that
we can work with the entities in an object-oriented manner, and internally, the data
will get persisted in the respective tables. Entity Framework provides us three ways
of object relational domain modeling using the inheritance relationship:

• The Table per Type (TPT) inheritance
• The Table per Class Hierarchy (TPH) inheritance
• The Table per Concrete Class (TPC) inheritance

Let's now take a look at the scenarios where the generated entities are not logically
related, and how we can use these inheritance relationships to create a better domain
model by implementing inheritance relationships between entities using the Entity
Framework Database First approach.

The Table per Type inheritance
The Table per Type (TPT) inheritance is useful when our database has tables that
are related to each other using a one-to-one relationship. This relation is being
maintained in the database by a shared primary key. To illustrate this, let's take a
look at an example scenario.

Let's assume a scenario where an organization maintains a database of all the people
who work in a department. Some of them are employees getting a fixed salary,
and some of them are vendors who are hired at an hourly rate. This is modeled in
the database by having all the common data in a table called Person, and there are
separate tables for the data that is specific to the employees and vendors.
Let's visualize this scenario by looking at the database schema:

The database schema showing the TPT inheritance database schema

Chapter 4

[77]

The ID column for the People table can be an auto-increment
identity column, but it should not be an auto-increment identity
column for the Employee and Vendors tables.

In the preceding figure, the People table contains all the data common to both type
of worker. The Employee table contains the data specific to the employees and
the Vendors table contains the data specific to the vendors. These tables have a
shared primary key and thus, there is a one-to-one relationship between the tables.

To implement the TPT inheritance, we need to perform the following steps in
our application:

1. Generate the default Entity Data Model.
2. Delete the default relationships.
3. Add the inheritance relationship between the entities.
4. Use the entities via the DBContext object.

Generating the default Entity Data Model
Let's add a new ADO.NET Entity Data Model to our application, and generate the
conceptual Entity Model for these tables. The default generated Entity Model will
look like this:

The generated Entity Data Model where the TPT inheritance could be used

Entity Framework DB First – Inheritance Relationships between Entities

[78]

Looking at the preceding conceptual model, we can see that Entity Framework is
able to figure out the one-to-one relationship between the tables and creates the
entities with the same relationship.

However, if we take a look at the generated entities from our application domain
perspective, it is fairly evident that these entities can be better managed if they
have an inheritance relationship between them. So, let's see how we can modify the
generated conceptual model to implement the inheritance relationship, and Entity
Framework will take care of updating the data in the respective tables.

Deleting default relationships
The first thing we need to do to create the inheritance relationship is to delete the
existing relationship from the Entity Model. This can be done by right-clicking on
the relationship and selecting Delete from Model as follows:

Deleting an existing relationship from the Entity Model

Chapter 4

[79]

Adding inheritance relationships between
entities
Once the relationships are deleted, we can add the new inheritance relationships in
our Entity Model as follows:

Adding inheritance relationships in the Entity Model

When we add an inheritance relationship, the Visual Entity Designer will ask for the
base class and derived class as follows:

Selecting the base class and derived class participating in the inheritance relationship

Entity Framework DB First – Inheritance Relationships between Entities

[80]

Once the inheritance relationship is created, the Entity Model will look like this:

Inheritance relationship in the Entity Model

After creating the inheritance relationship, we will get a compile
error that the ID property is defined in all the entities. To resolve this
problem, we need to delete the ID column from the derived classes.
This will still keep the ID column that maps the derived classes as it is.

So, from the application perspective, the ID column is defined in the
base class but from the mapping perspective, it is mapped in both the
base class and derived class, so that the data will get inserted into tables
mapped in both the base and derived entities.

With this inheritance relationship in place, the entities can be used in an object-
oriented manner, and Entity Framework will take care of updating the respective
tables for each entity.

Chapter 4

[81]

Using the entities via the DBContext object
As we know, DbContext is the primary class that should be used to perform various
operations on entities. Let's try to use our SampleDbContext class to create an Employee
and a Vendor using this Entity Model and see how the data gets updated in the database:

using (SampleDbEntities db = new SampleDbEntities())
{
 Employee employee = new Employee();
 employee.FirstName = "Employee 1";
 employee.LastName = "Employee 1";
 employee.PhoneNumber = "1234567";
 employee.Salary = 50000;
 employee.EmailID = "employee1@test.com";

 Vendor vendor = new Vendor();
 vendor.FirstName = "vendor 1";
 vendor.LastName = "vendor 1";
 vendor.PhoneNumber = "1234567";
 vendor.HourlyRate = 100;
 vendor.EmailID = "vendor1@test.com";

 db.People.Add(employee);
 db.People.Add(vendor);
 db.SaveChanges();
}

Entity Framework DB First – Inheritance Relationships between Entities

[82]

In the preceding code, what we are doing is creating an object of the Employee
and Vendor type, and then adding them to People using the DbContext object.
What Entity Framework will do internally is that it will look at the mappings of
the base entity and the derived entities, and then push the respective data into the
respective tables. So, if we take a look at the data inserted in the database, it will
look like the following:

A database snapshot of the inserted data

It is clearly visible from the preceding database snapshot that Entity Framework
looks at our inheritance relationship and pushes the data into the Person, Employee,
and Vendor tables.

The Table per Class Hierarchy inheritance
The Table per Class Hierarchy (TPH) inheritance is modeled by having a single
database table for all the entity classes in the inheritance hierarchy. The TPH
inheritance is useful in cases where all the information about the related entities
is stored in a single table. For example, using the earlier scenario, let's try to model
the database in such a way that it will only contain a single table called Workers to
store the Employee and Vendor details. Let's try to visualize this table:

Chapter 4

[83]

A database schema showing the TPH inheritance database schema

Now what will happen in this case is that the common fields will be populated
whenever we create a type of worker. Salary will only contain a value if the worker
is of type Employee. The HourlyRate field will be null in this case. If the worker is
of type Vendor, then the HourlyRate field will have a value, and Salary will
be null.

This pattern is not very elegant from a database perspective. Since
we are trying to keep unrelated data in a single table, our table is
not normalized. There will always be some redundant columns that
contain null values if we use this approach. We should try not to use
this pattern unless it is absolutely needed.

To implement the TPH inheritance relationship using the preceding table structure,
we need to perform the following activities:

1. Generate the default Entity Data Model.
2. Add concrete classes to the Entity Data Model.
3. Map the concrete class properties to their respective tables and columns.
4. Make the base class entity abstract.
5. Use the entities via the DBContext object.

Let's discuss this in detail.

Entity Framework DB First – Inheritance Relationships between Entities

[84]

Generating the default Entity Data Model
Let's now generate the Entity Data Model for this table. The Entity Framework will
create a single entity, Worker, for this table:

The generated model for the table created for implementing the TPH inheritance

Adding concrete classes to the Entity Data
Model
From the application perspective, it would be a much better solution if we have
classes such as Employee and Vendor, which are derived from the Worker entity.
The Worker class will contain all the common properties, and Employee and Vendor
will contain their respective properties. So, let's add new entities for Employee and
Vendor. While creating the entity, we can specify the base class entity as Worker,
which is as follows:

Chapter 4

[85]

Adding a new entity in the Entity Data Model using a base class type

Similarly, we will add the Vendor entity to our Entity Data Model, and specify the
Worker entity as its base class entity.

Entity Framework DB First – Inheritance Relationships between Entities

[86]

Once the entities are generated, our conceptual model will look like this:

The Entity Data Model after adding the derived entities

Next, we have to remove the Salary and HourlyRate properties from the Worker
entity, and put them in the Employee and the Vendor entities respectively. So, once
the properties are put into the respective entities, our final Entity Data model will
look like this:

Chapter 4

[87]

The Entity Data Model after moving the respective properties into the derived entities

Mapping the concrete class properties to the
respective tables and columns
After this, we have to define the column mappings in the derived classes to let the
derived classes know which table and column should be used to put the data. We
also need to specify the mapping condition.

Entity Framework DB First – Inheritance Relationships between Entities

[88]

The Employee entity should save the Salary property's value in the Salary column
of the Workers table when the Salary property is Not Null and HourlyRate is Null:

Table mapping and conditions to map the Employee entity to the respective tables

Once this mapping is done, we have to mark the Salary property as
Nullable=false in the entity property window. This will let Entity Framework
know that if someone is creating an object of the Employee type, then the Salary
field is mandatory:

Setting the Employee entity properties as Nullable

Chapter 4

[89]

Similarly, the Vendor entity should save the HourlyRate property's value in the
HourlyRate column of the Workers table when Salary is Null and HourlyRate is
Not Null:

Table mapping and conditions to map the Vendor entity to the respective tables

And similar to the Employee class, we also have to mark the HourlyRate property
as Nullable=false in the Entity Property window. This will help Entity Framework
know that if someone is creating an object of the Vendor type, then the HourlyRate
field is mandatory:

Setting the Vendor entity properties to Nullable

Entity Framework DB First – Inheritance Relationships between Entities

[90]

Making the base class entity abstract
There is one last change needed to be able to use these models. To be able to use
these models, we need to mark the base class as abstract, so that Entity Framework
is able to resolve the object of Employee and Vendors to the Workers table.

Making the base class Workers as abstract

This will also be a better model from the application perspective because the Worker
entity itself has no meaning from the application domain perspective.

Using the entities via the DBContext object
Now we have our Entity Data Model configured to use the TPH inheritance. Let's
try to create an Employee object and a Vendor object, and add them to the database
using the TPH inheritance hierarchy:

using (SampleDbEntities db = new SampleDbEntities())
{
 Employee employee = new Employee();
 employee.FirstName = "Employee 1";
 employee.LastName = "Employee 1";
 employee.PhoneNumber = "1234567";
 employee.Salary = 50000;
 employee.EmailID = "employee1@test.com";

Chapter 4

[91]

 Vendor vendor = new Vendor();
 vendor.FirstName = "vendor 1";
 vendor.LastName = "vendor 1";
 vendor.PhoneNumber = "1234567";
 vendor.HourlyRate = 100;
 vendor.EmailID = "vendor1@test.com";

 db.Workers.Add(employee);
 db.Workers.Add(vendor);
 db.SaveChanges();
}

In the preceding code, we created objects of the Employee and Vendor types, and
then added them to the Workers collection using the DbContext object. Entity
Framework will look at the mappings of the base entity and the derived entities,
will check the mapping conditions and the actual values of the properties, and then
push the data to the respective tables. So, let's take a look at the data inserted in the
Workers table:

A database snapshot after inserting the data using the Employee and Vendor entities

So, we can see that for our Employee and Vendor models, the actual data is being
kept in the same table using Entity Framework's TPH inheritance.

Entity Framework DB First – Inheritance Relationships between Entities

[92]

The Table per Concrete Class inheritance
The Table per Concrete Class (TPC) inheritance can be used when the database
contains separate tables for all the logical entities, and these tables have some
common fields. In our existing example, if there are two separate tables of Employee
and Vendor, then the database schema would look like the following:

The database schema showing the TPC inheritance database schema

One of the major problems in such a database design is the duplication of columns in
the tables, which is not recommended from the database normalization perspective.

To implement the TPC inheritance, we need to perform the following tasks:

1. Generate the default Entity Data Model.
2. Create the abstract class.
3. Modify the CDSL to cater to the change.
4. Specify the mapping to implement the TPT inheritance.
5. Use the entities via the DBContext object.

Chapter 4

[93]

Generating the default Entity Data Model
Let's now take a look at the generated entities for this database schema:

The default generated entities for the TPC inheritance database schema

Entity Framework has given us separate entities for these two tables. From our
application domain perspective, we can use these entities in a better way if all the
common properties are moved to a common abstract class. The Employee and
Vendor entities will contain the properties specific to them and inherit from this
abstract class to use all the common properties.

Entity Framework DB First – Inheritance Relationships between Entities

[94]

Creating the abstract class
Let's add a new entity called Worker to our conceptual model and move the common
properties into this entity:

Adding a base class for all the common properties

Chapter 4

[95]

Next, we have to mark this class as abstract from the properties window:

Marking the base class as abstract class

Modifying the CDSL to cater to the change
Next, we have to specify the mapping for these tables. Unfortunately, the Visual
Entity Designer has no support for this type of mapping, so we need to perform
this mapping ourselves in the EDMX XML file.

The conceptual schema definition language (CSDL) part of the EDMX file is all
set since we have already moved the common properties into the abstract class. So,
now we should be able to use these properties with an abstract class handle. The
problem will come in the storage schema definition language (SSDL) and mapping
specification language (MSL).

The first thing that we need to do is to change the SSDL to let Entity Framework
know that the abstract class Worker is capable of saving the data in two tables. This
can be done by setting the EntitySet name in the EntityContainer tags as follows:

<EntityContainer Name="todoDbModelStoreContainer">
 <EntitySet Name="Employee" EntityType="Self.Employee" Schema="dbo"
store:Type="Tables" />
 <EntitySet Name="Vendor" EntityType="Self.Vendor" Schema="dbo"
store:Type="Tables" />
</EntityContainer>

Entity Framework DB First – Inheritance Relationships between Entities

[96]

Specifying the mapping to implement the TPT
inheritance
Next, we need to change the MSL to properly map the properties to the
respective tables based on the actual type of object. For this, we have to specify
EntitySetMapping. The EntitySetMapping should look like the following:

<EntityContainerMapping StorageEntityContainer="todoDbModelStoreContai
ner" CdmEntityContainer="SampleDbEntities">
 <EntitySetMapping Name="Workers">
 <EntityTypeMapping TypeName="IsTypeOf(SampleDbModel.Vendor)">
 <MappingFragment StoreEntitySet="Vendor">
 <ScalarProperty Name="HourlyRate" ColumnName="HourlyRate" />
 <ScalarProperty Name="EMailId" ColumnName="EMailId" />
 <ScalarProperty Name="PhoneNumber" ColumnName="PhoneNumber" />
 <ScalarProperty Name="LastName" ColumnName="LastName" />
 <ScalarProperty Name="FirstName" ColumnName="FirstName" />
 <ScalarProperty Name="ID" ColumnName="ID" />
 </MappingFragment>
 </EntityTypeMapping>

 <EntityTypeMapping TypeName="IsTypeOf(SampleDbModel.Employee)">
 <MappingFragment StoreEntitySet="Employee">
 <ScalarProperty Name="ID" ColumnName="ID" />
 <ScalarProperty Name="Salary" ColumnName="Salary" />
 <ScalarProperty Name="EMailId" ColumnName="EMailId" />
 <ScalarProperty Name="PhoneNumber" ColumnName="PhoneNumber" />
 <ScalarProperty Name="LastName" ColumnName="LastName" />
 <ScalarProperty Name="FirstName" ColumnName="FirstName" />
 </MappingFragment>
 </EntityTypeMapping>
 </EntitySetMapping>
</EntityContainerMapping>

Chapter 4

[97]

In the preceding code, we specified that if the actual type of object is Vendor, then
the properties should map to the columns in the Vendor table, and if the actual type
of entity is Employee, the properties should map to the Employee table, as shown in
the following screenshot:

After EDMX modifications, the mapping are visible in Visual Entity Designer

If we now open the EDMX file again, we can see the properties being
mapped to the respective tables in the respective entities. Doing this
mapping from Visual Entity Designer is not possible, unfortunately.

Entity Framework DB First – Inheritance Relationships between Entities

[98]

Using the entities via the DBContext object
Let's use these entities from our code:

using (SampleDbEntities db = new SampleDbEntities())
{
 Employee employee = new Employee();
 employee.FirstName = "Employee 1";
 employee.LastName = "Employee 1";
 employee.PhoneNumber = "1234567";
 employee.Salary = 50000;
 employee.EMailId = "employee1@test.com";

 Vendor vendor = new Vendor();
 vendor.FirstName = "vendor 1";
 vendor.LastName = "vendor 1";
 vendor.PhoneNumber = "1234567";
 vendor.HourlyRate = 100;
 vendor.EMailId = "vendor1@test.com";

 db.Workers.Add(employee);
 db.Workers.Add(vendor);
 db.SaveChanges();
}

In the preceding code, we created objects of the Employee and Vendor types and
saved them using the Workers entity set, which is actually an abstract class. If we
take a look at the inserted database, we will see the following:

Database snapshot of the inserted data using TPC inheritance

Chapter 4

[99]

From the preceding screenshot, it is clear that the data is being pushed to the
respective tables.

The insert operation we saw in the previous code is successful but there
will be an exception in the application. This exception is because when
Entity Framework tries to access the values that are in the abstract class,
it finds two records with same ID, and since the ID column is specified
as a primary key, two records with the same value is a problem in this
scenario. This exception clearly shows that the store/database generated
identity columns will not work with the TPC inheritance.
If we want to use the TPC inheritance, then we either need to use GUID
based IDs, or pass the ID from the application, or perhaps use some
database mechanism that can maintain the uniqueness of auto-generated
columns across multiple tables.

Choosing the inheritance strategy
Now that we know about all the inheritance strategies supported by Entity
Framework, let's try to analyze these approaches. The most important thing is that
there is no single strategy that will work for all the scenarios. Especially if we have a
legacy database. The best option would be to analyze the application requirements
and then look at the existing table structure to see which approach is best suited.

The Table per Class Hierarchy inheritance tends to give us denormalized tables and
have redundant columns. We should only use it when the number of properties in
the derived classes is very less, so that the number of redundant columns is also less,
and this denormalized structure will not create problems over a period of time.

Contrary to TPH, if we have a lot of properties specific to derived classes and only
a few common properties, we can use the Table per Concrete Class inheritance.
However, in this approach, we will end up with some properties being repeated in
all the tables. Also, this approach imposes some limitations such as we cannot use
auto-increment identity columns in the database.

If we have a lot of common properties that could go into a base class and a lot of
properties specific to derived classes, then perhaps Table per Type is the best option
to go with.

Entity Framework DB First – Inheritance Relationships between Entities

[100]

In any case, complex inheritance relationships that become
unmanageable in the long run should be avoided. One alternative
could be to have separate domain models to implement the application
logic in an object-oriented manner, and then use mappers to map these
domain models to Entity Framework's generated entity models.

Summary
In this chapter, we looked at the various types of inheritance relationship using
Entity Framework. We saw how these inheritance relationships can be implemented,
and some guidelines on which should be used in which scenario. In the next chapter,
we will see how we can use stored procedures and functions with Entity Framework.

Entity Framework DB
First – Using Views, Stored
Procedures, and Functions

So far, we have seen how we can use Entity Framework with an existing database,
perform domain modeling, validate the data that is being pushed into the database,
and use Entity Framework inheritance to manage the entities in an object-oriented
manner. One question that is still unanswered is how we can reuse the code/logic
(views, stored procedures, and functions) that exists in the data layer (database). In
this chapter, we will take a look at how we can use Entity Framework to access the
view, stored procedures, and functions defined in the database.

Using views, procedures, and functions
In some organizations, the policies dictate whether all data access should be done
using the procedures, functions, and views defined in the database. Another
possibility is that our database is being used by multiple applications, and to
ensure that every task is performed in the same manner by all the applications, the
database-related tasks are defined in the data layer in the following forms:

• Views
• Stored procedures
• Scalar functions
• Table valued functions

Entity Framework makes it very easy for the application to use views, stored
procedures, and functions defined in the database. Let's see how we can use Entity
Framework to perform these activities.

Entity Framework DB First – Using Views, Stored Procedures, and Functions

[102]

Using Entity Framework with views
Views are typically created to access the data in a safe manner. The views don't allow
you to change the data. They can only be used to access the data but you are not able
to modify it. In every application, there is an area that only needs to read the data
from one or multiple tables, but modifying this data should not be allowed. Views
are particularly useful in such scenarios. Another very important reason is to select
and prepare the data that is already in the database to retrieve a view that is directly
usable within your applications without the need to transform the data outside the
database.

Let's see how we can use views with Entity Framework. Let's create a simple
database schema with tables Employee and Employers. These tables have a
one-to-many relationship between them, which is achieved by entering EmployerId
in the Employee table:

A database schema showing Employee and Employer relationship

Now, let's create a view that will display all the Employee information along with
EmployerName as follows (1003EN_05_1_code.txt):

CREATE VIEW EmployeeView
AS

SELECT
 dbo.Employee.FirstName,
 dbo.Employee.ID,
 dbo.Employee.LastName,
 dbo.Employee.PhoneNumber,

Chapter 5

[103]

 dbo.Employee.Salary,
 dbo.Employee.EMailId,
 dbo.Employee.EmployerId,
 dbo.Employers.EmployerName
FROM
 dbo.Employee
LEFT OUTER JOIN
 dbo.Employers
ON
 dbo.Employee.EmployerId = dbo.Employers.ID

GO

Now, let's create the EDM for this database schema. The important thing to
remember while doing this is that we need to include the database views too
when we are creating our EDM:

Importing views into the EDM

Entity Framework DB First – Using Views, Stored Procedures, and Functions

[104]

Once the EDM is created, we can see that the data model contains entities
corresponding to the tables as well as one entity for our view:

The EDM showing the database view as an entity

If we take a look at the generated model for the view entity, then we can see that it
contains the properties for all the columns that the view is returning:

public partial class EmployeeView
{
 public string FirstName { get; set; }
 public int ID { get; set; }
 public string LastName { get; set; }
 public string PhoneNumber { get; set; }
 public decimal Salary { get; set; }
 public string EMailId { get; set; }

Chapter 5

[105]

 public Nullable<int> EmployerId { get; set; }
 public string EmployerName { get; set; }
}

Now, if we want to fetch the data using this view, all we need to do is to use the
DbContext object to retrieve this conceptual model:

using (SampleDbEntities db = new SampleDbEntities())
{
 IEnumerable<EmployeeView> employees = db.EmployeeViews.ToList();
}

What happens when we run the preceding code is that Entity Framework will
execute the view in the database, and then map the result values with the properties
of the EmployeeView entity, and return the collection of the EmployeeView entity.
Let's try to visualize the data that is being retrieved by executing the preceding code:

Fetching the Employee data using a database view

In the preceding screenshot, we can see that EmployeeView contains the information
from Employee as well as the Employer table, which is all being populated by
executing the view on the database.

Views are particularly useful when we have to fetch data
from multiple tables and show it to the user. If we have
scenarios where we have conditional queries where the
application will pass some parameters, and the data should
be fetched based on these parameters, then it is better to use
stored procedures rather than using views.

Entity Framework DB First – Using Views, Stored Procedures, and Functions

[106]

Using Entity Framework with stored
procedures
Stored procedures are a way to define the data access functionality in the database
itself. The major benefit of using stored procedures is that if we have multiple
applications using the same database, then using stored procedures ensures that the
data access functionality is consistent across all the applications since it is defined
in the data layer itself. Also, stored procedures allow better performance and better
encapsulation. Stored procedures also shield us from the SQL injection security
concerns, so they allow better security.

Stored procedures are far more powerful than views. Views should
only be used to read data from the database. View are more like
virtual tables from the database perspective. Stored procedures, in
contrast, can be used to create, read, update, and delete data.

Entity Framework lets us use stored procedures to perform all the CRUD operations.
Let's take a look at an example to understand how we can use Entity Framework to
use stored procedures to operate on the data.

Let's work on the Employee table that we created in the previous section. First,
let's define all the stored procedures to perform all the CRUD operations on this
Employee table.

Defining stored procedures
The Create operation can simply be performed by a stored procedure that accepts all
the values as parameters to the stored procedure and then inserts the data into the table:

Create PROCEDURE dbo.AddEmployee
 @firstname nvarchar(200),
 @lastname nvarchar(200),
 @phonenumber nvarchar(20),
 @email nvarchar(50),
 @salary decimal(18, 0),
 @employerId int
AS
 insert into Employee(FirstName,LastName,PhoneNumber, EMailId,
Salary, EmployerId)
 values (@firstname, @lastname, @phonenumber, @email, @salary, @
employerId)
RETURN

Chapter 5

[107]

To retrieve the list of all Employees, let's create one stored procedure:

Create PROCEDURE dbo.GetEmployees
AS
 Select * from Employee
RETURN

To retrieve a specific Employee record, we will have to pass the ID of that Employee
to the stored procedure, and the procedure will return the employee details
associated with the Employee with that ID:

Create PROCEDURE dbo.GetEmployeeById
 @id int
AS
 Select * from Employee
 where ID = @id
RETURN

To update the record, we will have to pass all the updated values to the stored
procedure along with the ID of the employee. The procedure will use the ID, and
update the record with this ID with the new values:

Create PROCEDURE dbo.UpdateEmployee
 @id int,
 @firstname nvarchar(200),
 @lastname nvarchar(200),
 @phonenumber nvarchar(20),
 @email nvarchar(50),
 @salary decimal(18, 0),
 @employerId int

AS
 update Employee
 set
 FirstName = @firstname,
 LastName = @lastname,
 PhoneNumber = @phonenumber,
 EMailId = @email,
 Salary = @salary,
 EmployerId = @employerId
 where
 ID = @id

RETURN

Entity Framework DB First – Using Views, Stored Procedures, and Functions

[108]

Finally, to delete an employee, we just need to pass the ID of the record to be deleted
and the procedure will delete the record:

Create PROCEDURE dbo.DeleteEmployee
 @id int
AS
 delete from Employee where ID=id
RETURN

A detailed explanation of these stored procedures is outside
the scope of this book.

Now we have some basic stored procedures defined and ready to be used.

Using stored procedures, let's now update our Entity Data Model to include the
stored procedures too. We will then see how we can use these stored procedures:

Adding stored procedures into our EDM

Chapter 5

[109]

Once we update the EDM, the stored procedures are also available in the entity data
model. There are two ways of using the stored procedures from our application.
First, every entity can be mapped to use a stored procedure to perform the insert,
update, and delete operations.

In this mapping, we have to specify the procedures that should be used to perform
the respective operations and the mapping of the entity properties with the stored
procedure's parameters:

Entity Framework DB First – Using Views, Stored Procedures, and Functions

[110]

Once this mapping is specified, we can use the entities with the DbContext class, and
the insert, update, and delete operations will work using the stored procedures:

using (SampleDbEntities db = new SampleDbEntities())
{
 Employee employee = new Employee();
 employee.FirstName = "test Employee";
 employee.LastName = "test lastname";
 employee.PhoneNumber = "1234567890";
 employee.EMailId = "test@test.com";
 employee.Salary = 50000;

 db.Employees.Add(employee);
 db.SaveChanges();
}

In the preceding code, the new Employee entity will be created. When this Employee
object is added using DbContext, Entity Framework will use the mappings to use
the stored procedure that should be used to insert the data and the mappings of the
object properties to the parameters specified in the procedure. Saving the changes
will execute that stored procedure with the given parameter values.

Another possibility is that we have a stored procedure that is not responsible for
inserting, updating, or deleting an entity, but it provides some custom logic. For
this, we can execute the stored procedure directly using the DbContext object. For
instance, if we need to execute the GetEmployeeById procedure, we can do this in
the following manner.

First, we need to open the model browser for our EDMX and then right-click on and
select properties on the procedure that we want to use:

Checking the properties of imported stored procedures

Chapter 5

[111]

In the properties window, we will select the return type of the stored procedure.
Our current procedure returns an Employee entity, so let's select the return type as
an Employee entity:

Adding a Function Import for the stored procedure

Entity Framework DB First – Using Views, Stored Procedures, and Functions

[112]

Once this is done, the stored procedure is available as a function on our DbContext
object that returns ObjectResult<Employee>. To execute this stored procedure, we
just need to invoke the respective function with the needed parameters as follows:

using (SampleDbEntities db = new SampleDbEntities())
{
 int id = 1;
 ObjectResult<Employee> employeeResult = db.GetEmployeeById(id);
}

The preceding code will invoke the GetEmployeeById procedure, pass the id value,
and retrieve the result.

If our stored procedure returns data, which is not an entity in
our conceptual data model, then we need to create a complex
type to hold the return value from the procedure.

Using Entity Framework with functions
Functions provide an excellent way of writing reusable logic in the data layer itself.
Functions are computed values and cannot perform permanent environmental
changes to the SQL Server. There are two types of functions that can be defined in
the database:

• Scalar functions
• Table values functions

Let's see how we can use these functions using Entity Framework.

Using scalar functions
A scalar function is a function that is defined in the database and returns a scalar
value. For example, if we need to find the EmployerId for an Employee by passing
the ID of the Employee, we can do this by defining a scalar function as follows:

Create FUNCTION dbo.GetEmployerIdForEmployee (@id int) RETURNS int
AS
 BEGIN
 DECLARE @result int;
 select @result = EmployerId from Employee where ID = @id;
 RETURN @result;
 END

Chapter 5

[113]

Unfortunately, Entity Framework does not support using a scalar function directly.
If we want to use a scalar function in our application, we have to wrap it inside a
stored procedure as follows:

Create PROCEDURE dbo.sp_GetEmployerIdByEmployee
 @id int
AS
 select dbo.GetEmployerIdForEmployee(@id);
 RETURN

Now this stored procedure is added to the Entity Data model in the same way as
shown in the previous section. The only thing that we need to keep in mind is that
this stored procedure's return type should be mapped to a scalar type from the
Function Import properties.

Adding the Function Import to the stored procedure by wrapping the scalar function

Entity Framework DB First – Using Views, Stored Procedures, and Functions

[114]

Now this stored procedure is available as a function with our DbContext object as
follows:

using (SampleDbEntities db = new SampleDbEntities())
{
 int id = 1;
 ObjectResult<int?> employerIdResult = db.sp_
GetEmployerIdByEmployee(id);
}

The preceding code will execute our stored procedure that wraps our scalar
function and thus, effectively, our scalar function will be called by executing the
preceding code.

Using table valued functions
Table valued functions (TVF) are simply the user-defined functions that return
tabular data. A complete explanation of table valued functions is outside the scope of
this book, but let's try to see how a table valued function can be defined, and how it
can be used from the application.

Let's define a simple table valued function that will return the Employee details with
the EmployerName details for a given EmployerID:

Create FUNCTION dbo.GetEmployeeFromEmployerID(@id int)
RETURNS @table_variable TABLE (ID int, EmployeeName nvarchar(200),
EmployerName nvarchar(200))
AS
 BEGIN
 INSERT INTO @table_variable
 SELECT
 employee.ID,
 employee.FirstName, Employer.EmployerName
 FROM
 Employee employee,
 Employer employer
 where
 employee.EmployerID = employer.ID
 and employer.ID = @id;
 RETURN;
 END

Chapter 5

[115]

What happens in this function is that the function creates a TABLE variable, and then,
using the details from the Employer and Employee tables for the given employerId,
returns the table for the result found. Let's see how we can use this table valued
function from the application using Entity Framework.

From Entity Framework's perspective, using a table valued function is exactly the
same as using a stored procedure. We first need to add the stored procedure on the
conceptual Entity Data Model. Then, from the Function Import properties, we can
specify the return type.

In our current example, we return a table that cannot be mapped to any existing
entity. When we use this TVF, Entity Framework will add a complex type to store
the result retrieved from the function:

Creating/modifying the complex type from the model browser

Entity Framework DB First – Using Views, Stored Procedures, and Functions

[116]

If we take a look at the Function Import properties, we can see that the result is
already mapped to this auto-created complex type:

Creating/modifying Function Import for a table valued function returning a complex type

Chapter 5

[117]

Using a table valued function from the code is also very similar to the way we use
stored procedures. This table valued function will also be available as a function on
the DbContext object and can be used as follows:

using (SampleDbEntities db = new SampleDbEntities())
{
 int id = 1;
 IQueryable<GetEmployeeFromEmployerID_Result> employerIdResult = db
.GetEmployeeFromEmployerID(id);
}

The preceding code will invoke the table valued function and get back the result in
the complex type that Entity Framework created.

Summary
In this chapter, we saw how we can use Entity Framework with views, stored
procedures, and functions defined in the database. At this juncture, we have all
of the information needed to work with Entity Framework using the Database
First approach. In the next chapter, we will start looking at the other end of the
spectrum where we have the application models created, and we want to use Entity
Framework to persist the model data in the database.

Entity Framework Code
First – Domain Modeling

and Managing Entity
Relationships

So far, we have seen how we can use Entity Framework with an existing database
using the Entity Framework Code First approach. The other end of the spectrum is
to see how we can design our application domain models in such a way that we can
use Entity Framework to persist the domain entity's data in the database. This can be
done using the Entity Framework Code First approach.

The same can also be achieved using the Entity Framework Model First
approach. The only difference in the Code First approach is that we
will be using Visual Entity Designer instead of writing our entity Plain
Old CLR Objects (POCOs) classes ourselves. Conceptually, both these
approaches will be similar, and thus in this chapter, we will discuss the
Code First approach.

Entity Framework Code First – Domain Modeling and Managing Entity Relationships

[120]

Understanding the Entity Framework
Code First approach
Before we start discussing the Code First approach, it would be a good idea to
talk about the application architecture approach being followed. Traditionally,
we have designed an application using a bottom-up approach, that is, we used to
think about the database first and then used this data-centric approach to build our
application on top of it. This approach is still very useful for the applications that
are data intensive, or perhaps the database also contains some business logic that is
being used by multiple applications. For such applications, if we want to use Entity
Framework, we have to use the Database First approach.

Another way (or rather the modern way) of designing applications is using the
domain-centric approach (Domain Driven Design). Domain Driven Design is more
of a top-down approach, where we start designing our application by thinking in
terms of the domain models and entities that are needed to realize our application.
The database is merely used for persistence of this model data. Using Domain Driven
Design would mean that we design our models and entities as per our application
needs, and they are persistent ignorant, that is, they can be saved using any database
technology. In such scenarios, we should use the Entity Framework Code First
approach, as this lets us create POCOs for our domain models that are persistence
ignorant. Entity Framework will take care of storing the entities data in any database.

Here are a few benefits of using the Entity Framework Code First approach:

• It supports Domain Driven Design
• We can start developing our application early, as we don't have to wait for

the database to be created
• The persistence layer, that is, the underlying database can be changed

without having any impact on the models

Discussing the details of DDD is not in the scope of this book.
To know more about DDD, please refer to this article from MSDN
magazine available at http://msdn.microsoft.com/en-us/
magazine/dd419654.aspx.

http://msdn.microsoft.com/en-us/magazine/dd419654.aspx
http://msdn.microsoft.com/en-us/magazine/dd419654.aspx

Chapter 6

[121]

Understanding the Code First
conventions and configurations
The first thing that we need to understand is the concept of convention over
configuration. The Code First approach expects the model classes to follow some
conventions, so that the database persistence logic can be extracted from the model.
For example, if we define a property named ID in the model class, this property
value will be treated as the primary key for the table that is being mapped to this
class. The benefit of this convention-based approach is that if we are following the
conventions, then we don't have to write any extra code to manage the database
persistence logic. The downside of this approach is that if a convention is not
followed, and Entity Framework is not able to extract the needed information
from the model, an exception will be thrown at runtime.

In scenarios where we are not able to follow the conventions but still need Entity
Framework to persist the data, we need to provide some additional information with
our model using the Code First configuration options, so that Entity Framework is
able to extract all the needed information from our model. For example, if we cannot
have a property named ID in our model as the primary key, we need to update the
desired property with the [Key] attribute and that will be taken as the primary key.

Entity Framework uses these conventions to create table names by
pluralizing the class' name, and it creates the columns with the same
names as the class' properties.

Implementing Entity Framework Code
First
Let's try to understand how we can use the Entity Framework Code First approach
by working on a small application. Let's try to create a POCO for an employee, and
see how we can use Entity Framework to perform CRUD operations on this model:

1. Let's start by creating the Employee model (1003OS_06_1_code.txt):
public class Employee
{
 public int ID { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string PhoneNumber { get; set; }
 public string EMailId { get; set; }
}

Entity Framework Code First – Domain Modeling and Managing Entity Relationships

[122]

If we use this model, the generated table name will be Employees, the
column names will be the name of the properties, and the ID field will be
treated as the primary key. All this will be because of the Code
First conventions.

2. If we want to override these default convention-based values and provide
our values, then we can do this by updating the class and properties with the
needed attributes:
[Table("Employees")]
public class Employee
{
 [Key]
 public int ID { get; set; }

 [Column("FirstName")]
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string PhoneNumber { get; set; }
 public string EMailId { get; set; }
}

3. In the preceding code, we used Entity Framework configuration to define the
table name, column name for the FirstName property, and the primary key
column specification.

4. Now that our domain model is ready, let's see how we can create the
DbContext class to perform CRUD operations on this model. We need to
define our DbContext class by inheriting from the DbContext class. This
context class should contain DbSet<Employee>, so that it is able to perform
CRUD operations on the Employee model:

public class SampleDbEntities : DbContext
{
 public virtual DbSet<Employee> Employees { get; set; }
}

What this context class will do is that when we use it to perform the
operations on our model, it will first look for connectionString with the
same name as the DbContext class. Using this connectionString, it will
perform the operations on the Employees table. The Employees table-related
information will be extracted by looking at the Employee class and using the
Entity Framework conventions and configuration options.

Chapter 6

[123]

We can use a custom connectionString with the context class:

<connectionStrings>
<add name="SampleDbEntities" connectionString="Data
Source=(LocalDb)\v11.0;Initial Catalog=codeFirstSample;Integrat
ed Security=SSPI;AttachDBFilename=|DataDirectory|\codeFirstSample.
mdf" providerName="System.Data.SqlClient" />
</connectionStrings>

5. However, we will have to pass the connectionString to the DbContext
class in the class' constructor:
public class SampleDbEntities : DbContext
{
 public SampleDbEntities()
 : base("name=SampleDbEntities")
 {
 }

 public virtual DbSet<Employee> Employees { get; set; }
}

6. Now we can use this context class to perform CRUD operations on our
Employee model. Let's take a look at a simple create operation to understand
this better:

using (SampleDbEntities db = new SampleDbEntities())
{
 Employee employee = new Employee();
 employee.FirstName = "test Employee";
 employee.LastName = "test lastname";
 employee.PhoneNumber = "1234567890";
 employee.EMailId = "test@test.com";

 db.Employees.Add(employee);
 db.SaveChanges();
}

What the preceding code will do is use our Employee class to extract the schema
information, and use our context class to connect to the database specified in the
connectionString that is linked to this DbContext class. Using db.Employees.
Add(employee), will associate our Employee model object with the context class and
db.SaveChanges() will persist the data in the database.

Entity Framework Code First – Domain Modeling and Managing Entity Relationships

[124]

If we look for the database at the given connection string, we can see that Entity
Framework has created a database for us:

A created database using a simple Entity Framework Code First approach

Also, if we look at the table data, we can see that the data has been saved in the
Employees table:

The data inserted into the table using a simple Entity Framework Code First approach

So, when we are using the Code First approach, Entity Framework will take care
of creating the database for us on the first run. Then onwards, it will use the same
database to perform further database operations.

More on domain class configurations
Earlier we discussed that if we want to override the default conventions of Entity
Framework, we have to provide our own custom configurations. There are two ways
in which we can provide these configurations:

• Data annotations
• Fluent API

Chapter 6

[125]

The data annotations approach is the one we used to specify the table our class
should map to, the key property and the column that the FirstName property should
map to. Let's take a look at a few more attributes that can be specified to override the
default conventions and use the configurations to define a database schema:

• Table: This specifies the name of the table this class should map to
• Column: This specifies the name of the column that a class property should

map to
• Key: This specifies the property that should be treated as a primary key
• Timestamp: This marks a property as a timestamp column in the database
• ForeignKey: This specifies the foreign key property for a navigation property
• NotMapped: This specifies that the property should not be mapped to

any column
• DatabaseGenerated: This specifies that the property should be mapped to

the computed column of the database table

The DatabaseGenerated attribute can also be used to map to the
auto-increment identity column.

Another way of providing the configurations is to use the fluent API. The DbContext
class has the OnModelCreating method, which can be used to configure the class to
the database schema mapping fluently. So, if we have to define the same mappings
in a fluent manner, our DbContext class will look like the following:

public class SampleDbEntities : DbContext
{
 public virtual DbSet<Employee> Employees { get; set; }

 protected override void OnModelCreating(DbModelBuilder
modelBuilder)
 {
 //Configure domain classes using Fluent API here
 modelBuilder.Entity<Employee>().ToTable("Employees");
 modelBuilder.Entity<Employee>().HasKey(e => e.ID);
 modelBuilder.Entity<Employee>().Property(e => e.FirstName).
HasColumnName("FirstName");

 base.OnModelCreating(modelBuilder);
 }
}

Entity Framework Code First – Domain Modeling and Managing Entity Relationships

[126]

What the preceding code is doing is specifying that the Employee class should be
mapped to the Employees table in the database, the ID property should be treated as
a primary key, and the FirstName property should be mapped to a column named
FirstName.

One important deciding factor for using the fluent API is that if we are
using external POCO classes, that is, the classes being used are from a
class library, and we cannot change the definitions, as it is not possible
to use data annotations to provide the mapping details. In such cases,
we must use the fluent API, as it is better suited for such scenarios.

Managing Entity relationships using the
Code First approach
Now that we know how to define simple domain classes using the Code First
approach, and we can use the DbContext class to perform the database operations
using the domain classes, let's see how we can implement database multiplicity
relationships using these domain classes. We will see how to implement the
following types of relationships, using Entity Framework Code First:

• One-to-many relationship
• One-to-one relationship
• Many-to-many relationship

We will also take a look at the various ways in which these relationships can be
implemented, such as using Entity Framework conventions, data annotations,
and fluent API for these configurations.

Implementing one-to-many relationships
To configure a one-to-many relationship in the database, we can either rely on Entity
Framework conventions, or we can use the data annotations/fluent API-based
configurations to explicitly create the relationship. Let's say we have to create a
one-to-many relationship between the Employers and Employees table in the
database as follows:

Chapter 6

[127]

Desired database schema to implement a one-to-many relationship

For this, let's start by creating an Employee class that will be mapped to the
Employees table:

[Table("Employees")]
public class Employee
{
 [Key]
 public int ID { get; set; }

 [Column("EmployeeName")]
 public string EmployeeName { get; set; }
}

Similarly, we need to have a class that will be mapped to the Employers table:

[Table("Employers")]
public class Employer
{
 [Key]
 public int ID { get; set; }

 [Column("EmployerName")]
 public string EmployerName { get; set; }
}

Now, if we want to create a one-to-many relationship between these two tables,
we simply need the navigation properties created in the classes.

Entity Framework Code First – Domain Modeling and Managing Entity Relationships

[128]

So, Employee should contain a navigation property of Employer since Employee is
on the many side of the relationship, and every Employee record can have only one
Employer associated with it:

[Table("Employees")]
public class Employee
{
 [Key]
 public int ID { get; set; }

 [Column("EmployeeName")]
 public string EmployeeName { get; set; }

 public virtual Employer Employer { get; set; }
}

Similarly, the Employer class should also contain the navigation property. Since
the Employer class is on the one side of the relationship, the navigation property
will be a collection of Employees. So every Employer class can be associated with
many Employees:

[Table("Employers")]
public class Employer
{
 [Key]
 public int ID { get; set; }

 [Column("EmployerName")]
 public string EmployerName { get; set; }

 public virtual ICollection<Employee> Employees { get; set; }
}

Now, with this code, Entity Framework will be able to extract the required
information and will create a one-to-many relationship between the Employer
and Employee tables in the database too.

If we are using the fluent API to configure the mapping, then we need to specify this
relationship's details in the fluent mappings too. The following code snippet shows
how we can specify the one-to-many relationship details using the fluent API:

public class SampleDbEntities : DbContext
{
 public virtual DbSet<Employee> Employees { get; set; }
 public virtual DbSet<Employer> Employers { get; set; }

Chapter 6

[129]

 protected override void OnModelCreating(DbModelBuilder
modelBuilder)
 {
 modelBuilder.Entity<Employee>().HasRequired<Employer>(employee
=> employee.Employer)
 .WithMany(employer => employer.Employees).HasForeignKey(employer
=> employer.ID);

 base.OnModelCreating(modelBuilder);
 }
}

In the preceding code, we specified that the Employer property is required for the
Employee object, and it has a one-to-many relationship with the Employers table,
where the ID column in the Employers table should be used as the foreign key in the
Employees table.

The fluent API is only needed if the entity classes are not following
Entity Framework conventions, and the mapping information cannot
be extracted from the entity classes by Entity Framework.

Now let's try to create an Employee and Employer record, and try to save them in
the database:

using (SampleDbEntities db = new SampleDbEntities())
{
 Employer employer = new Employer();
 employer.EmployerName = "Test Employer";

 Employee employee = new Employee();
 employee.EmployeeName = "test Employee";

 db.Employees.Add(employee);
 db.SaveChanges();
}

Entity Framework Code First – Domain Modeling and Managing Entity Relationships

[130]

In the preceding code, we created an Employer object and then created an Employee
object, and associated Employer with the Employee object. Let's take a look at the
created tables in the database for these classes:

The created database using the Code First approach for a one-to-many relationship

Let's also take a look at the data in these tables:

The data inserted into the table using the Code First approach
for a one-to-many relationship

Chapter 6

[131]

In the preceding screenshot, we can see that the Entity Framework has created a
one-to-many relationship between Employer and Employee and has put the data
into these tables accordingly.

Implementing one-to-one relationships
As with one-to-many relationships, a one-to-one relationship in the database can
be implemented using either Entity Framework conventions, by explicitly using
data annotations based configurations, or via the fluent API-based configurations.
Let's say we have to create a one-to-one relationship between the Employers and
Passports tables in the database as follows:

A desired database schema to implement a one-to-one relationship

Let's create the Employee class that will be mapped to the Employees table:

[Table("Employees")]
public class Employee
{
 [Key]
 public int ID { get; set; }

Entity Framework Code First – Domain Modeling and Managing Entity Relationships

[132]

 [Column("EmployeeName")]
 public string EmployeeName { get; set; }
}

Now, we also need to create a class that will be mapped to the Passports table:

[Table("Passports")]
public class Passport
{
 [Key]
 public int ID { get; set; }

 [Column("PassportNumber")]
 public string PassportNumber { get; set; }
}

Our objective here is to create a one-to-one relationship between the Employee and
Passport classes. The Entity Framework will create the same relationship between
the Employees and Passports tables. To do this, we need to create a navigation
property for Passport in the Employee class:

[Table("Employees")]
public class Employee
{
 [Key]
 public int ID { get; set; }

 [Column("EmployeeName")]
 public string EmployeeName { get; set; }

 public virtual Passport Passport { get; set; }
}

Similarly, the Passport class should also contain the navigation property to
Employee. Since for every Passport record, there should be only one Employee
record, and this navigation property should also be just a single object(unlike the
collection in the previous example). One important thing to keep in mind is that the
ID property for this class should not be database generated, since in a one-to-one
relationship, both the participating tables should have the same primary key.
To accomplish this, we also need to mark the ID property of the Passports table as
a foreign key for the Employees table:

[Table("Passports")]
public class Passport
{
 [Key, ForeignKey("Employee")]

Chapter 6

[133]

 public int ID { get; set; }

 [Column("PassportNumber")]
 public string PassportNumber { get; set; }

 public virtual Employee Employee { get; set; }
}

Now, with this code, the Entity Framework will be able to extract the required
information and will create a one-to-one relationship between the Employees and
Passports tables in the database.

If we are using the fluent API to configure the mapping, then we need to specify the
relationship details in the fluent mappings too. The following code snippet shows
how we can specify the one-to-one relationship details using the fluent API:

public class SampleDbEntities : DbContext
{
 public virtual DbSet<Employee> Employees { get; set; }
 public virtual DbSet<Passport> Passports { get; set; }

 protected override void OnModelCreating(DbModelBuilder
modelBuilder)
 {
 // Line 1
 modelBuilder.Entity<Passport>().HasKey(e => e.ID);

 // Line 2
 modelBuilder.Entity<Passport>()
 .Property(e => e.ID)
 .HasDatabaseGeneratedOption(DatabaseGeneratedOpti
on.None);

 // Line 3
 modelBuilder.Entity<Passport>()
 .HasRequired(e => e.Employee)
 .WithRequiredDependent(s => s.Passport);

 base.OnModelCreating(modelBuilder);
 }
}

Entity Framework Code First – Domain Modeling and Managing Entity Relationships

[134]

Now let's see what is being done in the preceding code. Line 1 lets the Entity
Framework know that the ID property of the Passport class should be used as a key.
Line 2 specifies that the key corresponding to the ID property should not be database
generated, and Line 3 specifies that there is a one-to-one relationship between the
Employees and Passports tables.

Now let's try to create an Employee and a Passport record, and try to save them in
the database:

using (SampleDbEntities db = new SampleDbEntities())
{
 Passport passport = new Passport();
 passport.PassportNumber = "Test123";

 Employee employee = new Employee();
 employee.EmployeeName = "test Employee";
 employee.Passport = passport;

 db.Employees.Add(employee);
 db.SaveChanges();
}

In the preceding code, we created a Passport object and then created an Employee
object, and associated the Passport with the Employee. Let's take a look at the
created tables in the database for these classes:

The created database using the Code First approach for a one-to-one relationship

Chapter 6

[135]

Now let's also take a look at the data in these tables:

The data inserted into the table using the Code First approach for a one-to-one relationship

In the preceding screenshot, we can see that Entity Framework has created a
one-to-one relationship between Passport and Employee and has put the data
into these tables accordingly.

Implementing many-to-many relationships
To model a many-to-many relationship in the database, we can use Entity
Framework conventions, data annotations based configurations, or the fluent API-
based configurations. Let's say we have to create a many-to-many relationship
between the Employers and Reports tables in the database. For this, we need a
joining table to implement the many-to-many relationship. The desired database
schema looks like the following:

The desired database schema to implement a many-to-many relationship

Entity Framework Code First – Domain Modeling and Managing Entity Relationships

[136]

Let's create the Employee class that will be mapped to the Employees table:

[Table("Employees")]
public class Employee
{
 [Key]
 public int ID { get; set; }

 [Column("EmployeeName")]
 public string EmployeeName { get; set; }
}

We also need to create a class that will be mapped to the Reports table:

[Table("Reports")]
public class Report
{
 [Key]
 public int ID { get; set; }

 [Column("ReportName")]
 public string ReportName { get; set; }

 public virtual Employee ReportFilePath { get; set; }
}

To create a many-to-many relationship between the Employee and Report class,
we need to create the navigation property as a collection of Report in the Employee
class. This will associate every Employee class with multiple Reports:

[Table("Employees")]
public class Employee
{
 public Employee()
 {
 Reports = new HashSet<Report>();
 }

 [Key]
 public int ID { get; set; }

 [Column("EmployeeName")]
 public string EmployeeName { get; set; }

 public virtual ICollection<Report> Reports { get; set; }
}

Chapter 6

[137]

Similarly, the Reports class should also contain the navigation property to
a collection of Employee. This will let every Report be associated with many
Employees:

[Table("Reports")]
public class Report
{
 public Report()
 {
 Employees = new HashSet<Employee>();
 }

 [Key]
 public int ID { get; set; }

 [Column("ReportName")]
 public string ReportName { get; set; }

 public virtual Employee ReportFilePath { get; set; }

 public virtual ICollection<Employee> Employees { get; set; }
}

Now, with this code, Entity Framework will be able to extract the required
information and will create a many-to-many relationship between the Employees
and Reports tables in the database.

If we are using the fluent API to configure the mapping, then we need to specify the
relationship details in the fluent mappings too. The following code snippet shows
how we specify the many-to-many relationship details using fluent API:

public class SampleDbEntities : DbContext
{
 public virtual DbSet<Employee> Employees { get; set; }
 public virtual DbSet<Report> Reports { get; set; }

 protected override void OnModelCreating(DbModelBuilder
modelBuilder)
 {
 modelBuilder.Entity<Employee>().HasMany<Report>(employee =>
employee.Reports).WithMany(report => report.Employees).Map(c =>
 {
 c.MapLeftKey("EmployeeID");
 c.MapRightKey("ReportID");
 c.ToTable("EmployeeReports");

Entity Framework Code First – Domain Modeling and Managing Entity Relationships

[138]

 });

 base.OnModelCreating(modelBuilder);
 }
}

Now let's see what is being done in the preceding code. Line 1 lets Entity Framework
know that there is a many-to-many relationship between the Employee and Report
entities. Line 2 shows that the EmployeeID property of the Employee class should
be used as a key. Line 3 specifies that the ReportID property should be used as a key
for the Report entity. The next line specifies that the EmployeeReport is the table
that will be used as a joining table to implement this many-to-many relationship in
the database.

Now let's try to create an Employee and a Report record, and save them in
the database:

using (SampleDbEntities db = new SampleDbEntities())
{
 Report report1 = new Report();
 report1.ReportName = "Test Report 1";
 report1.ReportName = @"C:\Temp\Report1.rpt";

 Report report2 = new Report();
 report2.ReportName = "Test Report 2";
 report2.ReportName = @"C:\Temp\Report2.rpt";

 db.Reports.Add(report1);
 db.Reports.Add(report2);

 Employee employee = new Employee();
 employee.EmployeeName = "Test Employee";
 employee.Reports.Add(report2);

 db.Employees.Add(employee);
 db.SaveChanges();
}

In the preceding code, we created a couple of Report objects and then created an
Employee object and associated the Report with the Employee. If we take a look at
the created tables in the database for these classes, we can see that the respective
tables for these classes have been created, and a joining table has also been created
to facilitate a many-to-many relationship between these two tables:

Chapter 6

[139]

A created database using the Code First approach for a many-to-many relationship

Let's also take a look at the data in these tables:

The data inserted into the table using the Code First approach for a many-to-many relationship

Entity Framework Code First – Domain Modeling and Managing Entity Relationships

[140]

From the preceding screenshot, it's quite clear how Entity Framework has created a
many-to-many relationship between the Report and Employee and has put the data
into these tables accordingly.

Inheritance with the Entity Framework
Code First approach
So far, we have seen how to use the Entity Framework Code First approach to map
domain entities to database tables. We also looked at how we can have entities with
multiplicity relationships, and how to use Entity Framework to map the relationships
in such a way that these relationships exist between the database tables too.

Now let's see how we can have inheritance relationships between domain entities,
and use Entity Framework to map the data to the respective tables. We will see
how to use the Entity Framework Code First approach to manage the following
inheritance types:

• The Table per Type (TPT) inheritance
• The Table per Class Hierarchy (TPH) inheritance
• The Table per Concrete Class (TPC) inheritance

Implementing the TPT inheritance
The TPT inheritance is useful when we have domain entities that have an inheritance
relationship, and we want them to be modeled in our database in such a way that
each domain entity will be mapped to a separate table. These tables will be related to
each other using a one-to-one relationship, and this relation will be maintained in
the database by a shared primary key. To illustrate this, let's take a look at
an example scenario.

Let's assume a scenario where an organization maintains a database of all the people
who work in a department. Some of the them are their employees who get a fixed
salary and some of them are vendors who are hired on an hourly rate. To model this,
we will create three domain entities, Person, Employee, and Vendor. The Person
class will be the base class, and the Employee and the Vendor classes will be derived
from the Person class. Let's try to illustrate this entity inheritance relationship to put
things in perspective:

Chapter 6

[141]

The inheritance relationship between domain entities

In the TPT inheritance, we want a separate table for each of the domain classes,
where these tables will have a shared primary key. So the generated database
should look like the following:

The desired database schema to implement the TPT inheritance

Entity Framework Code First – Domain Modeling and Managing Entity Relationships

[142]

Now let's start by creating the Person base class:

public class Person
{
 public int ID { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string PhoneNumber { get; set; }
 public string EMailId { get; set; }
}

For the Person entity, we will be using the Entity Framework conventions to map
the class to the database table. Now, let's create the Employee class, and use the data
annotations to map this table data to the Employee table:

[Table("Employee")]
public class Employee : Person
{
 public decimal Salary { get; set; }
}

Similarly, for the Vendor entity we will specify the data annotations to map the
Vendor class to the Vendors table:

[Table("Vendors")]
public class Vendor : Person
{
 public decimal HourlyRate { get; set; }
}

So the Vendor class will now be mapped to the Vendors table in the database.

Now, let's define the DbContext class that will be used to perform the operations on
these entities:

public class SampleDbEntities : DbContext
{
 public virtual DbSet<Person> People { get; set; }
}

In the preceding code, the DbContext class only contains the DbSet for our Person
model. Since the other two domain models are derived from this model, we can add
them to this DbSet collection, and Entity Framework will use polymorphism to use
the actual domain model. Also, since we are using data annotations to specify the
entity to table mapping, we don't have to specify anything extra in this class.

Chapter 6

[143]

If we want to do this configuration using the fluent API, then we have
to specify the mapping in the DbContext class as follows:

public class SampleDbEntities : DbContext
{
 public virtual DbSet<Person> People { get; set;
}

 protected override void
OnModelCreating(DbModelBuilder modelBuilder)
 {
 modelBuilder.Entity<Employee>().
ToTable("Employee");
 modelBuilder.Entity<Vendor>().
ToTable("Vendors");
 }
}

Now let's try to use these domain entities to create an Employee and a Vendor type:

using (SampleDbEntities db = new SampleDbEntities())
{
 Employee employee = new Employee();
 employee.FirstName = "Employee 1";
 employee.LastName = "Employee 1";
 employee.PhoneNumber = "1234567";
 employee.Salary = 50000;
 employee.EMailId = "employee1@test.com";

 Vendor vendor = new Vendor();
 vendor.FirstName = "vendor 1";
 vendor.LastName = "vendor 1";
 vendor.PhoneNumber = "1234567";
 vendor.HourlyRate = 100;
 vendor.EMailId = "vendor1@test.com";

 db.People.Add(employee);
 db.People.Add(vendor);
 db.SaveChanges();
}

Entity Framework Code First – Domain Modeling and Managing Entity Relationships

[144]

In the preceding code, we created an object of type Employee and an object of type
Vendor. We then added this to the People collection of the DbContext class. When
we run the code, the database will be created for this schema. Let's see what tables
are created in the database when we execute the preceding code:

The created database using the Code First approach
for the TPT inheritance

Chapter 6

[145]

In the preceding screenshot, we can see that a separate table has been created for
each domain model. Let's see what the actual data in these tables looks like:

The data inserted into the table using the Code First approach for the TPT inheritance

We can see that the respective tables contain the respective data, and there is a
shared primary key between these tables to facilitate a one-to-one relationship
between the tables.

Implementing the TPH inheritance
The TPH inheritance is useful when we have domain entities that have inheritance
relationships, but we want them to be modeled in our database in such a way that
the data from all the entity classes will be saved in a single table.

Entity Framework Code First – Domain Modeling and Managing Entity Relationships

[146]

From the domain entity perspective, we want our models to still maintain the
inheritance hierarchy. So, our entity model will look like this:

The inheritance relationship between domain entities

However, from the database perspective, there should only be one table to store this
data. So the generated database should look like the following:

The desired database schema to implement the TPH inheritance

Chapter 6

[147]

Now what will happen in this case is that the common fields will be populated
whenever we create a type of worker. Salary will only contain a value if the worker
is of type Employee. The HourlyRate field will be null in this case. If the worker is of
type Vendor, then the HourlyRate field will have some value and Salary will be null.

This pattern is not very elegant from a database perspective; since
we are trying to keep unrelated data in a single table, our table is
not normalized. There will always be some redundant columns that
contain null values if we use this approach.

Let's see how we can configure our domain entities to implement this inheritance.
Let's start by creating the Person base class:

public class Person
{
 public int ID { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string PhoneNumber { get; set; }
 public string EMailId { get; set; }
}

For the Person class, we will be using the Entity Framework conventions to map the
class to the database table. Now, let's create the Employee and Vendor classes. If we
don't specify any configurations for mapping, Entity Framework will by default use
the parent class name as the table name and map the derived class properties to
that table:

public class Employee : Person
{
 public decimal Salary { get; set; }
}

public class Vendor : Person
{
 public decimal HourlyRate { get; set; }
}

Now, let's define the DbContext class that will be used to perform the operations on
these entities:

public class SampleDbEntities : DbContext
{
 public virtual DbSet<Person> People { get; set; }
}

Entity Framework Code First – Domain Modeling and Managing Entity Relationships

[148]

In the preceding code, the DbContext class only contains DbSet for our Person
model. Since the other two domain models are derived from this model, we can add
them to this DbSet collection, and Entity Framework will use polymorphism to use
the actual domain model. Also, since we are using data annotations to specify the
entity to table mapping, we don't have to specify anything extra in this class.

Now, let's try to use these domain entities to create an Employee and a Vendor type:

using (SampleDbEntities db = new SampleDbEntities())
{
 Employee employee = new Employee();
 employee.FirstName = "Employee 1";
 employee.LastName = "Employee 1";
 employee.PhoneNumber = "1234567";
 employee.Salary = 50000;
 employee.EMailId = "employee1@test.com";

 Vendor vendor = new Vendor();
 vendor.FirstName = "vendor 1";
 vendor.LastName = "vendor 1";
 vendor.PhoneNumber = "1234567";
 vendor.HourlyRate = 100;
 vendor.EMailId = "vendor1@test.com";

 db.People.Add(employee);
 db.People.Add(vendor);
 db.SaveChanges();
}

Chapter 6

[149]

In the preceding code, we created an object of type Employee and an object of type
Vendor. We then added this to the People collection of the DbContext class. When
we run the code, the database will be created for this schema. Let's see how the tables
are created in the database:

The created database using the Code First approach
for the TPH inheritance

In the preceding screenshot, we can see that only the single table People exists in the
database. Let's see what the actual data looks like in this table:

The data inserted into the table using the Code
First approach for the TPH inheritance

Entity Framework Code First – Domain Modeling and Managing Entity Relationships

[150]

From the preceding screenshot, it can be seen that the People table contains the data
from both our models. One interesting thing to note here is that Entity Framework
added a column called Discriminator that can be used to find the actual type of
record, that is, Employee or Vendor from the Person table.

So we can say that if we don't provide any specific configuration
and have inheritance between the domain entities, by default Entity
Framework will treat it as the TPH inheritance and put the data in
a single table.

Implementing the TPC inheritance
The TPC inheritance is useful when we have multiple domain entities derived from a
base entity, and we want to model them in our database in such a way that the data
from all the concrete classes should be kept in separate tables, and there should be no
table for the abstract class entity.

From the domain entity perspective, we want our models to still maintain the
inheritance hierarchy. So our entity model will look like this:

The inheritance relationship between domain entities

Chapter 6

[151]

However, from the database perspective, there should be tables for all the concrete
classes and no table for the abstract class should be created. The generated database
should look like the following:

The desired database schema to implement the TPC inheritance

One of the major problems in such a database design is the duplication
of columns in the tables, which is not recommended from a database
normalization perspective.

Let's start by creating the Person base class. Since we are saying that this class
should be abstract, let's mark this class as abstract too:

public abstract class Person
{
 public int ID { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string PhoneNumber { get; set; }
 public string EMailId { get; set; }
}

Now let's create the Employee and Vendor classes. We will derive these classes from
the Person class:

public class Employee : Person
{
 public decimal Salary { get; set; }
}

Entity Framework Code First – Domain Modeling and Managing Entity Relationships

[152]

public class Vendor : Person
{
 public decimal HourlyRate { get; set; }
}

Now, let's define the DbContext class that will be used to perform the operations on
these entities:

public class SampleDbEntities : DbContext
{
 public virtual DbSet<Person> People { get; set; }
}

This is the tricky part. If we leave the entities and context classes as they are right
now, it will be treated as a TPH inheritance. If we need to implement the TPC
inheritance, then we need to map the classes in the context class using the fluent API:

public class SampleDbEntities : DbContext
{
 public virtual DbSet<Person> People { get; set; }

 protected override void OnModelCreating(DbModelBuilder
modelBuilder)
 {
 modelBuilder.Entity<Employee>().Map(m =>
 {
 m.MapInheritedProperties();
 m.ToTable("Employee");
 });

 modelBuilder.Entity<Vendor>().Map(m =>
 {
 m.MapInheritedProperties();
 m.ToTable("Vendors");
 });
 }
}

In the preceding code, we checked the actual type of the object in the model creating
function and then mapped it to the respective table based on the type of object.

Now let's try to use these domain entities to create an Employee and a Vendor type:

using (SampleDbEntities db = new SampleDbEntities())
{
 Employee employee = new Employee();

Chapter 6

[153]

 employee.FirstName = "Employee 1";
 employee.LastName = "Employee 1";
 employee.PhoneNumber = "1234567";
 employee.Salary = 50000;
 employee.EMailId = "employee1@test.com";

 Vendor vendor = new Vendor();
 vendor.FirstName = "vendor 1";
 vendor.LastName = "vendor 1";
 vendor.PhoneNumber = "1234567";
 vendor.HourlyRate = 100;
 vendor.EMailId = "vendor1@test.com";

 db.People.Add(employee);
 db.People.Add(vendor);
 db.SaveChanges();
}

In the preceding code, we created an object of type Employee and an object of type
Vendor. We then added these to the People collection of the DbContext class. When
we run the code, the database will be created for this schema. Let's see how the tables
are created in the database:

The created database using the Code First approach for the TPC inheritance

Entity Framework Code First – Domain Modeling and Managing Entity Relationships

[154]

In the preceding screenshot, we can see that there is a table for each of the concrete
class types, that is, Employee and Vendor. Let's see what the actual data looks like in
these tables:

The data inserted into the table using the Code First approach for the TPC inheritance

From the preceding screenshot, it can be seen that the Employee and Vendor tables
contain all the information that has been pushed to the database using the People
class, which was an abstract class.

The insert is successful but there will be an exception in the application.
This exception is because when Entity Framework tries to access the
values that are in the abstract class, it finds two records with the same
ID, whereas the ID column is specified as the primary key and that has
two records with the same values is a problem in this scenario. This
exception clearly shows that the store/database generated identity
columns will not work with the TPC inheritance.

If we want to use the TPC inheritance, then either we need to either
use GUID based IDs, pass the ID from the application, or perhaps use
some database mechanism that can maintain the uniqueness of the
autogenerated columns across multiple tables.

Summary
In this chapter, we saw how to use the Entity Framework Code First approach to
use domain entities in our application and persist data in the database. We also
looked at how to manage multiplicity relationships between entities, and use Entity
Framework to map these relationships to the database. We also looked at how to
use Entity Framework to manage entities involved in inheritance relationships and
create the desired schema for these entities. In the next chapter, we will see how
we can manage the database creation process, and insert some dummy data into
the database.

Entity Framework Code
First – Managing Database
Creation and Seeding Data

So far, we have seen how we can use various Entity Framework approaches. We
have seen the details of the Database First approach, and how we can use Entity
Framework's Code First approach to create the database from our domain entities.
Now, let's see how we can use Entity Framework to manage database creation. We
will take a look at how we can specify the location and name of the database. We
will also see how we can initialize the database using Entity Framework's provided
mechanism. Finally, we will take a look at how we can seed the database with some
initial data using Entity Framework.

Managing database connections
The first thing that comes to mind when we use Entity Framework code first is how
we will manage the various connection parameters. In this section, we will see how
we can manage the various connection parameters such as database location and
database name.

Entity Framework Code First – Managing Database Creation and Seeding Data

[156]

Managing connections using a configuration
file
In the previous chapters, we saw that if we created ConnectionString with
the same name as the DbContext class in our configuration file, then Entity
Framework will use this connection string and figure out the location of the
database and the database name. For example, our DbContext class looks like
the following:

public class SampleDbEntities : DbContext
{
 // Code here
}

If we define a connection string with the same name as the DbContext class,
Entity Framework will use that connection string to perform the database
operations:

<connectionStrings>
 <add name="SampleDbEntities" connectionString="Data
 Source=(LocalDb)\v11.0;Initial Catalog=myTestDb;Integrated
 Security=SSPI;AttachDBFilename=|DataDirectory|\myTestDb.mdf"
 providerName="System.Data.SqlClient" />
</connectionStrings>

What happens when we put this connectionString in the configuration file is
that when we run the application, Entity Framework will look for the name of
our context class, that is, SampleDbEntities, and looks for connectionString
with the same name in the configuration file. It will then use this connection
string to figure out which database provider should be used. In this case, we are
using SqlClient, so SQL Server will be used. It will then check for the database
location, which is the current data directory in this case. It will then create a database
file named myTestDb.mdf in the specified location, and create a database named
myTestDb by looking at the Initial Catalog attribute of connectionString.

Chapter 7

[157]

A database screenshot showing the created database

From the preceding screenshot, we can see that when we run the application,
the database has been created with the name and location as specified in our
connectionString.

Using the configuration files to specify the database location
and name is perhaps the easiest and most efficient way to
control the connection parameters for our context class. Another
benefit of this approach is that if we want to have a separate
connectionString for the development, production, and
staging environments, then it's just a matter of changing the
connectionString in the configuration file and pointing it to
a required database at the time of deployment.

An important thing to note here is that the connectionString defined in the
configuration file has the highest precedence, and it will override all the other
connection parameters specified otherwise (which we will see in the coming sections).

From a best practices perspective, using the configuration file is
perhaps not recommended. Injecting the connection string is a
more preferred way as it gives more control and oversight to the
developer.

Entity Framework Code First – Managing Database Creation and Seeding Data

[158]

Using the existing ConnectionString
Let's consider a scenario where we already have a connectionString defined in the
database, and we want to use the same connectionString with our context class.
Let's say we have the following connectionString defined in our configuration class:

<connectionStrings>
 <add name="AppConnection" connectionString="Data Source=(LocalDb)\
v11.0;Initial Catalog=testDb;Integrated Security=SSPI;AttachDBFilename
=|DataDirectory|\testDb.mdf" providerName="System.Data.SqlClient" />
</connectionStrings>

If we want to use this connectionString with our context class, then we will have
to pass this connectionString name to the DbContext constructor. Let's see how we
can change our context class to use this connectionString:

public class SampleDbEntities : DbContext
{
 public SampleDbEntities()
 :base("name=AppConnection")
 {

 }
}

What we are doing here is that we are passing the connectionString name to the
base DbContext class' constructor, and by doing this, our context class will start
using this connectionString.

If we still have another connectionString defined
in the configuration file that has the same name as the
context class, then that connectionString will be used.
Whatever changes we made in our context class to pass the
connectionString name will simply be ignored.

Using an existing connection
Another scenario is that only a part of our application uses the Entity Framework
Code First approach (usually in the case of old applications), and we want to use an
existing database connection with our context class. If we want to achieve this, then
we need to pass the connection object to the base DbContext constructor. Let's see
how our context class will change if we need to achieve this:

public class SampleDbEntities : DbContext
{
 public SampleDbEntities(DbConnection con)

Chapter 7

[159]

 :base(con, contextOwnsConnection: false)
 {

 }
}

In the preceding code, we defined a constructor that takes the connection object
and then passes it to the base DbContext object. Another parameter that we pass to
the DbContext constructor is contextOwnsConnection. We pass this parameter as
false because this connection is being passed to this context class from the outside,
and someone would want to reuse this connection after the context goes out of scope.

If we pass contextOwnsConnection as true, then the
context class will close the connection as soon as it goes
out of scope.

Managing database initialization
When we run our Entity Framework Code First application for the first time, Entity
Framework will do the following:

1. Check the DbContext class that is being used.
2. Find the connectionString that should be used with this context class.
3. Find the domain entities and extract the schema-related information.
4. The database will be created.
5. Data will be inserted into the system.

What will happen if the database already exists? What will happen if the application
is run a second time? Should it create the database again or simply use the existing
database? These are a few questions that can be answered simply by understanding
the database initialization process of Entity Framework.

Once the schema information is extracted, Entity Framework will use database
initializers to push the schema information to the database. There are various
possible strategies for database initializers, and Entity Framework's default strategy
is to create the database if it doesn't exist, and use the existing one if it exists.
However, it is also possible to override this default behavior. The possible database
initialization strategies are as follows:

• CreateDatabaseIfNotExists: This will create the database if it does
not exist, and if it exists, then it will use the existing database. If there is a
mismatch in the schema information extracted from the domain models and
the actual database schema, an exception will be thrown.

Entity Framework Code First – Managing Database Creation and Seeding Data

[160]

• DropCreateDatabaseAlways: If this strategy is used, the database is dropped
every time the application is run. This is mostly useful in the early stages of
the development cycle when we usually design our domain entities. It is also
useful from a unit tests perspective.

• DropCreateDatabaseIfModelChanges: If this strategy is used, it will create
the database if it does not exist, and if it exists, then it will use the existing
database. However, the important thing to note here is that if there is a
mismatch in the schema information extracted from the domain models and
the actual database schema, the database will be dropped and created again.

• MigrateDatabaseToLatestVersion: If we use this initializer, then Entity
Framework will automatically update the database schema whenever our
entity model is updated. The important part to note here is that it will update
the schema without losing the data or update the already existing database
objects in the existing database.

The MigrateDatabaseToLatestVersion initializer is
available only from Entity Framework version 4.3 onwards.

Setting the initialization strategy
By default, Entity Framework uses CreateDatabaseIfNotExists as the default
initializer. To override the default database initialization strategy, we need to use the
Database.SetInitializer method in the constructor of our DbContext class. Let's
see how this can be done to use the DropCreateDatabaseIfModelChanges strategy
rather than the default strategy:

public class SampleDbEntities : DbContext
{
 public SampleDbEntities()
 :base("name=AppConnection")
 {
 Database.SetInitializer<SampleDbEntities>(new DropCreat
eDatabaseIfModelChanges<SampleDbEntities>());
 }
}

In the preceding code, whenever the object of our context class is created, the
Database.SetInitializer method will be called, and it will set the database
initialization strategy to DropCreateDatabaseIfModelChanges.

Chapter 7

[161]

If we are in the production environment, then we don't want to lose the
existing data by mistake. It is also possible to turn off the initializers. We
just need to pass null to the Database.SetInitializer method. The
following code shows how this can be done:

public class SampleDbEntities : DbContext
{
 public SampleDbEntities()
 :base("name=AppConnection")
 {
 Database.SetInitializer<SampleDbEntities>
(null);
 }
}

Seeding data
So far, we have seen how we can take control over the location of the database
and name of the database and how we can set the database initialization strategy.
One thing to note here is that the database that will be created by Entity Framework
will always be an empty database irrespective of the strategy we chose to initialize
the database.

There are many scenarios where we might want to have some values inserted in
the database once it is created but before it is used. Master tables and lookup tables
are such examples. Also, in some cases, the application deployment wants the data
for the administrators to be populated with their default credentials. Or perhaps
we want some dummy data in our tables to test how our application behaves in a
specific scenario.

Seeding data is very important when we are using the DropCreateDatabaseAlways
or DropCreateDatabaseIfModelChanges initialization strategies, since every time
we run the application, the database will be recreated (in the latter case, every
time the model is changed), and manually inserting the data in the tables after
each database creation will become very tedious. Let's see how we can use Entity
Framework to insert/seed dummy data after the database has been created.

To seed some initial data in the database, we need to create our own database
initializer class that will:

• Derive data from the existing database initializer class
• Seed the database during creation

Entity Framework Code First – Managing Database Creation and Seeding Data

[162]

Let's say we want to use the DropCreateDatabaseAlways strategy in our
application. We have a model, Employer, defined in our code as follows:

public class Employer
{
 public int ID { get; set; }
 public string EmployerName { get; set; }
}

We also have our DbContext class created to use this model with the Entity
Framework Code First approach:

public class SampleDbEntities : DbContext
{
 public virtual DbSet<Employer> Employers { get; set; }
}

Now we want to seed some data each time a database is created. The first thing we
need to do is to create our own database initialization class, which should be derived
from the DropCreateDatabaseAlways class:

public class MyCustomDropCreateDatabaseAlways
 : DropCreateDatabaseAlways<SampleDbEntities>
{

}

In the preceding code, we created a custom database initializer class and derived it
from the DropCreateDatabaseAlways class and used SampleDbEntities for the
initialization. Now what we need to do to seed the data using this initializer class is
to override the Seed method of the DropCreateDatabaseAlways class:

public class MyCustomDropCreateDatabaseAlways
 : DropCreateDatabaseAlways<SampleDbEntities>
{
 protected override void Seed(SampleDbEntities context)
 {

 }
}

In the preceding code, we are overriding the Seed method of the
DropCreateDatabaseAlways class. This method has access to the DbContext class,
and it can use this DbContext class to insert some data in the database:

public class MyCustomDropCreateDatabaseAlways
 : DropCreateDatabaseAlways<SampleDbEntities>

Chapter 7

[163]

{
 protected override void Seed(SampleDbEntities context)
 {
 Employer employer1 = new Employer();
 employer1.EmployerName = "Employer1";

 Employer employer2 = new Employer();
 employer2.EmployerName = "Employer2";

 Employer employer3 = new Employer();
 employer3.EmployerName = "Employer3";

 context.Employers.Add(employer1);
 context.Employers.Add(employer2);
 context.Employers.Add(employer3);

 base.Seed(context);
 }
}

What the preceding code is doing is creating the Employer objects and adding them
to the Employers collection of the DbContext class. One important thing to note
in this code is that we are not calling DbContext.SaveChanges() because it will
automatically be called in the base class.

Now let's use this initializer with our context class:

public class SampleDbEntities : DbContext
{
 public virtual DbSet<Employer> Employers { get; set; }

 public SampleDbEntities()
 {
 Database.SetInitializer<SampleDbEntities>(new
MyCustomDropCreateDatabaseAlways());
 }
}

Here, we are setting our database initializer MyCustomDropCreateDatabaseAlways,
as the initializer should be used whenever the object of the context class is created.
Let's try to run the application with the following code and see what happens:

using(SampleDbEntities db = new SampleDbEntities())
{

}

Entity Framework Code First – Managing Database Creation and Seeding Data

[164]

When we run the application, and simply create the DbContext object, the database
will be created for us.

A database screenshot showing the created database

In the preceding screenshot, we can see that the database contains a table
corresponding to our Employer entity class. Also, let's take a look at the
data in the Employers table:

A database screenshot showing the seeded data in the table

From the preceding screenshot, we can see that our custom initializer was successful
in seeding the dummy data in the Employers table.

We can also execute raw SQL queries using our context class.
So, it is also possible to affect the database schema from the
database initialization's Seed method using the context class
and pass raw SQL to the database.

Chapter 7

[165]

Summary
In this chapter, we saw how we can control the various database connection
parameters such as database location, database name, schema, and so on. We also
saw how we can use database initializers to use the database initialization strategy
that fits our application needs, and finally, we looked at how we can seed some data
using database initializers while using the Code First approach.

At this juncture, we know all about setting up the database using the Database First
and Code First approaches. The Model First approach is the same as the Code First
approach, but we use Visual Entity Designer to create our entities rather than writing
POCO classes. We know how we can manage Entity relationships and map them as
database relationships; we also know how we can use entity inheritance to manage
our domain entities in a better manner. In the next chapter, we will take a look at
how we can use LINQ to Entities to query the Entity Data Model.

Querying the Entity Data
Model – LINQ to Entities

So far, we have seen how we can create the Entity Data Model using the Database
First approach and Code First approach of Entity Framework. We also looked at
domain modeling, performing model validations, and taking control of the database
connection parameters using Entity Framework. Once we have all the domain
modeling done, we would want to query the object model. There are two ways
in which we can query the Entity Data Model:

• LINQ to Entities
• Entity SQL

In this chapter, we will discuss how we can query the Entity Data Model using LINQ
to Entities.

Understanding LINQ to Entities
Language-Integrated Query (LINQ) is a technique for querying data from .NET
languages. LINQ to Entities is the mechanism that facilitates the use of LINQ to write
queries against our conceptual model such as the Entity Data Model.

Since LINQ is a declarative language, let's focus on what data we need rather than
how it should be retrieved. LINQ to Entities provides a nice abstraction over the
Entity Data Model so that we can use LINQ to specify what data should be retrieved,
and the LINQ to Entities provider will take care of accessing the database and
fetching the required data for us.

Querying the Entity Data Model – LINQ to Entities

[168]

When we use LINQ to Entities to execute the LINQ queries against the Entity Data
Model, these LINQ queries are first compiled to determine what data we want to
fetch. It will then be executed and from the application's perspective, the results will
be returned as CLR objects, that is, something that .NET understands.

Architecture diagram showing how LINQ to Entities works

However, if we want to understand the complete process, it's crucial to understand
how these queries are being executed and retrieving the results back as .NET objects.
In the preceding diagram, let's visualize how LINQ to Entities fits in the overall
architecture, and how our LINQ queries get executed using Entity Framework.

The preceding diagram shows that LINQ to Entities relies on EntityClient to be
able to work with the Entity Framework conceptual data model. Let's see how LINQ
to SQL executes the query and returns the result to the application:

1. The application creates a LINQ query.
2. LINQ to Entities will transform our LINQ queries to the EntityClient

commands.
3. The EntityClient command will then use Entity Framework and the Entity

Data Model to translate these commands into the SQL query.

Chapter 8

[169]

4. The SQL query will then be passed to the database using the underlying
ADO.NET provider.

5. The query will be executed on the database.
6. The result will be returned to the Entity Framework.
7. Entity Framework will convert the result back to CLR types such as

domain entities.
8. EntityClient will use projects and return the required results to

the application.

The EntityClient object resides in the System.Data.
EntityClient namespace. We don't have to create this object
explicitly. We just need to use this namespace and LINQ to Entities
will take care of the rest.

If we want to use LINQ to Entities with multiple types of database, we just need to
use the proper ADO.NET provider for the database, and EntityClient will be able
to use this making our LINQ queries work seamlessly against any database.

Querying data using LINQ to Entities
Now that we know how LINQ to Entities works internally, let's take a look at how
we can query the Entity Data Model using LINQ. There are two ways in which we
can write LINQ queries:

• The query syntax
• The method syntax

Choosing between these two approaches is purely a developer's choice. Performance
wise both are the same. The query syntax is comparatively easy to understand
but offers less flexibility. The method syntax, on the contrary, is a little difficult to
understand but offers great flexibility. It is possible to chain multiple queries using the
method syntax and thus achieve maximum results in a single statement.

Querying the Entity Data Model – LINQ to Entities

[170]

To understand this better, let's write a sample LINQ query using both these
approaches. Let's take an example database with only one Employee table.
The generated Entity Data Model for this database will look like the following:

A generated entity for the Employee table

If we use the Code First approach, the POCO entity for this model will look like the
following code: (1003OS_08_1_code.txt)

public partial class Employee
{
 public int ID { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string PhoneNumber { get; set; }
 public string EMailId { get; set; }
}

The DbContext class for the preceding Entity Data Model will look like the following:

public partial class SampleDbEntities : DbContext
{
 public DbSet<Employee> Employees { get; set; }
}

Now, if we want to execute the LINQ queries to fetch the Employee data using this
Entity Data Model, we can do this on the Employees collection of our context class.
Let's say we want to retrieve all the Employees collection with the LastName value
Singh. Let's see how this can be done using LINQ to Entities with the DbContext class:

Chapter 8

[171]

using(SampleDbEntities db = new SampleDbEntities())
{
 var employees = from employee in db.Employees
 where employee.LastName == "Singh"
 select employee;
}

In the preceding code, we first created the DbContext object and then used LINQ
to query Employees. Let's see how we can achieve the same using the
method syntax:

using(SampleDbEntities db = new SampleDbEntities())
{
 var employees = db.Employees
 .Where(employee => employee.LastName == "Singh");
}

The preceding code also retrieves the list of Employees with LastName as Singh
using the method syntax.

Now let's take a look at the output type being received from the LINQ query. In the
preceding code snippets, we stored the query results in an implicitly typed variable
called employees. Using LINQ to Entities, we can use implicitly typed variables as
output types that will let the compiler derive the output type based on the query.
Typically, this output type will be of the type IQueryable<T>. In our case, this will
be IQueryable<Employee>.

It's also possible to specify the precise output type of our query by
specifying the type of the return variable such as IQueryable<Employee> or
IEnumerable<Employee>. So, the preceding query can also be written as follows:

using(SampleDbEntities db = new SampleDbEntities())
{
 IEnumerable<Employee> employees = db.Employees
 .Where(employee => employee.LastName == "Singh");
}

In this case, we are explicitly specifying the type of the variable that will contain the
result of our LINQ query.

Querying the Entity Data Model – LINQ to Entities

[172]

While using LINQ to Entities, it is important to understand when
to use IEnumerable and IQueryable. If we use IEnumerable,
the query will be executed immediately. If we use IQueryable, the
query execution will be deferred until the application requests the
enumeration.
Now let's see what should be considered while deciding whether to
use IQueryable or IEnumerable. Using IQueryable gives you
a chance to create a complex LINQ query using multiple statements
without executing the query at the database level. The query gets
executed only when the final LINQ query gets enumerated.

Using LINQ to Entities – an
example-based approach
In this section, we will implement a few LINQ queries that we might have to write
quite often while working with a data-centric application. We will be using the
following database in our application:

A database schema for the sample application

Now let's generate the Entity Data Model from this database. The generated Entity
Data Model will look like the following:

A generated Entity Data Model for the sample application

Chapter 8

[173]

Let's now take a look at how to perform some common operations on this Entity
Data Model using LINQ to Entities.

Executing simple queries
Let's start by looking at executing simple queries using LINQ to Entities. The first
scenario could be that we want to retrieve a list of all the data from the table. Let's try
to retrieve a list of all the employees using the LINQ query syntax:

using(SampleDbEntities db = new SampleDbEntities())
{
 var employees = from employee in db.Employees
 select employee;
}

If we want to write the same query in the LINQ method syntax, then the code will
look like the following:

using(SampleDbEntities db = new SampleDbEntities())
{
 var employees = db.Employees;
}

What is happening in the preceding code is that we are using the DbContext object
and accessing the Employees property. We can execute the LINQ queries on the
DbSet<T> property exposed by the context class, which in our case is Employees.
The preceding LINQ query will return a list of employees.

Let's take a look at the SQL generated by this LINQ query:

SELECT
 [Extent1].[ID] AS [ID],
 [Extent1].[EmployeeName] AS [EmployeeName],
 [Extent1].[Employer_ID] AS [Employer_ID]
 FROM [dbo].[Employees] AS [Extent1]

From the preceding query, it can be seen that Entity Framework translated our LINQ
query and fetched all the data from the Employees table.

LINQPad is an excellent tool to practice LINQ to Entities. It has the
option of using Entity Framework's DbContext or ObjectContext
object, and lets us use LINQ to Entities to query the database. We can
also watch the generated SQL queries using LINQPad too.

Querying the Entity Data Model – LINQ to Entities

[174]

Using the navigation properties with LINQ
to Entities
If there is a relationship between the entities (one-to-one, one-to-many, or
many-to-many), this relationship is exposed in the form of a navigation property
in their respective entities. In our current example, the Employee entity has an
Employer property to keep track of the employer this employee belongs to, and the
Employer entity contains an Employees property that returns all the employees of
that employer. Navigation properties make it very easy to navigate from one entity to
its related entities. In this section, we will see how we can use LINQ to Entities to use
the navigation properties to fetch data from the related entities. Let's say we want to
fetch all the Employees property that belong to the Employer entity with ID as 4. Let's
try to write a LINQ query to fetch the list of employees using the Employer entity:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 var employees = from employer in db.Employers
 where employer.ID == 4
 select employer.Employees;
}

If we want to write the same query using the method syntax, use the following code:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 var employees = db.Employers
 .Where(employer => employer.ID == 4)
 .Select(employer => employer.Employees);
}

The preceding code will first fetch the Employer entity with an ID as 4, and then use
the navigation property to fetch the associated employees.

Let's try another example where we want to retrieve the Employer entity for an
Employee with ID as 5:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 var employer = from employee in db.Employees
 where employee.ID == 5
 select employee.Employer;
}

If we want to write the same query using the method syntax, use the following code:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 var employer = db.Employees

Chapter 8

[175]

 .Where(employee => employee.ID == 5)
 .Select(employee => employee.Employer);
}

The preceding code will first fetch the Employee entity where the ID is 5, and then
it will fetch the employer associated with this Employee entity using the navigation
property. Let's take a look at the generated SQL for this LINQ query:

SELECT
 [Extent2].[ID] AS [ID],
 [Extent2].[EmployerName] AS [EmployerName]
 FROM [dbo].[Employees] AS [Extent1]
 LEFT OUTER JOIN [dbo].[Employer] AS [Extent2]
 ON [Extent1].[Employer_ID] = [Extent2].[ID]
 WHERE 5 = [Extent1].[ID]

From the preceding SQL, we can see that Entity Framework was able to use the
navigation properties in our LINQ query and created the appropriate SQL to fetch
the records matching our criteria.

Filtering data using LINQ to Entities
We have seen how we can retrieve all the records using LINQ to Entities. If we want
to filter the records based on some criteria, we can do this using Where in the LINQ
query. Let's say we want to retrieve the Employees value who have ID greater than
100 but less than 500. Let's see how we can achieve this using LINQ query syntax:

using(SampleDbEntities db = new SampleDbEntities())
{
 var employees = from employee in db.Employees
 where employee.ID > 100 && employee.ID < 500
 select employee;
}

If we want to write the same query in the LINQ method syntax, then the code will
look like the following:

using(SampleDbEntities db = new SampleDbEntities())
{
 var employees = db.Employees.Where(employee => employee.ID > 100
&& employee.ID < 500);
}

Querying the Entity Data Model – LINQ to Entities

[176]

The preceding code will fetch all the Employee records that match the criteria
provided in the Where clause. The EntityClient property will be able to take the
Where clause, and let Entity Framework know that the data requested should be
filtered based on the criteria provided in the Where clause.

Let's take a look at the SQL generated by this LINQ query:

SELECT
 [Extent1].[ID] AS [ID],
 [Extent1].[EmployeeName] AS [EmployeeName],
 [Extent1].[Employer_ID] AS [Employer_ID]
 FROM [dbo].[Employees] AS [Extent1]
 WHERE ([Extent1].[ID] > 100) AND ([Extent1].[ID] < 500)

From the preceding query, it can be seen that Entity Framework translated our LINQ
query and has put a Where clause to filter the data that is being requested from the
Employees table. This is very important from the performance perspective.

We can create complex filtering expressions using C# conditional
operators and EntityClient, and Entity Framework will take care of
generating the appropriate SQL and returning the results. For example,
we will use the following LINQ query:

using(SampleDbEntities db = new SampleDbEntities())
{
 from employee in db.Employees
 where employee.ID > 100 && employee.ID < 500
 || employee.ID == 1
 || employee.Employer_ID == 5
 select employee;
}

Then, Entity Framework will generate the following SQL query for
this:

SELECT
 [Extent1].[ID] AS [ID],
 [Extent1].[EmployeeName] AS [EmployeeName],
 [Extent1].[Employer_ID] AS [Employer_ID]
 FROM [dbo].[Employees] AS [Extent1]

 WHERE (([Extent1].[ID] > 100) AND ([Extent1].[ID]
< 500)) OR (1 = [Extent1].[ID]) OR (5 = [Extent1].
[Employer_ID])

Thus, it can be seen that using LINQ to Entities we can formulate
pretty complex queries very easily.

Chapter 8

[177]

Using LINQ projections with LINQ to Entities
In the previous section, we discussed how to filter the data and return the complete
entities. LINQ projections essentially mean that instead of returning a complete
entity we want to return either a subset of properties from that entity in the form
of an object or perhaps, we want to return an object that contains properties from
multiple entities.

Projections are particularly useful when we are dealing with ViewModel in our
application. We can return a ViewModel type object directly from the LINQ query.
Let's take a scenario where we want to retrieve a list of all the employers where the
result should contain the EmployerName value and a list of all the employees that
are associated with this employer. Let's see how we can do this using projections
in LINQ to Entities:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 var employers = from employer in db.Employers
 select new
 {
 EmployerName = employer.EmployerName,
 EmployeeList = employer.Employees
 };
}

In the preceding code, we returned a new collection of objects where each object will
contain two properties. The first property EmployerName is the name of the employer
and the EmployeeList property contains a list of employees that are associated
with the employer. In this case, the compiler will create an anonymous object and
assign the return value to it. If we have a type that defines the return type (perhaps a
ViewModel), then we can return the result of that type too. Let's see how this can
be done:

class EmployeeListWithEmployerName
{
 public string EmployerName { get; set; }
 public ICollection<Employee> EmployeeList { get; set; }
}

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 IQueryable<EmployeeListWithEmployerName> employers = from
employer in db.Employers
 select new EmployeeListWithEmployerName
 {

Querying the Entity Data Model – LINQ to Entities

[178]

 EmployerName = employer.EmployerName,
 EmployeeList = employer.Employees
 };
}

The preceding code will now return a specific type of object,
EmployeeListWithEmployerName, instead of relying on the compiler to create the
anonymous type to handle the result. If we want to write the same query using the
method syntax, the query will look like the following:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 IQueryable<EmployeeListWithEmployerName> employeeList =
 db.Employers.Select
 (
 employer =>
 new EmployeeListWithEmployerName
 {
 EmployerName = employer.EmployerName,
 EmployeeList = employer.Employees
 }
);
}

The preceding code is essentially doing the same thing as in the previous query but
uses the method syntax instead. Using projections with LINQ to Entities is very useful
because it enables us to return complex types that contain data from multiple entities.
Entity Framework will take care of creating the appropriate SQL query accordingly.

Handling results in IQueryable<T> also improves the performance,
as the generated SQL will not be executed until the items from the
result are enumerated.

Grouping using LINQ to Entities
Grouping is also very essential when it comes to working with data-centric
applications. In this section, we will see how we can use LINQ to Entities to perform
grouping operations. Let's say we want to fetch the list of all the employees grouped by
Employer IDs. Let's see how we can do this using the LINQ to Entities query syntax:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 var result = from employee in db.Employees
 group employee by employee.Employer_ID

Chapter 8

[179]

 into employeeGroup
 select new
 {
 EmployerID = employeeGroup.Key,
 EmployeeEntity = employeeGroup
 };
}

If we write this query in the form of the method syntax, it will look like the following:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 var result = db.Employees.GroupBy
 (employee => employee.Employer_ID)
 .Select
 (
 employeeGroup =>
 new
 {
 EmployerID = employeeGroup.Key,
 EmployeeEntity = employeeGroup
 }
);
}

The preceding code will group the Employee records by Employer_ID. The
results will be returned as a projection that will create an anonymous object.
The Employer_ID property of the result will contain the ID of the employer
with which we have performed grouping. The EmployeeEntity property
will contain a collection of Employees found for this EmployerID.

Ordering using LINQ to Entities
Ordering the records in ascending or descending order of any particular column
property is also a very frequently used operation. We can use LINQ to Entities to
pass the order by clause, and Entity Framework will take care of retrieving the
results for us. Let's try to retrieve the list of Employees in ascending order of
the IDs:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 var employees = from employee in db.Employees
 orderby employee.ID
 select employee;
}

Querying the Entity Data Model – LINQ to Entities

[180]

The method syntax equivalent of this query will be as follows:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 var employees = db.Employees
 .OrderBy(employee => employee.ID);
}

What this code does is that it passes the LINQ query to the EntityClient, and the
EntityClient will see that the order by clause has been requested for a property.
Let's take a look at the generated SQL:

SELECT
 [Extent1].[ID] AS [ID],
 [Extent1].[EmployeeName] AS [EmployeeName],
 [Extent1].[Employer_ID] AS [Employer_ID]
 FROM [dbo].[Employees] AS [Extent1]
 ORDER BY [Extent1].[ID] ASC

From the preceding code, we can see that the EntityClient has generated the SQL
appropriately using the order by clause with the corresponding column.

If we want to order in a descending manner, we have to put the keyword
descending after the orderby property:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 var employees = from employee in db.Employees
 orderby employee.ID descending
 select employee;
}

If the descending order is needed in the method syntax, we have to use the
OrderByDescending function instead of OrderBy:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 var employees = db.Employees
 .OrderByDescending(employee => employee.ID);
}

Chapter 8

[181]

Now the preceding code will return the results ordered in descending order of their
IDs. We can also check the generated SQL as follows:

SELECT
 [Extent1].[ID] AS [ID],
 [Extent1].[EmployeeName] AS [EmployeeName],
 [Extent1].[Employer_ID] AS [Employer_ID]
 FROM [dbo].[Employees] AS [Extent1]
 ORDER BY [Extent1].[ID] DESC

We can see that the OrderByDescending function has taken effect in the generated
SQL too.

Aggregate operators with LINQ to Entities
Let's now take a look at how we can use aggregate operators using LINQ to Entities.
We will see how we can perform the following aggregate operations using LINQ
to Entities:

• Count
• Sum
• Min
• Max
• Average

Count
Let's start with getting the count of the number of Employees that belong to
Employer with ID as 4 using the LINQ query syntax:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 int numberEmployees = (from employee in db.Employees
 where employee.Employer_ID == 4
 select employee).Count();
}

Querying the Entity Data Model – LINQ to Entities

[182]

One important thing to note here is that Count has no query syntax, so if we want to
retrieve the count, we need to mix the query syntax, and use Count as the method
syntax. If we want to convert this whole query into the method syntax, it can be
written as follows:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 int numberEmployees = db.Employees
 .Where(employee => employee.Employer_ID == 4)
 .Count();
}

In the preceding code, we first retrieved a list of Employees whose Employer_ID is 4.
We executed the Count function on the query that will effectively return the number
of Employees with Employer_ID as 4. Let's take a look at the generated SQL for this
query:

SELECT
 [GroupBy1].[A1] AS [C1]
 FROM (SELECT
 COUNT(1) AS [A1]
 FROM [dbo].[Employees] AS [Extent1]
 WHERE 4 = [Extent1].[Employer_ID]
) AS [GroupBy1]

From the preceding query, we can see that the Count LINQ query has actually been
translated to the SQL query by Entity Framework.

It is important to understand that all the aggregate functions can be used
only in the method syntax and not in the query syntax. If we want to use
the aggregate operators in the query syntax, then we will have to use the
mixed syntax, as shown in the preceding code. In further examples, we
will only be using the method syntax to query the Entity Data Model.

Chapter 8

[183]

Sum
Now, let's take a look at how we can use the Sum function with LINQ to Entities.
Let's say the Employee table also contains a column for Salary. The Employee entity
will also contain a Salary property corresponding to the Salary column. Let's see
how we can retrieve the sum of all the Salary values of Employees that belong to
Employer with ID as 4:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 int sumOfSalaries = db.Employees
 .Where(employee => employee.Employer_ID == 4)
 .Select(employee => employee.Salary)
 .Sum();
}

In the preceding code, we first retrieved the salary of Employees whose Employer_ID
is 4. We executed the Sum function on the query that will return the total salary of all
the employees that belong to Employer with ID as 4. Let's take a look at the generated
SQL for this query:

SELECT
 [GroupBy1].[A1] AS [C1]
 FROM (SELECT
 SUM([Extent1].[Salary]) AS [A1]
 FROM [dbo].[Employees] AS [Extent1]
 WHERE 4 = [Extent1].[Employer_ID]
) AS [GroupBy1]

From the preceding query, we can see that the Sum function in our LINQ query has
actually been translated into the appropriate SQL by Entity Framework and has thus
fetched only the relevant data from the database.

Min
Now, let's take a look at how we can use the Min function with LINQ to Entities.
If we want to retrieve the minimum salary from the employees that belong to
Employer with ID as 4, run the following code:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 int minimumSalary = db.Employees
 .Where(employee => employee.Employer_ID == 4)
 .Select(employee => employee.Salary)
 .Min();
}

Querying the Entity Data Model – LINQ to Entities

[184]

In the preceding code, we first retrieved the salary of Employees whose Employer_ID
is 4. We executed the Min function on the query which will then return the minimum
salary of the employees that belong to Employer with ID as 4. Let's take a look at the
generated SQL for this query:

SELECT
 [GroupBy1].[A1] AS [C1]
 FROM (SELECT
 MIN([Extent1].[Salary]) AS [A1]
 FROM [dbo].[Employees] AS [Extent1]
 WHERE 4 = [Extent1].[Employer_ID]
) AS [GroupBy1]

From the preceding query, we can see that the Min function in our LINQ query has
actually been translated into the appropriate SQL by Entity Framework and has thus
fetched only the relevant data from the database.

Max
Now, let's take a look at how we can use the Max function with LINQ to Entities.
If we want to retrieve the maximum salary from the employees that belong to
Employer with ID as 4, use the following code:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 int maximumSalary = db.Employees
 .Where(employee => employee.Employer_ID == 4)
 .Select(employee => employee.Salary)
 .Max();
}

In the preceding code, we first retrieved the salaries of the employees whose
Employer_ID is 4. We executed the Max function on the query which will then return
the maximum salary of the employees that belong to Employer with ID as 4. Let's
take a look at the generated SQL for this query:

SELECT
 [GroupBy1].[A1] AS [C1]
 FROM (SELECT
 MAX([Extent1].[Salary]) AS [A1]
 FROM [dbo].[Employees] AS [Extent1]
 WHERE 4 = [Extent1].[Employer_ID]
) AS [GroupBy1]

From the preceding query, we can see that the Max function in our LINQ query has
actually been translated to the appropriate SQL by Entity Framework and has thus
fetched only the relevant data from the database.

Chapter 8

[185]

Average
Let's now take a look at how we can calculate the average value using the Average
function with LINQ to Entities. If we want to retrieve the average salary of the
employees that belong to Employer with ID as 4, run the following code:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 double averageSalary = db.Employees
 .Where(employee => employee.Employer_ID == 4)
 .Select(employee => employee.Salary)
 .Average();
}

In the preceding code, we first retrieved the salaries of the employees whose
Employer_ID is 4. We executed the Average function on the query which will then
return the average salary of Employees who belong to Employer with ID as 4. We
can take a look at the generated SQL for this query:

SELECT
 [GroupBy1].[A1] AS [C1]
 FROM (SELECT
 AVG(CAST([Extent1].[Salary] AS float)) AS [A1]
 FROM [dbo].[Employees] AS [Extent1]
 WHERE 4 = [Extent1].[Employer_ID]
) AS [GroupBy1]

From the preceding query, we can see that the Average function in our LINQ query
has actually been translated to the appropriate SQL by Entity Framework and has
thus fetched only the relevant data from the database.

Partitioning/paging data using LINQ to Entities
Partitioning data means to take a select set of data from the complete data.
Partitioning is particularly useful in implementing paging in our applications. There
are two main methods when it comes to implementing partitioning:

• Skip
• Take

Let's see how we can implement partitioning using these two methods.

Querying the Entity Data Model – LINQ to Entities

[186]

Skip
Skip is used when we want to skip the first few records from the result. Let's say we
want to write a query where we want to sort all the employees on their ID values
and then return the result of all except the first 10 employees:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 var employees = db.Employees
 .OrderBy(employee => employee.ID)
 .Skip(10);
}

The preceding code will first order the Employee data based on the ID value and
then return all the records except the first 10. If we take a look at the generated SQL
for the Skip query, it will look like the following:

SELECT
 [Extent1].[ID] AS [ID],
 [Extent1].[EmployeeName] AS [EmployeeName],
 [Extent1].[Employer_ID] AS [Employer_ID]
 FROM
 (
 SELECT
 [Extent1].[ID] AS [ID],
 [Extent1].[EmployeeName] AS [EmployeeName],
 [Extent1].[Employer_ID] AS [Employer_ID],
 row_number() OVER (ORDER BY [Extent1].[ID] ASC) AS
[row_number]
 FROM [dbo].[Employees] AS [Extent1]
) AS [Extent1]
 WHERE [Extent1].[row_number] > 10
 ORDER BY [Extent1].[ID] ASC

We can see from the preceding SQL that the Skip query has been translated to the
SQL that uses row_number to skip the starting records.

Chapter 8

[187]

Take
Take is used when we want to limit the number of items to be retrieved from the
result. Let's say we want to sort all the employees on their ID values and then return
the first 10 records only:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 var employees = db.Employees
 .OrderBy(employee => employee.ID)
 .Take(10);
}

The preceding code will return only the first 10 Employees after sorting them
in ascending order of their IDs. Let's see how the generated SQL looks for this
LINQ query:

SELECT TOP (10)
 [Extent1].[ID] AS [ID],
 [Extent1].[EmployeeName] AS [EmployeeName],
 [Extent1].[Employer_ID] AS [Employer_ID]
 FROM [dbo].[Employees] AS [Extent1]
 ORDER BY [Extent1].[ID] ASC

From the query, it can be seen that the Take query has been appropriately translated
to the TOP keyword in SQL.

Implementing paging
If we want to implement paging, we have to use Skip and Take in the same query.
For example, if we want to retrieve the second page of the data, and each page shows
10 records, we have to skip the first 10 records and then fetch the next 10 records for
the user:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 var employees = db.Employees
 .OrderBy(employee => employee.ID)
 .Skip(10)
 .Take(10);
}

The preceding code will skip the first 10 records and then return the next 10 records
to the application. This is very useful while implementing paging in our applications.

Querying the Entity Data Model – LINQ to Entities

[188]

As with aggregate functions, partitioning operators only have the
method syntax.

Implementing join using LINQ to Entities
If two entities are related to each other, Entity Framework will create a navigation
property in the entity to access the related entity. There might also be a possibility
that the two entities have a common property and yet the relationship is not defined
in the database. If we still want to utilize this implicit relationship, we have to join
the related entities.

To see how join works, let's now use the navigation property Employer that exists
in the Employee entity. If we want to retrieve a list of employers with a list of all the
employees that belong to that employer, we have to perform a join to accomplish it.
Let's see how this can be done using the LINQ query syntax:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 var employersList = from employer in db.Employers
 join
 employee in db.Employees
 on
 employer.ID equals employee.Employer_ID into employeeGroup
 select new
 {
 EmployerName = employer.EmployerName,
 EmployeesList = employeeGroup
 };
}

The preceding code will join the Employee and Employer entities, and then push
the list of all the employees belonging to an employee into employeeGroup. We then
use projections to return a list of Employers, where every Employer contains a list of
Employees that belong to that Employer.

If we want to write the same query using the LINQ method syntax, we have to use
the GroupJoin method as follows:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 var employersList = db.Employers.GroupJoin
 (
 db.Employees,

Chapter 8

[189]

 employer => (Int32?)(employer.ID),
 employee => employee.Employer_ID,
 (employer, employeeGroup) => new
 {
 EmployerName = employer.EmployerName,
 EmployeesList = employeeGroup
 }
);
}

In the preceding code, we used GroupJoin with the Employers collection of the
DbContext class. The first parameter is the Employees collection that indicates which
entity collection to join to, the second and third parameter represents the respective
properties that should be used to join the entities. The last parameter is a lambda
expression that returns the results using LINQ projections.

The join or GroupJoin is the LINQ equivalent of SQL LEFT OUTER
JOIN. This will always return all the elements of the entity collection
that are to the left irrespective of whether or not the entity collection on
the right-hand side of join contains any entities.

Lazy loading and eager loading
When we are working with LINQ to Entities, it is important to understand the
concepts of lazy loading and eager loading, as understanding these will greatly help
you in writing efficient LINQ queries. Let's try to understand lazy loading and eager
loading from the LINQ to Entities perspective.

Lazy loading
Lazy loading is the process where none of the entities involved in the LINQ query
will be loaded from the database until the result of the query is enumerated. If the
loaded entity contains the navigation properties of the other entities, then these
related entities will not be loaded until the navigation property is being accessed
from the user code.

In our application, the Employee model looks like the following:

public partial class Employee
{
 public int ID { get; set; }
 public string EmployeeName { get; set; }
 public Nullable<int> Employer_ID { get; set; }

Querying the Entity Data Model – LINQ to Entities

[190]

 public virtual Employer Employer { get; set; }

 public int Salary { get; set; }
}

If we try to fetch a list of Employees using LINQ to Entities, the code will look like
the following:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 var employees = from employee in db.Employees
 select employee;
}

The important thing to note here is that the data is still not loaded from the database.
To load the data, we need to enumerate the employees:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 var employees = from employee in db.Employees
 select employee;

 List<Employee> employeeList = employees.ToList();
}

Once this code gets executed, the employeeList variable will contain all the
employees. Now due to lazy loading only the Employee data has been fetched from
the database. The Employer data will be fetched only when we try to access the
Employer navigation property of the Employee entity:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 var employees = from employee in db.Employees
 select employee;

 List<Employee> employeeList = employees.ToList();

 // Here the Employer data will be fetched from the database
 Employer employer = employeeList.ElementAt(0).Employer;
}

The preceding code will find the first employee from the list and access its Employer
property. At this call, the Employer data will be fetched from the database.

Chapter 8

[191]

When using Database First and Model First approach, lazy loading can be turned on
and off from the Properties window of Visual Entity Designer.

The Properties window showing how to change the lazy loading option

When using the Code First approach, lazy loading depends on the nature of the
navigation property. If the navigation property is virtual, then lazy loading is
enabled. If we want to disable lazy loading, we have to make the navigation
property non virtual as follows:

public partial class Employee
{
 public int ID { get; set; }
 public string EmployeeName { get; set; }
 public Nullable<int> Employer_ID { get; set; }

 public Employer Employer { get; set; }

 public int Salary { get; set; }
}

Querying the Entity Data Model – LINQ to Entities

[192]

If we want to disable lazy loading for all the entities, then it can be done from the
context class as follows:

public partial class SampleDatabaseEntities : DbContext
{
 public SampleDatabaseEntities()
 {
 this.Configuration.LazyLoadingEnabled = false;
 }

 public DbSet<Employee> Employees { get; set; }
 public DbSet<Employer> Employers { get; set; }
}

The preceding code will disable lazy loading for all the entities in this context.

Eager loading
Eager loading is the process where we can load the related entity along with the
main entity in the query itself. To implement eager loading, we need to use the
Include keyword. Let's see how we can eagerly load all the Employer data along
with the Employee data from the query itself:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 List<Employee> employeeList = db.Employees
 .Include("Employer").ToList();
}

Now, when the list of Employees is fetched from the database, the data of the related
employer will also be loaded from the database.

Summary
In this chapter, we saw how we can use LINQ to Entities to query the data using
Entity Framework. We saw how we can perform the various data retrieval tasks
seamlessly using LINQ to Entities with Entity Framework. In the next chapter, we
will take a look at how we can use Entity SQL to query the Entity Data Model and
retrieve data using Entity Framework.

Querying the Object Model –
Entity SQL

In the previous chapters, we looked at the various approaches of Entity Framework,
how to implement relationships between the domain models. We also looked at how
we can query the Entity Data Model using LINQ to Entities. Another way to query
the Entity Data Model is by using Entity SQL. In this chapter, we will discuss the
details of Entity SQL, and how we can query the object model using it.

Understanding Entity SQL
Entity SQL or ESQL provides an SQL-like syntax to write queries in terms of our
model classes rather than in terms of tables. ESQL is a lesser used technology when
it comes to querying the Entity Data Model but it is very useful when it comes to
executing dynamic queries against our data model. Another major benefit of using
ESQL is that it eliminates the need to know the database schema, and we can target
the schema of our Entity Data Model. Many of us are already familiar with SQL and
thus working with ESQL is very easy. We just need to know Entity Framework and
ESQL related details, and we will find ourselves ready to use ESQL.

There are two ways of executing queries using ESQL:

• Using ESQL with ObjectQuery
• Using ESQL with EntityCommand

Querying the Object Model – Entity SQL

[194]

Before we get started with these two approaches, let's take a look at how they fit into
the overall architecture.

An architecture diagram showing how ObjectQuery and EntityCommand interact with Entity Framework

In the preceding diagram, we can see that if we write ESQL using ObjectQuery, our
queries will be executed at the object layer. What this means is that we can use ESQL
and still retrieve our entity models as results. Contrary to this, if we use ESQL with
EntityCommand, we will get the results as read-only row sets. In this chapter, we
will take a look at both these techniques, and see how we can use ESQL to query our
Entity Data Model.

Before we start discussing how to use ObjectQuery and EntityCommand to query the
Entity Data model, we should first understand the EntityConnection object, which
is like a pipeline, that will be used to pass our Entity SQL queries to the Entity
Data Model.

Understanding EntityConnection
To be able to use Entity SQL, we first need to create an EntityConnection
object to be able to connect to the Entity Data Model and pass queries to it. The
EntityConnection object lies in the System.Data.EntityClient namespace. To
be able to use Entity SQL, we just need to create the EntityConnection object, and
pass the connection string. If we are using the Database First approach, then the
connection string should be the entity connection that contains the information about
the .csdl, .msl, and .ssdl files.

Chapter 9

[195]

Let's say we have the connection string stored in our application configuration file:

<add name="SampleDatabaseEntities" connectionString="metadata=res://*/
Models.SampleModel.csdl|res://*/Models.SampleModel.ssdl|res://*/
Models.SampleModel.msl;provider=System.Data.SqlClient;provider
connection string="data source=(localdb)\V11.0;initial catalog=Sa
mpleDatabase;integrated security=True;MultipleActiveResultSets=True;Ap
p=EntityFramework"" providerName="System.Data.EntityClient" /></
connectionStrings>

If we want to create the EntityConnection object, we just need to pass the name of
the connection string in the EntityConnection constructor as follows:

EntityConnection eConnection = new EntityConnection("name=SampleDatab
aseEntities");

If the connection string is not stored in the configuration file, we can
use the EntityConnectionStringBuilder method to create the
connection string dynamically.

The preceding code will create an object of EntityConnection using the
SampleDatabaseEntities connection string.

Developers who have worked with ADO.NET will find the EntityConnection
object very similar to the DbConnection object from the usage perspective.
In fact, all the best practices for DbConnection should also be followed with
EntityConnection. So, if we were to create an EntityConnection object without
leaving any dangling open connections, we should either remember to close it after
use or perhaps put it inside a using statement such as the following code:

using(EntityConnection eConnection = new EntityConnection("name=Sample
DatabaseEntities"))
{
 eConnection.Open();

 if(eConnection.State == System.Data.ConnectionState.Open)
 {
 // Connection is open
 }
}

The preceding code will create an EntityConnection object, open the
EntityConnection object, and check for the state of the connection. We can use this
connection object inside the using block and once the object goes out of scope, the
connection will automatically be closed.

Querying the Object Model – Entity SQL

[196]

Now that we know how to create and use the EntityConnection object, we know
how to create the pipeline that will be used to pass our Entity SQL queries to the
Entity Data Model. Let's now see how we can use ObjectQuery and EntityCommand
to query the Entity Data Model using Entity SQL.

Entity SQL with ObjectQuery
If we use the ObjectQuery class to execute the Entity SQL queries, our queries
will target the object layer of the Entity Framework. This enables us to write
queries and retrieve the results in terms of our model entities. Similar to LINQ to
Entities, if we use the ObjectQuery class, the EntityClient object will facilitate
passing the queries to the conceptual model and then return the results in terms of
model entities.

Using ObjectQuery is comparatively easier than using EntityCommand because of
two reasons:

• Firstly, while using ObjectQuery, we can use the ObjectContext class that
will eliminate the need for creating the EntityConnection object explicitly
since ObjectContext has a connection object already.

• Secondly, this approach returns the model entities, and this eliminates the
need for parsing the raw results. This will be more evident when we take a
look at the EntityCommand approach further on in this chapter.

To understand how to use Entity SQL with ObjectQuery, let's use a sample database
with the following schema:

Database schema for the sample database

Chapter 9

[197]

If we use the Database First or Model First approach, the Entity Data Model for this
schema would look like the following screenshot:

The generated Entity Data Model created for the sample application

If we are using the Code First approach, the POCO entities will look like the following:

public partial class Employee
{
 public int ID { get; set; }
 public string EmployeeName { get; set; }
 public Nullable<int> Employer_ID { get; set; }

 public virtual Employer Employer { get; set; }

 public int Salary { get; set; }
}

public partial class Employer
{
 public Employer()
 {
 this.Employees = new HashSet<Employee>();
 }

 public int ID { get; set; }
 public string EmployerName { get; set; }

 public virtual ICollection<Employee> Employees { get; set; }
}

Querying the Object Model – Entity SQL

[198]

The context class will look as follows:

public partial class SampleDatabaseEntities : DbContext
{
 public SampleDatabaseEntities()
 : base("name=SampleDatabaseEntities")
 {
 }

 protected override void OnModelCreating(DbModelBuilder
modelBuilder)
 {
 throw new UnintentionalCodeFirstException();
 }

 public DbSet<Employee> Employees { get; set; }
 public DbSet<Employer> Employers { get; set; }
}

The preceding code snippet shows our entity models and context classes. We will
now use an example-based approach to understand Entity SQL with ObjectQuery.

Querying data using Entity SQL with
ObjectQuery
Let's see how we can fetch a list of entities using Entity SQL. To put things in
perspective, let's see what the LINQ to Entities query would look like if we want to
fetch a list of Employees:

using(SampleDbEntities db = new SampleDbEntities())
{
 var employees = from employee in db.Employees
 select employee;
}

If we try to write the Entity SQL equivalent of this query using ObjectQuery,
the code will look like the following:

using(SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 string query = @"Select VALUE Employee from
SampleDatabaseEntities.Employees as Employee";

 var adapter = (IObjectContextAdapter)db;
 var objContext = adapter.ObjectContext;
 objContext.Connection.Open();

 ObjectQuery<Employee> objQuery = new ObjectQuery<Employee>(query,

Chapter 9

[199]

objContext);

 List<Employee> employees = objQuery.ToList();
}

In the preceding code, we first created an object of the DbContext class. We
then type cast it to ObjectContext and opened EntityConnection using the
Connection property of the ObjectContext class. We then created an ObjectQuery
class that will return the results of type Employee and passes the ESQL query and
ObjectContext instances to it. Then, we enumerated the results using the ToList()
method to retrieve a list of employees. It is at this enumeration that the actual query
will be executed, and the data will be fetched from the database.

Looking at the preceding example, it is quite hard to
understand the benefits of ESQL over LINQ to Entities,
as both of them return the same results but the code for
using ESQL is comparatively complex. It is important to
understand that the real benefits of ESQL will only be seen if
we have to create queries dynamically.

Executing parameterized Entity SQL with
ObjectQuery
In the previous section, we executed a very simple query to find a list of Employees.
In this section, we will see how we can pass the parameterized queries. The real
power of ESQL lies in the ability to create dynamic queries. Let's say we have multiple
areas of the application defining a condition on which the data should be filtered. For
example, we want to find a list of Employees who have a specific range of IDs. The
minimum and maximum value for the ID is being supplied from different parts of the
application. For such scenarios, we can use the parameterized ESQL queries. We can
have ObjectParameters created whenever we get a parameter value, and then we
will dynamically create an ESQL query and retrieve the result.

Let's say we want to retrieve a list of employees with an ID value greater than 100
and less than 500. The LINQ to Entities query for this will look like the following:

using(SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 var employees = from employee in db.Employees
 where employee.ID > 100 && employee.ID < 500
 select employee;
}

Querying the Object Model – Entity SQL

[200]

If we want to execute the same query using parameterized ESQL, the code will look
like the following:

// This value is being created in one part of application
ObjectParameter minValue = new ObjectParameter("minValue", 100);
// This value is being created in another part of application
ObjectParameter maxValue = new ObjectParameter("maxValue", 500);

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 string query = @"Select VALUE Employee from
SampleDatabaseEntities.Employees as Employee WHERE Employee.ID > @
minValue AND Employee.ID < @maxValue";

 var adapter = (IObjectContextAdapter)db;
 var objContext = adapter.ObjectContext;
 objContext.Connection.Open();

 ObjectQuery<Employee> objQuery = new ObjectQuery<Employee>(query,
objContext);

 objQuery.Parameters.Add(minValue);
 objQuery.Parameters.Add(maxValue);

 List<Employee> employees = objQuery.ToList();
}

In the preceding code, we first created two ObjectParameter objects that will
hold the minimum and maximum ID values. This can be thought of as these
parameters are being created in different parts of the application. We then defined
our SQL query where we specified that the query expects parameters in place of
@minValue and @maxValue. Next, we created the DbContext class and type cast it to
the ObjectContext object and created the ObjectQuery object. We then added the
ObjectParameters object to the ObjectQuery class.

The query will be executed when we enumerate the results. The value of @minValue
and @maxValue in our query will be replaced by the ObjectParameter values, and
the data will be fetched from the database.

Chapter 9

[201]

Navigation properties using Entity SQL with
ObjectQuery
If we use ESQL with ObjectQuery, our queries will be targeted to the object layer
of Entity Framework. The Entity Framework generated entities already contain the
navigation properties to access the related entities. This means that while using
ESQL with ObjectQuery, we can also use the navigation properties in our SQL query
to retrieve the desired results. Let's say we want to retrieve a list of Employees where
every item should contain the EmployeeName and EmployerName values from the
associated Employer entity. The result will be stored in the following ViewModel:

class Result
{
 public string EmployeeName { get; set; }
 public string EmployerName { get; set; }
}

If we have to write a LINQ to Entities query for this, this would look like the following:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 var employees = db.Employees.Select
 (
 employee => new Result
 {
 EmployeeName = employee.EmployeeName,
 EmployerName = employee.Employer.EmployerName
 }
);
}

The preceding LINQ to Entities code will use LINQ selection and projection to
retrieve the desired results. Let's see how the same can be achieved using ESQL with
ObjectQuery:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 string query = @"Select Employee.EmployeeName as EmployeeName,
Employee.Employer as Employer from SampleDatabaseEntities.Employees as
Employee";

 var adapter = (IObjectContextAdapter)db;
 var objContext = adapter.ObjectContext;
 objContext.Connection.Open();

Querying the Object Model – Entity SQL

[202]

 ObjectQuery<DbDataRecord> objQuery = new ObjectQuery<DbDataRecord>
(query, objContext);

 List<Result> result = new List<Result>();

 foreach (DbDataRecord item in objQuery)
 {
 string employeeName = item[0] as string;
 string employerName = string.Empty;

 Employer employer = item[1] as Employer;

 if (employer != null)
 {
 employerName = employer.EmployerName;
 }

 result.Add(new Result
 {
 EmployeeName = employeeName,
 EmployerName = employerName
 });
 }
}

In the preceding code, the first important thing to note is the use of the navigation
property in the ESQL query. We used this query to retrieve the Employee properties
and also to retrieve the associated Employer entity with it. The second important
thing to note is the type being used with ObjectQuery. In this case, we used
DbDataRecord and then retrieved the data. The desired result is then being created
by iterating over DbDataRecord.

Aggregate functions with Entity SQL using
ObjectQuery
Let's now take a look at how we can use aggregate operators using Entity SQL. We will
see how we can perform the following aggregate operations using LINQ to Entities:

• Count
• Sum
• Min
• Max
• Average

Chapter 9

[203]

Count
Let's start with getting the count of the number of Employees that belong to
Employer with ID as 4 using Entity SQL:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 string query = @"Select Count(Employee.ID) from
SampleDatabaseEntities.Employees as Employee WHERE Employee.Employer_
ID = 4";

 var adapter = (IObjectContextAdapter)db;
 var objContext = adapter.ObjectContext;
 objContext.Connection.Open();

 ObjectQuery<DbDataRecord> objQuery = new ObjectQuery<DbDataRecord>
(query, objContext);

 foreach (DbDataRecord item in objQuery)
 {
 int? count = item[0] as int?;
 }
}

In the preceding code, we created our Entity SQL to retrieve the count of all
the employees that have Employer_ID as 4. We then executed the query using
ObjectQuery and retrieved the results in the form of DbDataRecord. The final
count is then extracted from DbDataRecord.

Sum
Now, let's take a look at how we can use the Sum function with Entity SQL. Let's say
the Employee table also contains a column for Salary. The Employee entity will also
contain a Salary property that corresponds to the Salary column. Let's see how
we can retrieve the sum of all the Salary properties of Employees that belong to
Employer with ID as 4:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 string query = @"Select SUM(Employee.ID) from
SampleDatabaseEntities.Employees as Employee WHERE Employee.Employer_
ID = 4";

 var adapter = (IObjectContextAdapter)db;
 var objContext = adapter.ObjectContext;
 objContext.Connection.Open();

Querying the Object Model – Entity SQL

[204]

 ObjectQuery<DbDataRecord> objQuery = new ObjectQuery<DbDataRecord>
(query, objContext);

 foreach (DbDataRecord item in objQuery)
 {
 int? sum = item[0] as int?;
 }
}

In the preceding code, we created our Entity SQL to retrieve the sum of the salary
of all the employees with Employer_ID as 4. We then executed the query using
ObjectQuery and retrieved the results in the form of DbDataRecord. The final sum is
then extracted from DbDataRecord.

Min
Now let's take a look at how we can use the Min function with Entity SQL. If we want
to retrieve the minimum salary of the employees that belong to Employer with ID as
4, run the following code:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 string query = @"Select MIN(Employee.ID) from
SampleDatabaseEntities.Employees as Employee WHERE Employee.Employer_
ID = 4";

 var adapter = (IObjectContextAdapter)db;
 var objContext = adapter.ObjectContext;
 objContext.Connection.Open();

 ObjectQuery<DbDataRecord> objQuery = new ObjectQuery<DbDataRecord>
(query, objContext);

 foreach (DbDataRecord item in objQuery)
 {
 int? minimum = item[0] as int?;
 }
}

In the preceding code, we created our Entity SQL to retrieve the minimum salary
from the salaries of all the employees with Employer_ID as 4. We then executed the
query using ObjectQuery and retrieved the results in the form of DbDataRecord.
The minimum salary value is then extracted from DbDataRecord.

Chapter 9

[205]

Max
Now let's take a look at how we can use the Max function with Entity SQL. If we want
to retrieve the maximum salary of the employees that belong to Employer with ID
as 4, use the following code:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 string query = @"Select MAX(Employee.ID) from
SampleDatabaseEntities.Employees as Employee WHERE Employee.Employer_
ID = 4";

 var adapter = (IObjectContextAdapter)db;
 var objContext = adapter.ObjectContext;
 objContext.Connection.Open();

 ObjectQuery<DbDataRecord> objQuery = new ObjectQuery<DbDataRecord>
(query, objContext);

 foreach (DbDataRecord item in objQuery)
 {
 int? maximum = item[0] as int?;
 }
}

In the preceding code, we created our Entity SQL to retrieve the maximum salary
from the salaries of all the employees with Employer_ID as 4. We then executed the
query using ObjectQuery and retrieved the results in the form of DbDataRecord.
The maximum salary value is then extracted from DbDataRecord.

Average
Now let's take a look at how we can use the Average function with Entity SQL. If we
want to retrieve the average salary of the employees that belong to Employer with ID
as 4, use the following code:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 string query = @"Select AVG(Employee.ID) from
SampleDatabaseEntities.Employees as Employee WHERE Employee.Employer_
ID = 4";

 var adapter = (IObjectContextAdapter)db;
 var objContext = adapter.ObjectContext;
 objContext.Connection.Open();

Querying the Object Model – Entity SQL

[206]

 ObjectQuery<DbDataRecord> objQuery = new ObjectQuery<DbDataRecord>
(query, objContext);

 foreach (DbDataRecord item in objQuery)
 {
 int? average = item[0] as int?;
 }
}

In the preceding code, we created our Entity SQL to retrieve the average salary
of all the employees with Employer_ID as 4. We then executed the query using
ObjectQuery and retrieved the results in the form of DbDataRecord. The average
salary value is then extracted from DbDataRecord.

Ordering data with Entity SQL using
ObjectQuery
Ordering/sorting the records in ascending or descending order of any particular
column property is also a very frequently used operation. We can use Entity SQL
to pass the order by clause, and Entity Framework will take care of retrieving the
results for us. The ESQL order by syntax is the same as the SQL order by syntax.
Let's try to retrieve the list of employees in ascending order of the ID:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 string query = @"Select VALUE Employee from
SampleDatabaseEntities.Employees as Employee ORDER BY Employee.ID";

 var adapter = (IObjectContextAdapter)db;
 var objContext = adapter.ObjectContext;
 objContext.Connection.Open();

 ObjectQuery<Employee> objQuery = new ObjectQuery<Employee>(query,
objContext);
 List<Employee> employees = objQuery.ToList();
}

This preceding code contains the ORDER BY clause in the query. When the query gets
executed, the Employee list returned will be ordered in ascending order of the ID.

Chapter 9

[207]

If we want to order in descending order, we simply need to pass the
DESC keyword, which is the same as in SQL. So the query to retrieve the
results in descending order of ID will look like the following:

string query = @"Select VALUE Employee from
SampleDatabaseEntities.Employees as Employee ORDER BY
Employee.ID DESC";

Grouping data using Entity SQL with
ObjectQuery
Grouping is also very essential when it comes to working with data-centric
applications. In this section, we will see how we can use Entity SQL to perform
grouping operations. Let's say we want to fetch the list of all the employees grouped
by their Employer IDs. Let's see how we can do this using Entity SQL:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 string query = @"Select
 Employer.ID,
 (
 Select
 VALUE Employee
 from SampleDatabaseEntities.Employees as Employee
 where Employee.Employer_ID = Employer.ID
) as Employee
 from SampleDatabaseEntities.Employers as Employer
 GROUP BY
 Employer.ID";

 var adapter = (IObjectContextAdapter)db;
 var objContext = adapter.ObjectContext;
 objContext.Connection.Open();

 ObjectQuery<DbDataRecord> objQuery = new ObjectQuery<DbDataRecord>
(query, objContext);

 foreach (DbDataRecord item in objQuery)
 {
 int? employerId = item[0] as int?;
 IEnumerable<Employee> employeesList = item[1] as
IEnumerable<Employee>;
 }
}

Querying the Object Model – Entity SQL

[208]

In the preceding code, we fetched a list of Employees grouped by Employer_ID.
This is being achieved by fetching the list of Employers and the associated
employees. We then grouped the results on Employer.ID. The result will contain
a collection where every item will contain the ID value of Employer and a collection
of Employees associated with it.

Partitioning/paging data using Entity SQL
ObjectQuery
Partitioning data means to take a select set of data from the complete data.
Partitioning is particularly useful in implementing paging in our applications.
There are two main ESQL keywords when it comes to implementing partitioning:

• Skip
• Limit

Let's see how we can implement partitioning using these two methods.

Skip
Skip is used when we want to skip the first few records from the result. Let's say we
want to write a query where we want to sort all the employees by their ID values and
then return the result of all except the first 10 Employees:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 string query = @"Select VALUE Employee from
SampleDatabaseEntities.Employees as Employee ORDER BY Employee.ID SKIP
10";

 var adapter = (IObjectContextAdapter)db;
 var objContext = adapter.ObjectContext;
 objContext.Connection.Open();

 ObjectQuery<Employee> objQuery = new ObjectQuery<Employee>(query,
objContext);
 List<Employee> employees = objQuery.ToList();
}

The preceding code will first order the Employee data based on the ID values and
then return all the records except for the first 10.

Chapter 9

[209]

It should be noted that the skip method for paging only works if the
data does not change much, or it is read only. Otherwise, we might get
unexpected results.

Limit
Limit is used when we want to limit the number of items to be retrieved from the
result. Let's say we want to sort all the employees by their ID values and then return
the first 10 records only:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 string query = @"Select VALUE Employee from
SampleDatabaseEntities.Employees as Employee ORDER BY Employee.ID
LIMIT 10";

 var adapter = (IObjectContextAdapter)db;
 var objContext = adapter.ObjectContext;
 objContext.Connection.Open();

 ObjectQuery<Employee> objQuery = new ObjectQuery<Employee>(query,
objContext);
 List<Employee> employees = objQuery.ToList();
}

The preceding code will return only the first 10 Employees after sorting them in
ascending order of the IDs.

Implementing paging
If we want to implement paging, we have to use Skip and Limit in the same query.
For example, if we want to retrieve the second page of the data and each page shows
10 records, we have to skip the first 10 records, and then fetch the next 10 records for
the user:

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 string query = @"Select VALUE Employee from
SampleDatabaseEntities.Employees as Employee ORDER BY Employee.ID SKIP
10 LIMIT 10";

 var adapter = (IObjectContextAdapter)db;
 var objContext = adapter.ObjectContext;
 objContext.Connection.Open();

Querying the Object Model – Entity SQL

[210]

 ObjectQuery<Employee> objQuery = new ObjectQuery<Employee>(query,
objContext);
 List<Employee> employees = objQuery.ToList();
}

The preceding code will skip the first 10 records and then return the next 10 to the
application. This is very useful when implementing paging in our applications.

Using Entity SQL with EntityCommand
In the previous section, we saw how to execute Entity SQL using ObjectQuery.
In this section, we will see how we can use Entity SQL using EntityCommand.
The EntityCommand object is derived from the DbCommand object, which would mean
that using the EntityCommand object with EntityConnection will be very similar
to using DbCommand with DbConnection.

One important thing to understand is that if we use EntityCommand, the command
will be executed directly at the EntityClient layer and not the object layer.
This means that the results of Entity SQL with EntityCommand will not be returned
in terms of entity objects, but will just give us read-only access to data using the
EntityDataReader object. The EntityDataReader object will give us a stream
of raw data, and it is up to us to convert this data into meaningful domain entities.

Querying data using Entity SQL with
EntityCommand
Let's see how we can use Entity SQL with EntityCommand to query the data.
The following code will retrieve a list of Employees using Entity SQL with
EntityCommand:

using (EntityConnection con = new EntityConnection("name=SampleDataba
seEntities"))
{
 string query = @"Select VALUE Employee from
SampleDatabaseEntities.Employees as Employee";

 EntityCommand cmd = con.CreateCommand();
 cmd.CommandText = query;
 cmd.CommandType = System.Data.CommandType.Text;

 List<Employee> employees = new List<Employee>();

 con.Open();

Chapter 9

[211]

 using (EntityDataReader reader = cmd.
ExecuteReader(CommandBehavior.SequentialAccess))
 {
 while(reader.Read())
 {
 Employee employee = new Employee();
 employee.ID = (int)reader["ID"];
 employee.EmployeeName = reader["EmployeeName"] as string;
 employee.Employer_ID = reader["Employer_ID"] as int?;

 employees.Add(employee);
 }
 }
}

In the preceding code, we first created a EntityConnection object and passed the
entity connection string to it. Then we defined our ESQL query to fetch a list of
Employees. We then created a EntityCommand object and specified the query type
and text. We then opened EntityConnection and executed the command to fill
the data in an EntityDataReader in a sequential manner. We then extracted the
employee information from the EntityDataReader and created the list of employees.

The similarity between ADO.NET data access code and Entity SQL with
EntityCommand is sometimes very useful when we are migrating an
ADO.NET application to use Entity Framework, and there is a complex
query that cannot be implemented using LINQ to Entities.

Parameterized Entity SQL with EntityCommand
In the previous section, we executed a very simple query to find a list of Employees.
Now let's see how we can create parameterized queries and execute them using
Entity SQL with EntityCommand. Let's say we want to retrieve a list of employees
with ID values greater than 100 and less than 500. The LINQ to Entities query for
this will look like the following:

using (EntityConnection con = new EntityConnection("name=SampleDataba
seEntities"))
{
 string query = @"Select VALUE Employee from
SampleDatabaseEntities.Employees as Employee WHERE Employee.ID > @
minValue AND Employee.ID < @maxValue";

Querying the Object Model – Entity SQL

[212]

 EntityCommand cmd = con.CreateCommand();
 cmd.CommandText = query;
 cmd.CommandType = System.Data.CommandType.Text;

 EntityParameter minValue = new EntityParameter {ParameterName =
"minValue", Value = 100 };
 EntityParameter maxValue = new EntityParameter {ParameterName =
"maxValue", Value = 500 };

 cmd.Parameters.Add(minValue);
 cmd.Parameters.Add(maxValue);

 List<Employee> employees = new List<Employee>();

 con.Open();
 using (EntityDataReader reader = cmd.
ExecuteReader(CommandBehavior.SequentialAccess))
 {
 while (reader.Read())
 {
 Employee employee = new Employee();
 employee.ID = (int)reader["ID"];
 employee.EmployeeName = reader["EmployeeName"] as string;
 employee.Employer_ID = reader["Employer_ID"] as int?;

 employees.Add(employee);
 }
 }
}

In the preceding code, we first created an EntityConnection object and passed
the entity connection string to it. Then we defined our ESQL query to fetch a list
of Employees. The important thing to note here is that the query contains two
parameters to filter the results based on @minValue and @maxValue. We then created
an EntityCommand object and specified the query type and text. We then created
two EntityParameter objects that will contain the values of the @minValue and
@maxValue parameter. We then opened EntityConnection and executed the
command to fill the data in an EntityDataReader in a sequential manner. The
EntityDataReader will now only retrieve the Employees values that have an ID
value between @minValue and @maxValue.

Chapter 9

[213]

Now that we have seen how to use Entity SQL with EntityCommand,
all the query operations that we have seen in the ObjectQuery
section can be executed using EntityCommand. The only difference
would be that we need to manually read the data one by one from the
EntityDataReader and tailor the results to our needs.

Summary
In this chapter, we looked at how we can use Entity SQL to query the Entity Data
Model. We saw how we can use Entity SQL with ObjectQuery and EntityCommand
to retrieve the data. In the previous chapter, we looked at how the Entity Data
Model can be queried using LINQ to Entities. Now that we know how to use Entity
Framework, how to perform domain modeling, and how to query the Entity Data
Model, let's take a look at some advanced topics. In the next chapter, we will see how
to manage concurrency-related issues using Entity Framework.

Managing Concurrency
Using Entity Framework

So far, we have seen how we can use the various approaches of Entity Framework,
domain modeling, performing model validations, managing Entity relationships,
querying data using LINQ to Entities, and Entity SQL. When we talk about
data-driven applications, concurrency and transaction management also plays
crucial role. In this chapter, we will take a look at the various concurrency
management techniques using Entity Framework. In the next chapter, we will
see how to manage transactions with Entity Framework.

Understanding concurrency
Concurrency management deals with allowing multiple entities to be updated
simultaneously. This means effectively allowing multiple database operations on the
same data simultaneously. Concurrency is a way of managing multiple operations
on a database and at the same time allowing atomicity, consistency, isolation, and
durability (ACID) properties of the database operations.

In this chapter, we will not be discussing the details of ACID
properties but we will instead focus on how to manage
concurrency using Entity Framework. You are advised to
read about database ACID properties if you don't know about
it as this will be very helpful in understanding this and the
next chapter.

Managing Concurrency Using Entity Framework

[216]

To understand the problem, let's take a look at a few concurrency scenarios.
Let's say we have two users accessing the same database. Here are a few scenarios
where concurrent access can lead to some potential problems:

• User 1 and user 2 are both trying to update the same entity
• User 1 and user 2 are both trying to delete the same entity
• User 1 is trying to update the same entity where user 2 has deleted it
• User 1 has requested to read an entity, and user 2 has updated it after he has

read it.

These are just a few (but not all) scenarios that can potentially lead us to wrong data.
Imagine a scenario when hundreds of users are trying to operate on the same data.
This problem of concurrency will have a much greater effect on the system.

There are two ways in which we can handle concurrency-related issues:

• Optimistic concurrency: In this approach, whenever data is requested from
the database, the data is read and kept in the application memory. No explicit
locks are put at the database level. The data operations will be applied in the
order they are received by the data layer.

• Pessimistic concurrency: In this approach, whenever data is requested
from the database, the data is read, and an explicit lock will be acquired
on this data so that no other user can request this data. This will decrease
the chances of having concurrency-related problems. The downside of
this approach is that locking is an expensive operation, and it decreases
the overall performance of the application. Entity Framework supports
optimistic concurrency control as we are working at the entity layer. Thus,
all the data will be present in memory once it is read. We can configure
Entity Framework to use pessimistic concurrency too but pessimistic
concurrency is not directly supported by Entity Framework.

Before we look at how to implement concurrency with Entity Framework, let's try
to understand the optimistic and pessimistic concurrency details. This will help us
understand how to implement concurrency with Entity Framework.

Chapter 10

[217]

Understanding optimistic concurrency
In optimistic concurrency, whenever data is requested from the database, the data is
read and kept in the application memory. No explicit locks are put on the database.
Since in this approach no explicit locks are put, this approach is more scalable and
flexible when compared to pessimistic concurrency. The important thing to note
when using optimistic concurrency is that if there are any conflicts, these conflicts
will need to be handled by the application itself. The most important thing when
using optimistic concurrency control is to have a conflict handling strategy in our
application, and to let the application user know if their changes are not persisted
due to conflicts. Optimistic concurrency essentially means allowing the conflict to
happen and then dealing with it in an appropriate manner.

Here are a few examples of strategies for dealing with conflicts.

Ignore the conflict/forcing updates
In this strategy, the application lets all the users change the same set of data, and lets
all the changes pass through to the database. This would mean that the database will
show values from the very last update. This can lead to potential data loss, as the
changes from many of the users will be lost and only changes from the last user will
be visible.

Partial updates
In this case, we will also allow all the changes, but we will not update the complete
row, only the columns that the specific user has updated. This would mean that if
two users are trying to update the same record but different columns, then both the
updates will be successful and changes from both users will be visible.

Warn/ask the user
Whenever a user tries to update a record that has been updated after he read it, warn
the user that the data has been changed by someone else, and ask for confirmation
that he would still like to overwrite the data or first check the already updated data.

Reject the changes
Whenever a user tries to update a record that has been updated after he read it,
let the user know that he is not allowed to update the data at this time since it has
already been updated by someone else.

Managing Concurrency Using Entity Framework

[218]

Understanding pessimistic concurrency
Contrary to optimistic concurrency, the goal of pessimistic concurrency is to
never let any conflicts happen. This is achieved by putting an explicit lock on the
records before using them. There are two types of locks that can be acquired on the
database records:

• A read-only lock
• An update lock

When a read-only lock is put on a record, the application can only read the record.
If the application wants to update the records, it will have to acquire an update lock
on the record. If a read-only lock is put on a record, this record can still be used by
the requests that want a read-only lock. However, if an update lock is required, the
request will have to wait till all the read-only locks are released. Along the same
lines, if an update lock is put on the record, no other request can put a lock on this
record, and the request will have to wait until the existing update lock is released.

From the preceding description of pessimistic concurrency, it might appear as if
using pessimistic concurrency will solve all the concurrency-related issues, as we
won't have to deal with these issues in our application. However, this is actually
not true. There are a few problems and overheads with using pessimistic
concurrency that we need to keep in mind before we decide to choose it for
concurrency management. The following are a few of the problems that we face
while using pessimistic concurrency:

• Our application will have to manage all the locks that every operation
is acquiring

• The application performance will decrease due to the memory requirements
of the locking mechanism

The possibility of deadlock conditions increases as multiple requests are waiting
for locks acquired by each other. Due to these reasons, Entity Framework does not
support pessimistic concurrency directly. If we want to use pessimistic concurrency,
we have to write custom code for database access. Also, when using pessimistic
concurrency, LINQ to Entities will not work properly.

We should try not to use pessimistic concurrency as much as
possible. The concurrency-related conflicts can be handled using
a TIMESTAMP field or the ROWVERSION type. We will talk about
these in later sections of this chapter.

Chapter 10

[219]

Implementing optimistic concurrency
using Entity Framework
There are a number of ways in which we can implement optimistic concurrency
using Entity Framework. In this section, we will take a look at a few of them.

Let's use a simple database to test the concurrency issues. Let's have a single
Employee table for our testing purpose. The Employee table will contain only three
fields: ID, EmployeeName, and Salary. The generated Entity Data Model for this
database will look like the following:

The Entity Data Model for the sample application

Let's now try to see how we can implement optimistic concurrency using
Entity Framework.

Entity Framework's default concurrency
Before we do anything explicitly, let's see how Entity Framework handles concurrency
by default. Let's say we have our application designed to update the Salary value of
an employee. Let's implement a function to retrieve the values for the employee from
the database and another to update the Employee data in the database:

// Lets fetch the employee details for a given ID value
public Employee GetEmployee(int id)
{
 Employee employee = null;

 using (SampleDatabaseEntities db = new SampleDatabaseEntities())
 {

Managing Concurrency Using Entity Framework

[220]

 employee = db.Employees.Find(id);
 }

 return employee;
}

// Update the Employee data in the database
public void UpdateEmployee(Employee employee)
{
 using (SampleDatabaseEntities db = new SampleDatabaseEntities())
 {
 ((IObjectContextAdapter)db).ObjectContext.
CreateObjectSet<Employee>().Attach(employee);
 ((IObjectContextAdapter)db).ObjectContext.ObjectStateManager.
ChangeObjectState(employee, EntityState.Modified);

 db.SaveChanges();
 }
}

In the preceding code, the GetEmployee() function will retrieve the Employee data
for a given ID. The UpdateEmployee() function will take the updated Employee
model and commit the changes to the database.

Now to visualize a possible concurrency issue, let's try to simulate a scenario with
our code. We will implement a scenario where two users will read the Employee
data, and then each user will try to update the separate fields of the Employee entity:

// 1. User1 retrieves the Employee data
Employee employee1 = GetEmployee(1);

// 2. User2 retrieves the Employee data
Employee employee2 = GetEmployee(1);

// 3. User1 tries to update the salary only
employee1.Salary = 100;
UpdateEmployee(employee1);

// 4. User2 tries to update the Name
employee2.EmployeeName = "New EmployeeName";
UpdateEmployee(employee2);

Chapter 10

[221]

In the preceding code, we tried to simulate the concurrency problem. Let's see
what this code does in these four sections (section numbers are marked
in the code comments):

• 1: Here user 1 reads the Employee data
• 2: Here user 2 is reads the same Employee data
• 3: Here user 1 updates the Salary field of the Employee model
• 4: Here user 2 updates the EmployeeName field of the same Employee model

Now both users have the same copy of data, and both of them are trying to update
the same record. Before executing this code, let's take a look at the existing data in
the following table.

A database snapshot before running our code

Now for testing, let's put a break point in our code before executing section 4:

The screenshot showing where to put the breakpoint for testing

If we take a look at the data at this instance, we can see that the changes from user 1
are being shown in the database.

Database snapshot after section 3 code executes

Managing Concurrency Using Entity Framework

[222]

Now let's continue the execution and see how the data is getting affected.

Database snapshot after section 4 code executes

From the preceding screenshot, it can be seen that user 2's request has been
successful but user 1's changes were lost. So from the preceding code, it is clear that
if we use Entity Framework to update the entire record, the last request will always
win, and it will overwrite all the changes made by the previous requests.

The default behavior is always the last request wins.
It doesn't matter whether multiple requests modify
the same data or not.

Designing applications to handle field level
concurrency
In this section, we will see how we can write our application code in such a way
that the field level concurrency issues can be handled. The idea here is to design
our application in such a way that only the updated fields will get changed in the
database. This will ensure that if multiple users are updating the separate fields,
all the changes are persisted in the database.

The key to this is to let the application identify all the columns that the user is
requesting to update and then selectively updating those fields for this user. To
accomplish this, we need two things:

• A method that will give us a clone of the original model with only the user
requested properties updated with the new values

• The update method will check for which properties the original requested
model values have changed and then update only those values in the database

So, let's first create a simple method that will take the model properties' values, and
return the new model that will contain the same values for all the properties except
for the properties that the user is trying to update.

public Employee GetUpdatedEmployee(int id, string employeeName,
decimal? salaryValue)
{
 Employee employee = new Employee();
 employee.Id = id;

Chapter 10

[223]

 employee.EmployeeName = employeeName;
 employee.Salary = salaryValue;

 return employee;
}

So, if a user only wants to update the Salary field, the call to this function will look
like the following:

Employee newEmployeeData1 = GetUpdatedEmployee(employee2.Id,
employee1.EmployeeName, 100);

From the preceding code, employee1 is the original object that is retrieved when the
user requests the model and 100 is the new Salary value.

This function is very simplistic, and it only shows how to get
a clone object with a few properties along with the updated
values. In the real world, we will rarely see such code. In
such cases, to facilitate this, we can use the mapping module
that does domain model to data model mapping.

Next, we need to change our update function. The update function will now
implement the following algorithm to update the data:

1. Retrieve the latest model values from the database.
2. Check the original model and updated model to find the list of the

changed properties.
3. Only update the changed properties in the model retrieved in step 1.
4. Save the changes.

The code for this algorithm will look like the following:

// Update the Employee data in the database field level checks
public void UpdateEmployeeEnhanced(Employee originalEmployeeData,
Employee newEmployeeData)
{
 using (SampleDatabaseEntities db = new SampleDatabaseEntities())
 {
 // Lets get the latest snapshot of data from the database
 Employee employee = db.Employees.Find(originalEmployeeData.
Id);

 // Now one by check for the properties updated by the user
 if (originalEmployeeData.EmployeeName != newEmployeeData.
EmployeeName)
 {

Managing Concurrency Using Entity Framework

[224]

 // Update the new value in the current database
 employee.EmployeeName = newEmployeeData.EmployeeName;
 }
 if (originalEmployeeData.Salary != newEmployeeData.Salary)
 {
 // Update the value in the current database snapshot
 employee.Salary = newEmployeeData.Salary;
 }

 db.SaveChanges();
 }
}

In the preceding code, we first retrieved the latest Employee data from the database.
We then checked the originally requested Employee model with the Employee model
that contains the updated values. We then updated the value of only the properties
where the value of the originally requested Employee model is different from the
updated model. Let's update our application code to use these two functions and
examine the results:

// 1. User1 retrieves the Employee data
Employee employee1 = GetEmployee(1);

// 2. User2 retrieves the Employee data
Employee employee2 = GetEmployee(1);

// 3. User1 tries to update the salary only by creating a new Employee
Model
Employee newEmployeeData1 = GetUpdatedEmployee(employee2.Id,
employee1.EmployeeName, 100);
UpdateEmployeeEnhanced(employee1, newEmployeeData1);

// 4. User2 tries to update the Name
Employee newEmployeeData2 = GetUpdatedEmployee(employee2.Id, "New
EmployeeName", employee2.Salary);
UpdateEmployeeEnhanced(employee1, newEmployeeData2);

Now the application code is divided into four sections (section numbers are marked
in the comments):

• 1: Here user 1 reads the Employee data
• 2: Here user 2 reads the same Employee data
• 3: Here user 1 updates the Salary field of the Employee model using our

new approach
• 4: Here user 2 updates the EmployeeName value of the same Employee model

using our new approach

Chapter 10

[225]

Let's see what happens when we run this code. The database snapshot of the table
before we run the code looks like this.

The database snapshot before executing our code

Let's now put a break point before section 4 gets executed:

The screenshot showing where to put the breakpoint for testing

At this point, the request from user 1 has been executed, and the database now
contains the updated values:

A database snapshot after the code in section 3 is executed

Let's now resume the application execution to see the effect of the code in section 4:

A database snapshot after the code in section 4 is executed

Now we can see that the database contains the updated values from both requests.
Thus, our application is now able to handle the concurrent updates effectively if the
users update separate fields.

Managing Concurrency Using Entity Framework

[226]

If multiple users are updating the same field, this approach
will still show the updated values from only the last request.

This approach reduces a few of the concurrency-related problems but using this
approach means that we have to write a lot of extra code to handle concurrency
issues. In the next section, we will take a look at how we can use Entity Framework's
provided mechanisms to handle concurrency issues.

Implementing field level concurrency
In the previous sections, we saw how Entity Framework handles concurrency by
default (the last update wins), and how we can design our applications to deal with
concurrency issues if multiple users are trying to update separate fields. We have
still not talked about how to handle concurrency issues if multiple users are trying
to update the same field. In this section, we will take a look at how we can have
field level concurrency using Entity Framework and deal with concurrency issues
involving multiple users updating the same fields.

Entity Framework lets us specify the field level concurrency so that if a user is
trying to update a field and the same field has been updated by someone else,
we will get a concurrency-related exception. Using this approach, we can handle
concurrency-related issues more effectively when multiple users try to update the
same field.

To implement this, we need to set the Concurrency Mode property of the entity field
to Fixed. Let's say we want to configure our sample application to deal with field
level concurrency on the Salary property of the Employee field. To accomplish this,
we need to go to Visual Entity Designer, and set the Concurrency Mode property for
the Salary property as Fixed (as shown in the following screenshot):

The Properties window showing how to change the Concurrency Mode value

Chapter 10

[227]

Once this is done, we have our Entity Framework configured to check for
concurrency issues for the Salary property. To test this, let's use the following code:

// 1. User1 retrieves the Employee data
Employee employee1 = GetEmployee(1);

// 2. User2 retrieves the Employee data
Employee employee2 = GetEmployee(1);

// 3. User1 tries to update the salary only
employee1.Salary = 100;
UpdateEmployee(employee1);

// 4. User2 tries to update the Name
employee2.Salary = 200;
UpdateEmployee(employee2);

In the preceding code, first, user 1 retrieves the Employee data and then user 2
retrieves the same Employee data. User 1 then updates the Salary field and then
in section 4, user 2 updates the Salary field.

With the Concurrency Mode value of the Salary property set to Fixed, Entity
Framework will throw an exception in section 4 (where user 2 is trying to update
the Salary field of Employee when user 1 has changed it already). The exception
will look like the following.

Concurrency exception caught in an application

Managing Concurrency Using Entity Framework

[228]

So with field level concurrency set to the Fixed mode, our application is able to
identify potential concurrency problems on the same field. Now the question is
how do we deal with these issues? To deal with these issues, we need to catch the
DbUpdateConcurrencyException exception thrown by Entity Framework, and let
the user know about the potential concurrency problem. The user can then choose
to request the latest data and try to perform the operation again. So our calling code
will be something similar to the following:

try
{
 // 1. User1 retrieves the Employee data
 Employee employee1 = GetEmployee(1);

 // 2. User2 retrieves the Employee data
 Employee employee2 = GetEmployee(1);

 // 3. User1 tries to update the salary only
 employee1.Salary = 100;
 UpdateEmployee(employee1);

 // 4. User2 tries to update the Name
 employee2.Salary = 200;
 UpdateEmployee(employee2);
}
catch (DbUpdateConcurrencyException ex)
{
 // Notify the user with the possible concurrency issue
 // and let him decide how to proceed further
}

Using this approach, we can handle field level concurrency issues more effectively.
The only downside of this approach is that it makes the application a little slower
if we have Concurrency Mode set for more than one field of an entity (as the
generated SQL query will be much larger). The alternative to this approach is using
RowVersion for concurrency, which is comparatively more efficient. We will discuss
RowVersion in the next section.

Using this approach will check for concurrency issues for only
those fields marked with Concurrency Mode as Fixed. Other
fields are still vulnerable to concurrency issues.

Chapter 10

[229]

Implementing RowVersion for concurrency
If we use the field-specific concurrency mode for more than one field, then it will
slow the application because, the generated SQL will be much larger. The more
efficient alternative to this is to use the RowVersion mechanism. The RowVersion
mechanism utilizes the database feature where a new value of row version will be
created each time the row is updated. How this can be done in the database is shown
in the following screenshot:

Adding a rowversion type column in the table

Now with this change in the database, let's update our Entity Data Model, and set
the Concurrency Mode value for the RowVersion column to Fixed.

The Properties window showing how to change the Concurrency Mode

Managing Concurrency Using Entity Framework

[230]

Now what will happen is that Entity Framework will track this column value for
concurrency control. Let's try to update the separate columns now and see the effect:

// 1. User1 retrieves the Employee data
Employee employee1 = GetEmployee(1);

// 2. User2 retrieves the Employee data
Employee employee2 = GetEmployee(1);

// 3. User1 tries to update the salary only
employee1.Salary = 100;
UpdateEmployee(employee1);

// 4. User2 tries to update the Name
employee2.EmployeeName = "New EmployeeName";
UpdateEmployee(employee2);

In the preceding code, first, user 1 retrieved the Employee data and then user 2
retrieved the same Employee data. User 1 then updated the Salary field and then in
section 4, user 2 updated the EmployeeName field of the same Employee.

Entity Framework will throw an exception in section 4 (where user 2 is trying to
update the EmployeeName field of the employee when user 1 has already changed the
Salary field of the same employee). The exception will look like the following.

Concurrency exception caught in an application

Any time a user tries to update a record, which has been updated by someone else,
he will get the DbUpdateConcurrencyException exception.

Chapter 10

[231]

This approach is essentially the same as using field-specific concurrency but since we
are using concurrency control on a field that will get affected if any of the properties
of the object changes, we have effectively implemented the concurrency control for
the complete row. This mechanism is comparatively more efficient because we are
not setting the concurrency mode for multiple fields but rather for only one field and
getting the concurrency control for the complete row. This will generate better SQL
than setting concurrency for each field separately would have generated.

In older databases, the rowversion data type is not
present. For such databases, the TIMESTAMP data type
can be used to achieve the same results.

Entity Framework and pessimistic
concurrency
Pessimistic concurrency deals with acquiring database locks on the data that is being
used by a user. Whenever a user reads a row from the database, a read-only lock is
acquired on this record. Other users can also request a read-only lock during this
period. If a user requests an update, an update lock is acquired on the row and until
this lock is released, no other users are allowed to read or update the data of this row.

Acquiring and releasing locks is a resource intensive process. Also, the application
needs to take care of these locks which would mean added complexity in the
application. Here are a few disadvantages of using pessimistic concurrency control:

• Applications tend to consume more memory, as holding locks will need
more memory

• The overall performance of the application will be slower because the
chances of requests waiting for locks to be released will increase with
more users

• If we are using Entity Framework, LINQ to Entities will not work properly
even if only a few records are locked

• Chances of deadlock also increase with more users, as multiple users wait for
locks to be released that are acquired by each other

Managing Concurrency Using Entity Framework

[232]

Due to these reasons, Entity Framework does not support pessimistic concurrency.
It is recommended that you use the rowversion and TIMESTAMP based approaches
to manage concurrency issues. There are some workarounds to implement
pessimistic concurrency with Entity Framework that would further add to the
complexity of the application.

Summary
In this chapter, we looked at managing concurrency-related issues using Entity
Framework. We discussed how to implement optimistic concurrency using Entity
Framework. We looked at the basics of pessimistic concurrency and the reasons why
Entity Framework does not support and recommend its use. In the next chapter, we
will take a look at how to manage transactions using Entity Framework.

Managing Transactions Using
Entity Framework

In the previous chapter, we talked about managing concurrency-related issues
using Entity Framework. Another important topic when dealing with data centric
applications is transaction management. ADO.NET provides a very clean and
efficient API for transaction management. Since Entity Framework runs on top of
ADO.NET, it is able to utilize the transaction management features of ADO.NET.

In this chapter, we will see how we can manage transactions using Entity
Framework. We will first try to understand the default behavior of Entity Framework
and then we will see how we can take complete control of transaction management
using an Entity Framework provided API.

Understanding transactions
When we talk about transactions from the database perspective, it means a set of
operations treated as one operation that is indivisible. Either all the operations
should succeed or none of them. The concept of a transaction is to have a unit of
work that is reliable. All the database operations involved in the transaction should
be treated as a unit of work.

Managing Transactions Using Entity Framework

[234]

From the application perspective, if we want to have multiple database operations
treated as a single unit of work, we should wrap them in a transaction. In order to be
able to use transactions, an application needs to perform the following steps:

1. Begin transaction.
2. Execute all the queries, and perform all the database operations that need to

be treated as single unit of work.
3. If all the operations are successful, commit the transaction.
4. If any of the operations fail, roll back the transaction.

The preceding steps show the typical steps involved in
any action that needs transaction support. These steps are
technology/framework agnostic. Typically, a user will have
to implement these steps to implement a transaction.

ADO.NET provides a very clean and efficient API to work with transactions.
Since Entity Framework used ADO.NET internally, it is also able to utilize it to
manage transactions. Let's now take a look at how Entity Framework manages
transactions by default.

Setting up the test environment
To understand transactions, let's create a sample application that we can use to
understand the related concepts. Let's create a simple application to simulate bank
account scenarios. Just for the sake of simplicity, let's say a hypothetical bank uses
separate tables for its various account types. Let's create two tables in the database:
one for SalaryAccount and another for SavingAccount. The generated Entity Data
Model for this sample database will look like the following:

The generated Entity Data Model for the test application

Chapter 11

[235]

From the application perspective, whenever a user chooses to transfer some money
from SalaryAccount to SavingAccount, this operation should be treated as a
single unit of work. It should never happen that the amount gets debited from
SalaryAccount and never gets credited in the SavingAccount. Let's use this
scenario to see how we can manage transactions using Entity Framework.

The initial amount of 5,000 will be present in SalaryAccount, and we will try to
move 1,000 from SalaryAccount to SavingAccount. So, the initial snapshot of the
data in the database looks like the following:

A database snapshot showing initial data in both the tables

Now let's try to use Entity Framework to transfer 1,000 from SalaryAccount to
SavingAccount using transactions.

This is a very contrived example created just to illustrate
the concepts involved in a simple manner. The real-world
database for the same scenario would the be far more
complex and optimized.

Entity Framework's default transaction
handling
The default behavior of Entity Framework is that whenever we perform any
operation that involves a CREATE, UPDATE, or DELETE query on the database,
it will create a transaction by default. This transaction will be committed whenever
the SaveChanges() method on the DbContext class is called.

Managing Transactions Using Entity Framework

[236]

So, to implement our scenario, we will have to write code like the following:

decimal amountToTransfer = 1000;
int accountId = 1;

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 // let us retrieve the accounts involved in transaction
 SalaryAccount salaryAccount = db.SalaryAccounts.Find(accountId);
 SavingAccount savingAccount = db.SavingAccounts.Find(accountId);

 // Lets debit from the SalaryAccount
 salaryAccount.Balance -= amountToTransfer;

 // Now lets credit the SavingAccount
 savingAccount.Balance += amountToTransfer;

 // Call SaveChanges to commit the transaction
 db.SaveChanges();
}

In the preceding code, we first retrieved the SalaryAccount and SavingAccount
details associated with the given accountId. We then debited the requested amount
from SalaryAccount and then credited the same amount to SavingAccount. A call
to the SaveChanges() method will commit the transaction in the database. So, if we
take a look at the database snapshot after executing the preceding code, it will look
like the following:

A database snapshot showing the data after running our code

Chapter 11

[237]

So, effectively both the operations are wrapped into one transaction and will be
carried out as a single unit of work. If any of the operations fail, there will be no
change in the data.

Since putting READ operations within transactions provides
no benefits but decreases the overall performance of the
application, Entity Framework never uses transactions on the
operations involving SELECT query on the database.

Using TransactionScope to handle
transactions
If we have a scenario where we have multiple DbContext objects, and we want to
associate operations involving multiple DbContext objects as a single unit of work,
we need to wrap the call to SaveChanges() within a TransactionScope object. To
illustrate this, let's use two separate instances of the DbContext class to perform the
debit and credit operations in our sample application:

decimal amountToTransfer = 1000;
int accountId = 1;

using (TransactionScope ts = new TransactionScope(TransactionScopeOpt
ion.Required))
{
 SampleDatabaseEntities db1 = new SampleDatabaseEntities();
 SampleDatabaseEntities db2 = new SampleDatabaseEntities();

 // let us retrieve the accounts involved in transaction
 SalaryAccount salaryAccount = db1.SalaryAccounts.Find(accountId);
 SavingAccount savingAccount = db2.SavingAccounts.Find(accountId);

 // Lets debit from the SalaryAccount
 salaryAccount.Balance -= amountToTransfer;

 // Now lets credit the SavingAccount
 savingAccount.Balance += amountToTransfer;

 db1.SaveChanges();
 db2.SaveChanges();

 ts.Complete();
}

Managing Transactions Using Entity Framework

[238]

In the preceding code, we used two separate instances of DbContext to perform
the debit and credit operations. So the default behavior of Entity Framework will
not work. The respective transactions associated with the context object will not
be committed on the call to the respective SaveChanges() methods. Instead, since
they are within the scope of a TransactionScope object, the transaction will only be
committed when the Complete() method of TransactionScope gets called. If any of
the operations fail, an exception will occur and TransactionScope will end without
calling Complete(), which will effectively roll back the changes.

Managing transactions using Entity
Framework 6
With Entity Framework 6 onwards, Entity Framework provides the Database.
BeginTransaction() method on the DbContext object. This is particularly useful
when we want to execute raw SQL commands using our context class and associate
them with transactions. This lets us override the default transaction that gets
associated with DbContext.

Let's see how we can use this new method to manage transactions. Let's use raw
SQL to debit SalaryAccount and our model class to credit SavingAccount:

decimal amountToTransfer = 1000;
int accountId = 1;

using (SampleDatabaseEntities db = new SampleDatabaseEntities())
{
 using (DbContextTransaction tx = db.Database.BeginTransaction())
 {
 try
 {
 db.Database.ExecuteSqlCommand("Update SalaryAccount set
Balance = Balance - @amountToDebit where id = @accountId",
 new SqlParameter("@amountToDebit", amountToTransfer),
 new SqlParameter("@accountId", accountId));

 SavingAccount savingAccount = db.SavingAccounts.
Find(accountId);
 savingAccount.Balance += amountToTransfer;
 db.SaveChanges();

 tx.Commit();
 }
 catch

Chapter 11

[239]

 {
 tx.Rollback();
 }
 }
}

In the preceding code, we first created an instance of our DbContext class. We then
used this instance to start a transaction by calling the Database.BeginTransaction()
method. This method gives us a handle to the DbContextTransaction object, which
we can later use to either commit or roll back the transaction. We then debited
SalaryAccount using raw SQL and credited the SavingAccount using the model
class. Calling SaveChanges() will only affect the second operation but not commit
the transaction. If both the operations are successful, we can call Commit on the
DbContextTransaction object. If not, we can handle the exception and call Rollback.

This approach is only available in Entity Framework Version 6.
If we use the previous version of Entity Framework, we have to
rely on TransactionScope to manage the transactions.

Using an existing transaction
There are times when we want to use an existing transaction with our Entity
Framework's DbContext class. The reason for this could be that some of the
operations are being done in separate parts of the application. Another possible
reason could be that we are using Entity Framework with a legacy application, and
this legacy application uses a class library that gives us the handle for the transaction
and/or database connection.

For such scenarios, Entity Framework also lets us use an existing connection that is
associated with the transaction with the DbContext class. To illustrate this, let's first
write a simple function that will perform the debit operation using plain ADO.NET:

public bool DebitSalaryAccount(SqlConnection connection,
SqlTransaction tx, int accountId, decimal amountToDebit)
{
 SqlCommand cmd = connection.CreateCommand();
 cmd.Transaction = tx;
 int result = 0;

 cmd.CommandType = CommandType.Text;
 cmd.CommandText = "Update SalaryAccount set Balance = Balance - @
amountToDebit where id = @accountId";
 cmd.Parameters.Add(new SqlParameter("@amountToDebit",
amountToDebit));

Managing Transactions Using Entity Framework

[240]

 cmd.Parameters.Add(new SqlParameter("@accountId", accountId));

 try
 {
 result = cmd.ExecuteNonQuery();
 }
 catch
 {
 throw;
 }

 return (result == 1);
}

What this function does is take the connection and transaction objects from the caller
and then execute the update query to debit the account.

Now, let's assume that this function is being provided to us in a library that we cannot
change. In this scenario, we will not be able to use the Database.BeginTransaction
method since we want the SqlConnection and SqlTransaction objects to pass to
this function and still be able to put it into our transaction. To facilitate this, we need
to first create an SqlConnection and then begin an SqlTransaction. We can then
use these objects to first call this function with our DbContext class, as shown in the
following code. Insert the following code: 1003OS_11_5_code.txt:

decimal amountToTransfer = 1000;
int accountId = 1;

using (SqlConnection connection = new SqlConnection(connectionString))
{
 connection.Open();
 using (SqlTransaction tx = connection.BeginTransaction())
 {
 try
 {
 bool result = DebitSalaryAccount(connection, tx,
accountId, amountToTransfer);

 if (result == false)
 {
 throw new Exception("Unable to debit from account");
 }
 using (SampleDatabaseEntities db = new SampleDatabaseEntit
ies(connection, contextOwnsConnection: false))
 {

Chapter 11

[241]

 db.Database.UseTransaction(tx);

 SavingAccount savingAccount = db.SavingAccounts.
Find(accountId);
 savingAccount.Balance += amountToTransfer;
 db.SaveChanges();
 }

 tx.Commit();
 }
 catch
 {
 tx.Rollback();
 }
 }
}

In the preceding code, we first created an SqlConnection and then associated an
SqlTransaction with this connection. Once the transaction is started, we used
this connection and transaction object to call our legacy method. We then checked
whether the call to our legacy method succeeded or not. If it failed, we threw an
exception, which rolled back the transaction. If it was successful, we just used the
DbContext class and our SavingAccount entity to credit the amount and then
committed the transaction.

Choosing the appropriate transaction
management
Now that we know the various ways to handle transactions using Entity Framework,
let's try to see which technique should be used in which scenarios:

• If we have only one DbContext class, then we should try to use the
default transaction management of Entity Framework. We should always
try to implement our application in such a way that all the operations
constituting a single unit of work get executed within the scope of the
same DbContext object, and the SaveChanges() method will take care of
committing the transaction.

• If we use multiple DbContext objects, then perhaps putting the calls
within the scope of a TransactionScope object is the best way to manage
the transactions.

Managing Transactions Using Entity Framework

[242]

• If we want to execute raw SQL queries and associate these operations
with the transactions, then we should use the Entity Framework provided
Database.BeginTransaction() method that is available on the DbContext
object. This approach, however, will only work with Entity Framework 6.
It will not work with previous versions.

• If we want to use Entity Framework with any legacy application that demands
SqlTransaction, then we should use the Database.UseTransaction()
method, which is also available in Entity Framework 6.

Summary
In this chapter, we looked at how to manage transactions using Entity Framework.
We looked at the default behavior of Entity Framework when it comes to transaction
management. We also looked at how we can take control of transaction management
using Entity Framework. At this juncture, we are equipped with most of the
information needed to implement any application using Entity Framework.
In the next chapter, we will try to create a sample application that will use Entity
Framework for data access. This sample application will give you an idea of how
to use Entity Framework in real-world applications.

Implementing a Small
Blogging Platform Using

Entity Framework
Now that we have seen how to use Entity Framework in our applications, let's try to
create the data access layer for a complete application using Entity Framework to see
all of the concepts in action. We will try to build a simple blogging platform and will
use Entity Framework for data access. We will use the Entity Framework Code First
approach for this application. First, we will take a look at the requirements for our
application. We will then try to visualize the data access needs of the application.
We will then create POCO entities for our models, and see how we can perform
various data access operations using the Entity Framework's Code First approach.

Understanding the application
requirements
Let's get started with our sample application by first understanding the requirements
for our application. We will develop a simple application that can be used as a
blogging framework. It will be like WordPress Engine but on a very tiny scale, with
support for only a few features. Let's first list all of the features we want in our
blogging framework:

• Authors can create blog categories
• Authors can manage (add and update) categories
• Authors can create new blogs
• Authors can manage (update/delete) their blogs

Implementing a Small Blogging Platform Using Entity Framework

[244]

• The home page will show a list of all blogs with a blog title, date of posting,
and the first 200 characters from the blog with a Read More link

• On clicking on the title of the blog on the home page, a page showing the
complete blog will be presented to the user

• The users should be able to post comments on the blog
• The users should be able to delete their comments

We will be developing a simple data access layer in the form of a class library that
will facilitate the implementation of these features. Since we are creating a class
library for data access, it can be used by a client application.

From a blogging framework's perspective, these are not a complete set
of features, but these features are enough to demonstrate the Entity
Framework-related concepts. I will be creating a simple ASP.NET MVC
application on top of this class library to show the application in action.
Discussing ASP.NET MVC application code is out of scope from this
book's perspective, but I will be showing screenshots of the running
application to show the working of our data access layer.

Visualizing our database design
Before we start creating our POCO entities, let's try to visualize the database that we
will need to implement the previously mentioned features. First, let's have tables that
will cater to user registration, authentication and authorization mechanism. We can
create the following three tables to accomplish this task:

• Users: This table will keep all the users' information that is needed for the
users to log in and manage their account.

• Roles: This table will keep track of the roles within our application.
In our application, we will have two roles: Authors and Users. Authors
will be able to post blogs and manage them. Users will only be able to post
comments on blogs.

• UserRoles: This is a simple joining table that will be created to facilitate
many-to-many relationships between users and roles.

Now that we have the basic authentication and authorization tables in place, let's see
what tables are needed to implement our application-specific features. The following
tables will be needed to implement our application-specific features:

• Categories: This table will store all the blog categories created by the authors
• Blogs: This table will store all the blogs created by the authors

Chapter 12

[245]

• Comments: This table will store the comments posted on the blogs by
the users

Let's try to visualize this database by drawing the schema diagram for the
proposed database:

Visualization of the database schema for the sample application

Creating the Entity Data Model
Let's now start by creating our POCO entities one by one. We will first create all the
entity classes with all the properties that we want in their respective entities. Once
the entity classes are ready, we will take a look at how to implement relationships
between the entities, and start adding the navigation properties in the entity classes.

Implementing a Small Blogging Platform Using Entity Framework

[246]

Creating the entity classes
Let's take a look at all the entities needed one by one.

The User entity
First, let's create the entity class to hold the User details. The User entity is
responsible for holding the data that is needed to authenticate the user.
The following code shows what the User entity would look like:

public partial class User
{
 public int Id { get; set; }
 public string Email { get; set; }
 public bool EmailConfirmed { get; set; }
 public string PasswordHash { get; set; }
 public string SecurityStamp { get; set; }
 public string UserName { get; set; }
}

The preceding code shows the User entity. The Id property is an auto-increment
identity property of the class. The other properties are the properties that are needed
to authenticate the User entity.

The User model has been created with an assumption that we will
be using hashing and salting techniques to store the user passwords.
PasswordHash will contain the hash for the user provided password
and SecurityStamp will contain the salt value. The User model can
be changed accordingly if any other mechanism for password storage is
to be used.

The Role entity
Let's now take a look at the Role entity. The primary purpose of the Role class is
authorization, that is, to identify whether the logged in user is an author or a user.
The following code shows what the Role entity will look like:

public partial class Role
{
 public int Id { get; set; }

 [Required]
 [StringLength(256)]
 public string Name { get; set; }
}

Chapter 12

[247]

The preceding code shows the Role entity. The Id property is an auto-increment
identity property. The Name property will store the name of the role. The Name
property has been marked as Required to make it a mandatory value that should
be provided by the user. We also specify the maximum length that should be
allowed for the Name property to help the Code First module generate the database
columns appropriately.

The Category entity
Let's now create the Category entity. The following code shows what the Category
entity will look like:

public partial class Category
{
 public int Id { get; set; }

 [Required]
 [StringLength(200)]
 public string CategoryName { get; set; }
}

The preceding code shows the Category entity. The Id property is an
auto-increment identity property, and the CategoryName property will hold the
name of the category.

The Blog entity
Now that we have the Category entity ready, let's create the Blog entity that will
actually hold the blog data for the user. The following code shows the Blog entity
for our application:

public partial class Blog
{
 public int Id { get; set; }

 [Required]
 [StringLength(500)]
 public string Title { get; set; }

 [Required]
 public string Body { get; set; }

 public DateTime CreatedAt { get; set; }
 public DateTime UpdatedAt { get; set; }
}

Implementing a Small Blogging Platform Using Entity Framework

[248]

The preceding code shows the Blog entity. The Id property is an auto-increment
identity property. The Title property will store the title of the blog. Body will store
the actual contents of the blog. CreatedAt will store the date when this blog was
been created, and UpdatedAt will store the date when this blog was updated
(if it's been updated).

The Comment entity
The users should also be able to post comments on the blogs. So let's create an entity
to store the comments. The following code shows what the Comment entity will
look like:

public partial class Comment
{
 public int Id { get; set; }
 public string Body { get; set; }
 public DateTime? CreatedAt { get; set; }
}

The preceding code shows the Comment entity. The Id property is an auto-increment
identity property. The Body property will contain the actual content of the comment,
and the CreatedAt property will indicate the date when this comment was posted.

Creating relationships and navigation
properties
So far, we created only standalone entities. Our entity classes do not reflect the
relationships between the entities. Let's now look at how we can implement
relationships between these entities. Before we start looking at the code, let's
a look at all the relationships needed:

• User-Role: The User and Role entities have a many–to-many relationship
as any user can be in multiple roles, and every role can have many users

• Category-Blog: The Category and Blog entities have a one-to-many
relationship as every blog will belong to one category, and each category
can have multiple blogs

• User-Blog: The User and Blog entities have a one-to-many relationship
as every blog belongs to a user, and each user can have multiple blogs

• Blog-Comment: The Blog and Comment entities have one-to-many
relationship as a comment will always belong to a blog, and each blog
can have multiple comments

Chapter 12

[249]

• User-Comment: The User and Comment entities have a one-to-many
relationship as every comment will belong to a user, and each user can have
multiple comments

Let's now take a look at how these relationships can be implemented in the entity
classes. Let's see how our entity classes will change to reflect these relationships.

The User entity
Let's start will the User entity. Let's see what we need to add to the User entity to
implement relationships:

• Since every user can have multiple roles, we need a collection of roles as the
navigation property

• Since every user can have multiple blogs, we need a collection of blogs as the
navigation property

• Since every user can have multiple comments, we need a collection of
comments as the navigation property

So, our final User entity will look like the following:

public partial class User
{
 public User()
 {
 Blogs = new HashSet<Blog>();
 Comments = new HashSet<Comment>();
 Roles = new HashSet<Role>();
 }

 public int Id { get; set; }
 public string Email { get; set; }
 public bool EmailConfirmed { get; set; }
 public string PasswordHash { get; set; }
 public string SecurityStamp { get; set; }
 public string UserName { get; set; }

 public virtual ICollection<Blog> Blogs { get; set; }
 public virtual ICollection<Comment> Comments { get; set; }
 public virtual ICollection<Role> Roles { get; set; }
}

In the preceding code, we added three properties; one each for the Blogs, Comments,
and Roles relationships.

Implementing a Small Blogging Platform Using Entity Framework

[250]

The Role entity
Let's now see how we can implement relationships with the Role entity.

Since every role can contain multiple users, let's add a collection of users as
a navigation property:

public partial class Role
{
 public Role()
 {
 Users = new HashSet<User>();
 }

 public int Id { get; set; }

 [Required]
 [StringLength(256)]
 public string Name { get; set; }

 public virtual ICollection<User> Users { get; set; }
}

In the preceding code, we added a navigation property Users to implement the
many-to-many relationship.

The Category entity
Let's now see how we can implement relationships with the Category entity.

Since every Category entity can contain multiple blogs, let's add a collection of blogs
as a navigation property in the Category entity:

public partial class Category
{
 public Category()
 {
 Blogs = new HashSet<Blog>();
 }

 public int Id { get; set; }

 [Required]
 [StringLength(200)]
 public string CategoryName { get; set; }

Chapter 12

[251]

 public virtual ICollection<Blog> Blogs { get; set; }
}

In the preceding code, we added a collection of Blogs as a navigation property in
order to implement the relationship with the Blog entity.

The Blog entity
Let's now see how we can implement relationships in the Blog entity:

• Since every Blog entity belongs to a Category entity, we need to add a
property to implement the foreign key relationship with the Category entity
and a navigation property to the Category entity

• Since every Blog entity belongs to a User entity, we need to add a property
to implement the foreign key relationship with the User entity and
a navigation property to the User entity

• Since every Blog entity can contain multiple comments, let's add a collection
of comments as a navigation property

The code for adding these properties is as follows:

public partial class Blog
{
 public Blog()
 {
 Comments = new HashSet<Comment>();
 }

 public int Id { get; set; }

 [Required]
 [StringLength(500)]
 public string Title { get; set; }

 [Required]
 public string Body { get; set; }
 public DateTime CreatedAt { get; set; }
 public DateTime UpdatedAt { get; set; }

 public int CategoryId { get; set; }
 public int AuthorId { get; set; }

Implementing a Small Blogging Platform Using Entity Framework

[252]

 public virtual Category Category { get; set; }
 public virtual User User { get; set; }
 public virtual ICollection<Comment> Comments { get; set; }
}

In the preceding code, the CategoryId property will be used to create the foreign
key relationship with Category, and AuthorId will be used to create the foreign key
relationship with User. We also added the navigation properties for Category, User,
and Comments to implement their respective relationships with the entities.

The Comment entity
Let's now see how we can implement relationships in the Comment entity:

• Since every Comment entity belongs to a Blog entity, we need to add a
property to implement the foreign key relationship with the Blog entity
and a navigation property to the Blog entity

• Since every Comment entity belongs to a User entity, we need to add a
property to implement the foreign key relationship with the User entity
and a navigation property to the User entity

The code to implement the relationships is as follows:

public partial class Comment
{
 public int Id { get; set; }
 public string Body { get; set; }
 public DateTime? CreatedAt { get; set; }

 public int? BlogId { get; set; }
 public int? PosterId { get; set; }

 public virtual Blog Blog { get; set; }
 public virtual User User { get; set; }
}

In the preceding code, we added the BlogId property that will be used to create the
foreign key relationship with Blog, and PosterId will be used to create the foreign
key relationship with User. We also added the navigation properties for Blog and
User to implement their respective relationships with the entities.

Chapter 12

[253]

Implementing the DbContext class
Now that we have all the entities ready, let's create our DbContext class. The
DbContext class contains the DbSet object for all the entities we created so far.
We also need to override the OnModelCreating method to indicate the following
relationships between the entities:

• One-to-many relationship between Category and Blog
• One-to-many relationship between Blog and Comment
• One-to-many relationship between User and Blog
• One-to-many relationship between User and Comment
• Many-to-many relationship between User and Role

Let's see what our DbContext class will look like with the preceding implementations:

public partial class BlogAppContext : DbContext
{
 public BlogAppContext()
 : base("name=BlogAppConnectionString")
 {
 }

 public virtual DbSet<Blog> Blogs { get; set; }
 public virtual DbSet<Category> Categories { get; set; }
 public virtual DbSet<Comment> Comments { get; set; }
 public virtual DbSet<Role> Roles { get; set; }
 public virtual DbSet<User> Users { get; set; }

 protected override void OnModelCreating(DbModelBuilder
modelBuilder)
 {
 // One to many relationship between Category and Blog.
 modelBuilder.Entity<Category>()
 .HasMany(e => e.Blogs)
 .WithRequired(e => e.Category)
 .HasForeignKey(e => e.CategoryId)
 .WillCascadeOnDelete(false);

Implementing a Small Blogging Platform Using Entity Framework

[254]

 // One to many relationship between Blog and Comment
 modelBuilder.Entity<Blog>()
 .HasMany(e => e.Comments)
 .WithRequired(e => e.Blog)
 .HasForeignKey(e => e.BlogId)
 .WillCascadeOnDelete(false);

 // One to many relationship between User and Blog.
 modelBuilder.Entity<User>()
 .HasMany(e => e.Blogs)
 .WithRequired(e => e.User)
 .HasForeignKey(e => e.AuthorId)
 .WillCascadeOnDelete(false);

 // One to many relationship between User and Comment.
 modelBuilder.Entity<User>()
 .HasMany(e => e.Comments)
 .WithOptional(e => e.User)
 .HasForeignKey(e => e.PosterId);

 // Many to many relationship between User and Role.
 modelBuilder.Entity<User>()
 .HasMany(e => e.Roles)
 .WithMany(e => e.Users)
 .Map(m => m.ToTable("UserRoles")
 .MapLeftKey("UserId")
 .MapRightKey("RoleId"));
 }
}

In the preceding code, we created our DbContext class, BlogAppContext. The
constructor takes the name of the connection string that should be used. We are also
overriding the OnModelCreating method to implement the various relationships
between the entities.

The comments in the code indicate which code block is for which
relationship. Also, note the last code block of the OnModelCreating
method. This indicates that Entity Framework will generate a joining
table to implement the many-to-many relationship with between User
and Role.

Chapter 12

[255]

Performing data access
Let's now start implementing the actual data access layer for our application.
The first thing we need to do is to create a class library and copy all the model classes
and context classes into the class library project. The following screenshot shows
how this can be done:

Solution Explorer showing the class library that contains the POCO classes

To implement an extensible data access layer, we will use the Repository and Unit
of Work patterns.

Understanding the Repository pattern
The Repository pattern is particularly useful when we have separate data models
and domain models. Repository can act as a mediator between the data model and
the domain model. Internally, it can talk to the database in terms of data models and
will return the domain model to the application layers above it.

Since we are using data models as domain models in our application, we will be
returning the same model. In case we want to use separate data models and domain
models, we just need to map the data model values to the domain model or perhaps
use any mapping library to perform the mapping.

Implementing a Small Blogging Platform Using Entity Framework

[256]

So, let's start by defining our repository interface, IRepository:

public interface IRepository<T> where T : class
{
 IEnumerable<T> GetAll(Expression<Func<T, bool>> predicate = null);
 T Get(Expression<Func<T, bool>> predicate);
 void Add(T entity);
 void Update(T entity);
 void Delete(T entity);
 long Count();
}

In the preceding code, we created an interface that defines all the basic functions
that are needed on an entity. The GetAll function returns multiple values, that
is, a collection of entities that match the predicate passed to the function. The Get
function returns the single value that matches the predicate. The Add function can be
used to create a new entity, Update is to update an existing entity, delete is to delete
the entity, and Count will return the total number of entities present in the database.

Now that we have the IRepository interface created, let's see how we can
create concrete repository classes for our entities. Let's start by creating the
CategoryRepository class:

class CategoryRepository : IRepository<Category>
{
 BlogAppContext m_Context = null;

 public CategoryRepository(BlogAppContext context)
 {
 m_Context = context;
 }

 public IEnumerable<Category> GetAll(System.Linq.Expressions.
Expression<Func<Category, bool>> predicate = null)
 {
 return m_Context.Categories.Where(predicate);
 }

 public Category Get(System.Linq.Expressions.
Expression<Func<Category, bool>> predicate)
 {
 return m_Context.Categories.SingleOrDefault(predicate);
 }

 public void Add(Category entity)

Chapter 12

[257]

 {
 m_Context.Categories.Add(entity);
 }

 public void Update(Category entity)
 {
 m_Context.Categories.Attach(entity);
 ((IObjectContextAdapter)m_Context).ObjectContext.
ObjectStateManager.ChangeObjectState(entity, EntityState.Modified);
 }

 public void Delete(Category entity)
 {
 m_Context.Categories.Remove(entity);
 }

 public int Count()
 {
 return m_Context.Categories.Count();
 }
}

In the preceding code, we used the BlogAppContext class to perform all the CRUD
operations on the Category entity and implemented the IRepository interface.
Along the same lines, we can create the concrete repository classes BlogRepository
and CommentRepository. However, since all the code shown in the preceding class
will remain more or less the same with the exception that each concrete class will
use its respective property of the context class, for example, CategoryReposity will
use Categories, BlogRepository will use Blogs. So, instead of having a separate
repository class for each entity, why don't we create a generic repository class that
will work for all the entity classes.

The generic repository class will look like the following:

class Repository<T> : IRepository<T> where T : class
{
 private BlogAppContext m_Context = null;

 DbSet<T> m_DbSet;

 public Repository(BlogAppContext context)
 {
 m_Context = context;
 m_DbSet = m_Context.Set<T>();
 }

Implementing a Small Blogging Platform Using Entity Framework

[258]

 public IEnumerable<T> GetAll(Expression<Func<T, bool>> predicate =
null)
 {
 if (predicate != null)
 {
 return m_DbSet.Where(predicate);
 }

 return m_DbSet.AsEnumerable();
 }

 public T Get(Expression<Func<T, bool>> predicate)
 {
 return m_DbSet.FirstOrDefault(predicate);
 }

 public void Add(T entity)
 {
 m_DbSet.Add(entity);
 }

 public void Update(T entity)
 {
 m_DbSet.Attach(entity);
 ((IObjectContextAdapter)m_Context).ObjectContext.
ObjectStateManager.ChangeObjectState(entity, EntityState.Modified);
 }

 public void Delete(T entity)
 {
 m_DbSet.Remove(entity);
 }

 public long Count()
 {
 return m_DbSet.Count();
 }
}

The preceding code shows a generic repository class. This is useful because now we
have a single class that can be used to perform CRUD operations on all the entities.

Chapter 12

[259]

Implementing a generic repository is a good idea since an application
can contain hundreds of entities and writing these many repositories
can be a very tedious process.

Understanding Unit of Work
In the previous chapters, we saw that the DbContext class by default supports
a transaction. When we instantiate a new DbContext object, a new transaction will be
created, and it will be committed when the SaveChanges method is called. Now the
question is how can we perform operations across multiple code modules, and still
use the same DbContext object to keep all these operations in a single transaction.
The answer to this question is to use Unit of Work.

Unit of Work is a class that keeps track of all the operations in a transaction, and then
performs all the operations as a single atomic unit. If we take a look at our repository
classes, we can see that the DbContext object is being passed to them from the
outside. Also, the repository classes are missing the call to the SaveChanges method.
The reason for this is that we will now create a Unit of Work class that will pass the
DbContext object to their respective repositories. Whenever we want to save the
changes, we will call the SaveChanges method on our UnitOfWork, and it will call
the SaveChanges method on our DbContext class. This will enable all the operations
involving multiple repositories to be part of a single transaction.

Let's see what our UnitOfWork class will look like:

public class UnitOfWork : IDisposable
{
 private BlogAppContext m_Context = null;
 private Repository<Category> categoryRepository = null;
 private Repository<Blog> blogRepository = null;
 private Repository<Comment> commentRepository = null;
 private Repository<User> userRepository = null;
 private Repository<Role> roleRepository = null;

 public UnitOfWork()
 {
 m_Context = new BlogAppContext();
 }

Implementing a Small Blogging Platform Using Entity Framework

[260]

 public void SaveChanges()
 {
 m_Context.SaveChanges();
 }

 public Repository<Category> CategoryRepository
 {
 get
 {
 if (categoryRepository == null)
 {
 categoryRepository = new Repository<Category>(m_
Context);
 }
 return categoryRepository;
 }
 }

 public Repository<Blog> BlogRepository
 {
 get
 {
 if (blogRepository == null)
 {
 blogRepository = new Repository<Blog>(m_Context);
 }
 return blogRepository;
 }
 }

 public Repository<Comment> CommentRepository
 {
 get
 {
 if (commentRepository == null)
 {
 commentRepository = new Repository<Comment>(m_
Context);
 }
 return commentRepository;
 }
 }

 public Repository<User> UserRepository

Chapter 12

[261]

 {
 get
 {
 if (userRepository == null)
 {
 userRepository = new Repository<User>(m_Context);
 }
 return userRepository;
 }
 }

 public Repository<Role> RoleRepository
 {
 get
 {
 if(roleRepository == null)
 {
 roleRepository = new Repository<Role>(m_Context);
 }
 return roleRepository;
 }
 }
}

The preceding code shows our UnitOfWork class. This class will take care of creating
the actual repository class and passing the same instance of the DbContext object
to these repositories. When we are done with all the operations, we can call the
SaveChanges method on this class, and it will call the SaveChanges method on the
DbContext object and this effectively saves all the data.

The transaction is now associated with the scope of our UnitOfWork class. Every
UnitOfWork object will have its own transactions that can be used to work with
multiple entities using their respective repository classes and will be committed
when the SaveChanges method on UnitOfWork will get called.

The UnitOfWork class can also be implemented in a generic manner
so that we don't have to add multiple properties, one for each
repository class.

Managing categories
Now that we have our data access library in place, let's see how we can perform
various operations on the Category entity.

Implementing a Small Blogging Platform Using Entity Framework

[262]

Listing categories
To list the categories, we simply need to create our UnitOfWork object, and use
CategoryRepositry to retrieve the list of all the categories in the system:

using(UnitOfWork uow = new UnitOfWork())
{
 List<Category> categories = uow.CategoryRepository
 .GetAll()
 .ToList();
 return View(categories);
}

In the preceding code, we retrieved a list of all the categories and passed them to
the MVC view. The view will then display all the categories, as shown in the
following screenshot:

A screenshot showing a list of categories

Since we are using ASP.NET MVC, the code blocks will contain
some MVC-specific code. You are free to ignore this code as this just
facilitates the viewing/accessing of the retrieved data.

Adding a category
Let's now try to add a new Category. To add a new category, we need to create a
Category model, and call the Add function of CategoryRepository and pass the
model to it. First, let's look at the view that we will use to create a new category:

Chapter 12

[263]

A screenshot of how to create a new category

Now let's look at the code that actually creates a category in the system using our
UnitOfWork and repository class:

public ActionResult Create(Category model)
{
 try
 {
 using (UnitOfWork uow = new UnitOfWork())
 {
 uow.CategoryRepository.Add(model);
 uow.SaveChanges();
 }
 return RedirectToAction("Index");
 }
 catch
 {
 return View();
 }
}

The preceding code shows the Action method of the MVC controller responsible for
creating a new category. The Category model is being created in the view and being
passed to this method. We use our UnitOfWork class and CategoryRepository to
add the new category.

Implementing a Small Blogging Platform Using Entity Framework

[264]

Updating a category
Let's now try to update an existing category. To update a category, we need to
retrieve the Category model from the database, update the required properties, call
the Update function of CategoryRepository, and pass the model to it. First, let's
take a look at the view that we will use to update a Category model:

A screenshot of how to update a category

Now let's look at the Action method that retrieves the Category model and passes it
to the preceding view:

public ActionResult Edit(int id)
{
 using (UnitOfWork uow = new UnitOfWork())
 {
 Category category = uow.CategoryRepository.Get(item => item.
Id == id);

 return View(category);
 }
}

In the preceding code, we use the id value to retrieve a category and then pass it to
the view so that it can be updated. The user will then update the Category model on
the view and pass this back to the controller. Let's take a look at the Action method
that will take this updated Category model, and use Entity Framework to update the
data in the database:

[HttpPost]
public ActionResult Edit(Category model)
{
 try
 {
 using (UnitOfWork uow = new UnitOfWork())

Chapter 12

[265]

 {
 uow.CategoryRepository.Update(model);
 uow.SaveChanges();
 }

 return RedirectToAction("Index");
 }
 catch
 {
 return View();
 }
}

The preceding code shows the Action method of the MVC controller that is
responsible for updating a category in the database. The updated Category model is
being passed to this method. We use our UnitOfWork class and CateoryRepository
to attach this updated model with the DbContext instance, and update the data in
the database.

Deleting a category
To delete a category, we need to retrieve the Category model from the database,
call the Delete function of CategoryRepository and pass the model to it. Now let's
take a look at the Action method that retrieves the Category model using the id and
deletes it from the system:

[HttpPost]
public ActionResult Delete(int id, FormCollection collection)
{
 try
 {
 using (UnitOfWork uow = new UnitOfWork())
 {
 Category category = uow.CategoryRepository.Get(item =>
item.Id == id);
 uow.CategoryRepository.Delete(category);
 uow.SaveChanges();
 }

 return RedirectToAction("Index");
 }
 catch
 {
 return View();
 }
}

Implementing a Small Blogging Platform Using Entity Framework

[266]

The preceding code shows the Action method of the MVC controller that is
responsible for deleting a category from the database. The view will pass the
id value of the category that is to be deleted. We will use this id, and use our
UnitOfWork class and CategoryRepository to first retrieve the Category model
and then delete it from the system.

Managing blogs
Now that we have implemented the CRUD operations for Category, let's see how
we can perform various operations on the Blog entity.

Adding a new blog
Let's now try to add a new blog. To add a new blog, we need to create a Blog model,
call the Add function of BlogRepository and pass the model to it. First, let's look at
the view that we will use to create a new blog:

A screenshot of how to create a new blog

In the preceding screenshot, we asked the author to provide a blog title, select the
category this blog should belong to, and the actual contents of the blog. From these
UI elements, a Blog model will be created and then passed on to the Action method
of the controller. Let's take a look at the controller method that will add this blog to
the system using our UnitOfWork and Repository class:

Chapter 12

[267]

[HttpPost]
public ActionResult Create(Blog model)
{
 try
 {
 using (UnitOfWork uow = new UnitOfWork())
 {
 model.CategoryId = Convert.ToInt32(Request.
Form["CategoryId"]);
 model.CreatedAt = DateTime.Now;
 model.UpdatedAt = DateTime.Now;
 model.AuthorId = uow.UserRepository.Get(user => user.
UserName == User.Identity.Name).Id;

 uow.BlogRepository.Add(model);
 uow.SaveChanges();
 }
 return RedirectToAction("Index");
 }
 catch
 {
 return View();
 }
}

The preceding code shows the Action method of the MVC controller that is
responsible for creating a new blog. The Blog model is created in the view and is
passed to this method. We then retrieve the selected CategoryId from the view
and populate the CategoryId of the Blog model. Properties such as CreatedAt,
UpdatedAt, and AuthorId are also populated with the appropriate values. We use
our UnitOfWork and BlogRepository classes to add this new blog.

For the sake of simplicity, we will use an HTML TextArea to add the
blog content. In the real world, it would be better to use a rich web
text editor such as CKEditor for this purpose.

Implementing a Small Blogging Platform Using Entity Framework

[268]

Updating a blog
Let's now try to update an existing blog. To update a blog, we just need to retrieve
the Blog model from the database, update the required properties, call the Update
function of BlogRepository, and pass the model to it. First, let's take a look at the
view that we will use to update a blog:

A screenshot of how to update a blog

Now let's look at the Action method that retrieves the Blog model and passes it to
the preceding view:

public ActionResult Edit(int id)
{
 using (UnitOfWork uow = new UnitOfWork())
 {
 Blog blog = uow.BlogRepository.Get(item => item.Id == id);
 return View(blog);
 }
}

In the preceding code, we use the id value to retrieve a blog and then pass it to the
view so that it can be updated. The user can then update the Title, Category,
or the Body of the Blog model in the view and then pass this back to the controller.
Let's take a look at the Action method that will take this updated Blog model,
and use Entity Framework to update the data in the database:

Chapter 12

[269]

[HttpPost]
public ActionResult Edit(Blog model)
{
 try
 {
 using (UnitOfWork uow = new UnitOfWork())
 {
 model.CategoryId = Convert.ToInt32(Request.
Form["CategoryId"]);
 model.UpdatedAt = DateTime.Now;

 uow.BlogRepository.Update(model);
 uow.SaveChanges();
 }
 return RedirectToAction("Index");
 }
 catch
 {
 return View();
 }
}

The preceding code shows the Action method of the MVC controller that is
responsible for updating a blog in the database. The updated Blog model is passed
to this method. We then update the CategoryId and UpdatedAt properties of this
Blog model, and then use our UnitOfWork class and BlogRepository to attach this
updated model with the DbContext instance, and update the data in the database.

Deleting a blog
To delete a blog, we need to retrieve the Blog model from the database, and call
the Delete function of BlogRepository and pass the model to it. Now let's look
at the Action method that retrieves the Blog model using the id and delete it from
the system:

[HttpPost]
public ActionResult Delete(int id, FormCollection collection)
{
 try
 {
 using (UnitOfWork uow = new UnitOfWork())
 {

Implementing a Small Blogging Platform Using Entity Framework

[270]

 Blog blog = uow.BlogRepository.Get(item => item.Id == id);
 uow.BlogRepository.Delete(blog);
 uow.SaveChanges();
 }

 return RedirectToAction("Index");
 }
 catch
 {
 return View();
 }
}

The preceding code shows the Action method of the MVC controller that is
responsible for deleting a blog from the database. The view will pass the id value of
the blog that is to be deleted. We will use this id, and use our UnitOfWork class and
BlogRepository to first retrieve the Blog model and then delete it from the system.

The update and delete operations on the blog should only be available
to the author of the blog. Thus, the links for these operations are only
shown when the logged in user is the author of the blog. The following
code shows how this is being done in an ASP.NET MVC view page:

if(User.Identity.Name == Model.User.UserName)
{
 // Links to update and delete the blog
}

In the preceding code, the User.Identity.Name item will return the
name of the currently logged in user and the Model.User.UserName
item will return the name of the author of the blog.

Listing blogs on the home page
Let's now take a look at how we can list the blogs on the home page. This is going
to be a little tricky because we would want to implement the home page with the
following features:

• Only the top 10 blogs should be visible on the home page, with the
possibility to navigate to the previous blogs

• The blog title and the first 200 characters should be visible for each blog entry
• Every blog should also show the number of comments posted on it
• Every blog should also show the date it was posted and last updated
• Every blog should show the author's name

Chapter 12

[271]

To implement these features, the first thing we need to do is to create a ViewModel
to show this information. We will then use LINQ to Entities projections to retrieve
all this information from the database. Let's see what this ViewModel class will
look like:

public class BlogSummaryViewModel
{
 public int Id { get; set; }
 public string Title { get; set; }
 public string Summary { get; set; }
 public string AuthorName { get; set; }
 public int CommentsCount { get; set; }
 public DateTime CreatedAt { get; set; }
 public DateTime UpdatedAt { get; set; }
}

The preceding code shows the BlogSummaryViewModel class that we will be using
to display the list of blogs on the home page. Let's now take a look at the Action
method that will retrieve the list of blogs and pass them to the view to be displayed:

public ActionResult Index(int page = 0)
{
 using (UnitOfWork uow = new UnitOfWork())
 {
 IEnumerable<Blog> blogs = uow.BlogRepository.GetAll();

 blogs = blogs.OrderByDescending(blog => blog.UpdatedAt);

 blogs = blogs.Skip(page * 10).Take(10);

 IEnumerable<BlogSummaryViewModel> list = from blog in blogs
 select new BlogSummaryViewModel
 {
 Id = blog.Id,
 Title = blog.Title,
 Summary = blog.Body.Length > 400 ? blog.Body.Substring(0,
400) : blog.Body,
 AuthorName = blog.User.UserName,
 CommentsCount = blog.Comments.Count(),
 CreatedAt = blog.CreatedAt,
 UpdatedAt = blog.UpdatedAt
 };

 return View(list.ToList());
 }
}

Implementing a Small Blogging Platform Using Entity Framework

[272]

In the preceding code, we fetched the list of blogs, ordered them in descending
order of UpdatedAt, and then retrieved only the first 10 results based on the selected
page the user is on. We then used LINQ to Entities projections to create a list of our
ViewModel and passed it to the view. If we look at the view, we can see the list of
blogs being rendered as per our requirements:

A screenshot for the list of blogs

Chapter 12

[273]

The objective of this project is to show the functionality; thus, the
HTML for the views is pretty basic and does not contain flashy
styles and formatting.

Showing a single blog
Let's now take a look at the page where the user will read the blog. This is the page
that will open when the user clicks on the Read More link on the blog list page.
On this page, we would like to show the following:

• Title of the blog
• Body of the blog
• Posted by
• Date on which this blog was first posted
• Date on which this blog was last updated
• A list of all of the comments on this blog
• Link to post a new comment on the blog

Let's now look at the Action method that will retrieve the blogs using the given
Id value:

public ActionResult Details(int id)
{
 using (UnitOfWork uow = new UnitOfWork())
 {
 Blog blog = uow.BlogRepository.Get(item => item.Id == id);

 return View(blog);
 }
}

Implementing a Small Blogging Platform Using Entity Framework

[274]

In the preceding code, we used the id value to retrieve the blog and sent it to the view.
The view will display the blog, as shown in the following screenshot:

A screenshot for reading the blog

Chapter 12

[275]

From the preceding screenshot, we can see that we extracted all the required
information from the Blog model, and showed it to the user. After the blog contents,
we showed a list of comments posted for this blog. There is also a link to add new
comments on the page.

The new comment can also be added by providing an Add Comment
section on this page itself. It's not been done this way, just to keep
things simple from the sample application's perspective.

Managing comments
Now let's see how we can perform various operations on the Comments entity.

Listing categories
Since we already have the navigation property, Comments, in our Blog entity,
to display the list of comments on the Blog details page, we just need to iterate
through this collection and show all the comments:

@foreach (Comment item in Model.Comments)
{
 <hr />
 <p>
 @item.Body

 Posted by: @item.User.UserName

 </p>

}

Implementing a Small Blogging Platform Using Entity Framework

[276]

In the preceding code, we retrieved a list of all the comments posted for the blog
and displayed the Body item and poster's name. The result can be seen on the details
page, as shown in the following screenshot:

A screenshot showing the list of all comments

Chapter 12

[277]

Adding a comment
Let's now see how to add a new comment on a blog. To add a new comment, we
need to create a Comment model, and call the Add function of CommentRepository
and pass the model to it. The important thing to note here is that the BlogId value of
this model should be the Id value of the blog to which this comment is being posted.
First, let's take a look at the view that we will use to create a new comment:

A screenshot of how to create a new comment

Now let's look at the code that is actually creating a category in the system using our
UnitOfWork and repository class:

[HttpPost]
public ActionResult CreateComment(Comment model)
{
 try
 {
 using (UnitOfWork uow = new UnitOfWork())
 {
 model.CreatedAt = DateTime.Now;
 model.PosterId = uow.UserRepository.Get(user => user.
UserName == User.Identity.Name).Id;

 uow.CommentRepository.Add(model);
 uow.SaveChanges();
 }
 return RedirectToAction("Details", new { id = model.BlogId });
 }
 catch
 {
 return View();
 }
}

Implementing a Small Blogging Platform Using Entity Framework

[278]

The preceding code shows the Action method of the MVC controller that is
responsible for creating a new Comment model. The Comment model is being created
in the view and is being passed to this method. The view itself populates the BlogId
with the Id value of the blog this Comment is being posted to. We then use our
UnitOfWork class and CommentRepository to add this new Comment to the database
using Entity Framework.

Deleting a comment
To delete a comment, we will use the Id value of the comment. We will retrieve the
Comment model from the database using the given Id, and call the Delete function of
CommentsRepository and pass the model to it. Now let's look at the Action method
that retrieves the Comment model using id and deletes it from the system:

[HttpPost]
public ActionResult DeleteComment(int id, FormCollection collection)
{
 try
 {
 using (UnitOfWork uow = new UnitOfWork())
 {
 Comment comment = uow.CommentRepository.Get(item => item.
Id == id);
 uow.CommentRepository.Delete(comment);
 uow.SaveChanges();
 }

 return RedirectToAction("Index");
 }
 catch
 {
 return View();
 }
}

The preceding code shows the Action method of the MVC controller that is
responsible for deleting a comment from the database. The view will pass the id
value of the Comment model that is to be deleted. We will use this id, and use our
UnitOfWork class and CommentsRepository to first retrieve the Comment model
and then delete it from the system.

Chapter 12

[279]

Using other Entity Framework
approaches
In this chapter, we used the Entity Framework Code First approach to demonstrate
how we can create a data-centric application using Entity Framework as the ORM.
The reason for choosing the Code First approach is that this approach is the most
verbose approach, and we get to see the code for all the entities.

If we were to use the Database First approach for this application, we just need to
create the database that we saw in the beginning of the chapter, and add an Entity
Data Model using the Database First approach. If we had used the Database First
approach, our Entity Data Model would have looked like the following:

A generated Entity Data Model for the test application

Implementing a Small Blogging Platform Using Entity Framework

[280]

If we want to use the Model First approach, then we need to use the Visual Entity
Designer and create this model ourselves. The rest of the application code that we
have seen would have remained the same even if we had used the database first or
model first approach.

In larger applications using Entity Framework, typically, there are
two set of models: domain model and data model. We have not
done this to keep our examples simple.

Summary
In this chapter, we saw how to use Entity Framework to create data-centric
applications. We saw how to use the Code First approach to develop a small
blogging application. This application, when compared to real-world applications,
is not even the tip of the iceberg. Real-world applications will be far larger in scale
and far more complex. The idea behind this chapter was to get the user acquainted
with how to start application development using Entity Framework, and how to
develop end-to-end features.

With this, we reached the end of the book. Entity Framework is a vast topic and
when it comes to using an ORM for data access, the devil is in the details. We tried
to cover most of the topics related to Entity Framework and hopefully after reading
this book you will find yourself fully geared up to use Entity Framework in any
application. I hope this book has been informative.

Index
A
ACID properties 215
ADO.NET 234
aggregate operators, Entity SQL

about 202
Average 205, 206
Count 203
Max 205
Min 204
Sum 203, 204

aggregate operators, LINQ to Entities
about 181
Average 185
Count 181
Max 184
Min 183, 184
Sum 183

applications
designing, for handling field level

concurrency 222-226
requisites 243, 244

atomicity, consistency, isolation, and
durability. See ACID properties

Average function 185, 205, 206

B
Blog entity

about 247, 248
relationships, implementing in 251, 252

blogs
adding 266, 267
deleting 269, 270
listing, on home page 270-272

managing 266
updating 268, 269

Blogs table 244

C
categories

adding 262, 263
deleting 265, 266
listing 262
managing 261
updating 264, 265

Categories table 244
Category entity

about 247
relationships, implementing in 250

CDSL 95
CKEditor 267
Code First approach 11, 12
Comment entity

about 248
relationships, implementing in 252

comments
adding 277, 278
deleting 278
listing 275
managing 275

Comments table 245
conceptual schema definition

language. See CSDL
concurrency

about 215
handling, in Entity Framework 219-222
RowVersion, implementing for 229-231

concurrency management 215

[282]

concurrency-related issues, handling
optimistic concurrency 216
pessimistic concurrency 216

configuration file
used, for managing database

connections 156, 157
Count function 181, 203
Create operation 106
CRUD operations, performing with

Entity Framework
about 32
existing item, updating 35, 36
item, deleting 37
list of items, reading 32, 33
new item, creating 34
specific item, reading 33, 34

custom validations
implementing, data annotations used 72-74

D
data

filtering, LINQ to Entities used 175, 176
grouping, with Entity SQL 207
ordering, with Entity SQL 206
querying, Entity SQL used 210, 211
querying, LINQ to Entities used 169-172
seeding 161-164

data access
performing 255

data annotations
used, for implementing custom

validations 72-74
used, for performing model

validations 66, 67
used, for specifying validation rules 67
used, for triggering validations 70

database connections, managing
about 155
configuration file used 156, 157

database design
visualizing 244, 245

Database First approach 10, 11
Database Generation Power Pack, Microsoft

URL 29
database initialization

managing 159

database initialization, strategies
CreateDatabaseIfNotExists 159
DropCreateDatabaseAlways 160
DropCreateDatabaseIfModelChanges 160
MigrateDatabaseToLatestVersion 160
setting 160

database relationships 39
data binding environments

validations, triggering in 70
data, querying

Entity SQL with ObjectQuery,
used 198, 199

DbContext class
implementing 253, 254

development styles
Code First 11
comparing 11, 12
Database First 10
Model First 11

domain class configurations, Entity
Framework Code First approach

Column 125
DatabaseGenerated 125
ForeignKey 125
Key 125
NotMapped 125
Table 125
Timestamp 125

domain modeling, with inheritance 75

E
eager loading 189, 192
EDMX file

conceptual schema definition 18
mapping 19
storage schema definition 19

EntityClient object 169
EntityCommand

Entity SQL, used for querying data 210, 211
Entity SQL, using with 210
using, with parameterized Entity

SQL 211, 212
EntityConnection object

creating 194, 195
Entity Data Model (EDM)

about 8, 9

[283]

creating 245
entity classes, creating 246

Entity Framework
about 7
and pessimistic concurrency 231
architecture, visualizing 8
benefits 7
concurrency, handling 219-222
domain modeling, with inheritance 75
modeling 8
persistence 8
used, for implementing optimistic

concurrency 219
used, for modeling many-to-many

relationship 49-51
used, for modeling one-to-one

relationship 47, 48
used, for performing model validations 59
using, with functions 112
using, with stored procedures 106
using, with views 102-105

Entity Framework 6
used, for managing transactions 238, 239

Entity Framework Code First approach
about 120
benefits 120
configurations 121
conventions 121
domain class configurations 124-126
implementing 121-124
using 30, 31

Entity Framework Database First
approach 12-21

Entity Framework, default transaction
handling 235, 236

Entity Framework Model First
approach 22-29

Entity model
creating 43, 44

Entity relationships, Code First approach
managing 126
many-to-many relationships,

implementing 135-140
one-to-many relationships,

implementing 126-131

one-to-one relationships,
implementing 131-135

Entity SQL
about 193, 194
data, grouping with 207
data, ordering with 206
navigation properties, using with 201, 202
using, with EntityCommand 210
using, with ObjectQuery 196-198

Entity SQL, with ObjectQuery
used, for querying data 198, 199

existing ConnectionString
using 158

F
field level concurrency

implementing 226-228
fields

validating 67, 68
functions

Entity Framework, using with 112
scalar function 112-114
table valued functions (TVF) 114-117
using 101

G
grouping

performing, LINQ to Entities used 178, 179

I
inheritance strategy

selecting 99
inheritance, with Entity Framework

Code First approach
about 140
Table per Class Hierarchy (TPH)

inheritance, implementing 145-150
Table per Concrete Class (TPC) inheritance,

implementing 150-154
Table per Type (TPT) inheritance,

implementing 140-145

[284]

J
join

implementing, LINQ to Entities
used 188, 189

L
lambda expression 189
Language-Integrated Query. See LINQ
lazy loading 189-191
length, of fields

validating 68
Limit query 209
LINQ 21, 167
LINQ projections

using, with LINQ to Entities 177, 178
LINQ to Entities

about 167-169
aggregate operators 181-185
LINQ projections, using with 177, 178
navigation properties, using with 174, 175
used, for executing simple queries 173
used, for filtering data 175, 176
used, for grouping operations 178, 179
used, for implementing join 188, 189
used, for ordering 179-181
used, for querying data 169-172
using 172, 173

M
many-to-many relationship

about 41
implementing 42
modeling, Entity Framework used 49-51

mapping specification language. See MSL
Max function 184, 205
Min function 183, 184, 204
Model First approach 11, 12
model validations, performing

data annotations used 66, 67
Entity Framework used 59
partial class methods used 60
partial methods used 62-66

MSL 95

N
navigation properties

creating 248
using, with Entity SQL 201, 202
using, with LINQ to Entities 174, 175

navigation properties, data access
about 51
item, adding 53
item, deleting 55
item, updating 54
list of items, retrieving 52
specific item, retrieving 51, 52

non-data binding environments
validations, triggering in 70, 71

O
ObjectContext class 9, 10
ObjectQuery

Entity SQL, using with 196-198
parameterized Entity SQL, executing

with 199, 200
used, for grouping data with

Entity SQL 207
used, for ordering data with

Entity SQL 206
object relational domain modeling,

inheritance relationship
Table per Class Hierarchy (TPH) 76, 82, 83
Table per Concrete Class (TPC) 76, 92
Table per Type (TPT) 76, 77

Object Relational Mapper (ORM) 7
one-to-many relationships

about 40
implementing 40
modeling 44-46

one-to-one relationship
about 40
implementing 41
modeling, Entity Framework used 47, 48

optimistic concurrency
about 216, 217
changes, rejecting 217
conflict/forcing updates, ignoring 217
implementing, Entity Framework used 219
partial updates 217
user, warning 217

[285]

ordering
with LINQ to Entities 179-181

P
paging, Entity SQL ObjectQuery

implementing 209, 210
paging, LINQ to Entities

implementing 187
parameterized Entity SQL

EntityCommand, using with 211, 212
executing, with ObjectQuery 199, 200

partial class methods
used, for performing model validations 60

partial methods
about 60-62
used, for performing model

validations 62-66
partitioning methods, Entity SQL

ObjectQuery
about 208
Limit 209
Skip 208

partitioning methods, LINQ to Entities
about 185
Skip 186
Take 187

persistence approaches
selecting 38

pessimistic concurrency
about 216-218
and Entity Framework 231
issues 218

Plain Old CLR Objects (POCO) 30, 119
procedures

using 101

R
regular expression-based validations 69
relationships

Blog-Comment 248
Category-Blog 248
implementing, in Blog entity 251, 252
implementing, in Category entity 250
implementing, in Comment entity 252
implementing, in Role entity 250
implementing, in User entity 249

many-to-many relationship 41, 42
one-to-many relationships 40
one-to-one relationship 40, 41
properties, creating 248
User-Blog 248
User-Comment 249
User-Role 248

Repository pattern 255-258
Role entity

about 246
relationships, implementing in 250

Roles table 244
RowVersion

implementing, for concurrency 229-231

S
scalar function

using 112-114
simple queries

executing, LINQ to Entities used 173
single blog

showing 273-275
Skip query 186, 208
SSDL 95
stored procedures

defining 106-112
Entity Framework, using with 106

Sum function 183, 203, 204

T
Table per Class Hierarchy (TPH) inheritance

about 82, 83
concrete classes, adding to Entity Data

Model 84-86
concrete class properties, mapping to

respective tables and columns 87-89
default Entity Data Model, generating 84
entities, using via DBContext object 90, 91

Table per Concrete Class (TPC) inheritance
about 92
abstract class, creating 94, 95
CDSL, modifying 95
default Entity Data Model, generating 93
entities, using via DBContext object 98
mapping, specifying for TPT inheritance

implementation 96, 97

[286]

Table per Type (TPT) inheritance
about 76, 77
default Entity Data Model,

generating 77, 78
default relationships, deleting 78
entities, using via DBContext object 81, 82
inheritance relationships, adding between

entities 79, 80
table valued functions (TVF)

using 114-117
Take query 187
test environment

setting up 234, 235
TextArea 267
transaction management

selecting 241
transactions

about 233
existing transaction, using with Entity

Framework's DbContext class 239-241
handling, TransactionScope used 237
managing, with Entity

Framework 6 238, 239
TransactionScope

used, for handling transactions 237

U
Unit of Work class 259, 261
User entity

about 246
relationships, implementing in 249

UserRoles table 244
Users table 244

V
validation rules

specifying, data annotations used 67
validations, triggering

data annotations used 70
in data binding environments 70
in non-data binding environments 70, 71

ViewModel 177
views

Entity Framework, using with 102-105
using 101

Thank you for buying
Mastering Entity Framework

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly
focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including
(but not limited to) IBM, Microsoft, and Oracle, often for use in other corporations. Its titles
will offer information relevant to a range of users of this software, including administrators,
developers, architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Entity Framework 4.1:
Expert's Cookbook
ISBN: 978-1-84968-446-0 Paperback: 352 pages

More than 40 recipes for successfully mixing Test
Driven Development, Architecture, and Entity
Framework Code First

1. Hands-on solutions with reusable code
examples.

2. Strategies for enterprise ready usage.

3. Examples based on real world experience.

4. Detailed and advanced examples of query
management.

Entity Framework Tutorial
ISBN: 978-1-84719-522-7 Paperback: 228 pages

Learn to build a better data access layer with the
ADO.NET Entity Framework and ADO.NET
Data Services

1. Clear and concise guide to the ADO.NET Entity
Framework with plentiful code examples.

2. Create Entity Data Models from your database
and use them in your applications.

3. Learn about the Entity Client data provider and
create statements in Entity SQL.

4. Learn about ADO.NET Data Services and how
they work with the Entity Framework.

Please check www.PacktPub.com for information on our titles

WCF 4.5 Multi-Layer Services
Development with Entity
Framework
Third Edition

ISBN: 978-1-84968-766-9 Paperback: 394 pages

Build SOA applications on Microsoft platforms with
this hands-on guide

1. This book will teach you WCF, Entity
Framework, LINQ, and LINQ to Entities
quickly and easily.

2. Apply best practices to your WCF services and
utilize Entity Framework in your WCF services.

3. Practical, with step-by-step instructions and
precise screenshots, this is a truly hands-on
book for all C++, C#, and VB.NET developers.

WCF Multi-layer Services
Development with Entity
Framework
Fourth Edition
ISBN: 978-1-78439-104-1 Paperback: 378 pages

Create and deploy complete solutions with WCF and
Entity Framework

1. Build SOA applications on Microsoft platforms.

2. Apply best practices to your WCF services and
utilize Entity Framework to access underlying
data storage.

3. A step-by-step, practical guide with nifty
screenshots to create six WCF and Entity
Framework solutions from scratch.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to
Entity Framework
	Entity Framework modeling and persistence
	Understanding Entity Data Model
	Understanding the ObjectContext class

	Development styles and different Entity Framework approaches
	Comparing the development styles
	The Database First approach
	The Model First approach
	The Code First approach

	Entity Framework Database First approach
	Entity Framework Model First approach
	Entity Framework Code First approach
	Performing CRUD operations using Entity Framework
	Reading a list of items
	Reading a specific item
	Creating a new item
	Updating an existing item
	Deleting an item

	Choosing persistence approaches
	Summary

	Chapter 2: Entity Framework DB First – Managing Entity Relationships
	Understanding database relationships
	One-to-many relationship
	One-to-one relationship
	Many-to-many relationship

	Creating the Entity model
	Modeling a one-to-many relationship
	Modeling a one-to-one relationship using Entity Framework
	Modeling a many-to-many relationship using Entity Framework
	Using Navigation properties for
data access
	Retrieving a specific item
	Retrieving a list of items
	Adding an item
	Updating an item
	Deleting an item

	Entity Framework – behind the scenes
	Summary

	Chapter 3: Entity Framework DB First – Performing Model Validations
	Model validations using Entity Framework
	Model validations using partial class methods
	Understanding partial methods
	Using partial methods to perform model validations

	Model validations using data annotations
	Specifying validation rules using data annotations
	Validating the required fields
	Validating the length of fields
	Regular expression-based validations

	Triggering validations using data annotations
	Trigger validations in data binding environments
	Trigger validations in non-data binding environments
	Implementing custom validations using data annotations

	Summary

	Chapter 4: Entity Framework DB First – Inheritance Relationships between Entities
	Domain modeling using inheritance in Entity Framework
	The Table per Type inheritance
	Generating the default Entity Data Model
	Deleting default relationships
	Adding inheritance relationships between entities
	Using the entities via the DBContext object

	The Table per Class Hierarchy inheritance
	Generating the default Entity Data Model
	Adding concrete classes to the Entity Data Model
	Mapping the concrete class properties to the respective tables and columns
	Making the base class entity abstract
	Using the entities via the DBContext object

	The Table per Concrete Class inheritance
	Generating the default Entity Data Model
	Creating the abstract class
	Modifying the CDSL to cater to the change
	Specifying the mapping to implement the TPT inheritance
	Using the entities via the DBContext object

	Choosing the inheritance strategy
	Summary

	Chapter 5: Entity Framework DB
First – Using Views, Stored Procedures, and Functions
	Using views, procedures, and functions
	Using Entity Framework with views
	Using Entity Framework with stored procedures
	Defining stored procedures

	Using Entity Framework with functions
	Using scalar functions
	Using table valued functions

	Summary

	Chapter 6: Entity Framework Code First – Domain Modeling and Managing Entity Relationships
	Understanding the Entity Framework Code First approach
	Understanding the Code First conventions and configurations
	Implementing Entity Framework Code First
	More on domain class configurations

	Managing Entity relationships using the Code First approach
	Implementing one-to-many relationship
	Implementing one-to-one relationships
	Implementing many-to-many relationships

	Inheritance with the Entity Framework Code First approach
	Implementing the TPT inheritance
	Implementing the TPH inheritance
	Implementing the TPC inheritance

	Summary

	Chapter 7: Entity Framework Code
First – Managing Database Creation and Seeding Data
	Managing database connections
	Managing connections using a configuration file
	Using the existing ConnectionString
	Using an existing connection

	Managing database initialization
	Setting the initialization strategy

	Seeding data
	Summary

	Chapter 8: Querying the Entity Data Model – LINQ to Entities
	Understanding LINQ to Entities
	Querying data using LINQ to Entities
	Using LINQ to Entities (an example-based approach)
	Executing simple queries
	Using the navigation properties with LINQ
to Entities
	Filtering data using LINQ to Entities
	Using LINQ projections with LINQ to Entities
	Grouping using LINQ to Entities
	Ordering using LINQ to Entities
	Aggregate operators with LINQ to Entities
	Count
	Sum
	Min
	Max
	Average

	Partitioning/paging data using LINQ to Entities
	Skip
	Take
	Implementing paging

	Implementing join using LINQ to Entities

	Lazy loading and eager loading
	Lazy loading
	Eager loading

	Summary

	Chapter 9: Querying the Object Model – Entity SQL
	Understanding Entity SQL
	Understanding EntityConnection
	Entity SQL with ObjectQuery
	Querying data using Entity SQL with ObjectQuery
	Executing parameterized Entity SQL with ObjectQuery
	Navigation properties using Entity SQL with ObjectQuery
	Aggregate functions with Entity SQL using ObjectQuery
	Count
	Sum
	Min
	Max
	Average

	Ordering data with Entity SQL using ObjectQuery
	Grouping data using Entity SQL with ObjectQuery
	Partitioning/paging data using Entity SQL ObjectQuery
	Skip
	Limit
	Implementing paging

	Using Entity SQL with EntityCommand
	Querying data using Entity SQL with EntityCommand
	Parameterized Entity SQL with EntityCommand

	Summary

	Chapter 10: Managing Concurrency
Using Entity Framework
	Understanding concurrency
	Understanding optimistic concurrency
	Ignore the conflict/forcing updates
	Partial updates
	Warn/ask the user
	Reject the changes

	Understanding pessimistic concurrency

	Implementing optimistic concurrency using Entity Framework
	Entity Framework's default concurrency
	Designing applications to handle field level concurrency
	Implementing field level concurrency
	Implementing RowVersion for concurrency

	Entity Framework and pessimistic concurrency
	Summary

	Chapter 11: Managing Transactions using Entity Framework
	Understanding transactions
	Setting up the test environment
	Entity Framework's default transaction handling
	Using TransactionScope to handle transactions

	Managing transactions using Entity Framework 6
	Using an existing transaction

	Choosing the appropriate transaction management
	Summary

	Chapter 12: Implementing a Small Blogging Platform using Entity Framework
	Understanding the application requirements
	Visualizing our database design
	Creating Entity Data Model
	Creating the entity classes
	The User entity
	The Role entity
	The Category entity
	The Blog entity
	The Comment entity

	Creating relationships and navigation properties
	The User entity
	The Role entity
	The Category entity
	The Blog entity
	The Comment entity

	Implementing the DbContext class

	Performing data access
	Understanding the Repository pattern
	Understanding Unit of Work
	Managing categories
	Listing categories
	Adding a category
	Updating a category
	Deleting a category

	Managing blogs
	Adding a new blog
	Updating a blog
	Deleting a blog
	Listing blogs on the home page
	Showing a single blog

	Managing comments
	Listing categories
	Adding a comment
	Deleting a comment

	Using other Entity Framework approaches
	Summary

	Index

