

Mastering Apache Maven 3

Enhance developer productivity and address exact
enterprise build requirements by extending Maven

Prabath Siriwardena

BIRMINGHAM - MUMBAI

Mastering Apache Maven 3

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2014

Production reference: 1221214

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-386-5

www.packtpub.com

www.packtpub.com

Credits

Author
Prabath Siriwardena

Reviewers
Petri Kainulainen

Michał Kozik

Pavithra Gunasekara

Sagara Gunathunga

Bhavani P Polimetla

Commissioning Editor
Akram Hussain

Acquisition Editor
Subho Gupta

Content Development Editor
Ruchita Bhansali

Technical Editors
Shubhangi Dhamgaye

Shweta Pant

Mohita Vyas

Project Coordinator
Kranti Berde

Copy Editors
Roshni Banerjee

Deepa Nambiar

Rashmi Sawant

Proofreaders
Simran Bhogal

Mario Cecere

Lucy Rowland

Indexer
Tejal Soni

Graphics
Valentina D'silva

Abhinash Sahu

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

About the Author

Prabath Siriwardena is the Director of Security Architecture at WSO2 Inc.,
a company that produces a wide variety of open source software from data to screen.
He is a member of OASIS Identity Metasystem Interoperability (IMI) TC, OASIS
eXtensible Access Control Markup Language (XACML) TC, OASIS Security Services
(SAML) TC, OASIS Identity in the Cloud TC, and OASIS Cloud Authorization
(CloudAuthZ) TC. Prabath is also a member of PMC Apache Axis and has spoken at
numerous international conferences, including OSCON, ApacheCon, WSO2Con, EIC,
IDentity Next, and OSDC. He has more than 10 years of industry experience and has
worked with many Fortune 100 companies.

Acknowledgments

I would first like to thank Subho Gupta, a senior acquisition editor at Packt
Publishing, who came up with the idea of writing a book on mastering Apache
Maven; then I would like to thank, Ruchita Bhansali, a content development editor
at Packt Publishing, who I worked with closely throughout the project—thank you
very much, Ruchita, for your patience and flexibility. Also, I would like to thank all
the others at Packt who helped me throughout to make this book a reality from the
initial idea. Thank you very much for all your continuous support.

Dr. Sanjiva Weerawarana, the CEO of WSO2, and Paul Fremantle, the CTO of WSO2,
have always been my mentors. I am truly grateful to both of them for everything
they have done for me.

I'd like to thank my beloved wife, Pavithra, and my loving little daughter, Dinadi.
Pavithra wanted me to write this book even more than I wanted. If I say she is the
driving force behind this book, I am not exaggerating. She simply went beyond by
not only feeding me with all the encouragement, but also by helping immensely in
reviewing the book and developing samples. She was always the first reader. Thank
you very much, Pavithra. Also, thanks to little Dinadi for your patience—it was your
time I spent on writing the book.

I would also like to thank all the technical reviewers of the book. All your suggestions
and thoughts were extremely valuable and are much appreciated.

My parents and my sister have been the driving force behind me since my birth.
If not for them, I wouldn't be who I am today. I am grateful to them for everything
they have done for me. Last but not least, I'd like to thank my wife's parents; they
were amazingly helpful in making sure that the only thing I had to do was to write
this book, taking care of almost all the other things that I was supposed to do.

Although this would sounds like a one-man effort, it's actually a team effort.
Thanks to everyone who supported me in different ways.

About the Reviewers

Petri Kainulainen is a software developer who lives in Tampere, Finland.
He specializes in application development with the Java programming language
and the Spring framework.

Petri has 15 years of experience in software development, and during his career, he has
participated in the development projects of Finland's leading online market places as a
software architect. He is currently working at Vincit Oy as a passionate architect.

Petri is the author of Spring Data, Packt Publishing, which was published in 2012,
and writes regularly on his blog at http://www.petrikainulainen.net/blog/.

Michał Kozik is an enthusiastic freelance developer. He has gained broad experience
in Java while working for companies in the e-commerce, telecommunication, and
government sectors. Michał is always looking for new technologies to help him meet
the challenges of customers. He enjoys sports and spending time with his family.

Pavithra Gunasekara is a programmer, blogger, and keen enthusiast of big data
and data science. She received her Bachelor's degree in Computer Science from
the University of Colombo. She has worked as a software engineer at a leading IT
company in Sri Lanka and has hands-on experience in Java, R, Python, and Hadoop.
Being a huge fan of Massive Open Online Courses(MOOC), she currently follows the
data science specialization course provided by Coursera to extend her knowledge
of data science. She regularly writes technical content on her blog at http://blog.
eviac.net.

http://www.petrikainulainen.net/blog/
http://blog.eviac.net
http://blog.eviac.net

Sagara Gunathunga is a long-term contributor to Apache Software Foundation
and a PMC member of Apache Axis and Apache Web Services projects. He actively
contributes to Apache Axis2, Apache Web Services, and Apache Synapse projects.
He currently serves as the Vice President of the Apache Web Services project.

In his day job, he works for WSO2, where he previously led the WSO2 Application
Server project and now leads the WSO2 Governance Registry project. Sagara has more
than 8 years of industry experience in Java EE, Spring, Web Service, API management,
and enterprise-integration-related technologies. Sagara holds a degree in Computer
Science from the University of Peradeniya, Sri Lanka and also holds a Bachelor's
degree in Information Technology from University of Colombo School of Computing.

Sagara usually writes his technical expertise on his blog at http://ssagara.
blogspot.com/.

Bhavani P Polimetla has been learning and working in IT Industry since
1990. He graduated with Bachelor of Computer Science and Master of Computer
Applications degrees from Andhra University, India. He worked on standalone
Swing applications on Grid computing and Multitier Architecture. He has worked
with clients that include three fortune 50 companies. At present, he is working as a
software architect at Mountain View, California, USA.

To demonstrate his skills he has completed, more than 25 Certifications in the spectrum
of Java, database, project management, and architecture subjects. He has also received
awards for many of his projects. He likes to spend his free time doing social service
activities. More information is available on his website at www.polimetla.com.

http://ssagara.blogspot.com/
http://ssagara.blogspot.com/
www.polimetla.com

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

This book is dedicated with great honor, to my father – the greatest human being
that I have ever met.

Table of Contents
Preface	 1
Chapter 1: Apache Maven Quick Start	 7

A quick introduction	 7
Installing Apache Maven	 7

Installing Apache Maven on Ubuntu	 8
Installing Apache Maven on Mac OS X	 9
Installing Apache Maven on Microsoft Windows	 10

Configuring the heap size	 10
Monitoring the build	 11
Remote debugging	 13
Convention over configuration	 14
IDE integration	 16

NetBeans integration	 16
IntelliJ IDEA integration	 16
Eclipse integration	 16

Troubleshooting	 17
Enabling Maven debug-level logs	 17
Building dependency tree	 17
Viewing all environment variables and system properties	 18
Viewing the effective POM file	 19
Viewing the dependency classpath	 20

Summary	 20
Chapter 2: Demystifying Project Object Model	 21

Project Object Model	 22
The POM hierarchy	 23
Super POM	 23
POM extending and overriding	 28

Table of Contents

[ii]

Maven coordinates	 30
Parent POM file	 31
Managing POM dependencies	 33

Transitive dependencies	 37
Dependency scopes	 39
Optional dependencies	 42
Dependency exclusion	 44

Summary	 46
Chapter 3: Maven Configuration	 47

Maven Wagon	 48
Wagon HTTP(S) transport	 49
Wagon system properties	 52

Proxy authentication	 53
Secured repositories	 53
Encrypting credentials in settings.xml	 54
Source Control Management systems	 56

Maven with Subversion	 56
Local repository location	 60
Mirrored repositories	 60

The internal corporate repository	 62
Advanced mirror configurations	 63

Deploying artifacts	 64
Deploying file-based artifacts	 64
Deploying SSH-based artifacts	 65
Deploying FTP-based artifacts	 66

Enabling Maven logging	 68
Summary	 68

Chapter 4: Build Lifecycles	 69
Standard lifecycles in Maven	 70

The clean lifecycle	 70
The default lifecycle	 73
The site lifecycle	 77

Lifecycle bindings	 78
Building a custom lifecycle	 82
Lifecycle extensions	 90
Summary	 93

Chapter 5: Maven Plugins	 95
Common Maven plugins	 96

The clean plugin	 96
The compiler plugin	 98

Table of Contents

[iii]

The install plugin	 100
The deploy plugin	 101
The surefire plugin	 102
The site plugin	 104
The jar plugin	 107
The source plugin	 108
The resources plugin	 109
The release plugin	 110

Plugin discovery and execution	 112
Plugin management	 114
Plugin repositories	 115
Plugin as an extension	 116

Plexus	 117
Maven and Dependency Injection	 120

Google Guice	 120
Developing custom plugins	 123

Associating a plugin with a lifecycle	 130
The plugin execution order	 132
Inside the execute method	 132

Summary	 135
Chapter 6: Maven Assemblies	 137

The assembly plugin	 138
The assembly descriptor	 140
Artifact/resource filtering	 152
Assembly help	 152
A runnable, standalone Maven project	 153
Summary	 158

Chapter 7: Maven Archetypes	 159
Archetype quickstart	 160
The batch mode	 163
Archetype catalogues	 163

Building an archetype catalogue	 167
Public archetype catalogues	 167
The anatomy of archetype-catalog.xml	 169

The archetype plugin goals	 170
Maven plugins with the archetype plugin	 171
Java EE web applications with the archetype plugin	 173

Deploying web applications to a remote Apache Tomcat server	 174
Android mobile applications with the archetype plugin	 176
EJB archives with the archetype plugin	 179

Table of Contents

[iv]

JIRA plugins with the archetype plugin	 182
Spring MVC applications with the archetype plugin	 182
Building a custom archetype	 184

The archetype descriptor	 193
Generating a multimodule Maven project	 195
archetype:create-from-project with custom properties	 200

Summary	 202
Chapter 8: Maven Repository Management	 203

Maven repositories	 203
The update policy	 204
Multiple repositories	 206

Repositories in settings.xml	 207
The Maven repository manager	 209

Repository management with Nexus	 211
Installing and running Nexus	 212
Creating a hosted repository	 213

Creating a proxy repository	 219
Creating a virtual repository	 224
Blocking selected artifacts	 225
Inclusive and exclusive routing	 226
Scheduled tasks	 228
Artifact indexing	 229
Nexus plugins	 229
A repository metadata model	 230
Summary	 234

Chapter 9: Best Practices	 235
Dependency management	 236
Defining a parent module	 238
POM properties	 239
Avoiding repetitive groupId and version elements and inherit
from the parent POM	 242
Following naming conventions	 243
Maven profiles	 245
Think twice before you write your own plugin	 248
The Maven release plugin	 249
The Maven enforcer plugin	 250
Avoid using un-versioned plugins	 252
Using exclusive and inclusive routes	 254
Avoid having both release and snapshot repositories in
the same group repository	 254

Table of Contents

[v]

Avoid having both proxy and hosted repositories in the
same group repository	 255
Minimizing the number of repositories	 255
Using mirrorOf instead of changing repository URLs	 256
Descriptive parent POM files	 256
Documentation is your friend	 258
Avoid overriding the default directory structure	 259
Using SNAPSHOT versioning during development	 259
Get rid of unused dependencies	 260
Avoid keeping credentials in application POM files	 260
Avoid using deprecated references	 262
Avoid repetition – use archetypes	 262
Avoid using maven.test.skip	 262
Share resources – avoid duplicates	 264
Summary	 267

Index	 269

Preface
Maven is the number one build tool used by developers, and it has been available for
more than a decade. Maven stands out among other build tools due to its extensible
architecture, which is built on the concept of convention over configuration. This has
made Maven the de-facto tool to manage and build Java projects. It's being widely
used by many open source Java projects under Apache Software Foundation,
SourceForge, Google Code, and many more.

Mastering Apache Maven 3 provides a step-by-step guide that will show you how
to use Apache Maven in an optimal way to address enterprise build requirements.
After reading this book, you will be able to:

•	 Apply Maven's best practices in designing a build system to improve
developers' productivity

•	 Customize the build process to suit your enterprise needs by developing
custom Maven plugins, lifecycles, and archetypes

•	 Troubleshoot build issues with greater confidence
•	 Implement and deploy a Maven repository manager to manage the build

process in a better way
•	 Design the build with proper dependency management, avoiding any

maintenance nightmares
•	 Optimize the Maven configuration settings
•	 Build your own distribution archive using Maven assemblies
•	 Build custom Maven lifecycles and lifecycle extensions

Preface

[2]

What this book covers
Chapter 1, Apache Maven Quick Start, focuses on giving an introduction to Apache
Maven. If you are an advanced Maven user, you can simply jump to the next chapter.
It will show how to install and configure Maven on different operating systems such
as Linux, Mac, and Microsoft Windows and tips and tricks to use Maven.

Chapter 2, Demystifying Project Object Model, focuses on core concepts and best
practices related to Project Object Model (POM) in building a large-scale multimodule
Maven project.

Chapter 3, Maven Configuration, discusses how to customize the Maven configuration
at three different levels: the global level, the user level, and the project level for
optimal use.

Chapter 4, Build Lifecycles, discusses the Maven build lifecycles in detail. A Maven
build lifecycle consists of a set of well-defined phases. Each phase groups a set of
goals defined by Maven plugins and the lifecycle defines the order of execution of
the phases.

Chapter 5, Maven Plugins, explains the usage of key Maven plugins and demonstrates
how to build custom plugins. All the useful functionalities in the build process
are developed as Maven plugins. One could also easily call Maven, a plugin
execution framework.

Chapter 6, Maven Assemblies, explains how to build custom assemblies with the
Maven assembly plugin. The Maven assembly plugin produces a custom archive,
which adheres to a user-defined layout. This custom archive is also known as the
Maven assembly. In other words, it's a distribution unit that is built according to
a custom layout.

Chapter 7, Maven Archetypes, explains how to use existing archetypes and how to build
custom Maven archetypes. Maven archetypes provide a way of reducing repetitive
work in building Maven projects. There are thousands of archetypes out there that
are available freely to assist you in building different types of projects.

Chapter 8, Maven Repository Management, discusses the pros and cons of using a
Maven repository manager. This chapter further explains how to use Nexus as a
repository manager and configure it as a hosted, proxied, and group repository.

Chapter 9, Best Practices, looks at and highlights some of the best practices to be
followed in a large-scale development project with Maven. It is always recommended
to follow best practices, as they will drastically improve developers' productivity and
reduce maintenance nightmares.

Preface

[3]

What you need for this book
To proceed with the examples that are presented in this book, you will need the
following software:

•	 Apache Maven 3.2.x, which can be downloaded from
http://maven.apache.org/download.cgi

•	 Java 1.6+ SDK, which can be downloaded from http://www.oracle.com/
technetwork/java/javase/downloads/index.html

•	 Microsoft Windows, Linux, or Mac OS X operating systems

Who this book is for
If you are working with Java or Java EE projects and you want to take the fullest
advantage of Maven in designing, executing, and maintaining your build system for
optimal developer productivity, then this book is ideal for you. It is also particularly
useful if you are a developer or an architect. You should be well versed with Maven
and its basic functionalities if you wish to get the most out of this book.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"When you type mvn clean install, Maven will execute all the phases in the
default lifecycle up to and including the install phase."

A block of code is set as follows:

<project>
 [...]
 <build>
 [...]
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.1</version>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>

http://maven.apache.org/download.cgi
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Preface

[4]

 </configuration>
 </plugin>
 </plugins>
 [...]
 </build>
 [...]
</project>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<project>
 [...]
 <build>
 [...]
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.1</version>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 </configuration>
 </plugin>
 </plugins>
 [...]
 </build>
 [...]
</project>

Any command-line input or output is written as follows:

$ mvn install:install

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Click
on the Add button in the Role Management section and select Repo: All Maven
Repositories (Full Control), as shown in the upcoming screenshot."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[6]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring
you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

Apache Maven Quick Start
This chapter will introduce Apache Maven. If you are an advanced Maven user,
you can simply jump into the next chapter. Even for an advanced user, it is highly
recommended that you at least brush through this chapter, as it will be helpful to
make sure that we are on the same page as we proceed.

In this chapter, we will be discussing about the following topics:

•	 Installing and configuring Maven on Ubuntu, Mac OS X,
and Microsoft Windows

•	 IDE integration
•	 Tips and tricks to use Maven effectively

A quick introduction
Apache Maven is popular as a build tool. However, in reality, it goes beyond being
just a build tool. It provides a comprehensive build management platform. Prior
to Maven, developers had to spend a lot of time in building a build system. There
was no common interface. It differed from project to project—each time a developer
moved from one project to another, there was a learning curve. Maven filled this gap
by introducing a common interface. It ended the era of "the build engineer."

Installing Apache Maven
Installing Maven on any platform is a straightforward task. At the time of writing this
book, the latest version is 3.2.3, which is available to download from http://maven.
apache.org/download.cgi. This version requires JDK 1.6.0 or above. You should
keep a note of the Java requirement for version 3.2.3 if you are planning to upgrade
from version 3.0.0 family or 3.1.0 family. Prior to Maven 3.2.1, the only requirement
was JDK 1.5.0.

http://maven.apache.org/download.cgi
http://maven.apache.org/download.cgi

Apache Maven Quick Start

[8]

Apache Maven is an extremely lightweight distribution. It does not have any hard
requirements in terms of memory, disk space, or CPU. Maven is built on top of Java
and will work on any operating system that runs a Java Virtual Machine (JVM).

Installing Apache Maven on Ubuntu
Installing Maven on Ubuntu just needs a single-line command. Proceed with the
following steps:

1.	 Run the following apt-get command in the command prompt; you need
to have the sudo privileges to execute this:
$ sudo apt-get install maven

2.	 The installation takes a few minutes to complete. Upon the completion of the
installation, you can run the following command to verify the installation:
$ mvn -version

3.	 You should get an output similar to the following one if Apache Maven has
been installed successfully:
$ mvn -version

Apache Maven 3.2.3

Maven home: /usr/share/maven

Java version: 1.7.0_60, vendor: Oracle Corporation

Java home: /usr/lib/jvm/java-7-oracle/jre

Default locale: en_US, platform encoding: UTF-8

OS name: "linux", version: "3.13.0-24-generic", arch: "amd64",
 family: "unix"

4.	 Maven is installed under the /usr/share/maven directory. To check
the directory structure behind the Maven installation directory, use the
following command:
$ ls /usr/share/maven

bin boot conf lib man

5.	 Maven configuration files can be found under the /etc/maven directory
using the following command:

$ ls /etc/maven

m2.conf settings.xml

Chapter 1

[9]

If you don't want to work with the apt-get command, there is another way
of installing Maven under any Unix-based operating system. We will discuss
this in the next section. Since Mac OS X has a kernel built on top of the Unix
kernel, installing Maven on Mac OS X would be the same as installing it on
any Unix-based operating system.

Installing Apache Maven on Mac OS X
Most of the OS X distributions prior to OS X Mavericks had Apache Maven
preinstalled. To verify that you've got Maven installed in your system, try out
the following command:

$ mvn –version

If it does not result in a version, this means you do not have Apache Maven installed.

The following steps will guide you through the Maven installation process:

1.	 First, we need to download the latest version of Maven. Throughout this
book, we will use Maven 3.2.3, which is the latest version at the time of
writing this book. The Maven 3.2.3 ZIP distribution can be downloaded
from http://maven.apache.org/download.cgi.

2.	 Unzip the downloaded ZIP file and extract it to /usr/share/java directory.
You need to have the sudo privileges to execute the following command:
$ sudo unzip apache-maven-3.2.3-bin.zip -d /usr/share/java/

3.	 If you already have Maven installed in your system, use the following
command to unlink:
$ sudo unlink /usr/share/maven

4.	 Use the following command to create a symlink to the latest Maven
distribution, which you just unzipped. You need to have the sudo privileges
to execute the following command:
$ sudo ln -s /usr/share/java/apache-maven-3.2.3 /usr/share/maven

5.	 Verify the Maven installation with the following command:
$ mvn -version

Apache Maven 3.2.3 (33f8c3e1027c3ddde99d3cdebad2656a31e8fdf4;
2014-08-12T02:28:10+05:30)

Maven home: /usr/share/maven

Java version: 1.6.0_65, vendor: Apple Inc.

http://maven.apache.org/download.cgi

Apache Maven Quick Start

[10]

Java home: /System/Library/Java/JavaVirtualMachines/1.6.0.jdk/
Contents/Home

Default locale: en_US, platform encoding: MacRoman

OS name: "mac os x", version: "10.8.5", arch: "x86_64",
 family: "mac"

Maven can also be installed on Mac OS X with Homebrew.
Check out the video at this link, https://www.youtube.com/
watch?v=xTzLGcqUf8k, which explains the installation process
in detail.

Installing Apache Maven on Microsoft
Windows
First, we need to download the latest version of Maven. The Apache Maven 3.2.3 ZIP
distribution can be downloaded from http://maven.apache.org/download.cgi.
Next, perform the following steps:

1.	 Unzip the downloaded ZIP file and extract it to C:\Program Files\ASF folder.
2.	 Set the M2_HOME environment variable and point it to C:\Program Files\

ASF\apache-maven-3.2.3.
3.	 Verify the Maven installation with the following command on the

command prompt:
mvn –version

To learn how to set the environment variables on Microsoft
Windows, you can refer http://www.computerhope.com/
issues/ch000549.htm.

Configuring the heap size
Once you have installed Maven in your system, the next step is to fine-tune it for
optimal performance. By default, the maximum heap allocation is 256 - 512 MB
(-Xms256m to -Xmx512m). This default limit does not work while building a large,
complex Java project, and it is recommended that you have at least 1024 MB of
maximum heap. If you encounter the java.lang.OutOfMemoryError error at any
point during a Maven build, it is mostly due to the lack of memory. You can use the
MAVEN_OPTS environment variable to set the maximum allowed heap size for Maven
at a global level.

https://www.youtube.com/watch?v=xTzLGcqUf8k
https://www.youtube.com/watch?v=xTzLGcqUf8k
http://maven.apache.org/download.cgi
http://www.computerhope.com/issues/ch000549.htm
http://www.computerhope.com/issues/ch000549.htm

Chapter 1

[11]

The following command will set the heap size in Linux. Make sure that the value set
as the maximum heap size does not exceed your system memory of the machine that
runs Maven.

$ export MAVEN_OPTS="-Xmx1024m -XX:MaxPermSize=128m"

If you are on Microsoft Windows, use the following command:

$ set MAVEN_OPTS=-Xmx1024m -XX:MaxPermSize=128m

Here -Xmx takes the maximum heap size and -XX:MaxPermSize takes the maximum
PermGen size.

Maven runs as a Java process on JVM. As Java proceeds with a
build, it keeps on creating Java objects. These objects are stored in
the memory allocated to Maven. This area of memory where Java
objects are stored is known as heap. Heap is created at the JVM
start, and it increases as more and more objects are created up to the
defined maximum limit. The -Xms JVM flag is used to instruct JVM
the minimum value it should set at the time it creates the heap. The
-Xmx JVM flag sets the maximum heap size.
Permanent Generation (PermGen) is an area of memory managed
by JVM, which stores the internal representations of Java classes. The
maximum size of PermGen can be set by the -XX:MaxPermSize
JVM flag.
To learn about the Maven OutOfMemoryError error, check out
the information at this link: https://cwiki.apache.org/
confluence/display/MAVEN/OutOfMemoryError.

Monitoring the build
The most popular way of starting a Maven build is by using the mvn clean install
command. This will build all the Maven modules under your project and install the
artifacts to your local repository. For a simple project, the entire build process will
take less than a minute. However, for a large project, to create an online build with
a clean repository could even take more than 3 hours: this is not an exaggeration.
If you look at the WSO2 Carbon complete code base, the complete build process
takes more than four hours to run with all the test cases. During a long-running
build process, it is extremely important that we monitor the build properly.

https://cwiki.apache.org/confluence/display/MAVEN/OutOfMemoryError
https://cwiki.apache.org/confluence/display/MAVEN/OutOfMemoryError

Apache Maven Quick Start

[12]

WSO2 Carbon is a framework that is written on top of OSGi to build
servers. All WSO2 products, which are 100 percent open source and
released under Apache 2.0 license, are built on top of WSO2 Carbon.
WSO2 Carbon code base is available at https://svn.wso2.org/
repos/wso2/carbon/.

The following screenshot shows an overview of the JVisualVM tool running a
Maven build:

JVisualVM is a Java virtual machine monitoring, troubleshooting, and
profiling tool. To learn more about it, refer http://docs.oracle.com/
javase/6/docs/technotes/tools/share/jvisualvm.html.

The JVisualVM tool that comes with the JDK distribution can be used to monitor
a running Maven build. First, we need to start the Maven build and then start
JVisualVM using the following command:

$ jvisualvm

https://svn.wso2.org/repos/wso2/carbon/
https://svn.wso2.org/repos/wso2/carbon/
http://docs.oracle.com/javase/6/docs/technotes/tools/share/jvisualvm.html
http://docs.oracle.com/javase/6/docs/technotes/tools/share/jvisualvm.html

Chapter 1

[13]

This command will start the JVisualVM tool. Once the tool gets started, select org.
codehaus.plexus.classworlds.launcher.Launcher from the Applications tab
to monitor the running Maven build. You can gather many important statistics
using JVisualVM, and based on that you can optimize your system resources for
an optimal Maven build.

The following screenshot shows JVisualVM statistics of a running Maven build:

Remote debugging
For a developer, remote debugging is a must-have feature for any build system.
Why do we need remote debugging for a build system? This is extremely useful
when you run your tests through the build itself. If any of the tests fail during
the build, you should be able to debug and pinpoint the problem. The following
command will run Maven in the debugging mode:

$ mvn clean install -Dmaven.surefire.debug

Apache Maven Quick Start

[14]

When the build starts to execute tests, it will be paused to connect with an IDE.
You can connect Eclipse, NetBeans, or your favorite IDE to port 5005 in order to start
remote debugging. By default, Maven opens up port 5005 for remote debugging.

 T E S T S

Listening for transport dt_socket at address: 5005

The default listening port number can be changed by setting the value of address
appropriately. When you set the value of the suspend variable to y, the Maven build
will stop until an IDE gets connected to it. If you want the build to continue and
connect the IDE later, then set the value to n. To get full control over the debugging
options, you can use the following command:

$ mvn clean install -Dmaven.surefire.debug="-Xdebug -
 Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=8000 -
 Xnoagent -Djava.compiler=NONE"

Refer to the corresponding IDE documentation to see how it
can be remotely connected to an externally running process for
remote debugging.

Convention over configuration
Convention over configuration is one of the main design philosophies behind Apache
Maven. Let's go through a few examples.

A complete Maven project can be created using the following code snippet in
pom.xml file:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>sample-one</artifactId>
 <version>1.0.0</version>
</project>

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Chapter 1

[15]

The Maven POM file starts with the <project> element. Always
define the <project/> element with the corresponding schema.
Some tools can't validate the file without it.

<project xmlns=http://maven.apache.org/POM/4.0.0
 xmlns:xsi=………
 xsi:schemaLocation="…">

Copy the previous configuration element and create a pom.xml file out of it.
Then, place it in a directory called chapter-01 and create the following child
directories under it:

•	 chapter-01/src/main/java

•	 chapter-01/src/test/java

Now, you can place your Java code under chapter-01/src/main/java and test
cases under chapter-01/src/test/java. Use the following command to run the
Maven build:

$ mvn clean install

This little configuration is tied up with many conventions:

•	 The Java source code is available at {base-dir}/src/main/java
•	 Test cases are available at {base-dir}/src/test/java
•	 A JAR file type of artifact is produced
•	 Compiled class files are copied into {base-dir}/target/classes
•	 The final artifact is copied into {base-dir}/target
•	 The link http://repo.maven.apache.org/maven2 is used as the repository

If someone needs to override the default, conventional behavior of Maven, that is
possible too. The following sample pom.xml file shows how to override some of
the preceding default values:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>sample-one</artifactId>
 <version>1.0.0</version>
 <packaging>jar</packaging>

Apache Maven Quick Start

[16]

 <build>
 <sourceDirectory>${basedir}/src/main/java</sourceDirectory>
 <testSourceDirectory>${basedir}/src/test/java
 </testSourceDirectory>
 <outputDirectory>${basedir}/target/classes
 </outputDirectory>
 </build>
</project>

IDE integration
Most of the hardcore developers never want to leave their IDE. Not just coding,
building, deploying, and testing, they would be happy to do everything (if possible)
from the IDE itself. Most popular IDEs have support for Maven integration and they
have developed their own plugins to support Maven.

NetBeans integration
NetBeans 6.7 or newer ships with inbuilt Maven integration, while NetBeans 7.0 and
newer versions bundle a complete copy of Maven 3 and run it for builds just like
you would from the command line. For Version 6.9 or older, you have to download
a Maven build and configure the IDE to run that. More information corresponding
to Maven and NetBeans integration is available at http://wiki.netbeans.org/
MavenBestPractices.

IntelliJ IDEA integration
IntelliJ IDEA has inbuilt support for Maven; hence, you don't need to perform
any additional steps to install it. More information corresponding to Maven and
IntelliJ IDEA integration is available at http://wiki.jetbrains.net/intellij/
Creating_and_importing_Maven_projects.

Eclipse integration
The M2Eclipse project provides first class Maven support through the Eclipse IDE.
More information corresponding to Maven and Eclipse integration is available at
https://www.eclipse.org/m2e/.

The book Maven for Eclipse, Packt Publishing, discusses Maven and Eclipse
integration in detail (https://www.packtpub.com/application-
development/maven-eclipse).

Chapter 1

[17]

Troubleshooting
If everything works fine, we don't have to worry about troubleshooting. However,
most of the time this is not the case. A Maven build could fail for many reasons—
some are under your control, while others are beyond your control. Knowing proper
troubleshooting tips helps you pinpoint the exact problem. The following sections
list out some of the commonly used troubleshooting tips. We will expand the list as
we proceed in this book.

Enabling Maven debug-level logs
Once Maven debug level logging is enabled, it will print all the actions it takes during
the build process. To enable debug level logging, use the following command:

$ mvn clean install –X

Building dependency tree
If you find any issues with any dependencies in your Maven project, the first step
is to build a dependency tree. This shows where each dependency comes from.
To build the dependency tree, run the following command against your project
POM file:

$ mvn dependency:tree

The following result shows the truncated output of the previous command executed
against the Apache Rampart project:

[INFO] --

[INFO] Building Rampart - Trust 1.6.1-wso2v12

[INFO] --

[INFO]

[INFO] --- maven-dependency-plugin:2.1:tree (default-cli) @ rampart-
trust ---

[INFO] org.apache.rampart:rampart-trust:jar:1.6.1-wso2v12

[INFO] +- org.apache.rampart:rampart-policy:jar:1.6.1-wso2v12:compile

[INFO] +- org.apache.axis2:axis2-kernel:jar:1.6.1-wso2v10:compile

[INFO] | +- org.apache.ws.commons.axiom:axiom-api:jar:1.2.11-
wso2v4:compile (version managed from 1.2.11)

[INFO] | | \- jaxen:jaxen:jar:1.1.1:compile

Apache Maven Quick Start

[18]

[INFO] | +- org.apache.ws.commons.axiom:axiom-impl:jar:1.2.11-
wso2v4:compile (version managed from 1.2.11)

[INFO] | +- org.apache.geronimo.specs:geronimo-ws-
metadata_2.0_spec:jar:1.1.2:compile

[INFO] | +- org.apache.geronimo.specs:geronimo-
jta_1.1_spec:jar:1.1:compile

[INFO] | +- javax.servlet:servlet-api:jar:2.3:compile

[INFO] | +- commons-httpclient:commons-httpclient:jar:3.1:compile

[INFO] | | \- commons-codec:commons-codec:jar:1.2:compile

[INFO] | +- commons-fileupload:commons-fileupload:jar:1.2:compile

Viewing all environment variables and
system properties
If you have multiple JDKs installed in your system, you may wonder what is being
used by Maven. The following command will display all the environment variables
and system properties set for a given Maven project:

$ mvn help:system

The following result is the truncated output of the previous command:

========================Platform Properties Details==================

===

System Properties

===

java.runtime.name=Java(TM) SE Runtime Environment

sun.boot.library.path=/System/Library/Java/JavaVirtualMachines/1.6.0.
 jdk/Contents/Libraries

java.vm.version=20.65-b04-462

awt.nativeDoubleBuffering=true

gopherProxySet=false

mrj.build=11M4609

java.vm.vendor=Apple Inc.

java.vendor.url=http://www.apple.com/

Chapter 1

[19]

guice.disable.misplaced.annotation.check=true

path.separator=:

java.vm.name=Java HotSpot(TM) 64-Bit Server VM

file.encoding.pkg=sun.io

sun.java.launcher=SUN_STANDARD

user.country=US

sun.os.patch.level=unknown

==

Environment Variables

===

JAVA_HOME=/System/Library/Frameworks/JavaVM.framework/Versions/Curren
 tJDK/Home

HOME=/Users/prabath

TERM_SESSION_ID=9E4F0D49-180D-45F6-B6FB-DFA2DCBF4B77

M2_HOME=/usr/share/maven/maven-3.2.3/

COMMAND_MODE=unix2003

Apple_PubSub_Socket_Render=/tmp/launch-w7NZbG/Render

LOGNAME=prabath

USER=prabath

Viewing the effective POM file
Maven uses default values for the configuration parameters when those are not
overridden at the project level configuration. This is exactly what we discussed
under the convention over configuration section. If we take the same sample POM
file we used before in this chapter, we can see how the effective POM file would
look using the following command.

$ mvn help:effective-pom

This is also the best way to see what default values are being used by Maven.
More details about the effective-pom command are discussed in Chapter 2,
Demystifying Project Object Model.

Apache Maven Quick Start

[20]

Viewing the dependency classpath
The following command lists all the JAR files and directories in the build classpath:

$ mvn dependency:build-classpath

The following result shows the truncated output of the previous command, executed
against the Apache Rampart project:

[INFO] --

[INFO] Building Rampart - Trust 1.6.1-wso2v12

[INFO] --

[INFO]

[INFO] --- maven-dependency-plugin:2.1:build-classpath (default-cli)
@ rampart-trust ---

[INFO] Dependencies classpath:

/Users/prabath/.m2/repository/bouncycastle/bcprov-jdk14/140/bcprov-
jdk14-140.jar:/Users/prabath/.m2/repository/commons-cli/commons-
cli/1.0/commons-cli-1.0.jar:/Users/prabath/.m2/repository/commons-
codec/commons-codec/1.2/commons-codec-
1.2.jar:/Users/prabath/.m2/repository/commons-collections/commons-
collections/3.1/commons-collections-3.1.jar

Summary
This chapter focused on building a basic foundation of Maven to bring all the
readers to a common ground. We discussed the basic steps to install and configure
Maven in Ubuntu, Mac OS X, and Microsoft Windows operating systems. Then, we
covered some of the common, useful Maven tips and tricks. As we proceed with the
book, some of the concepts that we touched on in this chapter will be discussed in
detail later.

In the next chapter, we will discuss Maven Project Object Model (POM) in detail.

Demystifying Project
Object Model

Project Object Model (POM) is at the heart of any Maven project. This chapter
focuses on core concepts and best practices related to POM in building a large-scale,
multimodule Maven project.

As we proceed with this chapter, we will be discussing the following topics:

•	 The POM hierarchy, super POM, and parent POM
•	 Extending and overriding POM files
•	 Maven coordinates
•	 Managing dependencies
•	 Transitive dependencies
•	 Dependency scopes and optional dependencies

In Maven 1, the equivalent to today's pom.xml file was
identified as project.xml. Maven 2 renamed it to pom.xml.
More details about the POM are available at http://maven.
apache.org/pom.html.

http://maven.apache.org/pom.html
http://maven.apache.org/pom.html

Demystifying Project Object Model

[22]

Project Object Model
Any Maven project must have a pom.xml file. POM is the Maven project descriptor,
just like the web.xml file in your Java EE web application or the build.xml file
in your Ant project. The following code lists out all the key elements in a Maven
pom.xml file. As we proceed with the book, we will discuss how to use each
element in the most effective manner:

<project>
 <parent>...</parent>
 <modelVersion>4.0.0</modelVersion>
 <groupId>...</groupId>
 <artifactId>...</artifactId>
 <version>...</version>
 <packaging>...</packaging>

 <name>...</name>
 <description>...</description>
 <url>...</url>
 <inceptionYear>...</inceptionYear>
 <licenses>...</licenses>
 <organization>...</organization>
 <developers>...</developers>
 <contributors>...</contributors>

 <dependencies>...</dependencies>
 <dependencyManagement>...</dependencyManagement>
 <modules>...</modules>
 <properties>...</properties>

 <build>...</build>
 <reporting>...</reporting>

 <issueManagement>...</issueManagement>
 <ciManagement>...</ciManagement>
 <mailingLists>...</mailingLists>
 <scm>...</scm>
 <prerequisites>...</prerequisites>

 <repositories>...</repositories>
 <pluginRepositories>...</pluginRepositories>

 <distributionManagement>...</distributionManagement>

 <profiles>...</profiles>
</project>

Chapter 2

[23]

The POM hierarchy
POM files maintain a parent-child relationship between them. A child POM file
inherits all the configuration elements from its parent POM file. This is how Maven
sticks to its design philosophy, which is convention over configuration. The minimal
POM configuration for any Maven project is extremely simple, which is as follows:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>sample-one</artifactId>
 <version>1.0.0</version>
</project>

Super POM
Any POM file can point to its parent POM. If the parent POM element is missing,
then there is a system-wide POM file that is automatically treated as the parent POM
file. This POM file is well known as the super POM. Ultimately, all the application
POM files get extended from the super POM. The super POM file is at the top of the
POM hierarchy, and it is bundled inside MAVEN_HOME/lib/maven-model-builder-
3.2.3.jar - org/apache/maven/model/pom-4.0.0.xml. In Maven 2, this was
bundled inside maven-2.X.X-uber.jar. All the default configurations are defined
in the super POM file. Even the simplest form of a POM file will inherit all the
configurations defined in the super POM file. Whatever configuration you need to
override, you can do it by redefining the same section in your application POM file.
The following lines of code show the super POM file configuration, which comes
with Maven 3.2.3:

<project>
 <modelVersion>4.0.0</modelVersion>

The Maven central is the only repository defined under the repositories section.
It will be inherited by all the Maven application modules. Maven uses the repositories
defined under the repositories section to download all the dependent artifacts
during a Maven build. The following code snippet shows the configuration block
in pom.xml, which is used to define repositories:

 <repositories>
 <repository>
 <id>central</id>
 <name>Central Repository</name>
 <url>http://repo.maven.apache.org/maven2</url>
 <layout>default</layout>

Demystifying Project Object Model

[24]

 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>

Plugin repositories define where to find Maven plugins. We'll be discussing about
Maven plugins in Chapter 5, Maven Plugins. The following code snippet shows the
configuration related to plugin repositories:

 <pluginRepositories>
 <pluginRepository>
 <id>central</id>
 <name>Central Repository</name>
 <url>http://repo.maven.apache.org/maven2</url>
 <layout>default</layout>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <releases>
 <updatePolicy>never</updatePolicy>
 </releases>
 </pluginRepository>
 </pluginRepositories>

The build configuration section includes all the information required to build
a project:

 <build>
 <directory>${project.basedir}/target</directory>
 <outputDirectory>${project.build.directory}/classes
 </outputDirectory>
 <finalName>${project.artifactId}-${project.version}
 </finalName>
 <testOutputDirectory>${project.build.directory}/test-classes
 </testOutputDirectory>
 <sourceDirectory>${project.basedir}/src/main/java
 </sourceDirectory>
 <scriptSourceDirectory>${project.basedir}/src/main/scripts
 </scriptSourceDirectory>
 <testSourceDirectory>${project.basedir}/src/test/java
 </testSourceDirectory>

 <resources>
 <resource>

Chapter 2

[25]

 <directory>${project.basedir}/src/main/resources
 </directory>
 </resource>
 </resources>
 <testResources>
 <testResource>
 <directory>${project.basedir}/src/test/resources
 </directory>
 </testResource>
 </testResources>

 <pluginManagement>
 <plugins>
 <plugin>
 <artifactId>maven-antrun-plugin</artifactId>
 <version>1.3</version>
 </plugin>
 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.2-beta-5</version>
 </plugin>
 <plugin>
 <artifactId>maven-dependency-plugin</artifactId>
 <version>2.8</version>
 </plugin>
 <plugin>
 <artifactId>maven-release-plugin</artifactId>
 <version>2.3.2</version>
 </plugin>
 </plugins>
 </pluginManagement>

 </build>

The reporting section includes the details of report plugins, which are used
to generate reports that will be later displayed on the site generated by Maven.
The super POM only provides a default value for the output directory. The code
is as follows:

 <reporting>
 <outputDirectory>${project.build.directory}/site
 </outputDirectory>
 </reporting>

Demystifying Project Object Model

[26]

The following code snippet defines the default build profile. When no profiles are
defined at the application level, this will get executed. We will be talking about
profiles in Chapter 9, Best Practices:

 <profiles>
 <profile>
 <id>release-profile</id>

 <activation>
 <property>
 <name>performRelease</name>
 <value>true</value>
 </property>
 </activation>

 <build>
 <plugins>
 <plugin>
 <inherited>true</inherited>
 <artifactId>maven-source-plugin</artifactId>
 <executions>
 <execution>
 <id>attach-sources</id>
 <goals>
 <goal>jar</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <inherited>true</inherited>
 <artifactId>maven-javadoc-plugin</artifactId>
 <executions>
 <execution>
 <id>attach-javadocs</id>
 <goals>
 <goal>jar</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <inherited>true</inherited>
 <artifactId>maven-deploy-plugin</artifactId>

Chapter 2

[27]

 <configuration>
 <updateReleaseInfo>true</updateReleaseInfo>
 </configuration>
 </plugin>
 </plugins>
 </build>
 </profile>
 </profiles>

</project>

The following figure shows an abstract view of the super POM file, with the key
configuration elements:

<>project

<>repositories

<>repository

<>build

<>directory

<>finalName

<>outputDirectory

<>sourceDirectory

<>reporting

<>profiles
<>profile

<>outputDirectory

<>pluginManagement

<>testOutputDirectory

<>testSourceDirectory

<>scriptSourceDirectory

<>pluginResitories

<>pluginRepository

<>modelVersion 4.0.0

${project.basedir}.target

${project.build.directory}/classes

${project.artifactId}-${project.version}

${project.build.directory}/test-classes

${project.basedir}/src/main/java

${project.basedir}/src/main/scripts

${project.basedir}/src/test/java

${project.build.directory}/site

<>testResources

<>resources

Demystifying Project Object Model

[28]

POM extending and overriding
Let's see how POM overriding works. In the following example, we extend the
repositories section to add one more repository to what is defined in the
Maven super POM file:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>sample-one</artifactId>
 <version>1.0.0</version>

 <repositories>
 <repository>
 <id>wso2-nexus</id>
 <name>WSO2 internal Repository</name>
 <url>http://maven.wso2.org/nexus/content/groups/wso2-
 public/
 </url>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>daily</updatePolicy>
 <checksumPolicy>ignore</checksumPolicy>
 </releases>
 </repository>
 </repositories>

</project>

Type the following command from the directory, where you have the previous
POM file:

$ mvn help:effective-pom

This will display the effective POM file for the application, which combines
all the default settings from the super POM file and the configuration defined
in your application POM. In the following code snippet, you can see that the
<repositories> section in the super POM file is being extended by your application
specific configuration. Now the <repositories> section has the central repository
defined in the super POM file as well as your application specific repository:

<repositories>
 <repository>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>daily</updatePolicy>
 <checksumPolicy>ignore</checksumPolicy>

Chapter 2

[29]

 </releases>
 <id>wso2-nexus</id>
 <name>WSO2 internal Repository</name>
 <url>
 http://maven.wso2.org/nexus/content/groups/wso2-public/
 </url>
 </repository>
 <repository>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <id>central</id>
 <name>Central Repository</name>
 <url>https://repo.maven.apache.org/maven2</url>
 </repository>
</repositories>

If you want to override any of the configuration elements corresponding to the
Maven central repository, inherited from the super POM file, then you have to define
a repository in your application POM with the same repository id (as of the Maven
central repository) and override the configuration element you need.

One main advantage of the POM hierarchy in Maven is that you can extend as well as
override the configuration inherited from the top. Say for example, you might need
to keep all the plugins defined in the super POM file, but just want to override the
version of maven-release-plugin. The following configuration shows how to do it.
By default, in the super POM, the maven-release-plugin version is 2.3.2, and here
we update it to 2.5 in our application POM. If you run mvn help:effective-pom
again against the updated POM file, you will notice that the plugin version is updated
while the rest of the plugin configuration from the super POM file remain unchanged:

<project>

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>sample-one</artifactId>
 <version>1.0.0</version>

 <build>
 <pluginManagement>
 <plugins>
 <plugin>
 <artifactId>maven-release-plugin</artifactId>
 <version>2.5</version>

Demystifying Project Object Model

[30]

 </plugin>
 </plugins>
 </pluginManagement>
 </build>

</project>

To override the configuration of a given element or an artifact in the POM hierarchy,
Maven should be able to uniquely identify the corresponding artifact. In the
preceding scenario, the plugin was identified by its artifactId. In Chapter 5,
Maven Plugins, we will further discuss how Maven locates plugins.

Maven coordinates
Maven coordinates identify uniquely a project, a dependency, or a plugin defined in
POM. Each entity is uniquely identified by the combination of a group identifier, an
artifact identifier, and the version (and, of course, with the packaging and the classifier).
The group identifier is a way of grouping different Maven artifacts. For example, a set
of artifacts produced by a company can be grouped under the same group identifier.
The artifact identifier is the way you identify an artifact, which could be JAR, WAR, or
any other type of an artifact uniquely within a given group. The version element lets
you keep the same artifact in different versions in the same repository.

A valid Maven POM file must have groupId, artifactId,
and version. The groupId and the version elements can also
be inherited from the parent POM file.

All these three coordinates of a given Maven artifact are used to define its path in the
Maven repository. If we take the following example, the corresponding JAR file is
installed in the local repository with the USER_HOME/.m2/repository/com/packt/
sample-one/1.0.0/ path:

<groupId>com.packt</groupId>
<artifactId>sample-one</artifactId>
<version>1.0.0</version>

If you have gone through the elements of the super POM file carefully, you might
have noticed that it does not have any of the previously mentioned elements. No
groupId, artifactId, or version. Does this mean that the super POM file is not
a valid POM? The super POM file is like an abstract class in Java. It does not work
by itself; it must be inherited by a child POM file. Another way to look at the super
POM file is that it's the Maven's way of sharing default configurations.

Chapter 2

[31]

Once again, if you look at the <pluginManagement> section of the super POM file,
as shown in the following code snippet, you will notice that a given plugin artifact
is identified only by its artifactId and version elements. This contradicts what
we mentioned before; a given artifact is uniquely identified by the combination of
groupId, artifactId, and version. How is this possible?

<plugin>
 <artifactId>maven-antrun-plugin</artifactId>
 <version>1.3</version>
</plugin>

There is an exception for plugins. You need not specify groupId for a plugin in the
POM file; it's optional. By default, Maven uses org.apache.maven.plugins or org.
codehaus.mojo as groupId. Have a look at the following section in MAVEN_HOME/
conf/settings.xml. If you want to add additional group IDs for plugin lookup,
you have to uncomment the section below and add them there:

 <!-- pluginGroups
 | This is a list of additional group identifiers that
 | will be searched when resolving plugins by their prefix, i.e.
 | when invoking a command line like "mvn prefix:goal".
 | Maven will automatically add the group identifiers
 | "org.apache.maven.plugins" and "org.codehaus.mojo"
 | if these are not already contained in the list.
 |-->
 <pluginGroups>
 <!-- pluginGroup
 | Specifies a further group identifier to use for plugin
 | lookup.
 <pluginGroup>com.your.plugins</pluginGroup>
 -->
 </pluginGroups>

We will be discussing Maven plugins in detail in Chapter 5,
Maven Plugins.

Parent POM file
When we deal with hundreds of Maven modules, we need to structure the project to
avoid any redundancies or any duplicate configurations. If not, it will lead to a huge
maintenance nightmare. Let's have a look at some popular open source projects.

Demystifying Project Object Model

[32]

The WSO2 Carbon Turing branch, which is available at https://svn.wso2.org/
repos/wso2/carbon/platform/branches/turing/, has more than 1000 Maven
modules. Anyone who downloads the source code from the root should be able to
build the complete source, with all components. The pom.xml file at the root acts as a
module-aggregating POM. It defines all Maven modules that need to be built under
the <modules> element. Each module element defines the relative path (from the root
POM file) to the corresponding Maven module. There needs to be another POM file
under the defined relative path. The root POM in the WSO2 Carbon Turing project
only acts as an aggregator module. It does not build any parent-child relationships
with other Maven modules. The following code snippet shows the module
configuration in the root pom.xml file

<modules>
 <module>parent</module>
 <module>dependencies</module>
 <module>service-stubs</module>
 <module>components</module>
 <module>platform-integration/clarity-framework</module>
 <module>features</module>
 <module>samples/shopping-cart</module>
 <module>samples/shopping-cart-global</module>
</modules>

Now, let's have a look at the POM file inside the parent module. This POM file
defines plugin repositories, a distribution repository, plugins, and a set of properties.
This does not have any dependencies, and this is the POM file that acts as the parent
for other Maven submodules. The parent POM file has the following coordinates:

<groupId>org.wso2.carbon</groupId>
<artifactId>platform-parent</artifactId>
<version>4.2.0</version>
<packaging>pom</packaging>

If you look at the POM file inside the components module, it refers parent/pom.xml
as the parent Maven module. The value of the relativePath element, by default,
refers to the pom.xml file one level above, that is, ../pom.xml. However, in this case,
it is not the parent POM file; hence, the value of the element must be overridden and
set to ../parent/pom.xml, as shown here:

<groupId>org.wso2.carbon</groupId>
<artifactId>carbon-components</artifactId>
<version>4.2.0</version>
<parent>
 <groupId>org.wso2.carbon</groupId>
 <artifactId>platform-parent</artifactId>

https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/
https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/

Chapter 2

[33]

 <version>4.2.0</version>
 <relativePath>../parent/pom.xml</relativePath>
</parent>

If you go inside the components module and run mvn help:effective-pom, you
will notice that the effective POM aggregates both the configurations defined in
parent/pom.xml and components/pom.xml. Parent POM files help to propagate
common configuration elements to the downstream Maven modules, and it can
go up to many levels. The components/pom.xml file acts as a parent POM file
for Maven modules below that. For example, let's have a look at the following
components/identity/pom.xml file. It has a reference to the components/pom.xml
file as its parent. Note that here we do not need to use the relativePath element,
as the corresponding parent POM is at the default location:

<groupId>org.wso2.carbon</groupId>
<artifactId>identity</artifactId>
<version>4.2.0</version>
<parent>
 <groupId>org.wso2.carbon</groupId>
 <artifactId>carbon-components</artifactId>
 <version>4.2.0</version>
</parent>

The complete list of elements in a POM file is explained in detail
at http://maven.apache.org/ref/3.2.3/maven-model/
maven.html.

Managing POM dependencies
In a large-scale development project with hundreds of Maven modules, managing
dependencies could be a hazardous task. There are two effective ways to manage
dependencies: POM inheritance and dependency grouping. With POM inheritance,
the parent POM file has to define all the common dependencies used by its child
modules under the dependencyManagement section. This way we can avoid
any duplicate dependencies. Also, if we have to update the version of a given
dependency, then we only have to make a change in one place. Let's take the same
example we discussed before using the WSO2 Carbon Turing project. Let's have a
look at the dependencyManagement section of parent/pom.xml (only a part of the
POM file is shown here):

<dependencyManagement>
 <dependencies>
 <dependency>

http://maven.apache.org/ref/3.2.3/maven-model/maven.html
http://maven.apache.org/ref/3.2.3/maven-model/maven.html

Demystifying Project Object Model

[34]

 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-transport-mail</artifactId>
 <version>${axis2-transports.version}</version>
 </dependency>
 <dependency>
 <groupId>org.apache.ws.commons.axiom.wso2</groupId>
 <artifactId>axiom</artifactId>
 <version>${axiom.wso2.version}</version>
 </dependency>
 </dependencies>
</dependencyManagement>

To know more about dependency management, refer to Introduction to
the Dependency Mechanism at http://maven.apache.org/guides/
introduction/introduction-to-dependency-mechanism.html.

Let's have a look at the dependency section of identity/org.wso2.carbon.
identity.core/4.2.3/pom.xml, which extends from components/pom.xml. Here,
you will see only groupId and artifactId of a given dependency but not version.
The version of each dependency is managed through the dependencyManagement
section of the parent POM file. If any child Maven module wants to override the
version of an inherited dependency, it can simply add the version element:

<dependencies>
 <dependency>
 <groupId>org.apache.axis2.wso2</groupId>
 <artifactId>axis2</artifactId>
 </dependency>
 <dependency>
 <groupId>org.apache.ws.commons.axiom.wso2</groupId>
 <artifactId>axiom</artifactId>
 </dependency>
</dependencies>

Another best practice to highlight here is the way dependency versions are specified
in the parent POM file, which is as follows:

<version>${axiom.wso2.version}</version>

http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

Chapter 2

[35]

Instead of specifying the version number inside the dependency element itself, here we
have taken it out and represented the version as a property. The value of the property
is defined under the properties section of the parent POM file, as shown in the
following line of code. This makes POM maintenance extremely easy:

<properties>
 <axis2.wso2.version>1.6.1.wso2v10</axis2.wso2.version>
</properties>

The second approach to manage dependencies is through dependency grouping.
All the common dependencies can be grouped into a single POM file. This approach
is much better than POM inheritance. Here, you do not need to add references
to individual dependencies. Let's go through a simple example. First, we need to
logically group all dependencies into a single POM file.

Apache Axis2 is an open source SOAP engine. To build an Axis2 client, you need to
have all the following dependencies added into your project. If you have multiple
Axis2 client modules, in each module, you need to duplicate all these dependencies:

<dependency>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-kernel</artifactId>
 <version>1.6.2</version>
</dependency>
<dependency>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-adb</artifactId>
 <version>1.6.2</version>
</dependency>
<dependency>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-transport-http</artifactId>
 <version>1.6.2</version>
</dependency>
<dependency>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-transport-local</artifactId>
 <version>1.6.2</version>
</dependency>
<dependency>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-xmlbeans</artifactId>
 <version>1.6.2</version>
</dependency>

Demystifying Project Object Model

[36]

To avoid the dependency duplication, we can create a Maven module with all the
previously mentioned five dependencies as shown in the following code. Make sure
to set the value of the packaging element to pom:

<project>

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>axis2-client</artifactId>
 <version>1.0.0</version>
 <packaging>pom</packaging>

 <dependencies>
 <dependency>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-kernel</artifactId>
 <version>1.6.2</version>
 </dependency>
 <dependency>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-adb</artifactId>
 <version>1.6.2</version>
 </dependency>
 <dependency>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-transport-http</artifactId>
 <version>1.6.2</version>
 </dependency>
 <dependency>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-transport-local</artifactId>
 <version>1.6.2</version>
 </dependency>
 <dependency>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-xmlbeans</artifactId>
 <version>1.6.2</version>
 </dependency>
 </dependencies>

</project>

Chapter 2

[37]

Now, in all of your Axis2 client projects, you only need to add a dependency to the
com.packt.axis2-client module, as follows:

<project>

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>my-axis2-client</artifactId>
 <version>1.0.0</version>

 <dependencies>
 <dependency>
 <groupId>com.packt</groupId>
 <artifactId>axis2-client</artifactId>
 <version>1.0.0</version>
 </dependency>
 </dependencies>

</project>

Transitive dependencies
The transitive dependency feature was introduced in Maven 2.0, which automatically
identifies the dependencies of your project dependencies and get them all into the
build path of your project. Let's take the following POM as an example; it has only
a single dependency:

<project>

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>jose</artifactId>
 <version>1.0.0</version>

 <dependencies>
 <dependency>
 <groupId>com.nimbusds</groupId>
 <artifactId>nimbus-jose-jwt</artifactId>
 <version>2.26</version>
 </dependency>
 </dependencies>

</project>

Demystifying Project Object Model

[38]

If you try to create an Eclipse project from the previous POM file using the mvn
eclipse:eclipse command, it will result in the following .classpath file.
Here you can see, in addition to the nimbus-jose-jwt-2.26.jar file, three
more JAR files have been added. These are the transitive dependencies of the
nimbus-jose-jwt dependency:

<classpath>
 <classpathentry kind="src" path="src/main/java"
 including="**/*.java"/>
 <classpathentry kind="output" path="target/classes"/>
 <classpathentry kind="con"
 path="org.eclipse.jdt.launching.JRE_CONTAINER"/>
 <classpathentry kind="var" path="M2_REPO/com/nimbusds/nimbus-
 jose-jwt/2.26/nimbus-jose-jwt-2.26.jar"/>
 <classpathentry kind="var" path="M2_REPO/net/jcip/jcip-
 annotations/1.0/jcip-annotations-1.0.jar"/>
 <classpathentry kind="var" path="M2_REPO/net/minidev/json-
 smart/1.1.1/json-smart-1.1.1.jar"/>
 <classpathentry kind="var"
 path="M2_REPO/org/bouncycastle/bcprov-jdk15on/1.50/bcprov-
 jdk15on-1.50.jar"/>
</classpath>

If you look at the POM file of the nimbus-jose-jwt project, you will see that the
previously mentioned transitive dependencies are defined here as dependencies.
Maven does not define a limit for transitive dependencies. One transitive
dependency can have a reference to another transitive dependency, and it can
go on like this endlessly, given that there are no cyclic dependencies found.

Transitive dependencies can cause some pain too if not used with care. If we take
the same Maven module we discussed before as an example and have the following
Java code inside src/main/java directory, it will compile without any errors/
complaints. This has only a single dependency, which is nimbus-jose-jwt-2.26.
jar. However, the net.minidev.json.JSONArray class comes from a transitive
dependency, which is json-smart-1.1.1.jar. The build works fine, because Maven
gets all the transitive dependencies into the project build path. Everything will work
fine till one fine day, you update the version of nimbus-jose-jwt, and the new version
could have a reference to a new version of json-smart jar, which is not compatible
with your code. This could easily break your build or might cause test cases to fail.
This would create hazards and it would be a nightmare to find out the root cause.
The following Java code uses the JSONArray class from json-smart-1.1.1.jar:

import net.minidev.json.JSONArray;
import com.nimbusds.jwt.JWTClaimsSet;

public class JOSEUtil {

Chapter 2

[39]

 public static void main(String[] args) {

 JWTClaimsSet jwtClaims = new JWTClaimsSet();

 JSONArray jsonArray = new JSONArray();

 jsonArray.add("maven-book");

 jwtClaims.setIssuer("https://packt.com");

 jwtClaims.setSubject("john");

 jwtClaims.setCustomClaim("book", jsonArray);

 }
}

To avoid such a nightmare, you need to follow a simple rule of thumb. If you have
any import statements in a Java class, you need to make sure that the dependency
JAR file corresponding to this is being added to the project POM file.

The Maven dependency plugin helps you to find out such inconsistencies in your
Maven module. Run the following command and observe its output;

$ mvn dependency:analyze

[INFO] --- maven-dependency-plugin:2.8:analyze (default-cli) @
 jose ---

[WARNING] Used undeclared dependencies found:

[WARNING] net.minidev:json-smart:jar:1.1.1:compile

Note the two warnings in the previous output. It clearly says we have an undeclared
dependency for json-smart jar.

The Maven dependency plugin has several goals to find out
inconsistencies and possible loopholes in your dependency
management. For more details on this, refer to http://maven.
apache.org/plugins/maven-dependency-plugin/.

Dependency scopes
Maven defines the following six scope types; if there is no scope element defined for
a given dependency, the default scope, compile, will get applied:

•	 compile: This is the default scope. Any dependency defined under the
compile scope will be available in all the class paths and also packaged
into the final artifact produced by the Maven project. If you are building
a WAR type artifact, then the referred JAR file with the compile scope
will be embedded into the WAR file itself.

http://maven.apache.org/plugins/maven-dependency-plugin/
http://maven.apache.org/plugins/maven-dependency-plugin/

Demystifying Project Object Model

[40]

•	 provided: This scope expects that the corresponding dependency will be
provided either by JDK or a container, which runs the application. The best
example is the servlet API. Any dependency with the provided scope will be
available in the build time class path, but it won't be packaged into the final
artifact. If it's a WAR file, the servlet API will be available in the class path
during the build time, but won't get packaged into the WAR file.
 <dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>javax.servlet-api</artifactId>
 <version>3.0.1</version>
 <scope>provided</scope>
 </dependency>

•	 runtime: Dependencies defined under the runtime scope will be available
only during the runtime, not in the build time class path. These dependencies
will be packaged into the final artifact. You can have a web app that in
runtime talks to a MySQL database. Your code does not have any hard
dependency to the MySQL database driver. Code is written against the Java
JDBC API, and it does not need the MySQL database driver at the build
time. However, during the runtime, it needs the driver to talk to the MySQL
database. For this, the driver should be packaged into the final artifact.

•	 test: Dependencies are only needed for test compilation (for example, JUnit
and TestNG), and execution must be defined under the test scope. These
dependencies won't get packaged into the final artifact.

•	 system: This is very similar to the scope provided. The only difference
is with the system scope, you need to tell Maven how to find it. System
dependencies are useful when you do not have the referred dependency
in a Maven repository. With this, you need to make sure that all system
dependencies are available to download with the source code itself. It is
always recommended to avoid using system dependencies. The following
code snippets shows how to define a system dependency:
 <dependency>
 <groupId>com.packt</groupId>
 <artifactId>jose</artifactId>
 <version>1.0.0</version>
 <scope>system</scope>
 <systemPath>${basedir}/lib/jose.jar</systemPath>
 </dependency>

$basedir is a built-in property defined in Maven to represent
the directory, which has the corresponding POM file.

Chapter 2

[41]

•	 import: This is only applicable for dependencies defined under the
dependencyManagement section with the pom packaging type. Let's take
the following POM file; it has the packaging type defined as pom:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>axis2-client</artifactId>
 <version>1.0.0</version>
 <packaging>pom</packaging>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-kernel</artifactId>
 <version>1.6.2</version>
 </dependency>
 <dependency>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-adb</artifactId>
 <version>1.6.2</version>
 </dependency>
 </dependencies>
 </dependencyManagement>
</project>

Now, from a different Maven module, we add a dependency under the
dependencyManagement section to the previous module, with the scope
value set to import and the value of type set to pom:
<project>

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>my-axis2-client</artifactId>
 <version>1.0.0</version>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.packt</groupId>
 <artifactId>axis2-client</artifactId>
 <version>1.0.0</version>

Demystifying Project Object Model

[42]

 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>
<project>

Now, if we run mvn help:effective-pom against the last POM file, we will
see the dependencies from before are being imported, as shown here:
<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-kernel</artifactId>
 <version>1.6.2</version>
 </dependency>
 <dependency>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-adb</artifactId>
 <version>1.6.2</version>
 </dependency>
 </dependencies>
</dependencyManagement>

Optional dependencies
Let's say that we have a Java project that has to work with two different OSGi
runtimes. We have written almost all the code to the OSGi API, but there are certain
parts in the code that consume OSGi runtime-specific APIs. In runtime, only the code
path related to the underneath OSGi runtime will get executed, not both. This raises
the need to have both OSGI runtime JAR files at the build time. However, at runtime,
we do not need both the code execution paths, only the one related to the OSGi
runtime is needed. We can meet these requirements by optional dependencies,
which is as follows:

<project>

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>osgi.client</artifactId>
 <version>1.0.0</version>

 <dependencies>
 <dependency>

Chapter 2

[43]

 <groupId>org.eclipse.equinox</groupId>
 <artifactId>osgi</artifactId>
 <version>3.1.1</version>
 <scope>compile</scope>
 <optional>true</optional>
 </dependency>
 <dependency>
 <groupId>org.apache.phoenix</groupId>
 <artifactId>phoenix-core</artifactId>
 <version>3.0.0-incubating</version>
 <scope>compile</scope>
 <optional>true</optional>
 </dependency>
 </dependencies>

</project>

For any client project that needs com.packt.osgi.client to work in an Equinox
OSGi runtime, it must explicitly add a dependency to the Equinox JAR file.

<project>

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>my.osgi.client</artifactId>
 <version>1.0.0</version>

 <dependencies>
 <dependency>
 <groupId>org.eclipse.equinox</groupId>
 <artifactId>osgi</artifactId>
 <version>3.1.1</version>
 <scope>compile</scope>
 </dependency>
 <dependency>
 <groupId>com.packt</groupId>
 <artifactId>osgi.client</artifactId>
 <version>1.0.0</version>
 <scope>compile</scope>
 </dependency>
 </dependencies>

</project>

Demystifying Project Object Model

[44]

Dependency exclusion
Dependency exclusion helps avoid getting a selected set of transitive dependencies.
Say for example, we have the following POM file with two dependencies, one for the
nimbus-jose-jwt and the other for the json-smart artifact:

<project>

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>jose</artifactId>
 <version>1.0.0</version>

 <dependencies>
 <dependency>
 <groupId>com.nimbusds</groupId>
 <artifactId>nimbus-jose-jwt</artifactId>
 <version>2.26</version>
 </dependency>
 <dependency>
 <groupId>net.minidev</groupId>
 <artifactId>json-smart</artifactId>
 <version>1.0.9</version>
 </dependency>
 </dependencies>

</project>

If we try to run mvn eclipse:eclipse against the previous POM file, you will see
the following .classpath file that has a dependency to json-smart version 1.0.9
as rightly expected:

<classpathentry kind="var" path="M2_REPO/net/minidev/json-
 smart/1.0.9/json-smart-1.0.9.jar"/>

Let's say we have another project that refers to the same nimbus-jose-jwt artifact
and a newer version of the json-smart JAR file:

<project>

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>jose.ext</artifactId>
 <version>1.0.0</version>

 <dependencies>
 <dependency>
 <groupId>com.nimbusds</groupId>

Chapter 2

[45]

 <artifactId>nimbus-jose-jwt</artifactId>
 <version>2.26</version>
 </dependency>
 <dependency>
 <groupId>net.minidev</groupId>
 <artifactId>json-smart</artifactId>
 <version>1.1.1</version>
 </dependency>
 </dependencies>

</project>

If we try to run mvn eclipse:eclipse against the previous POM file, you will see
the following .classpath file that has a dependency to the json-smart artifact
version 1.1.1:

<classpathentry kind="var" path="M2_REPO/net/minidev/json-
 smart/1.1.1/json-smart-1.1.1.jar"/>

We still did not see a problem. Now, say we build a WAR file that has dependencies
to both the previous Maven modules:

<project>

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>jose.war</artifactId>
 <version>1.0.0</version>
 <version>war</version>

 <dependencies>
 <dependency>
 <groupId>com.packt</groupId>
 <artifactId>jose</artifactId>
 <version>1.0.0</version>
 </dependency>
 <dependency>
 <groupId>com.packt</groupId>
 <artifactId>jose.ext</artifactId>
 <version>1.0.0</version>
 </dependency>
 </dependencies>

</project>

Demystifying Project Object Model

[46]

Once the WAR file is created, inside WEB-INF/lib, we can see only the 1.1.1 version
of json-smart JAR file. This comes as a transitive dependency of the com.packt.
jose.ext project. There can be a case where the WAR file does not need the 1.1.1
version in its runtime, but needs the 1.0.9 version. To achieve this, we need to
exclude the 1.1.1 version of the json-smart JAR file from the com.packt.jose.ext
project, as shown in the following code:

<project>

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>jose.war</artifactId>
 <version>1.0.0</version>
 <version>war</version>

 <dependencies>
 <dependency>
 <groupId>com.packt</groupId>
 <artifactId>jose</artifactId>
 <version>1.0.0</version>
 </dependency>
 <dependency>
 <groupId>com.packt</groupId>
 <artifactId>jose.ext</artifactId>
 <version>1.0.0</version>
 <exclusions>
 <exclusion>
 <groupId>net.minidev</groupId>
 <artifactId>json-smart</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
 </dependencies>

</project>

Now, if you look inside WEB-INF/lib, you can see only the 1.0.9 version of the
json-smart JAR file.

Summary
In this chapter, we focused our discussion around Maven Project Object Model (POM)
and how to adhere to industry-wide accepted best practices to avoid maintenance
nightmares. The key elements of a POM file, POM hierarchy and inheritance, managing
dependencies, and related topics were covered here. In the next chapter, we will have a
look at different options available to configure Maven.

Maven Configuration
Maven maintains its configuration at three different levels: global, user, and project.
This chapter discusses how to customize Maven configuration at all three levels for
optimal use:

•	 The global-level configuration is maintained at MAVEN_HOME/conf/
settings.xml

•	 The user-level configuration is maintained at USER_HOME/.m2/settings.xml
•	 The project-level configuration is maintained at PROJECT_HOME/pom.xml

The settings.xml file is the God of all Maven configurations.
The XML schema of the configuration elements defined in
settings.xml is available at http://maven.apache.org/
xsd/settings-1.0.0.xsd. The following snippet shows a
high-level outline of the settings.xml file:

<settings>
 <localRepository/>
 <interactiveMode/>
 <usePluginRegistry/>
 <offline/>
 <pluginGroups/>
 <servers/>
 <mirrors/>
 <proxies/>
 <profiles/>
 <activeProfiles/>
</settings>

http://maven.apache.org/xsd/settings-1.0.0.xsd
http://maven.apache.org/xsd/settings-1.0.0.xsd

Maven Configuration

[48]

As we proceed with this chapter, the following topics will be covered:

•	 Maven Wagon
•	 Proxy authentication
•	 Secured repositories
•	 Integration with Source Control Management systems
•	 Mirrored repositories
•	 Deploying artifacts
•	 Enabling logging

Maven Wagon
Maven Wagon provides a layer of abstraction over the underlying transport protocols
to transfer resources or artifacts to and from Maven repositories. At the time of writing
this book, the unified API provided by Maven Wagon has implementations for seven
transports. The following figure shows the layered architecture of Maven Wagon:

Lightweight HTTP

Provider API

File HTTP FTP SSH

WebDAV SCP SCM

Due to the decoupled architecture, Maven does not have a hard dependency on the
communication protocols supported by the repository. It can be over HTTP, FTP,
SSH, WebDAV, or any other custom protocol.

More details about Maven Wagon can be found
at http://maven.apache.org/wagon/.

http://maven.apache.org/wagon/

Chapter 3

[49]

Wagon HTTP(S) transport
From Maven 3.0.4 onwards, Wagon HTTP(S) transport is based on Apache HTTP
client 4.1.2. This also added the HTTP connection pooling support. By default, the
connection pool size is 20 per destination. Wagon HTTP transport can be further
tuned via settings.xml.

Maven artifact repositories can be defined in the application POM and will also
inherit from the super POM file. The super POM file has defined the following
repository with the id central tag:

<repositories>
 <repository>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <id>central</id>
 <name>Central Repository</name>
 <url>http://repo.maven.apache.org/maven2</url>
 </repository>
</repositories>

As the connectivity to the repository defined in the previous configuration is over
HTTP, Wagon will use its HTTP implementation. You can see that the value of the
url element is set to an HTTP endpoint.

The Wagon HTTP connection can be configured per repository by its id via
MAVEN_HOME/conf/settings.xml. If we want to change the read timeout period
of the HTTP connection to the previous Maven repository with the id central tag,
add the following child element under the <servers/> element. The value of the
readTimeout element defines the timeout period in milliseconds. If needed, the
timeout can be defined per HTTP verb. Here, it's defined only for HTTP GET. The
value of the id element must match with what is defined under <repository>
element in the pom.xml file.

<server>
 <id>central</id>
 <configuration>
 <httpConfiguration>
 <get>
 <readTimeout>100000</readTimeout>
 </get>
 </httpConfiguration>
 </configuration>
</server>

Maven Configuration

[50]

The default read timeout in Maven HTTP connection
is 30 minutes.

How about the connection timeout? The connection timeout is different from
the connection read timeout, as discussed before. The connection timeout is the
waiting time to make the initial connection, while the connection read timeout
is the waiting time to read data from the connection after it is established. The
following configuration shows how to change the default connection timeout.
The value of the connectionTimeout element is defined in milliseconds:

<server>
 <id>central</id>
 <configuration>
 <httpConfiguration>
 <get>
 <connectionTimeout>100000</connectionTimeout>
 </get>
 </httpConfiguration>
 </configuration>
</server>

The default connection timeout in the Maven HTTP
connection is 100 seconds.

There can be a case where a remote repository server expects certain HTTP headers
in the request. To add custom headers, you can have the following configuration:

<server>
 <id>central</id>
 <configuration>
 <httpHeaders>
 <httpHeader>
 <name>CUSTOM_HEADER_NAME</name>
 <value>CUSTOM_HEADER_VALUE</value>
 </httpHeader>
 </httpHeaders>
 </configuration>
</server>

Chapter 3

[51]

As we discussed before, Wagon HTTP(S) transport is based on Apache HTTP client
4.1.2. Apache HTTP client has many configuration parameters to alter its default
behavior. Any of these parameters can be configured in Wagon HTTP transport
for Maven, as shown in the following configuration:

<server>
 <id>central</id>
 <configuration>
 <httpConfiguration>
 <get>
 <params>
 <param>
 <name>PARAM_NAME</name>
 <value>PARAM_VALUE</value>
 </param>
 </params>
 </get>
 </httpConfiguration>
 </configuration>
</server>

To ask an HTTP client to ignore cookies for all HTTP GET requests, you need to set
the value of http.protocol.cookie-policy to ignore:

<server>
 <id>central</id>
 <configuration>
 <httpConfiguration>
 <get>
 <params>
 <param>
 <name>http.protocol.cookie-policy</name>
 <value>ignore</value>
 </param>
 </params>
 </get>
 </httpConfiguration>
 </configuration>
</server>

Maven Configuration

[52]

Wagon system properties
Maven Wagon's default behavior can be altered with the following system properties:

•	 maven.wagon.http.pool: This enables or disables the HTTP connection
pooling. The default value is true. The following command shows how
to set it:
$ mvn clean install -Dmaven.wagon.http.pool=true

•	 maven.wagon.httpconnectionManager.maxPerRoute: This specifies
the maximum number of HTTP connections that can be created against
a given destination/repository. The default value is 20.
$ mvn clean install
-Dmaven.wagon.httpconnectionManager.maxPerRoute=20

•	 maven.wagon.httpconnectionManager.maxTotal: This specifies the
maximum number of total HTTP connections that can be created against
all the destinations/repositories. The default value is 40. The following
command shows how to set it:
$ mvn clean install
-Dmaven.wagon.httpconnectionManager.maxTotal=40

•	 maven.wagon.http.ssl.insecure: When Maven talks to a server over
TLS, it validates whether the server's TLS certificate is signed by a trusted
Certificate Authority (CA); if not, it will display an error. By setting
this system property to true, you can avoid such errors and work with
repositories that have self-signed certificates or untrusted certificates.
The default value is false. The following command shows how to set it:
$ mvn clean install -Dmaven.wagon.http.ssl.insecure=false

•	 maven.wagon.http.ssl.allowall: By default, when it talks to a TLS
endpoint, Maven will check whether the hostname of the endpoint matches
the CN (Common Name) value of its certificate. If not, it will display an
error. By setting this system property to true. you can avoid such errors.
The default value is false. The following command shows how to set it:
$ mvn clean install -Dmaven.wagon.http.ssl.allowall=false

•	 maven.wagon.http.ssl.ignore.validity.dates: By default, when it
talks to a TLS endpoint, Maven will check whether the expiration date of
the certificate is valid. If not, it will display an error. By setting this system
property to true, you can avoid such errors. The default value is false.
The following command shows how to set it:
$ mvn clean install -
Dmaven.wagon.http.ssl.ignore.validity.dates=false

Chapter 3

[53]

•	 maven.wagon.rto: This shows the connection read timeout in milliseconds.
The default value is 30 minutes. The following command shows how to set it:
$ mvn clean install -Dmaven.wagon.rto=1800000

Proxy authentication
During a Maven build, you need to connect to external repositories outside your
firewall. In a tight and secured environment, any outbound connection has to
go through an internal proxy server. The following configuration in MAVEN_HOME/
conf/settings.xml shows how to connect to an external repository via a secured
proxy server:

<proxy>
 <id>internal_proxy</id>
 <active>true</active>
 <protocol>http</protocol>
 <username>proxyuser</username>
 <password>proxypass</password>
 <host>proxy.host.net</host>
 <port>80</port>
 <nonProxyHosts>local.net|some.host.com</nonProxyHosts>
</proxy>

The proxy child element must be defined under the proxies element, with the
appropriate configuration. There can be multiple proxy elements, but only the first
proxy element where the value is active will be picked by Maven. If you also have
a corporate Maven repository deployed behind a firewall, then the corresponding
hostname should be defined under the nonProxyHosts element. When Maven talks
to this repository, it won't go through the proxy.

Secured repositories
Maven repositories can be protected for legitimate access. If a given repository is
protected with HTTP Basic authentication, the corresponding credentials should
be defined, as shown in the following configuration, under the server element of
MAVEN_HOME/conf/settings.xml. The value of the id element should match the
value of the repository id element:

<server>
 <id>central</id>
 <username>my_username</username>
 <password>my_password</password>
</server>

Maven Configuration

[54]

If a given repository uses HTTP Basic authentication-based
security, make sure that you talk to the server over Transport
Layer Security (TLS). Plain HTTP will carry your credentials in
cleartext. Read more about TLS from http://en.wikipedia.
org/wiki/Transport_Layer_Security.

Encrypting credentials in settings.xml
Maven keeps confidential data such as passwords in settings.xml. For example,
in the previous two sections, the passwords for the proxy server and the repository
are kept in cleartext. The following configuration repeats the server configuration
of a repository secured with HTTP Basic authentication:

<server>
 <id>central</id>
 <username>my_username</username>
 <password>my_password</password>
</server>

More details about encrypting Maven passwords can be found
at http://maven.apache.org/guides/mini/guide-
encryption.html.

Keeping confidential data in configuration files in cleartext is a security threat
that must be avoided. Maven provides a way to encrypt configuration data in
settings.xml, which is as follows:

1.	 First, we need to create a master encryption key by using the
following command:
$ mvn -emp mymasterpassword

{lJ1MrCQRnngHIpSadxoyEKyt2zIGbm3Yl0ClKdTtRR6TleNaEfGOEoJaxNc
 dMr+G}

2.	 With the output from the previous command, we need to create a file called
settings-security.xml under USER_HOME/.m2/ and add the encrypted
master password there as shown here:
<settingsSecurity>
 <master>
 {lJ1MrCQRnngHIpSadxoyEKyt2zIGbm3Yl0ClKdTtRR6TleNaEfGOEoJaxN
 cdMr+G}
 </master>
</settingsSecurity>

http://en.wikipedia.org/wiki/Transport_Layer_Security
http://en.wikipedia.org/wiki/Transport_Layer_Security
http://maven.apache.org/guides/mini/guide-encryption.html
http://maven.apache.org/guides/mini/guide-encryption.html

Chapter 3

[55]

3.	 Once the master password is configured properly, we can start encrypting
rest of the confidential data in settings.xml. Let's see how to encrypt the
server password. First, we need to generate the encrypted password for the
cleartext one using the following command. Note that, earlier we used emp
(encrypt master password) and now we are using ep (encrypt password):
$ mvn -ep my_password

{PbYw8YaLb3cHA34/5EdHzoUsmmw/u/nWOwb9e+x6Hbs=}

4.	 Copy the value of the encrypted password and replace the corresponding
value in the settings.xml file, as shown here:
<server>
 <id>central</id>
 <username>my_username</username>
 <password>
 {PbYw8YaLb3cHA34/5EdHzoUsmmw/u/nWOwb9e+x6Hbs=}
 </password>
</server>

5.	 If you are still concerned about keeping the encrypted master key in the
computer itself, use the following approach to remove it from the computer
and take it with you in a USB stick. However, the disadvantage in this
approach is that to trigger a build, Maven always looks for your USB stick, and
this will prevent any scheduled online builds. To read the master key from the
USB stick, use the following configuration in settings-security.xml under
USER_HOME/.m2/:
<settingsSecurity>
 <relocation>
 /Volumes/MyUSBPEN/settings-security.xml
 </relocation>
</settingsSecurity>

For any inquisitive mind, there remains a question. How does Maven encrypt the
password? What is the key used to encrypt the master password and where does
Maven keep it?

Maven uses AES 128 with the PBE SHA-256 algorithm for encryption. Password-Based
Encryption (PBE) is a way of performing symmetric key encryption using a password
or a passphrase. Once Maven gets the master password in cleartext, it will calculate the
salted hash against it using the SHA256 algorithm. This will be performed for a few
iterations to end up with the encrypted master key. Even though we call it encrypted,
it is not really encrypted using another key.

Maven Configuration

[56]

If you run the following command multiple times against the same cleartext password,
you will end up with different encrypted passwords each time. The reason is that each
time you run the command, Maven generates a random salt value and uses this to
derive the encrypted master key:

$ mvn -emp mymasterpassword

To encrypt confidential data in settings.xml, Maven uses this master key along
with the AES 128-bits symmetric-key encryption algorithm. Anyone with access
to the master key will be able to decrypt all the encrypted passwords kept in
settings.xml.

How does Maven find what to decrypt from the settings.xml file?
If you keep the data in the settings.xml file in the {xxxxx} format,
Maven will try to decrypt it using the master key.

Source Control Management systems
At the time of this writing, Maven has complete support for integrating with
Subversion (SVN), Git, Concurrent Versions System (CVS), Bazzar, Jazz, Mercurial,
Perforce, StarTeam, and CM Synergy. Support for Visual SourceSafe, Team Foundation
Server, Rational ClearCase, and AccuRev is partially completed.

Maven with Subversion
Let's try out a simple sample here, which integrates Maven with Subversion. You can
download the complete sample from https://svn.wso2.org/repos/wso2/people/
prabath/maven/chapter03/jose:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>jose</artifactId>
 <version>1.0.0</version>

 <scm>
 <connection>
 scm:svn:https://svn.wso2.org/repos/wso2
 /people/prabath/maven/jose/src
 </connection>
 <developerConnection>
 scm:svn:https://svn.wso2.org/repos/wso2/
 people/prabath/maven/jose/src

https://svn.wso2.org/repos/wso2/people/prabath/maven/chapter03/jose
https://svn.wso2.org/repos/wso2/people/prabath/maven/chapter03/jose

Chapter 3

[57]

 </developerConnection>
 <url>
 https://svn.wso2.org/repos/wso2/people/prabath/maven/jose
 </url>
 </scm>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-scm-plugin</artifactId>
 <version>1.9</version>
 <configuration>
 <connectionType>
 connection
 </connectionType>
 </configuration>
 </plugin>
 </plugins>
 </build>

 <dependencies>
 <dependency>
 <groupId>com.nimbusds</groupId>
 <artifactId>nimbus-jose-jwt</artifactId>
 <version>2.26</version>
 </dependency>
 </dependencies>

</project>

Here, we used a Maven SCM plugin to connect to Subversion. The plugin
reads Subversion connection details from the <scm> section at the top. The
<scm> configuration allows defining two types of connections: connection and
developerConnection. The value of the connection element should have read-only
access to the source-controlling system while the value of the developerConnection
element should have read-write access. Most of the source-controlling systems let
anyone check out the source code over plain HTTP while for commits or check-ins,
it mandates the use of HTTPS. From the maven-scm-plugin configuration, you can
pick which type of connection you need by setting the value of the connectionType
element either to connection or developerConnection. If you are going to use the
plugin only for read-only operations, then you should set the value of connectionType
to connection. The value of the url element under the SCM configuration should
point to the browsable URL of the SCM.

Maven Configuration

[58]

According to the Subversion SCM plugin documentation available at http://maven.
apache.org/scm/maven-scm-plugin/, it supports the following SCM goals:

•	 scm:add: This is the command to add files
•	 scm:bootstrap: This is the command to check out and build a project
•	 scm:branch: This is used to branch the project
•	 scm:changelog: This is the command to show the source code revisions
•	 scm:check-local-modification: This fails the build if there are any

local modifications
•	 scm:checkin: This is the command to commit changes
•	 scm:checkout: This is the command to get the source code
•	 scm:diff: This is the command to show the differences between the working

copy and the remote one
•	 scm:edit: This is the command to start editing on the working copy
•	 scm:export: This is the command to get a fresh exported copy
•	 scm:list: This is the command to get the list of project files
•	 scm:remove: This is the command to mark a set of files for deletion
•	 scm:status: This is the command to show the SCM status of the working copy
•	 scm:tag: This is the command to tag a certain revision
•	 scm:unedit: This is the command to stop editing the working copy
•	 scm:update: This is the command to update the working copy with the

latest changes
•	 scm:update-subprojects: This is the command to update all projects in a

multi project build
•	 scm:validate: This validates the SCM information in the POM file

Let's a go through a few examples. The following command will check out the latest
code before starting the build:

$ mvn scm:update clean install

The following command will find any local code modifications and will show the
differences:

$ mvn scm:diff

http://maven.apache.org/scm/maven-scm-plugin/
http://maven.apache.org/scm/maven-scm-plugin/

Chapter 3

[59]

Most of the source control systems (in fact all) protect the write operations with the
username and password. In order to perform a write operation, we need to set up SVN
credentials. There are two ways to do this. The first one is through the SCM plugin
itself. Inside the SCM plugin configuration, we can define the SVN username and
password as follows. In addition to this, the value of the connectionType element
must be set to developerConnection:

<plugin>
 <groupId>org.apache.maven.plugins</groupId
 <artifactId>maven-scm-plugin</artifactId>
 <version>1.9</version>
 <configuration>
 <connectionType>developerConnection</connectionType>
 <username>username</username>
 <password>password</password>
 </configuration>
</plugin>

The previous approach can lead to certain security issues. When you
maintain your credentials in a POM file, these credentials cannot be
encrypted. Also, you maintain your POM files in Subversion itself.
In this case, the POM file with the credentials will be checked-in and
any Subversion user can see your credentials.

The second approach is to set up the Subversion credentials via USER_HOME/.
m2/settings.xml. If you cannot find a settings.xml file inside USER_HOME/.
m2/, you can copy the settings.xml file from MAVEN_HOME/conf. The id tag of
the server configuration must point to the hostname of the Subversion connection
URL. The configuration is as follows:

<server>
 <id>svn.wso2.org</id>
 <username>my_username</username>
 <password>my_password</password>
</server>

The password in the previous configuration can be encrypted by following the
approach defined in the Encrypting credentials in settings.xml section of this chapter.

The following command will check in the updated code after a successful build:

$ mvn clean install scm:checkin -Dmessage="updated source"

Maven Configuration

[60]

Local repository location
By default, the Maven local repository is created at USER_HOME/.m2/repository.
This can be changed to a preferred location by editing MAVEN_HOME/conf/settings.
xml to update the value of the localRepository element, as follows:

<localRepository>/path/to/local/repo</localRepository>

Mirrored repositories
Most of the Maven repositories maintain a set of mirrored repositories to cater to high
demand. Maven repositories are defined in the application pom.xml file in a project
specific manner. Mirrored repositories are defined outside the application POM, either
in MAVEN_HOME/conf/settings.xml or USER_HOME/.m2/settings.xml. A given
repository can have multiple mirrored repositories in multiple geographical locations,
for example, one in the US, one in Europe, and another in Asia. Based on the user's
proximity, they can pick the mirrored repository. Due to the same reason, we cannot
define it in the application POM file. In a large-scale project, developers can come
from every corner of the world, and we cannot define a mirrored repository in the
application POM. Each developer can define the most appropriate mirrored repository
for him/her in USER_HOME/.m2/settings.xml under the <mirrors> configuration
element, as follows:

<mirror>
 <id>mirrorId</id>
 <mirrorOf>repositoryId</mirrorOf>
 <name>Human Readable Name for this Mirror.</name>
 <url>http://my.repository.com/repo/path</url>
</mirror>

The value of the mirrorOf element must match the value of the repository/id
element defined in the application POM file. In this case, the value of mirrorOf
will be central, as follows:

<repository>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <id>central</id>
 <name>Central Repository</name>
 <url>http://repo.maven.apache.org/maven2</url>
</repository>

Chapter 3

[61]

The Maven central repository has four mirrored repositories distributed in USA
and Europe:

•	 The configuration for the mirrored repository at California, USA, is as follows:
<mirror>
 <id>Central</id>
 <url>http://repo1.maven.org/maven2</url>
 <mirrorOf>central</mirrorOf>
</mirror>

•	 The configuration for the mirrored repository at North Carolina, USA,
is as follows:
<mirror>
 <id>ibiblio.org</id>
 <url>
 http://mirrors.ibiblio.org/pub/mirrors/maven2
 </url>
 <mirrorOf>central</mirrorOf>
</mirror>

•	 The configuration for the mirrored repository at United Kingdom is as follows:
<mirror>
 <id>uk.maven.org</id>
 <url>http://uk.maven.org/maven2</url>
 <mirrorOf>central</mirrorOf>
</mirror>

•	 The configuration for the mirrored repository at France is as follows:
<mirror>
 <id>antelink.com</id>
 <url>
 http://maven.antelink.com/content/repositories/central/
 </url>
 <mirrorOf>central</mirrorOf>
</mirror>

If Maven finds a corresponding mirrored repository for any given repository defined
in the application POM file, it will start using the mirrored one instead of the primary.

Maven Configuration

[62]

The internal corporate repository
In a highly constrained, secured working environment, users won't be able
to connect to the Internet directly. At the same time, in a larger development
environment with hundreds of developers, if each developer tries to download
Maven artifacts from external repositories, this will create a great deal of the
inbound/outbound Internet traffic. This can be avoided by using an internal
corporate Maven repository. Each developer has to set the corporate repository as
a mirror in USER_HOME/settings.xml for all Maven repositories. To indicate that a
given mirror should be used for any of the repositories defined in application POM
files, the value of the mirrorOf configuration element must be set to *, as follows:

<mirror>
 <id>internal.mirror.mycompany.com</id>
 <url>
 http:// internal.mirror.mycompany.com/maven/
 </url>
 <mirrorOf>*</mirrorOf>
</mirror>

The following figure shows the use of an internal corporate Maven repository to
avoid a large amount of inbound/outbound Internet traffic:

mvn clean install

External Maven
Repository -1

External Maven
Repository -2

Internal Maven
Repository

pom.xml

settings.xml

In Chapter 8, Maven Repository Management, we will discuss
how to set up a Repository manager as a proxy.

Chapter 3

[63]

Advanced mirror configurations
From Maven 2.0.9 onwards, Maven introduced some advanced filtering mechanisms
for the mirrorOf element. The previous section used *, which, in fact, is for any
repository. Further filtering can be done in the following manner:

<mirror>
 <id>internal.mirror.mycompany.com</id>
 <url>
 http://internal.mirror.mycompany.com/maven/
 </url>
 <mirrorOf>*,!central</mirrorOf>
</mirror>

The previous configuration says use the mirror for any repository except for the
central repository.

The following configuration says use the mirror only for repo1 and repo2:

<mirror>
 <id>internal.mirror.mycompany.com</id>
 <url>
 http://internal.mirror.mycompany.com/maven/
 </url>
 <mirrorOf>repo1,repo2</mirrorOf>
</mirror>

The following configuration says use the mirror for any repository other than the
localhost or file-based repository. We'll be talking about file-based repositories as
we proceed in this chapter.

<mirror>
 <id>internal.mirror.mycompany.com</id>
 <url>
 http://internal.mirror.mycompany.com/maven/
 </url>
 <mirrorOf>external:*</mirrorOf>
</mirror>

Maven Configuration

[64]

Deploying artifacts
To deploy artifacts into a Maven repository, we need to define a
distributionManagement configuration element in the application POM file of the
root Maven module. At the time of writing this book, Maven supports SSH, SFTP,
FTP, and file-based artifact deployment. Let's have a look at how file-based artifact
deployment works.

Deploying file-based artifacts
The following configuration will deploy the artifacts to the repository at /Users/
prabath/maven/deploy. This is one of the easiest and the quickest way of building a
Maven repository, but this is not recommended for use in a large-scale development
project. Use the mvn deploy command to deploy the artifacts into the configured
repository.

<project>

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>jose</artifactId>
 <version>1.0.0</version>

 <distributionManagement>
 <repository>
 <id>local-file-repository</id>
 <name>Local File Repository</name>
 <url>file:///Users/prabath/maven/deploy</url>
 </repository>
 </distributionManagement>

 <dependencies>
 <dependency>
 <groupId>com.nimbusds</groupId>
 <artifactId>nimbus-jose-jwt</artifactId>
 <version>2.26</version>
 </dependency>
 </dependencies>

</project>

Chapter 3

[65]

Deploying SSH-based artifacts
The following configuration will deploy the artifacts to the repository at USER_HOME/
maven/deploy of the server that has the IP address 192.168.1.4:

<project>

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>jose</artifactId>
 <version>1.0.0</version>

 <distributionManagement>
 <repository>
 <id>ssh-repository</id>
 <name>SSH Repository</name>
 <url>scpexe://192.168.1.4/maven/deploy</url>
 </repository>
 </distributionManagement>

 <build>
 <extensions>
 <extension>
 <groupId>org.apache.maven.wagon</groupId>
 <artifactId>wagon-ssh-external</artifactId>
 <version>1.0-beta-6</version>
 </extension>
 </extensions>
 </build>

 <dependencies>
 <dependency>
 <groupId>com.nimbusds</groupId>
 <artifactId>nimbus-jose-jwt</artifactId>
 <version>2.26</version>
 </dependency>
 </dependencies>

</project>

The wagon-ssh-external JAR file is provided as a build extension
in the previous application POM file. Extensions provide a list of
artifacts that have to be used during a Maven build. These artifacts
will be included into the build time class path.

Maven Configuration

[66]

To authenticate to the remote server, Maven provides two ways. One is based on the
username and password. The other one is based on SSH authentication keys.

The following steps show how to configure username/password credentials against
a Maven repository:

1.	 Add the following <server> configuration element to USER_HOME/.m2/
settings.xml under the <servers> parent element. The value of the
id element must carry the value of the remote repository hostname.
<server>
 <id>192.168.1.4</id>
 <username>my_username</username>
 <password>my_password</password>
</server>

The password in the previous configuration can be encrypted by following
the approach defined in the Encrypting credentials in settings.xml section of
this chapter.

2.	 If the remote repository only supports SSH authentication keys, then we
need to specify the location of the private key, as follows:
<server>
 <id>192.168.1.4</id>
 <username>my_username</username>
 <privateKey>/path/to/private/key</privateKey>
</server>

Deploying FTP-based artifacts
The following configuration will deploy the artifacts to the repository at
USER_HOME/maven/deploy of the server having the IP address 192.168.1.4:

<project>

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>jose</artifactId>
 <version>1.0.0</version>

 <distributionManagement>
 <repository>
 <id>ftp-repository</id>

Chapter 3

[67]

 <name>FTP Repository</name>
 <url>ftp://192.168.1.4/maven/deploy</url>
 </repository>
 </distributionManagement>

 <dependencies>
 <dependency>
 <groupId>com.nimbusds</groupId>
 <artifactId>nimbus-jose-jwt</artifactId>
 <version>2.26</version>
 </dependency>
 </dependencies>

 <build>
 <extensions>
 <extension>
 <groupId>org.apache.maven.wagon</groupId>
 <artifactId>wagon-ftp</artifactId>
 <version>1.0-beta-6</version>
 </extension>
 </extensions>
 </build>
</project>

To authenticate to the remote FTP server, we need to add the following <server>
configuration element to USER_HOME/.m2/settings.xml under the <servers>
parent element. The value of the id element must carry the value of the remote
repository hostname.

<server>
 <id>192.168.1.4</id>
 <username>my_username</username>
 <password>my_password</password>
</server>

The password in the previous configuration can be encrypted by following the
approach defined in the Encrypting credentials in settings.xml section of this chapter.

Maven Configuration

[68]

Enabling Maven logging
Everything does not work fine all the time. The connectivity to an external repository
or a server can fail due to many reasons. Maven debugging helps you to nail down
the root cause in such a situation. To run Maven with debug level logs enabled, use
the following command:

$ mvn clean install -X

Maven 3.1.0 and higher versions use the SLF4J logging API. The following logging
configuration available at MAVEN_HOME/conf/logging/simplelogger.properties
can be used to alter the default behavior of Maven logging:

org.slf4j.simpleLogger.defaultLogLevel=info
org.slf4j.simpleLogger.showDateTime=false
org.slf4j.simpleLogger.showThreadName=false
org.slf4j.simpleLogger.showLogName=false
org.slf4j.simpleLogger.logFile=System.out
org.slf4j.simpleLogger.levelInBrackets=true
org.slf4j.simpleLogger.log.Sisu=info
org.slf4j.simpleLogger.warnLevelString=WARNING

By default, Maven publishes logs to the console itself. The following configuration
shows how to direct it to a file by editing the simplelogger.properties file:

org.slf4j.simpleLogger.logFile=/Users/[user_name]/maven.log

Summary
In this chapter, we discussed how to configure Maven at three different levels:
global, user, and project. The chapter also focused on introducing best practices while
configuring Maven for optimal use. In the next chapter, we will discuss Maven build
lifecycles and how to create custom lifecycles and lifecycle extensions.

Build Lifecycles
A Maven build lifecycle consists of a set of well-defined phases. Each phase groups a
set of goals defined by Maven plugins and the lifecycle defines the order of execution.
A Maven plugin is a collection of goals where each goal is responsible for performing a
specific action. We'll be discussing Maven plugins in detail in Chapter 5, Maven Plugins.

In this chapter, the following topics will be covered:

•	 Standard lifecycles in Maven
•	 Lifecycle bindings
•	 Building custom lifecycles and lifecycle extensions

The following figure shows the relationship between Maven plugin goals and
lifecycle phases:

Goal-2

Goal-1

Goal-3

Plugin

Phase-1

Phase-2

Phase-3

Lifecycle

Goal-5

Goal-4

Goal-6

Plugin

Build Lifecycles

[70]

Let's take the simplest Maven build command that every Java developer is
familiar with:

$ mvn clean install

What will this do? As a developer, how many times have you executed the previous
command? Have you ever thought of what happens inside? If not, it's time to explore
it now.

Standard lifecycles in Maven
Maven comes with three standard lifecycles: default, clean, and site. Each lifecycle
defines its own set of phases.

The clean lifecycle
The clean lifecycle defines three phases: pre-clean, clean, and post-clean.
A phase in a lifecycle is just an ordered placeholder in the build execution path.
For example, the clean phase in the clean lifecycle cannot do anything on its own.
In the Maven architecture, it has two key elements: nouns and verbs. Both nouns and
verbs, which are related to a given project, are defined in the POM file. The name
of the project, the name of the parent project, the dependencies, and the type of the
packaging are nouns. Plugins bring verbs into the Maven build system, and they
define what needs to be done during the build execution via its goals. A plugin is a
group of goals. Each goal of a plugin can be executed on its own or can be registered
as part of a phase in a Maven build lifecycle.

When you type mvn clean, it executes all the phases defined in the clean lifecycle
up to and including the clean phase. Don't be confused; in this command, clean
is not the name of the lifecycle, it's the name of a phase. It's only a coincidence that
the name of the phase happens to be the name of the lifecycle. In Maven, you cannot
simply execute a lifecycle by its name—it has to be the name of a phase. Maven will
find the corresponding lifecycle and will execute it up to the given phase (including
that phase).

Chapter 4

[71]

When you type mvn clean, it cleans out project's working directory (by default, it's
the target directory). This is done via the Maven clean plugin. To find more details
about the Maven clean plugin, type the following command. It describes all the
goals defined inside the clean plugin:

$ mvn help:describe -Dplugin=clean

Name: Maven Clean Plugin

Description: The Maven Clean Plugin is a plugin that removes files
 generated at build-time in a project's directory.

Group Id: org.apache.maven.plugins

Artifact Id: maven-clean-plugin

Version: 2.5

Goal Prefix: clean

This plugin has 2 goals.

clean:clean

Description: Goal, which cleans the build. This attempts to clean a
 project's working directory of the files that were generated at
 build-time. By default, it discovers and deletes the directories
 configured in project.build.directory,
 project.build.outputDirectory, project.build.testOutputDirectory,
 andproject.reporting.outputDirectory.Files outside the default may
 also be included in the deletion by configuring the filesets tag.

clean:help

Description: Display help information on maven-clean-plugin.Call

mvn clean:help -Ddetail=true -Dgoal=<goal-name> to display parameter
 details.

For more information, run 'mvn help:describe [...] -Ddetail'

Everything in Maven is a plugin. Even the command we executed
previously to get goal details of the clean plugin executes another
plugin: the help plugin. The following command will describe the
help plugin itself:
$ mvn help:describe -Dplugin=help

describe is a goal defined inside the help plugin.

Build Lifecycles

[72]

The clean plugin has two goals defined in it: clean and help. As mentioned
previously, each goal of a plugin can be executed on its own or can be registered
as part of a phase in a Maven build lifecycle. A clean goal of the clean plugin
can be executed on its own with the following command:

$ mvn clean:clean

The following figure shows the relationship between the Maven clean plugin goals
and the clean lifecycle phases:

clean

help

Clean Plugin
pre-clean

clean

post-clean

Clean Lifecycle

The first clean word in the previous command is the prefix of the clean plugin, while
the second one is the name of the goal. When you type mvn clean, it's the same clean
goal that gets executed. However, this time it gets executed through the clean phase
of the clean lifecycle, and it also executes all the phases in the corresponding lifecycle
up to the clean phase—not just the clean phase. The clean goal of the clean plugin
is configured by default to get executed during the clean lifecycle. The plugin goal
to lifecycle phase mapping can be provided through the application POM file. If not,
it will be inherited from the super POM file. The super POM file, which defines the
clean plugin by default, adds the plugin to the clean phase of the clean lifecycle.
You cannot define the same phase in two different lifecycles.

The following code snippet shows how the clean goal of the Maven clean plugin is
associated with the clean phase of the clean lifecycle:

<plugin>
 <artifactId>maven-clean-plugin</artifactId>
 <version>2.5</version>
 <executions>
 <execution>
 <id>default-clean</id>

Chapter 4

[73]

 <phase>clean</phase>
 <goals>
 <goal>clean</goal>
 </goals>
 </execution>
 </executions>
</plugin>

The pre-clean and post-clean phases of the clean lifecycle do not have any
plugin bindings. The objective of the pre-clean phase is to perform any operations
prior to the cleaning task and the objective of the post-clean phase is to perform
any operations after the cleaning task. If you need to associate any plugins with these
two phases, you simply need to add them to the corresponding plugin configuration.

The default lifecycle
The default lifecycle in Maven defines 23 phases. When you run the command mvn
clean install, it will execute all the phases from the default lifecycle up to and
including the install phase. To be precise, Maven will first execute all the phases
in clean lifecycle up to and including the clean phase, and will then execute the
default lifecycle up to and including the install phase.

The phases in the default lifecycle do not have any associated plugin goals. The
plugin bindings for each phase are defined by the corresponding packaging. If the
type of packaging of your Maven project is JAR, then it will define its own set of
plugins for each phase. If the packaging type is WAR, then it will have its own set of
plugins. The following points summarize all the phases defined under the default
lifecycle in their order of execution:

•	 validate: This phase validates the project POM file and makes sure all the
necessary information related to carry out the build is available.

•	 initialize: This phase initializes the build by setting up the right directory
structure and initializing properties.

•	 generate-sources: This phase generates any required source code.
•	 process-sources: This phase processes the generated source code.

For example, there can be a plugin running in this phase to filter the
source code based on some defined criteria.

•	 generate-resources: This phase generates any resources that need
to be packaged with the final artifact.

•	 process-resources: This phase processes the generated resources.
It copies the resources to their destination directories and makes them
ready for packaging.

Build Lifecycles

[74]

•	 compile: This phase compiles the source code.
•	 process-classes: This phase can be used to carry out any bytecode

enhancements after the compile phase.
•	 generate-test-sources: This phase generates the required source code

for tests.
•	 process-test-sources: This phase processes the generated test source

code. For example, there can be a plugin running in this phase to filter the
source code based on some defined criteria.

•	 generate-test-resources: This phase generates all the resources required
to run tests.

•	 process-test-resources: This phase processes the generated test resources.
It copies the resources to their destination directories and makes them ready
for testing.

•	 test-compile: This phase compiles the source code for tests.
•	 process-test-classes: This phase can be used to carry out any bytecode

enhancements after the test-compile phase.
•	 test: This phase executes tests using the appropriate unit test framework.
•	 prepare-package: This phase is useful in organizing the artifacts to

be packaged.
•	 package: This phase packs the artifacts into a distributable format,

for example, JAR or WAR.
•	 pre-integration-test: This phase performs the actions required (if any)

before running integration tests. This may be used to start any external
application servers and deploy the artifacts into different test environments.

•	 integration-test: This phase runs integration tests.
•	 post-integration-test: This phase can be used to perform any cleanup

tasks after running the integration tests.
•	 verify: This phase verifies the validity of the package. The criteria to check

the validity needs to be defined by the respective plugins.
•	 install: This phase installs the final artifact in the local repository.
•	 deploy: This phase deploys the final artifact to a remote repository.

The packaging type of a given Maven project is defined under
the <packaging> element in the pom.xml file. If the element
is omitted, then Maven assumes it as jar packaging.

Chapter 4

[75]

The following figure shows all the phases defined under the Maven default lifecycle
and their order of execution:

Default Lifecycle

prepare-package

test

process-test-classes

process-test-resources

generate-test-resources

process-test-sources

generate-test-sources

test-compile

validate

initialize

generate-sources

generate-resources

process-resources

compile

process-classes

process-sources

package

pre-integration-test

integration-test

verity

install

deploy

post-integration-test

More details about Maven lifecycles can be found at
http://maven.apache.org/ref/3.2.3/maven-
core/lifecycles.html.

Let's have a look at a concrete example. Run the following command against a
Maven project having the jar packaging. If you do not have such a project you
can download a sample Maven project from https://svn.wso2.org/repos/
wso2/people/prabath/maven/chapter04/jose/.

$ mvn help:describe -Dcmd=deploy

Here we are using the Maven help plugin to find more details about the deploy
phase corresponding to the jar packaging, and it will produce the following output:

It is a part of the lifecycle for the POM packaging 'jar'. This lifecycle
includes the following phases:

* validate: Not defined

http://maven.apache.org/ref/3.2.3/maven-core/lifecycles.html
http://maven.apache.org/ref/3.2.3/maven-core/lifecycles.html
https://svn.wso2.org/repos/ wso2/people/prabath/maven/chapter04/jose/
https://svn.wso2.org/repos/ wso2/people/prabath/maven/chapter04/jose/

Build Lifecycles

[76]

* initialize: Not defined

* generate-sources: Not defined

* process-sources: Not defined

* generate-resources: Not defined

* process-resources: org.apache.maven.plugins:maven-resources-
 plugin:2.6:resources

* compile: org.apache.maven.plugins:maven-compiler-
 plugin:2.5.1:compile

* process-classes: Not defined

* generate-test-sources: Not defined

* process-test-sources: Not defined

* generate-test-resources: Not defined

* process-test-resources: org.apache.maven.plugins:maven-
 resources-plugin:2.6:testResources

* test-compile: org.apache.maven.plugins:maven-compiler-
 plugin:2.5.1:testCompile

* process-test-classes: Not defined

* test: org.apache.maven.plugins:maven-surefire-plugin:2.12.4:test

* prepare-package: Not defined

* package: org.apache.maven.plugins:maven-jar-plugin:2.4:jar

* pre-integration-test: Not defined

* integration-test: Not defined

* post-integration-test: Not defined

* verify: Not defined

* install: org.apache.maven.plugins:maven-install-
 plugin:2.4:install

* deploy: org.apache.maven.plugins:maven-deploy-plugin:2.7:deploy

The output lists out all the Maven plugins registered against different phases of
the default lifecycle for the jar packaging. The jar goal of maven-jar-plugin is
registered against the package phase, while the install goal of maven-install-
plugin is registered in the install phase.

Let's run the previous command against a POM file having the war packaging.
It produces the following output:

It is a part of the lifecycle for the POM packaging 'war'. This life
includes the following phases:

* validate: Not defined

* initialize: Not defined

* generate-sources: Not defined

* process-sources: Not defined

Chapter 4

[77]

* generate-resources: Not defined

* process-resources: org.apache.maven.plugins:maven-resources-
 plugin:2.6:resources

* compile: org.apache.maven.plugins:maven-compiler-
 plugin:2.5.1:compile

* process-classes: Not defined

* generate-test-sources: Not defined

* process-test-sources: Not defined

* generate-test-resources: Not defined

* process-test-resources: org.apache.maven.plugins:maven-resources-
 plugin:2.6:testResources

* test-compile: org.apache.maven.plugins:maven-compiler-
 plugin:2.5.1:testCompile

* process-test-classes: Not defined

* test: org.apache.maven.plugins:maven-surefire-plugin:2.12.4:test

* prepare-package: Not defined

* package: org.apache.maven.plugins:maven-war-plugin:2.2:war

* pre-integration-test: Not defined

* integration-test: Not defined

* post-integration-test: Not defined

* verify: Not defined

* install: org.apache.maven.plugins:maven-install-plugin:2.4:install

* deploy: org.apache.maven.plugins:maven-deploy-plugin:2.7:deploy

Now if you look at the package phase, you will notice that we have a different
plugin goal: maven-war-plugin.

Similarly to the jar and war packaging, each of the other packaging type defines its
own bindings for the default lifecycle.

The site lifecycle
The site lifecycle is defined with four phases: pre-site, site, post-site, and
site-deploy. The site lifecycle has no value without the Maven site plugin.
The site plugin is used to generate static HTML content for a project. The generated
HTML content will also include appropriate reports corresponding to the project.
The site plugin defines eight goals and two of them are directly associated with
the phases in the site lifecycle.

Let's run the following command against a POM file to describe the site goal:

$ mvn help:describe -Dcmd=site

Build Lifecycles

[78]

As shown in the following output, the site goal of the site plugin is associated
with the site phase, while the deploy goal of the site plugin is associated with
the site-deploy phase:

[INFO] 'site' is a lifecycle with the following phases:
* pre-site: Not defined
* site: org.apache.maven.plugins:maven-site-plugin:3.3:site
* post-site: Not defined
* site-deploy: org.apache.maven.plugins:maven-site-plugin:3.3:deploy

The following figure shows the relationship between the Maven site plugin goals
and the site lifecycle phases:

deploy

site

Site Plugin

pre-clean

site

post-site

site-deploy

Site Lifecycle

Lifecycle bindings
Under the discussion of the default lifecycle, we briefly touched upon the concept
of lifecycle bindings. The default lifecycle is defined without any associated lifecycle
bindings, while both the clean and site lifecycles are defined with bindings. The
standard Maven lifecycles and their associated bindings are defined under the file
META-INF/plex/components.xml of MAVEN_HOME/lib/maven-core-3.2.3.jar.

Here is the definition of the default lifecycle without the associated plugin bindings:

<component>
 <role>org.apache.maven.lifecycle.Lifecycle</role>

Chapter 4

[79]

 <implementation>org.apache.maven.lifecycle.Lifecycle
 </implementation>
 <role-hint>default</role-hint>
 <configuration>
 <id>default</id>
 <phases>
 <phase>validate</phase>
 <phase>initialize</phase>
 <phase>generate-sources</phase>
 <phase>process-sources</phase>
 <phase>generate-resources</phase>
 <phase>process-resources</phase>
 <phase>compile</phase>
 <phase>process-classes</phase>
 <phase>generate-test-sources</phase>
 <phase>process-test-sources</phase>
 <phase>generate-test-resources</phase>
 <phase>process-test-resources</phase>
 <phase>test-compile</phase>
 <phase>process-test-classes</phase>
 <phase>test</phase>
 <phase>prepare-package</phase>
 <phase>package</phase>
 <phase>pre-integration-test</phase>
 <phase>integration-test</phase>
 <phase>post-integration-test</phase>
 <phase>verify</phase>
 <phase>install</phase>
 <phase>deploy</phase>
 </phases>
 </configuration>
</component>

The components.xml file, which is also known as the component descriptor,
describes the properties required by Maven to manage the lifecycle of a Maven
project. The role element specifies the Java interface exposed by this lifecycle
component and defines the type of the component. All the lifecycle components must
have org.apache.maven.lifecycle.Lifecycle as role. The implementation tag
specifies the concrete implementation of the interface. The identity of a component
is defined by the combination of the role and the role-hint elements. The role-
hint element is not a mandatory element; however, if we have multiple elements of
the same type, then we must define a role-hint element. Corresponding to Maven
lifecycles, the name of the lifecycle is set as the value of the role-hint element.

Build Lifecycles

[80]

The clean lifecycle is defined with an associated plugin binding to the clean
goal of maven-clean-plugin. The plugin binding is defined under the element
default-phases. The code is as follows:

<component>
 <role>org.apache.maven.lifecycle.Lifecycle</role>
 <implementation>org.apache.maven.lifecycle.Lifecycle
 </implementation>
 <role-hint>clean</role-hint>
 <configuration>
 <id>clean</id>
 <phases>
 <phase>pre-clean</phase>
 <phase>clean</phase>
 <phase>post-clean</phase>
 </phases>
 <default-phases>
 <clean>
 org.apache.maven.plugins:maven-clean-plugin:2.4.1:clean
 </clean>
 </default-phases>
 </configuration>
</component>

The site lifecycle is defined with the associated plugin bindings to the site and the
site-deploy goals of maven-site-plugin. The plugin bindings are defined under
the element default-phases. The code is as follows:

<component>
 <role>org.apache.maven.lifecycle.Lifecycle</role>
 <implementation>org.apache.maven.lifecycle.Lifecycle
 </implementation>
 <role-hint>site</role-hint>
 <configuration>
 <id>site</id>
 <phases>
 <phase>pre-site</phase>
 <phase>site</phase>
 <phase>post-site</phase>
 <phase>site-deploy</phase>
 </phases>
 <default-phases>
 <site>
 org.apache.maven.plugins:maven-site-plugin:2.0.1:site

Chapter 4

[81]

 </site>
 <site-deploy>
 org.apache.maven.plugins:maven-site-plugin:2.0.1:deploy
 </site-deploy>
 </default-phases>
 </configuration>
</component>

Finally, let's have a look at how the jar plugin binding for the default lifecycle
is defined. The following component element defines a plugin binding to an
existing lifecycle and the associated lifecycle is defined under the configuration/
lifecycles/lifecycle/id element:

<component>
 <role>
 org.apache.maven.lifecycle.mapping.LifecycleMapping
 </role>
 <role-hint>jar</role-hint>
 <implementation>
 org.apache.maven.lifecycle.mapping.DefaultLifecycleMapping
 </implementation>
 <configuration>
 <lifecycles>
 <lifecycle>
 <id>default</id>
 <phases>
 <process-resources>
 org.apache.maven.plugins:maven-resources-
 plugin:2.4.3:resources
 </process-resources>
 <compile>
 org.apache.maven.plugins:maven-compiler-
 plugin:2.3.2:compile
 </compile>
 <process-test-resources>
 org.apache.maven.plugins:maven-resources-
 plugin:2.4.3:testResources
 </process-test-resources>
 <test-compile>
 org.apache.maven.plugins:maven-compiler-
 plugin:2.3.2:testCompile
 </test-compile>
 <test>

Build Lifecycles

[82]

 org.apache.maven.plugins:maven-surefire-
 plugin:2.5:test
 </test>
 <package>
 org.apache.maven.plugins:maven-jar-
 plugin:2.3.1:jar
 </package>
 <install>
 org.apache.maven.plugins:maven-install-
 plugin:2.3.1:install
 </install>
 <deploy>
 org.apache.maven.plugins:maven-deploy-
 plugin:2.5:deploy
 </deploy>
 </phases>
 </lifecycle>
 </lifecycles>
 </configuration>
</component>

Building a custom lifecycle
A lifecycle defines a process. It defines an ordered set of phases that get executed one
after the other. The Maven default lifecycle is sufficient to address most of the use
cases in build management and automation. However, we might need to alter the
behavior of certain phases. Defining a phase and altering a phase are two different
things and they are done in two different ways. Accepting the default lifecycle but
altering its default behavior has to be done with a proper plugin binding.

Lifecycle phases are dumb entities; they inherit the behavior from the associated
plugins. The jar goal of maven-jar-plugin is associated with the package phase of
the default lifecycle, for any artifact having the jar packaging. Similarly, we have a
set of other plugins associated with the package phase for the ear, war, pom, rar, par,
ejb, and ejb3 packaging types. What if we need to introduce a new custom package
type? How do we introduce it to the package phase of the default lifecycle?

Let's take a real-world example. Apache Axis2 is a Java-based open source project that
is developed under Apache Software Foundation (ASF). It provides a framework to
build SOAP-based web services. The deployment unit of an Axis2 web service is a
.aar file. The project provides a Maven plugin to package your Axis2 web services
project as a .aar file: axis2-aar-maven-plugin. In Chapter 5, Maven Plugins, we will
discuss building Maven plugins. For the time being, let's see how to alter the default
lifecycle to accommodate the new axis2-aar-maven-plugin.

Chapter 4

[83]

The Maven architecture is based on the Inversion of Control
(IoC) architectural principal. You can read more about IoC in the
article written by Martin Fowler at http://martinfowler.
com/articles/injection.html. Maven uses Plexus as its IoC
container. Plexus is similar to other IoC containers or dependency
injection frameworks such as Spring. The components.xml file in
Maven is the heart of the Plexus framework. We will discuss Plexus
in Chapter 5, Maven Plugins.

To associate a plugin goal with an existing lifecycle, you need to define a lifecycle
mapping in the META-INF/plexus/components.xml file of the corresponding
plugin. The complete components.xml file of axis2-aar-maven-plugin is available
at http://svn.apache.org/repos/asf/axis/axis2/java/core/trunk/modules/
tool/axis2-aar-maven-plugin/src/main/resources/META-INF/plexus/
components.xml.

The following code snippet shows how the plugin binding for the aar packaging type
is defined, with the axis2-aar-maven-plugin:

<component-set>
 <component>
 <role>org.apache.maven.lifecycle.mapping.LifecycleMapping
 </role>
 <role-hint>aar</role-hint>
 <implementation>
 org.apache.maven.lifecycle.mapping.DefaultLifecycleMapping
 </implementation>
 <configuration>
 <lifecycles>
 <lifecycle>
 <id>default</id>
 <phases>
 <process-resources>
 org.apache.maven.plugins:maven-resources-
 plugin:resources
 </process-resources>
 <compile>
 org.apache.maven.plugins:maven-compiler-plugin:compile
 </compile>
 <process-test-resources>
 org.apache.maven.plugins:maven-resources-
 plugin:testResources
 </process-test-resources>
 <test-compile>
 org.apache.maven.plugins:maven-compiler-
 plugin:testCompile
 </test-compile>

http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html
http://svn.apache.org/repos/asf/axis/axis2/java/core/trunk/modules/tool/axis2-aar-maven-plugin/src/main/resources/META-INF/plexus/components.xml
http://svn.apache.org/repos/asf/axis/axis2/java/core/trunk/modules/tool/axis2-aar-maven-plugin/src/main/resources/META-INF/plexus/components.xml
http://svn.apache.org/repos/asf/axis/axis2/java/core/trunk/modules/tool/axis2-aar-maven-plugin/src/main/resources/META-INF/plexus/components.xml

Build Lifecycles

[84]

 <test>
 org.apache.maven.plugins:maven-surefire-plugin:test
 </test>
 <package>
 org.apache.axis2:axis2-aar-maven-plugin:aar
 </package>
 <install>
 org.apache.maven.plugins:maven-install-plugin:install
 </install>
 <deploy>
 org.apache.maven.plugins:maven-deploy-plugin:deploy
 </deploy>
 </phases>
 </lifecycle>
 </lifecycles>
 </configuration>
 </component>
</component-set>

This configuration defines a customized behavior for the default lifecycle associated
with the aar packaging. When you define a custom lifecycle, you need to define plugin
goals for each and every phase explicitly; it won't inherit any default behavior once it's
kept undefined. If necessary, multiple plugin goals can be defined for a given phase,
each separated by a comma.

Let's have a quick look at another example. The following maven-bundle-plugin
that is available at https://github.com/sonatype/sonatype-bundle-plugin/
blob/master/src/main/resources/META-INF/plexus/components.xml defines
a custom behavior for the package, install, and deploy phases of the default
lifecycle for an artifact that has the bundle custom packaging:

<component-set>
 <components>
 <component>
 <role>
 org.apache.maven.lifecycle.mapping.LifecycleMapping
 </role>
 <role-hint>bundle</role-hint>
 <implementation>
 org.apache.maven.lifecycle.mapping.DefaultLifecycleMapping
 </implementation>
 <configuration>
 <lifecycles>
 <lifecycle>

https://github.com/sonatype/sonatype-bundle-plugin/blob/master/src/main/resources/META-INF/plexus/components.xml
https://github.com/sonatype/sonatype-bundle-plugin/blob/master/src/main/resources/META-INF/plexus/components.xml

Chapter 4

[85]

 <id>default</id>
 <phases>
 <process-resources>
 org.apache.maven.plugins:maven-resources-
 plugin:resources
 </process-resources>
 <compile>
 org.apache.maven.plugins:maven-compiler-
 plugin:compile
 </compile>
 <process-test-resources>
 org.apache.maven.plugins:maven-resources-
 plugin:testResources
 </process-test-resources>
 <test-compile>
 org.apache.maven.plugins:maven-compiler-
 plugin:testCompile
 </test-compile>
 <test>
 org.apache.maven.plugins:maven-surefire-
 plugin:test
 </test>
 <package>
 org.apache.felix:maven-bundle-plugin:bundle
 </package>
 <install>
 org.apache.maven.plugins:maven-install-
 plugin:install,
 org.apache.felix:maven-bundle-plugin:install
 </install>
 <deploy>
 org.apache.maven.plugins:maven-deploy-
 plugin:deploy,
 org.apache.felix:maven-bundle-plugin:deploy
 </deploy>
 </phases>
 </lifecycle>
 </lifecycles>
 </configuration>
 </component>
 </components>
</component-set>

Build Lifecycles

[86]

Plugins can introduce custom behaviors for existing lifecycle phases. How can we
define our own lifecycle phases? Let's see how to write our own custom lifecycle
with the following four phases:

•	 get-code

•	 build-code

•	 run-tests

•	 notify

The steps are as follows:

1.	 First, we need to define our custom lifecycle phases in a components.xml,
shown in the following code. Inside the default-phases element, we associate
plugin goals with each of the custom phase. Later, we'll see how to define goals
within a plugin. The code is as follows:
<component-set>
 <components>
 <component>
 <role>org.apache.maven.lifecycle.Lifecycle</role>
 <role-hint>packt</role-hint>
 <implementation>
 org.apache.maven.lifecycle.Lifecycle
 </implementation>
 <configuration>
 <id>packt_lifecycle</id>
 <phases>
 <phase>get-code</phase>
 <phase>build-code</phase>
 <phase>run-tests</phase>
 <phase>notify</phase>
 </phases>
 <default-phases>
 <get-code>
 com.packt:com.packt.lifecycle.sample:get-code-goal
 </get-code>
 <build-code>
 com.packt:com.packt.lifecycle.sample:build-code-goal
 </build-code>
 <run-tests>

Chapter 4

[87]

 com.packt:com.packt.lifecycle.sample:run-tests-goal
 </run-tests>
 <notify>
 com.packt:com.packt.lifecycle.sample:notify-goal
 </notify>
 </default-phases>
 </configuration>
 </component>
 </components>
</component-set>

2.	 Now we need to write a Maven plain Old Java Object (MOJO) , which
extends from org.apache.maven.plugin.AbstractMojo. One MOJO can
handle only one goal at a time, so we need to have four MOJOs—one for
each goal. We'll discuss MOJOs and Maven plugins in depth in Chapter 5,
Maven Plugins. The plugin goal supported by this class needs to be set as
a Javadoc tag: @goal get-code-goal. The code is as follows:
package com.packt.lifecycle.sample;

import org.apache.maven.plugin.AbstractMojo;
import org.apache.maven.plugin.MojoExecutionException;
import org.apache.maven.plugin.MojoFailureException;

/**
 * @goal get-code-goal
 * @requiresProject false
 */

public class GetCodeGoalMojo extends AbstractMojo {

public void execute() throws MojoExecutionException,
 MojoFailureException {

 System.out.println("get-code-goal");

 }
}

In the same way, you need to have three more classes, one for each goal,
and make sure that you have the right Javadoc tag in each class.

Build Lifecycles

[88]

3.	 Once everything is ready, you can use the following POM file to build the
plugin project. Here, the value of the packaging is set to maven-plugin,
and then Maven knows how to build this project as a plugin. The code is
as follows:
<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>com.packt.lifecycle.sample</artifactId>
 <version>1.0.0</version>
 <packaging>maven-plugin</packaging>

 <dependencies>
 <dependency>
 <groupId>org.apache.maven</groupId>
 <artifactId>maven-plugin-api</artifactId>
 <version>2.0</version>
 </dependency>
 </dependencies>
</project>

The directory structure of the plugin project will be as follows:
|-pom.xml
|-src/main
 |-java/com/packt/lifecycle/sample/*.java
 |-resources/META-INF/plexus/components.xml

4.	 Now, we can build the project using mvn clean install. The plugin will
get installed in the local Maven repository. The plugin that we created with
a custom lifecycle is now ready for use by any Maven project. Let's create a
simple Maven project with just the following POM file to consume this plugin:
<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>com.packt.lifecycle.sample.project
 </artifactId>
 <version>1.0.0</version>
 <packaging>jar</packaging>
 <name>Custom Lifecycle Project</name>
 <build>
 <plugins>
 <plugin>

Chapter 4

[89]

 <groupId>com.packt</groupId>
 <artifactId>com.packt.lifecycle.sample
 </artifactId>
 <version>1.0.0</version>
 <extensions>true</extensions>
 </plugin>
 </plugins>
 </build>
</project>

5.	 Now, you can execute the custom phase in the following manner against the
previous POM file:
$ mvn notify

This will execute all the phases in the custom lifecycle up to and including
the notify phase, and we will get the following output:
[INFO] ---

[INFO] Building Custom Lifecycle Project 1.0.0

[INFO] ---

[INFO]

[INFO] --- com.packt.lifecycle.sample:1.0.0:get-code-goal
 (default-get-code-goal) @ com.packt.lifecycle.sample.project
 ---get-code-goal

[INFO]

[INFO] --- com.packt.lifecycle.sample:1.0.0:build-code-goal
 (default-build-code-goal) @
 com.packt.lifecycle.sample.project ---build-code-goal

[INFO]

[INFO] --- com.packt.lifecycle.sample:1.0.0:run-tests-goal
(default-run-tests-goal) @ com.packt.lifecycle.sample.project
 ---run-tests-goal

[INFO]

[INFO] --- com.packt.lifecycle.sample:1.0.0:notify-goal
 (default-notify-goal) @ com.packt.lifecycle.sample.project

---notify-goal

The complete source code corresponding to the custom lifecycle project is available
at https://svn.wso2.org/repos/wso2/people/prabath/maven/chapter04/.

https://svn.wso2.org/repos/wso2/people/prabath/maven/chapter04/

Build Lifecycles

[90]

Lifecycle extensions
The lifecycle extensions in Maven allow you to customize the
standard build behavior. Let's have a look at the org.apache.maven.
AbstractMavenLifecycleParticipant class. Your custom lifecycle extension
should extend from the AbstractMavenLifecycleParticipant class, which
provides the following three methods that you can override:

•	 afterProjectsRead(MavenSession session): This method is invoked after
all the MavenProject instances have been created. There will be one project
instance for each POM file. In a large-scale build system, you have one parent
POM and it points to multiple child POM files. This method can be used by an
extension to manipulate the Maven projects prior to build execution.

•	 afterSessionEnd(MavenSession session): This method is invoked after
all Maven projects are built. An extension can use this method to cleanup any
of the resources used during the build execution.

•	 afterSessionStart(MavenSession session): This method is invoked
after the MavenSession instance is created. An extension can use this method
to inject execution properties, activate profiles and perform similar tasks that
affect MavenProject instance construction.

Let's try out the following example:

package com.packt.lifecycle.ext;

import org.apache.maven.AbstractMavenLifecycleParticipant;
import org.apache.maven.MavenExecutionException;
import org.apache.maven.execution.MavenSession;
import org.codehaus.plexus.component.annotations.Component;

@Component(role = AbstractMavenLifecycleParticipant.class, hint
 ="packt")

public class PACKTLifeCycleExtension extends
 AbstractMavenLifecycleParticipant {

@Override
 public void afterProjectsRead(MavenSession session) {
 System.out.println("All MavenProject instances are created.");
 System.out.println("Offline building: " + session.isOffline());
 }

@Override
 public void afterSessionEnd(MavenSession session) throws
 MavenExecutionException {

Chapter 4

[91]

 System.out.println("All Maven projects are built.");
 }
}

The previous code can be built with the following application POM file:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>com.packt.lifecycle.ext</artifactId>
 <version>1.0.0</version>
 <packaging>jar</packaging>

 <dependencies>
 <dependency>
 <groupId>org.apache.maven</groupId>
 <artifactId>maven-compat</artifactId>
 <version>3.2.1</version>
 </dependency>
 <dependency>
 <groupId>org.apache.maven</groupId>
 <artifactId>maven-core</artifactId>
 <version>3.2.1</version>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.codehaus.plexus</groupId>
 <artifactId>plexus-component-metadata</artifactId>
 <version>1.5.5</version>
 <executions>
 <execution>
 <goals>
 <goal>generate-metadata</goal>
 <goal>generate-test-metadata</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

Here, in the POM file, we use the plexus-component-metadata plugin to generate
the Plexus descriptor from the source tags and class annotations.

Build Lifecycles

[92]

Once the extension project is built successfully with mvn clean install, we need to
incorporate the extension to other Maven builds. You can do it in two ways: one is by
adding it to the project POM as an extension, as shown in the following code:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>
 com.packt.lifecycle.ext.sample.project
 </artifactId>
 <version>1.0.0</version>
 <packaging>jar</packaging>
 <name>Custom Lifecycle Extension Project</name>

 <build>
 <extensions>
 <extension>
 <groupId>com.packt</groupId>
 <artifactId>com.packt.lifecycle.ext</artifactId>
 <version>1.0.0</version>
 </extension>
 </extensions>
 </build>
</project>

Now, you can build the sample project with mvn clean install. It will produce the
following output:

[INFO] Scanning for projects...

All Maven project instances are created.

Offline building: false

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 1.328 s

[INFO] Finished at: 2014-07-29T11:29:52+05:30

[INFO] Final Memory: 6M/81M

[INFO] --

All Maven projects are built.

Chapter 4

[93]

If you want to execute this extension for all your Maven projects without changing
each and every POM file, then you need to add the lifecycle extension JAR file to
MAVEN_HOME/lib/ext.

The complete source code corresponding to the lifecycle extension project can be
downloaded from https://svn.wso2.org/repos/wso2/people/prabath/maven/
chapter04/.

Summary
In this chapter, we focused on Maven lifecycles and explained how the three standard
lifecycles work and how we can customize them. Later in the chapter, we discussed
how to define our own lifecycles and develop our own lifecycle extensions.

In the next chapter, we will discuss how to extend Maven's default behavior further
via plugins.

https://svn.wso2.org/repos/wso2/people/prabath/maven/chapter04/
https://svn.wso2.org/repos/wso2/people/prabath/maven/chapter04/

Maven Plugins
The roots of Maven go back to the Jakarta Turbine project. It was started as an
attempt to simplify the build process of Jakarta Turbine. The beauty of Maven is
its design. It does not try to do everything itself, but rather delegate the work to a
plugin framework. When you download Maven from its website, it's only the core
framework and plugins are downloaded on demand. All the useful functionalities in
the build process are developed as Maven plugins. You can also easily call Maven a
plugin execution framework.

Maven Core

Pl
ug

in
Pl

ug
in

Plugin Plugin
Plugin

Goal-n

Goal-2

Goal-1

Maven plugins can be executed on their own or can be executed as a part of a Maven
lifecycle. Maven lifecycles were discussed in Chapter 4, Build Lifecycles. Each plugin
has its own set of goals. Let's see how to execute the clean goal of the Maven clean
plugin, as follows. The clean goal will attempt to clean the working directory and
the associated files created during the build:

$ mvn clean:clean

Maven plugins can be self-executed as
mvn plugin-prefix-name:goal-name.

Maven Plugins

[96]

The same clean plugin can be executed via the clean lifecycle. The clean goal of
the Maven clean plugin is associated with the clean phase of the clean lifecycle.
One difference here is that when you execute a Maven plugin on its own, it only runs
the goal specified in the command; however, when you run it as a part of a lifecycle,
Maven executes all the plugins associated with the corresponding lifecycle up until
the specified phase (including that phase). The command is as follows:

$ mvn clean

In this chapter, we will be discussing the following topics:

•	 Commonly used Maven plugins and their usage
•	 Plugin discovery and execution process
•	 Inversion of Control frameworks—Plexus and Google Guice

(pronounced as juice)
•	 Custom Maven plugins

Common Maven plugins
Maven plugins are mostly developed under the Apache Maven project itself as well
as under the Codehaus and Google Code projects. The next sections list out a set of
commonly used Maven plugins and their usage.

The clean plugin
As discussed before, the clean plugin executes the clean goal of the Maven clean
plugin to remove any of the working directories and other resources created during
the build, as follows:

$ mvn clean:clean

The Maven clean plugin is also associated with the clean lifecycle. If you just
execute mvn clean, the clean goal of the clean plugin will get executed.

You do not need to explicitly define the Maven clean plugin in your project POM
file. Your project inherits it from the Maven super POM file. Chapter 2, Demystifying
Project Object Model, discussed the Maven super POM file in detail. The following
configuration in the super POM file associates the Maven clean plugin with all the
Maven projects:

<plugin>
 <artifactId>maven-clean-plugin</artifactId>
 <version>2.5</version>

Chapter 5

[97]

 <executions>
 <execution>
 <id>default-clean</id>
 <phase>clean</phase>
 <goals>
 <goal>clean</goal>
 </goals>
 </execution>
 </executions>
</plugin>

The Maven default lifecycle includes the phases: validate -> initialize
-> generate-sources -> process-sources -> generate-resources ->
process-resources -> compile -> process-classes -> generate-test-sources
-> process-test-sources -> generate-test-resources -> process-test-
resources -> test-compile -> process-test-classes -> test -> prepare-
package -> package -> pre-integration-test -> integration-test -> post-
integration-test -> verify -> install -> deploy.

By default, the clean goal of the clean plugin runs under the clean phase of the
Maven clean lifecycle. If your project wants the clean plugin to run by default,
then you can associate it with the initialize phase of the Maven default lifecycle.
You can add the following configuration to your application POM file:

<project>
 [...]
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-clean-plugin</artifactId>
 <version>2.5</version>
 <executions>
 <execution>
 <id>auto-clean</id>
 <phase>initialize</phase>
 <goals>
 <goal>clean</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 [...]
</project>

Maven Plugins

[98]

Now, the clean goal of the clean plugin will get executed when you execute any of
the phases from the initialize phase in the Maven default lifecycle; no need to
explicitly execute the clean phase of the clean lifecycle. For example, mvn install
will run the clean goal in its initialize phase. This way, you can override the
default behavior of the Maven clean plugin. A complete Maven sample project with
the previous plugin configuration is available at https://svn.wso2.org/repos/
wso2/people/prabath/maven/chapter05/jose.

The compiler plugin
The compiler plugin is used to compile the source code. This has two goals: compile
and testCompile. The compile goal is bound to the compile phase of the Maven
default lifecycle. When you type mvn clean install, Maven will execute all
the phases in the default lifecycle up to and including the install phase, which
also includes the compile phase. This in turn will run the compile goal of the
compiler plugin.

The following command shows how to execute the compile goal of the compiler
plugin by itself. This will simply compile your source code:

$ mvn compiler:compile

All the Maven projects inherit the compiler plugin from the super POM file.
As shown in the following configuration, the super POM defines the compiler
plugin. It associates the testCompile and compile goals with the test-compile
and compile phases of the Maven default lifecycle:

<plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.1</version>
 <executions>
 <execution>
 <id>default-testCompile</id>
 <phase>test-compile</phase>
 <goals>
 <goal>testCompile</goal>
 </goals>
 </execution>
 <execution>
 <id>default-compile</id>
 <phase>compile</phase>
 <goals>
 <goal>compile</goal>
 </goals>
 </execution>
 </executions>
</plugin>

https://svn.wso2.org/repos/wso2/people/prabath/maven/chapter05/jose
https://svn.wso2.org/repos/wso2/people/prabath/maven/chapter05/jose

Chapter 5

[99]

By default, the Maven compiler plugin assumes JDK 1.5 for both the source and
target elements. JVM identifies the Java version of the source code via the source
configuration parameter and the version of the compiled code via the target
configuration parameter. If you want to break the assumption made by Maven and
specify your own source and target versions, you need to override the compiler
plugin configuration in your application POM file, as shown in the following code:

<project>
 [...]
 <build>
 [...]
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.1</version>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 </configuration>
 </plugin>
 </plugins>
 [...]
 </build>
 [...]
</project>

Not just the source and target elements, you can pass any argument to the
compiler plugin under the compilerArgument element. This is more useful when
the Maven compiler plugin does not have an element defined for the corresponding
JVM argument. For example, the same source and target values can also be passed
in the following manner:

<project>
 [...]
 <build>
 [...]
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.1</version>
 <configuration>
 <compilerArgument>-source 1.7 –target
 .7</compilerArgument>
 </configuration>
 </plugin>

Maven Plugins

[100]

 </plugins>
 [...]
 </build>
 [...]
</project>

The install plugin
The install plugin will deploy the final project artifacts into the local Maven
repository defined under the localRepository element of MAVEN_HOME/conf/
settings.xml. The default location is USER_HOME/.m2/repository. The install
goal of the install plugin is bound to the install phase of the Maven default
lifecycle. When you type mvn clean install, Maven will execute all phases in
the default lifecycle up to and including the install phase.

The following command shows how to execute the install goal of the install
plugin by itself:

$ mvn install:install

All Maven projects inherit the install plugin from the super POM file. As shown in
the following configuration, the super POM defines the install plugin. It associates
the install goal with the install phase of the Maven default lifecycle:

<plugin>
 <artifactId>maven-install-plugin</artifactId>
 <version>2.4</version>
 <executions>
 <execution>
 <id>default-install</id>
 <phase>install</phase>
 <goals>
 <goal>install</goal>
 </goals>
 </execution>
 <execution>
 <id>default-install-1</id>
 <phase>install</phase>
 <goals>
 <goal>install</goal>
 </goals>
 </execution>
 </executions>
</plugin>

The install goal of the install plugin does not have any configurations to be
overridden at the project level.

Chapter 5

[101]

The deploy plugin
The deploy plugin will deploy the final project artifacts into a remote Maven
repository. The deploy goal of the deploy plugin is associated with the deploy phase
of the default Maven lifecycle. To deploy an artifact via the default lifecycle, mvn
clean install is not sufficient; it has to be mvn clean deploy. Any guesses why?

The deploy phase of the default Maven lifecycle comes after the install phase.
Executing mvn clean deploy will execute all the phases of the default Maven
lifecycle up to and including the deploy phase, which also includes the install
phase. The following command shows how to execute the deploy goal of the
deploy plugin by itself:

$ mvn deploy:deploy

All the Maven projects inherit the deploy plugin from the super POM file. As shown
in the following configuration, the super POM defines the deploy plugin. It associates
the deploy goal with the deploy phase of the Maven default lifecycle:

<plugin>
 <artifactId>maven-deploy-plugin</artifactId>
 <version>2.7</version>
 <executions>
 <execution>
 <id>default-deploy</id>
 <phase>deploy</phase>
 <goals>
 <goal>deploy</goal>
 </goals>
 </execution>
 </executions>
</plugin>

Before executing either mvn deploy:deploy or mvn deploy, you need to
set up the remote Maven repository details in your project POM file, under
the distributionManagement section, as follows. We will discuss Maven
repositories in detail in Chapter 8, Maven Repository Management:

[...]
 <distributionManagement>
 <repository>
 <id>wso2-maven2-repository</id>
 <name>WSO2 Maven2 Repository</name>
 <url>scp://dist.wso2.org/home/httpd/dist.wso2.org/
 maven2/</url>
 </repository>
 </distributionManagement>
[...]

Maven Plugins

[102]

In this example, Maven connects to the remote repository via scp. Secure Copy (scp)
defines a way of securely transferring files between two nodes in a computer network,
which is built on top of the popular SSH. To authenticate to the remote server, Maven
provides two ways. One is based on the username and password. The other one
is based on SSH authentication keys. To configure username/password credential
against the Maven repository, we need to add the following <server> configuration
element to USER_HOME/.m2/settings.xml under the <servers> parent element.
The value of the id element must carry the value of the remote repository hostname:

<server>
 <id>dist.wso2.org</id>
 <username>my_username</username>
 <password>my_password</password>
</server>

If the remote repository only supports SSH authentication keys, then we need to
specify the location of the private key, as follows:

<server>
 <id>dist.wso2.org</id>
 <username>my_username</username>
 <privateKey>/path/to/private/key</privateKey>
</server>

The deploy goal of the deploy plugin does not have any configurations to be
overridden at the project level.

The surefire plugin
The surefire plugin will run the unit tests associated with the project. The test goal
of the surefire plugin is bound to the test phase of the default Maven lifecycle.
When you type mvn clean install, Maven will execute all the phases in the default
lifecycle up to and including the install phase, which also includes the test phase.

The following command shows how to execute the test goal of the surefire plugin
by itself:

$ mvn surefire:test

All the Maven projects inherit the surefire plugin from the super POM file.
As shown in the following configuration, the super POM defines the surefire plugin.
It associates the test goal with the test phase of the Maven default lifecycle:

<plugin>
 <artifactId>maven-surefire-plugin</artifactId>

Chapter 5

[103]

 <version>2.12.4</version>
 <executions>
 <execution>
 <id>default-test</id>
 <phase>test</phase>
 <goals>
 <goal>test</goal>
 </goals>
 </execution>
 <execution>
 <id>default-test-1</id>
 <phase>test</phase>
 <goals>
 <goal>test</goal>
 </goals>
 </execution>
 </executions>
</plugin>

As the surefire plugin is defined in the super POM file, you do not need to add it
explicitly to your application POM file. However, you need to add a dependency to
junit, shown as follows:

<dependencies>
 [...]
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.8.1</version>
 <scope>test</scope>
 </dependency>
 [...]
</dependencies>

The surefire plugin is not just coupled to JUnit; it can also be used with other
testing frameworks as well. If you are using TestNG, then you need to add a
dependency to testng, shown as follows:

<dependencies>
 [...]
 <dependency>
 <groupId>org.testng</groupId>
 <artifactId>testng</artifactId>
 <version>6.3.1</version>

Maven Plugins

[104]

 <scope>test</scope>
 </dependency>
 [...]
</dependencies>

The surefire plugin introduces a concept called test providers. You can specify a
test provider within the plugin itself; if not, it will be derived from the dependency
JAR file. For example, if you want to use the junit47 provider, then within the
plugin configuration, you can specify it as shown in the following configuration.
The surefire plugin supports, by default, four test providers, which are surefire-
junit3, surefire-junit4, surefire-junit47, and surefire-testng:

<plugins>
 [...]
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.17</version>
 <dependencies>
 <dependency>
 <groupId>org.apache.maven.surefire</groupId>
 <artifactId>surefire-junit47</artifactId>
 <version>2.17</version>
 </dependency>
 </dependencies>
 </plugin>
 [...]
</plugins>

As all the Maven projects inherit the surefire plugin from the super POM file,
you do not override its configuration in the application POM file unless it's an
absolute necessity. One reason for this could be to override the default test
provider selection algorithm.

The site plugin
The site plugin generates static HTML web content for the project, including the
reports configured in a project. This defines eight goals, where each goal runs in one
of the four phases defined in the Maven site lifecycle: pre-site, site, post-site,
and site-deploy. The eight goals are:

•	 site:site: This goal generates a site for a single Maven project
•	 site:deploy: This goal deploys the generated site via the Wagon-supported

protocol to the site URL specified in the <distributionManagement> section
of the POM file

Chapter 5

[105]

•	 site:run: This goal starts the site with the Jetty web server
•	 site:stage: This goal generates a site in a local staging or mock directory

based on the site URL specified in the <distributionManagement> section
of the POM file

•	 site:stage-deploy: This goal deploys the generated site to a staging or
mock directory to the site URL specified in the <distributionManagement>
section of the POM file

•	 site:attach-descriptor: This goal adds the site descriptor (site.xml)
to the list of files to be installed/deployed

•	 site:jar: This goal bundles the site output into a JAR file so that it can be
deployed to a repository

•	 site:effective-site: This goal calculates the effective site descriptor after
inheritance and interpolation of site.xml

All the Maven projects inherit the site plugin from the super POM file. As shown
in the following configuration, the super POM defines the site plugin. It associates
the site and deploy goals with the site and site-deploy phases of the Maven
default lifecycle:

<plugin>
 <artifactId>maven-site-plugin</artifactId>
 <version>3.3</version>
 <executions>
 <execution>
 <id>default-site</id>
 <phase>site</phase>
 <goals>
 <goal>site</goal>
 </goals>
 <configuration>
 <outputDirectory>
 PROJECT_HOME/target/site</outputDirectory>
 <reportPlugins>
 <reportPlugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>
 maven-project-info-reports-plugin
 </artifactId>
 </reportPlugin>
 </reportPlugins>
 </configuration>
 </execution>
 <execution>

Maven Plugins

[106]

 <id>default-deploy</id>
 <phase>site-deploy</phase>
 <goals>
 <goal>deploy</goal>
 </goals>
 <configuration>
 <outputDirectory>
 PROJECT_HOME/target/site</outputDirectory>
 <reportPlugins>
 <reportPlugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>
 maven-project-info-reports-plugin
 </artifactId>
 </reportPlugin>
 </reportPlugins>
 </configuration>
 </execution>
 </executions>
 <configuration>
 <outputDirectory>
 PROJECT_HOME/target/site</outputDirectory>
 <reportPlugins>
 <reportPlugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>
 maven-project-info-reports-plugin
 </artifactId>
 </reportPlugin>
 </reportPlugins>
 </configuration>
</plugin>

As defined in the previous configuration, when you run mvn site or mvn site:site,
the resultant HTML web content will be created inside the target/site directory
under the project home. The site goal of the site plugin only generates the HTML
web content; to deploy it, you need to use the deploy goal. To deploy the generated
website to a remote application server, you need to specify the remote machine details
under the distributionManagement section of your application POM file, as follows:

<project>
 ...
 <distributionManagement>
 <site>
 <id>mycompany.com</id>

Chapter 5

[107]

 <url>scp://mycompany/www/docs/project/</url>
 </site>
 </distributionManagement>
 ...
</project>

To configure credentials to connect to the remote computer, you need to add the
following <server> configuration element to USER_HOME/.m2/settings.xml
under the <servers> parent element:

<server>
 <id>mycompany.com</id>
 <username>my_username</username>
 <password>my_password</password>
</server>

The generated site or the web content can be deployed to the remote location by
executing the deploy goal of the Maven site plugin, as follows:

$ mvn site:deploy

In most of the cases, you do not need to override the site plugin configuration.

The jar plugin
The jar plugin creates a JAR file from your Maven project. The jar goal of the jar
plugin is bound to the package phase of the Maven default lifecycle. When you
type mvn clean install, Maven will execute all the phases in the default lifecycle
up to and including the install phase, which also includes the package phase.

The following command shows how to execute the jar goal of the jar plugin
by itself:

$ mvn jar:jar

All the Maven projects inherit the jar plugin from the super POM file. As shown in
the following configuration, the super POM defines the jar plugin. It associates the
jar goal with the package phase of the Maven default lifecycle:

<plugin>
 <artifactId>maven-jar-plugin</artifactId>
 <version>2.4</version>
 <executions>
 <execution>
 <id>default-jar</id>
 <phase>package</phase>
 <goals>

Maven Plugins

[108]

 <goal>jar</goal>
 </goals>
 </execution>
 <execution>
 <id>default-jar-1</id>
 <phase>package</phase>
 <goals>
 <goal>jar</goal>
 </goals>
 </execution>
 </executions>
</plugin>

In most of the cases, you do not need to override the jar plugin configuration,
except in a case, where you need to create a self-executable jar file.

Details on how to create a self-executable JAR file with maven-jar-
plugin can be found at http://maven.apache.org/shared/
maven-archiver/examples/classpath.html.

The source plugin
The source plugin creates a JAR file with the project source code. It defines five goals:
aggregate, jar, test-jar, jar-no-fork, and test-jar-no-fork. All these five goals
of the source plugin will run under the package phase of the default lifecycle.

Unlike any of the plugins we discussed before, if you want to execute the source
plugin with the Maven default lifecycle, it has to be defined in the project POM file,
shown as follows. The super POM file does not define the source plugin; it has to be
within your Maven project itself:

<project>
...
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-source-plugin</artifactId>
 <version>2.3</version>
 <configuration>
 <outputDirectory>
 /absolute/path/to/the/output/directory
 </outputDirectory>

http://maven.apache.org/shared/maven-archiver/examples/classpath.html
http://maven.apache.org/shared/maven-archiver/examples/classpath.html

Chapter 5

[109]

 <finalName>filename-of-generated-jar-file</finalName>
 <attach>false</attach>
 </configuration>
 </plugin>
 </plugins>
 </build>
...
</project>

What is the difference between the jar and source plugins? Both create JAR files;
however, the jar plugin creates a JAR file from the binary artifact, while the source
plugin creates a JAR file from the source code. Small-scale open source projects use this
approach to distribute the corresponding source code along with the binary artifacts.

The resources plugin
The resources plugin copies the resources associated with the main project as well
as the tests to the project output directory. The resources goal of the resources
plugin copies the main resources into the main output directory, and it runs under
the process-resources phase of the Maven default lifecycle. The testResources
goal copies all the resources associated with the tests to the test output directory,
and runs under the process-test-resources phase of the Maven default lifecycle.
The copyResources goal can be configured to copy any resource to the project output
directory, and this is not bound to any of the phases in the Maven default lifecycle.

All the Maven projects inherit the resources plugin from the super POM file. As
shown in the following configuration, the super POM defines the resources plugin.
It associates resources and testResources goals with the process-resources and
process-test-resources phases of the Maven default lifecycle. When you type
mvn clean install, Maven will execute all the phases in the default lifecycle up
to and including the install phase, which also includes the process-resources
and process-test-resources phases:

<plugin>
 <artifactId>maven-resources-plugin</artifactId>
 <version>2.6</version>
 <executions>
 <execution>
 <id>default-resources</id>
 <phase>process-resources</phase>
 <goals>
 <goal>resources</goal>
 </goals>

Maven Plugins

[110]

 </execution>
 <execution>
 <id>default-testResources</id>
 <phase>process-test-resources</phase>
 <goals>
 <goal>testResources</goal>
 </goals>
 </execution>
 <execution>
 <id>default-resources-1</id>
 <phase>process-resources</phase>
 <goals>
 <goal>resources</goal>
 </goals>
 </execution>
 <execution>
 <id>default-testResources-1</id>
 <phase>process-test-resources</phase>
 <goals>
 <goal>testResources</goal>
 </goals>
 </execution>
 </executions>
</plugin>

In most of the cases, you do not need to override the resources plugin configuration,
unless you have a specific need to filter resources.

More details about resource filtering with maven-resources-
plugin can be found at http://maven.apache.org/plugins/
maven-resources-plugin/examples/filter.html.

The release plugin
Releasing a project requires a lot of repetitive tasks. The objective of the Maven
release plugin is to automate them. The release plugin defines the following
eight goals, which are executed in two stages, which are preparing the release and
performing the release:

•	 release:clean: This goal cleans up after a release preparation
•	 release:prepare: This goal prepares for a release in Software Configuration

Management (SCM)

http://maven.apache.org/plugins/maven-resources-plugin/examples/filter.html
http://maven.apache.org/plugins/maven-resources-plugin/examples/filter.html

Chapter 5

[111]

•	 release:prepare-with-pom: This goal prepares for a release in SCM
and generates release POMs by fully resolving the dependencies

•	 release:rollback: This goal rolls back to a previous release
•	 release:perform: This goal performs a release from SCM
•	 release:stage: This goal performs a release from SCM into a staging

folder/repository
•	 release:branch: This goal creates a branch of the current project with

all versions updated
•	 release:update-versions: This goal updates the versions in POM(s)

The preparation stage will complete the following tasks with the release:prepare
goal:

•	 Verify that all the changes in the source code are committed.
•	 Make sure that there are no SNAPSHOT dependencies. During the project

development phase we use SNAPSHOT dependencies; however, at the time
of the release, all the dependencies should be changed to a released version.

•	 The version of the project POM file will be changed from SNAPSHOT to a
concrete version number.

•	 The SCM information in the project POM file will be changed to include the
final destination of the tag.

•	 Execute all the tests against the modified POM files.
•	 Commit the modified POM files to SCM and tag the code with the

version name.
•	 Change the version in POM files in the trunk to a SNAPSHOT version and

commit the modified POM files to the trunk.

Finally, the release will be performed with the release:perform goal. This will
check out the code from the release tag in the SCM and run a set of predefined
goals: site and deploy-site.

The maven-release-plugin is not defined in the super POM file; it should be
explicitly defined in your application POM file. The releaseProfiles configuration
element defines the profiles to be released and the goals configuration element
defines the plugin goals to be executed during release:perform, as follows:

<plugin>
 <artifactId>maven-release-plugin</artifactId>
 <version>2.5</version>
 <configuration>

Maven Plugins

[112]

 <releaseProfiles>release</releaseProfiles>
 <goals>deploy assembly:single</goals>
 </configuration>
</plugin>

Plugin discovery and execution
To associate a plugin with your Maven project, either you have to define it explicitly
from your application POM file, or you should inherit from a parent POM or the
super POM file. Let's have a look at the Maven jar plugin. The jar plugin is defined
by the super POM file, and all the Maven projects inherit it. To define a plugin
(which is not inherited from the POM hierarchy) or associate a plugin with your
Maven project, you must add the plugin configuration under the build/plugins/
plugin element. In this way, you can associate any number of plugins with your
project, shown as follows:

<project>
...
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-jar-plugin</artifactId>
 <version>2.4</version>
 <executions>
 <execution>
 <id>default-jar</id>
 <phase>package</phase>
 <goals>
 <goal>jar</goal>
 </goals>
 </execution>
 <execution>
 <id>default-jar-1</id>
 <phase>package</phase>
 <goals>
 <goal>jar</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
...
</project>

Chapter 5

[113]

In the Maven execution environment, what matters is not just your application POM
file but the effective POM file. The effective POM file is constructed by the project
POM file, any parent POM files, and the super POM file.

A Maven plugin can be executed in two ways: via a lifecycle or directly invoking a
plugin goal. If it is via a lifecycle, then there are plugin goals associated with different
phases of the lifecycle. When each phase gets executed, all the plugin goals will also
get executed only if the effective POM file of the project has defined the corresponding
plugins under its plugins configuration. The same applies even when you try to invoke
a plugin goal directly (for example, mvn jar:jar), the goal will be executed only if the
corresponding plugin is associated with the project.

In either way, once Maven decides to execute a plugin goal, how does it find
the plugin?

Similar to any other dependency in Maven, a plugin is also uniquely identified by
three coordinates: groupId, artifactId, and version. However, for plugins, you
do not need to explicitly specify groupId. Maven assumes two groupIds by default:
org.apache.maven.plugins and org.codehaus.mojo. First, it will try to locate the
plugin from USER_HOME/.m2/repository/org/apache/maven/plugins, and if this
fails, it will go for USER_HOME/.m2/repository/org/codehaus/mojo.

In the previous sample plugin configuration, you do not find groupId. Maven loads
the jar plugin from USER_HOME/.m2/repository/org/apache/maven/plugins/
maven-jar-plugin.

Maven also lets you add your own plugin groups, and they can be included in the
plugin discovery. You can do it by updating USER_HOME/.m2/settings.xml or
MAVEN_HOME/conf/settings.xml, as shown in the following manner:

<pluginGroups>
 <pluginGroup>com.packt.plugins</pluginGroup>
</pluginGroups>

Maven will always give the first priority to the previous configuration and then start
looking for the well-known groupId elements: org.apache.maven.plugins and
org.codehaus.mojo.

Let's have a look at some of the sample plugin configurations used in some popular
open source projects.

Maven Plugins

[114]

Apache Felix provides a bundle plugin for Maven, which creates an OSGi bundle
out of a Maven project. Another open source project, WSO2 Carbon, uses this bundle
plugin in its development. You can find a sample POM file, which consumes the
plugin at https://svn.wso2.org/repos/wso2/carbon/platform/branches/
turing/service-stubs/org.wso2.carbon.qpid.stub/4.2.0/pom.xml. This is a
custom plugin, which does not fall into any of groupIds known to Maven by default.
In this case, anyone who uses the plugin must qualify the plugin with groupId, or else
must add the corresponding groupId to the pluginGroups configuration element,
as discussed earlier.

The following code shows the plugin configuration from the WSO2 Carbon project:

<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <Bundle-SymbolicName>
 ${project.artifactId}</Bundle-SymbolicName>
 <Bundle-Name>${project.artifactId}</Bundle-Name>
 <Carbon-Component>UIBundle</Carbon-Component>
 <Import-Package>
 org.apache.axis2.*;
 version="${axis2.osgi.version.range}",
 org.apache.axiom.*;
 version="${axiom.osgi.version.range}",
 *;resolution:=optional
 </Import-Package>
 <Export-Package>
 org.wso2.carbon.qpid.stub.*;
 version=»${carbon.platform.package.export.version}»,
 </Export-Package>
 </instructions>
 </configuration>
</plugin>

Plugin management
If you look at the previous configuration carefully, you do not see a version for the
bundle plugin. This is where the pluginManagement element comes into play. With
the pluginManagement configuration element, you can avoid repetitive usage of the
plugin version. Once you define a plugin under pluginManagement, all the child
POM files will inherit that configuration.

https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/service-stubs/org.wso2.carbon.qpid.stub/4.2.0/pom.xml
https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/service-stubs/org.wso2.carbon.qpid.stub/4.2.0/pom.xml

Chapter 5

[115]

WSO2 Carbon project defines all the plugins used by its child projects under the
pluginManagement section of https://svn.wso2.org/repos/wso2/carbon/
platform/branches/turing/parent/pom.xml, and all the projects inherit it.
A truncated part of the configuration is as follows:

<pluginManagement>
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <version>2.3.5</version>
 <extensions>true</extensions>
 </plugin>
</pluginManagement>

We'll discuss more about plugin management in Chapter 9,
Best Practices.

Plugin repositories
Maven downloads plugins on demand when it cannot find a plugin in its local
repository. By default, Maven looks for any plugin that is not available locally in the
Maven plugin repository defined by the super POM file (this is the default behavior;
you can also define plugin repositories in the application POM file). The following
code snippet shows how to define plugin repositories:

<pluginRepositories>
 <pluginRepository>
 <id>central</id>
 <name>Maven Plugin Repository</name>
 <url>http://repo1.maven.org/maven2</url>
 <layout>default</layout>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <releases>
 <updatePolicy>never</updatePolicy>
 </releases>
 </pluginRepository>
</pluginRepositories>

If you develop a custom plugin, just like the Apache Felix bundle plugin, you must
make it available for the rest via a plugin repository, and any other consumer of this
plugin, such as the WSO2 Carbon project, must define the corresponding plugin
repository in its POM file or in a parent POM file.

https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/parent/pom.xml
https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/parent/pom.xml

Maven Plugins

[116]

We'll discuss more about plugin repositories in Chapter 8,
Maven Repository Management.

The WSO2 Carbon project defines two plugin repositories in its parent POM file
at https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/
parent/pom.xml and the Apache Felix bundle plugin is available at http://dist.
wso2.org/maven2/org/apache/felix/maven-bundle-plugin/.

The following configuration is part of the WSO2 Carbon project parent/pom.xml,
which defines the two plugin repositories:

<pluginRepositories>
 <pluginRepository>
 <id>wso2-maven2-repository-1</id>
 <url>http://dist.wso2.org/maven2</url>
 </pluginRepository>
 <pluginRepository>
 <id>wso2-maven2-repository-2</id>
 <url>http://dist.wso2.org/snapshots/maven2</url>
 </pluginRepository>
</pluginRepositories>

Plugin as an extension
If you look at the definition of the Apache Felix bundle plugin, you might have noticed
the extensions configuration element, which is set to true, shown as follows:

<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <extensions>true</extensions>
</plugin>

As we discussed before, the goal of the bundle plugin is to build an OSGi bundle
from a Maven project. In other words, the Apache Felix bundle plugin introduces a
new packaging type with an existing file extension, jar. If you look at the POM file
of the WSO2 Carbon project, which consumes the bundle plugin, you can see the
packaging of the project is set to bundle (https://svn.wso2.org/repos/wso2/
carbon/platform/branches/turing/service-stubs/org.wso2.carbon.qpid.
stub/4.2.0/pom.xml), as follows:

<packaging>bundle</packaging>

https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/parent/pom.xml
https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/parent/pom.xml
http://dist.wso2.org/maven2/org/apache/felix/maven-bundle-plugin/
http://dist.wso2.org/maven2/org/apache/felix/maven-bundle-plugin/
https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/service-stubs/org.wso2.carbon.qpid.stub/4.2.0/pom.xml
https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/service-stubs/org.wso2.carbon.qpid.stub/4.2.0/pom.xml
https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/service-stubs/org.wso2.carbon.qpid.stub/4.2.0/pom.xml

Chapter 5

[117]

If you associate a plugin with your project, which introduces a new packaging
type or a customized lifecycle, then you must set the value of the extensions
configuration element to true. Once that is done, the Maven engine will go
further and will look for the components.xml file inside META-INF/plexus
of the corresponding jar plugin.

Plexus
Most of you might be familiar with Spring but not Plexus. Plexus provides an
Inversion of Control (IoC) or a Dependency Injection (DI) framework similar
to Spring. If you are new to the concept of Dependency Injection, it's highly
recommended that you go through the article by Martin Fowler, Inversion of Control
Containers and the Dependency Injection pattern at http://martinfowler.com/
articles/injection.html.

Forget about Maven for a bit; let's see how to implement Dependency Injection with
Plexus with the following steps:

1.	 First, we need to define our own Java interface for our business service as
follows. There can be more than one implementation of this service:
package com.packt.di;
public interface MessagingService {

 public void sendMessage(String recipient, String message);
}

2.	 Let's write a couple of implementations for the previous interface.
The SMSMessagingService class will text the message to the recipient
while the EmailMessagingService class will email the message,
shown as follows:
package com.packt.di;

public class SMSMessagingService implements MessagingService {

 @Override
 public void sendMessage(String recipient, String message)
 {
 System.out.println("SMS sent to : "+recipient);
 }
 }

package com.packt.di;

http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html

Maven Plugins

[118]

public class EmailMessagingService implements
 MessagingService {

 @Override
 public void sendMessage(String recipient,
 String message)
 {
 System.out.println("Email sent to : "+recipient);
 }
}

3.	 Now we have multiple implementations of the same MessagingService
interface. The Plexus DI framework lets you define each implementation
in a configuration file (components.xml) and pick whatever you need in
the runtime, as follows:
<component-set>
 <components>
 <component>
 <role>com.packt.di.MessagingService</role>
 <role-hint>sms</role-hint>
 <implementation>
 com.packt.di.SMSMessagingService
 </implementation>
 </component>
 <component>
 <role>com.packt.di.MessagingService</role>
 <role-hint>email</role-hint>
 <implementation>
 com.packt.di.EmailMessagingService
 </implementation>
 </component>
 </components>
</component-set>

4.	 Let's write a client application that loads different implementations of
the MessagingService interface via Plexus. Make sure that you have the
previous components.xml file inside the src/main/resources/META-INF/
plexus directory inside your client project. Also, make sure that you get all
the Plexus jar dependencies from https://svn.wso2.org/repos/wso2/
people/prabath/maven/chapter05/plexus/lib, and add them to your
Java class path before running the client code:
package com.packt.di;

import org.codehaus.plexus.DefaultPlexusContainer;

https://svn.wso2.org/repos/wso2/people/prabath/maven/chapter05/plexus/lib
https://svn.wso2.org/repos/wso2/people/prabath/maven/chapter05/plexus/lib

Chapter 5

[119]

import org.codehaus.plexus.PlexusContainer;

public class MessageSender {

 public static void main(String[] args) {

 PlexusContainer container = null;
 MessagingService msgService = null;

 try {
 container = new DefaultPlexusContainer();
 // send SMS
 msgService = (MessagingService)
 container.lookup(MessagingService.class, "sms");
 msgService.sendMessage("+94718096732", "Welcome to
 Plexus");

 // send Email
 msgService = (MessagingService)
 container.lookup(MessagingService.class, "email");
 msgService.sendMessage("prabath@apache.org", "Welcome to
 Plexus");
 } catch (Exception e) {

 e.printStackTrace();

 } finally {

 if (container != null) {
 container.dispose();
 }
 }
 }
}

The role-hint configuration element in the components.xml file helps
to identify different implementations of the same interface uniquely. The
fully qualified name of the interface is set as the value of the role element.
In runtime, the lookup is done by both the role and role-hint elements.
If there is only one implementation, then we do not need the role-hint
element and the lookup can be done only by the value of role.
The previous code produces the following output:
SMS sent to :+94718096732
Email sent to :prabath@apache.org

Maven Plugins

[120]

In practice, each implementation of the service interface can come
from different JAR files, and the client application does not need
to have any dependency to the implementation classes at the build
time. In runtime, the implementation classes will be injected into
the system by the Plexus framework.

The complete Java project used here can be downloaded from https://svn.wso2.
org/repos/wso2/people/prabath/maven/chapter05/plexus.

Maven and Dependency Injection
When Maven kicked off in 2002, it strongly looked for an IoC or a DI framework.
As we discussed before, Maven provides a build framework while the actual
work is done by the components and plugins developed on top of it. That's part
of the Maven's design philosophy, and this raised the need to have some kind
of a component framework to bring in plugins and other extensions.

By 2002, Spring was not that popular and Apache Avalon was the only IoC
framework out there. However, the initial set of Maven committers, who also had
a strong influence on Plexus, decided to use it as the IoC container for Maven.

Plexus did exactly what Maven wanted to have. However, it uses its own custom
DI mechanism. In November 2009, the Java community standardized DI via JSR
330 (https://www.jcp.org/en/jsr/detail?id=330). Maven 3.0 onwards started
supporting JSR 330 via Google Guice (https://github.com/google/guice). Then
again, the components that were written using Plexus APIs could still coexist with
JSR 330 compliant components and plugins.

To know more about Maven and Google Guice, refer to From
Plexus to Guice (#1): Why Guice? at http://blog.sonatype.
com/2010/01/from-plexus-to-guice-1-why-guice.

Google Guice
Google Guice is a lightweight DI framework that has support for JSR 330. Guice was
initially developed by Google under the leadership of Bob Lee. He currently works
as the CTO of Square and was the lead of JSR 330.

https://svn.wso2.org/repos/wso2/people/prabath/maven/chapter05/plexus
https://svn.wso2.org/repos/wso2/people/prabath/maven/chapter05/plexus
https://www.jcp.org/en/jsr/detail?id=330
https://github.com/google/guice
http://blog.sonatype.com/2010/01/from-plexus-to-guice-1-why-guice
http://blog.sonatype.com/2010/01/from-plexus-to-guice-1-why-guice

Chapter 5

[121]

Let's rewrite the same example we did with Plexus in Guice, to be JSR 330 compliant,
as follows:

1.	 First, we need to define our own Java interface for our business service
as follows. There can be more than one implementations of this service:
package com.packt.di;

public interface MessagingService {
 public void sendMessage(String recipient, String message);
}

2.	 Let's write couple of implementations for the previous interface.
The SMSMessagingService class will text the message to the
recipient, while the EmailMessagingService class will email
the message, shown as follows:
package com.packt.di;

public class SMSMessagingService implements
MessagingService{

 @Override
 public void sendMessage(String recipient,
 String message)
 {
 System.out.println("SMS sent to : "+recipient);
 }

}

package com.packt.di;

public class EmailMessagingService implements
MessagingService{

 @Override
 public void sendMessage(String recipient,
 String message)
 {
 System.out.println("Email sent to : "+recipient);
 }
}

Maven Plugins

[122]

3.	 Now, we need to write a GuiceMessageSender class, which will dynamically
pick the MessagingService implementation to send the message, shown as
follows. The Guice framework will inject the implementation class instance
into the method that has the Inject annotation:
package com.packt.di;

import javax.inject.Inject;

public class GuiceMessageSender {

 private MessagingService messagingService;

 @Inject
 public void setService(MessagingService
 messagingService)
 {
 this.messagingService = messagingService;
 }

 public void sendMessage(String recipient, String
 message)
 {
 messagingService.sendMessage(recipient, message);
 }
}

4.	 Now, we need to write a class extending the AbstractModule class of the
com.google.inject package, which will bind an implementation class to
the interface, as follows:
package com.packt.di;

import com.google.inject.AbstractModule;

public class GuiceInjector extends AbstractModule {
 @Override
 protected void configure() {
 bind(MessagingService.class).
 to(SMSMessagingService.class);
 }
}

5.	 Finally, the GuiceClientApplication class will send the message using an
instance of the GuiceMessageSender class, as follows. You can download all
the dependency JARs from https://svn.wso2.org/repos/wso2/people/
prabath/maven/chapter05/guice/lib:

package com.packt.di;

import com.google.inject.Guice;
import com.google.inject.Injector;

https://svn.wso2.org/repos/wso2/people/prabath/maven/chapter05/guice/lib
https://svn.wso2.org/repos/wso2/people/prabath/maven/chapter05/guice/lib

Chapter 5

[123]

public class GuiceClientApplication {

 public static void main(String[] args) {
 Injector injector;
 GuiceMessageSender messageSender;

 injector = Guice.createInjector(new GuiceInjector());
 messageSender = injector.
 getInstance(GuiceMessageSender.class);
 messageSender.sendMessage("+94718096732", "Welcome to
 Plexus");
 }
}

The complete Java project used here can be downloaded from https://svn.wso2.
org/repos/wso2/people/prabath/maven/chapter05/guice.

Developing custom plugins
A greater part of this chapter is already spent on providing all the necessary
background knowledge to start Maven custom plugin development. Under this
section, let's see how to build your own Maven custom plugin from scratch. There
are so many Maven plugins out there, and most of the time, you can find a plugin
to do whatever you want. Let's start by defining a use case for our custom plugin.
Say, you want to write a plugin to send an email to a given recipient once the build
is completed.

Maven plain Old Java Object (MOJO) is at the heart of a Maven plugin. A Maven
plugin is a collection of goals, and each goal is implemented via a MOJO. In other
words, a Maven plugin is a collection of MOJOs. To create a custom plugin, proceed
with the following steps:

1.	 The first step in writing a custom plugin is to identify the goals of the plugin,
and then represent (and implement) each of them with a MOJO. In our case,
we have a single goal, that is, to send an email once the build is completed.
We will write our own EmailMojo class that extends the AbstractMojo class
of the org.apache.maven.plugin package. This class must have the Mojo
annotation, and the value of the name attribute represents the goal name. In
your custom plugin, if you have multiple goals, then for each goal, you need
to have a MOJO and override the execute() method. The code is as follows:

package com.packt.plugins;

import org.apache.maven.plugin.AbstractMojo;

https://svn.wso2.org/repos/wso2/people/prabath/maven/chapter05/guice
https://svn.wso2.org/repos/wso2/people/prabath/maven/chapter05/guice

Maven Plugins

[124]

import org.apache.maven.plugin.MojoExecutionException;
import org.apache.maven.plugins.annotations.Mojo;

@Mojo(name = "mail")
public class EmailMojo extends AbstractMojo
{
 public void execute() throws MojoExecutionException
 {
 getLog().info("Sending Email…");
 }
}

2.	 For the time being, let's not worry about the email sending logic. Once you
have implemented your business logic inside the execute() method of your
MOJO, next we need to package this as a plugin so that the Maven plugin
execution framework can identify and execute it.
You can use maven-plugin-plugin to generate the metadata related to your
custom plugin. The following POM file associates maven-plugin-plugin with
your custom plugin project. Also, we need to have two dependencies: one for
maven-plugin-api and the other one for maven-plugin-annotations.
<project>

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt.plugins</groupId>
 <artifactId>mail-maven-plugin</artifactId>
 <version>1.0.0</version>
 <packaging>maven-plugin</packaging>
 <name>PACKT Maven Plugin Project</name>

 <dependencies>
 <dependency>
 <groupId>org.apache.maven</groupId>
 <artifactId>maven-plugin-api</artifactId>
 <version>2.0</version>
 </dependency>
 <dependency>
 <groupId>org.apache.maven.plugin-tools</groupId>
 <artifactId>maven-plugin-annotations</artifactId>
 <version>3.2</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>

Chapter 5

[125]

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-plugin-plugin</artifactId>
 <version>3.2</version>
 <configuration>
 <skipErrorNoDescriptorsFound>
 true
 </skipErrorNoDescriptorsFound>
 </configuration>
 <executions>
 <execution>
 <id>mojo-descriptor</id>
 <goals>
 <goal>descriptor</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

3.	 Make sure that your project structure looks similar to the following structure,
and then build the project with mvn clean install:
|-src/main/
| |-java/org/java/com/packt/plugins
| |-EmailMojo.java
|-pom.xml

4.	 The previous step will produce the mail-maven-plugin-1.0.0.jar file
inside the target directory of your Maven project. Extract the JAR file with
following command:
$ jar –xvf mail-maven-plugin-1.0.0.jar

5.	 The extracted JAR file will have the following directory structure, with the
generated metadata files. Only the key/important files are shown here:
|-com/packt/plugins/EmailMojo.class
|-META-INF
 |-maven/plugin.xml

Maven Plugins

[126]

6.	 Let's have a look at the plugin.xml file first, which is as follows. A mojo
element will be generated for each MOJO in the plugin project, having the
annotation Mojo. All the child elements defined under the mojo element
are derived from the annotations. If there is no annotation, the default
value is set. We will discuss the key attributes in the plugin.xml file
later in this chapter.
<plugin>
 <name>PACKT Maven Plugin Project</name>
 <description></description>
 <groupId>com.packt.plugins</groupId>
 <artifactId>mail-maven-plugin</artifactId>
 <version>1.0.0</version>
 <goalPrefix>mail</goalPrefix>
 <isolatedRealm>false</isolatedRealm>
 <inheritedByDefault>true</inheritedByDefault>
 <mojos>
 <mojo>
 <goal>mail</goal>
 <requiresDirectInvocation>false
 </requiresDirectInvocation>
 <requiresProject>true</requiresProject>
 <requiresReports>false</requiresReports>
 <aggregator>false</aggregator>
 <requiresOnline>false</requiresOnline>
 <inheritedByDefault>true</inheritedByDefault>
 <implementation>com.packt.plugins.EmailMojo
 </implementation>
 <language>java</language>
 <instantiationStrategy>per-lookup
 </instantiationStrategy>
 <executionStrategy>once-per-session
 </executionStrategy>
 <threadSafe>false</threadSafe>
 <parameters/>
 </mojo>
 </mojos>
 <dependencies>
 <dependency>
 <groupId>org.apache.maven</groupId>
 <artifactId>maven-plugin-api</artifactId>
 <type>jar</type>
 <version>2.0</version>
 </dependency>
 </dependencies>
</plugin>

Chapter 5

[127]

7.	 The following Mojo annotation of the EmailMojo class will generate exactly
the same configuration as shown in the previous step:
@Mojo(name = "mail", requiresDirectInvocation = false,
 requiresProject = true, requiresReports = false,
 aggregator = true, requiresOnline = true,
 inheritByDefault = true, instantiationStrategy =
 InstantiationStrategy.PER_LOOKUP, executionStrategy =
 "once-per-session", threadSafe = false)

Before moving any further, let's have a look at the definition of each
configuration element used in the previous Mojo annotation:

Elements Explanation
name Every MOJO has a goal. The name attribute

represents the goal name.
requiresDirectInvocation A given plugin can be invoked in two

ways. The first is by direct invocation
where you invoke the plugin as mvn
plugin-name:goal-name. The second
way of invoking a plugin is as part of
a Maven lifecycle, where you execute a
lifecycle phase, and being part of a lifecycle
phase, plugin goals also get executed. If
you set requiresDirectInvocation to
true, then you cannot associate the plugin
with a lifecycle.

requiresProject If requiresProject is set to true, this
means you cannot execute the Maven
plugin without a Maven project. It must be
executed against a Maven POM file.

requiresReports If your plugin depends on a set of reports,
the goal of your plugin is to aggregate, or
summarize a set of reports, then you must
set the value of requiresReports to
true.

aggregator If you set the value of aggregator to
true, the corresponding goal of your
plugin will get executed only once during
the complete build lifecycle. In other words,
it won't run for each project build. In our
case, we want to send an email when the
complete Maven build is executed and not
for each project; in this case, we must set
the value of the aggregator to true.

Maven Plugins

[128]

Elements Explanation
requiresOnline If you set the value of requiresOnline

to true, the corresponding goal of your
plugin will only get executed when you
are performing an online build. In our case,
we have to set requiresOnline to true,
because you need to be online to send an
email.

instantiationStrategy This is related to Plexus. If the value of
instantiationStrategy is set to
per-lookup, then a new instance of
the corresponding MOJO will be created
each time Maven looks up from Plexus.
Other possible values are keep-alive,
singleton, and poolable.

executionStrategy This attribute will be deprecated in the
future. It informs Maven when and how
to execute a MOJO. The possible values
are once-per-session and always.

threadSafe Once the value of threadSafe is set to
true, MOJO will execute in a thread-safe
manner during parallel builds.

inheritByDefault If the value of inheritByDefault is set
to true, then any plugin goal associated
with a Maven project will be inherited by
all its child projects.

Another important element in the generated plugin.xml file is goalPrefix.
If nothing is explicitly mentioned in maven-plugin-plugin, the value of
goalPrefix is derived by the naming convention of the plugin artifactId.
In our case, the artifactId of the plugin is mail-maven-plugin and the value
before the first hyphen is taken as the goalPrefix. Maven uses goalPrefix to
invoke a plugin goal in the following manner:
$ mvn goalPrefix:goal

In our case, our custom plugin can be executed as follows, where the first
mail word is the goalPrefix, while the second one is the goal name:
$ mvn mail:mail

Chapter 5

[129]

If you want to override the value of the goalPrefix without following the
naming convention, then you need to explicitly give a value to the goalPrefix
configuration element of maven-plugin-plugin in the POM file of the custom
Maven plugin project, as follows:
<configuration>
 <goalPrefix>email</goalPrefix>
</configuration>

8.	 All set. Now we need to execute our custom plugin. To execute the Maven
plugin without a Maven project (to consume it), you need to set the value of
the requiresProject annotation attribute to false.
In our case, we have not set this attribute in our MOJO, so the default value
is set, which is true. To execute the Maven plugin without a project (you do
not need to have a POM file), you need to set the value of requiresProject
to false and rebuild the plugin project, as follows:
@Mojo(name = "mail", requiresProject=false)
public class EmailMojo extends AbstractMojo
{
}

9.	 Now try to execute the plugin goal in the following manner:
 $ mvn mail:mail

This will result in an error. Any guesses why? This is related to how Maven
looks up for plugins. When you execute a plugin by its goalPrefix, we
do not specify its groupId, so the Maven engine will look for it in the local
Maven repository (and then in the remote repository) assuming its groupId
to be one of the default groupIds. As this is a custom plugin with our own
groupId, the Maven engine won't find it. The error is as follows:
[ERROR] No plugin found for prefix 'mail' in the current
 project and in the plugin groups [org.apache.maven.plugins,
 org.codehaus.mojo] available from the repositories [local
 (/Users/prabath/.m2/repository), Central
 (http://repo1.maven.org/maven2)] -> [Help 1]

10.	 To help Maven to locate the groupId plugin, add the following configuration
element to USER_HOME/.m2/settings.xml under <pluginGroups>:
<pluginGroup>com.packt.plugins</pluginGroup>

11.	 Now try to execute the plugin goal once again:
 $ mvn mail:mail

Maven Plugins

[130]

This will now produce the following output:
[INFO] --- mail-maven-plugin:1.0.0:mail (default-cli) @ mail-
 maven-plugin ---
[INFO] Sending Email...

Associating a plugin with a lifecycle
A plugin can be executed on its own or as a part of a Maven lifecycle. In the previous
section, we went through the former, and now let's see how to associate our custom
plugin with the Maven default lifecycle. The Maven default lifecycle has 23 phases,
and let's see how to engage our custom plugin to the post-integration-test phase.
We only want to send the email if everything up to the post-integration-test
phase is successful.

The Maven default lifecycle includes the phases: validate ->
initialize -> generate-sources -> process-sources ->
generate-resources -> process-resources -> compile
-> process-classes -> generate-test-sources ->
process-test-sources -> generate-test-resources ->
process-test-resources -> test-compile -> process-
test-classes -> test -> prepare-package -> package ->
pre-integration-test -> integration-test -> post-
integration-test -> verify -> install -> deploy.

Proceed with the following steps:

1.	 First, you need to create a Maven project to consume the custom plugin that
we just developed. Create a project with the following sample POM file,
which associates the mail-maven-plugin with the project:
<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt.plugins</groupId>
 <artifactId>plugin-consumer</artifactId>
 <version>1.0.0</version>
 <packaging>jar</packaging>
 <name>PACKT Maven Plugin Consumer Project</name>

 <build>
 <plugins>
 <plugin>
 <groupId>com.packt.plugins</groupId>

Chapter 5

[131]

 <artifactId>mail-maven-plugin</artifactId>
 <version>1.0.0</version>
 <executions>
 <execution>
 <id>post-integration-mail</id>
 <phase>post-integration-test</phase>
 <goals>
 <goal>mail</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

Inside the execution element of the plugin configuration, we associate the
corresponding plugin goal with a lifecycle phase.

2.	 Just type mvn clean install against the previous POM file. It will execute
all the phases in the Maven default lifecycle up to and including the install
phase, which also includes the post-integration-test phase. The mail goal
of the plugin will get executed during the post-integration-test phase and
will result in the following output:
[INFO] --- maven-jar-plugin:2.4:jar (default-jar-1) @ plugin-
 consumer ---
[INFO]
[INFO] --- mail-maven-plugin:1.0.0:mail (post-integration-
 mail) @ plugin-consumer ---
[INFO] Sending Email.

This is only one way of associating a plugin with a lifecycle phase. Here, the
responsibility is with the consumer application to define the phase. The other
way is that the plugin itself declares the phase it wants to execute in. To do this,
you need to add the Execute annotation to your MOJO class, shown as follows:

@Mojo(name = "mail", requiresProject=false)
@Execute (phase=LifecyclePhase.POST_INTEGRATION_TEST)
public class EmailMojo extends AbstractMojo
{
}

Maven Plugins

[132]

Now, in the POM file of your plugin consumer project, you do not need to define a
phase for the plugin. The configuration is as follows:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt.plugins</groupId>
 <artifactId>plugin-consumer</artifactId>
 <version>1.0.0</version>
 <packaging>jar</packaging>
 <name>PACKT Maven Plugin Consumer Project</name>

 <build>
 <plugins>
 <plugin>
 <groupId>com.packt.plugins</groupId>
 <artifactId>mail-maven-plugin</artifactId>
 <version>1.0.0</version>
 </plugin>
 </plugins>
 </build>
</project>

The plugin execution order
When a plugin gets executed through a lifecycle phase, the order of execution is
governed by the lifecycle itself. If there are multiple plugin goals associated with
the same phase, then the order of execution is governed by the order you define
the plugins in your application POM file.

Inside the execute method
The business logic of a Maven plugin is implemented inside the execute method.
The execute method is the only abstract method defined in the org.apache.maven.
plugin.AbstractMojo class. The following Java code shows how to get the details
about the current Maven project going through the build. Notice that the instance
variable of the MavenProject type is annotated with the Component annotation:

package com.packt.plugins;

import org.apache.maven.plugin.AbstractMojo;
import org.apache.maven.plugin.MojoExecutionException;
import org.apache.maven.plugins.annotations.Component;
import org.apache.maven.plugins.annotations.Mojo;

Chapter 5

[133]

import org.apache.maven.project.MavenProject;

@Mojo(name = "mail")
public class EmailMojo extends AbstractMojo {

 @Component
 private MavenProject project;

 public void execute() throws MojoExecutionException {
 getLog().info("Artifact Id " + project.getArtifactId());
 getLog().info("Version " + project.getVersion());
 getLog().info("Packaging " + project.getPackaging());
 }
}

The previous code is required to have the following three dependencies:

<dependency>
 <groupId>org.apache.maven</groupId>
 <artifactId>maven-plugin-api</artifactId>
 <version>2.0</version>
</dependency>
<dependency>
 <groupId>org.apache.maven.plugin-tools</groupId>
 <artifactId>maven-plugin-annotations</artifactId>
 <version>3.2</version>
 <scope>provided</scope>
</dependency>
<dependency>
 <groupId>org.apache.maven</groupId>
 <artifactId>maven-core</artifactId>
 <version>3.2.1</version>
</dependency>

In the example use case, we took to develop the custom plugin; we need to figure
out the list of recipients who we want to send the emails. Also, we might need to get
connection parameters related to the mail server. The following code example shows
you how to read plugin configuration details from a MOJO:

@Mojo(name = "mail")
public class EmailMojo extends AbstractMojo {

 @Component
 private MavenProject project;

Maven Plugins

[134]

 public void execute() throws MojoExecutionException {

 // get all the build plugins associated with the
 // project under the build.
 List<Plugin> plugins = project.getBuildPlugins();

 if (plugins != null && plugins.size() > 0) {
 for (Iterator<Plugin> iterator = plugins.iterator();
 iterator.hasNext();) {
 Plugin plugin = iterator.next();
 // iterate till we find mail-maven-plugin.
 if ("mail-maven-plugin".equals(plugin.getArtifactId()))
 {
 getLog().info(plugin.getConfiguration().toString());
 break;
 }
 }
 }
 }
}

For the email plugin we developed, the required configuration can be defined
inside the plugin definition, shown as follows. This should go into the POM file
of the plugin consumer application. Under the configuration element of the
corresponding plugin, you can define your own XML element to carry out the
configuration required by your custom plugin:

<build>
 <plugins>
 <plugin>
 <groupId>com.packt.plugins</groupId>
 <artifactId>mail-maven-plugin</artifactId>
 <version>1.0.0</version>
 <configuration>
 <emailList>
 prabath@wso2.com,
 prabath@apache.org</emailList>
 <mailServer>mail.google.com</mailServer>
 <password>password</password>
 </configuration>
 <executions>
 <execution>
 <id>post-integration-mail</id>
 <phase>post-integration-test</phase>
 <goals>

Chapter 5

[135]

 <goal>mail</goal>
 </goals
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

When you run the plugin with the previous configuration, it will result in the
following output. The MOJO implementation can parse the XML element and
get the required values:

[INFO] <?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <emailList>prabath@wso2.com,prabath@apache.org</emailList>
 <mailServer>mail.google.com</mailServer>
 <password>password</password>
</configuration>

The complete source code related to the mail Maven plugin is available at
https://svn.wso2.org/repos/wso2/people/prabath/maven/chapter05/mail-
plugin, and the plugin consumer code is available at https://svn.wso2.org/
repos/wso2/people/prabath/maven/chapter05/plugin-consumer.

Summary
In this chapter, we focused on Maven plugins. Maven only provides a build
framework while the Maven plugins perform the actual tasks. Maven has a
large rich set of plugins, and the chances are very low that you have to write
your own custom plugin. The chapter covered some of the most used Maven
plugins and later explained how to develop your own custom Maven plugin.

In the next chapter, we will focus on Maven assemblies. There we will discuss
the Maven assembly plugin, assembly descriptor, and filters.

https://svn.wso2.org/repos/wso2/people/prabath/maven/chapter05/mail-plugin
https://svn.wso2.org/repos/wso2/people/prabath/maven/chapter05/mail-plugin
https://svn.wso2.org/repos/wso2/people/prabath/maven/chapter05/plugin-consumer
https://svn.wso2.org/repos/wso2/people/prabath/maven/chapter05/plugin-consumer

Maven Assemblies
Maven provides an extensible architecture via plugins and lifecycles. Archive types
such as .jar, .war, .ear, and many more are supported by plugins and associated
lifecycles. The JAR plugin creates an artifact with the .jar extension and the
relevant metadata, according to the JAR specification. The JAR file is, in fact, a ZIP
file with the optional META-INF directory. You can find more details about the JAR
specification from http://docs.oracle.com/javase/7/docs/technotes/guides/
jar/jar.html.

The JAR file aggregates a set of class files to build a single distribution unit. The WAR
file aggregates a set of JAR files, Java classes, JSPs, images, and many more resources
into a single distribution unit that can be deployed in a Java EE application server.
However, when you build a product, you might need to aggregate many JAR files
from different places, WAR files, README files, LICENSE files, and many more into
a single ZIP file. To build such an archive, we can use the Maven assembly plugin.

Assembly

WAR
LICENSE

README

.SQL

JAR

JAR

JAR

Assembly
Descriptor

http://docs.oracle.com/javase/7/docs/technotes/guides/jar/jar.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jar/jar.html

Maven Assemblies

[138]

In this chapter, we will discuss the following topics:

•	 The Maven assembly plugin
•	 The assembly descriptor
•	 Artifact/resource filters
•	 An end-to-end example to build a custom distribution archive

The Maven assembly plugin produces a custom archive, which adheres to a
user-defined layout. This custom archive is also known as the Maven assembly.
In other words, it's a distribution unit, which is built according to a custom layout.

The assembly plugin
Let's have a quick look at a real-world example, which uses the assembly plugin.

WSO2 Identity Server (WSO2 IS) is an open source identity and entitlement
management product distributed under the Apache 2.0 license as a ZIP file.
The ZIP distribution is assembled using the Maven assembly plugin. Let's have a
look at the root POM file of the distribution module of WSO2 IS, which builds
the Identity Server distribution, available at https://svn.wso2.org/repos/
wso2/carbon/platform/branches/turing/products/is/5.0.0/modules/
distribution/pom.xml.

First, pay attention to the plugins section of the POM file. Here, you can see
that maven-assembly-plugin is associated with the project. Inside the plugin
configuration, you can define any number of executions with the execution element,
which is a child element of the executions element. The configuration is as follows:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-assembly-plugin</artifactId>
 <executions>
 <execution>
 <id>copy_components</id>
 <phase>test</phase>
 <goals>
 <goal>attached</goal>
 </goals>
 <configuration>
 <filters>
 <filter>${basedir}/src/assembly/filter.properties
 </filter>
 </filters>

https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/products/is/5.0.0/modules/distribution/pom.xml
https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/products/is/5.0.0/modules/distribution/pom.xml
https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/products/is/5.0.0/modules/distribution/pom.xml

Chapter 6

[139]

 <descriptors>
 <descriptor>src/assembly/dist.xml</descriptor>
 </descriptors>
 </configuration>
 </execution>
 <execution>
 <id>dist</id>
 <phase>package</phase>
 <goals>
 <goal>attached</goal>
 </goals>
 <configuration>
 <filters>
 <filter>${basedir}/src/assembly/filter.properties
 </filter>
 </filters>
 <descriptors>
 <descriptor>src/assembly/bin.xml</descriptor>
 <descriptor>src/assembly/src.xml</descriptor>
 <descriptor>src/assembly/docs.xml</descriptor>
 </descriptors>
 </configuration>
 </execution>
 </executions>
</plugin>

If you look at the first execution element, it associates the attached goal of the
assembly plugin with the test phase of the default lifecycle. In the same manner,
the second execution element associates the attached goal with the package phase
of the default lifecycle.

The Maven default lifecycle includes: validate -> initialize
-> generate-sources -> process-sources -> generate-
resources -> process-resources -> compile -> process-
classes -> generate-test-sources -> process-test-
sources -> generate-test-resources -> process-test-
resources -> test-compile -> process-test-classes ->
test -> prepare-package -> package -> pre-integration-
test -> integration-test -> post-integration-test ->
verify -> install -> deploy.

Maven Assemblies

[140]

Everything inside the configuration element is plugin specific. In this case, the
Maven assembly plugin knows how to process the filters and descriptors
elements.

In this particular example, only the attached goal of the assembly plugin is used.
The assembly plugin introduces eight goals; however, six of them are deprecated,
including the attached goal. It is not recommended that you use any of the
deprecated goals. Later, we'll see how to use the single goal of the assembly plugin
instead of the deprecated attached goal. The following lists out the six deprecated
goals of the assembly plugin. If you are using any of them, you should migrate your
project to use the single goal, except for the last one, the directory-unpack goal.
For this, you need to use the unpack goal of the Maven dependency plugin.

•	 assembly:assembly

•	 assembly:attached

•	 assembly:directory

•	 assembly:unpack

•	 assembly:directory-single

•	 assembly:directory-inline

More details about the Maven assembly plugin and its goals can be
found at http://maven.apache.org/plugins/maven-assembly-
plugin/plugin-info.html.

The assembly descriptor
The assembly descriptor is an XML-based configuration, which defines how to build
an assembly and how its content should be structured.

If we go back to our example, the attached goal of the assembly plugin creates
a binary distribution according to the assembly descriptor, both in the test and
package phases of the default Maven lifecycle. The assembly descriptors for each
phase can be specified under the descriptors element. As in this particular example,
there can be multiple descriptor elements defined under the descriptors parent
element. For the package phase, it has the following three assembly descriptors:

<descriptors>
 <descriptor>src/assembly/bin.xml</descriptor>
 <descriptor>src/assembly/src.xml</descriptor>
 <descriptor>src/assembly/docs.xml</descriptor>
</descriptors>

http://maven.apache.org/plugins/maven-assembly-plugin/plugin-info.html
http://maven.apache.org/plugins/maven-assembly-plugin/plugin-info.html

Chapter 6

[141]

Each descriptor element instructs the assembly plugin where to load the descriptor,
and each descriptor file will be executed sequentially in the defined order.

Let's have a look at the src/assembly/bin.xml file, shown as follows. The file path
is given relative to the root POM file under the distribution module. You can
find the complete bin.xml file at https://svn.wso2.org/repos/wso2/carbon/
platform/branches/turing/products/is/5.0.0/modules/distribution/src/
assembly/bin.xml:

<assembly>
 <formats>
 <format>zip</format>
 </formats>

The value of the format element specifies the ultimate type of the artifact to be
produced. It can be zip, tar, tar.gz, tar.bz2, jar, dir, or war. You can use the
same assembly descriptor to create multiple formats. In this case, you can include
multiple format elements under the formats parent element.

Even though you can specify the format of the assembly in the
assembly descriptor, it is recommended that you do this via the plugin
configuration itself. In the plugin configuration, you can define different
formats for your assembly shown as follows. The benefit here is that you
can have multiple Maven profiles to build different archive types. We will
be talking about Maven profiles in Chapter 9, Best Practices:

<configuration>
 <formats>
 <format>zip</format>
 </formats>
</configuration>

 <includeBaseDirectory>false</includeBaseDirectory>

When the value of the includeBaseDirectory element is set to false, the artifact
will be created with no base directory. If this is set to true, which is the default
value, the artifact will be created under a base directory. You can specify a value for
the base directory under the baseDirectory element. In most of the cases, the value
of includeBaseDirectory is set to false so that the final distribution unit directly
packs all the artifacts right under it, without having another root directory.

 <fileSets>
 <fileSet>
 <directory>target/wso2carbon-core-4.2.0</directory>
 <outputDirectory>wso2is-${pom.version}</outputDirectory>
 <excludes>
 <exclude>**/*.sh</exclude>

https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/products/is/5.0.0/modules/distribution/pom.xml
https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/products/is/5.0.0/modules/distribution/pom.xml
https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/products/is/5.0.0/modules/distribution/pom.xml

Maven Assemblies

[142]

Each fileSet element under the fileSets parent element specifies the set of files to
be assembled to build the final archive. The first fileSet element instructs to copy
all the content from the directory (which is target/wso2carbon-core-4.2.0) to
the output directory specified under the outputDirectory configuration element,
excluding all the files defined under each exclude element. If no exclusions are
defined, then all the content inside directory will be copied to the outputDirectory.
In this particular case, the value of ${pom.version} will be replaced the by version of
the artifact, which is defined in the pom.xml file under the distribution module.

The exclude element instructs not to copy any file that has the .sh extension from
anywhere inside target/wso2carbon-core-4.2.0 to the outputDirectory.

 <exclude>**/wso2server.bat</exclude>
 <exclude>**/axis2services/sample01.aar</exclude>

The exclude element instructs not to copy the sample01.aar file inside a directory
called axis2services from anywhere inside target/wso2carbon-core-4.2.0
to outputDirectory.

 <exclude>**/axis2services/Echo.aar</exclude>
 <exclude>**/axis2services/Version.aar</exclude>
 <exclude>**/pom.xml</exclude>
 <exclude>**/version.txt</exclude>
 <exclude>**/README*</exclude>
 <exclude>**/carbon.xml</exclude>
 <exclude>**/axis2/*</exclude>
 <exclude>**/LICENSE.txt</exclude>
 <exclude>**/INSTALL.txt</exclude>
 <exclude>**/release-notes.html</exclude>
 <exclude>**/claim-config.xml</exclude>
 <exclude>**/log4j.properties</exclude>
 <exclude>**/registry.xml</exclude>
 </excludes>
 </fileSet>
 <fileSet>
 <directory>../p2-profile-gen/target/wso2carbon-core-
 4.2.0/repository/conf/identity
 </directory>
 <outputDirectory>wso2is-${pom.version}/repository/
 conf/identity
 </outputDirectory>
 <includes>
 <include>**/*.xml</include>
 </includes>

Chapter 6

[143]

The include element instructs to copy only the files that have the .xml extension
from anywhere inside the ../p2-profile-gen/target/wso2carbon-core-4.2.0/
repository/conf/identity directory to the outputDirectory. If no include
element is defined, everything will be included.

 </fileSet>
 <fileSet>
 <directory>../p2-profile-gen/target/wso2carbon-core-
 4.2.0/repository/resources/security/ldif
 </directory>
 <outputDirectory>wso2is-${pom.version}/repository/
 resources/security/ldif
 </outputDirectory>
 <includes>
 <include>identityPerson.ldif</include>
 <include>scimPerson.ldif</include>
 <include>wso2Person.ldif</include>
 </includes>

The include element instructs to copy only the files having specific names from
anywhere inside the ../p2-profile-gen/target/wso2carbon-core/4.2.0/
repository/resources/security/ldif directory to the outputDirectory.

 </fileSet>
 <fileSet>
 <directory>../p2-profile-gen/target/wso2carbon-core-
 4.2.0/repository/deployment/server/webapps
 </directory>
 <outputDirectory>${pom.artifactId}-${pom.version}
 /repository/deployment/server/webapps
 </outputDirectory>
 <includes>
 <include>oauth2.war</include>
 </includes>

The include element instructs to copy only the WAR file with the name
oauth2.war from anywhere inside the ../p2-profile-gen/target/wso2carbon-
core/4.2.0/repository/resources/deployment/server/webappas directory to
the outputDirectory.

 </fileSet>
 <fileSet>
 <directory>../p2-profile-gen/target/wso2carbon-core-
 4.2.0/repository/deployment/server/webapps
 </directory>

Maven Assemblies

[144]

 <outputDirectory>${pom.artifactId}-${pom.version}
 /repository/deployment/server/webapps
 </outputDirectory>
 <includes>
 <include>authenticationendpoint.war</include>
 </includes>
 </fileSet>
 <fileSet>
 <directory>../styles/service/src/main/resources
 /web/styles/css
 </directory>
 <outputDirectory>${pom.artifactId}-${pom.version}
 /resources/allthemes/Default/admin
 </outputDirectory>
 <includes>
 <include>**/**.css</include>
 </includes>

The include element instructs to copy any file with the .css extension from
anywhere inside the ../styles/service/src/main/resources/web/styles/css
directory to the outputDirectory.

 </fileSet>
 <fileSet>
 <directory>../p2-profile-gen/target/WSO2-CARBON-PATCH-
 4.2.0-0006
 </directory>
 <outputDirectory>wso2is-
 ${pom.version}/repository/components/patches/
 </outputDirectory>
 <includes>
 <include>**/patch0006/*.*</include>
 </includes>

The include element instructs to copy all the files inside the patch006 directory
from anywhere inside the ../p2-profile-gen/target/WSO2-CARBON-
PATCH-4.2.0-0006 directory to the outputDirectory.

 </fileSet>
 </fileSets>
 <files>

Chapter 6

[145]

The file element is very similar to the fileSet element in terms of the key
functionality. Both can be used to control the content of the assembly.

The file element should be used when you are fully aware
of the exact source file location, while the fileSet element
is much more flexible to pick files from a source based on a
defined pattern.

The fileMode element in the following snippet defines a set of permissions to
be attached to the copied file. The permissions are defined as per the four-digit
octal notation. You can read more about the four-digit octal notation from
http://en.wikipedia.org/wiki/File_system_permissions#Octal_notation_
and_additional_permissions:

 <file>
 <source>../p2-profile-gen/target/WSO2-CARBON-PATCH-
 ${carbon.kernel.version}-
 0006/lib/org.wso2.ciphertool-1.0.0-wso2v2.jar
 </source>
 <outputDirectory>${pom.artifactId}-${pom.version}/lib/
 </outputDirectory>
 <filtered>true</filtered>
 <fileMode>644</fileMode>
 </file>
 <files>
</assembly>

There are three descriptor elements defined under the assembly plugin for the
package phase. The one we just discussed earlier will create the binary distribution,
while the src/assembly/src.xml and src/assembly/docs.xml files will create
the source distribution and the documentation distribution, respectively.

Let's also look at the assembly descriptor defined for the test phase:

<descriptors>
 <descriptor>src/assembly/dist.xml</descriptor>
</descriptors>

http://en.wikipedia.org/wiki/File_system_permissions#Octal_notation_and_additional_permissions
http://en.wikipedia.org/wiki/File_system_permissions#Octal_notation_and_additional_permissions

Maven Assemblies

[146]

This is quite short and only includes the configuration required to build the initial
distribution of WSO2 Identity Server. Even though this project does this at the test
phase, it seems like it has no value in doing this. In this case, it seems like maven-
antrun-plugin, which is also associated with the package phase but prior to the
definition of the assembly plugin, needs the ZIP file distribution. Ideally, you
should not have the assembly plugin run at the test phase unless there is a very
strong reason. You might need the distribution ready to run the integration tests;
however, the integration tests should be executed in the integration-test phase,
which comes after the package phase. In most of the cases, the assembly plugin is
associated with the package phase of the Maven default lifecycle.

<assembly>
 <formats>
 <format>zip</format>
 </formats>
 <includeBaseDirectory>false</includeBaseDirectory>
 <fileSets>
 <!-- Copying p2 profile and osgi bundles-->
 <fileSet>
 <directory>../p2-profile-gen/target/wso2carbon-core-
 4.2.0/repository/components
 </directory>
 <outputDirectory>wso2is-${pom.version}/repository/components
 </outputDirectory>
 <excludes>
 <exclude>**/eclipse.ini</exclude>
 <exclude>**/*.lock</exclude>
 <exclude>**/.data</exclude>
 <exclude>**/.settings</exclude>
 </excludes>
 </fileSet>
 </fileSets>
 <dependencySets>
 <dependencySet>
 <outputDirectory>wso2is-${pom.version}/repository/
 deployment/client/modules
 </outputDirectory>
 <includes>
 <include>org.apache.rampart:rampart:mar</include>
 </includes>
 </dependencySet>
 </dependencySets>
</assembly>

Chapter 6

[147]

This configuration introduces a new element that we have not seen before:
dependencySet. The dependencySet element lets you include/exclude project
dependencies to/from the final assembly that we are building. In the previous
example, it adds the rampart module into the outputDirectory. The value of the
include element should be in the groupdId:artifactId:type[:classifier]
[:version] format. Maven will look for this artifact with the defined coordinates
in its local Maven repository first, and if found, it will copy the artifact to the
outputDirectory element.

Unlike the fileSet or file configuration, dependencySet does not define a
concrete path to pick and copy the dependency from. Maven finds artifacts via the
defined coordinates. If you want to include a dependency just by its groupId and
the artifactId, then you can follow the groupdId:artifactId pattern. The
particular artifact should be defined in the POM file, which has the assembly plugin
defined under the dependencies section. You can find the following dependency
definition for the rampart module in the POM file under the distribution module.
If two versions of the same dependency are being defined in the same POM file
(rather unlikely), then the last in the order will be copied.

<dependency>
 <groupId>org.apache.rampart</groupId>
 <artifactId>rampart</artifactId>
 <type>mar</type>
 <version>1.6.1-wso2v12</version>
</dependency>

You can also include a dependency by its groupId, artifactId, and type elements,
as shown in the following configuration. Then, you can follow the groupdId:artifa
ctId:type[:classifier] pattern. This is the exact pattern followed in the
previous example:

<includes>
 <include>org.apache.rampart:rampart:mar</include>
</includes>

If you want to be more precise, you can also include the version in the pattern.
Then, it will look like this:

<includes>
 <include>org.apache.rampart:rampart:mar:1.6.1-wso2v12
 </include>
</includes>

Maven Assemblies

[148]

Most of the time, we talk about four Maven coordinates; however, to
be precise there are five. A Maven artifact can be uniquely identified
by these five coordinates: groupdId:artifactId:type[:class
ifier]:version. We have already discussed about the four main
coordinates, but not about the classifier. This is very rarely used; it
can be quite useful in a scenario where we build an artifact out of
the same POM file but with multiple target environments. We will
discuss classifiers in detail in Chapter 9, Best Practices.

The previous example only covered a very little subset of the assembly descriptor.
You can find all available configuration options at http://maven.apache.org/
plugins/maven-assembly-plugin/assembly.html, which is a quite exhausting list.

It is a best practice or a convention to include all the assembly
descriptor files inside a directory called assembly, though it is
not mandatory.

Let's have a look at another real-world example with Apache Axis2. Axis2 is an
open source project released under the Apache 2.0 license. Axis2 has three types of
distributions: a binary distribution as a ZIP file, a WAR file distribution, and a source
distribution as a ZIP file. The binary ZIP distribution of Axis2 can be run on its own,
while the WAR distribution must be deployed in a Java EE application server.

All three Axis2 distributions are created from the POM file inside the distribution
module, which can be found at http://svn.apache.org/repos/asf/axis/axis2/
java/core/trunk/modules/distribution/pom.xml. This POM file associates
the single goal of the Maven assembly plugin with the project, which initiates the
process of creating the final distribution artifacts. The assembly configuration points
to three different assembly descriptors: one for the ZIP distribution, another for the
WAR distribution, and a third one for the source code distribution.

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-assembly-plugin</artifactId>
 <executions>
 <execution>
 <id>distribution-package</id>
 <phase>package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 <configuration>
 <finalName>axis2-${project.version}</finalName>

http://maven.apache.org/plugins/maven-assembly-plugin/assembly.html
http://maven.apache.org/plugins/maven-assembly-plugin/assembly.html
http://svn.apache.org/repos/asf/axis/axis2/java/core/trunk/modules/distribution/pom.xml
http://svn.apache.org/repos/asf/axis/axis2/java/core/trunk/modules/distribution/pom.xml

Chapter 6

[149]

 <descriptors>
 <descriptor>src/main/assembly/war-assembly.xml
 </descriptor>
 <descriptor>src/main/assembly/src-assembly.xml
 </descriptor>
 <descriptor>src/main/assembly/bin-assembly.xml
 </descriptor>
 </descriptors>
 </configuration>
 </execution>
 </executions>
</plugin>

Let's have a look at the bin-assembly.xml file, which is the assembly descriptor
that builds the ZIP distribution:

<assembly>
 <id>bin</id>
 <includeBaseDirectory>true</includeBaseDirectory>
 <baseDirectory>axis2-${version}</baseDirectory>
 <formats>
 <!--<format>tar.gz</format>
 //uncomment,if tar.gz archive needed-->
 <format>zip</format>
 </formats>

This is exactly what we discussed earlier and exactly what we wanted to avoid due
to the same reason as in the comment. If we want to build a tar.gz distribution, then
we need to modify the file. Instead of doing this, we should have moved the format
configuration element out of the assembly descriptor to the plugin configuration
defined in the pom.xml file. Then, you can define multiple profiles and configure the
archive type based on the profile.

 <fileSets>
 </fileSets>
 <dependencySets>
 <dependencySet>
 <useProjectArtifact>false</useProjectArtifact>

The useProjectArtifact configuration element instructs the plugin whether or
not to include the artifact produced in this project build into the dependencySet
element. By setting the value to false, we avoid it.

 <outputDirectory>lib</outputDirectory>
 <includes>
 <include>*:*:jar</include>

Maven Assemblies

[150]

 </includes>
 <excludes>
 <exclude>org.apache.geronimo.specs:
 geronimo-activation_1.1_spec:jar
 </exclude>
 </excludes>
 </dependencySet>
 <dependencySet>
 <useProjectArtifact>false</useProjectArtifact>
 <outputDirectory>lib/endorsed</outputDirectory>
 <includes>
 <include>javax.xml.bind:jaxb-api:jar</include>
 </includes>
 </dependencySet>
 <dependencySet>
 <useProjectArtifact>false</useProjectArtifact>
 <includes>
 <include>org.apache.axis2:axis2-webapp</include>
 </includes>

The includes and excludes configuration elements will make sure that all the
JAR files defined under the dependencies section of the distribution/pom.
xml file will be included in the assembly, except the JAR files defined under the
excludes configuration element. If you do not have any include elements, all the
dependencies defined in the POM file will be included in the assembly, except what
is defined under the excludes section.

 <unpack>true</unpack>

Once the unpack configuration element is set to true, all the dependencies
defined under the include elements will be unpacked to the outputDirectory.
The plugin is capable of unpacking the jar, zip, tar.gz, and tar.bz2 archives.
The unpackOptions configuration element, can be used to filter out the content of
the dependencies getting unpacked. According to the following configuration, only
the files defined under the include elements under the unpackOptions element will
be included; the rest will be ignored and won't be included in the assembly. In this
particular case, axis2-webapp is a WAR file and the distributions/pom.xml file
has a dependency to it. This web app will be exploded, and then all the files inside
the WEB-INF/classes and axis2-web directories will be copied into the webapp
directory of the ZIP distribution along with the WEB-INF/web.xml file:

 <outputDirectory>webapp</outputDirectory>
 <unpackOptions>
 <includes>
 <include>WEB-INF/classes/**/*</include>
 <include>WEB-INF/web.xml</include>
 <include>axis2-web/**/*</include>

Chapter 6

[151]

 </includes>
 </unpackOptions>
 </dependencySet>
 </dependencySets>
</assembly>

Now, let's have a look at war-assembly.xml, which is the assembly descriptor
that builds the WAR distribution. There is nothing new in this configuration,
except the outputFileNameMapping configuration element. As the value of the
format element is set to zip, this assembly descriptor will produce an archive file
conforming to the ZIP file specification. The value of the outputFileNameMapping
configuration element gets applied to all the dependencies. The default value is
parameterized, that is, ${artifactId}-${version}${classifier?}.${extens
ion}. In this case, it's hardcoded to axis2.war, so the axis2-webapp artifact will
be copied to outputDirectory as axis2.war. As there is no value defined for the
outputDirectory element, the files will be copied to the root location.

<assembly>
 <id>war</id>
 <includeBaseDirectory>false</includeBaseDirectory>
 <formats>
 <format>zip</format>
 </formats>
 <dependencySets>
 <dependencySet>
 <useProjectArtifact>false</useProjectArtifact>
 <includes>
 <include>org.apache.axis2:axis2-webapp</include>
 </includes>
 <outputFileNameMapping>axis2.war</outputFileNameMapping>
 </dependencySet>
 </dependencySets>
 <fileSets>
 <fileSet>
 <directory>../..</directory>
 <outputDirectory></outputDirectory>
 <includes>
 <include>LICENSE.txt</include>
 <include>NOTICE.txt</include>
 <include>README.txt</include>
 <include>release-notes.html</include>
 </includes>
 <filtered>true</filtered>
 </fileSet>
 </fileSets>
</assembly>

Maven Assemblies

[152]

Artifact/resource filtering
We had a filters configuration, defined for the assembly plugin in the first example
with WSO2 Identity Server. This instructs the assembly plugin to apply the filter
criteria defined in the provided filter or the set of filters for the files being copied to
the final archive file. If you want to apply the filters to a given file, then you should set
the value of the filtered element to true. The following configuration shows how to
define a filter criteria with a property file:

<filters>
 <filter>${basedir}/src/assembly/filter.properties</filter>
</filters>

Let's have a look at the ${basedir}/src/assembly/filter.properties file.
This file defines a set of name/value pairs. The name is a special placeholder,
which should be enclosed between ${ and } in the file to be filtered, and during
the filtering process, it will be replaced by the value. Say for example, the value
${product.name} in the original file will be replaced with WSO2 Identity Server
after the filtering process:

product.name=WSO2 Identity Server
product.key=IS
product.version=5.0.0
hotdeployment=true
hotupdate=true
default.server.role=IdentityServer

Assembly help
As discussed before, the assembly plugin currently has only two active goals:
single and help; all the others are deprecated. As we witnessed in the previous
example, the single goal is responsible for creating the archive with all sort of
other configurations.

The following command shows how to execute the help goal of the assembly
plugin. This has to be executed from a directory that has a POM file:

$ mvn assembly:help -Ddetail=true

If you see the following error when you run this command, you might not have the
latest version. Update the plugin version to 2.4.1 or higher:

[ERROR] Could not find goal 'help' in plugin
org.apache.maven.plugins:maven-assembly-plugin:2.2-beta-2 among
available goals assembly, attach-assembly-descriptor, attach-
component-descriptor, attached, directory-inline, directory,
directory-single, single, unpack -> [Help 1]

Chapter 6

[153]

A runnable, standalone Maven project
As we covered a lot of ground-related information to the Maven assembly plugin,
let's see how to build a complete end-to-end runnable, standalone project with the
assembly plugin. You can find the complete sample at https://svn.wso2.org/
repos/wso2/people/prabath/maven/chapter06. Proceed with the following steps:

1.	 First, create a directory structure in the following manner:
 |-pom.xml
 |-modules
 |- json-parser
 |- src/main/java/com/packt/json/JSONParser.java
 |- pom.xml
 |- distribution
 |- src/main/assembly/dist.xml
 |- pom.xml

2.	 JSONParser.java is a simple Java class, which reads a JSON file and prints
to the console, shown as follows:
package com.packt.json;

import java.io.File;
import java.io.FileReader;
import org.json.simple.JSONObject;

public class JSONParser {

 public static void main(String[] args) {

 FileReader fileReader;
 JSONObject json;
 org.json.simple.parser.JSONParser parser;
 parser = new org.json.simple.parser.JSONParser();

 try {
 if (args == null || args.length == 0 || args[0] ==
 null || !new File(args[0]).exists()){
 System.out.println("No valid JSON file provided");
 }else{
 fileReader = new FileReader(new File(args[0]));
 json = (JSONObject) parser.parse(fileReader);
 if (json != null) {
 System.out.println(json.toJSONString());
 }
 }
 } catch (Exception e) {
 e.printStackTrace();}
 }
}

https://svn.wso2.org/repos/wso2/people/prabath/maven/chapter06
https://svn.wso2.org/repos/wso2/people/prabath/maven/chapter06

Maven Assemblies

[154]

3.	 Now, we can create a POM file under modules/json-parser to build our
JAR file, as follows:
<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>json-parser</artifactId>
 <version>1.0.0</version>
 <packaging>jar</packaging>
 <name>PACKT JSON Parser</name>
 <dependencies>
 <dependency>
 <groupId>com.googlecode.json-simple
 </groupId>
 <artifactId>json-simple</artifactId>
 <version>1.1</version>
 </dependency>
 </dependencies>
</project>

4.	 Once we are done with the json-parser module, the next step is to create
the distribution module. The distribution module will have a POM file
and an assembly descriptor. Let's first create the POM file under modules/
distribution, shown as follows. This will associate two plugins with the
project: maven-assembly-plugin and maven-jar-plugin. Both the plugins
get executed in the package phase of the Maven default lifecycle. As
maven-assembly-plugin is defined prior to maven-jar-plugin, it will
get executed first:
<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>json-parser-dist</artifactId>
 <version>1.0.0</version>
 <packaging>jar</packaging>
 <name>PACKT JSON Parser Distribution</name>
 <dependencies>
<!—
Under the dependencies section we have to specify all the
dependent jars that must be assembled into the final
artifact. In this case we have two jar files. The first one
is the external dependency that we used to parse the JSON
file and the second one includes the class we wrote.
-->
 <dependency>
 <groupId>com.googlecode.json-simple</groupId>

Chapter 6

[155]

 <artifactId>json-simple</artifactId>
 <version>1.1</version>
 </dependency>
 <dependency>
 <groupId>com.packt</groupId>
 <artifactId>json-parser</artifactId>
 <version>1.0.0</version>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-assembly-plugin</artifactId>
 <executions>
 <execution>
 <id>distribution-package</id>
 <phase>package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 <configuration>
 <finalName>json-parser</finalName>
 <descriptors>
 <descriptor>src/main/assembly/dist.xml
 </descriptor>
 </descriptors>
 </configuration>
 </execution>
 </executions>
 </plugin>
<!—
Even though the maven-jar-plugin is inherited from the
super POM, here we have redefined it because we need to add
some extra configurations. Since we need to make our final
archive executable, we need to define the class to be
executable in the jar manifest. Here we have set
com.packt.json.JSONParser as our main class. Also –
classpath is set to the lib directory. If you look at the
assembly descriptor used in the assembly plugin, you will
notice that, the dependent jar files are copied into the
lib directory. The manifest configuration in the maven-jar-
plugin will result in the following manifest file (META-
INF/MANIFEST.MF).

Maven Assemblies

[156]

Manifest-Version: 1.0
Archiver-Version: Plexus Archiver
Created-By: Apache Maven
Built-By: prabath
Build-Jdk: 1.6.0_65
Main-Class: com.packt.json.JSONParser
Class-Path: lib/json-simple-1.1.jar lib/json-parser-1.0.0.jar
-->

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <version>2.3.1</version>
 <configuration>
 <archive>
 <manifest>
 <addClasspath>true</addClasspath>
 <classpathPrefix>lib/</classpathPrefix>
 <mainClass>com.packt.json.JSONParser
 </mainClass>
 </manifest>
 </archive>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

5.	 The following configuration shows the assembly descriptor (module/
distribution/ src/main/assembly/dist.xml), corresponding to the
assembly plugin defined in the previous step:
<assembly>
 <id>bin</id>
 <formats>
 <format>zip</format>
 </formats>
 <dependencySets>
 <dependencySet>
 <useProjectArtifact>false</useProjectArtifact>
 <outputDirectory>lib</outputDirectory>
 <unpack>false</unpack>
 </dependencySet>
 </dependencySets>
 <fileSets>

Chapter 6

[157]

 <fileSet>
 <directory>${project.build.directory}</directory>
 <outputDirectory></outputDirectory>
 <includes>
 <include>*.jar</include>
 </includes>
 </fileSet>
 </fileSets>
</assembly>

6.	 Now, we are done with the distribution module too. The next step is
to create the root POM file, which aggregates both the json-parser and
distribution modules, as follows:
<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt</groupId>
 <artifactId>json-parser-aggregator</artifactId>
 <version>1.0.0</version>
 <packaging>pom</packaging>
 <name>PACKT JSON Parser Aggregator</name>
 <modules>
 <module>modules/json-parser</module>
 <module>modules/distribution</module>
 </modules>
</project>

7.	 We are all set to build the project. From the root directory, type mvn clean
install. This will produce the json-parser-bin.zip archive inside
modules/distribution/target. The output is shown as follows:
[INFO] --

[INFO] Reactor Summary:

[INFO]

[INFO] PACKT JSON Parser............... SUCCESS [1.790 s]

[INFO] PACKT JSON Parser Distribution.. SUCCESS [0.986 s]

[INFO] PACKT JSON Parser Aggregator.... SUCCESS [0.014 s]

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

8.	 Go to modules/distribution/target and unzip json-parser-bin.zip.

Maven Assemblies

[158]

9.	 To run the parser, type the following command, which will produce the No
valid JSON file provided output:
$ java -jar json-parser/json-parser-dist-1.0.0.jar

10.	 Run the parser again with the following valid JSON file. You need to pass the
path to the JSON file as an argument, as shown:
$ java -jar json-parser/json-parser-dist-1.0.0.jar
myjsonfile.json

The following is the content of the JSON file:
{
 "bookName" : "Mastering Maven", "publisher" : "PACKT"
}

Summary
In this chapter, we focused on the Maven assembly plugin. The assembly plugin
provides a way of building custom archive files and aggregating many other
custom configurations and resources. Most of the Java-based products out there
use the assembly plugin to build the final distribution artifacts. These can be binary
distributions, source code distributions, or even documentation distributions.
The chapter covered real-world examples on how to use the Maven assembly
plugin in detail and finally concluded with an end-to-end sample Maven project.

In the next chapter, we will discuss Maven archetypes. Maven archetypes provide
a way of reducing repetitive work when building Maven projects.

Maven Archetypes
The word archetype has roots in Greek literature. It's derived from two Greek words,
archein and typos. The word archein means original or old, while typos means patterns.
Therefore, the word archetype itself means original patterns. The famous psychologist,
Carl Gustav Jung introduced the archetype concept in psychology. Jung, argued that
there are twelve different archetypes that represent human motivation, and he further
divided them into three categories: the ego, the soul, and the self. The innocent, regular
guy, hero, and caregiver fall under the ego type. The explorer, rebel, lover, and creator
fall under the soul type. The self type includes jester, sage, magician, and ruler. The
concept behind Maven archetypes does not deviate a lot from what Jung explained
in psychology. The following figure shows the relationship between a Maven project,
a project archetype and projects generated from an archetype:

Create a project Create a template

Generate projects from the template

Maven Project

Maven Project Maven Project Maven Project

Project Archetype

Maven Archetypes

[160]

When we create a Java project, we need to structure it in different ways based on the
type of the project. If it's a Java EE web application, then we need to have a WEB-INF
directory and a web.xml file. If it's a Maven plugin project, we need to have a Mojo
class that extends from org.apache.maven.plugin.AbstractMojo. As each type of
project has its own predefined structure, why would everyone have to build the same
structure again and again? Why not start with a template? Each project can have its
own template, and the developers can extend the template to suite their requirements.
Maven archetypes address this concern. Each archetype is a project template.

A list of Maven archetypes can be found at
http://maven-repository.com/archetypes.

In this chapter, we will discuss the following topics:

•	 The Maven archetype plugin
•	 The most used archetypes
•	 Developing a custom archetype from scratch

Archetype quickstart
Maven's archetype itself is a plugin. The generate goal of the archetype plugin is
used to generate a Maven project from an archetype. Let's start with a simple example:

$ mvn archetype:generate -DgroupId=com.packt.samples
 -DartifactId=com.packt.samples.archetype
 -Dversion=1.0.0
 -DinteractiveMode=false

This command will invoke the generate goal of the Maven archetype plugin
to create a simple Java project. You will see that the following project structure
is created with a sample POM file. The name of the root or the base directory is
derived from the value of the artifactId parameter:

com.packt.samples.archetype
 |-pom.xml
 |-src
 |-main/java/com/packt/samples/App.java
 |-test/java/com/packt/samples/AppTest.java

http://maven-repository.com/archetypes

Chapter 7

[161]

The sample POM file will only have a dependency to the junit JAR file, with test
as scope:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt.samples</groupId>
 <artifactId>com.packt.samples.archetype</artifactId>
 <packaging>jar</packaging>
 <version>1.0.0</version>
 <name>com.packt.samples.archetype</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

The generated App.java class will have the following template code. The name
of the package is derived from the provided groupId parameter. If we want to
have a different value as the package name, then we need to pass that value in
the command itself as -Dpackage=com.packt.samples.application:

package com.packt.samples;

/**
 * Hello world!
 *
 */
public class App
{
 public static void main(String[] args)
 {
 System.out.println("Hello World!");
 }
}

This is the simplest way to get started with a Maven project. In the previous example,
we used the non-interactive mode, by setting interactiveMode=false. This will
force the plugin to use whatever the values we passed in the command itself, along
with the default values.

Maven Archetypes

[162]

To invoke the plugin in the interactive mode, just type mvn archetype:generate.
This will prompt for user inputs as the plugin proceeds with its execution. The very
first one is to ask for a filter or a number for the type of the archetype. The filter can
be specified in the format of [groupdId:]artifactId, as follows:

Choose a number or apply filter (format: [groupId:]artifactId, case
 sensitive contains): 471:

When you type the filter criteria, for example, org.apache.maven.
archetypes:maven-archetype-quickstart, the plugin will display the number
associated with it, as follows:

Choose a number or apply filter (format: [groupId:]artifactId, case
 sensitive contains): 471: org.apache.maven.archetypes:maven-
 archetype-quickstart

Choose archetype:

1: remote -> org.apache.maven.archetypes:maven-archetype-quickstart
 (An archetype which contains a sample Maven project.)

Choose a number or apply filter (format: [groupId:]artifactId, case
 sensitive contains): 1:

In this case, there is only one archetype, which matches the filter, and the number
associated with it is 1. If you just press Enter against the last line in the previous
output, or just type 1, the plugin will start to proceed with the org.apache.maven.
archetypes:maven-archetype-quickstart archetype.

Something you might have already noticed is that as soon as you type mvn
archetype:generate, the plugin will display a long list of Maven archetypes
supported by the plugin, and each archetype has a number associated with it.
You can avoid this long list by specifying a filter criterion with the command
itself, which is shown as follows:

$ mvn archetype:generate

 –Dfilter=org.apache.maven.archetypes:maven-archetype-quickstart

Choose archetype:

1: remote -> org.apache.maven.archetypes:maven-archetype-quickstart
 (An archetype that contains a sample Maven project.)

Choose a number or apply filter (format: [groupId:]artifactId, case
 sensitive contains): 1:

Chapter 7

[163]

The batch mode
The archetype plugin can operate in the batch mode either by setting the
interactiveMode argument to false or passing -B as an argument. When
operating in the batch mode, you need to clearly specify which archetype you
are going to use with the arguments: archetypeGroupId, archetypeArtifactId,
and archetypeVersion. Also, you need to clearly identify the resultant artifact
with the groupId, artifactId, version, and package arguments, as follows:

$ mvn archetype:generate -B

 -DarchetypeGroupId=org.apache.maven.archetypes

 -DarchetypeArtifactId=maven-archetype-quickstart

 -DarchetypeVersion=1.0

 -DgroupId=com.packt.samples

 -DartifactId=com.packt.samples.archetype

 -Dversion=1.0.0

 -Dpackage=com.packt.samples.archetype

Any inquisitive mind should be having a very valid question by now.

In the non-interactive mode, we did not type any filter or provide any Maven
coordinates for the archetype in the very first example. So, how does the plugin know
about the archetype? When no archetype is specified, the plugin goes with the default
one, which is org.apache.maven.archetypes:maven-archetype-quickstart.

Archetype catalogues
How does the plugin find all the archetypes available in the system? When you just
type mvn archetype:generate, a list of archetypes is displayed by the plugin for
user selection. The complete list is around 1100, and only the first 10 are shown here:

1: remote -> br.com.ingenieux:elasticbeanstalk-service-webapp-
 archetype (A Maven Archetype Encompassing RestAssured, Jetty,
 Jackson, Guice and Jersey for Publishing JAX-RS-based Services on
 AWS' Elastic Beanstalk Service)

2: remote -> br.com.ingenieux:elasticbeanstalk-wrapper-webapp-
 archetype (A Maven Archetype Wrapping Existing war files on AWS'
 Elastic Beanstalk Service)

3: remote -> br.com.otavio.vraptor.archetypes:vraptor-archetype-blank
 (A simple project to start with VRaptor 4)

4: remote -> br.gov.frameworkdemoiselle.archetypes:demoiselle-html-
 rest (Archetype for web applications (HTML + REST) using Demoiselle
 Framework)

Maven Archetypes

[164]

5: remote -> br.gov.frameworkdemoiselle.archetypes:demoiselle-jsf-jpa
 (Archetype for web applications (JSF + JPA) using Demoiselle
 Framework)

6: remote -> br.gov.frameworkdemoiselle.archetypes:demoiselle-minimal
 (Basic archetype for generic applications using Demoiselle
 Framework)

7: remote -> br.gov.frameworkdemoiselle.archetypes:demoiselle-vaadin-
 jpa (Archetype for Vaadin web applications)

8: remote -> ch.sbb.maven.archetypes:iib9-maven-projects (IBM
 Integration Bus 9 Maven Project Structure)

9: remote -> ch.sbb.maven.archetypes:wmb7-maven-projects (WebSphere
 Message Broker 7 Maven Project Structure)

10: remote -> co.ntier:spring-mvc-archetype (An extremely simple
 Spring MVC archetype, configured with NO XML.)

Going back to the original question, how does the plugin find these details about
different archetypes?

The archetype plugin maintains the details about different archetypes in an
internal catalogue, which comes with the plugin itself. The archetype catalogue
is simply an XML file. The following configuration shows the internal catalogue
of the archetype plugin:

<archetype-catalog>

<!-- Internal archetype catalog listing archetypes from the Apache
Maven project. -->

 <archetypes>
 <archetype>
 <groupId>org.apache.maven.archetypes</groupId>
 <artifactId>maven-archetype-archetype</artifactId>
 <version>1.0</version>
 <description>An archetype that contains a sample
 archetype.</description>
 </archetype>
 <archetype>
 <groupId>org.apache.maven.archetypes</groupId>
 <artifactId>maven-archetype-j2ee-simple</artifactId>
 <version>1.0</version>
 <description>An archetype that contains a simplified sample
 J2EE application.</description>
 </archetype>
 <archetype>
 <groupId>org.apache.maven.archetypes</groupId>

Chapter 7

[165]

 <artifactId>maven-archetype-plugin</artifactId>
 <version>1.2</version>
 <description>An archetype that contains a sample Maven
 plugin.</description>
 </archetype>
 <archetype>
 <groupId>org.apache.maven.archetypes</groupId>
 <artifactId>maven-archetype-plugin-site</artifactId>
 <version>1.1</version>
 <description>An archetype that contains a sample Maven plugin
 site. This archetype can be layered upon an existing Maven
 plugin project.</description>
 </archetype>
 <archetype>
 <groupId>org.apache.maven.archetypes</groupId>
 <artifactId>maven-archetype-portlet</artifactId>
 <version>1.0.1</version>
 <description>An archetype that contains a sample JSR-268
 Portlet.</description>
 </archetype>
 <archetype>
 <groupId>org.apache.maven.archetypes</groupId>
 <artifactId>maven-archetype-profiles</artifactId>
 <version>1.0-alpha-4</version>
 <description></description>
 </archetype>
 <archetype>
 <groupId>org.apache.maven.archetypes</groupId>
 <artifactId>maven-archetype-quickstart</artifactId>
 <version>1.1</version>
 <description>An archetype that contains a sample Maven
 project.</description>
 </archetype>
 <archetype>
 <groupId>org.apache.maven.archetypes</groupId>
 <artifactId>maven-archetype-site</artifactId>
 <version>1.1</version>
 <description>An archetype that contains a sample Maven site,
 which demonstrates some of the supported document types like
 APT, XDoc, and FML and demonstrates how to i18n your site.
 This archetype can be layered upon an existing Maven
 project.</description>
 </archetype>
 <archetype>
 <groupId>org.apache.maven.archetypes</groupId>

Maven Archetypes

[166]

 <artifactId>maven-archetype-site-simple</artifactId>
 <version>1.1</version>
 <description>An archetype that contains a sample Maven
 site.</description>
 </archetype>
 <archetype>
 <groupId>org.apache.maven.archetypes</groupId>
 <artifactId>maven-archetype-webapp</artifactId>
 <version>1.0</version>
 <description>An archetype that contains a sample Maven Webapp
 project.</description>
 </archetype>
 </archetypes>
</archetype-catalog>

In addition to the internal catalogue, you can also maintain a local archetype
catalogue. This is available at USER_HOME/.m2/archetype-catalog.xml, and by
default, it's an empty file.

There is also a remote catalogue, which is available at http://repo1.maven.org/
maven2/archetype-catalog.xml. By default, the archetype plugin will load all
the available archetypes from the local and remote catalogues. If we go back to the
archetype list displayed by the plugin, when you type mvn archetype:generate,
by looking at the each entry, we can determine whether a given archetype is loaded
from the internal, local, or remote catalogue.

For example, the following archetype is loaded from the remote catalogue:

1: remote -> br.com.ingenieux:elasticbeanstalk-service-webapp-
 archetype (A Maven Archetype Encompassing RestAssured, Jetty,
 Jackson, Guice and Jersey for Publishing JAX-RS-based Services on
 AWS' Elastic Beanstalk Service)

If you want to enable the archetype plugin to list all the archetypes from the
internal catalogue, you need to use the following command:

$ mvn archetype:generate -DarchetypeCatalog=internal

To list all the archetypes from the local catalogue, you need to use the
following command:

$ mvn archetype:generate -DarchetypeCatalog=local

To list all the archetypes from the internal, local, and remote catalogues,
you need to use the following command:

$ mvn archetype:generate -DarchetypeCatalog=internal,local,remote

http://repo1.maven.org/maven2/archetype-catalog.xml
http://repo1.maven.org/maven2/archetype-catalog.xml

Chapter 7

[167]

Building an archetype catalogue
In addition to the internal, local, and remote catalogues, you can also build your
own catalogue. Say you have developed your own set of Maven archetypes and need
to build a catalogue out of them, so it can be shared with others by publicly hosting
it. Once you have built the archetypes, they will be available in your local Maven
repository. The following command will crawl through the local Maven repository
and build an archetype catalogue from all the archetypes available there. Here, we
use the crawl goal of the archetype plugin:

$ mvn archetype:crawl -DcatalogFile=my-catalog.xml

Public archetype catalogues
People who develop archetypes for their projects will list them in publicly hosted
archetype catalogues. The following points list some of the publicly available Maven
archetype catalogues:

•	 Fuse: The archetype catalogue can be found at http://repo.fusesource.
com/nexus/content/groups/public/archetype-catalog.xml

•	 Java.net: The archetype catalogue can be found at
http://download.java.net/maven/2/archetype-catalog.xml

•	 Cocoon: The archetype catalogue can be found at
http://cocoon.apache.org/archetype-catalog.xml

•	 MyFaces: The archetype catalogue can be found at
http://myfaces.apache.org/archetype-catalog.xml

•	 Apache Synapse: The archetype catalogue can be found at
http://synapse.apache.org/archetype-catalog.xml

Let's take Apache Synapse as an example. Synapse is an open source Apache project
that builds an Enterprise Service Bus (ESB). The following command will use the
Apache Synapse archetype to generate a Maven project:

$ mvn archetype:generate
 -DgroupId=com.packt.samples
 -DartifactId=com.packt.samples.synapse
 -Dversion=1.0.0
 -Dpackage=com.packt.samples.synapse.application
 -DarchetypeCatalog=http://synapse.apache.org
 -DarchetypeGroupId=org.apache.synapse
 -DarchetypeArtifactId=synapse-package-archetype
 -DarchetypeVersion=2.0.0
 -DinteractiveMode=false

http://repo.fusesource.com/nexus/content/groups/public/archetype-catalog.xml
http://repo.fusesource.com/nexus/content/groups/public/archetype-catalog.xml
http://download.java.net/maven/2/archetype-catalog.xml
http://cocoon.apache.org/archetype-catalog.xml
http://myfaces.apache.org/archetype-catalog.xml
http://synapse.apache.org/archetype-catalog.xml

Maven Archetypes

[168]

The previous command will produce the following directory structure. If you look at
the pom.xml file, you will notice that it contains all necessary instructions along with
the required dependencies to build the Synapse project:

com.packt.samples.synapse
 |-pom.xml
 |-src/main/assembly/bin.xml
 |-conf/log4j.properties
 |-repository/conf
 |-axis2.xml
 |-synapse.xml

Let's have look at the previous Maven command we used to build the project with the
Synapse archetype. The most important argument is archetypeCatalog. The value of
the archetypeCatalog argument can point directly to an archetype-catalog.xml
file or to a directory, which contains an archetype-catalog.xml file. The following
configuration shows the archetype-catalog.xml file corresponding to the Synapse
archetype. It has only a single archetype but with two different versions:

<archetype-catalog>
 <archetypes>
 <archetype>
 <groupId>org.apache.synapse</groupId>
 <artifactId>synapse-package-archetype</artifactId>
 <version>1.3</version>
 <repository>http://repo1.maven.org/maven2</repository>
 <description>Create a Synapse 1.3 custom package</description>
 </archetype>
 <archetype>
 <groupId>org.apache.synapse</groupId>
 <artifactId>synapse-package-archetype</artifactId>
 <version>2.0.0</version>
 <repository>
 http://people.apache.org/repo/m2-snapshot-repository
 </repository>
 <description>Create a Synapse 2.0.0 custom
 package</description>
 </archetype>
 </archetypes>
</archetype-catalog>

Chapter 7

[169]

The value of the archetypeCatalog parameter can be a
comma-separated list, where each item points to an archetype-
catalog.xml file or to a directory, which contains archetype-
catalog.xml. The default value is remote,local, where the
archetypes are loaded from the local repository and the remote
repository. If you want to load an archetype-catalog.xml file
from the local filesystem, then you need to prefix the absolute path
to the file with file://. The value local is just a shortcut for
file://~/.m2/archetype-catalog.xml.

In the previous Maven command, we used the archetype plugin in the
non-interactive mode, so we have to be very specific with the archetype we need
to generate the Maven project. This is done with the following three arguments.
The value of these three arguments must match the corresponding elements
defined in the associated archetype-catalog.xml file:

-DarchetypeGroupId=org.apache.synapse
-DarchetypeArtifactId=synapse-package-archetype
-DarchetypeVersion=2.0.0

The anatomy of archetype-catalog.xml
We already went through couple of sample archetypes-catalog.xml files
and their usage. The XML schema of the archetypes-catalog.xml file is
available at http://maven.apache.org/xsd/archetype-catalog-1.0.0.xsd.
The following configuration shows an archetypes-catalog.xml file skeleton
with all the key elements:

<archetype-catalog>
 <archetypes>
 <archetype>
 <groupId></groupId>
 <artifactId></artifactId>
 <version></version>
 <repository></repository>
 <description></description>
 </archetype>
 ...
 </archetypes>
</archetype-catalog>

http://maven.apache.org/xsd/archetype-catalog-1.0.0.xsd

Maven Archetypes

[170]

The archetypes parent element can hold one or more archetype child elements.
Each archetype element should uniquely identify the Maven artifact corresponding
to the archetype. This is done using groupId, artifactId, and version of the artifact.
These three elements carry exactly the same meaning that we discussed under Maven
coordinates. The description element can be used to describe the archetype. The
value of the description element will appear against the archetype, when it is listed by
the archetype plugin. For example, the following output is generated according to the
pattern, groupId:artifactId (description) from the archetypes-catalog.xml
file, when you type mvn archetype:generate:

Choose archetype:

1: remote -> org.apache.maven.archetypes:maven-archetype-quickstart
 (An archetype that contains a sample Maven project.)

Each archetype child element can carry a value for the repository element.
This instructs the archetype plugin on where to find the corresponding artifact.
When no value is specified, the artifact is loaded from the repository where the
catalogue comes from.

The archetype plugin goals
So far in this chapter, we have only discussed the generate and crawl goals of the
archetype plugin. The following goals are associated with the archetype plugin:

•	 archetype:generate: The generate goal creates a Maven project
corresponding to the selected archetype. This accepts the archetypeGroupId,
archetypeArtifactId, archetypeVersion, filter, interactiveMode,
archetypeCatalog, and baseDir arguments. We have already discussed
almost all of these arguments in detail.

•	 archetype:update-local-catalog: The update-local-catalog goal has
to be executed against a Maven archetype project. This will update the local
archetype catalogue with the new archetype. The local archetype catalogue
is available at ~/.m2/archetype-catalog.xml. We'll use the update-local-
catalog goal later in this chapter when we create our own Maven archetype.

•	 archetype:jar: The jar goal has to be executed against a Maven
archetype project, and it will create a JAR file out of it. This accepts the
archetypeDirectory argument, and this contains classes, the finalName
argument, the name of the JAR file to be generated, and the outputDirectory
argument, which is the location the final output is copied. We'll use the jar
goal later in this chapter when we create our own Maven archetype.

Chapter 7

[171]

•	 archetype:crawl: The crawl goal crawls through a local- or a filesystem-
based Maven repository (not remote or via HTTP) and creates an archetype
catalogue file. This accepts catalogFile as an input parameter, which is the
name of the catalogue file to be created. By default, this crawls through the
local Maven repository, and to override the location, we need to pass the
corresponding repository URL with the repository parameter.

•	 archetype:create-from-project: The create-from-project goal creates
an archetype project from an existing project. If you compare this with
the generate goal, generate creates a new Maven project from scratch
corresponding to the selected archetype, while create-from-project
creates a Maven archetype project from an existing project. In other words,
create-from-project generates a template out of an existing Maven
project. We'll discuss the create-from-project goal later in this chapter
when we create our own Maven archetype.

•	 archetype:integration-test: The integration-test goal will
execute the integration tests associated with the Maven archetype project.
We'll discuss the integration-test goal later in this chapter when we
create our own Maven archetype.

•	 archetype:help: The help goal will display the manual associated with the
archetype plugin listing out all available goals. If you want to get a detailed
description of all the goals, then use the -Ddetail=true parameter along
with the command. It is also possible to get the help for a given goal. For
example, the following command will display the help associated with the
generate goal:
$ mvn archetype:help -Ddetail=true -Dgoal=generate

Maven plugins with the archetype plugin
In Chapter 5, Maven Plugins, we discussed in detail how to develop Maven plugins.
However, in all of those cases, we started from scratch, building everything from
the project structure to everything by hand. Now, we will look at how to create
a Maven plugin project with the archetype plugin. Here, we use the maven-
archetype-plugin:

$ mvn archetype:generate
 -DgroupId=com.packt.samples
 -DartifactId=com.packt.samples.plugins.myplugin
 -DarchetypeGroupId=org.apache.maven.archetypes
 -DarchetypeArtifactId=maven-archetype-plugin
 -DinteractiveMode=false

Maven Archetypes

[172]

The previous command will produce the following directory structure and the
source code. If you look at the pom.xml file, you will notice that it contains all
necessary instructions along with the required dependencies that are needed
to build the Maven plugin project:

com.packt.samples.plugins.myplugin
 |-pom.xml
 |-src
 |-main/java/com/packt/samples/MyMojo.java
 |-it/settings.xml
 |-simple-it/pom.xml
 |-simple-it/verify.groovy

Let's have a look at the generated MyMojo.java file. This class is a template plugin
class, which extends from org.apache.maven.plugin.AbstractMojo. This is a good
example that demonstrates the capability of Maven archetypes to generate Java code
templates and is also the most used use case of archetypes. Whenever your project has
extension points (such as handlers), you can create an archetype to build them, and
this will surely make the life of programmers extremely comfortable:

package com.packt.samples;

import org.apache.maven.plugin.AbstractMojo;
import org.apache.maven.plugin.MojoExecutionException;

import org.apache.maven.plugins.annotations.LifecyclePhase;
import org.apache.maven.plugins.annotations.Mojo;
import org.apache.maven.plugins.annotations.Parameter;
import org.apache.maven.plugins.annotations.ResolutionScope;

import java.io.File;
import java.io.FileWriter;
import java.io.IOException;

/**
 * Goal, which touches a timestamp file.
 *
 * @deprecated - Don't use!
*/
@Mojo(name="touch",defaultPhase =LifecyclePhase.PROCESS_SOURCES)
public class MyMojo extends AbstractMojo
{
 /**
 * Location of the file.

Chapter 7

[173]

 */
 @Parameter(defaultValue="${project.build.directory}",
 property = "outputDir", required = true)
 private File outputDirectory;

 public void execute() throws MojoExecutionException
 {
 //add your code here.
 }
}

Java EE web applications with the
archetype plugin
If you want to start with a Java EE web application, you can simply use the
maven-archetype-webapp archetype to generate the Maven project skeleton,
which is shown as follows:

$ mvn archetype:generate -B
 -DgroupId=com.packt.samples
 -DartifactId=my-webapp
 -Dpackage=com.packt.samples.webapp
 -Dversion=1.0.0
 -DarchetypeGroupId=org.apache.maven.archetypes
 -DarchetypeArtifactId=maven-archetype-webapp
 -DarchetypeVersion=1.0

The preceding command will produce the following directory structure. One issue
here is that it does not have the java directory just after src/main. If you want
to add any Java code, you need to make sure that you first create an src/main/
java directory and create your Java package under it. Otherwise, with the default
configuration settings, Maven won't pick your classes for compilation. By default,
Maven looks for the source code inside src/main/java:

my-webapp
 |-pom.xml
 |-src/main/webapp
 |-index.jsp
 |-WEB-INF/web.xml
 |- src/main/resources

Maven Archetypes

[174]

The maven-archetype-webapp archetype is not the only archetype to generate a Java
EE project using the archetype plugin. Codehaus, a collaborative environment to build
open source projects, also provides a few archetypes to generate web applications.
The following example uses the webapp-javaee6 archetype from Codehaus:

$ mvn archetype:generate -B
 -DgroupId=com.packt.samples
 -DartifactId=my-webapp
 -Dpackage=com.packt.samples.webapp
 -Dversion=1.0.0
 -DarchetypeGroupId=org.codehaus.mojo.archetypes
 -DarchetypeArtifactId=webapp-javaee6
 -DarchetypeVersion=1.3

The preceding command will produce the following directory structure.
This overcomes one of the issues in the maven-archetype-webapp archetype
and creates the src/main/java and src/test/java directories. The only issue
here is that it does not create the src/main/webapp/WEB-INF directory and you
need to create it manually:

my-webapp
 |-pom.xml
 |-src/main/webapp/index.jsp
 |-src/main/java/com/packt/samples/webapp/
 |-src/test/java/com/packt/samples/webapp/

Deploying web applications to a remote
Apache Tomcat server
Now we have created a template web application either using the maven-archetype-
webapp or webapp-javaee6 archetype. Let's see how to deploy this web application
into a remote Apache Tomcat application server from Maven itself. Most developers
would prefer doing this rather over manual copying. To deploy the web application,
perform the following steps:

This assumes you have already installed Apache Tomcat in your
environment. If not, you can download Tomcat 7.x distribution from
http://tomcat.apache.org/download-70.cgi and set it up.

http://tomcat.apache.org/download-70.cgi

Chapter 7

[175]

1.	 As we are going to deploy the web application to a remote Tomcat server,
we need to have a valid user account that has the privilege of deploying
a web application. Add the following entries to the TOMCAT_HOME/conf/
tomcat-users.xml file under the tomcat-users root element. This will
create a user with the name admin and the password password, having the
manager-gui and manager-script roles.
<role rolename="manager-gui"/>
<role rolename="manager-script"/>
<user username="admin" password="password" roles="manager-
 gui,manager-script"/>

2.	 Now, we need to configure Maven to talk to the remote Tomcat server.
Add the following configuration to USER_HOME/.m2/settings.xml under
the servers element, as follows:
<server>
 <id>apache-tomcat</id>
 <username>admin</username>
 <password>password</password>
</server>

3.	 Go inside the root directory of the template web application we generated
before (my-webapp) and then add tomcat7-maven-plugin to it. The complete
pom.xml file should look like this:
<project >
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt.samples</groupId>
 <artifactId>my-webapp</artifactId>
 <packaging>war</packaging>
 <version>1.0.0</version>
 <name>my-webapp Maven Webapp</name>
 <url>http://maven.apache.org</url>

 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <finalName>my-webapp</finalName>

Maven Archetypes

[176]

 <plugins>
 <plugin>
 <groupId>org.apache.tomcat.maven</groupId>
 <artifactId>tomcat7-maven-plugin</artifactId>
 <version>2.2</version>
 <configuration>
 <url>http://localhost:8080/manager/text</url>
 <server>apache-tomcat</server>
 <path>/my-webapp</path>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

4.	 Use the following Maven command to build and deploy the template web
application into the Tomcat server. Once it is deployed, you can access it
via http://localhost:8080/my-webapp/:
$ mvn clean install tomcat7:deploy

5.	 To redeploy, use the following command:
$ mvn clean install tomcat7:redeploy

6.	 To undeploy, use the following command:
$ mvn clean install tomcat7:undeploy

Android mobile applications with the
archetype plugin
If you are an Android application developer who wants to start with a skeleton
Android project, you can use the android-quickstart archetype developed by
akquinet, which is shown in the following code:

$ mvn archetype:generate -B

 -DarchetypeGroupId=de.akquinet.android.archetypes

 -DarchetypeArtifactId=android-quickstart

 -DarchetypeVersion=1.0.4

 -DgroupId=com.packt.samples

 -DartifactId=my-android-app

 -Dversion=1.0.0

Chapter 7

[177]

This command produces the following skeleton project:

my-android-app
 |-pom.xml
 |-AndroidManifest.xml
 |-android.properties
 |-src/main/java/com/packt/samples/HelloAndroidActivity.java
 |-res/drawable-hdpi/icon.png
 |-res/drawable-ldpi/icon.png
 |-res/drawable-mdpi/icon.png
 |-res/layout/main.xml
 |-res/values/strings.xml
 |-assets

To build the Android skeleton project, run the following Maven command from the
my-android-app directory:

$ mvn clean install -Dandroid.sdk.path=/path/to/android/sdk

The previous command looks straightforward, but based on your Android SDK
version, you might encounter certain issues. Some of the possible issues and
solutions are as follows:

•	 You will see the following error if you pass an invalid value to the
android.sdk.path argument:
[ERROR] Failed to execute goal
 com.jayway.maven.plugins.android.generation2:maven-android-
 plugin:2.8.3:generate-sources (default-generate-sources) on
 project my-android-app: Execution default-generate-sources
 of goal com.jayway.maven.plugins.android.generation2:maven-
 android-plugin:2.8.3:generate-sources failed: Path
 "/Users/prabath/Downloads/adt-bundle-mac-x86_64-
 20140702/platforms" is not a directory.

The path should point to the Android sdk directory, and right under it,
you should find the platforms directory. By setting android.sdk.path
to the correct path, you can avoid this error.

•	 By default, the android-quickstart archetype assumes the Android
platform to be 7. You will see the following error if the Android platform
installed in your local machine is different from this:
[ERROR] Failed to execute goal com.jayway.maven.plugins.android.
generation2:maven-android-
 plugin:2.8.3:generate-sources (default-generate-sources) on
 project my-android-app: Execution default-generate-sources
 of goal com.jayway.maven.plugins.android.generation2:maven-
 android-plugin:2.8.3:generate-sources failed: Invalid SDK:
 Platform/API level 7 not available.

Maven Archetypes

[178]

To fix this, open the pom.xml file and set the right platform version with
<sdk><platform>20</platform></sdk>.

•	 By default, the android-quickstart archetype assumes that the aapt tool
is available under sdk/platform-tools directory. However, with the latest
sdk, it has been moved to sdk/build-tools/android-4.4W, and you will
get the following error:
[ERROR] Failed to execute goal
 com.jayway.maven.plugins.android.generation2:maven-android-
 plugin:2.8.3:generate-sources (default-generate-sources) on
 project my-android-app: Execution default-generate-sources
 of goal com.jayway.maven.plugins.android.generation2:maven-
 android-plugin:2.8.3:generate-sources failed: Could not find
 tool 'aapt'.

To fix the error, you need to update the maven-android-plugin version
and artifactId.
Open up the pom.xml file inside the my-android-app directory and find the
following plugin configuration. Change artifactId to android-maven-
plugin and version to 4.0.0-rc.1, which is shown as follows:
 <plugin>
 <groupId>
 com.jayway.maven.plugins.android.generation2
 </groupId>
 <artifactId>android-maven-plugin</artifactId>
 <version>4.0.0-rc.1</version>
 <configuration></configuration>
 <extensions>true</extensions>
 </plugin>

Once the build is completed, android-maven-plugin will produce the
my-android-app-1.0.0.apk and my-android-app-1.0.0.jar artifacts
inside the target directory.

To deploy the skeleton Android application (apk) to the connected device,
use the following Maven command:

$ mvn android:deploy -Dandroid.sdk.path=/path/to/android/sdk

Chapter 7

[179]

EJB archives with the archetype plugin
Here, we will discuss how to create a Maven Enterprise JavaBeans (EJB) project
using the ejb-javaee6 archetype developed by Codehaus, which is a collaborative
environment for building open source projects:

$ mvn archetype:generate -B
 -DgroupId=com.packt.samples
 -DartifactId=my-ejbapp
 -Dpackage=com.packt.samples.ejbapp
 -Dversion=1.0.0
 -DarchetypeGroupId=org.codehaus.mojo.archetypes
 -DarchetypeArtifactId=ejb-javaee6
 -DarchetypeVersion=1.5

The previous command produces the following skeleton project. You can create
your EJB classes inside src/main/java/com/packt/samples/ejbapp/:

my-ejbapp
 |-pom.xml
 |-src/main/java/com/packt/samples/ejbapp/
 |-src/main/resources/META-INF/MANIFEST.MF

If you look at the following pom.xml file inside my-ejbapp, you will notice that
maven-ejb-plugin is used internally to produce the EJB artifact:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-ejb-plugin</artifactId>
 <version>2.3</version>
 <configuration>
 <ejbVersion>3.1</ejbVersion>
 </configuration>
</plugin>

Even though we highlighted ejb-javaee6, it is not the best out there for generating
a Maven EJB project. The template produced by the ejb-javaee6 archetype is very
basic. Oracle WebLogic has developed a better EJB archetype, basic-webapp-ejb.
The following example shows how to use the basic-webapp-ejb archetype:

$ mvn archetype:generate -B

 -DarchetypeGroupId=com.oracle.weblogic.archetype

 -DarchetypeArtifactId=basic-webapp-ejb

 -DarchetypeVersion=12.1.3-0-0

 -DgroupId=com.packt.samples

Maven Archetypes

[180]

 -DartifactId=my-ejbapp

 -Dpackage=com.packt.samples.ejbapp

 -Dversion=1.0.0

Prior to executing the previous command, there is more homework to be done.
The basic-webapp-ejb archetype is not available in any public Maven repositories.
First, you need to download the WebLogic distribution from http://www.oracle.
com/webfolder/technetwork/tutorials/obe/java/wls_12c_netbeans_install/
wls_12c_netbeans_install.html and then install it locally by performing the
instructions in the README.txt file. Once the installation is completed, the basic-
webapp-ejb archetype and weblogic-maven-plugin can be installed into the
local Maven repository, as follows:

1.	 Go to wls12130/wlserver/server/lib and execute the following command.
This will build the plugin JAR file using the WebLogic JarBuilder tool.
$ java -jar wljarbuilder.jar -profile weblogic-maven-plugin

2.	 The previous command created the weblogic-maven-plugin.jar file.
Now we need to extract it to get the pom.xml file. From wls12130/
wlserver/server/lib, execute the following command:
$ jar xvf weblogic-maven-plugin.jar

3.	 Now we need to copy the pom.xml file to wls12130/wlserver/server/lib.
From wls12130/wlserver/server/lib, execute the following command:
$ cp META-INF/maven/com.oracle.weblogic/weblogic-maven-
plugin/pom.xml .

4.	 Now we can install weblogic-maven-plugin.jar into the local
Maven repository. From wls12130/wlserver/server/lib, execute the
following command:
$ mvn install:install-file -Dfile=weblogic-maven-plugin.jar -
DpomFile=pom.xml

5.	 In addition to the plugin, we also need to install the basic-webapp-ejb
archetype. To do this, go to wls12130/oracle_common/plugins/maven/
com/oracle/maven/oracle-maven-sync/12.1.3 and execute the following
two commands. Note that oracle_common is a hidden directory. If you are
using a different version of WebLogic instead of 12.1.3, use the number
associated with your version:

$ mvn install:install-file -DpomFile=oracle-maven-sync-
12.1.3.pom -Dfile=oracle-maven-sync-12.1.3.jar
$ mvn com.oracle.maven:oracle-maven-sync:push -Doracle-maven-
sync.oracleHome=/Users/prabath/Downloads/wls12130 -Doracle-
maven-sync.testingOnly=false

http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/wls_12c_netbeans_install/wls_12c_netbeans_install.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/wls_12c_netbeans_install/wls_12c_netbeans_install.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/wls_12c_netbeans_install/wls_12c_netbeans_install.html

Chapter 7

[181]

Once we are done with these steps, you can execute the following command to
generate the EJB template project using the WebLogic basic-webapp-ejb archetype.
Make sure that you have the right version for archetypeVersion. This should match
the archetype version that comes with your WebLogic distribution:

$ mvn archetype:generate -B

 -DarchetypeGroupId=com.oracle.weblogic.archetype

 -DarchetypeArtifactId=basic-webapp-ejb

 -DarchetypeVersion=12.1.3-0-0

 -DgroupId=com.packt.samples

 -DartifactId=my-ejbapp

 -Dpackage=com.packt.samples.ejbapp

 -Dversion=1.0.0

This command produces the following skeleton project:

my-ejbapp
 |-pom.xml
 |-src/main/java/com/packt/samples/ejbapp
 |-entity/Account.java
 |-service/AccountBean.java
 |-service/AccountManager.java
 |-service/AccountManagerImpl.java
 |-interceptor/LogInterceptor.java
 |-interceptor/OnDeposit.java
 |-src/main/resources/META-INF/persistence.xml
 |-src/main/scripts
 |-src/main/webapp/WEB-INF/web.xml
 |-src/main/webapp/WEB-INF/beans.xml
 |-src/main/webapp/css/bootstrap.css
 |-src/main/webapp/index.xhtml
 |-src/main/webapp/template.xhtml

To package the EJB archive, execute the following command from the my-ejbapp
directory. This will produce basicWebappEjb.war inside the target directory.
Now you can deploy this WAR file into your Java EE application server, which
supports EJB:

$ mvn package

Maven Archetypes

[182]

JIRA plugins with the archetype plugin
JIRA is an issue-tracking system developed by Atlassian. It is quite popular among
many open source projects. One of the extension points in JIRA is its plugins. Here,
we will see how to generate a skeleton JIRA plugin using jira-plugin-archetype
developed by Atlassian:

$ mvn archetype:generate -B
 -DarchetypeGroupId=com.atlassian.maven.archetypes
 -DarchetypeArtifactId=jira-plugin-archetype
 -DarchetypeVersion=3.0.6
 -DgroupId=com.packt.samples
 -DartifactId=my-jira-plugin
 -Dpackage=com.packt.samples.jira
 -Dversion=1.0.0
 -DarchetypeRepository=
 http://repo.jfrog.org/artifactory/libs-releases/

This command will produce the following project template:

my-jira-plugin
 |-pom.xml
 |-README
 |-LICENSE
 |-src/main/java/com/packt/samples/jira/MyPlugin.java
 |-src/main/resources/atlassian-plugin.xml
 |- src/test/java/com/packt/samples/jira/MyPluginTest.java
 |-src/test/java/it/MyPluginTest.java
 |-src/test/resources/TEST_RESOURCES_README
 |-src/test/xml/TEST_XML_RESOURCES_README

Spring MVC applications with the
archetype plugin
Spring Model View Controller (MVC) is a web application framework developed
under the Spring framework, which is an open source application framework and
an inversion of control container. Here, we will see how to generate a template
Spring MVC application using the spring-mvc-quickstart archetype.

To know more about the Spring MVC framework, refer to
http://docs.spring.io/spring/docs/current/
spring-framework-reference/html/mvc.html.

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html

Chapter 7

[183]

Currently, the spring-mvc-quickstart archetype is not available in any of the
public Maven repositories, so we have to download it from GitHub and build
from the source, as follows:

$ git clone https://github.com/kolorobot/spring-mvc-quickstart-
archetype.git
$ cd spring-mvc-quickstart-archetype
$ mvn clean install

Once the archetype is built from the source and is available in the local Maven
repository, you can execute the following command to generate the template
Spring MVC application:

$ mvn archetype:generate -B
 -DarchetypeGroupId=com.github.spring-mvc-archetypes
 -DarchetypeArtifactId=spring-mvc-quickstart
 -DarchetypeVersion=1.0.0-SNAPSHOT
 -DgroupId=com.packt.samples
 -DartifactId=my-spring-app
 -Dpackage=com.packt.samples.spring
 -Dversion=1.0.0

This will produce the following project template:

my-spring-app
 |-pom.xml
 |-src/main/java/com/packt/samples/spring/Application.java
 |-src/main/webapp/WEB-INF/views
 |-src/main/webapp/resources
 |-src/main/resources
 |-src/test/java/com/packt/samples/spring
 |-src/test/resources

Let's see how to run the template Spring MVC application with the embedded
Tomcat via Maven itself. Embedded Tomcat can be launched via the run goal of
the tomcat7 plugin, which is shown in the following code. Once the server is up,
you can browse through to the web application via http://localhost:8080/
my-spring-app.

$ mvn test tomcat7:run

More details about the tomcat7 plugin is available at
http://tomcat.apache.org/maven-plugin-trunk/
tomcat7-maven-plugin/.

http://tomcat.apache.org/maven-plugin-trunk/tomcat7-maven-plugin/
http://tomcat.apache.org/maven-plugin-trunk/tomcat7-maven-plugin/

Maven Archetypes

[184]

Building a custom archetype
So far in this chapter, we have discussed several applications of Maven archetypes.
It's high time now to build our own custom archetype. Let's see how to develop a
Maven archetype for an Apache Axis2 module/handler. Let's start with a simple
Maven project:

$ mvn archetype:generate
 -DgroupId=com.packt.axis2
 -DartifactId=com.packt.axis2.archetype.handler
 -Dversion=1.0.0
 -Dpackage=com.packt.axis2.archetype.handler
 -DinteractiveMode=false

This command will generate the following directory structure:

com.packt.axis2.archetype.handler
 |-pom.xml
 |-src
 |-main/java/com/packt/axis2/archetype/
 handler/App.java
 |-test/java/com/packt/axis2/archetype/
 handler/AppTest.java

Before creating the archetype, first we need to build the project template. In this case,
the project template itself is an Axis2 module/handler. Let's see how to improve the
simple Maven project generated from the maven-archetype-quickstart archetype
into an Axis2 handler by performing the following steps:

1.	 First, we need to edit the generated pom.xml file and add all of the
required dependencies there. We also need two plugins to build the
Axis2 module archive file. The value of packaging is changed to mar.
After the modifications, pom.xml will look as follows:
<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt.axis2</groupId>
 <artifactId>com.packt.axis2.archetype.handler
 </artifactId>
 <packaging>mar</packaging>
 <version>1.0.0</version>
 <name>com.packt.axis2.archetype.handler</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>

Chapter 7

[185]

 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2</artifactId>
 <version>1.6.2</version>
 </dependency>
 <dependency>
 <groupId>org.apache.neethi</groupId>
 <artifactId>neethi</artifactId>
 <version>2.0.2</version>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-mar-maven-plugin</artifactId>
 <version>1.2</version>
 <extensions>true</extensions>
 <configuration>
 <includeDependencies>false</includeDependencies>
 <moduleXmlFile>module.xml</moduleXmlFile>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>build-helper-maven-
 plugin</artifactId>
 <version>1.0</version>
 <executions>
 <execution>
 <id>aar</id>
 <phase>package</phase>
 <goals>
 <goal>attach-artifact</goal>
 </goals>
 <configuration>
 <artifacts>
 <artifact>
 <file>
 target/${project.artifactId}-
 ${project.version}.mar
 </file>

Maven Archetypes

[186]

 <type>jar</type>
 </artifact>
 </artifacts>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

2.	 Now we can create the skeleton for the Axis2 handler. All Axis2 handlers
must extend from the org.apache.axis2.engine.Handler class. Here, we
will rename the generated App.java file to SampleAxis2Handler.java and
modify its code, as shown here:
package com.packt.axis2.archetype.handler;

import org.apache.axis2.AxisFault;
import org.apache.axis2.context.MessageContext;
import org.apache.axis2.description.HandlerDescription;
import org.apache.axis2.description.Parameter;
import org.apache.axis2.engine.Handler;

public class SampleAxis2Handler implements Handler {

 private HandlerDescription handlerDesc;

 @Override
 public void cleanup() {
 // TODO Auto-generated method stub
 }

 @Override
 public void flowComplete(MessageContext arg0) {
 // TODO Auto-generated method stub
 }

 @Override
 public HandlerDescription getHandlerDesc() {
 return handlerDesc;
 }

Chapter 7

[187]

 @Override
 public String getName() {
 return "SampleAxis2Handler";
 }

 @Override
 public Parameter getParameter(String name) {
 return this.handlerDesc.getParameter(name);
 }

 @Override
 public void init(HandlerDescription handlerDesc) {
 this.handlerDesc = handlerDesc;
 }

 @Override
 public InvocationResponse invoke(MessageContext
 msgContext) throws AxisFault {
 return InvocationResponse.CONTINUE;
 }

}

3.	 Rename the generated AppTest.java file to SampleAxis2HandlerTest.java
and modify its code, as shown here:
package com.packt.axis2.archetype.handler;

import junit.framework.Test;
import junit.framework.TestCase;
import junit.framework.TestSuite;

/**
 * Unit test for SampleAxis2Handler.
*/
public class SampleAxis2HandlerTest extends TestCase
{
 /**
 * Create the test case
 *
 * @param testName name of the test case
 */
 public SampleAxis2HandlerTest(String testName)
 {
 super(testName);
 }

Maven Archetypes

[188]

 /**
 * @return the suite of tests being tested
 */
 public static Test suite()
 {
 return new TestSuite(SampleAxis2HandlerTest.class);
 }

 /**
 * Rigourous Test :-)
 */
 public void testHandler()
 {
 assertTrue(true);
 }

}

4.	 Now we need to write a template Axis2 module class as follows. This will go
under src/main/java/com/packt/axis2/archetype/module. You might
need to create the archetype/module directory, as it's not there by default:
package com.packt.axis2.archetype.module;

import org.apache.axis2.AxisFault;
import org.apache.axis2.context.ConfigurationContext;
import org.apache.axis2.description.AxisDescription;
import org.apache.axis2.description.AxisModule;
import org.apache.axis2.modules.Module;
import org.apache.neethi.Assertion;
import org.apache.neethi.Policy;

public class SampleAxis2Module implements Module {

 @Override
 public void applyPolicy(Policy arg0, AxisDescription
 arg1) throws AxisFault {
 // TODO Auto-generated method stub
 }

 @Override
 public boolean canSupportAssertion(Assertion arg0) {
 // TODO Auto-generated method stub
 return false;
 }

Chapter 7

[189]

 @Override
 public void engageNotify(AxisDescription arg0) throws
 AxisFault {
 // TODO Auto-generated method stub
 }

 @Override
 public void init(ConfigurationContext arg0, AxisModule
 arg1) throws AxisFault {
 // TODO Auto-generated method stub
 }

 @Override
 public void shutdown(ConfigurationContext arg0) throws
 AxisFault {
 // TODO Auto-generated method stub
 }

}

5.	 Create a file called module.xml inside the root directory (at the same level of
the pom.xml file), as shown here:
<module name="sample-axis2-module"
 class="com.packt.axis2.archetype.module.
 SampleAxis2Module">
 <Description>Sample Axis2 Module</Description>
 <OutFlow>
 <handler
 name="SampleOutHandler"
 class="com.packt.axis2.archetype.handler.
 SampleAxis2Handler">
 <order phase="samplephase" />
 </handler>
 </OutFlow>
 <InFlow>
 <handler
 name="SampleInHandler"
 class="com.packt.axis2.archetype.hanlder.
 SampleAxis2Handler">
 <order phase="samplephase" />
 </handler>
 </InFlow>
 <OutFaultFlow>
 <handler

Maven Archetypes

[190]

 name="SampleOutFaultHandler"
 class="com.packt.axis2.archetype.hanlder.
 SampleAxis2Handler">
 <order phase="samplephase" />
 </handler>
 </OutFaultFlow >
 <InFaultFlow>
 <handler
 name="SampleInFaultHandler"
 class="com.packt.axis2.archetype.hanlder.
 SampleAxis2Handler">
 <order phase="samplephase" />
 </handler>
 </InFaultFlow >

</module>

6.	 With all these modifications, you should now see the following
directory structure:
com.packt.axis2.archetype.hanlder
 |-pom.xml
 |-module.xml
 |-src
 |-main/java/com/packt/axis2/archetype/
 handler/SampleAxis2Handler.java
 |-main/java/com/packt/axis2/archetype/
 module/SampleAxis2Module.java
 |-test/java/com/packt/axis2/archetype/
 handler/SampleAxis2HandlerTest.java

7.	 If everything went fine, you should be able to build the project
successfully with mvn clean install. Inside the target directory,
you will see the resultant module archive, com.packt.axis2.archetype.
handler-1.0.0.mar.

Everything we have discussed so far is not directly related to building a custom
archetype. It's all about building an Axis2 module. Now, let's see how to turn this
into an archetype by performing the following steps:

1.	 Go to the com.packt.axis2.archetype.handler directory and execute the
following command:
$ mvn archetype:create-from-project

Chapter 7

[191]

2.	 This will generate the corresponding archetype inside com.packt.axis2.
archetype.handler/target/generated-sources/archetype directory.
Let's have a look at the pom.xml file created inside com.packt.axis2.
archetype.handler/target/generated-sources/archetype directory.
By default, the artifactId of the archetype is generated by appending
-archetype to the original artifactId of the template project, which is
shown as follows:
<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt.axis2</groupId>
 <artifactId>
 com.packt.axis2.archetype.handler-archetype
 </artifactId>
 <version>1.0.0</version>
 <packaging>maven-archetype</packaging>
 <name>com.packt.axis2.handler.archetype-archetype</name>

 <build>
 <extensions>
 <extension>
 <groupId>org.apache.maven.archetype</groupId>
 <artifactId>archetype-packaging</artifactId>
 <version>2.2</version>
 </extension>
 </extensions>

 <pluginManagement>
 <plugins>
 <plugin>
 <artifactId>maven-archetype-plugin</artifactId>
 <version>2.2</version>
 </plugin>
 </plugins>
 </pluginManagement>
 </build>

 <url>http://maven.apache.org</url>
</project>

3.	 To install the archetype into the local repository, just type mvn install in
the command-line from com.packt.axis2.archetype.handler/target/
generated-sources/archetype.

Maven Archetypes

[192]

Now we've got our very first Maven archetype created and deployed into the
local repository. Let's use it to generate a skeleton Axis2 module/handler project,
as follows:

$ mvn archetype:generate -B

 -DarchetypeGroupId=com.packt.axis2

 -DarchetypeArtifactId=com.packt.axis2.archetype.

 handler-archetype

 -DarchetypeVersion=1.0.0

 -DgroupId=com.packt.samples

 -DartifactId=my-axis2-handler

 -Dpackage=com.packt.samples.axis2

 -Dversion=1.0.0

If you set -DarchetypeVersion to RELEASE, then the plugin
will automatically pick the latest version of the archetype.

The previous command will create the following skeleton project. If you run mvn
clean install from the my-axis2-handler directory, you will notice that the
 my-axis2-handler-1.0.0.mar file is created under the my-axis2-handler/
target directory, which is shown as follows:

my-axis2-handler
 |-pom.xml
 |-module.xml
 |-src
 |-main/java/com/packt/samples/axis2/
 archetype/handler/SampleAxis2Handler.java
 |-main/java/com/packt/samples/axis2/
 archetype/module/SampleAxis2Module.java
 |-test/java/com/packt/samples/axis2/
 archetype/handler/SampleAxis2HandlerTest.java

You can find the complete Axis2 handler project at https://svn.wso2.org/repos/
wso2/people/prabath/maven/chapter07/axis2-handler.

https://svn.wso2.org/repos/wso2/people/prabath/maven/chapter07/axis2-handler
https://svn.wso2.org/repos/wso2/people/prabath/maven/chapter07/axis2-handler

Chapter 7

[193]

The archetype descriptor
The archetype descriptor is generated by the archetype:create-from-project goal.
This is at the heart of the archetype and stores the metadata about it. The following
configuration shows the archetype-metadata.xml file (the archetype descriptor),
which was generated for our custom archetype. The file is available at com.packt.
axis2.archetype.handler/target/generated-sources/archetype/src/main/
resources/META-INF/maven:

<archetype-descriptor name="com.packt.axis2.handler.archetype " >
 <fileSets>
 <fileSet filtered="true" packaged="true" encoding="UTF-8">
 <directory>src/main/java</directory>
 <includes>
 <include>**/*.java</include>
 </includes>
 </fileSet>
 <fileSet filtered="true" encoding="UTF-8">
 <directory>src/main/java</directory>
 <includes>
 <include>**/*.xml</include>
 </includes>
 </fileSet>
 <fileSet filtered="true" packaged="true" encoding="UTF-8">
 <directory>src/test/java</directory>
 <includes>
 <include>**/*.java</include>
 </includes>
 </fileSet>
 </fileSets>
</archetype-descriptor>

According to the previous archetype-metadata.xml file, all the *.java files inside
src/main/java and src/test/java are copied into the archetype. Also, any XML
files inside src/main/java will be copied. During the template generation or while
executing the archetype:generate goal, the archetype plugin reads archetype-
metadata.xml.

The following lists out the complete archetype-metadata.xml file with all of the
possible options:

<archetype-descriptor name=.. partial=.. >

Maven Archetypes

[194]

The name attribute carries the name of the archetype, while the partial Boolean
attribute indicates whether this archetype represents a complete Maven project or
only a part of it.

 <requiredProperties>
 <requiredProperty key=.. >
 <defaultValue/>
 </requiredProperty>
 </requiredProperties>

The requiredProperty element carries the names of the properties required by
the archetype to generate the template code. The defaultValue element carries
the default value of the corresponding property.

 <fileSets>
 <fileSet filtered=.. packaged=.. encoding=.. >
 <directory/>
 <includes/>
 <excludes/>
 </fileSet>
 </fileSets>

Each fileSet element inside the fileSets parent element defines how the files
located in the jar archetype are used to generate the template. The filtered
Boolean attribute indicates whether the file set should be filtered or not. If set
to true, then the selected set of files will be treated as velocity templates; if not,
these will be copied as they are without any modifications. We'll be talking about
velocity templates later in this chapter.

The packaged Boolean attribute indicates whether the file set should be packaged
or not. If set to true, then the directory structure, which contains the file set will
be prepended by the value of the package attribute (-Dpackage set along with
archetype:generate); if not, the directory structure will be copied as it is. In our
example, all XML files are copied without prepending the provided package name,
as the packaged attribute is not set, and this means that it's set to false.

The encoding attribute indicates which encoding to be used while filtering the content.

The directory element indicates where the search is to be carried out and also the
location to copy the files.

The includes element indicates the pattern used to include files while the
excludes element indicates the pattern used to exclude files, as shown in the
previous code snippet:

 <modules>
 <module id=.. dir=.. name=.. >

Chapter 7

[195]

 <fileSets>
 <fileSet filtered=.. packaged=.. encoding=.. >
 <directory/>
 <includes/>
 <excludes/>
 </fileSet>
 </fileSets>

 </module>
 </modules>

The modules parent element is used as a container for multiple module child elements.
This is only used in cases where we need to generate a multimodule Maven project
with a single archetype. Each module element contains the definition of each Maven
module. Next, in this chapter, we will see how to generate a multimodule Maven
project from an archetype.

</archetype-descriptor>

Generating a multimodule Maven project
The process of creating an archetype that generates a multimodule Maven project is
no different from what we have done previously for a single module project. You need
to go inside the root of the Maven project and run the following command. We will
discuss multimodule projects in Chapter 9, Best Practices.

$ mvn archetype:create-from-project

Let's create a multimodule project with the following steps:

1.	 Here, we use the org.codehaus.mojo.archetypes:pom-root archetype to
generate the root POM file:
$ mvn archetype:generate

 -DgroupId=com.packt.samples

 -DartifactId=com.packt.sample.multi.module.archetype

 -Dversion=1.0.0

 -Dpackage=com.packt.sample.multi.module.archetype

 -DinteractiveMode=false

 -DarchetypeGroupId=org.codehaus.mojo.archetypes

 -DarchetypeArtifactId=pom-root

Maven Archetypes

[196]

2.	 Now, in the command-line go inside com.packt.sample.multi.module.
archetype and then run the following command to create a child module
under the parent Maven project:
$ mvn archetype:generate

 -DgroupId=com.packt.samples

 -DartifactId=com.packt.sample.multi.module.archetype.mod1

 -Dversion=1.0.0

 -Dpackage=com.packt.sample.multi.module.archetype.mod1

 -DinteractiveMode=false

This command will generate a new module with the name com.packt.
sample.multi.module.archetype.mod1 and will also update the root
POM file.

3.	 Once again, in the command-line go inside com.packt.sample.multi.
module.archetype and then run the following command to create another
child module under the same parent Maven project:
$ mvn archetype:generate

 -DgroupId=com.packt.samples

 -DartifactId=com.packt.sample.multi.module.archetype.mod2

 -Dversion=1.0.0

 -Dpackage=com.packt.sample.multi.module.archetype.mod2

 -DinteractiveMode=false

Now we have the following project structure with a root POM file and two
child modules:
com.packt.sample.multi.module.archetype
 |-pom.xml
 |-com.packt.sample.multi.module.archetype.mod1
 |-pom.xml
 |-com.packt.sample.multi.module.archetype.mod2
 |-pom.xml

The following configuration is the root POM file under com.packt.sample.
multi.module.archetype. This has references to all of its child projects
under the modules element:
<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt.samples</groupId>
 <artifactId>com.packt.sample.multi.module.archetype
 </artifactId>
 <version>1.0.0</version>

Chapter 7

[197]

 <packaging>pom</packaging>
 <name>com.packt.sample.multi.module.archetype</name>

 <modules>
 <module>com.packt.sample.multi.module.archetype.mod1
 </module>
 <module>com.packt.sample.multi.module.archetype.mod2
 </module>
 </modules>
</project>

The following is the POM file under com.packt.sample.multi.module.
archetype.mod1. This has a reference to the parent POM file under the
parent element:
<project>
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>com.packt.samples</groupId>
 <artifactId>com.packt.sample.multi.module.archetype
 </artifactId>
 <version>1.0.0</version>
 </parent>
 <groupId>com.packt.samples</groupId>
 <artifactId>com.packt.sample.multi.module.archetype.mod1
 </artifactId>
 <version>1.0.0</version>
 <name>com.packt.sample.multi.module.archetype.mod1</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

The following is the POM file under com.packt.sample.multi.module.
archetype.mod2. This also has a reference to the parent POM file under
the parent element:

<project>
 <modelVersion>4.0.0</modelVersion>

Maven Archetypes

[198]

 <parent>
 <groupId>com.packt.samples</groupId>
 <artifactId>com.packt.sample.multi.module.archetype
 </artifactId>
 <version>1.0.0</version>
 </parent>
 <groupId>com.packt.samples</groupId>
 <artifactId>com.packt.sample.multi.module.archetype.mod2
 </artifactId>
 <version>1.0.0</version>
 <name>com.packt.sample.multi.module.archetype.mod2</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

4.	 Now we have a multimodule Maven project. Let's try to create a single
archetype, which will generate the template code. In the command-line go
inside com.packt.sample.multi.module.archetype directory, and then
run the following command:
$ mvn archetype:create-from-project

5.	 In the command-line go inside com.packt.sample.multi.module.
archetype/target/generated-sources/archetype directory and then run
the following command to install the new archetype in the local repository:
$ mvn install

Now we've got our multimodule Maven archetype created and deployed into
the local repository. Here, you can see the generated archetype-metadata.
xml file, which is inside com.packt.sample.multi.module.archetype/target/
generated-sources/archetype/src/main/resources/META-INF/maven:

<archetype-descriptor
 name="com.packt.sample.multi.module.archetype">
 <modules>
 <module id="${rootArtifactId}.mod2"
 dir="__rootArtifactId__.mod2"
 name="${rootArtifactId}.mod2">
 <fileSets>

Chapter 7

[199]

 <fileSet filtered="true" packaged="true" encoding="UTF-8">
 <directory>src/main/java</directory>
 <includes>
 <include>**/*.java</include>
 </includes>
 </fileSet>
 <fileSet filtered="true" packaged="true" encoding="UTF-8">
 <directory>src/test/java</directory>
 <includes>
 <include>**/*.java</include>
 </includes>
 </fileSet>
 </fileSets>
 </module>
 <module id="${rootArtifactId}.mod1"
 dir="__rootArtifactId__.mod1"
 name="${rootArtifactId}.mod1">
 <fileSets>
 <fileSet filtered="true" packaged="true" encoding="UTF-8">
 <directory>src/main/java</directory>
 <includes>
 <include>**/*.java</include>
 </includes>
 </fileSet>
 <fileSet filtered="true" packaged="true" encoding="UTF-8">
 <directory>src/test/java</directory>
 <includes>
 <include>**/*.java</include>
 </includes>
 </fileSet>
 </fileSets>
 </module>
 </modules>
</archetype-descriptor>

Let's use the created multimodule archetype to generate a Maven project based on
the template, as follows:

$ mvn archetype:generate -B
 -DarchetypeGroupId=com.packt.samples
 -DarchetypeArtifactId=com.packt.sample.
 multi.module.archetype-archetype
 -DarchetypeVersion=1.0.0
 -DgroupId=com.packt.samples
 -DartifactId=my-multi-module-project
 -Dpackage=com.packt.samples.multi.module
 -Dversion=1.0.0

Maven Archetypes

[200]

This command will create the following skeleton project. If you run mvn clean
install from my-multi-module-project directory, all the child modules will
be built, which is shown as follows:

my-multi-module-project
 |-pom.xml
 |-my-multi-module-project.mod1
 |-my-multi-module-project.mod2

archetype:create-from-project with custom
properties
The create-from-project goal of the archetype plugin creates an archetype project
from an existing Maven project. That is exactly what we have done in the previous
section. When we execute mvn archetype:create-from-project without any
custom parameters, the plugin will use the default values and follow a convention.

Let's see how to create an archetype with a set of configured properties by
performing the following steps:

1.	 In the command-line go inside com.packt.sample.multi.module.
archetype, which is the archetype project we created in the previous
section, and create a file called archetype.properties right under it
with the following content:
archetype.groupId=com.packt.archetypes
archetype.artifactId=com.packt.archetypes.multi.module
archetype.version=1.0.0

2.	 Run the following command from the com.packt.sample.multi.module.
archetype directory:
$ mvn archetype:create-from-project
 -Darchetype.properties=archetype.properties

3.	 In the command-line go inside com.packt.sample.multi.module.
archetype/target/generated-sources/archetype and then run mvn
install to deploy the archetype into the local Maven repository. Unlike in
the previous case, the plugin won't try to generate an artifactId element
for the archetype; it will simply use what is given in the archetype.
properties file. In the default scenario, artifactId is com.packt.sample.
multi.module.archetype-archetype; however, now it is com.packt.
archetypes.multi.module.

Chapter 7

[201]

All these properties are standard ones. You can also define custom properties
as follows:

1.	 In the command-line go inside com.packt.sample.multi.module.
archetype directory, which is the archetype project we created in the
previous section, and create a file called archetype.properties right
under it with the following content. Make sure that there are no periods
(.) in the name of the custom property. Here, we use the junit version
used in the project. The value of the custom property will be used as the
default value:
archetype.groupId=com.packt.archetypes
archetype.artifactId=com.packt.archetypes.multi.module
archetype.version=1.0.0
junit-version=3.8.1

2.	 Now, we need to open up the com.packt.sample.multi.module.
archetype/com.packt.sample.multi.module.archetype.mod1/pom.xml
and com.packt.sample.multi.module.archetype/com.packt.sample.
multi.module.archetype.mod2/pom.xml files and replace the value 3.8.1
with the $junit-version place holder, which is shown as follows:
<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>$junit-version</version>
 <scope>test</scope>
</dependency>

3.	 Run the following command from com.packt.sample.multi.module.
archetypedirectory:
$ mvn archetype:create-from-project
 -Darchetype.properties=archetype.properties

4.	 Now, if you open com.packt.sample.multi.module.archetype/target/
generated-sources/archetype/src/main/resources/META-INF/maven/
archetype-metadata.xml, you will notice that the following new section is
added to the archetype-metadata.xml file. This means that at the time you
generate the template code, you have to pass a value to the custom property
junit-version, as follows:
<requiredProperties>
 <requiredProperty key="junit-version">
 <defaultValue>3.8.1</defaultValue>
 </requiredProperty>
</requiredProperties>

Maven Archetypes

[202]

5.	 In the command-line go inside com.packt.sample.multi.module.
archetype/target/generated-sources/archetype directory and then
type mvn install to deploy the archetype into the local Maven repository.

6.	 Let's use the created multimodule archetype to generate a Maven project
based on the template. Note that we are passing -Djunit-version=4.11
as an argument. If you look at the generated POM files, you will notice that
the version of the junit dependency is set to 4.11, shown as follows:
$ mvn archetype:generate -B

 -DarchetypeGroupId=com.packt.archetypes

 -DarchetypeArtifactId=com.packt.

 archetypes.multi.module

 -DarchetypeVersion=1.0.0

 -DgroupId=com.packt.samples

 -DartifactId=my-multi-module-project

 -Dpackage=com.packt.samples.multi.module

 -Dversion=1.0.0

 -Djunit-version=4.11

More details about the create-from-project goal is available at
http://maven.apache.org/archetype/maven-archetype-
plugin/create-from-project-mojo.html.

Summary
In this chapter, we focused on Maven archetypes. Maven archetypes provide a
way of reducing repetitive work in building Maven projects. There are thousands of
archetypes out there available publicly to assist you build different types of projects.
This chapter covered a commonly used set of archetypes and later discussed how to
develop your own custom archetypes.

In the next chapter, we will look into Maven repository management with the Nexus
repository manager.

http://maven.apache.org/archetype/maven-archetype-plugin/create-from-project-mojo.html
http://maven.apache.org/archetype/maven-archetype-plugin/create-from-project-mojo.html

Maven Repository
Management

The artifacts produced and consumed by Maven projects are stored in
repositories. In this chapter, we will discuss the following topics around
Maven repository management:

•	 Maven repositories and usage
•	 Repository management with Nexus
•	 Inclusive and exclusive routes
•	 Artifact indexing
•	 Scheduled tasks
•	 The repository metadata model

Maven repositories
There are two types of repositories: local and remote. The local repository is
maintained in your local machine by default at USER_HOME/.m2/repository.
Anything that you build locally with the mvn install will get deployed into the
local repository. When you start with a fresh Maven repository, there is nothing in
it. You need to download everything from the simplest maven-compiler-plugin to
all your project dependencies. A Maven build can be an online or offline build. By
default, it's online unless you add -o to your Maven build command. If it's an offline
build, Maven assumes that all related artifacts are readily available in the local Maven
repository and if not, it will complain. If it is an online build, Maven will download
the artifacts from remote repositories and store them in the local repository.

Maven Repository Management

[204]

The Maven local repository location can be changed to a
preferred location by editing MAVEN_HOME/conf/settings.
xml to update the value of the localRepository element.
This is done by the code:
<localRepository>/path/to/local/repo</
localRepository>

The update policy
Does Maven always download from remote repositories even if an artifact is already
available in the local repository? To answer this question correctly, we need to dig
deep into how we define remote repositories in Maven.

Remote repositories can be further divided into three: release, snapshot, and plugin.

A release repository holds artifacts that have a fixed version. An artifact with the
given groupId, artifactId, and version tags (GAV coordinates) is the same all
the time. The following is an example of a released dependency. If you download
this dependency today and then again in a month, both will be the same artifact:

<dependency>
 <groupId>com.googlecode.json-simple</groupId>
 <artifactId>json-simple</artifactId>
 <version>1.1</version>
</dependency>

A snapshot repository holds artifacts that have a special version, which ends with
SNAPSHOT. Any artifact that has the SNAPSHOT version can change over time. What
you download from the repository might not be the same if you download it again
in a month. The following is an example of a SNAPSHOT dependency. You add a
SNAPSHOT version to the project artifacts, which are still under development. As a
convention, the version to be released will be postfixed by the keyword SNAPSHOT:

<dependency>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-kernel</artifactId>
 <version>1.7.0-SNAPSHOT</version>
</dependency>

A plugin repository is a remote repository that holds plugins. A plugin repository
can be a release repository or a snapshot repository.

Chapter 8

[205]

Maven knows about remote repository locations from the project POM file.
By default, the Maven super POM file defines a set of repositories. Even if you
do not define any repositories in your application POM, you will inherit what
is defined in the super POM.

Repositories that are defined in the super POM file are shown in the following
configuration. Here, it's the same repository that acts as the release repository as
well as the plugin repository. If we set <snapshots><enabled>true</enabled></
snapshots>, then the corresponding repository is treated as a snapshot repository;
if set to false, then it's a release-only repository:

<repositories>
 <repository>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <id>central</id>
 <name>Central Repository</name>
 <url>http://repo.maven.apache.org/maven2</url>
 </repository>
</repositories>

<pluginRepositories>
 <pluginRepository>
 <releases>
 <updatePolicy>never</updatePolicy>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <id>central</id>
 <name>Central Repository</name>
 <url>http://repo.maven.apache.org/maven2</url>
 </pluginRepository>
</pluginRepositories>

Let's get back to our original question: does Maven always download artifacts from
remote repositories, even if an artifact is already available in the local repository?
This relies on the repository configuration. In the preceding code snippet from the
super POM file, you will find the following under the pluginRepository section:

<releases>
 <updatePolicy>never</updatePolicy>
</releases>

Maven Repository Management

[206]

The updatePolicy element can carry any of the values from always, daily,
interval:X, or never. In this case, it is set to never, which means that the artifacts
from this repository will be downloaded only if they are not available in the local
repository. This is a perfectly valid configuration for a release repository. If this is
a snapshot repository, then it won't work, and you might have to work with stale
artifacts. For a snapshot repository, you have to set the value to always, daily or
interval:X.

The always value means that Maven will always download the artifacts in every build.
If the updatePolicy element says daily, then Maven will download the artifacts
from the remote repository only once for a given day during the build. It compares
the metadata associated with the local POM file with the remote one to see which has
the latest timestamp. If the value is set to interval:X where X is an integer value in
minutes, Maven will download the artifact only after this time interval.

The default value of the updatePolicy configuration is daily.

Multiple repositories
Each Maven project has its own effective POM file. The effective POM file is
the aggregated POM file from the application POM, all parent POM files, and
the super POM. Finally, what matters to Maven is the effective POM, not the
individual ones. Each individual POM file can have its own repositories defined
under the repositories section, but in the effective POM file, there will be one
single repositories section, which aggregates all the repositories defined in
each POM file.

More details about Maven POM files were discussed in Chapter 2,
Demystifying Project Object Model.

When you have multiple repositories defined in the POM, the order in which they
are defined matters. Whenever Maven detects that a required artifact is missing in
the local repository, it will try to download from the very first eligible repository
defined in the effective POM file. When Maven generates the effective POM, the
top repositories will be taken from the application POM, then from the parent POM
files and finally from the super POM. Maven will move down the repositories in the
order they are defined in the effective POM if it cannot find an artifact in a given
repository, as shown in the following figure:

Chapter 8

[207]

<repositories>

Application POM

<repositories>

Parent POM

<repositories>

Super POM

<repositories>

Parent POM

Repositories in settings.xml
You can also define repositories in settings.xml, which is available by default
under the USER_HOME/.m2 directory. The repositories defined in settings.xml will
get priority over all the other repositories. The following explains how to add plugin
repositories to settings.xml:

1.	 Open USER_HOME/.m2/settings.xml and look for the <profiles> element.
2.	 Add the following section under the <profiles> element. When you define

repositories in settings.xml, they must be within a profile element. This
configuration introduces two plugin repositories and both are defined as
snapshot repositories. We will talk more about Maven profiles in Chapter 9,
Best Practices:
<profile>
 <id>apache</id>
 <pluginRepositories>
 <pluginRepository>
 <id>apache.snapshots</id>
 <name>Apache Snapshot Repository</name>
 <url>http://repository.apache.org/snapshots</url>
 <snapshots>
 <enabled>true</enabled>
 <updatePolicy>daily</updatePolicy>
 </snapshots>
 <releases>
 <enabled>false</enabled>
 </releases>
 </pluginRepository>

 <pluginRepository>
 <releases>

Maven Repository Management

[208]

 <enabled>false</enabled>
 </releases>
 <snapshots>
 <enabled>true</enabled>
 <updatePolicy>daily</updatePolicy>
 </snapshots>
 <id>apache-snapshots</id>
 <name>Apache Snapshots Repository</name>
 <url>http://people.apache.org/repo/
 m2-snapshot-repository</url>
 </pluginRepository>
 </pluginRepositories>
</profile>

3.	 Go to a directory that has any pom.xml file and execute the following
command, which will display the effective POM. Here, we are executing the
effective-pom goal of the help Maven plugin with an additional argument,
which starts with –P. The –P tag needs to be post fixed with the name of the
profile defined in the settings.xml, where we have our plugin repositories.
In this case, the name of the profile is apache(<id>apache</id>):
$ mvn help:effective-pom -Papache

4.	 Assuming that you have no repositories defined in your application
POM file, the above command will display the following. This includes
repositories from the settings.xml as well as from the super POM:
<repositories>
 <repository>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <id>central</id>
 <name>Central Repository</name>
 <url>http://repo.maven.apache.org/maven2</url>
 </repository>
</repositories>
<pluginRepositories>
 <pluginRepository>
 <releases>
 <enabled>false</enabled>
 </releases>
 <snapshots>
 <enabled>true</enabled>

Chapter 8

[209]

 <updatePolicy>daily</updatePolicy>
 </snapshots>
 <id>apache.snapshots</id>
 <name>Apache Snapshot Repository</name>
 <url>http://repository.apache.org/snapshots</url>
 </pluginRepository>
 <pluginRepository>
 <releases>
 <enabled>false</enabled>
 </releases>
 <snapshots>
 <enabled>true</enabled>
 <updatePolicy>daily</updatePolicy>
 </snapshots>
 <id>apache-snapshots</id>
 <name>Apache Snapshots Repository</name>
 <url>http://people.apache.org/repo/m2-snapshot-
 repository</url>
 </pluginRepository>
 <pluginRepository>
 <releases>
 <updatePolicy>never</updatePolicy>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <id>central</id>
 <name>Central Repository</name>
 <url>http://repo.maven.apache.org/maven2</url>
 </pluginRepository>
</pluginRepositories>

The Maven repository manager
If you are an independent developer who works according to your own schedule,
you might not want to worry about a repository manager. However, if you are
part of a larger team, doing day-to-day development with Maven, then you must
evaluate the need for a repository manager. A Maven repository manager addresses
two concerns in enterprise application development.

Maven Repository Management

[210]

An organization with more than 100 developers who are continuously working on
Maven based projects can easily burst out the outbound network traffic. To do an
online build, it might take from 1 hour to 5 hours, based on the size of your project.
This becomes much worse if you have many SNAPSHOT dependencies. The Maven
repository manager, which can act as a proxy for external remote repositories,
addresses this concern. With a repository manager in place, you do not need to
download each and every artifact per each developer. Once a given artifact is being
downloaded, it will be cached/stored at the repository manager. There is no need to
go back to the remote repository and download it again and again.

Marven
Central

Codehaus

Repository
Manager

Other than just acting as a proxy, the repository manager can also act as the central
point of governance. Here, you can enforce policies to specify which artifacts are
allowed to use and which are not. For example, you can allow any artifact that
has the Apache 2.0 open source license, but restrict anything with a GPL license.
Apache 2.0 is the most business-friendly license, while GPL is a bit restrictive.

Your organization might not just be consuming Maven artifacts, but also producing
some. If you produce Maven artifacts and want the public to use them, you have to
make them available in a Maven repository, which is publicly accessible. This is the
second concern addressed by the Maven repository manager. The Maven repository
manager itself can act as a repository. This is quite useful, even for internal projects.
If you have multiple internal projects where developers are simultaneously working
on and sharing dependencies, you can use the repository manager to act as a
snapshot repository. On a daily basis, each project can publish its artifacts to the
snapshot repository, while the others that have dependencies to those can get the
latest from the repository, rather than building each and every dependent project
locally by each developer.

Chapter 8

[211]

Nexus, Archiva, and Artifactory are three very popular open source repository
managers. In the next section, we will have a look at the Nexus repository manager.

A detailed feature comparison between Nexus, Archiva,
and Artifactory is available at http://docs.codehaus.
org/display/MAVENUSER/Maven+Repository+Mana
ger+Feature+Matrix.

Repository management with Nexus
Nexus has bit of a history. The original idea was initiated by Tamas Cservenak
who was working on Proximity, which was the most popular Maven proxy at that
time, in December 2005. Tamas and his colleagues, who were working for a small
organization, were fed up with their extremely slow ADSL connection and tried to
come up with a workaround to improve the productivity. Proximity was the result.
With Proximity, you do not need to always download Maven artifacts when you
perform a build. These artifacts will be cached and stored locally for future use.
Later in 2007, Tamas joined a company called Sonatype to build a similar product,
which is the most popular Maven repository manager today, Nexus.

Nexus comes in two versions: the open source version and the Nexus professional
version. In this chapter, we will only focus on the open source version.

The open source version of Nexus was released under Eclipse Public License
(EPL) version 1.0, which is compatible with the Apache 2.0 license. The following
list shows some of the key features available in the Nexus open source version.
From here onwards, if we just say Nexus, it means the open source version has:

•	 The ability to host and maintain repositories.
•	 Proxying requests to remote Maven repositories.
•	 Grouping of repositories. With Nexus, you can group a set of repositories

together and each group will have its own repository URL, which developers
can use.

•	 The ability to host project websites.
•	 Fine-grained access controlling. Each action you perform on Nexus can be

protected and will require a privilege check.
•	 The ability to search artifacts by groupId, artifactId, version, classifier,

packaging, Java class names, keywords, and artifact checksums.
•	 Scheduled tasks for repository management.

http://docs.codehaus.org/display/MAVENUSER/Maven+Repository+Manager+Feature+Matrix
http://docs.codehaus.org/display/MAVENUSER/Maven+Repository+Manager+Feature+Matrix
http://docs.codehaus.org/display/MAVENUSER/Maven+Repository+Manager+Feature+Matrix

Maven Repository Management

[212]

•	 RESTful services to perform repository management functions.
•	 Extension points. The out-of-the-box functionality of Nexus can be further

improved or added more by writing plugins.

Installing and running Nexus
You can download Nexus as a ZIP file distribution or as a WAR file from
http://www.sonatype.org/nexus/go. If it's the WAR file that you download,
then you have to deploy it in an application server. The zip distribution of Nexus
comes with its own application server: Jetty.

For the latest version of Nexus, you need to have Java 7.

To install from the zip distribution, you simply need to unzip it:

$ unzip nexus-2.9.1-02-bundle.zip

If it is the WAR file distribution, then you simply need to copy it to the web application
deployment directory of your application server, for example, in Apache Tomcat,
to TOMCAT_HOME/webapps.

You can start Nexus in two different ways. Execute the following command from
the nexus-2.9.1-02 directory, which will start Nexus in the console mode. If you
close the console, you kill Nexus. This is for Unix- or Linux-based systems. If you
are using Microsoft Windows, you need to use the corresponding bat file.

$ sh bin/nexus console

The following command will start Nexus and will detach from the console. You close
the console, but Nexus will still be running:

$ sh bin/nexus start

In the nonconsole mode, to view the startup logs, you can use the following
command under a Unix- or Linux-based system:

$ tail -f logs/wrapper.log

The following command will stop the running Nexus server:

$ sh bin/nexus stop

http://www.sonatype.org/nexus/go

Chapter 8

[213]

By default, Nexus will start running on the port 8081. If you have executed the
installation correctly, you should be able to access the http://localhost:8081/
nexus URL. Now, you can log in to the system with the default username as admin
and password as admin123. Once you are logged in to the system, you will see the
following view. The first thing you should please delete do is to change the default
password by performing the following steps:

1.	 Go to http://localhost:8081/nexus/#profile;Summary.
2.	 Click on Change Password to reset the default password:

Creating a hosted repository
Let's see how to create a Maven repository with Nexus and then deploy artifacts to it:

1.	 Go to http://localhost:8081/nexus and login as admin.
2.	 Navigate to Views/Repositories | Repositories | Add | Hosted Repository.
3.	 Now, you will see a view as shown in the following screenshot. Fill in the

required details appropriately. The default storage location is set to file:/
nexus-2.9.1-02-bundle/sonatype-work/nexus/storage/{repository-
id}/. If needed, you can override it.

Maven Repository Management

[214]

4.	 Repository Policy can be either release or snapshot.
5.	 Deployment Policy can be Allow Redeploy, Disable Redeploy,

or Read Only. If set to Allow Redeploy, you can deploy the same
artifact again and again with the same Maven coordinates. This is
needed for a snapshot repository.

6.	 Now, we have configured our own Maven repository with Nexus, it is ready
to use. You need to add a reference (as shown in the following code snippet)
to the repository in the POM file to deploy the project artifacts:
<distributionManagement>
 <repository>
 <id>packt</id>
 <url>http://localhost:8081/nexus/content/
 repositories/packt</url>
 </repository>
</distributionManagement>

Chapter 8

[215]

Let's create a simple Maven project and deploy the artifact it produces to the
Maven repository that we just created.

The following command will create a Maven project with the maven-archetype-
quickstart archetype. We discussed Maven archetypes in Chapter 7, Maven Archetypes.

$ mvn archetype:generate -DgroupId=com.packt.samples
 -DartifactId=com.packt.samples.archetype -Dversion=1.0.0
 -DinteractiveMode=false

1.	 You will see the following project structure that is being created with a
sample POM file:
com.packt.samples.archetype
 |-pom.xml
 |-src
 |-main/java/com/packt/samples/
 |-test/java/com/packt/samples/

2.	 Open the com.packt.samples.archetype/pom.xml file and add the
following code snippet directly under the project root element:
<distributionManagement>
 <repository>
 <id>packt</id>
 <url>http://localhost:8081/nexus/content/
 repositories/packt</url>
 </repository>
</distributionManagement>

3.	 Execute the following Maven command to build the project and deploy
the artifact to the Nexus Maven repository. As we discussed in Chapter 5,
Maven Plugins, deploy is a phase that belongs to the Maven default lifecycle.
When you execute the command, Maven will run all the plugins registered
with each phase up to and including the deploy phase. The actual work is
done by the maven-deploy-plugin registered under the deploy phase:
$ mvn deploy

Maven Repository Management

[216]

4.	 Even though you expect to see the artifact appearing in the Nexus repository,
you will get the following error. The error message clearly indicates the
reason for the failure. Any random person cannot deploy artifacts into the
Nexus repository, only the authorized parties can do it:
[ERROR] Failed to execute goal org.apache.maven.plugins:maven-
deploy-plugin:2.7:deploy (default-deploy) on project com.packt.
samples.archetype: Failed to deploy artifacts: Could not transfer
artifact com.packt.samples:com.packt.samples.archetype:jar:1.0.0
from/to packt (http://localhost:8081/nexus/content/repositories/
packt): Failed to transfer file: http://localhost:8081/nexus/
content/repositories/packt/com/packt/samples/com.packt.samples.
archetype/1.0.0/com.packt.samples.archetype-1.0.0.jar. Return code
is: 401, ReasonPhrase: Unauthorized.

Let's see how to create a new user in Nexus and assign the user a role with the
privileges to deploy Maven artifacts to the repository:

1.	 Go to http://localhost:8081/nexus and log in as admin.
2.	 Navigate to Security Users | Add | Nexus Users. You will see a view similar

to what is shown in the following screenshot. Fill in the details appropriately.
3.	 Make sure the value of the Status field is set to Active.

Chapter 8

[217]

4.	 Click on the Add button in the Role Management section and
select Repo: All Maven Repositories (Full Control), as shown
in the upcoming screenshot:

5.	 Nexus comes with a set of roles where each role has a different set of
privileges. Any user that belongs to the Repo: All Maven Repositories
(Full Control) role has the rights to deploy artifacts into the Maven
repository.

6.	 Once done, click on Save to complete the function.

Nexus comes with a set of built-in roles: administrator role,
anonymous role, developer role, and deployment role. Based on
the user's job functionality, you need to pick the appropriate role.

Maven Repository Management

[218]

7.	 Maven repositories can be protected for legitimate access. If a given
repository is protected with HTTP Basic Authentication, as in this case, the
corresponding credentials should be defined under the servers element of
MAVEN_HOME/conf/settings.xml, as shown in the following code snippet.
The value of the id element must match the repository ID. How to encrypt
the credentials in settings.xml was covered in the Encrypting credentials in
settings.xml section of Chapter 4, Build Lifecycles.
<server>
 <id>packt</id>
 <username>username1</username>
 <password>password23</password>
</server>

8.	 Now, you can execute the following Maven command from the com.packt.
samples.archetype directory and it should succeed this time:
$ mvn deploy

9.	 If you see the following error, it means that the user configured in the
MAVEN_HOME/conf/settings.xml file might not have the required
privileges to deploy artifacts:
[ERROR] Failed to execute goal org.apache.maven.plugins:maven-
deploy-plugin:2.7:deploy (default-deploy) on project com.packt.
samples.archetype: Failed to deploy artifacts: Could not transfer
artifact com.packt.samples:com.packt.samples.archetype:jar:1.0.0
from/to packt (http://localhost:8081/nexus/content/repositories/
packt): Access denied to: http://localhost:8081/nexus/content/
repositories/packt/com/packt/samples/com.packt.samples.
archetype/1.0.0/com.packt.samples.archetype-1.0.0.jar,
ReasonPhrase: Forbidden. -> [Help 1]

10.	 If the artifact was successfully deployed to the repository, you should be able
to see it in Nexus. Navigate to Views/Repositories | Repositories. Click on
the name of the repository that you created (packt-repo) and then click on
Browse Index. You will see the artifact that we just deployed, as shown in
the following screenshot:

Chapter 8

[219]

11.	 Let's try the command mvn deploy once again from the com.packt.samples.
archetype directory. If you see the following error, when creating the hosted
repository in Nexus, you have set Disable Redeploy as the deployment policy:
[ERROR] Failed to execute goal org.apache.maven.plugins:maven-
deploy-plugin:2.7:deploy (default-deploy) on project com.packt.
samples.archetype: Failed to deploy artifacts: Could not transfer
artifact com.packt.samples:com.packt.samples.archetype:jar:1.0.0
from/to packt (http://localhost:8081/nexus/content/repositories/
packt): Failed to transfer file: http://localhost:8081/nexus/
content/repositories/packt/com/packt/samples/com.packt.samples.
archetype/1.0.0/com.packt.samples.archetype-1.0.0.jar. Return code
is: 400, ReasonPhrase: Bad Request. -> [Help 1]

Even though we created a hosted repository in Nexus from scratch,
you do not always need to do this. Nexus comes with three hosted
repositories out-of-the-box.
The release repository is for the released artifacts available at http://
localhost:8081/nexus/content/repositories/releases.
The snapshots repository is available at http://localhost:8081/
nexus/content/repositories/snapshots is for the snapshot
artifacts.
Nexus also comes with a hosted repository for third-party artifacts,
which is available at http://localhost:8081/nexus/content/
repositories/thirdparty.

Creating a proxy repository
By default, Nexus comes with following three proxy repositories:

•	 Central: The central proxy repository is available at
https://repo1.maven.org/maven2/

•	 Apache snapshots: The Apache snapshots proxy repository is available
at https://repository.apache.org/snapshots/

•	 Codehaus snapshots: The Codehaus proxy repository is available at
https://nexus.codehaus.org/snapshots/

https://repo1.maven.org/maven2/
https://repository.apache.org/snapshots/
https://nexus.codehaus.org/snapshots/

Maven Repository Management

[220]

Let's look at how to create a set of proxy repositories in Nexus. Then we will create
a group repository by combining them all. In your Maven project, you only need to
add a reference to the group repository. The following steps are to be followed while
creating the proxy repositories:

1.	 Go to http://localhost:8081/nexus and log in as admin.
2.	 Navigate to Views/Repositories | Repositories | Add | Proxy Repository.

Fill in the details appropriately, as shown in the following screenshot. The
remote repository URL has to be set in the Remote Storage Location field.
Here, we are creating a proxy repository for the WSO2 nexus repository.

3.	 Click on Save and the proxy repository will appear under the
Repository list. You can see that the Nexus proxy repository path is set to
http://localhost:8081/nexus/content/repositories/wso2-proxy/.

4.	 Now, lets try to create a group repository by combining wso2-proxy
repository and all the other proxy repositories that come out-of-the-box with
Nexus. Navigate to Views/Repositories | Repositories | Add | Repository
Group. Fill in the required details, as shown in the following screenshot:

Chapter 8

[221]

5.	 Make sure that you select wso2-proxy, Apache Snapshots, Central,
and Codehause Snapshots proxy repositories from the Ordered Group
Repositories panel and click on Save.

6.	 The group repository that we just created will appear under the Repository
list, and is available at http://localhost:8081/nexus/content/groups/
packt-group/.

7.	 Now, in your application POM file or in USER_HOME/.m2/settings.xml,
you can define a single repository that points to the preceding group
repository (packt-group):
<repositories>
 <repository>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 <release>
 <enabled>true</enabled>
 </release>
 <id>packt-group</id>
 <name>PACKT Nexus Group Repository</name>
 <url>http://localhost:8081/nexus/content/groups/packt
 -group/</url>
 </repository>
</repositories>

Maven Repository Management

[222]

8.	 Even though we use the same group repository for both the released and
snapshot artifacts, you should avoid this. You can have one group for the
released artifacts and another for the snapshot artifacts.

In the previous example, we directly changed the URL of the repository element
defined in either your application POM file or the USER_HOME/.m2/settings.xml
file. When you want the axis2-kernel-1.6.2.jar file, Maven will try to download
it from http://localhost:8081/nexus/content/groups/packt-group/org/
apache/axis2/axis2-kernel/1.6.2/axis2-kernel-1.6.2.jar. However, this is
not the only way to instruct Maven to use our Nexus group repository. For example,
you can define a mirror repository in the settings.xml file for a given repository in
the following way, instead of directly changing its URL to Nexus. This is quite useful
when you are working on a project that already defines a set of repositories. In such
a case without changing any of these POM files, you can create a mirror for them,
as shown in the following code snippet:

<mirrors>
 <mirror>
 <id>packt-group</id>
 <name>PACKT Nexus Group Repository</name>
 <url>http://localhost:8081/nexus/content/groups/packt
 -group/</url>
 <mirrorOf>central</mirrorOf>
 </mirror>
</mirrors>

The mirrorOf element in the preceding code snippet refers to a Maven repository
that is defined under the repositories section either in a POM file or in the
settings.xml file. The following code snippet shows you the definition of the
Maven central repository that carries the id tag as central:

<repositories>
 <repository>
 <release>
 <enabled>true</enabled>
 </release>
 <id>central</id>
 <name>Maven Central</name>
 <url>https://repo1.maven.org/maven2/url>
 </repository>
</repositories>

Chapter 8

[223]

This still has limitations. For each repository defined in your application POM files,
you need to define a mirror repository. There are two approaches to avoid doing this.
One is to use a comma separated list of the mirrorOf IDs, as shown in the following
code snippet:

<mirrors>
 <mirror>
 <id>packt-group</id>
 <name>PACKT Nexus Group Repository</name>
 <url>http://localhost:8081/nexus/content/groups/packt
 -group/</url>
 <mirrorOf>central,codehause</mirrorOf>
 </mirror>
</mirrors>

However, when a new application POM file introduces a new repository, you need
to be aware of it and then update the preceding configuration in the settings.xml
file. You can avoid doing this by identifying all the repositories to be mirrored by *,
as shown in the following code snippet:

<mirrors>
 <mirror>
 <id>packt-group</id>
 <name>PACKT Nexus Group Repository</name>
 <url>http://localhost:8081/nexus/content/groups/packt
 -group/</url>
 <mirrorOf>*</mirrorOf>
 </mirror>
</mirrors>

If you want to use the Nexus repository as the mirror for all the repositories, except
for codehause, then you can use the following code snippet:

<mirrors>
 <mirror>
 <id>packt-group</id>
 <name>PACKT Nexus Group Repository</name>
 <url>http://localhost:8081/nexus/content/groups/packt
 -group/</url>
 <mirrorOf>*,!codehause</mirrorOf>
 </mirror>
</mirrors>

Maven Repository Management

[224]

Creating a virtual repository
A virtual repository acts as a bridge between different types of repositories. Nexus
supports bridging between Maven1 and Maven2. With a virtual directory, you can
expose a Maven1 repository as a Maven2 repository. To create a virtual repository,
first you need to have a hosted or proxy repository. Then you create a virtual
repository on top of it:

1.	 Go to http://localhost:8081/nexus and log in as admin.
2.	 Navigate to Views/Repositories | Repositories | Add | Virtual Repository.

To expose a Maven2 repository as a Maven1 repository, you need to select
Maven2 to Maven1 in the Provider field. Once you select Maven2 to Maven1
in the Provider field, the value of Format will be automatically set to maven1,
and all the Maven2 hosted and proxy repositories will be listed under the
Source Nexus Repository ID field, as shown in the following screenshot:

3.	 Once you click on the Save button, the virtual repository will be listed under
Repository list and will be available at http://localhost:8081/nexus/
content/shadows/packt-virtual/.

Chapter 8

[225]

Blocking selected artifacts
Nexus routing rules can be used to block certain artifacts. For example, you might
have a company policy to not to use any artifacts with the GPL license. In this a
case, those artifacts can be blocked from the Nexus repository. The following steps
show you how to block all the Apache axis2 artifacts. However, this is not a perfect
example, as Apache Axis2 was released under Apache 2.0 License:

1.	 Go to http://localhost:8081/nexus and log in as admin.
2.	 Navigate to Views/Repositories | Routing | Add. The URL Pattern

field carries a regular expression to the artifact path. The artifact path
is everything that comes after nexus/content, which also includes the
repository name. In this case, we use ^/org/apache/axis2/.* as the
regular expression to block any axis2 artifact. Fill in the required details,
as shown in the following screenshot:

3.	 The value of Rule Type has to be set to Blocking. The other two options:
Inclusive and Exclusive, which will be discussed later in this chapter.

4.	 Finally, you can select to which repository group this rule should be applied
to and then click on Save.

5.	 Add the following dependency to your project and run mvn clean install.
Maven will report an error, as it won't be able to download any axis2 related
artifacts. Also, make sure that the corresponding artifact is not available in
your local repository before running this command:
<dependency>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-kernel</artifactId>
 <version>1.6.2</version>
</dependency>

Maven Repository Management

[226]

Inclusive and exclusive routing
When Maven asks for an artifact from a Nexus proxy repository, Nexus knows
where to look for it. For example, we have a proxy repository that runs at http://
localhost:8081/nexus/content/repositories/central/, which internally points
to the remote repository that runs at https://repo1.maven.org/maven2/. Since there
is one-to-one mapping between the proxy repository and the corresponding remote
repository, Nexus can route the requests without much trouble. However, if Maven
looks for an artifact via a Nexus group repository, then Nexus has to iterate through
all the repositories in that group repository in order to find the exact artifact. There
can be cases where we have more than 20 repositories in a single group repository,
which can easily bring delays at the client side. To optimize artifact discovery in
group repositories, we need to set the correct inclusive/exclusive routing rules.

Inclusive routing rules talk about which repositories to be included in artifact
discovery, while exclusive routing rules talk about which ones to be excluded.
The following steps show how to include and exclude routes:

1.	 Go to http://localhost:8081/nexus and log in as admin.
2.	 Navigate to Views/Repositories | Routing | Add. Fill in the required details

appropriately, as shown in the following screenshot:

Chapter 8

[227]

3.	 The URL Pattern field carries a regular expression to the artifact path.
The artifact path is everything that comes after nexus/content that also
includes the repository name. In this case, we use ^/org/apache/axis2/.*
as the regular expression to create an inclusive route to the central
proxy repository.

4.	 Any request coming to the packt-group group repository, which matches
the given regular expression, will now be directly routed to the central
proxy repository at http://localhost:8081/nexus/content/groups/
packt-group/org/apache/axis2/axis2-kernel/1.6.2/axis2-kernel-
1.6.2.jar.

5.	 In the same way, we can also create an exclusive route. Here, you need to
select a set of repositories from the provided list to be excluded from artifact
discovery corresponding to the matching regular expression.
If you have blocked a certain artifact from a repository and you later unblock
it or set a different route type for it, you might see the following exception
from your Maven project, when you try to execute mvn clean install. As
clearly indicated in the exception, the issue is related to caching. If an artifact
gets blocked from a given repository, that decision will be cached until the
update interval of the repository gets elapsed. In that case, you need to
execute mvn clean install –U.
[ERROR] Failed to execute goal on project com.packt.samples.
archetype: Could not resolve dependencies for project com.packt.
samples:com.packt.samples.archetype:jar:1.0.0: Failure to find
org.apache.axis2:axis2-kernel:jar:1.6.2 in http://localhost:8081/
nexus/content/groups/packt-group/ was cached in the local
repository, resolution will not be reattempted until the update
interval of packt-group has elapsed or updates are forced.

Maven Repository Management

[228]

Scheduled tasks
With scheduled tasks, Nexus gives its administrators the control to routinely perform
certain tasks in an automated manner. The following steps show how to set up a
scheduled task:

1.	 Go to http://localhost:8081/nexus and log in as admin.
2.	 Navigate to Administration | Scheduled Tasks | Add. Fill in the required

details, as shown in the following screenshot:

3.	 You can select one from the available task types from the Task Type field.
Here, we have selected Publish Indexes and the task will be done in every
hour starting from 09/29/ 2014, 12:42 P.M..

4.	 Click on the Save button to complete and the task will appear on the task list.

Chapter 8

[229]

Artifact indexing
Nexus keeps an index of all the repositories managed by it. The index is maintained
as a standard Lucene index. Nexus uses the created index in order to find where the
requested artifacts belong, prior to talking to a remote repository.

Apache Lucene is an open source project released under Apache 2.0
License is available at http://lucene.apache.org/.

The following list shows you how to update the index of a given repository:

1.	 Go to http://localhost:8081/nexus and log in as admin.
2.	 Navigate to Views/Repositories | Repositories and right-click on the

repository you need. Then select Update Index.
3.	 To browse through the index of the selected repository, click on the

Browse Index tab just below the repository list.

Nexus plugins
Similarly to Maven plugins, Nexus plugins allow you to extend the behavior of Nexus.
Out-of-the-box Nexus comes with a set of plugins. To view all the plugins installed in
your Nexus distribution, navigate to Administration | Plugin Console.

http://lucene.apache.org/

Maven Repository Management

[230]

A repository metadata model
If you go to http://repo1.maven.org/maven2/org/apache/, you will find a file
called maven-metadata.xml. As shown in the following code snippet, the file lists
out the available plugins under http://repo1.maven.org/maven2/org/apache/.

<metadata>
 <plugins>
 <plugin>
 <name>Maven XBean Plugin</name>
 <prefix>xbean</prefix>
 <artifactId>maven-xbean-plugin</artifactId>
 </plugin>
 </plugins>
</metadata>

If you go to http://repo1.maven.org/maven2/org/apache/axis2, you will again
find a similar file maven-metadata.xml under it. This too lists out all the available
plugins under http://repo1.maven.org/maven2/org/apache/axis2.

If you go to http://repo1.maven.org/maven2/org/apache/axis2/axis2-
kernel/, you will see a slightly different maven-metadata.xml, as shown in the
following code snippet. This lists out the metadata corresponding to the Maven
artifact under that directory. The metadata includes the groupId tag, artifactId
element and all the different versions of the artifact. In addition to these, the the
value of lastUpdated tag indicates the time the maven-metadata.xml file was last
updated, as shown in the following snippet:

<metadata>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-kernel</artifactId>
 <versioning>
 <latest>1.6.2</latest>
 <release>1.6.2</release>
 <versions>
 <version>1.0</version>
 <version>1.1</version>
 <version>1.2</version>
 <version>1.3</version>
 <version>1.4</version>
 <version>1.4.1</version>
 <version>1.5</version>
 <version>1.5.1</version>
 <version>1.5.2</version>

http://repo1.maven.org/maven2/org/apache/
http://repo1.maven.org/maven2/org/apache/
http://repo1.maven.org/maven2/org/apache/axis2
http://repo1.maven.org/maven2/org/apache/axis2
http://repo1.maven.org/maven2/org/apache/axis2/axis2-kernel/
http://repo1.maven.org/maven2/org/apache/axis2/axis2-kernel/

Chapter 8

[231]

 <version>1.5.3</version>
 <version>1.5.4</version>
 <version>1.5.5</version>
 <version>1.5.6</version>
 <version>1.6.0</version>
 <version>1.6.1</version>
 <version>1.6.2</version>
 </versions>
 <lastUpdated>20120423060050</lastUpdated>
 </versioning>
</metadata>

Maven allows you to store metadata at the directory level with different granularity
levels. In the first example, the maven-metadata.xml file was available under the
org/apache groupId path. In the second example, it was available under the org/
apache/axis2 groupId path and in the last one, it was under the org/apache/
axis2/axis2-kernel artifactId path. Even though the schema of the maven-
metadata.xml file is the same for all the locations, the information kept in each file
varies based on the location. If the file is under the artifact directory (org/apache/
axis2/axis2-kernel), it will hold all the metadata related to the artifacts under
it, which includes groupId, artifactId, and all the different versions of the artifact.
The maven-metadata.xml file inside a group directory (org/apache/axis2 or
org/apache) displays the plugin information.

In addition to the previous two examples, the maven-matadata.xml file can also be
present in the version directory, which is available at http://repository.apache.
org/content/groups/snapshots/org/apache/axis2/axis2-kernel/1.7.0-
SNAPSHOT/maven-metadata.xml. This is mostly used for snapshot dependencies.
The following code snippet shows you a sample maven-matadata.xml file for
Apache Axis2 – 1.7.0-SNAPSHOT:

<metadata modelVersion="1.1.0">
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-kernel</artifactId>
 <version>1.7.0-SNAPSHOT</version>
 <versioning>
 <snapshot>
 <timestamp>20140921.110455</timestamp>
 <buildNumber>1943</buildNumber>
 </snapshot>
 <lastUpdated>20140921110455</lastUpdated>
 <snapshotVersions>
 <snapshotVersion>
 <extension>jar</extension>

http://repository.apache.org/content/groups/snapshots/org/apache/axis2/axis2-kernel/1.7.0-SNAPSHOT/maven-metadata.xml
http://repository.apache.org/content/groups/snapshots/org/apache/axis2/axis2-kernel/1.7.0-SNAPSHOT/maven-metadata.xml
http://repository.apache.org/content/groups/snapshots/org/apache/axis2/axis2-kernel/1.7.0-SNAPSHOT/maven-metadata.xml

Maven Repository Management

[232]

 <value>1.7.0-20140921.110455-1943</value>
 <updated>20140921110455</updated>
 </snapshotVersion>
 </snapshotVersions>
 </versioning>
</metadata>

The following list shows you the complete schema of the Maven metadata model.
Most of the elements here are self-explanatory and if you need any further
information, you can refer to http://maven.apache.org/ref/3.2.3/maven-
repository-metadata/repository-metadata.html.

<metadata modelVersion=.. >
 <groupId/>
 <artifactId/>
 <version/>
 <versioning>
 <latest/>
 <release/>
 <snapshot>
 <timestamp/>
 <buildNumber/>
 <localCopy/>
 </snapshot>
 <versions/>
 <lastUpdated/>
 <snapshotVersions>
 <snapshotVersion>
 <classifier/>
 <extension/>
 <value/>
 <updated/>
 </snapshotVersion>
 </snapshotVersions>
 </versioning>
 <plugins>
 <plugin>
 <name/>
 <prefix/>
 <artifactId/>
 </plugin>
 </plugins>
</metadata>

http://maven.apache.org/ref/3.2.3/maven-repository-metadata/repository-metadata.html
http://maven.apache.org/ref/3.2.3/maven-repository-metadata/repository-metadata.html

Chapter 8

[233]

How does Maven use maven-metadata.xml?

At the beginning of the chapter, we talked about two types of repositories – release
and snapshot, and how to configure these repositories with an update policy. If it is
an update policy for a snapshot repository, you will ideally use always or daily. This
will instruct Maven to check the snapshot repositories always, or once in a given day.
When Maven checks for an update, the only way it finds whether a given snapshot
artifact is being updated or not is by looking at the maven-metadata.xml file under
the version directory.

When Maven downloads a snapshot dependency, it always downloads the
maven-metadata.xml file from the version directory, and stores it in the local
Maven repository under the same directory structure by renaming the file to
maven-metadata-<repository-id>.xml. If we use packt-group as the repository
ID, then the filename will be maven-metadata-packt-group.xml. When Maven tries
to update the same snapshot version once again, it will compare the timestamp of the
local maven-metadata-packt-group.xml file to the remote maven-metadata.xml file.

Snapshot dependencies is not the only case where Maven downloads the maven-
metadata.xml file from a remote repository. If you have associated a plugin with
your application POM, without a version (as shown in the following code snippet),
then Maven will also download the corresponding maven-metadata.xml file and
store it locally. Only the latest released version of the plugin will be downloaded
and used in the project:

<build>
 <plugins>
 <plugin>
 <inherited>true</inherited>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-source-plugin</artifactId>
 <executions>
 <execution>
 <id>attach-sources</id>
 <goals>
 <goal>jar</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

Maven Repository Management

[234]

Maven also maintains another favor of maven-metadata.xml file. This is postfixed
with local. You will find the maven-metadata-local.xml file in the artifact directory
of your local Maven repository, when you create any local Maven artifact. This will get
created when you execute mvn clean install against your local project, and the file
will get copied to the remote repository (and might get merged too), when you deploy
the artifact using mvn deploy.

Summary
In this chapter, we focused on the Maven repository management. We started
the discussion on how Maven projects use and reference repositories within the
application POM files and globally use settings.xml. Later, we discussed how
to use Nexus as a repository manager and configure it as a hosted, proxy, and
group repository. Finally, we concluded with a detailed discussion on the Maven
repository metadata model. For more details about Nexus, you can check out the
information at http://www.sonatype.com/nexus/.

In the next chapter, we will discuss the industry accepted best practices in
using Maven.

http://www.sonatype.com/nexus/

Best Practices
In the book so far, we have discussed most of the key concepts related to Maven.
Here in this chapter, we focus on best practices associated with all those core
concepts. The following best practices are essential ingredients in creating a
successful/productive build environment. The following criteria will help you
evaluate the efficiency of your Maven project if you are mostly dealing with a
large-scale, multi-module project:

•	 The time it takes for a developer to get started with a new project and
add it to the build system

•	 The effort it requires to upgrade a version of a dependency across all
the project modules

•	 The time it takes to build the complete project with a fresh local
Maven repository

•	 The time it takes to do a complete offline build
•	 The time it takes to update the versions of Maven artifacts produced by

the project, for example, from 1.0.0-SNAPSHOT to 1.0.0
•	 The effort it requires for a completely new developer to understand what

your Maven build does
•	 The effort it requires to introduce a new Maven repository
•	 The time it takes to execute unit tests and integration tests

The rest of the chapter talks about 25 industry-accepted best practices that would help
you to improve developer productivity and reduce any maintenance nightmares.

Best Practices

[236]

Dependency management
In the following example, you will notice that the dependency versions are added to
each and every dependency defined in the application POM file:

<dependencies>
 <dependency>
 <groupId>com.nimbusds</groupId>
 <artifactId>nimbus-jose-jwt</artifactId>
 <version>2.26</version>
 </dependency>
 <dependency>
 <groupId>commons-codec</groupId>
 <artifactId>commons-codec</artifactId>
 <version>1.2</version>
 </dependency>
</dependencies>

Imagine that you have a set of application POM files in a multi-module Maven
project that has the same set of dependencies. If you have duplicated the artifact
version with each and every dependency, then to upgrade to the latest dependency,
you need to update all the POM files, which could easily lead to a mess.

Not just that, if you have different versions of the same dependency used in different
modules of the same project, then it's going to be a debugging nightmare in case of
an issue.

With proper dependency management, we can overcome both the previous issues. If
it's a multi-module Maven project, you need to introduce the dependencyManagement
configuration element in the parent POM so that it will be inherited by all the other
child modules:

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.nimbusds</groupId>
 <artifactId>nimbus-jose-jwt</artifactId>
 <version>2.26</version>
 </dependency>
 <dependency>
 <groupId>commons-codec</groupId>
 <artifactId>commons-codec</artifactId>
 <version>1.2</version>
 </dependency>
 </dependencies>
</dependencyManagement>

Chapter 9

[237]

Once you define dependencies under the dependencyManagement section as
shown in the previous code, you only need to refer a dependency by its groupId
and artifactId tags. The version tag is picked from the appropriate the
dependencyManagement section:

<dependencies>
 <dependency>
 <groupId>com.nimbusds</groupId>
 <artifactId>nimbus-jose-jwt</artifactId>
 <dependency>
 <groupId>commons-codec</groupId>
 <artifactId>commons-codec</artifactId>
 </dependency>
</dependencies>

With the previous code snippet, if you want to upgrade or downgrade a
dependency, you only need to change the version of the dependency under
the dependencyManagement section.

The same principle applies to plugins as well. If you have a set of plugins, which are
used across multiple modules, you should define them under the pluginManagement
section of the parent module. In this way, you can downgrade or upgrade plugin
versions seamlessly just by changing the pluginManagement section of the parent
POM, as shown in the following code:

<pluginManagement>
 <plugins>
 <plugin>
 <artifactId>maven-resources-plugin</artifactId>
 <version>2.4.2</version>
 </plugin>
 <plugin>
 <artifactId>maven-site-plugin</artifactId>
 <version>2.0-beta-6</version>
 </plugin>
 <plugin>
 <artifactId>maven-source-plugin</artifactId>
 <version>2.0.4</version>
 </plugin>
 <plugin>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.13</version
 </plugin
 </plugins>
</pluginManagement>

Best Practices

[238]

Once you define the plugins in the pluginManagement section, as shown in
the previous code, you only need to refer a plugin from its groupId (optional)
and the artifactId tags. The version tag is picked from the appropriate
pluginManagement section:

<plugins>
 <plugin>
 <artifactId>maven-resources-plugin</artifactId>
 <executions>……</executions>
 </plugin>
 <plugin>
 <artifactId>maven-site-plugin</artifactId>
 <executions>……</executions>
 </plugin>
 <plugin>
 <artifactId>maven-source-plugin</artifactId>
 <executions>……</executions>
 </plugin>
 <plugin>
 <artifactId>maven-surefire-plugin</artifactId>
 <executions>……</executions>
 </plugin>
</plugins>

Maven plugins were discussed in detail in Chapter 5, Maven Plugins.

Defining a parent module
In most of the multi-module Maven projects, there are many things that are shared
across multiple modules. Dependency versions, plugins versions, properties, and
repositories are only some of them. It is a common as well as a best practice to create
a separate module called parent, and in its POM file, define everything in common.
The packaging type of this POM file is pom. The artifact generated by the pom
packaging type is itself a POM file.

The following are a few examples:

•	 The Apache Axis2 project, available at http://svn.apache.org/repos/
asf/axis/axis2/java/core/trunk/modules/parent/

•	 The WSO2 Carbon project, available at https://svn.wso2.org/repos/
wso2/carbon/platform/trunk/parent/

http://svn.apache.org/repos/asf/axis/axis2/java/core/trunk/modules/parent/
http://svn.apache.org/repos/asf/axis/axis2/java/core/trunk/modules/parent/
https://svn.wso2.org/repos/wso2/carbon/platform/trunk/parent/
https://svn.wso2.org/repos/wso2/carbon/platform/trunk/parent/

Chapter 9

[239]

Not all the projects follow this approach. Some just keep the parent POM file
under the root directory (not under the parent module). The following are a
couple of examples:

•	 The Apache Synapse project, available at
http://svn.apache.org/repos/asf/synapse/trunk/java/pom.xml

•	 The Apache HBase project, available at
http://svn.apache.org/repos/asf/hbase/trunk/pom.xml

Both approaches deliver the same results. However, the first one is much preferred.
With the first approach, the parent POM file only defines the shared resources across
different Maven modules in the project, while there is another POM file at the root of
the project, which defines all the modules to be included in the project build. With the
second approach, you define all the shared resources as well as all the modules to be
included in the project build in the same POM file, which is under the project's root
directory. The first approach is better than the second one, based on the separation
of concerns principle.

POM properties
There are six types of properties that you can use within a Maven application
POM file:

•	 Built-in properties
•	 Project properties
•	 Local settings
•	 Environment variables
•	 Java system properties
•	 Custom properties

It is always recommended that you use properties, instead of hardcoding values in
application POM files. Let''s look at a few examples.

Let's take the application POM file inside the Apache Axis2 distribution module,
available at http://svn.apache.org/repos/asf/axis/axis2/java/core/trunk/
modules/distribution/pom.xml. This defines all the artifacts created in the Axis2
project that need to be included in the final distribution. All the artifacts share the
same groupId tag as well as the version tag of the distribution module. This is
a common scenario in most of the multi-module Maven projects.

http://svn.apache.org/repos/asf/synapse/trunk/java/pom.xml
http://svn.apache.org/repos/asf/hbase/trunk/pom.xml
http://svn.apache.org/repos/asf/axis/axis2/java/core/trunk/modules/distribution/pom.xml
http://svn.apache.org/repos/asf/axis/axis2/java/core/trunk/modules/distribution/pom.xml

Best Practices

[240]

Most of the modules (if not all) share the same groupId tag and the version tag:

<dependencies>
 <dependency>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-java2wsdl</artifactId>
 <version>${project.version}</version>
 </dependency>
 <dependency>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-kernel</artifactId>
 <version>${project.version}</version>
 </dependency>
 <dependency>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-adb</artifactId>
 <version>${project.version}</version>
 </dependency>
</dependencies>

In the previous configuration, instead of duplicating the version element, Axis2 uses
the project property ${project.version}. When Maven finds this project property,
it reads the value from the project POM version element. If the project POM file
does not have a version element, then Maven will try to read it from the immediate
parent POM file. The benefit here is, when you upgrade your project version some
day, you only need to upgrade the version element of the distribution POM file
(or its parent).

The previous configuration is not perfect; it can be further improved in the
following manner:

<dependencies>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>axis2-java2wsdl</artifactId>
 <version>${project.version}</version>
 </dependency>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>axis2-kernel</artifactId>
 <version>${project.version}</version>
 </dependency>
 <dependency>

Chapter 9

[241]

 <groupId>${project.groupId}</groupId>
 <artifactId>axis2-adb</artifactId>
 <version>${project.version}</version>
 </dependency>
</dependencies>

Here, we also replace the hardcoded value of groupId in all the dependencies with
the project property ${project.groupid}. When Maven finds this project property,
it reads the value from the project POM groupId element. If the project POM file
does not have a groupId element, then Maven will try to read it from the immediate
parent POM file.

The following lists out some of the Maven built-in properties and project properties:

•	 project.version: This refers to the value of the version element of the
project POM file

•	 project.groupId: This refers to the value of the groupId element of the
project POM file

•	 project.artifactId: This refers to the value of the artifactId element
of the project POM file

•	 project.name: This refers to the value of the name element of the project
POM file

•	 project.description: This refers to the value of the description element
of the project POM file

•	 project.baseUri: This refers to the path of the project's base directory

The following is an example that shows the usage of this project property.
Here, we have a system dependency that needs to be referred from a
filesystem path:
<dependency>
 <groupId>org.apache.axis2.wso2</groupId>
 <artifactId>axis2</artifactId>
 <version>1.6.0.wso2v2</version>
 <scope>system</scope>
 <systemPath>${project.basedir}/lib/axis2-1.6.jar</systemPath>
</dependency>

In addition to the project properties, you can also read properties from the
USER_HOME/.m2/settings.xml file. For example, if you want to read the path
to the local Maven repository, you can use the ${settings.localRepository}
property. In the same way, with the same pattern, you can read any of the
configuration elements that are defined in the settings.xml file.

Best Practices

[242]

The environment variables defined in the system can be read using the env prefix,
within an application POM file. The ${env.M2_HOME} property will return the path
to the Maven home, while ${env.java_home} returns the path to the Java home
directory. These properties will be quite useful within certain Maven plugins.

Maven also lets you define your own set of custom properties. Custom properties are
mostly used when defining dependency versions.

You should not scatter custom properties all over the place. The ideal place to define
them is the parent POM file in a multi-module Maven project, which will then be
inherited by all the other child modules.

If you look at the parent POM file of the WSO2 Carbon project, you will find a large
set of custom properties, which are defined in https://svn.wso2.org/repos/
wso2/carbon/platform/branches/turing/parent/pom.xml. The following lists
out some of them:

<properties>
 <rampart.version>1.6.1-wso2v10</rampart.version>
 <rampart.mar.version>1.6.1-wso2v10</rampart.mar.version>
 <rampart.osgi.version>1.6.1.wso2v10</rampart.osgi.version>
</properties>

When you add a dependency to the Rampart JAR, you do not need to specify the
version there. Just refer it by the ${rampart.version} property name. Also, keep in
mind that all the custom defined properties are inherited and can be overridden in
any child POM file:

<dependency>
 <groupId>org.apache.rampart.wso2</groupId>
 <artifactId>rampart-core</artifactId>
 <version>${rampart.version}</version>
</dependency>

Avoiding repetitive groupId and version
tags and inherit from the parent POM
In a multi-module Maven project, most of the modules (if not all) share the same
groupId and version elements. In this case, you can avoid adding the version
and groupId elements to your application POM file. These will be automatically
inherited from the corresponding parent POM.

https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/parent/pom.xml
https://svn.wso2.org/repos/wso2/carbon/platform/branches/turing/parent/pom.xml

Chapter 9

[243]

If you look at axis2-kernel (which is a module of the Apache Axis2 project), you
will find that no groupId or version is defined at http://svn.apache.org/repos/
asf/axis/axis2/java/core/trunk/modules/kernel/pom.xml. Maven reads them
from the parent POM file:

<project>
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-parent</artifactId>
 <version>1.7.0-SNAPSHOT</version>
 <relativePath>../parent/pom.xml</relativePath>
 </parent>
 <artifactId>axis2-kernel</artifactId>
 <name>Apache Axis2 - Kernel</name>
</project>

Following naming conventions
When defining coordinates for your Maven project, you must always follow the
naming conventions.

The value of the groupId element should follow the same naming convention you
use in Java package names. It has to be a domain name (the reverse of the domain
name) that you own, or at least your project is developed under.

The following lists out some of the naming conventions related to groupId:

•	 The name of the groupId element has to be in lower case.
•	 Use the reverse of a domain name that can be used to uniquely identify

your project. This will also help to avoid collisions between artifacts
produced by different projects.

•	 Avoid using digits or special characters (that is, org.wso2.carbon.
identity-core).

•	 Do not try to group two words into a single word by camel casing
(that is, org.wso2.carbon.identityCore).

•	 Make sure that all the subprojects developed under different teams in the
same company finally inherit from the same groupId element and extend
the name of the parent groupId element rather than defining their own.

http://svn.apache.org/repos/asf/axis/axis2/java/core/trunk/modules/kernel/pom.xml
http://svn.apache.org/repos/asf/axis/axis2/java/core/trunk/modules/kernel/pom.xml

Best Practices

[244]

Let's go through some examples. You will notice that all the open source projects
developed under Apache Software Foundation (ASF) use the same parent groupId
(org.apache) and define their own groupId elements, which extend from the parent:

•	 The Apache Axis2 project uses org.apache.axis2, which inherits from the
org.apache parent groupId

•	 The Apache Synapse project uses org.apache.synapse, which inherits from
the org.apache parent groupId

•	 The Apache ServiceMix project uses org.apache.servicemix, which inherits
from the org.apache parent groupId

•	 The WSO2 Carbon project uses org.wso2.carbon

Apart from the groupId element, you should also follow the naming conventions
while defining artifactIds.

The following lists out some of the naming conventions related to artifactId:

•	 The name of the artifactId has to be in lower case.
•	 Avoid duplicating the value of groupId inside the artifactId element.

If you find a need to start your artifactId with the value of groupId
element and add something to the end, then you need to revisit the
structure of your project. You might need to add more module groups.

•	 Avoid using special characters (that is, #, $, &, %, and so on).
•	 Do not try to group two words into a single word by camel casing

(that is, identityCore).

Following naming conventions for version is also equally important. The version of a
given Maven artifact can be divided into four categories:

<Major version>.<Minor version>.<Incremental version>-<Build
 number or the qualifier>

The major version reflects the introduction of a new major feature. A change in
the major version of a given artifact can also mean that the new changes are not
necessarily backward compatible with the previously released artifact. The minor
version reflects an introduction of a new feature to the previously released version,
in a backward compatible manner. The incremental version reflects a bug-fixed
release of the artifact. The build number can be the revision number from the
source code repository.

Chapter 9

[245]

This versioning convention is not just for Maven artifacts. Apple did a major
release of its iOS mobile operating system in September 2014: iOS 8.0.0. Soon after
the release, they discovered a critical bug in it that had an impact on cellular network
connectivity and TouchID on iPhone. Then, they released iOS 8.0.1 as a patch release
to fix the issues.

Let's go through some of the examples:

•	 The Apache Axis2 1.6.0 release, available at http://svn.apache.org/
repos/asf/axis/axis2/java/core/tags/v1.6.0/pom.xml.

•	 The Apache Axis2 1.6.2 release, available at http://svn.apache.org/
repos/asf/axis/axis2/java/core/tags/v1.6.2/pom.xml.

•	 Apache Axis2 1.7.0-SNAPSHOT release, available at http://svn.apache.
org/repos/asf/axis/axis2/java/core/trunk/pom.xml. SNAPSHOT
releases are done from the trunk of the source repository with the latest
available code.

•	 Apache Synapse 2.1.0-wso2v5 release, available at http://svn.wso2.org/
repos/wso2/tags/carbon/3.2.3/dependencies/synapse/2.1.0-wso2v5/
pom.xml. Here, the Synapse code is maintained under the WSO2 source
repository and not under the Apache repository. In this case, we use the
wso2v5 classifier to make it different from the same artifact produced by
Apache Synapse.

Maven profiles
We have touched the concept of Maven profiles in a couple of previous chapters,
but never went into the details. When do we need Maven profiles and why is it a
best practice?

Think about a large-scale multi-module Maven project. One of the best examples I am
aware of is the WSO2 Carbon project. If you look at the application POM file available
at http://svn.wso2.org/repos/wso2/tags/carbon/3.2.3/components/pom.
xml, you will notice that there are more than hundred modules. Also, if you go deeper
into each module, you will further notice that there are more modules within them:
http://svn.wso2.org/repos/wso2/tags/carbon/3.2.3/components/identity/
pom.xml. As a developer of the WSO2 Carbon project, you do not need to build all
these modules. In this specific example, different groups of the modules are later
aggregated into build multiple products. However, a given product does not need
to build all the modules defined in the parent POM file. If you are a developer in a
product team, you only need to worry about building the set of modules related to
your product; if not, it's an utter waste of productive time. Maven profiles help you
to do this.

http://svn.apache.org/repos/asf/axis/axis2/java/core/tags/v1.6.0/pom.xml
http://svn.apache.org/repos/asf/axis/axis2/java/core/tags/v1.6.0/pom.xml
http://svn.apache.org/repos/asf/axis/axis2/java/core/tags/v1.6.2/pom.xml
http://svn.apache.org/repos/asf/axis/axis2/java/core/tags/v1.6.2/pom.xml
http://svn.apache.org/repos/asf/axis/axis2/java/core/trunk/pom.xml
http://svn.apache.org/repos/asf/axis/axis2/java/core/trunk/pom.xml
http://svn.wso2.org/repos/wso2/tags/carbon/3.2.3/dependencies/synapse/2.1.0-wso2v5/pom.xml
http://svn.wso2.org/repos/wso2/tags/carbon/3.2.3/dependencies/synapse/2.1.0-wso2v5/pom.xml
http://svn.wso2.org/repos/wso2/tags/carbon/3.2.3/dependencies/synapse/2.1.0-wso2v5/pom.xml
http://svn.wso2.org/repos/wso2/tags/carbon/3.2.3/components/pom.xml
http://svn.wso2.org/repos/wso2/tags/carbon/3.2.3/components/pom.xml
http://svn.wso2.org/repos/wso2/tags/carbon/3.2.3/components/identity/pom.xml
http://svn.wso2.org/repos/wso2/tags/carbon/3.2.3/components/identity/pom.xml

Best Practices

[246]

With Maven profiles, you can activate a subset of configurations defined in your
application POM file, based on some criteria.

If we take the same example we took previously, you will find that multiple profiles
are defined under the <profiles> element: http://svn.wso2.org/repos/wso2/
tags/carbon/3.2.3/components/pom.xml. Each profile element defines the
set of modules that is relevant to it and identified by a unique ID. Also for each
module, you need to define a criterion to activate it, under the activation element.
By setting the value of the activeByDefault element to true, we make sure that
the corresponding profile will get activated when no other profile is picked. In this
particular example, if we just execute mvn clean install, the profile with the
default ID will get executed. Keep in mind that the magic here does not lie on the
name of the profile ID, default, but on the value of the activeByDefault element,
which is set to true for the default profile. The value of the id element can be of
any name:

<profiles>
 <profile>
 <id>product-esb</id>
 <activation>
 <property>
 <name>product</name>
 <value>esb</value>
 </property>
 </activation>
 <modules></modules>
 </profile>
 <profile>
 <id>product-greg</id>
 <activation>
 <property>
 <name>product</name>
 <value>greg</value>
 </property>
 </activation>
 <modules></modules>
 </profile>
 <profile>
 <id>product-is</id>
 <activation>
 <property>
 <name>product</name>
 <value>is</value>
 </property>
 </activation
 <modules></modules>

http://svn.wso2.org/repos/wso2/tags/carbon/3.2.3/components/pom.xml
http://svn.wso2.org/repos/wso2/tags/carbon/3.2.3/components/pom.xml

Chapter 9

[247]

 </profile>
 <profile>
 <id>default</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <modules></modules>
 </profile>

</profiles>

If I am a member of the WSO2 Identity Server (IS) team, then I will execute the build
in the following manner:

$ mvn clean install –Dproduct=is

Here, we pass the system property product with the value is. If you look at the
activation criteria for all the profiles, all are based on the system property: product.
If the value of the system property is is, then Maven will pick the build profile
corresponding to the Identity Server:

<activation>
 <property>
 <name>product</name>
 <value>is</value>
 </property>
</activation>

You also can define an activation criterion to execute a profile, in the absence of a
property. For example, the following configuration shows how to activate a profile
if the product property is missing:

<activation>
 <property>
 <name>!product</name>
 </property>
</activation>

The profile activation criteria can be based on a system property, the JDK version,
or an operating system parameter where you run the build.

The following sample configuration shows how to activate a build profile for JDK 1.6:

<activation>
 <jdk>1.6</jdk>
</activation>

Best Practices

[248]

The following sample configuration shows how to activate a build profile based on
operating system parameters:

<activation>
 <os>
 <name>mac os x</name>
 <family>mac</family>
 <arch>x86_64</arch>
 <version>10.8.5</version>
 </os>
</activation>

The following sample configuration shows how to activate a build profile based on
the presence or absence of a file:

<activation>
 <file>
 <exists>……</exists>
 <missing>……</missing>
 </file>
</activation>

In addition to the activation configuration, you can also execute a Maven profile just
by its ID, which is defined within the id element. In this case, you need a prefix; use
the profile ID with –P, as shown in the following command:

$ mvn clean install -Pproduct-is

Think twice before you write your
own plugin
Maven is all about plugins! There is a plugin out there for almost everything.
If you find a need to write a plugin, spend some time researching on the Web to
see whether you can find something similar—the chances are very high. You can
also find a list of available Maven plugins at http://maven.apache.org/plugins.

http://maven.apache.org/plugins

Chapter 9

[249]

The Maven release plugin
Releasing a project requires a lot of repetitive tasks. The objective of the Maven
release plugin is to automate them. The release plugin defines the following
eight goals, which are executed in two stages, preparing the release and performing
the release:

•	 release:clean: This goal cleans up after a release preparation
•	 release:prepare: This goal prepares for a release in Software Configuration

Management (SCM)
•	 release:prepare-with-pom: This goal prepares for a release in SCM

and generates release POMs by fully resolving the dependencies
•	 release:rollback: This goal rolls back to a previous release
•	 release:perform: This goal performs a release from SCM
•	 release:stage: This goal performs a release from SCM into a staging

folder/repository
•	 release:branch: This goal creates a branch of the current project with all

versions updated
•	 release:update-versions: This goal updates versions in the POM(s)

The preparation stage will complete the following tasks with the release:prepare
goal:

•	 Verify that all the changes in the source code are committed.
•	 Make sure that there are no SNAPSHOT dependencies. During the project

development phase, we use SNAPSHOT dependencies but at the time of
the release, all dependencies should be changed to a released version.

•	 Change the version of project POM files from SNAPSHOT to a concrete
version number.

•	 Change the SCM information in the project POM to include the final
destination of the tag.

•	 Execute all the tests against the modified POM files.
•	 Commit the modified POM files to the SCM and tag the code with the

version name.
•	 Change the version of POM files in the trunk to a SNAPSHOT version

and then commit the modified POM files to the trunk.

Best Practices

[250]

Finally, the release will be performed with the release:perform goal. This will
check the code from the release tag in the SCM and run a set of predefined goals:
site, deploy-site.

The maven-release-plugin is not defined in the super POM and should be
explicitly defined in your project POM file. The releaseProfiles configuration
element defines the profiles to be released and the goals configuration element
defines the plugin goals to be executed during the release:perform goal. In the
following configuration, the deploy goal of the maven-deploy-plugin and the
single goal of the maven-assembly-plugin will get executed:

<plugin>
 <artifactId>maven-release-plugin</artifactId>
 <version>2.5</version>
 <configuration>
 <releaseProfiles>release</releaseProfiles>
 <goals>deploy assembly:single</goals>
 </configuration>
</plugin>

More details about the Maven release plugin are available at
http://maven.apache.org/maven-release/maven-
release-plugin/.

The Maven enforcer plugin
The Maven enforcer plugin lets you control or enforce constraints in your build
environment. These could be the Maven version, Java version, operating system
parameters, and even user-defined rules.

The plugin defines two goals: enforce and displayInfo. The enforcer:enforce
goal will execute all the defined rules against all the modules in a multi-module
Maven project, while enforcer:displayInfo will display the project compliance
details with respect to the standard rule set.

The maven-enforcer-plugin is not defined in the super POM and should be
explicitly defined in your project POM file:

<plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-enforcer-plugin</artifactId>
 <version>1.3.1</version>

http://maven.apache.org/maven-release/maven-release-plugin/
http://maven.apache.org/maven-release/maven-release-plugin/

Chapter 9

[251]

 <executions>
 <execution>
 <id>enforce-versions</id>
 <goals>
 <goal>enforce</goal>
 </goals>
 <configuration>
 <rules>
 <requireMavenVersion>
 <version>3.2.1</version>
 </requireMavenVersion>
 <requireJavaVersion>
 <version>1.6</version>
 </requireJavaVersion>
 <requireOS>
 <family>mac</family>
 </requireOS>
 </rules>
 </configuration>
 </execution>
 </executions>
 </plugin>
</plugins>

The previous plugin configuration enforces the Maven version to be 3.2.1, the Java
version to be 1.6, and the operating system to be in the Mac family.

The Apache Axis2 project uses the enforcer plugin to make sure that no application
POM file defines Maven repositories. All the artifacts required by Axis2 are expected
to be in the Maven central repository. The following configuration element is
extracted from http://svn.apache.org/repos/asf/axis/axis2/java/core/
trunk/modules/parent/pom.xml. Here, it bans all the repositories and plugin
repositories, except snapshot repositories:

<plugin>
 <artifactId>maven-enforcer-plugin</artifactId>
 <version>1.1</version>
 <executions>
 <execution>
 <phase>validate</phase>
 <goals>
 <goal>enforce</goal>
 </goals>
 <configuration>

http://svn.apache.org/repos/asf/axis/axis2/java/core/trunk/modules/parent/pom.xml
http://svn.apache.org/repos/asf/axis/axis2/java/core/trunk/modules/parent/pom.xml

Best Practices

[252]

 <rules>
 <requireNoRepositories>
 <banRepositories>true</banRepositories>
 <banPluginRepositories>true</banPluginRepositories>
 <allowSnapshotRepositories>true
 </allowSnapshotRepositories>
 <allowSnapshotPluginRepositories>true
 </allowSnapshotPluginRepositories>
 </requireNoRepositories>
 </rules>
 </configuration>
 </execution>
 </executions>
</plugin>

In addition to the standard rule set ships with the enforcer
plugin, you can also define your own rules. More details about
how to write custom rules are available at http://maven.
apache.org/enforcer/enforcer-api/writing-a-
custom-rule.html.

Avoid using un-versioned plugins
If you have associated a plugin with your application POM, without a version,
then Maven will download the corresponding maven-metadata.xml file and store
it locally. Only the latest released version of the plugin will be downloaded and used
in the project. This can easily create certain uncertainties. Your project might work
fine with the current version of a plugin, but later if there is a new release of the same
plugin, your Maven project will start to use the latest one automatically. This can
result in unpredictable behaviors and lead to a debugging mess.

It is always recommended that you specify the plugin version along with the plugin
configuration. You can enforce this as a rule, with the Maven enforcer plugin, as
shown in the following code:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-enforcer-plugin</artifactId>
 <version>1.3.1</version>
 <executions>
 <execution>
 <id>enforce-plugin-versions</id>
 <goals>

http://maven.apache.org/enforcer/enforcer-api/writing-a-custom-rule.html
http://maven.apache.org/enforcer/enforcer-api/writing-a-custom-rule.html
http://maven.apache.org/enforcer/enforcer-api/writing-a-custom-rule.html

Chapter 9

[253]

 <goal>enforce</goal>
 </goals>
 <configuration>
 <rules>
 <requirePluginVersions>
 <message>………… <message>
 <banLatest>true</banLatest>
 <banRelease>true</banRelease>
 <banSnapshots>true</banSnapshots>
 <phases>clean,deploy,site</phases>
 <additionalPlugins>
 <additionalPlugin>
 org.apache.maven.plugins:maven-eclipse-plugin
 </additionalPlugin>
 <additionalPlugin>
 org.apache.maven.plugins:maven-reactor-plugin
 </additionalPlugin>
 </additionalPlugins>
 <unCheckedPluginList>
 org.apache.maven.plugins:maven-enforcer-plugin,org.
 apache.maven.plugins:maven-idea-plugin
 </unCheckedPluginList>
 </requirePluginVersions>
 </rules>
 </configuration>
 </execution>
 </executions>
</plugin>

The following points explain each of the key configuration elements defined in the
previous code:

•	 message: Use this to define an optional message to the user if the rule
execution fails.

•	 banLatest: Use this to restrict the use of LATEST as the version for
any plugin.

•	 banRelease: Use this to restrict the use of RELEASE as the version for
any plugin.

•	 banSnapshots: Use this to restrict the use of SNAPSHOT plugins.
•	 banTimestamps: Use this to restrict the use of SNAPSHOT plugins with

the timestamp version.

Best Practices

[254]

•	 phases: This is a comma-separated list of phases that should be used to find
lifecycle plugin bindings. The default value is clean,deploy,site.

•	 additionalPlugins: This is a list of additional plugins to enforce to have
versions. These plugins might not be defined in application POM files, but
are used anyway, such as help and eclipse. The plugins should be specified
in the groupId:artifactId form.

•	 unCheckedPluginList: This is a comma-separated list of plugins to skip
version checking.

You can read more details about the requirePluginVersions rule
at http://maven.apache.org/enforcer/enforcer-rules/
requirePluginVersions.html.

Using exclusive and inclusive routes
We discussed the Nexus repository manager in Chapter 8, Maven Repository
Management. When Maven asks for an artifact from a Nexus proxy repository,
Nexus knows where to look at exactly. For example, say we have a proxy repository
that runs at http://localhost:8081/nexus/content/repositories/central/,
which internally points to the remote repository running at https://repo1.maven.
org/maven2/. As there is one-to-one mapping between the proxy repository and
the corresponding remote repository, Nexus can route the requests without much
trouble. However, if Maven looks for an artifact via a Nexus group repository, then
Nexus has to iterate through all the repositories in that group repository to find the
exact artifact. There can be cases where we have even more than 20 repositories in a
single group repository, which can easily bring delays at the client side. To optimize
artifact discovery in group repositories, we need to set correct inclusive/exclusive
routing rules. This was discussed in detail in Chapter 8, Maven Repository Management.

Avoid having both release and snapshot
repositories in the same group repository
With the Nexus repository manager, you can group both the release repositories
and snapshot repositories together into a single group repository. This is treated
as an extreme malpractice.

Ideally, you should be able to define distinct update policies for release repositories
and snapshot repositories. This was discussed in detail in Chapter 8, Maven Repository
Management.

http://maven.apache.org/enforcer/enforcer-rules/requirePluginVersions.html
http://maven.apache.org/enforcer/enforcer-rules/requirePluginVersions.html
https://repo1.maven.org/maven2/
https://repo1.maven.org/maven2/

Chapter 9

[255]

Avoid having both proxy and hosted
repositories in the same group repository
With the Nexus repository manager, you can group both the proxy repositories and
hosted repositories together into a single group repository. It's been found that this
will drastically reduce the Maven build performance, as Maven still checks in remote
repositories even if the artifact is available in the hosted repository. If you still want
to group all repositories, then you need to make sure you have the right setup of
inclusive/exclusive rules defined. This was discussed in detail in Chapter 8, Maven
Repository Management.

Minimizing the number of repositories
You should not let all your developers add Maven repositories as they wish.
The repositories can be easily introduced by anyone via application POM files.
This has to be restricted, and it's highly recommended that you define all your
Maven repositories (including plugin repositories) in the parent POM file. In this
way, you know where to look to make any changes.

It's even better that you completely avoid adding any repositories via application
POM files, and whenever needed, introduce them via a repository manager. As in
the case of the Apache Axis2 project, you can use the enforcer Maven plugin to ban
anyone from introducing repositories. The following code shows the configuration:

<plugin>
 <artifactId>maven-enforcer-plugin</artifactId>
 <executions>
 <execution>
 <phase>validate</phase>
 <goals>
 <goal>enforce</goal>
 </goals>
 <configuration>
 <rules>
 <requireNoRepositories>
 </requireNoRepositories>
 </rules>
 </configuration>
 </execution>
 </executions>
</plugin>

Best Practices

[256]

Using mirrorOf instead of changing
repository URLs
To point to a repository manager, you might need to change each and every
repository defined in your application POM file or the settings.xml file.
Instead of changing the repository itself, it is recommended to use a mirror.

For example, you might already have a repository under the central ID,
as shown in the following code:

<repository>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <id>central</id>
 <name>Central Repository</name>
 <url>http://repo.maven.apache.org/maven2</url>
</repository>

Instead of changing the url tag of the preceeding configuration, you can define a
mirror as shown in the following code. As the value of the mirrorOf element is set
to *, any of the repositories defined in the system (or in any application POM file)
will use the following mirror repository:

<mirrors>
 <mirror>
 <id>packt-group</id>
 <name>PACKT Nexus Group Repository</name>
 <url>http://localhost:8081/nexus/content/groups
 /packt-group/</url>
 <mirrorOf>*</mirrorOf>
 </mirror>
</mirrors>

Descriptive parent POM files
Make sure that your project's parent POM file is descriptive enough to list out what
the project does, who the developers/contributors are, their contact details, the license
under which the project artifacts are released, where to report issues, and likewise.
A good example of a descriptive POM file can be found at http://svn.apache.org/
repos/asf/axis/axis2/java/core/trunk/modules/parent/pom.xml.

<project>
 <name>Apache Axis2 - Parent</name>
 <inceptionYear>2004</inceptionYear>

http://svn.apache.org/repos/asf/axis/axis2/java/core/trunk/modules/parent/pom.xml
http://svn.apache.org/repos/asf/axis/axis2/java/core/trunk/modules/parent/pom.xml

Chapter 9

[257]

 <description>Axis2 is an effort to re-design and totally re-
 implement both Axis/Java……</description>
 <url>http://axis.apache.org/axis2/java/core/</url>
 <licenses>
 <license>http://www.apache.org/licenses/LICENSE-
 2.0.html</license>
 </licenses>
 <issueManagement>
 <system>jira</system>
 <url>http://issues.apache.org/jira/browse/AXIS2</url>
 </issueManagement>
 <mailingLists>
 <mailingList>
 <name>Axis2 Developer List</name>
 <subscribe>java-dev-subscribe@axis.apache.org</subscribe>
 <unsubscribe>java-dev-unsubscribe@
 axis.apache.org</unsubscribe>
 <post>java-dev@axis.apache.org</post>
 <archive>http://mail-archives.apache.org/mod_mbox/axis-java-
 dev/</archive>
 <otherArchives>
 <otherArchive>http://markmail.org/search/list:org.
 apache.ws.axis-dev</otherArchive>
 </otherArchives>
 </mailingList>
 </mailingLists>
 <developers>
 <developer>
 <name>Sanjiva Weerawarana</name>
 <id>sanjiva</id>
 <email>sanjiva AT wso2.com</email>
 <organization>WSO2</organization>
 </developer>
 </developers>
 <contributors>
 <contributor>
 <name>Dobri Kitipov</name>
 <email>kdobrik AT gmail.com</email>
 <organization>Software AG</organization>
 </contributor>
 </contributors>
</project>

Best Practices

[258]

Documentation is your friend
If you are a good developer, you know the value of documentation. Anything
you write should not be cryptic or understood only by you. Let it be a Java,
.NET, C++, or a Maven project, the documentation is your friend. A code with
a good documentation is extremely readable. If any configuration you add into
an application POM file is not self-descriptive, make sure that you add at least
a single line comment to explain what it does.

Here are some good examples from the Apache Axis2 project:

<profile>
 <id>java16</id>
 <activation>
 <jdk>1.6</jdk>
 </activation>
 <!-- JDK 1.6 build still use JAX-WS 2.1 because integrating
 Java endorsed mechanism with Maven is bit of complex-->
 <properties>
 <jaxb.api.version>2.1</jaxb.api.version>
 <jaxbri.version>2.1.7</jaxbri.version>
 <jaxws.tools.version>2.1.3</jaxws.tools.version>
 <jaxws.rt.version>2.1.3</jaxws.rt.version>
 </properties>
</profile>
<plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <!-- Minimum required version here is 2.2-beta-4 because
 org.apache:apache:7 uses the runOnlyAtExecutionRoot
 parameter, which is not supported in earlierversions
 <version>2.2-beta-5</version>
 <configuration>
 <!-- Workaround for MASSEMBLY-422 / MASSEMBLY-449-->
 <archiverConfig>
 <fileMode>420</fileMode>
 <!-- 420(dec)=644(oct)-->
 <directoryMode>493</directoryMode><!--493(dec)=755(oct)-->
 <defaultDirectoryMode>493</defaultDirectoryMode>
 </archiverConfig>
 </configuration>
</plugin>
<!-- No chicken and egg problem here because the plugin doesn't
expose any extension. We can always use the version from the current
build.-->

Chapter 9

[259]

<plugin>
 <groupId>org.apache.axis2</groupId>
 <artifactId>axis2-repo-maven-plugin</artifactId>
 <version>${project.version}</version>
</plugin>

Avoid overriding the default directory
structure
Maven follows the design philosophy convention over configuration. Without
any configuration changes, Maven assumes that the location of the source code is
${basedir}/src/main/java, the location of tests is ${basedir}/src/test/java,
and the resources are available at ${basedir}/src/main/resources. Once after a
successful build, Maven knows where to place the compiled classes (${basedir}/
target/classes) and where to copy the final artifact (${basedir}/target/). It is
possible to change this directory structure, but it's recommended not to do so. Why?

Keeping the default structure improves the readability of the project. Even a fresh
developer knows where to look into if he is familiar with Maven. Also, if you have
associated plugins and other Maven extensions with your project, you will be able to
use them with minimal changes if you have not altered the default Maven directory
structure. Most of these plugins and other extensions assume the Maven convention
by default.

Using SNAPSHOT versioning during
development
You should use the SNAPSHOT qualifier for the artifacts produced by your project
if those are still under development and deployed regularly to a Maven snapshot
repository. If the version to be released is 1.7.0, then you should use the
1.7.0-SNAPSHOT version while it's under development. Maven treats the SNAPSHOT
version in a special manner. If you try to deploy 1.7.0-SNAPSHOT into a repository,
Maven will first expand the SNAPSHOT qualifier into a date and time value in
Coordinated Universal Time (UTC). If the date/time at the time of deployment is
10.30 A.M., November 10, 2014, then the SNAPSHOT qualifier will be replaced with
20141110-103005-1, and the artifact will be deployed with the 1.7.0-20141110-
103005-1 version.

Best Practices

[260]

Get rid of unused dependencies
Always make sure that you maintain a clean application POM file. You should
not have any unused dependencies defined or used undeclared dependencies.
The Maven dependency plugin helps you identify such discrepancies.

The maven-dependency-plugin is not defined in the super POM and should be
explicitly defined in your project POM file:

<plugin>
 <artifactId>maven-dependency-plugin</artifactId>
 <version>2.0</version>
</plugin>

Once the previous configuration is added into your application POM file, you need
to run the analyze goal of the dependency plugin, against your Maven project:

$ mvn dependency:analyze

Here, you can see a sample output, which complains about an unused
declared dependency:

[WARNING] Unused declared dependencies found:
[WARNING] org.apache.axis2:axis2-kernel:jar:1.6.2:compile

More details about the Maven dependency plugin are
available at http://maven.apache.org/plugins/
maven-dependency-plugin/.

Avoid keeping credentials in application
POM files
During a Maven build, you need to connect to external repositories outside your
firewall. In a tightened secured environment, any outbound connection has to go
through an internal proxy server. The following configuration in MAVEN_HOME/
conf/settings.xml shows how to connect to an external repository via a secured
proxy server:

<proxy>
 <id>internal_proxy</id>
 <active>true</active>
 <protocol>http</protocol>
 <username>proxyuser</username>

http://maven.apache.org/plugins/maven-dependency-plugin/
http://maven.apache.org/plugins/maven-dependency-plugin/

Chapter 9

[261]

 <password>proxypass</password>
 <host>proxy.host.net</host>
 <port>80</port>
 <nonProxyHosts>local.net|some.host.com</nonProxyHosts>
</proxy>

Also, the Maven repositories can be protected for legitimate access. If a given
repository is protected with HTTP basic authentication, the corresponding credentials
should be defined as shown in the following code, under the servers element of
MAVEN_HOME/conf/settings.xml:

<server>
 <id>central</id>
 <username>my_username</username>
 <password>my_password</password>
</server>

Keeping confidential data in configuration files in cleartext is a security threat
that must be avoided. Maven provides a way of encrypting configuration data
in settings.xml.

First, we need to create a master encryption key:

$ mvn -emp mymasterpassword
{lJ1MrCQRnngHIpSadxoyEKyt2zIGbm3Yl0ClKdTtRR6TleNaEfGOEoJaxNcdMr+G}

With the output from the previous command, we need to create a file called
settings-security.xml under USER_HOME/.m2/ and add the encrypted master
password there, as shown in the following code:

<settingsSecurity>
 <master>
{lJ1MrCQRnngHIpSadxoyEKyt2zIGbm3Yl0ClKdTtRR6TleNaEfGOEoJaxNcdMr+G}
 </master>
</settingsSecurity>

Once the master password is configured properly, we can start encrypting rest of
the confidential data in settings.xml. Let's see how to encrypt the server password.
First, we need to generate the encrypted password for the cleartext using the following
command. Note that earlier we used emp (encrypt master password) and now we are
using ep (encrypt password):

$ mvn -ep my_password

{PbYw8YaLb3cHA34/5EdHzoUsmmw/u/nWOwb9e+x6Hbs=}

Best Practices

[262]

Copy the value of the encrypted password and replace the corresponding value in
settings.xml:

<server>
 <id>central</id>
 <username>my_username</username>
 <password>
 {PbYw8YaLb3cHA34/5EdHzoUsmmw/u/nWOwb9e+x6Hbs=}
 </password>
</server>

Avoid using deprecated references
Since Maven 3.0 onwards, all the properties starting with pom.* are deprecated.
Avoid using any of the deprecated Maven properties and if you have used them
already, make sure that you migrate to the equivalent ones.

Avoid repetition – use archetypes
When we create a Java project, we need to structure it in different ways based on the
type of the project. If it's a Java EE web application, then we need to have a WEB-INF
directory and a web.xml file. If it's a Maven plugin project, we need to have a MOJO
class that extends from org.apache.maven.plugin.AbstractMojo. As each type of
project has its own predefined structure, why would everyone have to build the same
structure again and again? Why not start with a template? Each project can have its
own template and developers can extend the template to suite their requirements.
Maven archetypes address this concern. Each archetype is a project template.

We discussed Maven archetypes in detail in Chapter 7, Maven Archetypes.

Avoid using maven.test.skip
You might manage an extremely small project that does not evolve a lot without
unit tests. However, any large-scale project cannot exist without unit tests. Unit tests
provide the first level of guarantee that you do not break any existing functionality
with a newly introduced code change. In an ideal scenario, you should not commit
any code to a source repository without building the complete project with unit tests.

Maven uses the surefire plugin to run tests, and as a malpractice, developers skip
the execution of unit tests by setting the maven.test.skip property to true:

$ mvn clean install –Dmaven.test.skip=true

Chapter 9

[263]

This can lead to serious repercussions in the later stage of the project, and you must
ensure that all your developers do not skip testing while building.

Using the requireProperty rule of the Maven enforcer plugin, you can ban
developers from using the maven.test.skip property. The following shows the
enforcer plugin configuration that you need to add to your application POM:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-enforcer-plugin</artifactId>
 <version>1.3.1</version>
 <executions>
 <execution>
 <id>enforce-property</id>
 <goals>
 <goal>enforce</goal>
 </goals>
 <configuration>
 <rules>
 <requireProperty>
 <property>maven.test.skip</property>
 <message>maven.test.skip must be specified</message>
 <regex>false</regex>
 <regexMessage>You cannot skip tests</regexMessage>
 </requireProperty>
 </rules>
 <fail>true</fail>
 </configuration>
 </execution>
 </executions>
</plugin>

Now, if you run mvn clean install against your project, you will see the following
error message:

maven.test.skip must be specified

This means you need to specify -Dmaven.test.skip=false every time you run mvn
clean install:

$ mvn clean install –Dmaven.test.skip=true

However, if you set -Dmaven.test.skip=false, then you will see the following error:

You cannot skip tests

Best Practices

[264]

You will still find it a bit annoying to type Dmaven.test.skip=false whenever you
run a build. To avoid this, add the maven.test.skip property in your application
POM file and set its value to false:

<project>
 <properties>
 <maven.test.skip>false</maven.test.skip>
 </properties>
</project>

More details about the requireProperty rule are available at
http://maven.apache.org/enforcer/enforcer-rules/
requireProperty.html.

Share resources – avoid duplicates
In many multi-module Maven projects, we have noticed that there are certain
resources that need to be shared across different modules. These can be images,
database scripts, JavaScript files, style sheets, or any other resources. Developers
follow different approaches in sharing resources. Some of them are listed here:

•	 Duplicate resources in every module.
•	 Use constructs from the underneath source code repository to copy

resources, just like svn externals. Here you only maintain resources
in a single place, but all the modules need them, will get a copy when
doing an svn up.

•	 Use the Maven remote resource plugin.

Of all the three, the use of the remote resource plugin is the best, as there is no
resource duplication. With the remote resource plugin, first you need to create
a Maven module, which includes all the resources that need to be shared. The
following POM file defines the Maven module for all the shared resources:

<project>
 <groupId>com.packt</groupId>
 <artifactId>resources</artifactId>
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-remote-resources-plugin</artifactId>
 <version>1.5</version>
 <executions>

http://maven.apache.org/enforcer/enforcer-rules/requireProperty.html
http://maven.apache.org/enforcer/enforcer-rules/requireProperty.html

Chapter 9

[265]

 <execution>
 <goals>
 <goal>bundle</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <includes>
 <include>**/*.png</include>
 <include>**/*.sql</include>
 <include>**/*.css</include>
 <include>**/*.js</include>
 </includes>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

The directory structure of the shared resources project will look like following.
When you build the project, Maven will bundle all the resources into a JAR file
during the generate-resources phase of the Maven default lifecycle:

resources
 |-pom.xml
 |-src/main/resources/sql/*.sql
 |-src/main/resources/images/*.png
 |-src/main/resources/css/*.css
 |-src/main/resources/js/*.js

For any other Maven module to consume these resources, they have to take a
dependency on the artifact produced by the preceding project and associate
maven-remote-resources-plugin with the build.

The following POM file defines the Maven module to consume shared resources:

<project>
 <groupId>com.packt</groupId>
 <artifactId>consumer</artifactId>
 <dependencies>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>resources</artifactId>
 <version>${project.version}</version>
 </dependency>

Best Practices

[266]

 </dependencies>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-remote-resources-plugin</artifactId>
 <version>1.5</version>
 <configuration>
 <resourceBundles>
 <resourceBundle>
 com.packt:resources:${project.version}
 </resourceBundle>
 </resourceBundles>
 </configuration>
 <executions>
 <execution>
 <goals>
 <goal>process</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>sql-maven-plugin</artifactId>
 <version>1.4</version>
 <executions>
 <execution>
 <id>create-schema</id>
 <phase>process-test-resources</phase>
 <goals>
 <goal>execute</goal>
 </goals>
 <configuration>
 <autocommit>true</autocommit>
 <srcFiles>
 <srcFile>${project.build.directory}/
 maven-shared-archive-resources/packt.sql
 </srcFile>
 </srcFiles>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

Chapter 9

[267]

The maven-remote-resources-plugin will read the resources from the com.
packt:resources artifact and copy them into the ${project.build.directory}/
maven-shared-archive-resources directory. As shown in the previous sample
configuration, any other plugin can consume these resources, such as the sql-
maven-plugin.

Summary
In this chapter, we looked at and highlighted some of the best practices to be
followed in a large-scale development project with Maven. Most of the points
highlighted here were discussed in detail in previous chapters throughout the
book. It is always recommended to follow best practices, as it will drastically
improve developer productivity and will reduce any maintenance nightmares.

Index
A
AbstractMavenLifecycleParticipant class

methods 90
Android mobile applications

developing, with android-quickstart
archetype 176-178

android-quickstart archetype
Android mobile applications, developing

with 176-178
Apache Axis2 1.6.0 release

URL 245
Apache Axis2 1.6.2 release

URL 245
Apache Axis2 1.7.0-SNAPSHOT release

URL 245
Apache Axis2 project

examples 258
URL 238

Apache Felix bundle plugin
URL 116

Apache HBase project
URL 239

Apache Lucene
URL 229

Apache Maven
about 7
installing 7
installing, on Mac OS X 9, 10
installing, on Microsoft Windows 10
installing, on Ubuntu 8, 9
URL, for downloading 7

Apache snapshots
URL 219

Apache Software Foundation (ASF) 82, 244

Apache Synapse
URL 167

Apache Synapse 2.1.0-wso2v5 release
URL 245

Apache Synapse project
URL 239

application POM file, Apache Axis2
distribution module

URL 239
archein 159
archetype catalogues

about 163-166
building 167
public archetype catalogue 167-169

archetype-catalog.xml
anatomy 169, 170

archetype:create-from-project, with custom
properties 200-202

archetype descriptor 193, 194
archetype plugin

about 160-162
batch mode 163
goals 170, 171
Java EE web applications,

developing with 173
archetype plugin, goals

archetype:crawl 171
archetype:create-from-project 171
archetype:generate 170
archetype:help 171
archetype:integration-test 171
archetype:jar 170
archetype:update-local-catalog 170

archetypes-catalog.xml file
URL 169

[270]

artifact indexing 229
artifact/resource filtering 152
artifacts

blocking 225
deploying 64

assembly descriptor 140-150
assembly help 152
assembly plugin

about 138
example 139
URL 140

Axis2 distributions
URL 148

Axis2 handler project
URL 192

axis2-kernel module
URL 243

B
batch mode, archetype plugin 163
best practices

dependency management 236-238
deprecated references, avoiding 262
descriptive parent POM files 256
documentation 258
enforcer plugin, using 250, 251
exclusive routes, using 254
groupId element, avoiding 242
grouping, avoiding of proxy and

hosted repositories 255
grouping, avoiding of release repositories

and snapshot repositories 254
inclusive routes, using 254
Maven profiles 245-248
mirrorOf, using instead of changing

repository URLs 256
naming conventions, following 243, 244
number of repositories, minimizing 255
overriding, avoiding of default directory

structure 259
parent module, defining 238, 239
POM properties 239-242
release plugin, using 249
resources, sharing 264-267
SNAPSHOT versioning, using during

development 259

unused dependencies, avoiding 260
un-versioned plugins, avoiding 252-254
version element, avoiding 242

build
monitoring 11, 12

bundle plugin 114

C
Certificate Authority (CA) 52
clean lifecycle 70-73
clean plugin 96-98
cleartext 261
CN (CommonName) 52
Cocoon

URL 167
Codehaus snapshots

URL 219
compiler plugin 98, 99
component descriptor 79
components.xml file,

axis2-aar-maven-plugin
URL 83

Concurrent Versions System (CVS) 56
configuration elements, MOJO annotation

aggregator 127
executionStrategy 128
inheritByDefault 128
instantiationStrategy 128
name 127
requiresDirectInvocation 127
requiresOnline 128
requiresProject 127
requiresReports 127
threadSafe 128

configuration levels, Maven
global 47
project 47
user 47

configuration options, assembly descriptor
URL 148

Convention over Configuration 14, 15, 259
Coordinated Universal Time (UTC) 259
create-from-project goal

URL 202
credentials

exploring, in settings.xml 54-56

[271]

custom archetype
building 184-192

custom lifecycle
building 82-89
URL, for downloading source code 89

custom plugins
developing 123-129

D
default lifecycle

about 73
phases 73, 74

Dependency Injection (DI)
about 117
and Maven 120
implementing, with Plexus 117-119

dependency JARs
URL, for downloading 122

dependency management
about 236-238
URL 34

dependency scopes, Maven
about 39
compile 39
import 41, 42
provided 40
runtime 40
system 40
test 40

deploy plugin 101, 102
deprecated references

avoiding 262
descriptive parent POM files 256
descriptive POM file

URL, for example 256

E
Eclipse integration

about 16
URL 16

Eclipse Public License (EPL) 211
EJB archives

building, with ejb-javaee6
archetype 179-181

ejb-javaee6 archetype
EJB archives, building with 179-181

elements, POM file
URL 33

enforcer plugin
about 250, 251
references 251, 252

Enterprise JavaBeans (EJB) 179
Enterprise Service Bus (ESB) 167
environment variables, Microsoft Windows

URL 10
exclusive routes

using 254
exclusive routing

about 226
setting 226, 227

execute method
plugin, implementing inside 132-135

execution order, plugin 132

F
file-based artifacts

deploying 64
four-digit octal notation

URL 145
FTP-based artifacts

deploying 66, 67
Fuse

URL 167

G
global-level configuration 47
Google Guice

about 120
references 120

groupId element
avoiding 242

H
heap size

configuring 10
hosted repository

creating, with Nexus 213-215
hosted repository, for third-party artifacts

URL 219

[272]

I
IDE integration

about 16
Eclipse integration 16
IntelliJ IDEA integration 16
NetBeans integration 16

inclusive routes
using 254

inclusive routing
about 226
setting 226, 227

index
updating, of repository 229

installation, Apache Maven
about 7
on Mac OS X 9, 10
on Microsoft Windows 10
on Ubuntu 8, 9

installation, Nexus 212
install plugin 100
IntelliJ IDEA integration

about 16
URL 16

Inversion of Control (IoC) 83, 117

J
Jakarta Turbine 95
jar plugin 107, 108, 112
JAR specification

URL 137
Java EE web applications

developing, with archetype plugin 173
Java.net

URL 167
Java Virtual Machine (JVM) 8
JIRA 182
jira-plugin-archetype

used, for developing JIRA plugins 182
JIRA plugins

developing, jira-plugin-archetype used 182
JVisualVM

about 12
URL 12

L
lifecycle

plugin, associating with 130-132
lifecycle bindings 78-81
lifecycle extensions

about 90-93
URL, for downloading source code 93

local repository 203
local repository location 60

M
Mac OS X

Apache Maven, installing on 9, 10
mail plugin

URL 135
Maven

and Dependency Injection 120
configuration levels 47
plugin execution framework 95
reference link, for books 16
standard lifecycles 70-77
URL, for lifecycles 75
URL, for password encryption 54
URL, for sample project with plugin

configuration 98
Maven 3.2.3 ZIP distribution

URL, for downloading 9, 10
maven-archetype-plugin

Maven plugins, developing with 171
Maven archetypes

URL 160
maven-archetype-webapp archetype 174
Maven artifacts

deploying, to repository 216-219
maven-bundle-plugin

URL 84
Maven coordinates 30, 31
Maven dependency plugin

archetypes, using 262
credentials storage, avoiding in

application POM files 260, 261
repetition, avoiding 262
URL 39, 260

[273]

Maven logging
enabling 68

maven-metadata.xml file
URL 230

Maven OutOfMemoryError error
URL 11

Maven plain Old Java Object
(MOJO) 87, 123

Maven plugins
about 95, 96
clean 96-98
compiler 98, 99
deploy 101, 102
developing, with

maven-archetype-plugin 171
install 100
jar 107-112
release 110
resources 109, 110
site 104-107
source 108, 109
surefire 102-104
URL 248

Maven profiles 245-248
Maven project

about 153-157
URL, for sample 153

Maven repositories
about 203
local 203
remote 203

Maven repository manager 209, 210
maven.test.skip property

avoiding 262-264
Maven Wagon

about 48
HTTP(S) transport 49-51
system properties 52
URL 48

methods, AbstractMavenLifecycleParticipant
class

afterProjectsRead(MavenSession
session) 90

afterSessionEnd(MavenSession session) 90
afterSessionStart(MavenSession session) 90

Microsoft Windows
Apache Maven, installing on 10

mirrored repositories
about 60, 61
advanced mirror configurations 63
internal corporate repository 62

MOJO annotation
configuration elements 127, 128

multimodule Maven project
generating 195-199

multiple repositories 206
MyFaces

URL 167

N
naming conventions

following 243, 244
NetBeans integration

about 16
URL 16

Nexus
features 211
hosted repository, creating with 213-215
installing 212
plugins 229
repository management 211
running 212
URL, for downloading 212

O
open source repository managers

URL, for feature comparison 211
optional dependencies, Maven

about 42, 43
dependency exclusion 44-46

P
parent module

defining 238, 239
parent POM file 31, 33
parent POM file, WSO2 Carbon project

URL 242
Password-Based Encryption (PBE) 55
Permanent Generation (PermGen) 11
phases, clean lifecycle

clean 70
post-clean 70, 73

[274]

pre-clean 70, 73
phases, default lifecycle

compile 74
deploy 74
generate-resources 73
generate-sources 73
generate-test-resources 74
generate-test-sources 74
initialize 73
install 74
integration-test 74
package 74
post-integration-test 74
pre-integration-test 74
prepare-package 74
process-classes 74
process-resources 73
process-sources 73
process-test-classes 74
process-test-resources 74
process-test-sources 74
test 74
test-compile 74
validate 73
verify 74

phases, site lifecycle
post-site 77
pre-site 77
site 77
site-deploy 77

Plexus
about 117
Dependency Injection (DI),

implementing with 117-119
Plexus, in Guice

with JSR 330 compliant 121-123
Plexus jar dependencies

URL 118
plugin

as extension 116, 117
associating, with lifecycle 130-132
execution order 132
implementing, inside execute

method 132-135
plugin consumer code

URL 135

plugin discovery 112, 113
plugin execution 112, 113
plugin management 114
plugin repositories 115, 116
POM

about 22
extending 28-30
overriding 28-30
URL 21

POM dependencies
managing 33-37

POM hierarchy 23
POM properties 239-242
pom.xml file 21
project-level configuration 47
Project Object Model. See POM
project properties

artifactId 241
baseUri 241
description 241
groupId 241
name 241
version 241

proxy authentication 53
proxy repository

creating 219-223
proxy repository, Nexus

Apache snapshots 219
Central 219
Codehaus snapshots 219

public archetype catalogues
about 167
Apache Synapse 167
Cocoon 167
Fuse 167
Java.net 167
MyFaces 167

R
release plugin

about 110
URL 250

release plugin, goals
release:branch 111, 249
release:clean 110, 249
release:perform 111, 249

[275]

release:prepare 110, 249
release:prepare-with-pom 111, 249
release:rollback 111, 249
release:stage 111, 249
release:update-versions 111, 249

release:prepare goal
preparation stage, tasks 111

release repository, released artifacts
URL 219

remote Apache Tomcat server
web applications, deploying to 174-176

remote catalogue
URL 166

remote debugging 13, 14
remote repository 203
repositories, in settings.xml

defining 207, 208
repository

index, updating of 229
Maven artifacts, deploying to 216-219

repository management, Nexus 211
repository metadata model

about 230
references 230-233

requirePluginVersions rule
URL 254

resource filtering, maven-resources-plugin
URL 110

resources plugin 109, 110
root POM file, distribution module

of WSO2 IS
URL 138, 141

S
scheduled tasks 228
SCM goals

scm:add 58
scm:bootstrap 58
scm:branch 58
scm:changelog 58
scm:checkin 58
scm:check-local-modification 58
scm:checkout 58
scm:diff 58
scm:edit 58
scm:export 58

scm:list 58
scm:remove 58
scm:status 58
scm:tag 58
scm:unedit 58
scm:update 58
scm:update-subprojects 58
scm:validate 58

Secure Copy (scp) 102
secured repositories 53
self-executable JAR file, maven-jar-plugin

URL 108
separation of concerns principle 239
settings.xml file

about 47
credentials, encrypting in 54-56
repositories 207, 208

site lifecycle 77
site plugin 104
site plugin, goals

site:attach-descriptor 105
site:deploy 104
site:effective-site 105
site:jar 105
site:run 105
site:site 104
site:stage 105
site:stage-deploy 105

snapshots repository
URL 219

SNAPSHOT versioning
using, during development 259

Software Configuration Management
(SCM) 110, 249

Source Control Management systems
about 56
Maven, integrating with Subversion 56-59

source plugin 108, 109
Spring 120
Spring applications

developing, with spring-mvc-quickstart
archetype 182, 183

Spring MVC framework
URL 182

spring-mvc-quickstart archetype
developing, with Spring MVC

applications 182, 183

[276]

SSH-based artifacts
deploying 65, 66

standard lifecycles, Maven
clean lifecycle 70-73
default lifecycle 73-76
site lifecycle 77

Subversion SCM plugin documentation
URL 58

Subversion (SVN) 56
super POM 23-27
surefire plugin 102-104
system properties, Maven Wagon

maven.wagon.httpconnectionManager.
maxPerRoute 52

maven.wagon.httpconnectionManager.
maxTotal 52

maven.wagon.http.pool 52
maven.wagon.http.ssl.allowall 52
maven.wagon.http.ssl.ignore.validity.

dates 52
maven.wagon.http.ssl.insecure 52
maven.wagon.rto 53

T
tomcat7 plugin

URL 183
Tomcat 7.x distribution

URL, for downloading 174
transitive dependencies, Maven

managing 37, 38
Transport Layer Security (TLS)

about 54
URL 54

troubleshooting tips
about 17
dependency classpath, viewing 20
dependency tree, building 17
effective POM file, viewing 19
environment variables, viewing 18
Maven debug-level logs, enabling 17
system properties, viewing 18

U
Ubuntu

Apache Maven, installing on 8, 9
unused dependencies

avoiding 260
un-versioned plugins

avoiding 252-254
update policy 204-206
user-level configuration 47

V
version element

avoiding 242
virtual repository

creating 224

W
wagon-ssh-external JAR file 65
web applications

deploying, to remote Apache Tomcat
server 174-176

WebLogic distribution
URL, for downloading 180

WSO2 Carbon
about 12
references, for project 245
URL 12
URL, for plugin repositories in parent

POM file 116
URL, for plugins under pluginManagement

section 115
WSO2 Carbon Turing branch

URL 32
WSO2 Identity Server (WSO2 IS) 138

X
XML schema, configuration elements

URL 47

Thank you for buying
Mastering Apache Maven 3

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Maven Build Customization
ISBN: 978-1-78398-722-1 Paperback: 270 pages

Discover the real power of Maven 3 to manage your
Java projects more effectively than ever

1.	 Administer complex projects customizing
the Maven framework and improving the
software lifecycle of your organization with
"Maven-friendly technologies".

2.	 Automate your delivery process and make
it fast and easy.

3.	 An easy-to-follow tutorial on Maven
customization and integration with a
real project and practical examples.

Apache Maven 3 Cookbook
ISBN: 978-1-84951-244-2 Paperback: 224 pages

Over 50 recipes towards optimal Java software
engineering with Maven 3

1.	 Grasp the fundamentals and extend Apache
Maven 3 to meet your needs.

2.	 Implement engineering practices in your
application development process with
Apache Maven.

3.	 Collaboration techniques for Agile teams
with Apache Maven.

Please check www.PacktPub.com for information on our titles

Learning Apache Maven 3 [Video]
ISBN: 978-1-78216-666-5 Duration: 01:59 hours

Get to grips with the basics and concepts of building a
real world Java Application with Apache Maven

1.	 A practical example-driven approach to
learning Apache Maven 3.

2.	 Grasp the fundamentals and extend Apache
Maven 3 to meet your needs.

3.	 Learn to use Apache Maven with Java
enterprise frameworks and various
other cutting-edge technologies.

Apache Maven Dependency
Management
ISBN: 978-1-78328-301-9 Paperback: 158 pages

Manage your Java and JEE project dependencies with
ease with this hands-on guide to Maven

1.	 Improve your productivity by efficiently
managing dependencies.

2.	 Learn how to detect and fix
dependency conflicts.

3.	 Learn how to share transitive relations
and to visualize your dependencies.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Apache Maven Quick Start
	A quick introduction
	Installing Apache Maven
	Installing Apache Maven on Ubuntu
	Installing Apache Maven on Mac OS X
	Installing Apache Maven on Microsoft Windows

	Configuring the heap size
	Monitoring the build
	Remote debugging
	Convention over configuration
	IDE integration
	NetBeans integration
	IntelliJ IDEA integration
	Eclipse integration

	Troubleshooting
	Enabling Maven debug level logs
	Building dependency tree
	Viewing all environment variables and system properties
	Viewing the effective POM file
	Viewing the dependency classpath

	Summary

	Chapter 2: Demystifying Project
Object Model
	Project Object Model
	The POM hierarchy
	Super POM
	POM extending and overriding
	Maven coordinates
	Parent POM file
	Managing POM dependencies
	Transitive dependencies
	Dependency scopes
	Optional dependencies
	Dependency exclusion

	Summary

	Chapter 3: Maven Configuration
	Maven Wagon
	Wagon HTTP(S) transport
	Wagon system properties

	Proxy authentication
	Secured repositories
	Encrypting credentials in settings.xml
	Source Control Management systems
	Maven with Subversion

	Local repository location
	Mirrored repositories
	The internal corporate repository
	Advanced mirror configurations

	Deploying artifacts
	Deploying file-based artifacts
	Deploying SSH-based artifacts
	Deploying FTP-based artifacts

	Enabling Maven logging
	Summary

	Chapter 4: Build Lifecycles
	Standard lifecycles in Maven
	The clean lifecycle
	The default lifecycle
	The site lifecycle

	Lifecycle bindings
	Building a custom lifecycle
	Lifecycle extensions
	Summary

	Chapter 5: Maven Plugins
	Common Maven plugins
	The clean plugin
	The compiler plugin
	The install plugin
	The deploy plugin
	The surefire plugin
	The site plugin
	The jar plugin
	The source plugin
	The resources plugin
	The release plugin

	Plugin discovery and execution
	Plugin management
	Plugin repositories
	Plugin as an extension

	Plexus
	Maven and Dependency Injection
	Google Guice

	Developing custom plugins
	Associating a plugin with a lifecycle
	The plugin execution order
	Inside the execute method

	Summary

	Chapter 6: Maven Assemblies
	The assembly plugin
	The assembly descriptor
	Artifact/resource filtering
	Assembly help
	A runnable, standalone Maven project
	Summary

	Chapter 7: Maven Archetypes
	Archetype quickstart
	The batch mode
	Archetype catalogues
	Building an archetype catalogue
	Public archetype catalogues
	The anatomy of archetype-catalog.xml

	The archetype plugin goals
	Maven plugins with the archetype plugin
	Java EE web applications with the archetype plugin
	Deploying web applications to a remote Apache Tomcat server

	Android mobile applications with the archetype plugin
	EJB archives with the archetype plugin
	JIRA plugins with the archetype plugin
	Spring MVC applications with the archetype plugin
	Building a custom archetype
	The archetype descriptor
	Generating a multimodule Maven project
	archetype:create-from-project with custom properties

	Summary

	Chapter 8: Maven Repository Management
	Maven repositories
	The Update policy
	Multiple repositories
	Repositories in settings.xml

	The Maven repository manager
	Repository management with Nexus
	Installing and running Nexus
	Creating a hosted repository

	Creating a proxy repository
	Creating a virtual repository
	Blocking selected artifacts
	Inclusive and exclusive routing
	Scheduled tasks
	Artifact indexing
	Nexus plugins
	A repository metadata model
	Summary

	Chapter 9: Best Practices
	Dependency management
	Defining a parent module
	POM properties
	Avoiding repetitive groupId and version elements and inherit from the parent POM
	Following naming conventions
	Maven profiles
	Think twice before you write your
own plugin
	The Maven release plugin
	The Maven enforcer plugin
	Avoid using un-versioned plugins
	Using exclusive and inclusive routes
	Avoid having both release and snapshot repositories in the same group repository
	Avoid having both proxy and hosted repositories in the same group repository
	Minimizing the number of repositories
	Using mirrorOf instead of changing repository URLs
	Descriptive parent POM files
	Documentation is your friend
	Avoid overriding the default directory structure
	Using SNAPSHOT versioning during development
	Get rid of unused dependencies
	Avoid keeping credentials in application POM files
	Avoid using deprecated references
	Avoid repetition – use archetypes
	Avoid using maven.test.skip
	Share resources – avoid duplicates
	Summary

	Index

