

Learning Neo4j

Run blazingly fast queries on complex graph datasets
with the power of the Neo4j graph database

Rik Van Bruggen

BIRMINGHAM - MUMBAI

Learning Neo4j

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2014

Production reference: 1190814

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-716-4

www.packtpub.com

Cover image by Pratyush Mohanta (tysoncinematics@gmail.com)

www.packtpub.com

Credits

Author
Rik Van Bruggen

Reviewers
Jussi Heinonen

Michael Hunger

Andreas Kolleger

Max De Marzi

Mark Needham

Yavor Stoychev

Ron Van Weverwijk

Acquisition Editor
Nikhil Karkal

Content Development Editor
Poonam Jain

Technical Editors
Tanvi Bhatt

Akash Rajiv Sharma

Faisal Siddiqui

Aman Preet Singh

Copy Editors
Roshni Banerjee

Sayanee Mukherjee

Aditya Nair

Deepa Nambiar

Project Coordinator
Mary Alex

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexers
Hemangini Bari

Tejal Soni

Priya Subramani

Graphics
Sheetal Aute

Ronak Dhruv

Valentina D'silva

Disha Haria

Abhinash Sahu

Production Coordinator
Komal Ramchandani

Cover Work
Komal Ramchandani

About the Author

Rik Van Bruggen is the regional territory manager for Neo Technology for
Benelux, UK, and the Nordic region. He has been working for startup companies
for most of his career, including eCom Interactive Expertise, SilverStream Software,
Imprivata, and Courion. While he has an interest in technology, his real passion is
business and how to make technology work for a business. He lives in Antwerp,
Belgium, with his wife and three lovely kids, and enjoys technology, orienteering,
jogging, and Belgian beer.

This book and all of the work that went on around it would not
have been possible without the unconditional support of my wife,
Katleen, and our three lovely kids, Mit, Toon, and Cas. Thank you!

About the Reviewers

Michael Hunger has been passionate about software development for a long
time. He is particularly interested in the people who develop software, software
craftsmanship, programming languages, and improving code.

For the past few years, he has been working with Neo Technology on the Neo4j
graph database. As the project lead of Spring Data Neo4j, he helped develop the
idea to make it a convenient and complete solution for object graph mapping.
He now takes care of all the aspects of the Neo4j developer community.

Good relationships are everywhere in Michael's life. His life revolves around his
family and children, running his coffee shop and co-working space, having fun
in the depths of a text-based, multiuser dungeon, tinkering with and without
Lego, and much more.

As a developer, he loves to work with many aspects of programming
languages—learning new things every day, participating in exciting and
ambitious open source projects, and contributing and writing software-related
books and articles. He is also an active speaker at conferences and events,
and a longtime editor at InfoQ.

He is one of the important contributors to the expert book, 97 Things Every
Programmer Should Know by Kevin Henney, O'Reilly.

He has co-authored Spring Data, by Mark Pollack, Oliver Gierke, Thomas Risberg, and
Jon Brisbin, O'Reilly and has also reviewed the following books:

•	 NoSQL Distilled, Pramod J. Sadalage and Martin Fowler, Pearson
•	 Domain-Specific Languages Patterns, Martin Fowler and Rebecca

Parsons, Pearson
•	 Pragmatic Guide to Git, Travis Swicegood, The Pragmatic Bookshelf
•	 Art of Readable Code, Dustin Boswell and Trevor Foucher, O'Reilly
•	 Apprenticeship Patterns, David H. Hoover and Adewale Oshineye, O'Reilly

I want to thank the four wonderful women in my life who make me
happy every day and let me achieve many things.

Ron Van Weverwijk is an experienced software developer at GoDataDriven
in Netherlands. He has years of experience developing both backend and
frontend applications.

For the last few years, he has been building applications to explore and visualize
complex network data using Neo4j. He is an expert Neo4j developer and community
member. He has given several Neo4j trainings, and has spoken about Neo4j at a
number of recent conferences.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com

"To Katleen, Mit, Toon, and Cas"

 –with love, Rik

Table of Contents
Preface	 1
Chapter 1: Graphs and Graph Theory – an Introduction	 7

Introduction to and history of graphs	 7
Definition and usage of graph theory	 11

Social studies	 13
Biological studies	 14
Computer science	 15
Flow problems	 16
Route problems	 17
Web search	 18

Test questions	 19
Summary	 20

Chapter 2: Graph Databases – Overview	 21
Background	 21

Navigational databases	 23
Relational databases	 25
NoSQL databases	 28

Key-Value stores	 29
Column-Family stores	 30
Document stores	 31
Graph databases	 32

The Property Graph model of graph databases	 34
Node labels	 36
Relationship types	 36

Why (or why not) graph databases	 37
Why use a graph database?	 37

Complex queries	 37
In-the-clickstream queries on live data	 39
Path finding queries	 39

Table of Contents

[ii]

Why not use a graph database, and what to use instead	 40
Large, set-oriented queries	 40
Graph global operations	 40
Simple, aggregate-oriented queries	 41

Test questions	 41
Summary	 42

Chapter 3: Getting Started with Neo4j	 43
Neo4j – key concepts and characteristics	 43

Built for graphs, from the ground up	 44
Transactional, ACID-compliant database	 44
Made for Online Transaction Processing	 46
Designed for scalability	 48
A declarative query language – Cypher	 49
Sweet spot use cases of Neo4j	 50
Complex, join-intensive queries	 51

Path finding queries	 51
Committed to open source	 52
The features	 53
The support	 53
The license conditions	 54

Installing Neo4j	 56
Installing Neo4j on Windows	 56
Installing Neo4j on Mac or Linux	 62

Using Neo4j in a cloud environment	 65
Test Questions	 71
Summary	 71

Chapter 4: Modeling Data for Neo4j	 73
The four fundamental data constructs	 73
How to start modeling for graph databases	 75

What we know – ER diagrams and relational schemas	 75
Introducing complexity through join tables	 77

A graph model – a simple, high-fidelity model of reality	 78
Graph modeling – best practices and pitfalls	 79

Graph modeling best practices	 79
Design for query-ability	 80
Align relationships with use cases	 80
Look for n-ary relationships	 81
Granulate nodes	 82
Use in-graph indexes when appropriate	 84

Graph database modeling pitfalls	 86
Using "rich" properties	 86
Node representing multiple concepts	 87

Table of Contents

[iii]

Unconnected graphs	 88
The dense node pattern	 88

Test questions	 89
Summary	 90

Chapter 5: Importing Data into Neo4j	 91
Alternative approaches to importing data into Neo4j	 92

Know your import problem – choose your tooling	 93
Importing small(ish) datasets	 96

Importing data using spreadsheets	 96
Importing using Neo4j-shell-tools	 100
Importing using Load CSV	 103

Scaling the import	 107
Questions and answers	 110
Summary	 111

Chapter 6: Use Case Example – Recommendations	 113
Recommender systems dissected	 113
Using a graph model for recommendations	 115
Specific query examples for recommendations	 117

Recommendations based on product purchases	 118
Recommendations based on brand loyalty	 119
Recommendations based on social ties	 120
Bringing it all together – compound recommendations	 121

Business variations on recommendations	 122
Fraud detection systems	 123
Access control systems	 124
Social networking systems	 125
Questions and answers	 126
Summary	 126

Chapter 7: Use Case Example – Impact Analysis and Simulation	 127
Impact analysis systems dissected	 128

Impact analysis in Business Process Management	 128
Modeling your business as a graph	 129

Which applications are used in which buildings	 130
What buildings are affected if something happens to Appl_9?	 131
What BusinessProcesses with an RTO of 0-2 hours would be affected by a fire
at location Loc_100	 132

Impact simulation in a Cost Calculation environment	 134
Modeling your product hierarchy as a graph	 134
Working with a product hierarchy graph	 136

Calculating the price based on a full sweep of the tree	 137
Calculating the price based on intermediate pricing	 138

Table of Contents

[iv]

Impact simulation on product hierarchy	 140
Questions and Answers	 142
Summary	 142

Chapter 8: Visualizations for Neo4j	 143
The power of graph visualizations	 143

Why graph visualizations matter!	 143
Interacting with data visually	 144
Looking for patterns	 145
Spot what's important	 145

The basic principles of graph visualization	 146
Open source visualization libraries	 147

D3.js	 148
Graphviz	 149
Sigma.js	 150
Vivagraph.js	 151
Integrating visualization libraries in your application	 152
Visualization solutions	 153

Gephi	 154
Keylines	 155
Linkurio.us	 156
Neo4j Browser	 157
Tom Sawyer	 158

Closing remarks on visualizations	 159
The "fireworks" effect	 159
The "loading" effect	 159

Questions and answers	 160
Summary	 160

Chapter 9: Other Tools Related to Neo4j	 161
Data integration tools	 161

Talend	 163
MuleSoft	 164

Business Intelligence tools	 165
Modeling tools	 168

Arrows	 168
OmniGraffle	 170

Questions and answers	 171
Summary	 171

Appendix A: Where to Find More Information Related to Neo4j	 173
Online tools	 173

Google group	 174
Stack Overflow	 175

Table of Contents

[v]

The Neo4j community website	 176
The new Neo4j website	 177
The Neo4j Blog	 178
GraphGists collection	 179
The Cypher reference card	 180
Other books	 181

Events	 181
Meetup	 181
GraphConnect	 182
Conferences	 182
Training	 182

Neo Technology	 183
Appendix B: Getting Started with Cypher	 185

The key attributes of Cypher	 185
Key operative words in Cypher	 187
The Cypher refcard	 189
Syntax	 190

Index	 195

Preface
The title of this book, Learning Neo4j, is a really good title in many ways. On one
hand, it reflects my own personal experience with Neo4j over the past couple of
years and more. As I fell deeply in love with graph technology, Neo4j kept on
providing me with new fascinating things to learn about and explore. This book,
in more than one way, is a summary of that learning experience—it's the tale of
my learning of Neo4j.

But the book is also supposed to provide you with lots of good starting points to
get going with this technology more quickly. I know for a fact that finding learning
resources on these types of technologies is not always easy, and that's really what
drove me personally to spend many late nights, weekends, and holidays to put
together this book to accelerate your learning of Neo4j.

What this book covers
Chapter 1, Graphs and Graph Theory – an Introduction, provides you with some
background information on graphs to help you understand where the technology
behind Neo4j came from.

Chapter 2, Graph Databases – Overview, will try to explain how the theory of the
previous chapter is used to create a new, different kind of database that is "standing
on the shoulders of giants". We are going to be basing ourselves on several decades
of database technologies, of course.

Chapter 3, Getting Started with Neo4j, gives you an overview of several of Neo4j's key
characteristics, and then helps you get going with the tool on different on-premise
and cloud-based platforms.

Preface

[2]

Chapter 4, Modeling Data for Neo4j, will provide you with an introduction to data
modeling for graph databases. Before you take your newly acquired tool (discussed
in the previous chapter) for a spin, you need to think about the data model, just as
you would with any other database.

Chapter 5, Importing Data into Neo4j, will give you a good look at the different options
and considerations to import data into your newly created model (discussed in
Chapter 4, Modeling Data for Neo4j). It will show you some of the different import
techniques in detail as well.

Chapters 6, Use Case Example – Recommendations, will provide detailed examples of
use cases for Neo4j that seem to have become quite commonplace in many different
industries. This chapter focuses on recommendations.

Chapter 7, Use Case Example – Impact Analysis and Simulation, will take a deep look
into the impact analysis use cases of Neo4j.

Chapter 8, Visualizations for Neo4j, will give you an overview of how to integrate the
Neo4j graph database with the powerful domain of graph visualizations. We will
discuss different alternatives, and point you to different resources to get started with.

Chapter 9, Other Tools Related to Neo4j, will provide you with some pointers to
interesting complementary tools that relate to Neo4j, such as data integration tools,
business intelligence tools, and modeling tools.

Appendix A, Where to Find More Information Related to Neo4j, gives a basic introduction
to Cypher.

Appendix B, Getting Started with Cypher, discusses the Neo4j query language that we
are using throughout the book.

What you need for this book
This book can be read without any additional resources; however, we recommend
access to some physical lab resources to install Neo4j Community Edition on. You can
download that software from http://neo4j.com/download/ at your convenience.

A reasonable and recommended lab setup can be one on a machine with a dual or
quad-core processor with 8 GB of RAM. A system with a lesser configuration would
probably also work, but the recommended one will make it more comfortable for you.

Also note that you need OpenJDK 7 (http://openjdk.java.net/) or Oracle Java 7
(http://www.oracle.com/technetwork/java/javase/downloads/index.html)
installed on your machine.

http://neo4j.com/download/
http://openjdk.java.net/
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Preface

[3]

Who this book is for
If you are an IT professional or developer who wants to get started in the field of
graph databases, this is the book for you. Anyone with prior experience with SQL
in the relational database world will very quickly feel at ease with Neo4j and its
Cypher query language and learn a lot from this book.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"As explained previously, the output of the batch importer is not what we will
immediately see on our Neo4j server. In fact, the output is just a test.db directory."

A block of code is set as follows:

//Loading CSV with Rels
load csv with headers from
"file:/your/path/to/rels.csv"
as rels
match (from {id: rels.From}), (to {id: rels.To})
create from-[:REL {type: rels.`Relationship Type`}]->to
return from, to

Any command-line input or output is written as follows:

cd /path/to/your/Neo4j/server

curl http://dist.Neo4j.org/jexp/shell/Neo4j-shell-tools-2.0.zip -o Neo4j-
shell-tools.zip

unzip Neo4j-shell-tools.zip -d lib

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "The Admin panel
shows us the way, and gives immediate access to this particular Neo4j instance's
browser interface."

Preface

[4]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from https://www.packtpub.com/sites/
default/files/downloads/7164OS_GraphicsBundle.pdf.

www.packtpub.com/authors
https://www.packtpub.com/sites/default/files/downloads/7164OS_GraphicsBundle.pdf
https://www.packtpub.com/sites/default/files/downloads/7164OS_GraphicsBundle.pdf

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Graphs and Graph
Theory – an Introduction

People have different ways of learning new topics. We know that background
information can contribute greatly to a better understanding of new topics. That
is why, in this chapter of our Learning Neo4j book, we will start with quite a bit of
background information, not to recount the tales of history, but to give you the
necessary context that can lead to a better understanding of topics.

In order to do so, we will address the following topics:

•	 Graphs: What they are and where they came from. This section will aim
to set the record straight on what exactly our subject will contain and what
it won't.

•	 Graph theory: What it is and what it is used for. This section will give you
quite a few examples of graph theory applications, and it will also start
hinting at applications for graph databases such as Neo4j later on.

So, let's dig right in.

Introduction to and history of graphs
Many people might have used the word graph at some point in their professional or
personal lives. However, chances are that they did not use it in the way that we will
be using it in this book. Most people—obviously not you, my dear reader, otherwise
you probably would not have picked up this book—actually think about something
very different when talking about a graph. They think about pie charts and bar
charts. They think about graphics, not graphs.

Graphs and Graph Theory – an Introduction

[8]

In this book, we will be working with a completely different type of subject—the
graphs that you might know from your math classes. I, for once, distinctly remember
being taught the basics of discrete Mathematics in one of my university classes, and I
also remember finding it terribly complex and difficult to work with. Little did I know
that my later professional career will use these techniques in a software context, let
alone that I would be writing a book on this topic.

So, what are graphs? To explain this, I think it is useful to put a little historic context
around the concept. Graphs are actually quite old as a concept. They were invented, or
at least first described, in an academic paper by the well-known Swiss mathematician
Leonhard Euler. He was trying to solve an age-old problem that we now know as the 7
bridges of Königsberg. The problem at hand was pretty simple to understand.

Königsberg has a beautiful medieval city in the Prussian empire, situated on the river
Pregel. It is located between Poland and Lithuania in today's Russia. If you try to
look it up on any modern-day map, you will most likely not find it as it is currently
known as Kaliningrad. The Pregel not only cut Königsberg into a left- and right-
bank side of the city, but it also created an island in the middle of the river, which
was known as the Kneiphof. The result of this peculiar situation was a city that was
cut into four parts. We will refer to them as A, B, C and D, which were connected by
seven bridges (labeled a, b, c, d, e, f, and g in the following diagram).This gives us
the following situation:

•	 The seven bridges are connected to the four different parts of the city
•	 The essence of the problem that people were trying to solve was to take a

tour of the city, visiting every one of its parts and crossing every single
one of its bridges, without having to walk a single bridge or street twice

In the following diagram, you can see how Euler illustrated this problem in his
original 1736 paper:

Illustration of the mentioned problem as mentioned by Euler in his paper in 1736

Chapter 1

[9]

Essentially, it was a pathfinding problem, like there are many others (for example,
the knight's ride problem or the travelling salesman problem). It does not seem like
a very difficult assignment at all now does it? However, at the time, people really
struggled with it and were trying to figure it out for the longest time. It was not until
Euler got involved and took a very different, mathematical approach to the problem
that it got solved once and for all.

Euler did the following two things that I find really interesting:

1.	 First and foremost, he decided not to take the traditional brute force method
to solve the problem (that is, in this case, drawing a number of different
route options on the map and trying to figure out—essentially by trial and
error—if there was such a route through the city), but decided to do something
different. He took a step back and took a different look at the problem by
creating what I call an abstract version of the problem at hand, which is
essentially a model of the problem domain that he was trying to work with. In
his mind at least, Euler must have realized that the citizens of Königsberg were
focusing their attention on the wrong part of the problem—the streets. Euler
quickly came to the conclusion that the streets of Königsberg really did not
matter to find a solution to the problem. The only things that mattered for his
pathfinding operation were the following:

°° The parts of the city
°° The bridges connecting the parts of the city

Now, all of a sudden, we seem to have a very different problem at hand,
which can be accurately represented in what is often regarded as "the world's
first graph":

2.	 Secondly, Euler solved the puzzle at hand by applying a mathematical
algorithm on the model that he created. Euler's logic was simple: if I
want to take a walk in the town of Königsberg, then:

°° I will have to start somewhere in any one of the four parts of the city
°° I will have to leave that part of the city; in other words, cross one of

the bridges to go to another part of the city

Graphs and Graph Theory – an Introduction

[10]

°° I will then have to cross another five bridges, leaving and entering
different parts of the city

°° Finally, I will end the walk through Königsberg in another part of
the city

Therefore, Euler argues, the case must be that the first and last parts of the city have an
odd number of bridges that connect them to other parts of the city (because you leave
from the first part and you arrive at the last part of the city), but the other two parts
of the city must have an even number of bridges connecting them to the first and last
parts of the city because you will arrive and leave from these parts of the city.

This "number of bridges connecting the parts of the city" has a very special meaning
in the model that Euler created, the graph representation of the model. We call this the
degree of the nodes in the graph. In order for there to be a path through Königsberg
that only crossed every bridge once, Euler proved that all he had to do was to apply a
very simple algorithm that will establish the degree (in other words, count the number
of bridges) of every part of the city. This is shown in the following diagram:

This is how Euler solved the famous "Seven bridges of Königsberg" problem. By
proving that there was no part of the city that had an even number of bridges, he
also proved that the required walk in the city cannot be done. Adding one more
bridge would immediately make it possible, but with the current state of the city,
and its bridges at the time, there was no way one could take such an Eulerian Walk
of the city. By doing so, Euler created the world's first graph. The concepts and
techniques of his research, however, are universally applicable; in order to do such
a walk on any graph, the graph must have zero or two vertices with an odd degree,
and all intermediate vertices must have an even degree.

Chapter 1

[11]

To summarize, a graph is nothing more than an abstract, mathematical
representation of two or more entities, which are somehow connected or related
to each other. Graphs model pairwise relations between objects. They are, therefore,
always made up of the following components:

•	 The nodes of the graph, usually representing the objects mentioned
previously: In math, we usually refer to these structures as vertices; but
for this book, and in the context of graph databases such as Neo4j, we will
always refer to vertices as nodes.

•	 The links between the nodes of the graph: In math, we refer to these
structures as edges, but again, for the purpose of this book, we will refer
to these links as relationships.

•	 The structure of how nodes and relationships are connected to each other
makes a graph: Many important qualities, such as the number of edges
connected to a node, what we referred to as degree, can be assessed. Many
other such indicators also exist.

Now that we have graphs and understand a bit more about their nature and history,
it's time to look at the discipline that was created on top of these concepts, often
referred to as the graph theory.

Definition and usage of graph theory
When Euler invented the first graph, he was trying to solve a very specific problem
of the citizens of Königsberg, with a very specific representation/model and a very
specific algorithm. It turns out that there are quite a few problems that can be:

•	 Described using the graph metaphor of objects and pairwise relations
between these objects

•	 Solved by applying a mathematical algorithm to this structure

The mechanism is the same, and the scientific discipline that studies these modeling
and solution patterns, using graphs, is often referred to as the graph theory, and it
is considered to be a part of discrete Mathematics.

Graphs and Graph Theory – an Introduction

[12]

There are lots of different types of graphs that have been analyzed in this discipline,
as you can see from the following diagram.

Chapter 1

[13]

Graph theory, the study of graph models and algorithms, has turned out to be a
fascinating field of study, which has been used in many different disciplines to solve
some of the most interesting questions facing mankind. Interestingly enough, it has
seldom really been applied with rigor in the different fields of science that can benefit
from it; maybe scientists today don't have the multidisciplinary approach required
(providing expertise from graph theory and their specific field of study) to do so.

So, let's talk about some of these fields of study a bit, without wanting to give you an
exhaustive list of all applicable fields. Still, I do believe that some of these examples
will be of interest for our future discussions in this book and work up an appetite for
what types of applications we will use a graph-based database such as Neo4j for.

Social studies
For the longest time, people have understood that the way humans interact with one
another is actually very easy to describe in a network. People interact with people
every day. People influence one another every day. People exchange ideas every day.
As they do, these interactions cause ripple effects through the social environment that
they inhabit. Modeling these interactions as a graph has been of primary importance
to better understand global demographics, political movements, and—last but not
least—commercial adoption of certain products by certain groups. With the advent of
online social networks, this graph-based approach to social understanding has taken
a whole new direction. Companies such as Google, Facebook, Twitter, LinkedIn (see
the following diagram featuring a visualization of my LinkedIn network), and many
others have undertaken very specific efforts to include graph-based systems in the way
they target their customers and users, and in doing so, they have changed many of our
daily lives quite fundamentally.

Graphs and Graph Theory – an Introduction

[14]

Biological studies
We sometimes say it in marketing taglines: "Graphs Are Everywhere". When we
do so, we are actually describing reality in a very real and fascinating way. Also,
in this field, researchers have known for quite some time that biological components
(proteins, molecules, genes, and so on) and their interactions can accurately be
modeled and described by means of a graph structure, and doing so yields many
practical advantages. In metabolic pathways (see the following diagram for the human
metabolic system), for example, graphs can help us to understand how the different
parts of the human body interact with each other. In metaproteomics, researchers
analyze how different kinds of proteins interact with one another and are used in
order to better steer chemical and biological production processes.

A diagram representing the human metabolic system

Chapter 1

[15]

Computer science
Some of the earliest computers were built with graphs in mind. Graph Compute
Engines solved scheduling problems for railroads as early as the late 19th century,
and the usage of graphs in computer science has only accelerated since then. In
today's applications, the use cases vary from chip design, network management,
recommendation systems, and UML modeling to algorithm generation and
dependency analysis. The following is an example of such a UML diagram:

An example of a UML diagram

The latter is probably one of the more interesting use cases. Using pathfinding
algorithms, software and hardware engineers have been analyzing the effects of
changes in the design of their artifacts on the rest of the system. If a change is made
to one part of the code, for example, a particular object is renamed; the dependency
analysis algorithms can easily walk the graph of the system to find out what other
classes will be affected by the former change.

Graphs and Graph Theory – an Introduction

[16]

Flow problems
Another really interesting field of graph theory applications is flow problems, also
known as maximum flow problems. In essence, this field is part of a larger field of
optimization problems, which is trying to establish the best possible path across a
flow network. Flow networks are a type of graph in which the nodes/vertices of
the graph are connected by relationships/edges that specify the capacity of that
particular relationship. Examples can be found in fields such as telecom networks,
gas networks, airline networks, package delivery networks, and many others,
where graph-based models are then used in combination with complex algorithms.
The following diagram is an example of such a network, as you can find it on
http://enipedia.tudelft.nl/.

An example of a flow network

These algorithms are then used to identify the calculated optimal path, find
bottlenecks, plan maintenance activities, conduct long-term capacity planning,
and many other operations.

http://enipedia.tudelft.nl/

Chapter 1

[17]

Route problems
The original problem that Euler set out to solve in 18th century Königsberg was in fact
a route planning / pathfinding problem. Today, many graph applications leverage
the extraordinary capability of graphs and graph algorithms to calculate—as opposed
to finding with trial and error—the optimal route between two nodes on a network.
In the following diagram, you will find a simple route planning example as a graph:

A simple route planning example between cities to choose roads versus highways

A very simple example will be from the domain of logistics. When trying to plan for
the best way to get a package from one city to another, one will need the following:

1.	 A list of all routes available between the cities
2.	 The most optimal of the available routes, which depends on various

parameters in the network, such as capacity, distance, cost, CO2 exhaust,
speed, and so on

Graphs and Graph Theory – an Introduction

[18]

This type of operation is a very nice use case for graph algorithms. There are a
couple of very well-known algorithms that we can briefly highlight:

•	 The Dijkstra algorithm: This is one of the best-known algorithms to
calculate the shortest weighted path between two points in a graph,
using the properties of the edges as weights or costs of that link.

•	 The A* (A-star) algorithm: This is a variation of Dijkstra's original ideas, but
it uses heuristics to predict more efficiently the shortest path explorations. As
A* explores potential graph paths, it holds a sorted priority queue of alternate
path segments along the way, since it calculates the "past path" cost and the
"future path" cost of the different options that are possible during the
route exploration.

Depending on the required result, the specific dataset, and the speed requirements,
different algorithms will yield different returns.

Web search
No book chapter treating graphs and graph theory—even at the highest level—will
be complete without mentioning one of the most powerful and widely-used graph
algorithms on the planet, PageRank. PageRank is the original graph algorithm,
invented by Google founder Larry Page in 1996 at Stanford University, to provide
better web search results. For those of us old enough to remember the early days of
web searching (using tools such as Lycos, AltaVista, and so on), it provided a true
revolution in the way the Web was made accessible to end users. The following
diagram represents the PageRank graph:

Chapter 1

[19]

The older tools did keyword matching on web pages, but Google revolutionized this
by no longer focusing on keywords alone, but by doing link analysis on the hyperlinks
between different web pages. PageRank, and many of the other algorithms that Google
uses today, assumes that more important web pages, which should appear higher in
your search results, will have more incoming links from other pages, and therefore,
it is able to score these pages by analyzing the graph of links to the web page. History
has shown us the importance of PageRank. Not only has Google, Inc. built quite an
empire on top of this graph algorithm, but its principles have also been applied to
other fields such as cancer research and chemical reactions.

Test questions
Q1. Graph theory is a very recent field in modern Mathematics, invented in the late
20th century by Leonard Euler:

1.	 True
2.	 False

Q2. Name one field that graphs are NOT used for in today's science/application fields:

1.	 Route problems
2.	 Social studies
3.	 Accounting systems
4.	 Biological studies

Q3. Graphs are a very niche phenomenon that can only be applied to a very limited
set of applications/research fields:

1.	 True
2.	 False

Graphs and Graph Theory – an Introduction

[20]

Summary
In the first chapter of this book, we wanted to give you a first look at some of the
concepts that underpin the subject of this book, the graph database Neo4j. We
introduced the history of graphs, explained some of the principles that are being
explored in the fascinating mathematical field of graph theory, and provided some
examples of other academic and functional domains that have been benefiting from
this rich, century-long history. The conclusion of this is plain and simple: Graphs
Are Everywhere. Much of our world is in reality dependent on and related to many
other things—it is densely connected, as we call it in graph terms. This of course has
implications on how we work with the reality in our computer systems, how we store
the data that describes reality in a database management system, and how we interact
with the system in different kinds of applications.

In the next chapter, we will start applying this context to the specific part of
computer science that deals with graph structures in the field of database
management systems.

Graph Databases – Overview
In this chapter, we want to contextualize the concepts around graph databases
and make our readers understand the historical and operational differences
between older, different kinds of database management systems and our
modern-day Neo4j installations.

To do this, we will cover the following:

•	 Some background information on databases in general
•	 A walk-through of the different approaches taken to manage and store

data, from old-school navigational databases to No-SQL graph databases
•	 A short discussion explaining the graph database category, its strengths,

and its weaknesses

This chapter should then set our readers up for some more practical discussions
later in this book.

Background
It's not always very clear when the first real database management system was
formally conceived and implemented. Ever since Babbage invented the first
complete Turing computing system (the Analytical Engine, which Babbage never
really managed to get built), we have known that computers would always need to
have some kind of memory. This will be responsible for dealing with the data upon
which operations and calculations will be executed. But when did this memory
evolve into a proper database? What do we mean by a database anyway?

Graph Databases – Overview

[22]

Let's tackle the latter question first. A database can be described as any kind of
organized collection of data. Not all databases require a management system—think
of the many spreadsheets and other file-based storage approaches that really don't
have any kind of real material oversight imposed on it, let alone a true management
system. A database management system, then, can technically be referred to as a set
of computer programs that manage (in the broadest sense of the word) the database. It
is a system that sits between the user-facing hardware and software components and
the data. It can be described as any system that is responsible for and able to manage
the structure of the data, is able to store and retrieve that data, and provides access to
this data in a correct, trustable, performant, secure fashion.

Databases as we know them, however, did not exist from the get-go of computing.
At first, most computers used memory, and this memory used a special-purpose,
custom-made storage format that often relied on very manual, labor-intensive, and
hardware-based storage operations. Many systems relied on things like punch cards
for its instructions and datasets. It's not that long ago that computer systems evolved
from these seemingly ancient, special-purpose technologies.

Having read many different articles on this subject, I believe that the need for
"general purpose" database management systems, similar to the ones that we
know today, started to increase as:

•	 The number of computerized systems significantly increased
•	 A number of breakthroughs were realized in terms of computer memory.

Direct Access memory—memory that would not have to rely on lots of
winding of tapes or punched cards—became available in the middle of
the 1960s.

Both of these elements were necessary preconditions for any kind of multipurpose
database management system to make sense. The first real database management
systems seem to have cropped up in the 1960s, and I believe it would be useful
to quickly run through the different phases in the development of database
management systems.

Chapter 2

[23]

We can establish the following three major phases in the half century that database
management systems have been under development:

•	 Navigational databases
•	 Relational databases
•	 NoSQL databases

Let's look at these three system types so that we can then more accurately position
graph databases such as Neo4j—the real subject of this book.

Navigational databases
The original database management systems were developed by legendary computer
scientists such as Charles Bachman, who gave a lot of thought to the way software
should be built in a world of extremely scarce computing resources. Bachman
invented a very natural (and as we will see later, graphical) way to model data: as
a network of interrelated things. The starting point of such a database design was
generally a Bachman Diagram (refer to the following diagram), which immediately
feels like it expresses the model of the data structure in a very graph-like fashion:

Customer-order

set type

Bachman diagram

(shorthand representation)

Expanded diagram

(longhand representation)

Customer 2

Order 5
Customer-order

set 1

Customer-order

set 2
Order 1 Order 4Order 3

Order 2

Customer 1

Order

Customer

Graph Databases – Overview

[24]

These diagrams were the starting points for database management systems that used
either networks or hierarchies as the basic structure for their data. Both the network
databases and the hierarchical database systems were built on the premise that data
elements would be linked together by pointers.

Customer-order
set type

Bachman diagram
(shorthand representation)

Expanded diagram
(longhand representation)

Customer 2

Order 5
Customer-order

set 1

Customer-order
set 2

Order 1 Order 4Order 3

Order 2

Customer 1

Order

Customer

Illustration of a set type using a Bachman diagram

The record set, basic structure of navigational (e.g. CODASYL) database model. A set consists
of one parent record (also called “the owner”), and n child records (also called members records)

Parent

Prior

Next

Empty set

Illustration of an empty set

Parent

1st child

2nd child

n th child

A closed chain of records in a navigational database model (e.g. CODASYL), with
, and provided by keys in the various records.next pointers, prior pointers direct pointers

Next

Prior

Direct Direct

Direct

Next

Next
Next

Next

Prior

Prior
Prior

An example of a navigational database model with pointers linking records

Chapter 2

[25]

As you can probably imagine from the preceding discussion, these models were
very interesting and resulted in a number of efforts that shaped the database
industry. One of these efforts was the Conference on Data Systems Languages,
better known under its acronym, CODASYL. This played an ever so important role
in the information technology industry of the sixties and seventies. It shaped one of
the world's dominant computer programming systems (COBOL), but also provided
the basis for a whole slew of navigational databases such as IDMS, Cullinet, and IMS.
The latter, the IBM-backed IMS database, is often classified as a hierarchical database,
which offers a subset of the network model of CODASYL.

Navigational databases eventually gave way to a new generation of databases,
the Relational Database Management Systems. Many reasons have been attributed
to this shift, some technical and some commercial, but the main two reasons that
seem to enjoy agreement across the industry are:

•	 The complexity of the models that they used. CODASYL is widely
regarded as something that can only be worked or understood by
absolute experts—as we partly experienced in 1999, when the Y2K
problem required many CODASYL experts to work overtime to
migrate their systems into the new millennium.

•	 The lack of a declarative query mechanism for navigational database
management systems. Most of those systems inherently provide a very
imperative approach to finding data: the user would have to tell the
database what to do instead of just being able to ask a question and
having the database provide the answer.

This allows for a great transition from navigational to relational databases.

Relational databases
Relational Database Management Systems are probably the ones that we are most
familiar with in 21st century computer science. Some of the history behind the
creation of these databases is quite interesting. It started with an unknown researcher
at IBM's San Jose, CA, research facility; a gentleman called Edgar Codd. Mr. Codd
was working at IBM on hard disk research projects, but was increasingly sucked
into the navigational database management systems world that would be using
these hard disks. Mr. Codd became increasingly frustrated with these systems,
mostly with their lack of an intuitive query interface.

Graph Databases – Overview

[26]

Essentially, you could store data in a network/hierarchy… but how would you ever
get it back out?

Attribute

Relation

Tuple

Relational database terminology

Codd wrote several papers on a different approach to database management
systems that would not rely as much on linked lists of data (networks or hierarchies)
but more on sets of data. He proved—using a mathematical representation called
tuple calculus—that sets would be able to adhere to the same requirements
that navigational database management systems were implementing. The only
requirement was that there would be a proper query language that would ensure
some of the consistency requirements on the database. This, then, became the
inspiration for declarative query languages such as Structured Query Language,
SQL. IBM's System R was one of the first implementations of such a system, but
Software Development Laboratories, a small company founded by ex-IBM people
and one illustrious Mr. Larry Ellison, actually beat IBM to the market. Their product,
Oracle, never got released until a couple of years later by Relational Software, Inc.,
and then eventually became the flagship software product of Oracle Corporation,
which we all know to day.

With relational databases came a process that all of us that have studied computer
science know as normalization. This is the process that database modelers go
through to minimize database redundancy and introduce disk storage savings, but
introducing dependency. It involves splitting off data elements that appear more
than once in a relational database table into their own table structures. Instead of
storing the city where a person lives as a property of the person record, I would split
the city into a separate table structure and store person entities in one table and city
entities in another table. By doing so, we will often be creating the need to join these
tables back together at query time. Depending on the cardinality of the relationship
between these different tables (1:many, many:1, and many:many), this would require
the introduction of a new type of table to execute these join operations: the join table,
which links together two tables that would normally have a many:many cardinality.

Chapter 2

[27]

I think it is safe to say that Relational Database Management Systems have served
our industry extremely well in the past 30 years, and will probably continue to do so
for a very long time to come. However, they also came with a couple of issues, which
are interesting to point out as they will (again) set the stage for another generation of
database management systems:

•	 Relational Database Systems suffer at scale. As the sets or tables of the
relational systems grow longer, the query response times of the relational
database systems generally get worse. Much worse. For most use cases,
this was and is not necessarily a problem, but, as we all know, size does
matter, and this deficiency certainly does harm the relational model.

•	 Relational Databases are quite "anti-relational". As the domains of our
applications—and therefore, the relational models that represent those
domains—become more complex, relational systems really start to become
very difficult to work with. More specifically, join operations, where users
would ask queries of the database that would pull data from a number of
different sets/tables, are extremely complicated and resource intensive for
the database management system. There is a true limit to the number of join
operations that such a system can effectively perform, before the join bombs
go off and the system becomes very unresponsive.

Relational database schema with explosive join tables

Graph Databases – Overview

[28]

•	 Relational databases impose a schema even before we put any data into the
database, and even if a schema is too rigid. Many of us work in domains
where it is very difficult to apply a single database schema to all the elements
of the domain that we are working with. Increasingly, we are seeing the need
for a flexible type of schema that would cater to a more iterative, more agile
way of developing software.

As you will see in the following sections, the next generation of database management
systems is definitely not settling for what we have today, and is attempting to
push innovation forward by providing solutions to some of these extremely
complex problems.

NoSQL databases
The new millennium and the explosion of web content marked a new era for database
management systems as well. A whole generation of new databases emerged, all
categorized under the somewhat confrontational name of NOSQL databases. While
it is not clear where the naming came from, it is pretty clear that it was born out of
frustration with relational systems at that point in time. While most of us nowadays
treat NOSQL as an acronym for Not Only SQL, the naming still remains a somewhat
controversial topic among data buffs.

The basic philosophy of most NOSQL adepts, I believe, is that of the "task-oriented"
database management system. It's like the old saying goes: if all you have is a
hammer, everything looks like a nail. Well, now we have different kinds of hammers,
screwdrivers, chisels, shovels, and many more tools up our sleeve to tackle our
data problems. The underlying assumption then, of course, is that you are better off
using the right tool for the job if you possibly can, and that for many workloads, the
characteristics of the relational database may actually prove to be counterproductive.
Other databases, not just SQL databases, are available now, and we can basically
categorize them into four different categories:

•	 Key-Value stores
•	 Column-Family stores
•	 Document stores
•	 Graph databases

Let's get into the details of each of these stores.

Chapter 2

[29]

Key-Value stores
Key-Value stores are probably the simplest type of task-oriented NOSQL databases.
The data model of the original task at hand was probably not very complicated: Key-
Value stores are mostly based on a whitepaper published by Amazon at the biennial
ACM Symposium on Operating Systems Principles, called the Dynamo paper.
The data model discussed in that paper is that of Amazon's shopping cart system,
which was required to be always available and support extreme loads. Therefore,
the underlying data model of the Key-Value store family of database management
systems is indeed very simple: keys and values are aligned in an inherently schema-
less data model. And indeed, scalability is typically extremely high, with clustered
systems of thousands of commodity hardware machines existing at several high-end
implementations such as Amazon and many others. Examples of Key-Value stores
include the mentioned DynamoDB, Riak, Project Voldemort, Redis, and the newer
Aerospike. The following screenshot illustrates the difference in data models:

Table: Orders

Database

ID: 252
: 300 USDTotal Price

: 56432Item 1
: 98726Item 2R

ow

ID: 265
: 2,500 EURTotal Price

: 86413Item 1
: 77904Item 2R

ow

Table: Customers

ID: 1
: AndrewFirst Name
: BrustLast_Name
: 123 Main St.Street_Addr

: New YorkCity
: NYState

: 10014Zip
: 252Most recent_orderR

ow

ID: 2
: NapoleonFirst Name
: BonaparteLast_Name
: 29, Rue de RivoliStreet_Addr

: ParisCity
: 75007Postal Code

: FranceCounter
: 265Most_recent_orderR
ow

Key-Value Store

A simple Key-Value database

Graph Databases – Overview

[30]

Column-Family stores
A Column-Family store is another example of a very task-oriented type of solution.
The data model is a bit more complex than the Key-Value store, as it now includes the
concept of a very wide, sparsely populated table structure that includes a number of
families of columns that specify the keys for this particular table structure. Like the
Dynamo system, Column-Family stores also originated from a very specific need of a
very specific company (in this case, Google), who decided to roll their own solution.
Google published their BigTable paper in 2006 at the Operating Systems Design and
Implementation (OSDI) symposium. The paper not only started a lot of work within
Google, but also yielded interesting open source implementations such as Apache
Cassandra and Hbase. In many cases, these systems are combined with batch-oriented
systems that use Map/Reduce as the processing model for advanced querying.

T/SCF: Orders

Column Family Store

Database

T/SCF: Customers

ID: 1
CF/SC: Name

First Name: AndrewC:
Last_Name: BrustC:

CF/SC: Address
Street_Addr: 123 Main St.C:
City: New YorkC:
State: NYC:
Zip: 10014C:

CF/SC: Orders
Most recent_order: 252C:

ID: 2
CF/SC: Name

First Name: N poleonC: a
Last_Name: BonaparteC:

CF/SC: Address
Street: 2 , Rue de RivoliC: 3
City: P risC: a
PostalCode: 75007C:
Counter: FranceC:

CF/SC: Orders
Most recent: 265C:

R
ow

R
ow

ID: 252
CF/SC: Price

Total: 300 USDC:
CF/SC: Items

Item 1: 56432C:
Item 2: 98726C:R

ow

ID: 265
CF/SC: Price

Total: 2,500 EURC:
CF/SC: Items

C: Item 1: 86413
Item 2: 77904C:R

ow

A simple Column-Family data model

Chapter 2

[31]

Document stores
Sparked by the explosive growth of web content and applications, probably one of
the most well-known and most used types of NOSQL databases are in the Document
category. The key concept in a Document store, as the name suggests, is that of a
semi-structured unit of information often referred to as a document. This can be an
XML, JSON, YAML, OpenOffice, MS Office, or whatever kind of document that you
may want to use, which can simply be stored and retrieved in a schema-less fashion.
Examples of Document stores include the wildly popular MongoDB, and Couchbase,
MarkLogic, and Virtuoso.

Document Store

Customer Database

First_Name: Andrew
BrustLast_Name:

Address:
Street_addr: 123 Main St.

New YorkCity:
NYState:

10014Zip:

Orders:

Most_Recent_order: 252

First_Name: Napoleon
BonaparteLast_Name:

Address:
Street_addr: 29, Rue de Rivoli

ParisCity:
75007Postal Code:

FranceCountry:

Orders:

Most_Recent_order: 265

Order Database

ID: 252
300 USDTotal Price:

56432Item 1:
98726Item 2:

D
oc

um
en

t

ID: 265
2,500 EURTotal Price:

86413Item 1:
77904Item 2:

D
oc

um
en

t

D
oc

um
en

t
D

oc
um

en
t

A simple Document data model

Graph Databases – Overview

[32]

Graph databases
Last but not least, and of course the subject of most of this book, are the graph-oriented
databases. They are often also categorized in the NOSQL category, but as you will
see later, are inherently very different. This is not in the least the case because the
task-orientation that graph databases are aiming to resolve has everything to do with
graphs and graph theory that we discussed in Chapter 1, Graphs and Graph Theory – an
Introduction. Graph databases such as Neo4j aim to provide its users with a better
way to manage the complexity of the dense network of the data structure at hand.
Implementations of this model are not limited to Neo4j, of course. Other closed and
open source solutions such as Allegrograph, Dex, FlockDB, InfiniteGraph, OrientDB,
and Sones are examples of implementations at various maturity levels.

So, now that we understand the different types of NOSQL databases, it would
probably be useful to provide some general classification of this broad category
of database management systems, in terms of their key characteristics. In order to
do that, I am going to use a mental framework that I owe to Martin Fowler (from
his book NOSQL Distilled) and Alistair Jones (in one of his many great talks on this
subject). The reason for doing so is that both of these gentlemen and me share the
viewpoint that NOSQL essentially falls into two categories, on two sides of the
relational crossroads:

•	 On one side of the crossroads are the aggregate stores. These are the
Key-Value-, Column-Family-, and Document-oriented databases, as
they all share a number of characteristics:

°° They all have a fundamental data model that is based around
a single, rich structure of closely-related data. In the field of
software engineering called domain driven design, professionals
often refer to this as an "aggregate", hence the reference to the fact
that these NOSQL databases are all aggregate-oriented database
management systems.

°° They are clearly optimized for use cases in which the read patterns
align closely with the write patterns. What you read is what you
have written. Any other use case, where you would potentially like
to combine different types of data that you had previously written
in separate key-value pairs / documents / rows, would require
some kind of application-level processing, possibly in batch if at
some serious scale.

Chapter 2

[33]

°° They all give up one or more characteristics of the relational database
model in order to benefit it in other places. Different implementations
of the aggregate stores will allow you to relax your consistency/
transactional requirements and will give you the benefit of enhanced
(and sometimes, massive) scalability. This, obviously, is no small
thing, if your problem is around scale, of course.

DENORMALI EZ
Aggregate data into documents

Simple data model
Map-reduce friendly

Expressive power
Fast graph traversals

RICHER MODEL
Connected structured data

R
EL

ATIONAL

Relational crossroads, courtesy of Alistair Jones

•	 On the other side of the crossroads are the graph databases, such as Neo4j.
One could argue that graph databases actually take relational databases:

°° One step further, by enhancing the data model with a more granular,
more expressive method for storing data, thereby allowing much
more complex questions to be asked of the database, and effectively,
as we later will see, demining the join bomb.

°° Back to its roots, by reusing some of the original ideas of navigational
databases, but of course learning from the lessons of the relational
database world by reducing complexity and facilitating easy
querying capabilities.

With that introduction and classification behind us, we are now ready to take a
closer look at graph databases.

Graph Databases – Overview

[34]

The Property Graph model of graph
databases
The NOSQL category of graph databases, as we have seen previously, is in a class
of its own. In many ways, this is because the underlying data model of graph
databases—the Property Graph data model—is of a very specific nature, which we
will explain a bit further.

First of all, let's define the Property Graph data model. Essentially, it means that we
will be storing our data in the graph database.

A graph structure means that we will be using vertices and edges (or nodes and
relationships, as we prefer to call these elements) to store data in a persistent manner.
As a consequence, the graph structure enables us to:

•	 Represent data in a much more natural way, without some of the distortions
of the relational data model

•	 Apply various types of graph algorithms on these structures

In short, it enables us to treat the graph nature of that data as an essential part of
our capabilities. One of the key capabilities that we will find in the remainder of this
book is the capability to traverse the graph—to walk on its nodes and relationships
and hop from one node to the next by following the explicit pointers that connect
the nodes. This capability—sometimes also referred to as index free adjacency, which
essentially means that you can find adjacent/neighboring nodes without having to
do an index lookup—is key to the performance characteristics that we will discuss
in later paragraphs.

However, it is important to realize that the property graph model is not suited for
all graph structures. Specifically, it is optimized for:

•	 Directed graphs: The links between nodes (also known as the relationships)
have a direction.

•	 Multirelational graphs: There can be multiple relationships between two
nodes that are the same. These relationships, as we will see later, will be
clearly distinct and of a different type.

•	 Storing key-value pairs as the properties of the nodes and relationships.

Chapter 2

[35]

In the different kinds of properties that can belong to the different elements of the
graph structure, the most basic ones, of course, are properties assigned to vertices
and edges.

An example of a simple property graph

Let's investigate this model in a bit more detail. When looking closer at this, we find
the following interesting aspects of this model:

•	 There is no fixed schema. The database, in and of itself, does not impose
that you have to have a schema, although most software professionals will
agree that having some kind of schema as you move closer to production is
probably not a bad idea.

•	 Partly because of the schema-less nature of the database, it seems to be a very
nice fit for dealing with semi-structured data. If one node or relationship has
more or fewer properties, we do not have to alter the design for this; we can
just deal with that difference in structure automatically and work with it in
exactly the same way.

•	 Nodes and node properties seem to be quite easy to understand. In relational
terms, one can easily compare nodes with records in a table. It's as if the
property graph contains lots and lots of single-row tables, that is, the nodes
of the graph. Nodes will have properties just like records/rows in a table
will have fields/columns.

•	 Relationships are a bit different. They always have a start- and an endpoint,
therefore have a direction. They cannot be dangling, but can be self-referencing
(same node as start- and endpoint). But the real power lies in the fact that:

Graph Databases – Overview

[36]

°° Relationships are explicit: They are not inferred by some kind
of constraint or established at query time through a join operation.
They are equal citizens in the database; they have the same expressive
power as the nodes representing the entities in the database.

°° Relationships can have properties too: They can have values
associated with them that can specify the length, capacity, or any
other characteristic of that relationship. This is terribly important,
and very different from anything we know from the relational world.

In Neo4j then, this data model has been enriched with a couple of key concepts that
extend the core property graph model. Two concepts are important, related but
different: node labels and relationship types.

Node labels
Node labels are a way of semantically categorizing the nodes in your graph. A
node can have zero, one, or more labels assigned to it—similar to how you would
use labels in something like your Gmail inbox. Labels are essentially a set-oriented
concept in a graph structure: it allows you to easily and efficiently create subgraphs
in your database, which can be useful for many different purposes. One of the most
important things you can do with labels is to create some kind of typing structure or
schema in your database without having to do this yourself (which is what people
used to do all the time before the advent of labels in Neo4j 2.0).

Relationship types
Relationship types achieve something similar to what you do with node labels,
but to relationships. The purpose of doing so, however, is mostly very different.
Relationship types are mandatory properties for relationships (every relationship
must have one and only one type) and will be used during complex, deep traversals
across the graph, when only certain kinds of paths from node to node are deemed
important by a specific query.

This should give you a good understanding of the basic data model that we will be
using during the remainder of this book. Neo4j implements a very well-documented
version of the property graph database, and as we will see later, is well suited for
a wide variety of different use cases. Let's explore the reasons for using a graph
database like Neo4j a bit more before proceeding.

Chapter 2

[37]

Why (or why not) graph databases
By now, you should have a good understanding of what graph databases are, and
how they relate to other database management systems and models. Much of the
remainder of this book will be drilling into quite a bit more detail on the specifics
of Neo4j as an example implementation of such a database management system.
Before that, however, it makes sense to explore why these kinds of databases are
of such interest to modern-day software professionals – developers, architects,
project and product managers, and IT directors alike.

The fact of the matter is that there are a number of typical data problems, and database
system queries are an excellent match for a graph database, and that there are a number
of other types of data questions that are not specifically designed to be answered by
such systems. Let's explore these for a bit and determine the characteristics of your
dataset and your query patterns that will determine whether graph databases are
going to be a good fit or not.

Why use a graph database?
When you are trying to solve a problem that meets any of the following descriptions,
you should probably consider using a graph database such as Neo4j.

Complex queries
Complex queries are the types of questions that you want to ask of your data that
are inherently composed of a number of complex join-style operations. These
operations, as every database administrator knows, are very expensive operations
in relational database systems, because we need to be computing the Cartesian
product of the indices of the tables that we are trying to join. That may be okay for
one or two joins between two or three tables in a relational database management
system, but as you can easily understand, this problem becomes exponentially bigger
with every table join that you add. On smaller datasets, it can become an unsolvable
problem in a relational system, and this is why complex queries become problematic.

An example of such a complex query would be: find all the restaurants in a certain
London neighborhood that serve Indian food, are open on Sundays, and cater for
kids. In relational terms, this would mean joining up data from the restaurant table,
the food type table, the Opening hours table, the Caters for table, and the zip-code
table holding the London neighborhoods and then providing an answer. No doubt
there are numerous other examples where you would need to do these types of
complex queries; this is just a hypothetical one.

Graph Databases – Overview

[38]

In a graph database, a join operation will never need to be performed: all we need
to do is to find a starting node in the database (for example, London), usually with
an index lookup, and then just use the index free adjacency characteristic and hop
from one node (London) to the next (Restaurant) over its connecting relationships
(Restaurant-[LOCATED_IN]->London). Every hop along this path is, in effect, the
equivalent of a join operation. Relationships between nodes can therefore also be
thought of as an explicitly stored representation of such a join operation.

We often refer to these types of queries as pattern matching queries. We specify a
pattern (refer to the following diagram: blue connects to orange, orange connects to
green, and blue connects to green), we anchor that pattern to one or more starting
points, and start looking for matching occurrences of that pattern. As you can see,
the graph database will be an excellent tool to spin around the anchor node and
figure out whether there are matching patterns connected to it. Non-matching
patterns will be ignored, and matching patterns that are not connected to the
starting node will not even be considered.

This, actually, is one of the key performance characteristics of a graph database: as
soon as you "grab" a starting node, the database will only explore the vicinity of that
starting node and will be completely oblivious to anything that is not connected to
the starting node. The key performance characteristic that follows from this is that
query performance is very independent of the data set size, because in most graphs
everything is not connected to everything. By the same token, as we will see later,
performance will be much more dependent on the size of the result set, and this
will also be one of the key things to keep in mind when putting together your
persistence architecture.

Matching patterns connected to an anchor node

Chapter 2

[39]

In-the-clickstream queries on live data
We all know that you can implement different database queries—such as the
preceding example—in different kinds of database management systems.
However, in most alternative systems, these types of queries would yield terrible
performance on the live database management systems, and potentially endanger
the responsiveness of an entire application. The reaction of the relational database
management industry, therefore, has been to make sure that these kinds of queries
would be done on precalculated, preformatted data that would be specifically
structured for this purpose. This means duplicating data, denormalizing data, and
using techniques such as Extract, Transform, and Load (ETL) that are often used in
Business Intelligence systems to create query-specific representations (sometimes
also referred to as cubes) for the data at hand. Obviously, these are valuable
techniques—the business intelligence industry would not be the billion-dollar
industry that it is otherwise—but they are best suited for working with data that can
be allowed to be more stale, less than up-to-date. Graph databases will allow you to
answer a wider variety of these complex queries, between a web request and a web
response, on data that will not have to be replicated as much, and that therefore will
be updated in near real time.

Path finding queries
Another type of query that is extremely well suited for graph databases are queries
where you would be looking to find out how different data elements are related to
each other. In other words, finding the paths between different nodes on your graph.
The problem with such queries in other database management systems is that you
would actually have to understand the structure of the potential paths extremely well.
You would have to be able to tell the database how to "jump" from table to table, so to
speak. In a graph database, you can still do that, but typically you won't. You just tell
the database to apply a graph algorithm to a starting point and an endpoint and be
done with it. It's up to the database to figure out if and how these data elements would
be connected to each other and return the result as a path expression for you to use
in your system. The fact that you are able to delegate this to the database is extremely
useful, and often leads to unexpected and valuable insights.

Obviously, the query categories mentioned above are just that: categories. You
would have to apply it to any of the fields of research that we discussed in Chapter
1, Graphs and Graph Theory – an Introduction, to really reap the benefits. We will come
back to this in later chapters.

Graph Databases – Overview

[40]

Why not use a graph database, and what to
use instead
As we discussed earlier in this chapter, the whole concept of the category of Not
Only SQL databases is all about task-orientation. Use the right tool for the job. So
that also must mean that there are certain use cases that graph databases are not as
perfectly suited for. Being a fan of graph databases at heart, this obviously is not easy
for me to admit, but it would be foolish and dishonest to claim that graph databases
are the best choice for every use case. It would not be credible. So, let's briefly touch
on a couple of categories of operations that you would probably want to separate
from the graph database category that Neo4j belongs to.

The following operations are where I would personally not recommend using
a graph database like Neo4j, or at least not in isolation.

Large, set-oriented queries
If you think back to what we discussed earlier, and think about how graph databases
achieve the performance that they do in complex queries, it will also immediately
follow that there are a number of cases where graph databases will still work, but
will just not be as efficient. If you are trying to put together large lists of things,
effectively sets, that do not require a lot of joining or require a lot of aggregation
(summing, counting, averaging, and so on) on these sets, then the performance of
the graph database compared to other database management systems will be not as
favorable. It is clear that a graph database will be able to perform these operations, but
the performance advantage will be smaller, or perhaps even negative. Set-oriented
databases such as relational database management systems will most likely give just
as or even more performance.

Graph global operations
As we discussed earlier, graph theory has done a lot of fascinating work on the
analysis and understanding of graphs in their entirety. Finding clusters of nodes,
discovering unknown patterns of relationships between nodes, and defining
centrality and/or in-betweenness of specific graph components are extremely
interesting and wonderful concepts, but they are very different concepts from the
ones that graph databases excel at. These concepts are looking at the graph in its
entirety, and we refer to them as graph global operations. While graph databases are
extremely powerful at answering "graph local" questions, there is an entire category
of graph tools (often referred to as graph processing engines or graph compute
engines) that look at the graph global problems.

Chapter 2

[41]

Many of these tools serve an extremely specific purpose, and even use specific
hardware and software (usually using lots of memory and CPU horsepower) to
achieve their tasks, and typically are part of a very different side of the IT architecture.
Graph processing is typically done in batches, in the background, over the course of
several hours/days/weeks and would typically not be well placed between a web
request and a web response. It's a very different kind of ball game.

Simple, aggregate-oriented queries
We mentioned that graphs and graph database management systems are great
for complex queries—things that would make your relational system choke. As a
consequence, simple queries, where write patterns and read patterns align to the
aggregates that we are trying to store, are typically served quite inefficiently in a
graph, and would be more efficiently handled by an aggregate-oriented Key-Value
or Document store. If complexity is low, the advantage of using a graph database
system will be lower too.

Hopefully, this gives you a better view of the things that graph databases are good
and not so good at.

Test questions
Q1. Which other category of databases bears the most resemblance to graph databases?

1.	 Navigational databases.
2.	 Relational Databases.
3.	 Column-Family stores.
4.	 None; graph databases are unique.

Q2. The data model of graph databases is often described as the proprietary graph
data model, containing nodes, relationships, and proprietary elements.

1.	 True.
2.	 False.

Q3. Simple, aggregate-oriented queries yielding a list of things are a great application
for a graph database.

1.	 True.
2.	 False.

Graph Databases – Overview

[42]

Summary
In this chapter, we wanted to give you a bit of context before diving into the wonderful
world of graph databases headfirst. It's a good idea, from an architect's point of view,
to understand how graph database management systems like Neo4j came about, what
problems they are trying to solve, what they are good at, and what they are perhaps
less well suited for.

With that in mind, we are now ready to get our hands dirty, and start with actually
playing around with Neo4j, the world's leading graph database.

Getting Started with Neo4j
In this chapter, we will be taking a much closer look at the real subject of this book,
that is, learning Neo4j—the world's leading graph database. In this chapter, we will
be going through and familiarizing ourselves with the database management system
so that we can start using it in the following chapters with real-world models and
use cases.

We will discuss the following topics in this chapter:

•	 Key concepts and characteristics of Neo4j
•	 Neo4j's sweet spot use cases
•	 Neo4j's licensing model
•	 Installing Neo4j
•	 Using Neo4j in the cloud

Let's start with the first topic straightaway.

Neo4j – key concepts and characteristics
Before we dive into the details of Neo4j, let's take a look at some of the key
characteristics of Neo4j specifically as a graph database management system.
Hopefully, this will immediately point out and help you get to grips with some
of the key strengths as well.

Getting Started with Neo4j

[44]

Built for graphs, from the ground up
Like many open source projects and many open source NoSQL database management
systems, Neo4j too came into existence for very specific reasons. Scratching the itch, as
this is sometimes called. Grassroots developers who want to solve a problem and are
struggling to do so with traditional technology stacks, decide to take a radical, new-
found approach. That's what the Neo4j founders did early on in the 21st century—they
built something to solve a problem for a particular media company in order to better
manage media assets.

In the early days, Neo4j was not a full-on graph database management system
—it was more like a graph library that people could use in their code to deal with
connected data structures in an easier way. It was sitting on top of traditional,
MySQL (and other) relational database management systems and was much more
focused on creating a graph abstraction layer for developers than anything else.
Clearly, this was not enough. After a while, the open source project took a radical
decision to move away from the MySQL infrastructure and to build a graph
store from the ground up. The key thing here is from the ground up. The entire
infrastructure, including low-level components such as the binary file layout of
the graph database store files, is optimized for dealing with graph data. This is
important in many ways, as it will be the basis for many of the speed and other
improvements that Neo4j will display versus other database management systems.

We don't need to understand the details of this file structure for the basis of this
book—but suffice to say that it is a native, graph-oriented storage format that is
tuned for this particular workload. That, dear reader, makes a big difference.

Transactional, ACID-compliant database
Neo4j prides itself in being an ACID-compliant database. To explain this further,
it's probably useful to go back to what ACID really means. Basically, the acronym
is one of the oldest summaries of four goals that many database management
systems strive for, and they are shown in the following figure:

Chapter 3

[45]

Atomicity:
Transactions

are all or
nothing

Isolation:
Transactions
do not affect
each other

Consistency:
Only valid data

is saved

Durability:
Written data

will not be lost

a c d

•	 Atomicity: This means that changes in the database must follow an all
or nothing rule. Transactions are said to be "atomic" if one part of the
transaction fails, then the consequence would be that the entire transaction
is rolled back.

•	 Consistency: This means that only consistent or "valid" data will be allowed to
be entered into the database. In relational terminology, this often means that
the schema of the database has to be applied and maintained at all times. The
main consistency requirement in Neo4j is actually that the graph relationships
must have a start and an end node. Relationships cannot be dangling. Aside
from this, however, the consistency rules in Neo4j will obviously be much
looser, as Neo4j implements the concept of an "optional" schema.

The optional schema of Neo4j is really interesting: the idea being that it
is actually incredibly useful to have a schema-free database when you
are still at the beginning of your development cycles. As you are refining
your knowledge about the domain and its requirements, your data
model will just grow with you—free of any requirements to pre-impose
a schema on your iterations. However, as you move closer to production,
schema—and therefore consistency—can be really useful. At that point,
system administrators and business owners alike will want to have
more checks and balances around data quality, and the C in ACID will
become more important. Neo4j fully supports both approaches, which is
tremendously useful in today's agile development methodologies.

Getting Started with Neo4j

[46]

•	 Isolation: This requires that multiple transactions that are executed in
parallel on the same database instance would not impact each other. The
transactions need to take their due course, irrespective of what is happening
in the system at the same time. One of the important ways that this is used is
in the example where one transaction is writing to the database and another
is reading from it. In an isolated database, the read transaction cannot know
about the write that is occurring "next to" it until the transaction of the write
operation is complete and fully committed. As long as the write operation is
not committed, the read operation will have to work with the "old" data.

•	 Durability: This basically means that committed transactions cannot just
disappear and be lost. Persisted storage and transaction commit logs that
are forced to be written to disk—even when the actual data structures have
not been updated yet—ensure this quality in most database systems and
also in Neo4j.

The summary of all this is probably that Neo4j, really, has been designed from the
ground up to be a true multipurpose database-style solution. It shares many of the
qualities of a traditional relational database management system that we know
today—it just uses a radically different data model that is well suited for densely
connected use cases.

Made for Online Transaction Processing
The mentioned characteristics help with systems where you really need to
be returning data from the database management system in an online system
environment. This means that the queries that you want to ask the database
management system would need to be answered in the timespan between a
web request and a web response. In other words, in milliseconds—not seconds,
let alone minutes.

This characteristic is not required of every database management system. Many
systems actually only need to reply to requests that are first fired off and then
require an answer many hours later. In the world of relational database systems,
we call these analytical systems. We refer to the difference between the two types
of systems as the difference between Online Transaction Processing (OLTP) and
Online Analytical Processing (OLAP). There's a significant difference between
the two—from a conceptual as well as from a technical perspective. So let's
compare the two in the following table:

Chapter 3

[47]

Online Transaction Processing
(Operational System)

Online Analytical Processing
(Analytical System, also known
as the data warehouse)

Source of
data

Operational data; OLTPs are the
original source of the data

Consolidation data; OLAP data
comes from the various OLTP
databases

Purpose of
data

To control and run fundamental
business tasks

To help with planning, problem
solving, and decision support

What the data
provides

Reveals a snapshot of ongoing
business processes

Multidimensional views of various
kinds of business activities

Inserts and
updates

Short and fast inserts and updates
initiated by end users

Periodic long-running batch jobs
refresh the data

Queries Relatively standardized and
simple queries returning
relatively few records

Often complex queries involving
aggregations

Processing
speed

Typically very fast Depends on the amount of data
involved; batch data refreshes and
complex queries may take many
hours

Space
requirements

Can be relatively small if
historical data is archived

Larger due to the existence of
aggregation structures and history
data; requires more indexes than
OLTP

Database
design

Highly normalized with many
tables

Typically de-normalized with fewer
tables; use of star and/or snowflake
schemas

Backup and
recovery

Backs up religiously; operational
data is critical to run the business,
data loss is likely to entail
significant monetary loss and
legal liability

Instead of regular backups, some
environments may consider simply
reloading the OLTP data as a
recovery method

At the time of writing this, Neo4j is clearly in the OLTP side of the database
ecosystem. That does not mean that you cannot do any analytical tasks with Neo4j.
In fact, some analytical tasks in the relational world are far more efficiently run
on a graph database (see the sweet spot query section that follows later), but it is
not optimized for it. Typical Neo4j implementation recommendations would also
suggest that you put aside a separate Neo4j instance for these analytical workloads
so that it would not impact your production OLTP queries. In the future, Neo
Technology plans to make further enhancements to Neo4j that make it even more
suited for OLAP tasks.

Getting Started with Neo4j

[48]

Designed for scalability
In order to deal with the OLTP workload, Neo4j obviously needs to be able to
support critical scalability, high availability, and fault-tolerance requirements.
Creating clusters of database server instances that work together to achieve the
goals stated before typically solves this problem. Neo4j's Enterprise Edition,
therefore, features a clustering solution that has been proven to support even
the most challenging workloads.

Neo4j high availability architecture

As you can see from the preceding diagram, the Neo4j clustering solution is a
master-slave clustering solution. In a particular cluster, each server instance of
the cluster will perform the following steps:

•	 Hold the entire dataset of the database. All servers hold the same data
and therefore can respond to all query requests.

•	 Comply with a master-slave consistency scheme. This means that, in case
of potential conflicting data in the database, the Master server instance will
decide what would be right data to keep and persist. If at some point, the
cluster would lose its master, the remaining cluster member instances would
run a master election algorithm (in Neo4j's case, based on Paxos) that allows
them to quickly choose a new master.

Chapter 3

[49]

•	 The server should be optimized to deal with a particular subset of the queries
that hit the cluster. For example, the load balancer would be configured in
such a way that specific types of queries (for example, write queries versus
read queries, queries for a specific region/continent, and queries from a
specific application) would be directed to a specific cluster member. The
advantage of doing so is that this will allow Neo4j to optimize its caching
content and use a concept that we sometimes refer to as a "sharded cache".
This means that the cluster members may in fact be holding the same dataset
in their database store files, but in memory, in the cache, they will hold very
different parts of the graph. Similar to any database management system,
queries served up from a cache will be much faster. So, we want to try and
optimize the cluster for this. If by some twist of fate the queries don't end
up on the right instance, then that does not mean that the application will
stop functioning. It will just not respond from cache, and therefore respond
a bit slower.

Neo4j's clustering solution allows you to provide the following features:

•	 Horizontal scalability: This is provided by adding more machines to the
cluster and distributing the load over the cluster members

•	 Vertical scalability: This is provided by adding more horsepower (CPU,
memory, disks, and so on) to the machines that are the cluster members

This covers 99 percent of all use cases—the references of Neo Technology speak
for itself.

A declarative query language – Cypher
One of the defining features of the Neo4j graph database product today is its
wonderful query language, called Cypher. Cypher is a declarative, pattern-matching
query language that makes graph database management systems understandable and
workable for any database user—even the less technical ones.

The key characteristic of Cypher is, in my opinion, that it is a declarative language,
opposed to other imperative query languages that have existed for quite some time.
Why is this so important? Here are your answers:

•	 Declarative languages allow you to state what you're looking for, declare
the pattern that you would like to see retrieved, and then let the database
worry about how to go about retrieving that data.
In an imperative (query) language, you would have to tell the database
specifically what to do to get to the data and retrieve it.

Getting Started with Neo4j

[50]

•	 Declarative languages separate the concern of stating the problem, from
solving it. This allows greater readability of the queries that you write,
which is important as people tend to read their database queries more
often than they write them. This piece of your software will therefore
become more readable and shareable with others, and long term
maintenance of that easy-to-read query becomes so much easier.

•	 Declarative languages will allow the database to use the information that
it holds about the nature and structure of the data to answer your question
more efficiently. Essentially, it allows query optimizations that you would
never have known of or thought about in an imperative approach. Therefore,
declarative languages can be faster—at least over time as the optimization
algorithms mature.

•	 Declarative languages are great for adhoc querying of your database,
without you having to write complex software routines to do so.

Part of the reason why I feel that Cypher is such an important part of Neo4j is that
we know that declarative languages, especially in the database management systems
world, are critical to mass adoption. Most application developers do not want to be
worrying about the nitty gritty of how to best interact with their data. They want to
focus on the business logic and the data should just be there when I want it, as I want
it. This is exactly how relational database systems evolved in the seventies (refer to
Chapter 2, Graph Databases – Overview). It is highly likely that we will be seeing a similar
evolution in the graph database management system space. Cypher, therefore, is in a
unique position and makes it so much easier to work with the database. It is already
an incredible tool today, and it will only become better.

Sweet spot use cases of Neo4j
Like with many software engineering tools, Neo4j too has its sweet spot use cases
—specific types of uses that the tool really shines and adds a lot of value to your
process. Many tools can do many things and so can Neo4j, but only a few things can
be done really well by a certain tool. We have addressed some of this already in the
previous chapter. However, to summarize specifically for the Neo4j software package,
I believe that there are two particular types of cases—featuring two specific types of
database queries—where the tool really excels.

Chapter 3

[51]

Complex, join-intensive queries
We discussed in the previous chapter how relational database management
systems suffer from significant drawbacks, as they have to deal with more and
more complex data models. Asking these kinds of questions of a relational database
requires the database engine to calculate the Cartesian product of the full indices
on the tables involved in the query. That computation can take a very long time
on larger datasets, or if more than two tables are involved.

Graph database management systems do not suffer from these problems. The join
operations are effectively precalculated and explicitly persisted in the database based
on the relationships that connect nodes together. Therefore, joining data becomes as
simple as hopping from one node to another—effectively as simple as following a
pointer. These complex questions that are so difficult to ask in a relational world
are extremely simple, efficient, and fast in a graph structure.

Path finding queries
Many users of Neo4j use the graph structure of their data to find out whether there are
useful paths between different nodes on the network. Useful in this phrase is probably
the operative word; they are looking for specific paths on the network to:

•	 See whether the path actually exists. Are there any connections between
two data elements, and if so what does that connectivity look like?

•	 Look for the optimal path. Which path between two things has the
lowest "cost?"

•	 Look for the variability of the path if a certain component of the path
changes. What happens to the path if the properties of a node or
relationship change?

Both of these sweet spot use cases share a couple of important characteristics:

•	 They are "graph local" and they have one or more fixed starting
point(s), or "anchor", in the graph from where the graph database
engine can start traversing out

•	 They are performed "in the clickstream", and therefore performed on
near-real-time data

Let's now switch to another key element of Neo4j's success as a graph database
management system: the fact that it is an open source solution.

Getting Started with Neo4j

[52]

Committed to open source
One of the key things that we have seen happening in Enterprise information
technology, is the true and massive adoption of open source technologies for many
of its business-critical applications. This has been an evolution that has lasted a decade
at least, starting with peripheral systems such as web servers (in the days when web
servers were still considered to be serving static web pages), but gradually evolving
to mission critical operating systems, content management applications,
CRM systems and databases such as Neo4j.

There are many interesting aspects to open source software, but some of the most
often quoted are listed as follows:

•	 Lower chance of vendor lock-in: Since the code is readily available, the
user of the software could also read the code themselves and potentially
understand how to work with it (and extend it, or fix it, or audit it, and
so on) independently of the vendor.

•	 Better security: As the code is undergoing public scrutiny and because
there is no way for a developer to implement "security through obscurity"
(for example by using a proprietary algorithm that no one knows and
would have to reverse engineer), open source software systems should be
intrinsically more secure.

•	 Easier support and troubleshooting: As both the vendor and the customer
have access to the source code, it should be easier to exchange detailed,
debug-level information about the running system and make it easier to
pinpoint problems.

•	 More innovation through extensibility: By exposing source code, many
people left and right will start playing with the software—even without the
original author knowing that this is going on. This typically causes these
"community contributors" to solve problems that they encounter with the
product, in their specific use case, and it leads to faster innovation and
extensibility of the solution.

•	 Supporting (fundamental and applied) research: Open source solutions
—even the ones equipped with enterprise commercial features such
as Neo4j—usually allow researchers to use the software for free. Most
researchers also published their work as open source code. So, it's a
two-way street.

•	 Cheaper: open source software tends to use "fair" licensing models. You
only need to pay if you derive value from the software and are not able
to contribute your code. This not only allows cheaper evaluation of the
software in the start of the process—hopefully avoiding unused shelfware
—but also allows enterprises to start with limited investments and grow
gradually as the use expands.

Chapter 3

[53]

I believe that all is true for Neo4j. Let's look at the different parameter axes that
determine the license model. Three parameters are important, which are explained
in the following sections.

The features
Neo4j offers different feature sets for different editions of the graph database
management system:

•	 Community Edition: This is the basic, fully functional, high-performance
graph database.

•	 Enterprise Edition: This adds a number of typical Enterprise features to
the Community Edition: clustering (for high availability and load balancing),
advanced monitoring, advanced caching, and online backups. Neo
Technology has a number of additional features lined up on the Enterprise
Edition roadmap.

Most users of Neo4j start off with the Community Edition, but then deploy into
production on the Enterprise Edition.

The support
Different support channels exist for Neo4j's different editions:

•	 The Community Edition offers "community support". This means that
you are welcome to ask questions and seek support on the public forums
(Google group, Stack Overflow, Twitter, and other channels). However,
note the following points:

°° The responses will always need to be publicized (cannot be private)
°° The response will not be guaranteed or timed

Neo Technology does sponsor a significant team of top-notch engineers
to help the community users, but at the end of the day, this formula does
have its limitations.

•	 The Enterprise Edition offers a professional grade support team that is
available 24/7, follows the sun, and has different prioritization levels with
guaranteed response times. At the time of writing this, Neo Technology also
offers direct access to its engineers that write the product so that customers
can literally get first-hand information and help from the people that build
Neo4j themselves.

Getting Started with Neo4j

[54]

The support program for Neo4j is typically something that is most needed at
the beginning of the process (as that is when the development teams have most
questions about the new technology that they are using), but it is often only
sought at the end of a development cycle.

The license conditions
For the slightly more complicated bit, Neo Technology has chosen very specific
licensing terms for Neo4j, which may seem a tad complicated but actually really
supports the following goals:

•	 Promoting open source software
•	 Promoting community development of Neo4j
•	 Assuring the long-term viability of the Neo4j project by providing

for a revenue stream.

This is achieved in the following ways:

•	 The Community Edition uses the GNU Public License Version 3 (GPLv3)
as its licensing terms. This means that you may copy, distribute, and modify
the software as long as you track changes/dates of in source files and keep
modifications under GPL. You can distribute your application using a GPL
library commercially, but you must also provide the source code. It is therefore
a very viral license and requires you to open source your code—but only if
your code directly interfaces with the Neo4j code through the Java API. If
you are using the REST API, then there are little or no contamination effects
and you can just use Neo4j at will.

•	 The Enterprise Edition uses a so-called dual license model. This means that
users of the Neo4j Enterprise Edition can choose one of two options:

°° Either they adhere to the Affero GNU Public License Version 3
(AGPLv3), which is sometimes also referred to as the "GPL for
the web".

The AGPL license differs from the other GNU licenses in that it was
built for network software. Similar conditions apply as to the GPL;
however, it is even more "viral" in the sense that it requires you to
open source your code not only when you link your code on the
same machine (through Neo4j's Java API), but also if you interface
with Neo4j over the network (through Neo4j's REST API). So, this
means that if you use Neo4j's Enterprise Edition for free, you have
to open source your code.

Chapter 3

[55]

°° Get a Neo Technology Commercial License (NTCL). This license
is a typical commercial subscription license agreement, which gives
you the right to use Neo4j Enterprise Edition for a certain period of
time, on a certain number of machines/instances.

All of the mentioned points are summarized in the following figure:

An overview of the Neo4j license

As indicated in the preceding figure, Neo Technology offers a number of different
annual commercial subscription options, depending on the number of instances
that you will deploy, the type of company you are (startup, mid-sized corporation,
or large corporation), the legal contract requirements of the agreement, and the
support contract. For more information on the specifics of these bundles—which
change regularly—you can contact sales@neotechnology.com.

With that, we have wrapped up this section and will now proceed to getting our
hands dirty with Neo4j on the different platforms available.

Getting Started with Neo4j

[56]

Installing Neo4j
In this section, we will take you through the first couple of steps that you need
to take to get started with Neo4j. These steps are quite a bit different on different
platforms, therefore we will be going through the different options one by one and
looking at the common steps. For most, this will be a simple step—but it's
an important one that we cannot afford to skip.

Installing Neo4j on Windows
Like on any platform, installing Neo4j starts with downloading the latest version
from the Neo4j website: http://www.Neo4j.org/download is where the most recent
versions can be found.

Currently, interfacing with Neo4j is done best with a webkit-based
browser, such as Chrome (which is the browser that we will be using
for this section), on all platforms.

Download Neo4j for windows

http://www.Neo4j.org/download

Chapter 3

[57]

Neo4j Community Edition offers an excellent starting point for your exploration
of the Neo4j ecosystem, and on Windows, the download process initiated
provides you with an executable Windows installer that gives you the
smoothest installation experience.

The downloaded Neo4j installer

Getting Started with Neo4j

[58]

Once Neo4j is downloaded, the Windows installer provides you with all the
necessary options to install Neo4j smoothly and efficiently.

Accept the Neo4j license

Chapter 3

[59]

After you accept the license agreement, the setup wizard will allow you to
immediately run the software:

Complete installation of Neo4j

The following screenshot shows that Neo4j is initiated when you finish the
setup instructions:

Starting Neo4j

Getting Started with Neo4j

[60]

Once Neo4j is running, you can immediately access the server with the Neo4j browser:

Accessing the Neo4j browser

Accessing the Neo4j server binaries or any of the accompanying tools can be done
from the filesystem, which would typically be in the C:\Program Files\Neo4j
Community directory.

Chapter 3

[61]

The Neo4j file structure on Windows

With that, we now have a running server on our Microsoft Windows machine and
we are ready to start working with it. We will do so right after we explore some of
the other remaining platforms.

Getting Started with Neo4j

[62]

Installing Neo4j on Mac or Linux
Downloading Neo4j for the Mac or Linux platforms is of course very similar. The
Neo4j website will automatically detect your platform and start downloading the
appropriate version.

Download Neo4j for OS X/Linux

The only major difference in the download process, however, is in the fact that the Java
runtime is not bundled with the downloaded files. On Windows, as we saw previously,
there is no need to install anything but the Neo4j installer. On Mac OS X and Linux,
however, you need to make sure that Java 7 is installed and configured to be used as
the default Java Virtual Machine. In this book, we will assume that you know how to
do this—if not, you may want to search for Neo4j java 7 OS X using a browser and you
will find the required articles to solve this.

Chapter 3

[63]

I will be using OS X as my home operating system, but the process should be almost
identical on Linux.

First, you start with downloading the file that contains Neo4j.

Neo4j is downloaded as a tarball

Getting Started with Neo4j

[64]

Next, you just need to uncompress the download in a location of your preference. You
can do that with a graphical tool (just double-clicking the compressed file) or by using
the command-line utility that ships with your OS X or Linux distribution. In any case,
you will get a file structure similar to the one shown in the following screenshot:

The uncompressed file structure of Neo4j

Next, you should open a terminal in the directory highlighted in the preceding
screenshot. By running a simple command (bin/neo4j start), you will start
Neo4j at the default location:

Starting Neo4j from the command line

Chapter 3

[65]

Accessing Neo4j's browser is completely analogous to the Windows
installation illustrated previously; all you need to do is point your browser
to http://localhost:7474 and you should be good to go.

Starting the Neo4j browser

The default installation of Neo4j also comes with some tutorials and a simple dataset
that you can play around with. Hopefully, this is enough to get you going; it certainly
is enough for this chapter of the book.

Using Neo4j in a cloud environment
In this section, we are going to address a third and alternative way of getting
started with the Neo4j graph database management system, that is, by using a cloud
solution. As it turns out, you can try out the power of the database solution without
even having to go through the previously mentioned steps of installing the product
on an operating system of your own. You can just use a "graph as a service" solution;
there are multiple providers out there. At the time of writing this, you can use
solutions from the following:

•	 GrapheneDB.com
•	 Heroku
•	 GraphAlchemist
•	 ElastX
•	 Of course, a "roll your own" solution on Amazon Web Services would

work just as nicely

Getting Started with Neo4j

[66]

Therefore, we are going to explain and illustrate some of the principles of a cloud-
based deployment model and how you can use it to get started. To do so, we will
be using the GrapheneDB platform—probably one of the most simple, elegant,
and powerful solutions out there.

Getting started with the cloud platform consists of a few simple steps:

1.	 Register with GrapheneDB. This is easy enough, as they offer a free tier
to test out the solution and get started.

Starting with GrapheneDB

2.	 Create a database instance. This is the equivalent of starting up a Neo4j
server, but just not on your own server hardware.

Chapter 3

[67]

Create a new Neo4j database

3.	 Once the database has been created, we can start using it. The Admin panel
shows us the way, and gives immediate access to this particular Neo4j
instance's browser interface.

Start using a Neo4j database

Getting Started with Neo4j

[68]

4.	 In that browser interface, we can do everything we would normally be able to
do, except for the fact that this interface is protected by an implicit username/
password combination. Running a few queries immediately feels familiar; the
experience is nearly identical to that of running a local database server.

Accessing the Neo4j browser

Chapter 3

[69]

One of the few differences that you will notice is the way you access the
REST interface—if you are using specific language bindings, for example.
These configurations are very specific and need to be taken into account:

REST connection settings for Neo4j

Getting Started with Neo4j

[70]

5.	 Finally, if you want to administer your cloud-based Neo4j system,
you can access the following web page to perform exports and imports
of your database, for example. The latter is of course interesting and
important, as it allows you to create a database on your local machine
and then transfer the zipped graph.db directory onto the Neo4j instance
at http://www.graphenedb.com/.

Administering a Neo4j database import/export

I hope this gives you a good overview of how you can get started with Neo4j with a
provider such as GrapheneDB. It definitely flattens the learning curve even further
and makes it easier for people to start using Neo4j in real production environments.

http://www.graphenedb.com/

Chapter 3

[71]

Test Questions
Q1. Neo4j is an ACID database.

1.	 True.
2.	 False.

Q2. The Enterprise Edition of Neo4j is available in which of the following
license formats:

1.	 A closed-source, proprietary license, to be purchased from Neo Technology.
2.	 An open source license, the Apache 2 License.
3.	 An open source license, the Affero GNU Public license.
4.	 A dual license—either the open source Affero GNU Public license or the

open source Neo Technology Commercial License to be purchased from
Neo Technology.

Q3. Neo4j is only available on Linux/Unix/OS X based systems.

1.	 True.
2.	 False.

Summary
In this chapter, we discussed the background material for Neo4j specifically, as the
world's leading graph database and the topic of the rest of this book. This included
an overview of Neo4j's specific implementation of the graph database concepts,
its sweet spot use cases, its licensing model, and its installation and deployment
considerations. This should give us the required background to get going with the
hands-on part of this book. This is what we will start to address now, and the next
chapter will help you to model your data in the right way that is fit for Neo4j.

Modeling Data for Neo4j
In this chapter, we will get started with some graph database modeling in Neo4j.
As this type of modeling can be quite different from what we are typically used
to with our relational database backgrounds, we will start by explaining the
fundamental constructs first and then explore some recommended approaches.

We will cover the following topics in this chapter:

•	 Modeling principles and how-to's
•	 Modeling pitfalls and best practices

The four fundamental data constructs
As you may already know by now, graph theory gives us many different graphs to
work with. Graphs come in many different shapes and sizes, and therefore, Neo4j
needed to choose a very specific type of data structure that is flexible enough to
support the versatility required by real-world datasets. This is why the underlying
data model of Neo4j, the labeled property graph, is one of the most generic and
versatile of all graph models.

Modeling Data for Neo4j

[74]

This graph data model gives us four different fundamental building blocks to
structure and store our data. Let's go through them:

The labeled property graph model

•	 Nodes: These are typically used to store entity information. In the preceding
example, these are the individual books, readers, and authors that are present
in the library data model.

•	 Relationships: These are used to connect nodes to one another explicitly
and therefore provide a means of structuring your entities. They are the
equivalent of an explicitly stored, and therefore pre-calculated, join-like
operation in a relational database management system. As we have seen
in the previous chapters, joins are no longer a query-time operation—they
are as simple as the traversal of a relationship connecting two nodes.
Relationships always have a type, a start- and an end-node, and a direction.
They can be self-referencing/looping and can never be dangling (missing
start- or end-node).

•	 Properties: Both nodes and relationships are containers for properties,
which are effectively name/value pairs. In the case of the nodes, this is
very intuitive. Just like a record in the relational database world has one or
more fields or attributes, so can the node have one or more properties. Less
intuitive is the fact that relationships can have properties too. These are used
to further qualify the strength or quality of a relationship and can be used
during queries/traversals to evaluate the patterns that we are looking for.

Chapter 4

[75]

•	 Labels: This was a fundamental data model construct that was added to
Neo4j with Version 2.0 at the end of 2013. Labels are a means to quickly and
efficiently create subgraphs. By assigning labels to nodes, Neo4j makes the
data model of most users a lot simpler. There is no longer a need to work
with a type property on the nodes, or a need to connect nodes to definition
nodes that provide meta-information about the graph. Neo4j now does
this out of the box—and this is a huge asset, now and for the future. At
the time of writing this book, labels are primarily used for indexing and
some limited schema constraints. However, in future, it is likely that the
structural understanding that labels provide about the data stored in the
graph will be used for other purposes such as additional schema, security,
graph sharding/distribution—and perhaps others.

With these four data constructs, we can now start working with Neo4j.

How to start modeling for graph
databases
In this section, we will spend some time going through what a graph database
model is. Specifically, we would like to clarify a common misunderstanding
that originates from our habitual relational database system knowledge.

What we know – ER diagrams and relational
schemas
In a relational system, we have been taught to start out modeling with an Entity-
Relationship diagram. Using these techniques, we can start from a problem/domain
description (what we call a user story in today's agile development methodologies)
and extract the meaningful entities and relationships. We will come back to this later,
but essentially, we usually find that from such a domain description, we can:

•	 Extract the entities by looking at the nouns of the description
•	 Extract the properties by looking at the adjectives of the description
•	 Extract the relationship by looking at the operating verbs in the description

Modeling Data for Neo4j

[76]

These are, of course, generic guidelines that will need to be tried and tested on every
domain individually to make sure that it is an appropriate fit. However, for now,
let's look at the following diagram:

An Entity-Relationship diagram

As you can see from the preceding figure, ER diagrams have the advantage of at
least attempting to capture the business domain in a real-world model. However,
they suffer from quite a few disadvantages too. Despite being visually very similar
to graph visualizations, ER diagrams immediately demonstrate the shortcomings of
the relational model to capture a rich domain. Although they allow relationships to
be named (something that graph databases fully embrace, but relational stores do
not), ER diagrams allow only single, undirected, named but otherwise unqualified
relationships between entities. In this respect, the relational model is a poor fit for
real-world domains where relationships between entities are numerous, semantically
rich, and diverse. The labeled property graph, as we have seen previously,
allows for a much richer description of the domain, specifically with regard to
the relationships between the entities—which will be multiple, directed, and
qualified through properties.

The problem of relational ER modeling becomes even worse when we take the
ER diagram to an actual system and are faced with serious limitations. Let's take
a look at how one of the relational model's fundamental problems becomes
apparent when we take the diagram to a test in a real-world implementation.

Chapter 4

[77]

Introducing complexity through join tables
Let's take the model, which was described previously, to the database administrator
for an actual implementation. What happens then is that in this implementation, the
relational model inherently causes complexity. What you can see in the following
diagram is that for every relationship where we can have n-n combinations, we
actually need to introduce something that links the two tables together. This is what
we call a join table, and this will be used by every query that requests a combination
of the n-n entities.

The database schema

In the previous example, we introduced the AppDatabase table to link applications
to database servers and the UserApp table to link Users to Applications. These join
tables are only necessary to deal with the shortcomings of the relational model, and
they complicate our lives as database administrators and application developers.
They introduce unwanted complexity.

Modeling Data for Neo4j

[78]

A graph model – a simple, high-fidelity
model of reality
Let's take a quick look at how we can avoid the complexity mentioned previously
in the graph world. In the following figure, you will find the graph model and the
relational model side by side:

The relational model versus the graph model

On the right-hand side of the image, you will see the three tables in the
relational model:

•	 A customers table with a number of customer records
•	 An Accounts table with a number of accounts of these customers
•	 A typical join table that links customers to accounts

What is important here is the implication of this construction: every single time
we want to find the accounts of a customer, we need to perform the following:

1.	 Look up the customer by their key in the customer table.
2.	 Join the customer using this key to their accounts.
3.	 Look up the customer's accounts in the accounts table using the account

keys that we found in the previous step.

Contrast this with the left-hand side of the figure, and you will see that the model
is much simpler. We find the following elements:

1.	 A node for the customer.

Chapter 4

[79]

2.	 Three nodes for the accounts.
3.	 Three relationships linking the accounts to the customer.

Finding the accounts of the customer is as simple as performing the following:

1.	 Finding the customer through an index lookup on the key that we specify
in advance

2.	 Traversing out from this customer node using the owns relationship to the
accounts that we need

In the preceding example, we are performing only a single join operation over two
tables. This operation will become exponentially more expensive in a relational
database management system as the number of join operations increases and
logarithmically more expensive as the datasets involved in the join operation become
larger and larger. Calculating the Cartesian product of two sets (which is what
relational databases need to do in order to perform the join) becomes more and
more computationally complex as the tables grow larger.

We hope to have given you some initial pointers with regards to graph modeling
compared to relational modeling, and we will now proceed to discuss some pitfalls
and best practices.

Graph modeling – best practices and
pitfalls
In this chapter, we will give an overview of the generic recommendations and
best practices for graph database modeling, and we will also provide you with
some insight into common pitfalls for you to avoid. It goes without saying that
all of these recommendations are generic recommendations and that there may
be exceptions to these rules in your specific domains—just like this could be
previously, in the case of your relational database design models.

Graph modeling best practices
In the upcoming sections, I will be sharing and discussing a number of practices
that have been successfully applied in a number of Neo4j projects.

Modeling Data for Neo4j

[80]

Design for query-ability
Like with any database management system, but perhaps even more so for a graph
database management system such as Neo4j, your queries will drive your model.
What we mean with this is that, exactly like it was with any type of database that
you may have used in the past or would still be using today, you will need to make
specific design decisions based on specific trade-offs. Therefore, it follows that there
is no one perfect way to model in a graph database such as Neo4j. It will all depend on
the questions that you want to ask of the data, and this will drive your design and
your model.

Therefore, my number one and undoubtedly the most important best practice for
graph database modeling is to start with your user story. What does the user of the
system that you are designing want to know from the data? An example of such a
story could be something like this:

"as an employee, I want to know who in the company I work for has similar skills
to me so that we can exchange knowledge"

This excerpt tells a little bit about the entities that I need to include in the model
and the connections that should exist between these entities. Different domain
descriptions would probably add similar or different entities and similar or
different connections and will then gradually complete your model.

Align relationships with use cases
One of the ways that you can model for query-ability and let your queries drive
your model is by using the different relationship types that you can have between
nodes for different use cases. Many great graph database models use multiple
relationships between two of the same nodes for different use case scenarios.

One of the reasons why this recommended best practice is actually applicable and
of real use in practical development efforts is that the specialization tax, which is the
price that you, as a developer, pay (mostly in terms of added model complexity) for
introducing a specific relationship between two nodes for a specific use case—for
introducing this additional relationship is in fact so low. There are no additional
tables or schemas to be created, and to be even more specific, there are no additional
joins to be computed. All that happens is that the graph traversals will use different
paths to establish their course across the network stored in the database.

Chapter 4

[81]

A key concept to be kept in mind when aligning relationships with use cases is the
naming strategy for your relationship types. The general recommendation is to
use as few generic names such as HAS_A or IS_PART_OF as possible, but to be more
specific in these naming efforts.

Look for n-ary relationships
Sometimes, you will find that the first reading of your user stories will not yield
optimal results. Obviously, there can be many reasons for this, but this is often because
there are some hidden model elements in these stories that we did not spot at first.

One of the cases where we often see this is when dealing with the so-called n-ary
relationships. These types of relationships are often hidden in the model when we
want to associate more than two things; in some cases, the natural and convenient
way to represent certain concepts is to use relations to link a concept to more than
just one concept. These relations are called n-ary relations because they can serve
more than two (in fact, n) things or concepts. It is a very common modeling pattern.

When we discover these types of relationships in a graph model, this typically means
that there's an additional node to discover that we have split out a new entity.

Transforming n-ary relationships into nodes

This is exactly what we have done in the preceding example.

Modeling Data for Neo4j

[82]

Granulate nodes
The typical graph modeling pattern that we will discuss in this section will be called
the granulate pattern. This means that in graph database modeling, we will tend to
have much more fine-grained data models with a higher level of "granularity" than
we would be used to having in a relational model.

In a relational model, we use a process called database normalization to come up
with the granularity of our model. Wikipedia defines this process as:

"…the process of organizing the fields and tables of a relational database to
minimize redundancy and dependency. Normalization usually involves dividing
large tables into smaller (and less redundant) tables and defining relationships
between them. The objective is to isolate data so that additions, deletions, and
modifications of a field can be made in just one table and then propagated through
the rest of the database using the defined relationships."

The reality of this process is that we will create smaller and smaller table structures
until we reach the third normal form. This is a convention that the IT industry seems
to have agreed on—a database is considered to have been normalized as soon as it
achieves the third normal form. Visit http://en.wikipedia.org/wiki/Database_
normalization#Normal_forms for more details.

As we discussed before, this model can be quite expensive, as it effectively
introduces the need for join tables and join operations at query time. Database
administrators tend to denormalize the data for this very reason, which introduces
data-duplication—another very tricky problem to manage.

In graph database modeling, however, normalization is much cheaper for the simple
reason that these infamous join operations are much easier to perform. This is why
we see a clear tendency in graph models to create "thin" nodes and relationships,
that is, nodes and relationships with few properties on them. These nodes and
relationships are very granular and have been "granulated".

Related to this pattern is a typical question that we get asked and ask ourselves
in every modeling session: should I keep this as a property or should the property
become its own node? For example, should we model the alcohol percentage of a
beer as a property on a beer brand? The following diagram shows the model with
the alcohol percentage as a property:

http://en.wikipedia.org/wiki/Database_normalization#Normal_forms
http://en.wikipedia.org/wiki/Database_normalization#Normal_forms

Chapter 4

[83]

A data model with "fatter" nodes

The alternative would be to split the alcohol percentage off as a different kind of
node. The following diagram illustrates this:

A data model with a "granulated" node structure

Modeling Data for Neo4j

[84]

Which one of these models is right? I would say both and neither. The real
fundamental thing here is that we should be looking at our queries to determine
which version is appropriate. In general, I would argue that:

•	 If we don't need to evaluate the alcohol percentage during the course of a
graph traversal, we are probably better off keeping it as a property of the
end node of the traversal. After all, we keep our model a bit simpler when
doing this, and everyone appreciates simplicity.

•	 If we need to evaluate the alcohol percentage of a particular (set of) beer
brands during the course of our graph traversal, then splitting it off into its
own node category is probably a good idea. Traversing through a node is
often easier and faster than evaluating properties for each and every path.

As we will see in the next paragraph, many people actually take this approach even
a step further by working with in-graph indexes.

Use in-graph indexes when appropriate
Taking the granulate pattern even further and knowing that most indexing
technologies actually use graphs/trees under the hood anyway, we can apply this
pattern to create natural indexes for our data models, inside the graph. This can be
very useful for specific types of query patterns: range queries, time series, proximity
searches, and so on.

Looking at our previous little beer model, the alcohol percentages could be a prime
candidate for these in-graph indexes. The idea here is that we connect all of the alcohol
percentages to one another and create a linked list of alcohol percentages that we could
follow upward or downward, for example, to find beer brands with similar alcohol
percentages within a certain range. The model is displayed in the following diagram:

An in-graph index on alcohol percentages

Chapter 4

[85]

These types of index structures are very often used to deal with time data in a graph
structure. In this case, we create more of a time tree instead of a time line and connect
our graph data to this tree instead of putting timestamps as properties on every node
or relationship. The following diagram contains an example of such a tree structure:

An in-graph time-tree index

All of the patterns in the preceding diagram are common modeling patterns that have
been used successfully in projects. Use them wisely, and always remember that it's all
about the query patterns. Knowing what the questions you want to ask of the data are
will massively impact its design model, and chances are that you will need and want
to iterate over that model multiple times to get it to a stable state. Fortunately, graph
database management systems such as Neo4j deal with this kind of variation quite
elegantly and allow you to do exactly this when appropriate.

Modeling Data for Neo4j

[86]

Graph database modeling pitfalls
As with any type of database modeling, a graph database will also have some pitfalls
that we would want to try and avoid. This section will by no means attempt to give
you an exhaustive list, but should give you a feel for the types of practices that can
lead to poor modeling decisions.

Using "rich" properties
As it is actually a best practice to have a very granular model in in-graph database
systems, the opposite of this can often be an antipattern. Using properties on a node
that are ostensibly too rich (as shown in the following figure) can be much better
solved by leveraging the model, splitting off the properties into separate nodes,
and connecting them using a relationship:

Using "rich" properties

Look at the following diagram for a potential solution to this antipattern:

Granulating "rich" properties

Chapter 4

[87]

Node representing multiple concepts
Another antipattern that we have seen being introduced a number of times is that
different concerns or concepts are not separated appropriately in a model. In the
model represented in the following figure, we are mingling together the country
concept, the language concept, and the currency concept in one node structure:

This should be a red flag, as it will inevitably present us with problems or limitations at
query time. It will be far wiser to split off the concepts into separate country, language,
and currency node structures, each with their own characteristics and properties. This
is what we are trying to convey in the following corrected figure (as follows):

Modeling Data for Neo4j

[88]

Unconnected graphs
A perhaps obvious example of graph modeling antipatterns are the unconnected
graphs. Graphs are all about the connections between entities, and the power of
graph databases is all in the traversals of these connections from node to node. A
pattern like the one displayed in the following image should really not be used in
a graph database:

The unconnected graph

Relationships provide structure and query power in a graph, so not using
relationships leaves a wealth of opportunities underutilized.

The dense node pattern
We discussed before how graph queries work in a graph database system. The basic
principle was that of a graph local query: starting at a (set of) well-defined starting
point(s) and then crawling out from there. The traversal speed is typically very fast
and only dependent on the number of parts of the graph that the query will touch
or traverse through. Typically, traversal speeds are also very constant with growing
dataset sizes, simply because in a normal graph model, everything is not connected to
everything. The query will only evaluate the parts of the graph that are connected to
the starting points, and therefore, the traversal speeds will be flat.

A very interesting problem then occurs in datasets where some parts of the graph
are all connected to the same node. This node, also referred to as a dense node or a
supernode, becomes a real problem for graph traversals because the graph database
management system will have to evaluate all of the connected relationships to
that node in order to determine what the next step will be in the graph traversal.
Supernodes can be a real issue in graph database models and should be avoided
when setting up your Neo4j instances.

Chapter 4

[89]

Different strategies exist to deal with this density problem, and Neo Technology is
making some important changes to Neo4j to make this problem easier to deal with,
but the fact of the matter is that on most occasions we will want to avoid hitting this
technical risk by adapting our model. The following diagram highlights one potential
strategy that you can use from the music artist/fan graph domain:

Fan-out strategy for dense nodes

As you can see from the preceding diagram, the strategy essentially consists of
"fanning out" the dense relationships to Lady Gaga and Madonna. Instead of having
direct connections from millions of fans to these two popular artists, we create a
fan-like structure that connects fans to metanodes, interconnects the metanodes,
and then finally connects the top of the metanode hierarchy to the actual artist. The
recommendation then becomes that every metanode should have approximately 100
DENSE_LIKES relationships to connect fans to artists and that you can very quickly
traverse these relationships to figure out whether there is a variable-length path to
connect fans to artists.

Other strategies exist for this, and as we mentioned before, the problem is likely
to be significantly reduced in future versions of Neo4j, but just from a modeling
perspective, it is very useful to be aware and conscious of this pattern and deal
with it proactively.

Test questions
Q1. The four fundamental data constructs of Neo4j are:

1.	 Table, record, field, and constraint
2.	 Node, relationship, property, and schema
3.	 Node, relationship, property, and label
4.	 Document, relationship, property, and collection

Modeling Data for Neo4j

[90]

Q2. Normalization is expensive in a graph database model.

1.	 True
2.	 False

Q3. If you have a few entities in your dataset that have lots of relationships to other
entities, then you can't use a graph database because of the dense node problem.

1.	 True—you will have to use a relational system
2.	 True—but there is no alternative, so you will have to live with it
3.	 False—you can still use a graph database but it will be painfully slow for

all queries
4.	 False—you can very effectively use a graph database, but you should take

precautions, for example, applying a fan-out pattern to your data

Summary
In this chapter, we discussed a number of topics that will help you get started when
modeling your domain for a graph database management system. We talked about
the fundamental building blocks of the model, compared and contrasted this with the
way we do things in a relational database management system, and then discussed
some often recurring patterns, both good and bad, for doing the modeling work.

With the model behind us, we can now start tackling specific business problems using
Neo4j. In the next chapter, we will start discussing the different data import strategies
that will fill the Neo4j database with domain-specific datasets.

Importing Data into Neo4j
Database management systems are meaningless tools without their data. It really goes
without saying. So how do we get data into a graph database management system like
Neo4j? There really is no one specific answer, and in this chapter, we will try to give
you a couple of pointers towards potential solutions.

It is important to point out that this has a very immediate and direct link to the
previous chapter. After all, importing data without a model is pointless—it would
never serve a real-world purpose, as it would never be able to answer the data
queries of the user. As we previously indicated, but it does not hurt pointing it
out again, graph models are tremendously important, and you need to think these
through before you consider importing the data. We will, however, assume that
you have taken this advice to heart and get on with the question of how to import
data into Neo4j.

We will cover the following topics:

•	 Alternative approaches to importing data in Neo4j
•	 Available tooling options to help us import the data
•	 Example scenarios to illustrate specific ways to successfully

import your dataset

Let's get started.

Importing Data into Neo4j

[92]

Alternative approaches to importing data
into Neo4j
The first thing everyone should understand is that in a connected world, importing
data is, per definition, more difficult to do. It is a true knot that is terribly difficult to
untie for many different reasons, but that does not mean that we cannot untie it!

Logically, the problem of importing connected data is technically more difficult
than with unconnected data structures. Importing unconnected data (for example,
the nodes of your graph model) is always easy/easier. Just dump it all in there.
However, you then come to importing the connections and relationships, and you
find that there's no such thing as an external entity (also known as the database
schema) that will ensure the consistency and connectedness of the import. You
have to do this yourself, and explicitly by importing the relationships between
the following:

•	 A start node that you have to find
•	 An end node that you have to look up

This process is just inherently more complicated than what it would be in other
data models, especially at scale.

So how do we untie this knot? We can really see two steps that everyone needs to
take in order to do so:

•	 Understand the import problem: Every import is different, just like every
graph is different. There is little or no uniformity there, and in spite of the
fact that many people would love to just have a silver bullet solution to this
problem, the fact of the matter is that there is none. Therefore, we will have
to create a more or less complex import solution for every use case using
one of the tools at hand. However, like with any problem, understanding
the import problem is often the key to choosing the right solution, and this
is what we will focus on here as well.

Chapter 5

[93]

•	 Pick the right tool: There are many tools out there, and we should not be
defeated by the "law of the instrument" and use the right tool for the job.
Therefore, in this chapter, we will first try to bring these different tools
together, bring some structure to them, and then provide some examples.
This should allow you to make some kind of mapping between the
different types of import problems and the different tools at hand.

Let's start by looking at the different types of import scenarios and the tools that
you have at your disposal.

Know your import problem – choose your
tooling
Choosing the right import solution for your use case starts with properly
understanding what kind of import scenario you have before you. The
following mind map should allow you to better understand the scenario:

Your import use case

Importing Data into Neo4j

[94]

In my experience, most scenarios fit in here somewhere. If yours does not, then
please contact me. We can now try to understand what the options would be in
terms of technical import tools:

Chapter 5

[95]

It would lead us too far to try to match all the different scenarios to all the different
toolsets, but perhaps we can make some useful assessments of the pros and cons of
the different tools, as follows:

Tools Pros Cons
Spreadsheets It is very easy to use. All

you need to do is write some
formulas that concatenate
strings with cell content and
compose cypher statements
this way. These cypher
statements can then just be
copied into the Neo4j-shell.

•	 Only works at a limited
scale (< 5000 nodes/
relationships at a time)

•	 Performance is not
good—overhead of
unparameterized cypher
transactions

•	 Quirks in copying/pasting
the statements above a
certain scale

•	 Piping the statements can
work on OS X/Linux but
not on Windows

Neo4j-shell

Cypher Statements Native toolset—no need to
install anything else. Neo4j-
shell can be used to pipe in
OS X/Linux, which can be
very handy.

You have to create the statements
(see above). If they are not
parameterized, they will be slow
because of the parsing overhead.

Neo4j-shell-tools A fantastic, rich functionality
for importing CSV, GEOFF,
and GraphML files.

Not a part of the product (yet).
Requires a separate installation.

Cypher Load CSV A rich functionality to
import CSV files straight
from cypher.

New toolset—recently released
and under rapid development.

Neo4j Browser

Cypher Load CSV A rich functionality to
import CSV files straight
from cypher.

New toolset—still under
development at the time
of writing.

Command line

batch importer High performance, easy
to use, especially with
binary installer.

Specific purpose for CSV files.

Importing Data into Neo4j

[96]

Tools Pros Cons
ETL tools

Talend Out of the box, versatile,
customizable, uses specific
Neo4j connector both in
online and offline modes.

Requires you to learn Talend.
The current connector is not yet
upgraded to Neo4j 2.0.

MuleSoft Out of the box, versatile,
customizable, uses the JDBC
connector in the online mode.

Requires you to learn MuleSoft.
Batch loading of offline databases
is not supported.

Custom software

Java API High performance, perfectly
customizable, supports
different input types specific
for your use case!

You have to write the code!
REST API
Spring Data Neo4j

With this overview with us, we will now spend the rest of this chapter explaining
how you can use some of the most commonly used import techniques to get you
going with Neo4j.

Importing small(ish) datasets
In this section, we will give you a few examples of how you can import small(ish)
datasets into Neo4j. Small-ish means comfortably importing anything from a few
hundred nodes to a few hundred thousand nodes and relationships and importing
larger datasets with considerable patience.

We will present three approaches in this section:

•	 Importing using spreadsheets
•	 Importing using Neo4j-shell-tools
•	 Importing using Load CSV

All of these approaches have specific pros and cons, and it depends on your specific
situation to choose your most appropriate option.

Importing data using spreadsheets
Many people work with spreadsheets and are comfortable manipulating their data
in this environment. This is why for smaller datasets, this is often a very suitable
way of importing your data. The process is very simple:

Chapter 5

[97]

Spreadsheet import process

This approach works in most of the common spreadsheet solutions out there
(Microsoft Excel, Open Office Calc, Google Sheets, Apple Numbers) as it relies
on a very simple mechanism: using string concatenation based on cell values to
compose a query statement. Let's take a brief look at this.

First, let's assume that we have a simple data table with people like the one in the
following figure. These people have a unique identifier (first column), a name
(second column), and a type/label (third column):

Nodes in a spreadsheet

Importing Data into Neo4j

[98]

Let's also assume that in order to import this data in a meaningful way into a
graph database management system like Neo4j, we would have some additional
information about the relationships between these people:

Relationships in a spreadsheet

Using the string concatenation function of your favorite spreadsheet program,
you can then create two formulas that will look something like these:

•	 One formula to create the nodes of your graph:

()xf | "create n:"&D3&"{id:"&B3&", name:"'&C3&"'} ;"=

•	 One formula to create the relationships of your graph:

() () []xf |="match from{id:"&H3&"} , to{id:"&K3&"} create from- :"&J3&" ->to;"

Chapter 5

[99]

So, using this approach, you can create a long list of cypher statements that will
allow you to create your graph by simply executing them.

Cypher queries in a spreadsheet

Executing these queries can be as simple as copying and pasting them into the Neo4j
browser or shell, or (and this is probably the better option) putting them into a text
file and either piping it into the shell (using the | operator on Unix-based systems)
or uploading it to the Neo4j server. The Neo4j browser has a specific functionality
to drop a file onto the browser web application and execute the queries:

Running the spreadsheet queries

Importing Data into Neo4j

[100]

The end result will then be our graph database with the imported data, which we
can interactively query from the browser:

The resulting database from the spreadsheet

As mentioned before, this system works very well for smaller imports, but we
will want to use different mechanisms for somewhat larger imports. Let's start
exploring these.

Importing using Neo4j-shell-tools
As you probably know by now, the Neo4j system also has a command-line utility
that you can access by executing the following command from the terminal in your
main Neo4j directory (or bin\neo4shell.bat on Windows machines):

bin/Neo4j-shell

In this shell, you can not only execute cypher commands, but you can also extend
the shell with some additional tools. At the time of writing this book, installing
these tools is very easy: just download and extract them in Neo4j's lib directory.
Here's how you can do this:

cd /path/to/your/Neo4j/server

curl http://dist.Neo4j.org/jexp/shell/Neo4j-shell-tools-2.0.zip -o Neo4j-
shell-tools.zip

unzip Neo4j-shell-tools.zip -d lib

Chapter 5

[101]

Once you have done this, the shell should be equipped with a new import
functionality. This functionality works as follows:

The Neo4j-shell-tools import process

Let's try this for the same dataset as in the previously used spreadsheet example.
We will create two .csv files in this case: one for nodes (nodes.csv) and one for
relationships (rels.csv). Here's the nodes.csv file for you to take a look at:

Importing Data into Neo4j

[102]

Here's the rels.csv file that we will be using:

Then, using the Neo4j-shell-tools syntax, we want to execute two commands to
populate our database. We can prepare these in our favorite text editor as follows:

Neo4j-shell-tools commands

Executing the following query in the shell gives us immediate results:

Chapter 5

[103]

Neo4j-shell-tools result

The generated graph will then immediately be accessible in the Neo4j browser.
The result, of course, will be identical to the graph shown previously

The Neo4j-shell-tools are much more powerful than what we have highlighted in
these few paragraphs. It allows for different delimiters, quoted values, and variable
batch sizes to tweak the performance of the import. It also supports other file formats
such as the GEOFF and GraphML formats and supports exporting to many of these
formats as well. So all in all, it is a very potential tool that can probably scale for
importing millions of nodes and relationships—but not for billions. We will address
this use case a bit later.

Now, we will finish this section by treating a very new methodology—Load CSV.

Importing using Load CSV
During the course of 2013, Neo Technology saw a very steep ramp in adoption for
Neo4j and started getting a lot more user feedback. One of the most prominent
pieces of consistent feedback was that Neo4j needed to improve its native import
capabilities, and this is why this feature was added as a capability as part of the 2.1
release of Neo4j.

The import workflow is similar to that of Neo4j-shell-tools, but has the
following exceptions:

•	 It is embedded into cypher.
•	 The .csv files can be loaded from anywhere; it just needs a URI.

Importing Data into Neo4j

[104]

•	 It is accessible from the new Neo4j browser tool.
•	 It does not yet (at the time of writing this book) allow for variable labels

and relationship types. This is somewhat important for us in this example,
as it will mean that we cannot immediately assign the right labels and
relationship types from the current CSV files; we will have to add these
as properties first and then run another cypher query to fix this.

So, let's go through the import of the same files using this final toolset:

The Load CSV process

Let's start by importing the nodes. Executing the following query in the Neo4j
browser works out very well:

//Loading CSV with Nodes
load csv with headers from
"file:/your/path/to/nodes.csv"
as nodes
create (n {id: nodes.Node, name: nodes.Name, type: nodes.Label})
return n

Executing this query in the Neo4j browser tool gives us the following result:

Chapter 5

[105]

Loading nodes with Load CSV

Then, we will add the relationships to the graph using the following query:

//Loading CSV with Rels
load csv with headers from
"file:/your/path/to/rels.csv"
as rels
match (from {id: rels.From}), (to {id: rels.To})
create from-[:REL {type: rels.`Relationship Type`}]->to
return from, to

Importing Data into Neo4j

[106]

Then, we get the following result that is very similar to what we had in the previous
import scenarios:

Loading relationships with Load CSV

However, the difference between the current graph and the ones that we had in our
previous import scenarios is that we have not used any labels or relationship types
yet. Therefore, the preceding screenshot looks a bit different. The following two
queries correct this though:

•	 Query 1:
//Assign labels for Males and Females
match (m {type:"Male"}), (f {type:"Female"})
set m:Male, f:Female
return m,f

•	 Query 2:

//Create duplicate relationship with appropriate type
match (n)-[r1 {type:"MOTHER_OF"}]->(m), (s)-[r2 {type:"FATHER_
OF"}]->(t)
create n-[:MOTHER_OF]->m, s-[:FATHER_OF]->t
return *;
//Remove duplicate relationships
match ()-[r:REL]-() delete r;

Chapter 5

[107]

The following screenshot shows the final result of Load CSV:

From working with the Load CSV toolset at this early milestone release, it seems clear
that there are still quite a few things to iron out, but in general, we still recommend
that you take a look at it as it presents you with a very intuitive and native way of
importing data into Neo4j. Neo Technology also claims that this approach should work
well for imports into millions (but not billions) of nodes and relationships, especially
if you want to make use of the periodic commit functionality that is tied to Load CSV.
If you start your Load CSV statements with a "using periodic commit {a number}",
Neo4j will periodically commit your import transactions, thereby making it a lot
easier to scale your import.

For a larger import use case, we will now take a look at a final data import toolset.

Scaling the import
Many users of Neo4j need to import larger datasets into Neo4j, at least for their initial
startup use cases. Doing so can be difficult using any of the previous techniques and
takes a long time. Although there are a number of things that you can tweak (for
example, the batch sizes in Neo4j-shell-tools), there is a limit to the transactional
write performance that you will get from running the Neo4j server. This limit is mostly
I/O driven because of the transactional qualities of the Neo4j database management
system; it basically needs to go down to disk at every commit and can take some time.

Importing Data into Neo4j

[108]

This is why Neo Technology and its community have developed an alternative way
of creating Neo4j data stores without having the Neo4j server running. This allows
the import process to be executed in an all or nothing fashion, without doing
intermediate commits on the underlying component transactions. The import will
either succeed or fail in its entirety. This nontransactional approach to importing
is much faster—literally bringing down imports that would take hours in a
transactional fashion to minutes or even seconds in a nontransactional import.

The batch importer, as this tool is called, is not bundled with Neo4j. At the time of
writing this book, you can download this tool from https://github.com/jexp/
batch-import/tree/20 and follow the installation instructions to get it active on
your system. Once you do this, we can take a look at how this batch import process
works with the help of the following diagram:

The batch import process

As with the previous import scenarios, we will start with the same CSV files.
However, in order for these to fit the more specific format of the batch importer,
we have to make a few changes:

•	 The columns of the files have to be tab separated, not comma separated.
A find/replace operation is required due to the change in the file structure
from the original format that we used in the previous scenarios to this one.

•	 The relationship file has a specific format that you need to respect,
including a specific way of referencing the nodes that are used in building
the relationships. Essentially, it boils down to using the row number of the
nodes file as start/end identifiers, knowing that the first data row (which is
the second row of the file) is referred to as the 0 row. So, there is a bit of data
modification that we have to do on our file to make this work, as you can
see from the following screenshot. Here's the new nodes.csv file:

https://github.com/jexp/batch-import/tree/20
https://github.com/jexp/batch-import/tree/20

Chapter 5

[109]

The TSV file for batch import of nodes

Here is the new rels.csv file:

The TSV file for batch import of relationships

Having formatted the files, all we have to do is place them into the batch importer
directory and execute a simple command:

./import.sh test.db nodes.csv rels.csv

Importing Data into Neo4j

[110]

In a matter of milliseconds, this small dataset is created:

The result of the batch import process

As explained previously, the output of the batch importer is not what we will
immediately see on our Neo4j server. In fact, the output is just a test.db directory.
This is a set of files that we can then copy to the /path/to/your/Neo4j/server/data
directory, replacing the graph.db directory that you may find in there already. After
restarting the Neo4j server, you will then see the dataset that we just imported, and it
should look very familiar to the datasets that we imported in the previous scenarios.

Questions and answers
Q1. Neo4j comes with a single, universal data import toolset that will allow you to
import any of your datasets, small or large.

1.	 True
2.	 False

Answer: False. Importing data into a graph database will require you to think about
your import use case and then choose the right tool for the job. Luckily, Neo4j comes
with a number of different options that you can choose from.

Q2. Which data formats can you import into Neo4j?

1.	 Spreadsheets
2.	 CSV or TSV files
3.	 GEOFF or GraphML files
4.	 All of the above

Chapter 5

[111]

Answer: All of the above. Different tools will allow you to import different formats
more or less easily, but all are possible without a doubt.

Q3. The Neo4j batch importer is much faster than any of the other import
technologies presented because:

1.	 It was written in C++ instead of Java
2.	 It does not write to a running transactional instance of Neo4j and can

therefore run un-transactionally
3.	 It has fewer bugs, which allows it to run faster
4.	 It uses fancy caching technologies to make it write faster

Answer: It does not write to a running Neo4j instance; all it does is write the store
files of the Neo4j server that you can use afterwards on your server.

Summary
This concludes our overview of different data import technologies for the Neo4j
database management system. We have presented you with an approach to choose
the right import technologies, and then, in some detail, we have explored how at
least some of these technologies can be used on a real dataset. There are, of course,
other import techniques that we did not discuss. More specifically, a programmatic
import using custom software could be useful for you. You should visit some of the
Neo4j blogs such as http://maxdemarzi.com or http://jexp.de/blog/ if you are
interested in this.

This chapter should give you enough confidence to now start working with your
own data domain in the context of Neo4j.

In the next few chapters, we will start applying what we have learned by looking
at different use case scenarios that Neo4j is frequently used for and discussing them
in some detail.

http://maxdemarzi.com or http://jexp.de/blog/

Use Case Example –
Recommendations

In this chapter, we will start to look at how we can use the Neo4j graph database
for a very specific use case. All the discussions so far have led us to this discussion,
where we really want to zoom in on how one would practically use a database such
as Neo4j for a very specific use case. We will look at the following topics:

•	 Modeling product relationships as a graph
•	 Using relationships to suggest recommendations
•	 Using relationships to detect fraud

Recommender systems dissected
We will take a look at so-called recommender systems in this chapter. Such systems,
broadly speaking, consist of two elementary parts:

•	 A pattern discovery system: This is the system that somehow figures out
what would be a useful recommendation for a particular target group.
This discovery can be done in many different ways, but in general we
see three ways to do so:

Use Case Example – Recommendations

[114]

°° A business expert who thoroughly understands the domain of the
graph database application will use this understanding to determine
useful recommendations. For example, the supervisor of a "do-it-
yourself" retail outlet would understand a particular pattern. Suppose
that if someone came in to buy multiple pots of paint, they would
probably also benefit from getting a gentle recommendation for a
promotion of high-end brushes. The store has that promotion going
on right then, so the recommendation would be very timely. This
process would be a discovery process where the pattern that the
business expert has discovered would be applied and used in graph
databases in real time as part of a sophisticated recommendation.

°° A visual discovery of a specific pattern in the graph representation
of the business domain. We have found that in many different
projects, business users have stumbled upon these kinds of patterns
while using graph visualizations to look at their data. Specific
patterns emerge, unexpected relations jump out, or, in more
advanced visualization solutions, specific clusters of activity all
of a sudden become visible and require further investigation.
Graph databases such as Neo4j, and the visualization solutions
that complement it, can play a wonderfully powerful role in
this process.

°° An algorithmic discovery of a pattern in a dataset of the business
domain using machine learning algorithms to uncover previously
unknown patterns in the data. Typically, these processes require
an iterative, raw number-crunching approach that has also been
used on non-graph data formats in the past. It remains part-art
part-science at this point, but can of course yield interesting
insights if applied correctly.

Recommender System

Pattern Discovery System
Pattern

Application System

Domain
Expertise-

based
Discovery

Visual
Discovery

Batch-
oriented

Algorithmic
Discovery Real time

An overview of recommender systems

Chapter 6

[115]

•	 A pattern application system: All recommender systems will be more or less
successful based on not just the patterns that they are able to discover, but
also based on the way that they are able to apply these patterns in business
applications. We can look at different types of applications for these patterns:

°° Batch-oriented applications: Some applications of these patterns are
not as time-critical as one would expect. It does not really matter in
any material kind of way if a bulk e-mail with recommendations, or
worse, a printed voucher with recommended discounted products,
gets delivered to the customer or prospect at 10 am or 11 am. Batch
solutions can usually cope with these kinds of requests, even if they
do so in the most inefficient way.

°° Real-time oriented applications: Some pattern applications simply
have to be delivered in real time, in between a web request and a web
response, and cannot be precalculated. For these types of systems,
which typically use more complex database queries in order to match
for the appropriate recommendation to make, graph databases such as
Neo4j are a fantastic tool to have. We will illustrate this going forward.

With this classification behind us, we will look at an example dataset and some
example queries to make this topic come alive.

Using a graph model for recommendations
We will be using a very specific data model for our recommender system, which is
based on the dataset that we imported in the previous chapter. All we have changed
is that we added a couple of products and brands to the model, and inserted some
data into the database correspondingly. In total, we added the following:

•	 Ten products
•	 Three product brands
•	 Fifty relationships between existing person nodes and the mentioned

products, highlighting that these persons bought these products

Use Case Example – Recommendations

[116]

These are the products and brands that we added:

Label
Product
Product
Product
Product
Product
Product
Product
Product
Product
Product

200
201
202

Apple
Google
Samsung

Brand
Brand
Brand

Node
100
101
102
103
104
105
106
107
108
109

Name
iPad
iPhone
iPad Mini
MacBook Pro
MacBook Air
ChromeBook
Samsung Galaxy 4
Samsung Galaxy Tab 3
Google Nexus 5
Google Nexus 7

Adding products and brands to the dataset

The following diagram shows the resulting model:

Person
/ Male

Person
/ Female

Person
/Male

/ Female

[:FATHER_OF]

[:MOTHER_OF]

[:B
O

U
G

H
T]

Product Brand
[:MADE_BY]

Chapter 6

[117]

In Neo4j, that model will look something like the following:

A graph model for our recommender model

A dataset like this one, while of course a broad simplification, offers us some
interesting possibilities for a recommender system. Let's take a look at some queries
that could really match this use case, and that would allow us to either visually or in
real time exploit the data in this dataset in a product recommendation application.

Specific query examples for
recommendations
In this example dataset, we are going to explore a couple of interesting queries
that would allow us—with the information that is available to us—to construct
interesting recommendations for our hypothetical users. We will do so along
different axes:

•	 Product purchases
•	 Brand loyalty
•	 Social and/or family ties

Let's start with the first and work our way through.

Use Case Example – Recommendations

[118]

Recommendations based on product
purchases
Let's build this thing from the ground up. The first query we want to write is based
on past purchasing behavior. We would like to find people that already share a
couple of products that they have purchased in the past, but that also explicitly do
not share a number of other products. In our data model, this Cypher query would
go something like this:

match (p1:Person)-[:BOUGHT]->(prod1:Product)<-[:BOUGHT]-(p2:Person)-
[:BOUGHT]->(prod2:Product)
where not(p1-[:BOUGHT]->prod2)
return p1.name as FirstPerson, p2.name as SecondPerson, prod1.name as
CommonProduct, prod2.name as RecommendedProduct;

In this query, the match clause gathers the pattern of users (p1 and p2) that have
bought a common product (prod1), but ensures that p2 has actually bought one or
more product(s) that p1 has not bought.

The result is actually quite an extensive list of recommendations, as shown in the
following screenshot:

So we can probably do with some refining there.

The next step in our recommendation process would therefore be to look at two
people that have a stronger similarity. This means that the two people would need
to have bought more than two products in common before the recommended
product would actually be assumed to be attractive to the target audience.

Chapter 6

[119]

Let's look at this query:

match (p1:Person)-[:BOUGHT]->(prod1:Product)<-[:BOUGHT]-(p2:Person)-
[:BOUGHT]->(prod2:Product)
with p1,p2,count(prod1) as NrOfSharedProducts, collect(prod1) as
SharedProducts,prod2
where not(p1-[:BOUGHT]->prod2) AND NrOfSharedProducts > 2
return p1.name as FirstPerson, p2.name as SecondPerson, extract(x
in SharedProducts | x.name) as SharedProducts, prod2.name as
RecommendedProduct;

As you can see, the basic query is the same as the previous one but we have added
some filters for the number of shared products. We also worked with the collection
of products (collect(prod1)) and extracted the names of these products in the final
result. It looks like what is shown in the following screenshot:

The refined recommendations based on product purchases

So let's now take a look at another type of recommendation, based on brand loyalty.

Recommendations based on brand loyalty
Obviously, we all understand that if we already own a product of a particular brand,
it is likely that we will be more interested in other products that are manufactured
by that same brand. So let's find the people that already have more than one product
of a certain brand and see if we can recommend other products by that brand. Here's
the query example:

match (p:Person)-[b:BOUGHT]->(prod1:Product)-[:MADE_BY]->(br:Brand)<-
[MADE_BY]-(prod2:Product)
with p, br, prod2, count(prod1) as NrOfBrandProducts
where not(p-[:BOUGHT]->prod2) and NrOfBrandProducts > 1
return p.name as Person, br.name as Brand, collect(prod2.name) as
RecommendedProducts
order by Person ASC;

Use Case Example – Recommendations

[120]

The pattern should be fairly similar, but the difference is that we are now counting
the number of products of a certain brand and ensuring that the person in question
has not yet bought the other products of that same brand. The result looks like this:

The recommendations based on brand

Again, this gives us some useful recommendations, based on a very different qualifier.
Let's then bring in another parameter: our social relationships, in this case, based on
the family ties that a particular user will have.

Recommendations based on social ties
In the next version of our recommendation queries, we will be using the
relationships—in this particular dataset, based on family ties between parents
and/or siblings—between our users to come up with some useful recommendations
for their next purchase.

Let's look at the following query:

match (p:Person)-[b:BOUGHT]->(prod:Product),p<-[r1]-(parent:Person)-
[r2]->(sibling:Person)
where type(r1) in ["MOTHER_OF","FATHER_OF"] and type(r2) in ["MOTHER_
OF","FATHER_OF"]
and not(sibling-[:BOUGHT]->prod)
return p.name as Person, prod.name as RecommendedProduct,
collect(sibling.name) as ForSiblings;

This would give us the products bought by a specific person, and looks for siblings
(who have the same mother or father as the first person) who have not bought that
specific product and may potentially benefit from it. Running the query gives us the
following result set:

Chapter 6

[121]

The recommendations based on social ties

Again, a useful recommendation. But now, let's try to bring it all together and really
try to make a complex, real-time recommendation based on all of the above criteria:
product purchase history, brand loyalty, and social/family networking.

Bringing it all together – compound
recommendations
In the following query, we will try to mix all of the three aspects that we mentioned
previously into one compound—and hopefully more relevant—recommendation. If
we take into account all three angles for our recommendation system, then hopefully
we will be able to make fewer, more powerful recommendations to the user. Let's
look at the following query:

match (p1:Person)-[:BOUGHT]->(prod1:Product)<-[:BOUGHT]-(p2:Person)-
[:BOUGHT]->(prod2:Product), p1<-[r1]-(parent:Person)-[r2]->p2, prod1-
[:MADE_BY]->(br:Brand)<-[:MADE_BY]-(prod2)
where type(r1) in ["MOTHER_OF","FATHER_OF"] and type(r2) in ["MOTHER_
OF","FATHER_OF"] and not(p1-[:BOUGHT]->prod2)
return p1.name as FirstPerson, p2.name as SecondPerson, br.name as
Brand, prod2.name as RecommendedProduct;

Use Case Example – Recommendations

[122]

What we are doing here is bringing the three aspects of our pattern together in the
match clause. Here are the different parts explained:

•	 The first part of the clause ensures that two people have bought common
and different products

•	 The second part ensures that the two people are siblings
•	 The third part ensures that the products recommended would be based on

the loyalty to a particular brand

Running this query is interesting. The result is shown in the following screenshot:

Compound recommendations

We immediately see that we get only three matches to this sophisticated pattern;
however, as mentioned earlier, we have reason to believe that these recommendations
will be more powerful.

This concludes our discussion of these core use cases around recommendations.
Before closing this chapter, we would, however, like to spend a bit more time on
some related topics around recommendations.

Business variations on recommendations
The entire principle of a recommender system, as we described before, can be
generalized into a different kind of system that has many other business applications.
Some people would call it a "rules engine", which does some kind of sophisticated
if-this-then-that matching and figures out what action to take at the other end of the
decision tree. Other people may call it a pattern-matching system, which could be
applied to any kind of pattern and tied to any kind of action. Most likely, graph
databases such as Neo4j hold some characteristics of all of the above and provide
you with an interesting infrastructural optimization that could serve well.

Before wrapping up this chapter, we would like to highlight some use cases that are
extremely related to the recommender system use case. Let's go through some well
-known sweet spot applications that essentially use the same principles underneath.

Chapter 6

[123]

Fraud detection systems
We have seen a number of customers that are using Graph Database Management
Systems such as Neo4j for fraud detection systems. The principle is quite simple: in
many cases, the fraud of a particular nature is not defined by one transaction only,
but by a chain of transactions that have their specific characteristics and that need
to be compared to one another to see if they really do constitute a case of fraud.

In the following example, we are just looking at a suspect case of credit card fraud:

Susp
ect

 Use

Suspect Payment

Suspect PurchaseTransaction Transaction Transaction Transaction Transaction Transaction

CreditCard CreditCard

Shop
1

Shop
2

Suspect
Transaction

User User

A particular user always uses his credit card for transactions at a particular store.
Another user uses his credit card for similar transactions at a different store. And all
of a sudden, there is this new transaction in the middle, which uses the credit card
(let's say for a similar kind of transaction) in the other store. This kind of pattern
may become flagged as a suspect pattern in some fraud detection systems. The
system would not necessarily immediately block the credit card, but the risk score
of that particular transaction / card combination would definitely go up. If the score
reaches a certain threshold, that would mean that there is an increased likelihood for
that transaction to be fraudulent, and the system would recommend that a particular
action be taken.

Use Case Example – Recommendations

[124]

The action would not be to recommend another product sale, but to put the credit
card on hold and give the user a friendly customer service call to check whether this
behavioral pattern is exceptional or not. The principle of this fraud detection system,
however, would be very similar to that of a retail recommender system: define a
pattern, detect a pattern, and act on the occurrence of that pattern with some kind
of business-related measure.

Access control systems
Another example of a similar system that uses the principles of a recommender
system—defining a pattern and then matching for its occurrences—for a different
use case is an access control system.

Holding

User

DepartmentDepartment Department

SubsidiarySubsidiary Subsidiary

Resource

Resource

Resource

FunctionFunction Function

An access graph

Chapter 6

[125]

Social networking systems
Obviously, there are a lot of recommender systems that will be very specific to a
domain. In the past couple of years, with the massive rise of social networking tools
and social apps all around us, the interest in social recommender systems has grown
massively. Essentially, we are looking to make useful new connections between
people that are effectively part of the same social circle, but may not have realized
it yet.

Looking at the following sample network should clarify this immediately:

[:FRIEND_OF]
[:F

RIEN
D_O

F]

[:FRIEND_OF]

[:FRIEND_OF]

[:FRIEND_OF]

[:FRIEND_OF] [:FRIEND_OF] [:F
RIEN

D_O
F]

[:FRIEND_OF]

[:FRIEN
D

_O
F]

[:FR
IEN

D
_O

F]

[:FRIEND_OF]

[:FRIEND_OF]

[:F
RIEN

D_O
F][:FRIEND_OF]

[:FRIEND_OF]

[:F
RIEN

D_O
F]

[:F
RIEN

D_O
F]

PersonPerson

Person

Person

Person

Person

Person

Person
Person

Person Person

A social networking graph

In the preceding simple network, there is a very high likelihood that we can close
some friendship loops very easily, by suggesting connections between new links
between people. Very often, we will be using the graph theory principle of triadic
closures, meaning that we will be closing the missing links of the triangles in the
structure of our network.

So let's explore that social networking use case some more in the following chapter
with a very specific set of examples.

Use Case Example – Recommendations

[126]

Questions and answers
Q1: In order to build a recommendation system, I need an artificial intelligence
engine that will take a look at my data and discover the recommendation patterns
for me automatically.

1.	 True
2.	 False

Answer: False. Recommender systems can be based on business knowledge that
your staff already have, a visual pattern you discover while browsing the data,
or some kind of algorithmic machine learning process. All three can provide
meaningful recommendation patterns for your business applications.

Q2: Recommender systems can only be applied in an Amazon-style retail
environment, where you have a massive amount of data to base your
recommendations on.

1.	 True
2.	 False

Answer: False. Recommendations are useful in many different business domains,
not just retail product recommendations. Fraud detection systems (I recommend
that you put this person in jail) are just one example of a business application that
has nothing to do with retail but that will use the same pattern matching capabilities
for detecting these more complicated fraud cases.

Summary
In this chapter, we gave you an overview of how graph databases such as Neo4j
could be used in a recommender system. There are a lot of things that we did not
discuss, which are out of the scope of this book, but that would probably be part of
a true enterprise-class recommender system. Nevertheless, we hope to have illustrated
that the querying power of Neo4j will open up a wealth of new opportunities for
real-time recommender systems, where recommendations would no longer need to
be precalculated but rather leveraged in near real time.

The next chapter will use an example of a use case to teach you about analyzing
the impact change has on a process or system. It will also teach you how to
analyze impact through graphs.

Use Case Example – Impact
Analysis and Simulation

In this chapter, we will look at how we can use the Neo4j graph database for another
very specific use case: impact analysis. All the discussions so far have led us to this
discussion, where we really want to zoom in how one would practically use a
database such as Neo4j for a very specific use case.

In this chapter, we are going to learn how to perform the following steps:

•	 Dissect and understand impact analysis systems. We will split the
broader topic into two subtopics: impact analysis and impact simulation.

•	 Apply impact analysis to a Business Process Management use case by
using a detailed demonstration dataset.

•	 Apply impact simulation to a cost calculation use case, using another
detailed demonstration dataset.

Let's get started straightaway.

Use Case Example – Impact Analysis and Simulation

[128]

Impact analysis systems dissected
In this chapter, we will spend time with specific types of systems that will allow
corporations to perform some of the most complicated operations. In some cases,
their information technology infrastructure will be set up to do this, and in others
this will not be the case. Analyzing and understanding their businesses in the context
of its environment and the impact that the environment has on the business can be
tremendously complex. Doing this, in fact, means that companies need to do two
very specific things:

•	 They need to understand how their business will react to specific impulses
from the environment or other. Assuming that they have modeled their
business as a set of interdependent processes, people, and resources, it is
easy to see how graph databases could be very interesting tools to better
understand what would happen to the rest of the network if a part of the
network changes. We call this the core impact analysis use case.

•	 They need to be able to simulate different potential scenarios and choose
the most optimal scenario to achieve their specific objectives. This, in
some sense, becomes a variation of the previously mentioned scenario,
but is different in the sense that it requires us to iterate on the previously
mentioned scenario many times to determine what would be the optimal
end state of the business to achieve the stated objectives. We will call this
the impact simulation use case.

Let's now closely examine both of these use cases in some more detail and provide
specific examples of both.

Impact analysis in Business Process
Management
In the Business Process Management use case, we will be exploring how to use
graph database technology to better understand the interdependencies of different
business processes and some of their key resources. This is a use case that many large
organizations call Business Process Management, and is sometimes related to or
part of a Business Continuity Management discipline. The idea is plain and simple:
if you are a large corporation, and something happens (a natural disaster, a large
-scale power outage, a fire, a violent terrorist attack, or any other majorly disruptive
event that could hit you as a corporation), then it is essentially your responsibility
to prepare for this. The critical step in this preparation process is to understand what
depends on what, which is where Neo4j as a graph database comes in to enable that
kind of understanding.

Chapter 7

[129]

Modeling your business as a graph
The example we will use is that of a real-world use case, which combines a number of
business concepts that are structured as a graph for better understanding. The concepts
are as follows:

•	 Business process: These are the high-level business processes that
one would typically consider at a top executive level.

•	 Process: These are composing sub-processes that together make up
a business process.

•	 Return to Operation Objective: Both Business processes and their
subprocesses will have a maximum timeframe within which they absolutely
must return to operation, in case an exceptional event would cause them to
suspend operations in the first place. This Return to Operation Objective
(RTO) can be anything from a few minutes to a few days.

•	 Business Line: Processes will be used by one or more departments or
business lines, which are organizational units that should enable the
corporation to achieve their objectives.

•	 Building: Business lines are located at a specific site or building.
•	 Application: Processes can use specific Information Technology

applications to facilitate their execution.

All of the mentioned concepts are connected to each other, as shown in the
following figure:

The Business Continuity Management model

Use Case Example – Impact Analysis and Simulation

[130]

We can then easily import a sample dataset into Neo4j. With a simple query, we
can see how many relationships we have from a certain type to get some insight
in the database:

The BCM database content

The sample dataset in total has 817 nodes and (as you can see from the preceding
screenshot) 1988 relationships. This is enough to ask some interesting questions
that are appropriate for our use case.

Which applications are used in which buildings
Let's say that we would like to use the graph model to determine which applications
are used in specific locations/buildings of our corporation. Then, our Cypher query
would look something like the following:

MATCH (app:Application)<-[:USES]-(proc:Process)-[:USED_BY]-
>(bl:BusinessLine)-[:LOCATED_IN]->(b:Building)
RETURN DISTINCT app.name AS Application , b.name AS Building
ORDER BY app.name ASC;

Note that this is quite an expensive query to run, as it does not use any specific
starting points in our graph traversals—it is a global query. However, the result
comes back quickly for this dataset:

Chapter 7

[131]

This newfound understanding of the business then allows us to better take action if
something would happen to either the application or the building. Let's explore this
a bit more.

What buildings are affected if something happens
to Appl_9?
This is a very local variety of the preceding query, and it answers the question very
specifically for one. The application may be experiencing trouble at this particular
moment. The query is similar to the following:

MATCH (app:Application {name:"Appl_9"})<-[:USES]-(proc:Process)-
[:USED_BY]->(bl:BusinessLine)-[:LOCATED_IN]->(b:Building)
RETURN DISTINCT app,proc,bl,b;

Use Case Example – Impact Analysis and Simulation

[132]

As we have returned the nodes rather than the properties on these nodes, our Neo4j
browser returns a nice graphical representation that immediately provides the
required insight.

Which buildings are affected if something happens to Appl_9

Hopefully, this is a very good illustration of the use case already, but we can make it a
bit more complex by including the RTO information. Let's examine one more query.

What BusinessProcesses with an RTO of 0-2 hours
would be affected by a fire at location Loc_100
One thing you would have already noticed is that there is something peculiar about
the RTO characteristic. Most people would assume that such a characteristic would
become a property of the (business) processes, but in our model, we have created
separate nodes to represent these characteristics and linked them together in a
chain of RTO values:

•	 An RTO of 0-2 hours precedes one of 2-4 hours
•	 An RTO of 2-4 hours precedes one of 4-24 hours
•	 An RTO of 4-24 hours precedes one of 1-7 days
•	 An RTO of 1-7 days precedes one of 7-14 days
•	 And finally, an RTO of 7-14 days precedes on of more than 14 days

You can see this in the following browser graph. The advantage of doing this is
that we can now very easily "slide" along the RTO-line and figure out "similar"
or "close to" RTO targets very easily.

Chapter 7

[133]

In-graph index of RTO times

So, then we can run the following query to answer the previous question:

MATCH (b:Building {name:"Loc_100"}), (rto:RTO {name:"0-2 hrs"})<-
[:BUSINESSPROCESS_HAS_RTO]-(bp:BusinessProcess)
WITH b,bp
MATCH p = ShortestPath(b-[*..3]-bp)
RETURN p;

The query uses the Building and the RTO as starting points for the traversal, and
then uses the ShortestPath algorithm to find out which business processes would
be affected. The result is immediately clear and visible for any business user who
wants to analyze the impact of this event on the business environment that the
company is operating.

Business processes with RTO affected by incident at location

Use Case Example – Impact Analysis and Simulation

[134]

With these examples behind us, you have a good overview of how graph databases
such as Neo4j can help with impact analysis systems . Now, we will explore another
type of scenario that is related to this domain: impact simulation.

Impact simulation in a Cost Calculation
environment
As discussed previously, the second impact-related use case that we would like to
address in this chapter is the one that simulates the impact of a certain change to the
network on the rest of the network. It basically addresses the "what if" question: how
will we be impacted if a certain change occurs in the network? What would be the
optimal scenario if we were to change certain parameters in the graph structure?

The example that we will be using in this section uses a very common data structure
that you may have seen in many different other use cases: a hierarchy or tree. During
the course of this section, we will run through the different parts of tree structure
and see what the impact of changes in the tree would be on the rest of the tree.

Modeling your product hierarchy as a graph
The use case that we are exploring uses a hypothetical dataset representing
a product hierarchy. This is very common in many manufacturing and
construction environments:

•	 A product is composed of a number of cost groups
•	 A cost group is composed of a number of cost types
•	 A cost type is composed of a number of cost subtypes
•	 A cost subtype is composed of costs
•	 And finally, costs will be composed of components

The lowest part of the hierarchy structure, the components, will have a specific price.
On my blog (http://blog.bruggen.com/2014/03/using-neo4j-to-manage-and
-calculate.html), I have shown how you can create a sample dataset like this
pretty easily. The model will be similar to the one shown in the following figure:

http://blog.bruggen.com/2014/03/using-neo4j-to-manage-and -calculate.html
http://blog.bruggen.com/2014/03/using-neo4j-to-manage-and -calculate.html

Chapter 7

[135]

The product hierarchy data model for cost simulations

In our "what if" scenarios that compose our impact simulation, we will be exploring
how we can efficiently and easily calculate and recalculate the price of the product
if and when the price of one or more of the components changes. Let's get started
with this.

Use Case Example – Impact Analysis and Simulation

[136]

Working with a product hierarchy graph
Let's take a look at how we could work with this product hierarchy graph in
Neo4j. After adding the data to the graph, we have the following information
in our neo4j database:

In total, the product hierarchy graph is about 2.1 million nodes and the same number
of relationships. This would be a sizeable product hierarchy by any measure. Doing a
simple query on the hierarchy reveals the entire top-to-bottom structure:

The product hierarchy in Neo4j's browser

Chapter 7

[137]

Now that we have this hierarchy in place, we can start doing some queries on it. One
of the key problems that we would like to solve is the price calculation problem: how
do we run through the entire hierarchy structure and use the information stored
in the hierarchy to (re)calculate the price of a product? This would typically be a
terribly difficult and time-consuming query (as a matter of fact, it is a five-way join
operation) on a relational system. So, what would it be on a graph-based database
such as Neo4j? Let's find out.

In the following sections, we will actually present two different strategies to
calculate the price of the product using the product hierarchy.

The first strategy will be by running through the entire tree, taking the lowest part
of the tree for the pricing information and then multiplying that with the quantity
information of all the relationships. When this full sweep of the tree reaches the top,
we will have calculated the entire price of the product.

The second strategy will be using a number of intermediate calculations at every
level of the tree. We will update all of the intermediate levels of the tree with the
price calculations of everything lying "underneath" it at lower levels of the tree so
that, effectively, we would need to run through a much smaller part of the tree to
(re)calculate the price.

Let's take a look at this in more detail.

Calculating the price based on a full sweep of
the tree
The first strategy we will use to calculate the price of the product in our hierarchy
will to a full sweep of the tree:

1.	 It will start from the product at the top.
2.	 Then, it will work its way down to every single cost component in

the database.
3.	 Then, it will return the sum of the all total prices, calculated as a product

of the price of each cost component with the quantities on the relationships
that connect the cost component to the product at the top.

The query for this approach is similar to the following:

match
(n1:PRODUCT {id:1})<-[r1]-(:COST_GROUP)<-[r2]-(:COST_TYPE)<-[r3]-
(:COST_SUBTYPE)<-[r4]-(:COST)<-[r5]-(n6:COST_COMPONENT)
return sum(r1.quantity*r2.quantity*r3.quantity*r4.quantity*r5.
quantity*n6.price) as CalculatedPrice;

Use Case Example – Impact Analysis and Simulation

[138]

When we execute this query, it takes quite a bit of time, as we need to run through
all nodes and relationships of the tree to get what we want. With a tree of 2.1 million
nodes and relationships, this took about 47 seconds on my laptop. Look at the result
shown in the following screenshot:

Calculating the price based on a full sweep of the hierarchy

Now, anyone who has ever done a similar operation at similar scale in a relational
system knows that this is actually a really impressive result. However, we think
we can do better by optimizing our hierarchy management strategy and using
intermediate pricing information in our queries. If we want to perform impact
simulation—the subject of this section of the book—we really want this price
calculation to be super fast. So, let's look at that now.

Calculating the price based on intermediate pricing
The strategy optimization that we will be using in this example will be to use
intermediate pricing at every level of the tree. By doing so, we will enable our price
calculation to span a much smaller part of the graph, that is, only the part of the graph
that changes—the node/relationship that changes and everything "above" it in the
hierarchy—will need to be traversed when performing our impact simulations.

To do so, we need to add that intermediate pricing information to the hierarchy.
Currently, only the lowest cost component level has pricing information. Also, we
need to calculate that information for all levels of the hierarchy. We use a query
similar to the following one to do so:

match (n5:COST)<-[r5]-(n6:COST_COMPONENT)
with n5, sum(r5.quantity*n6.price) as Sum
set n5.price=Sum;

Essentially, what we do is we look at one level of the hierarchy, traverse upwards
to the level above, and set the price of the upper level equal to the sum of all
products of the price of the lower level and multiplied by the quantity of the
relationship that connects it to the upper level.

Chapter 7

[139]

As previously mentioned, we need to run that type of query for every level of
our hierarchy:

Adding intermediate pricing information

About 35 seconds later, this is all done, which is quite impressive.

Now that we have the intermediate pricing information, calculating the price of
the product only needs to traverse one level deep. We use a query similar to the
following one:

match (n1:PRODUCT {id:1})<-[r1]-(n2:COST_GROUP)
return sum(r1.quantity*n2.price);

Of course, this query is significantly faster, as it only touches a hundred or so nodes
and relationships—instead of 2.1 million of each. So, note the super-fast query that
yields an identical result to the full sweep of the tree mentioned previously:

Calculating price based on intermediate pricing

Now that we have done this optimization once, we can use this mechanism for our
impact simulation queries.

Use Case Example – Impact Analysis and Simulation

[140]

Impact simulation on product hierarchy
Our original objective was all about impact simulation. We want to understand
what happens to the price of the product at the top of our product hierarchy by
simulating what happens if one or more cost component price changes. If this
simulation would be sufficiently performant, then we could probably iterate on
these changes quite frequently and use it as a way to optimize all the processes
dependent on an appropriate price calculation of the product.

In the new, optimized strategy that we have previously outlined, we can very easily
change the price of a cost component (at the bottom of the hierarchy), and as we
update that price, recalculate all the intermediate prices that are set at the levels
above the cost component (cost, cost subtype, cost type, cost group, and finally,
the product). Let's look at the following query (which consists of multiple parts):

Part Query
Part 1 match (n6:COST_COMPONENT)

with n6, n6.price as OLDPRICE limit 1
set n6.price = n6.price*10
with n6.price-OLDPRICE as PRICEDIFF,n6

Part 2 match n6-[r5:PART_OF]->(n5:COST)-[r4:PART_OF]-
>(n4:COST_SUBTYPE)-[r3:PART_OF]->(n3:COST_TYPE)-
[r2:PART_OF]->(n2:COST_GROUP)-[r1:PART_OF]-
(n1:PRODUCT)

Part 3 set n5.price=n5.price+(PRICEDIFF*r5.quantity),
n4.price=n4.price+(PRICEDIFF*r5.quantity*r4.
quantity),
n3.price=n3.price+(PRICEDIFF*r5.quantity*r4.
quantity*r3.quantity),
n2.price=n2.price+(PRICEDIFF*r5.quantity*r4.
quantity*r3.quantity*r2.quantity),
n1.price=n1.price+(PRICEDIFF*r5.quantity*r4.
quantity*r3.quantity*r2.quantity*r1.quantity)
return PRICEDIFF, n1.price;

•	 Part 1: This looks up the price of one single cost component, changes it
by multiplying it by 10, and then passes the difference between the new
price and the old price (PRICEDIFF) to the next part of the query.

•	 Part 2: This climbs the tree to the very top of the hierarchy and identifies
all of the parts of the hierarchy that will be affected by the change executed
in Part 1.

Chapter 7

[141]

•	 Part 3: This uses the information of Part 1 and Part 2, and recalculates
and sets the price at every intermediate level that it passes. At the top of
the tree (n1), it will return the new price of the product.

Running this query on the dataset runs the following result:

Recalculating the price with one change in the hierarchy

This is really good; recalculating the price over a hierarchy of 2.1 million things all
of a sudden only takes 117 milliseconds. Not too bad. Let's see if that also works if
we change the price of more than one cost component. If we use the preceding query
but change limit 1 to limit 100 and run this query, we get the following result:

Recalculating the price based on 100 changes in the hierarchy

The effect of recalculating the price of the product based on a hundred changes in
the hierarchy is done in 314 milliseconds—a truly great result. This sets us up for
a fantastic way of simulating these impacts over our dataset.

This concludes our discussion of the impact simulation and allows us to start
wrapping up this chapter.

Use Case Example – Impact Analysis and Simulation

[142]

Questions and Answers
Q1. Analyzing impact often requires:

1.	 A lot of manual work in the database.
2.	 Complex join operations across multiple different types of information.
3.	 A simple path finding query over a graph database such as Neo4j.

A: 3. Path finding is a great use case for Neo4j.

Q2. Which of the following use cases is a great hierarchical use case for Neo4j?

1.	 Calculating the average selling price over a million different
purchase transactions.

2.	 Calculating access control over a directory tree of users in groups
and departments.

3.	 Calculating the shortest path on a road network between two cities.
4.	 Recommending a new product purchase to an existing client.

A: 2. Access control is typically a great hierarchical use case, as evidenced by
}the multiple hierarchically organized directory servers on the market today.
Hierarchies, however, are just a specific type of graph and so they are typically
also a great use case for Neo4j.

Summary
In this chapter, we illustrated that graph databases such as Neo4j are extremely
well placed at playing a role in many enterprise architectures where impact analysis
and simulation would be important. There are many different fields where this
may be useful, but we chose two specific domains to illustrate this use case. First,
we took a look at a Business Process Management use case, where analyzing and
understanding the potential impact of a change in a network would be of primary
interest to the user. Then, we took a look at an impact simulation use case, where
we wanted to set up a use case in which we would want to iteratively simulate
different impact scenarios and see what would be the result of those changes on
the network, using a product hierarchy as an example to do so.

We hope to have given you a good overview of the use cases and its potential.
We will now continue to the next chapter of this book, which deals with graphical
visualizations for Neo4j.

Visualizations for Neo4j
In this chapter, we will look at the fascinating domain of graph visualizations
within the context of the Neo4j Graph Database Management System. We will
go into the reasons why these kinds of visualizations can be so wonderfully
important, discuss different technical tools to help you with these visualizations,
and then finally discuss some of the common do's and don'ts within this domain.

In this chapter, we will discuss the following topics:

•	 The power of visualizations, and graph visualizations more specifically
•	 The basic principles and components of a graph visualization solution
•	 Different visualization libraries and solutions on the market today

for your use

With that, let's dive right in.

The power of graph visualizations
In this section, we will spend time discussing the reasons why graph visualizations
are so important, and highlight some of the underpinning technologies that are
used in the different solutions that we will zoom into later on.

Why graph visualizations matter!
There are many reasons why the graph visualizations that we will discuss in this
chapter, as well as the ones that we have previously seen and will show hereafter,
are really nice. But for a limited number of reasons, they are more than nice: they
matter greatly, and can have a massive impact on decisions being made, big or
small. Let's discuss these.

Visualizations for Neo4j

[144]

Interacting with data visually
From a very early age, we are taught to interact with data in a cognitive way—focused
on analysis, not understanding. We are not supposed or encouraged to look at data
in a creative, fun, or interesting way that induces insight. This, however, is now
changing. There's an entirely new discipline emerging in the field of data science and
analytics, which stresses the visual aspects of interacting with data. Visual interaction,
as opposed to cognitive interaction, tends to have some qualities for average human
beings who do not have the technical or scientific background that some people may
have. By extension, many different business managers may also find this new way of
interaction quite interesting. Here are some reasons why:

•	 It allows people to extract key information at a glance. In an age of sub-
second attention spans and massive information overload, this can be truly
important to get a point across and help your audience sift through what is
and what is not important.

•	 We all know the cliché: a picture says more than a thousand words. The
reason it is a cliché, of course, is that it is true. Pictures are usually easier
to understand, and perhaps more importantly, also easier to remember.

Edward Tufte's reference work on visualization

Chapter 8

[145]

We could expand on both points quite elaborately, but instead we are going to
recommend that you read up on books like Edward R. Tufte's for more details.
It is sufficient to say that graph visualizations can be truly powerful, and that most
Neo4j projects today will have some kind of visualization component to them for a
combination of the previously stated reasons.

Looking for patterns
Expanding on and adding to the previous points on visualization, there is another
great reason for interacting with Neo4j in a visual way. The fact is that graph
visualizations allow humans to really use an otherwise underused capacity of our
brains: pattern recognition. When we interact with data in the traditional way (through
lists of things, tabular structured reports, and summary statistics), it is very difficult
for our brain to discern any kind of pattern. We would need to read, assimilate, and
cognitively process all data before anything like that would become possible. But in
graph visualization, in many cases, we can just leverage the primal capability that we
have built into our machinery: the ability to recognize patterns. Pattern recognition
is a key capability of the human brain, and one we should leverage and exploit in
our business life. Representing data in a visual way, like in a graph visualization, is a
natural thing for us to do—and can yield very powerful results. After all, that's why
we whiteboard, mindmap, or doodle when we work and discuss with our colleagues,
isn't it?

Spot what's important
Part of the power of these results will be in being able to separate the wheat from
the chaff and find out what is truly important in a particular data set. Sometimes,
that important piece will be in the density of the connections between a particular
data entity and the other entities. Sometimes, it will be more in the intensity of the
connections. And at other times, it will be the outliers that will be the more important
data elements—the ones with limited amounts of connectivity with the rest of the
data structure. Those data elements, which at a minimum will be interesting if not
important, will jump out of a graph visualization immediately, whereas they may
never surface in a long list of data elements that we could easily glance over.

For all of the mentioned reasons, graph visualization is truly important and should
definitely be examined in detail by anyone interested in doing a Neo4j graph
database project.

Visualizations for Neo4j

[146]

The basic principles of graph visualization
In order to visualize a graph structure, we need to take into account a number of
aspects. Like with any visualization, it is very easy to let the trees disappear into
the forest—in graphs, we often talk about the hairball effect. Connected structures
such as graphs can very easily become very unclear and opaque to the user;
it takes a couple of very well-defined mechanisms to lay out the graph to the user
in an intelligible way. More specifically, we tend to find three main mechanisms
that are used by different technology solutions that we will treat later on. Let's go
through these mechanisms.

Graphs can quickly look like hairballs

Before doing so, I want to specifically thank my friend and colleague
Alistair Jones for his insightful talks that gave me many of the ideas
presented in this section. Please visit www.apcjones.com if you want
to learn more.

www.apcjones.com

Chapter 8

[147]

Here are the three mechanisms to keep in mind:

•	 Gravity: In order for a graph visualization to make sense to a user, things
that belong together need to be presented together. These items will need
to gravitate to one another using some kind of force that will be calculated
based on the characteristics of the nodes and relationships that will be stored
in the Neo4j database management system.

•	 Charge: By the same logic, there needs to be a force that keeps items apart
from one another. We call this charge, as we know from a long-forgotten
course in school that substances with a similar positive or negative charge
will repel each other. Similarly, we will associate a charge to different items
in the graph to keep them from overlapping and make sure that they are
visualized apart.

•	 Springs: As with many other data visualization solutions, it helps the
effectiveness of the graph visualization greatly if the solution is presented in
a dynamic and vivid fashion. In a graph database visualization like the ones
that we want to hook up to Neo4j, this often means that we would appreciate
some kind of springy behavior that displays the data in a way that is not as
static as usual but that moves around on the screen as it is built or as it is
manipulated by the user. The spring analogy aims to explain that we will
appreciate the type of visualization that will go back and forth a bit before
it stabilizes on the screen.

With these three underlying techniques, a number of very interesting visualization
libraries and full-fledged solutions have been built. We will take the next couple
of sections to highlight these briefly so that you know where you can find some
potential components of your Neo4j solution.

Open source visualization libraries
Many developers that use Neo4j as their Graph Database Management System end
up having some very specific needs to visualize the network and present that to their
end users in an integrated way as part of their application. These Neo4j users, who
are typically not afraid of getting their hands dirty with some code, will typically
like to build that visualization using a library of tools that fit their purpose. There
are several tools out there that could be used, so let's give you a little overview of
the most popular ones.

Visualizations for Neo4j

[148]

D3.js
D3, pronounced "dee three", is another way to refer to a library that is supposed to
enable and provide data-driven documents. It is a JavaScript library for manipulating
documents based on data. You can find the latest version on www.d3js.org. D3 helps
you visualize data using HTML, SVG, and CSS. D3's emphasis on web standards gives
you the full capabilities of modern browsers without tying yourself to a proprietary
framework, combining powerful visualization components and a data-driven
approach to the manipulation of the Document Object Model (DOM) that is the
basis of HTML and XML documents.

As such, D3.js is not limited to the visualization of graphs—it aims to solve the heart
of many data visualization problems: being able to manipulate a dataset interactively
based on some kind of document. Once that is solved, the data can be manipulated
independent of the format or representation, which offers great flexibility and has
made the D3 libraries very popular with developers, and which is why many other
libraries are built on top of it.

D3 visualization of a graph

www.d3js.org

Chapter 8

[149]

Graphviz
Graphviz is an open source graph visualization software that you can download
from www.graphviz.org. It is often quoted as being the granddaddy of visualization
software, but is still very actively used and developed. It provides several main layout
programs and also features web and interactive graphical interfaces, as well as helper
tools, libraries, and language bindings. The core Graphviz team claims not to be able
to put a lot of work into GUI editors, but there are quite a few external projects and
even commercial tools that incorporate Graphviz.

The Graphviz layout programs take descriptions of graphs in a simple text
language and create diagrams in useful formats, for example, images and SVG
for web pages and PDF or Postscript for inclusion in other documents or display
in an interactive graph browser.

Graphviz has many useful features for concrete diagrams, such as options for
colors, fonts, tabular node layouts, line styles, hyperlinks, and custom shapes.

Graphviz visualisation of a graph

www.graphviz.org

Visualizations for Neo4j

[150]

Sigma.js
Sigma is a JavaScript library dedicated to graph drawing. You can find it on
www.sigmajs.org. It makes it easy to publish networks on web pages and allows
developers to integrate network exploration in rich web applications. Sigma provides
a lot of built-in features that are optimized for modern browsers, such as Canvas and
WebGL renderers or mouse and touch support. This is supposed to make network
manipulation on web pages smooth and fast for the user.

Sigma provides a lot of different settings to make it easy to customize drawing and
interaction with networks. And you can also directly add your own functions to
your scripts to render nodes and edges the exact way you want. Sigma is a rendering
engine, and it is up to you to add all the interactivity you want. The public API makes
it possible to modify the data, move the camera, refresh the rendering, listen to events,
and many other things. It's probably for some of these reasons that the visualization
solution of Linkurio.us, which we will come back to later in this chapter, uses sigma.js
under the hood.

Sigma.js visualization of a graph

www.sigmajs.org

Chapter 8

[151]

Vivagraph.js
Vivagraph is a free and fast graph drawing library for JavaScript. It is designed to be
extensible and to support different rendering engines and layout algorithms. You can
download the most recent version from https://github.com/anvaka/VivaGraphJS
and see some very nice demos of it at www.yasiv.com. At the moment, it supports
rendering graphs using WebGL, SVG, or CSS formats. The author Andrei Kashcha
is also working on a more modular and extensible library called Ngraph; you can
find details of it on https://github.com/anvaka/ngraph.

Some of the vivagraph.js examples on Yasiv are a lot of fun to use, and powerfully
illustrate that graphs can be used very well for things such as recommendations: it
takes a split-second view of the Amazon recommendation graph to understand
how one might use this. Have a look at the following screenshot:

Vivagraph.js visualization of the Amazon recommendation graph

Those were probably some of the more popular open source visualization libraries
out there.

https://github.com/anvaka/VivaGraphJS
www.yasiv.com
https://github.com/anvaka/ngraph

Visualizations for Neo4j

[152]

Integrating visualization libraries in your
application
Integrating libraries will always follow a similar pattern, as illustrated by the
following figure:

How to integrate graph visualizations in an application

Chapter 8

[153]

The browser will contain two parts:

•	 The DOM, with the actual data. This contains the graph data as part of
the total web page.

•	 The JavaScript part, with the browser framework as well as the graph
visualization library (one of the ones mentioned before, possibly) and
perhaps some other application code.

The application server will be on the other end of the Internet connection to provide
the application interface to the user. This server will typically have some business
logic hosted on it, but will most probably also have to integrate with a database
management system like Neo4j.

The Neo4j server in the back will be serving up result sets based on queries
generated by the aforementioned business logic.

This architecture allows us to understand how any of these libraries would need to
be hooked into our application. With that, we will now turn our attention to some
more packaged visualization solutions that can be used in combination with Neo4j.

Visualization solutions
We make a distinction between visualization libraries and visualization solutions
for a very specific reason: they serve very different purposes.

Many members of the Neo4j user community have been developing their own
application-specific visualization applications that are typically very customized.
They aim to solve a very specific visualization problem, and use a library to do so,
because it allows them to tweak the visualization to their liking at the expense of
a bit more work.

There are, however, also those users of the Neo4j Graph Database Management
System that require a more general, less optimized but more readily available
visualization solution. For those users, visualization "solutions" are a better option,
as they are typically readily available, off-the-shelf solutions that require little or
no customization to start adding value. These are the solutions that we will be
discussing in this section of our book. So, let's take a look.

Note that we will be discussing these solutions in alphabetical order; there is no
preference or order displayed in these pages, as we firmly believe that most of
these tools are very complementary to one another.

Visualizations for Neo4j

[154]

Gephi
Gephi is an interactive visualization and exploration platform for all kinds of
networks and complex systems, dynamic graphs, and hierarchical graphs. It is
developed by the Gephi Consortium, a not-for-profit legal entity in France created
to ensure future developments of Gephi. They aim to develop a number of tools in
an open source ecosystem, focused on the visualization and analysis of large
networks in real-time. Their tagline, Like Photoshop but for data, gives you a good
feel of what they want to do: Gephi helps data analysts intuitively reveal patterns
and trends, highlight outliers, and tell stories with their data.

Gephi graph visualization and analysis

The toolset runs on Windows, Linux, and Mac OS X and has a very extensible
architecture that, for example, allows you to import and export Neo4j databases.

What makes Gephi interesting from my perspective is its capability to do both graph
visualization and, at least for small-to-medium sized graphs, graph analytics. It can
be of great help in discovering new patterns in your data—even those patterns that
you are currently not aware of.

Chapter 8

[155]

Keylines
UK-based startup Cambridge Intelligence (http://cambridge-intelligence.com/)
has been building a very interesting toolkit for graph visualization called Keylines
(http://keylines.com/) that has been gaining traction quite quickly in the law
enforcement, fraud detection, counter terrorism, CRM, sales, and social network
data sectors.

Keylines graph visualization

Keylines is interesting in many different ways from a technical perspective, mostly
because it can be deployed on any browser or device without too much difference
in architecture and support. It allows for both standard out-of-the-box deployment,
as well as deep customization using the System Development Kit that is provided
with their commercial licenses.

http://cambridge-intelligence.com/
http://keylines.com/

Visualizations for Neo4j

[156]

Linkurio.us
Linkurio.us (http://linkurio.us/) is probably one of the more interesting
and newer additions to the graph visualization landscape. It was started in France
by some of Gephi's original founders and contributors. They now offer a very
well-rounded, moderately priced, easily accessible entry point for people that
want an advanced graph visualization toolkit without having to jump through
the hoops of building one.

Linkurio.us graph visualization

Linkurio.us is a very nice alternative for graph visualizations, offering a packaged
solution with lots of interesting features and a plug-and-play installation on top of
an existing Neo4j database management system.

http://linkurio.us/

Chapter 8

[157]

Neo4j Browser
With the arrival of Neo4j 2.0 in late 2013, the team at Neo Technology provided
an entirely new way of interacting with graph data, entirely based on an intuitive
way to interact with the graph database using Cypher. This environment, called
Neo4j Browser, is a bit of a hybrid between a data query tool and a development
environment. It provides many of the tools that one would expect to use in an
interactive exploration of graph data, allows for saving of queries and visual
styling, and is gradually being expanded with more and more functionality.

Neo4j Browser graph visualization and querying

Neo4j Browser is, at the time of this writing, still under constant development,
with new features being constantly added. One of the interesting new developments
now is that Neo Technology will actually allow for the extraction and embedding
of browser visualization functionality into your own applications.

Visualizations for Neo4j

[158]

Tom Sawyer
One of the lesser known alternatives for graph visualization, at least in Europe,
is Tom Sawyer Software's Perspectives line of products. Look at https://www.
tomsawyer.com for the company's website and https://www.tomsawyer.com/
products/perspectives/index.php for more information on Perspectives.

This is an advanced graphics-based software for building enterprise-class data
relationship visualization and analysis applications. It features a complete Software
Development Kit (SDK) with a graphics-based design and preview environment
that lets you build, test, and deploy graph visualizations more easily, based on a
reference architecture.

Tom Sawyer graph visualization

Tom Sawyer also offers standard data integration capabilities for Neo4j's Graph
Database Management System.

https://www.tomsawyer.com
https://www.tomsawyer.com
https://www.tomsawyer.com/products/perspectives/index.php
https://www.tomsawyer.com/products/perspectives/index.php

Chapter 8

[159]

With that, we are close to wrapping up the chapter on graph visualizations of this
book. We do have a couple of closing remarks that we would like to add before we
move on.

Closing remarks on visualizations
It should be clear by now that once we have our data models in a Graph Database
Management System like Neo4j, one of the great potential use cases for that system
is tightly coupled to visualization capabilities. It is amazing what we can learn from
visualizations, but we do want to point out two caveats that you should always be
keeping in mind as you engage in a visualization project.

The "fireworks" effect
While graph visualizations usually have a very positive effect on its users, we—as
IT people that are provided this as an interface to interact with data—must also be
aware of the fact that these visualizations can be a bit too much sometimes. We call
that the "fireworks" effect, and while by no means specific to graph visualizations,
it is an important thing to be aware of. The purpose of visualization can never be
to attract oooohs and aaaahs—that's what fireworks are supposed to do for the
crowds of spectators that they attract. Contrarily, the purpose of visualization should
always be to communicate with the beholders and to transfer information from the
software application that we are building on top of a Graph Database Management
System such as Neo4j to its users. This seems like a trivial point, but we know from
experience that it is often forgotten.

The "loading" effect
With that purpose of visualizations in mind, we should also take into account
another aspect that is crucially important in the world of data visualizations:
the loading effect. This effect is, again, not specific to graph visualizations and is
omnipresent in many charts and graphics presented by newspapers and television
reports alike. We mean to highlight the effect that a particular type of presentation
of the data has in the interpretation process of the user.

By making certain choices on how we present the data, the options that we present
to the user, even the colors that we choose for certain data elements, we may load
the visualization with certain expectations and interpretations on behalf of the end
user. Data visualizations should therefore always highlight and explain the choices
made to the end user and offer different ways of representing the data if that would
be of use.

Visualizations for Neo4j

[160]

Questions and answers
Q1. If I wanted to build an application that included graph visualization, I would
have to build that visualization from scratch.

1.	 True
2.	 False

A. False. While many applications benefit from a customized visualization solution,
there are a number of solutions and libraries out there that can help you. At a
minimum, these libraries and/or solutions will provide you with a baseline from
which you can start.

Q2. The three basic graph visualization forces used in many tools are:

1.	 Gravity, Obesity, Charge
2.	 Springs, Gravity, Charge
3.	 Charge, Gravity, Verbosity

A. Springs, Gravity, Charge.

Q3. The well-know effect of data visualizations containing too much information,
so much so that the user gets confused and cannot see the wood for the trees,
is often referred to as:

1.	 The forest effect
2.	 The loading effect
3.	 The fireworks effect

A. The fireworks effect.

Summary
We conclude our chapter on graph visualization. In this chapter, we went
through the reasons why graph visualizations matter greatly to modern-day data
applications. We also illustrated different tools and techniques that could be used
by application developers to create their graph database applications. We then
wrapped up the chapter by pointing out some very important side effects of
visualization solutions, and how we could take these effects into account when
we engage in such a project.

The next chapter will cover topics to teach you to import data into Neo4j. You will
learn about the tools that can be used to import this data into your databases.

Other Tools Related to Neo4j
No database is complete without some tooling around it. Developers and database
administrators alike need additional tools—besides the database proper—to make
the database fit into a more holistic solution. Neo4j as a Graph Database Management
System is no different in that respect. In this chapter, we would like to point out
some important tools that are related to Neo4j and can be important in specific
user environments. More specifically, we will look at:

•	 Data integration tools
•	 Business Intelligence tools
•	 Modeling tools

No doubt there are other tools that could be of use, but this should get you started.

Data integration tools
Very often, users will want to use the Neo4j Graph Database as part of a solution
that uses a polyglot persistence strategy. This is a term that was first coined by Scott
Leberknight, but later used and explained many times by well-known authors such
as Martin Fowler. Essentially, what we are talking about here is the fact that most
complex applications these days feature a number of different data patterns that
are used under very different workloads and that can therefore benefit from very
different implementation strategies.

Other Tools Related to Neo4j

[162]

Here's what a potential polyglot persistence architecture could look like for a
hypothetical, or speculative, retailer:

An example of polyglot persistence

In the Speculative Retailer's Web Application featured in the preceding figure,
there may be different use cases that rely on different data patterns, and that
would be best implemented in different data stores.

The consequence of a strategy like polyglot persistence is, of course, that you introduce
the immediate and significant need for data integration. Different Data Integration
strategies are of course conceivable, but at least one of these will rely on third-party
tooling to read from and write to the Neo4j Graph Database Management System.
Therefore, we would like to introduce two examples of tools like these and discuss
their characteristics and potential use cases.

Chapter 9

[163]

Talend
Talend (www.talend.com) is an open source software vendor that provides
Data Integration, data management, enterprise application integration, and Big
Data software and services. They have a very extensible, visual, and powerful
development environment for all kinds of integration services that can all be
connected together in a workflow designer-style environment.

Talend Studio for Big Data with Neo4j connectivity

The Talend toolset is definitely very interesting for Neo4j users to take a look at. The
original connector for Neo4j was developed by Zenika, a French system integrator,
but was afterwards integrated in the core toolset of Talend Open Studio for Big Data,
the Talend Enterprise Big Data, and Talend Platform for Big Data products. At the
time of writing, the connector has been lagging behind Neo4j releases a little bit, but
has been sufficiently powerful in usability and technical proficiency that it deserves
a recommendation in this section of our book.

www.talend.com

Other Tools Related to Neo4j

[164]

MuleSoft
MuleSoft (www.mulesoft.com), headquartered in San Francisco, California, provides
an integration platform to connect any application, datasource, or API, whether in
the cloud or on-premises. Just like Talend, it offers a visual environment to integrate
other datasources in the polyglot persistence architecture with the Neo4j graph
database management system. To do so, MuleSoft provides a well-documented
connector for Neo4j that allows you to integrate very easily.

The MuleSoft Neo4j connector

The MuleSoft connector offers a connectivity metaphor that is a bit similar to what
LOAD CSV and the Neo4j shell tools provide, in that they allow you to use variables
(read from incoming data streams that can come from different alternative data
sources) to include in Cypher statements. It is very easy to understand and use if
you are already a bit familiar with Cypher, which is probably the case by now.

www.mulesoft.com

Chapter 9

[165]

Sending a Cypher query to Neo4j via MuleSoft

The MuleSoft toolset also seems to be well documented and well maintained,
providing developers with a stable platform for their integration applications.

Business Intelligence tools
Because Neo4j as a graph database management system provides many advantages
when interacting with inherently networked and interconnected data structures,
many traditional data analysis tools can benefit greatly from leveraging its query
power. There is, most notably, an entire category of tools out there that are a prime
candidate for doing so: the so-called Business Intelligence tools. Tools in this space
include (but are certainly not limited to):

•	 IBM Cognos
•	 SAP Business Objects
•	 Pentaho
•	 Jaspersoft
•	 Qlikview

Other Tools Related to Neo4j

[166]

We will zoom into one of these tools in the following paragraphs, but would first
like to clarify the mechanism through which these tools can interface with Neo4j.
Of course, they could integrate by calling the raw Neo4j REST API and submittin
specific requests this way, and would get responses in the rawest possible format.
This type of integration would most likely require quite a bit of integration work,
but could be advised in certain more advanced use cases.

There are, however, many use cases that can be solved by using a standardized
integration mechanism that is overall well understood and readily available: most
of the tools mentioned previously provide a mechanism for integrating with a
standardized database interface called the Java Database Connectivity interface.
This technology is an API for the Java programming language that defines how a
client may access a database. It provides methods for querying and updating data in
a database. By default, JDBC is oriented towards relational databases, but luckily for
our discussion, a great deal of work has gone into a JDBC driver for Neo4j. You can
download this driver from http://www.neo4j.org/develop/tools/jdbc and start
experimenting with it very quickly.

Working with the Neo4j JDBC connector

http://www.neo4j.org/develop/tools/jdbc

Chapter 9

[167]

As you can see from the preceding screenshot, you can write Neo4j queries in Cypher,
send them over the wire via the JDBC driver to Neo4j, and receive the result set in a
standardized tabular format. This format can then be used by tools like the Business
Intelligence tools mentioned previously and integrated in their capabilities.

A very good case study of such an integration is provided by the way Qlikview
integrates with Neo4j. Developed by a German company called TIQ Solutions
(http://www.tiq-solutions.de/), it provides a full and comprehensive solution
for integrating Neo4j with the Qlikview Business Intelligence suite of applications.

Integrating with Neo4j from Qlikview

All of these integrations make use of a JDBC connectivity that can be tuned to the
Qlikview application development environment. For more information, you can visit
http://www.tiq-solutions.de/display/enghome/ENJDBC and http://tiqview.
tumblr.com/. The Neo4j website also features a number of links to examples and
case studies that could be of use.

The mechanism outlined earlier, using the JDBC connectivity provided by Neo4j's
driver, is a very powerful integration mechanism that can combine the best of the
other worlds and can make the query power of graph databases such as Neo4j
available to a broader user audience.

http://www.tiq-solutions.de/
http://www.tiq-solutions.de/display/enghome/ENJDBC
http://tiqview.tumblr.com/
http://tiqview.tumblr.com/

Other Tools Related to Neo4j

[168]

Modeling tools
As we saw in Chapter 4, Modeling Data for Neo4j, modeling for Graph databases is just
as important as ever. Even though there is no external schema overlooking our data
model by default, there is still a clear and important need to model. The way to define
the structure of the data that we are planning to store in Neo4j needs to be documented
in a clear and understandable fashion. In this section of our book, we will outline two
frequently used tools that we can suggest for the development of our graph models:

•	 The homegrown open source toolset developed by Alistair Jones and
GraphAlchemist, appropriately called Arrows

•	 The commercially developed and supported toolset of OmniGraffle

Let's provide a bit more detail on each of these tools.

Arrows
Originally started by Neo Technology's, Alistair Jones (www.apcjones.com) as a
side project for graph documentation and visualization, the Arrows toolset today
enables very easy and useable documentation of graph database models. The tool
is available online at www.apcjones.com/arrows and provides very basic but
advanced graph drawing capabilities.

The original Arrows tool at work

www.apcjones.com
www.apcjones.com/arrows

Chapter 9

[169]

The nicest thing about the Arrows model is that it enables exact mapping of the
property graph model of Neo4j onto the drawing canvas. Its automatic scaling
and alignment features are also extremely useful.

The Arrows toolset, which is an open source project publicly available on
https://github.com/apcj/arrows, was subsequently adopted and forked by
the team at www.graphalchemist.com and enriched with a new data format
(based on JSON instead of XML) and coloring possibilities.

The forked graphjson tool at work

You can find the documentation on www.graphjson.org, the code on
https://github.com/GraphAlchemist/GraphJSON, and a working
example on www.graphjson.io for you to play with.

Now, we can turn our attention to a better-rounded modeling tool that has
been around for years, and provides lots of mature capabilities: OmniGraffle.

https://github.com/apcj/arrows
www.graphalchemist.com
www.graphjson.org
https://github.com/GraphAlchemist/GraphJSON
www.graphjson.io

Other Tools Related to Neo4j

[170]

OmniGraffle
OmniGraffle (http://www.omnigroup.com/omnigraffle/) is a diagramming
application made by The Omni Group (http://www.omnigroup.com/). OmniGraffle
is built only for Mac OS X and iPad. It may be used to create diagrams, flow charts,
org charts, illustrations, and graph database models. It features a drag-and-drop
WYSIWYG interface. Stencils—groups of shapes to drag-and-drop—are available
as extensions for OmniGraffle, and users can create their own stencils, for example,
to get easy access to property graph editing requirements. In many of these respects,
OmniGraffle is similar to Microsoft Visio.

The OmniGraffle modeling tool at work

Having used OmniGraffle for a number of models, I believe that it provides excellent
capabilities to draw larger and more complex models. The multilayer capabilities
and rich drawing palettes allow you to integrate the model into broader documents
that can be used for other purposes as well. The only major negative aspect at this
point seems to be its limited support for the Windows platform.

With that, we have covered the important tooling additions that we wanted to
provide to our book and are ready to wrap up.

http://www.omnigroup.com/omnigraffle/
http://www.omnigroup.com/

Chapter 9

[171]

Questions and answers
Q1. What programming language is used to interact with Data Integration tools like
Talend and MuleSoft to accomplish our Neo4j integrations?

1.	 Any programming language can be used
2.	 You have to use Java
3.	 You do not need to develop—you can use visual development tools to

achieve the integration
4.	 Java is supported, but Erlang is preferred

A. You do not need to develop—you can use visual development tools to achieve
the integration

Q2. What is the major downside of using OmniGraffle for developing graph
database models?

1.	 It does not integrate with the database natively
2.	 You need to use a drawing tablet to use the software
3.	 It is only available on OS X/iPad

A. It is only available on OS X/iPad

Summary
In this chapter, we attempted to give a few additional pointers to you with regards
to additional tools and technologies that could be useful complements to the core
Neo4j graph database management system.

We covered additional tools around data integration, business intelligence tools,
and modeling tools.

We hope this was a useful chapter and you are now ready to head into the final
part of our book, that is, some useful appendices.

Where to Find More
Information Related to Neo4j

Developing applications based on a radically new database architecture such as
the Neo4j graph data model requires many different things. For sure, you will hit
issues here and there, and at that point in time, you want to be able to find the right
information quickly and efficiently. In this appendix, we will provide you with a
short overview of potential information sources that could help you in this quest
and give you a few pointers to useful information sources, quickly.

Online tools
The primary source of information for Neo4j is, of course, the online body of reference.
Some of the most important parts of the Internet that could be of interest for you when
getting started with Neo4j will be discussed next.

Where to Find More Information Related to Neo4j

[174]

Google group
The Google forum at https:// groups.google.com/group/neo4j is a great
place to ask questions, discuss experiences, and connect with other users of Neo4j.
Because it leverages the Google search capabilities, it tends to be a great place for
people to start looking for real-world experiences and advice.

https:// groups.google.com/group/neo4j

Appendix A

[175]

Stack Overflow
If or when you are looking for specific technical help or assistance, please consider
asking a question on Stack Overflow. This is where you can get technical questions
answered, either by the Community Management staff of Neo Technology or other
volunteering contributors in the Neo4j community. Every question should have a
neo4j tag, and then all of these questions and answers can be easily accessed by
navigating to http://stackoverflow.com/questions/tagged/neo4j.

http://stackoverflow.com/questions/tagged/neo4j

Where to Find More Information Related to Neo4j

[176]

The Neo4j community website
For quite some time, the website of the Neo4j community, www.neo4j.org, has been
a great resource with easily accessible information about the product, development
practices, learning resources, and many other pieces of information. At the time of
writing this, the website was about to be significantly redesigned.

www.neo4j.org

Appendix A

[177]

The new Neo4j website
At the time of writing of this chapter, Neo Technology was in the process of
recreating a new website at www.neo4j.com, which would restructure and make
information more accessible for a variety of audiences and give it a more pleasing
look and feel. This process would include and merge both community and
commercial resources, for both technical and more business-oriented contacts
that want to inform themselves on Neo4j.

www.neo4j.com

Where to Find More Information Related to Neo4j

[178]

The Neo4j Blog
Many of the Neo4j developers and community members are fervent sharers of
information, and much of what they write ends up on the Neo4j Blog. You can access
the blog on the newly added blogging section of Neo4j at http://neo4j.com/blog/.

http://neo4j.com/blog/

Appendix A

[179]

GraphGists collection
Since summer of 2013, Neo4j community members have started to share and publish
some of their graph database models and use cases using a GraphGist. GraphGists
use plain text files (formatted in AsciiDoc) available from any public URL (for
example, GitHub gists) to create interactive, dynamically rendered graph examples
and queries that are evaluated by a Neo4j infrastructure in the background. It allows
great documentation and explanation of Neo4j models in an easily understandable
way. Visit http://gist.neo4j.org/ for many well-written examples of graph
database use cases—there are a lot of them available on the website.

http://gist.neo4j.org/

Where to Find More Information Related to Neo4j

[180]

The Cypher reference card
Like many query languages, many users of it want and need to switch back to
some kind of a reference for creating, maintaining, and/or troubleshooting specific
kinds of queries. Cypher, the Neo4j declarative query language, therefore provides
a handy reference page / card that many people turn to for occasional references.
Visit http://docs.neo4j.org/ for the most recent version (at the time of writing
this, http://docs.neo4j.org/refcard/2.1.2/ is the current one). You can always
change the last digits to correspond to the presently generally available version
of Neo4j.

We will be including more information on Cypher in Appendix B, Getting Started
with Cypher.

http://docs.neo4j.org/
http://docs.neo4j.org/refcard/2.1.2/

Appendix A

[181]

Other books
There are a number of interesting books on the market today that could provide
good follow-up reading, now that you have almost finished Learning Neo4j. A few
books to highlight are as follows:

•	 Another good book that specifically covers the Cypher query language
is Learning Cypher by Packt Publishing (http://www.packtpub.com/
learning-cypher/book).

•	 The O'Reilly book by Jim Webber, Ian Robinson, and Emil Eifrem.
This book has been free to download at www.graphdatabases.com for
a while, and still provides a good bit of detailed technical information.

•	 A book by OpenCredo's CEO Jonas Parter, published by Manning, Neo4j
in Action (http://www.manning.com/partner/).

•	 A book by Michael Hunger and David Montag, published at InfoQ, Good
Relationships (http://neo4j.com/books/good-relationships/).

No doubt there are other useful publications, but this should give you a good
starting point.

Events
The Neo4j ecosystem, with Neo Technology as its more prominent supporter,
organizes and participates in a very large number of events. You can find an
overview of these events at http://neo4j.com/events, but there are a couple
of event types that deserve a bit of additional attention and a separate mention.

Meetup
Most of the Neo4j community events are organized and administered through the
Meetup website. You can find most groups quite easily at http://neo4j.meetup.
com/ or by searching for it on the main website (www.meetup.com). Many of the
meetups also have a standardized URL that should be something like www.meetup.
com/graphdb-<your_city_name>.

http://www.packtpub.com/learning-cypher/book
http://www.packtpub.com/learning-cypher/book
www.graphdatabases.com
http://www.manning.com/partner/
http://neo4j.com/books/good-relationships/
http://neo4j.com/events
http://neo4j.meetup.com/
http://neo4j.meetup.com/
www.meetup.com

Where to Find More Information Related to Neo4j

[182]

GraphConnect
Since 2012, Neo Technology has been organizing an industry-wide conference
called GraphConnect. In 2014, the conference will be hosted in San Francisco,
and the current plan is to have a European conference in London early 2015.
For the past few editions, it has attracted hundreds of graph databases users
and enthusiasts (www.graphconnect.com).

Conferences
Neo Technology attends a lot of interesting conferences around the world. You can
find the most recent list of events at http://neo4j.com/events/#/events?area=Wo
rld&type=Conference for more information.

Training
As more and more people start to deploy the Neo4j graph Database Management
System, the need for building and managing the relevant competencies within the
adopting enterprises will rise. Neo Technology has therefore started to provide
different kinds of training that offer affordable and thorough possibilities for the
users. You will find two types of training:

www.graphconnect.com
http://neo4j.com/events/#/events?area=World&type=Conference
http://neo4j.com/events/#/events?area=World&type=Conference

Appendix A

[183]

•	 Classroom training: These are available in many cities around the world.
You can find an overview at http://neo4j.com/events/#/events?area=W
orld&type=Training.

•	 Online training: Neo Technology started to offer online course
material, for free, since early 2014. Given the success of the first training,
it is very likely that additional courses will follow throughout the year.
Visit http://www.neo4j.org/learn/online_course for the entry-level
course as a starting point.

Neo Technology
As Neo Technology is the commercial backers of the Neo4j graph Database
Management System, you can often also get very useful input from the friendly
folds at Neo Technology. They try to help you whenever possible, and you can
often benefit most if you reach out to them earlier rather than later. You can use
the contact form at http://www.neotechnology.com/contact-us-form/ to do
so, or send an e-mail to info@neotechnology.com.

http://neo4j.com/events/#/events?area=World&type=Training.
http://neo4j.com/events/#/events?area=World&type=Training.
http://www.neo4j.org/learn/online_course
http://www.neotechnology.com/contact-us-form/
info@neotechnology.com

Where to Find More Information Related to Neo4j

[184]

Neo Technology is also building a partner network with integrators and
consultancy organizations that have expertise and an active interest in the
Neo4j graph Database Management System. You can find the list of partners at
http://www.neotechnology.com/partners/, but given the fact that this list is
rapidly changing and growing at the time of writing this, you would probably
get a more accurate view of the current landscape by contacting Neo Technology
themselves and letting them help you find the appropriate partner.

http://www.neotechnology.com/partners/

Getting Started with Cypher
Database systems need query languages in order for humans and software
applications to interact with them in an efficient way. There are a number of graph
query languages out there already (Gremlin and SparQL, to name just two), and
some of these have certainly inspired the creation of Cypher, but Cypher is quite
different than anything else you may have come across before. No book on Neo4j
would be complete without at least spending some time on it—in spite of the fact
that there are entire books, presentations, and courses available for you to review.

The key attributes of Cypher
In making Cypher, Neo Technology and Andres Taylor (@andres_taylor) set out
to create a new query language, specifically for dealing with graph data structures
like the ones we store in Neo4j. There were a couple of reasons for doing this, more
specifically four attributes that are not available together in any other query language
out there.

Let's quickly examine these attributes, as they are quite important to understanding
the way Cypher works in Neo4j:

•	 Declarative: Cypher is a declarative query language, which is very different
from the imperative alternatives out there. You declare the pattern that you
are looking for. You effectively tell Cypher what you want, not how to get it.
This is crucial, as imperative approaches always suppose that you—as you
interact with the database—have the following qualities:

°° A programmer who knows how to tell the database what to
do—probably with some procedural logic that would need to
be formalized in a program

Getting Started with Cypher

[186]

°° Someone that intimately knows the structure, size, and semantics
of the dataset being queried in order for the imperative path to
the result set to be optimally formed

Both assumptions seem to be quite far-fetched and for this reason, many
database systems have settled on declarative approaches to querying
their data. Structured Query Language (SQL) is of course the most
well known example.

•	 Expressive: Many people have highlighted that the Cypher syntax is a
little bit like ASCII art, and it probably is. With its rounded and square
brackets, and the arrows connecting the parts of the pattern, it is very easy
to understand how the query language expresses what you are looking for.
The reason behind optimizing the syntax for reading is simple and clear:
most code gets read far more often than that it gets written. Expressiveness,
therefore, is a very interesting attribute for teams working together on a
system that relies on the Neo4j graph Database Management System.

•	 Pattern Matching: Cypher is a pattern matching query language. This is
probably one of the more "graphy" aspects of the language, as it allows
people to sketch and draw complex relationships between different entities
in the data set quite easily. Humans are actually very good at working with
patterns; it tends to be very easy for our brain to work with them. Many
people therefore experience cypher as a very easy query language to get
started with.

•	 Idempotent: When Neo Technology started working on Cypher, the lead
architect of the query language, Andres Taylor, set out to do so using Scala,
a functional programming language on the Java Virtual Machine. One of the
key traits of functional programing environments is that they are supposed
to be idempotent. In layman's terms, this means that when you operate a
function (or in our case, execute a query) in your algorithm, changes in the
data should only happen on the first execution of the function. Multiple
executions of the same function over the same data should have no effect.
This has some great advantages in functional programs, but also in the
Neo4j database, as state change will be expressed idempotently.

Knowing this, we can now explore some of the key operative words in Cypher,
and familiarize you with some of these concepts in the real world.

Appendix B

[187]

Key operative words in Cypher
Like every database query language, there are a few operative words that have
an important meaning in the composition of every query. It's useful for you to
know these since you will be using them to compose your specific queries on
your specific datasets.

Keyword Function Example
MATCH This describes a pattern that the database

should match. This is probably the most
important piece of the query as it is a
structural component that always starts
your queries.

MATCH (me:Person)-
[:KNOWS]->(friend)

WHERE This filters results that are found in the
match for specific criteria.

WHERE me.name = "My
Name" AND me.age > 18

RETURN This returns results. You can either
return paths, nodes, relationships, or
their properties—or an aggregate of the
mentioned parameters. This is another
structural component, as all read queries
and most write queries will return some
data.

RETURN me.name,
collect(friend),
count(*) as friends

WITH This passes results from one query part to
the next. Much like RETURN, but instead of
including data in the result set, it will be
passed to the following part of the query. It
transforms and aggregates results and also
separates READ and UPDATE statements.

ORDER
BY

SKIP

LIMIT:

This sorts and paginates the results. ORDER BY friends DESC
SKIP 10 LIMIT 10

CREATE This creates nodes and relationships with
their properties.

CREATE (p:Person),
(p)-[:KNOWS {since:
2010}]-> (me:Person
{name:"My Name"})

CREATE
UNIQUE

This fixes graph structures by only creating
structures if they do not yet exist.

Getting Started with Cypher

[188]

Keyword Function Example
MERGE This matches or creates semantics by using

indexes and locks. You can specify different
operations in case of a MATCH (part of the
pattern already existed) or on CREATE
(pattern did not exist yet).

MERGE (me:Person
{name:"My Name"})

ON MATCH me SET
me.accessed =
timestamp()

ON CREATE me SET
me.age = 42

SET,
REMOVE

This updates properties and labels on nodes
and/or relationships.

SET me.age = 42
SET me:Employee
REMOVE me.first_name
REMOVE me:Contractor

DELETE It deletes nodes and relationships. MATCH (me)

OPTIONAL MATCH (me)-
[r]-() DELETE me, r

With these simple keywords, you should be able to start forming your first Cypher
queries. After all, it's a bit like ASCII art, a structure similar to the one shown in the
following diagram:

This is very easily described in Cypher as:

(a:Person {name:"Rik")–[:OWNS]–>(b:Device {brand:"LIFX"})

Appendix B

[189]

All we need to do to make this a proper Cypher statement is to wrap it in MATCH
and RETURN statements:

Match
(a:Person {name:"Rik")–[r:OWNS]–>(b:Device {brand:"LIFX"})
return a,r,b;

This is just a simple example of how you would start using Cypher. More
complex examples can of course be found elsewhere in this book. You can also
find the complete Cypher Ref Card (online version at http://docs.neo4j.org/
refcard/2.1/) included in the final pages of this book.

The Cypher refcard
Cypher is the declarative query language for Neo4j, the world's leading
graph database.

The key principles and capabilities of Cypher are as follows:

•	 Cypher matches patterns of nodes and relationship in the graph,
to extract information or modify the data

•	 Cypher has the concept of identifiers, which denote named,
bound elements and parameters

•	 Cypher can create, update, and remove nodes, relationships, labels,
and properties

•	 Cypher manages indexes and constraints

You can try Cypher snippets live in the Neo4j Console at console.neo4j.org
or read the full Cypher documentation at docs.neo4j.org. For live graph
models using Cypher, check out the graph gists at gist.neo4j.org as well.

{value} denotes either literals (for ad hoc Cypher queries)
or parameters, which is the best practice for applications.
Neo4j properties can be strings, numbers, Booleans, or
arrays. Cypher also supports maps and collections.

For your convenience, we included the online version of the Cypher refcard
(http://docs.neo4j.org/refcard/2.1.1/) in unaltered form in this book. This
refcard is published online under the Creative Commons Attribution-ShareAlike
3.0 Unported (CC BY-SA 3.0) license, details of which can be found at http://
creativecommons.org/licenses/by-sa/3.0/.

http://docs.neo4j.org/refcard/2.1/
http://docs.neo4j.org/refcard/2.1/
console.neo4j.org
docs.neo4j.org
gist.neo4j.org
http://docs.neo4j.org/refcard/2.1.1/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

Getting Started with Cypher

[190]

Syntax
The following table shows the syntax of various operators:

Appendix B

[191]

Getting Started with Cypher

[192]

Appendix B

[193]

Index
A
A* (A-star) algorithm 18
access control systems 124
ACID-compliant database, Neo4j 44-46
advantages, graph database

clickstream queries, on live data 39
complex queries 37, 38
path finding queries 39

application
visualization libraries, integrating 152, 153

approaches, small datasets
about 96
data importing, Load CSV used 103-107
data importing, Neo4j-shell-tools

used 100-103
data importing, spreadsheets used 96-100

Arrows, modeling tools
about 168, 169
URL 168, 169

atomicity, ACID 45
attributes, Cypher

declarative 185, 186
expressive 186
idempotent 186
pattern matching 186

B
batch importer

about 108
cons 95
pros 95
URL 108

batch-oriented applications 115
best practices, graph database modeling

about 79
design for query-ability 80
granulate nodes 82-84
in-graph indexes, using when

appropriate 84
looking for n-ary relationships 81
relationships, aligning for use cases 80, 81

biological studies, graph theory
examples 14

browser
DOM 153
JavaScript 153

business concepts, as graph
about 129
application 129
building 129
business line 129
business process 129
process 129
Return to Operation Objective (RTO) 129

Business Intelligence tools 165-167
business, modeling

Appl_9 131, 132
applications used, for determining

buildings 130, 131
RTO characteristics 132-134

Business Process Management
about 128
impact analysis, using 128

business variations, on
recommendations 122

[196]

C
classroom trainings

about 183
URL 183

cloud environment
Neo4j, using 65-70

cloud platform 66
CODASYL 25
Column-Family stores 30
community edition 53
complex query, Neo4j 51
computer science, graph theory examples 15
conferences

about 182
URL 182

consistency, ACID 45
Cost Calculation environment

impact simulation, using 134
CREATE keyword 187
CREATE UNIQUE keyword 187
Cypher

attributes 185, 186
capabilities 189
operative words 187-189
principles 189

Cypher Load CSV
cons 95
pros 95

Cypher, Neo4j
about 49, 50
characteristic 49

Cypher query language
URL 181

Cypher refcard
about 180, 189
URL 189

Cypher Statements
cons 95
pros 95

D
D3.js

about 148
URL 148

data
importing, Load CSV used 103-107

importing, Neo4j-shell-tools used 100-103
importing, spreadsheets used 96-100

database management system 22
database schema. See external entity
data import, into Neo4j

alternative approaches 92
data integration tools

about 161, 162
MuleSoft 164, 165
Talend 163

declarative attribute, Cypher 185, 186
declarative language 49
DELETE keyword 188
Dijkstra algorithm 18
directed graphs 34
Document Object Model (DOM) 148
Document stores 31
durability, ACID 46

E
enterprise edition 53
Entity-Relationship diagrams

(ER diagrams)
about 75
advantages 76

events
about 181
conferences 182
GraphConnect 182
Meetup 181
trainings 182, 183
URL 181

examples, graph theory
biological studies 14
computer science 15
flow problems 16
route problems 17, 18
social studies 13
web search 18, 19

expressive attribute, Cypher 186
external entity 92

F
fireworks effect, graph visualization 159
flow problems, graph theory examples 16
fraud detection systems 123, 124

[197]

fundamentals, graph data model
about 74
labels 75
nodes 74
properties 74
relationships 74

G
GEOFF format 103
Gephi 154
Google forum

URL 174
Google group 174
granulate pattern 82
GraphConnect

about 182
URL 182

graph database
about 32, 33
advantages 37-39
disadvantages 40, 41
Property Graph model 34-36

graph database modeling
about 75
best practices 79
complexity, introducing through join

tables 77
ER diagrams 75, 76
pitfalls 79
relational schemas 75, 76

graph data model
fundamentals 74

graph.db directory
URL 70

GraphGist
using 179

graph library 44
GraphML format 103
graph model
high-fidelity model of reality 78, 79
using, for recommendations 115-117

graph-oriented storage format, Neo4j 44
graphs

about 7, 8
business, modeling as 129-134
components 11

history 8-11
links 11
nodes 11
structure, of nodes and relationships 11

graph theory
about 11, 13
usage 13

graph visualization
about 143
fireworks effect 159
loading effect 159
need for 143
patterns 145
principles 146, 147
remarks, closing 159
visual data, interacting with 144, 145

Graphviz
about 149
URL 149

H
horizontal scalability 49

I
idempotent attribute, Cypher 186
impact analysis

about 127
used, in Business Process Management 128

impact analysis systems
business, modeling as graph 129, 130
dissecting 128

impact simulation
on product hierarchy graph 140, 141
product hierarchy graph 136, 137
product hierarchy, modeling as

graph 134, 135
used, in Cost Calculation environment 134

import
scaling 107-110

isolation, ACID 46

J
Java Database Connectivity interface 166
join bombs 27

[198]

join-intensive query, Neo4j 51
join tables

complexity, introducing through 77

K
Keylines

about 155
URL 155

Key-Value stores 29
knight's ride problem 9

L
labels, graph data model 75
license conditions, Neo4j 54, 55
Linkurio.us

about 156
URL 156

Linux
Neo4j, installing on 62-65

Load CSV
used, for importing data 103-107

loading effect, graph visualization 159

M
Mac

Neo4j, installing on 62-65
Master server 48
MATCH keyword 187
maximum flow problems 16
mechanisms, graph visualization

charge 147
gravity 147
springs 147

Meetup
about 181
URL 181

MERGE keyword 188
modeling tools

about 168
Arrows 168, 169
OmniGraffle 170

MuleSoft
cons 96
pros 96

MuleSoft, data integration tools
about 164, 165
URL 164

multirelational graphs 34

N
navigational databases

about 23-25
limitations 25

Neo4j
about 13, 73, 80, 115
browser 157
horizontal scalability 49
installing 56
installing, on Linux 62-65
installing, on Mac 62-65
installing, on Windows 56-60
URL 56
used, in cloud environment 65-70
vertical scalability 49
website 177

Neo4j Blog
about 178
URL 178

Neo4j, features
about 43, 53
ACID-compliant database 44-46
community edition 53
complex query 51
Cypher 49, 50
enterprise edition 53
graph-oriented storage format 44
join-intensive query 51
license conditions 54, 55
Online Transaction Processing

(OLTP) 46, 47
open source software 52, 53
path finding queries 51
scalability 48, 49
support channels 53, 54
use cases 50

Neo4j-shell-tools
cons 95
exceptions 103
pros 95
used, for importing data 100-103

[199]

Neo Technology
about 183, 184
URL 183

Neo Technology Commercial License
(NTCL) 55

Ngraph
URL 151

normal form
reference link 82

normalization 26
NoSQL databases

about 28
Column-Family stores 30
Document stores 31
graph databases 32, 33
Key-Value stores 29

O
OmniGraffle, modeling tools

about 170
URL 170

Online Analytical Processing (OLAP)
versus Online Transaction Processing

(OLTP) 46, 47
online tools

about 173
Cypher reference card 180
Google group 174
GraphGists collection 179
Neo4j Blog 178
Neo4j community website 176
new Neo4j website 177
other books 181
Stack Overflow 175

online trainings
about 183
URL 183

Online Transaction Processing (OLTP)
about 46, 47
versus Online Analytical Processing

(OLAP) 46, 47
open source software, Neo4j

about 52, 53
features 52

open source visualization libraries
about 147

D3.js 148
Graphviz 149
integrating, in application 152, 153
sigma.js 150
visualization solutions 153
vivagraph.js 151

Operating Systems Design and
Implementation (OSDI) 30

operative words, Cypher
CREATE keyword 187
CREATE UNIQUE keyword 187
DELETE keyword 188
LIMIT: keyword 187
MATCH keyword 187
MERGE keyword 188
ORDER BY SKIP keyword 187
REMOVE keyword 188
RETURN keyword 187
SET keyword 188
WHERE keyword 187
WITH keyword 187

ORDER BY SKIP keyword 187

P
PageRank 18
path finding queries, Neo4j 51
pattern application system,

recommender systems
batch-oriented applications 115
real-time oriented applications 115

pattern discovery system,
recommender systems

about 113
algorithmic discovery 114
domain expertise based discovery 114
visual discovery 114

pattern matching attribute, Cypher 186
pattern recognition 145
pitfalls, graph database modeling

dense node pattern 88, 89
unconnected graphs 88

price
calculating, on intermediate

pricing 138, 139
principles, graph visualization 146

[200]

product hierarchy graph
about 134, 135
impact simulation, used on 140, 141
price, calculating on intermediate

pricing 138, 139
product price, calculating 137, 138
working with 136-141

product price
calculating 137, 138

properties, graph data model 74
Property Graph model, graph databases

about 34-36
node labels 36
relationship types 36

R
real-time oriented applications 115
recommendations

graph model, using for 115-117
specific query examples 117

recommender systems
about 113
pattern application system 115
pattern discovery system 113, 114

relational databases
about 25, 26
limitations 27, 28

relational ER modeling
issues 76

relational schemas 75, 76
REMOVE keyword 188
RETURN keyword 187
Return to Operation Objective (RTO) 129
route problems, graph theory examples 17

S
scalability, Neo4j 48, 49
SET keyword 188
sigma.js

about 150
URL 150

small datasets
importing 96

social networking systems 125

social studies, graph theory examples 13
Software Development Kit (SDK) 158
specific query examples, recommendations

about 117
based on brand loyalty 119, 120
based on product purchases 118, 119
based on social ties 120, 121
compound recommendations 121, 122

spreadsheets
cons 95
pros 95
used, for importing data 96-100

Stack Overflow
about 175
URL 175

Stencils 170
support channels, Neo4j 53, 54
syntax, operators 190-193

T
Talend

cons 96
pros 96

Talend, data integration tools
about 163
URL 163

TIQ Solutions
URL 167

Tom Sawyer
about 158
URL 158

tools
batch importer 95
Command line 95
cons 95
Custom Software 96
Cypher Load CSV 95
Cypher Statements 95
ETL tools 95
Java API 96
MuleSoft 96
Neo4j Browser 95
Neo4j-shell-tools 95
pros 95
REST API 96

[201]

selecting 93-96
spreadsheets 95
Talend 96

trainings
about 182
classroom trainings 183
online trainings 183

travelling salesman problem 9
typical join table 78

U
use cases, Neo4j 50

V
vertical scalability 49
visual interaction

about 144, 145
need for 144

visualization solutions
about 153
Gephi 154
Keylines 155
Linkurio.us 156
Neo4j browser 157
Tom Sawyer 158

vivagraph.js
about 151
URL 151

W
web search, graph theory examples 18
WHERE keyword 187
Windows

Neo4j, installing on 56-60
WITH keyword 187

Thank you for buying
Learning Neo4j

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Getting Started with NoSQL
ISBN: 978-1-84969-498-8 Paperback: 142 pages

Your guide to the world and technology of NoSQL

1.	 First hand, detailed information about
NoSQL technology.

2.	 Learn the differences between NoSQL and
RDBMS and where each is useful.

3.	 Understand the various data models for NoSQL.

4.	 Compare and contrast some of the popular
NoSQL databases on the market.

5.	 Think outside the box; learn to design,
construct, and implement using NoSQL.

CouchDB and PHP Web
Development Beginner's Guide
ISBN: 978-1-84951-358-6 Paperback: 304 pages

Get your PHP application from conception to
deployment by leveraging CouchDB's robust features

1.	 Build and deploy a flexible Social Networking
application using PHP and leveraging key
features of CouchDB to do the heavy lifting.

2.	 Explore the features and functionality
of CouchDB, by taking a deep look into
Documents, Views, Replication, and
much more.

3.	 Conceptualize a lightweight PHP framework
from scratch and write code that can easily
port to other frameworks.

Please check www.PacktPub.com for information on our titles

Getting Started with MariaDB
ISBN: 978-1-78216-809-6 Paperback: 100 pages

Learn how to use MariaDB to store your data easily
and hassle-free

1.	 A step-by-step guide to installing and
configuring MariaDB.

2.	 Includes real-world examples that help
you learn how to store and maintain data
on MariaDB.

3.	 Written by someone who has been involved
with the project since its inception.

Pentaho Analytics for MongoDB
ISBN: 978-1-78216-835-5 Paperback: 146 pages

Combine Pentaho Analytics and MongoDB to create
powerful analysis and reporting solutions

1.	 This is a step-by-step guide that will have
you quickly creating eye-catching data
visualizations.

2.	 Includes a sample MongoDB database of web
clickstream events for learning how to model
and query MongoDB data.

3.	 Full of tips, images, and exercises that cover
the Pentaho development life cycle.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Graphs and Graph Theory – an Introduction
	Introduction to and history of graphs
	Definition and usage of graph theory
	Social studies
	Biological studies
	Computer science
	Flow problems
	Route problems
	Web search

	Test questions
	Summary

	Chapter 2: Graph Databases – Overview
	Background
	Navigational databases
	Relational databases
	NoSQL databases
	Key-Value stores
	Column-Family stores
	Document stores
	Graph databases

	The Property Graph model of graph databases
	Node labels
	Relationship types

	Why (or why not) graph databases
	Why use a graph database?
	Complex queries
	In-the-clickstream queries on live data
	Path finding queries

	Why not use a graph database, and what to use instead
	Large, set-oriented queries
	Graph global operations
	Simple, aggregate-oriented queries

	Test questions
	Summary

	Chapter 3: Getting Started with Neo4j
	Neo4j – key concepts and characteristics
	Built for graphs, from the ground up
	Transactional, ACID-compliant database
	Made for Online Transaction Processing
	Designed for scalability
	A declarative query language – Cypher
	Sweet spot use cases of Neo4j
	Complex, join-intensive queries
	Path finding queries

	Committed to open source
	The features
	The support
	The license conditions

	Installing Neo4j
	Installing Neo4j on Windows
	Installing Neo4j on Mac or Linux

	Using Neo4j in a cloud environment
	Test Questions
	Summary

	Chapter 4: Modeling Data for Neo4j
	The four fundamental data constructs
	How to start modeling for graph databases
	What we know – ER diagrams and relational schemas
	Introducing complexity through join tables

	A graph model – a simple, high-fidelity model of reality
	Graph modeling – best practices and pitfalls
	Graph modeling best practices
	Design for query-ability
	Align relationships with use cases
	Look for n-ary relationships
	Granulate nodes
	Use in-graph indexes when appropriate

	Graph database modeling pitfalls
	Using "rich" properties
	Node representing multiple concepts
	Unconnected graphs
	The dense node pattern

	Test questions
	Summary

	Chapter 5: Importing Data into Neo4j
	Alternative approaches to importing data into Neo4j
	Know your import problem – choose your tooling

	Importing small(ish) datasets
	Importing data using spreadsheets
	Importing using Neo4j-shell-tools
	Importing using Load CSV

	Scaling the import
	Questions and answers
	Summary

	Chapter 6: Use Case Example – Recommendations
	Recommender systems dissected
	Using a graph model for recommendations
	Specific query examples for recommendations
	Recommendations based on product purchases
	Recommendations based on brand loyalty
	Recommendations based on social ties
	Bringing it all together – compound recommendations

	Business variations on recommendations
	Fraud detection systems
	Access control systems
	Social networking systems
	Questions and answers
	Summary

	Chapter 7: Use Case Example – Impact Analysis and Simulation
	Impact analysis systems dissected
	Impact analysis in Business Process Management
	Modeling your business as a graph
	Which applications are used in which buildings
	What buildings are affected if something happens to Appl_9?
	What BusinessProcesses with an RTO of 0-2 hours would be affected by a fire at location Loc_100

	Impact simulation in a Cost Calculation environment
	Modeling your product hierarchy as a graph
	Working with a product hierarchy graph
	Calculating the price based on a full sweep of
the tree
	Calculating the price based on intermediate pricing
	Impact simulation on product hierarchy

	Questions and Answers
	Summary

	Chapter 8: Visualizations for Neo4j
	The power of graph visualizations
	Why graph visualizations matter!
	Interacting with data visually
	Looking for patterns
	Spot what's important

	The basic principles of graph visualization

	Open source visualization libraries
	D3.js
	GraphViz
	Sigma.js
	Vivagraph.js
	Integrating visualization libraries in your application
	Visualization solutions
	Gephi
	Keylines
	Linkurio.us
	Neo4j Browser
	Tom Sawyer

	Closing remarks on visualizations
	The "fireworks" effect
	The "loading" effect

	Questions and answers
	Summary

	Chapter 9: Other Tools Related to Neo4j
	Data integration tools
	Talend
	Mulesoft

	Business Intelligence tools
	Modeling tools
	Arrows
	OmniGraffle

	Questions and answers
	Summary

	Appendix A: Where to Find More Information Related to Neo4j
	Online tools
	Google group
	Stack Overflow
	The Neo4j community website
	The new Neo4j website
	The Neo4j Blog
	GraphGists collection
	The Cypher reference card
	Other books

	Events
	Meetup
	GraphConnect
	Conferences
	Training

	Neo Technology

	Appendix B: Getting Started with Cypher
	The key attributes of Cypher
	Key operative words in Cypher
	The Cypher refcard
	Syntax

	Index

