

Learning Alfresco Web Scripts

Learn a powerful way to successfully implement unique
integration solutions with Alfresco

Ramesh Chauhan

BIRMINGHAM - MUMBAI

Learning Alfresco Web Scripts

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2014

Production reference: 1311014

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-060-0

www.packtpub.com

Credits

Author
Ramesh Chauhan

Reviewers
Snig Bhaumik

Dhaval Joshi

Bernd Krumböck

Piergiorgio Lucidi

Commissioning Editor
Dipika Gaonkar

Acquisition Editor
Kevin Colaco

Content Development Editor
Priyanka Shah

Technical Editor
Nikhil Potdukhe

Copy Editors
Relin Hedly

Deepa Nambiar

Project Coordinator
Kartik Vedam

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexers
Mariammal Chettiyar

Rekha Nair

Tejal Soni

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

About the Author

Ramesh Chauhan is presently working as a lead consultant at CIGNEX
Datamatics. He has core IT experience of around 9 years. Having strong expertise
in Alfresco, he has implemented and delivered customized business solutions in
Alfresco for customers across the globe and has extensively used Alfresco in multiple
production projects. He earned his Bachelor of Engineering degree in Information
and Technology from Nirma Institute of Technology, Gujarat University, India. He
also contributes to Alfresco community forums.

Acknowledgments

I would first like to extend my gratitude to Lord Swaminarayana and my guru,
H. H. Pramukh Swami Maharaj, for all the blessings. I would like to thank my mom
and dad for their unconditional love and support. Special thanks to my loving and
caring wife, Priyanka Chauhan, who has always encouraged me and supported me
throughout the journey of this book. Big thanks to my one-year-old daughter, Misri,
who has been the source of inspiration for me.

I would like to thank Packt Publishing for this opportunity. I would like to
thank all the technical reviewers for their valuable feedback and give my thanks to
Kevin Colaco, Priyanka Shah, and Nikhil Potdukhe from the Packt Publishing team.
It was really nice working with the entire Packt Publishing team. I sincerely appreciate
Priyanka Shah, the content development editor, and Nikhil Potdukhe, the technical
editor, who helped a lot in fixing my writing style with their valuable feedback.

I would like to thank our management team at CIGNEX Datamatics for encouraging
me to write this book as a part of the community contribution from our organization.
My sincere thanks to Mr. Munwar Shariff (CTO, CIGNEX Datamatics) for all his
support. I would also like to thank the entire Alfresco practice team at CIGNEX
Datamatics for being very supportive. Thanks to Aadit Majmudar for helping
me whenever needed while writing this book. I would like to thank Dhaval Joshi
especially, who has been my very good friend and colleague at CIGNEX Datamatics.
He has always been with me whenever I needed his help and input. Thanks to him
and my friend, Chirayu Joshi, for believing in me, supporting me, and motivating me
to write this book.

About the Reviewers

Snig Bhaumik is the Technical Director at InfoAxon Technologies Limited
(www.infoaxon.com) and is responsible for designing solutions for content and
knowledge management powered by open source technologies. He has diverse
experience of over 13 years in open source technologies such as Alfresco, Liferay,
and Pentaho, and Microsoft .NET.

Snig's areas of expertise include knowledge management, collaborative content
management, business process automation, social networks, business intelligence,
search, and emerging technologies. He acts as a senior consultant on many projects,
driving BI, KM, and ECM agendas with senior stakeholders. He is a sought-after
speaker in these areas and also writes regularly in the form of white papers and
blogs. His works can be accessed at http://blog.infoaxon.com/, http://
onalfresco.blogspot.in/, and https://github.com/SnigBhaumik/.

He has a lot of experience in delivering open-source-powered solutions to global
customers in the fields of international development, social housing, construction,
banking, retail, and insurance. He is an active participant in various open source
communities and has contributed functionalities to some of the leading open
source platforms.

As an open source enthusiast, Snig is an active contributor to several open
source communities:

•	 He has authored Alfresco Cookbook 3, Packt Publishing (http://www.amazon.
com/Alfresco-3-Cookbook-Snig-Bhaumik/dp/184951108X)

•	 He led the development and management of the roadmap for Alfresco add-
ons on Alfresco and InfoAxon's marketplace (http://www.infoaxon.com/
solutions/addons/#all)

•	 His key add-ons released on Alfresco include:
°° Bootfresco (https://github.com/SnigBhaumik/Bootfresco)
°° Calendar Event Participant (https://addons.alfresco.com/

addons/calendar-event-participant)

°° Alfresco Category Browser (https://addons.alfresco.com/
addons/category-browser)

°° Task Document Previewer (http://www.infoaxon.com/add-on/
task-document-previewer/)

°° Content Uploader Pro (https://addons.alfresco.com/addons/
content-uploader-pro)

•	 He manages projects at Google Code for the open source portlet for Twitter
in Liferay (http://code.google.com/p/liferay-twitter-portlet/)

•	 He manages projects at Google Code for the open source portlet for Facebook
in Liferay (http://code.google.com/p/liferay-facebook-portlet/)

•	 Alfresco ECM (he is the author of the Alfresco Calendar components that are
now included and distributed in Alfresco Version 3.0)

•	 He solely manages the Liferay Portal practice at InfoAxon
•	 He is one of the key stakeholder and technical decision maker of the Pentaho

BI business stream at InfoAxon

Dhaval Joshi has more than 10 years of experience in software development.
For the past 6 years, he has been working with Alfresco. He has executed more
than 10 projects in Alfresco and more than five projects in different Java-based
open source technologies. He is also an Alfresco-recognized Alfresco developer.

He has huge experience in providing open source content management enterprise
solutions. He has written more than 100 Alfresco web scripts for different clients in
various projects.

He has huge experience in Alfresco DM, WCM, Share, DAM, and the Record
Management system. He also has expertise in customizing and extending Alfresco.
Other than Alfresco, he has good experience in CMS/WCM such as OpenCMS, CQ5,
and Documentum.

Bernd Krumböck is a self-employed IT professional. In the last 7 years, he has
implemented and supported many projects for the NGO/NPO Volkshilfe NÖ (NPO
for nursing and other services with about 1,000 employees in Lower Austria). One of
these projects is a document management system based on Alfresco, which is needed
for an ISO standardization process. As a result, he has become the new maintainer of
the Oracle Server support for the Alfresco Community extension.

Besides this, he is working on various business applications that are mainly
based on Java/J2EE. However, his skills are also used for server, database,
and network administration.

A few years ago, he was employed as a system administrator at REWE Group,
Austria. His principal task was the administration of the HP-UX, Linux, and
Oracle database systems. During this time, he contributed various code to
CUPS and other projects.

In his free time, he works on various small projects that extend his smart home
system. One of these projects resulted in a Linux kernel driver for a USB CAN
adapter from 8 devices (https://github.com/krumboeck/usb2can).

Piergiorgio Lucidi is an open source Enterprise Content Management (ECM)
specialist and a certified Alfresco trainer at Sourcesense. Sourcesense is a European
open source systems integrator providing consultancy, support, and services around
key open source technologies.

He works as a mentor, technical leader, and software engineer, and has 10 years of
experience in the areas of ECM and system integration. He is an expert in integrating
ECM solutions in web and portal applications.

He regularly contributes to the Alfresco community as an Alfresco Wiki Gardener.
During Alfresco DevCon 2012 in Berlin, he was named the Alfresco Community Star.

He contributes to the Apache Software Foundation as a PMC member and
committer of Apache ManifoldCF and is the project leader of the CMIS, Alfresco,
and Elasticsearch connectors. He is a project leader and committer of the JBoss
community. He also contributes to some of the projects of the JBoss Portal platform.

He is a speaker at various conferences dedicated to Java, Spring Framework, open
source products, and technologies related to the ECM and WCM world.

He is an author, technical reviewer, and affiliate partner at Packt Publishing. For
Packt Publishing, he has co-authored Alfresco 3 Web Services, Ugo Cei, and GateIn
Cookbook, Ken Finnigan and Luca Stancapiano. As a technical reviewer, he has also
contributed to the books Alfresco 3 Cookbook, Alfresco Share, and Alfresco 4 Enterprise
Content Management Implementation, all published by Packt Publishing.

As an affiliate partner, he also writes and publishes book reviews on his website
Open4Dev (http://www.open4dev.com/).

I would like to thank Packt Publishing for another great opportunity
to contribute to a project dedicated to the Alfresco platform.

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

"This book is dedicated to my daughter, Misri, for being my source of inspiration,
and I would like to present this to her as a gift on her first birthday."

Table of Contents
Preface	 1
Chapter 1: Getting Familiar with Web Scripts	 7

Understanding web scripts	 8
Reasons to use web scripts	 10
Understanding when to use a web script	 12
Understanding where web scripts can be used	 13
Understanding how web scripts work	 13

MVC in web scripts	 14
Making web scripts work	 14

Types of web scripts	 15
Data web script	 15
Presentation web script	 15

Summary	 16
Chapter 2: It's Time for the First Web Script	 17

Creating your first web script in Alfresco	 18
Understanding the web script URI	 20
Adding arguments to a web script	 21
Extending the first web script to use the controller	 22
Behind the scenes of web script execution	 24

A web script without a controller	 24
A web script with a controller	 25

Important things for any web script	 25
HTTP methods supported by a web script	 25
Web script arguments	 27

Explicit arguments	 27
Implicit arguments	 28
Understanding which one to choose	 28

Table of Contents

[ii]

Response formats for a web script	 28
Response formats supported by the web script framework	 29
Specifying the response format	 29

Summary	 31
Chapter 3: Understanding the Web Script Framework	 33

Execution flow of web scripts	 34
Overall flow for a web script	 34
Behind the scenes implementation	 36

Components of the web script framework	 39
Web Script Runtime	 39

Servlet Runtime	 40
Portlet Runtime	 40
JSF Runtime	 40
Facebook Runtime	 41
SURF Runtime	 41

Web Script Authenticator	 41
HTTP basic authenticator	 42
Alfresco explorer authenticator	 42
JSR-168 Authenticator	 43
JSR-168 Authenticator with Alfresco Explorer support	 43
Facebook Authenticator	 43

Web Script Container	 43
Repository Container	 44
Presentation Container	 44

Other supporting components	 44
Configuration service	 45
Web Script registry	 45
Format registry	 45
Script processor registry	 45
Template processor registry	 45
Search path	 46

Understanding the wiring of web script framework components	 46
Deployment architecture	 46
Summary	 47

Chapter 4: Building Blocks of Web Scripts	 49
The description document – it's a must!	 50

Mandatory declarations	 51
The <webscript> tag	 51
The <shortname> tag	 51
The <url> tag	 52

Optional declarations	 53
<format>	 53
<authentication>	 54

Table of Contents

[iii]

<transaction>	 55
<family>	 56
<cache>	 57
<negotiate>	 58
<lifecycle>	 58
<formdata>	 59
<args>	 60
<requests>	 60
<responses>	 60
kind	 60

Controller implementation – not mandatory!	 61
The JavaScript-backed controller	 61

Understanding when to use the JavaScript controller	 61
The Java-backed controller	 62

Understanding when to use a Java-backed controller	 62
Response templates – yes, they are required!	 63
I18N for a web script – it's optional	 63

Adding a resource bundle for the hello world web script	 64
Modifying the response template to use labels	 64

Configuration document – it's optional	 65
Accessing configuration in a controller	 65
Accessing configuration in a template	 65

Naming conventions – the most important thing	 66
Summary	 66

Chapter 5: Invoking Web Scripts	 67
Invoking a web script from a web browser	 68
Executing a web script using web browser plugins	 68

Poster – Firefox add-on	 69
Advanced REST client for Chrome	 69

Executing a web script from standalone Java program	 69
HttpClient	 70

Understanding how to invoke a web script using HttpClient	 70
URLConnection	 71
Apache HTTP components	 72
RestTemplate	 72

Calling web scripts from Spring-based services	 72
Invoking a web script from Alfresco Share	 73

Calling a web script from the presentation web script
JavaScript controller	 74
Invoking a web script from client-side JavaScript	 75
Calling a web script from the command line	 75

Table of Contents

[iv]

Calling a web script from JSR-168 portals and the JSF page	 76
Calling a web script from JSR-168 portals	 76
Calling a web script from the JSF page	 77

Dealing with client limitations	 77
Summary	 77

Chapter 6: Creating Java-backed Web Scripts	 79
Use case scenario	 80
Web script functionality at a high level	 81
Getting ready	 81
Creating a description document	 82
Creating a response template	 83
Creating a Java controller	 83

Controller logic at a high level	 84
Let's code it!	 84

Configuring the controller for the web script	 87
Deploying the web script	 88

Registering the web script	 88
Testing the web script	 89

Test case 1 – mandatory check	 89
Test case 2 – invalid argument value	 90
Test case 3 – invalid access	 91
Test case 4 – test with valid data	 91

DeclarativeWebScript versus AbstractWebScript	 92
Using controllers smartly	 93
Summary	 94

Chapter 7: Understanding JavaScript-based
Web Scripts in Detail	 95

Understanding what you can do with the JavaScript API	 96
JavaScript APIs in Alfresco	 97

Identifying JavaScript APIs	 97
Root objects to access JavaScript APIs	 98
Other available root objects	 100

A must-know ScriptNode API	 103
Code examples	 104

Creating a folder	 104
Retrieving explicit arguments	 104
Folder creation under company home	 105

Finding a node	 105
Checking user permissions on a node	 106
Getting the path of a node	 106

Table of Contents

[v]

Checking the properties of a node	 106
Logging the property value	 107
Modifying property of a node	 107
Getting the current username and e-mail	 107
Returning the guest home node	 108

Creating your own root object	 108
Custom JavaScript extension	 109

Summary	 110
Chapter 8: Deployment, Debugging, and
Troubleshooting Web Scripts	 111

Deployment options	 112
The repository option	 112
The filesystem option	 113
Understanding deployment locations	 114
Choosing the deployment option	 115

Debugging web scripts	 116
Enable logging	 116
Remote debugging on the server	 117
Other debugging techniques	 119

Troubleshooting pointers	 119
A valid SecureContext error	 119
Web Script format '' is not registered	 120
Cannot locate template processor for template	 120
Script URL does not support the method	 121

Web scripts on a production server	 121
Running web scripts in the background	 121
Logging web script logs separately	 122
Disabling Java-backed web scripts	 122

Summary	 123
Chapter 9: Mavenizing Web Scripts	 125

Setting up your environment	 127
Exploring the Alfresco Maven repository	 128

Creating the default project structure for AMP	 128
Generating AMP from the default project	 131
Setting up a development environment with Eclipse	 132
Understanding the default project structure	 135
Extending your default project to create web scripts	 136
Applying AMP to the Alfresco WAR for testing	 137
Summary	 138

Table of Contents

[vi]

Chapter 10: Extending the Web Script Framework	 139
Custom implementation of the web script runtime	 141
The custom implementation of a web script container	 143
Custom authenticator implementation	 145
Custom script processor implementation	 147
Custom template processor implementation	 149
Customizing formats	 149
Summary	 150

Index	 151

Preface
The first thought that came to my mind when I got the opportunity to write this book
was whether I will be able to take this up or not, as implementing web scripts in
projects is completely different from writing a book on it. However, at the same time,
I was curious and excited as well to write my first book. What I always believe is—if
you think you can do it, then just go for it and give your best try to achieve it. Hence,
I took this opportunity and started my new journey of writing my first book to share
my knowledge, learning, and experience with you.

To give you a brief account of the book, web scripts is one of the key features of
Alfresco and is a must know for each and every developer working on Alfresco.
It is really essential for a developer working on Alfresco to be familiar with the
powerful web script framework and understand how to practically implement web
scripts. In this book, you will get to learn all the basic details required to work with
web scripts in Alfresco and get yourself competent with web script development for
your projects to implement useful integration solutions with Alfresco.

A few years back, I was also a beginner. Now, I have vast experience of using web
scripts in different real-time business implementations. Based on my learning and
experience from my journey as a beginner to my current level of expertise in regards
to implementing web scripts, I have tried to provide the most useful information
that will help a lot to new or experienced developers who are looking forward to
exploring and learning about web scripts.

I have attempted to share the knowledge and learning that I have gained throughout
my experience working on Alfresco web scripts. I have tried to explain the key
concepts about web scripts in a simple way and have used practical examples to
understand how to implement web scripts. I have also gone deep into technical
details where I felt it would be required to help you learn about the web script
framework in a better way.

Preface

[2]

By the end of this book, you will be able to say that you are familiar with web scripts
and are ready to take up new assignments to develop custom web scripts as you
have gained the required knowledge to practically implement them in Alfresco.
You will also be able to debug, troubleshoot, and fix the issues that you might
come across while working on web scripts. Also, you will be able to share the core
technical knowledge about the powerful web script framework with your colleagues.

My journey of writing this book has reached its destination as the book is now
available in your hand. Now, you are about to begin your journey of reading
this book and learning about Alfresco web scripts. Hope you have a wonderful
journey ahead!

What this book covers
Chapter 1, Getting Familiar with Web Scripts, introduces you to web scripts by
exploring answers to some of the basic questions about web scripts, which
will give you a clear idea about how web scripts can be useful for implementing
integration solutions with Alfresco.

Chapter 2, It's Time for the First Web Script, walks you through implementing your
first web script in Alfresco, which will give you the knowledge required about the
core fundamentals along with some key points to take care of when practically
implementing web scripts in your projects.

Chapter 3, Understanding the Web Script Framework, covers the powerful web
script framework, which will make you well acquainted with the detailed
technical knowledge of web script execution and the backbone pillars of
the web script framework.

Chapter 4, Building Blocks of Web Scripts, provides you complete details about all the
components to build web scripts.

Chapter 5, Invoking Web Scripts, describes the various ways you can execute a web
script that will help you to choose the way to execute web scripts as required.

Chapter 6, Creating Java-backed Web Scripts, helps you understand how to practically
implement Java-backed web scripts through the implementation of a sample use case.

Chapter 7, Understanding JavaScript-based Web Scripts in Detail, explains what you
can do with JavaScript APIs in Alfresco web scripts and makes you aware about
the different root objects to access these APIs and useful root objects exposed by
the web script framework. It also takes you through some code examples for
some of the common functionalities in JavaScript-based web scripts.

Preface

[3]

Chapter 8, Deployment, Debugging, and Troubleshooting Web Scripts, guides you through
the options to deploy web scripts in detail and also walks you through some useful
debugging techniques and troubleshooting pointers along with some important
points to execute web scripts in a production environment.

Chapter 9, Mavenizing Web Scripts, gives you basic knowledge of setting up the
development environment in Eclipse using the Alfresco Maven SDK to develop
web scripts.

Chapter 10, Extending the Web Script Framework, familiarizes you with the possibility
of extending the core components of the web script framework in Alfresco to help
you understand the power of working in an open source technology.

What you need for this book
You will need to have a working instance of Alfresco that will help you throughout
the journey of this book. You should use Alfresco Version 4.2 and above.

Who this book is for
If you are a new Alfresco developer and are exploring web scripts in Alfresco,
then this book is for you. This book will help you gain the key basic knowledge
required to implement web scripts in Alfresco. If you are an experienced developer
in Alfresco and are familiar with the basics of web script development but have not
yet fully explored the web script framework, then this book is for you as it will help
you gain the required knowledge about it. If you have already explored web scripts
in Alfresco and have gained a very good understanding about it, then you will find
this book useful as a quick and handy reference.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"DeclarativeWebScript sets the response to be rendered."

Preface

[4]

A block of code is set as follows:

private RestTemplate restTemplate;
public void setRestTemplate(RestTemplate restTemplate) {
 this.restTemplate = restTemplate;
}

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

<html>
 <body>
 <p>Hello! ${args.name}.</p>
 </body>
</html>

Any command-line input or output is written as follows:

curl -u admin:admin "http://localhost:8080/alfresco/service/
helloworld?name=Ramesh"

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Click on
the List Web Scripts link."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[5]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Familiar with
Web Scripts

In this chapter, we will cover the following topics:

•	 Understanding web scripts
•	 Reasons to use web scripts
•	 Understanding when to use a web script
•	 Understanding where web scripts can be used
•	 Understanding how web scripts work
•	 Types of web scripts

Getting Familiar with Web Scripts

[8]

Consider a scenario where you have to work on a project to develop a customized
business solution with a backend repository such as an Alfresco content management
system. It is going to be an integration project with the Alfresco content repository.
The end goal is to build up a business implementation that has a custom frontend
application interacting with the Alfresco repository in a secure way in order to allow
the end users to access the content on demand and to provide access to features of
the Alfresco repository. Basically, you want to create, update, and delete content
in the Alfresco repository and are interested in retrieving the required content on
demand from the Alfresco repository from the custom frontend application in a
secure way.

Now, you might have a lot of questions on your mind. You must be curious to find
out how it is possible to access the Alfresco repository from the custom frontend
application. What are the possible alternatives to access the content residing in the
Alfresco repository from the custom frontend application? Is it going to be a complex
implementation to build up an API accessing the Alfresco repository? Is it going to
be a secure communication from the frontend application to the backend repository?
How is it going to maintain the client state during the communication with the
Alfresco repository in order to access, update, or delete content from the repository
based on the user's access? And the list of questions still goes on…

Whenever there is a question, there is an answer. Also, the answer to all of your
previous questions is Alfresco web scripts. Using web scripts, you can build up a
customized integration solution using Alfresco as the backend content repository.

It is always a good idea when we start learning about any new topic to always start
with the "5Ws and 1H". It's basically the who, what, when, why, where, and how
questions. This helps us to understand the topic in a better way. In this chapter, we are
going to find out the useful information about web scripts by discovering the answers
to some of the basic questions such as what, why, when, where, and how. Let's start
and find out the answers to them and understand web scripts in a better way.

Understanding web scripts
In order to understand web scripts in Alfresco, let's begin with finding out the
answer to the question "What is a web script?" from multiple perspectives.

In simple words, web scripts can be explained as follows:

•	 Web scripts are powerful and extremely useful services supported
by Alfresco

•	 They are a way to interact with the Alfresco repository securely

Chapter 1

[9]

•	 They are reusable across different platforms
•	 Web scripts provide uniform access of the content to a wide range of

client applications

In technical terms, web scripts can be defined as follows:

•	 They are RESTful web services

What is RESTful?
REST stands for REpresentational State Transfer, which is basically
an architectural style. Well-defined and uniform access to the
resources through HTTP request methods, uniquely identified
resources through the URI, and representation of these resources
are the key principles of REST. Any implementation following this
architectural style is known as RESTful.

•	 They are bound to a specific Uniform Resource Identifier (URI)
•	 They respond to HTTP methods such as GET, POST, PUT, and DELETE
•	 They are a lightweight implementation

From a developer's point of view, web scripts have the following properties:

•	 They are easy to understand and learn
•	 They are easy to develop
•	 They are easy to debug
•	 They are easy to maintain
•	 They are easy to deploy
•	 They are faster to implement
•	 They would be the first choice when it comes to accessing the Alfresco

repository securely from external applications

From a business user's point of view, web scripts are useful as follows:

•	 They bridge the gap between the business requirement and technical
implementation for building up business solutions with Alfresco

•	 They empower Alfresco in its integration capabilities to develop useful
Alfresco integration solutions with external systems

•	 They are a unique way to implement the integration solutions on top of the
Alfresco repository

•	 They are the backbone of the integration solution implementation with the
Alfresco repository

Getting Familiar with Web Scripts

[10]

In essence, web scripts can be talked about as follows:

•	 Web scripts are built on the idea of URL addressability
•	 Web scripts are simply a service, mapped to a human-readable form, and

developed using a piece of code as their backend implementation
•	 For example, in a contract management system built using Alfresco as

the backend repository, you can have a web script to retrieve all the draft
agreements from the repository and then display them on the custom frontend
application. This repository web script to get all the draft agreements will
simply be accessed through its URL. This web script will also have a piece
of code in the backend to retrieve the data from the Alfresco repository to
produce the results in the formats as required. The URL for this web script
might look like the following:
/alfresco/service/contract/get_draft_agreements

Reasons to use web scripts
It's now time to discover the answer to the next question—why web scripts? There
are various alternate approaches available to interact with the Alfresco repository,
such as CMIS, SOAP-based web services, and web scripts. Generally, web scripts are
always chosen as a preferred option among developers and architects when it comes
to interacting with the Alfresco repository from an external application. Let's take
a look at the various reasons behind choosing a web script as an option instead of
CMIS and SOAP-based web services.

In comparison with CMIS, web scripts are explained as follows:

•	 In general, CMIS is a generic implementation, and it basically provides
a common set of services to interact with any content repository. It does
not attempt to incorporate the services that expose all features of each and
every content repository. It basically tries to cover a basic common set of
functionalities for interacting with any content repository and provide the
services to access such functionalities.

•	 Alfresco provides an implementation of CMIS for interacting with the
Alfresco repository. Having a common set of repository functionalities
exposed using CMIS implementation, it may be possible that sometimes
CMIS will not do everything that you are aiming to do when working with
the Alfresco repository. While with web scripts, it will be possible to do the
things you are planning to implement and access the Alfresco repository
as required. Hence, one of the best alternatives is to use Alfresco web
scripts in this case and develop custom APIs as required, using the
Alfresco web scripts.

Chapter 1

[11]

•	 Another important thing to note is, with the transaction support of web
scripts, it is possible to perform a set of operations together in a web script,
whereas in CMIS, there is a limitation for the transaction usage. It is possible
to execute each operation individually, but it is not possible to execute a set
of operations together in a single transaction as possible in web scripts.

SOAP-based web services are not preferable for the following reasons:

•	 It takes a long time to develop them
•	 They depend on SOAP
•	 Heavier client-side requirements
•	 They need to maintain the resource directory
•	 Scalability is a challenge
•	 They only support XML

In comparison, web scripts have the following properties:

•	 There are no complex specifications
•	 There is no dependency on SOAP
•	 There is no need to maintain the resource directory
•	 They are more scalable as there is no need to maintain session state
•	 They are a lightweight implementation
•	 They are simple and easy to develop
•	 They support multiple formats

In a developer's opinion:

•	 They can be easily developed using any text editor
•	 No compilations required when using scripting language
•	 No need for server restarts when using scripting language
•	 No complex installations required

In essence:

•	 Web scripts are a REST-based and powerful option to interact with the
Alfresco repository in comparison to the traditional SOAP-based web
services and CMIS alternatives

•	 They provide RESTful access to the content residing in the Alfresco
repository and provide uniform access to a wide range of client applications

Getting Familiar with Web Scripts

[12]

•	 They are easy to develop and provide some of the most useful features such
as no server restart, no compilations, no complex installations, and no need
of a specific tool to develop them

•	 All these points make web scripts the most preferred choice among developers
and architects when it comes to interacting with the Alfresco repository

Understanding when to use a web script
Having understood what a web script is and the reasons for using web scripts,
let's now understand when to use web scripts. When working with Alfresco, it is
important to know in which scenarios web scripts can be used. Web scripts allow
you to build custom URI-identified and HTTP-accessible Content Management
Web services to access the Alfresco content repository, and hence they can be used
in various kinds of implementations to build useful business solutions with Alfresco
content management systems.

In development projects:

•	 You can use web scripts to develop business implementations integrating
Alfresco with external applications

•	 You can develop customized web scripts as per your business requirement
•	 You can leverage on the out-of-the-box web scripts available in Alfresco

wherever they fit in your custom implementation

In support projects:

•	 Web scripts could be your savior when you are working on a support or
maintenance project to maintain the live system for your customers that
is built on Alfresco and has millions of records.

•	 You might come across a range of issues, for example, updating existing
content to fix some data issues, deleting some unneeded content, getting the
required content matching with the criteria specified by the business team,
and so on. Web scripts can be used in such scenarios to serve these purposes.

•	 On a live production system, it is not possible to restart the server, and
restarting a server could impact the business of a customer. Consider a
scenario where you need to fix some critical issues on a production system
and you are looking for an option to have the issue fixed without restarting
the server. The powerful feature of web scripts to interact with the Alfresco
repository without restarting the server will help you in this case, and you
can fix some critical issues using web scripts to provide a good content
management experience to the business users.

Chapter 1

[13]

In general, web scripts can be used in all kinds of solutions, such as:

•	 Integrating Alfresco with external applications that can communicate with
Alfresco using HTTP

•	 Developing JSR-168 portlets to build up UI services
•	 Developing data services
•	 Providing feeds for repository content
•	 Alfresco integration with Office
•	 Developing Facebook applications
•	 Building UI components in Alfresco SURF

Understanding where web scripts can be
used
Now, it's time to understand where web scripts can be used. There are a number of
different environments from where a web script can be accessed and used.

In different environments:

•	 They can be used from an HTTP client such as a web browser and HTTP
client APIs

•	 It is also possible to access web scripts in JSF pages
•	 They can be used in JSR-168 portals
•	 They can be used from Facebook applications
•	 Web scripts can be used in the Alfresco SURF platform as well

Understanding how web scripts work
Web scripts in Alfresco mostly use the model-view-controller pattern. However, it
isn't mandatory to follow this pattern all the time. The way MVC pattern works in
web scripts is as follows:

•	 The controller is responsible for performing the required business
logic as per the business requirement. After processing the business logic,
controller populates the model object with the required data. Once this is
done, controller will then forward the request to the view.

Getting Familiar with Web Scripts

[14]

MVC in web scripts
The model-view-controller pattern in web scripts is explained as follows:

•	 The controller is a server-side JavaScript or Java class or it could be both
as well

•	 The model is a data structure object passed between the controller and view
•	 The view is a FreeMarker template that is responsible for generating the

response in the required format

The mapping of the web script URI to the controller is done through a descriptor file.
It is mainly an XML file that will have the required details for a web script such as
URL, description, arguments, transaction, authentication, and response formats.

Response formats are mapped to FreeMarker templates through naming conventions.
For example, a FreeMarker template that returns an HTML response will have the
extension html.ftl.

Web scripts are registered and executed by the web script engine in Alfresco.

A descriptor, optional controller, and one or more FreeMarker
response templates collectively make a web script in general scenarios.
All these components are tied together through a specific document
naming convention.

Making web scripts work
To make web scripts work, it is important to deploy the web script files at an
appropriate location.

The descriptor file and the FreeMarker template as per the response format for a web
script can be either placed on a filesystem or put into the Alfresco repository.

If a JavaScript-based controller is used for a web script, then it could be placed
along with the descriptor and FreeMarker template on a filesystem or in the
Alfresco repository.

Chapter 1

[15]

If a Java-based controller is used for a web script, then the class file for the controller
must be available on the class path.

There are two types of controllers available for web scripts:
JavaScript-based controllers and Java-based controllers. It is
possible to have none of them, either of them, or even both
of them for a web script.

Types of web scripts
There are two types of web script in Alfresco: Data web scripts and Presentation
web scripts.

Data web script
Data web scripts provide an interface to the repository for the client applications
to create, retrieve, update, and delete content/data in the repository. These web
scripts typically send the response in formats such as XML and JSON, and client
applications will have to parse it in order to use it further.

Data web scripts encapsulate access and modification of content/data residing in the
repository. These web scripts are provided and exposed by the Alfresco repository
server only.

Presentation web script
Presentation web scripts can be used to build user interfaces such as dashlets
for Alfresco explorer, dashlets for Alfresco share, portlets for a JSR-168 portal,
a UI component within Alfresco SURF, or a custom application.

These kinds of web scripts generally render HTML responses.

It is possible to host these web scripts on a separate presentation server or they can
also be exposed by the Alfresco repository server.

Getting Familiar with Web Scripts

[16]

Presentation web scripts generally make a call to Data web scripts in order to get the
required data from the repository.

Out-of-the-box web scripts available in an Alfresco installation can
be found at ALFRESCO_HOME\tomcat\webapps\alfresco\
WEB-INF\classes\alfresco\templates\webscripts\org\
alfresco, where ALFRESCO_HOME is the base directory where
Alfresco is installed.
If you are using Alfresco Community 5, you can find out-of-the-
box web scripts under the alfresco package inside alfresco-
remote-api-*.jar, which is available at ALFRESCO_HOME\
tomcat\webapps\alfresco\WEB-INF\lib.

Summary
In this chapter, we gained a better understanding of web scripts through some
of the basic questions about web scripts. We learned what web scripts in Alfresco
are, why they are the preferred choice of developers, when and where we can use
web scripts, how web scripts work, and also the different types of web scripts
available in Alfresco.

In the next chapter, we are going to do a hands-on exercise to learn how to
implement our first web script in Alfresco.

It's Time for the
First Web Script

In this chapter, we will cover the following topics:

•	 How to create a simple web script in Alfresco step by step
•	 The implementation of the first web script
•	 Extending the first web script to add a controller
•	 What happens behind the scene of a web script hit
•	 The most important things for any web script

It's Time for the First Web Script

[18]

It's now time to practically implement your first web script in Alfresco and get
more familiar with Alfresco web script implementation. This chapter will help you
get a clear understanding on how to create a simple web script in Alfresco, how to
extend web script with controller implementation, and some fundamental things
about web script implementation that are very important to know while working
on Alfresco web scripts.

Consider a scenario where you are managing the project execution of developing
an integration solution of a custom frontend application with Alfresco as backend
repository. Now, you have been allocated a new developer to develop Alfresco web
scripts who is not very familiar with web script implementation and you want to
get him up to speed for web script development. Never mind, you can have him
read through this chapter and he should be able to get a good understanding of
developing web scripts in Alfresco after reading this chapter.

Creating your first web script in Alfresco
Whenever we start learning about any new programming language, the first
program we implement is the "Hello world" program wherein we simply print the
text Hello world as the output of the program. We will also do the same thing here.
We will create a basic web script in Alfresco that will simply display Hello world!
as the output of the web script.

In order to create a basic and simple web script in Alfresco, you will need to have a
descriptor for the web script and a FreeMarker template to render the output of the
web script.

Web scripts can be created from the available Alfresco user interfaces or you can
have them developed outside of Alfresco and then deploy them. As we are going
to implement a very basic web script here, we will use the Alfresco user interface
option and will create a web script. You can either use Alfresco Explorer web
client or Alfresco Share UI for this. However, as Alfresco Explorer is now not
being encouraged to be used in general as it is not on the roadmap of Alfresco as
no new implementations are being made in support of Alfresco Explorer, we will
also not use Alfresco Explorer. Instead, we will use the Alfresco Share UI which is
recommended to use in general.

Let's now create the web script. In order to create your first web script in Alfresco,
follow these steps:

1.	 Log in to Alfresco Share UI.
2.	 Click on the Repository link from the top header.
3.	 Go to Data Dictionary | Web Scripts Extensions.

Chapter 2

[19]

4.	 Create a new file named helloworld.get.desc.xml with content as follows:
<webscript>
 <shortname>Hello World</shortname>
 <description>First webscript Hello world</description>
 <url>/helloworld</url>
</webscript>

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

5.	 Create a new file named helloworld.get.html.ftl with content as follows:
<html>
 <body>
 <p>Hello world!</p>
 </body>
</html>

6.	 Now, hit the URL http://localhost:8080/alfresco/service/index in a
browser. Provide the username and password to the authentication pop up
displayed. Click on the Refresh Web Scripts button available at the bottom.

7.	 Click on the List Web Scripts link. You can see the Hello world web script
by clicking on the Browse all Web Scripts link and search for helloworld.

8.	 Now, hit the URL http://localhost:8080/alfresco/service/
helloworld. Here we go, you should see the output Hello world!
rendered in your browser.

We have implemented the first web script in Alfresco. Now, let's try to understand
what we have just done in order to implement the first web script. We first created
the web script as follows:

•	 We implemented a GET web script to display Hello World! as the output
•	 We created the descriptor document helloworld.get.desc.xml for the

web script
•	 We also created the FreeMarker template helloworld.get.html.ftl to

render the web script response

In general, in order to create a web script in Alfresco, a minimum
two files are required. One is the descriptor document and the
other is FreeMarker template.

It's Time for the First Web Script

[20]

Next, we deployed the web script as follows:

•	 We have deployed the required files to create a web script in the
Alfresco repository

•	 The descriptor document and FreeMarker template are placed in
Data Dictionary | Web Scripts Extensions

Web script files can be directly created/uploaded in the Alfresco
repository in Data Dictionary | Web Scripts Extensions or web
script files can be created and deployed on the filesystem through
the code base as well.

We then registered the web script as follows:

•	 We hit the URL http://localhost:8080/alfresco/service/index and
clicked on the Refresh Web Scripts button to register the first web script

There are two ways to register a web script. One is through hitting the
URL http://localhost:8080/alfresco/service/index and
clicking on the Refresh Web Scripts button. Another way is to deploy
the web script files through the code base/repository and restart the
server. A server restart will also register the web scripts.

Finally, we executed our first web script as follows:

•	 We invoked the web script from the web browser hitting the URL
http://localhost:8080/alfresco/service/helloworld

•	 The web script displayed an output as its response on a web browser

Understanding the web script URI
It is important to understand the web script URI. The way the web script URI can be
represented in a generic form is http[s]://<host>:<port>/[<contextPath>/]/<s
ervicePath>[/<scriptPath>][?<scriptArgs>]

The terms used in the web script URI are explained as follows:

•	 http[s]: This is the protocol to invoke the web script. This could be either
http or https.

•	 host: This is the name or address of the server where the web script
is deployed.

Chapter 2

[21]

•	 port: This is the port where the web script is exposed on the server hosting
the web scripts.

•	 contextPath: This is the path where the application is deployed to. For data
web scripts, this would generally be /alfresco.

•	 servicePath: This is the path where the web script service is mapped with.
Generally, this would be /service.

•	 scriptPath: This is the path to the web script as defined in the web script
descriptor document *.desc.xml under the <url> tag.

•	 scriptArgs: These are the arguments to be passed to the web script as
generally defined in the web script descriptor document *.desc.xml under
the <url> tag. Arguments can be specified after the web script scriptPath
just after ?.

Now you understand the different terms that make up the web script URI, now you
can easily understand the URI of our first web script by mapping our web script URI to
the generic form of the web script URI. Note that we were not having arguments added
to our first web script, hence, you would not be able to map the scriptArgs part. Let's
now take a look at what needs to be done to add the arguments to a web script.

Adding arguments to a web script
Let's say we want to modify our first web script to display the name too in the
web script response, for example, Hello! Ramesh. It can be done in a simple way
by passing the name as the URL argument of the web script and then using this
argument to generate the response in the FreeMarker template. In order to do this,
we will have to perform the following steps:

1.	 Log in to Alfresco Share UI.
2.	 Click on the Repository link from the top header.
3.	 Edit the descriptor file helloworld.get.desc.xml at Data Dictionary |

Web Scripts Extension location as follows:
<webscript>
 <shortname>Hello World</shortname>
 <description>First webscript Hello world</description>
 <url>/helloworld?name={argumentName}</url>
</webscript>

4.	 Edit the FreeMarker template helloworld.get.html.ftl at Data
Dictionary | Web Scripts Extension as follows:
<html>
 <body>

It's Time for the First Web Script

[22]

 <p>Hello! ${args.name}.</p>
 </body>
</html>

5.	 Register the web script by hitting http://localhost:8080/alfresco/
service/index and click on the Refresh Web Scripts button.

6.	 Now, hit the URL http://localhost:8080/alfresco/service/
helloworld?name=Ramesh in order to execute the web script.
On execution, you should be able to see Hello! Ramesh. as the output.

It is important to understand here that even if you had not provided
name={argumentName} in the third step and hit the URL to execute
the web script, as mentioned in the sixth step, then you would also
have got the same result. Specifying name={argumentName} in the
description document helps you know about the arguments used by
web script. This way, by just looking at the description document, you
will know about the arguments for web script. As a good practice,
you should always add the arguments used by your web script in its
description document.

Extending the first web script to use the
controller
The web script framework in Alfresco makes it easy to have a clear separation of
concerns by following a model-view-controller pattern in order to develop a web
script. All the business logic resides in the controller and it is possible to have multiple
views as required to return the response in different response formats supported by
the web script framework in Alfresco. The model object is a data structure used to
pass information from the controller to the view. The controller populates the model
object with the required data and passes it to the view to generate the response.

In the first web script, we created a basic and simple web script, which just
renders the output without interacting with the Alfresco repository. Ideally,
any processing related to business logic such as querying the Alfresco repository,
creation of content, updating content, deleting content from the repository, and
executing actions should be done in a controller. A controller could be a server-side
JavaScript or a Java-based controller.

Chapter 2

[23]

Let's extend our first web script to add a controller to get an understanding about
how the controller populates and passes data to FreeMarker template and how
FreeMarker template uses the model data to generate the response:

1.	 Log in to Alfresco Share UI.
2.	 Click on the Repository link from the top header.
3.	 Go to Data Dictionary | Web Scripts Extensions.
4.	 Edit the descriptor file helloworld.get.desc.xml as follows:

<webscript>
 <shortname>Hello World</shortname>
 <description>First webscript Hello world</description>
 <url>/helloworld?name={argumentName}</url>
 <authentication>user</authentication>
</webscript>

5.	 Create a new file named helloworld.get.js with content as follows:
model.email="Ramesh.chauhan@cignex.com";

6.	 Edit the FreeMarker template helloworld.get.html.ftl as follows:
<html>
 <body>
 <p>Hello! ${args.name}.</p>
 <p>email address: ${email}</p>
 </body>
</html>

7.	 Go to http://localhost:8080/alfresco/service/index and click on the
Refresh Web Scripts button.

8.	 Now, hit the URL http://localhost:8080/alfresco/service/
helloworld?name=Ramesh to execute the web script. It will ask for user
credentials. Provide user credentials and you should see the response as:
Hello! Ramesh.
email address: Ramesh.chauhan@cignex.com

This is how we can have a controller added in a web script in a simple way. In the
preceding example, we hard-coded the e-mail address to be returned in the web
script response. We did not have any interaction with the Alfresco repository. We
just populated the model object and passed it to the FreeMarker template from the
server-side JavaScript controller.

It's Time for the First Web Script

[24]

Model is basically a root object that Alfresco makes available
for data sharing to happen between the server-side JavaScript
controller and FreeMarker template view.

You can modify the controller to get the e-mail address dynamically retrieved from
the Alfresco repository based on the name argument received. With the help of
Alfresco JavaScript API, you may first retrieve the user from the repository based
on the name argument and then fetch the e-mail address of the user. In a server-side
JavaScript controller, you can leverage on available Alfresco JavaScript API to interact
with the repository. This way, we can have a web script render a response based on
the data retrieved from the Alfresco repository.

In a server-side JavaScript controller, you can leverage on
available Alfresco JavaScript API to access the Alfresco
repository and perform business logic as required.

Behind the scenes of web script
execution
Let's try to understand at a high level what happens on a web script being hit in
different scenarios such as when a web script does not have a controller and when
it does.

A web script without a controller
To execute the first web script we created without controller, we just hit the URL
http://localhost:8080/alfresco/service/helloworld?name=Ramesh on a
web browser, which is basically a HTTP GET request call.

All the incoming requests matching the URL pattern /alfresco/service/*
are mapped to the web script request dispatcher servlet in the Alfresco web
application configuration.

The servlet then passed the request to the Web Script Runtime to process the
web script.

The Web Script Runtime passed the control to the Web Script Container. The Web
Script Container internally identified which web script to execute based on the
invoked web script URL, HTTP method, and the web script descriptor document
helloworld.get.desc.xml.

Chapter 2

[25]

We have not specified any response format explicitly in the descriptor document
and have not explicitly mentioned one while executing the web script. Hence, the
web script framework has rendered the HTML as the default format. Based on the
naming conventions of a FreeMarker template, we recollect that we have created
the FreeMarker template as helloworld.get.html.ftl. This generated the HTML
response for the web script. The formatted response is then sent back to the web
browser to display the HTML text in the web script response along with the value
of the argument name.

A web script with a controller
You must have observed that in the first web script, we created the web script
without the controller and then extended the web script to have the controller.
The URL to invoke this web script remains the same. There isn't any difference
in the URL. It was only a backend implementation that was additionally
implemented to have a controller added in the web script implementation.

Behind the scenes when a web script with a controller is invoked, the web script
framework in Alfresco will follow the same process as mentioned for a web script
with no controller. The only difference would be before rendering the response, the
web script framework in Alfresco would execute the controller implementation first.
The controller will first complete the required business logic processing interacting
with the Alfresco repository and generating the required data to be returned as a
web script response. The controller will populate the model object to pass to the
FreeMarker template.

Important things for any web script
While implementing the web scripts in Alfresco, it is essential to understand some of
the very important things to be taken care of. There are three important things you
should always keep in mind when developing Alfresco web scripts:

•	 Choosing the HTTP method for the web script
•	 Specifying the URL and arguments for the web script
•	 Response formats of the web script

HTTP methods supported by a web script
While developing web scripts and interacting with the Alfresco repository, you
should ensure you select the appropriate HTTP method for the web script. It is
important to understand the various HTTP methods supported by the web script
framework in Alfresco so that you can select the appropriate one for your web script.

It's Time for the First Web Script

[26]

GET requests are explained as follows:

•	 They are used when retrieving resources from the repository
•	 They generally do not require a transaction
•	 The same HTTP GET requests return the same resource every time even after

being called multiple times
•	 It does not have any effect on the repository as it is just a retrieval operation

POST requests are explained as follows:

•	 POST requests are generally used to create new resources in the repository
•	 Generally, POST requests send the data to the URI and expect the resource at

that URI to handle the request

PUT requests are explained as follows:

•	 PUT requests will update the existing resource if it is present or can be used
to create the new resource at a specified URI

•	 Like GET requests, the same PUT requests will update the same resource
every time even after they are called multiple times

DELETE requests are explained as follows:

•	 Generally, DELETE requests are used when a resource needs to be deleted
from the repository or to disable access on the resource in the repository

It is important to understand that it is not a hard and fast rule to
use the specific method for a specific type of scenario as explained
for each of the previous methods. However, as a general practice,
it is recommended to adhere to it.

In general for all request methods, let's take a look at some useful points as follows:

•	 Naming conventions of web script files make the web script framework in
Alfresco interpret the type of method used for the web script.

•	 When a web script is executed, the web script framework in Alfresco will
identify the appropriate description document, controller, and FreeMarker
template for the web script based on the method used for invocation. In
the first web script we created, we had .get in the filenames of descriptor
document, controller, and FreeMarker template. When the "hello world"
web script is executed from a web browser as a GET request, the web script
framework in Alfresco identified the appropriate description document,
controller, and response templates based on the method used for invocation
and hence it used the ones having .get in its name.

Chapter 2

[27]

•	 It is possible to define a web script with different HTTP methods. For example,
in a contract management solution, you can have web scripts differentiated
based on an HTTP method to create/update/delete/retrieve contract (a
content based on custom content type) from the repository as follows:

°° contract.get.desc.xml: This gets the contracts from the repository
°° contract.put.desc.xml: This updates a specified contract in

the repository
°° contracts.post.desc.xml: This creates contracts in the repository
°° contract.delete.desc.xml: This deletes a contract from

the repository

Web script arguments
It is important to know what arguments a web script requires. As a general practice,
arguments should be specified in the description document while creating the web
script. Let's take a look at the two ways through which we can specify the arguments
for a web script.

Explicit arguments
Explicit arguments are the ones generally provided as a query string to the web
script URL. In the descriptor document, the argument name and its placeholder
are generally specified as the query string in the web script URL under the <url>
tag. For example, this is the way we have added arguments for our first web script
implementation as follows:

<url>/helloworld?name={argumentName}</url>

You can have multiple arguments for the web script URL by differentiating them
using the ampersand character as &.

It is important to use the escaped ampersand character &
while specifying arguments in the web script descriptor
document. This is required to be done in order to ensure that
web script descriptors are always a valid XML.

So for example, if you want to add another argument to our first web script, it can be
declared in the descriptor document as follows:

<url>/helloworld?name={argumentName}&organisation=
{argumentOrganisation}</url>

It's Time for the First Web Script

[28]

Specifying arguments in the description document is mainly to get
information about the arguments required for the web script. By just
looking at the description document, you can get a clear idea about
what are the arguments required for the web script. If you want to
specify some argument as an optional argument, you just need to add
? while mentioning the placeholder for the argument. For example,
if you want to have organization as an optional argument, then you
should specify it as organisation={argumentOrganisation?}.

Implicit arguments
This is the other way of specifying the arguments to the web script URL.
In this way, the arguments are incorporated in the web script URL as
shown in the following example:

<url>/helloworld/{argumentName}/{argumentOrganisation}</url>

It is also possible to have the static path in the URL after the arguments, for example:

<url>/helloworld/{argumentName}/{argumentOrganisation}/english</url>

Understanding which one to choose
•	 It is important to maintain consistency in the large code base of web scripts

for your project; hence, you must choose the same format of specifying
arguments across all your web script from a maintenance and consistency
point of view.

•	 You could use either of the formats or you could also use both of them
together based on your preferences and requirements.

Response formats for a web script
Response formats play a key role in rendering the web script response in the
required format for the web script. It is important to know which response
formats are supported by the web script framework in Alfresco that you can
use while developing the web scripts for your business solution implementation.

Chapter 2

[29]

Response formats supported by the web script
framework
The web script framework in Alfresco supports different response formats. Here is a
list of the available response formats and their mime type:

•	 html - text/html
•	 text - text/plain
•	 xml - text/xml
•	 xsd - text/xml
•	 atom - application/atom+xml
•	 atomentry - application/atom+xml;type=entry
•	 atomfeed - application/atom+xml;type=feed
•	 atomsvc - application/atomsvc+xml
•	 rss - application/rss+xml
•	 json - application/json
•	 opensearchdescription - application/opensearchdescription+xml
•	 mediawiki - text/plain
•	 portlet - text/html
•	 fbml - text/html
•	 php - text/html
•	 js - text/javascript
•	 calendar - text/calendar
•	 csv - text/csv
•	 xls - application/vnd.ms-excel
•	 xlsx - application/vnd.openxmlformats-officedocument.spreadsheetml.sheet

Specifying the response format
With the model-view-controller pattern implementation, we can have one controller
implementation and multiple views. Hence, it is possible to have multiple response
formats for any web script to return the web script output in different formats
as requested.

It's Time for the First Web Script

[30]

You can choose any of the response formats from the supported response format
lists for your web script. There are two different ways you can specify the response
formats for a web script.

Specifying the response format via URL – extension on
web script ID
Once you have created the required descriptor file, controller, and multiple response
template documents for your web script, you can specify the response format to be
used while invoking the web script URL. You can specify it as an extension of the
web script ID.

For example, if there are different response format documents created for the hello
world web script such as helloworld.get.xml.ftl or helloworld.get.json.ftl
and while invoking the web script you want to specify XML format explicitly, then
you can do this as follows:

http://localhost:8080/alfresco/service/helloworld.xml?name=Ramesh

Specifying the response format via URL – explicit format
argument
Another way to specify the response format is to explicitly pass a format argument
to the web script URL. For example, if you want to specify the XML format explicitly
for the hello world web script, then you can do this as follows:

http://localhost:8080/alfresco/service/helloworld?name=Ramesh&format=
xml

The default format
While invoking a web script, if no format is explicitly specified using either of the
previous two methods mentioned, then the default format as mentioned in the
descriptor document will be returned. The default format can be specified in the
descriptor document as follows:

<format default="json">any</format>

This indicates that the default format of the web script response to be returned is
JSON and the format can be specified using either of the previous two ways while
invoking web script.

Chapter 2

[31]

If no default response format is defined in the descriptor document for a
web script and also no response format is provided neither through the
extension of a web script ID in the web script URL nor through explicitly
specifying the format argument in the web script URL while executing the
web script, then Alfresco assumes the default response format as HTML.

In general, the following are some useful points for response formats:

•	 Response formats are mapped to the FreeMarker template through naming
conventions, for example, helloworld.get.html.ftl in case of our first
web script

•	 For any web script, you can define multiple response formats such as HTML,
XML, JSON, and so on.

•	 Based on the web script request method and requested format, the web script
framework in Alfresco returns the web script response

Summary
In this chapter, we have practically implemented the simplest first web script in
Alfresco, got an understanding of the Alfresco web script URI so we know how to
use a web script, how to add arguments to a web script, and then extend the first
simple web script to have a controller implemented.

Also, we learned at a high level what happens behind the scenes of a web script hit
when a controller is used for a web script and if a no controller is implemented.

We learned some very important things while implementing web scripts in Alfresco
such as different HTTP methods supported by the web script framework in Alfresco,
when to choose which method, different ways of specifying arguments to a web
script, a list of response formats supported by web script framework in Alfresco, and
how to make your web script return a response in a different response format based
on the requested response format.

Overall, we have gained a good knowledge about some of the fundamental things
when implementing web scripts in Alfresco through the example of creating and
extending a simple web script in Alfresco.

In the next chapter, we are going to explore the web script framework in Alfresco in
detail with useful technical insights.

Understanding the Web
Script Framework

In this chapter, we will cover the following topics:

•	 End-to-end execution flow of a web script
•	 Components that collectively make the web script framework
•	 Deployment architecture for a web script

Understanding the Web Script Framework

[34]

The web script framework in Alfresco is a powerful one and its basic goal is to
ensure that:

•	 Web scripts in Alfresco are easy to develop
•	 Web scripts can support various useful features, such as support for

internationalization to render output in multiple languages, exposing
configuration options for a web script, similarly like the ServletConfig
for servlets

The web script framework in Alfresco is designed as per the model-view-controller
pattern (MVC pattern) and makes it easy to develop new web scripts to expose a
RESTful API to interact with the Alfresco backend repository.

In this chapter, we are going to deep dive into the web script framework in Alfresco
to get an understanding of the various components that collectively make it a
powerful framework. It is a backbone engine for registration and execution of
Alfresco web scripts.

Execution flow of web scripts
Let's first understand the execution flow of web scripts in order to understand the
Alfresco web script framework.

Overall flow for a web script
As soon as a request for the web script URI is hit, the execution flow of the web
script gets started and continues till the request gets served with the requested
response format. Let's understand the overall execution flow for a web script
with a JavaScript-backed controller. The whole execution flow is as follows:

1.	 A request for the web script URI arrives at the web script request dispatcher
in Alfresco.

2.	 The request dispatcher sends the request to the Web Script Runtime.
3.	 The Web Script Runtime delegates the request to The Web Script Container,

which will first find the suitable web script for the requested URI and the
requested HTTP method.

4.	 The next thing would be to authenticate the user first, if required, before
executing the web script.

5.	 The Web Script Container then executes the controller implementation if
available. The script processor will execute the JavaScript controller for the
requested web script.

Chapter 3

[35]

6.	 Controller is the core component that will interact with the Alfresco backend
repository using the available set of various Alfresco services in order to
process the required business logic of the web script.

7.	 Controller then populates the required information in the model object and
passes it on to view in order to return the response of the web script. The
result is rendered using the FreeMarker response templates. A web script can
have any of the response formats as supported by the web script framework
and could have multiple formats for a web script by providing appropriate
response templates.

8.	 The task of the Web Script Container finishes and the Web Script Runtime
then sends the rendered results back to the client.

9.	 Web script client sees the response in the appropriate requested format.

Web script framework in Alfresco

Understanding the Web Script Framework

[36]

Behind the scenes implementation
As we have an overview of the overall execution flow for a web script, let's now take
a detailed technical walk-through of the implementation in order to understand how
a web script request gets served when a JavaScript controller-backed web script is
invoked through an HTTP request from the HTTP client, for example, a web browser.
You will find a lot of technical details in this section, so you might want to have a cup
of coffee before you start reading this section.

As we are going to take a detailed technical walk-through in this section,
you might want to have access to the source code so that it would be easy
to follow while reading this section. For easy and handy access to the
code, we will simply explore the JARs that are available in the Alfresco
installation. You can download and install the Java code decompiler
such as JD-GUI (available at http://jd.benow.ca/) that allows JAR
files to be decompiled. The core classes we will get familiar within this
section are mainly located in spring-webscripts-*.jar, alfresco-
remote-api-*.jar, and spring-surf-core-configservice-*.
jar. These JARs can be found at tomcat\webapps\alfresco\WEB-
INF\lib inside your Alfresco installation directory. Once the JARs are
opened in JD-GUI (decompiler), you can open the class files using Ctrl +
Shift + T and provide the class name.

So, let's get started:

1.	 For Alfresco web scripts, the RequestDispatcher servlet (org.
springframework.extensions.webscripts.servlet.WebScriptServlet)
is configured in web.xml and mapped to the /service/* URL pattern.

2.	 On the first request to the /alfresco/service/* URL pattern servlet
container will invoke the init method of WebScriptServlet and instantiate
it with the config service (org.springframework.extensions.config.
xml.XMLConfigService), Web Script Container (org.alfresco.repo.web.
scripts.TenantRepositoryContainer), and authentication factory (org.
alfresco.repo.web.scripts.servlet.BasicHttpAuthenticatorFactory)
fetched based on the servlet init-param—authenticator (webscripts.
authenticator.basic) and required server properties.

3.	 After completing initialization on the first request and also on subsequent
requests to the /alfresco/service/* URL pattern to execute the web script,
the service() method of WebScriptServlet gets invoked.

Chapter 3

[37]

4.	 WebScriptServlet while serving the web script requests will do the
following each time:

°° It creates a new instance of web script Servlet Runtime
(org.springframework.extensions.webscripts.servlet.
WebScriptServletRuntime) using the Web Script Container,
authentication factory (related classes mentioned in the second
step), server properties, request (javax.servlet.http.
HttpServletRequest), and response (javax.servlet.http.
HttpServletResponse).

°° It invokes the executeScript method of WebScriptServletRuntime.

5.	 WebScriptServletRuntime does not provide an implementation for the
executeScript() method and hence the method implementation in its
parent class, AbstractRuntime (org.springframework.extensions.
webscripts.AbstractRuntime), gets executed.

6.	 During the execution of the executeScript() method in AbstractRuntime,
it will first get the web script method and web script URI and invokes
the findWebscript (methodName, uri) method of registry (org.
springframework.extensions.webscripts.DeclarativeRegistry)
defined in the Web Script Container.

7.	 Registry (DeclarativeRegistry) will perform the uriIndex lookup for the
first request of the web script URI by invoking findWebscript (methodName,
uri) of the UriIndex implementation (org.springframework.extensions.
webscripts.JaxRSUriIndex) and update the uriIndexCache with the
web script URI. So that in the next request for the same web script URI, the
registry does not do the look up again.

8.	 Registry (DeclarativeRegistry) provides the Match object (org.
springframework.extensions.webscripts.Match), which contains
the templatePath, templateVars map, and WebScript object (org.
springframework.extensions.webscripts.DeclarativeWebScript)
back to AbstractRuntime.

9.	 Web Script Runtime (AbstractRuntime) then creates the
WebScriptRequest (org.springframework.extensions.
webscripts.WebScriptRequestImpl), WebScriptResponse (org.
springframework.extensions.webscripts.WebScriptResponseImpl),
and Authenticator (org.alfresco.repo.web.scripts.servlet.
BasicHttpAuthenticatorFactory.BasicHttpAuthenticator) using the
implementation available in WebscriptServletRuntime.

Understanding the Web Script Framework

[38]

10.	 Web Script Runtime (AbstractRuntime) will then invoke the
executeScript method of Web Script Container (org.alfresco.repo.
web.scripts.RepositoryContainer), and pass the web script request, web
script response, and authenticator. The Repository Container configured
is TenantRepositoryContainer; however, it does not provide the
implementation of the executeScript method and hence, the method gets
executed from its parent class.

11.	 The Web Script Container (RepositoryContainer) will get the description
object using the web script object received in the web script request and it
first authenticates the user, creates a new transaction to execute the web
script, and then invoke web script's (DeclarativeWebScript) execute
method passing web script request and response.

12.	 DeclarativeWebScript will invoke the getExecuteScript method of
AbstractWebScript, which will get the script from the web script cache. If
the web script is executed for the first time, it will add it to the cache first.

13.	 DeclarativeWebScript will then invoke the createScriptParameters
method of the AbstractWebScript class, which will populate a map with
required parameters such as webscript, format, args, argsM, headers,
headersM, guest, url, msg, Web Script Runtime's script parameters, and Web
Script Container's script parameter. Also, it will create TemplateConfigModel
and ScriptConfigModel based on config.xml provided for the web script.

14.	 In further processing, the executeScript method of AbstractWebscript
will get invoked, which in turn will invoke the ScriptProcessor class
(org.alfresco.repo.jscript.RhinoScriptProcessor), which will for
the first time compile the JavaScript controller and resolve the imports of
the script and then finally execute the controller.

15.	 DeclarativeWebScript will then have TemplateProcessor configured in
Web Script Container (AbstractRuntimeContainer) to process the template
in order to render the response.

16.	 DeclarativeWebScript sets the response to be rendered.
17.	 Web Script Container (RepositoryContainer) ends the transaction and

resets the authentication.
18.	 Web Script Runtime (AbstractRuntime) completes the entire execution

and logs the processing time of the web script execution and processing.
19.	 WebscriptServlet returns the response back to the web script client.

Chapter 3

[39]

Components of the web script framework
The different high-level components that collectively make the powerful web script
framework are as follows:

•	 Web Script Runtime
•	 Web Script Authenticator
•	 Web Script Container
•	 Other supporting components

Web script framework components

Let's go through them one by one.

Web Script Runtime
Having understood the web script execution flow in detail, let's recollect the role of
Web Script Runtime. While executing the web script, request dispatcher will first send
the request to the Web Script Runtime. The Web Script Runtime then passes the control
to the Web Script Container for further processing. Hence, it can be considered as the
entry point into the web script framework after the request dispatcher.

Understanding the Web Script Framework

[40]

Each and every web script gets executed in Web Script Runtime. It basically separates
out the web script and its execution environment. Web Script Runtime encapsulates
the complete web script execution environment, specifically requests, response, and
authentication, and serves the web script to the calling web script client.

Alfresco provides different Web Script Runtimes for web script execution
out-of-the-box as follows:

•	 Servlet Runtime
•	 Portlet Runtime
•	 JSF Runtime
•	 Facebook Runtime
•	 SURF Web Framework Runtime

Servlet Runtime
This Web Script Runtime is responsible for executing all the web scripts requested
through HTTP or HTTPS requests.

Servlet Runtime is the most commonly used runtime that basically
executes web scripts using HTTP/HTTPS requests. This book also
specifically focuses on Servlet Runtime.

The implementation of this runtime is available in org.springframework.
extensions.webscripts.servlet.WebScriptServletRuntime present
in spring-webscripts-*.jar.

Portlet Runtime
This Web Script Runtime makes it possible for JSR-168 portlets to directly execute
Alfresco web scripts. Whenever Alfresco web script is accessed from the JSR-168
portlets, this runtime will get instantiated while executing the web script.

The implementation of this runtime (PortletRuntime) is available as an inner class
implementation in org.springframework.extensions.webscripts.portlet.
WebScriptPortlet residing in spring-webscripts-*.jar.

JSF Runtime
JSF components can execute Alfresco web scripts using JSF Runtime. Whenever the
Alfresco web script is invoked from the JSF page, this runtime will get instantiated
for executing the web script.

Chapter 3

[41]

The implementation of this runtime (WebScriptJSFRuntime) can be found as an
inner class implementation in org.springframework.extensions.webscripts.
jsf.UIWebScript located in spring-webscripts-*.jar.

Facebook Runtime
Facebook Runtime provides access to Facebook APIs in the Alfresco web scripts.

The implementation of this runtime is available in org.alfresco.repo.web.
scripts.facebook.FacebookServletRuntime in alfresco-remote-api-*.jar.

SURF Runtime
The SURF web framework runtime allows building up web-tier UI pages by
embedding the Alfresco web script components.

The implementation of the SURF runtime can be found in org.springframework.
extensions.webscripts.LocalWebScriptRuntime in spring-surf-*.jar.

Web Script Authenticator
When interacting with any content repository, secure access to content is a must and
is really essential. Alfresco also requires an authenticated access while accessing the
content repository. The main task of the Web Script Authenticator is to authenticate
web script requests.

There are different authenticators, as mentioned in the following list, available
out-of-the-box in Alfresco, which can be configured in the relevant Alfresco Web
Script Runtime in order to provide secure access to the Alfresco repository through
Alfresco web scripts:

•	 HTTP basic Authenticator
•	 Alfresco explorer Authenticator
•	 JSR-168 Authenticator
•	 JSR-168 Authenticator with Alfresco explorer support
•	 Facebook Authenticator

The web script framework by default uses basic HTTP authentication. However,
it can be configured to use other forms of authentication mechanisms.

Understanding the Web Script Framework

[42]

HTTP basic authenticator
A username and password or a ticket must be specified while accessing the web
script through an HTTP/HTTPS request when web script needs to be invoked for
an authenticated user.

The authorization header must contain a username and password or a ticket.

The ticket can be specified through a query string parameter: alf_ticket.

A ticket basically represents an authenticated user who has already
performed successful login to Alfresco. It can be easily obtained
using the out-of-the-box Alfresco web script via the URL http://
localhost:8080/alfresco/service/api/login?u={username}
&pw={password}. You just need to provide the username and password
in the placeholders here before invoking it. Generally, while accessing
the Alfresco repository from your custom frontend application or
third-party system, this would be the first thing you will do in order to
proceed further and invoke other web scripts with authenticated access.

Servlet Runtime uses an HTTP basic authenticator to authenticate the web script
requesting user.

This authenticator is configured as a spring bean having ID webscripts.
authenticator.basic in web-scripts-application-context.xml.

The web-scripts-application-context.xml file can be
located at tomcat\webapps\alfresco\WEB-INF\classes\
alfresco inside your Alfresco installed directory. If you
are using Alfresco Community 5, it can be located under the
alfresco package inside alfresco-remote-api-*.jar.

Alfresco explorer authenticator
This authenticator uses the authentication mechanism that is used while logging to
Alfresco Web Client.

The user will be redirected to the Alfresco Web Client login page if a login is required.

This authenticator is configured as a spring bean having ID webscripts.
authenticator.webclient in web-client-application-context.xml.

Chapter 3

[43]

The web-client-application-context.xml file can be
found at tomcat\webapps\alfresco\WEB-INF\classes\
alfresco inside your Alfresco installed directory. The location
remains the same for Alfresco Community 5 as well.

JSR-168 Authenticator
JSR-168 Authenticator expects the user has been already authenticated by the
portal. Authenticated portal user can be found from the portal session using
the alfportletusername attribute.

This authenticator is configured as a spring bean having ID webscripts.
authenticator.jsr168 in web-scripts-application-context.xml.

JSR-168 Authenticator with Alfresco Explorer
support
Alfresco repository web scripts, depending on Alfresco Web Client functionalities,
can be authenticated and used within the portal with the use of this authenticator.

This authenticator is configured as a spring bean having ID webscripts.
authenticator.jsr168.webclient in web-client-application-context.xml.

Facebook Authenticator
Users will be redirected to the Facebook login page if a login is required.

This authenticator is configured as a spring bean having ID as webscripts.
authenticator.facebook in web-scripts-application-context.xml.

Web Script Container
Web Script Container is the core of the web script framework. It plays a major role
in executing the web script by being a central point integrating all other required
services in order to execute web script. It identifies the appropriate web script and
provides the root objects to the web script.

Alfresco out-of-the-box provides two types of Web Script Containers:

•	 Repository Container
•	 Presentation Container

Understanding the Web Script Framework

[44]

Repository Container
This container plays a key role in executing all the web scripts that provide direct
access to the content residing in the Alfresco repository using the various services
provided by Alfresco.

It is a specialized type of container mainly to be embedded only in the Alfresco
repository. It uses some of the core services provided by the Alfresco repository
to support transactions and authentication for web scripts.

Another useful and important thing that the Repository Container does is
that it provides the repository-specific root objects available for the JavaScript
based-controller and response templates.

Repository Container configuration can be found in Alfresco's web app in
web-scripts-application-context.xml as a bean entry having ID
webscripts.container.

In the recent versions of Alfresco (Version 4 onwards), implementation class is
org.alfresco.repo.web.scripts.TenantRepositoryContainer, found in
alfresco-remote-api-*.jar.

Presentation Container
Presentation Container is a lightweight implementation mainly for web scripts
to render user interface components making remote calls to remote repositories.
It provides the basic support to web scripts for making service call to remote
data sources.

This is available as the vanilla container in the spring web scripts implementation
that gets shipped with Alfresco. This container implementation makes it easy to
host web scripts in any environment.

Presentation Container configuration can be found in spring-webscripts-*.
jar as a spring bean entry having ID webscripts.container in web-scripts-
application-context.xml.

Other supporting components
The various other components that Web Script Container relies upon and which play
a key role while the execution of web scripts are being executed are explored in the
following sections.

Chapter 3

[45]

Configuration service
All relevant XML configuration files for the web script are read and parsed using the
configuration service.

The implementation class is org.springframework.extensions.config.xml.
XMLConfigService.

Web Script registry
Indexes for all the web scripts that are registered to the specific Web Script Container
are maintained using the web script registry.

The implementation class is org.springframework.extensions.webscripts.
DeclarativeRegistry.

Format registry
Format registry is the registry to get the relevant format for the specified MIME type
and also to get the MIME type for the mentioned format.

The org.springframework.extensions.webscripts.FormatRegistry class
contains the implementation details.

Script processor registry
The script processor registry provides a script processor that executes the backend
implementation of the web script controller implemented in JavaScript.

The implementation of the script processor registry can be found in
org.springframework.extensions.webscripts.ScriptProcessorRegistry.

The script processor used to execute the JavaScript-based controller is
org.alfresco.repo.jscript.RhinoScriptProcessor.

Template processor registry
The template processor registry provides the template processor that executes the
response templates for the web script.

The implementation of it can be located in org.springframework.extensions.
webscripts.TemplateProcessorRegistry.

The Default FreeMarker template processor implementation is available in org.
springframework.extensions.webscripts.processor.FTLTemplateProcessor.

Understanding the Web Script Framework

[46]

Search path
The search path contains the list of stores and is basically an endpoint location for
web script files. This is useful while doing the lookup for web script files.

The implementation for it can be found at org.springframework.extensions.
webscripts.SearchPath.

Understanding the wiring of web script
framework components
All of the web script framework components we have gone through work together
through Spring configuration. Let's take a look at the core configuration files that
wire up the web script framework components together as a part of web script
framework in Alfresco:

•	 The vanilla implementation for spring-related configurations for the
web script framework is available in spring-webscripts-application-
context.xml in spring-webscripts-*.jar.

•	 An extended version of the web script framework-related spring
configuration to support Alfresco repository embedding can be found in
the Alfresco web app in web-scripts-application-context.xml at the
location mentioned earlier.

Deployment architecture
Web script framework is designed in such a way that it can be hosted in different
environments not limited to just the Alfresco repository server.

Web Script Runtime plays a key role in providing encapsulation of execution
environment of the web script and provides different implementations to execute
web scripts. The most common way to access the web script is through HTTP/HTTPS
requests and Servlet Runtime is the most commonly used Web Script Runtime that is
responsible for executing web scripts accessed through HTTP requests.

Web Script Runtime makes it easy to execute RESTful Alfresco web scripts in various
ways such as execution in JSF components, portlets using their own way to invoke
the Alfresco web scripts.

Chapter 3

[47]

The typical deployment architecture would be to have all the data web scripts hosted
in the Alfresco repository server. The frontend clients using the backend repository
can use presentation web scripts to build up the frontend user interface and
presentation web scripts will be hosted at the client side. Frontend clients can invoke
data web scripts through HTTP in order to interact with the backend repository. The
Alfresco repository server will use Servlet Runtime to execute the web scripts.

Summary
In this chapter, we learned the web script execution flow in detail along with its
technical details. Also, we went through the different components that collectively
make up the web script framework. We have also gone through the various
out-of-the-box implementations available in Alfresco for these components
and the most common deployment architecture of Alfresco web scripts.

As we have explored the web script framework in Alfresco, we are going to take a
look at the various components in detail for building up web script in the next chapter.

Building Blocks of
Web Scripts

In this chapter, we will cover different components in detail to create a web script:

•	 The description document
•	 Controller implementation
•	 Response templates
•	 I18N message bundle
•	 The configuration document
•	 Naming conventions for each component

Building Blocks of Web Scripts

[50]

Web scripts is a key feature of the Alfresco enterprise content management system
and it's easy to implement. Having detailed knowledge about the components that
make a web script will make your job even easier to develop web scripts in Alfresco.

This chapter will provide you with the detailed knowledge about the building
blocks of web scripts. It is really essential to have thorough understanding about
the different artifacts that are used to develop web scripts in Alfresco. Throughout
your journey of Alfresco web scripts implementation in any of your project, you will
always have to use these components while developing web scripts, and hence, it is
very important to get a clear understanding of it so that you can quickly and easily
implement web scripts whenever required.

Alfresco provides a powerful web script framework that makes it easy to create a
web script using familiar technologies such as scripting and template languages.
Each and every web script must have a description document and have at least
one or more FreeMarker response template document. Web scripts can optionally
have a controller as a backend implementation that will do the required processing
against Alfresco repository as per the defined business logic. There are some optional
advanced implementations also possible to have message bundle for web script
responses along with some configuration options for web scripts if required.

Let's take a look at each of the components of web script in detail to gain better
understanding of them.

The description document – it's a must!
While developing web scripts, the first thing to do is perform a brief exercise
to decide on the URI and HTTP method of the web script, any arguments to be
provided to the web script, the response format to be used for the web script, check
whether any authentication is to be used for the web script or not, and check whether
any backend processing is required with the repository or not, and then start with
the implementation and first create the description document for the web script.

A description document is the core of web script implementation, and it is basically
an XML file. It describes the important details about a web script. Any developer
taking a look at the description document can get an idea about what the web script
does at a high level.

Chapter 4

[51]

This is the first file that needs to be developed while creating a web script in
Alfresco. There are certain mandatory declarations that must be provided in the web
script description document for a web script. Apart from this, there are additional
declarations that can optionally be provided for a web script. Let's now take a look
at the various declarations that can be provided in the description document. We
will take a look at the options one by one, which will give you a clear understanding
about how to create a description document, helloworld.get.desc.xml, from
scratch for the hello world web script we created earlier.

Mandatory declarations
Now let's go through the elements that must be provided in the description
document while creating a web script.

The <webscript> tag
All the information about a web script is captured in the web script description
document within the root element, <webscript>:

<webscript>
</webscript>

If you do not specify the preceding root element tag and create a blank description
document XML file, then while registering the web script, an error will appear in the
log and you will not be able to register the web script.

The following is the snippet of the error from the logs:

Unable to register script workspace://SpacesStore/app:company_home/
app:dictionary/cm:extensionwebscripts/helloworld.get.desc.xml due to error:
Failed to parse web script description document helloworld.get.desc.xml; Error on
line -1 of document: Premature end of file. Nested exception: Premature end of file.

The <shortname> tag
For any web scripts, a human-readable name of the web script is always given. It can
be provided within the <shortname> tag as seen in the following code line. This tag
does not have any attributes.

<shortname>Hello World</shortname>

Building Blocks of Web Scripts

[52]

If you try to register the web script without providing the shortname value, it will not
get registered. The following is the snippet of the error that will appear in the logs:

Unable to register script workspace://SpacesStore/app:company_home/
app:dictionary/cm:extensionwebscripts/helloworld.get.desc.xml due to error:
Failed to parse web script description document helloworld.get.desc.xml; Expected
<shortname> value.

The <url> tag
Each web script is bound to a URI that will be used to invoke the web script. It is
possible to have one or more URI declaration for a web script, and any of the URIs
can be used to execute the web scripts. This tag does not have any attributes:

<url>/helloworld?name={argumentName}</url>
<url>/hello/world/{argumentName}</url>

If a URL is not provided in the description document and you try to register the web
script, it will give an error and will not register the web script. The following is the
snippet of the error from the logs when there isn't any URL provided in the web
script description document:

Unable to register script workspace://SpacesStore/app:company_home/
app:dictionary/cm:extensionwebscripts/helloworld.get.desc.xml due to error:
Failed to parse web script description document helloworld.get.desc.xml;
Expected at least one <url> element.

If a URL has been defined in one web script and you try to define the same URL in
another web script, then the web script engine will not register the web script and an
error as shown in the following example will appear in the logs:

Unable to register script classpath:alfresco/extension/templates/webscripts/test/
helloworld1.get.desc.xml due to error: Web Script document test/helloworld1.get.
desc.xml is attempting to define the url '/helloworld1:GET' already defined by test/
helloworld.get.desc.xml.

A minimal description file with all the mandatory elements for a hello world web
script will appear as follows:

<webscript>
 <shortname>Hello World</shortname>
 <url>/helloworld?name={argumentName}</url>
 <url>/hello/world/{argumentName}</url>
</webscript>

Chapter 4

[53]

Optional declarations
Along with mandatory declarations, it is also possible to have some additional
elements declared in the description document. Let's take a walk-through of the
possible optional declarations for the web script description document.

<format>
This element allows you to specify the response content type through the web script
URI while invoking the web scripts. It basically allows you to control how to specify
the web script response format. There are different possible valid values that can be
defined for this element and are mentioned in the subsequent sections. This element
has an optional attribute named default.

argument
Let's take a look at the format tag that has its value as argument in the description
document. It will appear as follows:

<format default="html">argument</format>

Specifying the value argument for the format element indicates that the response
format for a web script can be selected by adding an argument to the web script
URL. Using the query string parameter format, the response content type can be
specified as follows:

http://localhost:8080/alfresco/service/helloworld?name=Ramesh&format=
xml

extension
The format tag that has its value as extension will appear in the description
document as follows:

<format default="html">extension</format>

It is possible to specify the response content-type by adding an extension to the web
script ID while invoking the web script as follows:

http://localhost:8080/alfresco/service/helloworld.xml?name=Ramesh

Building Blocks of Web Scripts

[54]

any
In the description document, when any is specified as a value for the format tag, the
response format can be specified using any of the previous methods mentioned. In
a scenario where there is no format element specified in the description document,
it would be considered the same as having the format value specified as any. The
format tag that has its value as any will appear in the description document as follows:

<format default="html">any</format>

When the response content type is not specified at all while invoking
the web script, the default content type is taken using the default
attribute of the format tag. If the default attribute is not set, then
its default value is HTML. It is also possible for some web scripts to
decide on the response content type at runtime. For them, specify the
default attribute as blank, for example, default="".

<authentication>
In order to securely access the web scripts, it is important to specify the level of
authentication required for the web script. It can be defined using this optional tag
declaration. It has an optional attribute: runas. The different possible values that can
be specified for this element are explained in the subsequent sections.

none
If you want to implement a web script that does not require authentication, you
can specify the authentication tag in the description document of a web script
as follows:

<authentication>none</authentication>

This is the default value when the authentication tag is also not specified in the
description document. It indicates that there isn't any authentication required to run
the web script.

In a web script that has authentication specified as none,
it will not be possible to interact with the repository.

guest
You can specify the authentication tag using guest value as follows:

<authentication>guest</authentication>

Chapter 4

[55]

The previous line indicates that to run the web script, guest level authentication is
required at the minimum.

user
You can specify the authentication tag that has its value as user as follows:

<authentication>user</authentication>

This specifies that repository's named user authentication is required at the
minimum to run the web script.

admin
You can specify the authentication tag that has its value as admin as follows:

<authentication>admin</authentication>

The previous line indicates that a repository's admin user authentication is
required to run the web script. An admin user is basically a user that belongs
to the ALFRESCO_ADMINISTRATORS group.

It is also possible to specify to execute the web script as a specific
Alfresco repository user irrespective of who initiated the web script.
This can be specified using the runas attribute of authentication
element, for example, runas="admin".
It is important to note that this attribute is only available for the web
scripts placed in the Java classpath.

<transaction>
It is also possible to specify the transaction level in order to execute the web script
using this optional transaction element. This element has two optional attributes:
allow and buffersize. The different possible valid values for this element are
as in the subsequent sections:

none
The transaction that has its value as none will appear in the description document
as follows:

<transaction>none</transaction>

The previous line indicates that in order to run the web script, no transaction
is required.

Building Blocks of Web Scripts

[56]

required
The transaction tag that has its value as required will appear as follows:

<transaction>required</transaction>

The previous line specifies that a transaction is required in order to run the web
script. Existing transaction, if available, will be used to execute the web script;
otherwise, a new transaction will be created in order to execute the web script.

requiresnew
The transaction tag that has its value as requiresnew will appear as follows:

<transaction>requiresnew</transaction>

The previous line indicates that a new transaction is to be always created to run the
web script.

When the authentication value is set to none and the transaction
element is not provided in the description document, the default
value for transaction is none.
When the authentication value is not none, the default value for
transaction is required.

The allow attribute will specify the type of allowed data transfer. Valid values
are readonly (indicates the read-only transfer) and readwrite (indicates the
read-write transfer).

Another attribute, buffersize, specifies an integer value that represents the size
of buffer in bytes. This is the size the web script will allocate to guard against the
rollback of transaction during processing. In a scenario of rollback, if the buffer is not
full, then it can simply rollback without committing the output of the web script to
the container stream. Hence, it helps to return the error responses without returning
the partial response from the web script that has errors added to it.

<family>
The family tag is used in order to categorize the web scripts. Similar types of web
scripts can be classified to be of the same family by specifying the same value in
the family tag in the description document for them. It is possible to have multiple
entries of this tag in the description document if a web script can be categorized to
belong to a different family. The family tag in the description document will appear
as follows:

<family>name of family</family>

Chapter 4

[57]

An example of the family tag is as follows:

<family>CMIS</family>

When you access the http://localhost:8080/alfresco/service/index page,
you should find an option to browse the web scripts based on family. For example,
you will find a link Browse 'CMIS' Web Scripts to take a look at all the web scripts
categorized to be of the CMIS family.

<cache>
Caching is a very good feature that helps to avoid regenerating a response for each
request. The web script framework in Alfresco uses the caching mechanism defined
by HTTP. For a web script, the required level of caching can be provided using this
optional element. When a web script is invoked, the web script framework translates the
declaration of this element to an appropriate response header to manage the cache. The
cache tag with its child elements will appear in the description document as follows:.

<cache>
 <never>false</never>
 <public>true</public>
 <mustrevalidate/>
</cache>

The different optional child elements of this tag are explained in the subsequent sections.

never
This indicates whether a web script response should be cached or not. The default
value is true, which means that a web script response will never be cached. An
alternate value is false to specify allowing of caching of a web script response.

public
This is used to specify whether the authenticated web script response should be
cached in a public cache or not. The true value indicates that the web script response
can be cached, while false indicates the web script response can not be cached. The
default value is false.

mustrevalidate
This is used to indicate whether a cache should revalidate its version of the web
script response in order to provide the fresh response data. The true value indicates
that there must always be a validation, while false indicates there might be a
validation. The default value is always true.

Building Blocks of Web Scripts

[58]

<negotiate>
For the specific web script response format, the accept header MIME type can be
provided using this optional element. There can be multiple entries of this element in
the description document. It is mandatory to provide the value for this tag. The value
will hold the type of response format. Also, it is mandatory to provide the accept
attribute that mentions the MIME type.

<negotiate accept="text/html">html</negotiate>
<negotiate accept="text/xml">xml</negotiate>

With the definition of one negotiate element in the description document, content
negotiation is enabled.

It is interesting to understand how the negotiate and format
elements are correlated. Each web script returns result in a response
stream and it might be encoded based on the MIME type. If during
invoking a web script, any hint is not provided on the MIME type,
then the web script framework will use its predefined encoding. While
invoking a web script, it is possible to provide the hint to let the web
script framework know about the MIME type for response. Using the
format element, as a URL extension or as a format argument, the
response format can be specified, which is mapped to a MIME type
in the web script framework. Another option is to specify the Accept
header, which can be done using the negotiate element.

<lifecycle>
The lifecycle element is to describe the lifecycle stage of a web script. This element
can be specified in the description document as follows:

<lifecycle>sample</lifecycle>

Web scripts in their development lifecycle can initially be in draft state, then are fully
used in the production mode, and at the end are deprecated when they are not used
anymore. These stages can be specified for web scripts using this element. Different
possible values for this element are shown in the subsequent sections.

none
This indicates that the web script is not part of any lifecycle.

sample
This mentions that the web script is a sample web script and should not be used for
production use.

Chapter 4

[59]

draft
This specifies that the web script is still in the experimental stage and not yet
fully completed.

public_api
This determines that the web script is part of the Alfresco public API, and hence, it is
fully tested and must be stable.

draft_public_api
This mentions that it is going to be a part of the Alfresco public API but it is not yet
fully complete or still some changes are in progress.

deprecated
This indicates the web script is deprecated and should not be used and that this web
script may be removed from the future Alfresco versions.

internal
This mentions that the web script is for Alfresco internal use only. Hence, for
different versions, it could have been changed as per the Alfresco internal usage,
and it's a possibility that it can be changed in future versions of Alfresco.

The <lifecycle> element is an optional one. Generally, for
the custom web scripts that you will develop for your project,
it is not mandatory to specify the lifecycle value for a web
script. Hence, you might not be using this element.

<formdata>
In the description document of a web script, you can specify the formdata tag
as follows:

<formdata multipart-processing="false" />

It has an attribute called multipart-processing. This can be used to specify
whether multipart form data processing is turned on or off for the web script.
Optional values are true, which indicates that multipart processing for form
data is turned on and false, which indicates that it is off. The default value is true.

Building Blocks of Web Scripts

[60]

<args>
The args element is used generally for documentation purposes to describe the
arguments passed to the web script. It has the child element arg, which has child
elements name, which specifies the name of the argument, and description, which
specifies a description of the argument. The args tag with its child element will
appear in the description document as follows:

<args>
 <arg>
 <name>name</name>
 <description>the name to display for helloworld
 webscript</description>
 </arg>
</args>

<requests>
The requests element can be used to specify the collection of request types. It has
request as a child element, which has type as an attribute. This tag will appear in
the description document as follows:

<requests>
 <request type="cmis.atomentry "/>
</requests>

<responses>
The responses element can be used to specify the collection of response types. It has
response as a child element, which has type as the attribute. This tag will appear in
the description document as follows:

<responses>
 <response type="cmis.atomentry"/>
</responses>

kind
The kind attribute is an optional attribute to the root tag <webscript>. A special
kind of implementation can be done for web scripts, which is basically a Java
backend implementation. For example, in a scenario where you want to develop
web scripts that need to return large content as the response, a Java-backed web
script implementation can be developed for this scenario. The kind attribute allows
you to provide a name for this implementation. Now, for any web script you are
developing that has to render large amount of content, the kind attribute can be used
in the description document to explicitly mention that it should use the custom Java
backend implementation created.

Chapter 4

[61]

Here is an example of how the kind attribute is used in the out-of-the-box Alfresco
web script, tomcat/webapps/alfresco/WEB-INF/classes/alfresco/templates/
webscripts/org/alfresco/repository/thumbnail/thumbnail.get.desc.xml,
inside your Alfresco installation directory. If you are using Alfresco Community 5,
the thumbnail.get.desc.xml file can be located under the alfresco package in
alfresco-remote-api-*.jar.

<webscript kind="org.alfresco.repository.content.stream">

Controller implementation – not
mandatory!
The actual business logic for a web script resides in the web script controller. The
main functionalities such as interacting with repository, for example, to query the
repository, add content, update content, delete content, and so on are part of the
web script controller implementation.

There are two types of controller implementations possible to implement while
creating web scripts in Alfresco:

•	 The JavaScript-backed controller
•	 The Java-backed controller

The JavaScript-backed controller
JavaScript-backed controller is known as the web script controller script that has
the web script business logic implemented in a JavaScript file. Alfresco provides a
set of JavaScript APIs that can be used in the web script controller to interact with
the Alfresco backend repository. A JavaScript controller can read the query string
parameters of the web script URI, perform the required repository operations, and
populate the model object to render the response.

We have already seen the basic implementation of JavaScript controller for our hello
world web script.

Understanding when to use the JavaScript controller
Here are a few generic points that explain when you should go for JavaScript
controller implementation for your web script:

•	 When the repository operations you are trying to perform can be easily done
using the available Alfresco JavaScript API, you might choose this controller

Building Blocks of Web Scripts

[62]

•	 The JavaScript controller has an advantage that if you have developed a web
script that has a controller using the JavaScript implementation, you do not
need to restart the server to deploy and use your web script

•	 No additional tooling is required; you can simply use any editor to create the
web script, no compilation is required, and is easy to deploy in the repository

The Java-backed controller
The Java-backed controller is another type of controller implementation possible to
implement for a web script that might have the complete business logic processing
implemented in Java.

When you are implementing a Java-backed controller, you will have access to all
the content application services available in Alfresco. Business logic implementation
for a web script can be provided in JavaScript- or Java-based controller; the only
difference is that Java-backed controller is implemented in Java and it has access to
all the available content application services in Alfresco.

Understanding when to use a Java-backed
controller
Let's take a look at a few points about when you should go for the Java-backed
controller implementation for your web script:

•	 Generally, when the JavaScript controller cannot do the repository operations
you want to do using the available Alfresco JavaScript API, you should
implement the Java-backed controller.

•	 When you want to override the rendering of a response, for example,
rendering large content in response, you should use this controller.

•	 Consider that you will require experience in Java programming. You will
also require compilation of the Java code, classpath deployment of web
scripts, and even server restart in order to use Java-backed web script. If all
of this looks fine to achieve your business functionality in time, then you can
go for implementing Java-backed controller.

A web script can also have both JavaScript- and Java-backed
controllers. In such a scenario, the Java-backed controller will
first get executed and then JavaScript-based implementation
gets executed when the web script is invoked.

Chapter 4

[63]

Response templates – yes, they are
required!
Response templates are basically used to render the web script response. In MVC
terms, response templates play a role of views. The output of the web script is
rendered in the required formats using the web script response templates.

It is possible to have multiple response templates for a web script, and based on
the requested response content type while invoking a web script, a response can
be rendered using the appropriate response template.

Response template also has access to web script query string parameters along with
the data items provided by the controller script and access to some common content
repository entry points.

We have already seen rendering response for our hello world web script.

For JavaScript-based web scripts, response templates are always
required. There are certain implementations of Java-backed web
scripts where response can be directly rendered from the Java
controller. In such case, there is no need to specify response
template for the web script. We are going to cover Java-backed
web scripts in detail in Chapter 6, Creating Java-backed Web Scripts.

I18N for a web script – it's optional
Internationalization is a cool feature that can be very useful while creating
web scripts.

There may be times when you are required to develop a web script that will
directly be used by the end users, and hence, you need a human-readable web script
response in the user's language. No worries, it is possible to provide I18N support
to the web scripts in Alfresco, and hence, you can have the text in the response
rendered in the preferred supported user languages.

We will also extend our hello world web script to have internationalization support
and will get understanding of how to make a web script render a response using
internationalization.

There are two things to be done in order to achieve this:

•	 Creating a resource bundle for different languages
•	 Modifying the response template to use the labels from the resource bundle

Building Blocks of Web Scripts

[64]

Adding a resource bundle for the hello world
web script
In order to add a resource bundle for a web script, the first thing we need to do is
create a resource bundle for the different languages.

After logging in to Alfresco Share, create helloworld.get.properties at the
Repository | Data Dictionary | Web Scripts Extensions location, and add the
following content to it:

greeting.title=Hello!
email.title=email address

Now, at the same location, create helloworld.get_de.properties and add the
following content to it:

greeting.title=Hallo!
email.title=E-Mail-Adresse

We have just created two properties files and made the text able to be rendered in the
web script response in two different languages: English and German.

Modifying the response template to use labels
Now, in order to use the labels added in the resource bundle, we will have to modify
the response template. Perform the following steps to modify the response template
for the hello world web script:

1.	 Modify helloworld.get.html.ftl available at the Repository | Data
Dictionary | Web Scripts Extensions location as follows:
<html>
 <body>
 <p>${msg("greeting.title")}${args.name}.</p>
 <p>${msg("email.title")}: ${email}</p>
 </body>
</html>

We have just modified our response template to use the text from the
resource bundle.

2.	 Now, go to http://localhost:8080/alfresco/service/index and click
on the Refresh Web Scripts button.

3.	 To test this, temporarily change the preferred browser language to
Germany de-DE and hit the http://localhost:8080/alfresco/service/
helloworld?name=Ramesh URL. You should see the response rendered using
the labels rendered from German properties file we created.

Chapter 4

[65]

Configuration document – it's optional
It is possible to specify configuration parameters for Alfresco web scripts. They can
be accessed from the controller as well as the response template. Just to understand
the concept, let's take a simple example where you want to display the server
environment (development, testing, staging, or production server) in your web script
output. One thing that you can do is specify the same in controller, but ideally, a
controller should not worry about such configurations. Instead, this can be handled
separately and the controller or template should just use the values. With the web
script configuration document, it is possible to do script specific configuration.

Create helloworld.get.config.xml at the Repository | Data Dictionary | Web
Scripts Extensions location and add the following content to it:

<properties>
 <envname>Dev</envname>
</properties>

Accessing configuration in a controller
In the JavaScript controller, the envname property can be accessible as follows:

var env = new XML(config.script);
logger.log(env.envname);

You can set the value of envname property in the model object and render the value
on the response template.

Accessing configuration in a template
In a scenario when no controller implementation is available for the web script,
the envname property can be accessed directly in the response FreeMarker template
as follows:

${config.script["properties"]["envname"]}

We have seen two different ways to display value from the web script configuration.
I am sure you can now easily test them in the hello world web script and see the result.

Building Blocks of Web Scripts

[66]

Naming conventions – the most
important thing
It is important to follow the naming conventions for the web script documents.
The following are the naming conventions that must be followed for each web
script document:

Component Naming convention
Description document <web script id>.<http method>.desc.xml

Controller script <web script id>.<http method>.js

Response template <web script id>.<http method>.<extension>.ftl

Configuration document <web script id>.<http method>.config.xml

Resource bundle <web script id>.<http method>[_<locale>]
.properties

Locale is basically a combination of the language code and
country code, for example, en_US, where en is the language
code and US is the country code.

The <web script id> is the identifier of the web script, and
must be a unique value in the web script package. For example,
you can have helloworld.get.desc.xml in two different web
script packages, which is basically a way to categorize web script,
and must have different URIs.

Summary
In this chapter, we gained knowledge about the different components (both
mandatory and optional) in detail to develop web scripts in Alfresco. We gained a
better understanding about description document that is the core of any web script,
possible controller implementation, response templates, the configuration document
for a web script, and internationalization of a web script, as well as the important
naming conventions to follow for the web script implementation for each of these
documents. Overall, you have now got the required understanding of the web script
building blocks.

In the next chapter, we are going to take a look at the different ways to invoke the
web scripts.

Invoking Web Scripts
In this chapter, we will cover how to invoke an Alfresco web script in different ways
such as the following:

•	 Invoking a web script through web browser and REST client plugins
•	 Executing a web script through a standalone Java program
•	 Making a call to a web script from Spring-based services
•	 Different ways to invoke a web script from Alfresco Share
•	 Calling a web script from the command line
•	 Calling a web script from JSF pages or JSR-168 portals
•	 Dealing with the limitation of clients

Invoking Web Scripts

[68]

While working with web scripts in Alfresco, there might be situations where you
would be curious to know how to execute a web script. For example, some common
practical scenarios such as while developing web scripts, you will be interested in
unit testing it. You want to invoke the web script in order to verify that the web
script works well and returns the output as expected. In a support project while
working on custom frontend application with a backend Alfresco repository, in the
process of fixing an issue during debugging, you need to execute the web script and
verify the response in order to find out whether the issue was a frontend issue or a
backend issue. While working on customizing Alfresco Share, you will need to call
the Alfresco repository web script. Sometimes, you might be required to make a call
to the web script from a standalone Java class. It might be possible that you have a
Spring-based application and from there you want to invoke an Alfresco web script.
At some point of time, you might be required to call a web script from a Linux shell
script as well and the list of such scenarios goes on.

It is useful to have an understanding of how to invoke a web script in such basic
possible real-life implementation scenarios. In this chapter, we are going to take a look
at how to invoke web scripts in the previously mentioned common scenarios that any
developer at some point of time will come across while working with Alfresco.

Invoking a web script from a web
browser
One of the easiest ways to invoke a web script is through a web browser. This is
a convenient option for everyone. A web browser is a common client everyone
generally uses to invoke a web script to test it while developing web scripts.

Every HTTP GET web script you develop can simply be executed from a web
browser by just hitting the web script URL. If any authentication is required
for the web script, then an authentication pop up will appear to provide the
authentication details.

Executing a web script using web
browser plugins
To test the web scripts you have created for POST, PUT, or DELETE, you cannot
simply execute them from the web browser. You will be required to execute them
through the add-ons provided by the browser to invoke HTTP POST, PUT, or
DELETE calls. There could be multiple options available for browser plugins.
We will take a look at two plugins here.

Chapter 5

[69]

Poster – Firefox add-on
One plugin option is a Firefox add-on named Poster. You can download this plugin
from the Firefox add-ons link, https://addons.mozilla.org/. If you already have
Firefox installed, then open Firefox browser and just go to the add-ons link and
search for Poster, and from the list of add-ons displayed, add Poster to Firefox.
Another faster and easier way to install Poster is to go to Tools | Add-ons and
search for Poster and click on the Install button.

Once the add-on is installed, go to Tools | Poster to open the poster window.
From this window, you can provide the web script URL, authentication credentials,
request headers, parameters, and specify the HTTP method to invoke the web script.

Advanced REST client for Chrome
Another good plugin option to use is the advanced REST client extension
for Chrome. This plugin can be downloaded from the Chrome webstore link,
https://chrome.google.com/webstore/category/apps. If you have already
installed Chrome, then open the Chrome browser and just go to the link we just
mentioned and search for advanced rest client and from the list of results
displayed, install the Advanced REST client by following the Chrome extension
install process. Another faster and easier way to install advanced REST client
extension is to go to Tools | Extension and click on the Get more extensions link.
Now, search for Advanced REST client and from the list of results displayed,
install the plugin by following the Chrome extension install process.

Once the Advanced REST client plugin is installed, to invoke it, put chrome-
extension://hgmloofddffdnphfgcellkdfbfbjeloo/RestClient.html in the
address bar of your Chrome browser. Another quick and easier way to launch the
advanced REST client is to enter chrome://apps in the address bar and hit it. You
can see the advanced REST client displayed here. Just click on it. You can now
execute all your web scripts of GET, POST, PUT, and DELETE methods through
the Advanced REST client plugin for Chrome.

Executing a web script from standalone
Java program
There are different options to invoke a web script from a Java program. Here, we
will take a detailed walkthrough of the Apache commons HttpClient API with code
snippets to understand how a web script can be executed from the Java program,
and will briefly mention some other alternatives that can also be used to invoke web
scripts from Java programs.

Invoking Web Scripts

[70]

HttpClient
One way of executing a web script is to invoke web scripts using org.apache.
commons.httpclient.HttpClient API. This class is available in commons-
httpclient-3.1.jar. Executing a web script with HttpClient API also requires
commons-logging-*.jar and commons-codec-*.jar as supporting JARs. These
JARs are available at the tomcat\webapps\alfresco\WEB-INF\lib location inside
your Alfresco installation directory. You will need to include them in the build
path for your project. We will try to execute the hello world web script using the
HttpClient from a standalone Java program. While using HttpClient, here are the
steps in general you need to follow:

1.	 Create a new instance of HttpClient.
2.	 The next step is to create an instance of method (we will use GetMethod).

The URL needs to be passed in the constructor of the method.
3.	 Set any arguments if required.
4.	 Provide the authentication details if required.
5.	 Ask HttpClient to now execute the method.
6.	 Read the response status code and response.
7.	 Finally, release the connection.

Understanding how to invoke a web script using
HttpClient
Let's take a look at the following code snippet considering the previous mentioned
steps. In order to test this, you can create a standalone Java program with a main
method and put the following code snippet in Java program and then modify the
web script URLs/credentials as required. Comments are provided in the following
code snippet for you to easily correlate the previous steps with the code:

// Create a new instance of HttpClient
HttpClient objHttpClient = new HttpClient();

// Create a new method instance as required. Here it is GetMethod.
GetMethod objGetMethod = new GetMethod("http://localhost:8080/
alfresco/service/helloworld");

// Set querystring parameters if required.
objGetMethod.setQueryString(new NameValuePair[] { new
NameValuePair("name", "Ramesh")});

// set the credentials if authentication is required.

Chapter 5

[71]

Credentials defaultcreds = new UsernamePasswordCredentials("admin","a
dmin");
objHttpClient.getState().setCredentials(new
AuthScope("localhost",8080, AuthScope.ANY_REALM), defaultcreds);

try {
 // Now, execute the method using HttpClient.
 int statusCode = objHttpClient.executeMethod(objGetMethod);
 if (statusCode != HttpStatus.SC_OK) {
 System.err.println("Method invocation failed: " +
 objGetMethod.getStatusLine());
 }

 // Read the response body.
 byte[] responseBody = objGetMethod.getResponseBody();

 // Print the response body.
 System.out.println(new String(responseBody));

} catch (HttpException e) {
 System.err.println("Http exception: " + e.getMessage());
 e.printStackTrace();
} catch (IOException e) {
 System.err.println("IO exception transport error: " +
 e.getMessage());
 e.printStackTrace();
} finally {
 // Release the method connection.
 objGetMethod.releaseConnection();
}

Note that the Apache commons client is a legacy project now and
is not being developed anymore. This project has been replaced by
the Apache HttpComponents project in HttpClient and HttpCore
modules. We have used HttpClient from Apache commons client here
to get an overall understanding.

Some of the other options that you can use to invoke web scripts from a Java
program are mentioned in subsequent sections.

URLConnection
One option to execute web script from Java program is by using java.net.
URLConnection. For more details, you can refer to http://docs.oracle.com/
javase/tutorial/networking/urls/readingWriting.html.

Invoking Web Scripts

[72]

Apache HTTP components
Another option to execute web script from Java program is to use Apache HTTP
components that are the latest available APIs for HTTP communication. These
components offer better performance and more flexibility and are available in
httpclient-*.jar and httpcore-*.jar. These JARs are available at the tomcat\
webapps\alfresco\WEBINF\lib location inside your Alfresco installation directory.
For more details, refer to https://hc.apache.org/httpcomponents-client-
4.3.x/quickstart.html to get an understanding of how to execute HTTP calls
from a Java program.

RestTemplate
Another alternative would be to use org.springframework.web.client.
RestTemplate available in org.springframework.web-*.jar located at tomcat\
webapps\alfresco\WEB-INF\lib inside your Alfresco installation directory. If you
are using Alfresco Community 5, the RestTemplate class is available in spring-
web-*.jar. Generally, RestTemplate is used in Spring-based services to invoke an
HTTP communication.

Calling web scripts from Spring-based
services
If you need to invoke an Alfresco web script from Spring-based services, then
you need to use RestTemplate to invoke HTTP calls. This is the most commonly
used technique to execute HTTP calls from Spring-based classes. In order to do this,
the following are the steps to be performed. The code snippets are also provided:

1.	 Define RestTemplate in your Spring context file:
<bean id="restTemplate" class="org.springframework.web.client.
RestTemplate" />

2.	 In the Spring context file, inject restTemplate in your Spring class as shown
in the following example:
<bean id="httpCommService" class="com.test.HTTPCallService">
 <property name="restTemplate" value="restTemplate" />
</bean>

Chapter 5

[73]

3.	 In the Java class, define the setter method for restTemplate as follows:
private RestTemplate restTemplate;
public void setRestTemplate(RestTemplate restTemplate) {
 this.restTemplate = restTemplate;
}

4.	 In order to invoke a web script that has an authentication level set as user
authentication, you can use RestTemplate in your Java class as shown in the
following code snippet. The following code snippet is an example to invoke
the hello world web script using RestTemplate from a Spring-based service:
// setup authentication
String plainCredentials = "admin:admin";
byte[] plainCredBytes = plainCredentials.getBytes();
byte[] base64CredBytes = Base64.encodeBase64(plainCredBytes);
String base64Credentials = new String(base64CredBytes);

// setup request headers
HttpHeaders reqHeaders = new HttpHeaders();
reqHeaders.add("Authorization", "Basic " + base64Credentials);
HttpEntity<String> requestEntity = new
HttpEntity<String>(reqHeaders);

// Execute method
ResponseEntity<String> responseEntity = restTemplate.
exchange("http://localhost:8080/alfresco/service/
helloworld?name=Ramesh", HttpMethod.GET, requestEntity, String.
class);
System.out.println("Response:"+responseEntity.getBody());

Invoking a web script from Alfresco
Share
When working on customizing Alfresco Share, you will need to make a call to
Alfresco repository web scripts. In Alfresco Share, you can invoke repository web
scripts from two places. One is the component level presentation web scripts, and
the other is client-side JavaScript.

Invoking Web Scripts

[74]

Calling a web script from the presentation
web script JavaScript controller
Alfresco Share renders the user interface using the presentation web scripts.
These presentation web scripts make a call to the repository web script to render
the repository data. Repository web script is called before the component rendering
file (for example, get.html.ftl) loads.

In out-of-the-box Alfresco installation, you should be able to see the components'
presentation web script available under tomcat\webapps\share\WEB-INF\
classes\alfresco\site-webscripts.

When developing a custom component, you will be required to write a presentation
web script. A presentation web script will make a call to the repository web script.
You can make a call to the repository web script as follows:

var reponse = remote.call("url of web script as defined in description
document");
var obj = eval('(' + response + ')');

In the preceding code snippet, we have used the out-of-the-box available remote
object to make a repository web script call. The important thing to notice is that we
have to provide the URL of the web script as defined in the description document.
There is no need to provide the initial part such as host or port name, application
name, and service path the way we use while calling web script from a web browser.
Once the response is received, web script response can be parsed with the use of the
eval function.

In the out-of-the-box code of Alfresco Share, you can find the presentation web scripts
invoking the repository web scripts, as we have seen in the previous code snippet. For
example, take a look at the main() method in the site-members.get.js file, which is
available at the tomcat\webapps\share\components\site-members location inside
your Alfresco installed directory. You can take a look at the other JavaScript controller
implementation for out-of-the-box presentation web scripts available at tomcat\
webapps\share\WEB-INF\classes\alfresco\site-webscripts making repository
web script calls using the previously mentioned technique.

When specifying the path to provide references to the out-of-the-box
web scripts, it is mentioned starting with tomcat\webapps. This
location is available in your Alfresco installation directory.

Chapter 5

[75]

Invoking a web script from client-side
JavaScript
The client-side JavaScript control file can be associated with components in Alfresco
Share. If you need to make a repository web script call, you can do this from the
client-side JavaScript control files generally located at tomcat\webapps\share\
components. There are different ways you can make a repository web script call
using a YUI-based client-side JavaScript file. The following are some of the ways
to invoke web script from client-side JavaScript files. References are also provided
along with each of the ways to look in the Alfresco out-of-the-box implementation
to understand its usage practically:

•	 Alfresco.util.Ajax.request: Take a look at tomcat\webapps\share\
components\console\groups.js and refer to the _removeUser function.

•	 Alfresco.util.Ajax.jsonRequest: Take a look at tomcat\webapps\
share\components\documentlibrary\documentlist.js and refer to
the onOptionSelect function.

•	 Alfresco.util.Ajax.jsonGet: To directly make a call to get web script,
take a look at tomcat\webapps\share\components\console\groups.js
and refer to the getParentGroups function.

•	 YAHOO.util.Connect.asyncRequest: Take a look at tomcat\webapps\
share\components\documentlibrary\tree.js and refer to the
_sortNodeChildren function.

In alfresco.js located at tomcat\webapps\share\js, the
wrapper implementation of YAHOO.util.Connect.asyncRequest
is provided and various available methods such as the ones we saw
in the preceding list, Alfresco.util.Ajax.request, Alfresco.
util.Ajax.jsonRequest, and Alfresco.util.Ajax.jsonGet
can be found in alfresco.js. Hence, the first three options in the
previous list internally make a call using the YAHOO.util.Connect.
asyncRequest (the last option in the previous list) only.

Calling a web script from the command line
Sometimes while working on your project, it might be required that from the Linux
machine you need to invoke a web script or create a shell script to invoke a web
script. It is possible to invoke a web script from the command line using cURL,
which is a valuable tool to use while working on web scripts.

Invoking Web Scripts

[76]

You can install cURL on Linux, Mac, or Windows and execute a web script from
the command line. Refer to http://curl.haxx.se/ for more details on cURL.
You will be required to install cURL first. On Linux, you can install cURL using
apt-get. On Mac, you should be able to install cURL through MacPorts and on
Windows using Cygwin you can install cURL.

Once cURL is installed, you can invoke web script from the command line as follows:

curl -u admin:admin "http://localhost:8080/alfresco/service/
helloworld?name=Ramesh"

This will display the web script response.

Calling a web script from JSR-168 portals
and the JSF page
The Web script framework in Alfresco provides a helper to make a call to Alfresco
web scripts from some of the client environments that do not know HTTP. Hence, it
makes it easy to invoke web scripts from such an environment and a web script will
be invoked using a mechanism that is familiar to the calling environment. In order
to allow JSR-168 portals and JSF pages to naturally invoke a web script as per their
environment, the web script framework in Alfresco has provided helpers for them.
Let's take a look at them and how they work at a high level.

Calling a web script from JSR-168 portals
It is possible to invoke an Alfresco web script as if it were a JSR-portlet. We will
take a look at the configuration required to be done in Alfresco for this. Entry for
the web script should be provided in portlet.xml. The web script URL should be
configured as a JSR-portal URL under the scripturl param in order to be able to
invoke the web script as a portlet. Basically it has /alfresco/168s added before the
URL defined in the web script description document.

For example, you can take a look at the out-of-the-box implementation of the
mytasks web script available at tomcat\webapps\alfresco\WEB-INF\classes\
alfresco\templates\webscripts\org\alfresco\portlets\mytasks.get.desc.
xml and mytasks.get.html.ftl. If you are using Alfresco Community 5, these
two files are located under the alfresco package inside alfresco-remote-api-*.
jar. Entry for mytasks web script as a portlet is configured in tomcat\webapps\
alfresco\WEB-INF\portlet.xml.

Chapter 5

[77]

Calling a web script from the JSF page
It is possible to invoke a web script from the JSF page as if it were a tag library. There
is a tag implementation provided in Alfresco to have JSF pages invoke web scripts.
It's available in repo.tld located at the tomcat\webapps\alfresco\WEB-INF
location in your Alfresco installation.

Take a look at tomcat\webapps\alfresco\jsp\dashboards\dashlets\mytasks-
webscript.jsp to get an understanding of how it is used.

Dealing with client limitations
One of the limitations would be that not all clients can make all the HTTP calls.
It might be possible that it is only restricted to GET or POST calls. The web script
framework in Alfresco provides a way to tunnel an HTTP method using a POST
method and using it, you can invoke other HTTP method calls. This can be done
using the X-HTTP-Method-Override header in the HTTP request with the value as
the method name, for example, GET. An alternative way is to specify alf_method as
a query string parameter.

Another client limitation could be that not all clients can gracefully handle HTTP
codes for non-success. In such cases, there is a mechanism to force the HTTP
response to specify success in the response header. The response body still represents
the content as if a non-success status has been received, which allows the client to
know about the error code or message provided by the web script, if any. In order
to be able to gracefully handle the HTTP code for non-success scenarios, it is possible
to forcefully specify the success in the HTTP response each time by setting the
alf-force-success-response header with a value of true on the HTTP request.

Summary
In this chapter, we have gained an understanding about the different ways to invoke
a web script, for example, from the web browser. Using the add-ons available for the
web browser, web scripts can be invoked. We have seen different ways to invoke
web scripts from a standalone Java class. We have also gone through how to invoke
web scripts from Spring-based services and from the command line. We gained
knowledge about the possibility of invoking web scripts as JSR-168 portlets and JSF
pages. We also saw how the web script framework in Alfresco provides us with
ways to deal with some of the limitations of the calling clients.

We are going to learn how to develop Java-backed web scripts in the next chapter.

Creating Java-backed
Web Scripts

In this chapter, we will cover how to create Java-backed Alfresco web scripts in
detail. In order to do this, we will cover the following:

•	 Defining a sample use case scenario first
•	 Getting ready and identifying the required components to be developed
•	 Developing a Java-backed web script step by step
•	 Deploying and registering the web script
•	 Testing the web script as per the use case scenario
•	 Understanding the difference between the web script framework's helper

classes to create a Java-backed controller
•	 Looking at some useful pointers to use controllers effectively

Creating Java-backed Web Scripts

[80]

When developing web scripts in Alfresco, there are two choices to write the controller
implementation for a web script: a JavaScript-backed controller and Java-backed
controller. Depending on your preference, you can choose to develop controller
implementation from these two when required. With a JavaScript-backed controller,
the development cycle can get faster compared to a Java-backed controller. There is
a wide range of things that you can do with the Alfresco JavaScript API inside the
JavaScript-based controller. However, there might be times when this is not enough
for what you want to implement for your business requirement. In such cases, you
can use the Java-backed web script, wherein it is possible to use all the Alfresco
services such as NodeService, SearchService, ContentService, and others, and the
web script can be built up as required.

While working on projects where you might end up developing a large number of
web scripts, you have to decide which type of controller implementation you will be
implementing based upon the feasibility of the project execution. You can choose to
develop JavaScript controller-based web scripts to speed up the development and
develop Java-backed web scripts only in the scenario when a JavaScript API does not
fit your requirement. Alternatively, you can always use Java-backed web scripts in
order to have a standardized development approach for your project.

It is important to have an understanding of implementing web scripts with both
types of controllers. We have already seen how a JavaScript-backed controller can be
used for a web script when we created a hello world web script earlier. Now, it's time
for a Java-backed web script. In this chapter, we will implement a Java-backed web
script in Alfresco for a sample use case so that you will get an understanding about
how to create a web script in Alfresco step by step that has a Java-backed controller
implementation. You can then develop Java-backed web scripts for the business
requirements in your project as required.

Use case scenario
We will take a very simple scenario to get an overall understanding of creating a
web script with a Java-backed controller. Our main objective is to understand how to
create Java-backed web scripts and how to use Alfresco APIs inside the Java-backed
controller. Let's get started.

You must be aware that Alfresco stores the metadata of the content in a database
and stores the actual content on a filesystem. Now, once the content is available in
Alfresco, you might be interested to know its location and find out where it actually
resides on the filesystem. So, the next time you are discussing content in Alfresco
with someone, you can actually showcase the mapping of content in Alfresco with its
actual physical location on filesystem under content store.

Chapter 6

[81]

Also, while working on projects with external application integration with Alfresco,
you might at some point in time want to know the size of the content as well, along
with its location on the filesystem.

Let's take this as our use case scenario to build our Java-backed web script.
We basically want to create a web script in Alfresco that will provide the
actual location on the filesystem for the given node and size of its content.

Web script functionality at a high level
After understanding the overall scenario that we want to achieve, let's understand
how this web script will work at a high level:

•	 A parameter nodeid needs to be passed as a request argument to the
web script.

•	 The web script will be accessed by authenticated users only.
•	 If a user has at the minimum read access to a given node, then only the physical

location of the filesystem and content size will be provided for the node.
•	 A response will be provided in JSON as well as XML format. The format can

be specified at the time of invoking the web script.

Getting ready
Let's just brush up on our knowledge of web script building blocks and identify the
components that need to be created for this web script as follows:

•	 Each web script needs to have a description document. So, the first step is to
create a web script description document.

•	 The web script needs to return a response in the XML and JSON formats, so
it is necessary to provide the response template to render an XML response
and a response template to render a JSON response.

•	 The entire logic to get the filesystem location and size will reside in the web
script controller. In this case, a Java-backed web script controller needs to be
created for business logic processing.

•	 In order to register a Java-backed controller with the web script, a spring
configuration is required. Hence, a spring context file needs to be created to
register a Java-backed controller with the web script. It is not necessary to
create a new spring context file always. You can have a context file based on
the logical module of your system and all the web scripts belonging to this
module could be registered in that context file.

Creating Java-backed Web Scripts

[82]

For this web script, you can use your favorite editor to create the
required files for the web script and develop the controller Java class.
We will cover setting up the development environment using Maven
in Chapter 9, Mavenizing Web Scripts. In this chapter, we will mainly aim
to get an understanding of how to implement a Java-backed web script.
You need to have spring-webscripts-*.jar and alfresco-
data-model-*.jar added in your class path in order to be able to
compile the controller Java class. Both these JARs can be found at the
tomcat\webapps\alfresco\WEB-INF\lib location in your Alfresco
installation. The * symbol in the JAR name refers to the version number.

Creating a description document
As the primary purpose of the web script is to return the content location, let's use
the web script ID as contentlocation. We will use the HTTP GET method as we
are going to retrieve the information for a node.

As a first step, create a description document for the web script. Create a file named
contentlocation.get.desc.xml that has the following content:

<webscript>
 <shortname>Get content location and size</shortname>
 <description>Gets the physical location for the content and size
 of the content</description>
 <url>/getContentLocation?nodeid={nodeid}</url>
 <url>/getContentLocation.json?nodeid={nodeid}</url>
 <url>/getContentLocation.xml?nodeid={nodeid}</url>
 <format default="json">extension</format>
 <authentication>user</authentication>
</webscript>

Let's understand what we have just done. We have created a description document
that provides a human-readable name and brief information about the web script in
the shortname and description tags respectively.

We have defined three URLs that can be used to invoke a web script. The first one
is the default URL and the other two are explicitly mentioned to get a response in
JSON and XML formats respectively. Please note that the first and second URL will
produce the same output.

The default response format is specified as json. The value extension for the
format tag mentions that a response content type can be specified as an extension
to the web script ID while invoking the web script.

Chapter 6

[83]

Also most importantly, a web script expects an argument named nodeid when the
web script is invoked.

Creating a response template
As a rule of thumb for a web script, we have to follow the naming convention as
expected by the web script framework in Alfresco. As the web script is supposed to
return the response in the JSON and XML formats, we need to create two response
templates for the web script. Following the naming conventions, there are two files
to be created—contentlocation.get.json.ftl and contentlocation.get.xml.
ftl as response templates. Return filesystem_location and size in the response
as follows:

1.	 To create a JSON response template, create a file named contentlocation.
get.json.ftl that has the following content:
{
 "content" :
 {
 "filesystem_location" : "${contentFSLocation}",
 "size" : ${contentSize}
 }
}

2.	 To create an XML response template, create a file named contentlocation.
get.xml.ftl that has the following content:
<?xml version="1.0" encoding="UTF-8"?>
<content>
 <filesystem_location>${contentFSLocation}
 </filesystem_location>
 <size>${contentSize}</size>
</content>

We have just created two response templates as required to return the output for
the web script. The names used inside ${} in the preceding code snippets are the
model variable names to be set from the controller class. Make sure that while
implementing a controller, the model variable names are set with the same name
as used in the response templates.

Creating a Java controller
Now it's time to do some Java coding. Before we start the actual coding, it's always a
good idea to quickly identify the logic that has to be taken care of by the code we are
going to write. This exercise really does help a lot.

Creating Java-backed Web Scripts

[84]

Controller logic at a high level
In order to develop a controller for this scenario, let's take a look at the
implementation logic that we will include in the Java-backed controller
at a high level:

•	 A controller will expect nodeid as an input parameter
•	 Check whether the given node is present in the repository
•	 Check whether the user has at least read permissions on the given node
•	 Get the filesystem location for the given node
•	 Get the size on the filesystem for the given node
•	 Prepare the model object and return it to the FTL response template

Let's code it!
Let's perform the following steps to create a Java-backed controller implementation
for the web script that will perform all the required logic as mentioned in the
previous section:

1.	 Create a new class, com.example.content.ContentLocationWebScript.
It's generally a good idea to provide a descriptive naming style and classify
the web scripts under appropriate packages. This will be useful in a scenario
where a large number of web scripts are to be developed. As this is going
to be a content-related web script, we have kept it under the com.example.
content package and named it ContentLocationWebScript.

2.	 The Java class ContentLocationWebScript you have just created
must extend org.springframework.extensions.webscripts.
DeclarativeWebScript as follows:
public class ContentLocationWebScript extends org.springframework.
extensions.webscripts.DeclarativeWebScript {

3.	 We are going to use the Node service, which is basically used to perform
node-related operations such as create, update, delete, set properties, and
get properties in Alfresco, to get the details about the filesystem location.
We will use the Permission service to identify whether a user has read access.
Now the next step is to provide the declaration for them. Both of them will be
injected as a Spring dependency as follows:
private NodeService nodeService;
private PermissionService permissionService;

Chapter 6

[85]

4.	 Next, let's write the actual logic for the controller. The whole logic will go
inside the executeImpl method. The first thing to do inside this method is
get the nodeid request parameter value as follows:
@Override
protected Map<String, Object> executeImpl(WebScriptRequest req,
Status status, Cache cache) {
 String nodeId = req.getParameter("nodeid");

5.	 As nodeid is a mandatory parameter for this web script, make sure that you
have received the value for nodeid. At the controller end, this needs to be
taken care of and proceed only if the value for the nodeid parameter has been
provided. If the nodeid is not provided, then the controller will set the error
response code. If it is provided, then prepare NodeRef based on the nodeid:
if (null == nodeId || "".equals(nodeId)) {
 status.setCode(Status.STATUS_BAD_REQUEST);
 status.setRedirect(true);
 return null;
}
NodeRef contentNodeRef = new NodeRef("workspace://SpacesStore/" +
nodeId);

In a scenario when status.setRedirect is set as true, if a
custom status response template is provided for the status code,
then it will be rendered; otherwise, the default status response
template provided by the web script framework in Alfresco will
be rendered displaying the information about status. If status.
setRedirect is set as false, then the status code will be set on
response; however, the response template for the requested format
will be rendered.

6.	 The next thing is to check whether NodeRef is present in the repository.
If NodeRef does not exist, then the controller will set the relevant error
response code. A controller will only proceed if NodeRef is available in
the repository as follows:
if (!nodeService.exists(contentNodeRef)) {
 status.setCode(Status.STATUS_NOT_FOUND);
 status.setRedirect(true);
 return null;
}

Creating Java-backed Web Scripts

[86]

7.	 Now, check whether the user has at least read access on the given noderef. A
controller will only proceed further if a user has at least read permissions on
the node, otherwise the controller will set the appropriate error response code.
if (permissionService.hasPermission(contentNodeRef,
PermissionService.READ) != AccessStatus.ALLOWED){
 status.setCode(Status.STATUS_FORBIDDEN);
 status.setRedirect(true);
 return null;
}

8.	 The next step is to get the filesystem location and size for the content
as follows:
ContentData contentData = (ContentData) nodeService.
getProperty(contentNodeRef, ContentModel.PROP_CONTENT);
String contentFileLocation = contentData.getContentUrl();
Long contentSize = contentData.getSize();

9.	 Create and set the model object to render the information in response
as follows:
Map<String, Object> model = new HashMap<String, Object>();
model.put("contentFSLocation", contentFileLocation);
model.put("contentSize", contentSize);
return model;
}

10.	 At the end of the class, provide the setter methods for the node service and
permission service as follows:
public void setNodeService(NodeService nodeService) {
 this.nodeService = nodeService;
}

public void setPermissionService(PermissionService
permissionService) {
 this.permissionService = permissionService;
 }
}

11.	 Save the class, and the Java controller implementation is now ready.

We have just created a Java-backed controller implementation that will perform the
specified logic processing prior to returning the content location on the filesystem and
size of content. We also used the node service and permission service in the controller.

Chapter 6

[87]

Configuring the controller for the web
script
Once the Java controller is ready, it needs to be configured for the web script so
that the web script framework in Alfresco can get to know that this Java class is the
controller for the contentlocation web script. This can be done by creating a spring
context file and adding the entry for the Java class in it.

Create a file custom-example-webscripts-context.xml that has the
following content:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC '-//SPRING//DTD BEAN//EN' 'http://www.
springframework.org/dtd/spring-beans.dtd'>
<beans>
 <bean id="webscript.example.contentlocation.get"
 class="com.example.content.ContentLocationWebScript"
 parent="webscript">
 <property name="nodeService" ref="nodeService" />
 <property name="permissionService"
 ref="permissionService" />
 </bean>
</beans>

We created a spring context file to associate the Java controller with the
contentlocation web script in order to let the web script framework in
Alfresco know that the ContentLocationWebscript Java class is the controller
for the contentlocation web script. This is done by following the appropriate
naming convention while providing a bean entry in the context file.

The most important thing is to specify the correct bean ID. The naming convention
that needs to be followed is webscript.package.webscriptid.httpmethod.

Hence, the way it needs to be built is, that if the web script description file resides
at templates\webscripts\example\contentlocation.get.desc.xml location,
then the bean ID would be webscript.example.contentlocation.get. Following
this naming convention is a must in order to register the class as a controller for the
web script. If you fail to do so, the web script framework in Alfresco will not be able
to register the class as a web script controller and when you try to execute the web
script, the controller code will not get called.

Creating Java-backed Web Scripts

[88]

In the bean entry in context file, the class name would be the fully qualified class name
for the Java controller. For example, in the preceding bean entry for our Java controller,
we provided the class as com.example.content.ContentLocationWebScript that
is basically the fully qualified class name for our Java controller. The parent attribute
would be webscript. You must take extra care when specifying the parent attribute,
it must be set to webscript and not webscripts.

Deploying the web script
The web script components are now ready. In order to make them work together,
these need to be deployed now. In your Alfresco installed directory, perform the
following steps:

1.	 Create a folder named example at the location tomcat\shared\classes\
alfresco\extension\templates\webscripts.

2.	 Put contentlocation.get.desc.xml, contentlocation.get.json.
ftl, and contentlocation.get.xml.ftl at the location tomcat\shared\
classes\alfresco\extension\templates\webscripts\example.

3.	 Put custom-example-webscripts-context.xml at the location tomcat\
shared\classes\alfresco\extension.

4.	 Create folders com | example | content at the location tomcat\webapps\
alfresco\WEB-INF\classes.

5.	 Put the compiled Java class ContentLocationWebscript.class at the location
tomcat\webapps\alfresco\WEB-INF\classes\com\example\content.

6.	 Restart the server.

Registering the web script
As we just restarted the server, on a server startup, the web script gets registered.
Now in order to confirm this, go to the URL http://localhost:8080/alfresco/
service/index, provide a username and password on authentication pop up, and
click on the Browse by Web Script Package button. Search for example and click on
it. The newly registered web script's index will be displayed as follows:

Get content location and size
GET /alfresco/service/getContentLocation?nodeid={nodeid}
GET /alfresco/service/getContentLocation.json?nodeid={nodeid}
GET /alfresco/service/getContentLocation.xml?nodeid={nodeid}
Description: Gets the physical location for the content and size of
the content
Authentication: user

Chapter 6

[89]

Transaction: required
Format Style: extension
Default Format: json
Id: example/contentlocation.get
Description:classpath:alfresco/extension/templates/webscripts/example/
contentlocation.get.desc.xml

Testing the web script
It's now time to test the functionality of the web script we have just created.
We basically want to make sure that the logic we have incorporated in the
Java-backed controller is working as expected.

In order to test the web script, upload some content (say an image) in the Alfresco
repository first. Make a note of its nodeid. In order to get the nodeid of uploaded
content after the content is uploaded using Alfresco Share, just take the mouse
pointer to the content name and then right-click on it and click on Copy link
location. Paste this link somewhere in a text editor and copy the value after
workspace://SpacesStore; this forms the nodeid. Now, create two users
and give one of them consumer access and do not give any permission to
the other user on this content. Make sure inherit permission is also unchecked.

Now, with any of the two users, start testing the web script.

Test case 1 – mandatory check
The nodeid is a mandatory argument for the web script we created. As a first
test case, let's test invoking a web script without passing the nodeid as a request
parameter. Hence, the first test would be not to pass the nodeid parameter in
the web script request. Hit the http://localhost:8080/alfresco/service/
getContentLocation URL in the browser.

As we specified the default format as JSON, the JSON response will be rendered
as shown in the following code snippet. Since we have not created a custom status
template and used status.setRedirect as true, the default status response
template provided by the web script framework in Alfresco is rendered. The same
output will also be displayed if the JSON format had been requested explicitly while
invoking the web script request as http://localhost:8080/alfresco/service/
getContentLocation.json.

Creating Java-backed Web Scripts

[90]

The following is the web script output:

{
 "status" :
 {
 "code" : 400,
 "name" : "Bad Request",
 "description" : "Request sent by the client was syntactically
 incorrect."
 }
}

If you want to take a look at the XML response, then go to the following URL
http://localhost:8080/alfresco/service/getContentLocation.xml
and the following would be the response:

<response>
 <status>
 <code>400</code>
 <name>Bad Request</name>
 </status>
</response>

Test case 2 – invalid argument value
As the second test case, we will test the web script by providing an invalid value for
the nodeid parameter. While invoking the web script, provide the nodeid; however,
give an invalid value for the nodeid and check the response for both the JSON and
XML format.

For the JSON response, go to http://localhost:8080/alfresco/service/
getContentLocation.json?nodeid=invalidnode or http://localhost:8080/
alfresco/service/getContentLocation?nodeid=invalidnode.

The output in the JSON format would appear as follows:

{
 "status" :
 {
 "code" : 404,
 "name" : "Not Found",
 "description" : "Requested resource is not available."
 }
}

Chapter 6

[91]

For an XML response, go to http://localhost:8080/alfresco/service/
getContentLocation.xml?nodeid=invalidnode. It will display the response
in the XML format mentioning the 404 status code.

Test case 3 – invalid access
We did a mandatory check for the nodeid parameter and tested the web script using
an invalid value in the previous test cases. Now, provide the correct value for the
nodeid, invoke the web script, and provide authentication for the user that does not
have access to the content. Our third test case is to test the web script with the user
for whom we have not provided any access to the content. Check for the JSON and
XML response as we did in previous test cases. It should give 403 as the status code
showing forbidden access.

Test case 4 – test with valid data
Now it's time to test the web script with some valid test data, which means a user
that has access to the content and a valid nodeid should be passed in the web script
request parameter. Check the response for both the JSON and XML format by going
to the web script URL, providing a valid nodeid as the argument. You should now
be able to see the response that shows the physical location of the content on the
filesystem and its size. The following displays the sample XML response:

<content>
 <filesystem_location>store://2014/7/20/xx/x/xxxxxx.bin
 </filesystem_location>
 <size>500</size>
</content>

Once you get the response, you can try to navigate to the path received in
the filesystem_location tag. The directory structure can be found under
the alf_data location mentioned in alfresco-global.properties, which can
be located at tomcat\shared\classes inside your Alfresco installed directory.
The content size is displayed in bytes. It is important to understand that we do
not update or delete anything in alf_data and its subfolders as it might corrupt
the repository.

So, for any content in Alfresco, you can find its size and its physical location on
the filesystem.

Creating Java-backed Web Scripts

[92]

DeclarativeWebScript versus
AbstractWebScript
The web script framework in Alfresco provides two different helper classes from
which the Java-backed controller can be derived. It's important to understand the
difference between them.

The first helper class is the one we used while developing the web script in this
chapter, org.springframework.extensions.webscripts.DeclarativeWebScript.
The second one is org.springframework.extensions.webscripts.
AbstractWebScript.

DeclarativeWebScript in turn only extends the AbstractWebScript class.

If the Java-backed controller is derived from DeclarativeWebScript, then execution
assistance is provided by the DeclarativeWebScript class. This helper class basically
encapsulates the execution of the web script and checks if any controller written
in JavaScript is associated with the web script or not. If any JavaScript controller is
found for the web script, then this helper class will execute it. This class will locate the
associated response template of the web script for the requested format and will pass
the populated model object to the response template.

For the controller extending DeclarativeWebScript, the controller
logic for a web script should be provided in the Map<String, Object>
executeImpl(WebScriptRequest req, Status status, Cache cache) method.
Most of the time while developing a Java-backed web script, the controller will
extend DeclarativeWebScript only.

AbstractWebScript does not provide execution assistance in the way
DeclarativeWebScript does. It gives full control over the entire execution process
to the derived class and allows the extending class to decide how the output is to
be rendered. One good example of this is the DeclarativeWebScript class itself.
It extends the AbstractWebScript class and provides a mechanism to render
the response using FTL templates. In a scenario like streaming the content, there
won't be any need for a response template; instead, the content itself needs to be
rendered directly. In this case, the Java-backed controller class can extend from
AbstractWebScript.

Chapter 6

[93]

If a web script has both a JavaScript-based controller and a Java-backed
controller, then:

•	 If a Java-backed controller is derived from
DeclarativeWebScript, then first the Java-backed controller
will get executed and then the control would be passed to the
JavaScript-backed controller prior to returning the model object
to the response template.

•	 If the Java-backed controller is derived from
AbstractWebScript, then, only the Java-backed controller
will be executed. The JavaScript controller will not get executed.

Using controllers smartly
It's always suggested to use either a Java-backed controller or JavaScript-backed
controller for a web script and both controllers should not be used together.
However, let's take a look at some scenarios where you can leverage using
both the controllers for a web script and solve some critical issues.

Consider a scenario where in a production system, you already have a web script that
has a Java-backed controller extending DeclarativeWebScript and returns some
output. Now, as a part of fixing a critical issue, there is a need to return additional
information in the web script response and you did not have the option to restart the
production server as server downtime could impact the customer business. In this
scenario, you can write an additional JavaScript controller for your web script, set
the additional information in the model object, and modify the response template to
include the newly added information. Register the web script and web script should
now return additional information as well along with the earlier output. Hence, we can
say we have done a kind of chaining of the controller execution. Think of this as being
similar to servlet chaining. This is the power of the web script framework in Alfresco
that makes it easy to solve critical issues very effectively.

Another scenario could be that you want to have a filter kind of functionality. Before
executing the JavaScript-backed web script, you need to perform some business logic
communication with the external application, and based on its output, you need to
process the remaining part of the web script. Here, you can think of developing the
Java controller extending DeclarativeWebScript. It's easier to have spring services
wired for a Java controller. Using this, make a call to the external application and set
a model object. Now, in the JavaScript-based controller, based on the value of the
model object available from Java controller, continue the processing. In this way, a
servlet filter kind of functionality can be achieved for web scripts.

Creating Java-backed Web Scripts

[94]

Summary
In this chapter, we understood in detail how to develop a Java-backed web script in
Alfresco. We took a sample use case scenario and first identified the requisites and
identified the logic implementation to be included in the controller before actually
implementing the web script. We implemented the web script description document,
response templates for JSON and XML, Java-backed controller, and associated the
controller with the web script step by step. We then deployed the web script and
registered the web script to the web script framework.

Later, we tested the web script in order to see its output in different test scenarios to
test the logic implemented in the controller. Finally, we understood the differences
between the two helper classes provided by the web script framework in Alfresco to
implement the Java-backed controller for a web script. Also, we had a look at some
quick helpful pointers to understand in which scenarios we can have both Java and
JavaScript types of controllers. Now, you have gained the required knowledge to
implement any complex Java-backed web script to meet your business requirements.

In the next chapter, we will take a look at JavaScript-based web scripts in detail.

Understanding
JavaScript-based

Web Scripts in Detail
In this chapter, we will cover the following topics:

•	 What can you do with JavaScript APIs?
•	 How do you find available JavaScript APIs in Alfresco?
•	 Available root objects to access JavaScript APIs
•	 Other root objects provided by the web script framework in Alfresco
•	 A few code examples of some common functionalities in a JavaScript controller
•	 Creating your own root object

Understanding JavaScript-based Web Scripts in Detail

[96]

The web script framework in Alfresco makes it easy to create, access, update, and
delete content residing in the repository using JavaScript-backed web scripts. The
JavaScript-backed web script will be very helpful when you need to do some kind
of hotfixes without bringing down the production system. Another cool feature of
JavaScript-backed web scripts is that you can have them deployed in the repository
and can directly edit them in line using the Alfresco user interface. There is no
need to depend on any specific editor while developing web scripts that have a
JavaScript-backed controller. You can use any of your favorite editors to create them.
The major advantage of using a JavaScript-backed web script is that it speeds up the
development cycle of web scripts. You need not worry about compiling them the
way you do with your Java-backed web scripts. While developing JavaScript-backed
web scripts, you can leverage the Alfresco provided JavaScript APIs. There is a wide
range of APIs provided by Alfresco to make repository access easy and convenient
from JavaScript-controller-backed web scripts.

In this chapter, first we will find out the possible things that you can do using
JavaScript APIs. We will learn how to identify the available JavaScript APIs in
Alfresco. We are going to take a look at the root objects available in Alfresco. This
will help us access the available JavaScript API and effectively develop web scripts
in less time; also, it will make it easier to interact with the Alfresco repository. We
will also look at other helpful root objects provided by the web script framework
in Alfresco. We will see few code examples that will help you understand how you
can make use of Alfresco JavaScript APIs in your web script. At the end, we will go
through the steps to understand how to create a custom JavaScript extension, which
is a very important and useful thing to know.

Understanding what you can do with the
JavaScript API
While developing web scripts in Alfresco, the repository JavaScript APIs provided
by Alfresco will help you perform a lot of the following actions at a high level as
listed in the following list:

•	 Creating a folder
•	 Creating content
•	 Making a copy of a node
•	 Moving a node from one location to another
•	 Deleting a node
•	 Finding a node
•	 Performing searches against a repository

Chapter 7

[97]

•	 Traversing through the node hierarchy
•	 Modifying properties on a node
•	 Adding or removing an aspect on a node
•	 Creating, modifying, or removing associations for a node
•	 Getting permission for a node
•	 Modifying permission for a node
•	 Creating and removing groups
•	 Creating and removing users

Basically, you can think of Alfresco JavaScript APIs as a wrapper to access Alfresco
services from the JavaScript-backed controller. Alfresco uses the Mozilla Rhino
JavaScript engine for Java, which allows JavaScript files to access Alfresco Java
objects using a simple bean-style approach in scripting. Also, this makes it simpler
to develop JavaScript (ECMA Script) 1.6 compatible files to create, update, retrieve,
and delete Alfresco repository objects using Alfresco JavaScript APIs.

JavaScript APIs in Alfresco
As a developer, you must always be interested in debugging through the code in
order to get an understanding of its workings instead of directly having the list of
APIs and simply using it. So, here we are going to take a look at how to identify
JavaScript APIs in Alfresco. Now, let's find the available JavaScript APIs provided
by Alfresco that we can use in a JavaScript controller while developing web scripts.

Identifying JavaScript APIs
In the Alfresco code base, the simplest way to identify any JavaScript API
is through the bean definition, where it will have the parent specified as
baseJavaScriptExtension. The way the bean entry works is—any JavaScript API
can be accessed through the root object defined for it. The property name defined
under the extensionName property is the root object to access the relevant API.

Let's discuss the bean definition entry for a JavaScript API in order to get a better
understanding of how the JavaScript API is defined. The following is the code snippet
of one such API available in Alfresco, which will give you a clear understanding of
how a JavaScript API is available and how you can use it in the controller:

<bean id="actionsScript" parent="baseJavaScriptExtension" class="org.
alfresco.repo.jscript.Actions">
 <property name="extensionName">
 <value>actions</value>

Understanding JavaScript-based Web Scripts in Detail

[98]

 </property>
 <property name="serviceRegistry">
 <ref bean="ServiceRegistry"/>
 </property>
</bean>

The following are some important points we can understand from this code snippet:

•	 This has the parent defined as baseJavaScriptExtension.
•	 All the methods that are available to the JavaScript controller are defined in

the Java class org.alfresco.repo.jscript.Actions.
•	 Dependency of any Alfresco services can be injected to the bean

definition, which can be used in the Java class to perform an operation
against the repository.

•	 The JavaScript controller will use the value provided under the
extensionName property in the bean definition to access the methods
exposed by the Java class. This value provided under the extensionName
property is referred to as a root object available in the JavaScript controller
to access the JavaScript API.

Now, with this understanding, you have the key to using JavaScript APIs for
your web script. You just unlocked how Java objects are being accessed from
the JavaScript controller.

Root objects to access JavaScript APIs
Now you understand how to identify JavaScript APIs in the Alfresco code base,
let's take a look at all the root objects available to access JavaScript APIs from the
JavaScript controller. In your Alfresco installed directory, you can find the generally
used JavaScript APIs defined in script-services-context.xml at tomcat\
webapps\alfresco\WEB-INF\classes\alfresco.

Chapter 7

[99]

If you are using Alfresco Community 5, script-services-context.xml can be
located inside alfresco-repository-*.jar under the alfresco package. In the
following table, the entries are mentioned first with the name of the root object
followed by the fully qualified name of the class, which has the implementation of
the API methods and a brief description of the root object:

Root object Name of the class Description
logger org.alfresco.repo.jscript.

ScriptLogger
This can be used to log the
required details that can be
used while debugging an issue

utils org.alfresco.repo.jscript.
ScriptUtils

This provides some generic
useful utility methods

test org.alfresco.repo.jscript.
ScriptTestUtils

This utility class provides some
test methods

actions org.alfresco.repo.jscript.
Actions

This provides a way to execute
actions on a node

imap org.alfresco.repo.jscript.
Imap

This provides access to imap
methods such as get the imap
home for user

search org.alfresco.repo.jscript.
Search

This provides way to search
data against the Alfresco
repository

classification org.alfresco.repo.jscript.
Classification

This provides the methods to
create and access categories

people org.alfresco.repo.jscript.
People

This provides access to
the person and group, and
provides a way to manipulate
them

session org.alfresco.repo.jscript.
Session

This provides the current
user's authentication ticket

avm org.alfresco.repo.jscript.
AVM

This provides helper methods
to access AVM objects

crossRepoCopy org.alfresco.repo.jscript.
CrossRepositoryCopy

This provides support for
cross-repository copy

workflow org.alfresco.repo.workflow.
jscript.WorkflowManager

This allows you to create
workflows and interact with
workflows in Alfresco

presence org.alfresco.repo.jscript.
Presence

This provides a way to query
the current online status of a
person

Understanding JavaScript-based Web Scripts in Detail

[100]

Root object Name of the class Description
activities org.alfresco.repo.

activities.script.Activity
This provides methods to post
activity and feed control

appUtils org.alfresco.repo.jscript.
ApplicationScriptUtils

This provides some methods
that could be useful for an
external application

Apart from this, if you search the XML files in the Alfresco installed directory for
parent="baseJavaScriptExtension", you will get an additional list of root objects
and its relevant classes in other context files. Here are the other available root objects
defined as mentioned earlier: actionTrackingService, groups, formService,
invitations, preferenceService, ratingService, renditionService,
replicationService, siteService, slingshotDocLib, taggingService,
thumbnailService, transfer, webprojects, cmisserver, commentService,
bulkFSImport, jmx, and admIndexCheckService.

To learn more, you should do a brief exercise and find the related Java classes for
these root objects and go through them. This exercise will make you familiar with
the available methods that you can use in the JavaScript-backed controller.

While developing a JavaScript-backed controller, the basic concept is simple; take
a look at the methods available in the defined Java class for the JavaScript API and
access those methods with the name given under the extensionName property.

Other available root objects
We have seen the root objects that have the API methods implemented in the
Java classes. There are some other default root objects provided by the web script
framework in Alfresco that you can use in the JavaScript controller of a web script.
We saw the different classes that get involved in executing web scripts while
looking at a behind-the-scenes implementation of web script execution in Chapter 3,
Understanding the Web Script Framework. You might want to go through the web script
framework classes in spring-webscripts-*.jar and alfresco-remote-api-*.jar
to find out in detail how these root objects are being made available in the JavaScript
controller. The following are the available root objects from different classes of a web
script framework:

Chapter 7

[101]

The root objects from AbstractWebScript are shown in the following table:

Root object Name of the class/object Description
webscript org.springframework.

extensions.webscripts.
Description

This provides information about
the currently executing web script

format org.springframework.
extensions.webscripts.
FormatModel

This represents the selected format
of the rendered response

args This is a map object This holds the arguments that are
passed to the web script

argM This is a map object This holds the multivalued
parameter arguments passed to the
web script

headers This is a map object This holds the request header
values passed to the web script

headersM This is a map object This holds the multivalued request
header values passed to the web
script

guest This is a Boolean value This indicates whether the current
user is a guest user or not

url org.springframework.
extensions.webscripts.
URLModel

This provides access to the web
script URL and its parts

msg org.springframework.
extensions.webscripts.
ScriptMessage

This provides access to localized
messages for a web script

config org.springframework.
extensions.webscripts.
ScriptConfigModel

This provides access to the
configuration document for a web
script

formdata object This holds the data submitted in a
form for a web script

requestbody Content This represents the content of the
request body

json Object, JSONArray, or JSONObject This is generated from the posted
JSON request to the web script

Understanding JavaScript-based Web Scripts in Detail

[102]

The root objects from DeclarativeWebScript are shown in the following table:

Root object Name of the class/object Description
model This is a map object This will be used by the

controller to pass the data to the
response template

status org.springframework.
extensions.webscripts.
Status

This represents the response
status

cache org.springframework.
extensions.webscripts.Cache

This allows the control to cache
the response of the web script

The root objects from TenantRepositoryContainer are shown in the following table:

Root object Name of the class/object Description
cmis org.alfresco.repo.cmis.client.

CMISLocalConnectionManagerImpl
This represents CMIS client

paging org.alfresco.repo.web.util.
paging.Paging

This is a paging API

The root objects from RepositoryContainer are as follows:

Root object Name of the class/object Description
roothome org.alfresco.repo.jscript.

ScriptNode
This represents the repository
root node. Accessible to
authenticated users only.

companyhome org.alfresco.repo.jscript.
ScriptNode

This represents the company
home object. Accessible to
authenticated users only.

person org.alfresco.repo.jscript.
ScriptNode

This represents the currently
authenticated user.

userhome org.alfresco.repo.jscript.
ScriptNode

This represents the current user's
home space.

Chapter 7

[103]

The root objects from AbstractRuntimeContainer are as follows:

Root object Name of the class/object Description
server org.alfresco.repo.web.scripts.

RepositoryServerModel
This provides server details

atom org.springframework.extensions.
webscripts.atom.AtomService

This is used to parse and
generate atom documents

jsonUtils org.springframework.extensions.
webscripts.json.JSONUtils

This is used to parse and
generate a JSON object

stringUtils org.springframework.extensions.
webscripts.ScriptableUtils

This is utilities for string

Most of the root objects provided by the web script framework in Alfresco are
also available in response templates. If you take a look at web script framework
classes, they have the implementation available to provide script root objects and
template root objects. Once you have an understanding of how to use root objects
in the JavaScript controller, you can also use them in the response template. While
developing web scripts, it's always a good approach to perform business logic
processing in the controller and populate the model object to display the output on
the templates. However, in some scenarios, you might also have to leverage the root
objects available for templates when required to form the response.

A must-know ScriptNode API
If you are working on creating web scripts and accessing or manipulating nodes in
Alfresco through a JavaScript controller, then you must have an understanding of
the ScriptNode API. This provides access to various properties of a node and also
provides different useful methods for a node in terms of security, thumbnailing,
ownership, versioning, tagging, transformation, and so on. You can go through
the code for ScriptNode to get understanding of the different methods. Its code is
available in alfresco-repository-*.jar and its fully qualified class name is org.
alfresco.repo.jscript.ScriptNode.

Similarly, to access the properties of a node and perform various other things
in response templates, you should check org.alfresco.repo.template.
TemplateNode available in alfresco-repository-*jar.

Understanding JavaScript-based Web Scripts in Detail

[104]

Code examples
Now that you have information on the different root objects you can use in
the JavaScript controller, let's take a look at some code examples to get a better
understanding of how you can put the root objects in action to achieve the required
functionality. We will go through some code examples for some of the generic
functionalities that every developer will use at some point in time. We will use
some of the root objects we have gone through previously.

Creating a folder
Consider a scenario where you have a custom frontend application and Alfresco as the
backend repository. Now, you want to have the functionality for the users to create a
folder in Alfresco under the company home from the custom frontend. Once the folder
is created, you might also want to create some content inside the folder or run some
action on the folder. First, our goal is to create a folder under the company home.

To address this, we will create a new web script foldercreation, which will accept
the argument foldername and creates a named folder under the company home
and returns the noderef value as a response in the XML format. You could use the
returned noderef further to invoke other web scripts as required, for example, to
run an action or create content.

In subsequent sections, you will find the core code snippet that needs to be
implemented inside the JavaScript controller and response template in order to
achieve the mentioned scenario. You can also go through the code files provided
for this chapter in order to see the web script implementation for this web script.

Retrieving explicit arguments
In order to implement this scenario, as the first thing in the JavaScript controller,
we need to read the argument foldername. Explicit arguments can be retrieved
using the args root object. So, we will read the argument foldername as follows:

if (args.foldername != null && args.foldername != "")

If you have implicit arguments provided in the web script URL,
then these arguments will not be available using the args root
object. For them, you can get their values using the url root object
like in url.templateArgs.foldername.

Chapter 7

[105]

Folder creation under company home
Now, create a folder under the company home. As we saw earlier that companyhome
is available as a root object, we can directly use it. It's of the type ScriptNode. So,
we can invoke the methods available in the ScriptNode API to create the folder.
The CreateFolder() method returns a ScriptNode object; set this object in the
model and use it in the response template to get the noderef value from it using
the TemplateNode API.

Inside the JavaScript controller, you will have the following lines:

var folderName = args.foldername;
model.foldernode = companyhome.createFolder(folderName);

In the response template, you will be using the following code:

${foldernode.nodeRef}

Let's discuss what we have just done. We used the args and companyhome root
objects inside the JavaScript controller to read explicit arguments and create a folder
respectively. All the available methods from the ScriptNode class can be used with
the companyhome object.

Now, we will take a look at some other functionalities as well in order to understand
the usage of root objects and JavaScript APIs. We will also take a look at the relevant
JavaScript code to achieve the mentioned functionality.

Finding a node
In the preceding example, the web script returned nodeid in the response. It was
the nodeid of the folder that was created in the web script. Now, you are interested
in using the nodeid returned by the first web script as an input to some other web
script. In another web script, you need to pass nodeid as the argument, and on that
node, you need to perform some functionalities such as determining whether a
user has permission on the node or not, getting the path to the node, getting some
property of a node, modifying some property on a node, checking whether some
aspect is applied on a node or not, creating content in it, invoking an action, and so
on. Before proceeding with any such operations, as the first thing, we need to find
out the actual node from the repository based on the nodeid provided. This can be
done using the findNode() method accessed by the search root object as follows:

var node = search.findNode("workspace://SpacesStore/" + args.nodeid);

Understanding JavaScript-based Web Scripts in Detail

[106]

Here, we used the search root object and invoked the findNode() method of the
JavaScript API for search root object. We are expecting nodeid to be passed as an
argument; hence, we read it using args.nodeid. Before invoking the findNode()
method for the node, we have to make the noderef string to be passed as an
argument to the method; hence, we concatenated workspace://SpacesStore/
with nodeid. If a node is found, it will return a ScriptNode object representing
the node found. If the node is not found, it will simply return null.

Checking user permissions on a node
Now, once the node is found, you first need to check whether a user has at least read
access on the node or not before performing any other operations on a node as listed
in the previous section. This can be done using the hasPermission method available
in the ScriptNode API as follows:

var permission = node.hasPermission("Read");

We used the hasPermission() method from the ScriptNode API. We already had
a node object available, and we just invoked the hasPermission() method passing
the permission we want to check. If the current user has the given permission, it will
return true. Otherwise, it will return false .

Getting the path of a node
As the next thing, you will be interested to get the path of the node in order to
identify the folder hierarchy the node belongs to. You can easily get the display
path of a node using the ScriptNode API as follows:

var nodepath = node.displayPath;

We accessed a variable displayPath from the ScriptNode class. There is already
a getter method getDisplayPath() implemented to get the path of a node in the
ScriptNode class. This method will return the display path for the given node.

Checking the properties of a node
Now, you want to see some properties of a node. For example, you are planning to
modify the description property. Prior to this, you want to know what the value is
before you change the value and want to log it for reference. The ScriptNode API is
of biggest help when it comes to performing node-related things. With the help of the
ScriptNode API, you can easily get the property value in different ways as follows:

var description = node.properties.description;
var description = node.properties["description"];

Chapter 7

[107]

var description = node.properties["cm:description"];
var description = node.properties["{http://www.alfresco.org/model/
content/1.0}description"];

We just saw four different ways you can read the property of a node. If you have
some custom property, you should use one of the last two options.

Logging the property value
Now before modifying the description property, you want to log the older value
for reference. Using the logger root object, you can simply invoke the log method
of the logger root object as follows:

logger.log("before change description value :" + description);

We used the logger root object and invoked the log method to log the property
value. Each time logging is required to be added in the JavaScript controller, you
can use the logger.log() method.

Modifying property of a node
Now, you want to modify the description property. Again with the help of the
ScriptNode API, you can easily perform it as follows:

node.properties.description = "change in description";

We just set a new value to the description property. You can also use the other
three ways we saw to access the property and set a new value for it.

Getting the current username and e-mail
You might be interested to know which user has invoked the web scripts. For this,
you might want to log the username and e-mail address of the user who executed
the web script as follows:

logger.log(person.properties.userName + " --- " + person.properties.
email + "--- executed webscript");

We used the root object person, which basically is ScriptNode. Also, we fetched the
username and e-mail properties for a user who is currently running the web script.
You can trace through the logs and find out which users executed the web script; this
might be very useful at some point in time later.

Understanding JavaScript-based Web Scripts in Detail

[108]

Returning the guest home node
Let's say for some requirement, you need to get noderef of the guest home folder.
This can be done using the childByNamePath method available in the ScriptNode
API as follows:

model.foldernode = companyhome.childByNamePath("Guest Home");

In the response template, you can get the noderef value from the model object
foldernode using the TemplateNode API the way we did in the earlier example.

We used the companyhome root object and the childByNamePath() method. For
any ScriptNode type of object, you can use this method and get the noderef of its
children. For example, you have a folder hierarchy Company Home > Testing > QA >
Performance_Testing. Now if you have the node of Testing folder and you want to
get the node of Performance_Testing, then you can call the method on the Testing
folder node giving the path as childByNamePath("QA/Performance_Testing").

Creating your own root object
We saw some of the generic examples of how to use root objects and JavaScript APIs
in the JavaScript controller. You should be able to now explore the other root objects
and related JavaScript APIs and find out which ones you can use to develop the web
script as per your business requirement. Now, let's see something very interesting.

Consider a scenario wherein you want to execute some part of the JavaScript
controller as a system user. The first thing that you will do is go through the
available JavaScript APIs to find out whether there is a suitable API for this
functionality is available or not. After doing an analysis, you will find that there
isn't such an API available out-of-the-box. However, you found that if the web
script had been a Java-backed web script, you could have used the Java API to do
this. However, yours is the JavaScript-based web script. Now, what is next? You
must be thinking how to perform this in the JavaScript API as well? No worries,
it is possible to do the same in JavaScript controller as well. All you need to do is
create a custom JavaScript extension.

Chapter 7

[109]

Custom JavaScript extension
You learned earlier that each JavaScript API has baseJavaScriptExtension as
a parent. You can try the following steps to create a custom JavaScript extension,
which will provide you with the API methods to run some part of the web script as
the system user and then revert back to the original user to execute the other portion
of the web script:

1.	 Create a context file and add the following bean entry to it:
<bean id="customAdmin" parent="baseJavaScriptExtension"
 class="com.example.CustomAdminAPI">
 <property name="extensionName">
 <value>customauth</value>
 </property>
</bean>

2.	 Create a Java class com.example.CustomAdminAPI, which will extend the
org.alfresco.repo.processor.BaseProcessorExtension class and
declare the variable as follows:
net.sf.acegisecurity.Authentication auth;

3.	 Implement three public methods inside this class. The first method is to save
current user's authentication, the second method is to run as a system user,
and the third method is to clear the security context and set back the original
user's authentication. The following is the code snippet for the three methods
we just discussed:
public void saveCurrentUserAuthentication() {
 auth = AuthenticationUtil.getFullAuthentication();
}

public void executeAsSystemUser() {
 AuthenticationUtil.setRunAsUserSystem();
 AuthenticationUtil.setFullyAuthenticatedUser(AuthenticationUtil.
SYSTEM_USER_NAME);
}

public void setBackOriginalUserAuthentication() {
 AuthenticationUtil.clearCurrentSecurityContext();
 AuthenticationUtil.setFullAuthentication(this.auth);
}

4.	 Now, deploy the files and restart the server.

Understanding JavaScript-based Web Scripts in Detail

[110]

In your JavaScript-backed controller, you should now be using the newly created
custom JavaScript extension as follows:

customauth.saveCurrentUserAuthentication();
customauth.executeAsSystemUser();
//Your piece of code you want to run as system user.
customauth.setBackOriginalUserAuthentication();

We just created a custom JavaScript extension, exposing a root object through which
you can access the API methods created for it. This is how you can create a custom
JavaScript extension in a scenario where you are not able to find the relevant API
that you are looking for.

Summary
In this chapter, we have gone through all the possible functionalities that you can
do inside your JavaScript controller for a web script using the available JavaScript
APIs. We gained knowledge about how to identify the JavaScript APIs from the
Alfresco codebase. We also went through the list of common root objects exposing
the JavaScript APIs we found from the Alfresco codebase.

Next, we went through various other root objects provided by the web script
framework in Alfresco. Later, we saw some code examples so you understand how
to use root objects and the relevant JavaScript API inside the controller to do some
generic operations on a node in Alfresco. At the end, you learned how to create a
custom JavaScript extension to create your own root object and expose the relevant
API method for the custom root object when the available JavaScript API does not
meet your requirements. Overall, you have now got an understanding of how to
develop a JavaScript controller using various JavaScript APIs to build up a web
script controller as per your business requirements.

In the next chapter, we are going to take a look at some of the very useful and
important things about web script development such as deploying, debugging,
and troubleshooting web scripts.

Deployment, Debugging, and
Troubleshooting Web Scripts

In this chapter, we will cover the following topics:

•	 Deployment options for Alfresco web scripts
•	 Details on debugging web scripts
•	 Useful troubleshooting pointers to some common problems related

to web scripts
•	 Some important tips to execute web scripts on a production server

Deployment, Debugging, and Troubleshooting Web Scripts

[112]

It is really important to know two things: how you can deploy what you have
developed and how you can debug if something does not work the way it should. If
you know these two things, then your job becomes easier and you can quickly identify
the solution to some of the critical issues you are working on for your project.

While working on web scripts in Alfresco, the first phase of web script development
is the creation of web scripts, wherein you will develop the required building blocks
of a web script. The second most important phase is to deploy and register the web
script in order to make the web script you have created available to the web script
framework in Alfresco. This will enable you to make use of your web script. As a
developer, it is important to understand various deployment options with which you
can deploy Alfresco web scripts. Also, you should know how you can debug web
scripts in Alfresco.

In this chapter, we will take a look at the possible ways you can deploy web scripts
in Alfresco. Also, we will go through debugging techniques for web scripts and some
useful troubleshooting pointers. We will also look at some useful tips that will be
very helpful when executing web scripts for your project on a production server.

Deployment options
There are two possible ways you can have your web scripts deployed:

•	 Using the repository option
•	 Using the filesystem option

When creating web scripts in Alfresco, you might be creating Java-backed or
JavaScript-backed web scripts for your project. Both can be deployed in different
ways. It is important to know where you can deploy a web script with each
deployment option and also which option is more suitable to you.

The repository option
In simple words, deploying a web script using the repository option means putting
the web script component files inside a specific location within the repository.

First, let's take a look at the deployment of JavaScript-based web scripts.
JavaScript-based web scripts can be deployed in the Alfresco repository. All the
components for the JavaScript-based web script such as the description document,
JavaScript-backed controller implementation, one or more response templates,
configuration documents if any, and optional message bundles can be deployed
in the Alfresco repository.

Chapter 8

[113]

Now, for Java-backed web scripts, all the web script components except the
controller implementation can be deployed in the Alfresco repository. In order to
deploy web scripts using the repository option, it is necessary to know the location
in the repository where we can place web scripts. A Java-backed controller cannot be
deployed using the repository option.

The repository location where you can deploy web scripts is Data Dictionary | Web
Scripts Extensions. If you create any new web scripts and choose to deploy them in
the repository, then you must place all the required files in the mentioned location.
Alfresco's out-of-the-box web scripts can be found at Data Dictionary | Web Scripts.
As a general practice, you should always deploy your newly created custom web
scripts under Data Dictionary | Web Scripts Extensions only.

Earlier, we created a JavaScript-based web script, hello world, and in order to deploy
the web script we chose the repository option. We deployed all the relevant files for
the hello world web script under Web Scripts Extensions in Data Dictionary.

The filesystem option
In simple words, deploying web scripts on the filesystem means putting the web script
component files at a specific location inside your Alfresco installed directory. This
deployment option can be used for both Java- and JavaScript-backed web scripts.

It is possible to deploy web scripts at the following locations:

•	 tomcat\shared\classes\alfresco\extension\templates\webscripts

•	 tomcat\webapps\alfresco\WEB-INF\classes\alfresco\templates\
webscripts

•	 tomcat\webapps\alfresco\WEB-INF\classes\alfresco\webscripts

•	 tomcat\webapps\alfresco\WEB-INF\classes\webscripts

As a general practice, for new web scripts of your project, you should always use
the first option and have web scripts deployed as Alfresco extensions. The second
location mentioned previously is the one where you will find out-of-the-box web
scripts provided by Alfresco. You might not find the last two locations mentioned
previously inside your Alfresco installation directory. However, these are also places
where you can deploy your web scripts. Ideally, you should not use these locations
and use the first option.

Deployment, Debugging, and Troubleshooting Web Scripts

[114]

Understanding deployment locations
We just saw that to deploy web scripts using the repository option, there are two
probable locations where web scripts can be deployed. For deploying web scripts
using the filesystem location, there are four such probable locations. As a developer,
you must be interested to find out how these deployment locations are identified for
both these deployment options.

It is good to know the technical details behind this. While registering web scripts,
there is always a lookup of web scripts performed by the org.springframework.
extensions.webscripts.DeclarativeRegistry class prior to registering the web
script. It uses org.springframework.extensions.webscripts.SearchPath, which
is basically a collection of store. If you take a look at each store defined under the
searchPath collection, you will find the path locations, which are basically the six
deployment locations we saw earlier. Let's take a look at how it is wired as a spring
bean definition in Alfresco.

Here is the bean entry for SearchPath from web-scripts-application-context.
xml that is available at the location tomcat\webapps\alfresco\WEB-INF\classes\
alfresco inside your Alfresco installed directory. If you are using Alfresco
Community 5, it is located under the alfresco package inside alfresco-remote-
api-*.jar.

<bean id="webscripts.searchpath" class="org.springframework.
extensions.webscripts.SearchPath">
 <property name="searchPath">
 <list>
 <ref bean="webscripts.store.repo.extension" />
 <ref bean="webscripts.store.repo" />
 <ref bean="webscripts.store.client.extension" />
 <ref bean="webscripts.store.client" />
 <ref bean="webscripts.store.alfresco" />
 <ref bean="webscripts.store" />
 </list>
 </property>
</bean>

In the previous bean definition, under the list property, the first two beans are
holding the path for repository deployment locations and the other four are holding
the path for filesystem deployment locations we saw earlier. You can take a look
at each of these bean definitions in web-scripts-application-context.xml for
more details.

Chapter 8

[115]

You must have some questions like what if the web script is deployed
using both the repository and filesystem deployment options, or what
will happen if a web script is deployed at more than one location, then
which location would take precedence?
The answer to this is simple. Web scripts will be searched based on
the order they have been displayed under the bean definition for
SearchPath. This means that first it would search under the repository
locations in sequence and then in the filesystem location in sequence.

Choosing the deployment option
Choosing the repository option or filesystem option for web script deployment can
be decided based on a number of parameters, such as the number of web scripts
to be developed for your project, whether frequent changes to the web scripts are
required or not, whether the team members are given access to the server machines
where Alfresco is installed, and whether you are looking to manage the code for web
scripts as a part of your source control tree or not.

If a large number of web scripts are to be developed, then you should choose the
filesystem deployment option and manage them as a part of your source control
tree. The advantage of doing this will be that you can easily deploy web scripts that
are building your business solutions along with your other customized extension
code using the same build and deployment tool you used for customized extensions.
There is no overhead of uploading web script files in the repository. You must also
ensure that you have access to the server where Alfresco is installed; otherwise, you
could be in trouble when you want to deploy and test the fixes you made to the web
script and the fix quickly needs to be deployed on the live production system.

While using the repository option for deployment, web script files are present in
the repository similar to other content. If you need to do some modification to your
web scripts, then it can be easily done by editing the relevant file. Hence, web scripts
can be easily edited when required. The good thing about this approach is that you
do not need to have access to the server where Alfresco is installed. You just need
to be able to access the repository through the user interface. In a scenario where
some quick fixes are to be deployed to fix some critical issues, you can implement a
JavaScript-based web script and deploy your web script using the repository option.

Deployment, Debugging, and Troubleshooting Web Scripts

[116]

Debugging web scripts
You have completed the development of your web scripts, deployed them
successfully, and even registered your web scripts to the web script engine.
Now, while testing the web script functionalities, you found that the logic you have
included in the web script controller is not working as expected. Hence, your web
scripts are failing to return the required response. The next thing you want to find
out is what went wrong and why they are not working the way they should. It's now
time to debug to identify the issue that will give you hints to fix the issue. We will
now take a look at how to enable logging, how to remote debug at the server, and
also some useful debugging techniques.

Enable logging
Enabling the logging feature would be of great help while debugging an issue. Let's
understand how to use logging in the case of both Java- and JavaScript-backed web
scripts. The most important file you should remember is the log4j.properties file,
which is available at the tomcat\webapps\alfresco\WEB-INF\classes location
inside your Alfresco installation directory.

For debugging Java-backed web scripts, we need to perform the following steps:

1.	 You have the option to add org.apache.log4j.Logger statements in your
Java implementation of the controller.

2.	 Then, you need to have the entry of your Java class added in the log4j.
properties file.

3.	 For example, you have the Java class for your web script as com.example.
TestWebScript. After adding the appropriate logger statements to the
Java controller class, you should make an entry for the Java controller
in the log4j.properties file as log4j.logger.com.example.
TestWebScript=debug.

4.	 Restart the server and then hit your web script; you should be able to
see the logger statements from the Java controller of the web script in
the catalina logs.

For debugging JavaScript-backed web scripts, you will have to leverage the logger
root object as follows:

1.	 You should add the required logger statements using the logger.log
method in the JavaScript controller so that you can get enough details
when you are looking at the logs.

Chapter 8

[117]

2.	 To enable the logs to JavaScript-backed web scripts, you should set
log4j.logger.org.alfresco.repo.jscript to debug and also
log4j.logger.org.alfresco.repo.jscript.ScriptLogger to
debug in log4j.properties.

3.	 Restart the server and then hit your web script; you should be able to see the
logger statements from the JavaScript controller in the catalina logs.

Remote debugging on the server
Sometimes, only using the logger statements might not suffice to identify an issue,
and you might also want to step through the code in order to find the issue. In such
cases, you will need to do remote debugging of your code deployed on the server.

In order to be able to remote debug Java-backed web scripts, you should first set the
following entry in the catalina.bat file in Windows and catalina.sh in Linux:

set DEBUG_OPTS=-Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=
n,address=8888

Then, restart the server. This will enable you to remote debug the Java code for your
web script from your IDE such as Eclipse.

To debug the server-side JavaScript for your JavaScript-backed controller, you can
use the Alfresco JavaScript debugger. You can enable the debugger in the following
two ways:

1.	 In the log4j.properties file, set log4j.logger.org.alfresco.repo.
web.scripts.AlfrescoRhinoScriptDebugger to on. This will display the
debugger UI on the server startup. Also, set log4j.logger.org.alfresco.
repo.jscript.ScriptLogger=debug.

2.	 Hit the debugger web script URL, http://localhost:8080/alfresco/
service/api/javascript/debugger. It will display the Enable button on
the screen. Click on it to open up the Alfresco JavaScript debugger UI.

It's very easy to debug through the JavaScript controller code using this debugger.

You just need to open the controller file by going to File | Open, and add the debug
points to it. Now, hit the web script you want to debug.

The control will come to the debugger and you can now debug the code. There are
options available such as Step Into, Step Over, or Step Out that will be helpful while
debugging. Also, you can watch the value for the variables while debugging.

Deployment, Debugging, and Troubleshooting Web Scripts

[118]

The following is a screenshot of the Alfresco JavaScript debugger user interface for
your reference. To debug share web scripts, just replace alfresco with share in the
previous URL.

Alfresco JavaScript Debugger UI

The Alfresco JavaScript debugger can be accessed when Alfresco is running as a
service or running from a console. To use this, you need to make sure that you are
not running on a headless server, otherwise it will not display the debugger UI. Also,
there may be possibilities that you might come across issues when trying to use the
debugger UI when Alfresco is running as a service. Generally, you should use the
debugger UI after starting your Alfresco server using the console instead of having
Alfresco server started as a service. This will save a lot of your time, allowing you to
focus on debugging your web-script-related issues instead of debugging through the
issues of the debugger UI when the server started as a service.

Chapter 8

[119]

Other debugging techniques
Let's take a look at some other debugging techniques that may be very useful:

•	 When your web script does not work, you should also check whether it is
properly registered to the Alfresco web script engine or not. You can hit
http://localhost:8080/alfresco/service/index and locate your web
script from the various options available to browse web scripts, such as
browse all by package or by URI. When you click on it, it will display the
descriptor, JavaScript controller, and response template. You can make sure
that the JavaScript controller has all your fixes or modifications that you
added to fix the issue.

•	 In your web script, when you are working on some properties of a node,
permissions on a node, and so on, you can also get help from nodebrowser.
Using noderef, you can find out the details like properties set on the node, its
children, aspects applied on it, associations with other nodes, and permissions
on a node that might also be useful to you while debugging for your issue fix.
You can also use other functionalities available in nodebrowser such as the
ability to execute lucene queries that might also be helpful when you want to
verify the lucene query used by the web script controller.

Troubleshooting pointers
Having understood the different ways to debug web scripts in Alfresco, let's take
a look at some of the troubleshooting pointers for some common issues you might
come across while working with Alfresco web scripts.

A valid SecureContext error
You might have sometimes faced the error A valid SecureContext was not provided
in the RequestContext. There can be many reasons for getting this error. Some of
them are listed as follows:

•	 When you have set authentication to none in the web script description
document, and in the controller you are trying to invoke some public
services of Alfresco that require authentication, for example, calling the
toDisplayPath() method, it will give you the mentioned exception.

•	 If you have a JavaScript-backed controller for your web script and you have
deployed it using the repository option and authentication is set to none, you
will get the mentioned exception when you try to hit your web script.

Deployment, Debugging, and Troubleshooting Web Scripts

[120]

If you are deploying a JavaScript-backed web script using
the repository option, make sure that the web script has the
authentication level set and it should not be set as none.

Web Script format '' is not registered
While developing web scripts in Alfresco, you might have come across an error Web
Script format '' is not registered when you tried hitting the web script.

The reason is that if you have a JavaScript-backed controller or Java controller
extending the DeclarativeWebScript class, and in your web script's description
document you have a default format specified as blank such as <format
default="">, then this error will appear.

When you want to take control to return the response without a
template, you should use the Java-backed controller extending the
AbstractWebScript class. In this case, having specified the default
format as blank in the web script description document will not cause
the mentioned error.

Cannot locate template processor for
template
For your web script, you have created a description document, required controller
implementation, and required response template. Now, when you try to execute
the web script, you get the error Cannot locate template processor for template
example/contentlocation.get.xml.

Looking at the error, you will first think that you already have the template in place,
so why does this error occur? It is sometimes really tricky to find out what the issue
is. The same is the case here. The reason for this error is that the name of the template
is not as per the web script naming convention. It should be contentlocation.get.
xml.ftl instead of contentlocation.get.xml.

You must always ensure that you adhere to the web script naming
convention and always deploy the web script files at correct
locations. If you have a Java-backed controller, make sure that the
bean ID for Java-backed controller is specified as expected.

Chapter 8

[121]

Script URL does not support the method
In simple words, this error generally occurs when you do not use the appropriate
method to invoke the web script. For example, when you have a POST web script
and you invoke the web script as a GET request, you will see the script URL does
not support the method error. In order to avoid this error, you should always use
the appropriate method to invoke the web scripts.

Web scripts on a production server
A production server sounds interesting, doesn't it? Yes, this is the most important
thing. While working on live projects and supporting a production system with
Alfresco as a backend repository for your client, you might have to write different
web scripts as per the business requirement. This might take longer to execute as
the production server will be dealing with a large number of content as compared
to your development servers. For example, you might have to write a patch script to
add an extra property on existing nodes, or you might need to write a web script to
retrieve records for some specific criteria. Let's take a look at what you should take
care of while running such web scripts on a production server.

Running web scripts in the background
It might be possible that the web script that you have written once executed against
a large number of content might take longer to process. In such cases, you cannot hit
the web script from a browser and keep on waiting until the response is received.
For such web scripts, when required to run on the production server, one approach
you can choose is to run the web script in the background and invoke the web script
directly from the server itself so that you need not have to worry about the calling
client getting disconnected from the server.

In order to be able to run web scripts in the background, one way is to invoke the
web script from a shell script. You can then run the shell script in the background
from the server itself. You can use the following example command to run the shell
script in the background:

nohup execute-webscript.sh > webscript.log &

This command will run execute-webscript.sh in the background, which is
basically your shell script invoking your web script, and will dump the execution
logs of the shell script to the webscript.log file. You might probably also want to
implement an e-mail notification feature to trigger an e-mail once the web script
execution is completed so that you do not have to monitor the logs frequently and
can get a notification once the web script execution is completed.

Deployment, Debugging, and Troubleshooting Web Scripts

[122]

Logging web script logs separately
Let's take a look at another important thing that could be very useful. While
executing long running web scripts with a Java-backed controller, you might
have added some important debug statements in your web scripts to capture
some important details on execution, and as the web scripts will be running in the
background, they will keep on adding the logs. As it is the production server, the
other logs from the application must be continuously added to catalina.out. Now,
if you don't separate out the logs for your patch web script, then it would be really
difficult for you to find out the required details about the logs added by your web
script from catalina.out. So, you might be interested to have your web script add
logs to a separate logfile. This will make it easier for you if you want to go through
the logs for your web script's execution. This can be done by adding the following
entry in the log4j.properties file:

log4j.logger.packagename_of_Javaclass_for_webscript=debug, wsappender
log4j.additivity.packagename_of_Javaclass_for_webscript=false

log4j.appender.wsappender=org.apache.log4j.DailyRollingFileAppender
log4j.appender.wsappender.File=location_to_log_file_with_filename
log4j.appender.wsappender.DatePattern='.'yyyy-MM-dd
log4j.appender.wsappender.layout=org.apache.log4j.PatternLayout
log4j.appender.wsappender.layout.ConversionPattern=%d{ABSOLUTE} %-5p
[%c] %m%n

In the previous entry, you will have to provide the package name of the Java
controller class for your web script at the places highlighted. Then, provide the
location where you want to place the logfile and also give the name of the logfile
along with the location.

Disabling Java-backed web scripts
We know that for the JavaScript-backed web script, web script files can be
directly deployed either on the filesystem or in the repository. To add or remove a
JavaScript-backed web script, server restart is not needed. We just need to refresh
web scripts by hitting the http://localhost:8080/alfresco/service/index
URL. Hence, in a scenario where on the production system you want to disable
some JavaScript-backed web scripts, you can easily do so without a server restart.

Chapter 8

[123]

Now, you must be thinking what if you have to disable a Java-backed web script
on the production server? You might also be thinking that, as there will be a bean
entry for the Java-backed web script in a Spring context file as per the naming
convention to map that bean as a controller for a web script, how is it possible to
disable the Java-backed web script without restarting the server? It is possible to
disable Java-backed web scripts as well on the running server. In order to disable
Java-backed web scripts without server restart, you should just simply remove or
rename the description file and response templates for the web script. For example,
make the description file and response template as *.bak. Then, just refresh the web
scripts hitting the URL http://localhost:8080/alfresco/service/index. Now,
the web script is disabled and you will not be able to access it.

Summary
In this chapter, we have gone through the possible deployment options for web
scripts in Alfresco and got an understanding of how the web script framework in
Alfresco decides the precedence for the web scripts when deployed at multiple
locations. We also looked at some of the factors that will help you choose the
deployment option as required. We also looked at how to debug web scripts to
find out what went wrong with your web script. We have also gone through
troubleshooting pointers for some of the common issues you might face while
working on web scripts. At the end, we went through some useful tips and tricks that
might be helpful when you are running web scripts on a production server. Overall,
now you have a good understanding of how to deploy and debug the web scripts in
Alfresco, and the next time when you need to run some web scripts on a production
server, you will have some ideas to share with peer developers or the project manager
about how you can approach executing web scripts on a production server.

Now, when you need to develop a large number of web scripts, you cannot have
them developed without having a project structure as you will be working in a team,
and at the end of the day, all your code should be available in the source control tree.
It's important to set up the development project to develop web scripts. In the next
chapter, we are going to take a look at how to set up a development project in Eclipse
that can be built using Maven build.

Mavenizing Web Scripts
In this chapter, we will cover the following topics:

•	 Setting up a development environment with Maven
•	 Creating the default project structure with the Alfresco Maven SDK
•	 Building an Alfresco Module Package (AMP) with Maven
•	 Setting up a development environment in Eclipse
•	 Understanding the default project structure
•	 Extending the default project structure to create web scripts
•	 Applying the AMP to the Alfresco WAR using Maven in order to test the

developed web scripts locally
•	 Things to know about using Maven with Alfresco enterprise version

Mavenizing Web Scripts

[126]

So far, in our exploration of Alfresco web scripts, we have gained an understanding
of how to develop web scripts and deploy them. We did not use any project structure
for the web scripts we developed in the previous chapters; also, we did not use any
tool to build web scripts. We simply created the required files for the web script in
an editor of our choice and then manually deployed web script files to the filesystem
locations. It was feasible to do this as there were fewer web scripts and we were
doing it to understand web scripts. However, consider a scenario where you have
to develop a large number of web scripts for your project. In such a scenario, it
would not be a suitable option to independently create web script files and deploy
them manually. In this case, you definitely need to follow a project structure for the
development of web scripts. Also, you need to have a mechanism for the deployment
of web scripts so that you can deploy all the web scripts on the server easily and
effectively without manually transferring the web script files.

Now, you might have a few questions, such as how can I set up a project structure to
develop web scripts? What kind of deployment artifacts can be used to deploy web
scripts in Alfresco? What tool can be used to build the required deployment artifacts?
What prerequisites should be considered and kept ready before using the tool? Do I
need to have detailed knowledge about the tool? How will I proceed about it?

Do not worry about all these questions. We are going to find solutions to them in
this chapter.

Let's first briefly cover the answers to the previous questions. You should create a
project using Alfresco Maven SDK that is basically a community project also supported
by Alfresco, which provides a very easy-to-use approach to create extensions for
Alfresco. You should use Alfresco Module Package (AMP) as the deployment artifact.
An AMP is basically a ZIP file with a specific folder structure that includes all the
required files you have developed for your alfresco project. Generally, an AMP file
will be applied to the vanilla Alfresco WAR file using module management tool when
deploying on the required server. You can use Apache Maven to build the AMP file as
the required deployment artifact. Apache Maven is basically a build management tool
that will understand the JAR dependencies of the project and will retrieve them.

It is okay if you are not familiar with Maven and do not have knowledge about it.
We are not going to explore Alfresco Maven SDK, AMP, and Maven in this chapter.
We have already covered a basic overview of what they are and this is enough for
now to get started. Our main goal in this chapter is to get a basic understanding of
how you can use Alfresco Maven SDK to create a defined project structure, have the
project available in Eclipse, and build the AMP as deployment artifact for your web
scripts development and also how to apply AMP to out-of-the-box Alfresco WAR
using Maven to test the functionalities.

Chapter 9

[127]

Setting up your environment
Before we start, it is important to understand that Alfresco Maven SDK is compatible
with Alfresco Community Versions 4.2 and above, and Alfresco Enterprise Versions
4.1.2 and above. It is interesting to know that, while using the Alfresco Maven SDK,
you do not need to have Alfresco installed on your machine manually. The Alfresco
Maven SDK will make the job easier for you and it will take care of downloading
Alfresco on your machine based on the entries provided for version and groupId
in the Project Object Model (POM) XML for your project.

Now, let's first make sure that we have the required prerequisites in place on our
development machine before we begin creating a project using Alfresco Maven SDK:

•	 You need to have JDK 1.7 installed on your machine and configured
properly. Java Development Kit (JDK) is basically a development
environment to build applications using the Java programming language.
You can download this from http://www.oracle.com/technetwork/java/
javase/downloads/jdk7-downloads-1880260.html. Once downloaded
and installed, make sure to set up the JAVA_HOME environment variable and
also the Path variable.

•	 You need to have Apache Maven 3.0.3 or above installed and configured
properly. You can download this from http://maven.apache.org/
download.cgi. You will also find the required instructions to install it
based on the operating system you are using. Once downloaded and
installed successfully, make sure that the environment variable M2E_HOME
is set correctly and also the Path variable is modified accordingly.

Now, let's check whether Maven is referring to the correct JDK installation and
ensure that you have installed the correct version of Maven by running the mvn
-version command. On a Windows machine, running this command from the
command prompt will display information about the Maven version, Maven home,
Java version used by Maven, and the Java home:

C:\Users\ramesh.chauhan>mvn -version
Apache Maven 3.0.4 (r1232337; 2012-01-17 14:14:56+0530)
Maven home: D:\apache-maven-3.0.4\bin\..
Java version: 1.7.0_51, vendor: Oracle Corporation
Java home: C:\Program Files\Java\jdk1.7.0_51\jre
Default locale: en_US, platform encoding: Cp1252
OS name: "windows 7", version: "6.1", arch: "amd64", family: "windows"

Mavenizing Web Scripts

[128]

Exploring the Alfresco Maven repository
The Alfresco Maven repository is basically a common location where all the
dependency JARs related to Alfresco are kept available, and you can configure your
project to refer to the required dependencies from the repository in the pom.xml file
of the project. You might want to explore the Maven repository for Alfresco that
will be used by the Alfresco Maven SDK. Visit https://artifacts.alfresco.
com/nexus/#view-repositories and explore the public release repositories that
contain the released and stable artifacts. Also, the different available default project
templates that are known as archetype in the terminology of Maven can be found
under archetype-catalog available at https://artifacts.alfresco.com/nexus/
service/local/repo_groups/public/content/archetype-catalog.xml.

Creating the default project structure for
AMP
In order to create the project structure for an AMP, we will use the project template
provided by the Alfresco Maven SDK. This default project template is basically
known as AMP archetype. This project template helps to have a standardized
development, deployment, and the release approach for the Alfresco extensions you
will develop for your project. The Alfresco AMP archetype can be used to create both
repositories as well as share AMPs when required. In this chapter, we are going to
use the AMP archetype for repository web scripts.

The Alfresco Maven SDK also provides another useful archetype
known as All-in-One archetype, which is basically a multi-module
project and gives a complete installation of the Alfresco platform
along with its components without requiring additional downloads.
While exploring archetype-catalog.xml, you might have
observed that there are a lot of archetypes available. The important
archetypes, the Alfresco AMP archetype and All-in-One archetype
can be identified having the org.alfresco.maven.archetype
group ID in archetype-catalog.xml.

In order to create a default AMP project using the Alfresco AMP archetype, perform
the following steps:

1.	 Run the following command from the console. Just to note here, if the https
link does not work for you, then you can try using http instead of https in
the following code snippet:
mvn archetype:generate -DarchetypeCatalog=https://artifacts.
alfresco.com/nexus/content/groups/public/archetype-catalog.xml
-Dfilter=org.alfresco.maven.archetype:

Chapter 9

[129]

2.	 You will be displayed with the available archetypes along with brief
details about them, as shown in the following screenshot. You will be
prompted to select an archetype. Type 1 and press Enter, as shown in
the following screenshot:

3.	 In the next step, you will be asked to select the version of the archetype
to have as a base for your project. This will list the available versions for
the archetype you have selected. You can find these versions from the
archetype-catalog.xml file as well. For the AMP archetype, 1.1.1 is
the latest version at present. So, Type 5 and press Enter, as shown in the
following screenshot:

4.	 Next, you will be prompted to provide the value for groupId, which you can
consider as a package name in the terminology of Java. You can provide any
name you like suitable for your project. Here, we will provide com.example
as groupId, as shown in the following code:
Define value for property 'groupId': : com.example

Mavenizing Web Scripts

[130]

5.	 Now, you will be prompted to provide the value for artifactId, which is
basically the name of your project and also the name of the AMP file that
we will be generating as a deployment package for the project. So, give a
meaningful unique name as per your project. Generally, as a good practice,
you might want to append repo to AMP file name to indicate that AMP will
contain repository-related extensions. Here, we will provide example-repo
as artifactId, as shown in the following code:
Define value for property 'artifactId': : example-repo

6.	 You will now see a summary with the values you entered and some of the
default values such as the target version of Alfresco. If you find the details
appropriate, then type Y and press Enter. If you want to change the details,
type N and press Enter. It would then ask you to reenter the details. Here,
we will type Y and press Enter as follows:

If you are interested to find out how the value for Alfresco version 4.2.e
was shown as defaulted value, then here is how you can find it out. You
first need to take a look at archetype-catalog.xml and then find
the entry for the artifcatId: alfresco-amp-archetype. Now, hit
the URL mentioned under the repository tag and traverse as per the
package name specified in groupId, that is, org.alfresco.maven.
archetype and click on alfresco-amp-archetype, click on 1.1.1,
and download alfresco-amp-archetype-1.1.1.jar. The URL
will look like this: https://artifacts.alfresco.com/nexus/
content/groups/public/org/alfresco/maven/archetype/
alfresco-amp-archetype/1.1.1/. If you take a look inside the JAR,
under META-INF/maven/archetype-metadata.xml, you can find
the value as 4.2.e defaulted.

Chapter 9

[131]

7.	 Now, after some processing by Maven, it will display the BUILD SUCCESS
message on the console and display the location of the project created from the
archetype as an informational message, as shown in the following screenshot:

It has generated a sample project structure for the Alfresco project as required to
generate an AMP file. You can now go to the location where the default project
structure has been created and explore it. Here project structure was created at the
location C:\Users\ramesh.chauhan\example-repo. Inside the generated project
structure, the most important file that you will find is pom.xml that is basically used
for every Maven project to indicate to Maven about the project dependencies. Along
with pom.xml, the generated project structure also contains the default configuration
files and sample Java code with its supporting unit test and the configuration to run
a local Alfresco instance for testing.

Generating AMP from the default project
Once the default project structure is ready, let's try to generate the AMP file for it. Go
to the location of the created project structure. In order to create an AMP file for it,
run the mvn package -DskipTests=true command.

Here, we are not interested in running the tests while generating the AMP; hence,
we have explicitly mentioned skipTests as true. If you want to run the test as well,
you should simply execute the mvn package command.

Mavenizing Web Scripts

[132]

Running the preceding command should create an AMP file named example-repo.
amp under the target folder inside the project we created. You can open the AMP file
with any ZIP extractor and browse through it.

You can use the default project structure to not only create web
scripts, but also for other customizations to Alfresco such as
custom actions, custom content model, custom workflow, and so
on, and create an AMP to make them deployment ready.

Now, run the mvn clean command that will just clean up the target folder. Hence,
the generated AMP file will also be removed. We did this purposefully as we want to
come back to the default project structure and import the project structure in Eclipse.
Also, we want to gain an understanding of the files and directories present in the
default project structure.

Setting up a development environment
with Eclipse
At this stage, the project structure created from archetype made available by the
Alfresco Maven SDK is ready on the filesystem. Now, in the next step, we want
to have the same project structure available in Eclipse so that we can start with
the development of the web scripts from the Eclipse IDE with the defined project
structure. You can download the Eclipse IDE from different release packages
available on http://www.eclipse.org/downloads/packages/ as per the
operating system you are using. Just make sure that it supports Maven plugins.

In this chapter, we will use the Eclipse Java EE IDE from Luna
packages that come with built-in Maven support. You might use
another version of Eclipse version, so you need to make sure that
if it does not have built-in Maven support, the Maven plugins for
Eclipse IDE are added. Adding Maven plugin to the Eclipse IDE
is a simple process and you should be able to do it easily.

Now, in order to import the default project structure to Eclipse, perform the
following steps:

1.	 Open the Eclipse IDE. Click on File | Import | Maven | Existing Maven
Projects and click on Next.

Chapter 9

[133]

2.	 In the screen displayed, navigate to the project location on the local
filesystem and click on OK. It should then display a selected checkbox
against pom.xml for the project. Then, click on Finish.

3.	 On the next screen, an error for the Alfresco Maven plugin set-version
will be displayed, as shown in the following screenshot. Ignore the error
for now and click on Finish.

Mavenizing Web Scripts

[134]

4.	 A Incomplete Maven Goal Execution pop up will then be displayed, as
shown in the following screenshot. Click on OK.

5.	 You might then see a window asking you to install a build helper plugin.
You can proceed with it if you want, or, just click on Cancel. The Project
example-repo will now be available in Eclipse; however, the red mark on
it indicates that there are some errors. If you take a look at the Markers tab,
you will see the error related to the Maven plugin that we ignored earlier.
Right-click on it and click on Quick Fix. Select the option Permanently mark
goal set-version in pom.xml as ignored in Eclipse build. It will display the
option to select the POM location. Select the POM location and click on OK.

6.	 Now, right-click on the example-repo project. Go to Maven | Update project
and click on OK. The project has now been successfully imported, and there
are no errors except warning messages for unused imports for the Java
classes present in the default package. You can ignore them.

While importing a project in the Eclipse for the first time, if you
have any build path-related errors, then make sure you update
the project as we did in the last step and ensure that all the Maven
dependencies have been downloaded on your local machine.

Now, we have the default project structure imported in the Eclipse IDE as a
Maven project.

Chapter 9

[135]

Understanding the default project
structure
Having imported the project in Eclipse, let's now go through the project structure in
order to understand the important files and directories present in it:

File/directory in
project structure

Brief description

pom.xml For any Maven project, pom.xml is a must in order to let
Maven know about the project dependencies. The pom.xml
file is available directly under the project directory. If you take
a look at pom.xml, you will get all the details about the project
dependencies, repository information, and other important
information. Also, in pom.xml for our project, you should be
able to see the settings we provided while generating the project
from the Maven archetype. You can change them here if you want
and just update the project as we did earlier. Maven would then
consider the updated changes and take care of the required things.

src/main/java This directory will be used for placing the Java source code for
the project. You can organize Java classes under the appropriate
package under this location. The Java controller for web scripts
you will be developing for your project should be placed under
this location. Apart from web script controllers, you can also place
Java classes for other customizations such as custom actions and
others. When the project is built, Java classes placed here will be
available in a JAR file inside the AMP generated as a deployment
artifact. When the AMP is applied to the Alfresco WAR file, the
JAR file will be deployed under WEB-INF/lib.

src/main/amp All the required details related to AMP reside under this location.
The module.properties file is an important file for the AMP
structure. It contains details about the AMP file such as ID for
AMP, version, dependencies, and minimum and maximum
version of Alfresco to run it. The location src/main/amp/
config/alfresco/module/example-repo is the core of AMP
and will contain important files such as Spring configuration
context files, content model files, and so on. You can create
extensions, messages folder under src/main/amp/config/
alfresco in order to include the web script component files.

src/test The unit test cases-related implementation and the supporting
configuration that run the unit test cases will be placed here. Just
take a look at the default folders available under this location and
you will get an understanding of what is present inside the default
folders.

Mavenizing Web Scripts

[136]

Extending your default project to create
web scripts
While developing web scripts in the previous chapters, we did not follow any project
structure and developed the required files for a web script independently in an
editor of our choice and then manually deployed them at the appropriate locations
in the installed Alfresco directory. Now, having understood the project structure and
the AMP deployment package, it is time to discover how we can extend the default
project structure in order to create web scripts. Let's try to understand where you
should place the web script-related files in the project structure while developing
new web scripts:

•	 The web script descriptor file (*.desc.xml), response templates for the web
script (*.ftl), configuration document for the web script (*.config.xml),
and message bundles (*.properties) should be placed under the location
src/main/amp. Inside the default structure available in src/main/amp/
config/alfresco, create a new folder structure, /extension/templates/
webscripts, to store all the new web scripts you will create. You can then
classify the web scripts in different packages inside this location, for example,
all the login related customized web script and its descriptor, response
template, configuration document, and message bundle can be placed
under location src/main/amp/config/alfresco/extension/templates/
webscripts/login.

•	 For JavaScript-based web scripts, the controller implementation (*.js)
should also be placed at the same location along with other files as
mentioned in the previous point.

•	 For Java-backed web scripts, the controller implementation (*.java) should
be placed under the appropriate package structure inside src/main/java.

•	 For Java-backed web script, the Spring configuration context file that
associates controller with the web script should be placed under src/main/
amp/config/alfresco/extension. You can also place your Spring bean
mapping entry from your Java controller inside the module-context.xml
file under src/main/amp/config/alfresco/module/proj-name.

Once you generate the AMP for the project running the Maven
package, you should be able to see that all the Java classes are put
into a JAR file, whereas other files are appropriately located in the
AMP file as we placed them under the project structure. You can
now give this AMP file for deployment to other server.

Chapter 9

[137]

Applying AMP to the Alfresco WAR for
testing
Once you are done with the web script development for your project following the
preceding project structure, create an AMP file for your project and test it before you
hand over the AMP file for deployment on the other server. In order to test your web
scripts locally, you will first need to apply the AMP to the Alfresco WAR file. With
the Alfresco Maven SDK, you need not have Alfresco installed locally for applying
the AMP. From the console, you can just go inside the project's location and simply
execute the mvn integration-test -Pamp-to-war command.

After running the preceding command, you will be able to see that Maven is now
doing its job to download all the required dependencies to compile the project.
This will create an AMP file for the project, apply the AMP file to the out-of-the-box
Alfresco WAR, and then deploy the WAR to the embedded Tomcat server, and finally,
start the server. You should be able to see from the console output that the AMP
module for your project has been successfully generated and known to the
Alfresco server.

You can log in to the Alfresco server http://localhost:8080/alfresco and
also hit the web script URLs for the web scripts you have developed. Once you are
done with testing, make sure you shut down the running server. You can simply
press Ctrl + C on the console from where you ran the Maven integration command
to shut the server down.

If you get an out-of-memory error while running the previous
integration test command, you will need to increase the size of
the memory allocated to Alfresco and Tomcat. You can do this by
providing Maven with additional JVM memory settings such as
increasing PermGen size.

We have just seen that without having Alfresco installed previously on the
development machine, we were able to test our customized development very
easily with the help of the Alfresco Maven SDK. All we have done is just executed
a command, and Maven did everything required for us and made the job easier,
leaving us to focus more on development and not worry about things such as
downloading and setting up Alfresco on the local machine, generating AMP,
and deploying it to the Alfresco WAR.

Mavenizing Web Scripts

[138]

If you are using Alfresco enterprise version and want to use Maven,
then you first need to have the valid credentials to access the Alfresco
private repository. You will need to get in touch with the Alfresco
support team at https://myalfresco.force.com/support
to get the credential details to access the Alfresco private repository
and incorporate the suggested Maven configurations to access the
Alfresco private repository.

Summary
In this chapter, we have gained a basic understanding of how you can make your
Alfresco web script development and deployment experience easy with Maven
support provided by the Alfresco Maven SDK. First, we went through setting
prerequisites to set up the development environment with Maven. We gained
knowledge about how to create the default project structure in order to create the
Alfresco deployment package as AMP, and then we understood how to generate
AMP for the default project structure. Later, we imported the project into the Eclipse
IDE and set up the development environment and then gained knowledge about the
various files and directories present in the default project structure.

We then looked at how you can extend the default project structure to develop
JavaScript- and Java-based web scripts for your project. Also, we learned how to
apply AMP to Alfresco WAR using the Maven command to test the developed
functionality locally without having Alfresco installed on the local machine. At
the end, we went through what you should do in order to use Maven with your
enterprise version of Alfresco. Overall, you now have a basic understanding in
order to get going with Alfresco web script development using Maven support.

In the next chapter, we are going to take a look at how you can extend the web script
framework in Alfresco.

Extending the
Web Script Framework

In this chapter, we will cover:

•	 Extending the web script runtime to create a custom implementation
•	 Customized implementation of a web script container
•	 Adding your own authenticator implementation to the web script framework
•	 Script processor and template processor custom implementation
•	 Customizing formats

Extending the Web Script Framework

[140]

We started our journey of learning Alfresco web scripts by getting familiar with web
scripts. We then did a hands-on exercise to create our first web script in Alfresco and
gained in-depth technical knowledge on understanding the web script framework
in Alfresco in and out. Later, we got well acquainted with the building blocks of
web scripts and different ways to invoke web scripts. We also understood how to
create Java-backed web scripts and then explored JavaScript-based web scripts in
detail. Next, we looked into the deployment, debugging, and troubleshooting of
web scripts, and then we learned how to set up the development environment with
Maven. By now, you should have gained the required knowledge to practically
implement and use Alfresco web scripts in your live projects. Also, you should be
able to debug, troubleshoot, and fix issues with web scripts in your project. Now,
as the last thing to learn in this book, it's time to find out about the possibilities to
extend the web script framework in Alfresco.

Before we start, you might want to refresh your knowledge on the web script
framework that we learned about in Chapter 3, Understanding the Web Script
Framework. As a brief summary, the core components of the web script framework
are web script runtime, web script container, and authenticator. Other supporting
components of the web script container are the script processor registry to register
the script processors, the template processor registry to register the template
processors, and the format registry to register new formats. We have gone through
the details of out-of-the-box implementation classes for all of them. The web script
framework in Alfresco is very powerful and the out-of-the-box implementation
provided for the core components of the web script framework caters to all your
needs related to web scripts implementation for your project. However, in order to
understand how powerful the web script framework in Alfresco is, it is worth taking
a look at how you can extend the web script framework's core components and add
your customized implementation for it. In general scenarios, you will not be required
to make any changes to the web script framework's components. However, having
knowledge about the possibility to extend the web script framework will help you to
have a customized implementation if required. It will also get you familiar with the
power of working on open source implementations, which provides the flexibility to
add your customized implementation whenever required.

We are going to take a look at how it is possible to extend the web script framework
in Alfresco to have custom implementation of web script runtime, web script
container, authenticators, script processors and template processors, and also
custom formats.

Chapter 10

[141]

Custom implementation of the web script
runtime
Let's first briefly understand the role of the web script runtime in the web script
framework. During the web script execution flow, once the request dispatcher
sends the request, the web script runtime will delegate the request to the web
script container for further processing in order to execute the web script. There
are different implementations available for the web script runtime such as servlet
runtime, portlet runtime, JSF runtime, Facebook runtime, and SURF web framework
runtime. As a developer, you must be interested in knowing what needs to be done
if a new implementation for the web script runtime is to be implemented. Let's take a
look at it here.

In order to understand how to create a customized implementation of the web script
runtime in the web script framework, first let's take a look at the service provider
interface provided by the web script framework, which opens up the possibilities
to create custom implementation. If you take a look at the implementation inside
spring-webscripts-*.jar, there is an interface defined, org.springframework.
extensions.webscripts.Runtime, which declares the required methods
to be implemented by any web script runtime. In order to make a simplified
implementation, there is an abstract class implementation, org.springframework.
extensions.webscripts.AbstractRuntime, which implements the org.
springframework.extensions.webscripts.Runtime interface. This provides the
implementation for the methods defined in the interface in a way that any runtime
in the web script framework should be able to serve a web script request in a generic
way. The AbstractRuntime class leaves some of the methods as abstract leaving
the child class to provide the implementation for the abstract methods in order to
make a generic implementation for the web script runtime. If you take a look at
all the existing web script runtimes available in the web script framework, such as
WebScriptServletRuntime and JSFRuntime, you can see that they extend from the
AbstractRuntime class. These classes provide the implementation of the required
abstract methods from the AbstractRuntime class.

Having an overall understanding about the service provider interface and its
implementation in the out-of-the-box web script framework in Alfresco, let's try to
understand how we can use this knowledge to create a custom implementation of
the web script runtime. We are going to take a look at the high level steps required
to create a custom web script runtime.

Extending the Web Script Framework

[142]

In order to create a custom web script runtime, perform the following steps:

1.	 Open Eclipse and inside your project, create a Java class that extends org.
springframework.extensions.webscripts.AbstractRuntime.

2.	 You will see that Eclipse displays red symbol at the class declaration.
Do not worry about this. This happens because we have not yet provided
the implementation for the abstract methods provided in the parent class.
Right-click on the class and go to Source | Override/Implement Methods
and click on OK. You should be able to see the default implementation for
the abstract methods from the AbstractRuntime parent class. The following
are the methods you will be required to provide an implementation for to
create a custom web script runtime:
public String getName()
protected String getScriptMethod()
protected String getScriptUrl()
protected WebScriptRequest createRequest(Match paramMatch)
protected WebScriptResponse createResponse()
protected Authenticator createAuthenticator()
protected WebScriptSessionFactory createSessionFactory()

3.	 You will also be required to provide an explicit constructor implementation
for your Java class; otherwise, it will show the implicit super constructor
AbstractRuntime() is undefined for default constructor error. Right-click
on the class and go to Source | Generate Constructors from Superclass.
The following is what the explicit constructor looks like for your custom
Java class:
public CustomWebScriptRuntime(RuntimeContainer container) {
 super(container);
}

4.	 Each time, a new instance of web script runtime should be created
and the executeScript() method should be invoked, whose generic
implementation is provided in the AbstractRuntime class.

Chapter 10

[143]

This is how you can create a custom implementation for web script runtime.

You should trace through the complete implementation of org.
springframework.extensions.webscripts.servlet.
WebScriptServletRuntime, which will help you to understand
the out-of-the-box implementation of web script runtime. Also,
debug through org.springframework.extensions.
webscripts.servlet. WebScriptServlet, which shows you
how to use web script runtime to execute web scripts. This will give
you an idea of how to provide the implementation for the required
methods in order to create the custom web script runtime.

The custom implementation of a web
script container
The web script container plays a key role in executing web scripts. The repository
container works behind the scenes to execute repository web scripts at the Alfresco
end. It would be interesting to know how to have a custom implementation for
the web script container. Let's take a look at the service provider interface available
in the out-of-the-box web script framework implementation to implement a web
script container.

The org.springframework.extensions.webscripts.Container interface
available in spring-webscripts-*.jar is the key interface that declares
the core methods required to be implemented by any web script container.
There is an additional set of methods declared in the org.springframework.
extensions.webscripts.RuntimeContainer interface that also needs to be
implemented for a web script container. RuntimeContainer basically extends the
Container interface. In brief, the web script container class must implement org.
springframework.extensions.webscripts.RuntimeContainer. In the web
script framework in Alfresco, in order to simplify the development, there is an
abstract class implementation provided, org.springframework.extensions.
webscripts.AbstractRuntimeContainer. This abstract class implements the
RuntimeContainer interface and provides the implementation for the methods
defined in the RuntimeContainer and Container interfaces. You will see that
the majority of the methods from these two interfaces are provided with their
implementation in this class. It makes a consistent and generic implementation
for the web script container in the web script framework.

Extending the Web Script Framework

[144]

Web script container classes have to provide a definition for the remaining
methods that are not implemented in the AbstractRuntimeContainer class. In
order to understand what we have just learned, you should trace through the code
implementation of the org.alfresco.repo.web.scripts.RepositoryContainer
class from alfresco-remote-api-*.jar and the org.springframework.
extensions.webscripts.PresentationContainer class from spring-
webscripts-*.jar.

Now that we have an overall understanding of how a web script container is
implemented, let's take a look at the high level steps in order to understand how
to create a custom implementation for the web script container. In order to create
your own web script container, you need to perform the following steps:

1.	 Create a Java class that extends org.springframework.extensions.
webscripts.AbstractRuntimeContainer.

2.	 You will then have to provide the implementation for the
required abstract methods. Right-click inside the class, go to Source |
Override/Implement Methods, and click on OK. You should be able
to see the default implementation of the abstract methods that were not
provided with the implementation in the AbstractRuntimeContainer
parent class. The following are the methods you will be required to provide
with an implementation while creating a custom web script container:
public void executeScript(WebScriptRequest req, WebScriptResponse
res,Authenticator auth) throws IOException
public ServerModel getDescription()

3.	 The web script container should then be registered as a Spring bean entry in
the Spring context file. You can give a name of your choice to the bean ID:
<bean id="webscripts.custom.container" class="Fully qualified
class name of custom webscript container" parent="webscripts.
abstractcontainer" init-method="setup">
…
</bean>

Now the question how do you let the web script engine use the custom web script
container. The answer to this question is that while creating a new instance of web
script runtime, you should fetch the bean from the context and inject into web script
runtime. You should trace through the code of org.springframework.extensions.
webscripts.servlet.WebScriptServlet to see how the web script container
instance is obtained and passed to the web script runtime.

Chapter 10

[145]

For Alfresco repository web scripts, the org.alfresco.repo.
web.scripts.RepositoryContainer implementation and for
Alfresco Share web script, org.springframework.extensions.
webscripts.PresentationContainer, are used by the web
script engine as the web script container.

Custom authenticator implementation
In order to access the web script securely, authentication is essential. The web script
authenticator is the component behind providing the authenticated access to the
web script. Let's first understand how authenticator implementation is referenced
by the web script framework. If you take a look at web.xml under tomcat\webapps\
alfresco\WEB-INF location inside your Alfresco-installed directory, you will find
the <param-name>authenticator</param-name> entry under the <init-param>
entries of a servlet, which is basically a request dispatcher servlet for web script
execution. A request dispatcher servlet will use the mentioned authenticator while
creating the web script runtime instance to serve the web script request.

The Spring bean ID for authenticator can be found under the <param-value> tag in
web.xml under a servlet's init-param entries. The Spring bean entry can be found in
web-scripts-application-context.xml or web-client-application-context.
xml. Bean instances of an authenticator are created using a factory design pattern
implementation. Hence, you will find the class name of the factory class against the
bean ID. For example, the following is the code snippet for a Spring bean entry for
the bean ID, webscripts.authenticator.basic:

<bean id="webscripts.authenticator.basic" class="org.alfresco.repo.
web.scripts.servlet.BasicHttpAuthenticatorFactory">

All the authenticator-related factory classes implement the org.springframework.
extensions.webscripts.servlet.ServletAuthenticatorFactory
interface and implement the create(WebScriptServletRequest req,
WebScriptServletResponse res) method to return the appropriate authenticator
object. You will find the inner class implementation inside factory classes to
represent the authenticator object provided by that factory class.

Now, let's take a look at the service provider interface to create an authenticator
object. In the web script framework, to create a new authenticator, the org.
springframework.extensions.webscripts.Authenticator interface must
be implemented and must provide the implementation for the authenticate()
and emptyCredentials() methods of this interface.

Extending the Web Script Framework

[146]

Now that we have an overall understanding of how the authenticator
implementation is used in the web script framework, let's now take a look at the
high-level steps required to create a custom authenticator and let the web script
framework use the newly created authenticator while serving web script requests.
Perform the following steps:

1.	 Create a custom authenticator factory class that implements the org.
springframework.extensions.webscripts.Authenticator.
ServletAuthenticatorFactory interface.

2.	 Provide an implementation for the following method; at this moment, just
make it to return null to avoid showing any errors:
public Authenticator create(WebScriptServletRequest req,
WebScriptServletResponse res)

3.	 Provide a Spring bean entry in a Spring context file for this class as follows:
<bean id="webscripts.custom.authenticator" class="fully qualified
class name for custom authenticator factory class">
…
</bean>

4.	 Inside the custom authenticator factory class, create a custom authenticator
class that will implement org.springframework.extensions.webscripts.
Authenticator and provide an implementation for the following two
methods:
public boolean authenticate(Description.RequiredAuthentication
required, boolean isGuest)
public boolean emptyCredentials()

5.	 Now, inside the method we implemented in the step 2, instead of returning
null, return the new object of the custom authenticator we just implemented.

6.	 In order to let the web script request dispatcher servlet use the custom
authenticator, modify the web.xml entry for the servlet and provide the bean
ID of the custom authenticator factory as its authenticator init-param's value,
as defined in step 3.

Chapter 10

[147]

In order to get a better understanding about what we just
learned to create a custom authenticator, you should trace
through the out-of-the-box implementation code to see how
BasicHttpAuthenticator is implemented and used by the
web script framework. Here are the filenames to take a look at for
your reference: refer to the apiServlet entry in web.xml, web-
scripts-application-context.xml, org.alfresco.repo.
web.scripts.servlet.BasicHttpAuthenticatorFactory,
org.springframework.extensions.webscripts.servlet.
WebScriptServlet.

Custom script processor implementation
We should now have a high-level understanding that the web script framework in
Alfresco supports JavaScript-backed web scripts and uses the RhinoScript processor
to execute JavaScript-backed web scripts. In the out-of-the-box web script framework
implementation as provided in spring-webscripts-*.jar, the script processor
implementation is org.springframework.extensions.webscripts.processor.
JSScriptProcessor and is registered with the script processor registry. However,
in Alfresco, there is an extended implementation to register the script processor
with the web script processor registry in the web script framework in Alfresco. Let's
try to understand how the JavaScript processor is configured with the web script
framework in Alfresco. If you take a look at web-scripts-application-context.
xml under tomcat\webapps\alfresco\WEB-INF\classes\alfresco inside your
Alfresco-installed directory, there is a bean entry for the org.springframework.
extensions.webscripts.ScriptProcessorRegistrar class. If you are using
Alfresco Community 5, this file is located in alfresco-remote-api-*.jar under
the alfresco package. The following is the code snippet of its bean entry from
web-scripts-application-context.xml:

<bean class="org.springframework.extensions.webscripts.
ScriptProcessorRegistrar" init-method="init">
 <property name="registry" ref="webscripts.repo.registry.
scriptprocessor" />
 <property name="factory" ref="webscripts.repo.scriptprocessor.
factory" />
 <property name="name"><value>Repository Script Processor</value></
property>
 <property name="extension"><value>js</value></property>
</bean>

Extending the Web Script Framework

[148]

The ScriptProcessorRegistrar class is responsible for registering the
repository script processor for JavaScript with the web script framework. In the
ScriptProcessorRegistrar class, ScriptProcessor provided by the factory class
bean ID, webscripts.repo.scriptprocessor.factory, is registered with the script
processor registry class as specified with the bean ID, webscripts.repo.registry.
scriptprocessor.

ScriptProcessor, returned by the previous factory class, is represented as the
following bean entry:

<bean id="webscripts.repo.scriptprocessor" class="org.alfresco.repo.
web.scripts.RepositoryScriptProcessor">
 <property name="scriptService" ref="scriptService" />
 <property name="searchPath" ref="webscripts.searchpath" />
</bean>

When the JavaScript-backed controller is executed, in the internal execution by the
web script framework, the executeScript method of the ScriptProcessor class is
invoked in the AbstractWebScript class. If you take a look at the executeScript
method in the RepositoryScriptProcessor class, it invokes the executeScript
method call to the org.alfresco.repo.processor.ScriptServiceImpl class'
executeScript method, passing the initial argument as javascript. Going further,
take a look at the scriptService bean entry in script-services-context.
xml; there is a default script processor name called javascript. The bean ID
named javaScriptProcessor contains the entry for the javascript processor
implementation, org.alfresco.repo.jscript.RhinoScriptProcessor. This
processor is registered using registerScriptProcessor of ScriptService invoked
from the BaseProcessor class, which is the parent class of RhinoScriptProcessor.

We have just taken a look at the in-depth technical details of how the javascript
processor is registered and used in the web script framework in Alfresco. In order to
create a custom script processor and register it with the web script framework, you
need to do the following steps at high level:

1.	 Create a script processor implementation that will extend the BaseProcessor
class and implement the ScriptProcessor, ScriptResourceLoader, and
InitializingBean interfaces. You should take a detailed look at how
RhinoScriptProcessor has been implemented in order to create your
custom script processor.

2.	 Create a custom factory implementation similar to the bean ID, webscripts.
repo.scriptprocessor.factory, to return your custom script processor
object.

Chapter 10

[149]

3.	 Create a registrar class implementation similar to
ScriptProcessorRegistrar, referring to the custom factory implementation
in order to register it with the web script framework.

Custom template processor
implementation
Now that we have had a detailed technical walkthrough on the script processor
implementation in the web script framework, it's now time to do some exercise to
find out how template processor implementation is done in the web script framework
and how to create a custom implementation for template processor. You should
now be able to trace through the code to find out how the FreeMarker template
processor is used by the web script framework and how you can create a custom
template processor implementation. Here is a hint for you in order to do this exercise.
In order to understand about template processor implementation, you just need to
take a look at the bean entry for org.springframework.extensions.webscripts.
ScriptProcessorRegistrar in web-scripts-application-context.xml and trace
through the code the way we did in the previous section; you should get an overall
understanding about template processor implementation and details of creating a
custom template processor. I hope you have enjoyed this exercise.

Customizing formats
Let's first learn about how the different formats are registered with the web script
framework. If you take a look at the bean entry with the ID as webscripts.formats in
spring-webscripts-application-context.xml in spring-webscripts-*.jar, it
has the entries for formats and MIME type corresponding to the available formats. The
org.springframework.extensions.webscripts.FormatMap parent class for this
bean definition entry, webscripts.formats, registers the formats and MIME types
with FormatRegistry used by the web script container in the web script framework.
In order to add custom formats, all you need to do is provide the appropriate format
and MIME type entry. If you take a look at the bean ID, webscripts.formats.IE in
spring-webscripts-application-context.xml, and its customized entry in web-
script-application-context.xml, it has defined the custom IE specific formats. It
has changed the format for rss from text/xml to application/rss+xml. Similarly, you
can have your customized change for formats. If you plan to add a completely new
format and MIME type that is not defined in spring-webscripts-application-
context.xml, then you will have to create a customized FormatReader class and a
customized FormatWriter class. You can take a look at the webscripts.adaptors
bean entry; it will give you some tips on how to create custom FormatReaders and
FormatWriters and register with the web script frameworks' FormatRegistry.

Extending the Web Script Framework

[150]

Summary
In this last chapter of this book, we understood how some of the key components
of the web script framework in Alfresco can be customized when required. While
understanding how to customize, we also went through how these components
are currently working in the web script framework. In this chapter, we covered the
power of working in open source technology, which opens up the door to having a
customized implementation as required.

Now, there is no next chapter! I hope you have enjoyed the journey of learning about
Alfresco web scripts. It's time now to enjoy your web script development experience
with Alfresco to create amazing solutions as per your business requirements.

Index
Symbols
<args> element 60
<authentication> element

admin value 55
guest value 54
none value 54
user value 55

<cache> element
about 57
mustrevalidate value 57
never value 57
public value 57

<family> element 56
<format> element

about 53
any value 54
argument value 53
extension value 53

<formdata> element 59
<lifecycle> element

about 58
deprecated value 59
draft_public_api value 59
draft value 59
internal value 59
none value 58
public_api value 59
sample value 58

<negotiate> element 58
<requests> element 60
<responses> element 60
<shortname> tag 51
<transaction> element

about 55
none value 55

required value 56
requiresnew value 56

<url> tag 52
<webscript> tag 51

A
AbstractWebScript

versus DeclarativeWebScript 92, 93
Alfresco

JavaScript API 96
web script framework 34
web scripts, creating 18-20

Alfresco explorer Authenticator 42
Alfresco Maven repository

about 128
URL 128

Alfresco Maven SDK
Alfresco Maven repository 128
environment, setting up 127

Alfresco Maven SDK, prerequisites
Apache Maven 3.0.3 127
JDK 1.7 127

Alfresco Module Package. See AMP
Alfresco Share

web script, invoking from 73-75
Alfresco WAR

testing, with AMP 137, 138
Alfresco web scripts 8
AMP

about 126
applying, to Alfresco WAR for

testing 137, 138
default project structure, creating 128-131
generating, from default project

structure 131

[152]

AMP archetype 128
Apache HTTP components 72
Apache Maven 3.0.3

URL, for downloading 127
arguments

adding, to web scripts 21
selecting, for web scripts 28
specifying, for web scripts 27

C
Chrome webstore

URL 69
client limitations

dealing with 77
client-side JavaScript

web script, invoking from 75
CMIS

versus web scripts 10, 11
code examples, JavaScript controller

about 104
e-mail, obtaining 107
explicit arguments, retrieving 104
folder, creating 104
folder, creating under company home 105
guest home node, returning 108
node path, obtaining 106
node properties, checking 106
node property, modifying 107
node, searching 105, 106
property value, logging 107
username, obtaining 107
user permission, checking on node 106

command line
web script, calling from 76

components support, Web Script Container
configuration service 45
format registry 45
script processor registry 45
search path 46
template processor registry 45
web script registry 45

components, web script
configuration document 65
controller implementation 61
description document 50

I18N 63
naming conventions 66

components, web script framework
Web Script Authenticator 39, 41
Web Script Container 39, 43
Web Script Runtime 39, 40
wiring 46

configuration document
about 65
accessing, in controller 65
accessing, in template 65

controller
adding, to web scripts 22, 23
configuration, accessing 65
implementation 61
Java controller 62, 80
JavaScript-backed controller 61, 80
using, smartly 93

controller, MVC pattern 13
cURL

installing 76
URL 76

custom authenticator
implementation 145-148

custom root object
creating 108
custom JavaScript extension,

creating 109, 110
custom template processor

implementation 149
custom web script container

about 143
creating 144
implementation 143, 144

custom web script runtime
about 141
creating 142
implementation 141

D
data web script 15
debugging, web scripts

about 116
logging, enabling 116
other techniques 119
remote debugging, on server 117, 118

[153]

DeclarativeWebScript
versus AbstractWebScript 92, 93

default project structure
about 135
AMP, generating from 131
creating, for AMP 128-131
extending, for creating web scripts 136
importing, to Eclipse 132-134
pom.xml file 135
src/main/amp directory 135
src/main/java directory 135
src/test directory 135

DELETE requests 26
deployment architecture, web script

framework 46
deployment options, web scripts

deployment locations 114
filesystem option 112, 113
repository option 112, 113
selecting 115

description document
about 50, 51
creating 82
mandatory declarations 51
optional declarations 53

development environment
setting up, with Eclipse 132-134

E
Eclipse

default project structure,
importing to 132-134

development environment,
setting up 132-134

execution flow, web scripts
about 34
overall execution flow 34, 35
technical details 36-38

explicit arguments
specifying, for web scripts 27, 28

F
Facebook Authenticator 43
Facebook Runtime

about 41
implementation 41

filesystem option
about 113
using 112, 113

Firefox add-ons
URL 69

format registry 45
formats

customizing 149

G
GET requests 26

H
hello world web script

resource bundle, adding 64
HTTP basic Authenticator 42
HttpClient

about 70
Apache HTTP components 72
RestTemplate 72
URLConnection 71
used, for invoking web script 70, 71

HTTP methods
considerations 26, 27
DELETE requests 26
GET requests 26
POST requests 26
PUT requests 26
used, for developing web scripts 25, 26

I
I18N, web script

about 63
resource bundle, adding for hello world

web script 64
response template, modifying for labels

usage 64
implicit arguments

specifying, for web scripts 28

J
Java-backed controller. See Java controller
Java-backed web script

building blocks 81

[154]

components, identifying 81
debugging 116
deploying 88
description document, creating 82
disabling 122
functionality 81
registering 88
response template, creating 83
testing 89
use case scenario 80, 81

Java controller
about 15, 62, 80
coding 84-86
configuring, for web script 87
creating 83
implementation logic 84
using, considerations 62

Java Development Kit (JDK) 127
java.net.URLConnection

URL 71
JavaScript API, Alfresco

about 96, 97
accessing, with root objects 98-100
identifying 97, 98
using 97

JavaScript-backed controller
about 15, 61, 80
using, considerations 61

JavaScript-backed web scripts
debugging 116

JD-GUI
about 36
URL, downloading 36

JDK 1.7
URL, for downloading 127

JSF page
web script, calling from 77

JSF Runtime
about 40
implementation 41

JSR-168 Authenticator
about 43
with Alfresco Explorer support 43

JSR-168 portals
web script, calling from 76

L
logging

enabling 116

M
mandatory declarations, description

document
<shortname> tag 51
<url> tag 52
<webscript> tag 51

model object 13
model-view-controller pattern

(MVC pattern), web scripts 14, 34
module management tool 126
mvn-version command 127

N
naming conventions

for web script documents 66

O
optional declarations, description document

<args> element 60
<authentication> element 54
<cache> element 57
<family> element 56
<format> element 53
<formdata> element 59
<lifecycle> element 58
<negotiate> element 58
<requests> element 60
<responses> element 60
<transaction> element 55
kind attribute 60

P
pom.xml file 135
Portlet Runtime

about 40
implementation 40

POST requests 26

[155]

Presentation Container 44
presentation web script 15
presentation web script JavaScript

controller
web script, calling from 74

production server
Java-backed web script, disabling 122
web script logs, logging 122
web scripts, executing on 121

Project Object Model (POM) 127
PUT requests 26

R
remote debugging

on server 117, 118
Repository Container 44
repository option

about 112
using 112, 113

REpresentational State Transfer. See REST
resource bundle

adding, for hello world web script 64
response formats

about 28
considerations 31
mime type 29
specifying, as default format 30
specifying, for web scripts 29
specifying, via URL as explicit format

argument 30
specifying, via URL as extension 30

response template
about 63
creating 83
modifying, for label usage 64

REST 9
RESTful web service 9
RestTemplate

using 72
root objects

actions 99
activities 99
appUtils 100
avm 99
classification 99
crossRepoCopy 99

imap 99
logger 99
people 99
presence 99
search 99
session 99
test 99
using 98, 99
utils 99
workflow 99

root objects, AbstractRuntimeContainer
atom 103
jsonUtils 103
server 103
stringUtils 103

root objects, AbstractWebScript
argM 101
args 101
config 101
format 101
formdata 101
guest 101
headers 101
headersM 101
json 101
msg 101
requestbody 101
url 101
webscript 101

root objects, DeclarativeWebScript
cache 102
model 102
status 102

root objects, RepositoryContainer
companyhome 102
person 102
roothome 102
userhome 102

root objects, TenantRepositoryContainer
cmis 102
paging 102

S
ScriptNode API 103
script processor registry 45
search path 46

[156]

Servlet Runtime
about 40
implementation 40

SOAP-based web services
limitations 11

Spring-based services
web script, calling from 72

src/main/amp directory 135
src/main/java directory 135
src/test directory 135
standalone Java program

web script, executing from 69
SURF Runtime

about 41
implementation 41

T
template

configuration, accessing 65
template processor registry 45
test case, Java-backed web script

invalid access 91
invalid argument value 90
mandatory check 89, 90
valid data 91

troubleshooting pointers, web scripts
Cannot locate template processor for

template 120
Script URL does not support

the method 121
valid SecureContext error 119
Web Script format '' is not registered 120

U
Uniform Resource Identifier (URI) 9

V
view, MVC pattern 13, 35

W
web browser

web script, invoking from 68
web browser plugins

about 68

add-on, for Firefox 69
advanced REST client, for Chrome 69
used, for web script execution 68

Web Script Authenticator
about 39, 41
Alfresco explorer Authenticator 42
Facebook Authenticator 43
HTTP basic Authenticator 42
JSR-168 Authenticator 43
JSR-168 Authenticator, with Alfresco

Explorer support 43
Web Script Container

about 43
Presentation Container 43, 44
Repository Container 43

web script execution, from standalone Java
program

about 69
HttpClient 70

web script framework
about 34
components 39
deployment architecture 46

web script logs
logging 122

web script registry
about 45
using 45

Web Script Runtime
about 39, 40
Facebook Runtime 41
JSF Runtime 40
Portlet Runtime 40
Servlet Runtime 40
SURF Runtime 41

web scripts
about 8-10
applications 13
arguments, adding 21
controller, adding 22, 23
creating, in Alfresco 18-20
creating, with default project structure 136
developing, with appropriate HTTP

methods 25, 26
developing, with arguments 27
developing, with response formats 28
executing, on production server 121

[157]

executing, with controller 25
executing, without controller 24
explicit arguments, specifying 27, 28
implementing 14
implicit arguments, specifying 28
in developer's opinion 11
invoking 68
properties 11
properties, from business user's

point-of-view 9
properties, from developer's

point-of-view 9
reasons, for using 10
using, in development projects 12
using, in different environments 13
using, in support projects 12

versus CMIS 10, 11
working 13

web scripts, types
about 15
data web script 15
presentation web script 15

web script URI
about 20, 21
contextPath 21
host 20
http[s] 20
port 21
scriptArgs 21
scriptPath 21
servicePath 21

Proudly sourced and uploaded by [StormRG]
Kickass Torrents | TPB | ExtraTorrent | h33t

Thank you for buying
Learning Alfresco Web Scripts

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Alfresco CMIS
ISBN: 978-1-78216-352-7 Paperback: 272 pages

Everything you need to know to start coding
integrations with a content management server
such as Alfresco in a standard way

1.	 Understand what is unique about Alfresco's
CMIS implementation and put your learning
into practice.

2.	 Talk to content management servers in a
standard way with HTTP, XML, JSON,
and CMIS.

3.	 Understand Enterprise Application
Integration (EAI) with CMIS featuring
Drupal and Mule ESB.

Alfresco 4 Enterprise Content
Management Implementation
ISBN: 978-1-78216-002-1 Paperback: 514 pages

Install, administer, and manage this powerful open
source Java-based Enterprise CMS

1.	 Manage your business documents with
standard practices like content organization,
version control, tagging, categorization, library
services, and advanced search.

2.	 Automate your business process with the
advanced workflow concepts of Alfresco using
the Activiti workflow engine.

3.	 Manage your documents with productivity
tools like Microsoft Office, Mobile Application,
MS Outlook, Lotus Notes, and so on.

Please check www.PacktPub.com for information on our titles

Alfresco Developer Guide
ISBN: 978-1-84719-311-7 Paperback: 556 pages

Customizing Alfresco with actions, web scripts,
web forms, workflows, and more

1.	 Learn to customize the entire Alfresco platform,
including both Document Management and
Web Content Management.

2.	 Jam-packed with real-world, step-by-step
examples to jump start your development.

3.	 Content modeling, custom actions, Java API,
RESTful web scripts, advanced workflow.

Alfresco Share
ISBN: 978-1-84951-710-2 Paperback: 360 pages

Enterprise Collaboration and Efficient Social
Content Management

1.	 Understand the concepts and benefits of Share.

2.	 Leverage a single installation to manage
multiple sites.

3.	 Case study-based approach for effective
understanding.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Familiar with
Web Scripts
	Understanding web scripts
	Reasons to use web scripts
	Understanding when to use a web script
	Understanding where web scripts can be used
	Understanding how web scripts work
	MVC in web scripts
	Making web scripts work

	Types of web scripts
	Data web script
	Presentation web script

	Summary

	Chapter 2: It's Time for the
First Web Script
	Creating your first web script in Alfresco
	Understanding the web script URI
	Adding arguments to a web script
	Extending the first web script to use the controller
	Behind the scenes of web script execution
	A web script without a controller
	A web script with a controller

	Important things for any web script
	HTTP methods supported by a web script
	Web script arguments
	Explicit arguments
	Implicit arguments
	Understanding which one to choose

	Response formats for a web script
	Response formats supported by the web script framework
	Specifying the response format

	Summary

	Chapter 3: Understanding the Web Script Framework
	Execution flow of web scripts
	Overall flow for a web script
	Behind the scenes implementation

	Components of the web script framework
	Web Script Runtime
	Servlet Runtime
	Portlet Runtime
	JSF Runtime
	Facebook Runtime
	SURF Runtime

	Web Script Authenticator
	HTTP basic authenticator
	Alfresco explorer authenticator
	JSR-168 Authenticator
	JSR-168 Authenticator with Alfresco Explorer support
	Facebook Authenticator

	Web Script Container
	Repository Container
	Presentation Container

	Other supporting components
	Configuration service
	Web Script registry
	Format registry
	Script processor registry
	Template processor registry
	Search path

	Understanding the wiring of web script framework components

	Deployment architecture
	Summary

	Chapter 4: Building Blocks of
Web Scripts
	The description document – it's a must!
	Mandatory declarations
	The <webscript> tag
	The <shortname> tag
	The <url> tag

	Optional declarations
	<format>
	<authentication>
	<transaction>
	<family>
	<cache>
	<negotiate>
	<lifecycle>
	<formdata>
	<args>
	<requests>
	<responses>
	kind

	Controller implementation – not mandatory!
	The JavaScript-backed controller
	Understanding when to use the JavaScript controller

	The Java-backed controller
	Understanding when to use a Java-backed controller

	Response templates – yes, they are required!
	I18N for a web script – it's optional
	Adding a resource bundle for the hello world web script
	Modifying the response template to use labels

	Configuration document – it's optional
	Accessing configuration in controller
	Accessing configuration in a template

	Naming conventions – the most important thing
	Summary

	Chapter 5: Invoking Web Scripts
	Invoking a web script from a web browser
	Executing a web script using web browser plugins
	Poster – Firefox add-on
	Advanced REST client for Chrome

	Executing a web script from standalone Java program
	HttpClient
	Understanding how to invoke a web script using HttpClient
	URLConnection
	Apache HTTP components
	RestTemplate

	Calling web scripts from Spring-based services
	Invoking a web script from Alfresco Share
	Calling a web script from the presentation web script JavaScript controller
	Invoking a web script from client-side JavaScript
	Calling a web script from the command line

	Calling a web script from JSR-168 portals and the JSF page
	Calling a web script from JSR-168 portals
	Calling a web script from the JSF page

	Dealing with client limitations
	Summary

	Chapter 6: Creating Java-backed
Web Scripts
	Use case scenario
	Web script functionality at a high level
	Getting ready
	Creating a description document
	Creating a response template
	Creating a Java controller
	Controller logic at a high level
	Let's code it!

	Configuring the controller for the web script
	Deploying the web script
	Registering the web script

	Testing the web script
	Test case 1 – mandatory check
	Test case 2 – invalid argument value
	Test case 3 – invalid access
	Test case 4 – test with valid data

	DeclarativeWebScript versus AbstractWebScript
	Using controllers smartly
	Summary

	Chapter 7: Understanding
JavaScript-based
Web Scripts in Detail
	Understanding what you can do with the JavaScript API
	JavaScript APIs in Alfresco
	Identifying JavaScript APIs
	Root objects to access JavaScript APIs
	Other available root objects

	A must-know ScriptNode API
	Code examples
	Creating a folder
	Retrieving explicit arguments
	Folder creation under company home

	Finding a node
	Checking user permissions on a node
	Getting the path of a node
	Checking the properties of a node
	Logging the property value
	Modifying property of a node
	Getting the current username and e-mail
	Returning the guest home node

	Creating your own root object
	Custom JavaScript extension

	Summary

	Chapter 8: Deployment, Debugging, and Troubleshooting Web Scripts
	Deployment options
	The repository option
	The filesystem option
	Understanding deployment locations
	Choosing the deployment option

	Debugging web scripts
	Enable logging
	Remote debugging on the server
	Other debugging techniques

	Troubleshooting pointers
	A valid SecureContext error
	Web Script format '' is not registered
	Cannot locate template processor for template
	Script URL does not support the method

	Web scripts on a production server
	Running web scripts in the background
	Logging web script logs separately
	Disabling Java-backed web scripts

	Summary

	Chapter 9: Mavenizing Web Scripts
	Setting up your environment
	Exploring the Alfresco Maven repository

	Creating the default project structure for AMP
	Generating AMP from the default project
	Setting up a development environment with Eclipse
	Understanding the default project structure
	Extending your default project to create web scripts
	Applying AMP to the Alfresco WAR for testing
	Summary

	Chapter 10: Extending the
Web Script Framework
	Custom implementation of the web script runtime
	The custom implementation of a web script container
	Custom authenticator implementation
	Custom script processor implementation
	Custom template processor implementation
	Customizing formats
	Summary

	Index

