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Preface
The world of computing has seen an incredible revolution in the past 30 years. 
Not so long ago, high-performance computations required expensive hardware; 
proprietary software costing hundreds, if not thousands, of dollars; knowledge of 
computer languages such as FORTRAN, C, or C++; and familiarity with specialized 
libraries. Even after obtaining the proper hardware and software, just setting up a 
working environment for advanced scientific computing and data handling was a 
serious challenge. Many engineers and scientists were forced to become operating 
systems wizards just to be able to maintain the toolset required by their daily 
computational work.

Scientists, engineers, and programmers were quick to address this issue. Hardware 
costs decreased as performance went up, and there was a great push to develop 
scripting languages that allowed integration of disparate libraries through multiple 
platforms. It was in this environment that Python was being developed in the late 
1980s, under the leadership of Guido Van Rossum. From the beginning, Python was 
designed to be a cutting-edge, high-level computer language with a simple enough 
structure that its basics could be quickly learned even by programmers who are  
not experts.

One of Python's attractive features for rapid development was its interactive shell, 
through which programmers could experiment with concepts interactively before 
including them in scripts. However, the original Python shell had a limited set 
of features and better interactivity was necessary. Starting from 2001, Fernando 
Perez started developing IPython, an improved interactive Python shell designed 
specifically for scientific computing.
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Since then, IPython has grown to be a full-fledged computational environment built 
on top of Python. One of most exciting developments is the IPython notebook, a 
web-based interface for computing with Python. In this book, the reader is guided  
to a thorough understanding of the notebook's capabilities in easy steps. In the 
course of learning about the notebook interface, the reader will learn the essential 
features of several tools, such as NumPy for efficient array-based computations, 
matplotlib for professional-grade graphics, pandas for data handling and analysis, 
and SciPy for scientific computation. The presentation is made fun and lively by  
the introduction of applied examples related to each of the topics. Last but not least, 
we introduce advanced methods for using GPU-based parallelized computations.

We live in exciting computational times. The combination of inexpensive but 
powerful hardware and advanced libraries easily available through the IPython 
notebook provides unprecedented power. We expect that our readers will be as 
motivated as we are to explore this brave new computational world.

What this book covers
Chapter 1, A Tour of the IPython Notebook, shows how to quickly get access to the 
IPython notebook by either installing the Anaconda distribution or connecting  
online through Wakari. You will be given an introductory example highlighting 
some of the exciting features of the notebook interface.

Chapter 2, The Notebook Interface, is an in-depth look into the notebook, covering 
navigation, interacting with the operating system, running scripts, and loading  
and saving data. Last but not least, we discuss IPython's Rich Display System,  
which allows the inclusion of a variety of media in the notebook.

Chapter 3, Graphics with matplotlib, shows how to create presentation-quality graphs 
with the matplotlib library. After reading this chapter, you will be able to make  
two- and three-dimensional plots of data and build animations in the notebook.

Chapter 4, Handling Data with pandas, shows how to use the pandas library for data 
handling and analysis. The main data structures provided by the library are studied 
in detail, and the chapter shows how to access, insert, and modify data. Data analysis 
and graphical displays of data are also introduced in this chapter.

Chapter 5, Advanced Computing with SciPy, Numba, and NumbaPro, presents advanced 
computational tools and algorithms that are accessible through SciPy. Acceleration 
techniques using the libraries Numba and NumbaPro, including use of the GPU  
for parallelization, are also covered.
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Appendix A, IPython Notebook Reference Card, discusses about how to start the Notebook, 
the keyboard Shortcuts in the Edit and Command modes, how to import modules, and 
how to access the various Help options.

Appendix B, A Brief Review of Python, gives readers an overview of the Python syntax  
and features, covering basic types, expressions, variables and assignment, basic data 
structures, functions, objects and methods.

Appendix C, NumPy Arrays, gives us an introduction about NumPy arrays, and shows 
us how to create arrays and accessing the members of the array, finally about Indexing 
and Slicing.

What you need for this book
To run the examples in this book, the following are required:

•	 Operating system:
°° Windows 7 or above, 32- or 64-bit versions.
°° Mac OS X 10.5 or above, 64-bit version.
°° Linux-based operating systems, such as Ubuntu desktop 14.04  

and above, 32- or 64-bit versions.

Note that 64-bit versions are recommended if available.

•	 Software:

°° Anaconda Python Distribution, version 3.4 or above (available at 
http://continuum.io/downloads)

Who this book is for
This book is for software developers, engineers, scientists, and students who need 
a quick introduction to the IPython notebook for use in scientific computing, data 
handling, and analysis, creation of graphical displays, and efficient computations.

It is assumed that the reader has some familiarity with programming in Python, 
but the essentials of the Python syntax are covered in the appendices and all 
programming concepts are explained in the text.

If you are looking for a well-paced introduction to the IPython notebook with a lot  
of applications and code samples, this book is for you.
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Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The 
simplest way to run IPython is to issue the ipython command in a terminal window."

A block of code is set as follows:

temp_coffee = 185.
temp_cream = 40.
vol_coffee = 8.
vol_cream = 1.
initial_temp_mix_at_shop = temp_mixture(temp_coffee, vol_coffee, temp_
cream, vol_cream)
temperatures_mix_at_shop = cooling_law(initial_temp_mix_at_shop, 
times)
temperatures_mix_at_shop

When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

[default]
temp_coffee = 185.
temp_cream = 40.
vol_coffee = 8.
vol_cream = 1.
initial_temp_mix_at_shop = temp_mixture(temp_coffee, vol_coffee, temp_
cream, vol_cream)
temperatures_mix_at_shop = cooling_law(initial_temp_mix_at_shop, 
times)
temperatures_mix_at_shop

Any command-line input or output is written as follows:

ipython notebook
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New terms and important words are shown in bold. Words that you see on the 
screen, in menus or dialog boxes for example, appear in the text like this: "Simply, 
click on the New Notebook button to create a new notebook."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.
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Piracy
Piracy of copyright material on the Internet is an ongoing problem across all  
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works, in any form, on the Internet, 
please provide us with the location address or website name immediately so that  
we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.



A Tour of the IPython 
Notebook

This chapter gives a brief introduction to the IPython notebook and highlights 
some of its special features that make it a great tool for scientific and data-oriented 
computing. IPython notebooks use a standard text format that makes it easy to  
share results.

After the quick installation instructions, you will learn how to start the notebook 
and be able to immediately use IPython to perform computations. This simple, 
initial setup is all that is needed to take advantage of the many notebook features, 
such as interactively producing high quality graphs, performing advanced technical 
computations, and handling data with specialized libraries.

All examples are explained in detail in this book and available online. We do not 
expect the readers to have deep knowledge of Python, but readers unfamiliar 
with the Python syntax can consult Appendix B, A Brief Review of Python, for an 
introduction/refresher.

In this chapter, we will cover the following topics:

•	 Getting started with Anaconda or Wakari
•	 Creating notebooks and then learning about the basics of editing and  

executing statements
•	 An applied example highlighting the notebook features
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Getting started with Anaconda or Wakari
There are several approaches to setting up an IPython notebook environment. We 
suggest you use Anaconda, a free distribution designed for large-scale data processing, 
predictive analytics, and scientific computing. Alternatively, you can use Wakari, 
which is a web-based installation of Anaconda. Wakari has several levels of service, 
but the basic level is free and suitable for experimenting and learning.

We recommend that you set up both a Wakari account and a local 
Anaconda installation. Wakari has the functionality of easy sharing and 
publication. This local installation does not require an Internet connection 
and may be more responsive. Thus, you get the best of both worlds!

Installing Anaconda
To install Anaconda on your computer, perform the following steps:

1.	 Download Anaconda for your platform from https://store.continuum.
io/cshop/anaconda/.

2.	 After the file is completely downloaded, install Anaconda:

°° Windows users can double-click on the installer and follow  
the on-screen instruction

°° Mac users can double-click the .pkg file and follow the  
instructions displayed on screen

°° Linux users can run the following command:

bash <downloaded file>

Anaconda supports several different versions of Python. This book 
assumes you are using Version 2.7, which is the standard version that 
comes with Anaconda. The most recent version of Python, Version 3.0, 
is significantly different and is just starting to gain popularity. Many 
Python packages are still only fully supported in Version 2.7.

Running the notebook
You are now ready to run the notebook. First, we create a directory named  
my_notebooks to hold your notebooks and open a terminal window at this  
directory. Different operating systems perform different steps.
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Microsoft Windows users need to perform the following steps:

1.	 Open Window Explorer.
2.	 Navigate to the location where your notebooks are stored.
3.	 Click on the New Folder button.
4.	 Rename the folder my_notebooks.
5.	 Right-click on the my_notebooks folder and select Open command  

window here from the context menu.

Mac OS X and other Unix-like systems' users need to perform the following steps:

1.	 Open a terminal window.
2.	 Run the following commands:

mkdir my_notebooks

cd my_notebooks

3.	 Then, execute the following command on the terminal window:

ipython notebook

After a while, your browser will automatically load the notebook dashboard as shown 
in the following screenshot. The dashboard is a mini filesystem where you can manage 
your notebooks. The notebooks listed in the dashboard correspond exactly to the files 
you have in the directory where the notebook server was launched.
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Internet Explorer does not fully support all features in the IPython 
notebook. It is suggested that you use Chrome, Firefox, Safari, 
Opera, or another standards-conforming browser. If your default 
browser is one of those, you are ready to go. Alternatively, close 
the Internet Explorer notebook, open a compatible browser, 
and enter the notebook address given in the command window 
from which you started IPython. This will be something like 
http://127.0.0.1:8888 for the first notebook you open.

Creating a Wakari account
To access Wakari, simply go to https://www.wakari.io and create an account. 
After logging in, you will be automatically directed to an introduction to using the 
notebook interface in Wakari. This interface is shown in the following screenshot:

The interface elements as seen in the preceding screenshot are described as follows:

•	 The section marked 1 shows the directory listing of your notebooks and  
files. On the top of this area, there is a toolbar with buttons to create new  
files and directories as well as download and upload files.

•	 The section marked 2 shows the Welcome to Wakari notebook. This is  
the initial notebook with information about IPython and Wakari. The 
notebook interface is discussed in detail in Chapter 2, The Notebook Interface.

•	 The section marked 3 shows the Wakari toolbar. This has the New Notebook 
button and drop-down menus with other tools.
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This book concentrates on using IPython through the notebook interface. 
However, it's worth mentioning the two other ways to run IPython.
The simplest way to run IPython is to issue the ipython command in a 
terminal window. This starts a command-line session of IPython. As the 
reader may have guessed, this is the original interface for IPython.
Alternatively, IPython can be started using the ipython qtconsole 
command. This starts an IPython session attached to a QT window. QT 
is a popular multiplatform windowing system that is bundled with the 
Anaconda distribution. These alternatives may be useful in systems that, 
for some reason, do not support the notebook interface.

Creating your first notebook
We are ready to create our first notebook! Simply click on the New Notebook  
button to create a new notebook.

•	 In a local notebook installation, the New Notebook button appears in  
the upper-left corner of the dashboard.

•	 In Wakari, the New Notebook button is at the top of the dashboard,  
in a distinct color. Do not use the Add File button.

Notice that the Wakari dashboard contains a directory list on the left. You can use 
this to organize your notebooks in any convenient way you choose. Wakari actually 
provides access to a fully working Linux shell.

We are now ready to start computing. The notebook interface is displayed in the 
following screenshot:

By default, new notebooks are named UntitledX, where X is a number. To change it, 
just click on the current title and edit the dialog that pops up.
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At the top of the notebook, you will see an empty box with the In [ ]: text on 
the left-hand side. This box is called a code cell and it is where the IPython shell 
commands are entered. Usually, the first command we issue in a new notebook is 
%pylab inline. Go ahead and type this line in the code cell and then press Shift + 
Enter (this is the most usual way to execute commands. Simply pressing Enter will 
create a new line in the current cell.) Once executed, this command will issue  
a message as follows:

Populating the interactive namespace from numpy and matplotlib

This command makes several computational tools easily available and is the 
recommended way to use the IPython notebook for interactive computations.  
The inline directive tells IPython that we want graphics embedded in the  
notebook and not rendered with an external program.

Commands that start with % and %% are called magic commands and are used to set 
up configuration options and special features. The %pylab magic command imports 
a large collection of names into the IPython namespace. This command is usually 
frowned upon for causing namespace pollution. The recommended way to use 
libraries in scripts is to use the following command:

import numpy as np

Then, for example, to access the arange() function in the NumPy package, one uses 
np.arange(). The problem with this approach is that it becomes cumbersome to 
use common mathematical functions, such as sin(), cos(), and so on. These would 
have to be entered as np.sin(), np.cos(), and so on, which makes the notebook 
much less readable.

In this book, we adopt the following middle-of-the road convention: when doing 
interactive computations, we will use the %pylab directive to make it easier to type 
formulae. However, when using other libraries or writing scripts, we will use the 
recommended best practices to import libraries.

Example – the coffee cooling problem
Suppose you get a cup of coffee at a coffee shop. Should you mix the cream into  
the coffee at the shop or wait until you reach your office? The goal, we assume, is  
to have the coffee as hot as possible. So, the main question is how the coffee is going 
to cool as you walk back to the office.
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The difference between the two strategies of mixing cream is:

•	 If you pour the cream at the shop, there is a sudden drop of temperature 
before the coffee starts to cool down as you walk back to the office

•	 If you pour the cream after getting back to the office, the sudden drop  
occurs after the cooling period during the walk

We need a model for the cooling process. The simplest such model is Newton's 
cooling law, which states that the rate of cooling is proportional to the temperature 
difference between the coffee in the cup and the ambient temperature. This reflects 
the intuitive notion that, for example, if the outside temperature is 40°F, the coffee 
cools faster than if it is 50°F. This assumption leads to a well-known formula for  
the way the temperature changes:

The constant r is a number between 0 and 1, representing the heat exchange  
between the coffee cup and the outside environment. This constant depends on 
several factors, and may be hard to estimate without experimentation. We just  
chose it somewhat arbitrarily in this first example.

We will start by setting variables to represent the outside temperature and the rate  
of cooling and defining a function that computes the temperatures as the liquid 
cools. Then, type the lines of code representing the cooling law in a single code  
cell. Press Enter or click on Return to add new lines to the cell.

As discussed, we will first define the variables to hold the outside temperature  
and the rate of cooling:

temp_out = 70.0

r = 0.9

After entering the preceding code on the cell, press Shift + Enter to execute the cell. 
Notice that after the cell is executed, a new cell is created.
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Notice that we entered the value of temp_out as 70.0 even 
though the value is an integer in this case. This is not strictly 
necessary in this case, but it is considered good practice. Some 
code may behave differently, depending on whether it operates on 
integer or floating-point variables. For example, evaluating 20/8 
in Python Version 2.7 results in 2, which is the integer quotient of 
20 divided by 8. On the other hand, 20.0/8.0 evaluates to the 
floating-point value 2.5. By forcing the variable temp_out to be a 
floating-point value, we prevent this somewhat unexpected kind of 
behavior.
A second reason is to simply improve code clarity and readability. 
A reader of the notebook on seeing the value 70.0 will easily 
understand that the variable temp_out represents a real number. 
So, it becomes clear that a value of 70.8, for example, would also  
be acceptable for the outside temperature.

Next, we define the function representing the cooling law:

def cooling_law(temp_start, walk_time):

    return temp_out + (temp_start - temp_out) * r ** walk_time 

Please be careful with the way the lines are indented, since indentation 
is used by Python to define code blocks. Again, press Shift + Enter to 
execute the cell.

The cooling_law()function accepts the starting temperature and walking time as 
the input and returns the final temperature of the coffee. Notice that we are only 
defining the function, so no output is produced. In our examples, we will always 
choose meaningful names for variables. To be consistent, we use the conventions  
in the Google style of coding for Python as shown in http://google-styleguide.
googlecode.com/svn/trunk/pyguide.html#Python_Language_Rules.

Notice that the exponentiation (power) operator in Python is 
** and not ^ as in other mathematical software. If you get the 
following error when trying to compute a power, it is likely that 
you meant to use the ** operator:
TypeError: unsupported operand type(s) for ^: 
'float' and 'float'
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We can now compute the effect of cooling given any starting temperature and walking 
time. For example, to compute the temperature of the coffee after 10 minutes, assuming 
the initial temperature to be 185°F, run the following code in a cell:

cooling_law(185.0, 10.0)

The corresponding output is:

110.0980206115

What if we want to know what the final temperature for several walking times 
is? For example, suppose that we want to compute the final temperature every 5 
minutes up to 20 minutes. This is where NumPy makes things easy:

times = arange(0.,21.,5.)

temperatures = cooling_law(185., times)

temperatures

We start by defining times to be a NumPy array, using the arange() function.  
This function takes three arguments: the starting value of the range, the ending  
value of the range, and the increment.

You may be wondering why the ending value of the range is 21 and not 
20. It's a common convention in Computer Science, followed by Python. 
When a range is specified, the right endpoint never belongs to the range. So, if 
we had specified 20 as the right endpoint, the range would only contain 
the values 0, 5, 10, and 15.

After defining the times array, we can simply call the cooling_law() function with 
times as the second argument. This computes the temperatures at the given times.

You may have noticed that there is something strange going on here. 
The first time the cooling_law() function was called, the second 
argument was a floating-point number. The second time, it was a 
NumPy array. This is possible thanks to Python's dynamic typing  
and polymorphism. NumPy redefines the arithmetic operators to 
work with arrays in a smart way. So, we do not need to define a  
new function especially for this case.
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Once we have the temperatures, we can display them in a graph. To display the 
graph, execute the following command line in a cell:

plot(times, temperatures, 'o')

The preceding command line produces the following plot:

The plot() function is a part of the matplotlib package, which will be studied in 
detail in Chapter 3, Graphics with matplotlib. In this example, the first two arguments 
to plot() are NumPy arrays that specify the data for the horizontal and vertical axes, 
respectively. The third argument specifies the plot symbol to be a filled circle.

We are now ready to tackle the original problem: should we mix the cream in at the 
coffee shop or wait until we get back to the office? When we mix the cream, there is 
a sudden drop in temperature. The temperature of the mixture is the average of the 
temperature of the two liquids, weighted by volume. The following code defines a 
function to compute the resulting temperature in a mix:

def temp_mixture(t1, v1, t2, v2):

    return (t1 * v1 + t2 * v2) / (v1 + v2)

The arguments in the function are the temperature and volume of each liquid.  
Using this function, we can now compute the temperature evolution when the  
cream is added at the coffee shop:

temp_coffee = 185.

temp_cream = 40.
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vol_coffee = 8.

vol_cream = 1.

initial_temp_mix_at_shop = temp_mixture(temp_coffee, vol_coffee, temp_
cream, vol_cream)

temperatures_mix_at_shop = cooling_law(initial_temp_mix_at_shop, times)

temperatures_mix_at_shop

Notice that we repeat the variable temperatures_mix_at_shop at 
the end of the cell. This is not a typo. The IPython notebook, by default, 
assumes that the output of a cell is the last expression computed in 
the cell. It is a common idiom to list the variables one wants to have 
displayed, at the end of the cell. We will later see how to display 
fancier, nicely formatted output.

As usual, type all the commands in a single code cell and then press Shift + Enter  
to run the whole cell. We first set the initial temperatures and volumes for the  
coffee and the cream. Then, we call the temp_mixture() function to calculate  
the initial temperature of the mixture. Finally, we use the cooling_law() function 
to compute the temperatures for different walking times, storing the result in the 
temperatures_mix_at_shop variable. The preceding command lines produce  
the following output:

array([ 168.88888889,  128.3929    ,  104.48042352,   90.36034528,

         82.02258029])

Remember that the times array specifies times from 0 to 20 with intervals of  
5 minutes. So, the preceding output gives the temperatures at these times,  
assuming that the cream was mixed in the shop.

To compute the temperatures when considering that the cream is mixed after 
walking back to our office, execute the following commands in the cell:

temperatures_unmixed_coffee = cooling_law(temp_coffee, times)

temperatures_mix_at_office = temp_mixture(temperatures_unmixed_coffee, 
vol_coffee, temp_cream, vol_cream)

temperatures_mix_at_office

We again use the cooling_law() function, but using the initial coffee temperature 
temp_coffee (without mixing the cream) as the first input variable. We store the 
results in the temperatures_unmixed_coffee variable.
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To compute the effect of mixing the cream in after walking, we call the  
temp_mixture() function. Notice that the main difference in the two computations 
is the order in which the functions cooling_law() and temp_mixture() are called. 
The preceding command lines produce the following output:

array([ 168.88888889,  127.02786667,  102.30935165,   87.71331573,

         79.09450247])

Let's now plot the two temperature arrays. Execute the following command lines  
in a single cell:

plot(times, temperatures_mix_at_shop, 'o')

plot(times, temperatures_mix_at_office, 'D', color='r')

The first plot() function call is the same as before. The second is similar, but we 
want the plotting symbol to be a filled diamond, indicated by the argument 'D'.  
The color='r' option makes the markings red. This produces the following plot:

Notice that, by default, all graphs created in a single code cell will be drawn on the 
same set of axes. As a conclusion, we can see that, for the data parameters used in 
this example, mixing the cream at the coffee shop is always better no matter what  
the walking time is. The reader should feel free to change the parameters and 
observe what happens in different situations.
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Scientific plots should make clear what is being represented, the variables being 
plotted, as well as the units being used. This can be nicely handled by adding 
annotations to the plot. It is fairly easy to add annotations in matplotlib, as  
shown in the following code:

plot(times, temperatures_mix_at_shop, 'o')

plot(times, temperatures_mix_at_office, 'D', color='r')

title('Coffee temperatures for different walking times')

xlabel('Waking time (min)')

ylabel('Temperature (F)')

legend(['Mix at shop', 'Mix at office']) 

After plotting the arrays again, we call the appropriate functions to add the title 
(title()), horizontal axis label (xlabel()), vertical axis label (ylabel()), and 
legend (legend()). The arguments to all this functions are strings or a list of strings 
as in the case of legend(). The following graph is what we get as an output for the 
preceding command lines:

There is something unsatisfactory about the way we conducted this analysis; our 
office, supposedly, is at a fixed distance from the coffee shop. The main factor in 
the situation is the outside temperature. Should we use different strategies during 
summer and winter? In order to investigate this, we start by defining a function  
that accepts as input both the cream temperature and outside temperature. The 
return value of the function is the difference of final temperatures when we get  
back to the office.
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The function is defined as follows:

temp_coffee = 185.

vol_coffee = 8.

vol_cream = 1.

walk_time = 10.0

r = 0.9

def temperature_difference(temp_cream, temp_out):

    temp_start = temp_mixture(temp_coffee,vol_coffee,temp_cream,vol_
cream)

    temp_mix_at_shop = temp_out + (temp_start - temp_out) * r ** walk_
time

    temp_start = temp_coffee

    temp_unmixed =  temp_out + (temp_start - temp_out) * r ** walk_time

    temp_mix_at_office = temp_mixture(temp_unmixed, vol_coffee, temp_
cream, vol_cream)

    return temp_mix_at_shop - temp_mix_at_office

In the preceding function, we first set the values of the variables that will be 
considered constant in the analysis, that is, the temperature of the coffee, the 
volumes of coffee and cream, the walking time, and the rate of cooling. Then, 
we defined the temperature_difference function using the same formulas we 
discussed previously. We can now use this function to compute a matrix with  
the temperature differences for several different values of the cream temperature  
and outside temperature:

cream_temperatures = arange(40.,51.,1.)

outside_temperatures = arange(35.,60.,1.)

cream_values, outside_values = meshgrid(cream_temperatures, outside_
temperatures)

temperature_differences = temperature_difference(cream_values, outside_
values)

The first two lines in the cell use the arange() function to define arrays that contain 
equally spaced values for the cream temperatures and outside temperatures. We  
then call the convenience function, meshgrid(). This function returns two arrays  
that are convenient to calculate data for three-dimensional graphs and are stored in  
the variables cream_values and outside_values. Finally, we call the temperature 
_difference() function, and store the return value in the temperature_differences 
array. This will be a two-dimensional array (that is, a matrix).
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We are now ready to create a three dimensional plot of the temperature differences:

from mpl_toolkits.mplot3d import Axes3D

fig = figure()

fig.set_size_inches(7,5)

ax = fig.add_subplot(111, projection='3d')

ax.plot_surface(cream_values, outside_values, temperature_differences, 
rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0)

xlabel('Cream temperature')

ylabel('Outside temperature')

title('Temperature difference') 

In the preceding code segment, we started by importing the Axes3D class using the 
following line:

from mpl_toolkits.mplot3d import Axes3D

This class, located in the mpl_toolkits.mplot3d module, is not automatically 
loaded. So, it must be explicitly imported.

Then we create an object fig of the class figure, set its size, and generate an object ax 
that is an object of the class Axes3D. Finally, we call the ax.plot_surface() method  
to generate the plot. The last three command lines set the axis labels and the title.

In this explanation, we used some terms that are common in object-
oriented programming. A Python object is simply a data structure that 
can be handled in some specialized way. Every object is an instance of a 
class that defines the object's data. The class also defines methods, which 
are functions specialized to work with objects belonging to the class.

The output of the preceding command lines will produce the following graph:
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Notice the cmap=cm.coolwarm argument in the call to ax.plot_surface(). This  
sets the color map of the plot to cm.coolwarm. This color map conveniently uses  
a blue-red gradient for the function values. As a result, negative temperature 
differences are shown in blue and positive temperatures in red. Notice that there 
seems to be a straight line that defines where the temperature difference transitions 
from negative to positive. This actually corresponds to values where the outside 
temperature and the cream temperature are equal. It turns out that if the cream 
temperature is lower than the outside temperature, we should mix the cream into  
the coffee at the coffee shop. Otherwise, the cream should be poured in the office.

Exercises
The following are some practice questions that will help you to understand and 
apply the concepts learned in this chapter:

•	 In our example, we discussed how to determine the cooling rate r.  
Modify the example to plot the temperature evolution for several  
values of r, keeping all other variables fixed.

•	 Search the matplotlib documentation at http://matplotlib.org to  
figure out how to generate a contour plot of the temperature differences.

Our analysis ignores the fact that the cream will also change temperature  
as we walk. Change the notebook so that this factor is taken into account

Summary
In this chapter, we set up an IPython environment with Anaconda, accessed  
the IPython notebook online through Wakari, created a notebook, and learned  
the basics of editing and executing commands, and lastly, we went through an 
extensively applied example featuring the basic notebook capabilities.

In the next chapter, we will delve more deeply in the facilities provided by  
the notebook interface—including notebook navigation and editing facilities, 
interfacing with the operating system, loading and saving data, and  
running scripts.



The Notebook Interface
The IPython notebook has an extensive user interface that makes it appropriate 
for the creation of richly formatted documents. In this chapter, we will thoroughly 
explore the notebook's capabilities. We will also consider the pitfalls and best 
practices of using the notebook.

In this chapter, the following topics will be covered:

•	 Notebook editing and navigation, which includes cell types; adding, deleting, 
and moving cells; loading and saving notebooks; and keyboard shortcuts

•	 IPython magics
•	 Interacting with the operating system
•	 Running scripts, loading data, and saving data
•	 Embedding images, video, and other media with IPython's rich display system

Editing and navigating a notebook
When we open a notebook (by either clicking on its name in the dashboard or 
creating a new notebook), we see the following in the browser window:
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In the preceding screenshot, from the top to the bottom, we see the  
following components:

•	 The Title bar (area marked 1) that contains the name of the notebook  
(in the preceding example, we can see Chapter 2) and information about  
the notebook version

•	 The Menu bar (area marked 2) looks like a regular application menu
•	 The Toolbar (area marked 3) is used for quick access to the most frequently 

used functionality
•	 In the area marked 4, an empty computation cell is shown

Starting with IPython Version 2.0, the notebook has two modes of operation:

•	 Edit: In this mode, a single cell comes into focus and we can enter text, 
execute code, and perform tasks related to that single cell. The Edit mode  
is activated by clicking on a cell or pressing the Enter key.

•	 Command: In this mode, we perform tasks related to the whole notebook 
structure, such as moving, copying, cutting, and pasting cells. A series of 
keyboard shortcuts are available to make these operations more efficient.  
The Command mode is activated by clicking anywhere on the notebook, 
outside any cell, or by pressing the Esc key.

When we open a notebook, it's in the Command mode. Let's enter into the Edit 
mode in our new notebook. For this, either click on the empty cell or hit Enter. The 
notebook's appearance will change slightly, as shown in the following screenshot:

Notice the thick border around the selected cell and the small pencil icon on the  
top-right corner of the notebook menu. These indicate that the notebook is in the  
Edit mode.

In the upcoming subsections, we will explore each of the notebook modes in detail.
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Getting help and interrupting computations
The notebook is a complex tool that integrates several different technologies.  
It is unlikely that new (or even experienced) users will be able to memorize all  
the commands and shortcuts. The Help menu in the notebook has links to  
relevant documentation that should be consulted as often as necessary.

Newcomers may want to visit the Notebook Interface Tour, which is 
available at http://nbviewer.ipython.org/github/ipython/
ipython/blob/2.x/examples/Notebook/User%20Interface.
ipynb, to get started.

It is also easy to get help on any object (including functions and methods).  
For example, to access help on the sum() function, run the following line of  
code in a cell:

sum?

Appending ?? to an object's name will provide more detailed information. 
Incidentally, just running ? by itself in a cell displays information about  
IPython features.

The other important thing to know right from the start is how to interrupt a 
computation. This can be done through the Kernel menu, where the kernel  
process running the notebook code can be interrupted and restarted. The  
kernel can also be interrupted by clicking on the Stop button on the toolbar.

The Edit mode
The Edit mode is used to enter text in cells and to execute code. Let's type some 
code in the fresh notebook we created. As usual, we want to import NumPy and 
matplotlib to the current namespace, so we enter the following magic command  
in the first cell:

%pylab inline

Press Shift + Enter or click on the Play button on the toolbar to execute the code. Notice 
that either of the options causes a new cell to be added under the current cell.
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Just to have something concrete to work with, let's suppose we want to compute  
the interest accumulated in an investment. Type the following code in three 
successive cells:

•	 In cell 1, enter the following command lines:
def return_on_investment(principal, interest_rate, number_of_
years):

    return principal * e ** (interest_rate * number_of_years)

•	 In cell 2, enter the following command lines:
principal = 250

interest_rate = .034

tstart = 0.0

tend = 5.0

npoints = 6

•	 In cell 3, enter the following command lines:

tvalues = linspace(tstart, tend, npoints)

amount_values = return_on_investment(principal, interest_rate, 
tvalues)

plot(tvalues, amount_values, 'o')

title('Return on investment, years {} to {}'.format(tstart, tend))

xlabel('Years')

ylabel('Return')

tstart += tend

tend += tend

Now, perform the following steps:

1.	 Run cell 1 and cell 2 in the usual way by pressing Shift + Enter.
2.	 Run cell 3 by pressing Ctrl + Enter instead.

Notice that cell 3 continues to be selected after being executed. Keep pressing  
Ctrl + Enter while having cell 3 selected. The plot will be updated each time to 
display the return on the investment for a different 5-year period.

This is how the code works:

•	 In cell 1, we defined a function that computes the return on investment for 
given principal, interest rate, and number of years.
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•	 In cell 2, we set actual values for the principal and interest, and then initialized 
variables to define the period for which we want to do the computation.

•	 Cell 3 computed the amount returned for a period of 5 years and plotted  
the results.

•	 Then, the variables tstart and tend were updated. The command lines  
are as follows:

tstart += tend

tend += tend

The effect is that, the next time the cell gets updated, time advances to the next  
5-year period. So, by repeatedly pressing Ctrl + Enter, we can quickly see how  
the investment grows in successive 5-year periods.

There is a third way to run commands in a cell. Select cell 2 again by clicking on it. 
Then, press Alt + Enter in Windows or Option + Enter on a Mac. This will run cell 2 
and insert a new cell under it. Leave the new cell alone for a while. We don't really 
need that cell, and we will learn how to delete it in the next subsection.

So, there are three ways to run the contents of a cell:

•	 Pressing Shift + Enter or the Play button on the toolbar. This will run the  
cell and select the next cell (create a new cell if at the end of the notebook). 
This is the most usual way to execute a cell.

•	 Pressing Ctrl + Enter. This will run the cell and keep the same cell selected. 
It's useful when we want to repeatedly execute the same cell. For example,  
if we want to make modifications to the existing code.

•	 Pressing Alt + Enter. This will run the cell and insert a new cell immediately 
below it.

Another useful feature of the Edit mode is tab completion. Select an empty cell and 
type the following command:

print am

Then, press the Tab key. A list of suggested completions appears. Using the arrow 
keys of the keyboard or the mouse, we can select amount_values and then press 
Enter to accept the completion.

A very important feature of IPython is easy access to help information. Click on an 
empty cell and type:

linspace
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Then, press Shift + Tab. A tooltip containing information about the linspace 
function will appear. More information can be obtained by clicking on the + symbol 
at the top-right of the tooltip window. By clicking on the ^ symbol, the information  
is displayed in an information area at the bottom of the notebook.

The Tab and Shift + Tab features are the most useful ones of the 
notebook; be sure to use them often!

The Command mode
The number of shortcuts available in the Command mode is substantially larger  
than those available in the Edit mode. Fortunately, it is not necessary to memorize  
all of them at once, since most actions in the Command mode are also available  
in the menu. In this section, we will only describe some common features of the 
Command mode. The following table lists some of the useful shortcuts for editing 
cells; the other shortcuts will be described later:

Shortcut Action
Enter Activates the Edit mode
Esc Activates the Command mode
H Displays the list of keyboard shortcuts
S or Ctrl + S Saves the notebook
A Inserts a cell above
B Inserts a cell below
D (press twice) Deletes the cell
Z Undoes the last delete
Ctrl + K Moves the cell up
Ctrl + J Moves the cell down
X Cuts the content of the cell
C Copies the content of the cell
V Pastes the content of the cell below the current cell
Shift + V Pastes the content of the cell above the current cell

One of the most common (and frustrating) mistakes when using the 
notebook is to type something in the wrong mode. Remember to use Esc 
to switch to the Command mode and Enter to switch to the Edit mode. 
Also, remember that clicking on a cell automatically places it in the Edit 
mode, so it will be necessary to press Esc to go to the Command mode.
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Go ahead and try some of the editing shortcuts in the sample notebook. Here is one 
example that you can try:

1.	 Press Esc to go to the Command mode.
2.	 Use the arrow keys to move to the empty cell we created between cell 2  

and cell 3 in the previous subsection.
3.	 Press D twice. This will cause the cell to be deleted. To get the cell back,  

press Z.

Notice that some of the shortcuts do not conform to the usual shortcuts 
in other software. For example, the shortcuts for cutting, copying, and 
pasting cells are not preceded by the Ctrl key.

Cell types
So far, we have used the notebook cells only to enter code. We can, however, use  
cells to enter the explanatory text and give structure to the notebook. The notebook 
uses the Markdown language to allow easy insertion of rich text in a cell. Markdown 
was created by John Gruber for plain text editing of HTML. See the project page  
at http://daringfireball.net/projects/markdown/basics for the basics of  
the syntax.

Let's see how it works in the notebook. If you created any other cells to experiment 
with the keyboard shortcuts in the previous section, delete them now so that the 
notebook only has the %pylab inline cell and the three cells where the interest 
computation is done.

Click on the %pylab inline cell and insert a cell right below it. You can either  
use the menu, or go to the Command mode (using the Esc key) and use the  
shortcut key B.

We now want to convert the new cell type to Markdown. There are three ways  
to do that. Start by clicking on the cell to select it, and then perform one of the 
following steps:

•	 Click on the notebook menu item Cell, select Cell Type, and then click  
on Markdown as shown in the following screenshot

•	 Select Markdown from the drop-down box on the notebook's toolbar
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•	 Go to the Command mode by pressing Esc and then press M

Notice that once the cell is converted to Markdown, it is automatically in the Edit 
mode. Now, enter the following in the new Markdown cell (be careful to leave an 
extra blank line where indicated):

We want to know how an investment grows with a fixed interest.

The *compound interest* formula states that:
$$R = Pe^{rt}$$
where:

- $P$ is the principal (initial investment).
- $r$ is the annual interest rate, as a decimal.
- $t$ is the time in years.
- $e$ is the base of natural logarithms.
- $R$ is the total return after $t$ years (including principal)

For details, see the [corresponding Wikipedia entry](http://
en.wikipedia.org/wiki/Compound_interest).

We start by defining a Python function that implements this formula.
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After the text is entered, press Shift + Enter to execute the cell. Instead of using the 
IPython interpreter to evaluate the cell, the notebook runs it through the Markdown 
interpreter and the cell is rendered using HTML, producing the output displayed in 
the following screenshot:

In this example, we use the following Markdown features:

•	 Text is entered normally and a new paragraph is indicated by letting an  
extra blank line within the text.

•	 Italics are indicated by enclosing the text between asterisks, as in  
*compound interest*.

•	 Formulae enclosed in double dollar ($$) signs, as in $$R = Pe^{rt}$$,  
are displayed centered in the page.

•	 An unordered list is indicated by lines starting with a dash (-). It is  
important to leave blank lines before and after the list.

•	 A single dollar ($) sign causes the formula to be typeset inline.
•	 Hyperlinks are specified in the following format: [corresponding Wikipedia 

entry]( http://en.wikipedia.org/wiki/Compound_interest).

In a Markdown cell, mathematical formulae can be entered in LaTeX, which is an 
extensive language for technical typesetting that is beyond the scope of this book. 
Fortunately, we don't need to use the full-fledged formatting capabilities of LaTeX, 
but only the formula-editing features. A good quick introduction to LaTeX can be 
found at http://en.wikibooks.org/wiki/LaTeX/Mathematics. Learning a bit 
of LaTeX is very useful, since it is also used in other Python libraries. For instance, 
matplotlib allows LaTeX to be used in plot titles and axis labels. In the notebook, 
LaTeX is rendered by MathJax, a LaTeX interpreter implemented in JavaScript by 
Davide Cervone. Visit http://www.mathjax.org/ for details.
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To edit the contents of a Markdown cell once it has been displayed, 
simply double-click on the cell. After the edits are done, run the cell 
using Shift + Enter to render it again.

To add structure to the notebook, we can add headings of different sizes. Let's add  
a global heading to our notebook:

1.	 Add a new cell at the very top of the notebook and change its type to 
Heading 1. Recall that there are three alternatives to do this:

°° By navigating to Cell | Cell Type
°° Using the Cell Type dropdown on the toolbar
°° Using the keyboard shortcut 1 in the Command mode

2.	 Enter a title for the notebook and run the cell using Shift + Enter.

The notebook supports six heading sizes, from Heading 1 (the largest) to Heading 6 
(the smallest).

The Markdown language also allows the insertion of headings, using 
the hash (#) symbol. Even though this saves typing, we recommend 
the use of the Heading 1 to Heading 6 cells. Having the headings in 
separate cells keeps the structure of the notebook when it is saved. 
This structure is used by the nbconvert utility.

The following table summarizes the types of cells we considered so far:

Cell type Command mode shortcuts Use
Code Y This allows you to edit and write new code 

to the IPython interpreter. The Default 
language is Python.

Markdown M This allows you to write an explanatory text.
Heading 1 to 
Heading 6

Keys 1 to 6 This allows you to structure the document 

Raw 
NBConvert

R The content of this cell remains unmodified 
when the notebook is converted to a 
different format
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IPython magics
Magics are special instructions to the IPython interpreter that perform specialized 
actions. There are two types of magics:

•	 Line-oriented: This type of magics start with a single percent (%) sign
•	 Cell-oriented: This type of magics start with double percent (%%) signs

We are already familiar with one of the magic command, that is, %pylab inline. 
This particular magic does two of the following things: it imports NumPy and 
matplotlib, and sets up the notebook for inline plots. To see one of the other 
options, change the cell to %pylab.

Run this cell and then run the cell that produces the plot again. Instead of drawing 
the graph inline, IPython will now open a new window with the plot as shown in  
the following screenshot:

This window is interactive and you can resize the graph, move it, and save it to a  
file from here.
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Another useful magic is %timeit, which records the time it takes to run a line of 
Python code. Run the following code in a new cell in the notebook:

%timeit return_on_investment(principal, interest_rate, tvalues)

The output will be something like this:

100000 loops, best of 3: 3.73 µs per loop

To obtain a better estimate, the command is run 10,000 times and the runtime is 
averaged. This is done three times and the best result is reported.

The %timeit magic is also available in the Edit mode. To demonstrate this, run the 
following command in a cell:

principal = 250

interest_rates = [0.0001 * i for i in range(100000)]

tfinal = 10

In the next cell, run the following command:

%%timeit

returns = []

for r in interest_rates:

    returns.append(return_on_investment(principal, r, tfinal))

The preceding code computes a list with the returns for 100,000 different values of 
the interest rate, but uses plain Python code only. The reported time for this code is 
displayed in the following output:

10 loops, best of 3: 31.6 ms per loop

Let's now rewrite the same computation using NumPy arrays. Run the following 
command in a cell:

principal = 250

interest_rates = arange(0, 10, 0.0001)

tfinal = 10

In the next cell, run the following command:

%%timeit

returns = return_on_investment(principal, interest_rates, tfinal)

Now, the runtime is displayed in the following output:

100 loops, best of 3: 5.53 ms per loop
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When comparing the two outputs, we can see the speed gain obtained using NumPy.

To list all magics that are available, run the following command in a cell:

%lsmagic

Once you have the list of all magics, you can inquire about a particular one by 
running a cell with the magic name appended by a question mark: %pylab?.

This will display the information about the %pylab magic in a separate window  
at the bottom of the browser.

Another interesting feature is the capability to run code that is written in other 
languages. Just to illustrate the possibilities, we'll see how to accelerate the code 
using Cython, because Cython compiles Python code into C. Let's write a function 
that computes approximations of areas bounded by a sine curve. Here is how we 
could define the function in pure Python:

import math

def sin_area(a, b, nintervals):

    dx = (b-a)/nintervals

    sleft = 0.0

    sright = 0.0

    for i in range(nintervals):

        sleft += math.sin(a + i * dx)

        sright += math.sin(a + (i + 1) * dx)

    return dx * (sright + sleft) / 2 

We will approximate the area by taking the average of the left and right endpoint 
rules (which is equivalent to the Trapezoidal rule). The code is admittedly inefficient 
and unpythonic. Notice in particular that we use the Python library version of the 
sin() function, instead of the NumPy implementation. The NumPy implementation,  
in this case, actually yields a slower code due to the repeated conversions between 
lists and arrays.

To run a simple test, execute the following command in a cell:

sin_area(0, pi, 10000)

We get the following output after running the preceding cell:

1.9999999835506606

The output makes sense, since the actual value of the area is 2. Let's now time the 
execution using the following command:

%timeit sin_area(0, pi, 10000)
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We will get the following output:

100 loops, best of 3: 3.7 ms per loop

Let's now implement the same function in Cython. Since the Cython magic is in  
an extension module, we need to load that module first. We will load the extension 
module using the following command:

%load_ext cythonmagic

Now, we will define the Cython function. We will not discuss the syntax in detail, 
but notice that it is pretty similar to Python (the main difference in this example is 
that we must declare the variables to specify their C type):

%%cython

cimport cython

from libc.math cimport sin

@cython.cdivision(True)

def sin_area_cython(a, b, nintervals):

    cdef double dx, sleft, sright

    cdef int i

    dx = (b-a)/nintervals

    sleft = 0.0

    sright = 0.0

    for i in range(nintervals):

        sleft += sin(a + i * dx)

        sright += sin(a + (i + 1) * dx)

    return dx * (sright + sleft) / 2

Test the preceding function using the following command:

sin_area_cython(0, pi, 10000)

After running the preceding function, we get the same output as earlier:

1.9999999835506608

Let's now time the function using the following command:

%timeit sin_area_cython(0, pi, 10000)

The runtime is displayed in the following output:

1000 loops, best of 3: 1.12 ms per loop
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We see that the Cython code runs in about 30 percent of the total time taken by  
the Python code. It is important to emphasize that this is not the recommended  
way to speed up this code. A simpler solution would be to use NumPy to vectorize  
the computation:

def sin_area_numpy(a, b, nintervals):

    dx = (b - a) / nintervals

    xvalues = arange(a, b, dx)

    sleft = sum(sin(xvalues))

    sright = sum(sin(xvalues + dx))

    return dx * (sleft + sright) / 2

The time after running the preceding code is displayed in the following output:

1000 loops, best of 3: 248 µs per loop

There is a lesson here; when we try to speed up the code, the first thing to try is to 
always write it using NumPy arrays, taking the advantage of vectorized functions.  
If further speedups are needed, we can use specialized libraries such as Numba  
and NumbaPro (which will be discussed later in this book) to accelerate the code.  
In fact, these libraries provide a simpler approach to compile the code into C than 
using Cython directly.

Interacting with the operating system
Any code with some degree of complexity will interact with the computer's operating 
system when files must be opened and closed, scripts must be run, or online data  
must be accessed. Plain Python already has a lot of tools to access these facilities,  
and IPython and the notebook add another level of functionality and convenience.

Saving the notebook
The notebook is autosaved in periodic intervals. The default interval is 2 minutes, 
but this can be changed in the configuration files or using the %autosave magic. For 
example, to change the autosave interval to 5 minutes, run the following command:

%autosave 300

Notice that the time is entered in seconds. To disable the autosave feature, run the 
following command:

%autosave 0
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We can also save the notebook using the File menu or by clicking on the disk icon  
on the toolbar. This creates a checkpoint. Checkpoints are stored in a hidden folder 
and can be restored from the File menu. Notice that only the latest checkpoint is 
made available.

Notebooks are saved as plain text files with the .ipynb extension, using JSON. 
JSON is a format widely used for information exchange in web applications, and is 
documented in http://www.json.org/. This makes it easy to exchange notebooks 
with other people: simply give them the .ipynb file, and it can then be copied to  
the appropriate working directory. The next time the notebook server is opened 
in that directory, the new notebook will be available (or the directory list can be 
refreshed from the dashboard). Also, since JSON is in a plain text format, it can  
be easily versioned.

Converting the notebook to other formats
Notebooks can be converted to other formats using the nbconvert utility. This is 
a command-line utility. So, to use it, open a terminal window in the directory that 
contains your notebook files.

Windows users can press Shift and right-click on the name of the 
directory that contains the notebook files and then select Open 
command window here.

Open a shell window and enter the following line:

ipython nbconvert "Chapter 2.ipynb"

You must, of course, replace Chapter 2.ipynb with the name of the file that 
contains your notebook. The file name must be enclosed by quotes.

The preceding command will convert the notebook to a static HTML page that  
can be directly placed in a web server.

An alternative way to publish notebooks on the Web is to use the site 
http://nbviewer.ipython.org/.

It is also possible to create a slideshow with nbconvert using the following command:

ipython nbconvert "Chapter 2.ipynb" --to slides
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However, to get a decent presentation, we must first specify its structure in the 
notebook. To do so, go to the notebook and select Slide show on the Cell toolbar 
drop-down list. Then, determine for each cell if it should be a slide, a sub-slide,  
or a fragment.

To view the slide show, you need to install the reveal.js file in the same directory 
as the web page containing the presentation. You can download this file from 
https://github.com/hakimel/reveal.js. If necessary, rename the directory  
that contains all the files to reveal.js. We are then ready to open the HTML file  
that contains the presentation.

It is also possible to convert notebooks to LaTeX and PDF. However, this requires  
the installation of packages not included in Anaconda.

Running shell commands
We can run any shell command from the notebook by starting a cell with an 
exclamation (!) mark. For example, to obtain a directory listing in Windows,  
run the following command in a cell:

!dir

The equivalent command in Linux or OS X is the following:

!ls

You can enter command lines of any complexity in the cell. For example, the 
following line would compile the famous "Hello, world!" program every student  
of C has to try:

!cc hello.c –o hello

Of course, this will not run correctly in your computer unless you have the C 
compiler, cc, installed and the hello.c file with the proper code.

Instead of using shell commands directly, a lot of the same functionality is provided 
by magic commands. For example, a directory listing (in any operating system) is 
obtained by running the following command:

%ls
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The following table shows a list of some of the most commonly used magics to 
interact with the system:

Magic Purpose
%cd Changes the directory
%pwd Prints the current directory
%ls Lists the current directory contents
%mkdir Creates a new directory
%rmdir Removes a directory
%echo Prints a string
%alias Creates an alias

The %echo magic is frequently used to print values of environment variables.  
For example, to print the contents of the PATH environment variable in Windows,  
run the following command:

%echo %PATH%

In Linux or OS X, use the following command:

%echo $PATH

The %alias magic creates an alias for frequently used commands. For example,  
to define a macro that displays the PATH value in Windows, execute the  
following command:

%alias show_path echo %PATH%

In Linux or OS X, use the following command:

%alias show_path echo $PATH

After the preceding command is defined, we can run the following command  
to display the path:

show_path

To make entering commands even easier, a feature called automagic allows  
line-oriented magics to be entered without the % symbol (as shown in the  
preceding command). For example, to create a directory, we can simply  
enter the following command:

mkdir my-directory



Chapter 2

[ 41 ]

If we change our mind, we can remove the directory using the following command:

rmdir my-directory

The automagic feature is controlled by the %automagic magic. For example, use the 
following command to turn automagic off:

%automagic off

Running scripts, loading data, and 
saving data
When working with projects of some complexity, it is common to have the need to 
run scripts written by others. It is also always necessary to load data and save results. 
In this section, we will describe the facilities that IPython provides for these tasks.

Running Python scripts
The following Python script generates a plot of a solution of the Lorenz equations,  
a famous example in the theory of chaos. If you are typing the code, do not type it  
in a cell in the notebook. Instead, use a text editor and save the file with the name 
lorenz.py in the same directory that contains the notebook file. The code is as follows:

import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from mpl_toolkits.mplot3d import Axes3D

def make_lorenz(sigma, r, b):
    def func(statevec, t):
        x, y, z = statevec
        return [ sigma * (y - x),
                 r * x - y - x * z,
                 x * y - b * z ]
    return func
    
lorenz_eq = make_lorenz(10., 28., 8./3.)
 
tmax = 50
tdelta = 0.005
tvalues = np.arange(0, tmax, tdelta) 
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ic = np.array([0.0, 1.0, 0.0])
sol = odeint(lorenz_eq, ic, tvalues)

x, y, z = np.array(zip(*sol))

fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(111, projection='3d')
ax.plot(x, y, z, lw=1, color='red')
ax.set_xlabel('$x$')
ax.set_ylabel('$y$')
ax.set_zlabel('$z$')
plt.show()

Now, go to the notebook and run a cell using the following command:

%run lorenz.py

This will run the script and produce a plot of the solution, as shown in the  
following figure:
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The %run magic executes the script in the notebook's namespace so that all global 
variables, functions, and classes defined in the script are made available in the 
current notebook.

It is also possible to use the %load magic for the same purpose:

%load lorenz.py

The difference is that %load does not immediately run the script, but places its 
code in a cell. It can then be run from the cell it was inserted in. A slightly annoying 
behavior of the %load magic is that it inserts a new cell with the script code even 
if there already is one from a previous use of %load. The notebook has no way of 
knowing if the user wants to overwrite the code in the existing cell, so this is the 
safest behavior. However, unwanted code must be deleted manually.

The %load magic also allows code to be loaded directly from the web by providing  
a URL as input:

%load http://matplotlib.org/mpl_examples/pylab_examples/boxplot_demo2.py

This will load the code for a box plot example from the matplotlib site to a cell.  
To display the image, the script must be run in the cell.

Running scripts in other languages
We can also run scripts written in other languages directly in the notebook.  
The following table contains some of the supported languages:

Cell magic Language
%%HTML or %%html HTML
%%SVG or %%svg Scaled Vector Graphics Language (SVGL)
%%bash The Bash scripting language, which is available in 

Unix-like systems such as Ubuntu and Mac OS X
%%cmd MS Windows command-line language
%%javascript JavaScript
%%latex LaTeX, the scientific-oriented document preparation 

language
%%perl The PERL scripting language
%%powershell The MS Windows PowerShell language
%%python2 or %%python3  Run a script written in a version of Python different 

than the one the notebook is running
%%ruby The Ruby scripting language
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Now, let's see some examples of scripts in some of these languages. Run the 
following code in a cell:

%%SVG

<svg width="400" height="300">

    <circle  cx="200" cy="150" r="100"

        style="fill:Wheat; stroke:SteelBlue; stroke-width:5;"/>

    <line x1="10" y1="10" x2="250" y2="85"

        style="stroke:SlateBlue; stroke-width:4"/>

    <polyline points="20,30 50,70 100,25 200,120"

        style="stroke:orange; stroke-width:3; 

               fill:olive; opacity:0.65;"/>

    <rect x="30" y="150" width="120" height="75"

        style="stroke:Navy; stroke-width:4; fill:LightSkyBlue;"/>

    <ellipse cx="310" cy="220" rx="55" ry="75"

        style="stroke:DarkSlateBlue; stroke-width:4;

               fill:DarkOrange; fill-opacity:0.45;"/>

    <polygon points="50,50 15,100 75,200 45,100"

        style="stroke:DarkTurquoise; stroke-width:5; fill:Beige;"/>

</svg>

This displays a graphic composition with basic shapes, described using SVG.  
SVG is an HTML standard, so this code will run in modern browsers that  
support the standard.

To illustrate the use of JavaScript, let's first define (in a computation cell) an HTML 
element that can be easily accessed:

%%html

<h1 id="hellodisplay">Hello, world!</h1>

Run this cell. The message "Hello, world!" in the size h1 is displayed. Then enter the 
following commands in another cell:

%%javascript

element = document.getElementById("hellodisplay")

element.style.color = 'blue'
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When the second cell is run, the color of the text of the "Hello, world!" message 
changes from black to blue.

The notebook can actually run any scripting language that is installed in your 
system. This is done using the %%script cell magic. As an example, let's run some 
code in the Julia scripting language. Julia is a new language for technical computing 
and can be downloaded from http://julialang.org/. The following example 
assumes that Julia is installed and can be accessed with the julia command (this 
requires that the executable for the language interpreter is in the operating system's 
path). Enter the following code in a cell and run it:

%%script julia

function factorial(n::Int)

    fact = 1

    for k=1:n

      fact *= k

    end

    fact

end

println(factorial(10))

The preceding code defines a function (written in julia) that computes the factorial 
of an integer, and then prints the factorial of 10. The following output is produced:

factorial (generic function with 1 method)

3628800

The first line is a message from the julia interpreter and the second is the factorial 
of 10.

Loading and saving data
The manner in which data is loaded or saved is dependent on both the nature of 
the data and the format expected by the application that is using the data. Since it's 
impossible to account for all combinations of data structure and application, we will 
only cover the most basic methods of loading and saving data using NumPy in this 
section. The recommended way to load and save structured data in Python is to use 
specialized libraries that have been optimized for each particular data type. When 
working with tabular data, for example, we can use pandas, as described in Chapter 
4, Handling Data with pandas.
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A single array can be saved with a call to the save() function of NumPy. Here is  
an example:

A = rand(5, 10)

print A

save('random_array.npy', A)

This code generates an array of random values with five rows and 10 columns,  
prints it, and then saves it to a file named random_array.npy. The .npy format is 
specific for NumPy arrays. Let's now delete the variable containing the array using  
the following command:

del A

A

Running a cell with the preceding commands will produce an error, since we request 
the variable A to be displayed after it has been deleted. To restore the array, run the 
following command in a cell:

A = load('random_array.npy')

A

It is also possible to save several arrays to a single compressed file, as shown in the 
following example:

xvalues = arange(0.0, 10.0, 0.5)

xsquares = xvalues ** 2

print xvalues

print xsquares

savez('values_and_squares.npz', values=xvalues, squares=xsquares)

Notice how keyword arguments are given to specify names for the saved arrays in 
disk. The arrays are now saved to a file in the .npz format. The data can be recovered 
from disk using the load() function, which can read files in both formats used by 
NumPy:

my_data = load('values_and_squares.npz')

If the file passed to load() is of the .npz type, the returned value is an object of the 
NpzFile type. This object does not read the data immediately. Reading is delayed to 
the point where the data is required. To figure out which arrays are stored in the file, 
execute the following command in a cell:

my_data.files



Chapter 2

[ 47 ]

In our example, the preceding command produces the following output:

['squares', 'values']

To assign the arrays to variables, use the Python dictionary access notation as follows:

xvalues = my_data['values']

xsquares = my_data['squares']

plot(xvalues, xsquares)

The preceding code produces the plot of half of a parabola:

The rich display system
In an exciting development, recent versions of IPython include the capability to 
display images, video, sound, and other media directly in the notebook. The classes 
that support the display system are in the IPython.display module. In this section, 
we will discuss some of the supported formats.

Images and YouTube videos
Images can be loaded either from the local filesystem or from the web. To display  
the image contained in the character.png file, for example, run the following 
command in a cell:

from IPython.display import Image

Image('character.png')
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It is also possible to store the image in a variable to be displayed at a later time:

img = Image('character.png')

The character.png file can be downloaded from the web page of this book.

To display the image, we can use either img or display(img). The following image 
is displayed:

To load an image from the Web, simply give its URL as an argument:

Image('http://www.imagesource.com/Doc/IS0/Media/TR5/7/7/f/4/IS09A9H4K.
jpg')

The preceding command line loads the image of a flower:

By default, images are embedded in the notebook so that they can be viewed offline. 
To insert a link to the image, use the following command:

Image('http://www.imagesource.com/Doc/IS0/Media/TR5/7/7/f/4/IS09A9H4K.
jpg', embed=False)
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The image will be displayed as shown in the preceding example, but this time only 
a link to the image is inserted in the notebook. This results in a smaller size for the 
notebook file, but there is a caveat! If the image is changed online, the change will  
be reflected in the notebook.

It is also very easy to embed video directly from YouTube. The following code 
displays a beautiful animation of the Mandelbrot set:

from IPython.display import YouTubeVideo

YouTubeVideo('G_GBwuYuOOs')

HTML
To finish this section, we present an extended example using IPython's capability  
to display HTML. The goal of the example is to build and display an HTML table  
of mathematical curves. We start by generating the plots and saving them to disk:

%matplotlib

xvalues = linspace(-pi,pi,200)

fcts = [('sin', sin), ('cos', cos), ('exp', exp)]

for fctname, fct in fcts:

    yvalues = fct(xvalues)

    fig=figure()

    ax = fig.add_subplot(1,1,1)

    ax.plot(xvalues, yvalues, color='red')

    ax.set_xlabel('$x$')

    strname = '$\\%s(x)$' % fctname

    ax.set_ylabel(strname)

    fig.savefig(fctname + '.png')

The cell starts with the %matplotlib magic with no arguments, since we don't want 
the graphics to be inserted online (they will still be generated in an external viewer). 
We then define the fcts list holding the curves we want to plot. Each curve is 
specified by a tuple with two elements: the name of a function and the actual object 
representing the function. Then, the plots are generated in a loop. The Python code 
here is somewhat more complex than what we have seen so far, and the matplotlib 
functions used will be explained in detail in the next chapter. For now, just notice  
the call at the end of the cell:

fig.savefig(fctname + '.png')
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The preceding command saves the figure file to the disk, using the .png format.

Next, we generate the HTML to create the table and store it in the html_string 
variable as follows:

html_string = '<table style="padding:20px">\n'

for fctname, fct in fcts:

    strname = strname = '$\\%s(x)$' % fctname

    filename = fctname + '.png'

    html_string += '<tr>\n'

    html_string += '<td style="width:80px;">%s</td>\n' % strname

    html_string += '<td style="width:500px;">'

    html_string += '<img src="%s">' % filename

    html_string += '</td>\n'

    html_string += '</tr>\n'

    html_string += '</table>\n'

The HTML code is generated one piece at a time. We start by adding the <table> 
element in the first line of the cell. Then, in the loop, we generate one row of the  
table per iteration. To make the code more readable, we add only one HTML  
element in each line of code.

We can then print the HTML we generated to check if it is correct:

print html_string

The preceding command produces the following output:

<table style="padding:20px">

<tr>

<td style="width:80px;">$\sin(x)$</td>

<td style="width:500px;"><img src="sin.png"></td>

</tr>

<tr>

<td style="width:80px;">$\cos(x)$</td>

<td style="width:500px;"><img src="cos.png"></td>

</tr>

<tr>

<td style="width:80px;">$\exp(x)$</td>

<td style="width:500px;"><img src="exp.png"></td>

</tr>

</table>
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This seems to be correct, so we are ready to render the HTML:

from IPython.display import HTML

HTML(html_string)

If all is correct, the following table of curves will be displayed:

At the end of the example, don't forget to run the following command to restore the 
inline graphics:

%matplotlib inline

The IPython HTML display object is extremely powerful, as shown in the preceding 
example. HTML5-rich media, such as sound and video, can also be embedded; 
although, the support for all formats currently varies from browser to browser.
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Summary
In this chapter, we went through a comprehensive tour of the IPython Notebook 
Interface. We covered features that are used daily when working with the notebook, 
such as navigation, magics, interacting with the operating system, running scripts, 
and loading and saving data. We finished with a discussion of how to display richly 
formatted data in the notebook.

In the next chapter, you will learn how to use the matplotlib library to produce 
presentation-quality scientific graphs and data displays, with an emphasis on 
interactive graphs.



Graphics with matplotlib
This chapter explores matplotlib, an IPython library for production of  
publication-quality graphs. In this chapter, the following topics will be discussed:

•	 Two-dimensional plots using the plot function and setting up line widths, 
colors, and styles

•	 Plot configuration and annotation
•	 Three-dimensional plots
•	 Animations

Being an IPython library, matplotlib consists of a hierarchy of classes, and it  
is possible to code using it in the usual object-oriented style. However, matplotlib  
also supports an interactive mode. In this mode, the graphs are constructed  
step-by-step, thus adding and configuring each component at a time. We lay 
emphasis on the second approach since it is designed for the rapid production  
of graphs. The object-oriented style will be explained whenever it is needed or  
leads to better results.

The sense in which the word interactive is used in this context 
is somewhat different from what is understood today. Graphs 
produced by matplotlib are not interactive in the sense that the 
user can manipulate the graphs once they have been rendered 
in the notebook. Instead, the terminology comes from the time 
when matplotlib was used mostly in command-line mode, and 
each new line of code modified the existing plots. Curiously, the 
software that was the original inspiration for matplotlib still uses 
a command line-based interface.
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The plot function
The plot() function is the workhorse of the matplotlib library. In this section, we 
will explore the line-plotting and formatting capabilities included in this function.

To make things a bit more concrete, let's consider the formula for logistic growth,  
as follows:

This model is frequently used to represent growth that shows an initial exponential 
phase, and then is eventually limited by some factor. The examples are the population 
in an environment with limited resources and new products and/or technological 
innovations, which initially attract a small and quickly growing market but eventually 
reach a saturation point.

A common strategy to understand a mathematical model is to investigate how it 
changes as the parameters defining it are modified. Let's say, we want to see what 
happens to the shape of the curve when the parameter b changes. 

To be able to do what we want more efficiently, we are going to use a function 
factory. This way, we can quickly create logistic models with arbitrary values  
for r, a, b, and c. Run the following code in a cell:

def make_logistic(r, a, b, c):

    def f_logistic(t):

        return a / (b + c * exp(-r * t))

    return f_logistic

The function factory pattern takes advantage of the fact that functions are  
first-class objects in Python. This means that functions can be treated as regular 
objects: they can be assigned to variables, stored in lists in dictionaries, and play  
the role of arguments and/or return values in other functions.

In our example, we define the make_logistic() function, whose output is itself a 
Python function. Notice how the f_logistic() function is defined inside the body  
of make_logistic() and then returned in the last line.

Let's now use the function factory to create three functions representing logistic 
curves, as follows:

r = 0.15

a = 20.0

c = 15.0
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b1, b2, b3 = 2.0, 3.0, 4.0

logistic1 = make_logistic(r, a, b1, c)

logistic2 = make_logistic(r, a, b2, c)

logistic3 = make_logistic(r, a, b3, c)

In the preceding code, we first fix the values of r, a, and c, and define three 
logistic curves for different values of b. The important point to notice is that 
logistic1, logistic2, and logistic3 are functions. So, for example, we can use 
logistic1(2.5) to compute the value of the first logistic curve at the time 2.5.

We can now plot the functions using the following code:

tmax = 40

tvalues = linspace(0, tmax, 300)

plot(tvalues, logistic1(tvalues)) 

plot(tvalues, logistic2(tvalues)) 

plot(tvalues, logistic3(tvalues))

The first line in the preceding code sets the maximum time value, tmax, to be 40. 
Then, we define the set of times at which we want the functions evaluated with  
the assignment, as follows:

tvalues = linspace(0, tmax, 300)

The linspace() function is very convenient to generate points for plotting. The 
preceding code creates an array of 300 equally spaced points in the interval from 0 
to tmax. Note that, contrary to other functions, such as range() and arange(), the 
right endpoint of the interval is included by default. (To exclude the right endpoint, 
use the endpoint=False option.)

After defining the array of time values, the plot() function is called to graph the 
curves. In its most basic form, it plots a single curve in a default color and line style. 
In this usage, the two arguments are two arrays. The first array gives the horizontal 
coordinates of the points being plotted, and the second array gives the vertical 
coordinates. A typical example will be the following function call:

plot(x,y)

The variables x and y must refer to NumPy arrays (or any Python iterable values  
that can be converted into an array) and must have the same dimensions. The  
points plotted have coordinates as follows:

x[0], y[0]

x[1], y[1]

x[2], y[2]

…
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The preceding command will produce the following plot, displaying the three 
logistic curves:

You may have noticed that before the graph is displayed, there is a line of text  
output that looks like the following:

[<matplotlib.lines.Line2D at 0x7b57c50>]

This is the return value of the last call to the plot() function, which is a list (or with 
a single element) of objects of the Line2D type. One way to prevent the output from 
being shown is to enter None as the last row in the cell. Alternatively, we can assign 
the return value of the last call in the cell to a dummy variable:

_dummy_ = plot(tvalues, logistic3(tvalues))

The plot() function supports plotting several curves in the same function call.  
We need to change the contents of the cell that are shown in the following code  
and run it again:

tmax = 40

tvalues = linspace(0, tmax, 300)

plot(tvalues, logistic1(tvalues), 

     tvalues, logistic2(tvalues), 

     tvalues, logistic3(tvalues))

This form saves some typing but turns out to be a little less flexible when it comes 
to customizing line options. Notice that the text output produced now is a list with 
three elements:

[<matplotlib.lines.Line2D at 0x9bb6cc0>,

 <matplotlib.lines.Line2D at 0x9bb6ef0>,

 <matplotlib.lines.Line2D at 0x9bb9518>]
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This output can be useful in some instances. For now, we will stick with using one 
call to plot() for each curve, since it produces code that is clearer and more flexible.

Let's now change the line options in the plot and set the plot bounds. Change the 
contents of the cell to read as follows:

plot(tvalues, logistic1(tvalues), 

     linewidth=1.5, color='DarkGreen', linestyle='-') 

plot(tvalues, logistic2(tvalues), 

     linewidth=2.0, color='#8B0000', linestyle=':') 

plot(tvalues, logistic3(tvalues), 

     linewidth=3.5, color=(0.0, 0.0, 0.5), linestyle='--')

axis([0, tmax, 0, 11.])

None

Running the preceding command lines will produce the following plots:

The options set in the preceding code are as follows:

•	 The first curve is plotted with a line width of 1.5, with the HTML color  
of DarkGreen, and a filled-line style

•	 The second curve is plotted with a line width of 2.0, colored with the RGB 
value given by the hexadecimal string #8B0000, and a dotted-line style

•	 The third curve is plotted with a line width of 3.0, colored with the RGB 
components, (0.0, 0.0, 0.5), and a dashed-line style

Notice that there are different ways of specifying a fixed color: a HTML color name, 
a hexadecimal string, or a tuple of floating-point values. In the last case, the entries in 
the tuple represent the intensity of the red, green, and blue colors, respectively, and 
must be floating-point values between 0.0 and 1.0. A complete list of HTML name 
colors can be found at http://www.w3schools.com/html/html_colornames.asp.
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Line styles are specified by a symbolic string. The allowed values are shown in the 
following table:

Symbol string Line style
'-' Solid (the default)
'--' Dashed
':' Dotted
'-.' Dash-dot
'None', ' ', or '' Not displayed

After the calls to plot(), we set the graph bounds with the function call:

axis([0, tmax, 0, 11.])

The argument to axis() is a four-element list that specifies, in this order,  
the maximum and minimum values of the horizontal coordinates, and the  
maximum and minimum values of the vertical coordinates.

It may seem non-intuitive that the bounds for the variables are set after the plots 
are drawn. In the interactive mode, matplotlib remembers the state of the graph 
being constructed, and graphics objects are updated in the background after each 
command is issued. The graph is only rendered when all computations in the cell  
are done so that all previously specified options take effect. Note that starting a new 
cell clears all the graph data. This interactive behavior is part of the matplotlib.
pyplot module, which is one of the components imported by pylab.

Besides drawing a line connecting the data points, it is also possible to draw markers 
at specified points. Change the graphing commands indicated in the following code 
snippet, and then run the cell again:

plot(tvalues, logistic1(tvalues), 

     linewidth=1.5, color='DarkGreen', linestyle='-',

     marker='o', markevery=50, markerfacecolor='GreenYellow',

     markersize=10.0) 

plot(tvalues, logistic2(tvalues), 

     linewidth=2.0, color='#8B0000', linestyle=':',

     marker='s', markevery=50, markerfacecolor='Salmon',

     markersize=10.0)  

plot(tvalues, logistic3(tvalues), 

     linewidth=2.0, color=(0.0, 0.0, 0.5), linestyle='--',

     marker = '*', markevery=50, markerfacecolor='SkyBlue',

     markersize=12.0)

axis([0, tmax, 0, 11.])

None
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Now, the graph will look as shown in the following figure:

The only difference from the previous code is that now we added options to draw 
markers. The following are the options we use:

•	 The marker option specifies the shape of the marker. Shapes are given 
as symbolic strings. In the preceding examples, we use 'o' for a circular 
marker, 's' for a square, and '*' for a star. A complete list of available 
markers can be found at http://matplotlib.org/api/markers_api.
html#module-matplotlib.markers.

•	 The markevery option specifies a stride within the data points for the 
placement of markers. In our example, we place a marker after every 50  
data points.

•	 The markercolor option specifies the color of the marker.
•	 The markersize option specifies the size of the marker. The size is given  

in pixels.

There are a large number of other options that can be applied to lines in matplotlib. 
A complete list is available at http://matplotlib.org/api/artist_api.
html#module-matplotlib.lines.

Adding a title, labels, and a legend
The next step is to add a title and labels for the axes. Just before the None line,  
add the following three lines of code to the cell that creates the graph:

title('Logistic growth: a={:5.2f}, c={:5.2f}, r={:5.2f}'.format(a, c, r))

xlabel('$t$')

ylabel('$N(t)=a/(b+ce^{-rt})$')
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In the first line, we call the title() function to set the title of the plot. The argument 
can be any Python string. In our example, we use a formatted string:

title('Logistic growth: a={:5.2f}, b={:5.2f}, r={:5.2f}'.format(a, c, r)) 

We use the format() method of the string class. The formats are placed between 
braces, as in {:5.2f}, which specifies a floating-point format with five spaces and  
two digits of precision. Each of the format specifiers is then associated sequentially 
with one of the data arguments of the method. Some of the details of string formatting 
are covered in Appendix B, A Brief Review of Python, and the full documentation is 
available at https://docs.python.org/2/library/string.html.

The axis labels are set in the calls:

xlabel('$t$')

ylabel('$N(t)=a/(b+ce^{-rt})$')

As in the title() functions, the xlabel() and ylabel() functions accept any 
Python string. Note that in the '$t$' and '$N(t)=a/(b+ce^{-rt}$' strings, we use 
LaTeX to format the mathematical formulas. This is indicated by the dollar signs, 
$...$, in the string.

After the addition of a title and labels, our graph looks like the following:

Next, we need a way to identify each of the curves in the picture. One way to do  
that is to use a legend, which is indicated as follows:

legend(['b={:5.2f}'.format(b1),

        'b={:5.2f}'.format(b2),

        'b={:5.2f}'.format(b3)])



Chapter 3

[ 61 ]

The legend() function accepts a list of strings. Each string is associated with a curve in 
the order they are added to the plot. Notice that we are again using formatted strings.

Unfortunately, the preceding code does not produce great results. The legend, by 
default, is placed in the top-right corner of the plot, which, in this case, hides part  
of the graph. This is easily fixed using the loc option in the legend function,  
as shown in the following code:

legend(['b={:5.2f}'.format(b1),

        'b={:5.2f}'.format(b2),

        'b={:5.2f}'.format(b3)], loc='upper left')

Running this code, we obtain the final version of our logistic growth plot, as follows:

The legend location can be any of the strings: 'best', 'upper right', 'upper 
left', 'lower left', 'lower right', 'right', 'center left', 'center right', 
'lower center', 'upper center', and 'center'. It is also possible to specify the 
location of the legend precisely with the bbox_to_anchor option. To see how this 
works, modify the code for the legend as follows:

legend(['b={:5.2f}'.format(b1),

        'b={:5.2f}'.format(b2),

        'b={:5.2f}'.format(b3)],  bbox_to_anchor=(0.9,0.35))

Notice that the bbox_to_anchor option, by default, uses a coordinate system that 
is not the same as the one we specified for the plot. The x and y coordinates of the 
box in the preceding example are interpreted as a fraction of the width and height, 
respectively, of the whole figure. A little trial-and-error is necessary to place the 
legend box precisely where we want it. Note that the legend box can be placed 
outside the plot area. For example, try the coordinates (1.32,1.02).
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The legend() function is quite flexible and has quite a few other options that are 
documented at http://matplotlib.org/api/pyplot_api.html#matplotlib.
pyplot.legend.

Text and annotations
In this subsection, we will show how to add annotations to plots in matplotlib.  
We will build a plot demonstrating the fact that the tangent to a curve must be 
horizontal at the highest and lowest points. We start by defining the function 
associated with the curve and the set of values at which we want the curve to  
be plotted, which is shown in the following code:

f = lambda x:  (x**3 - 6*x**2 + 9*x + 3) / (1 + 0.25*x**2)

xvalues = linspace(0, 5, 200)

The first line in the preceding code uses a lambda expression to define the f() 
function. We use this approach here because the formula for the function is a  
simple, one-line expression. The general form of a lambda expression is as follows:

lambda <arguments> : <return expression>

This expression by itself creates an anonymous function that can be used in any 
place that a function object is expected. Note that the return value must be a single 
expression and cannot contain any statements.

The formula for the function may seem unusual, but it was chosen by trial-and-error 
and a little bit of calculus so that it produces a nice graph in the interval from 0 to 5. 
The xvalues array is defined to contain 200 equally spaced points on this interval.

Let's create an initial plot of our curve, as shown in the following code:

plot(xvalues, f(xvalues), lw=2, color='FireBrick')

axis([0, 5, -1, 8])

grid()

xlabel('$x$')

ylabel('$f(x)$')

title('Extreme values of a function')

None # Prevent text output

Most of the code in this segment is explained in the previous section. The only  
new bit is that we use the grid() function to draw a grid. Used with no arguments, 
the grid coincides with the tick marks on the plot. As everything else in matplotlib, 
grids are highly customizable. Check the documentation at http://matplotlib.
org/1.3.1/api/pyplot_api.html#matplotlib.pyplot.grid.
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When the preceding code is executed, the following plot is produced:

Note that the curve has a highest point (maximum) and a lowest point (minimum). These 
are collectively called the extreme values of the function (on the displayed interval, this 
function actually grows without bounds as x becomes large). We would like to locate 
these on the plot with annotations. We will first store the relevant points as follows:

x_min = 3.213

f_min = f(x_min)

x_max = 0.698

f_max = f(x_max)

p_min = array([x_min, f_min])

p_max = array([x_max, f_max])

print p_min

print p_max

The variables, x_min and f_min, are defined to be (approximately) the coordinates  
of the lowest point in the graph. Analogously, x_max and f_max represent the highest 
point. Don't be concerned with how these points were found. For the purposes of 
graphing, even a rough approximation by trial-and-error would suffice. In Chapter 5, 
Advanced Computing with SciPy, Numba, and NumbaPro, we will see how to solve this 
kind of problem accurately via SciPy. Now, add the following code to the cell that 
draws the plot, right below the title() command, as shown in the following code:

arrow_props = dict(facecolor='DimGray', width=3, shrink=0.05, 

              headwidth=7)

delta = array([0.1, 0.1])

offset = array([1.0, .85])
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annotate('Maximum', xy=p_max+delta, xytext=p_max+offset,

         arrowprops=arrow_props, verticalalignment='bottom',

         horizontalalignment='left', fontsize=13)

annotate('Minimum', xy=p_min-delta, xytext=p_min-offset,

         arrowprops=arrow_props, verticalalignment='top',

         horizontalalignment='right', fontsize=13)

Run the cell to produce the plot shown in the following diagram:

In the code, start by assigning the variables arrow_props, delta, and offset, 
which will be used to set the arguments in the calls to annotate(). The annotate() 
function adds a textual annotation to the graph with an optional arrow indicating 
the point being annotated. The first argument of the function is the text of the 
annotation. The next two arguments give the locations of the arrow and the text:

•	 xy: This is the point being annotated and will correspond to the tip of the 
arrow. We want this to be the maximum/minimum points, p_min and p_max, 
but we add/subtract the delta vector so that the tip is a bit removed from 
the actual point.

•	 xytext: This is the point where the text will be placed as well as the base  
of the arrow. We specify this as offsets from p_min and p_max using the 
offset vector.
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All other arguments of annotate() are formatting options:

•	 arrowprops: This is a Python dictionary containing the arrow properties.  
We predefine the dictionary, arrow_props, and use it here. Arrows can be 
quite sophisticated in matplotlib, and you are directed to the documentation 
for details.

•	 verticalalignment and horizontalalignment: These specify how the 
arrow should be aligned with the text.

•	 fontsize: This signifies the size of the text. Text is also highly configurable, 
and the reader is directed to the documentation for details.

The annotate() function has a huge number of options; for complete details of 
what is available, users should consult the documentation at http://matplotlib.
org/1.3.1/api/pyplot_api.html#matplotlib.pyplot.annotate for the  
full details.

We now want to add a comment for what is being demonstrated by the plot by 
adding an explanatory textbox. Add the following code to the cell right after the  
calls to annotate():

bbox_props = dict(boxstyle='round', lw=2, fc='Beige')

text(2, 6, 'Maximum and minimum points\nhave horizontal tangents', 

     bbox=bbox_props, fontsize=12, verticalalignment='top')

The text()function is used to place text at an arbitrary position of the plot. The first 
two arguments are the position of the textbox, and the third argument is a string 
containing the text to be displayed. Notice the use of '\n' to indicate a line break. 
The other arguments are configuration options. The bbox argument is a dictionary 
with the options for the box. If omitted, the text will be displayed without any 
surrounding box. In the example code, the box is a rectangle with rounded corners, 
with a border width of 2 pixels and the face color, beige.

As a final detail, let's add the tangent lines at the extreme points. Add the  
following code:

plot([x_min-0.75, x_min+0.75], [f_min, f_min],

     color='RoyalBlue', lw=3)

plot([x_max-0.75, x_max+0.75], [f_max, f_max],

     color='RoyalBlue', lw=3)
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Since the tangents are segments of straight lines, we simply give the coordinates of 
the endpoints. The reason to add the code for the tangents at the top of the cell is that 
this causes them to be plotted first so that the graph of the function is drawn at the 
top of the tangents. This is the final result:

The examples we have seen so far only scratch the surface of what is possible with 
matplotlib. The reader should read the matplotlib documentation for more examples.

Three-dimensional plots
In this section, we present methods to display three-dimensional plots, that is, plots 
of mathematical objects in space. Examples include surfaces and lines that are not 
confined to a plate.

matplotlib has excellent support for three-dimensional plots. In this section, we  
will present an example of a surface plot and corresponding contour plot. The  
types of plot available in the three-dimensional library include wireframe plots,  
line plots, scatterplots, triangulated surface plots, polygon plots, and several  
others. The following link will help you to understand the types of plots that  
are not treated here: http://matplotlib.org/1.3.1/mpl_toolkits/mplot3d/
tutorial.html#mplot3d-tutorial

Before we start, we need to import the three-dimensional library objects we need 
using the following command line:

from mpl_toolkits.mplot3d import axes3d
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Now, let's draw our surface plot by running the following code in a cell:

def dist(x, y):

    return sqrt(x**2 + y**2) 

def fsurface(x, y):

    d = sqrt(x**2 + y**2)

    c = 5.0

    r = 7.5

    return c - (d**4 - r * d**2)

xybound = 2.5

fig = figure(figsize=(8,8))

ax = subplot(1, 1, 1, projection='3d')

X = linspace(-xybound, xybound, 25)

Y = linspace(-xybound, xybound, 25)

X, Y = meshgrid(X, Y)

Z = fsurface(X,Y)

ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm,

                antialiased=True, linewidth=0.2)

ax.set_xlabel(r'$x$')

ax.set_ylabel(r'$y$')

ax.set_zlabel(r'$f(x,y)$')

None #Prevent text output

We start by specifying the fsurface() function, which defines the surface.  
The details of the function definition are not relevant; we will just note that  
this is a surface of revolution that has a dip at the center, surrounded by a ridge.  
We then start setting up the figure with the following lines of code:

fig = figure(figsize=(8,8))
ax = subplot(1, 1, 1, projection='3d')

This time, we specifically construct the Figure object because we want to specify its 
size explicitly. The size here is defined as an 8 x 8 inch square, but this is not quite 
accurate since the actual size of the figure will depend on the resolution of  
the display and the magnification factor of the browser. We then create a subplot  
and set its projection type to '3d'. The subplot() function will be treated with  
more detail later in this section.

Next, we will define the grid of points where the function is computed:

xybound = 2.5
x = linspace(-xybound, xybound, 25)
y = linspace(-xybound, xybound, 25)
X, Y = meshgrid(x, y)
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The most important point here is the use of the meshgrid() function, which is a  
part of the NumPy package. This function takes two one-dimensional arrays, with  
x and y values and computes two matrices that define the corresponding grid of 
points on the plane. To understand how this works, run the following code:

xx = [1,2,3]

yy = [4,5,6]

XX, YY = meshgrid(xx, yy)

print XX

print YY

The two matrices produced, XX and YY, are as follows:

•	 The XX matrix:
[[1 2 3]
 [1 2 3]
 [1 2 3]]

•	 The YY matrix:

[[4 4 4]
 [5 5 5]
 [6 6 6]]

Note that, if we take the elements of XX and the corresponding entries in YY, we get 
the set of points (1,4), (1,5), (1,6), (2,4),…, (3,5), (3,6), which are on a regularly spaced 
grid on the plane.

We are now ready to call the function that computes the surface and plot it:

Z = fsurface(X,Y)

ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm,

                antialiased=True, linewidth=0.2)

ax.set_xlabel(r'$x$')

ax.set_ylabel(r'$y$')

ax.set_zlabel(r'$f(x,y)$')

The first line computes the Z array, containing the z coordinates of the  
surface. This call makes heavy use of a feature of NumPy called broadcasting in  
the background. This is a set of rules that tells us how NumPy deals with operations  
for arrays with different sizes. For more information, see http://docs.scipy.org/
doc/numpy/user/basics.broadcasting.html.
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The next step is to call the plot_surface() method, which does the actual plotting. 
The first three arguments define the data being plotted, that is, the arrays X, Y, and Z. 
The cstride and rstride options can be used to skip points in the data arrays. Set 
these to values greater than 1 to skip points in the grid, in the event the data set is  
too large.

We are using a colormap feature specified by the cmap=cm.coolwarm option.  
The colormap feature tells matplotlib how to assign a color to each height in  
the plot. A large number of built-in colormaps are available. To see a complete  
list, run the following lines of code in a cell:

for key, value in cm.__dict__.items():

    if isinstance(value, matplotlib.colors.Colormap):

        print key

Note that three-dimensional surface plots are, by default, not antialiased, so we  
set the antialiased=True option in the code to produce a better image.

Let's now add a contour plot to the graph. We want the three-dimensional surface 
plot and the contour graph to appear side-by-side. To achieve that, modify the code 
in the cell to the following:

fig = figure(figsize(20,8))

ax1 = subplot(1, 2, 1, projection='3d')

X = linspace(-xybound, xybound, 100)

Y = linspace(-xybound, xybound, 100)

X, Y = np.meshgrid(X, Y)

Z = fsurface(X,Y)

ax1.plot_surface(X, Y, Z, rstride=5, cstride=5, cmap=cm.coolwarm,

                antialiased=True, linewidth=0.2)

ax1.set_xlabel(r'$x$')

ax1.set_ylabel(r'$y$')

ax1.set_zlabel(r'$f(x,y)$')

ax1.set_title('A surface plot', fontsize=18)

ax2 = subplot(1, 2, 2)

ax2.set_aspect('equal')

levels = arange(5, 20, 2.5)

cs = ax2.contour(X, Y, Z,

            levels,

            cmap=cm.Reds,

            linewidths=1.5)

cs.clabel(levels[1::2], fontsize=12)

ax2.set_title('Contour Plot', fontsize=18)
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The result of running the code is shown in the following figure:

Let's first concentrate on the contours() method. The first argument, levels, 
specifies the values (heights) for which the contours are plotted. This argument  
can be left out, and matplotlib will try to choose the heights in a way that makes 
sense. The other arguments are options for how to display the contours. We  
specify the colormap and line width in this example.

The clabel() method adds labels to the contours. The first argument, 
levels[1::2], specifies that every second contour is to be labeled.

Note the code that is used to place two axes in the same figure. The axes are  
defined by the following command lines:

ax1 = subplot(1, 2, 1, projection='3d')

ax2 = subplot(1, 2, 2)

The general form of the subplot() function is as follows:

subplot(nrows, ncols, axis_position, **kwargs)

This specifies an Axes object in an array with nrows rows and ncols columns.  
The position of the axis is an integer from 1 to nrows*ncols. The following  
figure illustrates how the axes are numbered in the case of a 3 x 2 array:
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The preceding image was generated with the help of the following command lines:

fig = figure(figsize=(5,6))

nrows = 3

ncols = 2

for i in range(nrows*ncols):

    ax = subplot(nrows, ncols, i+1, axisbg='Bisque')

    axis([0,10,0,5])

    text(1, 2.2, 'subplot({},{},{})'.format(nrows, ncols, i+1),

         fontsize=14, color='Brown')

After defining the figure size in the usual way, we set the number of rows and 
columns of the grid of axes we want to generate. Then, each of the Axes objects is 
created and configured in the loop. Look carefully at how the positions of the axes 
are identified. Note also that we show how to set the background color of the axes.

Animations
We will finish the chapter with a more complex example that illustrates the power that 
matplotlib gives us. We will create an animation of a forced pendulum, a well-known 
and much studied example of a dynamic system exhibiting deterministic chaos.
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Since this section involves more sophisticated code, we will refrain from using pylab  
and adopt the generally recommended way of importing modules. This makes the 
code easier to export to a script if we so wish. We also give samples of some of the 
object-oriented features of matplotlib.

The process of animating a pendulum (or any physical process) is actually very 
simple: we compute the position of the pendulum at a finite number of times and 
display the corresponding images in quick succession. So, the code will naturally 
break down into the following three pieces:

•	 A function that displays a pendulum in an arbitrary position
•	 Setting up the computation of the position of the pendulum at an  

arbitrary time
•	 The code that actually computes the position of the pendulum and  

displays the corresponding images

We start by importing all the modules and functions we need to set up the animation:

%matplotlib inline

import matplotlib.pyplot as plt

import numpy as np

import matplotlib.patches as patches

import matplotlib.lines as lines

from scipy.integrate import ode

from IPython.display import display, clear_output

import time

In the following code, we will define a function that draws a simple sketch of  
a pendulum:

def draw_pendulum(ax, theta, length=5, radius=1):

    v = length * np.array([np.sin(theta), -np.cos(theta)])

    ax.axhline(0.0, color='Brown', lw=5, zorder=0)

    rod = lines.Line2D([0.0, v[0]], [0.0, v[1]], 

                       lw=4, color='DarkGray', zorder=1)

    bob = patches.Circle(v, radius, 

                         fc='DodgerBlue', ec='DarkSlateGray', 

                         lw=1.5, zorder=3)

    peg = patches.Circle([0.0, 0.0], 0.3, 

                         fc='black', zorder=2)

    ax.add_patch(bob)

    ax.add_patch(peg)

    ax.add_line(rod)

    return ax
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This function takes as the first argument an Axes object. The other arguments are  
as follows:

•	 The angle, theta, of the pendulum with the vertical surface
•	 The length of the rod
•	 The radius of the bob

The preceding quantities are indicated in the following figure:

Then, we define a NumPy vector, v, which holds the position of the pendulum relative 
to the origin. The following statements define the objects to be drawn:

•	 ax.axhline(): This function draws a horizontal line across the plot
•	 rod: This is a lines.Line2D object (incidentally, this is the object that is  

used to draw most plots in matplotlib)
•	 bob and peg: These are objects of the patches.Circle type; matplotlib patches 

represent essentially any kind of object that can be placed in a figure

The following lines of code can be used to test the drawing code:

fig = plt.figure(figsize=(5,5))

ax = fig.add_subplot(1, 1, 1)

ax.set_aspect('equal')

ax.set_xlim(-10,10)

ax.set_ylim(-20,0.5)

draw_pendulum(ax, np.pi / 10, length=15, radius=0.5)

ax.set_xticks([])

ax.set_yticks([])
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Running the code in the previous cell will produce the following image:

The following comments indicate how the code in the preceding example works:

1.	 The first two lines define the variables, fig and ax, that hold the Figure and 
Axes objects, respectively. In matplotlib, a Figure object is a container that 
holds all other plotting objects. Each Figure can contain several Axes, which 
contain individual plots. Note the use of the figsize=(5,5) argument to set 
the size of the figure.

2.	 Next, we set the axis limits. The set_aspect() method of the ax object is 
used to set the aspect ratio to be the same in both directions. Without this, 
the circles will be drawn as ellipses. Then, the set_xlim() and set_ylim() 
methods specify the bounds for the axes.

3.	 We then call the draw_pendulum() function, which does all the drawing.
4.	 Finally, we use ax.set_xticks([]) and set_yticks([]) to remove the  

tick marks from the axes.

The next step is to set up what is needed to find the trajectory to the pendulum.  
The dynamics of a pendulum are given by a system of differential equations,  
which is defined in the following lines of code:

def pendulum_eq(t, x, c=1, f=lambda t:0.0):

    theta, omega = x

    return np.array([omega,

                     -np.sin(theta) - c * omega + f(t)], 

                    dtype=np.float64)

solver = ode(pendulum_eq)

solver.set_integrator('lsoda')

c = 0.3

f = lambda t: 2.0 * np.sin(3 * t)

solver.set_f_params(c, f)
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This code starts by defining the pendulum_eq() function, which stipulates the 
differential equations for a pendulum. The derivation of the equations is beyond  
the scope of this book. The remaining code in the cell configures an object of the 
ode() type, which is a part of the scipy.integrate module. We will not discuss 
the details here, but this module is discussed in Chapter 5, Advanced Computing with 
SciPy, Numba, and NumbaPro.

We are now ready to run the animation by executing the following code in a cell:

tmax = 20.0

dt = 0.2

fig = plt.figure(1,figsize=(5,5))

ax = plt.subplot(1,1,1)

ax.set_aspect('equal')

ax.set_xlim(-10,10)

ax.set_ylim(-20,0.5)

xtext = -9

ytext = -2

dytext = -1.0

ic = np.array([0.0, 0.3])

solver.set_initial_value(ic, 0.0)

while True:

    clear_output(wait=True)

    time.sleep(1./20)

    t = solver.t

    if t > tmax:

        break

    theta, omega = solver.integrate(t + dt)

    if not solver.successful():

        print 'Solver interrupted'

        break

    ax.clear()

    ax.set_xticks([])

    ax.set_yticks([])

    ax.text(xtext, ytext, r'$t={:5.2f}$'.format(t))

    ax.text(xtext, ytext + dytext, 

            r'$\theta={:5.2f}$'.format(theta))

    ax.text(xtext, ytext + 2 * dytext, 

            r'$\dot{{\theta}}={:5.2f}$'.format(omega))

    draw_pendulum(ax, theta=theta, length=15, radius=0.5)

    display(fig)

    plt.close()
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This is probably the most complex code segment in the book so far, but most of it  
has already been covered. The variables tmax and dt hold the maximum time for  
the animation and the time increment, respectively. We then set the Figure and  
Axes objects for the plot.

Then comes a while loop, where the animation is actually executed. This is the 
general skeleton of the loop:

while True:

    clear_output(wait=True)

    time.sleep(1./20)

    t = solver.t

    if t > tmax:

        break

    ... Code to determine the position of the pendulum...

    ... Code to draw pendulum ...

    display(fig)

    plt.close()

We will not discuss in detail the code used to solve the differential 
equation since it will be presented in detail in Chapter 5, Advanced 
Computing with SciPy, Numba, and NumbaPro.

The loop has True as the looping condition so this is potentially an infinite loop. 
However, inside the loop, we check if the current time is larger than the maximum 
time for the animation, and if that is the case, we break from the loop:

    t = solver.t

    if t > tmax:

        break

The first thing we do in the loop is to call the clear_output() function. This 
function, as the name indicates, removes the output of the current cell and is at  
the heart of doing simple animations in the notebook. The wait=True argument  
tells the function to wait until the next image is fully drawn before clearing the 
output, which prevents flickering.

The time.sleep(1./20) argument pauses the computation for a brief period  
of time to prevent the animation from running too fast. Then, a new position of  
the pendulum is computed and plotted. Then, display(fig) is called to show  
the figure. This is needed here because, contrary to the case of static graphs,  
we don't want the plot to be shown only at the end of the cell.
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The final detail is to call plt.close() at the end of the loop. This prevents the 
pendulum image from being drawn one extra time when the loop is exited. Placing 
this call inside the loop also helps to avoid flicker.

The reader is encouraged to play with the parameters of the animation, specially  
the time interval, dt; the maximum time, tmax; and the time.sleep() parameter.  
A bit of trial-and-error is needed to get satisfactory animation.

Summary
In this chapter, we learned how to use matplotlib to produce presentation-quality 
plots. We covered two-dimensional plots and how to set plot options, and annotate 
and configure plots. You also learned how to add labels, titles, and legends. We  
also learned how to draw three-dimensional surface plots and how to create  
simple animations.

In the next chapter, we will explore how to work with data in the notebook using  
the pandas library.





Handling Data with pandas
In this chapter, we will introduce pandas, a powerful and versatile Python library 
that provides tools for data handling and analysis. We will consider the two main 
pandas structures for storing data, the Series and DataFrame objects, in detail. 
You will learn how to create these structures and how to access and insert data into 
them. We also cover the important topic of slicing, that is, how to access portions of 
data using the different indexing methods provided by pandas. Next, we'll discuss 
the computational and graphics tools offered by pandas, and finish the chapter by 
demonstrating how to work with a realistic dataset.

pandas is an extensive package for data-oriented manipulation, and it is beyond the 
scope of this book to realistically cover all aspects of the package. We will cover only 
some of the most useful data structures and functionalities. In particular, we will  
not cover the Panel data structure and multi-indexes. However, we will provide  
a solid foundation for readers who wish to expand their knowledge by consulting 
the official package documentation. Throughout this chapter, we assume the 
following imports:

%pylab inline

from pandas import Series, DataFrame

import pandas as pd

The Series class
A Series object represents a one-dimensional, indexed series of data. It can be 
thought of as a dictionary, with one main difference: the indexes in a Series class 
are ordered. The following example constructs a Series object and displays it:

grades1 = Series([76, 82, 78, 100],

                 index = ['Alex', 'Robert', 'Minnie', 'Alice'],

                 name = 'Assignment 1', dtype=float64)

grades1
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This produces the following output:

Alex       76

Robert     82

Minnie     78

Alice     100

Name: Assignment 1, dtype: float64

Notice the format of the constructor call:

Series(<data>, index=<indexes>, name=<name>, dtype=<type>)

Both data and indexes are usually lists or NumPy arrays, but can be any  
Python iterable. The lists must have the same length. The name variable is a  
string that describes the data in the series. The type variable is a NumPy data type. 
The indexes and the name variables are optional (if indexes are omitted, they are  
set to integers—starting at 0). The data type is also optional, in which case it is 
inferred from the data.

A Series object supports the standard dictionary interface. As an example, run the 
following code in a cell:

print grades1['Minnie']

grades1['Minnie'] = 80

grades1['Theo'] = 92

grades1

The output of the preceding command lines is as follows:

78.0

Alex       76

Robert     82

Minnie     80

Alice     100

Theo       92

Name: Assignment 1, dtype: float64

Here is another interesting example:

for student in grades1.keys():

    print '{} got {} points in {}'.format(student,  
        grades1[student], grades1.name)
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The preceding command lines produce the following output:

Alex got 76.0 points in Assignment 1

Robert got 82.0 points in Assignment 1

Minnie got 80.0 points in Assignment 1

Alice got 100.0 points in Assignment 1

Theo got 92.0 points in Assignment 1

Note that the order of the output is exactly the same as the order in which each of 
the elements were inserted in the series. Contrary to a standard Python dictionary, 
the Series object keeps track of the order of the elements. In fact, elements can be 
accessed through an integer index, as shown in the following example:

grades1[2]

The preceding command returns the following output:

80.0

Actually, all of Python's list-access interface is supported. For instance, we can use 
slices, which return Series objects:

grades1[1:-1]

The preceding command gives the following output:

Robert     82

Minnie     80

Alice     100

Name: Assignment 1, dtype: float64

The indexing capabilities are even more flexible; this is illustrated in the  
following example:

grades1[['Theo', 'Alice']]

The preceding command returns the following output:

Theo      92

Alice    100

dtype: float64

It is also possible to append new data to the series, by using the following command:

grades1a = grades1.append(Series([79, 81], index=['Theo', 'Joe']))

grades1a
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The output of the preceding command is as follows:

Alex       76

Robert     82

Minnie     80

Alice     100

Theo       92

Kate       69

Molly      74

Theo       79

Joe        81

dtype: float64

Note that the series now contains two entries corresponding to the key, Theo. 
This makes sense, since in real-life data there could be more than one data value 
associated to the same index. In our example, a student might be able to hand in 
more than one version of the assignment. What happens when we try to access  
this data? pandas conveniently returns a Series object so that no data is lost:

grades1a['Theo']

The output of the preceding command is as follows:

Theo    92

Theo    79

dtype: float64

Note that the append() method does not append the values to 
the existing Series object. Instead, it creates a new object that 
consists of the original Series object with the appended elements. 
This behavior is not the same as what happens when elements are 
appended to a Python list. Quite a few methods of the Series 
class display behavior that is different from their corresponding 
list counterparts. A little experimentation (or reading the 
documentation) may be required to understand the conventions 
that pandas uses.

Let's define a new series with the following command lines:

grades2 = Series([87, 76, 76, 94, 88],

               index = ['Alex', 'Lucy', 'Robert', 'Minnie', 'Alice'],

               name='Assignment 2',

               dtype=float64)

grades2
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The preceding command lines give the following output:

Alex      87

Lucy      76

Robert    76

Minnie    94

Alice     88

Name: Assignment 2, dtype: float64

If we want to compute each student's average in the two assignments, we can use  
the following command:

average = 0.5 * (grades1 + grades2)

average

On running the preceding code, we get the following output:

Alex      81.5

Alice     94.0

Lucy       NaN

Minnie    87.0

Robert    79.0

Theo       NaN

dtype: float64

The value NaN stands for Not a number, which is a special floating-point value that 
is used to indicate the result of an invalid operation, such as zero divided by zero. In 
pandas, it is used to represent a missing data value. We can locate the missing values 
in Series using the isnull() method. For example, run the following code in a cell:

averages.isnull()

Running the preceding command line produces the following output:

Alex      False

Alice     False

Lucy       True

Minnie    False

Robert    False

Theo       True

dtype: bool
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If we decide that the missing data can be safely removed from the series, we can use 
the dropna() method:

average.dropna()

The preceding command line produces the following output:

Alex      81.5

Alice     94.0

Minnie    87.0

Robert    79.0

dtype: float64

Notice that this is another case in which the original series is not modified.

The Series class provides a series of useful methods for its instances. For example, 
we can sort both the values and the indexes. To sort the values in-place, we use  
the sort() method:

grades1.sort()

grades1

This generates the following output:

Alex       76

Minnie     80

Robert     82

Theo       92

Alice     100

Name: Assignment 1, dtype: float64

To sort the indexes of a series, use the sort_index() method. For example,  
consider the following command:

grades1.sort_index()

This produces the following output:

Alex       76

Minnie     80

Robert     82

Theo       92

Alice     100

Name: Assignment 1, dtype: float64
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Note that the sorting is not in-place this time, a new series 
object is returned.

For the next examples, we will use data on maximum daily temperatures for the month 
of June from a weather station nearby the author's location. The following command 
lines generates the series of temperatures for the days from June 6 to June 15:

temps = Series([71,76,69,67,74,80,82,70,66,80],

               index=range(6,16), 

               name='Temperatures', dtype=float64)

temps

The preceding command produces the following output:

6     71

7     76

8     69

9     67

10    74

11    80

12    82

13    70

14    66

15    80

Name: Temperatures, dtype: float64

Let's first compute the mean and standard deviation of the temperatures using  
the following command:

print temps.mean(), temps.std()

The result of the preceding computation is as follows:

73.5 5.77831194112

If we want a quick overview of the data in the series, we can use the  
describe() method:

temps.describe()
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The preceding command produces the following output:

count    10.000000

mean     73.500000

std       5.778312

min      66.000000

25%      69.250000

50%      72.500000

75%      79.000000

max      82.000000

Name: Temperatures, dtype: float64

Note that the information is returned as a Series object, so it can be stored in case  
it is needed in further computations.

To draw a plot of the series, we use the plot() method. If we just need a quick 
graphical overview of the data, we can just run the following command:

temps.plot()

However, it's also possible to produce nicely formatted, production-quality plots  
of the data, since all matplotlib features are supported in pandas. The following  
code illustrates how some of the graph formatting options discussed in Chapter 3, 
Graphics with matplotlib, are being used:

temps.plot(style='-s', lw=2, color='green')

axis((6,15,65, 85))

xlabel('Day')

ylabel('Temperature')

title('Maximum daily temperatures in June')

None # prevent text output
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The preceding command lines produce the following plot:

Suppose we want to find the days in which the maximum temperature was above 75 
degrees. This can be achieved with the following expression:

temps[temps > 75]

The preceding command returns the following series:

7     76

11    80

12    82

15    80

Name: Temperatures, dtype: float64

There are many more useful methods provided by the Series class. Remember  
that in order to see all the available methods, we can use the code completion  
feature of IPython. Start typing temps. and you will get the available methods.

Then press the Tab key. A window with a list of all available methods will pop up. 
You can then explore what is available.



Handling Data with pandas

[ 88 ]

The DataFrame class
The DataFrame class is used to represent two-dimensional data. To illustrate its use, 
let's create a DataFrame class containing student data as follows:

grades = DataFrame(

    [['Alice',  80., 92., 84,],

     ['Bob',    78., NaN, 86,],

     ['Samaly', 75., 78., 88.]],

    index = [17005, 17035, 17028],

    columns = ['Name', 'Test 1', 'Test 2', 'Final']

    )

This code demonstrates one of the most straightforward ways to construct  
a DataFrame class. In the preceding case, the data can be specified as any  
two-dimensional Python data structure, such as a list of lists (as shown in the 
example) or a NumPy array. The index option sets the row names, which are  
integers representing student IDs here. Likewise, the columns option sets the  
column names. Both the index and column arguments can be given as any  
one-dimensional Python structure, such as lists, NumPy arrays, or a Series object. 

To display the output of the DataFrame class, run the following statement in a cell:

grades

The preceding command displays a nicely formatted table as follows:

The DataFrame class features an extremely flexible interface for initialization.  
We suggest that the reader run the following command to know more about it:

DataFrame?

This will display information about the construction options. Our goal here is not to 
cover all possibilities, but to give an idea of the offered flexibility. Run the following 
code in a cell:

idx = pd.Index(["First row", "Second row"])

col1 = Series([1, 2], index=idx)
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col2 = Series([3, 4], index=idx)

data = {"Column 1":col1, "Column2":col2}

df = DataFrame(data)

df

The preceding code produces the following table:

This example illustrates a useful way of thinking of a DataFrame object: it consists  
of a dictionary of Series objects with a common Index object labeling the rows of 
the table. Each element in the dictionary corresponds to a column in the table. Keep 
in mind that this is simply a way to conceptualize a DataFrame object, and this is  
not a description of its internal storage.

Let's go back to our student data example. Let's add a column with the total score  
of each student, which is the average of the grades, with the final having weight  
two. This can be computed with the following code:

grades.loc[:,'Score'] = 0.25 * (grades['Test 1'] + grades['Test 2'] + 2 * 
grades['Final']) 

grades

The output for the preceding command line is as follows:

In the preceding command line, we used one of the following recommended 
methods of accessing elements from a DataFrame class:

•	 .loc: This method is label-based, that is, the element positions are 
interpreted as labels (of columns or rows) in the table. This method  
was used in the preceding example.
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•	 .iloc: This method is integer-based. The arguments must be integers and 
are interpreted as zero-based indexes for the rows and columns of the table. 
For example, grades.iloc[0,1] refers to the data in row 0 and column 1, 
which is Alice's grade in Test 1 in the preceding example.

•	 .ix: This indexing method supports mixed integer and label-based access. 
For example, both grades.ix[17035, 4] and grades.ix[17035, 'Score'] 
refer to Bob's score in the course. Notice that pandas is smart enough to 
know that the row labels are integers, so that the index 17035 refers to a 
label, not a position in the table. Indeed, attempting to access the grades.
ix[1, 4] element will flag an error because there is no row with label 1.

To use any of these methods, the corresponding entry (or entries) in the DataFrame 
object must already exist. So, these methods cannot be used to insert or append  
new data.

Notice that Bob does not have a grade in his second test, indicated by the NaN entry 
(he was probably sick on the day of the test). When he takes a retest, his grade can  
be updated as follows:

grades.loc[17035,'Test 2'] = 98

grades

In the output, you will notice that Bob's final score is not automatically updated.  
This is no surprise because a DataFrame object is not designed to work as a 
spreadsheet program. To perform the update, you must explicitly execute the  
cell that computes the score again. After you do that, the table will look like this:

It is also possible to use regular indexing to access DataFrame 
entries, but that is frowned upon. For example, to refer to Samaly's 
grade in the final, we could use the chained reference, that is, by 
using grades['Test 2'][17028]. (Notice the order of the 
indexes!) We will avoid this usage.
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The teacher is a little disappointed, because no student got an A grade (score above 
90). So, students are given an extra credit assignment. To add a column with the  
new grade component beside the Final column, we can run the following  
command lines:

grades.insert(4, 'Extra credit', [2., 6., 10.])

grades

Obviously, we can also insert rows. To add a new student we could use the 
following command lines:

grades.loc[17011,:] = ['George', 92, 88, 91, 9, NaN]

grades

Of course, the scores have to be updated as follows to take the extra credit into account:

grades.loc[:,'Score'] = 0.25 * (grades['Test 1'] + grades['Test 2'] + 2 * 
grades['Final']) + grades['Extra credit'] 

grades

Now, suppose we want to find all students who got an A and had a score of less  
than 78 in Test 1. We can do this by using a Boolean expression as index, as shown  
in the following code:

grades[(grades['Score'] >= 90) & (grades['Test 1'] < 78)]

Two important things should be noted from the preceding example:

•	 We need to use the & operator instead of the and operator
•	 The parentheses are necessary due to the high precedence of the & operator

This will return a subtable with the rows that satisfy the condition expressed by the 
Boolean expression.

Suppose we want the names and scores of the students who have a score of at least 
80, but less than 90 (these could represent the "B" students). The following command 
lines will be useful to do so:

grades[(80 <= grades['Score']) & grades['Score'] < 90].loc[:,['Name', 
'Score']]]
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This is what this code does:

•	 The expression grades[(80 <= grades['Score']) & grades['Score'] < 
90] creates a DataFrame class that contains all student data for students who 
have a score of at least 80 but less than 90.

•	 Then, .loc[:,'Name', 'Score'] takes a slice of this DataFrame class, 
which consists of all rows in the columns labeled Name and Score.

An important point about pandas data structures is that whenever data is referred 
to, the returned object may be either a copy or a view of the original data. Let's create 
a DataFrame class with pseudorandom data to see some examples. To make things 
interesting, each column will contain normal data with a given mean and standard 
deviation. The code is as follows:

means = [0, 0, 1, 1, -1, -1, -2, -2]

sdevs = [1, 2, 1, 2,  1,  2,  1,  2]

random_data = {}

nrows = 30

for mean, sdev in zip(means, sdevs):

    label = 'Mean={}, sd={}'.format(mean, sdev)

    random_data[label] = normal(mean, sdev, nrows)

row_labels = ['Row {}'.format(i) for i in range(nrows)]

dframe = DataFrame (random_data, index=row_labels)

The preceding command lines create the data we need for the examples. Perform the 
following steps:

1.	 Define the Python lists, means and sdevs, which contain the mean and 
standard deviation values of the distributions.

2.	 Then, create a dictionary named random_data, with string keys that 
correspond to the column labels of the DataFame class that will be created.

3.	 Each entry in the dictionary corresponds to a list of size nrows containing  
the data, which is generated by the function call to the normal() function  
of NumPy.

4.	 Create a list named row_labels, which contains row labels of the  
DataFrame class.

5.	 Use both the data, that is, the random_data dictionary and the  
row_labels list, in the DataFrame constructor.
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The preceding code will generate a table of 30 rows and 8 columns. You can see 
the table, as usual, by evaluating dframe by itself in a cell. Notice that even though 
the table is of a moderately large size, the IPython notebook does a good job of 
displaying it.

Let's now select a slice of the DataFrame class. For the purpose of demonstration,  
we will use the mixed indexing .ix method:

dframe_slice = dframe.ix['Row 3':'Row 11', 5:]

dframe_slice

Notice how the ranges are specified:

•	 The expression 'Row 3':'Row 11' represents a range specified by  
labels. Notice that, contrary to the usual assumptions in Python, the  
range includes the last element (Row 11, in this case).

•	 The expression 5: (the number 5 followed by a colon) represents a range 
numerically, from the fifth column to the end of the table.

Now, run the following command lines in a cell:

dframe_slice.loc['Row 3','Mean=1, sd=2'] = normal(1, 2)

print dframe_slice.loc['Row 3','Mean=1, sd=2']

print dframe.loc['Row 3','Mean=1, sd=2']

The first line resamples a single cell in the data table, and the other two rows  
print the result. Notice that the printed values are the same! This shows that no 
copying has taken place, and the variable dframe_slice refers to the same objects 
(memory area) that already existed in the DataFrame class referred to by the dframe 
variable. (This is the analogous to pointers in languages such as C, where more than 
one pointer can refer to the same memory. It is, actually, the standard way variables 
behave in Python: there is no default copying.)

What if we really want a copy? All pandas objects have a copy() method, so we  
can use the following code:

dframe_slice_copy = dframe.ix['Row 3':'Row 11', 5:].copy()

dframe_slice_copy

The preceding command lines will produce the same output as the previous 
example. However, notice what happens if we modify dframe_slice_copy:

dframe_slice_copy.loc['Row 3','Mean=1, sd=2'] = normal(1, 2)

print dframe_slice_copy.loc['Row 3','Mean=1, sd=2']

print dframe.loc['Row 3','Mean=1, sd=2']
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Now the printed values are different, confirming that only the copy was modified.

In certain cases, it is important to know if the data is copied or simply 
referred to during a slicing operation. Care should be taken, specially, 
with more complex data structures. Full coverage of this topic is beyond 
the scope of this book. However, using .loc, .iloc, and .ix as shown 
in the preceding examples is sufficient to avoid trouble. For an example 
where chained indexing can cause errors, see http://pandas.pydata.
org/pandas-docs/stable/indexing.html#indexing-view-
versus-copy for more information.
If you ever encounter a warning referring to SettingWithCopy, 
check if you are trying to modify an entry of a DataFrame object using 
chained indexing, such as in dframe_object['a_column']['a_
row']. Changing the object access to use .loc instead, for example, 
will eliminate the warning.

To finish this section, let's consider a few more examples of slicing a DataFrame as 
follows. In all of the following examples, there is no copying; only a new reference  
to the data is created.

•	 Slicing with lists as indexes is performed using the following command line:
dframe.ix[['Row 12', 'Row 3', 'Row 24'], [3, 7]]

•	 Slicing to reorder columns is performed using the following command line:
dframe.iloc[:,[-1::-1]]

The preceding example reverses the column order. To have an arbitrary 
reordering, use a list with a permutation of the column positions:
dframe.iloc[:,[2, 7, 0, 1, 3, 4, 6, 5]]

Note that there is no actual reordering of columns in the dframe object,  
since there is no copying of the data.

•	 Slicing with Boolean operations is performed using the following  
command line:
dframe.loc[dframe.loc[:,'Mean=1, sd=1']>0, 'Mean=1, sd=1']

The preceding command line selects the elements in the column labeled 
Mean=1, sd=1 (that are positive), and returns a Series object (since the  
data is one-dimensional). If you are having trouble understanding the  
way this works, run the following command line in a cell by itself:
dframe.loc[:,'Mean=1, sd=1']>0
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This statement will return a Series object with Boolean values. The previous 
command line selects the rows of dframe corresponding to the positions that 
result as True in the Series object.

•	 Slicing will, in general, return an object with a different shape than the 
original. The where() method can be used, as follows, in cases where the 
shape has to be preserved.

dframe.where(dframe>0)

The preceding command line returns a DataFrame class that has missing 
values (NaN) in the entries that correspond to non-negative values of the 
original dframe object.
We can also indicate a value to be replaced by the values that do not satisfy 
the given condition using the following command line:
dframe.where(dframe>0, other=0)

This command line will replace the entries corresponding to non-negative 
values by 0.

Computational and graphics tools
The objects of pandas have a rich set of built-in computational tools. To illustrate 
some of this functionality, we will use the random data stored in the dframe object 
defined in the previous section. If you discarded that object, here is how to construct 
it again:

means = [0, 0, 1, 1, -1, -1, -2, -2]

sdevs = [1, 2, 1, 2,  1,  2,  1,  2]

random_data = {}

nrows = 30

for mean, sdev in zip(means, sdevs):

    label = 'Mean={}, sd={}'.format(mean, sdev)

    random_data[label] = normal(mean, sdev, nrows)

row_labels = ['Row {}'.format(i) for i in range(nrows)]

dframe = DataFrame (random_data, index=row_labels)

Let's explore some of this functionality of the built-in computational tools.

•	 To get a list of the methods available for the object, start typing the  
following command in a cell:
dframe.
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•	 Then, press the Tab key. The completion popup allows us to select a method 
by double clicking on it. For example, double click on mean. The cell text 
changes to the following:
dframe.mean

•	 Now, add a question mark to the preceding command line and run the cell:

dframe.mean?

This will display information about the mean method (which, not 
surprisingly, computes the mean of the data).

Using tab-completion and IPython's help features is an excellent way to learn about 
pandas' features. I recommend that you always display the documentation this way, 
at least the first few times a method is used. Learning about the features that pandas 
offers can be a real time-saver.

Now, let's continue with the functionalities:

•	 Let's say that we want to compute the column means for our random data. 
This can be done by evaluating the following command:
dframe.mean()

•	 The standard deviation values can be computed with the following 
command:

dframe.std()

Note that the results for all of the immediately preceding command lines are 
returned as Series objects, which is the default object type that pandas uses for  
one-dimensional data. In particular, the column labels become the indexes of the 
objects. Let's say we want to create a DataFrame object containing the mean and 
standard deviation in two rows. pandas makes this a very easy task, using built-in 
conversions and constructors.

mean_series = dframe.mean()

std_series = dframe.std()

mean_std = DataFrame([dict(mean_series), 

                            dict(std_series)], 

                           index=['mean', 'std'])

mean_std
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In this code, we first compute the means and standard deviations and assign them 
to variables for clarity. Then, we call the DataFrame constructor that accepts a list 
of Python dictionaries. This is made easy because pandas allows conversion from 
a Series object to a dictionary in a convenient way: dict(mean_series) returns 
the representation of mean_series as a dictionary, using the indexes of the Series 
object as keys to the dictionary.

Let's say we want to standardize the data in all columns so that they all have a 
common mean value 100 and standard deviation value 20. This can be achieved 
using the following command lines:

dframe_stnd = 100 + 20 * (dframe - mean_std.iloc[0,:]) / mean_std.
iloc[1,:] 

dframe_stnd

The preceding command lines simply implement the definition of standardization: 
we subtract the means from the data, divide by the standard deviation, scale by the 
desired value of the deviation, and add the desired mean. To check that we get the 
expected results, run the following command lines:

print dframe_stnd.mean()

print dframe_stnd.std()

To illustrate the possibilities, let's do a two-sided test of the hypothesis that the  
mean of each column is 0. We first compute the Z-scores for the columns. The 
Z-score of each column is just the deviation from the column mean to the model 
mean (0 in this case), properly scaled by the standard deviation:

zscores = mean_std.iloc[0,:] / (mean_std.iloc[1,:] / sqrt(len(dframe)))

zscores 

The scaling factor, sqrt(len(dframe)), is the square root of the number of data 
points, which is given by the number of rows in the table. The last step is to compute 
the p-values for each column. The p-values are simply a measure of the probability 
that the data deviates from the mean by more than the corresponding Z-score, given 
the assumed distribution. These values are obtained from a normal distribution 
(technically, we should use a t-distribution, since we are using the sample standard 
deviation, but in this example this does not really make any difference, since the data 
is normally generated, and the sample size is large enough). The following command 
lines use the normal distribution object, norm, from SciPy to compute the p-values  
as percentages:

from scipy.stats import norm

pvalues = 2 * norm.cdf(-abs(zscores)) * 100

pvalues_series = Series(pvalues, index = zscores.index)

pvalues_series
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The line that computes the p-values is as follows:

pvalues = 2 * norm.cdf(-abs(zscores)) * 100

We use the cdf() method, which computes the cumulative distribution function  
for the normal curve from the norm object. We then multiply it with 2, since this is  
a two-sided test, and multiply by 100 to get a percentage.

The next line converts the p-values into a Series object. This is not necessary,  
but makes the results easier to visualize.

The following are the results obtained:

Mean=-1, sd=1    1.374183e-02

Mean=-1, sd=2    1.541008e-01

Mean=-2, sd=1    2.812333e-26

Mean=-2, sd=2    1.323917e-04

Mean=0, sd=1     2.840077e+01

Mean=0, sd=2     6.402502e+01

Mean=1, sd=1     2.182986e-06

Mean=1, sd=2     5.678316e-01

dtype: float64

Please note that in the preceding example, you will get different 
numbers, since the data is randomly generated.

The results are what we expect, given the way the data was generated: the p-values 
are all very small, except for the columns that have mean 0.

Now, let's explore some of the graphical capabilities provided by pandas. The pandas 
plots are produced using matplotlib, so the basic interface has already been discussed 
in Chapter 3, Graphics with matplotlib. In the examples that follow, we will assume that 
we are using the magic. Run the following command in the cell:

%pylab inline

Most of the plotting capabilities of pandas are implemented as methods of Series  
or DataFrame objects.

Let's define the following data in our table to include more data points:

means = [0, 0, 1, 1, -1, -1, -2, -2]



Chapter 4

[ 99 ]

sdevs = [1, 2, 1, 2,  1,  2,  1,  2]

random_data = {}

nrows = 300

for mean, sdev in zip(means, sdevs):

    label = 'Mean={}, sd={}'.format(mean, sdev)

    random_data[label] = normal(mean, sdev, nrows)

row_labels = ['Row {}'.format(i) for i in range(nrows)]

dframe = DataFrame (random_data, index=row_labels)

To display a grid of histograms of the data, we can use the following command:

dframe.hist(color='DarkCyan')

subplots_adjust(left=0.5, right=2, top=2.5, bottom=1.0)

We use the hist() method to generate the histograms and use the color option as 
well, which is passed to the matplotlib function calls that actually do the drawing. The 
second line of code adds spaces to the plots so that the axis labels do not overlap. You 
may find that some of the histograms do not look normal. To fix their appearance, it is 
possible to fiddle with the bins and range options of the hist() method, as shown in 
the following example:

dframe.loc[:,'Mean=0, sd=2'].hist(bins=40, range=(-10,10), 
color='LightYellow')

title('Normal variates, mean 0, standard deviation 2')

This will draw a histogram of the data in the column for a mean of 0 and standard 
deviation of 2, with 40 bins in the range from -10 to 10. In other words, each bin  
will have a width of 0.5. Note that the plot may not include all the range from  
-10 to 10, since pandas restricts the drawing to ranges that actually contain data.

For example, let's generate data according to Geometrical Brownian Motion  
(GBM), which is a model used in mathematical finance to represent the  
evolution of stock prices. (For details, see http://en.wikipedia.org/wiki/
Geometric_Brownian_motion.) This model is defined in terms of two parameters, 
representing the percentage drift and percentage volatility of the stock. We start  
by defining these two values in our model, as well as the initial value of the stock:

mu = 0.15

sigma = 0.33

S0 = 150
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The simulation should run from time 0.0 to the maximum time 20.0, and we want 
to generate 200 data points. The following command lines define these parameters:

nsteps = 200

tmax = 20.

dt = tmax/nsteps

times = arange(0, tmax, dt)

The stock model would naturally be represented by a time series (a Series object). 
However, to make the simulation simpler, we will use a DataFame object and build 
the simulation column by column. We will start with a very simple table containing 
only integer indexes and the simulation times:

gbm_data = DataFrame(times, columns=['t'], index=range(nsteps))

To see the first few rows of the table, we can use the following command line:

gbm_data.loc[:5,:]

You might want to run this command after each column is added in order to get a 
better idea of how the simulation progresses.

The basis for the GBM model is (unsurprisingly) a stochastic process called 
Brownian Motion (BM). This process has two parts. A deterministic component, 
called drift, is computed as follows:

gbm_data['drift'] = (mu - sigma**2/2) * gbm_data.loc[:,'t']

The next component adds randomness. It is defined in terms of increments,  
which are normally distributed with mean zero and standard deviation given  
by the time interval multiplied by the percentage volatility:

gbm_data['dW'] = normal(0.0, sigma * dt, nsteps)

The BM component is then defined as the cumulative sum of the increments,  
as shown in the following command lines:

gbm_data['W'] = gbm_data.loc[:,'dW'].cumsum()

gbm_data.ix[0, 'W'] = 0.0

In the preceding command lines, we add the second line because we want the 
process to start at 0, which is not the convention adopted by the cumsum() method.
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We are now ready to compute the stock simulation. It is calculated by taking the 
drift component, adding to the BM component, taking the exponential of the result, 
and finally, multiplying it by the initial value of the stock. This is all done with the 
following command:

gbm_data['S'] = S0 * exp(gbm_data.loc[:,'drift'] + gbm_data.loc[:,'W'])

We are now ready to plot the result of the simulation using the following  
command lines:

gbm_data.plot(x='t', y='S', lw=2, color='green',

              title='Geometric Brownian Motion')

The preceding command lines produce the following graph. Obviously, the graph 
you will get will be different due to randomness.

An example with a realistic dataset
In this section, we will work with a realistic dataset of moderate size. We will  
use the World Development Indicators dataset, which is provided free of charge  
by the World Bank. This is a reasonably sized dataset that is not too large or  
complex to experiment with.
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In any real application, we will need to read data from some source, reformat it to 
our purposes, and save the reformatted data back to some storage system. pandas 
offers facilities for data retrieval and storage in multiple formats:

•	 Comma-separated values (CSV) in text files
•	 Excel
•	 JSON
•	 SQL
•	 HTML
•	 Stata
•	 Clipboard data in text format
•	 Python-pickled data

The list of formats supported by pandas keeps growing with each new update to the 
library. Please refer to http://pandas.pydata.org/pandas-docs/stable/io.html 
for a current list.

Treating all formats supported by pandas is not possible in a book with the current 
scope. We will restrict examples to CSV files, which is a simple text format that is 
widely used. Most software packages and data sources have options to format data 
as CSV files.

Curiously enough, CSV is not a formally described storage format. pandas does a 
good job of providing enough options to read the great majority of files. However, 
the format of the data may vary depending on the data source. Luckily, since CSV 
files are simply text files, we can open the files in a spreadsheet program or even a 
text editor to examine their structure.

The dataset for this section can be downloaded from http://data.worldbank.org/
data-catalog/world-development-indicators, and is also available in the book 
website. If you choose to download the data from the original website, make sure 
you choose the CSV file format. The file is in compressed ZIP format, and is about  
40 MB in size. Once the archive is decompressed, we get the following files.

•	 WDI_Country.csv

•	 WDI_CS_Notes.csv

•	 WDI_Data.csv

•	 WDI_Description.csv

•	 WDI_Footnotes.csv

•	 WDI_Series.csv

•	 WDI_ST_Notes.csv
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As is typical of any realistic dataset, there's always a lot of ancillary information 
associated with the data. This is called metadata and is used to give information  
about the dataset, including things such as the labels used for rows and/or columns, 
data collection details, and explanations concerning the meaning of the data. The 
metadata is contained in the various files contained within the archive. The reader  
is encouraged to open the different files using spreadsheet software (or a text editor)  
to get a feel for the kind of information available. For us, the most important metadata 
file is WDI_Series.csv, which contains information on the meaning of data labels for 
the several time series contained in the data.

The actual data is in the WDI_Data.csv file. As this file contains some of the  
metadata information, we will be able to do all the work using this file only.

Make sure the WDI_Data.csv file is in the same directory that contains your  
IPython notebook files, and run the following command in a cell:

wdi = pd.read_csv('WDI_Data.csv')

This will read the file and store it in a DataFrame object that we assign to the variable, 
wdi. The first row in the file is assumed to contain the column labels by default. We  
can see the beginning of the table by running the following command:

wdi.loc[:5]

Note that the DataFrame class is indexed by integers by default. It is possible to 
choose one of the columns in the data file as the index by passing the index_col 
parameter to the read_csv() method. The index column can be specified either 
by its position or by its label in the file. The many options available to read_csv() 
are discussed in detail at http://pandas.pydata.org/pandas-docs/stable/
io.html#io-read-csv-table.

An examination of the file shows that it will need some work to be put in a format 
that can be easily used. Each row of the file contains a time series of annual data 
corresponding to one country and economic indicator. One initial step is to get all 
the countries and economic indicators contained in the file. To get a list of unique 
country names, we can use the following command line:

countries = wdi.loc[:,'Country Name'].unique()

To see how many countries are represented, run the following command line:

len(countries)

Some of the entries in the file actually correspond to groups of countries, such as 
Sub-Saharan Africa.
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Now, for indicators, we can run the following command line:

indicators = wdi.loc[:,'Indicator Code'].unique()

There are more than 1300 different economic indicators in the file. This can be 
verified by running the following command line:

len(indicators)

To show the different kinds of computation one might be interested in performing, 
let's consider a single country, for example, Brazil. Let's also suppose that we are 
only interested on the Gross Domestic Product (GDP) information. Now, we'll 
see how to select the data we are interested in from the table. To make the example 
simpler, we will perform the selection in two steps. First, we select all rows for  
the country name Brazil, using the following command line:

wdi_br = wdi.loc[wdi.loc[:,'Country Name']=='Brazil',:]

In the code preceding command line, consider the following expression:

wdi.loc[:,'Country Name']=='Brazil'

This selects all the rows in which the country name string is equal to Brazil.  
For these rows, we want to select all columns of the table, as indicated by the  
colon in the first term of the slicing operation.

Let's now select all the rows that refer to the GDP data. We start by defining a function 
that, given a string, determines if it contains the substring GDP (ignoring the case):

select_fcn = lambda string: string.upper().find('GDP') >= 0

We now want to select the rows in wdi_br that return True when select_fcn 
is applied to the Indicator Code column. This can be done with the following 
command lines:

criterion = wdi_br.loc[:,'Indicator Code'].map(select_fcn)

wdi_br_gdp = wdi_br.loc[criterion,:]

The map() method of the Series object does exactly what we want: it applies a 
function to all elements of a series. We assign the result of this call to the variable, 
criterion. Then, we use criterion in the slicing operation that defines wdi_br_
gdp. To see how many rows were selected, run the following command:

len(wdi_br_gdp)
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In the dataset used at the writing of this book, the preceding command returns 32. 
This means that there are 32 GDP-related indicators for the country named Brazil. 
Since we now have a manageable amount of data, we can display a table that has  
the indicator codes and their meanings using the following command line:

wdi_br_gdp.loc[:,['Indicator Code', 'Indicator Name']]

The preceding command line generates a nicely formatted table of the indicator and 
corresponding names, as shown in the following table:

Let's say that we are interested only in four indicators: the GDP, annual GDP  
growth, GDP per capita, and GDP per capita growth. We can further trim the  
data with the following command:

wdi_br_gdp = wdi_br_gdp.loc[[37858, 37860, 37864, 37865], :]

This produces quite a manageable table with 4 rows and 58 columns. Each row 
contains a time series of the corresponding GDP data starting with the year 1960.
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The problem with this table as it is laid out is that it is the "transpose" of what is the 
usual convention in pandas: the time series are across the rows of the table, instead 
of being down the columns. So, we still need to do a little more work with our table. 
We want the indexes of our table to be the years. We also want to have one column 
for each economic indicator and want to use the economic indicator names (not the 
codes) as the labels of the columns. Here is how this can be done:

idx = wdi_br_gdp.loc[:,'1960':].columns

cols = wdi_br_gdp.loc[:,'Indicator Name']

data = wdi_br_gdp.loc[:,'1960':].as_matrix()

br_data = DataFrame(data.transpose(), columns=cols, index=idx)

The following is an explanation of what the preceding command lines do:

1.	 We first define an Index object corresponding to the years in the table  
using the columns field of the DataFrame object. The object is stored in  
the variable idx.

2.	 Then, we create an object containing the column names. This is a Series 
object stored in the variable cols.

3.	 Next, we extract the data we are interested in, that is, the portion of the  
table corresponding to the years after 1960. We use the as_matrix()  
method of the DataFrame object to convert the data to a NumPy array,  
and store it in the variable data.

4.	 Finally, we call the DataFrame constructor to create the new table.

Now that we have the data we want in a nice format, it is a good time to save it:

br_data.to_csv('WDI_Brazil_GDP.csv')

At this point, we can open the WDI_Brazil_GDP.csv file in a spreadsheet program  
to view it.

Now, let's start playing with the data by creating a few plots. Let's first plot the GDP 
and GDP growth, starting in 1980. Since the data is given in dollars, we scale to give 
values in billions of dollars.

pdata = br_data.ix['1970':, 0] / 1E9

pdata.plot(color='DarkRed', lw=2, 

           title='Brazil GDP, billions of current US$')
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The preceding command lines produce the following chart: 

As a final example, let's draw a chart comparing the percent growth of per capita 
GDP for the BRIC (Brazil, Russia, India, and China) countries in the period 2000  
to 2010. Since we already have explored the structure of the data, the task is 
somewhat simpler:

bric_countries = ['Brazil', 'China', 'India', 'Russian Federation']

gdp_code = 'NY.GDP.PCAP.KD.ZG'

selection_fct = lambda s: s in bric_countries

criterion = wdi.loc[:,'Country Name'].map(selection_fct)

wdi_bric = wdi.loc[criterion & (wdi.loc[:,'Indicator Code'] == gdp_
code),:]

We first define a list with the names of the BRIC countries and a string with the 
indicator code for percent GDP growth per capita. Then, we define a selection 
function: a string is selected if it is one of the BRIC country names. The map() 
method is then used to apply the selection function to all entries of the Country 
Name column. The last command line performs the actual selection. Note the use  
of the Boolean operator & to combine the two criteria used in the row selection.
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We now perform the reformatting of the data to have the relevant data series  
along the columns of the table. The command lines are similar to the ones in  
the previous example:

df_temp = wdi_bric.loc[:, '2000':'2010']

idx = df_temp.columns

cols = wdi_bric.loc[:, 'Country Name']

data = df_temp.as_matrix()

bric_gdp = DataFrame(data.transpose(), columns=cols, index=idx)

Once this is done, plotting the data is straightforward:

bric_gdp.plot(lw=2.5,

              title='Annual per capita GDP growth (%)')

The preceding command lines result in the following plot:

Summary
In this chapter, we covered the objects of pandas, Series and DataFrame, which  
are specialized containers for data-oriented computations. We discussed how  
to create, access, and modify these objects, including advanced indexing and  
slicing operations. We also considered the computational and graphical capabilities 
offered by pandas. We then discussed how these capabilities can be leveraged to 
work with a realistic dataset.

In the next chapter, we will learn how to use SciPy to solve advanced mathematical 
problems of modeling, science, and engineering.



Advanced Computing 
with SciPy, Numba, and 

NumbaPro
In this chapter, the user will learn how to use SciPy to perform scientific computations. 
The Numba package will then be introduced as a way to accelerate computations. 
Finally, the NumbaPro capabilities of parallel execution in the GPU will be presented.

In this chapter, we will cover the following topics:

•	 Overview of SciPy
•	 Advanced mathematical algorithms with SciPy
•	 Accelerating computations with Numba and NumbaPro

Before running the examples in this chapter, load pylab by running the following 
command in a computing cell:

%pylab inline

Overview of SciPy
SciPy is an extensive library for applied mathematics and scientific computation. 
The following is the complete list of all the modules available in the library:

Module Functionality
cluster Clustering algorithms
constants Physical and mathematical constants
fftpack Fast Fourier Transform
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Module Functionality
integrate Integration and ordinary differential equations
interpolate Interpolation and splines
io Input and output
linalg Linear algebra
ndimage Image processing
odr Orthogonal distance regression
optimize Optimization and root-finding 
signal Signal processing
sparse Sparse matrices 
spatial Spatial data structures
special Special functions
stats Statistical distributions
weave C/C++ integration

The standard way to import SciPy modules in scripts is using the following 
command line:

from scipy import signal

Then, individual functions can be called with the usual module reference syntax,  
as follows:

signal.correlate(…)

However, many of the most used functions are available at the top level of the  
SciPy hierarchy. Also, we use IPython in the interactive mode and use (as we 
assume in this book) the magic, as follows:

%pylab inline

Many of the functions will be available without explicit module reference.

In the next section, we present a sample of the functions available in SciPy.  
The reader is not expected to know the mathematical techniques and algorithms  
that will be used in the examples in depth.
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Advanced mathematical algorithms  
with SciPy
In this section, we will cover some of the algorithms available in SciPy. Each of 
the following subsections features a representative example from a significant area 
of applied science. The examples are chosen so as not to require extensive domain 
knowledge but still be realistic. These are the topics and examples that we present:

•	 Solving equations and finding optimal values: We will study a market 
model that requires the solution of a nonlinear system and a facility  
location problem requiring a nonstandard optimization.

•	 Calculus and differential equations: We will present a volume calculation 
that uses integral calculus, and Newton's canon, a thought experiment 
proposed by Isaac Newton, which we will model using a system of differential 
equations. Finally, we will present a three-dimensional system, the famous 
Lorenz equations, which is an early example displaying chaotic behavior.

Solving equations and finding optimal values
To illustrate this topic, we use a standard supply-versus-demand model from 
economics. In this model, supply and demand are related to prices by functional 
relationships, and the equilibrium market is found by determining the intersection  
of the supply and demand curves. The mathematical formulae we use in the example 
are somewhat arbitrary (thus possibly unrealistic) but will go beyond what is found 
in textbooks, where supply and demand are in general assumed to be linear.

The formulae that specify the supply and demand curves are as follows:

We will use the function factory pattern. Run the following lines of code in a cell:

def make_supply(A, B, C):

    def supply_func(q):

        return A * q / (C  - B * q)

    return supply_func

def make_demand(K, L):

    def demand_func(q):
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        return K / (1 + L * q)

    return demand_func

The preceding code doesn't directly define the supply and demand curves. Instead,  
it specifies function factories. This approach makes it easier to work with parameters, 
which is what we normally want to do in applied problems since we expect the same 
model to be applicable to a variety of situations.

Next, we set the parameter values and call the function factories to define the 
functions that actually evaluate the supply and demand curves, as follows:

A, B, C = 23.3, 9.2, 82.4

K, L = 1.2, 0.54

supply = make_supply(A, B, C)

demand = make_demand(K, L)

The following lines of code make a graph of the curves:

q = linspace(0.01,5,200)

plot(q, supply(q), lw = 2)

plot(q, demand(q), lw = 2)

title('Supply and demand curves')

xlabel('Quantity (thousands of units)')

ylabel('Price ($)')

legend(['Supply', 'Demand'], loc='upper left')

The following is the graph that is the output of the preceding lines of code:
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The curves chosen for supply and demand reflect what would be reasonable 
assumptions: supply increases and demand decreases as the price gets higher.  
Even with a zero price, the demand is finite (reflecting the fact that there is a limited 
population interested in the product). On the other hand, the supply curve has a 
vertical asymptote (not shown in the plot), indicating that there is a production limit 
(so, even if the price goes to infinity, there is a limited quantity that can be offered  
in the market).

The equilibrium point of the market is the intersection of the supply and demand 
curves. To find the equilibrium, we use the optimize module, which, besides 
providing functions for optimization, also has functions to solve numerical 
equations. The recommended function to find solutions for one-variable functions  
is brentq(), as illustrated in the following code:

from scipy import optimize

def opt_func(q):

    return supply(q) - demand(q)

q_eq = optimize.brentq(opt_func, 1.0, 2.0)

print q_eq, supply(q_eq), demand(q_eq)

The brentq() function assumes that the right-hand side of the equation we want 
to solve is 0. So, we start by defining the opt_func() function that computes the 
difference between supply and demand. This function is the first argument of 
brentq(). The next two numerical arguments give an interval that contains the 
solutions. It is important to choose an interval that contains exactly one solution  
of the equation. In our example, this is easily done by looking at the graph, from 
which it is clear that the curves intersect between 1 and 2.

Running the preceding code produces the following output:

1.75322153719 0.616415252177 0.616415252177

The first value is the equilibrium point, which is the number of units (in thousands) 
that can be sold at the optimal price. The optimal price is computed using both the 
supply and demand curves (to check that the values are indeed the same).
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To illustrate an optimization problem in two variables, let's consider a problem of 
optimal facility location. Suppose a factory has several manufacturing stations that 
need materials to be distributed from a single supply station. The factory floor is 
rectangular, and the distribution rails must be parallel to the walls of the factory. 
This last requirement is what makes the problem interesting. The function to be 
minimized is related to the so-called taxicab distance, which is illustrated in the 
following image:

The first step is to define the points where the manufacturing stations are given,  
as follows:

points = array([[10.3,15.4],[6.5,8.8],[15.6,10.3],[4.7,12.8]])

The positions are stored as a 4 x 2 NumPy array called points, with one point in  
each row. The following command produces a plot of the points mentioned in  
the previous command line:

plot(points[:,0],points[:,1], 'o', ms=12, mfc='LightSkyBlue')

The points are displayed using a circular marker specified by the argument o,  
which also turns off the line segments connecting the points. The ms and mfc  
options specify the size of the marker (in pixels) and its color, respectively.  
The following image is then generated as the output:
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The next step is to define the function to be minimized. We again prefer the  
approach of defining a function factory, as follows:

def make_txmin(points):

    def txmin_func(p):

        return sum(abs(points - p))

    return txmin_func

The main point of this code is the way in which the taxicab distance is computed, 
which takes full advantage of the flexibility of the array operations of NumPy.  
This is done in the following line of code:

return sum(abs(points - p))

This code first computes the vector difference, points-p. Note that, here, points is 
a 4 x 2 array, while p is a 1 x 2 array. NumPy realizes that the dimensions of the arrays 
are different and uses its broadcasting rules. The effect is that the array p is subtracted 
from each row of the points array, which is exactly what we want. Then the abs() 
function computes the absolute value of each of the entries of the resulting array, and 
finally sum() adds all the entries. That's a lot of work done in a single line of code!

We then have to use the function factory to define the function that will actually 
compute the taxicab distance.

txmin = make_txmin(points)
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The function factory is simply called with the array containing the actual positions  
as its argument. At this point, the problem is completely set up, and we are ready  
to compute the optimum, which is done with the following code:

from scipy import optimize

x0 = array([0.,0.])

res = optimize.minimize(

         txmin, x0,

         method='nelder-mead',

         options={'xtol':1e-5, 'disp':True})

The minimization is computed by a call to the minimize() function. The first two 
arguments of this function are the objective function defined in the previous cell, 
txmin(), and an initial guess, x0. We just choose the origin as the initial guess, but  
in a real-world problem, we use any information we can gather to select a guess that 
is close to the actual minimum. Several optimization methods are available, suitable 
for different types of objective functions. We use the Nelder-Mead method, which  
is a heuristic algorithm that does not require smoothness of the objective function. 
This is well suited for the problem at hand. Finally, we specify two options for  
the method: the desired tolerance and a display option to print diagnostics.  
This produces the following output:

Optimization terminated successfully.

         Current function value: 23.800000

         Iterations: 87

         Function evaluations: 194

The preceding output states that a minimum was successfully found and gives its 
value. Note that, as in any numerical optimization method, in general, it can only 
be guaranteed that a local minimum was found. In this case, since the objective 
function is convex, the minimum is guaranteed to be global. The result of the 
function is stored in a SciPy data structure of the OptimizeResult type defined 
in the optimize module. To get the optimal position of the facility, we can use the 
following command:

print res.x

The output of the preceding command is as follows:

[  8.37782286  11.36247412]

To finish this example, we present the code that displays the optimal solution:

plot(points[:,0],points[:,1], 'o', ms=12, mfc='LightSkyBlue')

plot(res.x[0], res.x[1],'o', ms=12, mfc='LightYellow')
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locstr = 'x={:5.2f}, y={:5.2f}'.format(res.x[0], res.x[1])

title('Optimal facility location: {}'.format(locstr))

The calls to the plot() function are similar to the ones in the previous example. 
To give a nicely formatted title, we first define the locstr string, which displays 
the optimal location coordinates. This is a Python-formatted string with the format 
specification of {:5.2f}, that is, a floating-point field with width 5 and a precision  
of 2 digits. The result is the following figure:

Calculus and differential equations
As an example of a calculus computation, we will show you how to compute the 
volume of a solid of revolution. The solid is created by rotating the curve displayed 
in the following figure around the y-axis:
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This curve is plotted with the following code:

def make_gen(a,b):

    def gen_func(y):

        return a/pi * arccos(2.0 * y / b - 1.0)

    return gen_func

a = 5.

b = 4.

gen = make_gen(a,b)

x = linspace(0,b,200)

y = gen(x)

subplot(111, aspect='equal')

plot(x,y,lw=2)

The curve is essentially a stretched and transposed inverse cosine function,  
as defined in the make_gen() function. It depends on two parameters, a and b,  
that specify its height and length, respectively. The make_gen() function is a 
function factory that returns a function that actually computes values in the  
curve. The actual function defining the curve is called gen() (for generator),  
so this is the function that is plotted.

When this curve is rotated around the vertical axis, we obtain the solid plotted  
as follows:

The preceding figure, of course, was generated with IPython using the  
following code:

from mpl_toolkits.mplot3d import Axes3D

na = 50
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nr = 50

avalues = linspace(0, 2*pi, na, endpoint=False)

rvalues = linspace(b/nr, b, nr)

avalues_r = repeat(avalues[...,newaxis], nr, axis=1)

xvalues = append(0, (rvalues*cos(avalues_r)).flatten())

yvalues = append(0, (rvalues*sin(avalues_r)).flatten())

zvalues = gen(sqrt(xvalues*xvalues+yvalues*yvalues))

fig = plt.figure()

ax = fig.gca(projection='3d')

ax.plot_trisurf(xvalues, yvalues, zvalues, 

                color='Cyan',alpha=0.65,linewidth=0.)

The key function in this code is the call to plot_trisurf() in the last line. This 
function accepts three NumPy arrays, xvalues, yvalues, and zvalues, specifying  
the coordinates of the points on the surface. The arrays, xvalues and yvalues  
define points in a succession of concentric circles, as shown in the following image:

The value of the z coordinate is obtained by computing gen(sqrt(x*x+y*y))  
at each of these points, which has the effect of assigning the same height in the  
3D plot to all points of each concentric circle.

To compute the volume of the solid, we use the method of cylindrical shells.  
An explanation of how the method works is beyond the scope of this book,  
but it boils down to computing an integral, as shown in the following formula:
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In this formula, the f(x) function represents the curve being rotated around the  
y-axis. To compute this integral, we use the scipy.integrate package. We use  
the quad() function, which is appropriate for the generic integration of functions 
that do not have singularities. The following is the code for this formula:

import scipy.integrate as integrate

int_func  = lambda x: 2 * pi * x * gen(x)

integrate.quad(int_func, 0, b)

After importing the integrate module, we define the function to be integrated. 
Note that we use the lambda syntax since this is a one-line calculation. Finally,  
we call quad() to perform the integration. The arguments to the call are the  
function being integrated and the bounds of integration (from 0 to b in this case).  
The following is the output of the preceding lines of code:

(94.24777961000055, 1.440860870616234e-07)

The first number is the value of the integral, and the second one is an error estimate.

In the next example, we consider Newton's canon, a thought experiment at the very 
root of modern physics and calculus. The situation is illustrated in the following 
image, which is an engraving from the book by Sir Isaac Newton, A Treatise of The 
System of the World:
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Newton asks us to imagine a canon sitting at the top of a very high mountain. If the 
canon shoots a projectile, it will fly for a while and eventually hit the ground. The 
larger the initial velocity of the projectile, the further away it will hit the ground.  
Let's imagine that we can shoot the projectile as fast as we want, and that there is  
no air resistance. Then, as the initial velocity increases, eventually the projectile  
will go around the earth and, if the canon is removed quickly enough, then the  
projectile will continue its orbit around Earth forever. Newton used this example  
to explain how the moon could revolve around Earth without ever falling under  
the action of gravity alone.

To model this situation, we need to use Newton's law of gravitation as a system  
of differential equations:

We will not attempt to explain how these formulae were obtained, with the only 
important point for us being that there are four state variables, with the first two 
representing the position of the projectile and the last two representing its velocity 
vector. Since the movement takes place in a plane through the center of Earth, only 
two position variables are needed. G and M are constants representing Newton's 
universal gravitational constant and the mass of Earth, respectively. The mass of  
the projectile does not appear, since the gravitational mass is exactly cancelled by  
the inertial mass.

The first step to solve this using SciPy is to define this set of differential equations, 
which is done with the following code:

M = 5.9726E24

G = 6.67384E-11

C = G * M

def ode_func(xvec, t):
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    x1, x2, v1, v2 = xvec

    d = (x1 * x1 + x2 * x2) ** 1.5

    return array([v1, v2, -C * x1 / d, -C * x2 / d ])

All that we need to do is define a function that computes the right-hand side of the 
system of differential equations. We start by defining the constants, M and G (using SI 
units), and the auxiliary constant C, since G and M only appear in the equations through 
their product. The system is represented by the ode_func() function. This function 
must accept at least two parameters: a NumPy array, xvec, and a floating-point value, 
t. In our case, xvec is a four-dimensional vector since there are four state variables in 
our system. The variable, t, is not used in the system since there are no external forces 
(as there would be if we were launching a rocket instead of shooting a projectile). 
However, it must still be listed as an input parameter.

Inside ode_func(), we first extract the elements of the xvec vector with the 
assignment, as follows:

x1, x2, v1, v2 = xvec

This is not strictly necessary but improves readability. We then compute the 
auxiliary quantity, d (this is the denominator of the last two equations). Finally, 
the output array is computed according to the formulae in the system. Note that 
no derivatives are computed since all information that is needed by the solver is 
contained in the right-hand side of the equations.

We are now ready to solve the system of differential equations using the following 
lines of code:

import scipy.integrate as integrate

earth_radius = 6.371E6

v0 = 8500

h0 = 5E5

ic = array([0.0, earth_radius + h0, v0, 0.0])

tmax = 8700.0

dt = 10.0

tvalues = arange(0.0, tmax, dt)

xsol = integrate.odeint(ode_func, ic, tvalues)

The first line of the preceding code imports the integrate module, where the 
differential equations are solved. We then need to specify the initial position and 
velocity of the projectile. We assume that the canon is at the North Pole, atop a tower 
of 50,000 m (although this is clearly unrealistic, we just choose such a large value  
to enhance the visibility of the orbit). Since Earth is not a perfect sphere, we use  
an average value for the radius. The initial velocity is set to 8500 m/s.
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The initial conditions are stored in a NumPy array with the following assignment:

ic = array([0.0, earth_radius + h0, v0, 0.0])

The next step is to define the initial time (zero in our case) and the array of times at 
which the solution is sought. This is done with the following three lines of code:

tmax = 8650.0

dt = 60.0

tvalues = arange(0.0, tmax, dt)

We first define tmax as being the duration of the simulation (in seconds). The variable 
dt stores the time intervals at which we want to record the solution. In the preceding 
code, the solution will be recorded every 60 seconds for 8,650 seconds. The final time 
was chosen by trial-and-error to correspond, approximately, to one orbit of  
the projectile.

We are now ready to compute the solution, which is done with a call to the odeint() 
function. The solution is stored in the vector, xsol, which has one row for each time 
at which the solution is computed. To see the first few rows of the vector, we can run 
the following command:

xsol[:10]

The preceding command produces the following output:

array([[  0.00000000e+00,   6.87100000e+06,   8.50000000e+03,

          0.00000000e+00],

       [  5.09624253e+05,   6.85581217e+06,   8.48122162e+03,

         -5.05935282e+02],

       [  1.01700042e+06,   6.81036510e+06,   8.42515172e+03,

         -1.00800330e+03],

       [  1.51991202e+06,   6.73500470e+06,   8.33257580e+03,

         -1.50243025e+03],

       [  2.01620463e+06,   6.63029830e+06,   8.20477026e+03,

         -1.98562415e+03],

       [  2.50381401e+06,   6.49702131e+06,   8.04345585e+03,

         -2.45425372e+03],

       [  2.98079103e+06,   6.33613950e+06,   7.85073707e+03,

         -2.90531389e+03],

       [  3.44532256e+06,   6.14878788e+06,   7.62903174e+03,

         -3.33617549e+03],
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       [  3.89574810e+06,   5.93624710e+06,   7.38099497e+03,

         -3.74461812e+03],

       [  4.33057158e+06,   5.69991830e+06,   7.10944180e+03,

         -4.12884566e+03]])

These values are the position and velocity vectors of the projectile from time 0 s to 
time 360 s at intervals of 60 s.

We definitely want to produce a plot of the orbit. This can be done by running the 
following code in a cell:

subplot(111, aspect='equal')

axis(earth_radius * array([-1.5, 1.5, -1.8, 1.2]))

earth = Circle((0.,0.), 

                earth_radius, 

                ec='Black', fc='Brown', lw=3)

gca().add_artist(earth)

plot(xsol[:,0], xsol[:,1], lw=2, color='DarkBlue')

title('Newton\'s Canon, $v_0={}$ m/s'.format(v0))

We want to use the same scale in both axes since both axes represent spatial 
coordinates in meters. This is done in the first line of code. The second line sets  
the axis limits so that the plot of the orbit fits comfortably in the picture.

Then, we plot a circle to represent Earth using the following lines of code:

earth = Circle((0.,0.), 

               earth_radius, 

               ec='Black', fc='Brown', lw=3)

gca().add_artist(earth)

We have not emphasized using Artist objects in our plots since these are at a lower 
level than is usually required for scientific plots. Here, we are constructing a Circle 
object by giving its center, radius, and appearance options: a black edge color, brown 
face color, and a line width equal to 3. The second line of code shows how to add the 
Circle object to the plot.

After drawing Earth, we plot the orbit using the following line of code:

plot(xsol[:,0], xsol[:,1], lw=2, color='DarkBlue')

This is a standard call to the plot() function. Note that we plot only the first  
two columns of the xsol array since these represent the position of the projectile 
(recall that the other two represent the velocity). The following image is what we  
get as the output:
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A numerical solution for differential equations is a sophisticated topic, and a complete 
treatment of the issue is beyond the scope of this book, but we will present the full 
form of the odeint() function and comment on some of the options. The odeint() 
function is a Python wrapper on the lsoda solver from ODEPACK, the Fortran library. 
Detailed information about the solver can be found at http://people.sc.fsu.
edu/~jburkardt/f77_src/odepack/odepack.html

The following lines of code are the complete signature of odeint():

odeint(ode_func, x0, tvalues, args=(), Dfun=None, col_deriv=0,

       full_output=0, ml=None, mu=None, rtol=None, atol=None,

       tcrit=None, h0=0.0, hmax=0.0, hmin=0.0,ixpr=0, mxstep=0,

       mxhnil=0, mxordn=12, mxords=5, printmessg=0)

The arguments, ode_func, x0 and tvalues, have already been discussed. The 
argument args allows us to pass extra parameters to the equation being solved.  
This is a very common situation, which is illustrated in the next example. In this  
case, the function defining the system must have the following signature:

ode_func(x, t, p1, p2, … , pn)

Here, p1, p2, and pn are extra parameters. These parameters are fixed for a single 
solution but can change from one solution to the other (they are normally used to 
represent the environment). The tuple passed to args must have a length exactly 
equal to the number of parameters that ode_func() requires.
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The following is a partial list of the meaning of the most common options:

•	 Dfun is a function that computes the Jacobian of the system. This may 
improve the accuracy of the solution.

•	 Whether the Jacobian has the derivatives of the right-hand side along its 
columns (True, faster) or rows (False) is specified by col_deriv.

•	 If full_output is set to True, the output contains diagnostics about the 
solution process. This may be useful if errors accumulate and the solution 
process is not successfully completed.

In the last example in this section, we present the Lorenz oscillator, a simplified 
model for atmospheric convection, and a famous equation that displays chaotic 
behavior for certain values of the parameters. We will also use this example to 
demonstrate how to plot solutions in three dimensions.

The Lorenz system is defined by the following equations:

We start by defining a Python function representing the system, as follows:

def ode_func(xvec, t, sigma, rho, beta):

    x, y, z = xvec

    return array([sigma * (y - x),

                  x * (rho - z) - y,

                  x * y - beta * z ])
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The only difference between this system and the previous one is the presence  
of the parameters sigma, rho, and beta. Note that they are just added as extra 
arguments to ode_func(). Solving the equation is almost the same as solving  
the previous example:

tmax = 50

tdelta = 0.005

tvalues = arange(0, tmax, tdelta) 

ic = array([0.0, 1.0, 0.0])

sol = integrate.odeint(ode_func, ic, tvalues, 

                       args=(10., 28., 8./3.))

We define the array of times and the initial condition just as we did in the previous 
example. Notice that since this is a three-dimensional problem, there are initial 
conditions in an array with three components. Then comes the call to odeint().  
The call now has an extra argument:

args=(10., 28., 8./3.)

This sets sigma, rho, and beta, respectively, to the values 10, 28, and 8/3. These are 
values that are known to correspond to chaotic solutions.

The solution can then be plotted with the following code:

from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(8,8))

from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(8,8))

ax = fig.add_subplot(111, projection='3d')

x, y, z = sol.transpose() 

ax.plot(x, y, z, lw=0.5, color='DarkBlue')

ax.set_xlabel('$x$')

ax.set_ylabel('$y$')

ax.set_zlabel('$z$')

The first three lines of code set up the axes for three-dimensional plotting. The next 
line extracts the data in a format suitable for plotting:

x, y, z = sol.transpose()
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This code illustrates a common pattern. The array sol contains the coordinates of  
the solutions along its columns, so we transpose the array so that the data is along 
the rows of the array, and then assign each row to one of the variables x, y, and z.

The other lines of code are pretty straightforward: we call the plot() function and 
then add labels to the axes. The following is the figure that we get as the output:

The preceding image is known as the classical Lorenz butterfly, a striking example  
of a strange attractor.

Accelerating computations with Numba 
and NumbaPro
In this section, we will discuss Numba and NumbaPro, two very exciting libraries to 
accelerate the NumPy code. Numba and NumbaPro were created by Continuum Analytics, 
the same company that produces the Anaconda distribution. Numba is part of the 
standard Anaconda distribution, but NumbaPro is a commercial product that must  
be purchased separately as part of the Accelerate package. However, NumbaPro  
can be downloaded for a free trial period.
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These libraries are unique in that they allow the acceleration of code with the 
addition of a few lines of code. As the first example, let's consider the following  
lines of code to multiply two matrices:

def matrix_multiply(A, B):

    m, n = A.shape

    n, r = B.shape

    C = zeros((m, r), float64)

    for i in range(m):

        for j in range(r):

            acc = 0

            for k in range(n):

                acc += A[i, k] * B[k, j]

            C[i, j] = acc

    return C

The preceding code uses the straightforward definition of matrix multiplication 
and looks very much like code that would be written if we were implementing the 
algorithm in C. It is not Python-like and definitely not optimized. (In a real-world 
situation, one would simply use the NumPy built-in matrix multiplication.) Note, in 
particular, that the dimensions of the matrices are not checked: it is assumed that  
the number of columns of A is equal to the number of rows of B.

Let's first try the computation with small matrices, as follows:

A = array([[1,2,0],[1,-3,4],[0,-2,1],[3,7,-4]], dtype=float64)

B = array([[3,4],[-2,0],[2,4]], dtype = float64)

C = matrix_multiply(A, B)

print A

print B

print C

We start by defining the matrices A and B (note that the dimensions are compatible 
for multiplication). As in all examples in this section, we are careful to include a  
data type specification (this may improve optimization). Then, we simply call 
matrix_multiply, store the result in the array C, and print the three matrices.  
The result is the following:

[[  1.   2.   0.]

 [  1.  -3.   4.]

 [  0.  -2.   1.]

 [  3.   7.  -4.]]

[[  3    4]
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 [ -2    0]

 [  2    4]]

[[ -1.   4.]

 [  17. 20.]

 [  6.   4.]

 [ -13. -4.]]

You can verify that the algorithm is correct by manually checking a few entries. 
Alternatively, we can check whether the result agrees with the built-in matrix 
multiplication, as follows:

C - A.dot(B)

array([[ 0. ,  0.],

       [ 0. ,  0.],

       [ 0. ,  0.],

       [ 0. ,  0.]])

Everything seems to be fine. Now, we want to define some larger random matrices, 
as follows:

n = 100

A = rand(n, n)

B = rand(n, n)

In a 64-bit architecture, the preceding lines of code will automatically produce matrices 
of 64-bit floats. Next, we multiply the matrices and time the result as follows:

%%timeit

C = matrix_multiply(A, B)

The output of the preceding computation is as follows:

1 loops, best of 3: 472 ms per loop

The timing results will, of course, differ depending on the machine running the code. 
This example was run on an Intel Core i7 processor at 3.5 GHz with 16 GB  
of memory running a Microsoft Windows 7, 64-bit operating system.

Let's now see how we can quickly optimize this function. First, load the jit function 
from the Numba module, as follows:

from numba import jit

Then, define the function with the @jit decorator preceding it, as follows:

@jit
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def matrix_multiply_jit(A, B):

    m, n = A.shape

    n, r = B.shape

    C = zeros((m, r), float64)

    for i in range(m):

        for j in range(r):

            acc = 0

            for k in range(n):

                acc += A[i, k] * B[k, j]

            C[i, j] = acc

    return C

Note that the only change to the code is the addition of the decorator. (We also 
changed the name of the function to avoid confusion, but this is not necessary.) 
Decorators are an advanced Python topic, but we do not need to go into the details  
of how they work. More information about decorators is available in the excellent 
blog postings by Simeon Franklin at http://simeonfranklin.com/blog/2012/
jul/1/python-decorators-in-12-steps/.

Let's now time our code, as follows:

%%timeit

C = matrix_multiply_jit(A, B)

The following is the resultant output:

1000 loops, best of 3: 1.8 ms per loop

This is a 260-fold improvement with a single line of code! You should keep things 
in perspective here since this kind of acceleration cannot be expected for generic 
code. Remember that we wrote our code purposefully in a way that does not use 
the already-optimized functions from NumPy. For the sake of comparison and full 
disclosure, let's compare this with the built-in dot() method:

%%timeit

C = A.dot(B)

The resultant output is as follows:

10000 loops, best of 3: 28.6 µs per loop

So, even with acceleration, our function cannot compete with built-in NumPy. We 
emphasize again that the goal of this section is to present an overview of acceleration 
techniques and not delve deeply into sophisticated optimization methods.
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It is worth having some understanding of how the @jit decorator works. When a 
function decorated by @jit is called, the library attempts to infer the data type of 
the arguments and return value, and on the fly produces a compiled version of the 
function and then calls it. The result is a function call that is comparable to code 
written in C.

Instead of letting the type of arguments and return value be inferred, it is possible 
to specify the data types, which may result in improved performance. The following 
table consists of the data types supported and the abbreviations used by Numba:

Data type Abbreviation
boolean  b1

bool_ b1 

byte u1 

uint8 u1 

uint16 u2 

uint32 u4 

uint64 u8 

char i1 

int8 i1 

int16 i2 

int32 i4 

int64 i8 

float_ f4 

float32 f4 

double f8 

float64 f8 

complex64 c8 

complex128 c16 

These names are all defined in the Numba module. For example, to define a function 
that adds two floating-point values, we use the following code:

from numba import jit, f8

@jit (f8(f8,f8))

def my_sum(a, b):

    return a + b

Note the decorator syntax, which is as follows:

@jit (f8(f8,f8))
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This specifies a function that takes two float64 arguments and returns a float64 
value. The function is then called, as follows:

my_sum(3.5, 6.9)

This produces the expected result. However, if we try something like the following 
code, we get an error:

a = array([1.4, 2.0])

b = array([2.3, 5,2])

my_sum(a,b)

It is, however, possible to use arrays with the @jit decorator. To define a function 
that adds two one-dimensional arrays, one would use the following lines of code:

@jit (f8[:](f8[:],f8[:]))

def vector_sum(a, b):

    return a + b

Note how a vector is specified. A two-dimensional array is denoted by f8[:,:],  
a three-dimensional array by f8[:,:,:], and so on.

NumbaPro is the commercial version of Numba and adds several enhancements. We 
will focus on parallel processing using the Graphics Processing Unit (GPU) as an 
example of an exciting new technology that is made easily available in a notebook.

To run the examples that follow, the reader must have NumbaPro, a CUDA-compatible 
GPU (henceforth called the "device"), and the latest CUDA-compatible driver.

A list of CUDA-compatible devices can be found at https://developer.nvidia.
com/cuda-gpus. After verifying that you have a compatible device, download and 
install the latest version of the CUDA SDK from https://developer.nvidia.com/
cuda-downloads for the appropriate platform. The CUDA toolkit comes with several 
examples that you can use to test the installation.

The NumbaPro download is available at https://store.continuum.io/cshop/
accelerate/. Download and install the Accelerate library.

To test the setup, start an IPython notebook and run the following in a cell:

import numbapro

numbapro.check_cuda()

If everything is fine, this will print a list of the CUDA libraries installed by Anaconda 
as well as a list of the CUDA-compatible devices available in your system. You will 
also see a PASSED message at the end of the display.
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Even though CUDA programming is a relatively easy path to massive parallelism, 
there are still some concepts that have to be mastered before we can tackle our first 
CUDA program. We will outline the basics of the architecture here, discussing only 
enough to run the examples that follow. For a complete specification, see the CUDA 
Programming Guide, available at http://docs.nvidia.com/cuda/cuda-c-
programming-guide/index.html#programming-model.

GPUs were originally designed to process rendering operations with greater speed 
than the computer's CPU is capable of. This processing acceleration is achieved, in 
large measure, by massively parallelizing the graphical operations required by the 
rendering pipeline.

A CUDA-compatible GPU consists of an array of Streaming Multiprocessors (SMs). 
Each one of the SMs, by itself, cannot compete with current CPUs in terms of speed. 
However, the fact that many SMs can cooperate to solve a problem more than 
compensates for that. The SMs can also access memory that resides in the GPU, 
referred to as device memory.

In CUDA, there is a strict separation between code that runs in the CPU and code that 
runs in the device (the GPU). One particular restriction is that while CPU code can 
only access regular computer memory, device code can only access device memory. 
Code that runs in the device is specified in a function called a kernel. The kernel is 
compiled into a low-level language that is understood by the SMs and runs into each 
SM asynchronously (meaning that each SM proceeds at its own pace unless special 
synchronization instructions are found). Thus, a simple computation in CUDA usually 
requires the following three steps:

1.	 Transfer input data from the computer memory to the device memory.
2.	 Launch the kernel in the device.
3.	 Transfer output data from the device memory to the computer memory  

so that it is accessible to the CPU again.

As you will see, the memory transfers are made transparent by Python CUDA.  
(There is still the possibility to control it programmatically if needed.)

The kernel is launched simultaneously in an array of SMs, and each thread proceeds 
independently with the computation. Each SM can run several threads in parallel 
and can access all the device's memory. (The architecture is more complicated, and 
there are other kinds of memory available that will not be discussed here.) In the 
simplest case, each thread will access only a few memory areas, each containing a 
64-bit floating value, and the memory accessed by a thread is never accessed by any 
other thread. So, there is no need for synchronization. In more complex problems, 
synchronization may be a major issue.
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The set of threads being run features a two-level array structure:

•	 Threads are organized in blocks. Each block is an array of threads with up to 3 
dimensions The dimensions of a block are stored in a variable called blockDim. 
Threads in a block are identified by the variable, threadIdx. This is a structure 
with three integer fields: threadIdx.x, threadIdx.y, and threadIdx.z. These 
fields uniquely identify each thread in the block.

•	 Blocks are organized in a grid. The grid is an array of blocks with up to 
3 dimensions. The dimensions of the grid are stored in a variable called 
gridDim. Blocks in a grid are identified by the variable, gridIdx. This is a 
structure with three integer fields: gridIdx.x, gridIdx.y, and gridIdx.z. 
These fields uniquely identify each block in the grid.

An example of this organizational structure is given in the following figure:

In the preceding example, gridDim is (2, 3, 1) since there are two rows and  
three columns of blocks (and a single space dimension). All the blocks in the grid  
are one-dimensional, so blockDim is (4, 1, 1). The third thread in the first block  
of the bottom row, for example, is identified by the following lines of code:

blockIdx.x=0, blockIdx.y=1, blockIdx.z=1

threadIdx.x=2, threadIdx.y=1, threadIdx.z=1

At runtime, each individual thread has access to this identifying information.

A key point of the CUDA architecture is the following:

•	 All threads in the same block always run concurrently in a single SM until  
all threads in the block have terminated

•	 Different blocks can run concurrently or serially depending on the 
availability of an SM to carry out the computation
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We are now ready to define the kernel using Python CUDA. We will write a function 
that computes the sum of two vectors in the GPU. Run the following code in a cell:

from numbapro import cuda

@cuda.jit('void(float64[:], float64[:], float64[:])')

def sum(a, b, result):

    i = cuda.threadIdx.x    

    result[i] = a[i] + b[i]

We assume that there is only one block of threads, and each thread is responsible  
for adding the elements of the array at a single position. The array position that a 
thread is responsible for is identified by the value of threadIdx.x. Note that the 
kernel has no return value. We need to specify an array, result, to hold the return 
value of the computation.

Let's now see how this function is called. Note that the grid and block geometry is 
not defined in the kernel. (The kernel can obtain geometry information if necessary; 
more on that later.) This is done when the kernel is launched:

a = array([1,2,3,4,5], dtype=float64)

b = array([5,4,3,2,1], dtype=float64)

result = array([0,0,0,0,0], dtype=float64)

sum[1,5](a, b, result)

print result

The preceding lines of code give the following output:

[ 6.  6.  6.  6.  6.]

The main point in this code is the following line:

sum[1,5](a, b, result)

The preceding line launches the kernel in a grid with 1 block, with 5 threads  
in the block. Both the grid and the blocks are one-dimensional. Let's now add  
larger vectors:

n = 64

a = arange(0,n,dtype=float64)

b = arange(n,0,-1, dtype=float64)

result = zeros(n,dtype=float64)

sum[1,n](a, b, result)

print result[:5]
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The preceding lines of code are essentially the same as before but a little more 
generic in that the size of the array can be changed. What we want to do is increase 
the size of n. If you try a value such as n=10000, an error of type CUDA_ERROR_
INVALID_VALUE occurs. The problem is that there is a hard limit on the number 
of threads that can be run by a single SM, that is, there is a limit to the number of 
threads that can be executed in a single block. To be able to handle large vectors,  
we need to modify the code so that it can handle multiple blocks. To this end,  
change the definition of the sum() function in the following way:

from numbapro import cuda

@cuda.jit('void(float64[:], float64[:], float64[:], int32)')

def sum(a, b, result, n):

    tx = cuda.threadIdx.x

    bx = cuda.blockIdx.x

    bsz = cuda.blockDim.x

    i = tx + bx * bsz

    if i < n:

        result[i] = a[i] + b[i]

The first thing to note is that we include an argument of type int32 to hold the 
size of the arrays being added. The main point now is that threads in different 
blocks must address different areas of memory, so the computation of the index i 
associated to a thread is more complicated. Essentially, we must know the number  
of blocks that come before the current block, multiply that by the block dimension, 
and add the current thread index. Then, before adding the relevant memory 
positions, we check if the index is valid. This prevents the thread from accessing 
areas that are not part of the input/output arrays and is an essential check in more 
complex code. To test the code, run the following:

n = 100000

a = arange(0,n,dtype=float64)

b = arange(n,0,-1, dtype=float64)

result = zeros(n,dtype=float64)

sum[1000,64](a, b, result, n)

print result[:5]

The preceding code should run without a hitch. Note that we are specifying a 
grid with 1000 blocks and 64 threads per block. The number of blocks in a grid is 
unlimited, the device being responsible for allocating the SMs in an optimal way. 
Note that the number of blocks must be large enough to cover the input/output 
arrays. In our case, this means blockDim.x * gridDim.x >= n.



Advanced Computing with SciPy, Numba, and NumbaPro

[ 138 ]

We are now ready to compute with large vectors. Try the following code:

n = 100000

a = rand(n)

b = rand(n)

result = zeros(n, dtype=float64)

bd = 10000

gd = 64

if bd * gd < n:

    print 'Block/grid dimensions too small'

else:

    sum[bd,gd](a, b, result, n)

print result[:10]

The reader should experiment with different values of n, bd, and gd. Remember that 
the maximum value of gd depends on the device in your computer. An interesting 
experiment is to check how the computation scales for larger values of n.

Summary
In this chapter, we covered the use of advanced mathematical algorithms in SciPy, 
including solving equations and finding optimal values, integration, and differential 
equations. The chapter concluded with a discussion on using parallelization in the 
GPU to accelerate computations.
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Starting the notebook
To start the notebook, open a terminal window and run the following command:

ipython notebook

It is important that you are in the directory that contains your notebooks when you 
run the preceding command.

Keyboard shortcuts
Some of the important keyboard shortcuts are as follows:

•	 To go into the Edit mode, press Enter or click on the cell
•	 To go into the Command mode, press Esc

Shortcuts in the Edit mode
Some of the important shortcuts used in the Edit mode are as follows:

•	 To run a cell, the following shortcuts are used:
°° To run a cell and move to the next cell, press Shift + Enter
°° To run a cell, but stay in the same cell, press Ctrl + Enter
°° To run a cell and insert a new cell below it, press Alt + Enter
°° To create a new line in the current cell, press Enter
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•	 To indent the content, press Tab
•	 To start code completion, start typing in the cell and then press Tab
•	 To select all, press Ctrl + A
•	 To undo an action, press Ctrl + Z
•	 To redo an action, press Ctrl + Y or Ctrl + Shift + Z
•	 To go to the start of the cell, press Ctrl + Home
•	 To go to the end of the cell, press Ctrl + End
•	 To split a cell, press Ctrl + Shift + -

Shortcuts in the Command mode
•	 To list the keyboard shortcuts, press H
•	 To change the cell mode to one of the following, the shortcuts are as follows:

°° Code: Press Y
°° Markdown: Press M
°° Heading: Press a number between 1 and 6, according to the  

heading size
°° Raw NBConvert: Press R

•	 To select a cell above the current cell, press the Up key or K
•	 To select a cell below the current cell, press the Down key or J
•	 To move a cell up by one position, press Ctrl + K
•	 To move a cell down by one position, press Ctrl + J
•	 To insert a new cell above the current cell, press A
•	 To insert a new cell below the current cell, press B
•	 To cut a cell, press X
•	 To copy a cell, press C
•	 To paste a cell below the current cell, press V
•	 To paste a cell above the current cell, press Shift + V
•	 To delete a cell, press D
•	 To undo a delete action, press Z
•	 To merge the current cell with the cell below it, press Shift + M
•	 To toggle line numbers, press L
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Importing modules
The steps to load some of the important modules are as follows:

•	 To load NumPy and matplotlib to work interactively, along with inline 
graphics, run the following command:
pylab inline

•	 To load NumPy and matplotlib without importing names into the current 
namespace, with inline graphics, run the following command line:
pylab -–no-import-all inline

•	 To load SciPy modules, use any of the following standard Python  
import commands:

import scipy.<module>

import scipy.<module> as <local-name>

from scipy.<module> import <function>

If the –no-import-all options is used, the functions and objects have to be prefixed 
by the appropriate module name as follows:

•	 For NumPy functions and objects, use numpy or np.
•	 For interactive graphics, use pyplot or plt.

Modules from libraries installed in the system as well as the user-created modules 
with the.py extension can be imported through the standard Python mechanism.

Getting help
There are a number of ways to get help:

•	 To start interactive help, run the following command:
help()

•	 To get help with a function or object, run the following command:
help(object)

help(function)

<object>?

<function>?
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•	 For tab completion, start typing the name of the function/object/method and 
press Tab.

•	 To get a tooltip, start typing the name of the function/object/method and 
press Shift + Tab.



A Brief Review of Python

Introduction
This appendix will give you a brief tour of the Python syntax. This is not intended to 
be a course on Python programming, but can be used by readers who are unfamiliar 
with the language as a quick introduction. The following topics will be covered in 
this appendix:

•	 Basic types, expressions, and variables and their assignment
•	 Sequence types
•	 Dictionaries
•	 Control structures
•	 Functions, objects, and methods

Basic types, expressions, and variables 
and their assignment
Any data that can be referred to in a Python code is considered an object.  
Objects are used to represent everything from atomic data, such as numbers,  
to very complex data structures, such as multidimensional arrays, database 
connections, and documents in several formats.
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At the root of the object hierarchy are the numeric data types. These include  
the following:

•	 Integers: There are three types of integers in Python.
°° Plain integers: They are represented in the native architecture, 

which, in most systems, will be either 32- or 64-bit signed values.
°° Long integers: They are integers with unlimited range, subject  

to available memory. Most of the time, the programmer does not 
need to be concerned with the distinction between plain and long 
integers. Python deals with conversions between the types in a 
transparent way.

°° Booleans: They represent the values False and True. In most 
situations, they are equivalent to 0 and 1, respectively.

•	 Floats: They represent the native double-precision floating-point numbers.
•	 Complex: They represent complex numbers, represented as a pair of  

double-precision floating-point numbers.

The following table has examples of literals (that is, constants) for each data type:

Data type Literals
Integers 0, 2, 4, …, 43882838388

5L, 5l (long integer)
0xFE4 (hexadecimal)
03241 (octal)

Real numbers (float) 5.34, 1.2, 3., 0
1.4e-32 (scientific notation)

Complex 1.0+3.4j, 1+2j, 1j, 0j, complex(4.3, 2.5)

The imaginary unit is represented by j, but only if it follows a number literal 
(otherwise, it represents the variable named j). So, to represent the imaginary  
unit we must use 1j and the complex zero is 0j. The real and imaginary part of  
a complex number are always stored as double-precision floating-point values.

Note that the set of numeric types is greatly extended by NumPy to 
allow efficient numeric computations.
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The assignment statement is used to store values in variables, as follows:

a = 3

b = 2.28

c = 12

d = 1+2j

Python supports multiple simultaneous assignments of values, so the previous four 
lines of code could be equivalently written in a single line as follows:

a, b, c, d = 3, 2.28, 12, 1+2j

In a multiple assignment, all expressions in the right-hand side are evaluated before 
the assignments are made. For example, a common idiom to exchange the values of 
two variables is as follows:

v, w = w, v

As an exercise, the reader can try to predict the result of the following statement, 
given the preceding variable assignments:

a, b, c = a + b, c + d, a * b * c * d

print a, b, c, d

The following example shows how to compute the two solutions of a quadratic 
equation:

a, b, c = 2., -1., -4.

x1, x2 = .5 * (-b - (b ** 2 - 4 * a * c) ** 0.5), .5 * (-b + (b ** 2 - 4 
* a * c) ** 0.5)

print x1, x2

Note that we force the variables a, b, and c to be floating-point values by using a 
decimal point. This is good practice when performing numerical computations.  
The following table contains a partial list of Python operators:

Operators Python operators
Arithmetic + (Addition)

- (Subtraction, unary minus)
* (Multiplication)
/ (Division, see the note below the table)
// (Integer division)
% (Remainder)
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Operators Python operators
Comparison == (Equal to)

> (Greater than)
< (Less than)
>= (Greater than or equal to)
<= (Less than or equal to)
!= (Not equal to)

Boolean and

or

not

Bitwise 
Boolean

& (AND)
| (OR)
^ (XOR)
~ (NOT)

Bitwise shift << (Left shift)
>> (Right shift)

Care should be taken with the division operator (/). If the 
operands are integers, the result of this operation is the 
integer quotient. For example, 34/12 results 2. To get the 
floating point result, we must either enter floating point 
operands, as in 34./12., or add the following statement:
from __future__ import division

The // operator always represents integer division.

Arithmetic operators follow the rules for the order of operations that may be 
altered with the use of parenthesis. Comparison operators have lower precedence 
than arithmetic operators, and the or, and, and not operators have even lower 
precedence. So, an expression like the following one produces the expected result:

2 + 3 < 5 ** 2 and 4 * 3 != 13

In other words, the preceding command line is parsed as follows:

(((2 + 3) < (5 ** 2)) and ((4 * 3) != 13))

The logical operators and and or short circuit, so, for example, the second 
comparison is never evaluated in the command:

2 < 3 or 4 > 5
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The precedence rules for the bitwise and shift operators may not be as intuitive, so it 
is recommended to always use parenthesis to specify the order of operations, which 
also adds clarity to the code.

Python also supports augmented assignments. For example, the following command 
lines first assign the value 5 to a, and then increment the value of a by one:

a = 5

a += 1

Python does not have increment/decrement operators, 
such as a++ and ++a, as in the C language.

All Python operators have a corresponding augmented assignment statement.  
The general semantic for any operator $ is the following statement:

v $= <expression>

The preceding statement is equivalent to the following:

v = v $ (<expression>)

Note that $ is not a valid Python operator, it is just 
being used as a placeholder for a generic operator.

Sequence types
Python sequence types are used to represent ordered collections of objects. They are 
classified into mutable and immutable sequence types. Here, we will only discuss 
lists (mutable) and tuples and strings (both immutable). Other sequence types 
are mentioned at the end of this section.

Lists
The following example shows how to construct a list in Python and assign it  
to a variable:

numbers = [0, 1.2, 234259399992, 4+3j]

Individual entries in the list are accessed with index notation as follows:

numbers[2]
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Notice that indexing always starts with 0. Negative indices are allowed and they 
represent positions starting at the end of the list. For example, numbers[-1] is  
the last entry, numbers[-2] is the next-to-last entry, and so forth.

Since lists are a mutable sequence type, we are allowed to modify the entries  
in-place:

numbers[0] = -3

numbers[2] += numbers[0]

print numbers

Another important way to refer to elements in a Python sequence type is slices, 
which allow the extraction of sublists from a list. Since this topic is very important 
for NumPy arrays, we defer the discussion to Appendix C, NumPy Arrays.

Python lists have a nice set of features, a few of which are illustrated in the  
following code examples:

•	 To find the length of a list, use the following command:
len(numbers)

•	 To reverse a list in place, use the following command:
numbers.reverse()

print numbers

•	 To append a new element, use the following command:
numbers.append(35)

print numbers

•	 To sort the list in-place, use the following command:
values = [1.2, 0.5, -3.4, 12.6, 3.5]

values.sort()

print values

values.sort(reverse=True)

print values

•	 To insert a value at a position, use the following command:
values.insert(3, 6.8)

print values
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•	 To extend a list, use the following command:

values.extend([7,8,9])

print values

Python has a few handy ways to construct frequently used lists. The range() 
function returns a list of equally spaced integers. The simplest form returns a  
list of successive integers starting at 0:

range(10)

The preceding command returns the following list:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Note that the last element is one less than the argument given in the function call. 
The rule of thumb is that range(n) returns a list with n elements starting at zero 
so that the last element is n-1. To start at a nonzero value, use the two-argument 
version as follows:

range(3, 17)

A third argument specifies an increment. The following command line produces  
a list of all positive multiples of 6 that are less than 100:

range(6,100,6)

Negative increments can also be used:

range(20, 2, -3)

Lists support concatenation, which is represented by the + operator:

l1 = range(1, 10)

l2 = range(10, 0, -1)

l3 = l1 + l2

print l3

Note that for the NumPy arrays, the + operator is redefined to 
represent vector/matrix addition.

The multiplication operator (*) can be used to construct a list by repeating the 
elements of a given list, as follows:

l4 = 3*[4,-1,5]

print l4
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The most flexible way to construct a list in Python is to use a list comprehension. 
A full discussion is beyond the scope of this appendix, but the following examples 
illustrate some of the possibilities:

•	 To display the list of the squares of the integers from 0 to 10 (inclusive),  
use the following command line:
[n ** 2 for n in range(11)]

•	 To display the list of divisors of an integer, use the following command lines:
k = 60

[d for d in range(1, k+1) if k % d == 0]

•	 To display the list of prime numbers up to 100, use the following command 
line (very inefficient):
[k for k in range(2,101) if len([d for d in range(1, k+1) if k % d 
== 0])==2]

•	 To display the list of tuples of points with integers coordinates and their 
distances to the origin, use the following command line:

[(i,j,(i*i+j*j)**0.5) for i in range(5) for j in range(6)]

Tuples
Tuples are similar to lists, but are immutable—once created, their elements cannot 

be changed. The following command lines will result in an error message:

t1 = (2,3,5,7)

t1[2] = -4

Tuples have a few specialized uses in Python. They can be used as indexes in 
dictionaries (because they are immutable). They also consist of the mechanism that 
Python uses to return more than one value from a function. For example, the built-in 
function divmod() returns both the integer quotient and remainder in a tuple:

divmod(213, 43)

Tuples support the same sequence interface as lists, except for methods that would 
modify the tuple. For example, there is no method named sort() that sorts a tuple 
in place.
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Strings
A Python string represents an immutable sequence of characters. There are  
two string types: str, representing ASCII strings, and unicode, representing 
Unicode strings.

A string literal is a sequence of characters enclosed by either single quotes or  
double quotes, as follows:

s1 = 'I am a string'

s2 = "I am a string"

print s1

print s2

There is no semantic difference between single quotes and double quotes, except  
that a single-quoted string can contain double quotes and a double quoted string  
can contain single quotes. For example, the following command lines are correct:

s3 = "I'm a string"

print s3

Strings are used for two main purposes: as dictionary indexes and to print messages. 
When printing messages, strings have the format() method that allows easy display 
of information. We use this feature frequently to add annotations to graphics. Here is 
an example:

n = 3

message = 'The square root of {:d} is approximately {:8.5f}.'.format(n, n 
** 0.5)

print message

In the preceding example, there are two format specifiers:

•	 {:d}: This specifies a decimal format for an integer value
•	 {:8.5f}: This specifies a field of width 8 and 5 decimals for a  

floating-point value

The format specifications are matched (in order) with the arguments, in this  
case n and n ** 0.5.

Strings have a rich interface. If you need to code something with strings, it is very 
likely that there is a built-in function that does the job with very little modification. 
A list of all available string methods, as well as formatting features, is available at 
https://docs.python.org/2/library/stdtypes.html#string-methods.



A Brief Review of Python

[ 152 ]

Dictionaries
Python dictionaries are a data structure that contains key-item pairs. The keys must 
be immutable types, usually strings or tuples. Here is an example that shows how  
to construct a dictionary:

grades = {'Pete':87, 'Annie':92, 'Jodi':78}

To access an item, we provide the key as an index as follows:

print grades['Annie']

Dictionaries are mutable, so we can change the item values using them. If Jodi does 
extra work to improve her grade, we can change it as follows:

grades['Jodi'] += 10

print grades['Jodi']

To add an entry to a dictionary, just assign a value to a new key:

grades['Ivan']=94

However, attempting to access a nonexistent key yields an error.

An important point to realize is that dictionaries are not ordered. The following  
code is a standard idiom to iterate over a dictionary:

for key, item in grades.iteritems():

    print "{:s}'s grade in the test is {:d}".format(key, item)

The main point here is that the output is not at all related to the order in which the 
entries were added to the dictionary.

For more details on the dictionary interface, you can refer to https://docs.python.
org/2/library/stdtypes.html#mapping-types-dict.

Control structures
Control structures allow changes to the flow of the execution of code. There are  
two types of structures that are of interest to us: branching and looping.

Branching allows the execution of different code depending on the result of a test. 
The following example shows an improved version of code to solve quadratic 
equations. An if-then-else structure is used to handle the cases of real and 
imaginary solutions, as follows:

a, b, c = 2., -4., 5.
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discr = b ** 2 - 4 * a * c

if discr >= 0:

    sqroot = discr ** 0.5

    x1 = 0.5 * (-b + sqroot)

    x2 = 0.5 * (-b - sqroot)

else:

    sqroot = (-discr) ** 0.5

    x1 = 0.5 * (-b + sqroot * 1j)

    x2 = 0.5 * (-b - sqroot * 1j)

print x1, x2

The preceding code starts by computing the discriminant of the quadratic. Then, 
an if-then-else statement is used to decide if the roots are real or imaginary, 
according to the sign of the discriminant. Note the indentation of the code. 
Indentation is used in Python to define the boundaries of blocks of statements.  
The general form of the if-then-else structure is as follows:

if <condition>:

     <statement block T>

else:

     <statement block F>

First, the condition <condition> is evaluated. If it is True, the statement <statement 
block T> is executed. Otherwise, <statement block F> is executed. The else: 
clause can be omitted.

The most common looping structure in Python is the for statement. Here is an 
example:

numbers = [2, 4, 3, 6, 2, 1, 5, 10]

for n in numbers:

    r = n % 2

    if r == 0:

        print 'The integer {:d} is even'.format(n)

    else:

        print 'The integer {:d} is odd'.format(n)

We start by defining a list of integers. The for statement makes the variable n 
assume each value in the list numbers in succession and execute the indented  
block for each value. Note that there is an if-then-else structure inside the  
for loop. Also, the print statements are doubly-indented.
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A for loop is frequently used to perform simple searches. A common scenario is  
the need to step out of the loop when a certain condition is met. The following  
code finds the first perfect square in a range of integers:

for n in range(30, 90):

    if int(n ** 0.5) ** 2 == n:

        print n

        break

For each value of n in the given range, we take the square root of n, take the integer 
part, and then calculate its square. If the result is equal to n, then we go into the if 
block, print n, and then break out of the loop.

What if there are no perfect squares in the range? Change the preceding function, 
range(30, 60), to range(125, 140). When the command line is run, nothing is 
printed, since there are no perfect squares between 125 and 140. Now, change the 
command line to the following:

for n in range(125, 140):

    if int(n ** 0.5) ** 2 == n:

        print n

        break

else:

    print 'There are no perfect squares in the range'

The else clause is only executed if the execution does not break out of the loop,  
in which case the message is printed.

Another frequent situation is when some values in the iteration must be skipped.  
In the following example, we print the square roots of a sequence of random 
numbers between -1 and 1, but only if the numbers are positive:

import random

numbers = [-1 + 2 * rand() for _ in range(20)]

for n in numbers:

    if n < 0:

        continue

    print 'The square root of {:8.6} is {:8.6}'.format(n, n ** 0.5)

When Python meets the continue statement in a loop, it skips the rest of the 
execution block and continues with the next value of the control variable.



Appendix B

[ 155 ]

Another control structure that is frequently used is the while loop. This structure 
executes a block of commands as long as a condition is true. For example, suppose 
we want to compute the running sum of a list of randomly generated values, but 
only until the sum is above a certain value. This can be done with the following code:

import random

bound = 10.

acc = 0.

n = 0

while acc < bound:

    v = random.random()

    acc += v

    print 'v={:5.4}, acc={:6.4}'.format(v, acc)

Another common situation that occurs more often than one might expect requires a 
pattern known as the forever loop. This happens when the condition to be checked 
is not available at the beginning of the loop. The following code, for example, 
implements the famous 3n+1 game:

n = 7

while True:

    if n % 2 == 0:

        n /= 2

    else:

        n = 3 * n + 1

    print n

    if n == 1:

        break

The game starts with an arbitrary integer, 7 in this case. Then, in each iteration, we 
test whether n is even. If it is, we divide it by 2; otherwise, multiply it by 3 and add 1. 
Then, we check whether we reached 1. If yes, we break from the loop. Since we don't 
know if we have to break until the end of the loop, we use a forever loop as follows:

while True:

   <statements>

   if <condition>:

        break

   <possibly more statements>
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Some programmers avoid this construct, since it may easily lead to infinite loops  
if one is careless. However, it turns out to be very handy in certain situations. By  
the way, it is an open problem if the loop in the 3n+1 problem stops for all initial 
values! Readers may have some fun trying the initial value n=27.

Functions, objects, and methods
We now come to the constructs that really make Python so flexible and powerful, 
its object-oriented features. We have already seen some examples of object-oriented 
code in the previous sections (the object-oriented paradigm is so integral to Python 
that is hardly possible to write any code without using it), but now we will have a 
more specific treatment of these features.

Functions
We have already seen many examples of functions being used. For example,  
the len() function is used to compute the length of a list:

lst = range(1000)

print len(lst)

The most basic syntax for calling a function is as follows:

function_name(arg1, arg2, …, argn)

In this case, arg1, arg2, …, argn are called positional arguments, since they  
are matched according to the position in which they appear. As an example, let's 
consider the built-in function, pow(). This function takes up to three arguments:

pow(b, n, m)

In this form, the preceding function uses an optimized algorithm to compute  
b raised to the power n modulo m. (If you are wondering, this is an important  
operation in public key cryptography, for example.) The arguments b, n, and  
m are associated by their position. For example, to compute 12 raised to the  
tenth power modulo 15, we use the following command:

pow(12, 10, 15)

Python also supports sequences of arguments of arbitrary size. For example,  
the max() function computes the maximum of an arbitrary sequence of values:

max(2,6,8,-3,3,4)
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The preceding command returns the value 8.

A third way to pass arguments to a function is to use keyword arguments. This 
turns out to be very useful, since it is in general difficult to remember the exact  
order of positional arguments. (I would prefer not to write a function with more  
than three or four positional arguments, for example.)

For example, the built-in int() function can be used to convert a string to an integer. 
The optional keyword argument, base, lets us specify the base for conversion. For 
example, the following command line assigns to n, an integer given in base 2:

n = int('10111010100001', base=2)

print n

Keyword arguments always have a default value. In our example, if the base is not 
specified, it is assumed to be 10.

We often need to write our own functions. This is done with the keyword, def. As 
an example, let's consider writing code to implement the well-known bisection 
method to solve equations numerically. A possible solution is as follows:

def bisection(f, a, b, tol=1e-5, itermax=1000):

    fa = f(a)

    fb = f(b)

    if fa * fb > 0:

        raise ValueError('f(a) and f(b) must have opposite signs')

    niter = 0

    while abs(a-b) > tol and niter < itermax:

        m = 0.5 * (a + b)

        fm = f(m)

        if fm * fa < 0:

            b, fb = m, fm

        else:

            a, fa = m, fm

    return min(a, b), max(a, b)

The preceding function takes three important and necessary arguments:

•	 The f function accepts a float value as input and returns a float value  
as output

•	 The floating-point values, a and b, which specify an interval that  
contains a zero of the function
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The other two arguments are optional. The argument tol specifies the desired 
tolerance in the result and itermax specifies the maximum number of iterations.  
To use the bisection() function, we must first define the function f. We will take 
the opportunity to display another way to define a function in Python, as follows:

from math import cos, pi

f = lambda x: cos(x) - x

We are now ready to call the function with the following command:

bisection(f, 0, pi/2)

The preceding function returns the following output:

(0.7390851262506977, 0.7390911183631504)

Note that we designed the function to return an interval containing the zero.  
The length of the interval is less than tol, unless the maximum number of iterations 
is reached. If we want a smaller tolerance, we could use the following function:

bisection(f, 0, pi/2, tol=1E-10)

Now, suppose that we are concerned with the time the computation is taking.  
We can limit the maximum number as follows:

bisection(f, 0, pi/2, itermax=10, tol=1E-20)

Note that the order in which the keyword arguments are given is irrelevant and  
the desired tolerance is not reached in the preceding example.

Objects and methods
Objects are the most general data abstraction in Python. Actually, in Python, 
everything is an object from the point of view of the programmer.

An object is nothing more than a collection of structured data, together with an 
interface to operate on this data. Objects are defined using the class construct,  
but our goal here is not to show how to define classes. Although designing a  
new class is an advanced topic, using existing classes is pretty straightforward.

As an example, let's explore the built-in type str. Let's start by defining a str  
object we can play with as follows:

message = 'Mathematics is the queen of science'

To start, let's convert the message to uppercase as follows:

message.upper()
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We say that the preceding statement calls the upper() method of the message object. 
A method is simply a function that is associated to an object. The following are a few 
other methods of the str objects:

•	 To find the first occurrence of a substring (returns -1 if the string is not 
found), use the following command line:
message.find('queen')

•	 To split the string in words, use the following command line:
words = message.split()

print words

•	 To count the number of occurrences of s substring, use the following 
command line
message.count('e')

•	 To replace a substring by something else, use the following command line:

message.replace('Mathematics', 'Mme. Curie')

Note that the preceding methods do not change the original string 
object, but return new modified strings. Strings are immutable. For 
mutable objects, methods are free to change the data in the object.

Summary
In this appendix, we gave an overview of the Python syntax and features, covering 
basic types, expressions, variables, and assignment, basic data structures, functions, 
objects, and methods.





NumPy Arrays

Introduction
Arrays are the fundamental data structure introduced by NumPy, and they are the 
base of all libraries for scientific computing and data analysis we discussed in this 
book. This appendix will give a brief overview of the following array features:

•	 Array creation and member access
•	 Indexing and slicing

Array creation and member access
NumPy arrays are objects of the ndarray class, which represents a fixed-size 
multidimensional collection of homogeneous data.

Here, we will assume that the NumPy library has been imported using the  
following command line:

import numpy as np

Once we have done that, we can create ndarray (from now on, informally called 
array object or simply array) from a list of lists as indicated in the following 
command line:

a = np.array([[-2,3,-4,0],[2,-7,0,0],[3,-4,2,1]],dtype=np.float64)

print a

Contrary to Python lists and tuples, all entries of an array object must be of the  
same type. The types themselves are represented by NumPy objects and are referred 
to as dtype (from data type) of the array. In the preceding example, we explicitly 
specify dtype as float64, which represents a 64-bit floating-point value.
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Arrays have several attributes that give information about the data layout. The more 
commonly used ones are as follows:

•	 The shape of the array is computed using the following command:
a.shape

The preceding command returns the tuple (3, 4), since this is a  
two-dimensional array with three rows and four columns. Somewhat 
surprisingly, the shape attribute is not read-only and we can use it  
to reshape the array:
a.shape = (6,2)

print a

After running the preceding example, run a.shape(3,4) to return to  
the original dimensions.

•	 The number of dimensions of the array is obtained using the following 
command:
a.ndim

This, of course, returns 2. An important notion in NumPy is the idea of axes  
of an array. A two dimensional array has two axes, numbered 0 and 1. If  
we think of the array as representing a mathematical matrix, axis 0 is vertical 
and points down, and axis 1 is horizontal and points to the right. Certain 
array methods have an optional axis keyword argument that lets the user 
specify along which axis the operation is performed.

•	 To get the number of elements in the array, we can use the following 
command:
a.size

In the preceding example, the output returned is 12, as expected.

•	 One final attribute of arrays is computing the transpose of an array.  
This can be done using the following command:
b = a.T

print b

An important thing that this creates is a view of the array a. The NumPy 
package is designed to work efficiently with very large arrays, and in  
most cases, avoids making copies of data unless absolutely necessary,  
or is explicitly directed to do so.
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•	 Run the following lines of code:
print a

b[1,2] = 11

print a

Note that the entry 2, 1 of the array a is changed, demonstrating that  
both variables, a and b, point to the same area in memory.

•	 An array with uninitialized data can be created with the empty() function  
as follows:
c = np.empty(shape=(3,2), dtype=np.float64)

print c

•	 Using uninitialized data is not recommended, so it is perhaps preferable to 
use either the zeros() or ones() function as follows:

°° To use the zeros() function, execute the following command lines:
d = np.zeros(shape=(3,2), dtype=np.float64)

print d

°° To use the ones() function, execute the following command lines:

e = np.ones(shape=(3,2), dtype=np.float64)

print e

There are also functions that create new arrays with the same shape and  
data type of an existing array:

a_like = np.zeros_like(a)

print a_like

•	 The functions ones_like() and empty_like() produce arrays of ones  
and uninitialized data with the same shape as a given array.

•	 NumPy also has the eye() function that returns an identity array of the  
given dimension and dtype:
f = np.eye(5, dtype=np.float64)

print f

The number of rows and columns do not have to be the same. In this case,  
the resulting matrix will only be a left- or right- identity, as applicable:

g = np.eye(5, 3, dtype=np.float64)

print g
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•	 Arrays can also be created from existing data. The copy() function clones  
an array as follows:
aa = np.copy(a)

print a

print aa

•	 The frombuffer() function creates an array from an object that exposes  
the (one-dimensional) buffer interface. Here is an example:
ar = np.arange(0.0, 1.0, 0.1, dtype=np.float64)

v = np.frombuffer(ar)

v.shape = (2, 5)

print v

The arange() function is a NumPy extension of the Python range. It has  
a similar syntax, but allows ranges of floating-point values.

•	 The loadtxt() function reads an array from a text file. Suppose the text  
file matrix.txt contains the following data:
 1.3  4.6  7.8

-3.6  0.4  3.54

 2.4  1.7  4.5

Then, we can read the data with the following command:

h = np.loadtxt('matrix.txt', dtype=np.float64)

print h

•	 Arrays can also be saved and loaded in the .npy format:

np.save('matrix.npy',h)

hh = np.load('matrix.npy')

print hh

Indexing and Slicing
To illustrate indexing, let's first create an array with random data using the  
following command:

import numpy.random

a = np.random.rand(6,5)

print a
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This creates an array of dimension (6,5) that contains random data. Individual 
elements of the array are accessed with the usual index notation, for example, 
a[2,4].

An important technique to manipulate data in NumPy is the use of slices. A slice can 
be thought of as a subarray of an array. For example, let's say we want to extract a 
subarray with the middle two rows and first two columns of the array a. Consider 
the following command lines:

b = a[2:4,0:2]

print b

Now, let's make a very important observation. A slice is simply a view of an array,  
and no data is actually copied. This can be seen by running the following commands:

b[0,0]=0

print a

So, changes in b affect the array a! If we really need a copy, we need to explicitly  
say we want one. This can be done using the following command line:

c = np.copy(a[2:4,0:2])

c[0,0] = -1

print a

In the slice notation i:j, we can omit either i or j, in which case the slice refers  
to the beginning or end of the corresponding axis:

print a[:4,3:]

Omitting both i and j refers to a whole axis:

print a[:,2:4]

Finally, we can use the notation i:j:k to specify a stride k in the slice. In the 
following example, we first create a larger random array to illustrate this:

a = np.random.rand(10,6)

print a

print

print a[1:7:2,5:0:-3]
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Let's now consider slices of higher dimensional arrays. We will start by creating  
a really large three-dimensional array as follows:

d1, d2, d3 = 4, 5, 3

a = np.random.rand(d1, d2, d3)

print a

Suppose we want to extract all elements with index 1 in the last axis. This can be 
done easily using an ellipsis object as follows:

print a[...,1]

The preceding command line is equivalent to the following one:

print a[:,:,1]

It is also possible to augment the matrix along an axis when slicing, as follows:

print a[0, :, np.newaxis, 0]

Compare the output of the preceding command line with the output of the following:

print a[0, :, 0]
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