

http://www.phparch.com/redir/725/265

If you want to bring a PHP-related topic to the attention of the professional PHP community,
whether it is personal research, company software, or anything else, why not write an article for
php|architect? If you would like to contribute, contact us and one of our editors will be happy to
help you hone your idea and turn it into a beautiful article for our magazine. Visit www.phparch.
com/writeforus.php or contact our editorial team at write@phparch.com and get started!

WRITE FOR US!

TM

CONTENTS

8 Practical Active Record in PHP
Simplify data access

by Dirk Merkel

18 Pluggable Authentication Modules
Use PAM to standardize user authentication

by Mikael Johansson

28 MySQL Babel
Make SQL simple for non-English speakers

by Alessandro Rosa

38 FileMaker for PHP Developers
Part II: Make data editing a snap

by Jonathan Stark

4 EDITORIAL
That’s what parents are for...

by Sean Coates

6 php|news by Eddie Peloke

46 TEST PATTERN
Deploying PHP Applications

by Jeff Moore

51 SECURITY CORNER:
Why you should upgrade to PHP 5.2.1

by Ilia Alshanetshy

57 exit(0);
Is Google Really the Best We Can Do?

by Marco Tabini

FEATURES

COLUMNS

Download this month’s code at: http://www.phparch.com/code/

EDITORIAL

My mind continually attempts to play out different scenarios in which we
could drastially improve PHP. For example, I’ve been thinking a lot about
the PHP community and how it relates to PHP’s future, lately.

If you read the PHP internals list, you’ve probably noticed that over the past
year, especially, the signal-to-noise ratio has tapered from nearly crystal clear, to
occasional bits of clarity mixed with more than a healthy dash of static. I think
this is directly related to PHP’s continued growth and increased accessibility.

More and more smart people are starting to use PHP. This, ultimately, is a good
thing for PHP and the PHP community (obviously), but one of the problems that
these smart people bring to the table is one of custom and tradition.

These intelligent folks have switched over to PHP from another platform, per-
haps, and often hae a respectable amount of experience on their previous plat-
form. Unfortunately, they’re not familiar with The PHP Way, which I’ve discussed
at length in the past. They attempt to apply their past experience to PHP, and
often fail—not necessarily because their ideas are bad, but for other reasons such
as: “that simply won’t work in PHP because of dynamic typing”, “10+ years of PHP
history dictates that if we do this, we’ll break every application in existance”, and
“that’s simply too magical.”

These suggestions for the improvement of PHP, while well-intentioned, often
spiral into a mailing list torrent of posts. Much of the time, PHP’s main influencers
simply don’t have time to read threads that have posts numbering in the hundreds,
and what could have blossomed into a good idea is often temporarily (and some-
times permanently) put on hold. That said, many of the proposed ideas are not
actually good ones.

This is one of the reasons that I’ve been thinking about how PHP needs some
sort of parental guidance. Perhaps we need to collectively form a group of wise
PHP contributors that we trust with our language; a group that would form road-
maps (informal, even), veto feature requests, and serve as the ultimate body that
controls PHP’s future.

I’m sure some of you squirmed when reading that last paragraph. I’m equally un-
easy about uprooting the whole system of how PHP has evolved (admittedly very
successfully) over the past 10+ years. Is it time for change, though? I think so.

I love the idea of forming a group that will guide PHP, but how can we do that
without alienating the hundreds of people who have contributed to PHP in the
past, and are either no longer active, or who haven’t contributed enough to cross
$magicalThreshold and be considered for membership in this controlling body?

This is definitely a social problem, and we, the PHP community, aren’t very good
at solving these, it seems. We’re great at solving technical issues, but like many
excellent developers, our people skills need some polish.

I don’t have a solution to the problem of PHP’s changing community. There’s no
simple solution, in my opinion. I would, however, love to hear from readers about
their opinions on where PHP’s going and how we can optimize its future.

That's what
parents are for...

Volume 6 - Issue 3

Publisher
Marco Tabini

Editor-in-Chief
Sean Coates

Editorial Team
Arbi Arzoumani

Steph Fox

Graphics & Layout
Arbi Arzoumani

Managing Editor
Emanuela Corso

News Editor
Eddie Peloke

news@phparch.com

Authors
Ilia Alshanetshy, Mikael Johansson,
Dirk Merkel, Jeff Moore, Alessandro

Rosa, Jonathan Stark, Marco Tabini

php|architect (ISSN 1709-7169) is published
twelve times a year by Marco Tabini & Associates,
Inc., 28 Bombay Ave., Toronto, ON M3H1B7,
Canada.

Although all possible care has been placed in
assuring the accuracy of the contents of this
magazine, including all associated source code,
listings and figures, the publisher assumes
no responsibilities with regards of use of the
information contained herein or in all associated
material.

php|architect, php|a, the php|architect logo,
Marco Tabini & Associates, Inc. and the Mta Logo
are trademarks of Marco Tabini & Associates,
Inc.

Contact Information:
General mailbox:	 info@phparch.com

Editorial:		 editors@phparch.com

Sales & advertising:	 sales@phparch.com

Printed in Canada

Copyright © 2003-2007

Marco Tabini & Associates, Inc.

All Rights Reserved
� • php|architect • Volume 6 Issue 3

EDITORIAL

http://www.phparch.com/redir/739/33

PHP 5.2.1 Released
PHP.net announces the
latest release of PHP,
version 5.2.1.

“The PHP development team would
like to announce the immediate
availability of PHP 5.2.1. This release
is a major stability and security
enhancement of the 5.X branch, and
all users are strongly encouraged to
upgrade to it as soon as possible.”

What’s new? Some security enhancements
and fixes include:

• Fixed possible safe_mode &
open_basedir bypasses inside
the session extension

• Prevent search engines from
indexing the phpinfo() page.

• Fixed a possible overflow in
the str_replace() function.

• Memory limit is now
enabled by default.

• Much more...

Grab the latest version from http://php.
net//downloads.php.

Zend Platform 3.0
Released
Zend Developer Zone brings word of the
release of Zend Platform 3.0:

“Zend Technologies, the PHP
company, today announced the general
availability of Zend Platform 3.0.
Zend Platform 3.0 is the only PHP
application server created specifically to
support the management, performance,
integration and scalability requirements
of organizations that use PHP to run
business-critical web applications.
Zend Platform improves the end user
experience with these web applications
by enabling better application
responsiveness, reduced application
downtime, and richer functionality.”

“PHP is the most successful language

for creating and operating modern,
dynamic web applications. Driven by
its ease, flexibility, and power, it is
increasingly being used by commercial
organizations to create business-
critical web applications,” said Mark
de Visser, Chief Marketing Officer at
Zend Technologies. “Zend Platform
3.0 complements PHP with capabilities
that these organizations need to
guarantee the best end user experience
and maximum uptime for their web
applications.”

Get more information from http://www.
zend.com.

Smutty 0.0.8
The Smutty team announces the latest
revision of their MVC PHP framework. From
the smutty project home page:

“Smutty is an MVC web development
framework for PHP. Smutty is based
around the Smarty templating engine.
It is designed to be as developer friendly
as possible, doing as much work as it
can so you don’t have to.”

The latest release includes an improved
model manager and stabalizing of the API
for version 0.1. Check out all the latest stuff
by visiting http://smutty.pu-gh.com/.

GD 2.0.34
Pierre-Alain Joye announces the latest
release of the GD library.

“It was a long road to get GD released.
I like to consider this release as a
second born for the libGD project. See
the release announcement at http://
www.libgd.org/ReleaseNote020034
for all the details.”

“This release also marks an official
freeze of the 2.0.x tree. Only security
related fixes will make it into future
2.0.x releases. The development tree
now targets version 2.1.0. Additional
information about the roadmap will

come in the next few weeks.”

Get the latest copy from http://www.libgd.
org/.

MSLG Multi Switch
Looking Glass for PHP
0.1.0
The MSLG team announces their latest
release, 0.1.0. What is it? The MSLG home
page describes it as:

“... a script for manage ports (open
and close) on IOS and CatOS switches.
Initially used for an Lan-Party for open
a port when a gamer will pay for his
place. It’s inspired of the MRLG for GNU
Zebra and Cisco IOS routers by 2002-
2004 Denis Ovsienko.”

Need to watch some ports? Visit http://
www.gamesover.ch/~mslg/.

Zend Studio 5.5 for i5/
OS
Zend’s Developer Zone brings news of the
latest release of Zend Studio for i5/OS.

“The latest version of Zend’s flagship
IDE for PHP development has been
released for i5/OS. Zend Studio is
an industry leading PHP Integrated
Development Environment (IDE)
designed for professional developers,
which includes all the development
components necessary for the full
PHP application lifecycle. Through
a comprehensive set of editing,
debugging, analysis, optimization,
database tools and testing Zend
Studio speeds development cycles and
simplifies complex projects. Zend Studio
Professional for i5/OS is enhanced
to work with the integration toolkit
provided with Zend Core on i5/OS”.

news

� • php|architect • Volume 6 Issue 3

http://php.net//downloads.php
http://php.net//downloads.php
http://www.zend.com
http://www.zend.com
http://smutty.pu-gh.com/
http://www.libgd.org/ReleaseNote020034
http://www.libgd.org/ReleaseNote020034
http://www.libgd.org/
http://www.libgd.org/
http://www.gamesover.ch/~mslg/
http://www.gamesover.ch/~mslg/

What’s new?

• Instant online debugging
and error fixing against
Zend Core for i5/OS

• PHP 5.2 support
• MySQL on i5/OS support
• Zend Framework Integration
• much more

Get all the latest details from http://www.
zend.com.

Grab the latest extension updates from
PECL.

PHP_Parser 0.2.0
PHP_ParserGenerator exists can be used
as a way to generate specific parsers. This
parser is customized for usage in meta-
data extraction, and requires PHP 5.0.0 or
newer.

PHP_Parser_DocblockParser
0.1.0
PHP_Parser_DocblockParser is designed for
use with PHP_Parser, but is also a general /**
docblock */ parser for phpDocumentor-style
docblocks.This package is fully unit-tested,
and is based on a PHP_ParserGenerator-
generated parser.

Validate_LV 1.0.0RC1
Data validation class for Latvia. Provides
methods to validate:

• VAT number
• Registration number
• Swift code
• Telephone number
• Person ID
• IBAN Bank account number

for Latvian Banks
• Postal code
• Passport
• Person name

Check out some of the hottest new releases
from PEAR.

PHP Beautifier 0.1.13
This program reformats and beautifies
PHP 4 and PHP 5 source code files
automatically. The program is Open Source
and is distributed under the terms of the
PHP License. It is written in PHP 5 and has
a command line tool.

PEAR PackageUpdate 0.6.1
PEAR_PackageUpdate (PPU) is designed
to allow developers to easily include auto
updating features for other packages and
PEAR installable applications. PPU will
check to see if a new version of a package
is available and then ask the user if they
would like to update the package. PPU uses
PEAR to communicate with the channel
server and to execute the update.

PPU allows the end user to take some
control over when they are notified about
new releases. The PPU Preferences allow a
user to tell PPU not to ask about certain
types of releases (bug fixes, minor releases,
etc.), not to ask about certain release
states (devel, alpha, etc.), not to ask until
the next release or not to ask again.

PPU is just an engine for package
updating. It should not be used directly.
Instead one of the driver packages such as
PEAR_PackageUpdate_Gtk2 should be used,
depending on the application or other
package.

HTML QuickForm altselect
1.0.RC1
A QuickForm plugin that extends the
select element and turns its options into
checkboxes or radio buttons depending on
whether the multiple html attribute was set
or not. For extra options not listed, you can
also render an Other textfield.

pearweb_phars 1.1.0
Separate sub-package just for the .phars, to
cut down significantly on the size of the
pearweb package.

PDO_IBM 1.1.0
The PDO_IBM extension provides an
IBM database driver for PDO. This driver
supports IBM DB2 Universal Database, IBM
Cloudscape, and Apache Derby databases.

timezonedb 2007.2
timezonedb is a drop-in replacement for the
builtin timezone database that comes with
PHP. You should only install this extension
in case you need to get a later version of
the timezone database than the one that
ships with PHP.

ibm_db2 1.6.0
This extension supports IBM DB2 Universal
Database, IBM Cloudscape, and Apache
Derby databases.

pecl_http 1.5.0 RC2
This HTTP extension aims to provide a
convenient and powerful set of functionality
for one of PHPs major applications. It eases
handling of HTTP urls, dates, redirects,
headers and messages, provides means for
negotiation of clients preferred language
and charset, as well as a convenient way
to send any arbitrary data with caching and
resuming capabilities.

It provides powerful request functionality,
if built with CURL support. Parallel requests
are available for PHP 5 and greater.

� • php|architect • Volume 6 Issue 3

http://www.zend.com
http://www.zend.com

FEATURE

Almost every project I have worked on uses a rela-
tional database for data storage. Whether I start
a new project or perform maintenance on an ex-

isting installation, I have to give some thought to the
mechanics of saving and retrieving information from
the database. Wouldn’t it be nice if I had a tool that
would allow me to focus on my application’s business
logic without having to worry too much about how to
create, read, update, and delete rows from the tables in
my database?

The Active Record Design Pattern
Luckily, much smarter people than myself have already
considered this need for a tool, and have come up with
a blueprint for it: the Active Record design pattern. De-
sign patterns are generalized solutions to often recur-
ring problems in programming. In this case, manipulat-
ing rows of a database table is the problem, and the
Active Record pattern is the solution.

Astute readers will have noticed the acronym CRUD

(Create, Read, Update, Delete) hiding at the end of the
first paragraph. CRUD is often mentioned in connection
with the Active Record pattern, because that is precisely
the functionality it provides. Active Record typically
consists of a class that wraps a row of a database table.
By invoking methods on the object, we can get it to
issue corresponding SQL statements to the underlying
database.

Let’s look at an example. Assume that we have a MySQL
table, employees, as defined by the SQL statement in
Listing 1. Now take a look at the code snippet in Listing
2 to illustrate how an Active Record object might allow
you to transparently manipulate the database.

As you can see, individual columns are conveniently
accessible as members of the object. The isValid()
method checks each of the fields to make sure we will not
encounter any surprises when saving the object to the
database. The save() method alternatively creates a new
row or updates an existing one. The findByPrimaryKey()
method allows us to retrieve a row using our underly-
ing table’s primary key field, id. Finally, the delete()

Practical
Active Record in

PHP
The Active Record design pattern

provides an objected oriented wrapper

around database access. In this article,

we’ll cover how I analyzed existing

Active Record implementations and

found myself creating a powerful tool

for use in PHP/MySQL application

development.

by Dirk Merkel

PHP: 5.1+ --with-pdo-mysql

O/S: Any supported by PHP

Other Software: MySQL (any)

TO DISCUSS THIS ARTICLE VISIT:
http://forum.phparch.com/362

� • php|architect • Volume 6 Issue 3

method lets us easily delete a row from the table.
By now you are probably getting a pretty good idea

of how valuable a tool a well-written and flexible imple-
mentation of the Active Record pattern can be. Within a
dozen lines of code, we have inserted, selected, updat-
ed, and deleted (essentially the SQL equivalent of CRUD)
from our database. All the details of writing queries and
data validation have been hidden behind a nice, shiny,
object-oriented exterior.

At this point, you are probably thinking that this isn’t
much different from what you have been doing all along.
It appears that the Employee class is simply a class that
is able to save its state to the database. Actually, you’d
be correct in assuming the Employee class in Employee.
php is empty:

class Employee extends ActiveRecord
{
}

In other words, all database interaction is handled sim-
ply by extending ActiveRecord and adding your business
logic as necessary.

The Active Record pattern isn’t anything new. Martin
Fowler described it in his book “Patterns of Enterprise
Application Architecture”, published in 2002. (By the
way, I encourage you to read anything Mr. Fowler has
published.) I think it is fair to say that Mr. Fowler can
be credited as one of the people to recognize and docu-
ment this design pattern that many programmers were
applying over and over again. Moreover, design patterns
are not limited to any particular programming language.
Since the problem of storing and retrieving data is a
general one, it comes up in most programming languag-
es, although the implementation of the pattern differs
between programming languages and from developer to
developer.

More recently, the Active Record pattern has been
implemented in CakePHP, an open source development
framework, and even more famously in Ruby on Rails.
The creators of the Rails framework have done a fine job
at elevating the Active Record pattern to the status of a
power tool no developer should be without. In creating
my own Active Record implementation in PHP, I took
inspiration from some of the design choices of the Rails
implementation. The rest of this article will focus on
describing my own choices and solutions in creating this
implementation.

Adding More Powerful Features
I started with a list of features I wanted to see in my
ActiveRecord class:

• Individual fields should be available as mem-
bers of the class

• Basic create, read, update and delete function-
ality

• Data validation methods should be available
for all members and each member individu-
ally

• Flexibility: little or no required configuration,
but default options can always be overwrit-
ten

• Extensibility: using the ActiveRecord class in
different projects should be painless and add-
ing business logic to the individual classes
should be natural

• Convenience methods for finding a particular
record using a variety of parameters

• It should be database agnostic. In other words,
we should be able to use the same tool with
a different database engine with a minimal
amount of code changes

This list is by no means complete, but it should serve
as a solid base for further expansion. I wanted to avoid
feature creep for the time being.

CREATE TABLE `employees` (
 `id` int(10) unsigned NOT NULL auto_increment,
 `first_name` varchar(100) NOT NULL default ‘’,
 `last_name` varchar(100) NOT NULL default ‘’,
 `department_id` int(10) unsigned NOT NULL default ‘0’,
 `ss_number` char(10) NOT NULL default ‘’,
 `date_updated` timestamp NOT NULL default ‘0000-00-00 00:00:00’ on update
CURRENT_TIMESTAMP,
 PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

LISTING 1

 1 <?php
 2
 3 require_once('Employee.php');
 4
 5 $dbh = new PDO('mysql:host=localhost;dbname=mydatabase', 'user',
'password');
 6
 7 // create and save an employee object
 8 $employee = new Employee($dbh);
 9 $employee->first_name = 'John';
10 $employee->last_name = 'Doe';
11 $employee->department_id = 1;
12 $employee->ss_number = '123-45-678';
13
14 // validate each of the fields
15 if ($employee->isValid()) {
16 $employee->save();
17 } else {
18 echo "Please fix the following errors:\n";
19 implode("\n", $employee->validationErrors);
20 }
21
22 // now let's retrieve a different row and modify it
23 $employee->getByPrimaryKey(10);
24 $employee->last_name = 'Smith';
25
26 $employee->save();
27
28 // finally, let's delete a row
29 $employee->getByPrimaryKey(20);
30 $employee->delete();
31
32 ?>

LISTING 2

� • php|architect • Volume 6 Issue 3

Practical Active Record in PHP

With all this talk of classes and objects, you have prob-
ably figured out that I chose to implement my version
of Active Record in PHP 5. Actually, there are a couple
of features that require PHP 5.1.x. You will also need a
database—MySQL, if you want to try the sample code
for yourself. Finally, you will need PDO support. PDO is a
lightweight access layer for databases in PHP 5.

I decided that the ActiveRecord class would essen-
tially be a container for the database fields. In addition,
it would be responsible for providing an interface for
access to any other methods in the supporting classes,
which would be hidden, proxied, and instantiated auto-
matically. In other words, using the final ActiveRecord
class should never require the programmer to instantiate
supporting objects, or to descend the object hierarchy to
get to the desired method call. For example, although the
validate() method belongs to the DataManager object,
it is never necessary to call it like this: $employee->data-
Manager->validate(). Instead, $employee->validate()
will be enough because the Employee object knows to
call the validate() method on the DataManager object
and handle the return values correspondingly.

Something else that was important to me was that
I wanted to separate the generic data structure from
the nitty-gritty details of supporting a specific database
engine. Furthermore, since I wanted to support multiple
database engines and drivers, it made sense to create a
separate data manager class for each combination of en-
gine and driver. Not surprisingly, the various data man-
agers share a great deal of functionality that I was able
to extract into the abstract parent class, DataManager.

Assembling these components gave the outline of a
design that can be summarized in the class diagram in
Figure 1. The ActiveRecord class works by extending it.
As you will see later, you will have the ability to over-
write some of the defaults when extending the Acti-
veRecord class, but the concept is the same—even for
table schemas that are much more complicated.

The ActiveRecord Class
Let’s take a look at the ActiveRecord class in more de-
tail. For the following discussion, please refer to the
code in Listing 3 (found in this month’s code package).
Also, for brevity’s sake, I will be omitting discussion of
some of the less important methods and members.

Here is a summary of the members of the class:

• $dbh: A reference to the database connection
object that was initially supplied to the Acti-
veRecord constructor

• $tableName: The name of the table whose rows
we are wrapping

• $primaryKey: An array of the field names that

comprise the primary key of the table
• $autoIncrement: The name of the first (if any)

auto-increment field in the table
• $autoValidate: A Boolean flag indicating

whether to validate all fields before the
save() method is called

• $dataManager: A reference to the underlying
data manager object

• $newRecord: A Boolean flag indicating whether
the instance represents a new row or an exist-
ing one

• $validationErrors: An array of error messages
generated during validation

• $fields: An array of the fields of the
database table. The array also tracks
Boolean modification flags. Example:
	 array(’first_name’ =>

			 array (’value’ => ’Dirk’,
				 ’modified’ => true));

Now let’s examine the more interesting methods of the
ActiveRecord class in turn. The constructor, __con-
struct(), takes a database connection as a parame-
ter. This connection is then promptly assigned to the
$dbh member. More importantly, the constructor then
calls the dataManagerFactory() method. As the name
suggests, this method determines the kind of database
connection object that was supplied to the constructor,
and tries to instantiate the corresponding DataManager
object. For example, when we instantiated a PDO data-
base connection to a MySQL database in Listing 2, the
factory method recognized that the parent class was of
type PDO and that the driver was mysql. As a result, the
dataManagerFactory() instantiated and returned an Ac-
tiveRecord_PdoMysqlDataManager object. If a suitable
data manager cannot be found, an ActiveRecord_Excep-
tion is thrown.

The dataManagerFactory() method is a major contrib-
utor to the inherent flexibility of the ActiveRecord class.
If you find that you need to support a new database, you
only have to create the corresponding data manager by
extending the abstract DataManager class and modify the
switch statement in the dateManagerFactory() method
to recognize the new driver. That way, you might end up
with classes such as ActiveRecord_PdoFirebird, Acti-
veRecord_Mysqli, or ActiveRecord_CustomDbDriver.

One of the reasons that I decided to base this ex-
ample on the relatively new PDO interface is that it al-
ready supports a variety of databases: MS SQL Server,
Sybase, Firebird, DB2, Informix, MySQL, Oracle, ODBC,
PostgreSQL and SQLite. If you want to support any of
these databases, you can easily make a copy of the Acti-
veRecord_PdoMysqlDataManager class and make the nec-
essary changes to support the data types and SQL dialect

10 • php|architect • Volume 6 Issue 3

Practical Active Record in PHP

 1 <?php
 2 /* vim: set expandtab tabstop=4 shiftwidth=4 softtabstop=4: */
 3 /**
 4 * Abstract data manager class.
 5 *
 6 * This abstract class provides a framework and describes
 7 * the interface for all actual data manager sub-classes.
 8 * Individual data managers need to be created for each
 9 * database connection & driver.
 10 *
 11 * PHP version 5.1
 12 *
 13 * @category Framework
 14 * @package Web
 15 * @author Dirk Merkel <dirk@waferthin.com>
 16 * @copyright 2007 Waferthin Web Works LLC
 17 * @see ActiveRecord
 18 * @since Jan 9, 2007
 19 * @version SVN: Id
 20 */
 21 abstract class ActiveRecord_DataManager
 22 {
 23 /**
 24 * Instance of a ActiveRecord_DataManager object.
 25 *
 26 * We only want to instantiate one DataManager per connection
 27 * (PDO object). This array contains a reference to each of the
 28 * DataManager objects that have been created.
 29 *
 30 * @access protected
 31 * @var array - instances of DataManager objects
 32 */
 33 protected static $instances = array();
 34
 35 /**
 36 * ActiveRecord object reference.
 37 *
 38 * @access private
 39 * @var object - reference to an ActiveRecord object
 40 */
 41 protected $activeRecord;
 42
 43 /**
 44 * DB connection object.
 45 *
 46 * @access protected
 47 * @var object - reference to DB connection object
 48 */
 49 protected $dbh;
 50
 51 /**
 52 * Array of associative arrays with column data indexed
 53 * by dbName::tableName::primaryKey.
 54 *
 55 * @access protected
 56 * @var array - meta-data for the table(s)
 57 */
 58 protected $columnData = array();
 59
 60 /**
 61 * Validation error message.
 62 *
 63 * @access protected
 64 * @var string - error message generated during validation
 65 */
 66 public $validationError = null;
 67
 68 /**
 69 * Array of irregular English plurals.
 70 *
 71 * @access protected
 72 * @var array - singular-plural mapping
 73 */
 74 protected $plurals = array(
 75 'person' => 'people',
 76 'man' => 'men',
 77 'woman' => 'women'
 78);
 79
 80 /**
 81 * DataManager constructor.
 82 *
 83 * @access private
 84 * @param ActiveRecord activeRecord a reference to ActiveRecord
object
 85 * @return void
 86 */

LISTING 4
 87 private function __construct(ActiveRecord $activeRecord)
 88 {
 89 $this->activeRecord = $activeRecord;
 90 $this->dbh = $activeRecord->dbh;
 91 }
 92
 93 /**
 94 * DataManager destructor.
 95 *
 96 * @access public
 97 * @return void
 98 */
 99 public function __destruct()
100 {
101 // intentionally left blank
102 }
103
104 /**
105 * Utility method to turn object names
106 * with underscores into camel case.
107 *
108 * @access protected
109 * @param string text - text in underscore notation
110 * @return string - text in camel case notation
111 */
112 protected function underToCamel($text)
113 {
114 return preg_replace('/_([a-z])/e', "strtoupper('\\1')", $text);
115 }
116
117 /**
118 * Utility method to turn object names
119 * with camel case into underscores.
120 *
121 * @access protected
122 * @param string text - text in camel case notation
123 * @return text - text in underscore notation
124 */
125 protected function camelToUnder($text)
126 {
127 $text = preg_replace('/([a-z])([A-Z])/e',
128 "'\\1' . '_' . strtolower('\\2')", $text);
129 return strtolower($text);
130 }
131
132 /**
133 * Pluralize English names.
134 *
135 * This method tries to construct the grammatically
136 * correct plural of an English word using common
137 * grammar rules and a list of irregular plurals.
138 *
139 * @access protected
140 * @param string name - singular word
141 * @return string - plural of input word
142 */
143 protected function pluralize($name)
144 {
145 // check whether this is a known irregular plural
146 if (array_key_exists($name, $this->plurals)) {
147 return $this->plurals[$name];
148 } elseif (preg_match('/y$/', $name)) {
149 return preg_replace('/y$/', 'ies', $name);
150 } elseif (preg_match('/s$/', $name)) {
151 return $name . 'es';
152 } else {
153 return $name . 's';
154 }
155 }
156
157 /**
158 * (Re-)initializes ActiveRecord object.
159 *
160 * This method resets all values of the active record
161 * and should be run upon first instantiating the object
162 * or when the delete function has been called.
163 *
164 * @access protected
165 * @return void
166 */
167 protected function resetActiveRecord()
168 {
169 // initialize the values of the fields
170 $newFields = array();
171
172 foreach (array_keys($this->columnData[$this->activeRecord-
>tableName]) as $field) {

LISTING 4: Continued...

11 • php|architect • Volume 6 Issue 3

Practical Active Record in PHP

spoken by the database of your choice.
The constructor also takes an optional second parame-

ter, $primaryKey. This is essentially a convenience func-
tion, allowing the programmer to instantiate the object
and load a row from the database at the same time. If
the primary key is supplied, the constructor calls the
findByPrimaryKey() method of the ActiveRecord object.
Don’t worry if you cannot find the findByPrimarykey()
method in the ActiveRecord class. As we will see later,
this is just one of many functions added to the class via
method overloading.

Next we have the init() method, which is another
convenience function. This allows the programmer to as-
sign to the various fields of the underlying row by sup-
plying an associative array, instead of having to assign
each field individually. More specifically, instead of:

$employee->first_name = 'Dirk';
$employee->last_name = 'Merkel';
$employee->ss_number = '123-45-678';

we can say:

$employee->init(array('first_name' => 'Dirk',
 'last_name' => 'Merkel',
 'ss_number' => '123-45-678'));

There is Magic in PHP
The remaining three methods that complete the Ac-
tiveRecord object are the magic methods __get(), __
set() and __call(). Despite the name, there really isn’t
anything magical about these methods. __get() will be
called whenever an attempt is made to access a member
(in the case of __get() and __set()) or method (in the
case of __call()) that does not exist.

I use the __get() method to provide access to the
protected members of the class. More interestingly, I
also use __get() to provide access to the fields of the
row we are manipulating. Not only does this allow for
shorter notation when accessing field values, it also
reads much more naturally, and satisfies our require-
ment that database fields be available as members of
the class. For example, let’s say we are trying to retrieve
the first_name field from our Employee object. The call
$employee->first_name would result in the following se-
quence of events:

PHP sees that the Employee object does not have a
member called first_name; therefore, it invokes the __
get() method with first_name as an argument. __get()
finds that first_name is a key in the $fields array, and
returns $this->fields[’first_name’][’value’].

This mechanism allows us to modify the $fields array
at will, and have all fields directly accessible as members
of the object.

As you may have guessed by now, the __set() method

does exactly the opposite of __get(); it lets the pro-
grammer assign values to class members and the fields
comprising the database row. There are two things worth
noting here. First, if a field is being assigned a value,
a corresponding Boolean flag is set. This way, we can
always check whether any changes have occurred that
would require us to call the save() method to persist
these changes to the database. Second, we don’t allow
access to private members. Not all members should be
accessible to the programmer, and this is a way of sim-
plifying the interface of our ActiveRecord class.

For an example of the magic __get() and __set()
methods, you only have to look at this line in Listing 2:

$employee->first_name = 'John';

This call was routed through __set() to store the literal
John in $employee::fields[’first_name’]. Conversely,
the line:

echo $employee->first_name;

would cause the __get() method to return the value of
$employee::fields[’first_name’].

Virtual Methods
Lastly, the __call() method handles all function calls
that are not explicitly defined for the ActiveRecord
class. There are two basic types of function calls sup-
ported by this method.

First, there are method calls that are meant for the un-
derlying data manager. Using reflection, we check to see
whether the method name exists in the data manager
and whether the method has public visibility. If both
requirements are satisfied, we call the data manager’s
method. Note how we force validation of all fields before
saving them to the database. This is another option that
can be disabled, as you will see later.

The second kind are those that are being added dy-
namically to the ActiveRecord object. At this point there
are three groups of methods. All of these are available
for all the fields of the underlying database row:

• isValid<Field> returns a Boolean value to in-
dicate whether a specific field passes the data
type check of the underlying data manager.
For example, $employee->first_name should
not be longer than 100 characters because it
was defined as varchar(100)

• isModified<Field> returns a Boolean value to
indicate whether the field has been changed
since it was last retrieved from the database

• findBy<Field>[_And_][_Or_]<Field>] al-
lows you to search the database on any of

12 • php|architect • Volume 6 Issue 3

Practical Active Record in PHP

the fields. Logical constructs, such as AND and
OR, can be used. For example, you can search
for employees by matching either first or last
name: $employee->findByfirst_name_Or_

last_name(’John’, ’Doe’). Note that only
the fields from the first row of the result set
will be loaded into the object!

Due to member and method overloading, the actual
interface that ActiveRecord provides is quite different
from that you would expect by looking at the method
names directly. Refer to Figure 2 to see a class diagram
of the public interface exposed by the ActiveRecord
class.

Finally, I felt that the ActiveRecord class should have
its own exception, which is easily achieved in Exception.
php with another empty class:

class ActiveRecord_Exception extends Exception
{
}

The Abstract DataManager Class
Now that we have a good grasp of the ActiveRecord
class, let’s take a look at the way the actual database
interaction is handled.

As mentioned earlier, the basic interface of the various
data manager classes is defined by the abstract DataMan-
ager class. This class contains all the logic needed to
map the database row to the ActiveRecord, and vice
versa. Moreover, only a single instance of a DataManager
object per connection is needed to handle any number
of ActiveRecord objects. Of course, this fact is hidden
because you never explicitly instantiate a DataManager
object. All that is done for you automatically by the Ac-
tiveRecord class.

You will also note that all the public functions take an
ActiveRecord object as the first argument. That is be-
cause access to all tables and rows using the same con-
nection is handled by the same instance of DataManager.
Each time, we need to supply a reference to the current
ActiveRecord object, because no row-specific data is
stored within the DataManager instance.

Here is a summary table of the members of the Data-
Manager class:

• $instances: An array of instances of
DataManager sub-classes, each of which is us-
ing a different database connection

• $activeRecord: A reference to the Acti-

veRecord object on which the DataManager is
operating

• $dbh: A reference to the database connection
object initially supplied to the ActiveRecord
constructor

• $columnData: Column metadata that each
DataManager sub-class has to extract from
the corresponding database. The actual data
structure, and how to use it, is up to the au-
thor of the DataManager sub-class

173 $newFields[$field] = array('value' => null, 'modified' =>
false);
174 }
175 $this->activeRecord->fields = $newFields;
176
177 $this->activeRecord->newRecord = true;
178 }
179
180 /**
181 * Reset the 'modified' flag for each field.
182 *
183 * @access protected
184 * @return void
185 */
186 protected function resetModified()
187 {
188 foreach ($this->columnData[$this->activeRecord->tableName] as
$name => $data) {
189 $this->activeRecord->fields[$name]['modified'] = false;
190 }
191 }
192
193 abstract protected function defineSchema();
194
195 abstract public function save(ActiveRecord $activeRecord);
196
197 abstract protected function insert();
198
199 abstract protected function update();
200
201 abstract public function find(ActiveRecord $activeRecord,
$searchString, $args);
202
203 abstract public function delete(ActiveRecord $activeRecord);
204
205 abstract protected function refresh();
206
207 abstract public function isValidField(ActiveRecord $activeRecord,
$field);
208 }
209
210 ?>

LISTING 4: Continued...

 1 <?php
 2
 3 class EmployeeProject extends ActiveRecord
 4 {
 5 // how to overwrite the default table name ...
 6 protected $tableName = 'employees_projects';
 7
 8 // how to overwrite the default primary key ...
 9 protected $primaryKey = array('employee_id', 'project_id');
10
11 // how to turn off data validation before DB operations
12 protected $autoValidate = false;
13
14 // perform advanced validation beyond
15 // the type validation provided by ActiveRecord
16 public function isValidemployee_id()
17 {
18 if (!in_array($this->employee_id, array(1, 2, 3))) {
19 $this->validationErrors[] = 'Only employee IDs 7, 8, & 9 are
acceptable';
20 return false;
21 } else {
22 return $this->dataManager->isValidField($this, 'employee_
id');
23 }
24 }
25 }
26
27 ?>

LISTING 6

13 • php|architect • Volume 6 Issue 3

Practical Active Record in PHP

• $validationError: An error message string
generated by the most recent call to the data
validation method(s)

• $plurals: Associative array of irregular plurals
of the English language. This is used in an
attempt to properly pluralize the name of the
ActiveRecord sub-class to derive the corre-
sponding table name

Let’s look at some of the DataManager methods in
more detail—see Listing 4. The setup() method tries
to derive the table name. The first option is to take the
name of the sub-class (Employee in our example) and
change it, using the pluralize(), camelToUnder() and
underToCamel() utility methods. For example, a class
called MyPiece would point to a table called my_piec-
es. This convention saves a lot of time and effort when
used correctly, but—as stated in our functional require-
ments—conventions can be overwritten. In this case,
the programmer can define a $tableName member in the
ActiveRecord sub-class, and it will be used verbatim.

Note that we are using these functions only to con-
vert the name of the class that extends ActiveRecord
to derive the underlying table name. We are not using
it to convert the individual field names to camel case
members of the ActiveRecord object. This is a deliber-
ate decision derived from the fact that we want to wrap
the row, not map it. Having said that, there is nothing
to prevent you from implementing a mapping in your
own DataManager sub-class. For example, the field name
first_name could be converted into the member name
firstName. I am actually playing with the idea of adding
this as an option that can be overwritten in the sub-
class, similar to the table name. Remember—convention
over configuration.

The only two other methods that are implemented in
the DataManager class are resetActiveRecord() and re-
setModified(). The former would be called to initialize
an ActiveRecord object or to return it to its original
state before a row was loaded. We need to be able to
do this because the ActiveRecord object might change
identity during its lifetime. Potentially, each time we
call any of the find...() functions, a different row can
be loaded and most of the members can change. The
same holds when we delete a row.

The resetModified() method simply sets the modified
flag corresponding to each field to FALSE. As you will see
in the implementation of an actual DataManager class,
we need to do this whenever we save the object or load
a new row.

The remaining methods are abstract in nature. That
means that we only define the signature of the function,
consisting of the name and input parameters; the ac-
tual implemenation is left to the individual DataManager

sub-class. This makes sense, if you think about it, since
all these methods are database and driver dependent.
Take the save() method, for example. You will have to
execute an SQL statement to write the data back to the
database. Any SQL can be database dependent. In the
same way, the way you connect to the database and
ask it to execute your SQL statement will depend on the
driver supplied by the user. Both these variables are
unknowns, which is why the implementation of these
functions must be left to database and driver specific
sub-classes of DataManager.

Following is a list of the abstract methods and the
functionality each provides:

• defineSchema(): queries the database for
metadata of the table fields. It is basically a
way to capture information about the table’s
schema. The information is used to initialize
the ActiveRecord object and to validate the
data

• save(): writes the data to the database. This
method is essentially a switch. If the Acti-
veRecord object represents a new row, the
insert() method is called. Conversely, if the
object represents an existing row, update()
is called

• insert(): writes the ActiveRecord object’s
data to the database using an INSERT state-
ment

• update(): writes the ActiveRecord object’s
data to the database using an UPDATE state-
ment

• find(): constructs SELECT statements and
initializes the ActiveRecord object with
the first of the rows returned. This method
does the actual work whenever one of the
findBy<Field>[_And_][_Or_]<Field>] meth-
ods is invoked on the ActiveRecord object

• delete(): issues a DELETE query to delete the
row represented by the ActiveRecord object

• refresh(): after saving an object, we need to
re-read the row from the database because
some of the fields, such as auto-increment
and timestamp fields, are updated when the
query runs

• isValidField(): using the metadata extracted
by the defineSchema() method, this method
is able to validate each of the fields against
the type restraints of the underlying data-
base

A Data Manager For MySQL And PDO
Given the abstract data manager, let’s look at how we

14 • php|architect • Volume 6 Issue 3

Practical Active Record in PHP

would go about implementing an actual data manager
for a MySQL database using a PDO connection (see List-
ing 5 in this month’s code package). Since much of the
functionality has already been covered in the discussion
of the parent class, I want to only focus on the most
interesting features of this particular sub-class.

Looking at the members of the class, you will notice
$preparedInsert, $preparedSelectByPrimaryKey, and
$preparedDelete. These members contain references to
prepared statements, indexed by table name. I use pre-
pared statements wherever possible because they allow
us to take advantage of PDO’s automatic escaping when
binding variables. Also, we can expect better perfor-
mance when making repeated use of the same prepared
SQL statement. Note that it would not make sense to
save references to prepared update or find statements.
Update queries can vary greatly, because we are only
updating columns that have been modified. Similarly,
due to the great flexibility we are giving the program-
mer in constructing various SELECT queries using logical
AND and OR, it does not make sense to store references
to these statements. However, since the most common
SELECT statement uses the primary key to retrieve a row,
we will store a reference to that statement.

Remember I said that data managers are almost like
singletons? You only need to take a look at the getIn-
stance() method to understand what I was referring to.
This method gets called from the ActiveRecord object
and returns a reference to a DataManager object. What
the getInstance() method actually does is to check

whether a DataManager already exists for the given data-
base connection. If so, it returns a reference to that ob-
ject. Otherwise, it creates a new instance using the new
database connection, and adds a reference to it to the
$instances member array. Finally, the getInstance()
method also handles some setup, which includes calling
the methods to retrieve the metadata and to initialize
the ActiveRecord object.

There are eleven methods following the naming con-
vention isValid<MySQLDataType>(). Each of these is used
to validate a given field’s value against the database’s
type constraints. For example, calling isValidInt() on
a field of type mediumint will check whether the value
of the field falls outside the minimum or maximum value
for that MySQL data type. These validation functions
are quite basic, and are primarily designed to preempt
any nasty surprises when writing the values to the data-
base. At the moment, some of them don’t even support
the various formats that are considered acceptable in
MySQL. Fortunately, you can overwrite the isValid...()
function for any given field (see Listing 6) and make the
validation logic as comprehensive as your application
dictates.

The last method worth examining is find(). The
$searchString argument passed to the find() method is
essentially the name of the find function invoked on the
ActiveRecord object. For example, a call such as $acti-
veRecord->findByfirst_name_And_ss_number will result
in the data manager’s find() method being called with
the $searchString parameter set to first_name_And_ss_

FIGURE 1

15 • php|architect • Volume 6 Issue 3

Practical Active Record in PHP

number. The find() method will then explode the string
by _And_ and _Or_, and construct the corresponding SE-
LECT query.

Revisiting Our Requirements
Now that we have a functioning implementation of the
Active Record design pattern, let’s revisit our require-
ment of “convention over configuration” to see how
well we have adhered to it so far. If you simply extend
ActiveRecord and don’t overwrite any of the members,
the object will make the following assumptions: First,
the name of the table can be derived from the name of
the class (i.e.: class Employee wraps table employees).
Second, the primary ID of the table is an integer field
called id. Third, all fields will automatically be validated
before saving the row to the database; this applies to
both INSERT and UPDATE statements.

However, any of the above conventions can be eas-
ily overwritten. Take a look at Listing 6, where we ex-
tend ActiveRecord in a class named EmployeeProject.
By overwriting the $tableName, $primaryKey, and $au-
toValidate members, we are able to let ActiveRecord
know that we want to wrap rows from the table employ-
ees_projects where the primary key is (employee_id,
project_id), and that we do not want automatic valida-
tion before saving any record to the database. Further-
more, we overwrote the method isValidemployee_id()
to add additional validation logic. Note the way we call
the parent class’s validation method as well.

If you follow some reasonable conventions as you de-
sign the tables in your database, you will be able to
simply extend the ActiveRecord class without having to
overwrite any of the defaults. At that point, you are free
to focus on adding the business logic required by your
application without having to worry about database in-
teractions on a micro level.

Looking Ahead
As powerful as this implementation appears, there is
plenty of room for improvement. Let’s see if we can come
up with a list of additional features that would truly
elevate the ActiveRecord class to a professional devel-
opment tool.

• Support for more databases and drivers
• Transaction support—any professional data-

base abstraction layer should support trans-
actions if the underlying database does

• Support for free-form SQL when searching for
rows. Although the syntax findBy<member1>_
And_<member2> can be a great timesaver, it
lacks power and flexibility. True to our deci-
sion to support overwriting of conventions,
we need to let the programmer write his own
SQL—if s/he wants

• Handling of complete result sets. It doesn’t
always happen that we know the primary key
of the row we need to retrieve. It would be
nice if you could manage result sets by sort-
ing, filtering, and paginating ActiveRecord
collections

FIGURE 2

Active Record typically
consists of a class

that wraps a row of a
database table.

16 • php|architect • Volume 6 Issue 3

Practical Active Record in PHP

Although we are still within the boundaries of the Active
Record design pattern, you might get the feeling that
we are straying a bit from the basic implementation.
Actually, I would like to take this even further, and add
support for composition and relationships.

In real world applications, it rarely happens that your
model consists solely of objects that map neatly to in-
dividual table rows. More likely, the data needed to in-
stantiate your objects is scattered throughout a hand-
ful of tables. Actually, if you go through the process of
normalizing your database design (as you should), you
will probably make it harder to map data to objects. In
a highly normalized database design, you will need mul-
tiple joins or queries to retrieve all the required data.

Also, the chances are that various objects contain ref-
erences to other objects. In our example, an employee
should have an address, stored in the addresses table,
and the Employee object should contain a reference to
an Address object. Our ActiveRecord class currently has
no way to reflect that kind of relationship.

The problem of mapping data from objects to a rela-
tional database is usually referred to as object-relational
mapping, or ORM. On one hand, objects are very good
at knowing about relationships between different pieces
of data. On the other hand, relational databases don’t
really have the ability to reflect complex relationships.
Granted, we can define triggers and constraints to im-
pose some basic relationships, but object-oriented pro-
gramming leaves relational databases in the dust when
it comes to manipulating related data and complex re-
lationships.

Another thing to consider is that you are not commit-

ted to a relational database as a persistence layer for
your objects. You can just as easily write a DataManager
sub-class that stores data in XML files, text files or data
structures in memory. However, the reason I chose a re-
lational database for storage is that it is by for the most
common storage layer I encounter in my daily work.

Summary
By now, we have definitely stepped outside of the
boundaries of the basic definition of the Active Record
pattern. However, that should not stop our pursuit of
the most powerful tool for the job. I plan to make our
ActiveRecord implementation smarter by letting it de-
tect and manage relationships between multiple tables
and objects. This is something that the Ruby on Rails
implementation of Active Record achieves with great el-
egance.

Isn’t that at the heart of being an open source devel-
oper? You learn from other solutions, and you keep on
adding to your development toolbox.

DIRK MERKEL is a consultant and software architect with a focus on
open source technologies. He is Zend certified, and has been working
with PHP for 8 years now. He can be reached at dirk@waferthin.com.

Have you had your PHP today?

The Magazine For PHP Professionals

http://www.phparch.com

NEW COMBO NOW AVAILABLE: PDF + PRINT

17 • php|architect • Volume 6 Issue 3

Practical Active Record in PHP

mailto:dirk@waferthin.com
http://www.phparch.com/redir/740/591

FEATURE

Some time ago, I was asked to write a Web applica-
tion where users would need to authenticate using
their company username and password.

My first problem was that, as with most sizable cor-
porations, the customer had several different user direc-
tories, all of which the application needed to support.
To make the task more complex, those directories were
spread over a large Intranet and used various authentica-
tion schemes such as Kerberos, NIS and Active Directory.
Since the application was expected to have a lifespan of
several years, I also had to deal with the likelihood of
its eventually having to support other schemes—some
of which might not even be invented yet. The customer
would rather avoid the time-consuming and error-prone
task of having to modify his application every time an
authentication scheme changed, so some kind of ab-

straction was in order.
Fortunately for both of us, this is a problem which

has long been solved by separating the application from
the actual authentication process. The most common
approach involves pushing the details of any specific
authentication scheme down into modules that can be
loaded and configured at runtime. Using this method I
could avoid the need to build support for any specific
schemes into the application, while at the same time al-
lowing the customer to swap in future schemes as need-
ed. Looking around for a solution with native support for
the required authentication schemes, I found a variety
of potential options—just try googling “authentication
library” and you’ll see what I mean. However, my cus-
tomer wanted to keep things simple, so the choice fell
to PAM.

Ever had to rewrite an application
to take advantage of your client’s
new authentication scheme, or
wished dearly that the service you’re
installing had Kerberos support? PAM
(Pluggable Authentication Modules) is
a collection of libraries that handle the
authentication tasks of applications,
allowing them to stay completely
independent of the underlying
authentication scheme. This article
introduces PAM, touches briefly on
how to configure it, and explains how
to interact with it from within PHP.

by Mikael Johansson

PHP: 4.3.* or better

O/S: Any UNIX-like system

Other Software: PAM, pecl/pam

Useful/Related Links:
http://pecl.php.net/package/pam
http://en.wikipedia.org/wiki/Pluggable_Authentication_
Modules

TO DISCUSS THIS ARTICLE VISIT:
http://forum.phparch.com/363

18 • php|architect • Volume 6 Issue 3

http://pecl.php.net/package/pam
http://en.wikipedia.org/wiki/Pluggable_Authentication_Modules
http://en.wikipedia.org/wiki/Pluggable_Authentication_Modules

PAM not only solves the problem beautifully; it also
has widespread community support, and is practically a
UNIX standard. By choosing a standard solution to han-
dle the authentication process, changes in configuration
could easily be undertaken by the customer’s own sys-
tem administrators, who had prior experience of working
with PAM.

Come release date, we launched the application con-
figured for NIS and one Kerberos realm running in paral-
lel. Within a year, my client had layered an additional
Kerberos realm on top of the previous setup—making for
a total of three authentication schemes—without hav-
ing to change my application one bit.

Pluggable Authentication Modules
First developed in 1996 by Sun Microsystems, PAM is
currently supported on several flavours of UNIX includ-
ing Linux, Solaris, FreeBSD and Mac OS X. Most popular
Linux distributions include PAM as part of the default
installation, so the chances are high that you have al-
ready used it. In the most common configuration, PAM
is distributed as a shared library that offers a unified
API for accessing multiple lower level authentication
schemes, referred to as PAM modules. These modules are
themselves implemented as shared libraries that can be
dynamically loaded into a running program. To use PAM,
all an application needs to know is how to invoke the
PAM API. Once invoked, PAM will consult a configuration
file to transparently load and defer authentication to the
appropriate modules.

If you’ve ever logged onto a Linux system, most likely
the login program deferred the actual authentication to
PAM, which in turn applied the rules from the configura-
tion file /etc/pam.d/login. If you look at this file, you
will almost certainly see that it includes another file, /
etc/pam.d/system-auth, which contains the default rules
for system authentication. Check out the configuration
files for a taste of how PAM works under the hood, but
don’t worry if it seems a bit complex at first. Later in
this article I’ll explain something of the configuration
format, and teach you how to create your own configura-
tion files.

When writing PAM-enabled applications, in order to
maintain flexibility it’s important to keep in mind that
no assumption can be made regarding how the client
will actually be authenticated. That decision must be left
entirely to the local administrator. From the perspective
of the application developer, PAM should be treated as a
black box that will deal with all aspects of user authen-
tication.

Why PAM?
With PAM, the responsibility for deciding the way in

which an application should authenticate is delegated to
the local administrator. This frees the developer to tackle
issues other than authentication, and gives the systems
administrators a higher degree of freedom as to how user
validation should be performed. PAM’s modular nature
allows the administrator to tune the configuration pro-
cess for all PAM-enabled applications—services in PAM
terminology—simply by adding or removing modules.
Modules can also be combined or stacked in order to ac-
complish more complex tasks, such as running multiple
authentication schemes in parallel or keeping an audit
trail of user logins; but more on this later. Launching
a PAM-enabled application is made much easier by the
fact that the PAM library is so prevalent in the UNIX
world many systems administrators already know how to
use and configure it. If there’s one thing I’ve learned
from working with sysadmins, it’s that they absolutely
despise having to compile—and learn all the quirks and
gotchas of—a host of custom libraries for every new ap-
plication they need to install.

Every once in a while, I hear someone mention code
reuse and say that we ought to have more of it. Well,
PAM is a good example of code reuse through abstrac-
tion. Since every authentication module has the same
interface, modules can be interchanged transparently.
This allows PAM-enabled applications to seamlessly take
advantage of the large collection of modules that have
accumulated over years of community-driven develop-
ment. There’s support for virtually every authentication
scheme in existence; and, since the PAM API is com-
pletely open, it never takes long before someone writes
a module for any new scheme that pops up. Why roll your
own system, when you can reuse a pre-built component
that is well encapsulated and has been fully tried and
tested? Not to mention the fact that having integrated
support for a potential customer’s existing authentica-
tion system will make your application more attractive
to them.

In my experience, all this translates directly to greater
marketability, as it allows your application to target a
variety of environments without the need for expensive
customizations to retro-fit some obscure authentication
scheme.

Possible Drawbacks
A possible shortcoming is that PAM deals only in authen-
tication—verifying the identity of a user—and leaves
other related tasks, such as authorization or the handling
of associated data (e.g. full name, email address, phone
number) to the application. For a simple application that
only needs to authenticate a username and password
this doesn’t pose a problem, but once you start building
more advanced applications you will want to know more

19 • php|architect • Volume 6 Issue 3

Pluggable Authentication Modules

about the user. My most frequent solution is to wrap
PAM in a custom driver that fetches additional user in-
formation directly from the user directory, but delegates
the authentication process—with all the complexity
that entails—to PAM.Listing 1 shows a small example of
solving the problem of associated data by coupling PAM
to an LDAP directory service using the chain-of-command

design pattern. Please note that PHP 5 with LDAP sup-
port is needed to run this example. The script begins by
defining the interface DirectoryService, which all user
catalogues or directory services should implement. The
authenticate() method validates a username and pass-
word and returns TRUE or FALSE depending on the result.
The other method, getUserinfo(), is passed a username
and returns an associative array containing information
about that user. As with PAM, the DirectoryService in-
terface makes no rules about how these methods should
actually be implemented.

At the very bottom of Listing 1 is a demonstration of
how to create and use the objects. Did you notice how
the LdapDirectory instance is wrapped inside an Pam-
Auth object? Looking at the PamAuth class, you can see
that it indeed tries to authenticate users, but delegates
failed authentications—and all getUserinfo() calls—to
the next DirectoryService implementation. LdapDi-
rectory, on the other hand, has no idea about how to
authenticate users, so its authenticate() method will
always return FALSE. It does, however, implement the
getUserinfo() method to fetch a given record from an
LDAP server.

Don’t spend too much time trying to make sense of
all the ldap_* functions and how they’re used. For all
intents and purposes, the whole thing is equivalent to
calling mysql_query() and mysql_fetch_assoc() to re-
turn a single result row.

Because both classes implement the DirectoryService
interface, the resulting chain-of-command is very similar
to PAM’s principle of stacking. This works by building a
chain of modules, which is traversed until a module that
satisfies the request is found.

The only other shortcoming is that PAM is UNIX only.

There have been a handful of projects that attempt to
port PAM to the Windows platform, but the last working
release (at http://www.citi.umich.edu/u/itoi/) was for
Windows NT only and dated 1998. Most PAM modules
would also need to be ported before a Windows version
could be truly useful.

Configuring PAM
The PAM configuration format allows for much flexibility
as well as complexity, and is largely outside the scope of
this article, but I’ll explain some of the basics. More de-
tailed information is readily available in the pam.d man
page or from a multitude of online guides and howtos.
In most setups, the configuration files are stored in the
directory /etc/pam.d/ with one file per service; alter-
natively they may be stored in /etc/pam.conf, in which
case each configuration directive is prefixed by the cor-
responding service name. The examples I will present
assume that the configuration is stored in /etc/pam.d/,
but converting them for use with /etc/pam.conf should
be trivial.

For the sake of module writers—and to ease configu-
ration—PAM separates authentication tasks into four
independent groups:

• Account management is responsible for tasks
such as verifying that the user is allowed to
access the requested service and that the
password hasn’t expired

• Authentication management takes care of
authenticating the user, for example by vali-
dating a username and password

• Password management updates the user’s au-
thentication tokens. Typically, this group is
called upon when changing passwords

• Session management takes care of things
that should be done before and after access
is granted, for example mounting the user’s
home directory or keeping an audit trail of
logins and logouts

PAM is currently supported on most
flavours of Unix.

20 • php|architect • Volume 6 Issue 3

Pluggable Authentication Modules

http://www.citi.umich.edu/u/itoi/

Each configuration file contains a list of PAM modules
and the rules by which they should perform the authen-
tication tasks for an associated service. The format of
each rule is:

type control module-path module-arguments

The type parameter specifies which management group
the rule corresponds to. Valid entries are account, auth,
password and session, where each entry refers to one of
the previously described groups. The second field, con-
trol, determines how PAM will react to the success or
failure of the associated module. The most commonly
used values are:

• required: an authentication failure will ulti-
mately cause the entire request to fail, but
only after any remaining modules have been
invoked

• requisite: returns immediately following an
authentication failure, without invoking any
further modules

• sufficient: the success of the module is
enough to satisfy the authentication require-
ments and return immediately. A failure is not

considered fatal, and the request is passed to
the next module

• include: includes and processes all the rules of
the specified type from the configuration file
given as an argument. The most common use
for this construct is to include system-auth
which contains the default system authenti-
cation rules

module-path can be either the absolute path to a PAM
module or a relative pathname from the default loca-
tion, which will be either /lib/security/ or /lib64/secu-
rity/ depending on the system architecture. For example,
pam_unix.so would load the shared library that handles
standard UNIX authentication.
module-arguments is a space-separated list of mod-

ule parameters. These parameters are specific to each
individual module, although—as you’ll see later—most
authentication schemes have a few parameters in com-
mon.

 1 <?php
 2
 3 interface DirectoryService {
 4 function authenticate($username, $password);
 5 function getUserinfo($username);
 6 }
 7
 8 class PamAuth implements DirectoryService {
 9 protected $_next;
10
11 function __construct(DirectoryService $next) {
12 $this->_next = $next;
13 }
14
15 function authenticate($username, $password) {
16 if (pam_auth($username, $password))
17 return true;
18 return $this->_next->authenticate($username, $password);
19 }
20
21 function getUserinfo($username) {
22 return $this->_next->getUserinfo($username);
23 }
24 }
25
26 class LdapDirectory implements DirectoryService {
27 protected $_conn;
28 protected $_basedn;
29
30 function __construct($url) {
31 $info = parse_url($url);
32 $this->_basedn = trim($info['path'], '/');
33 $this->_conn = ldap_connect($info['host']);
34
35 if ('ldap3' == $info['scheme'])
36 ldap_set_option($this->_conn, LDAP_OPT_PROTOCOL_VERSION, 3);
37
38 ldap_bind($this->_conn,
39 isset($info['user']) ? $info['user'] : null,
40 isset($info['pass']) ? $info['pass'] : null);
41 }
42
43 function authenticate($username, $password) {
44 return false;
45 }

LISTING 1

46
47 function getUserinfo($username) {
48 $query = ldap_search($this->_conn, $this->_basedn,
"(uid=$username)");
49 $ptr = null;
50 $row = array();
51
52 if (false == ($entry = ldap_first_entry($this->_conn, $query)))
53 return null;
54 if (false == ($attribute = ldap_first_attribute($this->_conn,
$entry, $ptr)))
55 return null;
56
57 do {
58 if (false == ($values = ldap_get_values($this->_conn, $entry,
$attribute)))
59 return null;
60
61 if (count($values) <= 2)
62 $row[$attribute] = reset($values);
63 else {
64 unset($values['count']);
65 $row[$attribute] = $values;
66 }
67 } while (false != ($attribute = ldap_next_attribute($this->_conn,
$entry, $ptr)));
68
69 if (!isset($row['dn']))
70 $row['dn'] = ldap_get_dn($this->_conn, $entry);
71
72 return $row;
73 }
74 }
75
76 // These classes could be used as:
77 $url = "ldap3://ldap.example.com/ou=people,dc=example,dc=com";
78 $username = "mikl";
79 $password = "secret";
80
81 $directory = new PamAuth(new LdapDirectory($url));
82 if ($directory->authenticate($username, $password))
83 $_SESSION['user'] = $directory->getUserinfo($username);
84
85 ?>

LISTING 1: Continued

21 • php|architect • Volume 6 Issue 3

Pluggable Authentication Modules

Stacking PAM Modules
Part of the power of PAM lies in its ability to stack mul-
tiple modules to accomplish a given task. Some possi-
bilities include using multiple authentication schemes
in parallel, or enforcing password sanity checks by stack-
ing cracklib on top of a password-based authentication
module such as the standard UNIX authentication mech-
anism. This fragment from a PAM configuration file illus-
trates how to stack multiple authentication schemes:

auth sufficient pam_unix.so likeauth
auth sufficient pam_krb5.so use_first_pass
auth required pam_warn.so
auth required pam_deny.so

Starting from the top, these rules indicate that standard
UNIX authentication should be tried first. In most cases,

this involves comparing a hash of the password to one
stored in the local /etc/shadow file. The purpose of the
likeauth parameter is somewhat obscure and requires an
understanding of PAM’s internal workings which I won’t
go into here, but it’s a safe bet to always include it when
using pam_unix.so.

If the first authentication attempt succeeds, the suf-
ficient keyword causes PAM to immediately return SUC-
CESS. Should authentication fail the request is passed to
the second module, which will try to authenticate against
a Kerberos server. In this case the use_first_pass key-
word instructs the Kerberos module to use the password
stored from the first attempt, rather than prompt the
user to supply it again.

In the case where all authentication modules fail

#%PAM-1.0

This stack is called when authenticating a user
auth sufficient pam_unix.so likeauth nodelay
auth required pam_warn.so
auth required pam_deny.so

This stack would be called when changing a password
password sufficient pam_unix.so md5 shadow nodelay
password required pam_warn.so
password required pam_deny.so

This stack is called to ensure that the account is valid
account sufficient pam_unix.so
account required pam_deny.so

This stack is called before and after granting access
session required pam_unix.so

LISTING 2

 1 #!/usr/bin/php
 2 <?php
 3
 4 if (!extension_loaded("pam"))
 5 die("500 PAM extension not loaded\n");
 6 if (false === ($fd = fopen("php://stdin", "r")))
 7 die("500 Internal Server Error\n");
 8
 9 while (!feof($fd)) {
10 if (false === ($line = fgets($fd)))
11 die("400 Bad Request\n");
12
13 switch (trim($line)) {
14 case "auth":
15 if (false === ($username = fgets($fd)) ||
16 false === ($password = fgets($fd)))
17 die("400 Bad Request\n");
18
19 $username = trim($username, "\n");
20 $password = trim($password, "\n");
21 $error = null;
22
23 if (pam_auth($username, $password, $error))
24 print "200 OK\n";
25 else
26 print "401 ".strtr(substr($error, 0, 1024), "\r\n",
" ")."\n";
27 break;
28
29 case "chpass":
30 if (false === ($username = fgets($fd)) ||
31 false === ($oldpass = fgets($fd)) ||
32 false === ($newpass = fgets($fd)))
33 die("400 Bad Request\n");
34
35 $username = trim($username, "\n");
36 $oldpass = trim($oldpass, "\n");
37 $newpass = trim($newpass, "\n");
38 $error = null;
39
40 if (pam_chpass($username, $oldpass, $newpass, $error))
41 print "200 OK\n";
42 else
43 print "401 ".strtr(substr($error, 0, 1024), "\r\n",
" ")."\n";
44 break;
45
46 case "quit":
47 case "exit":
48 break 2;
49
50 default:
51 die("400 Bad Request\n");
52 }
53 }
54
55 fclose($fd);
56
57 ?>

LISTING 3

 1 <?php
 2 define(PAM_PROXY_PATH, "sudo /usr/bin/php /path/to/pam_proxy.php");
 3
 4 function pam_proxy($input, &$error) {
 5 $result = false;
 6 $spec = array(
 7 0 => array("pipe", "r"),
 8 1 => array("pipe", "w"),
 9 2 => array("pipe", "w"));
10
11 if (false !== ($pd = proc_open(PAM_PROXY_PATH, $spec, $pipes)) &&
12 fwrite($pipes[0], $input)) {
13
14 fclose($pipes[0]);
15
16 if (false === ($status = fgets($pipes[1])))
17 $error = "Failed to read status";
18 else if ("2" != substr($status, 0, 1))
19 $error = $status;
20 else
21 $result = true;
22
23 fclose($pipes[1]);
24 fclose($pipes[2]);
25 }
26 else {
27 $error = "Failed to execute command '".PAM_PROXY_PATH."'";
28 }
29
30 proc_close($pd);
31 return $result;
32 }
33
34 ?>

LISTING 4

22 • php|architect • Volume 6 Issue 3

Pluggable Authentication Modules

the request is passed to pam_warn.so, which writes the
failed attempt to the system log. The final rule invokes
pam_deny.so, a special module that will always fail au-
thentication. When coupled with the required keyword,
this will cause the entire request to fail.

PHP Integration
So how does PHP fit into all this? Well, PAM is imple-
mented as a C API with a shared library. Authentication
schemes are also made available as shared libraries that
can be dynamically loaded on demand. To be able to
take advantage of PAM from within PHP a wrapper ex-
tension is needed, and this is where the PECL module
pecl/pam comes into the picture. It encapsulates some
rather complex PAM interactions in order to provide two
simple functions:

bool pam_auth(username, password '',&error'])
bool pam_chpass(username, oldpass, newpass [, &er-
ror])

The first function, pam_auth, attempts to authenticate
a user by passing the supplied username and password
to PAM, which in turn loads and invokes the appropri-
ate modules. If the request succeeds it returns TRUE,
otherwise the function populates the optional error pa-
rameter with a user-readable error message and returns
FALSE. The error message provides information about
what went wrong down in the authentication scheme, so
you might want to log it using error_log() or even echo
it out to the user. This PAM interaction uses the modules
from the auth stack.

Similarly, pam_chpass uses PAM’s password stack to
change a user’s password. It also returns TRUE on success
or FALSE on failure, and populates the optional error

parameter with an error message.
The PAM extension can be downloaded from its project

page on the PECL site and compiled manually, or you can
install it automatically by executing the command:

pear install pecl/pam

This command invokes the PEAR installer, which will
download and compile the latest stable release. To com-
pile the extension, you will need to install the libpam and
libpam-devel packages available with most Linux distri-
butions. The finer points of package installation vary
according the distribution and you should consult your
manual for details, but some common methods involve
using the up2date, urpmi, apt-get or emerge tools.

The next step is to tell PHP to load the newly created
extension via php.ini:

extension = pam.so
pam.servicename = php

Which configuration file in /etc/pam.d/ does your PAM-
enabled application use? As you’ve probably figured out
by now, this will be determined by the service name,
which in turn must be passed to PAM when invoking
its API. pecl/pam uses the pam.servicename INI setting
to determine the service name to pass along and sets
the default value to php, so the default configuration
file would be /etc/pam.d/php. This INI directive can
be changed from all scopes—so it may be set in php.
ini, httpd.conf, .htaccess or even from within your script
using ini_set(). While this allows each application to
have its own separate configuration and restrictions if
needed, most setups should be fine using the default
setting.

Listing 2 shows a simple configuration file for use with

23 • php|architect • Volume 6 Issue 3

Pluggable Authentication Modules

http://www.phparch.com/redir/753/7503789

PHP. It uses a fairly standard UNIX authentication setup,
together with pam_warn.so for logging failures to sys-
log. The examples that follow next assume that the rules
from Listing 2 are available in /etc/pam.d/php, or a path
reflecting the name specified in pam.servicename. Note
that the file must not contain any DOS linefeeds, or PAM
might behave erratically.

Accessing Shadow
The standard UNIX authentication scheme uses a special
file, /etc/shadow, to save the hashed passwords, and
the PAM module must therefore be able to access that
file. When running PHP as a SAPI module or from CGI, it
is executed as your server’s user and group. By default
however, most Linux and *NIX systems are configured
to only allow the root user to access the shadow file.
One way around this might be to change permissions
on the shadow file to group-readable and chgrp the file
to a group the Web server user belongs to. However,
before leaping into this, you should give some serious
thought to the fact that allowing your Web server to
read shadow—which contains all the password hashes,
including the root password—might be a big concern
security-wise. A more elegant solution is to use a privi-
leged script that can act as an authentication proxy be-
tween the Web server and the rest of the system. Listing
3 shows the implementation of such a script. It reads
parameters from STDIN and writes the result status to
STDOUT, and—since it’s a rather simple script—we can
scrutinize it for security holes and eventually trust it
to run as root. You can test it out by logging on as
root, saving it to pam_proxy.php and running it from the
command-line: php pam_proxy.php. To verify that your
pecl/pam, php.ini and /etc/pam.d/php setup works you
would type something like:

root@firefly tmp# php pam_proxy.php
auth
mikl
secretpassword
200 OK

In this example the authentication succeeded, since I
provided my username mikl and my password. Had au-
thentication failed, an error code plus an additional er-
ror message would have been printed instead of 200 OK.

The script also supports changing a password using
the chpass command:

root@firefly tmp# php pam_proxy.php
chpass
mikl
secretpassword
evenmoresecretpassword
200 OK

In order to run this script from the Web server but still

have it execute as root, we’ll use a bit of sudo magic.
As root, execute the command visudo and add a line
saying:

apache ALL = NOPASSWD: /usr/bin/php /path/to/pam_
proxy.php

This line states that the Web server user apache should be
allowed to execute the command /usr/bin/php /path/
to/pam_proxy.php as root without requiring a password.
You might have to change apache to the user your Web
server runs as, and you might also need to change the
paths to match those of your php interpreter and pam_
proxy.php script.

Now we just need some way of executing and interact-
ing with the proxy from within PHP, and this is what the
code in Listing 4 does by wrapping all the process han-
dling in a handy utility function. It works by executing
the proxy script with root privileges using sudo, writing
the $input parameter to the STDIN pipe $pipes[’0’] and
then read the resulting status line from the STDOUT pipe
$pipes[’1’]. Before using this function, remember to
adjust PAM_PROXY_PATH to point to where your sudo and
php executables as well as the pam_proxy.php script have
been installed. sudo is very picky about the commands
it will execute, so take care to get the paths exactly the
same as you typed them in visudo.

Listings 5 and 6 show some examples of using the util-

 1 <?php
 2 require_once "./listing3.php";
 3
 4 if (isset($_REQUEST["username"], $_REQUEST["password"])) {
 5 $input = "auth\n";
 6 $input .= strtr($_REQUEST["username"], "\r\n", " ")."\n";
 7 $input .= strtr($_REQUEST["password"], "\r\n", " ")."\n";
 8 $valid = pam_proxy($input, $error);
 9 }
10 else {
11 $valid = null;
12 }
13
14 ?>
15 <html>
16 <h1>Login</h1>
17 <? if (null !== $valid) { ?>
18 <? if ($valid) { ?>
19 <h2>Success</h2>
20 <p>Authenticated user <?= $_REQUEST["username"] ?></p>
21 <? } else { ?>
22 <h2>Failure</h2>
23 <p><?= $error ?></p>
24 <? } ?>
25 <? } ?>
26 <form method="post">
27 <table>
28 <tr>
29 <th>Username:</th>
30 <td><input type="text" name="username" value="<?=
31 htmlspecialchars($_REQUEST["username"]) ?>" /></td>
32 </tr>
33 <tr>
34 <th>Password:</th>
35 <td><input type="password" name="password" /></td>
36 </tr>
37 </table>
38 <input type="submit" value="Login" />
39 </form>
40 </html>

LISTING 5

24 • php|architect • Volume 6 Issue 3

Pluggable Authentication Modules

http://www.phparch.com/redir/742/195

ity function pam_proxy() and the helper script in order
to perform authentication and password changes. Basi-
cally the pages are simple HTML forms that post to them-
selves and use the proxy function to interact with PAM.
If you follow the instructions concerning sudo, save the
pages to your Web server as listing{4,5,6}.php and load
them in a Web browser, you should be able to verify that
basic authentication works. If all is well, you could even
try changing your password using the script in Listing 6.
Should something go wrong, the Apache error_log and
the various system logs in /var/log/ might provide some
clues, and don’t forget to include the pam_proxy() func-
tion from Listing 4.

Sounds like an awful lot of trouble to go to just to
authenticate a user? Remember that the approach with
sudo and a proxy script is only really necessary when
using an authentication scheme that needs root privi-
leges. Most other schemes—Kerberos, NIS, LDAP— have
no such requirements, and will quite happily run as the
Web server user. In this case you can use the PAM func-
tions directly from the Web application:

$username = $_REQUEST['username'];
$password = $_REQUEST['password'];
$valid = pam_auth($username, $password);

Advanced Setup
Let’s move on to a more advanced example. Listing 7
shows an example configuration file for use with PHP,
and as you can see it specifies that UNIX, Kerberos and
LDAP authentication should all be attempted before PAM
finally gives up. If you compare this example file with
others in /etc/pam.d/ you may notice some differenc-
es, for example that the account and session groups
are empty except for pam_permit.so and the additional
no_user_check parameter. Without these rules and the
extra parameter, all users would need to be present on
the local system, for example in /etc/shadow or through
NIS. This is certainly not the case in most Web server
environments, where only the administrator has shell ac-
cess.The additional realm argument passed to pam_krb5.
so states that the default Kerberos “realm” or domain
should be example.com. This would allow Kerberos users
to authenticate without specifying the domain part of
their account names, e.g. mikl rather than the full mikl@
example.com. It might be a good idea to include this pa-
rameter, considering that very few users would be likely
to know what a realm is. This configuration also has the
benefit that the end user doesn’t need to know before-
hand which specific authentication scheme/username
combination to try, but can let any of their configured
pairs have a go at it.

There is also the additional module pam_nologin.so,
which you might have come across when looking at /

#%PAM-1.0

This stack is called when authenticating a user
auth required pam_nologin.so
auth sufficient pam_unix.so likeauth nodelay
auth sufficient pam_krb5.so use_first_pass no_user_check
realm=example.com
auth sufficient pam_ldap.so use_first_pass
auth required pam_warn.so
auth required pam_deny.so

This stack would be called when changing a password
password sufficient pam_unix.so md5 shadow nodelay
password sufficient pam_krb5.so use_authtok no_user_check realm=example.
com
password sufficient pam_ldap.so use_authtok
password required pam_warn.so
password required pam_deny.so

This stack is not relevant in most web-server setups
account required pam_permit.so
session required pam_permit.so

LISTING 7

 1 <?php
 2 require_once "./listing3.php";
 3
 4 if (isset(
 5 $_REQUEST["username"], $_REQUEST["oldpass"],
 6 $_REQUEST["newpass"], $_REQUEST["newpass2"])) {
 7
 8 $valid = false;
 9
10 if ($_REQUEST["newpass"] != $_REQUEST["newpass2"]) {
11 $error = "New passwords does not match";
12 }
13 else {
14 $input = "chpass\n";
15 $input .= strtr($_REQUEST["username"], "\r\n", " ")."\n";
16 $input .= strtr($_REQUEST["oldpass"], "\r\n", " ")."\n";
17 $input .= strtr($_REQUEST["newpass"], "\r\n", " ")."\n";
18 $valid = pam_proxy($input, $error);
19 }
20 }
21 else {
22 $valid = null;
23 }
24
25 ?>
26 <html>
27 <h1>Change password</h1>
28 <? if (null !== $valid) { ?>
29 <? if ($valid) { ?>
30 <h2>Success</h2>
31 <p>Changed password for user <?= $_REQUEST["username"] ?></p>
32 <? } else { ?>
33 <h2>Failure</h2>
34 <p><?= $error ?></p>
35 <? } ?>
36 <? } ?>
37 <form method="post">
38 <table>
39 <tr>
40 <th>Username:</th>
41 <td><input type="text" name="username" value="<?=
42 htmlspecialchars($_REQUEST["username"]) ?>" /></td>
43 </tr>
44 <tr>
45 <th>Old password:</th>
46 <td><input type="password" name="oldpass" /></td>
47 </tr>
48 <tr>
49 <th>New password:</th>
50 <td><input type="password" name="newpass" /></td>
51 </tr>
52 <tr>
53 <th>New password (repeat):</th>
54 <td><input type="password" name="newpass2" /></td>
55 </tr>
56 </table>
57 <input type="submit" value="Change password" />
58 </form>
59 </html>

LISTING 6

26 • php|architect • Volume 6 Issue 3

Pluggable Authentication Modules

etc/pam.d/login or /etc/pam.d/system-auth. It disallows
logins based on the existence of the /etc/nologin file; if
it is present, only root is allowed to log in. This is mostly
used to restrict logins while the system is booting and
before it is fully configured and running.

This configuration would not be enough to satisfy the
needs of pam_krb5.so and pam_ldap.so, both of which
will need to know further configuration details (for
example, the name of the server to connect to). Such
module-specific configuration data is stored separately
in /etc/krb5.conf or /etc/ldap.conf, and conforms to the
given module’s own configuration format.

Summary
When faced with the problem of supporting multiple and
changing authentication schemes, it makes sense to look
for a pre-existing solution. Not only does such a solution
free you from having to build support for every little
authentication scheme into your application, but it also
offers a flexible and modular authentication framework
that can be customized to suit the customer’s needs.
Coupled with an authentication scheme such as Kerbe-
ros, NIS or Active Directory, PAM is a real breeze to use.
If you’re relying on UNIX authentication in an HTTPD
environment things are a bit trickier but, as I’ve demon-

strated here, there are ways around those problems. In
fact, in most cases, you would only use shadow authen-
tication for testing and administration purposes. Most
production servers I’ve seen use other forms of authen-
tication, since manually keeping a shadow file in sync
across multiple servers would be rather cumbersome.

When looking around for a pre-existing authentication
framework you may encounter many options, but PAM is
one of the simplest and most widely adopted solutions
that fits the description. Where cross platform support
is not an issue, PAM might well be the natural choice.

MIKAEL JOHANSSON has been involved with PHP for about four years
now, and has authored or co-authored several PHP extensions. He
makes his living developing enterprise applications using PHP, C# or
Python. You can contact him at mikl@php.net or visit his website at
http://www.synd.info/.

27 • php|architect • Volume 6 Issue 3

Pluggable Authentication Modules

mailto:mikl@php.net
http://www.synd.info/
http://www.phparch.com/redir/743/875

FEATURE

SQL (Structured Query Language) is the most widely
used syntax for accessing databases all over the
world and, on the Internet at least, often support-

ed by a comfortable front-end interface written in PHP.
After coding a number of Web based applications that
were endowed with such database front-ends, I imag-
ined a further step. It should be possible to broaden
the range of user access options on offer by allowing
user-defined queries on the fly in a high-level language,
such as English.

This might sound odd to any developers reading this.
It goes way beyond the relative strictness of database
administration front-ends, where predefined query mod-
els set in stone by the developer are applied by users
who have never mastered—or wished to master—SQL
syntax. It is in this sense that the intended readership
for this article includes experienced users of database

MySQL Babel

Meet MySQL Babel. The project, currently at prototype stage, aims to open up
PHP applications to user-defined database interrogation by translating native
language sentences into SQL queries. The intended audience for this article is
intermediate to advanced level programmers—and advanced database front-
end users—who might be interested in helping develop the Babel project, and
ultimately in using it.

PHP: 4.4 or better

O/S: Any supported by PHP

Other Software: MySQL

Useful/Related Links:
http://freshmeat.net/projects/mysql_babel/

TO DISCUSS THIS ARTICLE VISIT:
http://forum.phparch.com/364

by Alessandro Rosa

The Lord said: “If as one people
speaking the same language they have
begun to do this, then nothing they plan
to do will be impossible for them. Come,
let us go down and confuse their language
so they will not understand each other.”

Genesis 11:6

28 • php|architect • Volume 6 Issue 3

http://freshmeat.net/projects/mysql_babel/

front-ends, as well as PHP developers capable of imple-
menting classes or enhancing various aspects of this
project. I believe that, once the concept behind my ap-
proach has been fully understood, the project itself will
begin to fall into place.

The basic premise is that opening up a database-driven
application to the widest range of versatility would allow
that application to be more responsive to the needs of
the end user. How often have you needed to run a one-
off, a single special query that hasn’t been anticipated
or templated by the application developer? The MySQL
Babel vision is all about helping the end user towards
more freedom in his or her relationship with stored data,
and ultimately about improving human-machine interac-
tion.

The concept
There are elements of my original idea that bear clos-
er investigation. For example, a user’s language skills
might be expected to deteriorate in a stressful situation,
when they are probably going to be typing in a hurry. We
also have to wonder how well English—usually seen as
the ultimate high-level language—is generally mastered
by non-native speakers. Perhaps we should go further,

then, and aim to support the needs of any user sitting
in front of the screen, regardless of their level of skill
in either SQL syntax or the English tongue. The opera-
tive assumption here is that the native language of the
user represents the easiest way for that user to express
himself. This assumption lies behind the concept of the
MySQL Babel class, but the assumption itself still needs
to be sharpened and given some sense of direction be-
fore it can become a driving principle. The chief goal of
MySQL Babel re-stated, therefore, is to knock down the
barriers to entry: first to knock down the barrier of the
need for SQL syntax, and then to knock down the Eng-
lish language barrier. However, it needs to be recognised
that knowledge of the basic structure of SQL architecture
is the exclusive province of expert users and develop-
ers, and this in itself is a limiting factor. It limits us
to providing a solution that will run queries originally
formed in native languages. We can’t ask the database
something it doesn’t understand; the user will still need
to know that there is such a thing as a database, that it
contains one or more tables, and that these tables con-
tain information organised in blocks called ’fields’. That
said, allowing queries in a less formal language than SQL
should still be enough to bring down the entry level dra-
matically when it comes to database administration.

FIGURE 1

29 • php|architect • Volume 6 Issue 3

MySQL Babel

Take a look at the pair of screenshots displayed in
Figure 1. These are pulled from a very basic example
demonstrating the MySQL Babel prototype in action. It
doesn’t take a great leap of the imagination to envisage
something like this usefully supporting the administra-
tion interface of a Web based application.

Translation or conversion?
Strictly speaking, MySQL Babel class tasks do not re-
ally include translation. Native input sentences are not
parsed and interpreted here. Rather than true transla-
tion, it might be better to state that a conversion is per-
formed: queries are simply turned into a different form,
with no concern either for grammar or for sense beyond
the structure of the database itself. That said, I will keep
on using the word translation, because that seems to me
the most apt term to describe the situation where in-
formation flows between different languages. The more
pedantic among you will simply need to remember to
apply the term in the same sense it is used here. Having
simplified and reduced the meaning of translation makes
it possible to approach the task in a very simple way in
the MySQL Babel project. Why? Because an overview of

the target dialect, SQL grammar, shows that it is much
simpler than any spoken language. There are no idiom-
atic forms, and there are very few grammatical rules in
the language. Often an SQL query consists of a single
command followed by a number of parameters, such as
fields, table names or sorting criteria. In such cases, it
doesn’t take a huge effort to recover the sense of the
original query, regardless of the language in which the
request was made. The move from a complex to a simple
grammar environment implies that the problem of trans-
formation from native languages to SQL queries can be
resolved in a relatively straightforward way.

As we will see later, many input expressions simply
need to be sifted for chaff before they are finally turned
into the form of an SQL query. This can definitely be
viewed as an over-simplistic approach, but bear in mind
that translation is a less than accurate science, and
that even mainstream translation software can return
extremely rough results. Adhering to the KISS principle
(’Keep It Simple, Stupid’) is one way of minimising the
likelihood of failure, and is probably even more crucial in
this context than it is in most software projects.

You’ll never know what we’ll come up with next

MySQL Babel

Translation
In Figure 1, you saw how Babel managed two native
language queries about table and field content in an
address book in French and Italian, respectively. Trans-
lation issues are quite easily resolved for such simple
queries, and explanations are needless. So, before get-
ting into MySQL Babel class internals, let’s look at some
slightly more complex examples, again revolving around
the management of an address book. All our examples
deal with a table named sampletable that contains just
four fields: id, name, address and phone. Translation
consists of three main stages. In the first stage, we want
to set up the native language for Babel to work with.
The options available at present include English, French,
German and Italian. Here’s an example of a French input
query:

choisissez tous de sampletable

Tokenization is the name of the process that splits an
input query into elements, each of which is separated by
blank space. The example given here would produce four
such elements:

choisissez
tous
de
sampletable

Finally, each token is translated into SQL syntax, sup-
ported by the dictionary appropriate to the chosen lan-
guage. In our initial example, every token in the French
language query maps directly to a term belonging to SQL
syntax—see Figure 2—making this one of the simplest
possible queries from the perspective of translation.

Obviously, in more complex cases of queries this one-
to-one correspondence will no longer hold. Let’s take a
look at the example in Figure 3, which demonstrates one
of those slightly more complex queries. Here, we have
the expression:

où id est plus grande que 3

...a seven token expression, which needs to be mapped
to the four token expression:

WHERE id > 3

Somewhere along the way, we need to lose three tokens.
In fact, verbose expressions like est plus grande que,
typical of spoken languages, can easily be compacted.

*By signing this order form, you agree that we will charge your account in Canadian dollars for the “CAD” amounts indicated above. Be-
cause of fluctuations in the exchange rates, the actual amount charged in your currency on your credit card statement may vary slightly.

Choose a Subscription type:

 Canada/USA			 $ 77.99 CAD ($59.99 US*)
 International Air		 $105.99 CAD ($89.99 US*)
 Combo edition add-on 	 $ 14.00 CAD ($10.00 US)

 (print + PDF edition)

Your charge will appear under the name "Marco Tabini & Associates, Inc." Please allow up to 4
to 6 weeks for your subscription to be established and your first issue to be mailed to you.

*US Pricing is approximate and for illustration purposes only.

php|architect Subscription Dept.
P.O. Box 54526
1771 Avenue Road
Toronto, ON M5M 4N5
Canada

Name: ___

Address: ___

City: __

State/Province: _____________________________________

ZIP/Postal Code: ____________________________________

Country: ___

Payment type:

 VISA Mastercard American Express

 	 			

Credit Card Number:__________________________________

Expiration Date: _____________________________________

E-mail address: ______________________________________

Phone Number: ______________________________________

Signature: 					 Date:

To subscribe via snail mail - please detach/copy this form, fill it out and mail to
the address above or fax to +1-416-630-5057

Visit: http://www.phparch.com/print for
more information or to subscribe online.php|architect

The Magazine For PHP Professionals

31 • php|architect • Volume 6 Issue 3

MySQL Babel

Volume 6 Issue 3 • php|architect • 31

http://www.phparch.com/redir/744/926

Thus, in our example, only the term plus grande was
taken as meaningful and turned into SQL syntax in the
form of the ’greater than’ operator >. The verbose terms
est and que were completely ignored by the translation
mechanism.

It is important to understand that the core of the
translation process relies largely upon a subjective re-
lationship between native and SQL grammars. My simple
direct mapping example was an exception among the
far more common complex cases represented by Figure
3. Thinking about the way queries should be handled in
general becomes slightly more difficult from here on in.

That said, the point of having these mapping examples
is to make you aware of the wide range of native lan-
guage terms that can be reduced to a simple SQL equiva-
lent. The fundamental concept here is that every input
token must be turned into another token. This is not as
contradictory as it may at first seem, if we also allow
that a token can consist of an empty string where there
is no SQL correspondence.

Dictionaries
Obviously, successful translation relies upon the setting
up of a common basis. One initial difficulty during the
development of the MySQL Babel prototype was to find
a basis to adopt. In the event, I decided that the best

approach would be to have a common set of reference
terms, namely, a kind of dictionary. From here, the pro-
cess can be further divided into two types of dictionar-
ies: abstract dictionaries, and concrete dictionaries. The
abstract dictionary does not exist in terms of code. It is

simply conceptual, and could be described as a set of
directives to assist those implementing a new concrete
native language dictionary. Linguistic analysis should
provide much of that assistance. For example, conjunc-
tions, such as and, with and or, should find equivalents
in SQL, whereas articles—whether definite or indefi-
nite—should be left out of the equation altogether and
get the ’empty string’ treatment.

Concrete dictionaries are structured in terms of code.
They are manifested as bi-dimensional arrays, where
each indexed entry includes both the native term and
the related SQL index value. The SQL index value is the
key shared by all concrete dictionaries. Refer to Figure 4
for an illustration that should help clarify this point.

The SQL indices codify the action to be performed. For
example, the code 0002 tells us to ignore the input term
during the translation process or, more accurately, to
turn it into an empty string. Any other code tells us that
the process should continue. Where the index matches,
the class picks up the associated SQL term; if the search
fails, and no matching term is found in the concrete dic-
tionary, the original word is copied directly and appears

FIGURE 2 FIGURE 3

I am actively looking for
supporters to maintain a dictionary for

their own native language.

32 • php|architect • Volume 6 Issue 3

MySQL Babel

as part of the translated query.
Each concrete native language dictionary array is

stored in a file named according to the ISO 639 lan-
guage code, e.g. it for Italian, fr for French and en for
English. The file includes a group of functions that will
dynamically detect the version, the author and the name
of the file, followed by a second group of functions—but
more of those later.

As we have already seen, native language dictionar-
ies need to include terms that have no SQL equivalent,
both in order to eliminate them from the process and
to allow something more nearly approaching fluency in
native language queries. As you will see later, synonyms
and idiomatic language usage are also provided for, with
much the same aims in mind.

A basic implementation
Here is some much-simplified code written to demon-
strate usage of the MySQL Babel prototype:

require('mysql_babel.php');
$lang = new languages($language);
if (!$lang->isClassOperative()) {
 echo $lang->getErrMsg();
 exit;
}

$tr = new mysql_babel($host, $db, $user, $pass);
$tr->insert_language_code($language);

$tr->native_dict_array = $lang->get_native_diction-
ary();
$tr->mysql_dictionary_array = $lang->get_mysql_dic-
tionary();
$tr->errors_messages_array = $lang->get_errors_ar-
ray();

$tr->insert_mysql_source_cmdline($query);
$tr->translate();
$tr->run_query(true);

Notice that the main class, mysql_babel, works along-
side another class devoted to dictionary management,
namely the languages class. The use of a different class
to manage the dictionaries was a specific choice aimed
to avoid resource overload; this ’slave’ class is used and
dropped as required by the ’master’ mysql_babel class.

The database credentials should be set in a configura-
tion file. Before the database credentials are input, the
languages class method isClassOperative() is called to
check that the language passed to it—which may be
specified either in a configuration file or in the user
interface—is actually supported by an appropriate dic-
tionary file. If that test fails, the code displays an er-
ror message and exits. Assuming the chosen language
is supported, the database connection is made, the

FIGURE 4

33 • php|architect • Volume 6 Issue 3

MySQL Babel

mysql_babel class is instantiated, and two dictionaries
are loaded, one for the native language, and the other
for SQL syntax. This is achieved by having the class pick
up three (not two!) arrays:

$tr->native_dictionary_array=$lang->get_native_dic-
tionary() ;
$tr->mysql_dictionary_array=$lang->get_mysql_dic-
tionary() ;
$tr->errors_messages_array=$lang->get_errors_array()
;

and store them in their analogous containers within
mysql_babel. The first array contains terms from the se-

lected native language; the second array comprises the
matching list of SQL commands; and the third array con-
tains a list of error messages, which are also provided in
the language dictionary file. All three arrays are dynami-
cally loaded by mysql_babel member functions. Finally,
the native language input query is picked up from, say,
a text box or other element of the application interface.
Having been given the appropriate validation checks
(this being currently the responsibility of the applica-
tion), it resides in the variable $query. We then plug
$query into the mysql_babel class:

$tr->insert_mysql_source_cmdline($query);

and call the translate() method:

$tr->translate();

translate() runs through a few subroutines to further
test input and output data integrity; this needs building
upon to remove the onus on data validation from the
application developer.

Finally, we run the resulting SQL query:

$tr->run_query(true);

and the database response should be displayed as a ta-
ble, assuming the query was semantically correct, i.e.
all the field and table names used were right and the
original language structure made sense to the database.

It is important to note that a working SQL query is more
likely to result from a correct native language sentence,
that is, one written with some respect for grammar.

This early version of mysql_class both runs the query
and displays the output as part of the same method,
run_query; the Boolean parameter passed to it switches
the display on or off. I would agree that it isn’t very
elegant to have a single member function achieve these
very different tasks, and future revision is likely to split
the functionality across two separate methods. Still,
here is the code currently used to display field names as
table headers:

echo "<tr class=\"example1header\">\n";
while ($cols = mysql_fetch_field($h_qry))
{
echo "<td class=\"example1header\">";

if ($cols) echo "$cols->name ";
echo "</td>\n";

}

echo "</tr>\n";

and the rest of the output data, obviously, is per row.

Idiomatic expressions
The translation process includes three separate sub-
processes designed to prevent potential errors during
translation and refine the input query. First, besides the
core language dictionary, each language file contains a
list of idiomatic expressions. This has the potential to
eliminate one of the translation difficulties outlined in
the introductory sections. The code—basically, a series
of string replacements—is run prior to the standard to-
kenization routine. For an example, here is part of the
Spanish version:

function pre_idiomatic($strIn) {
 $strOut = str_replace("todos campos", "todo",
$strIn);
 $strOut = str_replace("todos los campos",
"todo", $strOut);
 $strOut = str_replace("cada campo", "todo",

The chief goal of MySQL Babel is to knock
down the barriers to entry.

34 • php|architect • Volume 6 Issue 3

MySQL Babel

$strOut);
 return $strOut;
}

The pre_idiomatic() member function fits the input re-
quirements of the translation kernel, producing single
tokens that will later be turned into single SQL terms. An
example follows, listing the same phrase written in the
currently available native dictionaries:

• FRENCH : choisir chaque champ de samplet-
able;

• GERMAN : wählen alle Felder von sampletable;
• ENGLISH : select each field from sampletable;
• ITALIAN : seleziona tutti i campi dalla tabella

sampletable;
• SPANISH : seleccionar todos los campos desde

la tabla sampletable;

The idiomatic expression (in italic script) initially
becomes the local equivalent of all, and the tokenizer
then translates all to an asterisk (*). Thus, all the above
queries will eventually become:

SELECT * FROM sampletable;

pre_idiomatic() is a many-to-one function, in that a
group of terms, often variations of a single idiomatic
form, will be reduced to a single native language token.
This is a way of ensuring that the input query has a
good chance of meeting the standard required by the
tokenizer, and consequently by SQL.

Safety checks
There is the possibility that a native query might in-
clude quoted text that correlates with SQL reserved
words, which would cause errors during tokenization
and thus the translation process. The member function
safe_data() was coded in an effort to avoid this. It is
called twice from within the translate() method: once
before the translation, when string protection is locked,
and again when the process is over, to unlock string
protection. The function takes two arguments, the input
query $qry_input and the lock action $bLock (a Boolean
value).In this example, the input data is written in Ital-
ian, but it could equally well be any other supported
language:

inserisci nella tabella sampletable i valori
(24,'Jackob', 'Contrada per caso','344-4543876');

Here, the quoted string Contrada per caso contains the
word per, which would normally be tokenized as 0039
and rendered as BY in SQL syntax. The safe_data() func-
tion protects quoted strings from translation by replac-
ing any whitespace with the string @@. This ensures that

the generated tokens are not words in any language, and
so will be rendered as literals. Because safe_data() is
called at an early stage, what is passed to the tokenizer
looks like this:

inserisci nella tabella sampletable i valori
(24,'Jackob', 'Contrada@@per@@caso','344-4543876');

which in turn becomes:

INSERT INTO sampletable VALUES
(24,'Jackob','Contrada@@per@@caso', '344-4543876');

The procedure is of course reversible. Calling safe_data()
a second time, this time with the lock set to FALSE, re-
moves all string pads and recovers the original form.
Finally, we have the correct MySQL query:

INSERT INTO sampletable VALUES
(24,'Jackob','Contrada per caso','344-4543876');

Without any such input data protection, the final output
would have been:

INSERT INTO sampletable VALUES
(24,'Jackob','Contrada BY caso','344-4543876');

because the content of the quoted string would also be
affected during tokenization. There may, of course, be
better ways to offer such protection for quoted strings;
nothing here is set in stone.

Finalization
Before the SQL query is returned from the translate()
method, it’s a good idea to check that it makes sense be-
fore the user can be allowed to run it. A translated query
at this stage might conceivably include redundant ex-
pressions, such as SELECT TABLE or SELECT FIELDS where
there should be only the SELECT command. Or it may
contain an illegal sequence of operators, such as

< , =

with whitespace between each item. Such a sequence
would need to be turned into the correct form of the less
than/equal to operator <=.

Finalization therefore plays a very relevant role in
improving the chance of a native language query’s be-
ing rendered as legal SQL syntax. This is not absolutely
error-proof at this stage. Incorrect queries may be re-
trieved, but any effort that is put into improving either
the pre_idiomatic() or finalize() methods has an im-
mediate and obvious impact on the rate of errors found
in the final SQL query. The more the code is improved,
the better MySQL Babel works; the efficiency of the class
is entirely in the hands of the developers that manage
those two methods.

The best way to optimize those development efforts

35 • php|architect • Volume 6 Issue 3

MySQL Babel

would be by having developers work as an open source
team. Outside of anything else, the accuracy of the pre_
idiomatic() and finalize() methods will increase as
the number of errors discovered in the existing versions
grows. And, particularly when it comes to pre_idiom-
atic(), the accuracy of the existing version is limited to
the author’s knowledge of a range of foreign languages;
native speakers, whether programmers or not, would
definitely be able to improve upon this!

Call for developers
The prototype for the MySQL Babel project can be down-
loaded from http://freshmeat.net/projects/mysql_babel/.
Note that the status of the MySQL Babel project at this
stage of development is primitive, especially considered
in the light of the manifesto given below. You have only
to look at the language dictionaries to understand that
they don’t pretend to be absolutely correct, or even
functional, at present. They have only been included in
the current project download to set the stage for fu-
ture development and to provide some basic examples
of how the class might work with different languages.
Given that I don’t happen to have linguistic competence
across a wide range of languages, I am actively look-
ing for supporters who will take on the responsibility of
maintaining a correct and full version of their own na-
tive language dictionary. There are several potential de-
velopment paths for the project. For example, one topic
open to discussion would be whether MySQL Babel could
be made to work with native languages whose sentence
syntax do not follow the sequence

verb -> object -> complements

The prototype implementation of MySQL Babel was
achieved with languages that use this syntax (Italian,
French, English and Spanish). It is likely to show up as a
restriction, and probably the core code should be revis-
ited to allow the class to work with languages that have
a different grammatical structure.

Manifesto
Even with contributors able and willing to maintain the
language files, there would still be far too much work
for one person to take on alone. The full development of
the MySQL Babel project would of necessity be a much a
larger project, consisting of six main areas: - Directory
development and expansion

• Core class improvements
• Finalization improvements
• Documentation
• Extension to other database engines
• Porting to other programming languages

Clearly, the first point needs the support of contributors
with a wide range of native languages, and an interna-
tional task force is envisaged here. Such contributors
would not necessarily need to be developers, although
development skills will obviously be needed when it
comes to improving the parsing of native language sen-
tences. Documentation, similarly, would need the sup-
port both of developers (to generate skeleton manuals
on a per-language basis from the source) and of native
language speakers who will not necessarily have pro-
gramming skills.

Programming skills are essential when it comes to the
third and fourth points, and familiarity with SQL would
obviously be a huge bonus there too. Across all areas,
though, anyone interested in the project could usefully
test the class in action and report the bugs they find in
their native language implementation.

The final two points in my manifesto open up wider
possibilities. MySQL Babel is, or will be, the PHP im-
plementation of a concept that could equally well be
coded into different programming languages or adapted
to operate with database management systems other
than MySQL. In this way, MySQL Babel might become
part of a wider project, encompassing a range of SQL
architectures, and more simply defined as SQL Babel.

FIGURE 5

ALESSANDRO ROSA is an Italian freelance programmer who has
been working with Web and stand-alone applications for over a decade.
His other interests include research into mathematical programming,
analysis and history. Alessandro can be contacted through his home
page at http://www.malilla.supereva.it.

36 • php|architect • Volume 6 Issue 3

MySQL Babel

http://freshmeat.net/projects/mysql_babel/
http://www.malilla.supereva.it

http://www.phparch.com/redir/747/702
http://www.phparch.com/redir/748/596

FileMaker for
PHP Developers

Part II

FEATURE

FileMaker is a workgroup productivity toolkit that
was designed to allow knowledge workers to quickly
and easily construct data management systems for

themselves.
In the first part of the FileMaker for PHP Developers

series, I introduced you to the basics of FileMaker de-
velopment in the desktop environment, and explained
how to leverage that development work to easily dis-
play your data on the Web using the FileMaker API for
PHP. I covered the terminology used by the FileMaker
API, introduced the list view and form view layouts,
and explained how having the business logic embedded
in the layout can be a surprisingly efficient approach
in real-world applications. We then went on to look at
views in more detail, and ended with a brief exploration
of where (and why) FileMaker might be deployed to the
greatest effect.

With much of the FileMaker desktop development ba-
sics behind us, we can focus more on the PHP side of
things. This time around, you will learn two different
techniques for updating your database records.

Updating a Single Record
Loyal php|architect readers will recall the view_products.
php script, which was the first of the code listings from
Part One of this series. If you recall, we used this script
to display a searchable and sortable list of products from
the ProductCatalog database, which is included with the
FileMaker API for PHP download bundle in the form of
ProductCatalog.fp7.To make the edit functions accessible
from the demo scripts available to you, I have simply
changed the view link beside each product listed on that
page to an edit link by altering the line:

FileMaker is a popular and powerful
desktop database application toolkit.
FileMaker, Inc. recently released a
beta version of the FileMaker API for
PHP, which allows PHP to more easily
talk to the FileMaker Server Advanced
product. Last month, author Jonathan
Stark introduced some of the concepts
behind the newly hatched API. In the
concluding episode of this two-part
series, he explains how FileMaker
makes editing your database records
a snap.

by Jonathan Stark

PHP: 4.3.x or better

O/S: Any supported by PHP

Other Software: FileMaker Pro and FileMaker Server

Advanced

TO DISCUSS THIS ARTICLE VISIT:
http://forum.phparch.com/365

38 • php|architect • Volume 6 Issue 3

$page_content .= '<td><a
href="view_product.php?recid='.$record_object-
>getRecordId().'">view</td>';

to read:

$page_content .= '<td><a
href="edit_product.php?recid='.$record_object-
>getRecordId().'">edit</td>';

This new link will navigate to a form view of the clicked
product. However, before we can look at the PHP code
used to update the selected product record, we really
need to take a peek at the corresponding layout in File-
Maker Pro.

Figure 1 shows the FileMaker layout in Browse mode,
which is also known as data entry mode. Notice that
there are radio buttons applied to the Category field
here, and there is also a drop-down list attached to the
Manufacturer field. It’s obvious that editing these value
lists will be a trivial task, even for novice FileMaker Pro
users. The end user need only click the Edit... link at
the bottom of the list to be presented with the Edit
Value List dialog shown in Figure 2. You will see in a
moment that this is very cool, because this simple action
on the part of the user will trickle through to the Web
without any changes being made to the PHP code.

The code that makes up edit_product.php is repro-
duced in full in Listing 1. For the sake of clarity, I have

left out large chunks of form validation and the saniti-
zation of user input. These are important concerns and
relevant here, but a discussion of general form submis-
sion handling is outside the scope of this article. It is
also notable that I left out much of the FileMaker error
checking because it is very repetitive and does not serve
to illustrate my point.

You will notice that the script is divided into four dis-
tinct sections. The first of these, initialization, opens
with the definitions used for database connection. For
reasons of security, any database credentials should be
stored in a separate configuration file above the docu-
ment root and included from there. Other items in the
script initialization section include the require_once()
call representing the FileMaker dependency, global vari-
able initialization, and some code to check the status of
the $_POST array to determine whether the form has yet
to be processed. If the process_form element has been
set, the result of the form processing will be displayed in
the browser above the empty form; otherwise, the empty
form alone will be displayed.

The second section is all about form display. It con-
tains the function show_form(), which takes all its cues
from the specified FileMaker layout. The fields that have
value lists applied in FileMaker will be formatted appro-
priately in HTML, depending on the style type associated
with the underlying field object. Note that everything
here is completely dynamic, so that changes made to the

FIGURE 1

39 • php|architect • Volume 6 Issue 3

FileMaker for PHP Developers: Part 2

FileMaker layout or to the values lists on that layout will
be reflected in the HTML page without any modification
of the PHP code.

Thirdly, there is the form processing, which takes place,
unsurprisingly, within the process_form() function. As
with the show_form() function, process_form() bases
all its logic on the FileMaker layout named at the begin-
ning of the function; in this case, the chosen layout is
edit_product. When the time comes for the record to

be updated, PHP queries the layout object for the fields
it contains, using $layout->getFields(). It then loops
through the array of fields and matches the field names
with those in the $_REQUEST superglobal array. On find-
ing a match, it pulls the corresponding data out of the
$_REQUEST array and updates the field value. Finally, it
submits the change to the database. It is important you
should be aware that there is a lot of validation miss-
ing from this area in particular, as mentioned earlier; a
database should never be updated with raw user input in
any real-life application.

With that out of the way, the final section of the script
is dedicated to HTML rendering. Since this is a demo
script, I chose to have the CSS style definitions inline
rather than force an unnecessary listing upon you. Apart
from that and the title, all we have here is a back link to
view_products.php and the HTML content generated by
show_form() and process_form(), if applicable.

Updating a Group of Records
Technically, it would be possible to update a group of re-
cords by simply expanding on the “single record update”
technique, feeding the script an array of record IDs in a
do.. while loop. However, this would be less than opti-
mal from the performance perspective, since a) it would
require a call to the server for every single record and
b) the data is transmitted as XML. A better option would

FIGURE 2

FIGURE 3

40 • php|architect • Volume 6 Issue 3

FileMaker for PHP Developers: Part 2

be to use PHP to call a FileMaker script that will do all
the dirty work for you; and that’s precisely why there are
FileMaker scripts.

FileMaker Scripts
FileMaker Pro has a point-and-click scripting environ-
ment called ScriptMaker. This ScriptMaker allows you to
create macros that can execute all sorts of useful com-
mands with a great deal of ease. Normally, scripts are
run by FileMaker Pro users, but they can be triggered
by PHP as well. The coolest part is that you can send
parameters to a FileMaker script via PHP, thereby cus-
tomizing the behavior of that script on the fly. In this
example, I am going to create a PHP page that will al-
low the user to select a Manufacturer, enter a Status
and submit the form. The form will send the Manufac-
turer Name and Status to the Update Status script in
FileMaker, passing all the data elements as arguments.
The FileMaker script will then locate any Product records
with a matching Manufacturer, and update the Status

value accordingly.
Figure 3 is an illustration of the ScriptMaker environ-

ment in FileMaker Pro. Hopefully you can see from the
image that it’s quite simple to use. The area on the left
contains a list of the available commands, and you can
double click on any of these to move them into the text
area on the right, which displays the script itself. Not all
the commands that are made available in ScriptMaker are
compatible with PHP, so I have activated the Indicate
web compatibility checkbox; those of the command op-
tions that can’t be used are grayed out as a result.

Figure 4 is the Update Status script itself. As you can
see, it is very short, and in fact it only took about three
minutes to write. It would have taken me much longer to
write it in PHP and, as I mentioned earlier, the perfor-
mance obtained in this way would have been less than
wonderful.

Let’s break down that Update Status script and see
what it’s made of.

FIGURE 4

41 • php|architect • Volume 6 Issue 3

FileMaker for PHP Developers: Part 2

Update Status
The first section in the Update Status script accepts the
incoming script parameter, breaks it into two values,
and stores the values in separate variables:

Set Variable [
 $Manufacturer;
 Value:GetValue(Get(ScriptParameter); 1)
]

Set Variable [
 $Status;
 Value:GetValue(Get(ScriptParameter); 2)
]

Technically speaking, a FileMaker script can only accept
one parameter, and you should access that parameter
value with the Get(ScriptParameter) function. You can
get around the single parameter limitation, as shown
here, by delimiting your values with returns and using
the GetValue() function. GetValue() accepts an EOL-
delimited list of values and a value number as param-
eters, and will return the value indicated by the number.
If you think of the EOL-delimited list as an array, then
GetValue($Values; 2) is equivalent to $Values[’2’] in
PHP.

Now that we have the number of arguments we need to
pass, the next thing is to find the Product records that
are associated with the selected Manufacturer name. We
do this by entering Find mode, inserting the selected
Manufacturer name into the Manufacturer field, and
performing the Find request. While we’re there, notice
that the Product:: prefix in the Set Field step indi-
cates that the Manufacturer field belongs to the Product
table.

Enter Find Mode
Set Field [
 Product::Manufacturer;
 $Manufacturer
]
Perform Find

At this point, we need to check to see whether our request
matched any records. To do so, we open an If block and
make our enquiry using the function Get(FoundCount),
which will return an integer. If the integer it returns
happens to be 0, the If condition will evaluate to FALSE
and the rest of the script will be skipped. If, however,
the number of items is greater than 0, the If condition
will evaluate to TRUE. This will trigger the execution of
the Replace and Commit Records/Requests commands.

If [Get(FoundCount)]
 Replace Field Contents [
 Product::Status;
 Replace with calculation: $Status
]
 Commit Records/Requests
End If

The call to Replace does just as you might expect—name-

ly, it replaces the value in the Status field of the found
Product records with the value in the $Status variable.
Remember this: the $Status variable was populated by
the script parameter that was sent from PHP.

When the Replace routine has completed, the Com-
mit command is executed; this routine is responsible for
writing the changes to the database.

update_status.php
With the FileMaker script in place, we can turn our atten-
tion to the PHP page that will call it: update_status.php,
rendered here as Listing 2. As with the earlier code list-
ing, I have left out much in the way of form validation
and the sanitization of user input, so please tread with
care when it comes to implementing this functionality
yourself. There are five distinct sections in update_sta-
tus.php, some of which match the sections in edit_prod-
uct.php (Listing 1) and some of which are unique to this
script. Thus, as before, we have the initialization stage
making the decision about the nature of the HTML page
content, depending on the stage of processing the script
has reached. We meet, once again, the form display sec-
tion containing the show_form() function, where the
options for the select block in the Manufacturer field
are pulled from the layout in FileMaker. Next up, there’s
something you haven’t seen until now; form validation.
In this instance, this is restricted to checking that the
Manufacturer and Status fields contain some input, and
ensuring that $_POST[’manufacturer’] doesn’t contain an
illegal hyphen or $_POST[’status’] any HTML tags. Again,
this offers very little protection, and you will need tight-
er control over your user input data in any real-life ap-
plication.

Next up is our old friend form processing, which is the
home of the process_form() function. In this particular
case, process_form() is the focus of the example, as it
shows you how to go about sending a form submission
to a FileMaker script. As an added bonus, you can see the
syntax for sending multiple parameters in the line:

$script_param = $_POST['manufacturer']."\n".$_
POST['status'];

Remember, though, that “\n” is not valid syntax on ev-
ery platform. Those of you who are running PHP 5.0.2 or
newer will be able to use the built-in constant PHP_EOL
here, but if you’re stuck with an older version of PHP you
will need to create your own EOL constant to achieve
portability.

Finally, there is the HTML template, which once again
contains inline CSS style definitions, a title, and the ab-
solute basic necessities to frame and decorate this dy-
namically rendered page.

42 • php|architect • Volume 6 Issue 3

FileMaker for PHP Developers: Part 2

 1 <?php
 2 /* edit_product.php */
 3
 4 #########################
 5 # INITIALIZATION #
 6 #########################
 7
 8 # For security reasons, these lines should either be included from a
 9 # config file above the document root, or possibly captured during a
 10 # login and stored in the SESSION superglobal array
 11
 12 define('FM_HOST', '127.0.0.1');
 13 define('FM_FILE', 'ProductCatalog.fp7');
 14 define('FM_USER', 'esmith');
 15 define('FM_PASS', 'f!r3crack3r');
 16
 17 # this is the include for the API for PHP
 18 require_once ('FileMaker.php');
 19
 20 # initialize page content var
 21 $page_content = '';
 22
 23 # if this page has been submitted to itself, then process it
 24 if (array_key_exists('process_form', $_POST)) {
 25 $page_content .= process_form();
 26 }
 27
 28 # show the form
 29 $page_content .= show_form();
 30
 31 #########################
 32 # FORM DISPLAY #
 33 #########################
 34
 35 function show_form() {
 36 # grab the record id sent in the url from list page or a post from
this page
 37 $recid = (array_key_exists('recid', $_REQUEST)) ?
htmlspecialchars($_REQUEST['recid']) : '';
 38
 39 # set the layout name for this page
 40 $layout_name = 'edit_product';
 41
 42 # initialize our output var
 43 $html = '';
 44
 45 # instantiate a new FileMaker object
 46 $fm = new FileMaker(FM_FILE, FM_HOST, FM_USER, FM_PASS);
 47
 48 # get the record by it's id
 49 $record = $fm->getRecordById($layout_name, $recid);
 50
 51 # get the layout as an object
 52 $layout_object = $fm->getLayout($layout_name);
 53
 54 # get the fields from the layout as an array of objects
 55 $field_objects = $layout_object->getFields();
 56
 57 # start compiling our form inputs
 58 $html .= '<form action="'.$_SERVER['PHP_SELF'].'" method="post">';
 59 $html .= "<input type=\"hidden\" name=\"process_form\" value=\
"true\" />\n";
 60 $html .= "<input type=\"hidden\" name=\"recid\" value=\"{$recid}\"
/>\n";
 61 $html .= "<table>\n";
 62 foreach($field_objects as $field_object) {
 63 # grab the actual field name
 64 $field_name = $field_object->getName();
 65
 66 # replace any spaces with underscores so field names match keys
in $_REQUEST array
 67 $field_name_underscore = str_replace(' ', '_', $field_name);
 68
 69 # grab the field value from either the $_REQUEST array, or from
FileMaker
 70 if (array_key_exists($field_name_underscore, $_REQUEST)) {
 71 if (is_array($_REQUEST[$field_name_underscore])) {
 72 # convert checkbox input to return delimited values
 73 $field_value = implode("\n", $_REQUEST[$field_name_
underscore]);
 74 } else {
 75 # grab whatever was sent
 76 $field_value = $_REQUEST[$field_name_underscore];
 77 }
 78 } else {
 79 # this must be the first time through the form because $_
REQUEST array does not exist for this field

LISTING 1
 80 $field_value = $record->getField($field_name);
 81 }
 82
 83 # get the style type, which will tell us if there is a value
list attached to the field, and if so, what style
 84 $field_style_type = $field_object->getStyleType();
 85
 86 # output the form control appropriate to the field style type
 87 switch ($field_style_type) {
 88 case 'POPUPLIST':
 89
 90 # start compiling html for this select control
 91 $html .= "<tr>\n";
 92 $html .= "<th>{$field_name}</th>\n";
 93 $html .= "<td>\n";
 94 $html .= "<select name=\"{$field_name_underscore}\">\n";
 95
 96 # loop through the values from the list attached to this
field
 97 $values = $field_object->getValueList();
 98 foreach($values as $value) {
 99 $selected = ($field_value == $value) ? '
selected="selected"' : '';
100 $html .= "<option{$selected}>{$value}</option>\n";
101 }
102
103 # close the open tags
104 $html .= "</select>\n";
105 $html .= "</td>\n";
106 break;
107
108 case 'CHECKBOX':
109
110 # start compiling html for this checkbox set
111 $html .= "<tr>\n";
112 $html .= "<th>{$field_name}</th>\n";
113 $html .= "<td>\n";
114
115 # loop through the values from the list attached to this
field
116 $values = $field_object->getValueList();
117 foreach($values as $value) {
118 $checked = (strpos($field_value, $value) !== FALSE)
? ' checked="checked"' : '';
119 $html .= "<input type=\"checkbox\" name=\"{$field_
name_underscore}[]\" value=\"{$value}\"{$checked} />{$value}
\n";
120 }
121
122 # close the open tags
123 $html .= "</select>\n";
124 $html .= "</td>\n";
125 break;
126
127 case 'RADIOBUTTONS':
128
129 # start compiling html for this checkbox set
130 $html .= "<tr>\n";
131 $html .= "<th>{$field_name}</th>\n";
132 $html .= "<td>\n";
133
134 # loop through the values from the list attached to this
field
135 $values = $field_object->getValueList();
136 foreach($values as $value) {
137 $checked = (strpos($field_value, $value) !== FALSE)
? ' checked="checked"' : '';
138 $html .= "<input type=\"radio\" name=\"{$field_name_
underscore}\" value=\"{$value}\"{$checked} />{$value}
\n";
139 }
140
141 # close the open tags
142 $html .= "</select>\n";
143 $html .= "</td>\n";
144 break;
145
146 default:
147
148 # the remaining field style types (EDITTEXT and
CALENDAR) are best represented as text inputs
149 $html .= '<tr><th>'.$field_name.'</th><td><input
type="text" name="'.$field_name_underscore.'" value="'.$field_value.'" /></
td></tr>'."\n";
150 break;
151 }
152 }
153
154 # add a submit button and close the open tags

LISTING 1: Continued...

43 • php|architect • Volume 6 Issue 3

FileMaker for PHP Developers: Part 2

 1 <?php
 2 /* update_status.php */
 3
 4 #########################
 5 # INITIALIZATION #
 6 #########################
 7
 8 # For security reasons, these lines should either be included from a
 9 # config file above the document root, or possibly captured during a
 10 # login and stored in the SESSION superglobal array
 11 define('FM_HOST', '127.0.0.1');
 12 define('FM_FILE', 'ProductCatalog.fp7');
 13 define('FM_USER', 'esmith');
 14 define('FM_PASS', 'f!r3crack3r');
 15
 16 # include the FileMaker API for PHP
 17 require_once ('FileMaker.php');
 18
 19 # handler for showing, validating, and processing the form
 20 if (array_key_exists('process_form', $_POST)) {
 21 if ($errors = validate_form()) {
 22 $page_content = show_form($errors);
 23 } else {
 24 $page_content = process_form();
 25 }
 26 } else {
 27 $page_content = show_form();
 28 }
 29
 30 #########################
 31 # FORM DISPLAY #
 32 #########################
 33
 34 function show_form($errors = array()) {
 35
 36 # initialize variables
 37 $layout_name = 'update_status';
 38 $post_manufacturer = (array_key_exists('manufacturer', $_POST)) ?
$_POST['manufacturer'] : '';
 39 $post_status = (array_key_exists('status', $_POST)) ? $_
POST['status'] : '';
 40
 41 # instantiate a new FileMaker object
 42 $fm = new FileMaker(FM_FILE, FM_HOST, FM_USER, FM_PASS);
 43
 44 # create a new layout object
 45 $layout_object = $fm->getLayout($layout_name);
 46 if (FileMaker::isError($layout_object)) {
 47 return ('<p>'.$layout_object->getMessage().' (error '.$layout_
object->code.')</p>');
 48 }
 49
 50 # get the manufacturer value list as an array
 51 $manufacturers = $layout_object->getValueList('Manufacturer');
 52 if (FileMaker::isError($manufacturers)) {
 53 return ('<p>'.$manufacturers->getMessage().' (error
'.$manufacturers->code.')</p>');
 54 }
 55
 56 # sort manufacturers
 57 sort ($manufacturers);
 58
 59 # create the html manufacturer options
 60 $manufacturer_options = "<option>Select a manufacturer...</option>\
n";
 61 $manufacturer_options .= "<option>-</option>\n";
 62 foreach($manufacturers as $manufacturer) {
 63 $selected = ($manufacturer == $post_manufacturer) ? '
selected="selected"' : '';
 64 $manufacturer_options .= "<option{$selected}>{$manufacturer}</
option>\n";
 65 }
 66
 67 # compile errors as html, if any
 68 $error_list = '';
 69 if (count($errors)) {
 70 $error_list .= '<ul class="errors">'."\n";
 71 foreach ($errors as $error) {
 72 $error_list .= "{$error}\n";
 73 }
 74 $error_list .= "";
 75 }
 76
 77 # insert the errors and manufacturer options into a form
 78 $html = <<<HTML
 79 {$error_list}
 80 <form action="{$_SERVER['PHP_SELF']}" method="post">

LISTING 2
 81 <input type="hidden" name="process_form" value="true" />
 82 <select name="manufacturer">
 83 {$manufacturer_options}
 84 </select>
 85 <p><input type="text" name="status" value="{$post_status}" /></p>
 86 <p><input type="submit" name="submit" value="Continue" /></p>
 87 </form>
 88
 89 HTML;
 90 return $html;
 91 }
 92
 93 #########################
 94 # FORM VALIDATION #
 95 #########################
 96
 97 function validate_form() {
 98 $errors = array ();
 99 if ($_POST['manufacturer'] == 'Select a manufacturer...') {
100 $errors[] = 'Select a manufacturer';
101 }
102 if ($_POST['manufacturer'] == '-') {
103 $errors[] = 'Select a manufacturer';
104 }
105 if ($_POST['status'] == '') {
106 $errors[] = 'Status is required';
107 }
108 if ($_POST['status'] != strip_tags($_POST['status'])) {
109 $errors[] = 'HTML tags are not allowed in the Status field';
110 }
111 return $errors;
112 }
113
114 #########################
115 # FORM PROCESSING #
116 #########################
117
118 function process_form() {
119 # instantiate a new FileMaker object
120 $fm = new FileMaker(FM_FILE, FM_HOST, FM_USER, FM_PASS);
121
122 # set a couple variables
123 $layout_name = 'update_status';
124 $script_name = 'Update Status';
125 $script_param = $_POST['manufacturer']."\n".$_POST['status'];
126
127 # call the script with the parameter
128 $script_object = $fm->newPerformScriptCommand($layout_name, $script_
name, $script_param);
129
130 # run the script
131 $script_result = $script_object->execute();
132
133 # check for errors
134 if (FileMaker::isError($script_result)) {
135 return ('<p>'.$script_result->getMessage().' (error '.$script_
result->code.')</p>');
136 }
137
138 $html = <<<HTML
139 <p>{$_POST['manufacturer']} records have been updated with {$_
POST['status']} status.</p>
140 <p>Click here to continue...</p>
141
142 HTML;
143 return $html;
144 }
145
146 #########################
147 # HTML RENDERING #
148 #########################
149 ?>
150 <html>
151 <head>
152 <meta http-equiv="Content-type" content="text/html; charset=utf-
8">
153 <title>update_status</title>
154 <style type="text/css" media="screen">
155 body {font: 75% "Lucida Grande", "Trebuchet MS", Verdana,
sans-serif; text-align:center;}
156 a, a:visited {color: blue;text-decoration: none;font-weight:
bold;}
157 a:hover, a:active {color: blue;text-decoration:
underline;font-weight: bold;}
158 input, select {width:260px;}
159 #container {width:400px;margin:0 auto;padding:20px;}
160 .errors {background-color:yellow;border:2px solid

LISTING 2: Continued...

44 • php|architect • Volume 6 Issue 3

FileMaker for PHP Developers: Part 2

Conclusion
I hope that this article has given you a taste for the
rapid application development that is possible with
FileMaker Pro, FileMaker Server Advanced, and the
FileMaker API for PHP. No, FileMaker is never going
to be an Oracle killer; but I can’t tell you the num-
ber of times I have seen a “temporary” FileMaker so-
lution bridge the gap for someone who was waiting
for a SQL solution that ultimately never materialized.
If you would like to look at the API code, currently at
public beta status, you can download the FileMaker
API for PHP at no cost from http://www.filemakertrial.
com/php/default.aspx simply by filling a short form.
If you would like to play around with this code, you will

need a copy of FileMaker Pro, and you will also need File-
Maker Server Advanced. Neither are available for free, but
you can get limited versions of each by joining the File-
Maker Solutions Alliance (FSA). There is an annual fee for
FSA membership, but the amount of free software offered
to members would more than offset the membership fee.
Please visit http://www.filemaker.com/developers/join_
fsa.html for more information about joining the FSA.

Jonathan Stark is the President of Jonathan Stark Consulting,
an IT consulting firm located in Providence, RI. He consults a
variety of clients from the creative industry including Staples, Turner
Broadcasting, and Ambrosi. He has spoken at the FileMaker Developers
Conference, is a Certified FileMaker Developer, and teaches training
courses in both FileMaker and Web publishing. Jonathan is reluctant
to admit that he began his programming career more than 20 years
ago on a Tandy TRS-80. For more information, please visit http://
jonathanstark.com.

#ff9900;padding:10px 0 10px 30px;text-align:left;}
161 </style>
162 </head>
163 <body>
164 <div id="container">
165 <h2>Update Product Status</h2>
166
167 <!-- BEGIN DYNAMIC CONTENT -->
168
169 <?php echo $page_content; ?>
170
171 <!-- END DYNAMIC CONTENT -->
172
173 </div>
174 </body>
175 </html>

LISTING 2: Continued...

155 $html .= '<tr><th> </th><td><input type="submit" name="submit"
value="save changes" /></td></tr>'."\n";
156 $html .= "</table>\n";
157 $html .= "</form>\n";
158 return $html;
159 }
160
161 #########################
162 # FORM PROCESSING #
163 #########################
164
165 function process_form() {
166 # instantiate a new FileMaker object
167 $fm = new FileMaker(FM_FILE, FM_HOST, FM_USER, FM_PASS);
168
169 # set a couple variables
170 $layout_name = 'edit_product';
171 $recid = $_REQUEST['recid'];
172
173 # get the layout as an object
174 $layout_object = $fm->getLayout($layout_name);
175
176 # get the fields from the layout as an array of objects
177 $field_objects = $layout_object->getFields();
178
179 # loop through fields, pulling values from the $_REQUEST array
180 $values = array();
181 foreach($field_objects as $field_object) {
182 $field_name = $field_object->getName();
183 $field_name_underscore = str_replace(' ', '_', $field_name);
184 if (is_array($_REQUEST[$field_name_underscore])) {
185 $values[$field_name] = implode("\n", $_REQUEST[$field_name_
underscore]);
186 } else {
187 $values[$field_name] = $_REQUEST[$field_name_underscore];
188 }
189 }
190
191 # create a new edit command

LISTING 1: Continued...
192 $edit_command = $fm->newEditCommand($layout_name, $recid, $values);
193
194 # execute the edit_command
195 $edit_command->execute();
196
197 $html = '<p>Record has been updated!</p>';
198 return $html;
199 }
200
201 #########################
202 # HTML RENDERING #
203 #########################
204
205 ?>
206 <html>
207 <head>
208 <meta http-equiv="Content-type" content="text/html; charset=utf-
8">
209 <title>edit_product</title>
210 <style type="text/css" media="screen">
211 body {font: 75% "Lucida Grande", "Trebuchet MS", Verdana,
sans-serif;}
212 table {width: 600px; border-collapse:collapse; border-color:
#cccccc; margin-bottom: 10px;}
213 th {padding: 3px; background-color: #DDD; text-align: left;}
214 td {padding: 3px;}
215 table, th, td { border:1px solid #cccccc; }
216 a, a:visited {color: blue;text-decoration: none;font-weight:
bold;}
217 a:hover, a:active {color: blue;text-decoration:
underline;font-weight: bold;}
218 </style>
219 </head>
220 <body>
221 <p>view products</p>
222 <?php echo $page_content; ?>
223 </body>
224 </html>

LISTING 1: Continued...

45 • php|architect • Volume 6 Issue 3

FileMaker for PHP Developers: Part 2

http://www.filemakertrial.com/php/default.aspx
http://www.filemakertrial.com/php/default.aspx
http://www.filemaker.com/developers/join_fsa.html
http://www.filemaker.com/developers/join_fsa.html

Compared to desktop applications, the user interfac-
es for most Web applications are restrictive, slow,
clumsy and limited. The palate of tools for build-

ing desktop user interfaces is expressive and determin-
istic. On the other hand, Web applications must paint
from a limited palette of form controls and attempting
anything advanced or unusual invokes the browser com-
patibility bugbear. Why, then, are Web applications so
successful?

I have a one-word answer: deployment. Web applica-
tions are vastly simpler to deploy to a user base than
desktop clients ever were. How much simpler? Look at
the UI advances that we have been willing to give up
over the last ten years in order to gain that simplicity
in deployment. Yes, rich clients, meaning AJAX or Flash,
are the rage these days. But the UIs that these solu-
tions provide still don’t match what was available on the
desktop in 1995.

When I was working on ERP systems in the ’90s, de-
ployment was perhaps one of the most difficult problems
we faced. It would be heartbreaking to talk to a user
with a valid suggestion for improving the system. “Yes,”
I would say, “that is a great idea, but I can’t do that.”
“Why not,” they would ask, “it seems so simple to do.”
“Oh, it is”, I would agree, “and it would only take me
a few minutes to implement it, but the best I can do is
to write it down and submit it to the requirements com-
mittee.” At that point, the users were crestfallen. They
knew that their idea, no matter how great it might be,
it was unlikely to emerge from the formal prioritization
process.

Ah, but I’m a sympathetic guy with access to the source
code control system. I could have informally granted any
given request. Unfortunately, my work was only a small
part of the process of a change reaching that user’s desk.
After I made the change in source code control, it would

Deploying PHP
Applications

Ease of deployment is one of the biggest advantages of Web applications over

desktop applications, but that doesn’t mean it’s foolproof. This month, Jeff

Moore takes a tour around some of the pitfalls of application deployment and

casts an eye over the PEAR installer’s response to them.

by Jeff Moore

TO DISCUSS THIS ARTICLE VISIT:
http://forum.phparch.com/366

46 • php|architect • Volume 6 Issue 3

TEST PATTERN

become part of the software release process. A docu-
menter would stop by my desk for an explanation of the
new feature. The testing team would have to test my
change. The training team might also become involved.
There could be interactions with other programs or fa-
cilities that didn’t even use or want that feature. The
change might require a special module for the system
installer and upgrade application. When the facility roll-
out cycle began, trainers would be dispatched, and the
feature would be installed at best many weeks after the
request.

At worst, something would go wrong at any one of
the many stages, and the question would come up about
who checked in that unauthorized change. Or worse, a
small change would interfere with the rollout of a much
more important change. It happened. We used to figure
that the deployment costs of a change were an order
of magnitude more than the programming costs of a
change. The risk of something going wrong during the
deployment process was a significant damper on new
changes. Self-evidently, this does not serve the users of
the system.

We obviously want to maintain the changeability of
our software systems. In this column I talk a lot about
writing maintainable code as a way to be responsive to
user change requests. But having a good deployment
process is key to being able to rapidly change a system.
It is not enough to be able to make a change fast. We
also want to get that change in front of our users fast.

So, what is different about Web applications? The big
differential is the client deployment cost. The desktop
machines already come with the browser installed, and
the upgrade cycle for that browser is largely independent
of a specific Web application. Rolling out an application
to a thousand desktops is a much more involved task
than rolling one out to a server that services a thousand
users. For many applications, that deployment simplicity
is worth the cost of some user interface sophistication.
For many applications, that deployment simplicity en-
ables us to get new features in front of our users faster.

On the server side, there is little difference. Deploy-
ing to a Web server is hardly different than deploying to
an application server. I’ve found that many of the same
deployment processes and techniques apply.

Save the Code, Save the Project
The foundation of any deployment process is your source
code control system. Source code control makes the
difference between chaos and order. With source code
control, your deployment process can be controlled, de-

terministic and safe. Without it, you may never know
exactly what is deployed. Or worse, you may lose code,
be afraid to make changes, or have to undergo a time-
consuming comparison process at deployment time.
Losing source code is not very professional. The medical
community has a word for this. They call it malpractice.
There is a legal term, res ipsa loquitur, which means the
thing (or result) speaks for itself. If a pair of forceps is
found inside a patient after surgery, malpractice is as-
sumed. In the same way, if you misplace source code,
malpractice can also be assumed: res ipsa loquitur.

I favor subversion these days. It is the easiest SCM
to use that I have tried, in 15 years of using SCM. It is
free, and it is open source. It is easy enough to install
and with the availability of hosted source code control
solutions, there is no excuse for not using source code
control.

Work with a Net
Early in my career I was working in an office with a
server that had mirrored drives. One drive failed, so a
network engineer came to work on it. To fix it, he was
going to reformat the bad drive and re-mirror the drives.
Just before he hit enter on the format command, I asked
him, “Are you sure you have the right drive?” “Yes, I’m
sure,” he confirmed. I think you can guess what hap-
pened next. Another time, during an ERP rollout, a bug
in an inventory allocation algorithm made it into pro-
duction. Everything was fine, except that when a semi
truck left the facility, the system would exchange the
record of the inventory that went out on the truck with a
random inventory item from the warehouse. Even though
the right products were placed on the truck, we had no
accurate record of what was shipped and the picking al-
gorithms from the warehouse weren’t right. By the time
the problem was diagnosed and repaired, a thousand
tons of products had been misplaced. The forensics, data
repair and inventory auditing took weeks afterward.

I have a million stories of the fallibility of comput-
erized systems and the humans who build and operate
them. The point is that things go wrong. Worse, they of-
ten go wrong at deployment time. The first lesson is that
you never want to deploy anything into a 24*7*365 en-
vironment on a Friday, unless you plan on working over
the weekend. The second lesson is that you always want
to have a backup, and a rollback contingency plan.

Automate This!
The key to fast and safe deployment is automation (and
testing). As with my hard drive formatting friend, people

47 • php|architect • Volume 6 Issue 3

Deploying PHP Applications

make mistakes. By automating the deployment process,
we reduce the chance of making those mistakes. An au-
tomated process can be tested. A dry run can be done. If
something does go wrong, we can examine the automa-
tion script to see what happened. Once the process is set
up, automated deployment reduces the labor costs of de-
ploying an application. When deploying an application is
easy and safe, there is incentive to do it more often. This
is a good thing. There are several different ways to au-
tomate the process of installing files onto a production
server. One way is to build a set of update scripts around
the rsync utility or some other file synchronization util-
ity. This is fairly easy to set up, and I have to admit that
this is the primary method that I use.

However, there is what I would consider a better way.
The PEAR installer, designed for exactly this purpose,
has become better and better at installing applications
and libraries, as well as increasingly open. The PEAR in-
staller may be the de facto standard for the installation
of PHP applications. Greg Beaver, the primary PEAR in-
staller developer, has literally written the book on the
PEAR installer, called “The PEAR Installer Manifesto”. I
heartily recommend it.

What are the advantages of the PEAR installer? PEAR
provides a standard packaging mechanism, along with
tools to create those packages. It also provides a mech-
anism for distributing these packages via its channel
mechanism. Channels can be private and authenticat-
ed. The PEAR installer has good support for describing
and managing the dependencies between packages. The
PEAR installer can run post installation scripts. This is
extremely useful for data format migrations.

It’s fairly easy to set up scripts to transfer files, either
with rsync or with the PEAR installer. Data format mi-
grations are more difficult. If we make a change in the
database structure, we want to automate the process of
migrating that change onto our production server. We
don’t want to do the equivalent of formatting the wrong
drive when typing SQL into the database by hand. Even

with backups, large systems can take a long time to re-
store and downtime can be expensive.

The database update portion of our old ERP installer
dramatically reduced deployment errors and dramatically
increased our deployment confidence when it was rolled
out. We checked our database schema into our source
code control system. The installer script generator pro-
gram would examine the table structures in source code
control. It ’understood’ the tables and fields, and was
able to detect the difference between different revisions
and generate an upgrade script to install that change
(and a downgrade script as well). It was also possible
to check in standardized rows for some tables. We would
review the generated script, and it would go through a
testing process.

The same type of system is possible with PEAR’s post-
installation scripts. I have to admit that I am not yet
using the PEAR installer, although I think that it is the
way to go in the future. There is still a bit of a learning
curve (lower now, with the release of Greg’s book). It
still takes a bit of effort to set up the scripts to create
the PEAR packages. I also don’t know of any PHP based
SQL diff tools similar to those we used on our ERP proj-
ect. However, I expect all these obstacles to fall as more
and more developers and projects switch to using the
PEAR installer.

Every File has a Role to Play
There are several considerations when installing files
onto a Web server. Different files have to go into dif-
ferent locations. The major division between locations
depends on whether the file should be public and go in
the Web server’s document root, or whether a file should
be kept in a location that is not publicly accessible. Files
can go in the front end or back end. Generally, it is best
to minimize the number of files that are installed into
the front end. For security purposes, we don’t want to
make any files publicly accessible that aren’t required to
be so. I generally prefer to put only a small bootstrap
front controller file into the document root, and fun-
nel all the dynamic content requests for the application
through that file.

Another consideration in determining the location
of our application’s files is the modifiability of a given
file. We may wish to segregate files that aren’t normal-
ly modified by the application. Changes to these files
would usually be made into source code control first,
and then deployed to the server. An application may be
installed on more than one server, and these files would
not be different between servers. The PEAR installer has
a special file role for these kinds of files, called the php
role. For static data, PEAR’s data file role may also be
appropriate.

dynamic web pages - german php.node

news . scripts . tutorials . downloads . books . installation hints

Dynamic Web Pages

www.dynamicwebpages.de
sex could not be better |

48 • php|architect • Volume 6 Issue 3

Deploying PHP Applications

http://www.phparch.com/redir/745/802

Some files are changeable, and may be generated by
the application. A good example of this would be cached
files, which can usually be regenerated if they are de-
leted. It can be a good idea to segregate these files into
their own directory. Deleting all the files in that direc-
tory could clear the cache.

Another issue is configuration data; that is, data that
might be specific to a particular server or a particular in-
stallation of the application. We don’t want to hard code
this data into the static application files. This makes
it more difficult to manage a development or testing
server, or multiple installations of the same application.
It may be a good idea to segregate these kinds of files.
I try to minimize configuration data. I tend to try to
put it into the bootstrap loader that goes in the public
document root. The PEAR installer has some specialized
support for this kind of data. It can replace configura-
tion data in specific files.

Perhaps some data will be modified on a per-installa-
tion basis, but isn’t in your source code control for one
reason or another—for instance, data that crosses orga-
nizational boundaries. A good example of this might be
when a specific directory is created to hold templates.

There is another file location consideration for pub-
licly accessible files. Sometimes we might want to segre-
gate our static public files from our dynamic public files
for performance reasons. Our deployment process should
be able to handle this.

Yin and Yang
On the server, we segregate and organize our deployed
files by type and by modifiability. This begs the ques-
tion, how do we organize our files during development?
One choice is to mirror the organization of the deployed
application. In this style, the first level of organization
sorts the files into type. You often see this in various
frameworks. There is a top level tests, view, template,
model, or controller directory. This is a good scheme if
you are using the file synchronization method of deploy-
ment, and it is quite common. The drawback to this style
of organization is that we often work with related files
of the same type. We may just have a PHP file and a test
file, or a PHP file and a template file, or something more
complicated. When different files from our working set
of files are in divergent directories, working with those
files can become cumbersome.

This suggests an alternative approach to file organi-
zation. We can organize at our top level by package,
perhaps even by PEAR package. We can still organize
by type at a lower level, perhaps using file extensions
to distinguish types. Having all our working set of files
in the same directory makes it much easier to work with
these files.

The drawback of organizing by package is that it in-
troduces two different file organization systems. Our de-
velopment environment and source code control system
group by package, while our deployment environment
uses the groupings that make most sense there. If you
are using the file synchronization method of deploy-
ment, this may be too much to handle. However, the
PEAR installer method of deployment can easily translate
between the two different methods of file organization.

The one thing we absolutely do not want to do is to
insert a deployment phase into the development cycle.
Part of the power of PHP is that it gives immediate feed-
back during development. We make a change during de-
velopment, and can immediately refresh the page in the
browser to see the results. We don’t want to interfere
with that by requiring some kind of deployment or build
script. If we have two different file organizations, then
it becomes more difficult for the application to locate its
files as it runs. Ideally, the application should be able to
locate its files in either configuration—but having the
ability to do so complicates the application itself.

I certainly don’t have all the answers for deploy-
ment. I’ve been moving toward a package based, rather
than a type based organization. I like having related
files co-located. I’ve also been moving toward using the
PEAR installer, although I don’t yet have all the tools in
place for this. I have yet to resolve the issues that arise
when locating supporting files in dual configurations.

JEFF MOORE learned to program in the 80’s, worked on
ERP systems in the 90’s and is devoting this decade to
PHP. Jeff does freelance programming, works on the
open source framework WACT and occasionally posts to
his blog at http://www.procata.com/blog/.

49 • php|architect • Volume 6 Issue 3

Deploying PHP Applications

http://www.phparch.com/redir/746/441

SECURITY CORNER

When it comes to security faults in PHP, the first
thing we need to do is classify the kinds of ex-
ploit so that we can distinguish between them.

We do this by looking at the way in which an exploit can
be abused.

In some instances, the exploit can be trigged remote-
ly. This is considered exceptionally dangerous, since
it would allow an external hacker to trigger undesired
behavior on any PHP enabled server. Fortunately, this
particular type of remote exploit is very rare in PHP. In
the past, this kind of security hole has generally been
caused by poorly coded input processing mechanisms,
such as file upload handlers.

Another type of exploit is function specific. This type
of exploit can be triggered externally, but only if the
user’s code relies on a particular function or extension
containing a bug. Often it is only possible to trigger
this kind of exploit remotely when the user code exposes
external input directly to the vulnerable function. One
such instance would be the use of the unserialize()
function on user-supplied input without any validation.

unserialize(), being designed specifically for internal
use, lacks some of the protection available in other func-
tions. Therefore, it could be easily abused to do all man-
ner of nastiness.

Finally, there is the local exploit, which requires the
attacker to have local access to the server in order to be
exploited. Generally, this kind poses the biggest head-
ache for ISPs that need to deal with hundreds of local
users, some of whom are not looking to play nice. It
should be noted that these local exploits could become
remotely triggerable, given a PHP application that al-
lows code injection. This type of exploit is unfortunately
quite common; a good example would be a safe_mode or
open_basedir bypass.

Now that we’ve got the exploits classified into types,
let’s move on to examine the actual issues that were
fixed in PHP 5.2.1.

Why upgrade to
PHP 5.2.1?

A few weeks ago, I rolled PHP 5.2.1—the latest word in PHP development.
How is this relevant to a security article? Well, the 5.2.1 release is unusual in
its focus on security—and, in particular, in the number of security issues it
addresses. This is an overview of the security fixes and enhancements found
in PHP 5.2.1. I hope that it will convince you of the need to upgrade your PHP
deployment.

TO DISCUSS THIS ARTICLE VISIT:
http://forum.phparch.com/367

by Ilia Alshanetsky

51 • php|architect • Volume 6 Issue 3

Remote Exploits
The good news is that there were no purely remote ex-
ploits discovered, meaning that a generic install of PHP
is not vulnerable out of the box. However, a series of is-
sues were found and resolved that could result in partial
remote exploits, stemming from bugs inside commonly
used functions that are all too often exposed to unfil-
tered user input.

As I mentioned earlier, one such exploit could be
found inside the unserialize() function when deployed
on 64-bit systems. A user-supplied string could poten-
tially trigger an un-terminated loop that will occupy
the process until maximum execution time is reached—
about 30 seconds on most systems. This meant that,
with as few as ten requests, an attacker could launch
a fairly successful denial of service attack against a 64-
bit server. It should be stressed that the unserialize()
function was never intended to deal with user supplied
data; its goal was to decode internal serialized format
data stores inside files, databases or shared memory. As
such, any use of the function with user supplied data is a
dangerous abuse of the feature, and will result in a local
exploit becoming a remote one.

If an application absolutely must pass serialized data
via GPC mechanisms, a simple HMAC hashing algorithm
should be used to validate the transferred data and en-
sure that it was not tampered with along the way. The
example below demonstrates this kind of protection in
action:

/* output block */
echo '<input type="hidden" name="s" value="'.($out =
serialize($data)).'" />';
echo '<input type="hidden" name="hash" value="'.
hash_hmac('md5', $out,
'secretkey').'" />';
/* input block */
if ($_POST['hash'] == hash_hmac('md5', $_POST['s'],
'secretkey')) {
 $data = unserialize($_POST['s']);
} else {
 exit("Hacking attempt!");
}

In this example, before unserialize() is called on the
data it first must pass through HMAC validation, which
uses the md5 algorithm to ensure the data was not mod-
ified by the user. The secret key ensures that a hacker
can’t simply calculate an md5() hash of newly corrupted
data and bypass the validation.

The next semi-remote security exploits were found
inside the filter extension, which is a bit ironic given
that the extension’s job is to protect scripts against in-
valid user input. A bug was discovered inside a com-
bination of string filters designed to strip high-ASCII
characters and characters that could trigger XSS, such as
<>. The problem was caused by the fact that the filter
was not continuous, thus allowing the hacker to inject

invalid input by creating certain character sequences,
which would actually create XSS on stripping. This is-
sue is somewhat similar to the mysql_escape_string()
bug that I explored a few months ago in this column.
Another filter validation issue was found inside the IPV4
validation code, which was not binary safe. This would
allow a hacker to trick the validation with just a few
carefully placed \0 (NULL) bytes. Finally, there was an
underflow inside the trim() implementation within the
filter extension, which arguably is the most dangerous of
the exploits listed here. On PowerPC systems such as G4
Macs, this could be used to trigger arbitrary code execu-
tion; on other systems, it ’only’ crashes PHP.

Aside from upgrading your copy of PHP, there is no
alternative solution to the filter problems. Fortunately
filter is a very new extension, having only appeared in
PHP 5.2.0, so the number of affected users is relatively
low.

Local Exploits
On the local exploit front the situation is much worse
then with remote exploits, simply due to the sheer num-
ber of issues that were found and resolved. The most
common problem in PHP’s internal code base appears
to be a buffer overflow. A buffer overflow comes about
when a memory buffer is allocated that is too small to
store the data it is intended to contain. It leads to po-
tential arbitrary code execution, and at best either a
crash or memory corruption. Buffer overflows were found
in several extensions and functions, with the worst cul-
prits being the IMAP and Interbase extensions; between
them, those two have amounted for over half a dozen
such holes. The stream filter functionality was not im-
mune from the problem either, with stream_filter_ap-
pend() and the filter factory code containing one bug
apiece. Finally, the str_replace() function could ex-
perience the same problem when faced with very large
strings, as did the binary string decoding inside the
SQLite and pdo_sqlite2 extensions.

As far as a solution goes, if you use those particular
extensions, or are running an ISP, your mitigation strat-
egy should be to upgrade your PHP installation as soon
as possible. That said, it would be difficult to avoid us-
ing str_replace(), and nor would anyone in their right
mind disable it, so the same advice goes for all.

The next issue is also a buffer overflow, but this one
demands a separate note due to its nature. In PHP 5.2.0,
a new memory manager was introduced into PHP. It
brought with it many benefits and speed improvements;
however, it also brought one subtle change that has se-
curity implications. In the past, if a negative size was
passed to PHP’s memory allocation macros, PHP would
error out with a message saying that it couldn’t allocate

52 • php|architect • Volume 6 Issue 3

Why upgrade to PHP 5.2.1?

a block of memory of that size. Since the new memory
manager was introduced, instead of returning an error,
PHP 5.2.0 instead returns a minimum block size. In other
words, if, somehow, a negative value such as -100 was
passed to PHP’s internal allocation macro emalloc(), it
wouldn’t fail but would rather allocate a very small block
of memory. When code attempts to store some data into
memory—something that often exceeds the minimum
block size—a buffer overflow would be triggered. The

most common cause of this particular buffer overflow is
when allocation is based on a product of two numbers on
32-bit systems, where the product is greater then 2.14
billion. The resulting integer overflow mutates a very
large number into a very small number—for example,
4294967196 would become -100.

An extensive code audit was performed, and many
instances where this could occur were identified. The
vulnerable areas were changed to use safe_emalloc(), a
special allocation macro that was specifically designed
to defend against this problem. However, affected code
was found across several PHP extensions, so once against
the safest course of action is to upgrade.

The next set of issues was caused by something known
as heap exposure. This is a security vulnerability whereby
a user can inject data into a known heap block, allow-
ing for arbitrary code execution. It is triggered primar-
ily through the session extension, and mainly involves
making $_SESSION contain _SESSION or by-reference
references to $_SESSION. Overwriting this causes heap
corruption/exposure, which in turn makes it possible to
execute arbitrary code. To exploit this issue, the hacker
would generally need local access to the machine, so it
falls into the local exploit category.

Aside from upgrading, the only way to defend your-
self against this security hole would be to disable the
session extension until you are able upgrade your PHP
installation.

While we’re on the topic of the session extension,
there are three more issues affecting that particular

code block. These include two distinct ways to bypass
safe_mode and open_basedir restrictions via the user-
land code responsible for setting the session storage
directory. This is a relatively minor exploit, as it only
provides the hacker with limited read/write capability. It
could only be used by a local user to access a session be-
longing to another local user, on a system running PHP
as an Apache module. A non-upgrade solution to this
problem would be to disable the session_save_path()

and ini_set() functions, thereby preventing the user
from modifying these values. An ISP could still offer the
option of a dedicated session directory for each user,
by setting the session.save_path value on a per-virtual
host basis via the Apache configuration file.

The final issue in the session extension can be traced
to the binary serializer, one of the means by which PHP
variables can be encoded into a transportable format
that can be stored inside a database, filesystem and
memory. The binary serializer is a little more economical
in terms of size then the default string-based serializer,
but despite that advantage is rarely seen in a production
environment. In fact very few people even know it ex-
ists, which means that very few people are affected by
this particular bug. The problem in this code was due
to its handling of high-ASCII values (127 and above).
Improper handling of these values could lead to a poten-
tial exploit, allowing the attacker to execute arbitrary
code by writing to random memory addresses—a less
then desirable mode operation by most accounts. Until
you upgrade to PHP 5.2.1, the simplest solution for the
binary serializer problem would be to switch to using the
php serializer.

Moving on to the shmop extension, designed to pro-
vide a simple interface to shared memory, an issue was
discovered whereby the extension failed to validate the
type of resource used in its write and close operations.
This meant that, by passing a non-shmop resource to the
extension, it was possible to write and read directly to/
from the memory block pointed to by the resource. Gain-

The good news is that there were no purely
remote exploits discovered.

53 • php|architect • Volume 6 Issue 3

Why upgrade to PHP 5.2.1?

ing the ability to write arbitrary data to memory makes it
possible for the hacker to perform arbitrary code execu-
tion, causing all manner of problems. Fortunately, for
this to happen, our hacker would need to have permis-
sion to run code on the server, since the resource param-
eter for the shmop functions does not come from user
input. Possible abuses of this vulnerability can include
safe_mode/open_basedir bypasses, and also the execu-
tion of otherwise disabled functions. Since PHP does not
have any mechanism for checking whether a resource is
of a particular type from within PHP code, the only solu-
tion for users of ext/shmop is to upgrade to either PHP
5.2.1 or PHP 4.4.6.

Back in the PHP core, an additional security problem
was found in the header() function, in particular when
the function is executed with a header containing noth-
ing but spaces. When this happens, the internal code
triggers a fairly rare type of an exploit, called a buffer
underflow. On most machines this will result in a simple
crashes, but for users of PPC and Sparc it can lead to
exploitable code execution.

As with the shmop exploit, the header() issue requires
that the attacker has full control over the input value
of the header() function, which usually would limit the
exploit to local users. Using Google’s code search facil-
ity, we were only able to locate two or three instances
where this is done out in the wild. In the code we found,
the value of the header was supplied entirely through
user input, rather than being concatenated to another
value. Taken alone, the header() exploit is fairly limited
in value; and to be truly dangerous, it requires a specific
brand of computer. All in all I would not be too con-
cerned about the issue, but it does highlight the need
to be careful in your usage of the header() function. A
user-supplied value there will result in arbitrary header
injection, even under the best of circumstances.

An additional subset of security issues that was found
and resolved in the PHP 5.2.1 release includes the so-
called string format vulnerabilities. These are often found
inside the various *printf() functions, and stem from
invalid parameter usage. The abuse of those exploits
could permit a hostile user to perform arbitrary com-
mand execution with the privileges of the user when the
PHP interpreter is executed.

In most cases these exploits can only be triggered lo-
cally, as they require the execution of PHP functions
such as odbc_result_all() along with a certain set of
user supplied parameters designed to trigger the func-
tion’s weakness. In this particular case, the attacker
would try to have the cumulative length of user-supplied
parameters exceed the internal storage buffer assigned
to store their values. When that happens, arbitrary code
execution is made possible.

Another attack vector aimed at exploiting this set of

vulnerabilities is specific to 64-bit systems. There, by
supplying an invalid string definition as the first param-
eter passed to the printf() function, an integer over-
flow can be triggered. Because the internal code lacked
validation for values less then zero, it did strange things
in these situations. Given carefully crafted code, those
’strange things’ could enable an attacker to trigger code
execution.

Normally this would be considered a local vulnerabil-
ity, since you would not expect a developer to put user
input into the string definition block. Unfortunately, a
quick Google Code Search reveals that this actually hap-
pens relatively often, which means people running such
code on 64-bit machines are potentially vulnerable to
remotely triggered exploit. It is imperative that those
using 64-bit machines either upgrade to PHP 5.2.1 or
audit their *printf() PHP code to ensure that there are
no instances where user supplied values are part of the
string definition.

One of the new additions in PHP 5.2.0 was the new zip
extension, which provides a means to read and create
zip files. One of the convenience features introduced by
the new extension was the stream filter zip://, which
simplifies operations with zip files.

Unfortunately the code was a bit raw, and when it
came to validating the zip:// stream filter the extension
did not have proper handling for long file paths. This
meant that code that uses external input to populate
any of PHP’s file opening functions could be vulnerable
to a buffer overflow, which could then lead to arbitrary
code execution, given a hostile local user.

That said, the zip extension was not enabled by de-
fault, and so the number of people for whom this pres-
ents a problem is quite limited. To check whether your
PHP setup is vulnerable or not, you can run the following
script:

if (function_exists('stream_get_wrappers') &&
in_array('zip',
stream_get_wrappers()) && version_compare(PHP_VER-
SION, '5.2.1', '<')) {
 echo "You need to upgrade!";
} else {
 echo "All's well.";
}

If you cannot upgrade, another alternative would be to
recompile your PHP 5.2.0 installation without zip sup-
port.

New security features
Security fixes aside, the PHP 5.2.1 release also introduc-
es new security features designed to improve the secu-
rity of PHP itself and the applications running on top of
it. The first of these improvements is an addition of the
do-not-index header to the phpinfo() output, which

54 • php|architect • Volume 6 Issue 3

Why upgrade to PHP 5.2.1?

should prevent obedient search engines from indexing
the page. This should prevent massive information dis-
closures caused by people leaving the phpinfo() page
on their live sites, which currently results in those pages
being indexed by search engines. This information leak
allows the hacker to gather a plethora of information
about the execution environment and PHP itself, making
it much easier to attack PHP applications running on
that server. Additionally, phpinfo() output includes all
the INI and environment settings, which means that any
passwords stored in INI or server environment settings
are exposed for all to see on such a page.

A quick search on Google reveals that this is a major
problem, as there are quite literally tens of thousands
of indexed phpinfo() pages, presenting a treasure trove
of information for statisticians and hackers alike. If up-
grading is not an option, you may want to make sure
that your site does not have any phpinfo() pages; or,
better yet, disable the function entirely via the disable_
functions INI directive. The latter is a particularly use-
ful option for hosting providers, who are not in control
of the scripts executed by their users.

Another new feature is built-in heap protection, which
previously was available only through add-ons such as
the Suhosin extension. This mechanism provides a fail-
safe for things like heap corruption in existing code,
making vulnerabilities in PHP harder to exploit with the
goal of executing arbitrary code. In a way, this feature
is a safety net that will protect you against future in-
stances of a function or functionality compromising a
PHP installation.

The final security enhancement was that memory_
limit, until now an optional feature in PHP, is always
enabled as of PHP 5.2.1—albeit with a very generous
maximum limit of 128 megabytes. This change will guard

against runaway scripts that might, intentionally or oth-
erwise, try to perform a denial of service by taking up
all the available memory on the system. It can also work
as a buffer against attacks that rely on huge blocks of
data, or exceptionally complex data structures such as
deeply nested arrays. For better protection, it is recom-
mended that most people should lower the default value
to something more reasonable, in the region of 16-32
megabytes. PHP’s own default is only so high due to the
necessity of avoiding breaking existing applications.

The above summary is a quick overview of the key is-
sues resolved by the PHP 5.2.1 release, and hopefully
has given you a better idea of where you stand, security-
wise, with your current PHP installation. Overall, though,
it is the strong recommendation of the entire PHP devel-
opment team that people upgrade their installation to
PHP 5.2.1 or to PHP 4.4.6, which includes most of the
protection mechanisms offered by the PHP 5.2.1 release.

ILIA ALSHANETSKY is the principal of Advanced Internet Designs
Inc., a company specializing in security auditing, performance analysis
and application development. He is an active member of the PHP
development team, with hundreds of bug fixes to his name as well as
a sizeable number of performance tweaks and features. Ilia is a regular
speaker at PHP-related conferences worldwide, and has authored the
php|architect Guide to PHP Security as well as several articles. He
maintains an active blog at http://ilia.ws, which is filled with tips
and tricks on how to get the most out of PHP.

55 • php|architect • Volume 6 Issue 3

Why upgrade to PHP 5.2.1?

Volume 6 Issue 3 • php|architect • 55

http://ilia.ws
http://www.phparch.com/redir/754/46

http://www.phparch.com/redir/752/132

I doubt that anyone reading the pages of this mag-
azine can be unaware of Google’s enormous suc-
cess—not only from a financial perspective, but

also from the point of view of popularity and penetra-
tion of our culture. After all, I am quite sure that the
postal service does not deliver magazines under rocks.

Google is clearly a very successful company; its rev-
enues are quite impressive, as is its growth and, above
all, the enthusiasm that it generates in users and in-
vestors alike. It is curious that I have seen no-one ask
themselves that most interesting of questions: why?

A successful business is, in many ways, a reflection of
the society it exists in. During World War II, successful
businesses sprung up well outside the traditional mili-
tary complex. The Higgins Corporation of New Orleans,
for example, became very successful through producing
landing craft used during the invasion of Europe. Once
the war was over, the company ceased to be useful; it
eventually went bankrupt.

It stands to reason that Google has become suc-
cessful because it has filled—and continues to fill—a

need that our society expresses. And that, to my way of
thinking, speaks very poorly of our society.

Google’s express goal is “to organize the world’s in-
formation.” The company does not create anything,
much less new content. In fact, it survives only because
it has unlimited access to content created by others. If
Google were forced to pay in order to use other people’s
content—you know, the way just about everyone else
does... there would be no Google.

It’s arguable that Google creates new technology. Some
of the research the company has done—for example, on
distributed computing and large networks—has been
widely publicized and heralded as a breakthrough of in-
genuity. Still, none of the applications that Google have
created has (yet) had a significant impact on our society,
with the honourable exception of their search engine.
Consider, for example, Gmail. When it was introduced in
“beta,” almost everyone seemed to think that it would
have been a very disruptive product—but for all the
wrong reasons. Who cares if you get a full GB’s (now
several) worth of free e-mail space? The real innova-

//// ////exit(0);

Is Google Really the
Best We Can Do?

by Marco Tabini

Volume 6 Issue 3 • php|architect • 57

tion in Gmail is in its user interface—not because it
was one of the first fully-featured AJAX applications,
but because it forces a distinct change in the way one
deals with e-mail. Gmail’s “labels,” which replace fold-
ers in other MUAs, have hardly gone noticed. Thus, the
disruption introduced by Gmail has been largely ab-
sorbed by the market: since everyone seemed to think
that storage was the key, all the other vendors matched
Google’s capacity, or exceeded it. I have a hard time
understanding why everyone seems to be so impressed
by Google, the company. It is scary to think that we
consider a company whose ultimate objective is noth-
ing more than to catalogue knowledge as one of the
biggest success stories of our times. The role they fulfill
is undoubtedly important; human knowledge (including
its spam and YouTube clips) has reached such huge pro-
portions that we need a mechanism that allows us to re-
trieve information in a timely manner (whether Google
allows you to do that or not is another matter).

However, Google’s corporate mission is, for lack of a
better word, pathetic. Their aim is not to make our world
better, but merely possible. Ask yourself: if Google were
to fulfill its mission... how would we be better off?

This attitude is part of a horrible trend that our entire
society has become slave to. The mission of our univer-
sities is no longer to teach, as can be demonstrated by
the fact that our governments are making it less and
less possible for those without money to attend. Uni-
versities are big on “research,” but only when it is con-
ducted for a specific, known purpose. However, as Isaac
Asimov once pointed out, “the most exciting phrase to
hear in science, the one that heralds new discoveries,
is not Eureka! (I found it!) but rather, ’hmm... that’s
funny...’” By asking certainty of a process that is by
definition uncertain, we are limiting our potential and
damaging our future.

////////////////

58 • php|architect • Volume 6 Issue 3

http://www.phparch.com/redir/749/219665

////////////////
NEXCESS.NET Internet Solutions
304 1/2 S. State St.
Ann Arbor, MI 48104-2445

h t t p : / / n e x c e s s . n e t

PHP / MySQL
SPECIALISTS!

Simple, Affordable, Reliable PHP / MySQL Web Hosting Solutions

POPULAR SHARED HOSTING PACKAGES

MINI-ME $695

POPULAR RESELLER HOSTING PACKAGES

500 MB Storage
15 GB Transfer
50 E-Mail Accounts
25 Subdomains
25 MySQL Databases
PHP5 / MySQL 4.1.X
SITEWORX control panel

/mo SMALL BIZ $2195

2000 MB Storage
50 GB Transfer
200 E-Mail Accounts
75 Subdomains
75 MySQL Databases
PHP5 / MySQL 4.1.X
SITEWORX control panel

/mo

NEXRESELL 1 $1695

900 MB Storage
30 GB Transfer
Unlimited MySQL Databases
Host 30 Domains
PHP5 / MYSQL 4.1.X
NODEWORX Reseller Access

All of our servers run our in-house developed PHP/MySQL

server control panel: INTERWORX-CP

INTERWORX-CP features include:

 - Rigorous spam / virus filtering

 - Detailed website usage stats (including realtime metrics)

 - Superb file management; WYSIWYG HTML editor

INTERWORX-CP is also available for your dedicated server. Just visit
http://interworx.info for more information and to place your order.

WHY NEXCESS.NET? WE ARE PHP/MYSQL DEVELOPERS

LIKE YOU AND UNDERSTAND YOUR SUPPORT NEEDS!

ORDER TODAY AND GET 10% OFF ANY WEB HOSTING PACKAGE
VISIT HTTP://NEXCESS.NET/PHPARCH FOR DETAILS

Dedicated & Managed Dedicated server so lut ions a lso ava i lab le

Serving the web since Y2K

/mo NEXRESELL 2 $5995

7500 MB Storage
100 GB Transfer
Unlimited MySQL Databases
Host Unlimited Domains
PHP5 / MySQL 4.1.X
NODEWORX Reseller Access

/mo

C O N T R O L P A N E L:

phpphp 5

phpphp4

NEW! PHP 5 & MYSQL 4.1.X

PHP4 & MySQL 3.x/4.0.x options also available

We'll install any PHP extension you
need! Just ask :)

128 BIT SSL CERTIFICATES

AS LOW AS $39.95 / YEAR

DOMAIN NAME REGISTRATION

FROM $10.00 / YEAR

GENEROUS AFFILIATE PROGRAM

UP TO 100% PAYBACK

PER REFERRAL

30 DAY
MONEY BACK GUARANTEE

FREE DOMAIN NAME
WITH ANY ANNUAL SIGNUP

4.1.x

3.x/4.0.x

http://www.phparch.com/redir/723/90
http://www.phparch.com/redir/750/169

http://www.phparch.com/redir/751/139

	Cover Page
	/home/phpa-support/issues/6/3/issue_nocover.pdf
	Features
	Practical Active Record in PHP
	Pluggable Authentication Modules
	MySQL Babel
	FileMaker for PHP Developers

	Columns
	Editorial: That's what parents are for...
	php|news
	Test Pattern
	Deploying PHP Applications

	Security Corner
	Why you should upgrade to PHP 5.2.1

	exit(0)
	Is Google Really the Best We Can Do?

