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Preface

The Juniper QFX5100 series of switches is quickly becoming the go-to platform for a
wide variety of customers who love and cherish virtualization, whether it’s compute
virtualization with VMware vSphere, Microsoft Hyper-V, or Linux KVM; cloud virtu‐
alization with OpenStack, CloudStack, or IBM SmartCloud; or network virtualization
with Contrail or NSX. Virtualization is driving the need for high-density 10GbE
access and overlay networking so that compute, storage, and network can be decou‐
pled from the physical hardware and fully orchestrated from a single pane of glass.

The Juniper QFX5100 family was designed from the ground up to solve the chal‐
lenges of high-density 10GbE and overlay networking. These switches support high-
density 10GbE and 40GbE interfaces, 550 nanoseconds of latency, and have hardware
support for overlay networks such as Virtual Extensible LAN (VXLAN) and Network
Virtualization using Generic Routing Encapsulation (NVGRE). Each customer
designs and operates their network differently; Juniper QFX5100 switches embrace
this concept and don’t force you to use a specific proprietary protocol. The QFX5100
series supports the following six modes to suit your specific needs:

• Standalone
• QFabric node
• Virtual Chassis Fabric (VCF)
• Multi-Chassis Link Aggregation (MC-LAG)
• IP Fabrics (Clos)
• Virtual Chassis

The Juniper QFX5100 family also takes virtualization to heart: under the hood it uses
Linux and KVM to virtualize the network operating system—Junos—to reap all the
benefits of virtualization, such as snapshots and In-Service Software Upgrades
(ISSU).
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This book shows you, step by step, how to build a better network using the Juniper
Juniper QFX5100 Series—it’s such a versatile platform that it can be placed in the
core, aggregation, or access of any type of network and provide instant value. Juniper
QFX5100 switches were designed to be network virtualization beasts. You can choose
between six different networking technologies and support overlay networking
directly in hardware with no performance loss.

No Apologies
I’m an avid reader of technology books, and I always get a bit giddy when a new book
is released because I can’t wait to read it and learn more about a specific technology.
However, one trend I have noticed is that every networking book tends to regurgitate
the basics over and over. There are only so many times you can force yourself to read
about spanning tree, the split-horizon rule, or OSPF LSA types. One of the goals of
this book is to introduce new and fresh content that hasn’t been published before.

I made a conscious decision to keep the technical quality of this book very high; this
created a constant debate whether to include primer or introductory material in the
book to help refresh a reader’s memory with certain technologies and networking fea‐
tures. In short, here’s what I decided:

Spanning Tree and Switching
Spanning tree and switching is covered in great detail in every JNCIA and CCNA
book on the market. If you want to learn more about spanning tree or switching,
check out Junos Enterprise Switching (O’Reilly), or CCNA ICND2 Official Exam
and Certification Guide, Second Edition (Cisco Press).

Routing Protocols
There are various routing protocols such as Open Shortest Path First (OSPF) and
Intermediate System to Intermediate System (IS-IS) used throughout this book in
case studies. No introductory chapters are included for IS-IS or OSPF; I’m mak‐
ing the assumption that you have read Junos Enterprise Routing, Second Edition
(O’Reilly) or Juniper Networks Certified Internet Expert Study Guide (Juniper Net‐
works), which cover these topics thoroughly. If you haven’t read them, I highly
recommend that you do so.

Virtual Chassis
I was really torn on this subject. Yes, the Juniper QFX5100 series supports Virtual
Chassis, and it’s great, but Virtual Chassis has been covered in depth in other
books such as Juniper MX Series and Junos Enterprise Switching. Do we really
need another chapter on Virtual Chassis? My response is no. I don’t want to
devalue the benefits of Virtual Chassis, but there are already other sources of
information out there that cover it in enough detail that I don’t need to write
another chapter about it. Does the QFX5100 do Virtual Chassis a bit differently?
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Are there any caveats? Yes and yes. I will specifically address these questions in
Chapter 3. Don’t worry, I make up for this by adding a chapter specifically on
Virtual Chassis Fabric (Chapter 5).

Multi-Chassis Link Aggregation
Ah, MC-LAG we meet again. I spent a great deal of time on MC-LAG in Juniper
MX Series, and I’m faced with the same question here: do we need yet another
chapter on MC-LAG? My answer is no. If you want to learn more about MC-
LAG, please read Juniper MX Series. It explains thoroughly MC-LAG and is com‐
plete with a case study. Does the QFX5100 series have any caveats? Yes, a few,
which I discuss specifically in Chapter 3.

Quality of Service
Classifiers, schedulers, and drop profiles. Oh My! If you want to learn more
about Quality of Service (QoS), check out Juniper MX Series; it covers QoS in
depth. The QFX5100 series has a different buffer management system than other
platforms, which is covered in Chapter 1.

After many hours of debate, I decided that I should defer to other books when it
comes to introductory material and keep the content of this book at an expert level. I
expect that most readers already have their JNCIE or CCIE (or are well on their way)
and will enjoy the technical quality of this book. For novices, I want to share an exist‐
ing list of books that are widely respected within the networking community:

• Juniper MX Series (O’Reilly) (the best book out of the bunch)
• Junos Enterprise Routing, Second Edition (O’Reilly)
• Junos Enterprise Switching (O’Reilly)
• QoS-Enabled Networks (Wiley & Sons)
• MPLS-Enabled Applications, Third Edition (Wiley & Sons)
• Network Mergers and Migrations (Wiley)
• Juniper Networks Certified Internet Expert (Juniper Networks)
• Juniper Networks Certified Internet Professional (Juniper Networks)
• Juniper Networks Certified Internet Specialist (Juniper Networks)
• Juniper Networks Certified Internet Associate (Juniper Networks)
• CCIE Routing and Switching, Fourth Edition (Cisco Press)
• Routing TCP/IP, Volume I and II (Cisco Press)
• OSPF and IS-IS (Addison Wesley)
• OSPF: Anatomy of an Internet Routing Protocol (Addison Wesley)
• The Art of Computer Programming (Addison Wesley)
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• TCP/IP Illustrated, Volume 1, 2, and 3 (Addison Wesley)
• UNIX Network Programming, Volume 1 and 2 (Prentice Hall PTR)
• Network Algorithmics: An Interdisciplinary Approach to Designing Fast Networked

Devices (Morgan Kaufmann)

What’s in This Book?
This book was written for network engineers, by a network engineer. The ultimate
goal of this book is to share with you the logical underpinnings of the Juniper
QFX5100 family of switches. Each chapter represents a specific vertical within the
Juniper QFX5100 series and will provide enough depth and knowledge to give you
the confidence to implement and design new architectures for your network by using
the Juniper QFX5100 series.

Here’s a short summary of the chapters and what you’ll find inside:

Chapter 1, Juniper QFX5100 Architecture
In this chapter, you learn a little bit about the history and what challenges
prompted the creation of the Juniper QFX5100 series. Junos is the “secret sauce”
that’s common throughout all of the hardware; this chapter takes a deep dive into
the control plane and explains some recent important changes to the release cycle
and support structure of Junos. The stars of the chapter are, of course, the Juni‐
per QFX5100 switches; the chapter thoroughly explains all of the components
such as the different platforms, modules, and hardware architecture.

Chapter 2, Control Plane Virtualization
If you build something from the ground up to solve the challenges of virtualiza‐
tion, you had better take virtualization seriously. Learn how the Juniper QFX5100
series uses Linux, QEMU, and KVM to virtualize the networking operating sys‐
tem (Junos) and enjoy all of the benefits of virtualization such as snapshots and
In-Service Software Upgrades (ISSU). But ISSU requires two routing engines!
Well then, it’s a good thing that we can just spin up another instance of Junos in a
VM.

Chapter 3, Performance and Scaling
All of these features are great, but I need to know the performance and scaling
attributes. No problem. Chapter 4 takes a deep-dive into the control plane and
data plane and explores both the physical and logical performance and scaling
abilities of the Juniper QFX5100 family. You’re going to like what you see.

Chapter 4, One Box, Many Options
The Juniper QFX5100 family acknowledges that each customer designs and oper‐
ates the network differently to suit their business and operational needs. One of
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the crowning achievements of the Juniper QFX5100 series is that it gives you the
freedom to choose between six different networking technologies and doesn’t
force you to use a proprietary protocol to operate your network. Read this chap‐
ter to learn more about how you can use Juniper QFX5100 switches in (1) stand‐
alone, (2) Virtual Chassis, (3) QFabric Node, (4) Virtual Chassis Fabric, (5) MC-
LAG, and (6) CLOS. As the chapter’s title states: one box, many options.

Chapter 5, Virtual Chassis Fabric
Do you ever wish Ethernet fabrics were as simple as plug-n-play? Virtual Chassis
Fabric (VCF) brings all of the benefits of an Ethernet fabric, but simplifies the
installation and operation so that the fabric acts as a single switch. Do you need
to expand the fabric? Just plug in another switch. It just works.

Chapter 6, Network Automation
The ratio of network engineers to devices is going up. The only way to manage a
large set of networking devices is through automation. This chapter shows what
types of network automation the Juniper QFX5100 series supports. I’ll give you a
hint: it supports every major programming language, including Go.

Chapter 7, IP Fabrics (Clos)
Charles Clos created multistage circuit switching in 1953. Let’s learn how to apply
his principles in networking and build large Ethernet fabrics. When it comes to a
Clos fabric, scale is king.

Chapter 8, Overlay networking
Here we explain how overlay networking decouples the network from the physi‐
cal hardware. It’s the driving force behind Contrail and NSX. Learn how Juniper
QFX5100 switches support overlay networking in both the control plane and
data plane to bridge the gap between virtualized and nonvirtualized hosts in an
overlay architecture.

Chapter 9, Network Analytics
Why is my application slow? Am I meeting my service level requirements?
What’s a microburst? Chapter 9 reveals that the Juniper QFX5100 has both soft‐
ware and hardware support for gathering detailed data on both queue and traffic
statistics.

Appendix A, Under the Hood
What’s the first thing you do when you examine a car that you’re interested in
buying? You pop the hood and see what’s powering it! Well... at least I do. <Insert
Tim Allen grunt here> In this chapter, we pop the hood of the Juniper QFX5100
software stack and see what makes it tick.

Appendix B, Optical Guide
One of the frustrations experienced by every network engineer is trying to deter‐
mine what optics to use. Do you want copper, fiber, or DAC? Single-mode or
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multimode fiber? Appendix B contains a great summary in table format that
clearly shows you the characteristics of each optic. Finally, we summarize a prod‐
uct compatibility table that lists which optics are supported on each of the
switching platforms.

Appendix C, BGP and VTEP Configurations
In Chapter 7 and Chapter 8, we had great laboratories going through the deep-
dive of IP fabrics and overlay networking. Appendix C presents the full configu‐
rations of the switches to show you all of the BGP and VTEP details.

Each chapter includes a set of review questions on the topics that have been covered,
all designed to get you to think about and digest what you’ve just read. If you’re not in
the certification mode, the questions will provide a mechanism that facilitates critical
thinking, potentially prompting you to locate other resources to further your knowl‐
edge.

This book also includes a lot of configurations and data. You may download them
from GitHub at https://github.com/Juniper/qfx5100-book.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path‐
names, directories, and Unix utilities

Constant width

Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values,
objects, events, event handlers, XML tags, HTML tags, macros, the contents of
files, and the output from commands

Constant width bold

Shows commands and other text that should be typed literally by the user, as well
as important lines of code

Constant width italic

Shows text that should be replaced with user-supplied values
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This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your own configuration and documentation. You do not need to contact
us for permission unless you’re reproducing a significant portion of the material. For
example, deploying a network based on actual configurations from this book does not
require permission. Selling or distributing a CD-ROM of examples from this book
does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
sample configurations or operational output from this book into your product’s docu‐
mentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN, for example: “Juniper QFX5100 Series, by Douglas
Richard Hanks, Jr. Copyright 2015, Douglas Richard Hanks, Jr., 978-1-491-94957-3.”

If you feel your use of code examples falls outside fair use or the permission given
here, feel free to contact us at permissions@oreilly.com.

As with most deep-dive books, you will be exposed to a variety of hidden, Junos shell,
and even VTY commands performed after forming an internal connection to a PFE
component. And as always, the standard disclaimers apply.

In general, a command being hidden indicates that the feature is not officially sup‐
ported in that release. You should only use such commands in production networks
after consultation with Juniper Networks’ Technical Assistance Center (JTAC). Like‐
wise, the shell is not officially supported or documented. The commands available
can change, and you can render a router unbootable with careless use of shell com‐
mands. The same holds true for PFE component-level shell commands, often called
VTY commands. Again, these are undocumented, and capable of causing network
disruption, or worse, damage to the routing platform that can render it inoperable.
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The hidden and shell commands that are used in this book were selected because they
were the only way to illustrate certain operational characteristics or the results of
complex configuration parameters.

Again, you should use hidden and shell commands only under JTAC guidance; this is
especially true when dealing with a router that is part of a production network.

You have been duly warned.

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at: http://bit.ly/juniper_qfx5100.

To comment or ask technical questions about this book, send email to: bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly.

Follow us on Twitter: http://twitter.com/oreillymedia.

Watch us on YouTube: http://www.youtube.com/oreillymedia.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.
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Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.
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CHAPTER 1

Juniper QFX5100 Architecture

Let’s start with a little bit of history to explain the problem and demonstrate the need
of the Juniper QFX5100. It all starts in 2008, when Juniper Networks decided to offi‐
cially enter the data center and campus switching market. Juniper released its first
switch, the EX4200, a top-of-rack (ToR) switch that supports 48 1-Gigabit Ethernet
(GbE) ports and 2 10GbE interfaces. The solution differentiation is that multiple
switches can be connected together to create a virtual chassis: single point of manage‐
ment, dual routing engines, multiple line cards, but distributed across a set of
switches. Juniper released its first 10GbE ToR switch running Junos in 2011, the Juni‐
per EX4500, which supports 48 10GbE ports. The Juniper EX4200 and EX4500 can be
combined to create a single virtual chassis that can accommodate a mixed 1GBE and
10GBE access tier.

More than four years in the making, Juniper QFabric was released in 2011. QFabric is
a distributed Ethernet fabric that employs a spine-and-leaf physical topology, but is
managed as a single, logical switch. The solution differentiation is that the core,
aggregation, and access data center architecture roles can now be collapsed into a sin‐
gle Ethernet fabric that supports full Layer 2 and Layer 3 services. The QFabric solu‐
tion comes in two sizes: the Juniper QFX3000-M scales up to 768 10GbE ports and is
often referred to as the “micro fabric”; and the much larger Juniper QFX3000-G
scales up to 128 ToR switches and 6,144 10GbE ports.

The data center is continuing to go through a fundamental shift to support higher
speed interfaces at the access layer. This shift is being driven largely by compute virtu‐
alization. The shift is seen across multiple target markets. One of the biggest factors is
the adoption of the cloud services offered by service providers; however, enterprise,
government agencies, financial, and research institutions are adopting compute vir‐
tualization and seeing the same need for high-speed interfaces.
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Specifically, the shift is happening from 1GbE to 10GbE interfaces in the access layer.
To support high-density 10GbE interfaces, the core and aggregation layers need to
support even higher-speed interfaces such as 40GbE to maintain a standard over-
subscription of 3:1. Another trend is that storage and data are becoming collapsed
onto the same network infrastructure. Whether it’s via Fibre Channel over Ethernet
(FCoE), Internet Small Computer System Interface (iSCSI), or Network File System
(NFS), converging storage on the data network further increases the port density,
speed, and latency requirements of the network.

Software-Defined Networking
Over the past couple of years, an architecture called Software-Defined Networking
(SDN) was created, refined, and is taking shape, as shown in Figure 1-1. One aspect
of SDN is that it makes the network programmable. OpenFlow provides an API to
networking elements so that a centralized controller can precalculate and program
paths into the network. One early challenge with SDN was how to approach compute
and storage virtualization and provide full integration and orchestration with the net‐
work. VXLAN introduced a concept that decouples the physical network from the
logical network. Being able to dynamically program and provision logical networks,
regardless of the underlying hardware, quickly enabled integration and orchestration
with compute and storage virtualization. A hypervisor’s main goal is to separate com‐
pute and storage resources from the physical hardware and allow dynamic and elastic
provisioning of the resources. With the network having been decoupled from the
hardware, it was possible for the hypervisor to orchestrate the compute, storage, and
network.

What’s particularly interesting about the data in Figure 1-1 is that between 2007 and
2011, the progression of SDN was largely experimental and a topic of research; the
milestones are evenly spaced out roughly every 10 months. Starting in 2011 the time‐
line becomes more compressed and we start to see more and more milestones in
shorter periods of time. In a span of three years between 2011 and 2013, there are 13
milestones, which is 320 percent more activity than the first four years between 2007
and 2010. In summary, the past four years of SDN progression has been extremely
accelerated.
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Figure 1-1. SDN milestones and introduction of the Juniper QFX5100 family

Although there was a lot of hype surrounding SDN as it was evolving, as of this writ‐
ing one of the ultimate results is that there are two tangible products that bring the
tenets of SDN to life: Juniper Contrail and VMware NSX. These two products take
advantage of other protocols, technologies, and hardware to bring together the com‐
plete virtualization and orchestration of compute, storage, and network in a turnkey
package that an engineer can use to easily operate a production network and reap the
benefits of SDN.

Do you want to learn more about the architecture of SDN? For
more in-depth information, check out the book SDN: Software
Defined Networks by Thomas Nadeau and Ken Gray (O’Reilly). It
contains detailed information on all of the protocols, technologies,
and products that are used to enable SDN.

Juniper Contrail and VMware NSX rely on an underlying technology called overlay
networking; this is the concept of decoupling the network from the physical hardware.
One of the key technologies that enable overlay networking is VXLAN, which is a
simple UDP encapsulation that makes it possible for Layer 2 traffic to traverse a Layer
3 network between a set of end points (see Figure 1-2). The overlay networks are ter‐
minated on each hypervisor, which means that the hypervisor is responsible for the
encapsulation and decapsulation of the traffic coming to and from the virtual
machines. The hypervisor must handle MAC address learning so that it knows which
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remote host to send the encapsulated traffic to, which is based on the destination
MAC address of the virtual machine.

Figure 1-2. Overlay networking

The astute reader might have noticed in Figure 1-2 that in addition to supporting
more than one overlay network, there are also virtualized and nonvirtualized work‐
loads being connected by the overlay networks. In a production environment, there
will always be a use case in which not all of the servers are virtualized but still need to
communicate with virtual machines that are taking advantage of overlay networking.
If the hypervisor is responsible for MAC address learning and termination of the
overlay networks, this creates a challenge when a virtual machine needs to communi‐
cate with a bare-metal server. The solution is that the ToR switch can participate in
the overlay network on behalf of nonvirtualized workloads, as is demonstrated in
Figure 1-2. From the perspective of the bare-metal server, nothing changes; it sends
to and receives traffic from the ToR, but the difference is that the ToR is configured to
include the bare-metal server in the overlay network. With both the hypervisor and
ToR handling all of the MAC address learning and overlay network termination, vir‐
tual machines and bare-metal servers are able to communicate and take full advan‐
tage of the overlay networks, such as those presented in Chapter 8.

The continued drive for high-density 10GbE access together with the evolutions of
SDN and overlay networking are the key driving factors behind the introduction of
the Juniper QFX5100 family in November 2013. Figure 1-3 illustrates that it is a set of
data center Ethernet switches that can be used in the core, aggregation, and access
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tiers of the network. The Juniper QFX5100 was specifically designed to solve the high
port density requirements of cloud computing and enable nonvirtualized workloads
to participate in an overlay network architecture.

Figure 1-3. The data center roles and scope of the QFX5100 family

Having been specifically designed to solve cloud computing and SDN requirements,
the Juniper QFX5100 family solves a wide variety of challenges and offers many
unique benefits.

Transport
Dense 10GbE and 40GbE interfaces to build a deterministic spine-and-leaf topol‐
ogy with an option of 1:1, 3:1, or 6:1 over-subscription.

Interfaces
Each 10GbE interface is tri-speed and supports 100Mbps, 1GbE, or 10GbE. In
addition, each interface can support either copper or fiber connectivity. Higher
interface speeds such as 40GbE can be broken out into four 10bGE interfaces by
using a breakout cable.
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Overlay Networking
Each switch offers complete integration with Juniper Contrail and VMware NSX
to support overlay networking. The Juniper QFX5100 family can be configured
as an end point in an overlay network architecture to support bare-metal servers.

Latency
An intelligent algorithm is used for each ingress packet to determine which for‐
warding architecture—store-and-forward or cut-through—should be used to
guarantee the least latency. On average the port-to-port latency is only 600 to 800
nanoseconds.

Flexible Deployment Options
The Juniper QFX5100 doesn’t force you to deploy a particular technology or pro‐
prietary protocol. It supports standalone, Virtual Chassis, QFabric node, Virtual
Chassis Fabric, Multi-Chassis Link Aggregation (MC-LAG), or an IP Fabric
architecture.

QFabric Node
The Juniper QFX5100 can be used as a node in the QFabric architecture. All of
the benefits of the Juniper QFX5100 are available when used as a QFabric node:
higher port density, overlay networking, and lower latency.

Virtualized Control Plane
The Juniper QFX5100 takes virtualization to heart. The control plane uses an
Intel Sandy Bridge CPU. The host operating system is Linux running KVM and
QEMU for virtualization. The network operating system (Junos) runs as a virtual
machine and is able to take advantage of all of the benefits of virtualization such
as In-Service Software Upgrade (ISSU).

Unified Forwarding Table
Whether you need to support more MAC addresses or IPv4 prefixes in an IP
Fabric architecture, with the Juniper QFX5100, you can adjust the profile of the
forwarding table. There are five preconfigured profiles that range between L2
heavy to L3 heavy.

Network Analytics
Some applications are sensitive to microbursts and latency. The Juniper QFX5100
allows you to get on-box reporting of queue depth, queue latency, and micro‐
burst detection to facilitate and speed up the troubleshooting process.

Lossless Ethernet
When converging storage and data, it’s critical that storage be handled in such a
way that no traffic is dropped. The Juniper QFX5100 supports DCBX, ETS, and
PFC to enable transit FCoE or lossless Ethernet for IP storage.
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Virtual Chassis Fabric
Ethernet fabrics provide the benefit of a single point of management, lossless
storage convergence, and full Layer 2 and Layer 3 services. The Juniper QFX5100
can form an Ethernet fabric called a Virtual Chassis Fabric (VCF). This is a
spine-and-leaf topology that supports full Equal-Cost Multipath (ECMP) routing
but with all of the benefits of an Ethernet fabric.

Inline Network Services
Traditionally, network services such as Generic Routing Encapsulation (GRE)
and Network Address Translation (NAT) are handled by another device such as a
router or firewall. The Juniper QFX5100 can perform both GRE and NAT in
hardware without a performance loss. The Juniper QFX5100 also offers inline
VXLAN termination for SDN and supports real-time networking analytics.

The Juniper QFX5100 family brings a lot of new features and differentiation to the
table when it comes to solving data center challenges. Because of the wide variety of
features and differentiation, you can integrate the Juniper QFX5100 into many differ‐
ent types of architectures.

High-Frequency Trading
Speed is king when it comes to trading stocks. With an average port-to-port
latency of 550 nanoseconds, the Juniper QFX5100 fits well in a high-frequency
trading architecture.

Private Cloud
Although the Juniper QFX5100 was specifically designed to solve the challenges
of cloud computing and public clouds, you can take advantage of the same fea‐
tures to solve the needs of the private cloud. Enterprises, government agencies,
and research institutes are building out their own private clouds, and the Juniper
QFX5100 meets and exceeds all their requirements.

Campus
High port density and a single point of management make the Juniper QFX5100
a perfect fit in a campus architecture, specifically in the core and aggregation
roles.

Enterprise
Offering the flexibility to be used in multiple deployment scenarios, the Juniper
QFX5100 gives an enterprise the freedom to use the technology that best fits its
needs. The Juniper QFX5100 can be used as a standalone device, a Virtual Chas‐
sis, a QFabric Node, a Virtual Chassis Fabric, a MC-LAG, or in a Clos
architecture.

It’s a very exciting time in the networking industry as SDN, cloud computing, and
data center technologies are continuing to push the envelope and bring new innova‐
tions and solutions to the field. The Juniper QFX5100 is embracing all of the change
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that’s happening and providing clear and distinctive solution differentiation. With its
wide variety of features, the Juniper QFX5100 is able to quickly solve the challenges
of cloud computing as well as other use cases such as high-frequency trading and
campus.

Junos
Junos is a purpose-built networking operating system based on one of the most stable
and secure operating systems in the world: FreeBSD. Junos is designed as a monolithic
kernel architecture that places all of the operating system services in the kernel space.
Major components of Junos are written as daemons that provide complete process
and memory separation.

One of the benefits of monolithic kernel architecture is that kernel functions are exe‐
cuted in supervisor mode on the CPU, whereas the applications and daemons are
executed in user space. A single failing daemon will not crash the operating system or
impact other unrelated daemons. For example, if there were an issue with the Simple
Network Management Protocol (SNMP) daemon and it crashed, it wouldn’t impact
the routing daemon that handles Open Shortest Path First (OSPF) and Border Gate‐
way Protocol (BGP).

One Junos
Creating a single network operating system that you can use across routers, switches,
and firewalls simplifies network operations, administration, and maintenance. Net‐
work operators need only learn Junos once and become instantly effective across
other Juniper products. An added benefit of a single Junos is that there’s no need to
reinvent the wheel and have 10 different implementations of BGP or OSPF. Being
able to write these core protocols once and then reuse them across all products pro‐
vides a high level of stability because the code is very mature and field tested.

Software Releases
Every quarter for more than 15 years, there has been a consistent and predictable
release of Junos. The development of the core operating system is a single-release
train. This allows developers to create new features or fix bugs once and then share
them across multiple platforms.

The release numbers are in a major and minor format. The major number is the ver‐
sion of Junos for a particular calendar year, and the minor release indicates in which
trimester the software was released. There are a couple of different types of Junos that
are released more frequently to resolve issues: maintenance and service releases.
Maintenance releases are released about every six weeks to fix a collection of issues,
and they are prefixed with “R.” For example, Junos 14.1R2 would be the second main‐
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tenance release for Junos 14.1. Service releases are released on demand to specifically
fix a critical issue that has yet to be addressed by a maintenance release. These relea‐
ses are prefixed with a “S.” An example would be Junos 14.1S2.

The general rule of thumb is that new features are added for every major and minor
releases and bug fixes are added to service and maintenance releases. For example,
Junos 14.1 to 14.2 would introduce new features, whereas Junos 14.1R1 to 14.1R2
would introduce bug fixes.

Most production networks prefer to use the last Junos release of the previous calen‐
dar year; these Junos releases are Extended End of Life (EEOL) releases that are sup‐
ported for three years. The advantage is that the EEOL releases become more stable
with time. Consider that 14.1 will stop providing bug fixes after 24 months, whereas
14.3 will continue to include bug fixes for 36 months.

Three-Release Cadence
In 2012, Junos created a new release model to move from four releases per year to
three  (Table 1-1 and Figure 1-4). This increased the frequency of maintenance relea‐
ses to resolve more issues more often. The other benefit is that all Junos releases as of
2012 are supported for 24 months, whereas the last release of Junos for the calendar
year will still be considered EEOL and have support for 36 months.

Table 1-1. Junos end-of-engineering and end-
of-life schedule

Release Target End of engineering End of life

Junos 15.1 March 24 months + 6 months

Junos 15.2 July 24 months + 6 months

Junos 15.3 November 36 months + 6 months

By extending the engineering support and reducing the number of releases, network
operators should be able to reduce the frequency of having to upgrade to a new
release of code.
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Figure 1-4. Junos three-release cadence

With the new Junos three-release cadence, network operators can be more confident
using any version of Junos without feeling pressured to only use the EEOL release.

Software Architecture
Junos was designed from the beginning to support a separation of control and for‐
warding plane. This is true of the Juniper QFX5100 series for which all of the control
plane functions are performed by the routing engine, whereas all of the forwarding is
performed by the Packet Forwarding Engine (PFE) (Figure 1-5). Providing this level
of separation ensures that one plane doesn’t impact the other. For example, the for‐
warding plane could be forwarding traffic at line rate and performing many different
services while the routing engine sits idle and unaffected.

Control plane functions come in many shapes and sizes. There’s a common miscon‐
ception that the control plane only handles routing protocol updates. In fact, there
are many more control plane functions. Some examples include:

• Updating the routing table
• Answering SNMP queries
• Processing SSH or HTTP traffic to administer the switch
• Changing fan speed
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• Controlling the craft interface
• Providing a Junos micro kernel to the PFEs
• Updating the forwarding table on the PFEs

Figure 1-5. Junos software architecture

At a high level, the control plane is implemented entirely within the routing engine,
whereas the forwarding plane is implemented within each PFE using a small,
purpose-built kernel that contains only the required functions to forward traffic.

The benefit of control and forwarding separation is that any traffic that is being for‐
warded through the switch will always be processed at line rate on the PFEs and
switch fabric; for example, if a switch were processing traffic between web servers and
the Internet, all of the processing would be performed by the forwarding plane.

Daemons
The Junos kernel has five major daemons. Each of these daemons play a critical role
within the Juniper QFX5100 and work together via Interprocess Communication
(IPC) and routing sockets to communicate with the Junos kernel and other daemons.
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These daemons, which take center stage and are required for the operation of Junos,
are listed here:

• Management daemon (mgd)
• Routing protocol daemon (rpd)
• Device control daemon (dcd)
• Chassis daemon (chassisd)
• Analytics daemon (analyticsd)

There are many more daemons for tasks such as NTP, VRRP, DHCP, and other tech‐
nologies, but they play a smaller and more specific role in the software architecture.
The sections that follow provide descriptions of each of the five major daemons.

Management daemon
The Junos User Interface (UI) keeps everything in a centralized database. This makes
it possible for Junos to handle data in interesting ways and opens the door to
advanced features such as configuration rollback, apply groups, and activating and
deactivating entire portions of the configuration.

The UI has four major components: the configuration database, database schema,
management daemon, and the command-line interface (CLI).

The management daemon is the glue that holds the entire Junos UI together. At a
high level, it provides a mechanism to process information for both network opera‐
tors and daemons.

The interactive component of the management daemon is the Junos CLI. This is a
terminal-based application that provides the network operator with an interface into
Junos. The other side of the management daemon is the XML remote procedure call
(RPC) interface. This provides an API through Junoscript and Netconf to accommo‐
date the development of automation applications.

Following are the cli responsibilities:

• Command-line editing
• Terminal emulation
• Terminal paging
• Displaying command and variable completions
• Monitoring log files and interfaces
• Executing child processes such as ping, traceroute, and ssh

The management daemon responsibilities include the following:
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• Passing commands from the cli to the appropriate daemon
• Finding command and variable completions
• Parsing commands

It’s interesting to note that the majority of the Junos operational commands use XML
to pass data. To see an example of this, simply add the pipe command display xml to
any command. Let’s take a look at a simple command such as show isis adjacency:

{master}
dhanks@R1-RE0> show isis adjacency
Interface             System         L State        Hold (secs) SNPA
ae0.1                 R2-RE0         2  Up                   23

So far, everything looks normal. Let’s add the display xml to take a closer look:
{master}dhanks@R1-RE0> show isis adjacency | display xml
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/11.4R1/junos">
    <isis-adjacency-information xmlns="http://xml.juniper.net/junos/11.4R1/junos-
routing" junos:style="brief">
        <isis-adjacency>
            <interface-name>ae0.1</interface-name>
            <system-name>R2-RE0</system-name>
            <level>2</level>
            <adjacency-state>Up</adjacency-state>
            <holdtime>22</holdtime>
        </isis-adjacency>
    </isis-adjacency-information>
   <cli>
        <banner>{master}</banner>
    </cli>
</rpc-reply>

As you can see, the data is formatted in XML and received from the management
daemon via RPC.

Routing protocol daemon
The routing protocol daemon handles all of the routing protocols configured within
Junos. At a high level, its responsibilities are receiving routing advertisements and
updates, maintaining the routing table, and installing active routes into the forward‐
ing table. To maintain process separation, each routing protocol configured on the
system runs as a separate task within the routing protocol daemon. Its other responsi‐
bility is to exchange information with the Junos kernel to receive interface modifica‐
tions, send route information, and send interface changes.

Let’s take a peek into the routing protocol daemon and see what’s going on. The hid‐
den command set task accounting toggles CPU accounting on and off. Use show
task accounting to see the results:

{master}
dhanks@R1-RE0> set task accounting on
Task accounting enabled.
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Now, we’re good to go. Junos is currently profiling daemons and tasks to get a better
idea of what’s using the CPU. Let’s wait a few minutes for it to collect some data.

OK, let’s check it out:
{master}
dhanks@R1-RE0> show task accounting
Task accounting is enabled.

Task                       Started    User Time  System Time  Longest Run
Scheduler                      265        0.003        0.000        0.000
Memory                           2        0.000        0.000        0.000
hakr                             1        0.000            0        0.000
ES-IS I/O./var/run/ppmd_c        6        0.000            0        0.000
IS-IS I/O./var/run/ppmd_c       46        0.000        0.000        0.000
PIM I/O./var/run/ppmd_con        9        0.000        0.000        0.000
IS-IS                           90        0.001        0.000        0.000
BFD I/O./var/run/bfdd_con        9        0.000            0        0.000
Mirror Task.128.0.0.6+598       33        0.000        0.000        0.000
KRT                             25        0.000        0.000        0.000
Redirect                         1        0.000        0.000        0.000
MGMT_Listen./var/run/rpd_        7        0.000        0.000        0.000
SNMP Subagent./var/run/sn       15        0.000        0.000        0.000

There’s not too much going on here, but you get the idea. Currently, running dae‐
mons and tasks within the routing protocol daemon are present and accounted for.

The set task accounting command is hidden for a reason. It’s
possible to put additional load on the Junos kernel while account‐
ing is turned on. It isn’t recommended to run this command on a
production network unless instructed by the Juniper Technical
Assistance Center (JTAC). After your debugging is finished, don’t
forget to turn it back off by using set task accounting off.

{master}
dhanks@R1-RE0> set task accounting off
Task accounting disabled.

Device control daemon
The device control daemon is responsible for setting up interfaces based on the cur‐
rent configuration and available hardware. One feature of Junos is the ability to con‐
figure nonexistent hardware. This is based on the underlying assumption that the
hardware can be added at a later date and “just work.” For example, you can configure
set interfaces ge-1/0/0.0 family inet address 192.168.1.1/24 and commit.
Assuming there’s no hardware in FPC1, this configuration will not do anything.
However, as soon as hardware is installed into FPC1, the first port will be configured
immediately with the address 192.168.1.1/24.
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Chassis daemon (and friends)
The chassis daemon supports all chassis, alarm, and environmental processes. At a
high level, this includes monitoring the health of hardware, managing a real-time
database of hardware inventory, and coordinating with the alarm daemon and the
craft daemon to manage alarms and LEDs.

It should all seem self-explanatory except for the craft daemon, the craft interface that
is the front panel of the device. Let’s take a closer look at the Juniper QFX5100 craft
interface in Figure 1-6.

Figure 1-6. The Juniper QFX5100 craft interface

It’s simply a collection of buttons and LED lights to display the current status of the
hardware and alarms. Let’s inspect the LEDs shown in Figure 1-6 a bit closer.

1. Status LEDs.
2. em1-SFP management Ethernet port (C1) cage. It can support either 1GbE cop‐

per SFP or fiber SFP.
3. em0-RJ-45 (1000BASE-T) management Ethernet port (C0).
4. RJ-45/RS-232 console port (CON).
5. USB port.

This information can also be obtained via the command line as well with the com‐
mand show chassis led, as illustrated here:

{master:0}
dhanks@QFX5100> show chassis led
                LED status for: FPC 0
                -----------------------------------
LEDs status:
    Alarm LED           : Yellow
    System LED          : Green
    Master LED          : Green
    Beacon LED          : Off
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    QIC 1 STATUS LED    : Green
    QIC 2 STATUS LED    : Green

Interface               STATUS LED      LINK/ACTIVITY LED
---------------------------------------------------------
et-0/0/0                N/A             Green
et-0/0/1                N/A             Green
et-0/0/2                N/A             Green
et-0/0/3                N/A             Off
et-0/0/4                N/A             Green
et-0/0/5                N/A             Green
et-0/0/8                N/A             Off
et-0/0/9                N/A             Off
et-0/0/11               N/A             Off

One final responsibility of the chassis daemon is monitoring the power and cooling
environmentals. It constantly monitors the voltages of all components within the
chassis and will send alerts if any of those voltages cross specified thresholds. The
same is true for the cooling. The chassis daemon constantly monitors the tempera‐
ture on all of the components and chips as well as fan speeds. If anything is out of the
ordinary, it will create alerts. Under extreme temperature conditions, the chassis dae‐
mon can also shut down components to avoid damage.

Analytics daemon
When troubleshooting a network, it’s common to ask yourself the following ques‐
tions:

• Why isn’t the application behaving as expected?
• Why is the network slow?
• Am I meeting my service level agreements?

To help answer these questions, the Juniper QFX5100 brings a new daemon into the
mix: the analytics daemon. The analytics daemon provides detailed data and report‐
ing on the network’s behavior and performance. The data collected can be broken
down into two types:

Queue Statistics
Each port on the switch has the ability to queue data before it is transmitted. The
ability to queue data not only ensures the delivery of traffic, but it also impacts
the end-to-end latency. The analytics daemon reports data on the queue latency
and queue depth at a configured time interval on a per-interface basis.

Traffic Statistics
Being able to measure the packets per second (pps), packets dropped, port uti‐
lization, and number of errors on a per-interface basis gives you the ability to
quickly graph the network.
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You can access the data collected by the analytics daemon in several different ways.
You can store it on the local device or stream it to a remote server in several different
formats.

Traffic must be collected from two locations within the switch in order for the data to
be accurate. The first location to collect traffic is inside the analytics module in the
PFE; this permits the most accurate statistics possible without impacting the switch’s
performance. The second location to collect traffic is from the routing engine. The
PFE sends data to the routing engine if that data exceeds certain thresholds. The ana‐
lytics daemon will then aggregate the data. The precise statistics directly from the PFE
and the aggregated data from the routing engine is combined to give you a complete,
end-to-end view of the queue and traffic statistics of the network.

Network analytics is covered in more depth in Chapter 9.

Routing Sockets
Routing sockets are a UNIX mechanism for controlling the routing table. The Junos
kernel takes this same mechanism and extends it to include additional information to
support additional attributes to create a carrier-class network operating system.

At a high level, there are two actors that use routing sockets: the state producer and
the state consumer. The routing protocol daemon is responsible for processing rout‐
ing updates and thus is the state producer. Other daemons are considered a state con‐
sumer because they process information received from the routing sockets, as
demonstrated in Figure 1-7.
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Figure 1-7. Routing socket architecture

Let’s take a peek into the routing sockets and see what happens when we configure
ge-1/0/0.0 with an IP address of 192.168.1.1/24. Using the rtsockmon command
from the shell allows us to see the commands being pushed to the kernel from the
Junos daemons.

{master}
dhanks@R1-RE0> start shell
dhanks@R1-RE0% rtsockmon -st
        sender    flag   type       op
[16:37:52] dcd      P    iflogical  add     ge-1/0/0.0 flags=0x8000
[16:37:52] dcd      P    ifdev      change  ge-1/0/0 mtu=1514 dflags=0x3
[16:37:52] dcd      P    iffamily   add     inet mtu=1500 flags=0x8000000200000000
[16:37:52] dcd      P    nexthop    add     inet 192.168.1.255 nh=bcst
[16:37:52] dcd      P    nexthop    add     inet 192.168.1.0 nh=recv
[16:37:52] dcd      P    route      add     inet 192.168.1.255
[16:37:52] dcd      P    route      add     inet 192.168.1.0
[16:37:52] dcd      P    route      add     inet 192.168.1.1
[16:37:52] dcd      P    nexthop    add     inet 192.168.1.1 nh=locl
[16:37:52] dcd      P    ifaddr     add     inet local=192.168.1.1
[16:37:52] dcd      P    route      add     inet 192.168.1.1 tid=0
[16:37:52] dcd      P    nexthop    add     inet nh=rslv flags=0x0
[16:37:52] dcd      P    route      add     inet 192.168.1.0 tid=0
[16:37:52] dcd      P    nexthop    change  inet nh=rslv
[16:37:52] dcd      P    ifaddr     add     inet local=192.168.1.1 dest=192.168.1.0
[16:37:52] rpd      P    ifdest     change  ge-1/0/0.0, af 2, up, pfx 192.168.1.0/24
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For the preceding example, I configured the interface ge-1/0/0 in a
different terminal window and committed the change while the
rtstockmon command was running.

The command rtsockmon is a Junos shell command that gives the user visibility into
the messages being passed by the routing socket. The routing sockets are broken into
four major components: sender, type, operation, and arguments. The sender field is
used to identify which daemon is writing into the routing socket. The type identifies
which attribute is being modified. The operation is showing what is actually being
performed. There are three basic operations: add, change, and delete. The last field is
the arguments passed to the Junos kernel. These are sets of key/value pairs that are
being changed.

In the previous example, you can see how dcd interacts with the routing socket to
configure ge-1/0/0.0 and assign an IPv4 address.

• dcd creates a new logical interface (IFL).
• dcd changes the interface device (IFD) to set the proper Maximum Transmission

Unit (MTU).
• dcd adds a new interface family (IFF) to support IPv4.
• dcd sets the nexthop, broadcast, and other attributes that are needed for the

Routing Information Base (RIB) and Forwarding Information Base (FIB).
• dcd adds the interface address (IFA) of 192.168.1.1.
• rpd finally adds a route for 192.168.1.1 and brings it up.

The rtsockmon command is used only to demonstrate the func‐
tionality of routing sockets and how daemons such as dcd and rpd
use routing sockets to communicate routing changes to the Junos
kernel.
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QFX5100 Platforms

Figure 1-8. The Juniper QFX5100 series

The Juniper QFX5100 series (Figure 1-8) is available in four models. Each has varying
numbers of ports and modules, but they share all of the same architecture and bene‐
fits. Depending on the number of ports, modules, and use case, a particular model
can fit into multiple roles of a data center or campus architecture. In fact, it’s common
to see the same model of switch in multiple roles in an architecture. For example, if
you require 40GbE access, you can use the Juniper QFX5100-24Q in all three roles:
core, aggregation, and access. Let’s take a look at each model and see how they com‐
pare to one another:

QFX5100-24Q
First is the Juniper QFX5100-24Q; this model has 24 40GbE interfaces and two
modules that allow for expansion. In a spine-and-leaf architecture, this model is
most commonly deployed as a spine fulfilling the core and aggregation roles.

QFX5100-48S
Next is the Juniper QFX5100-48S; this model has 48 10GbE interfaces as well as 6
40GbE interfaces. There are no modules, but there is enough bandwidth to pro‐
vide 2:1 over-subscription. There is 480 Gbps of downstream bandwidth from
the 48 10GbE interfaces and 240 Gbps of upstream bandwidth from the 6 40bGE
interfaces. In a spine-and-leaf architecture, this model is most commonly
deployed as a leaf fulfilling the access role.

QFX5100-96S
When you need to go big, the Juniper QFX5100-96S offers 96 10GbE and 8
40GbE interfaces to maintain an optimal 3:1 over-subscription. In a spine-and-
lead architecture, this model is most commonly deployed as a leaf.
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Now that you have an idea of the different models that are available in the Juniper
QFX5100 series, let’s compare and contrast them in the matrix shown in Table 1-2 so
that you can easily see the differences.

Table 1-2. QFX5100 series model comparison

Attribute QFX5100 24Q QFX5100 48S QFX5100 48T QFX5100 96S

10GbE ports 0 48 48 96

40GbE ports 24 6 6 8

Modules 2 0 0 0

Rack units 1 1 1 2

Depending on how many modules and which specific module is used, the port count
can change for the models that have expansion ports. For example, the Juniper
QFX5100-24Q has 24 40GbE built-in interfaces, but using two modules can increase
the total count to 32 40GbE interfaces, with the assumption that each module has 4
40GbE interfaces. Each model has been specifically designed to operate in a particular
role in a data center or campus architecture but offer enough flexibility that a single
model can operate in multiple roles.

QFX5100 Modules
The modules make it possible for you to customize the Juniper QFX5100 series to
suit the needs of the data center or campus. Depending on the port count and speed
of the module, each model can easily be moved between roles in a data center archi‐
tecture. Let’s take a look at the modules available as of this writing:

4 40GbE QIC
Using this module, you can add an additional 160 Gbps of bandwidth via 4
40GbE interfaces. You can use the interfaces as-is or they can be broken out into
16 10GbE interfaces with a breakout cable.

8 10GbE QIC
This module adds an additional 80 Gbps of bandwidth via 8 10GbE interfaces. It’s
a great module to use when you need to add a couple more servers into a rack,
assuming the built-in switch interfaces are in use. The eight 10GbE QIC also sup‐
ports data plane encryption on all eight ports with Media Access Control Security
(MACsec).

The QFX Interface Card (QIC) allows you to selectively increase the capacity of the
Juniper QFX5100 platforms. Generally, you use the 4 40GbE module for adding addi‐
tional upstream bandwidth on a ToR or simply filling out the 40GbE interfaces in a
spine such as the Juniper QFX5100-24Q. You typically use the 8 10GbE module to
add additional downstream bandwidth for connecting compute resources.
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QFX5100-24Q
The Juniper QFX5100-24Q (see Figure 1-9) is the workhorse of the Juniper QFX5100
family of switches. In a data center architecture, it can fulfill the roles of the core,
aggregation, and access. In a spine-and-leaf topology, it’s most commonly used as the
spine that interconnects all of the leaves, as shown in Figure 1-10.

Figure 1-9. The Juniper QFX5100-24Q switch

Figure 1-10. Spine-and-leaf topology and data center roles

Roles
An interesting aspect of the Juniper QFX5100-24Q is that it’s able to collapse both the
core and aggregation roles in a data center architecture. In Figure 1-10, the Juniper
QFX5100-24Q is represented by the spine (denoted with an “S”), which is split
between the core and aggregation roles. The reason the Juniper QFX5100-24Q is able
to collapse the core and aggregation roles is because it offers both high-speed and
high-density ports in a single switch.

Module options
The most typical configuration of the Juniper QFX5100-24Q uses a pair of four
40GbE modules, as depicted in Figure 1-11. The combination of built-in ports and
modules brings the total interface count to 32 40GbE.
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Figure 1-11. The Juniper QFX5100-24Q interface and slot layout using four 40GbE
modules

A second configuration using a pair of eight 10GbE QICs can change the Juniper
QFX5100-24Q to support 24 40GbE and 16 10GbE interfaces, as illustrated in
Figure 1-12.

Figure 1-12. The Juniper QFX5100-24Q interface and slot layout using 8×10GE modules

Although the Juniper QFX5100-24Q using the four 40GbE QICs is well suited in the
core and aggregation of a spine-and-leaf topology, the eight 10GbE QIC transforms
the switch so that it’s more suitable as a leaf in the access layer. With a combination of
both 10GbE and 40GbE, the Juniper QFX5100-24Q is now able to support a combi‐
nation of compute resources. In addition, you can still use the switch in the core and
aggregation layer in the spine of the topology, but allow other components such as an
edge router, firewall, or load balancer to peer directly with the spine, as shown in
Figure 1-13.

Let’s take a look at Figure 1-13 in more detail to fully understand how you can deploy
the Juniper QFX5100-24Q in different roles of an architecture. The spines S1 and S2
are a pair of QFX5100-24Q using the eight 10GbE QICs, which allow the edge routers
E1 and E2 to have 10GbE connectivity directly with the spine switches S1 and S2 in
the core and aggregation roles. When the Juniper QFX5100-24Q uses the eight
10GbE QICs, it has the flexibility to offer both 10GbE and 40GbE interfaces.
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Figure 1-13. The QFX5100-24Q in multiple roles in a spine-and-leaf architecture

In the access role, there are two QFX5100-24Q switches, illustrated as L1 and L2.
These switches are providing 40GbE access interfaces to Host 1. The other two access
switches, L3 and L4, are a pair of QFX5100-48S switches and provide 10GbE access to
Host 2.

Physical attributes
The Juniper QFX5100-24Q is a very flexible switch that you can deploy in a variety of
roles in a network. Table 1-3 takes a closer look at the switch’s physical attributes.

Table 1-3. Physical attributes of the QFX5100-24Q

Physical attributes Value

Rack units 1

Built-in interfaces 24 40GbE

Total 10GbE interfaces 104 using breakout cables

Total 40GbE interfaces 32, using two four 40GbE modules

Modules 2

Airflow Airflow in (AFI) or airflow out (AFO)

Power 150
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Physical attributes Value

Cooling 5 fans with N + 1 redundancy

PFEs 1

Latency ~500 nanoseconds

Buffer size 12 MB

The Juniper QFX5100-24Q packs quite a punch in a small 1RU form factor. As indi‐
cated by the model number, the Juniper QFX5100-24Q has 24 40GbE built-in inter‐
faces, but it can support up to 104 10GbE interfaces by using a breakout cable. 
Although the math says that with 32 40GbE interfaces you should be able to get 128
10GbE interfaces, the PFE has a limitation of 104 total interfaces at any given time.
There are two available QIC modules to further expand the switch to support addi‐
tional 10GbE or 40GbE interfaces.

Cooling is carried out by a set of five fans in a “4 + 1” redundant configuration. You
can configure the Juniper QFX5100-24Q to cool front-to-back (AFO) or back-to-
front (AFI).

Although the Juniper QFX5100-24Q fans support both AFO and
AFI airflow, it’s important to match the same airflow with the
power supplies. This way, both the fans and power supplies have
the same airflow, and the switch is cooled properly. Mismatching
the airflow could result in the switch overheating.

The switch is powered by two power supplies. Each power supply can support either
AFO or AFI airflow; it’s critical that the airflow of the power supply match the airflow
of the fans, as shown in Figure 1-14.

Figure 1-14. The rear of the Juniper QFX5100-24Q, illustrating the AFI airflow on the
fans and power supplies

A really great feature of the Juniper QFX5100 is the colored plastic on the rear of the
switch. The handles to remove the fans and power supplies are color-coded to indi‐
cate the direction of airflow.

Blue (AFI)
Blue represents cool air coming into the rear of the switch, which creates a back-
to-front airflow through the chassis.
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Orange (AFO)
Orange represents hot air exiting the rear of the switch, which creates a front-to-
back airflow through the chassis.

Previously, the AFI and AFO notations were a bit confusing, but with the new color-
coding, it’s no longer an issue. Being able to quickly identify the type of airflow pre‐
vents installation errors and gives you peace of mind.

The rear of the Juniper QFX5100-24Q has three main components, as illustrated in
Figure 1-15. These components are management, cooling, and power. The manage‐
ment section (shown on the left in Figure 1-15) has a combination of SFP, 1000BASE-
T, RS232, and USB connectivity.

Figure 1-15. View of the rear of the Juniper QFX5100-24Q

There are a total of five fans on the Juniper QFX5100-24, and each one is a field
replaceable unit (FRU). The fans are designed in a 4 + 1 redundancy model so that
any one of the fans can fail, but the system will continue to operate normally. There is
a total of two power supplies operating in a 1 + 1 redundancy configuration. A power
supply can experience a failure, and the other power supply has enough output to
allow the switch to operate normally.

Management
The management interfaces on the Juniper QFX5100 are very similar to the existing
QFX3500 and QFX3600 family. There are six status LEDs, three management ports,
an RS-232 port, and a USB port, as illustrated in Figure 1-16.
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Figure 1-16. The QFX5100-24Q management console

Let’s walk through the status LEDs, one by one:

ALM (Alarm)
The ALM LED can be either red or amber depending on the severity of the
alarm. If the alarm is red, this is an indication that one or more hardware compo‐
nents have failed or have exceeded temperature thresholds. An amber alarm indi‐
cates a noncritical issue, but if left unchecked, it could result in a service
interruption.

SYS (System)
This LED is always green but has three illumination states: steady, blinking, or
off. If the SYS LED is steady and always on, this means that Junos has been prop‐
erly loaded onto the switch. If the SYS LED is blinking, this means that the switch
is still booting. Finally, if the SYS LED is off, it means that the switch is powered
off or has been halted.

MST (Master)
Similar to SYS, the MST LED is always green and has the same three states:
steady, blinking, or off. If the MST LED is steady, the switch is currently the mas‐
ter routing engine of a Virtual Chassis. If the MST LED is blinking, the switch is
the backup routing engine in a Virtual Chassis. If the MST LED is off, the switch
is either a line card in Virtual Chassis or it’s operating as a standalone switch.

ID (Identification)
This is a new LED, first appearing on the Juniper QFX5100 family. It is here to
help remote hands and the installation of the switch; you can use it to help iden‐
tify a particular switch with a visual indicator. The ID LED is always blue and has
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two states: on or off. When the ID LED is on, the beacon feature has been
enabled through the command line of the switch. If the ID LED is off, this is the
default state and indicates that the beacon feature is currently disabled on the
switch.

There are three management ports in total, but you can use only two at any given
time; these are referred to as C0 and C1. The supported combinations are presented
in Table 1-4:

Table 1-4. Valid QFX5100 management port combinations

C0 C1 Transceiver

SFP SFP 1G-SR, 1G-SR

SFP SFP 1G-SR, 1G-T

SFP SFP 1G-T, 1G-SR

SFP SFP 1G-T, 1G-T

RJ-45 SFP N/A, 1G-SR

RJ-45 SFP N/A, 1G-T

Basically, the two C0 management ports are interchangeable, but you can use only
one at any given time. The C0 and C1 SFP management port can support either 1G-
SR or 1G-T transceivers.

The two management ports C0 and C1 are used for out-of-band management. Typi‐
cally, only a single management port will be used, but for the scenario in which the
Juniper QFX5100 is being used as a QFabric Node, both ports are required, as depic‐
ted in Figure 1-17.

In a QFabric architecture, each node and interconnect requires two out-of-band
management connections to ensure redundancy. The out-of-band management con‐
nections are used purely for the control plane, whereas the 40GbE interfaces are used
for the data plane, as illustrated in Figure 1-17. Having both a SFP and copper man‐
agement port gives you more installation flexibility in the data center. If you prefer
fiber, you can easily use just the C1 interface and leave C0 unused. If the switch is
being used as a QFabric Node and you require both management ports but only want
to use copper, the SFP supports using a 1GE-T transceiver.
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Figure 1-17. The C0 and C1 management ports in a QFabric Node topology

The RS-232 console port is a standard RJ-45 interface. This serial port is used to com‐
municate directly with the routing engine of the switch. For situations in which the
switch becomes unreachable by IP, the serial RS-232 is always a nice backup to have.

The USB port is a standard USB 2.0 interface and can be used with any modern
thumb drive storage media. Again, for the scenario in which IP connectivity isn’t
available, you can use the USB port to load software directly onto the switch. The
USB port combined with the RS-232 serial console give you full control over the
switch.

QFX5100-48S

Figure 1-18. The Juniper QFX5100-48S switch

The Juniper QFX5100-48S (Figure 1-18) is another workhorse in the Juniper
QFX5100 family of switches. In a data center architecture, it has been designed to ful‐
fill the role of the access tier. In a spine-and-leaf topology, it’s most commonly used as
the leaf that offers connectivity to end hosts, as shown in Figure 1-19.
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Figure 1-19. Spine-and-leaf topology, with the Juniper QFX5100-48S as a leaf

Roles
The primary role for the Juniper QFX5100-48S is to operate in the access tier of a
data center architecture, due to the high density of 10GbE ports. In Figure 1-19, the
“L” denotes the Juniper QFX5100-48S in a spine-and-leaf topology; “S” indicates the
Juniper QFX5100-24Q being used in the spine. The Juniper QFX5100-24Q and
QFX5100-48S were specifically designed to work together to build a spine-and-leaf
topology and offer an option of 2:1 or 3:1 over-subscription.

The front of the Juniper QFX5100-48S offers two sets of built-in interfaces: 48 10GbE
interfaces and 6 40GbE interfaces, as shown in Figure 1-20. The 48 10GbE interfaces
are generally used for end hosts, and the 6 40GbE interfaces are used to connect to
the core and aggregation. The 40GbE interfaces can also support 4 10GbE interfaces
by using a breakout cable; this brings the total count of 10GbE interfaces to 72 (48
built in + 24 from breakout cables).

Figure 1-20. The front panel of the Juniper QFX5100-48S

In data centers where the end hosts are only 1GbE, you can change the roles of the
Juniper QFX5100-48S and use it as a spine switch in the core and aggregation tiers of
a data center architecture. In such a situation, you can use a lower-speed leaf such as
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the EX4300 in combination with the Juniper QFX5100-48S to create a spine-and-leaf
topology for 1GbE access, as demonstrated in Figure 1-21.

Figure 1-21. Spine-and-leaf topology with the Juniper QFX5100-48S and EX4300

The same logic holds true for a 1GbE spine-and-leaf topology: 1GbE for downstream,
and 10GbE for upstream, allowing for an appropriate amount of over-subscription.
In the example shown in Figure 1-21, each leaf has 4 10GbE of upstream bandwidth
and 48 1GbE of downstream bandwidth; this results in an over-subscription of 1.2:1
which is nearly line rate.

Physical attributes
The Juniper QFX5100-48S is a great access switch. Table 1-5 takes a closer look at the
switch’s physical attributes.

Table 1-5. Physical attributes of the QFX5100-48S

Physical attributes Value

Rack units 1

Built-in interfaces 48 10GbE and 6 40GbE

Total 10GbE interfaces 72, using breakout cables

Total 40GbE interfaces 6

Modules 0

Airflow Airflow in (AFI) or airflow out (AFO)

Power 150

Cooling 5 fans with N + 1 redundancy

PFEs 1

Latency ~500 nanoseconds

Buffer size 12 MB
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Aside from the built-in interfaces and modules, the Juniper QFX5100-48S and
QFX5100-24 have identical physical attributes. The key to a spine-and-leaf network is
that the upstream bandwidth needs to be faster than the downstream bandwidth to
ensure an appropriate level of over-subscription.

Management
Just as with the physical attributes, the Juniper QFX5100-48S and QFX5100-24Q are
identical in terms of management. The Juniper QFX5100-48S has three management
ports, a serial RS-232 port, and a USB port.

QFX5100-48T

Figure 1-22. The Juniper QFX5100-48T switch

The Juniper QFX5100-48T (Figure 1-22) is very similar to the Juniper QFX5100-48S;
the crucial difference is that the Juniper QFX5100-48T supports 10GBASE-T. In a
data center architecture, it has been designed to fulfill the role of the access tier. In a
spine-and-leaf topology, it’s most commonly used as the leaf that offers connectivity
to end hosts, as shown in Figure 1-23.

Figure 1-23. Spine-and-leaf topology, with the Juniper QFX5100-48T as a leaf
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Roles
The primary role for the Juniper QFX5100-48T is to operate in the access tier of a
data center architecture, due to the high density of 10GbE ports. In Figure 1-23, the
“L” denotes the Juniper QFX5100-48T in a spine-and-leaf topology; “S” indicates the
Juniper QFX5100-24Q being used in the spine. The Juniper QFX5100-24Q and
QFX5100-48T were specifically designed to work together to build a spine-and-leaf
topology and offer an option of 2:1 or 3:1 over-subscription.

The front of the Juniper QFX5100-48T has two sets of built-in interfaces: 48 10GbE
and 6 40GbE, as shown in Figure 1-24. The 48 10GbE interfaces are generally used
for end hosts, and the 6 40GbE interfaces are used to connect to the core and aggre‐
gation. The 40GbE interfaces can also support 4 10GbE interfaces by using a breakout
cable; this brings the total count of 10GbE interfaces to 72 (48 built in + 24 from
breakout cables).

Figure 1-24. The front panel of the Juniper QFX5100-48T

In data centers where the end hosts are only 1GbE, the Juniper QFX5100-48T can
support tri-speed interfaces:

• 100 Mbps
• 1 Gbps
• 10 Gbps

The Juniper QFX5100-48T is a very flexible switch in the access layer; network opera‐
tors can use the same switch for both management and production traffic. Typically,
management traffic is 100 Mbps or 1 Gbps over copper by using the RJ-45 interface.
New servers just coming to market in 2014 are supporting 10GBASE-T, so the Juni‐
per QFX5100-48T can easily support both slower management traffic as well as blaz‐
ingly fast production traffic.

Physical attributes
The Juniper QFX5100-48T is a great access switch. Let’s take a closer look at the
switch’s physical attributes in Table 1-6.

QFX5100 Platforms | 33



Table 1-6. Physical attributes of the QFX5100-48T

Physical Attributes Value

Rack units 1

Built-in interfaces 48 10GbE and 6 40GbE

Total 10GbE interfaces 48 10GBASE-T and 24 SFP+ using breakout cables

Total 40GbE interfaces 6

Modules 0

Airflow Airflow in (AFI) or airflow out (AFO)

Power 150

Cooling 5 fans with N + 1 redundancy

PFEs 1

Latency ~500 nanoseconds

Buffer size 12 MB

Aside from the built-in interfaces and modules, the Juniper QFX5100-48T and
QFX5100-24Q have identical physical attributes. The key to a spine-and-leaf network
is that the upstream bandwidth needs to be faster than the downstream bandwidth to
ensure an appropriate level of over-subscription.

Management
The management for the Juniper QFX5100-48T and QFX5100-48S are identical. The
Juniper QFX5100-48T has three management ports, a serial RS-232 port, and a USB
port.

QFX5100-96S
Go big or go home! The Juniper QFX5100-96S (see Figure 1-25) just happens to be
my favorite switch. With 96 10GbE and 8 40GbE ports, it’s more than prepared to
handle the most dense compute racks. If you don’t have enough servers in a rack to
make use of this high-density switch, it also makes a great core and aggregation
switch.

34 | Chapter 1: Juniper QFX5100 Architecture



Figure 1-25. The Juniper QFX5100-96S

Roles
The Juniper QFX5100-96S is the king of access switches. As of this writing, it boasts
the highest 10GbE port density in a 2RU footprint that Juniper offers. The Juniper
QFX5100-96S has 96 10GbE and 8 40GbE built-in interfaces as shown in Figure 1-26.

Figure 1-26. The Juniper QFX5100-96S built-in interfaces

The Juniper QFX5100-96S was specifically designed to deliver high-density 10GbE
access in the largest data centers in the world, as shown in Figure 1-27; the Juniper
QFX5100-96S is in the access tier denoted with an “S.”

The other option is to use the Juniper QFX5100-96S as a core and aggregation switch
in the spine of the network. Using four QFX5100-96S switches in the spine will offer
a dense 384 ports of 10GE.
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Figure 1-27. The Juniper QFX5100-96S in an access role in a spine-and-leaf topology

Physical attributes
The Juniper QFX5100-96S offers a large amount of 10GbE ports in such a small foot‐
print. Table 1-7 lists the switch’s physical attributes.

Table 1-7. Physical attributes of the QFX5100-96S

Physical attributes Value

Rack units 2

Built-in interfaces 96 10GbE and 8 40GbE

Total 10GbE interfaces 104 using breakout cables on two of the QSFP ports

Total 40GbE interfaces 8

Modules 0

Airflow Airflow in (AFI) or airflow out (AFO)

Power 150

Cooling 3 fans with N + 1 redundancy

PFEs 1

Latency ~500 nanoseconds

Buffer size 12 MB

Although the Juniper QFX5100-96S can physically support 128
10GbE interfaces, the BRCM 56850 chipset can only support a
maximum of 104 logical interfaces.

The Juniper QFX5100-96S was modeled after the Juniper QFX5100-48S; it’s basically
two QFX5100-48S switches sandwiched together. The Juniper QFX5100-96S pushes
the hardware to the limit, offering the maximum amount of performance and total
ports. We review the data plane in more detail later in the chapter.
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Management
As with the physical attributes, the Juniper QFX5100-96S and QFX5100-48Q are
identical in terms of management. The Juniper QFX5100-96S has three management
ports, a serial RS-232 port, and a USB port.

Hardware Architecture
The Juniper QFX5100 family shares a lot of the same hardware to keep costs down,
reduce the amount of retooling, and increase the overall reliability. The hardware is
broken down into the following three major categories:

Chassis
The chassis houses all of the other components that make up the actual switch. In
addition to housing the control plane and data plane, the chassis also controls the
environmentals such as power and cooling.

Control Board
The control board is responsible for many management aspects of the switch. It
is essentially a custom motherboard that brings together the control plane CPU,
memory, solid-state disks (SSDs), I2C connections, and other management mod‐
ules. The Juniper QFX5100 family uses Linux and KVM to virtualize the network
operating system—Junos—which is responsible for all of the management, rout‐
ing protocols, and other exception traffic in the switch.

Switch Board
The switch board brings together the built-in interfaces, expansion modules,
application-specific integrated circuit (ASIC), and the precision timing module.
All of the heavy lifting in terms of forwarding traffic is always processed by the
data plane. Its sole purpose is to forward traffic from port to port as fast as possi‐
ble.

All three components work together to bring the switch to life and make it possible
for it to forward Ethernet frames in a data center. For the switch to function, all three
components must be present. Given the critical nature of each component, it’s a
requirement that redundancy and high availability must be a priority in the design of
a switch.

Let’s take a look at the overall hardware architecture of the Juniper QFX5100 family.
Each model is going to be a little different in terms of interfaces, modules, and rack
units, but the major components are all the same, as is demonstrated in Figure 1-28.
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Figure 1-28. Juniper QFX5100 family hardware architecture

The switch board holds together all of the components that make up the data plane;
this includes all of the built-in interfaces, modules, and the Broadcom Trident II chip‐
set. The control board houses all of the components needed to run the control plane
and manage the chassis and switch board. The two power supplies are labeled as
PEM0 and PEM1 (Power Entry Module). The management module is responsible for
the two management interfaces, RS232 port, and USB port. Finally, the five fans in
the Juniper QFX5100-24Q and QFX5100-48 are aligned in the rear of the switch so
that the airflow cools the entire chassis.

Chassis
The chassis, which physically defines the shape and size of the switch, is responsible
for bringing everything together. Its most important responsibility is providing power
and cooling to all of the other components within it. Let’s examine each component
to learn a bit more about the chassis.

Power
Each switch in the Juniper QFX5100 family requires two power supplies to support a
1 + 1 redundancy. In the event of a failure, the switch can operate on a single power
supply. There are two types of power supplies: airflow in (AFI) and airflow out
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(AFO). The fans and power supplies must have the same airflow direction or the
chassis will trigger an alarm. Each power supply is color-coded to help quickly iden‐
tify the airflow direction. AFO is colored orange, and the AFI is colored blue.

Each power supply is 650 W, but the power draw is only about 280 W for a fully
loaded system. On the Juniper QFX5100-96S with 96 10GbE interfaces, the average
power usage is 2.9 W per 10GbE port. On the Juniper QFX5100-24Q with 32 40GbE
interfaces, the average consumption is 8.7 W per 40GbE port.

Cooling
The Juniper QFX5100 family was designed specifically for the data center environ‐
ment; each system supports front-to-back cooling with reversible airflow. Each chas‐
sis has a total of five fans; each fan can be either AFO or AFI. All power supplies and
fans must be either AFO or AFI, otherwise the chassis will issue alarms.

Sensors
Each chassis has a minimum of seven temperature sensors, whereas chassis that sup‐
port modules have a total of nine sensors. This is so each module has its own temper‐
ature sensor. Each sensor has a set of configurable thresholds that can raise a warning
alarm or shutdown the switch. For example if the CPU were running at 86° C, the
switch would sound a warning alarm; however, if the temperate were to rise to 92° C,
it would shut down the system to prevent damage.

If you want to see what the current temperatures and fan speeds are, use the show
chassis environment command, as shown in the following:

dhanks@opus> show chassis environment
Class Item                           Status     Measurement
Power FPC 0 Power Supply 0           OK
      FPC 0 Power Supply 1           OK
Temp  FPC 0 Sensor TopMiddle E       OK         29 degrees C / 84 degrees F
      FPC 0 Sensor TopRight I        OK         24 degrees C / 75 degrees F
      FPC 0 Sensor TopLeft I         OK         27 degrees C / 80 degrees F
      FPC 0 Sensor TopRight E        OK         25 degrees C / 77 degrees F
      FPC 0 Sensor CPURight I        OK         30 degrees C / 86 degrees F
      FPC 0 Sensor CPULeft I         OK         28 degrees C / 82 degrees F
      FPC 0 Sensor CPU Die Temp      OK         45 degrees C / 113 degrees F
Fans  FPC 0 Fan Tray 0               OK         Spinning at normal speed
      FPC 0 Fan Tray 1               OK         Spinning at normal speed
      FPC 0 Fan Tray 2               OK         Spinning at normal speed
      FPC 0 Fan Tray 3               OK         Spinning at normal speed
      FPC 0 Fan Tray 4               OK         Spinning at normal speed

To view the default thresholds, use the show chassis temperature-thresholds com
mands, as demonstrated here:

dhanks@opus> show chassis temperature-thresholds
                           Fan speed      Yellow alarm      Red alarm      Fire Shutdown
                          (degrees C)      (degrees C)     (degrees C)      (degrees C)
Item                     Normal  High   Normal  Bad fan   Normal  Bad fan     Normal
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FPC 3 Sensor TopMiddle E     47    67       65       65       71       71
FPC 3 Sensor TopRight I      41    65       63       63       69       69
FPC 3 Sensor TopLeft I       45    67       64       64       70       70
FPC 3 Sensor TopRight E      42    64       62       62       68       68
FPC 3 Sensor CPURight I      40    67       65       65       71       71
FPC 3 Sensor CPULeft I       44    65       63       63       69       69
FPC 3 Sensor CPU Die Temp    62    93       86       86       92       92

It’s important that you review the default sensor thresholds and see if they’re appro‐
priate for your environment; they’re your insurance policy against physically damag‐
ing the switch in harsh environments.

Control Plane
The control plane is essentially the brain of the switch. It encompasses a wide variety
of responsibilities that can be broken down into the following four categories:

Management
There are various ways to manage a switch. Some common examples are SSH,
Telnet, SNMP, and NETCONF.

Configuration and Provisioning
There are tools and protocols to change the way the switch operates and modify
state. Some examples include Puppet, Chef, Device Management Interface
(DMI), Open vSwitch Database (OVSDB), and OpenFlow.

Routing Protocols
For a switch to participate in a network topology, it’s common that the switch
needs to run a routing protocol. Some examples include OSPF, IS-IS, and BGP.

Switching Protocols
The same goes for Layer 2 protocols, such as LLDP, STP, LACP, and MC-LAG.

As described earlier in the chapter, Junos, the network operating system, is responsi‐
ble for all of the preceding functions.

The Juniper QFX5100 has a little trick up its sleeve. It takes virtualization to heart and
uses Linux and KVM to create its own virtualization framework (see Figure 1-30).
This creates two immediate benefits:

Two Routing Engines
Even though the control board has a single dual-core CPU, taking advantage of
virtualization, the Juniper QFX5100 is able to have two routing engines. One of
the primary benefits of two routing engines is the set of high-availability features.
The Juniper QFX5100 is able to take full advantage of Nonstop Routing (NSR),
Nonstop Bridging (NSB), Graceful Routing Engine Failover (GRES), and In-
Service Software Upgrade (ISSU).
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Snapshots
One of the great aspects of hypervisors is that they can take a snapshot of a vir‐
tual machine and have the ability to revert back to a snapshot at any time. Do you
have a big upgrade planned? Need a backout plan? Snapshots to the rescue.

Let’s take a look at how the Juniper QFX5100 is able to virtualize the control plane.
Figure 1-29 shows that the main tool being used is Linux and KVM.

Figure 1-29. The Juniper QFX5100 control plane architecture

The Juniper QFX5100 is able to reap all of the high-availability benefits through vir‐
tualization that are usually reserved for high-end systems such as the Juniper MX and
T Series. In addition to having two routing engines, there’s enough space remaining
to have a third virtual machine that you can use for third-party applications. Perhaps
you have some management scripts that need to be hosted locally, and you don’t want
it to interfere with the switch’s control plane. No problem, there’s a VM for that.

Are you interested in control plane virtualization and want to learn
more? Chapter 2 is dedicated to just that and shows you how all of
this works and is put together.

Processor, memory, and storage
The Juniper QFX5100 uses a modern Intel dual-core CPU based on the Sandy Bridge
architecture. The processor speed is 1.5 GHz, which is more than adequate for two
routing engines and third-party applications. The control board has 8 GB of memory.
Finally, the control board has a pair of 16 GB high-speed SSDs. Overall the Juniper
QFX5100 has a really zippy control plane, and you will enjoy the fast commit times
and quickness of the Junos CLI.
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Data Plane
So, let’s get right to it. The data plane is driven by a Broadcom BCM56850 chipset,
which is also known as the Trident II. As of this writing, it’s one of the latest
10/40GbE chipsets on the market from Broadcom. The Trident II chipset brings
many great features of which you can take advantage:

Single Chipset
Switch on a Chip (SoC) is a concept whereby the entire data plane of a switch is
driven by a single chipset. The advantage of this architecture is that it offers
much lower latency as compared to multiple chipsets. The Trident II chipset has
enough ports and throughput to drive the entire switch.

Overlay Networking
With the rise of SDN, new protocols such as VXLAN and NVGRE are being used
to decouple the network from the physical hardware. The Trident II chipset sup‐
ports the tunnel termination of both VXLAN and NVGRE in hardware with no
performance loss.

Bigger, Better, Faster
The Trident II chipset has more ports, more bandwidth, and higher throughput;
this allows the creation of better switches that can support a wide variety of port
configurations. Creating a family of switches that can be deployed in multiple
roles within a data center architecture using the same chipset has many advan‐
tages for both the customer and vendor.

Merchant silicon
Chipsets such as the Broadcom Trident II are often referred to as merchant silicon or
“off-the-shelf silicon” (OTS). Many networking vendors offer similar networking
switches that are based off the same chipsets as the Trident II. It would be an incor‐
rect assumption that networking switches that are based on the same chipsets are
identical in function. Recall from Figure 1-28, that the architecture of a network
switch includes three primary components: the chassis, switch board, and control
board. The control plane (control board) and the data plane (switch board) must
both be programmed and synchronized in order to provide a networking service or
feature. In other words, although the chipset might support a specific feature, unless
the control plane also supports it, you won’t be able to take advantage of it. Given the
importance of the control plane, it becomes increasingly critical when comparing dif‐
ferent network switches.

Having casual knowledge of the various chipsets helps when you need to quickly
access the “speeds and feeds” of a particular network switch. For example, network
switches based on the Trident II chipset will generally support 10GbE and 40GbE
interfaces, allow up to 104 interfaces, and will not exceed 1,280 Gbps of overall
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throughput. Such limitations exist because it’s the inherent limitation of the underly‐
ing chipset used in the network switch.

It’s absolutely required that both the control plane and data plane support a particular
network feature or service in order for that service or switch to be usable. Sometimes
network vendors state that a switch is “Foobar Enabled” or “Foobar Ready,” which
merely hints that the chipset itself supports it, but the control plane doesn’t and
requires additional development. If the vendor is being extra tricky, you will see “Foo‐
bar*,” with the asterisk denoting that the feature will be released—via the control
plane—in the future.

The control plane really brings the network switch to life; it’s the brains behind the
entire switch. Without the control plane, the switch is just a piece of metal and sili‐
con. This poses an interesting question: if multiple network vendors use the same
chipsets in the data plane, how do you choose which one is the best for your network?
The answer is simple and has two sides: the first is the switch board flexibility, and the
second is the differentiation that comes through the control plane.

Even though the chipset might be the same, vendors aren’t limited in how they can
use it to create a switch. For example, using the same chipset, you could build a fixed-
port network switch or create a network switch that uses modules. Some configura‐
tions make sense such as the 48 10GbE, because this is a common footprint for a
compute rack. There are other use cases besides an access switch; having the flexibil‐
ity to use different modules in the same switch allows you to place the same switch in
multiple roles in a data center.

More than any other component, the control plane impacts what is and what isn’t
possible with a network switch that’s based off merchant silicon. Some vendors limit
the number of data center technologies that are enabled on the switch. For example,
you can only use the switch in an Ethernet fabric or it only supports features to build
a spine-and-leaf network. Right off the bat, the control plane has already limited
where you can and cannot use the switch. What do you do when you want to build an
Ethernet fabric, but the switch can only be used in a spine-and-leaf network? The
Juniper QFX5100 family is known for “one box, many options” because it offers six
different switching technologies to build a network. You can read more about these
technologies in Chapter 3.

There are many inherent benefits that come with virtualizing the control plane by
using a hypervisor. One is the ability to create snapshots and roll back to a previous
known-good state. Another is the ability to have multiple control planes and routing
engines to enable features such as ISSU with which you can upgrade the switch
without dropping any traffic.

The control plane makes or breaks the switch. It’s crucial that you’re familiar with the
features and capabilities of the networking operating system. Junos has a very strong
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pedigree in the networking world and has been developed over the past 15 years,
which results in a very stable, robust, and feature-rich control plane. The control
plane is so critical that part of this chapter is dedicated to the Junos architecture, and
Chapter 2 focuses directly on the control plane virtualization architecture.

Architecture
So, let’s consider the Trident II chipset architecture. First and foremost is that the Tri‐
dent II has enough throughput and supports enough logical ports that it can drive the
entire network switch itself. Using a single chipset enables an SoC design that lowers
the overall power consumption and port-to-port latency. The Trident II chipset has
eight primary engines, as depicted in Figure 1-30.

Figure 1-30. Data plane functional architecture

Data is handled by the 10GbE and 40GbE interfaces and is processed by the eight
internal traffic engines. Each engine represents a discrete step in processing each
Ethernet frame that flows through the switch. By looking at the available functions of
a chipset, you can make some immediate assumptions regarding where the chipset
can be used in the network. For example, the chipset functions in Figure 1-30 are
appropriate for a data center or campus network, but they wouldn’t be applicable for
an edge and aggregation network or optical-core network. You have to use a chipset
with the appropriate functions that match the role in the network; this is why vendors
use merchant silicon for some devices and custom silicon for others, depending on
the use case.
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Life of a frame
As an Ethernet frame makes its way from one port to another, it has to move through
different processing engines in the data plane, as shown in Figure 1-31.

Figure 1-31. Data plane function blocks

Each functional block makes modifications to the Ethernet frame and then passes it
to the next functional block in the workflow. Each functional block has a very specific
function and role in processing the Ethernet frame. The end result is that as an Ether‐
net packet flows through the switch, it’s able to be manipulated by a wide variety of
services without a loss of performance. The following are descriptions of each func‐
tional block:

Intelligent Parser
The first step is to parse the first 128 bytes of the Ethernet frame. Various infor‐
mation, such as the Layer 2 header, Ethernet Type, Layer 3 header, and protocols
are saved into memory so that other functional blocks can quickly access this
information.

Tunnel Termination
The next step is to inspect the Ethernet frame in more detail and determine if the
switch needs to be a termination point of any tunnel protocols, such as VXLAN,
GRE, and MPLS.

Layer 2 Filtering
This functional block is a preprocessor to determine where to route Layer 2 and
Layer 3 packets. During this phase the packet can be moved to a different VLAN
or VRF depending on the information in the first 128 bytes.

Layer 2 Switching
During this stage of the process, the switch needs to process all Layer 2 functions
such as VLAN switching, process double-tags, and process encapsulations such
as GRE, MPLS, or VXLAN.
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Layer 3 Routing
When all of the Layer 2 processing is complete, the next stage in the process is
Layer 3. The Layer 3 routing functional block is responsible for unicast and mul‐
ticast lookups, longest prefix matching, and unicast reverse path forwarding
(uRPF).

Ingress Filtering
The most powerful filtering happens in the ingress filtering functional block. The
filtering happens in two stages: match and action. Nearly any field in the first 128
bytes of the packet can be used to identify and match fields that should be subject
to further processing. The actions could be to permit, drop, or change the for‐
warding class, or assign a new next hop.

Buffer Management
All Quality of Service features, such as congestion management, classification,
queuing, and scheduling are performed in the buffer management functional
block.

Traffic Management
If the Ethernet frame is subject to hashing such as LACP or ECMP, the packet is
run through the hashing algorithm to select the appropriate next hop. Support
for storm control for broadcast, multicast, and unknown unicast (BUM) is man‐
aged by the traffic management functional block.

Egress Filtering
Sometimes, it’s desirable to filter packets on egress. The egress filtering functional
block is identical to the ingress filtering functional block, except that the match‐
ing and actions are performed only for egress packets.

Frame Modification
Depending on all of the prior processing of the Ethernet frame, the final egress
frame might require substantial modification. In the simplest form the switch can
merely just decrement the IP time-to-live (TTL). A more complicated example
would be that an Ethernet frame needs to be encapsulated with VXLAN or
MPLS.

In summary, there are 10 discrete functional blocks that have specific roles and
responsibilities. Starting with intelligent parsing and ending with frame modification,
the life of a frame is subject to an end-to-end workload. Separating out the functions
into different blocks facilitates predictable behavior and latency as the Ethernet frame
makes its way through the switch.
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Design Options
Let’s take a look at some of the most common design options, and understand what
the differences are between them, and what challenges they solve. The following
design options will only make use of the Juniper QFX5100 family platforms. There
are other design options that can include QFabric and other platforms, but we will
review these in detail later in the book.

768×10GbE Ethernet Fabric
The first and most common design option is to create an Ethernet fabric using the
Juniper QFX5100 family. The Ethernet fabric—the VCF—is able to provide a single
point of management, 3:1 over-subscription, and FCoE support. VCF will be covered
in detail in Chapter 6, but let’s take a sneak peek at the topology and design benefits.

Figure 1-32. 768 10GbE VCF

As of this writing, a VCF has only two rules:

• The number of spines cannot exceed four members.
• The total number of switches in the fabric cannot exceed 20 members.

The example in Figure 1-32 has four spines using the Juniper QFX5100-24Q and 16
leaves using the Juniper QFX5100-48S; the total number of switches in this design
option is 20. Each spine has 32 40GbE interfaces, and each leaf has 48 10GbE and 6
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40GbE interfaces. Each leaf is using only 4 40GbE interfaces to connect to the spine,
so the total over-subscription is 480:160 or 3:1.

The astute reader will realize that only 4 out of the 6 40GbE inter‐
faces on the Juniper QFX5100-48S is being used. In addition, there
are only 16 out of 32 40GbE interfaces being used on the Juniper
QFX5100-24Q in the spine. This is because of the current limita‐
tion of 20 devices in a VCF.

Building a VCF with 768 10GbE interfaces is perfect for many small to medium-sized
data centers. Let’s explore the benefits of this VCF design option:

• 768 10GbE ports
• Single point of management and control
• Full support for FCoE and converged storage
• Topology-independent ISSU
• Full ECMP for both Layer 2 and Layer 3
• Plug-and-play implementation
• In-band control plane with no additional equipment required
• 1.5 µs end-to-end latency

With the assumption that each server requires two 10GbE links, a VCF network is a
great way to easily manage 384 servers with a single Ethernet fabric that supports
converged storage and the ability to upgrade the software without traffic loss. Also,
assume that each server can support up to 20 VMs; VCF can support 384 servers and
7,680 VMs.

3,072 10GbE Clos
A common alternative to building a Virtual Chassis Fabric is to build a Layer 3 Clos
Fabric, as illustrated in Figure 1-33. One of the key benefits of a Clos fabric is the
large scale; in this example, the Clos fabric is able to scale up to 3,072 10GbE ports.
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Figure 1-33. 3,072 10GbE Clos fabric

Clos fabrics are covered in greater depth in Chapter 8, but let’s take a look at some of
the key features of this design option. The speed and number of uplink interfaces of
the leaf switch determine the shape and size of the spine. In Figure 1-33, the leaf
switch is the Juniper QFX5100-96S, which has 8 40GbE uplinks. To build a simple
Clos, the easiest option is to select a spine switch that supports 40GbE interfaces and
have eight of them, which matches the number of uplinks on the Juniper
QFX5100-96S. In this example, we’ll use the Juniper QFX5100-24Q in the spine,
which results in a total of 32 40GbE interfaces. With a total of eight spine switches,
this results in 256 40GbE interfaces that can be used by the leaf switches. Because
each QFX5100-96S has eight uplinks, we’ll have a total of 32 leaves (256 ports/8
uplinks = 32 leaves). Each leaf has 96 10GbE interfaces, thus the Clos fabric has 3,072
10GbE interfaces (96 ports × 32 leaves = 3,072 10GbE).

One of the central assumptions with a Layer 3 Clos is that each switch uses a routing
protocol such as OSPF, IS-IS, or BGP to connect to one another. If you have a virtual‐
ized workload and want to use an overlay architecture, a Layer 3 Clos is the perfect
way to scale out your data center.

12,288 10GbE Clos
Now that you’re familiar with a Layer 3 Clos, let’s take it to the next level. The key to
building a large Clos is the number of ports that are available in the spine. An easy
way to increase the number of ports in the spine is to use VCF, as illustrated in
Figure 1-34.
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Figure 1-34. 128 40GbE VCF with 1:1 over-subscription

Using the 128 40GbE VCF illustrated in Figure 1-34, we’ve increased the capacity of a
single spine switch from 32 to 128. Now, let’s use the 128 40GbE VCF as a spine
switch in a Clos fabric, as shown in Figure 1-35.

Figure 1-35. 12,288 10GbE Clos fabric

Something very interesting just happened in this design option: we’ve used a “feature
within a feature” or a hierarchical approach. Typically, most people confine their
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thinking to a single physical switch when identifying a spine switch. If you take a look
at the requirements of a spine switch, it’s fairly basic:

• Generally 1:1 over-subscription
• Generally 40GbE interfaces
• Single point of management
• Capable of Layer 3

It’s true that a single physical switch meets the above requirements, but so does VCF.
In the example in Figure 1-35 the spine switches are VCF fabrics. Each VCF spine has
four QFX5100-24Q switches in its spine and eight QFX5100-24Q switches in its
leaves; this gives a total of 128 40GbE interfaces at 1:1 over-subscription. To meet the
1:1 over-subscription requirement, each leaf has 16 40GbE down and 16 40GbE going
up to the spine. Four spine switches handling 16×40GbE interfaces from each leaf can
result in 8 leaves total (4 spines × 32 ports)/16 uplinks = 8 leaves. We can summarize
the spines S1 through S8 in Figure 1-35 as follows:

• (4) QFX5100-24Q switches in the spine.
• (8) QFX5100-24-Q switches as the leaves.

— 16 40GbE interfaces going up to the spine.
— 16 40GbE interfaces available for use.

• 12 switches total in the VCF.
• 128 40GbE usable interfaces.
• 1:1 over-subscription.

The 12,288 10GbE design option has 138 discrete points of management; the assump‐
tion is that each VCF is a point of management (8) as well as of all the leaves (128).
Here’s a summary of the benefits of the Clos fabric:

• 12,288 10GbE ports
• No traffic loss during software upgrades with topology-independent ISSU
• Spine switches are a single point of management through VCF
• 3:1 over-subscription
• 2.5 µs end-to-end latency
• Lossless Ethernet support with PFC over Layer 3

Building a Clos is a great way to easily scale the network in an overlay architecture or
in environments that don’t require Layer 2 between leaves.
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49,152 10GbE Clos
So, let’s step up the game a little bit. Let’s assume that we don’t need a single point of
management in the spine. How would this effect the scale of the network? Let’s first
start by building the largest 40GbE Clos spine we can with the Juniper QFX5100-24Q,
assuming 1:1 over-subscription, as shown in Figure 1-36.

Figure 1-36. 512 40GbE Clos with 1:1 over-subscription

Now, each spine node can be a 512 40GbE Clos. This is the same concept as using
VCF, but in this case, each switch in the Clos has to be managed separately; this type
of design is referred as a Clos within a Clos.

<meme>Yo dawg, I herd you like Clos, so I put a Clos in your Clos
so you can Clos while you Clos</meme>

With each spine supporting 512 40GbE interfaces, we can combine it with the Juniper
QFX5100-96S switch, which has 8 40GbE uplinks. 512 ports × 8 spines / 8 uplinks =
512 leaves; finally 512 leaves × 96 ports = 49,152 10GbE ports, as illustrated in
Figure 1-37.
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Figure 1-37. 49,152 10GbE Clos fabric

The end result is that we have a very large Clos fabric that supports 49,152 10GbE
ports. Let’s take a moment to review the benefits of the Clos fabric:

• 49,152 10GbE ports
• No traffic loss during software upgrades with topology-independent ISSU
• 3:1 over-subscription
• 2.5 µs end-to-end latency
• Lossless Ethernet support with PFC over Layer 3

One of the main assumptions to a Clos fabric of this size is that it operates at Layer 3;
thus, your infrastructure and servers must not be dependent on Layer 2. Examples of
such applications and infrastructure are web applications, Platform as a Service
(PaaS), and overlay architecture. Keeping things simple at a large scale will reduce the
amount of things that can go wrong. Layer 3 has very fast convergence, is loop free,
and is able to scale easily.

Summary
This chapter has covered a lot of topics ranging from software to hardware. It’s
important to understand how the software and hardware are designed to work in
conjunction with each other. This combination creates a best-in-class switch that is
able to solve the difficult challenges data center operators are facing with the explo‐
sion of high-density 10GbE server ports and the need for delivering network services
within seconds.
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Being specifically designed to solve cloud computing and SDN requirements, the
Juniper QFX5100 family solves a wide variety of challenges and offers many unique
benefits, including the following:

Transport
Dense 10GbE and 40GbE interfaces to build a deterministic spine-and-leaf topol‐
ogy with an option of 1:1, 3:1, or 6:1 over-subscription.

Interfaces
Each 10GbE interface is tri-speed and supports 100 Mbps, 1GbE, or 10GbE. In
addition, each interface can support either copper or fiber connectivity. Higher
interface speeds such as 40GbE can be broken out into 4 10GbE interfaces by
using a breakout cable.

Overlay Networking
Each switch offers complete integration with Contrail and NSX to support over‐
lay networking. You can configure the Juniper QFX5100 family as the end point
in an overlay network architecture to support bare-metal servers.

Latency
An intelligent algorithm is used for each ingress packet to determine which for‐
warding architecture—store-and-forward or cut-through—should be used to
guarantee the least latency. On average, the port-to-port latency is only 500 nano‐
seconds.

Flexible Deployment Options
The Juniper QFX5100 series doesn’t force you into deploying a particular tech‐
nology or proprietary protocol. The Juniper QFX5100 family supports stand‐
alone, Virtual Chassis, QFabric node, VCF, MC-LAG, or a Clos architecture.

QFabric Node
You can use the Juniper QFX5100 as a node in the QFabric architecture. All of
the benefits of the Juniper QFX5100 are available when used as a QFabric node:
higher port density, overlay networking, and lower latency.

Virtualized Control Plane
The Juniper QFX5100 takes virtualization to heart. The control plane uses an
Intel Sandy Bridge CPU. The host operating system is Linux running KVM and
QEMU for virtualization. The network operating system is Junos and runs as a
VM and is able to take advantage of all of the benefits of virtualization such as
ISSU.

Unified Forwarding Table
Whether you need to support more MAC addresses or IPv4 prefixes in a Clos
architecture, the Juniper QFX5100 allows you to adjust the profile of the for‐
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warding table. There are five preconfigured profiles that range from L2 heavy to
L3 heavy.

Network Analytics
Some applications are sensitive to microbursts and latency. The Juniper QFX5100
makes it possible for you to get on-box reporting of queue depth, queue latency,
and microburst detection to facilitate and speed up the troubleshooting process.

Lossless Ethernet
When converging storage and data, it’s critical that storage be handled in such a
way that no traffic is dropped. The Juniper QFX5100 family supports DCBX,
ETS, and PFC to enable transit FCoE or lossless Ethernet for IP storage.

VCF
Ethernet fabrics provide the benefit of a single point of management, lossless
Ethernet, and full Layer 2 and Layer 3 services. The Juniper QFX5100 series can
form a VCF Ethernet fabric. This is a spine-and-leaf topology that supports full
ECMP but with all of the benefits of an Ethernet fabric.

Inline Network Services
Traditionally network services such as GRE and NAT are handled by another
device such as a router or firewall. The Juniper QFX5100 family can perform
both GRE and NAT in hardware without a performance loss.

The Juniper QFX5100 family brings a lot new features and differentiation to the table
when it comes to solving data center challenges. Because of the wide variety of fea‐
tures and differentiation, the Juniper QFX5100 is able to be positioned into many dif‐
ferent types of architectures, such as the following:

High-Frequency Trading
Speed is king when it comes to trading stocks; with an average port-to-port
latency of 500 nanoseconds, the Juniper QFX5100 family fits well in a high-
frequency trading architecture.

Private Cloud
Although the Juniper QFX5100 was specifically designed to solve the challenges
of cloud computing and public clouds, you can use the same features to solve the
needs of the private cloud. Enterprises, government agencies, and research insti‐
tutes are building out their own private clouds, and the Juniper QFX5100 meets
and exceeds all requirements.

Campus
High port density and a single point of management make the Juniper QFX5100
series a perfect fit in a campus architecture, specifically in the core and aggrega‐
tion roles.
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Enterprise
Offering the flexibility to be used in multiple deployment scenarios, the Juniper
QFX5100 family gives the enterprise the freedom to use the technology that best
fits its needs. You can use it as a standalone device, Virtual Chassis, QFabric
Node, VCF, MC-LAG, or in a Clos architecture.

It’s a very exciting time in the networking industry as SDN, cloud computing, and
data center technologies are continuing to push the envelope and bring new innova‐
tions and solutions to the field. The Juniper QFX5100 series of switches is embracing
all of the change that’s happening in the networking industry and providing clear and
distinctive solution differentiation. With its wide variety of features and differentia‐
tion, the Juniper QFX5100 family is able to quickly solve the challenges of cloud com‐
puting in the data center as well as other use cases such as high-frequency trading and
high-performance computing.

Chapter Review Questions
1. Which version of Junos is supported for three years?

a. The first major release of the year
b. The last maintenance release of the year
c. The last major release of the year
d. The last service release of the year

2. Which is not a function of the control plane?
a. Processing SSH traffic destined to the router
b. Updating the RIB
c. Updating the FIB
d. Processing a firewall filter on interface xe-0/0/0.0

3. How many modules does the Juniper QFX5100-24Q have?
a. 1
b. 2
c. 3
d. 4

4. Which functional block processes congestion management?
a. Intelligent parser
b. Traffic management
c. Buffer management
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d. Frame modification

5. What hypervisor does the Juniper QFX5100 use for the control plane?
a. Microsoft Hyper-V
b. VMware ESXi
c. Linux KVM
d. Linux Containers

6. On what chipset is the Juniper QFX5100 based?
a. Broadcom Trident
b. Broadcom Trident II
c. Marvell Lion
d. Juniper Trio

7. On what tier in the network does the Juniper QFX5100 support ISSU?
a. Core
b. Aggregation
c. Access
d. All

Chapter Review Answers
1. Answer: C. The last major release of Junos of a given calendar year is known as the Exten‐
ded End of Life (EEOL) release and is supported for three years.

2. Answer: D. The data/forwarding plane handles all packet processing such as firewall fil‐
ters, policers, or counters on the interface xe-0/0/0.0.

3. Answer: B. The Juniper QFX5100-24Q has two modules.

4. Answer: C. The buffer management block is responsible for all Quality of Service features,
which includes congestion management.

5. Answer: C. The Juniper QFX5100 family uses the Linux KVM hypervisor to virtualize the
control plane. Each VM runs the network operating system Junos.

6. Answer: B. The Juniper QFX5100 family is based on the Broadcom Trident II chipset.

7. Answer: D. Trick question. The Juniper QFX5100 family supports ISSU across platforms
that can be positioned anywhere in the network.
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CHAPTER 2

Control Plane Virtualization

The key factors driving the Juniper QFX5100 are the advent of virtualization and
cloud computing; however, there are many facets to virtualization. One is decoupling
the service from the physical hardware. When this is combined with orchestration
and automation, the service is now said to be agile: it has the ability to be quickly pro‐
visioned, even within seconds. Another aspect is scale in the number of instances of
the service. Because it becomes so easy to provision a service, the total number of
instances quickly increases.

Compute virtualization is such a simple concept, yet it yields massive benefit to both
the end user and operator. The next logical step is to apply the benefits of compute
virtualization to the control plane of the network. After all, the control board is noth‐
ing but an x86 processor, memory, and storage.

The immediate benefit of virtualizing the control board might not be so obvious.
Generally, operators like to toy around and create a virtual machine (VM) running
Linux so that they’re able to execute operational scripts and troubleshoot. However,
there is a much more exciting use case to virtualization of the control board. Tradi‐
tionally, only networking equipment that was chassis-based was able to support two
routing engines. The benefit of two routing engines is that it increases the high availa‐
bility of the chassis and allows the operator to upgrade the control plane software in
real time without traffic loss. This feature is commonly referred to as In-Service Soft‐
ware Upgrade (ISSU). One of the key requirements of ISSU is to have two routing
engines that are synchronized using the Nonstop Routing (NSR), Nonstop Bridging
(NSB), and Graceful Routing Engine Switchover (GRES) protocols. Fixed networking
equipment such as top-of-rack (ToR) switches generally have only a single routing
engine and do not support ISSU due to the lack of a second routing engine. Taking
advantage of virtualization allows a ToR switch to have two virtualized routing
engines that make possible features such as ISSU. The Juniper QFX5100 family takes
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virtualization to heart and uses the Linux kernel-based virtual machine (KVM) as the
host operating system and places Junos, the network operating system, inside of a
VM. When an operator wants to perform a real-time software upgrade, the Juniper
QFX5100 switch will provision a second routing engine, synchronize the data, and
perform the ISSU without dropping traffic.

Another great benefit of compute virtualization inside of a switch is that you can cre‐
ate user-defined VMs and run your own applications and programs on the switch.
Use cases include Network Functional Virtualization (NFV), network management,
and statistical reporting.

Architecture
Recall that the Juniper QFX5100 series is split into two major components (see
Figure 2-1): the control board and switch board. The control board is the foundation
for the control plane, whereas the switch board is the foundation for the data plane.

Figure 2-1. QFX5100 architecture

Focusing on the control board components, the blocks shaded in gray represent all of
the roles in that architecture that are responsible for virtualizing the control plane.
The control board is running commodity hardware that’s easily compatible with com‐
mon hypervisors. The processor is an Intel 1.5 Ghz dual-core Sandy Bridge CPU, and
there is 8 GB of memory and a 32 GB solid-state disk (SSD). The Juniper QFX5100
boots directly into CentOS Linux instead of Junos; this provides the platform with
several advantages. The first advantage is the ability to virtualize the underlying hard‐
ware by using Linux KVM and QEMU; the second advantage is the ability to host
operational daemons and Application Programming Interfaces (APIs) directly on the
host operating system.
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To make the management of the hypervisor easier, the virtualization library (libvir) is
used to provision and manage the VMs. The libvir provides a normalized manage‐
ment framework across a set of hypervisors. The ability to use a common framework
to control a hypervisor provides more flexibility in the future if any of the underlying
components happen to change.

Host Operating System
As mentioned in the previous section, the Juniper QFX5100 boots directly into Linux,
specifically CentOS. This provides the operating system and virtualization foundation
for Junos and all other network-related functionality.

Let’s log in to the host operating system and do some exploring:
dhanks@qfx5100> request app-engine host-shell
Last login: Sun Nov 17 14:30:47 from 192.168.1.2
--- Host 13.2I20131114_1603_vsdk_build_30 built 2013-11-14 16:03:50 UTC

Now, let’s take a peek at the PCI bus and see what’s installed on the host operating
system:

-sh-4.1# lspci
00:00.0 Host bridge: Intel Corporation 2nd Generation Core Processor Family DRAM Controller
(rev 09)
00:01.0 PCI bridge: Intel Corporation Xeon E3-1200/2nd Generation Core Processor Family PCI
Express Root Port (rev 09)
00:01.1 PCI bridge: Intel Corporation Xeon E3-1200/2nd Generation Core Processor Family PCI
Express Root Port (rev 09)
00:01.2 PCI bridge: Intel Corporation Xeon E3-1200/2nd Generation Core Processor Family PCI
Express Root Port (rev 09)
00:06.0 PCI bridge: Intel Corporation Xeon E3-1200/2nd Generation Core Processor Family PCI
Express Root Port (rev 09)
00:1c.0 PCI bridge: Intel Corporation DH89xxCC PCI Express Root Port #1 (rev 08)
00:1c.1 PCI bridge: Intel Corporation DH89xxCC PCI Express Root Port #2 (rev 08)
00:1c.2 PCI bridge: Intel Corporation DH89xxCC PCI Express Root Port #3 (rev 08)
00:1c.3 PCI bridge: Intel Corporation DH89xxCC PCI Express Root Port #4 (rev 08)
00:1d.0 USB controller: Intel Corporation DH89xxCC USB2 Enhanced Host Controller #1 (rev 08)
00:1f.0 ISA bridge: Intel Corporation DH89xxCC LPC Controller (rev 08)
00:1f.2 SATA controller: Intel Corporation DH89xxCC 4 Port SATA AHCI Controller (rev 08)
00:1f.3 SMBus: Intel Corporation DH89xxCC SMBus Controller (rev 08)
00:1f.7 System peripheral: Intel Corporation DH89xxCC Watchdog Timer (rev 08)
01:00.0 Co-processor: Intel Corporation Device 0434 (rev 21)
01:00.1 Ethernet controller: Intel Corporation DH8900CC Series Gigabit Network (rev 21)
01:00.2 Ethernet controller: Intel Corporation DH8900CC Series Gigabit Network (rev 21)
01:00.3 Ethernet controller: Intel Corporation DH8900CC Series Gigabit Network (rev 21)
01:00.4 Ethernet controller: Intel Corporation DH8900CC Series Gigabit Network (rev 21)
07:00.0 Unassigned class [ff00]: Juniper Networks Device 0062 (rev 01)
08:00.0 Unassigned class [ff00]: Juniper Networks Device 0063 (rev 01)
09:00.0 Ethernet controller: Broadcom Corporation Device b854 (rev 02)

Pretty vanilla so far. Four CPUs, a USB port, a SATA controller, and some network
interface controllers (NICs). But, the two Juniper Networks devices are interesting;
what are they? These are the FPGA controllers that are responsible for the chassis fan,
sensors, and other environmental functions.
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The final device is the Broadcom 56850 chipset. The way a network operating system
controls the Packet Forwarding Engine (PFE) is simply through a PCI interface by
using a Software Development Kit (SDK).

Let’s take a closer look at the CPU:
-sh-4.1# cat /proc/cpuinfo
processor       : 0
vendor_id       : GenuineIntel
cpu family      : 6
model           : 42
model name      : Intel(R) Pentium(R) CPU  @ 1.50GHz
stepping        : 7
cpu MHz         : 1500.069
cache size      : 3072 KB
physical id     : 0
siblings        : 4
core id         : 0
cpu cores       : 2
apicid          : 0
initial apicid  : 0
fpu             : yes
fpu_exception   : yes
cpuid level     : 13
wp              : yes
flags           : fpu vme de pse tsc msr pae mce cx8 apic mtrr pge mca cmov pat
pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx rdtscp lm
constant_tsc arch_perfmon pebs bts rep_good xtopology nonstop_tsc aperfmperf pni
pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 cx16 xtpr pdcm sse4_1 
sse4_2 x2apic popcnt aes xsave avx lahf_lm arat epb xsaveopt pln pts dts tpr_shadow 
vnmi flexpriority ept vpid
bogomips        : 3000.13
clflush size    : 64
cache_alignment : 64
address sizes   : 36 bits physical, 48 bits virtual
power management:

processor       : 1
vendor_id       : GenuineIntel
cpu family      : 6
model           : 42
model name      : Intel(R) Pentium(R) CPU  @ 1.50GHz
stepping        : 7
cpu MHz         : 1500.069
cache size      : 3072 KB
physical id     : 0
siblings        : 4
core id         : 0
cpu cores       : 2
apicid          : 1
initial apicid  : 1
fpu             : yes
fpu_exception   : yes
cpuid level     : 13
wp              : yes
flags           : fpu vme de pse tsc msr pae mce cx8 apic mtrr pge mca cmov pat
pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx rdtscp lm
constant_tsc arch_perfmon pebs bts rep_good xtopology nonstop_tsc aperfmperf pni
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pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 cx16 xtpr pdcm sse4_1 
sse4_2 x2apic popcnt aes xsave avx lahf_lm arat epb xsaveopt pln pts dts tpr_shadow 
vnmi flexpriority ept vpid
bogomips        : 3000.13
clflush size    : 64
cache_alignment : 64
address sizes   : 36 bits physical, 48 bits virtual
power management:

processor       : 2
vendor_id       : GenuineIntel
cpu family      : 6
model           : 42
model name      : Intel(R) Pentium(R) CPU  @ 1.50GHz
stepping        : 7
cpu MHz         : 1500.069
cache size      : 3072 KB
physical id     : 0
siblings        : 4
core id         : 1
cpu cores       : 2
apicid          : 2
initial apicid  : 2
fpu             : yes
fpu_exception   : yes
cpuid level     : 13
wp              : yes
flags           : fpu vme de pse tsc msr pae mce cx8 apic mtrr pge mca cmov pat
pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx rdtscp lm
constant_tsc arch_perfmon pebs bts rep_good xtopology nonstop_tsc aperfmperf pni
pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 cx16 xtpr pdcm sse4_1 
sse4_2 x2apic popcnt aes xsave avx lahf_lm arat epb xsaveopt pln pts dts tpr_shadow 
vnmi flexpriority ept vpid
bogomips        : 3000.13
clflush size    : 64
cache_alignment : 64
address sizes   : 36 bits physical, 48 bits virtual
power management:

processor       : 3
vendor_id       : GenuineIntel
cpu family      : 6
model           : 42
model name      : Intel(R) Pentium(R) CPU  @ 1.50GHz
stepping        : 7
cpu MHz         : 1500.069
cache size      : 3072 KB
physical id     : 0
siblings        : 4
core id         : 1
cpu cores       : 2
apicid          : 3
initial apicid  : 3
fpu             : yes
fpu_exception   : yes
cpuid level     : 13
wp              : yes
flags           : fpu vme de pse tsc msr pae mce cx8 apic mtrr pge mca cmov pat
pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx rdtscp lm
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constant_tsc arch_perfmon pebs bts rep_good xtopology nonstop_tsc aperfmperf pni
pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 cx16 xtpr pdcm sse4_1 
sse4_2 x2apic popcnt aes xsave avx lahf_lm arat epb xsaveopt pln pts dts tpr_shadow 
vnmi flexpriority ept vpid
bogomips        : 3000.13
clflush size    : 64
cache_alignment : 64
address sizes   : 36 bits physical, 48 bits virtual
power management:

The CPU is a server-class Intel Xeon E3-1200 processor; it’s a single socket with four
cores. There’s plenty of power to operate multiple VMs and the network operating
system.

Now, let’s move on to the memory:
-sh-4.1# free
             total       used       free     shared    buffers     cached
Mem:       7529184    3135536    4393648          0     158820     746800
-/+ buffers/cache:    2229916    5299268
Swap:

After some of the memory has been reserved by other hardware and the kernel, you
can see that we have about 7.3 GB total.

Next, let’s see how many disks there are and how they’re partitioned:
-sh-4.1# fdisk -l

Disk /dev/sdb: 16.0 GB, 16013852672 bytes
255 heads, 63 sectors/track, 1946 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x000dea11

   Device Boot      Start         End      Blocks   Id  System
/dev/sdb1   *           1         125     1000000   83  Linux
Partition 1 does not end on cylinder boundary.
/dev/sdb2             125        1857    13914062+  83  Linux

Disk /dev/sda: 16.0 GB, 16013852672 bytes
255 heads, 63 sectors/track, 1946 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x000d8b25

   Device Boot      Start         End      Blocks   Id  System
/dev/sda1   *           1         125     1000000   83  Linux
Partition 1 does not end on cylinder boundary.
/dev/sda2             125        1857    13914062+  83  Linux

Disk /dev/mapper/vg0_vjunos-lv_junos_recovery: 4294 MB, 4294967296 bytes
255 heads, 63 sectors/track, 522 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x00000000

64 | Chapter 2: Control Plane Virtualization



Disk /dev/mapper/vg0_vjunos-lv_var: 11.3 GB, 11307843584 bytes
255 heads, 63 sectors/track, 1374 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x00000000

Disk /dev/mapper/vg0_vjunos-lv_junos: 12.9 GB, 12884901888 bytes
255 heads, 63 sectors/track, 1566 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x00000000

The host system has two SSD storage devices, each with 16 GB of capacity. From the
partition layout illustrated in Figure 2-2, you can see that we’re running the Linux
Volume Manager (LVM).

Figure 2-2. Linux LVM and storage design

There are two 16 GB SSDs, which are part of the Linux LVM. The primary volume
group is vg0_vjunos. This volume group has three volumes that are used by Junos:

• lv_junos_recovery
• lv_var
• lv_junos

Linux KVM
When the Juniper QFX5100 boots up, the host operating system is Linux. All of the
control plane operations happen within the network operating system, Junos. The
Juniper QFX5100 takes advantage of compute virtualization in the host operating sys‐
tem by using Linux KVM. A VM is created specifically for Junos. Given that KVM
can create multiple VMs, the Juniper QFX5100 series has the ability to perform ISSU
and support third-party VMs that can host additional services such as network man‐
agement and monitoring.
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virsh
The Juniper QFX5100 uses the libvir library as well as the libsh management user
interface to interact with Linux KVM. If you’re familiar with libvir, walking around
the virtualization capabilities of the Juniper QFX5100 will come as second nature. If
you aren’t familiar with libvir, let’s use virsh to explore and see what’s happening
under the hood.

The first thing we need to do is drop into the host shell from the Junos CLI:
dhanks@qfx5100> request app-engine host-shell
Last login: Sun Nov 17 14:30:47 from 192.168.1.2
--- Host 13.2I20131114_1603_vsdk_build_30 built 2013-11-14 16:03:50 UTC

Now, let’s take a look at the VMs installed in the Linux KVM:
-sh-4.1# virsh list --all
 Id    Name                           State
----------------------------------------------------
 1     vjunos0                        running

By default there’s a single VM running the Junos networking operating system. The
VM’s name is vjunos0 with an ID of 1, and we can see that the state is running.

Hmm. Are you curious as to what version of the libvir library and QEMU the Juniper
QFX5100 is using? Let’s find out:

-sh-4.1# virsh version
Compiled against library: libvir 0.9.10
Using library: libvir 0.9.10
Using API: QEMU 0.9.10
Running hypervisor: QEMU 0.12.1

At this point, let’s take a look at the overall host memory and CPU statistics:
-sh-4.1# virsh nodememstats
total  :              7269088 kB
free   :              4147596 kB
buffers:               264772 kB
cached :               761476 kB

-sh-4.1#
-sh-4.1# virsh nodecpustats

user:                305995340000000
system:              145678380000000
idle:              11460475070000000
iowait:                1075190000000
sdf

Now that we’re familiar with what the host system is capable of, software versions,
and of course how many VMs are configured, let’s examine the Junos VM:

-sh-4.1# virsh dominfo vjunos0
Id:             1
Name:           vjunos0
UUID:           100e7ead-ae00-0140-0000-564a554e4f53
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OS Type:        hvm
State:          running
CPU(s):         1
CPU time:       445895.2s
Max memory:     2000896 kB
Used memory:    2000896 kB
Persistent:     no
Autostart:      disable
Managed save:   no

Each VM has a unique identifier that can be used to refer to the VM. One of the more
interesting attributes is the OS Type, which is set to hvm; this stands for Hardware
Virtual Machine. Because Junos is based on FreeBSD and heavily modified to support
network control plane functions, it’s difficult to say that it’s pure FreeBSD. Instead,
the alternative is to use a vendor-neutral OS Type of hvm, which basically means that
it’s an x86-based operating system.

Let’s focus on the memory and network settings for vjunos0:
-sh-4.1# virsh dommemstat vjunos0
rss 1895128

-sh-4.1# virsh domiflist vjunos0
Interface  Type       Source     Model       MAC
-------------------------------------------------------
vnet0      bridge     virbr0     e1000       52:54:00:bf:d1:6c
vnet1      bridge     ctrlbr0    e1000       52:54:00:e7:b6:cd

In the 13.2X53D20 version of Junos, there are two bridges installed for the VMs
within KVM. The vnet0/virbr0 interface is used across all of the VMs to communi‐
cate with the outside world through their management interfaces. The other interface,
vnet1/ctrlbr0, is used exclusively for ISSU. During an ISSU, there are two copies of
Junos running; all control plane communication between the VMs are performed
over this special bridge so that any other control plane functions such as Secure Shell
(SSH), Open Shortest Path First (OSPF), and Border Gateway Protocol (BGP) aren’t
impacted while synchronizing the kernel state between the master and backup Junos
VMs.

Another interesting place to look for more information is in the /proc filesystem. We
can take a look at the process ID (PID) of vjunos0 and examine the task status:

-sh-4.1# cat /var/run/libvirt/qemu/vjunos0.pid
2972
-sh-4.1# cat /proc/2972/task/*/status
Name:   qemu-kvm
State:  S (sleeping)
Tgid:   2972
Pid:    2972
PPid:   1
TracerPid:      0
Uid:    0       0       0       0
Gid:    0       0       0       0
Utrace: 0
FDSize: 256
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Groups:
VmPeak:  2475100 kB
VmSize:  2276920 kB
VmLck:         0 kB
VmHWM:   1895132 kB
VmRSS:   1895128 kB
VmData:  2139812 kB
VmStk:        88 kB
VmExe:      2532 kB
VmLib:     16144 kB
VmPTE:      4284 kB
VmSwap:        0 kB
Threads:        2
SigQ:   1/55666
SigPnd: 0000000000000000
ShdPnd: 0000000000000000
SigBlk: 0000000010002840
SigIgn: 0000000000001000
SigCgt: 0000002180006043
CapInh: 0000000000000000
CapPrm: fffffffc00000000
CapEff: fffffffc00000000
CapBnd: fffffffc00000000
Cpus_allowed:   04
Cpus_allowed_list:      2
Mems_allowed:
00000000,00000000,00000000,00000000,00000000,00000000,00000000,
00000000,00000000,00000000,00000000,00000000,00000000,00000000,
00000000,00000001
Mems_allowed_list:      0
voluntary_ctxt_switches:        5825006750
nonvoluntary_ctxt_switches:     46300
Name:   qemu-kvm
State:  S (sleeping)
Tgid:   2972
Pid:    2975
PPid:   1
TracerPid:      0
Uid:    0       0       0       0
Gid:    0       0       0       0
Utrace: 0
FDSize: 256
Groups:
VmPeak:  2475100 kB
VmSize:  2276920 kB
VmLck:         0 kB
VmHWM:   1895132 kB
VmRSS:   1895128 kB
VmData:  2139812 kB
VmStk:        88 kB
VmExe:      2532 kB
VmLib:     16144 kB
VmPTE:      4284 kB
VmSwap:        0 kB
Threads:        2
SigQ:   1/55666
SigPnd: 0000000000000000
ShdPnd: 0000000000000000
SigBlk: ffffffde7ffbfebf
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SigIgn: 0000000000001000
SigCgt: 0000002180006043
CapInh: 0000000000000000
CapPrm: fffffffc00000000
CapEff: fffffffc00000000
CapBnd: fffffffc00000000
Cpus_allowed:   04
Cpus_allowed_list:      2
Mems_allowed:
00000000,00000000,00000000,00000000,00000000,00000000,00000000,
00000000,00000000,00000000,00000000,00000000,00000000,00000000,
00000000,00000001
Mems_allowed_list:      0
voluntary_ctxt_switches:        5526311517
nonvoluntary_ctxt_switches:     586609665

One of the more interesting things to notice is the Cpus_allowed_list, which is set
to a value of 2. By default, Juniper assigns the third CPU directly to the vjunos0 VM;
this guarantees that other tasks outside of the scope of the control plane don’t nega‐
tively impact Junos. The value is set to 2 because the first CPU has a value of 0. We
can verify this again with another virsh command:

-sh-4.1# virsh vcpuinfo vjunos0
VCPU:           0
CPU:            2
State:          running
CPU time:       311544.1s
CPU Affinity:   --y-

We can see that the CPU affinity is set to y on the third CPU, which verifies what we
see in the /proc file system.

App Engine
If you’re interested in learning more about the VMs but don’t feel like dropping to the
host shell and using virsh commands, there is an alternative called the Junos App
Engine, which is accessible within the Junos CLI.

To view the App Engine settings, use the show app-engine command. There are sev‐
eral different views that are available, as listed in Table 2-1.

Table 2-1. Junos App Engine views

View Description

ARP View all of the ARP entries of the VMs connected into all the bridge domains

Bridge View all of the configured Linux bridge tables

Information Get information about the compute cluster, such as model, kernel version, and management IP addresses

Netstat Just a simple wrapper around the Linux netstat –rn command

Resource usage Show the CPU, memory, disk, and storage usage statistics in an easy-to-read format
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Let’s explore some of the most common Junos App Engine commands and examine
the output:

dhanks@QFX5100> show app-engine arp
Compute cluster: default-cluster

  Compute node: default-node

   Arp
   ===
   Address                  HWtype  HWaddress        Flags Mask            Iface
   192.168.1.2              ether   10:0e:7e:ad:af:30   C                  virbr0

This is just a simple summary show command that aggregates the management IP,
MAC, and the bridge table to which it’s bound.

Let’s take a look at the bridge tables:
dhanks@QFX5100> show app-engine bridge
Compute cluster: default-cluster

  Compute node: default-node

   Bridge Table
   ============
   bridge name  bridge id               STP enabled     interfaces
   ctrlbr0              8000.fe5400e7b6cd       no      vnet1
   virbr0               8000.100e7eadae03       yes     virbr0-nic
                                                        vnet0

Just another nice wrapper for the Linux brctl command. Recall that vnet0 is for the
regular control plane side of Junos, whereas vnet1 is reserved for inter-routing
engine traffic during an ISSU:

dhanks@QFX5100> show app-engine resource-usage
Compute cluster: default-cluster

  Compute node: default-node
   CPU Usage
   =========
   15:48:46     CPU    %usr   %nice    %sys %iowait    %irq   %soft  %steal  %guest   %idle
   15:48:46     all    0.30    0.00    1.22    0.01    0.00    0.00    0.00    2.27   96.20
   15:48:46       0    0.08    0.00    0.08    0.03    0.00    0.00    0.00    0.00   99.81
   15:48:46       1    0.08    0.00    0.11    0.00    0.00    0.00    0.00    0.00   99.81
   15:48:46       2    1.03    0.00    4.75    0.01    0.00    0.00    0.00    9.18   85.03
   15:48:46       3    0.00    0.00    0.00    0.00    0.00    0.00    0.00    0.00  100.00

   Memory Usage
   ============
                total       used       free     shared    buffers     cached
   Mem:          7098       3047       4051          0        258        743
   Swap:            0          0          0

   Disk Usage
   ==========
   Filesystem            Size  Used Avail Use% Mounted on
   tmpfs                 3.5G  4.0K  3.5G   1% /dev/shm
   /dev/mapper/vg0_vjunos-lv_var
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                          11G  198M  9.7G   2% /var
   /dev/mapper/vg0_vjun
   os-lv_junos
                          12G  2.2G  9.1G  20% /junos
   /dev/mapper/vg0_vjunos-lv_junos_recovery
                         4.0G  976M  2.8G  26% /recovery
   /dev/sda1             962M  312M  602M  35% /boot

   Storage Information
   ===================
     VG         #PV #LV #SN Attr   VSize  VFree
     vg0_vjunos   2   3   0 wz--n- 26.53g    0

show app-engine resource-usage is a nice aggregated command showing the uti‐
lization of the CPU, memory, disk, and storage information; it’s a very easy way to get
a bird’s-eye view of the health of the App Engine.

ISSU
Since the original M Series routers, one of the great Junos features is its ability to sup‐
port ISSU. With ISSU, the network operating system can upgrade the firmware of the
router without having to shut it down and impact production traffic. One of the key
requirements for ISSU is that there are two routing engines. During an ISSU, the two
engines need to synchronize kernel and control plane state with each other. The idea
is that one routing engine is upgraded while the other routing engine is handling the
control plane.

Although Juniper QFX5100 switches don’t physically have two routing engines, they
are able to carry out the same functional requirements thanks to the power of virtual‐
ization. The Juniper QFX5100 series is able to create a second VM running Junos
during an ISSU to meet all of the synchronization requirements, as is illustrated in
Figure 2-3.

Each Junos VM has three management interfaces. Two of those interfaces, em0 and
em1, are used for management and map to the external interfaces C0 and C1, respec‐
tively. The third management interface, em2, is used exclusively for communication
between the two Junos VMs. For example, control plane protocols such as NSR, NSB,
and GRES are required in order for a successful ISSU to complete; these protocols
would communicate across the isolated em2 interface as well as an isolated ctrlbr0
bridge table in the Linux host.
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Figure 2-3. The QFX5100 Linux KVM and management architecture

The backup Junos VM is only created and running during an ISSU. At a high level,
Junos goes through the following steps during an ISSU:

• The backup Junos VM is created and started.
• The backup Junos VM is upgraded to the software version specified in the ISSU

command.
• The PFE goes into an ISSU-prepared state in which data is copied from the PFE

to RAM.
• The PFE connects to the recently upgraded backup Junos VM, which now

becomes the master routing engine.
• The PFE performs a warm reboot.
• The new master Junos VM installs the PFE state from RAM back into the PFE.
• The other Junos VM is shut down.
• Junos has been upgraded and the PFE has performed a warm reboot.

Let’s see an ISSU in action:
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dhanks@QFX5100> request system software in-service-upgrade flex-13.2X51-D20.2-
domestic-signed.tgz
warning: Do NOT use /user during ISSU. Changes to /user during ISSU may get lost!
ISSU: Validating Image
error: 'Non Stop Routing' not configured
error: aborting ISSU
error: ISSU Aborted!
ISSU: IDLE

Ah, bummer! What happened here? There are some requirements for the control
plane that must be enabled before a successful ISSU can be achieved:

• NSR
• NSB
• GRES
• Commit Synchronization

Let’s configure these quickly and try an ISSU once again.
{master:0}[edit]
dhanks@QFX5100# set chassis redundancy graceful-switchover
{master:0}[edit]
dhanks@QFX5100# set protocols layer2-control nonstop-bridging
{master:0}[edit]
dhanks@QFX5100# set system commit synchronize
{master:0}[edit]
dhanks@QFX5100# commit and-quit
configuration check succeeds
commit complete
Exiting configuration mode

OK, now that all of the software features required for ISSU are configured and com‐
mitted, let’s try the ISSU one more time:

dhanks@QFX5100> request system software in-service-upgrade flex-13.2X51-D20.2-
domestic-signed.tgz
warning: Do NOT use /user during ISSU. Changes to /user during ISSU may get lost!
ISSU: Validating Image
ISSU: Preparing Backup RE
Prepare for ISSU
ISSU: Backup RE Prepare Done
Extracting jinstall-qfx-5-flex-13.2X51-D20.2-domestic ...
Install jinstall-qfx-5-flex-13.2X51-D20.2-domestic completed
Spawning the backup RE
Spawn backup RE, index 1 successful
GRES in progress
GRES done in 0 seconds
Waiting for backup RE switchover ready
GRES operational
Copying home directories
Copying home directories successful
Initiating Chassis In-Service-Upgrade
Chassis ISSU Started
ISSU: Preparing Daemons
ISSU: Daemons Ready for ISSU
ISSU: Starting Upgrade for FRUs
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ISSU: Preparing for Switchover
ISSU: Ready for Switchover
Checking In-Service-Upgrade status
  Item           Status                  Reason
  FPC 0          Online
Send ISSU done to chassisd on backup RE
Chassis ISSU Completed
ISSU: IDLE
Initiate em0 device handoff
pci-stub 0000:01:00.1: transaction is not cleared; proceeding with reset anyway
pci-stub 0000:01:00.1: transaction is not cleared; proceeding with reset anyway
pci-stub 0000:01:00.1: transaction is not cleared; proceeding with reset anyway
pci-stub 0000:01:00.1: transaction is not cleared; proceeding with reset anyway
em0: bus=0, device=3, func=0, Ethernet address 10:0e:7e:b2:2d:78
hub 1-1:1.0: over-current change on port 1
hub 1-1:1.0: over-current change on port 3
hub 1-1:1.0: over-current change on port 5

QFX5100 (ttyd0)

login:

Excellent! The ISSU has completed successfully and no traffic was impacted during
the software upgrade of Junos.

One of the advantages of the Broadcom warm reboot feature is that no firmware is
installed in the PFE. This effectively makes the ISSU problem a control plane–only
problem, which is very easy to solve. When you need to synchronize both the PFE
firmware and control plane firmware, there are more moving parts, and the problem
is more difficult to solve. Juniper MX Series by Douglas Richard Hanks, Jr. and Harry
Reynolds (O’Reilly) thoroughly explains all of the benefits and drawbacks of ISSU in
such a platform that upgrades both the control plane firmware in addition to the PFE
firmware. The end result is that a control plane–only ISSU is more stable and finishes
much faster when compared to a platform such as the Juniper MX. However, the
obvious drawback is that no new PFE features can be used as part of a control plane–
only ISSU, which is where the Juniper MX would win.

Summary
This chapter walked you through the design of the control plane and how the Juniper
QFX5100 is really just a server that thinks it’s a switch. The Juniper QFX5100 has a
powerful Intel CPU, standard memory, and SSD hard drives. What was surprising is
that the switch boots directly into Linux and uses KVM to virtualize Junos, which is
the network operating system. Because Junos is running a VM, it enables the Juniper
QFX5100 to support carrier-class features such as ISSU, NSR, and NSB.
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CHAPTER 3

Performance and Scaling

One of the more challenging tasks of a network architect is to ensure that a design
put forth meets the end-to-end solution requirements. The first step is identifying all
of the roles in an architecture; this could be as simple as defining the edge, core,
aggregation, and access tiers in the network. Each role has a specific set of responsi‐
bilities in terms of functionality and requirements. To map a product to a role in an
architecture, the product must meet or exceed the requirements and functionality
required by each role for which it’s being considered. Thus, building an end-to-end
solution architecture is a bit like a long chain: it’s only as strong as the weakest link.

The most common method for ascertaining the product capabilities, performance,
and scale are through datasheets or the vendor’s account team. However, the best
method is actually testing by going through a proof of concept or certification cycle.
This requires that you build out all of the roles and products in the architecture and
measure the end-to-end results; this method quickly flushes out any issues before
moving into procurement and production.

This chapter will walk through all of the performance and scaling considerations
required to successfully map a product into a specific role in an end-to-end architec‐
ture. Attributes such as MAC address, host entries, and IPv4 prefixes will be clearly
spelled out. Armed with this data, you will be able to easily map Juniper QFX5100
series switches into many different roles in your existing network.

Design Considerations
Before any good network architect jumps head first into performance and scaling
requirements, he will need to make a list of design considerations. Each one places an
additional tax on the network that is outside of the scope of traditional performance
and scaling requirements.
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Overlay Architecture
One of the first design questions that you need to consider when planning a next-
generation network is do you need to centrally orchestrate all resources in the data
center so that applications can be deployed within seconds? The follow-up question is
do you currently virtualize your data center compute and storage with hypervisors
and cloud management platforms? If the answer is yes to both these questions, you
must consider an overlay architecture when it comes to the data center network.

Given that compute and storage has already been virtualized, the next step is to virtu‐
alize the network. By using an overlay architecture in the network, you can decouple
physical hardware from the network, which is one of the primary tenets of virtualiza‐
tion. Decoupling the network from the physical hardware allows the network to be
programmatically provisioned within seconds. As of this writing, two great examples
of products that support overlay architectures are Juniper Contrail and VMware NSX.

Moving to a new network architecture places a different “network tax” on the data
center. Traditionally, when servers and virtual machines (VMs) are connected to a
network, they each consume a MAC address and host route entry in the network.
However, in an overlay architecture, only the virtual tunnel end points (VTEP) con‐
sume a MAC address and host route entry in the network. All VM traffic is now
encapsulated between VTEPs and the MAC address, and the host route of each VM
isn’t visible to the underlying networking equipment. Now, the MAC address and
host route scale has been moved from the physical network hardware to the hypervi‐
sor.

Bare-metal servers
It’s rare to find a data center that has virtualized 100 percent of its compute resources.
There’s always a subset of servers that you cannot virtualize due to performance,
compliance, or any number of other reasons. This raises an interesting question: if 80
percent of the servers in the data center are virtualized and take advantage of an over‐
lay architecture, how do you provide connectivity to the other 20 percent of physical
servers?

Overlay architectures support several mechanisms to provide connectivity to physical
servers. The most common option is to embed a VTEP into the physical access
switch, as demonstrated in Figure 3-1.
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Figure 3-1. Virtual to physical data flow in an overlay architecture

In Figure 3-1, each server on the left and right of the IP Fabric has been virtualized
with a hypervisor. Each hypervisor has a VTEP within it that handles the encapsula‐
tion of data plane traffic between VMs. Each VTEP also handles MAC address learn‐
ing, provisioning of new virtual networks, and other configuration changes. The
server on top of the IP Fabric is a simple physical server but doesn’t have any VTEP
capabilities of its own. For the physical server to participate in the overlay architec‐
ture, it needs something to encapsulate the data plane traffic and perform MAC
address learning. Being able to handle the VTEP role inside of an access switch sim‐
plifies the overlay architecture. Now, each access switch that has physical servers con‐
nected to it can simply perform the overlay encapsulation and control plane on behalf
of the physical server. From the point of view of the physical server, it simply sends
traffic into the network without having to worry about anything else.

The Juniper QFX5100 series supports full overlay integration for both Juniper Con‐
trail and VMware NSX in the data plane and control plane. However, the use case
isn’t limited to only bare-metal servers; another use case would be to inject physical
network services such as load balancing or firewalls into an overlay architecture.
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Juniper Architectures versus Open Architectures
The other common design option is to weight the benefits of Juniper architectures
with open architectures. The benefits of a Juniper architecture is that it has been
designed specifically to enable turnkey functionality, but the downside is that it
requires a certain set of products to operate. On the other side are open architectures.
The benefit to an open architecture is that it can be supported across a set of multiple
vendors, but the downside is that you might lose some capabilities that are only avail‐
able in the Juniper architectures.

Generally, it boils down to the size of the network. If you know that your network will
never grow past a certain size and you’re procuring all of the hardware up front, using
a Juniper architecture might simply outweigh all of the benefits of an open architec‐
ture, because there isn’t a need to support multiple vendors. Another scenario is that
your network is large enough that you can’t build it all at once and want a pay-as-you-
grow option over the next five years. A logical option would be to implement open
architectures so that as you build out your network, you aren’t limited in the number
of options going forward. Another option would be to take a hybrid approach and
build out the network in points of delivery (POD). Each POD could have the option
to take advantage of proprietary architectures or not.

Each business and network is going to have any number of external forces that weigh
on the decision to go with Juniper architectures and open architectures, and more
often than not, these decisions change over time. Unless you know 100 percent of
these nuances up front, it’s important to select a networking platform that offers both
Juniper architectures and open architectures.

The Juniper QFX5100 series offers the best of both worlds. It supports open architec‐
tures equally as well as Juniper architectures, as is summarized here:

Juniper Architectures
The Juniper QFX5100 family is able to participate in a Juniper QFabric architec‐
ture as a node. You can also use them to build a Virtual Chassis Fabric (VCF) or a
traditional Virtual Chassis. In summary, these Juniper architectures give you the
ability to build a plug-and-play Ethernet fabric with a single point of manage‐
ment and support converged storage.

Open Architectures
Juniper QFX5100 switches support Multi-Chassis Link Aggregation (MC-LAG)
so that downstream devices can simply use IEEE 802.1AX/LACP to connect and
transport data. The Juniper QFX5100 series also supports a wide range of open
protocols, such as Border Gateway Protocol (BGP), Open Shortest Path First
(OSPF), Intermediate System to Intermediate System (IS-IS), and a suite of Mul‐
tiprotocol Label Switching (MPLS) technologies.
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The Juniper QFX5100 makes a great choice no matter where you place it in your net‐
work. You could choose to deploy an open architecture today, and change to a Juni‐
per architecture in the future. One of the best tools in creating a winning strategy is to
keep the number of options high.

Over-subscription
There are several different types of chipsets in the Broadcom Trident II family. Each
chipset has different performance and over-subscription values. Table 3-1 lists them
for you.

Table 3-1. Broadcom Trident II family bandwidth and over-subscription options

Broadcom chipset I/O bandwidth Core bandwidth Over-subscription ratio

Trident II: option 1 1,280 Gbps 960 Gbps 4:3

Trident II: option 2 1,280 Gbps 720 Gbps 16:9

Trident II: option 3 960 Gbps 960 Gbps 1:1

Trident II: option 4 720 Gbps 720 Gbps 1:1

All of the Juniper QFX5100 platforms have been designed around Broadcom Trident
II option 1, which is the BCM56850 chipset. Out of all of the options available, this
chipset represents the most I/O and core bandwidth available. To fully understand
the implications of the 4:3 over-subscription, let’s take a closer look at the chipset’s
architecture.

Architecture
The BCM56850 is divided into four groups (see Figure 3-2). Each group supports
25% of the available core bandwidth, which in the case of the BCM56850 is 960 Gbps;
thus, each group supports 240 Gbps in the core. Each group also has a set of eight
cores that are responsible for processing traffic. Each core can handle 40 Gbps of traf‐
fic, and because each group has eight cores, the total amount of I/O bandwidth each
group can support is 320 Gbps.
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Figure 3-2. Block diagram of the BCM58850 chipset

In summary, each group supports 240 Gbps of core bandwidth and 320 Gbps of I/O
bandwidth via the eight cores. Simplifying the ratio 320:240 results in the 4:3 over-
subscription, as stipulated earlier in Table 3-1.

Figure 3-3. Flow visualization of I/O and core bandwidth
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The final result in an over-subscription of the I/O to core bandwidth is that packets
of a certain size will be dropped assuming that all of the ports in the switch are run‐
ning at line rate. Details of the effects of over-subscription are discussed in the “Per‐
formance” on page 84 later in the chapter.

QFX5100-24Q System Modes
As a result of the over-subscription and port channelization features of the
BCM56850 chipset, the data center operator is afforded more flexibility in the
deployment of the switch. The Juniper QFX5100-24Q is the most flexible platform in
the Juniper QFX5100 series, and it supports several system modes in which the
switch can operate. Each mode is designed specifically to enable certain capabilities
over the others. Understanding what each mode enables is critical because it will be
another design consideration in the overall architecture of your network.

Any renumbering of interfaces requires a warm Broadcom chipset
reboot. For example, changing from one mode to another will
cause a small interruption in data plane traffic as the Broadcom
chipset performs a warm reboot to reconfigure the number of
ports. The only exception is the Flexible QIC mode. Depending on
which QIC you use, the number of ports can vary; however, as long
as you stay in Flexible QIC mode, no Broadcom chipset reboot is
required.

Fully subscribed mode
The fully subscribed mode is the default mode for the Juniper QFX5100-24Q.
Because the Juniper QFX5100-24Q has a native bandwidth capacity of 960 Gbps (24
ports of 40 Gbps) without any modules installed, it’s able to provide full line-rate per‐
formance for all packet sizes without drops. In this default mode, you cannot use any
of the QIC modules; however, you can channelize all of the native 40GbE ports into 4
10GbE interfaces. The port configurations can be summarized as follows:

24 40GbE
In the default configuration, you can use all of the 40GbE interfaces on the Juni‐
per QFX5100-24Q.

96 10GbE
By taking advantage of port channelizing, each of the 40GbE interfaces can be
broken out into 4 10GbE interfaces.

In summary, the default mode only supports the 24 40GbE interfaces on the Juniper
QFX5100-24Q; you cannot use the two QIC modules.
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104-port mode
One of the limitations of the BCM56850 chipset is that the total port count cannot
exceed 104. For such a scenario in which you require 104 10GbE interfaces, the Juni‐
per QFX5100-24Q can be put into a 104-port system mode. It’s required that you
channelize each of the native 24 40GbE interfaces. In addition, this mode requires a
single 4 40GbE QIC be installed in slot 1 and the first two ports be channelized,
whereas the remaining two ports are unused. In such a configuration, the native 24
40GbE interfaces are combined with the first 2 40GbE interfaces in the 4 40GbE QIC
in slot 1, creating a total of 26×40GE. Each of the 26×40GE interfaces must be chan‐
nelized into 104 10GbE interfaces. Because the I/O bandwidth is now 1,040 Gbps, the
total I/O-to-core bandwidth over-subscription is 13:12. For certain packet sizes, there
will be 20 to 30 percent traffic loss, assuming all 104 ports are operating at line rate.
Details of the effects of over-subscription are discussed in “Performance” on page 84.

QIC mode
The QIC mode is similar to the 104-port mode, except both QIC slots can be used
and there’s no requirement to channelize the 40GbE interfaces. However, there are
two restrictions:

• The 8 10GbE QIC isn’t supported in the QIC mode.
• You cannot channelize the 4 40GbE QIC, only the native 24 40GbE interfaces.

Considering these restrictions, there are two major port configurations:

32 40GbE
All of the native 24 40GbE interfaces are combined with two 4 40GbE QIC mod‐
ules for a total of 32 40GbE interfaces on the switch.

96 10GbE and 8 40GbE
All of the native 24 40GbE interfaces are channelized into 96 10GbE ports, and
the two 4 40GbE QICs provided the 8 40GbE interfaces; this is a sneaky port con‐
figuration because it stays within the BCM56850 chipset requirement to not
exceed 104 total ports.

In summary, the QIC mode turns the Juniper QFX5100-24Q into a 1RU
QFX5100-96S or supports 32 40GbE interfaces. Because the I/O bandwidth exceeds
the core bandwidth, this system mode is subject to packet loss for certain packet sizes,
assuming that all ports are operating at line rate.

Flexible QIC mode
If all of the other system modes weren’t enough for you, the Juniper QFX5100-24Q
offers yet one final mode: flexible QIC mode. This mode makes it possible for you to
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use any type of QIC in the Juniper QFX5100-24Q. There are two restrictions of which
you need to be mindful:

• You cannot channelize any of the QICs.
• You cannot channelize ports et-0/0/0 through et-0/0/3 on the Juniper

QFX5100-24Q itself, but you can channelize ports et-0/0/4 through et-0/0/23.

Such restrictions create some interesting port configurations, which are presented in
Table 3-2.

Table 3-2. QFX5100-24Q flexible QIC mode port configuration options

Native ports QIC 0 QIC 1 Max 40GbE Max 10GbE

24 40GbE 4 40GbE 4 40GbE 32 40GbE 80 10GbE
12 40GbE

24 40GbE 8 10GbE 4 40GbE 28 40GbE 88 10GbE
8 40GbE

24 40GbE 8 10GbE 8 10GbE 24 40GbE 96 10GbE
4 40GbE

In summary, with the flexible QIC mode, you can support all of the different types of
QIC modules, which most commonly will be deployed as the 32 40GbE configuration
when building a spine-and-leaf or Clos IP fabric. Although the overall number of
ports can change depending on which QIC you use, it doesn’t require a warm reboot
as long as you stay in the flexible QIC mode.

Review
The Juniper QFX5100-24Q offers a lot options with respect to port configurations.
The general rule of thumb is that the overall number of ports must not exceed 104.
There are a total of four system modes and each is unique in the way the switch oper‐
ates. Table 3-3 summarizes the four system modes and their attributes.

Table 3-3. The Juniper QFX5100-24Q system modes and attributes

Mode I/O-to-core
bandwidth
ratio

QIC 0 QIC 1 Max 40GbE Max 10GbE Channelize
native ports?

Channelize
QICs?

Fully
subscribed

1:1 No No 24 40G 96 10GbE Yes No

104-port 13:12 Channelize first 2
40GbE

No None 104 10GbEE Yes Channelize first
2 40GbE

QIC 4:3 4 40GbE 4 40GbE 32 40GbE 96 10GbE
8 40GbE

Yes No
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Mode I/O-to-core
bandwidth
ratio

QIC 0 QIC 1 Max 40GbE Max 10GbE Channelize
native ports?

Channelize
QICs?

Flexible 4:3 4 40GbE 4 40GbE 32 40GbE 80 10GbE
12 40GbE

Yes No

Flexible 4:3 8 10GbE 4 40GbE 28 40GbE 88 10GbE
8 40GbE

Yes No

Flexible 7:6 8 10GbE 8 10GbE 24×40GbE 96 10GbE
4 40GbE

Yes No

It’s important to consider what role within the architecture the Juniper QFX5100-24Q
fits. Depending on the system mode, it can fit into any number of possibilities. For
example, in QIC mode, the Juniper QFX5100-24Q supports 32 40GbE interfaces,
which makes a lot sense in the core and aggregation of a network. On the other hand,
running the Juniper QFX5100-24Q in 104-port mode offers 104 10GbE interfaces in
a 1RU form factor, which makes a lot of sense in the access tier of the network. The
Juniper QFX5100 series has been designed from the ground up to give you more
options.

Performance
With the critical design considerations out of the way, it’s now time to focus on the
performance characteristics of the Juniper QFX5100 series. Previously in this chapter,
we explored the BCM56850 chipset and how the I/O and core bandwidth work
together in a balancing act of port density versus performance. Performance can be
portrayed through two major measurements: throughput and latency. Let’s examine
each of them.

Throughput
The throughput Juniper QFX5100 switches will vary depending on system mode in
which the device is operating. The fully subscribed (default) mode has an over-
subscription of 1:1 and doesn’t have any loss in traffic when all of the ports are oper‐
ating at line rate. All of the other modes will have some level of I/O and core
bandwidth over-subscription (refer to Table 3-3).

The key questions are the following:

• What conditions cause over-subscription?
• What packet sizes are affected?
• How much traffic is dropped?
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To over-subscribe the switch, it must be currently processing more traffic than the
core bandwidth can handle, which is 960 Gbps. The best way to answer the rest of the
questions is with the graph shown in Figure 3-4.

Figure 3-4. 1,280 Gbps throughput versus packet size

There’s a lot happening in the graph in Figure 3-4. It can be summarized as the fol‐
lowing:

• Packet sizes 64B through 86B vary in performance 78 to 99 percent.
• Packet sizes 87B through 144B offer line-rate performance.
• Packet sizes 145B through 193B vary in performance 77 to 99 percent.
• Packet sizes 194B through 12,288B offer line-rate performance.

In summary, only packet sizes between 64B through 86B and 145B through 193B
have varying traffic loss of 20 to 1 percent when there is congestion on the switch.
Another way to view it is out of 12,228 possible packet sizes, only 0.005 percent suffer
traffic loss. If you want to be pedantic and assume only 1,514 possible packet sizes,
only 0.05 percent suffer traffic loss.

The reason the chipset is able to forward some packet sizes at line rate and not others
is how the stepping in line-rate frequency is required to process some packet sizes
versus others. Packet sizes ranging from 64B to 86B and 145B to 193B require a
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higher frequency to process than other sizes and are subject to a varying amount of
traffic loss during switch congestion.

Keep in mind that traffic loss is only experienced in system modes
other than fully subscribed/default.

Latency
Latency is the measurement of time between when a packet enters the switch on an
ingress port and when it leaves the switch on an egress port, as illustrated in
Figure 3-5.

Figure 3-5. End-to-end switch latency

With modern hardware such as the Juniper QFX5100 series, the amount of latency
continues to decrease. In the vast majority of use cases, latency isn’t a major concern;
however, there exists a subsegment in the financial-services markets and high-
performance computing that specialize in low latency.

Cut-through and store-and-forward
There are two modes that greatly impact the switch’s overall latency: cut-through and
store-and-forward. Each mode is purposely designed to excel in specific use-cases.

Cut-Through
A switch that operates in a cut-through mode will begin to transmit the packet
on the egress port at the same time it is receiving it on the ingress port. The bene‐
fit here is a reduction in overall latency within the switch because there’s no delay
in transmitting the packet to its destination. The drawback is that cut-through
mode has no way of discarding a corrupt packet, because the majority of the
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packet will already be transmitted on the egress port before the FCS is received
on the ingress port. In larger networks or with multicast, cut-through mode can
cause a lot of unnecessary processing in upstream devices when replicating cor‐
rupt packets.

Store-and-Forward
The default setting for the Juniper QFX5100 family is store-and-forward; this
mode is how most switches have operated for a long time. The ingress packet
must be fully received before the switch will transmit the packet on the egress
port. The advantage is that the switch can perform error checks on the packet
and discard it if it’s corrupt. The drawback is that store-and-forward requires a
buffer within the switch to store the packet while it’s being received; this increa‐
ses the cost and overall latency.

Unless you’re building a financial trading platform or high-performance computing
environment, the default mode of store-and-forward will generally meet and exceed
all of your latency requirements.

Conditions for cut-through
By default, the Juniper QFX5100 family operates in store-and-forward mode. To
enable cut-through mode, you must issue and commit the following command:

[edit]
dhanks@QFX5100# set forwarding-options cut-through

Don’t be fooled: this command is just the first step to enable cut-through mode.
There are many conditions that a packet must meet in order to be eligible for cut-
through mode; otherwise, it defaults back to store-and-forward. This decision pro‐
cess is done on a per-packet basis, although the cut-through is a system-wide setting.
The first set of requirements is that only matching ingress and egress interface speeds
are eligible for cut-through mode, as presented in Table 3-4.

Table 3-4. Forwarding modes based on port speed and system mode

Ingress port Egress port Cut-through (CT) system mode Store-and-forward (SF) system mode

10GbE 10GbE CT SF

40GbE 40GbE CT SF

10GbE 40GbE SF SF

40GbE 10GbE SF SF

1GbE 1GbE CT SF

1GbE 10GbE SF SF

10GbE 1GbE SF SF
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For example, if the Juniper QFX5100 switch were configured to be in cut-through
mode, but a packet arrived on a 40GbE ingress interface and was transmitted on a
10GbE egress interface, that packet would not be eligible for cut-through mode and
would default back to store-and-forward.

If the packet meets the conditions specified in Table 3-4, it will be subject to addi‐
tional conditions before being forwarded via cut-through.

• The packet must not be destined to the routing engine.
• The egress port must have an empty queue with no packets waiting to be trans‐

mitted.
• The egress port must not have any shapers or rate limiting applied.
• The ingress port must be in-profile if it’s subject to rate limiting.
• For multicast packets, each egress port must meet all conditions. If one egress

port out of the set doesn’t meet the conditions, all multicast packets will be trans‐
mitted via store-and-forward; the chipset doesn’t support partial cut-through
packets.

To further understand the benefits of improved latency of cut-through mode, let’s
compare it directly to store-and-forward with different sized packets up to 1,514
bytes, as illustrated in Figure 3-6.

The cut-through latency increases slowly from 64 bytes up to about 600 bytes and
remains steady at about 0.73 µs. On the other hand, the store-and-forward is fairly
linear from 64 bytes all the way to 1,514 bytes. In summary, cut-through and store-
and-forward have less than 1 µs of latency when the packet is less than 1,514 bytes.

Let’s take a look at what happens when you enable jumbo frames. Figure 3-7 starts in
the same place at 64 bytes but goes all the way up to 9,216 bytes.
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Figure 3-6. Approximate latency for the BCM56850 chipset using 40GbE with frames up
to 1,514 bytes

In summary, the store-and-forward continues to stay fairly linear from 64 bytes to
9,216 bytes; however cut-through flattens out at approximately 0.73 µs from 600 bytes
to 9,216 bytes. Store-and-forward follows a linear progression simply because the
latency is a factor of how large the packet is. The larger the packet, the more memory
it takes to buffer it before it’s allowed to be transmitted. Cut-through mode stays flat
because it simply begins transmitting the packet as soon as it’s received; thus the
packet size is never a factor in the overall latency.

These graphs represent approximate latency on the BCM56850
chipset using 40GbE interfaces. Actual values will vary based on
firmware, port speed, and other factors. If latency is critical to your
environment, you need to evaluate the latency in your lab under
controlled conditions.
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Figure 3-7. Approximate latency for the BCM56850 chipset using 40GbE with jumbo
frames

Scale
Scale can be expressed many different ways. The most common methods are the con‐
figuration maximums of the control plane and data plane. It’s also common to peg the
scaling maximums to the OSI model, for example Layer 2 versus Layer 3. The Juniper
QFX5100 series is unique in the sense that you can adjust the balance of Layer 2 ver‐
sus Layer 3 data plane scale. Let’s dive into the details.

Unified Forwarding Table
The Juniper QFX5100 series has the unique ability to use a customized forwarding
table. The forwarding table is broken into three major tables:

MAC Address Table
In a Layer 2 environment, the switch will learn new MAC addresses and it stores
them in the MAC address table.

Layer 3 Host Table
In a Layer 2 and Layer 3 environment, the switch will also learn which IP
addresses are mapped to which MAC addresses; these key-value pairs are stored
in the Layer 3 host table.
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Longest Prefix Match (LPM) Table
In a Layer 3 environment, the switch will have a routing table, and the most spe‐
cific route will have an entry in the forwarding table to associate a prefix/netmask
to a next-hop; this is stored in the LPM table. The one caveat is that all IPv4 /32
prefixes and IPv6 /128 prefixes are stored in the Layer 3 host table.

Traditionally, these tables have been statically defined from the vendor and only sup‐
port a fixed number of entries, which ultimately limits what role in the architecture
into which a traditional switch can fit.

The Unified Forwarding Table (UFT) in the Juniper QFX5100 family allows you to
dynamically move around forwarding table resources so that you can tailor the
switch to your network. In summary, the UFT offers five preconfigured profiles from
heavy Layer 2 to heavy Layer 3 allocations, as shown in Table 3-5.

Table 3-5. The Juniper QFX5100 UFT profiles

Profile MAC addresses L3 hosts LPM

l2-profile-one 288,000 16,000 16,000

l2-profile-two 224,000 56,000 16,000

l3-profile-three 160,000 88,000 16,000

l3-profile 96,000 120,000 16,000

lpm-profile 32,000 16,000 128,000

The UFT is a very powerful tool that completely changes the personality of the
switching, allowing it to move freely throughout the network architecture. Each pro‐
file has a linear progression toward a larger Layer 3 host table, as depicted in
Figure 3-8.

Using a heavy MAC address table makes it possible for Juniper QFX5100 switches to
handle a lot of Layer 2 traffic such as a traditional virtualization environment with
servers hosting a large amount of VMs. The last profile gives you the ability to oper‐
ate Juniper QFX5100 devices in the core of a network architecture or use them as a
building block in a large Clos IP fabric; this is because an IP fabric by nature will have
a larger routing table than MAC address tables.
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Figure 3-8. Juniper QFX5100 series UFT

To check the current forwarding mode the Juniper QFX5100 switch, use the show
chassis forwarding-options command:

dhanks@qfx5100> show chassis forwarding-options
--------------------------------------------------------------------------
Current UFT Configuration:
l2-profile-three

You can see from the preceding output that this particular Juniper QFX5100 switch is
currently in l2-profile-three mode, which gives the forwarding table 160K MAC
addresses, 88K L3 hosts, and 16K LPM entries. The forwarding table can be changed
by using the following command:

[edit]
dhanks@qfx5100# set chassis forwarding-options ?
Possible completions:
+ apply-groups         Groups from which to inherit configuration data
+ apply-groups-except  Don't inherit configuration data from these groups
  l2-profile-one       MAC: 288K L3-host: 16K LPM: 16K. This will restart PFE
  l2-profile-three     MAC: 160K L3-host: 144K LPM: 16K. This will restart PFE
  l2-profile-two       MAC: 224K L3-host: 80K LPM: 16K. This will restart PFE
  l3-profile           MAC: 96K L3-host: 208K LPM: 16K. This will restart PFE
  lpm-profile          MAC: 32K L3-host: 16K LPM: 128K. This will restart PFE

Be mindful that when you change the UFT profile and commit, the
BCM56850 chipset will need to perform a warm reboot, and there
will be temporary traffic loss.
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Hashing
The Juniper QFX5100 uses a sophisticated hashing algorithm called RTAG7 to deter‐
mine the next-hop interface for Equal-Cost Multipath (ECMP) routing and Link
Aggregation (LAG). Each packet is subject to the following fields when determining
the next-hop interface:

• Source MAC address
• Destination MAC address
• Ethernet type
• VLAN ID
• Source IP address
• Destination IP address
• IPv4 protocol or IPv6 next header
• Layer 4 source port
• Layer 4 destination port
• MPLS label

There are also two additional fields that are used to calculate the hash that are inter‐
nal to the system:

• Source device ID
• Source port ID

The following types of protocols are supported for ECMP on the Juniper QFX5100 as
of Junos 13.2X51-D20.2:

• IPv4
• IPv6
• MPLS
• MAC-in-MAC

Note that additional protocols can be supported with a new software release; please
check the release notes for Junos going forward.

The hash algorithm for ECMP and LAG use the same packet fields
as those just listed, but note that an internal hash index is calcula‐
ted differently. This method avoids traffic polarization when a LAG
bundle is part of an ECMP next-hop.
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Resilient Hashing
One of the challenges in the data center when building IP fabrics with stateful devices
—such as firewalls—is minimizing the number of next-hop changes during link fail‐
ures. For example, the Juniper QFX5100 will perform standard RTAG7 hashing on all
ingress flows and send out a next-hop as dictated by the hashing algorithm. If a fire‐
wall were to fail, the standard RTAG7 hashing algorithm on the QFX5100 switch
would be impacted and the egress next-hop for new and existing flows would be
assigned next-hops. The end result is that existing flows would be hashed to a new
firewall. Because the new firewall doesn’t have a session entry for the rerouted flow,
the firewall would simply discard the traffic, as shown in Figure 3-9.

Figure 3-9. Resilient hashing overview

The Juniper QFX5100 supports a new type of hashing called resilient hashing that
minimizes the number of next-hop changes during link failures. If a firewall were to
fail, the Juniper QFX5100 would keep the existing flows mapped to their existing
egress next-hops. The end result is that when a firewall fails, all of the other flows
continue to flow through their existing firewalls without impact.

The Juniper QFX5100 series also supports resilient hashing for a LAG interface, as
well. In summary, resilient hashing supports both Layer 3 ECMP and LAG ECMP.

Layer 2 LAG
To enable resilient hashing for Layer 2 LAG members, use the following command
(replace ae0 with the intended interface name for your environment):

# set interface ae0 aggregated-ether-options resilient-hash
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Layer 3 ECMP
To enable resilient hashing for Layer 3 ECMP, use the following command:

# set forwarding-options enanced-hash-key ecmp-resilient hash

Configuration Maximums
The Juniper QFX5100 has a set of configuration maximums that you need to be
aware of as you design your network. The Juniper QFX5100 should work just fine in
the majority of use cases, but there could be instances for which you might need more
scale. Use Table 3-6 as a reference.

Table 3-6. QFX5100 family configuration
maximums

Key Value

MAC addresses 288 K (UFT l2-profile-one)

ARP entries 48 K

Jumbo frame size 9,216 bytes

IPv4 unicast routes 128 K prefixes, 208 K host routes

IPv4 multicast routes 104 K

IPv6 unicast routes 64 K

IPv6 multicast routes 52 K

VLAN IDs 4,094

FCoE VLANs 4,094

Link aggregation groups 128

Members per LAG 32

Firewall filters 4 K

ECMP 64

MSTP instances 64

VSTP instances 253

Mirroring destination ports 4

Mirroring sessions 4

Mirroring destination VLANs 4

There will be some configuration maximums such as the UFT, MAC addresses, and
others that are pinned to the BCM 56850 chipset and can never be increased. How‐
ever there are other configuration maximums such as ECMP, link aggregation
groups, and STP instances that you can increase over time with Junos software
updates.
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Summary
This chapter covered many of the design considerations that you must take into
account before looking at the scale of each role in the architecture. These design con‐
siderations are using compute virtualization in the data center and an overlay archi‐
tecture. Moving to an overlay architecture in the data center changes many of the
traditional scaling requirements with which you are familiar.

The Juniper QFX5100-24Q has four different system modes to handle over-
subscription to provide a customized personality depending on the use case. The sys‐
tem modes are:

• Fully subscribed mode (default)
• 104-port mode
• QIC mode
• Flexible QIC mode

Each of the system modes impact how the I/O and core bandwidth are handled, ulti‐
mately changing the throughput characteristics of the switch.

The Juniper QFX5100 chipset also has a next generation UFT with which you can
choose one of five preconfigured profiles from Layer 2 heavy to Layer 3 heavy; this
gives you the freedom to place the Juniper QFX5100 switch anywhere in your net‐
work and fine-tune the logical scale to match its role in the network.

Many factors impact the latency of a network switch. The Juniper QFX5100 family
offers two forwarding modes: cut-through and store-and-forward. Cut-through gives
you the lowest possible latency at the expense of forwarding corrupt frames. Store-
and-forward has slightly higher latency, but completely buffers the packet and is able
to discard corrupt packets.

In summary, the Juniper QFX5100 family gives you the power of options. When try‐
ing to solve complicated problems, the easiest method is to break it down into simple
building blocks. The more options that are available to you, the greater your chances
are of executing a successful data center strategy and architecture. Let’s review the
options the Juniper QFX5100 series affords you to consider in this chapter:

• Traditional IP network versus overlay architecture
• VMware NSX versus Juniper Contrail
• Four system modes to fine-tune the over-subscription in the data plane
• Five profiles to fine-tune the logical scaling in the data plane
• Cut-through mode versus store-and-forward mode

96 | Chapter 3: Performance and Scaling



Juniper QFX5100 switches are very exciting, and, as of this writing, represent Juni‐
per’s best switches ever created. As you work your way through this book, think about
all of the different places in your network where the Juniper QFX5100 series of
switches could be used and make it better.

Chapter Review Questions
1. Which overlay control plane protocols does the Juniper QFX5100 family support?

a. Open vSwitch Database
b. Device Management Interface
c. All of the above
d. None of the above

2. How does the Juniper QFX5100 series support bare-metal servers in an overlay architec‐
ture?

a. Forward all traffic from the bare-metal server to the SDN controller
b. Forward all traffic from the bare-metal server to the closest hypervisor VTEP
c. Handle all encapsulation and forwarding in the switch’s hardware
d. Implement a VTEP inside of the switch with a control plane protocol

3. What’s the core bandwidth of the BCM56850 chipset?
a. 1,280 Gbps
b. 960 Gbps
c. 720 Gbps
d. 480 Gbps

4. How many system modes does the Juniper QFX5100-24Q have?
a. 2
b. 3
c. 4
d. 5

5. What’s the I/O bandwidth to core bandwidth ratio of the Juniper QFX5100-24Q when
using 32 40GbE interfaces?

a. 1:1
b. 13:12
c. 4:3
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d. 5:4

6. How many preconfigured profiles are in the Juniper QFX5100 UFT?
a. 1
b. 3
c. 5
d. 7

7. What’s the maximum number of MAC addresses in a Juniper QFX5100 switch?
a. 128K
b. 224K
c. 256K
d. 288K

8. What’s the maximum size of an Ethernet frame in the Juniper QFX5100 series?
a. 2,048 bytes
b. 4,000 bytes
c. 8,192 bytes
d. 9,216 bytes
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Chapter Review Answers
1. Answer: C. Juniper QFX5100 series switches support both OVSDB and DMI control plane
protocols.

2. Answer: C and D. Trick question. The Juniper QFX5100 family handles the data plane
encapsulation in hardware and creates a VTEP inside of the switch for MAC address learn‐
ing and service provisioning.

3. Answer: B. Juniper QFX5100 switches use the BCM56850 chipset, which has a core band‐
width of 960 Gbps and I/O bandwidth of 1,280 Gbps.

4. Answer: C. The Juniper QFX5100-24Q has four system modes: (1) fully subscribed, (2)
104 port, (3) QIC, and (4) flexible QIC.

5. Answer: C. 32 40GbE interfaces requires 1,280 Gbps of I/O bandwidth, which creates a
4:3 ratio of I/O bandwidth to core bandwidth.

6. Answer: C. Juniper QFX5100 switches support five UFT profiles: (1) l2-profile-one (2) l2-
profile-two (3) l2-profile-three (4) l3-profile, and (5) lpm-profile.

7. Answer: D. The Juniper QFX5100 family supports up to 288K MAC addresses in UFT l2-
profile-one.

8. Answer: D. The Juniper QFX5100 series supports jumbo frames up to 9,216 bytes.
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CHAPTER 4

One Box, Many Options

It isn’t often that you can accurately predict all of the business demands and require‐
ments when working in IT; it seems as if the target is always moving, requiring that
you always adjust. Adapting to change is required when working with technology and
supporting constantly changing business requirements. To react quickly, you must
have the flexibility to choose the best tool for the job. Having multiple options is
always a winning strategy against any opponent.

The Juniper QFX5100 is a powerful series of switches because they give you the
power inherent in having many different options at hand. You are not forced to use a
particular option but instead are empowered to make your own determination as to
what technology option makes the most sense in a particular situation. The Juniper
QFX5100 family can support the following technology options:

• Standalone
• Virtual Chassis Fabric (VCF)
• QFabric Node
• Virtual Chassis
• Multi-Chassis Link Aggregation (MC-LAG)
• Clos Fabric

Not only do you have multiple options, but you can also choose to deploy a Juniper
architecture or an open architecture (see Figure 4-1). You have the ability to take
advantage of turnkey Ethernet fabrics or simply create your own and integrate prod‐
ucts from other vendors as you go along.
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Figure 4-1. Juniper architectures and open architectures options

This chapter is intended to introduce you to the many different options the Juniper
QFX5100 offers. We’ll investigate each option, one by one, and get a better idea about
what each technology can do for you and where it can be used in your network.

Standalone
The most obvious way to implement a Juniper QFX5100 switch is in standalone
mode, just a simple core, aggregation, or access switch. Each Juniper QFX5100 switch
operates independently and uses standard routing and switching protocols to for‐
ward traffic in the network, as illustrated in Figure 4-2.

The Juniper QFX5100 switches in the core layer in Figure 4-2 are running only Open
Shortest Path First (OSPF) to provide Layer 3 connectivity. The switches in the aggre‐
gation layer are running both OSPF and Virtual Router Redundancy Protocol
(VRRP); this is to provide Layer 3 connectivity to both the core and access layers. The
links from the aggregation switches to the access switch are simple Layer 2 interfaces
running IEEE 802.1Q. The aggregation switch on the left is the VRRP master. It pro‐
vides Layer 3 gateway services to the access switch.
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Figure 4-2. Standalone deployment

In Figure 4-2, notice that two aggregation switches do not have a
connection between them. This is intentional. The VRRP protocol
requires a Layer 2 connection between master and backup
switches; otherwise, the election process wouldn’t work. In this
example, the two switches have a Layer 2 connection through the
access switch and VRRP is able to elect a master. Another design
benefit from removing the Layer 2 link between the aggregation
switches is that it physically eliminates the possibility of a Layer 2
loop in the network.

The benefit of a standalone deployment is that you can easily implement the Juniper
QFX5100 switch into an existing network using standards-based protocols. Easy
peasy!

Virtual Chassis
When Juniper released its first switch, the EX4200, one of the innovations was Virtual
Chassis, which took traditional “stacking” to the next level. By virtualizing all of the
functions of a physical chassis, this technology made it possible for a set of physical
switches to form a virtualized chassis, complete with master and backup routing
engines, line cards, and a true single point of management.
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The Juniper QFX5100 family continues to support Virtual Chassis. You can form a
Virtual Chassis between a set of QFX5100 switches or create a mixed Virtual Chassis
by using the QFX3500, QFX3600, or EX4300, as demonstrated in Figure 4-3.

Figure 4-3. QFX5100 Virtual Chassis and mixed Virtual Chassis

Figure 4-3 doesn’t specify the best current practice on how to cable
VCPs between switches; instead, it simply illustrates that the Juni‐
per QFX5100 series supports regular Virtual Chassis and a mixed
Virtual Chassis with other devices.

Virtual Chassis is a great technology to reduce the number of devices to manage in
the access tier of a data center or campus. In the example in Figure 4-3, the Juniper
QFX5100 Virtual Chassis has four physical devices, but only a single point of man‐
agement.

One drawback of Virtual Chassis is the scale and topology. Virtual Chassis allows a
maximum of 10 switches and is generally deployed in a ring topology. Traffic going
from one switch to another in a ring topology is subject to nondeterministic latency
and over-subscription, depending on how many transit switches are between the
source and destination. To be able to take innovation to the next level, a new technol‐
ogy is required to increase the scale and provide deterministic latency and over-
subscription.

For more information about Virtual Chassis check out JUNOS
Enterprise Switching by Doug Marschke and Harry Reynolds
(O’Reilly).
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QFabric
QFabric is the next step up from Virtual Chassis. It’s able to scale up to 128 switches
and uses an internal 3-stage Clos topology to provide deterministic latency and over-
subscription. With higher scale and performance, QFabric has the ability to collapse
the core, aggregation, and access into a single data center tier, as shown in Figure 4-4.

Figure 4-4. QFabric architecture and roles

All of the components in the core, aggregation, and access tier (the large gray box in
Figure 4-4) make up the QFabric architecture. The components and function of a
QFabric architecture are listed in Table 4-1.

Table 4-1. QFabric architecture components, tiers, and functions

Component Tier Function

IC Core and
aggregation

All traffic flows through the IC switches; it acts as the middle stage in a 3-stage Clos fabric.

RSNG Access All servers, storage, and other end points connect into the Redundant Server Node Group
(RSNG) top-of-rack (ToR) switches for connectivity into the fabric.

NNG Routing Any other devices that need to peer to QFabric through a standard routing protocol such as
OSPF or Border Gateway Protocol (BGP) are required to peer into a Network Node Group
(NNG).
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Component Tier Function

Director Control plane Although QFabric is a set of many physical devices, it’s managed as a single switch. The
control plane has been virtualized and placed outside of the fabric. Each component in
QFabric has a connection to the Director. All configuration and management is performed
from a pair of Directors.

Managing an entire data center network through a single, logical switch has tremen‐
dous operational benefits. You no longer need to worry about routing and switching
protocols between the core, aggregation, and access tiers in the network. The QFabric
architecture handles all of the routing and switching logic for you; it simply provides
you a turnkey Ethernet fabric that can scale up to 128 ToR switches.

The Juniper QFX5100 series is able to participate in the QFabric architecture as a ToR
switch or RSNG. A important benefit to using a Juniper QFX5100 switch as an RSNG
in a QFabric architecture is that it increases the logical scale of QFabric as compared
to using the QFX3500 or QFX3600 as an RSNG. A QFabric data center only using
QFX5100 RSNGs can reach logical scaling, which is described in Chapter 3.

Virtual Chassis Fabric
If the scale of Virtual Chassis is a bit too small and the QFabric a bit too big, Juniper’s
next innovation is VCF; it’s a perfect fit between traditional Virtual Chassis and QFa‐
bric. By adopting the best attributes of Virtual Chassis and QFabric, Juniper has cre‐
ated a new technology with which you can build a plug-and-play Ethernet fabric that
scales up to 32 members and provides deterministic latency and over-subscription
with an internal 3-stage Clos topology, as depicted in Figure 4-5.
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Figure 4-5. VCF architecture

At first glance, VCF and QFabric look very similar. A common question is, “What’s
different?” Table 4-2 looks at what the technologies have in common and what sepa‐
rates them.

Table 4-2. Comparison of QFabric and VCF

Attribute QFabric (QFX3000-G) VCF

Physical scale 128 nodes 32 nodes

Control plane connectivity Out-of-band In-band

Connectivity Routers must connect to NNGs. Hosts must connect to
RSNGs. Only NNGs or RSNGs can connect to ICs.

Universal Ports. Any port on any switch
can support any host and protocol. No
limitations.

Plug-and-play No. Requires external cabling and minimal
configuration

Yes

Software upgrades NSSU ISSU

ECMP Yes Yes

Full Layer 2 and Layer 3 Yes Yes

Lossless Ethernet/DCB Yes Yes

Universal Server Ports No Yes

VCF offers features and capabilities that are above and beyond QFabric and is a great
technology to collapse multiple tiers in a data center network. As of this writing, the
only limitation is that VCF allows a maximum of 32 members. One of the main dif‐
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ferences is the introduction of a concept called Universal Server Ports. This makes it
possible for a server to plug into any place into the topology. For example, a server
can plug into either a leaf or spine switch in VCF. On the other hand, with QFabric
you can plug servers only into QFabric Nodes, because the IC switches are reserved
only for QFabric nodes.

The Juniper QFX5100 family can be used in both the spine and leaf roles of VCF. You
can use the EX4300 series in VCF, too, but only as a leaf. Table 4-3 presents device
compatibility in a VCF as of this writing.

Table 4-3. VCF compatibility

Switch Spine Leaf

QFX5100-24Q Yes Yes

QFX5100-96S Yes Yes

QFX5100-48S Yes Yes

QFX5100-48T No Yes

QFX3500 No Yes

QFX3600 No Yes

EX4300 No Yes

In summary, the Juniper QFX5100 series must be the spine in a VCF, but you can use
all of the other QFX5100 models, as well as QFX3500, QFX3600, and EX4300 series
switches as a leaf.

MC-LAG
Virtual Chassis, QFabric, and VCF are all Juniper architectures. Let’s move back into
the realm of open architectures and take a look at MC-LAG. In a network with multi‐
ple vendors, it’s desirable to choose protocols that support different vendors, as
shown in Figure 4-6.
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Figure 4-6. MC-LAG architecture

The figure shows that the Juniper QFX5100 family supports the MC-LAG protocol
between two switches. All switches in the access tier simply speak IEEE 802.1AX/
LACP to the pair of QFX5100 switches in the core and aggregation tier. From the per‐
spective of any access switch, it’s unaware of MC-LAG and only speaks IEEE
802.1AX/LACP. Although there are two physical QFX5100 switches running MC-
LAG, the access switches only see two physical interfaces and combine them into a
single logical aggregated Ethernet interface.

All of the Juniper QFX5100 platforms support MC-LAG, and you can use any access
switch in the access layer that supports IEEE 802.3ad/LACP.

For more information about MC-LAG, check out Juniper MX Ser‐
ies by Douglas Richard Hanks, Jr. and Harry Reynolds (O’Reilly).

Clos Fabric
When scale is a large factor in building a data center, many engineers turn toward
building a Clos fabric with which they can easily scale to 100,000s of ports. The most
common Clos network is a 3-stage topology, as illustrated in Figure 4-7.
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Figure 4-7. Architecture of Clos network

Depending on the port density of the switches used in a Clos network, the number of
leaves can easily exceed 500 devices. Due to the large scale of Clos networks, it’s
always a bad idea to use traditional Layer 2 protocols such as spanning tree or MC-
LAG because it creates large broadcast domains and excessive flooding. Clos fabrics
are Layer 3 in nature because routing protocols scale in an orderly fashion and reduce
the amount of flooding. If Layer 2 connectivity is required, using higher level archi‐
tectures such as overlay networking go hand-in-hand with Clos networks. There are
many options when it comes to routing protocols, but traditionally, BGP is used pri‐
marily for three reasons:

• Support multiple protocols families (inet, inet6, evpn)
• Multivendor stability
• Scale
• Traffic engineering and tagging

The Juniper QFX5100 series works exceedingly well at any tier in a Clos network. The
Juniper QFX5100-24Q works well in the spine because of its high density of 40GbE
interfaces. Other models such as the Juniper QFX5100-48S or QFX5100-96S work
very well in the leaf because most hosts require 10GbE access, and the spine operates
at 40GbE.

Clos fabrics are covered in much more detail in Chapter 7.
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Transport Gymnastics
The Juniper QFX5100 series handles a large variety of different data plane encapsula‐
tions and technologies. The end result is that a single platform can solve many types
of problems in the data center, campus, and WAN. There are five major types of
transport that Juniper QFX5100 platforms support:

• MPLS
• VXLAN
• Ethernet
• FCoE
• HiGig2

The Juniper QFX5100 is pretty unique in the world of merchant silicon switches
because of the amount of transport encapsulations enabled on the switch. Typically
other vendors don’t support MPLS, Fibre Channel over Ethernet (FCoE), or HiGig2.
Now that you have access to all of these major encapsulations, what can you do with
them?

MPLS
Right out of the box, MPLS is one of the key differentiators of Juniper QFX5100
switches. Typically, such technology is reserved only for big service provider routers
such as the Juniper MX. As of this writing, the QFX5100 family supports the follow‐
ing MPLS features:

• LDP
• RSVP
• LDP tunneling over RSVP
• L3VPN
• MPLS automatic bandwidth allocation
• Policer actions
• Traffic engineering extensions for OSPF and IS-IS
• MPLS Ping

One thing to note is that Juniper QFX5100 platforms don’t support as many MPLS
features as the Juniper MX, but all of the basic functionality is there. The Juniper
QFX5100 family also supports MPLS within the scale of the underlying Broadcom
chipset, as outlined in Chapter 3.

Transport Gymnastics | 111



Virtual Extensible LAN
The cool kid on the block when it comes to data center overlays is Virtual Extensible
LAN (VXLAN). By encapsulating Layer 2 traffic with VXLAN, you can transport it
over a Layer 3 IP Fabric, which has better scaling and high availability metrics than a
traditional Layer 2 network. Some of the VXLAN features that Juniper QFX5100
switches supports are:

• OVSDB and VMware NSX control plane support
• DMI and Juniper Contrail control plane support
• VXLAN Layer 2 Gateway for bare-metal server support

Chapter 8 contains more in-depth content about VXLAN.

Ethernet
One of the most fundamental data center protocols is Ethernet. When a piece of data
is transferred between end points, it’s going to use Ethernet as the vehicle. The Juni‐
per QFX5100 family supports all of the typical Ethernet protocols:

• IEEE 802.3
• IEEE 802.1Q
• IEEE 802.1QinQ

Pretty straightforward, eh?

FCoE
One of the biggest advantages of the Juniper QFX5100 series is the ability to support
converged storage via FCoE. The two Juniper architectures that enable FCoE are
QFabric and VCF. Figure 4-8 looks at how FCoE would work with VCF.

The servers would use standard Converged Network Adapters (CNA) and can be
dual-homed into the VCF. Both data and storage would flow across these links using
FCoE. The Storage Area Network (SAN) storage device would need to speak native
Fibre Channel (FC) and use a pair of FC switches for redundancy. The FC switches
would terminate into a pair of FC gateways that would convert FC into FCoE, and
vice versa. In this scenario, VCF simply acts as a FCoE transit device. The FC gateway
and switch functions need to be provided by other devices.
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Figure 4-8. FCoE transit with VCF

HiGig2
One of the more interesting encapsulations is Broadcom HiGig2; this encapsulation
can be used only between switches using a Broadcom chipset. The Broadcom HiGig2
is just another transport encapsulation, but the advantage is that it contains more
fields and meta information that vendors can use to create custom architectures. For
example, VCF uses the Broadcom HiGig2 encapsulation.

One of the distinct advantages of HiGig2 over standard Ethernet is that there’s only a
single ingress lookup. The architecture only needs to know the egress Broadcom
chipset when transmitting data; any intermediate switches simply forward the HiGig2
frames to the egress chipset without having to waste time looking at other headers.
Because the intermediate switches are so efficient, the end-to-end latency using
HiGig2 is less than standard Ethernet.

The HiGig2 encapsulation isn’t user-configurable. Instead this special Broadcom
encapsulation is used in the following Juniper architectures: QFabric, Virtual Chassis,
and VCF. This allows Juniper to offer options better performance and ease of use
when building a data center. Juniper gives you the option to “do it yourself ” with all
the standard networking protocols, and the “plug and play” option for customers
who want a simplified network operations.
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Summary
This chapter covered the six different technology options of the Juniper QFX5100
series. There are three Juniper architecture options:

• Virtual Chassis
• QFabric
• VCF

There are also three open architecture options:

• Standalone
• MC-LAG
• Clos Fabric

In addition to the six architectures supported by the Juniper QFX5100, there are five
major transport encapsulations, as well:

• MPLS
• VXLAN
• Ethernet
• FCoE
• HiGig2

The Juniper QFX5100 family of switches is a great platform on which to standardize
because each offers so much in a small package. You can build efficient Ethernet fab‐
rics with QFabric or VCF; large IP Fabrics using a Clos architecture; and small WAN
deployments using MPLS. Using a single platform has both operational and capital
benefits. Being able to use the same platform across various architectures creates a
great use case for sparing. And, keeping a common set of power supplies, modules,
and switches for failures lowers the cost of ownership.
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CHAPTER 5

Virtual Chassis Fabric

A growing trend in the networking industry is to move away from traditional archi‐
tectures such as Layer 2–only access switches or putting both Layer 2 and Layer 3 in
the distribution layer. The next logical step for ubiquitous Layer 2 and Layer 3 access
with ease of management is to create an Ethernet fabric.

Virtual Chassis Fabric (VCF) is a plug-and-play Ethernet fabric that offers a single
point of management and many, many features. Think of a 3-stage Clos topology
with the look and feel like a single logical switch; this is another good way to visualize
VCF.

Overview
It’s a common myth that a high-performance, feature-rich network is difficult to
manage. This usually stems from the fact that there are many factors that the admin‐
istrator must worry about:

• Performance
• Scale
• Latency
• High availability
• Routing protocols
• Equal cost multipathing
• Layer 2 and Layer 3 access
• Lossless Ethernet
• Software upgrades
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• Management

Such a laundry list of tasks and responsibilities is often daunting to a small or
medium-sized company with a minimal IT staff, and indeed, without assistance,
would be difficult to administer. VCF was created specifically to solve this problem. It
provides an architecture by which a single person can manage the entire network as if
it were a single device, without sacrificing the performance, high availability, or other
features.

It’s easy to assume from the name that VCF has a lot of roots in the original Virtual
Chassis technology; if you made such an assumption, you would be correct. VCF
expands on the original Virtual Chassis technology and introduces new topologies,
features, and performance.

Architecture
One of the most compelling benefits of VCF is the ability to create 3-stage Clos topol‐
ogies (see Figure 5-1). VCF is the encapsulation of all of the switches in the 3-stage
Clos topology.

Figure 5-1. VCF architecture
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There are basically two high-level roles in the VCF architecture: spine and leaf. The
spine and leaf roles are used to create the 3-stage Clos topology and described here:

Spine
The spine switches are at the heart of the topology and are used to interconnect
all of the other leaf switches. Typically, the spine switches are higher-speed devi‐
ces than leaf switches; this is to maintain low latency and high performance when
looking at the entire network end-to-end.

Leaf
The leaf switches are the ingress and egress nodes of the 3-stage Clos fabric. Most
of the end points in the data center will connect through the leaf switches. The
leaf switches are feature rich, can support servers, storage, and appliances, and
can peer with other networking equipment.

The leaf switch role can support any of the Juniper QFX5100 switches to support var‐
ious port densities and speeds; if you need a large deployment of 1GbE interfaces, you
can use an EX4300 device as the leaf switch. VCF also offers investment protection;
you can use existing switches such as those in the QFX3500 and QFX3600 families.

VCF is a flexible platform that allows you to incrementally change and increase the
scale of the network. For example, you can start with two spine and two leaf switches
today and then upgrade to four spine and 28 leaf switches tomorrow. Adding
switches into the fabric is made very easy thanks to the plug-and-play nature of the
architecture. You can add new leaf switches into the topology that are then automati‐
cally discovered and brought online.

Traffic engineering
VCF uses the Intermediate System to Intermediate System (IS-IS) routing protocol
internally with some modified type length values (TLVs); this affords VCF a full end-
to-end view of the topology, bandwidth, and network. As Juniper QFX5100 switches
are combined together to create a VCF, the links connecting the switches automati‐
cally form logical links called Smart Trunks. As traffic flows across the VCF, the flows
can be split up at each intersection in the fabric in an equal or unequal manner
depending on the bandwidth of the links. For example, if all of the links in the VCF
were the same speed and same quantity, all next-hops would be considered equal.
However, during failure conditions, some links could fail and some switches could
have more bandwidth than other switches. Smart Trunks allow for Unequal-Cost
Multipathing (UCMP) in the event that some paths have more bandwidth than oth‐
ers. As a result, traffic is never dropped in a failure scenario.

Adaptive Load Balancing: Of Mice and... Elephants?
OK, it might not be Steinbeck-esque, but in the data center, there’s a story about mice
and elephants. The idea is that there are long-lived flows in the data center network
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that consume a lot of bandwidth; these types of flows are referred to as elephant flows.
Some examples of elephant flows are backups and copying data. Other types of flows
are short-lived and consume little bandwidth; these are referred to as mice flows.
Examples of mice flows include DNS and NTP.

The problem is that each flow within a network switch is subject to Equal-Cost Multi‐
path (ECMP), and is pinned to a particular next-hop or uplink interface. If a couple
of elephant flows get pinned to the same interface and consume all of the bandwidth,
they will begin to overrun other, smaller mice flows on the same egress uplink. Due to
the nature of standard flow hashing, mice flows have a tendency to be trampled by
elephant flows, which has a negative impact on application performance.

VCF has a very unique solution to the elephant and mice problem. If you take a
closer look at TCP flows, you will notice something called flowlets. These are the
blocks of data being transmitted between the TCP acknowledgement from the
receiver. Depending on the bandwidth, TCP window size, and other variables, flow‐
lets exist in different sizes and frequencies, as illustrated in Figure 5-2.

Figure 5-2. TCP flowlets

One method to solve the elephant-and-mice problem is to hash the flowlets to differ‐
ent next-hops. For example, in Figure 5-2, if Flow 1 and Flow 3 were elephant flows,
each of the flowlets could be hashed to a different uplink, as opposed to the entire
flow being stuck on a single uplink. VCF uses the flowlet hashing functionality to
solve the elephant-and-mice problem; this feature is called Adaptive Load Balancing
(ALB).

ALB is enabled by the use of a hash-bucket table (see Figure 5-3). The hash-bucket
table has hundreds of thousands of entries; this is large enough to avoid any elephant
flowlet collisions. As each flowlet egresses an interface, the hash-bucket table is upda‐
ted with a timestamp and the egress link. For each packet processed, the time elapsed
since the last packet received is compared with an inactivity timer threshold. If the
last activity timer exceeds the threshold, the hash-bucket table and packet is assigned
a new egress link. The eligibility of a new egress link indicates a new flowlet.
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Figure 5-3. Flowlet hashing

Another important factor when selecting a new egress interface for a new flowlet is
the link quality. The link quality is defined as a moving average of the link’s load and
queue depth. The link with the least utilization and congestion is selected as the
egress interface for new flowlets.

ALB is disabled by default and must be turned on in the Junos configuration as
shown below:

[edit]
root# set fabric-load-balance flowlet
root# commit

To ensure in-order packet delivery, the inactivity internal should be larger than the
largest latency skew amount all the paths in the VCF from any node to any other
node. The default inactivity timer is 16μs; the timer can be changed from 16μs to
32ms. The basis premise is that you do not want your inactivity-timer set too high,
otherwise it won’t be able to detect the flowlets. The best practice is to leave it set at
the default value of 16μs.

To change the inactivity interval, use the following configuration:
[edit]
root# set fabric-load-balance flowlet inactivity-interval <value>
root# commit

The value can be specified in simple terms such as “20us” or “30ms.” There’s no need to
convert the units into nanoseconds; just use the simple “us” and “ms” postfixes. To enable
ALB to use any available next-hop based upon usage for ECMP, you may enable per-
packet mode in ALB with the following configuration:

[edit]
root# set fabric-load-balance per-packet 
root# commit

When per-packet mode is enabled, the VCF forwarding algorithm dynamically monitors
all paths in VCF and forwards packets to destination switches using the best available
path at that very moment. Flows are reordered when using per-packet mode, so some per‐
formance impact could be seen.
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Requirements
There are a few key requirements that must be satisfied to create a VCF. Table 5-1
contains a listing of which switches can be used as a spine and leaf switch.

Table 5-1. VCF switch requirements

Switch Spine Leaf

QFX5100-24Q Yes Yes

QFX5100-96S Yes Yes

QFX5100-48S Yes Yes

QFX5100-48T No Yes

QFX3500 No Yes

QFX3600 No Yes

EX4300 No Yes

VCF only supports 3-stage Clos topologies; other topologies might work but are not
certified or supported by Juniper.

Software.    Not all Junos software is compatible with VCF. You must use at least Junos
13.2X51-D20 or newer on all switches in the VCF.

Spine.    A spine switch must be a QFX5100 switch; there are no exceptions. The
amount of processing required in the spine requires additional control plane process‐
ing. The Juniper QFX5100 family has an updated control plane and makes a perfect
fit for the spine in a VCF. Spine switches must also have a direct connection to each
leaf switch in the topology. You cannot use intermediate switches or leave any leaf
unconnected. The spine switches always assume the roles of the routing engine or the
backup routing engine.

As of Junos 13.1X53-D10, VCF only supports up to four spine switches.

Leaf.    Leaf switches are optimally Juniper QFX5100 switches, but there is also sup‐
port for QFX3500, QFX3600, and EX4300 switches. Each leaf must have a direct con‐
nection to each spine in the topology. The leaf switches always assume the role of a
line card.

As of Junos 14.1X53-D10, VCF supports up to 28 leaf switches.

Virtual Chassis modes
VCF supports two modes: fabric mode and mixed mode. By default, the switch ships
in fabric mode. The mode is set on a per-switch basis. All switches in the VCF must
be set to the same mode.
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It’s recommended that you change the mode of a switch before
connecting it into a VCF. Connecting a new switch into the fabric
and then changing the mode can cause temporary disruptions to
the fabric.

Fabric mode.    A VCF in fabric mode supports only QFX5100 devices. Fabric mode is
the most recommended mode because it represents the latest technology, features,
and scale. When the VCF is in fabric mode, it supports the full scale and features of
the Juniper QFX5100 series.

Mixed mode.    If you want to introduce native 1GbE connectivity with the EX4300
family or use existing QFX3500 and QFX3600 switches, the VCF must be placed into
mixed mode. One of the drawbacks to using mixed mode is that VCF will operate in a
“lowest common dominator” mode in terms of scale and features. For example, if
you’re using an EX4300 switch as a leaf in VCF, you would cause the entire fabric to
operate at the reduced scale and feature level of the EX4300 device, as opposed to that
of the Juniper QFX5100 device. The same is true for QFX3500 and QFX3600
switches.

Provisioning configurations
Provisioning a VCF involves how the fabric is configured on the command line as
well as how new switches are added into the fabric. There are three modes associated
with provisioning a VCF. Table 5-2 compares them at a high level.

Table 5-2. Comparing Virtual Chassis Fabric provisioning modes

Attribute Auto-provisioned Preprovisioned Nonprovisioned

Configure serial number Yes Yes Yes

Configure role Yes Yes Yes

Configure priority No No Yes

Adding new leaf Plug-and-play Configure role and serial number Configure priority and serial number

Virtual Chassis ports Automatic Automatic Manual

There are benefits and drawbacks to each provisioning mode. Use Table 5-2 and the
sections that follow to understand each mode and make the best decision for your
network. In general, it’s recommended to use the auto-provisioned mode because it’s
a plug-and-play fabric.

Auto-provisioned mode.    The easiest and recommended method is to use the auto-
provisioned mode in VCF. There is minimal configuring required on the command
line, and adding new switches into the fabric is as simple as connecting the cables and
powering on the device; it’s truly a plug-and-play architecture.
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The only manual configuration required for auto-provisioned mode is to define the
number of spine switches, set the role to routing-engine, and the serial number for
each spine. For example:

[edit]
root# set virtual-chassis member 0 role routing-engine serial-number TB3714070330

[edit]
root# set virtual-chassis member 1 role routing-engine serial-number TB3714070064

In the preceding example, the VCF has two spine switches. We manually configured
them as routing engines and set each serial number. Virtual Chassis ports are auto‐
matically discovered and configured in auto-provisioned mode.

Preprovisioned mode.    The second most common method is the preprovisioned mode.
The difference is that you must manually configure each switch in the topology,
assign a role, and set the serial number. You cannot add new switches into the VCF
without configuration. In environments with higher security requirements, a prepro‐
visioned VCF would prevent unauthorized switches from being added into the fabric.
The configuration is identical to the auto-provisioned mode. Virtual Chassis ports are
automatically discovered and configured in preprovisioned mode.

Nonprovisioned mode.    The nonprovisioned mode is the default configuration of each
switch from the factory. The role is no longer required to be defined in this role;
instead, a mastership election process is used to determine the role of each switch.
The mastership election process is controlled through setting a priority on a per-
switch basis. You define Virtual Chassis ports manually. They are not automatically
discovered.

The nonprovisioned mode isn’t recommended in general, and is only reserved for
environments that require a specific mastership election process during a failure
event. Adding new switches to the fabric requires serial number and priority configu‐
ration.

Components
At a high level, there are four components that are used by the switches to build a
VCF: routing engine, line card, virtual management Ethernet interface, and Virtual
Chassis ports.

Master routing engine
The first role a switch can have in a VCF is a routing engine. Only spine switches can
become a routing engine. The leaf switches can only be a line card. The role of rout‐
ing engine acts as the control plane for the entire VCF. A spine switch operating as a
routing engine is responsible for the following:
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• Operating as the control plane for the entire VCF
• Operating VCF control protocols for auto-discovery, topology management, and

internal routing and forwarding protocols
• Taking ownership of the virtual management Ethernet interface for the VCF

Other spine switches must operate in the backup or line-card role. The next spine
switch in succession to become the next master routing engine will operate in the
backup role. All other spine switches will operate as line cards. In summary, only the
first spine switch can operate as a master routing engine; the second spine switch
operates as the backup routing engine; and the third and fourth spine switches oper‐
ate as a line card.

Backup routing engine
The backup routing engine is similar to the master routing engine, except that its
only job is to become the master routing engine if there’s a failure with the current
master routing engine. Part of this responsibility requires that the master and backup
routing engines must be perfectly synchronized in terms of kernel and control plane
state. The following protocols are used between the master and backup routing
engines to keep synchronized:

• Graceful Routing Engine Switch Over (GRES)
• Nonstop Routing (NSR)
• Nonstop Bridging (NSB)

Keeping the backup routing engine synchronized with the master routing engine
allows VCF to experience a hitless transition between the master and backup routing
engines without traffic loss.

Line card
All other switches in the VCF that aren’t a master or backup routing engine are a line
card. By default, all leaf switches are a line card. If there are more than two spines, all
other spines are also a line card; only the first two spines can be a routing engine.

The line card role acts simply as a line card would in a real chassis. There are minimal
control plane functions on the line card to process the Virtual Chassis management
and provisioning functions; otherwise, the switch simply exists to forward and route
traffic as fast as possible.

Virtual Management Ethernet interface
Each switch in a VCF has a Management Ethernet (vme) port. These ports are used to
manage the switch over IP. They are directly controlled by the routing engine and are
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out-of-band from the revenue traffic. Figure 5-4 shows an example of the Virtual
Management Ethernet interface, labeled C0 and C1.

Figure 5-4. Virtual Management Ethernet interface in Virtual Chassis fabric

However, in a VCF, only one of these vme ports can be active at any given time. The
switch that currently holds the master routing engine role is responsible for the vme
management port. Although a VCF could have up to 32 switches, only a single switch
will be used for out-of-band management through the vme port.

Virtual Chassis ports
The Virtual Chassis ports (VCP) are the interfaces that directly connect the switches
together. VCP interfaces are standard 10GbE and 40GbE interfaces on the switch and
do not require special cables. Simply use the existing QSFP and SFP+ interfaces to
interconnect the switches together, as shown in Figure 5-5.
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Figure 5-5. VCP interfaces in VCF

After an interface has been configured as a VCP interface, it’s no longer eligible to be
used as a standard revenue port. All interswitch traffic will now use VCP interfaces.

Implementation
Configuring VCF is straightforward and easy. Let’s take a look at all three provision‐
ing modes to get a better understanding of the configuration differences. We will also
take a look at how to add and remove spine and leaf switches. Each provisioning
mode is a little different in the configuration and process of expanding the fabric.

Before configuring the switches, there are a few steps that you are required to carry
out before configuring the VCF.

Software Version
Ensure that all switches have the same version of Junos installed. Use Junos
13.2X51D-20 or newer.

Disconnect All Cables
Before you begin to configure VCF, be sure to disconnect all cables from the
switches. This is because if you want to use the plug-and-play feature of the auto-
provisioned mode, you want to explicitly control the creation of the spine
switches, then simply add other switches. For preprovisioned and nonprovi‐
sioned modes, you can cable-up the switches.

Identify Serial Numbers
Identify the serial numbers for each switch. For auto-provisioned mode, you only
need the serial numbers for the spine switches. For preprovisioned and nonpro‐
visioned modes, you will need all of the spine and leaf switch serial numbers.
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Check for Link Layer Discovery Protocol (LLDP)
LLDP should be turned on by factory default, but always check to ensure that it’s
enabled. Use the command set protocols lldp interface all to enable
LLDP. VCF uses LLDP to enable the plug-and-play functionality in auto-
provisioned mode.

After you have upgraded the software, disconnected all cables, and identified all of
the serial numbers, you can begin to build the VCF.

Configuring the Virtual Management Ethernet interface
Now, let’s configure a management IP address for this switch:

{master:0}[edit]
root# set interfaces vme.0 family inet address 10.92.82.4/24

The next step is to set a root password for the switch. It will prompt you to enter a
password, and then again for verification:

{master:0}[edit]
root# set system root-authentication plain-text-password
New password:
Retype new password:

The next step is to enable Secure Shell (SSH) so that we can log in and copy files to
and from the switch:

{master:0}[edit]
root# set system services ssh root-login allow

Now that you have set a management IP address and root password, you need to
commit the changes to activate them:

{master:0}[edit]
root# commit and-quit
configuration check succeeds
commit complete
Exiting configuration mode

root>

The switch should now be reachable on the C0 management interface on the rear of
the switch. Let’s ping it to double-check:

epitaph:~ dhanks$ ping 10.92.82.4
PING 10.92.82.4 (10.92.82.4): 56 data bytes
64 bytes from 10.92.82.4: icmp_seq=0 ttl=55 time=21.695 ms
64 bytes from 10.92.82.4: icmp_seq=1 ttl=55 time=20.222 ms
^C
--- 10.92.82.4 ping statistics ---
2 packets transmitted, 2 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 20.222/20.959/21.695/0.737 ms
epitaph:~ dhanks$

Everything looks great. The switch is now upgraded and able to be managed via IP
instead of the serial console.
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Auto-provisioned
We’ll spend more time going over the auto-provisioned mode in more detail because
it’s the most popular and recommended provisioning mode. The auto-provisioned
mode only requires that you define the spine switches and the serial numbers.
Figure 5-6 presents a simple topology and what the configuration would be.

Figure 5-6. A simple VCF topology

The topology in Figure 5-6 has two spines and four leaf switches. In this example,
both spine switches need to be configured. The spine switch serial numbers have
been identified and are shown in Table 5-3.

Table 5-3. QFX5100-24Q spine serial numbers

Switch Serial number

QFX5100-24Q-01 TB3714070330

QFX5100-24Q-02 TB3714070064

Installing the first spine switch.    The first step is to ensure that the spine switches are in
fabric mode. Use the following command on both QFX5100-24Q switches:

root> request virtual-chassis mode fabric reboot

The switches will reboot to fabric mode.

The next step is to begin configuring VCF on the first spine. Put QFX5100-24Q-01
into auto-provisioned mode. We’ll also support upgrading the software of other
switches connected into the fabric with the command auto-sw-upgrade knob.

Don’t worry about the second spine switch, QFX5100-24Q-02, for
the moment. We’ll focus on QFX5100-24Q-01 and move on to the
leaf switches. Adding the final spine switch will be the last step
when bringing up VCF.
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Starting on QFX5100-24Q-01, let’s begin to configure VCF:
[edit]
root# set virtual-chassis auto-provisioned
[edit]
root# set virtual-chassis auto-sw-upgrade

The next step is to configure the role and serial numbers of all of the spine switches
(use the data presented earlier in Table 5-3):

[edit]
root# set virtual-chassis member 0 role routing-engine serial-number TB3714070330

[edit]
root# set virtual-chassis member 1 role routing-engine serial-number TB3714070064

Verify the configuration before committing it:
[edit]
root# show virtual-chassis
auto-provisioned;
member 0 {
    role routing-engine;
    serial-number TB3714070330;
}
member 1 {
    role routing-engine;
    serial-number TB3714070064;
}

Now, you can commit the configuration:
[edit]
root# commit and-quit
configuration check succeeds
commit complete
Exiting configuration mode

The Juniper QFX5100-24Q is now in VCF mode; we can verify this by using the show
virtual-chassis command:

{master:0}
root> show virtual-chassis

Fabric ID: 5ba4.174a.04ca
Fabric Mode: Enabled
                                                Mstr           Mixed Route Neighbor List
Member ID  Status   Serial No    Model          prio  Role      Mode  Mode ID  Interface
0 (FPC 0)  Prsnt    TB3714070330 qfx5100-24q-2p 128   Master*      N  F    0  vcp-255/0/0

Installing the first leaf switch.    The next step is to begin installing the leaves, which is a
very simple process. Log in to the first QFX5100-48S-01 and reset the switch to a fac‐
tory default state:

root> request system zeroize
warning: System will be rebooted and may not boot without configuration
Erase all data, including configuration and log files? [yes,no] (no) yes
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warning: ipsec-key-management subsystem not running - not needed by configuration.

root> Terminated

If the leaf switches already have Junos 13.2X51-D20 installed and
are in a factory default state, you can skip the request system
zeroize step. You can simply connect the leaf switch to the spine
switch.

After the switch reboots, simply connect a 40G cable from the Juniper
QFX5100-24Q-01 to QFX5100-48S-01, as illustrated in Figure 5-7.

Figure 5-7. Connecting QFX5100-24Q-01 to QFX5100-48S-01

When the cable is connected, the master QFX5100-24Q-01 will automatically add the
new QFX5100-48S-01 into the VCF.

Install remaining leaf switches.    Repeat this step for each QFX5100-48S in the VCF, as
shown in Figure 5-8.

Figure 5-8. Connecting the other leaf switches
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When all of the Juniper QFX5100-48S leaves have been reset to factory default and
connected, the Juniper QFX5100-24Q-01 will bring all of the switches into the VCF.
You can verify this by using the show virtual-chassis command:

{master:0}
root> show virtual-chassis

Auto-provisioned Virtual Chassis Fabric
Fabric ID: 742a.6f8b.6de6
Fabric Mode: Enabled
                                                Mstr           Mixed Route Neighbor List
Member ID  Status   Serial No    Model          prio  Role      Mode  Mode ID  Interface
0 (FPC 0)  Prsnt    TB3714070330 qfx5100-24q-2p 129   Master*      N  F    4  vcp-255/0/0
                                                                           3  vcp-255/0/1
                                                                           2  vcp-255/0/3
                                                                           5  vcp-255/0/4
2 (FPC 2)  Prsnt    TA3713480228 qfx5100-48s-6q   0   Linecard     N  F    0  vcp-255/0/48
3 (FPC 3)  Prsnt    TA3713480106 qfx5100-48s-6q   0   Linecard     N  F    0  vcp-255/0/48
4 (FPC 4)  Prsnt    TA3713470455 qfx5100-48s-6q   0   Linecard     N  F    0  vcp-255/0/48
5 (FPC 5)  Prsnt    TA3713480037 qfx5100-48s-6q   0   Linecard     N  F    0  vcp-255/0/48

The newly added switches are displayed in italics in the preceding output; for refer‐
ence they’re Member ID 2, 3, 4, and 5.

Install the last spine.    The last step is to add the second QFX5100-24Q-02 spine into
the VCF. Repeat the same steps and reset the switch using the zeroize command on
the second QFX5100-24Q-02, and then after the switch reboots, connect the remain‐
ing cables into a full mesh, as depicted in Figure 5-9.

Figure 5-9. Adding the final spine switch, QFX5100-24Q-02

Wait a couple of minutes and then check the status of the VCF again; you should see
the missing member 1 as Prsnt with a role of Backup:

dhanks@> show virtual-chassis

Auto-provisioned Virtual Chassis Fabric
Fabric ID: 742a.6f8b.6de6
Fabric Mode: Enabled
                                                Mstr           Mixed Route Neighbor List
Member ID  Status   Serial No    Model          prio  Role      Mode  Mode ID  Interface
0 (FPC 0)  Prsnt    TB3714070330 qfx5100-24q-2p 129   Master*      N  F    4  vcp-255/0/0
                                                                           3  vcp-255/0/1
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                                                                           2  vcp-255/0/3
                                                                           5  vcp-255/0/4
1 (FPC 1)  Prsnt    TB3714070064 qfx5100-24q-2p 129   Backup       N  F    4  vcp-255/0/0
                                                                           3  vcp-255/0/1
                                                                           2  vcp-255/0/3
                                                                           5  vcp-255/0/4
2 (FPC 2)  Prsnt    TA3713480228 qfx5100-48s-6q   0   Linecard     N  F    0  vcp-255/0/48
                                                                           1  vcp-255/0/49
3 (FPC 3)  Prsnt    TA3713480106 qfx5100-48s-6q   0   Linecard     N  F    0  vcp-255/0/48
                                                                           1  vcp-255/0/49
4 (FPC 4)  Prsnt    TA3713470455 qfx5100-48s-6q   0   Linecard     N  F    0  vcp-255/0/48
                                                                           1  vcp-255/0/49
5 (FPC 5)  Prsnt    TA3713480037 qfx5100-48s-6q   0   Linecard     N  F    0  vcp-255/0/48
                                                                           1  vcp-255/0/49

Use the show interface command to verify that the new Virtual Chassis Fabric
management interface is up:

{master:0}
root> show interfaces terse vme
Interface               Admin Link Proto    Local                 Remote
vme                     up    up
vme.0                   up    up   inet     10.92.82.4/24

You probably recognized (astutely, I should mention) that this is the same vme inter‐
face that we originally configured on the Juniper QFX5100-24Q-01 when it was in
standalone mode. The vme configuration has persisted through when placing the
device into VCF. Because the Juniper QFX5100-24Q-01 is the master routing engine,
it also owns the vme interface. We can also check the reachability from our laptop:

epitaph:~ dhanks$ ping 10.92.82.4
PING 10.92.82.4 (10.92.82.4): 56 data bytes
64 bytes from 10.92.82.4: icmp_seq=0 ttl=55 time=21.695 ms
64 bytes from 10.92.82.4: icmp_seq=1 ttl=55 time=20.222 ms
^C
--- 10.92.82.4 ping statistics ---
2 packets transmitted, 2 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 20.222/20.959/21.695/0.737 ms
epitaph:~ dhanks$

It appears that we can reach the VCF by using the built-in management port. We’re
now ready for the next step.

Configure high availability.    To ensure that the VCF recovers quickly from failures,
there are three key features that we need to enable:

• GRES: Synchronize kernel state between the master and backup routing engines
• NSR: Synchronize routing protocol state between the master and backup routing

engines
• NSB: Synchronize Layer 2 protocol state between the master and backup routing

engines

The first step is to configure GRES:
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{master:0}[edit]
dhanks@VCF# set chassis redundancy graceful-switchover
{master:0}[edit]
dhanks@VCF# set system commit synchronize

Next, configure NSR and NSB:
{master:0}[edit]
dhanks@VCF# set routing-options nonstop-routing
{master:0}[edit]
dhanks@VCF# set protocols layer2-control nonstop-bridging
{master:0}[edit]
dhanks@VCF# commit and-quit
configuration check succeeds
commit complete
Exiting configuration mode

Now, verify that the master routing engine is sending data to the backup routing
engine through the GRES protocol:

{master:0}
dhanks@VCF> show task replication
        Stateful Replication: Enabled
        RE mode: Master

The next step is to verify that NSR and NSB are synchronizing state. To do this, you
need to log in to the backup routing engine by using the request session command:

{master:0}
dhanks@VCF> request session member 1

--- JUNOS 13.2-X51D20
dhanks@VCF:BK:1% clear
dhanks@VCF:BK:1% cli
warning: This chassis is operating in a non-master role as part of a virtual-
chassis fabric (VCF) system.
warning: Use of interactive commands should be limited to debugging and VC Port
operations.
warning: Full CLI access is provided by the Virtual Chassis Fabric Master (VCF-M)
chassis.
warning: The VCF-M can be identified through the show fabric status command
executed at this console.
warning: Please logout and log into the VCF-M to use CLI.

Now that you’ve logged in to the backup routing engine, verify NSR and NSB:
{backup:1}
dhanks@VCF> show system switchover
fpc1:
--------------------------------------------------------------------------
Graceful switchover: On
Configuration database: Ready
Kernel database: Ready
Peer state: Steady State

{backup:1}
dhanks@VCF> show l2cpd task replication
        Stateful Replication: Enabled
        RE mode: Backup
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Everything looks great. At this point, VCF is configured and ready to use.

Preprovisioned
Configuring the preprovisioned VCF is very similar to the auto-provisioned method.
Begin by configuring the following items just as you would for auto-provisioned
mode:

• Ensure that switches are running Junos 13.2X51-D20 or higher
• Identify all of the serial numbers for both spine and leaf switches
• Disconnect all cables
• Configure the vme interface on the first spine switch and check connectivity

The next step is to begin configuring VCF in preprovisioned mode.

Starting on QFX5100-24Q-01, begin to configure VCF:
[edit]
root# set virtual-chassis preprovisioned
[edit]
root# set virtual-chassis auto-sw-upgrade

Configure the role and serial numbers of all of the spine switches (use the data pro‐
vided in Table 5-3):

[edit]
root# set virtual-chassis member 0 role routing-engine serial-number TB3714070330

[edit]
root# set virtual-chassis member 1 role routing-engine serial-number TB3714070064

Configure the role and serial numbers of all of the leaf switches from Figure 5-6:
[edit]
root# set virtual-chassis member 2 role routing-engine serial-number TB3714070228

[edit]
root# set virtual-chassis member 3 role routing-engine serial-number TB3714070106

[edit]
root# set virtual-chassis member 4 role routing-engine serial-number TB3714070455

[edit]
root# set virtual-chassis member 5 role routing-engine serial-number TB3714070037

The next step is to connect the rest of the switches in the topology and turn them on.

Wait a couple of minutes and check the status of the VCF again; you should see the
Virtual Chassis up and running:

dhanks@> show virtual-chassis

Pre-provisioned Virtual Chassis Fabric
Fabric ID: 742a.6f8b.6de6
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Fabric Mode: Enabled
                                                Mstr           Mixed Route Neighbor List
Member ID  Status   Serial No    Model          prio  Role      Mode  Mode ID  Interface
0 (FPC 0)  Prsnt    TB3714070330 qfx5100-24q-2p 129   Master*      N  F    4  vcp-255/0/0
                                                                           3  vcp-255/0/1
                                                                           2  vcp-255/0/3
                                                                           5  vcp-255/0/4
1 (FPC 1)  Prsnt    TB3714070064 qfx5100-24q-2p 129   Backup       N  F    4  vcp-255/0/0
                                                                           3  vcp-255/0/1
                                                                           2  vcp-255/0/3
                                                                           5  vcp-255/0/4
2 (FPC 2)  Prsnt    TA3713480228 qfx5100-48s-6q   0   Linecard     N  F    0  vcp-255/0/48
                                                                           1  vcp-255/0/49
3 (FPC 3)  Prsnt    TA3713480106 qfx5100-48s-6q   0   Linecard     N  F    0  vcp-255/0/48
                                                                           1  vcp-255/0/49
4 (FPC 4)  Prsnt    TA3713470455 qfx5100-48s-6q   0   Linecard     N  F    0  vcp-255/0/48
                                                                           1  vcp-255/0/49
5 (FPC 5)  Prsnt    TA3713480037 qfx5100-48s-6q   0   Linecard     N  F    0  vcp-255/0/48
                                                                           1  vcp-255/0/49

From this point forward configure the high availability just as you did in the auto-
provisioned mode. Ensure that the high-availability protocols are working and the
routing engines are synchronized. From this point forward, you’re good to go.

Nonprovisioned
Configuring the nonprovisioned VCF is very similar to the preprovisioned method.
You begin by configuring the following items just as you would for preprovisioned
mode:

• Ensure that switches are running Junos 13.2X51-D20 or higher
• Disconnect all cables
• Identify all serial numbers
• Configure the vme interface on the first spine switch and check connectivity

The next step is to begin configuring VCF in nonprovisioned mode.

Starting on QFX5100-24Q-01, begin to configure VCF:
 [edit]
root# set virtual-chassis auto-sw-upgrade

Now, configure the mastership priority, role, and serial numbers of all of the spine
switches (use the data provided in Table 5-3):

[edit]
root# set virtual-chassis member 0 role routing-engine serial-number TB3714070330

[edit]
root# set virtual-chassis member 0 mastership-priority 255

[edit]
root# set virtual-chassis member 1 role routing-engine serial-number TB3714070064
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[edit]
root# set virtual-chassis member 1 mastership-priority 254

The next step is to configure the mastership priority, role, and serial numbers of all of
the leaf switches from Figure 5-6:

[edit]
root# set virtual-chassis member 2 role routing-engine serial-number TB3714070228

[edit]
root# set virtual-chassis member 2 mastership-priority 0

[edit]
root# set virtual-chassis member 3 role routing-engine serial-number TB3714070106

[edit]
root# set virtual-chassis member 3 mastership-priority 0

[edit]
root# set virtual-chassis member 4 role routing-engine serial-number TB3714070455

[edit]
root# set virtual-chassis member 4 mastership-priority 0

[edit]
root# set virtual-chassis member 5 role routing-engine serial-number TB3714070037

[edit]
root# set virtual-chassis member 5 mastership-priority 0

The mastership priority ranges from 0 to 255. The higher the mastership priority, the
more priority it has to become the master routing engine.

Now, connect the rest of the switches in the topology and turn them on.

Wait a couple of minutes and check the status of the VCF again; you should see the
Virtual Chassis up and running:

dhanks@> show virtual-chassis

Pre-provisioned Virtual Chassis Fabric
Fabric ID: 742a.6f8b.6de6
Fabric Mode: Enabled
                                                Mstr           Mixed Route Neighbor List
Member ID  Status   Serial No    Model          prio  Role      Mode  Mode ID  Interface
0 (FPC 0)  Prsnt    TB3714070330 qfx5100-24q-2p 129   Master*      N  F    4  vcp-255/0/0
                                                                           3  vcp-255/0/1
                                                                           2  vcp-255/0/3
                                                                           5  vcp-255/0/4
1 (FPC 1)  Prsnt    TB3714070064 qfx5100-24q-2p 129   Backup       N  F    4  vcp-255/0/0
                                                                           3  vcp-255/0/1
                                                                           2  vcp-255/0/3
                                                                           5  vcp-255/0/4
2 (FPC 2)  Prsnt    TA3713480228 qfx5100-48s-6q   0   Linecard     N  F    0  vcp-255/0/48
                                                                           1  vcp-255/0/49
3 (FPC 3)  Prsnt    TA3713480106 qfx5100-48s-6q   0   Linecard     N  F    0  vcp-255/0/48
                                                                           1  vcp-255/0/49
4 (FPC 4)  Prsnt    TA3713470455 qfx5100-48s-6q   0   Linecard     N  F    0  vcp-255/0/48
                                                                           1  vcp-255/0/49
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5 (FPC 5)  Prsnt    TA3713480037 qfx5100-48s-6q   0   Linecard     N  F    0  vcp-255/0/48
                                                                           1  vcp-255/0/49

From this point forward, configure the high availability just as we did in the auto-
provisioned mode. Ensure that the high-availability protocols are working and the
routing engines are synchronized. From this point forward, you’re good to go.

Using Virtual Chassis Fabric
Now that VCF is configured and ready to go, let’s take a look at some of the most
common day-to-day tasks and how they work in VCF.

• Adding new Virtual Local Area Networks (VLANs) and assigning them to switch
ports

• Assigning routed VLAN interfaces so that the fabric can route between VLANs
• Adding access control lists
• Mirroring traffic
• Setting up Simple Network Management Protocol (SNMP) to enable monitoring

of the fabric

Remember that VCF is just a single, logical switch with many physical components.
You handle all configuration through a single command-line interface. The VCF also
appears as a single, large switch from the perspective of SNMP.

We’ll make the assumption that our VCF has the following topology, as shown in
Figure 5-10.

Figure 5-10. A VCF topology

Adding VLANs
The most basic task is adding new VLANs to the network in order to segment
servers. The first step is to drop into configuration mode and define the VLAN:

{master:0}[edit]
root@VCF# set vlans Engineering description "Broadcast domain for Engineering
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group"
{master:0}[edit]
root@VCF# set vlans Engineering vlan-id 100
{master:0}[edit]
root@VCF# set vlans Engineering l3-interface irb.100

The next step is to create a Layer 3 interface for the new Engineering VLAN so that
servers have a default gateway. We’ll use the same l3-interface that was referenced
in creating the Engineering VLAN:

{master:0}[edit]
root@VCF# set interfaces irb.100 family inet address 192.168.100.1/24

Now that the VLAN and its associated Layer 3 interface is ready to go, the next step is
to add servers into the VLAN. Let’s make an assumption that the first QFX5100-48S
is in the first rack.

When working with VCF, each switch is identified by its FPC number. An easy way to
reveal a switch’s FPC number is by using the show chassis hardware command. You
can identify switches by the serial number. It’s important to note that because we used
the auto-provision feature in VCF, the FPC numbers are assigned chronologically as
new switches are added:

{master:0}
root@VCF> show chassis hardware | match FPC
FPC 0            REV 11   650-049942   TB3714070330      QFX5100-24Q-2P
FPC 1            REV 11   650-049942   TB3714070064      QFX5100-24Q-2P
FPC 2            REV 09   650-049937   TA3713480228      QFX5100-48S-6Q
FPC 3            REV 09   650-049937   TA3713480106      QFX5100-48S-6Q
FPC 4            REV 09   650-049937   TA3713470455      QFX5100-48S-6Q
FPC 5            REV 09   650-049937   TA3713480037      QFX5100-48S-6Q

In our example, the FPC numbers are sequential, starting from 0 and ending in 5, as
shown in Figure 5-11.

Figure 5-11. VCF FPC numbers

Now that we know that the first switch is FPC2, we can begin to assign the new Engi‐
neering VLAN to this switch. The easiest method is to create an alias for all of the
10GbE interfaces on this switch; we’ll call this alias rack-01:
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{master:0}[edit]
root@VCF# set interfaces interface-range rack-01 member-range xe-2/0/0 to xe-2/0/47
{master:0}[edit]
root@VCF# set interfaces interface-range rack-01 description "Alias for all 10GE
interfaces on FPC2/rack-02"
{master:0}[edit]
root@VCF# set interfaces interface-range rack-01 unit 0 family ethernet-switching
vlan members Engineering
{master:0}[edit]
root@VCF# commit and-quit
configuration check succeeds
commit complete
Exiting configuration mode

Now the new interface alias called rack-01 is configured to include all 10GbE inter‐
faces from xe-0/0/0 to xe-0/0/47 on the front panel. The next step is to assign the
Engineering VLAN, which is done via the vlan members command.

Let’s verify our work by using the show vlans command:
{master:0}
root@VCF> show vlans

Routing instance        VLAN name             Tag          Interfaces
default-switch          Engineering           100
                                                             xe-2/0/0.0
                                                             xe-2/0/1.0
                                                             xe-2/0/12.0
                                                             xe-2/0/13.0
                                                             xe-2/0/2.0
                                                             xe-2/0/3.0
                                                             xe-2/0/4.0
                                                             xe-2/0/5.0
                                                             xe-2/0/6.0
                                                             xe-2/0/7.0
default-switch          default               1

All of the interfaces that have optics in rack-01 are now assigned to the Engineering
VLAN.

Let’s add another VLAN on a different switch for System Test:
{master:0}[edit]
root@VCF# set vlans Systest description "Broadcast domain for System Test"
{master:0}[edit]
root@VCF# set vlans Systest vlan-id 200
{master:0}[edit]
root@VCF# set vlans Systest l3-interface irb.200
{master:0}[edit]
root@VCF# set interfaces irb.200 family inet address 192.168.200.1/24
{master:0}[edit]
root@VCF# set interfaces interface-range rack-02 member-range xe-3/0/0 to xe-3/0/47
{master:0}[edit]
root@VCF# set interfaces interface-range rack-02 description "Alias for all 10GE
interfaces on FPC3/rack-03"
{master:0}[edit]
root@VCF# set interfaces interface-range rack-02 unit 0 family ethernet-switching
vlan members Systest
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{master:0}[edit]
root@VCF# commit and-quit
configuration check succeeds
commit complete
Exiting configuration mode

We can verify that the new System Test VLAN is up and working with a couple of
show commands:

{master:0}
root@VCF> show vlans

Routing instance        VLAN name             Tag          Interfaces
default-switch          Engineering           100
                                                             xe-2/0/0.0
                                                             xe-2/0/1.0
                                                             xe-2/0/12.0
                                                             xe-2/0/13.0
                                                             xe-2/0/2.0
                                                             xe-2/0/3.0
                                                             xe-2/0/4.0
                                                             xe-2/0/5.0
                                                             xe-2/0/6.0
                                                             xe-2/0/7.0
default-switch          Systest               200
                                                             xe-3/0/0.0
                                                             xe-3/0/1.0
                                                             xe-3/0/12.0
                                                             xe-3/0/13.0
                                                             xe-3/0/2.0
                                                             xe-3/0/3.0
                                                             xe-3/0/4.0
                                                             xe-3/0/5.0
                                                             xe-3/0/6.0
                                                             xe-3/0/7.0
default-switch          default               1

{master:0}
root@VCF> show interfaces terse | match irb
irb                     up    up
irb.100                 up    down inet     192.168.100.1/24
irb.200                 up    down inet     192.168.200.1/24

Configuring SNMP
With the VCF configured and running, the next step is to integrate the fabric into a
network monitoring program. One of the most common ways to poll information
from a switch is using SNMP. Let’s set up a public community string with read-only
access:

{master:0}[edit]
root@VCF# set snmp community public authorization read-only

{master:0}[edit]
root@VCF# commit and-quit
configuration check succeeds
commit complete
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At this point, you can use your favorite SNMP browser or collection server and begin
polling information from VCF. To confirm that SNMP is working properly, you can
use the command-line tool snmpwalk and use the vme0 management IP address and
the public community string.

epitaph:~ dhanks$ snmpwalk -c public 10.92.82.4 | grep SNMPv2-MIB
SNMPv2-MIB::sysDescr.0 = STRING: Juniper Networks, Inc. qfx5100-24q-2p Ethernet
Switch, kernel JUNOS 13.2-X51-D20, Build date: 2014-03-18 12:13:29 UTC Copyright
(c) 1996-2014 Juniper Networks, Inc.
...

Port Mirroring
There are various ways to mirror traffic within VCF. You define an input and an out‐
put interface. The input is a bit more flexible and supports an interface or an entire
VLAN. Let’s set up a port mirror so that all ingress traffic on the Engineering VLAN
is mirrored to the xe-3/0/0.0 interface:

{master:0}[edit]
root@VCF# set forwarding-options analyzer COPY-ENGINEERING input ingress vlan
Engineering
root@VCF# set forwarding-options analyzer COPY-ENGINEERING output interface xe-
3/0/0.0
root@VCF# commit and-quit
configuration check succeeds
commit complete

To view and verify the creation of the analyzer, we can use the show forwarding-
options analyzer command:

{master:0}
root@VCF> show forwarding-options analyzer
  Analyzer name                    : COPY-ENGINEERING
  Mirror rate                      : 1
  Maximum packet length            : 0
  State                            : up
  Ingress monitored VLANs          : default-switch/Engineering

Summary
VCF is a great technology to quickly get you on your feet and build out a high-
performance network that you can managed as a single switch. VCF offers three pro‐
visioning modes to suit your data center management and security needs. Taking
advantage of the carrier-class Junos code to provide GRES, NSR, and NSB, Virtual
Chassis Fabric can gracefully switch between routing engines during a failure without
dropping your critical traffic in the data center.

Whether you’re building out a small to medium data center or a large data center
with a POD architecture, VCF is a great way to easily manage your data center with a
rich set of features and outstanding performance.
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Chapter Review Questions
1. How many provisioning modes does VCF support?

a. 1
b. 2
c. 3
d. 4

2. How many vme interfaces are active at any given time in VCF?
a. None.
b. Only one.
c. Two. One for the master routing engine and another for the backup routing

engine.
d. All of them.

3. Can you add an EX4300 switch to VCF in fabric mode?
a. Yes
b. No

4. You want to configure the first 10GbE port on the second leaf. What interface is this?
a. xe-1/1/0
b. xe-0/1/0
c. xe-1/1/1
d. xe-3/0/0

Chapter Review Answers
1. Answer: C. VCF supports three provisioning modes: auto-provisioned, preprovisioned,
and nonprovisioned.

2. Answer: B. Only the master routing engine’s vme interface is active at any given time.

3. Answer: B. To support the EX4300, QFX3500, or the QFX3600, VCF must be put into
mixed mode.

4. Answer: D. This is a really tricky question. It depends on how many spines there are.
Using the assumption that there are two spines and four leaf switches, the FPC number of the
second leaf switch would be 3. The first port would be 0. The answer would be xe-3/0/0.
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CHAPTER 6

Network Automation

Automating a network means many things to many people. It’s like ordering a pizza,
no one can agree on anything. That’s because network automation is so personalized
and specific to the problem that each person is solving, everyone’s answer is different
and focused on solving their own problem.

For the scope of this chapter, network automation will focus on the task of automat‐
ing network functions. For simplicity, you can break down network functions into
three simple categories:

Build
The build stage focuses on the initial installation and bootstrapping of the net‐
working equipment. As soon as the switch is racked and powered on, the build
stage begins.

Configure
After you’ve built the network, there are day-to-day changes that you need to
implement to enable new services and applications to run; this is the configura‐
tion phase of network automation.

Collect
Now that you have successfully built the network and have a good handle on the
day-to-day operations, the last phase is to collect information about the network.
Being able to understand what’s happening on the network makes it possible for
you to increase the availability of the network and quickly troubleshoot prob‐
lems.

You can think of network automation as the purpose-built glue that brings your data
center together. Some network automation tools offer more turnkey functionality
than others; this is simply because of the scope. For example, to automatically config‐
ure a networking switch when it first powers on is a relatively simple thing to do;
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such automation can be very turnkey. However, there are other examples such as
deploying specific switch settings (Virtual Local Area Networks (VLAN) member‐
ship, interface tagging, and routing protocol changes in response to outside events
including application provisioning or updates). Such specific examples require
purpose-built programming that uses the switch’s libraries and APIs in order to get
the desired result—providing turnkey functionality is nearly impossible for such cus‐
tomized requirements.

This chapter will briefly go through the major automation tools that the Juniper
QFX5100 supports. The problem with network automation is that an entire book can
be written on each subject; so I’ve elected to give you a walking tour through the
automation abilities of the Juniper QFX5100 series and references to where you can
find additional information.

Overview
The Juniper QFX5100 family is chock full of network automation features with which
you can carry out network-related activities faster. This chapter covers the key net‐
work automation tools that come standard on Juniper QFX5100 switches and
describes how to use each tool. Following is an quick introduction:

Zero Touch Provisioning
The first tool we cover is Zero Touch Provisioning; this tool makes it possible for
you to bootstrap your switch when it first powers on and get it up and running
automatically.

Chef and Puppet
One of the most common tasks in a data center is making changes. Chef and
Puppet are tools that enable engineers to provision changes across the entire data
center, including the networking equipment.

Network Configuration Protocol and Device Management Interface
The Network Configuration Protocol (NETCONF) is an IETF standard that’s
based on XML by which you can edit a network configuration over remote pro‐
cedure calls (RPC). The Device Management Interface (DMI) is a Juniper-
specific schema that defines all of the RPCs available within Junos that you can
use.

Junos Python Easy Library
The Junos Python Easy (PyEZ) library is a Python library that uses NETCONF
and the Juniper DMI to automate Juniper devices. The best part is that the PyEZ
library hides all of the NETCONF and DMI from the programmer and simply
exposes standard Python functions as a replacement.
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The Juniper QFX5100 series has many points of user interaction that are available for
network automation, as shown in Figure 6-1. Chapter 1 describes how even the Junos
CLI uses standard XML RPC commands in the background and displays formatted
ASCII in the terminal. All of the other network automation points in Figure 6-1 are
designed to be used by programming languages or automation tools.

Figure 6-1. User and network automation points in Junos

All of the major network automation tools utilize the NETCONF protocol. However
Junos isn’t limited to the tools shown in Figure 6-1, and you can directly program the
NETCONF protocol itself by using any of the following programming languages and
libraries:

• Python (ncclient)
• Perl (netconf-perl)
• Ruby (net-netconf)
• Go (go-netconf)

Armed with your favorite programming language, there’s no task too large or too
small when it comes to network automation. The Juniper QFX5100 family supports a
wide variety of programming languages and lends itself nicely to the DevOps com‐
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munity. The best way to learn is by doing. Later in the chapter, we’ll get our hands
dirty with the Junos PyEZ library.

Junos Enhanced Automation
As network automation is becoming more prevalent in the data center, Juniper Net‐
works has created a new software package for the Juniper QFX5100 series of switches
that comes preinstalled, offering additional programming and automation tools. The
Junos Enhanced Automation software packages use the prefix “flex” to distinguish
them from the standard Junos software packages. For example, jinstall-qfx-5-
flex-13.2X51-D20.2-domestic-signed.tgz denotes Junos Enhanced Automation. The
following changes have been made to Junos Enhanced Automation:

• It now maintains full-feature parity with the standard version of Junos.
• The factory default configuration is Layer 3 instead of Layer 2.
• Safeguards are in place to prevent changes to essential Junos files.
• ZTP is preconfigured for all management and server ports.
• A new 1 GB /user partition is available to store binaries and additional packages.
• The /user partition is never modified during an upgrade or downgrade.
• Python is preinstalled into /usr/bin/python.
• Ruby is preinstalled into /opt/sdk/juniper/bin/ruby.
• The Puppet agent is preinstalled into /opt/sdk/juniper/bin/puppet.
• The Chef agent is preinstalled into /opt/sdk/chef/bin/chef.

Network automation with Juniper QFX5100 devices is now as easy as pie when paired
with Junos Enhanced Automation. Everything ships preinstalled so you don’t have to
worry about signed binaries from Juniper Networks and other headaches. As you
begin building up a personal programming library and script repository, keep them
installed in the /user partition. As you upgrade the switch in the future, this guaran‐
tees that all of your files are never deleted.

Zero Touch Provisioning
So, you just received a large pallet of Juniper QFX5100 switches in the data center
shipping department. You’ve removed all of the equipment from their boxes and
installed them into the racks. Now what? Most network engineers power up every‐
thing and begin programming each switch by hand. The more experienced engineer
is too savvy for this; he simply configures the first switch and saves the configuration
to a text file. Every other switch in the network is configured by using this as a tem‐
plate, copying and pasting it into the RS-232 terminal.
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If you do this, stop. There are much better ways to bootstrap networking equipment
in the data center: Zero Touch Provisioning (ZTP)

Seriously, it does exactly what it says. ZTP configures the switch without you having
to touch it. You simply power up the switch, connect its cable, and it will automati‐
cally configure itself as Figure 6-2 demonstrates.

Figure 6-2. Illustration of ZTP

As each Juniper QFX5100 switch powers up, it contacts the ZTP server and requests
its configuration. The great benefit of ZTP is that it doesn’t matter if you have 10
switches or 100,000; each switch can interact with ZTP in parallel, which means you
can quickly bring up an entire data center within minutes. That sure beats logging in
to the console of each switch.

The other great benefit of ZTP is that it allows you to automatically upgrade the
switch’s software in addition to applying a configuration. As you install new switches
into the data center, you don’t have to worry about software upgrades; ZTP takes care
of it all.

ZTP Server
The ZTP server is a simple DHCP server. One of the most popular options for a ZTP
server is running a Linux server with the Internet Systems Consortium (ISC) DHCP
server, which you can download from the ISC’s website. The first step to setting up
the ZTP server is to understand what DHCP options you must enable and what they
do. Table 6-1 will help out with that task.
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Table 6-1. ZTP server DHCP options list

DHCP option DHCP suboption Description

07 N/A Configure one or more syslog servers

12 N/A Hostname of switch

42 N/A Configure one or more NTP servers

43 00 Software image filename

43 01 Filename of the configuration file

43 02 Symbolic link flag for software image

43 03 Transfer mode (options include http, ftp, tftp)

43 04 Alternate software image filename

66 N/A Specify DNS of HTTP/FTP/TFTP host

150 N/A Specify IP of HTTP/FTP/TFTP host

Being an astute reader, you probably noticed that there are two ways to specify the
software image filename; this is done to provide the most portability between differ‐
ent DHCP servers. Some implementations of DHCP do not support DHCP subop‐
tion 00, and therefore you must use suboption 04, instead. DHCP suboption 02 might
seem a bit confusing, as well. This suboption is a flag that simply informs the DHCP
that the filename referenced in suboption 01 is either a real file or a symbolic link to a
file. For example, if DHCP suboption 01 points to a symbolic link on a file system,
you need to set DHCP suboption 02 to the value “symlink” to indicate that it isn’t a
real file, but a pointer to a real file. By using a symbolic link, you can always use the
same DHCP suboption 01 filename, such as junos-qfx5100-current.tgz, and it would
always link to the most current software install image, such as jinstall-qfx-5-13.2X51-
D25.2-domestic-signed.tgz.

When specifying the HTTP/FTP/TFTP server, there are also two DHCP options: 66
and 150. For DHCP servers that support DNS, you can use option 66; otherwise,
DHCP option 150 allows you to specify the IP address directly. If both DHCP options
66 and 150 are specified, DHCP option 150 takes precedence.

With DHCP option 43 suboption 03, you can specify the file transfer method. The
supported values are “http,” “ftp,” or “tftp.” If DHCP suboption 03 isn’t specified, the
DHCP server will default to TFTP.

The Juniper QFX5100 also supports additional network automation through DHCP
suboption 01, which is traditionally reserved to specify the configuration filename.
The Juniper QFX5100 switch downloads this file and then takes a look at the first line
in the file to determine its file type. If the line begins with a she-bang (#!), the Juniper
QFX5100 device will execute the filename as if it were a script. For example, you can
use DHCP suboption 01 to specify a Python, shell, or Junos automation script instead
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of a traditional configuration file. Imagine all of the possibilities that would be affor‐
ded to you by executing a Python script when bootstrapping a switch.

ISC DHCP Configuration
Let’s use our new knowledge of the ZTP server DHCP options and begin setting up a
new ZTP server. For this laboratory, we’ll use the ISC DHCP server, which you can
download from the ISC’s website. We’ll also use the ZTP settings presented in
Table 6-2.

Table 6-2. ISC DHCP configuration values

DHCP option and suboption Value

DHCP option 43, suboption 00 /jinstall-qfx-5-flex-13.2X51-D20.2-domestic-signed.tgz

DHCP option 43. suboption 01 /template.conf

DHCP option 43, suboption 03 http

DHCP option 150 172.32.32.254

The first step is to create a ztp-ops state to which all of our values can be set. After
the state is defined, we’ll inform ISC as to what type of value to expect; in this case it’s
either an IP address or text. The final step is to set up a subnet to accept DHCP
requests and associate the ztp-ops configuration to this range. The result is that the
dhcpd.conf looks like this:

option ztp-file-server code 150 = { ip-address };
option space ztp-ops;
option ztp-ops.image-file-name code 0 = text;
option ztp-ops.config-file-name code 1 = text;
option ztp-ops.image-file-type code 2 = text;
option ztp-ops.transfer-mode code 3 = text;
option ztp-ops-encap code 43 = encapsulate ztp-ops;

subnet 172.32.32.0 netmask 255.255.255.0 {
  range 172.32.32.20 172.32.32.200;
  option domain-name "provisioning.oob.local";
  option routers 172.32.32.1;
  option broadcast-address 172.32.32.255;
  default-lease-time 600;
  max-lease-time 7200;
  option host-name "netboot";

  option ztp-file-server 172.32.32.254;
  option ztp-ops.image-file-name "/jinstall-qfx-5-flex-13.2X51-D20.2-domestic-
signed.tgz";
  option ztp-ops.transfer-mode "http";
  option ztp-ops.config-file-name "/template.conf";
  }

Now, we’re ready to handle ZTP requests from any switch in the 172.32.32.0/24 net‐
work. Let’s use an existing switch in our network that’s running an older version of
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Junos. You can simulate a factory configuration by using the request system zero
ize command, which will delete all configuration and cause the switch to reboot.

Take note of the version before zeroing out the switch:
dhanks@qfx5100> show version
fpc0:
--------------------------------------------------------------------------
Hostname: qfx5100
Model: qfx5100-48s-6q
JUNOS Base OS Software Suite [13.2X51-D15.5]

Note that the Juniper QFX5100 switch is running Junos 13.2X51-D15.5. Next, let’s go
ahead and zero-out the switch and force it to reboot and come back up in a factory
default state. After it reboots, it will perform a DHCP request and the newly config‐
ured ZTP server will respond, upgrade the software, and push a new configuration to
the switch:

dhanks@qfx5100> request system zeroize
warning: System will be rebooted and may not boot without configuration
Erase all data, including configuration and log files? [yes,no] (no) yes

warning: ipsec-key-management subsystem not running - not needed by configuration.
warning: zeroizing fpc0

{master:0}
dhanks@qfx5100> Jul 28 06:42:03 init: chassis-control (PID 35331) stopped by signal
17
Jul 28 06:42:03 init: tnp-process (PID 35329) stopped by signal 17
Terminated
root@temp-leaf-01:RE:0% Jul 28 06:42:09 init: event-processing (PID 977) exited
with status=0 Normal Exit
Waiting (max 60 seconds) for system process `vnlru_mem' to stop...done
Waiting (max 60 seconds) for system process `vnlru' to stop...done
Waiting (max 60 seconds) for system process `bufdaemon' to stop...done
Waiting (max 60 seconds) for system process `syncer' to stop...
Syncing disks, vnodes remaining...0 0 0 0 done

syncing disks... All buffers synced.
Uptime: 5m51s
recorded reboot as normal shutdown
unloading fpga driver
unloading host-dev
Shutting down ACPI
Rebooting...

The Juniper QFX5100 switch has rebooted and come back up into a factory default
state as shown in the following:

Mon Jul 28 06:43:47 UTC 2014

Amnesiac (ttyd0)

login:
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The next step is that the Juniper QFX5100 switch downloads the software image and
configuration file from the ZTP server and reboots again to begin the software instal‐
lation process:

Amnesiac (ttyd0)

login: Terminated
Poweroff for hypervisor to respawn
Jul 28 06:48:54 init: event-processing (PID 1094) exited with status=1
Jul 28 06:48:54 init: packet-forwarding-engine (PID 1357) exited with status=8
Jul 28 06:48:55 init: dhcp-service (PID 1535) exited with status=0 Normal Exit
.
Waiting (max 60 seconds) for system process `vnlru_mem' to stop...done
Waiting (max 60 seconds) for system process `vnlru' to stop...done
Waiting (max 60 seconds) for system process `bufdaemon' to stop...done
Waiting (max 60 seconds) for system process `syncer' to stop...
Syncing disks, vnodes remaining...0 0 0 0 done

syncing disks... All buffers synced.
Uptime: 6m5s
recorded reboot as normal shutdown
unloading fpga driver
unloading host-dev
Powering system off using ACPI

Let’s check out the logs from the ZTP server to verify that the switch is pulling the
correct files:

pi@pi /usr/share/nginx/www $ sudo tail -f /var/log/nginx/access.log
172.32.32.176 - - [28/Jul/2014:06:48:48 +0000] "GET //template.conf HTTP/1.1" 200
4919 "-" "fetch libfetch/2.0"
172.32.32.176 - - [28/Jul/2014:06:49:58 +0000] "GET //jinstall-qfx-5-flex-13.2X51-
D20.2-domestic-signed.tgz HTTP/1.1" 200 449262025 "-" "fetch libfetch/2.0"

We can see that the Juniper QFX5100 downloaded /template.conf first and then 50
seconds later downloaded the new Junos software. The Juniper QFX5100 device has
now rebooted and come back online, the new software has been installed, and the
new configuration has been applied:

Mon Jul 28 06:53:53 UTC 2014

temp-leaf-01 (ttyd0)

login: root
Password:

--- JUNOS 13.2X51-D20.2 built 2014-04-29 08:35:21 UTC
root@temp-leaf-01:RE:0% cli
{master:0}
root@temp-leaf-01> show system uptime
fpc0:
--------------------------------------------------------------------------
Current time: 2014-07-27 23:58:15 PDT
System booted: 2014-07-27 23:50:03 PDT (00:08:12 ago)
Protocols started: 2014-07-27 23:53:56 PDT (00:04:19 ago)
Last configured: 2014-07-27 23:54:18 PDT (00:03:57 ago) by root
11:58PM  up 8 mins, 1 user, load averages: 0.08, 0.64, 0.46
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{master:0}
root@temp-leaf-01> show version
fpc0:
--------------------------------------------------------------------------
Hostname: temp-leaf-01
Model: qfx5100-48s-6q
JUNOS Base OS Software Suite [13.2X51-D20.2]

Notice the update of the switch is only 8 minutes and the new software version is
Junos 13.2X51-D20.2. Also note that the hostname has changed because the configu‐
ration has been applied, as well.

ISC DHCP Review
ZTP is a great way to quickly build the switching fabric of your data center. As soon
as the management network is set up, the entire infrastructure required for ZTP is
ready. You simply define the standardized Junos software version and configuration,
and then you can quickly deploy 1,000s of switches within minutes.

Puppet
When it comes to automating the data center, Puppet represents one of the most
common automation products that’s used in large-scale deployments. When you need
to make changes across a large set of systems, it quickly becomes a burden to do it
manually, and automation is required. Puppet is built on abstraction, so you can use
it across a large variety of servers and networking equipment.

The Puppet architecture is very simple. Devices that are to be managed are called
Nodes and the Puppet Master acts as the global catalog and change authority for all
Nodes. Puppet-specific devices are called Nodes on purpose; this is to completely
abstract the device that is being managed. For the exercise in this chapter, the Node
shall represent the Juniper QFX5100 switch. The Puppet Node and Master exchange
three types of information, as shown in Figure 6-3.

Figure 6-3. Puppet lifecycle overview
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The Puppet lifecycle is very simple:

Facts
The first step is that the Puppet Node reports a list of facts to the Puppet Master.
Facts are simply a collection of key/value pairs. In the example (the Juniper
QFX5100 switch), a list of facts could include interface names, interface descrip‐
tions, and VLAN memberships. The Puppet Node reports a list of facts to the
Puppet Master to inform it of the Node’s current state. If the current state doesn’t
match the Puppet Master’s catalog, the Node is out-of-date and needs to be upda‐
ted.

Catalog
The Puppet Master compiles a catalog based on the facts provided by the Puppet
Node. The Puppet Node takes the catalog and applies all changes.

Node Report
The Puppet Node completes all of the changes specified in the catalog and
reports back to the Puppet Master.

Report Collector
You can use Puppet’s open API to send data to third-party collectors and report‐
ing tools to create data center change reports.

So that’s Puppet in a nutshell. It’s a great way to get started with data center automa‐
tion, because you can use Puppet across all of your servers, applications, and net‐
working equipment.

Let’s take a look at how the Juniper QFX5100 series implements Puppet and turns
itself into a Puppet Node that’s capable of being managed by the Puppet Master, as
depicted in Figure 6-4.

The Juniper QFX5100 family requires that the Juniper SDK JPuppet package be
installed before you can use it as a Puppet Node.

Juniper QFX5100 switches also support a new Junos software
image called Enhanced Automation that ships preinstalled with the
Puppet agent. It’s recommended that you use the Enhanced Auto‐
mation package if you’re looking to automate your data center.
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Figure 6-4. The Juniper QFX5100 architecture with the Junos SDK and JPuppet package

The Puppet agent on the Juniper QFX5100 is simply a Ruby daemon that uses the
standard NetDev module on the Puppet Master. The Puppet agent is installed into
the /opt/sdk/juniper/bin/ directory.

Puppet Agent
The first step in configuring Puppet on the Juniper QFX5100 is to drop into the shell
and begin setting up the puppet.conf file, as follows:

% setenv PATH ${PATH}:/opt/sdk/juniper/bin

We’ll need to create a couple of directories and start creating our new puppet.conf.
% mkdir -p $HOME/.puppet/var/run
% mkdir -p $HOME/.puppet/var/log
% vi $HOME/.puppet/puppet.conf

The puppet.conf file should look something like this:
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[main]
libdir = $vardir/lib
logdir = $vardir/log/puppet
rundir = $vardir/run/puppet
ssldir = $vardir/ssl
factpath = $libdir/facter
moduledir = $libdir
pluginsync = true

[agent]
server = 172.32.32.254
classfile = $vardir/classes.txt
localconfig = $vardir/localconfig
daemonize = false

Be sure to change the server to the correct IP address that hosts the Puppet Master.
At this point, we should be good to go. The next step is to run the Puppet agent for
the first time on the Juniper QFX5100 switch:

% puppet agent --test
warning: iconv couldn't be loaded, which is required for UTF-8/UTF-16 conversions
info: Creating a new SSL key for qfx5100

info: Caching certificate for ca
info: Creating a new SSL certificate request for qfx5100
info: Certificate Request fingerprint (md5):
B3:EF:11:56:04:B1:9F:52:C6:4F:46:13:99:BC:B1:5C
err: Could not request certificate: Could not intern from s: header too long
Exiting; failed to retrieve certificate and waitforcert is disabled
%

No need to fret; the first time you run the Puppet agent, it creates a new SSL certifi‐
cate and submits it to the Puppet Master. The Puppet agent cannot continue until the
Puppet Master has signed the Secure Sockets Layer (SSL) certificate. Let’s log in to the
Puppet Master and see what certificates are available for signing:

root@puppet-master:~$ puppet cert list
  "qfx5100" (MD5) B3:EF:11:56:04:B1:9F:52:C6:4F:46:13:99:BC:B1:5C

We can see the new SSL certificate from the Juniper QFX5100 switch; sign it and give
it back to the switch:

root@puppet-master:~$ puppet cert sign qfx5100
Notice: Signed certificate request for qfx5100
Notice: Removing file Puppet::SSL::CertificateRequest qfx5100 at
'/var/lib/puppet/ssl/ca/requests/qfx5100.pem'
root@puppet-master:~$

Now that you have signed the Juniper QFX5100 certificate, you can go back to the
switch and rerun the Puppet agent:

% puppet agent --test
info: Retrieving plugin
info: Caching certificate_revocation_list for ca
notice: /File[/var/home/puppet/.puppet/var/lib/puppet]/ensure: created
notice: /File[/var/home/puppet/.puppet/var/lib/puppet/provider]/ensure: created
notice: /File[/var/home/puppet/.puppet/var/lib/puppet/provider/netdev_lag]/ensure:
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...snip...

info: Caching catalog for qfx5100
info: Applying configuration version '1406526155'
info: Creating state file /var/home/puppet/.puppet/var/state/state.yaml
notice: Finished catalog run in 0.11 seconds
%

The Puppet agent has successfully run the first time on the switch now that the SSL
certificate has been signed by the Puppet Master. There are a few options to invoke on
the Puppet agent on the Juniper QFX5100 switch:

Daemon
If you want to run the Puppet agent as a daemon on the Juniper QFX5100 device,
modify the puppet.conf on the switch and change the daemonize value to true.
Now, when you execute the command puppet agent (without the --test), it will
automatically turn into a daemon and return you back to the command prompt.
By default, it does this every 30 minutes.

Crontab
You can set up the /etc/crontab in the FreeBSD shell to execute /opt/sdk/juni
per/bin/puppet agent --onetime at any interval you wish.

SSH
If you don’t like pulling changes from the Puppet Master, you can use Secure
Shell (SSH) to log in to the Juniper QFX5100 and remotely execute the com‐
mand /opt/sdk/juniper/bin/puppet agent --onetime whenever you need.

Ensure that each switch in the network is connected to an NTP so that as the switch
insforms the Puppet Master about its facts, the time is synchronized and doesn’t
cause any issues.

Puppet Master
At this juncture, let’s start making some changes to the Juniper QFX5100 switch. All
changes in Puppet are defined in the Puppet Master. Let’s begin by adding the Juniper
QFX5100 device to the Puppet Master site manifest (site.pp). We’ll add into the mani‐
fest the information listed in Table 6-3.

Table 6-3. Puppet Master manifest settings

NetDev object Key Value

netdev_device  $hostname

netdev_vlan “blue” vlan_id 100

netdev_vlan “blue” description "the blue VLAN"

netdev_vlan “green” vlan_id 200

netdev_vlan “green” description "the green VLAN"
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NetDev object Key Value

netdev_vlan “red” vlan_id 300

netdev_vlan “red” description "the red VLAN"

netdev_interface “xe-0/0/14” untagged_vlan blue

netdev_interface “xe-0/0/14” description "belongs to the blue VLAN"

netdev_interface “xe-0/0/15” untagged_vlan green

netdev_interface “xe-0/0/15” description "belongs to the green VLAN"

netdev_interface “xe-0/0/16” untagged_vlan red

netdev_interface “xe-0/0/16” description "belongs to the red VLAN"

netdev_lag “ae0” ensure present

netdev_lag “ae0” active true

netdev_lag “ae0” links xe-0/0/10, xe-0/0/11

netdev_lag “ae0” lacp active

netdev_lag “ae0” minimum_links 1

netdev_interface “ae0” tagged_vlans blue, green, red

netdev_interface “ae0” description "core to trunk"

The values in Table 6-3 represent a simple setup of a core switch with a tagged inter‐
face connecting to the Juniper QFX5100 switch with three VLANs, as shown in
Figure 6-5.

Figure 6-5. Test topology with the Juniper QFX5100 switch and Puppet Master manifest
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Now that you understand the topology and what needs to be changed, take the Pup‐
pet Master manifest values from Table 6-3 and install them into the site.pp on the
Puppet Master:

node "qfx5100" {
        netdev_device { $hostname: }

        netdev_vlan { "blue":
                vlan_id => 100,
                description => "the blue VLAN",
        }
        netdev_vlan { "green":
                vlan_id => 200,
                description => "the green VLAN"
        }
        netdev_vlan { "red":
                vlan_id => 300,
                description => "the red VLAN",
        }
        netdev_l2_interface { 'xe-0/0/14':
                untagged_vlan => blue,
                description => "belongs to the blue VLAN"
        }
        netdev_l2_interface { 'xe-0/0/15':
                untagged_vlan => green,
                description => "belongs the green VLAN"
        }
        netdev_l2_interface { 'xe-0/0/16':
                untagged_vlan => red,
                description => "belongs to the red VLAN"
        }

        netdev_lag { "ae0":
                ensure => present,
                active => true,
                links => (['xe-0/0/10','xe-0/0/11']),
                lacp => active,
                minimum_links => 1
        }
        netdev_l2_interface { 'ae0':
                tagged_vlans => [ blue, green, red ],
                description => "Trunk to Core"
        }
}

With the Puppet Master manifest updated, let’s go back to the Juniper QFX5100
swtich and execute the Puppet agent manually to pull the change into the system:

% puppet agent --test
info: Retrieving plugin
info: Caching catalog for qfx5100
info: Applying configuration version '1406527872'
notice: /Stage[main]//Node[qfx5100]/Netdev_vlan[blue]/ensure: created
notice: /Stage[main]//Node[qfx5100]/Netdev_vlan[green]/ensure: created
notice: /Stage[main]//Node[qfx5100]/Netdev_lag[ae0]/ensure: created
notice: /Netdev_l2_interface[xe-0/0/15]/ensure: created
notice: /Netdev_l2_interface[xe-0/0/14]/ensure: created
notice: /Stage[main]//Node[qfx5100]/Netdev_vlan[red]/ensure: created
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notice: /Netdev_l2_interface[ae0]/ensure: created
notice: /Netdev_l2_interface[xe-0/0/16]/ensure: created
info: JUNOS: Committing 8 changes.

We can see that the Puppet agent has found all of the new netdev components and
has committed eight changes. Don’t forget that the Puppet agent also sends a report
back to the Puppet Master; here is the rest of the output from the puppet agent --
test command:

notice: JUNOS:

[edit interfaces]
+   xe-0/0/10 {
+       ether-options {
+           802.3ad ae0;
+       }
+   }
+   xe-0/0/11 {
+       ether-options {
+           802.3ad ae0;
+       }
+   }
+   xe-0/0/14 {
+       unit 0 {
+           description "belongs to the blue VLAN";
+           family ethernet-switching {
+               interface-mode access;
+               vlan {
+                   members 100;
+               }
+           }
+       }
+   }
+   xe-0/0/15 {
+       unit 0 {
+           description "belongs the green VLAN";
+           family ethernet-switching {
+               interface-mode access;
+               vlan {
+                   members 200;
+               }
+           }
+       }
+   }
+   xe-0/0/16 {
+       unit 0 {
+           description "belongs to the red VLAN";
+           family ethernet-switching {
+               interface-mode access;
+               vlan {
+                   members 300;
+               }
+           }
+       }
+   }
+   ae0 {
+       apply-macro "netdev_lag[:links]" {
+           xe-0/0/10;
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+           xe-0/0/11;
+       }
+       aggregated-ether-options {
+           minimum-links 1;
+           lacp {
+               active;
+           }
+       }
+       unit 0 {
+           description "Trunk to Core";
+           family ethernet-switching {
+               interface-mode trunk;
+               vlan {
+                   members [ 100 200 300 ];
+               }
+           }
+       }
+   }
[edit vlans]
+   blue {
+       description "the blue VLAN";
+       vlan-id 100;
+   }
+   green {
+       description "the green VLAN";
+       vlan-id 200;
+   }
+   red {
+       description "the red VLAN";
+       vlan-id 300;
+   }

notice: JUNOS: OK: COMMIT success!
notice: Finished catalog run in 2.30 seconds

The output above is directly from the Junos configuration change control by running
the show compare command. Each addition is prefixed with a + and each deletion is
prefixed with a - just like the Linux diff -u command.

Puppet Review
Puppet is a very powerful data center automation tool for servers and networking
devices. Although we only showed the basics, Puppet offers many more features such
as using variables and modules to create classes of switches and configure them based
upon a certain function such as access switch or core switch.

For more information about Puppet for the Juniper QFX5100 series, visit the Puppet
documentation.

For more information about Puppet, go to http://puppetlabs.com/.
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Chef
The other popular software tool for data center automation is Chef. The Juniper
QFX5100 series uses the same architecture for Chef as it does with Puppet, as illustra‐
ted in Figure 6-6.

Figure 6-6. The Juniper QFX5100 architecture and Chef agent package

The Chef agent is written as a Ruby program and uses the NETCONF libraries to
communicate with Junos. The Junos Enhanced Automation software image comes
preinstalled with a Chef agent.

The Chef example we’ll use here will be the core switch with a tagged trunk interface
going to the Juniper QFX5100 device with three VLANs. To create a working example
of Chef with the Juniper QFX5100 switch, we’ll use the same data from the Puppet
example that’s presented in Table 6-3 and Figure 6-5.
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Chef Server
The first step is to add the Juniper QFX5100 device to the Chef server. You can
choose to do it manually, but Juniper Networks and Chef have created a bootstrap
process that takes advantage of Chef automation and makes life much easier. The first
step is to pull the bootstrap file from GitHub on our Chef server:

root@chef-server:~/chef-repo$ wget https://github.com/opscode/junos-
chef/blob/master/bootstrap/junos-minimal.erb

Next, use this bootstrap file as a template and load it into Chef. In this example, our
switch IP address is 10.0.0.16:

root@chef-server:~/chef-repo$ knife bootstrap 10.0.0.16 --template-file junos-
minimal.erb -x root
Connecting to 10.0.0.16
Password: <Enter the switch's password>
10.0.0.16
10.0.0.16 ------------------------------------------------------------------------
10.0.0.16 -----> Creating required Chef configuration
10.0.0.16 ------------------------------------------------------------------------
10.0.0.16
10.0.0.16 ------------------------------------------------------------------------
10.0.0.16 -----> Performing the initial chef-client run!
10.0.0.16 ------------------------------------------------------------------------
10.0.0.16
10.0.0.16 Starting Chef Client, version 11.10.4
10.0.0.16 Creating a new client identity for qfx5100 using the validator key.
10.0.0.16 Synchronizing Cookbooks:
10.0.0.16 Compiling Cookbooks...
10.0.0.16 Converging 0 resources
10.0.0.16
10.0.0.16 Running handlers:
10.0.0.16 Running handlers complete
10.0.0.16
10.0.0.16 Chef Client finished, 0/0 resources updated in 2.36510424 seconds
root@chef-server:~/chef-repo$

When the bootstrap process finishes, you can double-check the Chef server to ensure
that you see the Juniper QFX5100 in the client list:

root@chef-server:~/chef-repo$ knife client list
chef-validator
chef-webui
qfx5100

The Juniper QFX5100 shows up in the client list as expected. To check out additional
details, use the following command:

root@chef-server:~/chef-repo$ knife node show qfx5100
Node Name:   qfx5100
Environment: _default
FQDN:
IP:
Run List:
Roles:
Recipes:
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Platform:    junos 13.2X51-D21.1
Tags:
root@chef-server:~/chef-repo$

Right now, you only have the basic information for the Juniper QFX5100 switch. The
next step is to take the netdev data from Table 6-3 and create a Chef recipe. The first
step is to create a netdev Chef cookbook.

root@chef-server:~/chef-repo$ knife cookbook site download netdev
Downloading netdev from the cookbooks site at version 2.0.0 to /home/root/netdev-
2.0.0.tar.gz
Cookbook saved: /home/root/netdev-2.0.0.tar.gz
root@chef-server:~/chef-repo$ tar zxvf ./netdev-2.0.0.tar.gz -C cookbooks
root@chef-server:~/chef-repo$ mkdir ~/chef-repo/cookbooks/netdev/recipes

Now that you have the netdev cookbook and associated directories ready to go, it’s
time to create some Chef recipes. Let’s start with the ~/chef-repo/cookbooks/netdev/
recipes/vlan_create.rb recipe:

#
# Cookbook Name:: netdev
# Recipe:: vlan_create
netdev_vlan "blue" do
    vlan_id 100
    description "the blue VLAN"
    action :create
end
netdev_vlan "green" do
    vlan_id 200
    description "the green VLAN"
    action :create
end
netdev_vlan "red" do
    vlan_id 300
    description "the red VLAN"
    action :create
end

Now onto the ~/chef-repo/cookbooks/netdev/recipes/access_interface_create.rb recipe:
#
# Cookbook Name:: netdev
# Recipe:: access_interface_create
#
# Physical interface creation using the following defaults:
# auto-negotiation on, MTU 1500, administratively up
netdev_interface "xe-0/0/14" do
    description "access interface"
    action :create
end
netdev_interface "xe-0/0/15" do
    description "access interface"
    action :create
end
netdev_interface "xe-0/0/16" do
    description "access interface"
    action :create
end
# Logical interface creation, setting port mode to access (vlan_tagging false)

Chef | 163



# and assigning interface to a VLAN

netdev_l2_interface "xe-0/0/14" do
    description "belongs to blue VLAN"
    untagged_vlan "blue"
    vlan_tagging false
    action :create
end
netdev_l2_interface "xe-0/0/15" do
    description "belongs to green VLAN"
    untagged_vlan "green"
    vlan_tagging false
    action :create
end
netdev_l2_interface "xe-0/0/16" do
    description "belongs to red VLAN"
    untagged_vlan "red"
    vlan_tagging false
    action :create
end

Now onto the ~/chef-repo/cookbooks/netdev/recipes/uplink_interface_create.rb recipe:
#
# Cookbook Name:: netdev
# Recipe:: uplink_interface_create
#
netdev_l2_interface "xe-0/0/10" do
    action :delete
end
netdev_l2_interface "xe-0/0/11" do
    action :delete
end

# Create the LAGs
netdev_lag "ae0" do
    links [ "xe-0/0/10", "xe-0/0/11" ]
    minimum_links 1
    lacp "active"
    action :create
end

# Configure Layer 2 switching on the LAGs. Define the port modeas trunk
# (vlan_tagging true), with membership in the blue, green,and red VLANs.
netdev_l2_interface "ae0" do
    description "Uplink interface"
    tagged_vlans [ "blue", "green", "red" ]
    vlan_tagging true
    action :create
end

After you save the three recipes into ~/chef-repo/cookbooks/netdev/recipes/, you’re
ready to upload the cookbook into Chef:

root@chef-server:~/chef-repo/cookbooks/netdev/recipes$ cd ~/chef-repo/
root@chef-server:~/chef-repo$ knife cookbook upload netdev
Uploading netdev       [2.0.0]
Uploaded 1 cookbook.
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With the cookbook uploaded, you can associate the recipes with the Juniper
QFX5100 switch. You’ll need to edit the node by using the following command:

root@chef-server:~/chef-repo$ knife node edit qfx5100
Saving updated run_list on node qfx5100

Enter the following information into the editor and save it:
# Node Runlist
{
    "name": "qfx5100",
    "chef_environment": "_default",
    "normal": {

    },
    "run_list": [
          "recipe[netdev::vlan_create]",
          "recipe[netdev::access_interface_create]",
          "recipe[netdev::uplink_interface_create]"
    ]
}

The QFX5100 device is now registered with the three recipes and is ready to create
VLANs and assign the access and uplink interfaces.

Chef Agent
For the Juniper QFX5100 switch to pull the new Chef recipes, you’ll need to log in to
the switch and execute the following command:

root@qfx5100:RE:0% /opt/sdk/chef/bin/ruby /opt/sdk/chef/bin/chef-client -c
/var/db/chef/client.rb
Starting Chef Client, version 11.10.4
resolving cookbooks for run list: ["netdev::vlan_create",
"netdev::access_interface_create", "netdev::uplink_interface_create"]
Synchronizing Cookbooks:
  - netdev
Compiling Cookbooks...
Converging 13 resources
Recipe: netdev::vlan_create
  * netdev_vlan[blue] action create
    - create vlan blue with values: vlan_id: 100, description: the blue VLAN

  * netdev_vlan[green] action create
    - create vlan green with values: vlan_id: 200, description: the green VLAN

  * netdev_vlan[red] action create
    - create vlan red with values: vlan_id: 300, description: the red VLAN

Recipe: netdev::access_interface_create
  * netdev_interface[xe-0/0/14] action create
    - create interface xe-0/0/14 with values: description: access interface

  * netdev_interface[xe-0/0/15] action create
    - create interface xe-0/0/15 with values: description: access interface

  * netdev_interface[xe-0/0/16] action create
    - create interface xe-0/0/16 with values: description: access interface
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  * netdev_l2_interface[xe-0/0/14] action create
    - create layer 2 interface xe-0/0/14 with values: vlan_tagging: false,
description: belongs to blue VLAN, untagged_vlan: blue

  * netdev_l2_interface[xe-0/0/15] action create
    - create layer 2 interface xe-0/0/15 with values: vlan_tagging: false,
description: belongs to green VLAN, untagged_vlan: green

  * netdev_l2_interface[xe-0/0/16] action create
    - create layer 2 interface xe-0/0/16 with values: vlan_tagging: false,
description: belongs to red VLAN, untagged_vlan: red

Recipe: netdev::uplink_interface_create
  * netdev_l2_interface[xe-0/0/10] action delete (up to date)
  * netdev_l2_interface[xe-0/0/11] action delete (up to date)
  * netdev_lag[ae0] action create
    - create link aggregation group ae0 with values: links: ["xe-
0/0/10", "xe-0/0/11"], minimum_links: 1, lacp: active

  * netdev_l2_interface[ae0] action create
    - create layer 2 interface ae0 with values: description: Uplink interface,
tagged_vlans: ["blue", "green", "red"], vlan_tagging: true

Running handlers:
  - JunosCommitTransactionHandler
Running handlers complete

Chef Client finished, 11/13 resources updated in 16.496483965 seconds
root@qfx5100:RE:0%

The Juniper QFX5100 device successfully downloaded the cookbook and applied the
three recipes to the Junos configuration.

Let’s log back in to the Chef server and take a look at the Juniper QFX5100 node
details and see what has changed:

root@chef-server:~/chef-repo$ knife node show qfx5100
Node Name:   qfx5100
Environment: _default
FQDN:
IP:
Run List:    recipe[netdev::vlan_create], recipe[netdev::access_interface_create],
recipe[netdev::uplink_interface_create]
Roles:
Recipes:     netdev::vlan_create, netdev::access_interface_create,
netdev::uplink_interface_create
Platform:    junos 13.2X51-D21.1
Tags:
root@chef-server:~/chef-repo$

Much better! Aside from the previous basic information, we can now see that the run
list includes all three recipes from the NetDev cookbook.

166 | Chapter 6: Network Automation



Just like with Puppet, it’s critical that the Juniper QFX5100 and Chef server use NTP
to synchronize time so that you don’t run into issues when making changes in your
data center.

Chef Review
Our Juniper QFX5100 switch has been automated by Chef, utilizing the same config‐
uration data from our previous Puppet laboratory. No matter what your software
preference is for automating the data center, the Juniper QFX5100 series helps you
quickly deploy changes within seconds. Creating changes is as simple as creating
cookbooks and recipes and then applying them to switches in your network.

For more information about how to use Chef with the Juniper QFX5100, visit the
Chef documentation.

For more information about Chef, go to http://www.getchef.com/.

Junos PyEZ
One of the latest editions to the Juniper QFX5100 network automation toolset is a
Python framework called Junos PyEZ. It’s designed to provide both programmers and
nonprogrammers with the ability to easily automate the Juniper QFX5100 series by
using native Python scripting or a simple templating system. You can install Junos
PyEZ on any host that supports Python and uses the NETCONF protocol to remotely
connect to a Juniper QFX5100 device to make changes or gather data, as shown in
Figure 6-7.

Because Junos PyEZ is designed for both programmers and nonprogrammers alike,
there are two methods to handle data from Juniper QFX5100 switches:

Structured
Programmers enjoy using structured data; this simply means that you can take
the data received from the Juniper QFX5100 device and load it into native
Python data structures, such as lists, sets, and dictionaries.

Unstructured
There are two types of unstructured data: snippets and templates. The snippets
are native Junos output in the forms of text, set, or XML format. The template
makes it possible for you to use variables and combine them with the well-known
Python Jinja2 templating engine.
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Figure 6-7. Junos PyEZ framework overview

In short, Junos PyEZ allows programmers to use native Python data structures when
automating the Juniper QFX5100 family, but also allows nonprogrammers to use a
templating system using Jinja2.

The best way to learn Junos PyEZ is to get your hands dirty. Let’s get started.

Installation
The installation of Junos PyEZ is straight forward. The best place to install the tools is
on any Linux host with IP connectivity to the Juniper QFX5100 switch. The first step
is to install a few packages. I’m using an Ubuntu Linux distribution with the APT
package manager:

root@linux:~$ apt-get install -y python-pip python-dev libxml2-dev
libxslt-dev zlib1g-dev
Reading package lists... Done
Building dependency tree
Reading state information... Done

After the prerequisites are installed, you can install the Junos PyEZ package.
root@linux:~$ pip install junos-eznc
Downloading/unpacking junos-eznc
  Downloading junos-eznc-1.0.0.tar.gz (54kB): 54kB downloaded
  Running setup.py (path:/tmp/pip_build_root/junos-eznc/setup.py) egg_info for
package junos-eznc

That’s it; just two commands. Now let’s get started with our first script.
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Hello, World!
As the programming gods dictate, we must start with a traditional Hello, world! Open
your favorite text editor and create the following helloEZ.py file:

#!/usr/bin/python
from jnpr.junos import Device
dev = Device( user='netconf-test', host='lab-switch', password='lab123' )
dev.open()
print dev.facts
dev.close()

The first step is to import the Device class from the jnpr.junos library. Now, you can
make a new Device called dev; the only requirement is that you specify the username,
hostname, and a password to which to connect.

The next step is to simply open a connection to the device, get the facts, and then
close the connection. Take a look at the output and see what’s included in the facts:

root@linux:~/qfxbook$ python ./helloEZ.py
{'domain': None, 'hostname': 'qfx5100', 'ifd_style': 'SWITCH', 'version_info':
junos.version_info(major=(13, 2), type=X, minor=(51, 'D', 15), build=5),
'version_RE0': '13.2X51-D15.5', '2RE': True, 'serialnumber': 'VB3714190366',
'fqdn': 'qfx5100', 'switch_style': 'VLAN', 'version': '13.2X51-D15.5', 'master':
'RE0', 'HOME': '/var/home/netconf-test', 'model': 'QFX5100-96S-8Q', 'RE0':
{'status': 'OK', 'last_reboot_reason': '0x400:bios auto recovery reset ', 'model':
'QFX Routing Engine', 'up_time': '2 hours, 6 minutes, 29 seconds',
'mastership_state': 'master'}, 'personality': 'SWITCH'}

The output from the script is returned in a native Python data structure called a dic‐
tionary; these are simple key/value pairs. The facts pertaining to the Juniper
QFX5100 switch include basic elements such as the hostname, version, and uptime,
as shown in the preceding output.

Configuration Management
Using the same laboratory from the Chef and Puppet examples, let’s use the Junos
PyEZ library to provision the same configuration changes in Table 6-3 and
Figure 6-5. To accomplish this, we’ll use the Jinja2 templating system. We’ll need to
create the following files to accomplish this:

demo-template.yml
The demo-template.yml file is a simple template that contains a series of variables
to represent a list of the three VLANs and their associated interfaces.

demo-template.j2
The demo-template.j2 file is the Jinja2 template file that’s used to take the variable
input from demo-template.yml and create a Junos-formatted configuration file
using the variables from demo-template.yml.
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demo.py
This is the Python code that employs the Jinja2 templating system and uses
demo-template.yml and demo-template.j2 to import the VLAN and interface data
and create a Junos configuration file that can be applied to the Juniper QFX5100
device.

Let’s get started. The first step it to create the demo-template.yml file that contains the
following data:

---
vlans:
  blue:
    vlan_id: 100
    desc: "the BLUE vlan"
    interfaces:
      - name: xe-0/0/14
  green:
    vlan_id: 200
    desc: "the GREEN vlan"
    interfaces:
      - name: xe-0/0/15
  red:
    vlan_id: 300
    desc: "the RED vlan"
    interfaces:
      - name: xe-0/0/16
uplinks:
  ae0:
    interfaces:
      - name: xe-0/0/10
      - name: xe-0/0/11
    min_links: 1
    lacp_mode: active

Next, create the demo-template.j2 file that contains the following data:
vlans {
    
}

interfaces {
    

    
}

The final step is to create the Python script that utilizes both of the demo-template
files and connects to the Juniper QFX5100 switch, making the appropriate changes.
Create the following demo.py file:

from jnpr.junos.utils.config import Config
from jnpr.junos import Device
import yaml

dev = Device( user='netconf-test', host='lab-switch', password='lab123' )
dev.open()
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dev.bind(cu=Config)
dev.cu

tvars = yaml.load(open("demo-template.yml").read())
dev.cu.load(template_path="demo-template.j2", template_vars=tvars, format="text")

commit_diff = dev.cu.diff()
print commit_diff

dev.cu.commit()

dev.close()

As you can see, the demo.py script looks similar to the initial helloPY.py script that we
created earlier. You begin by defining a class for the Juniper QFX5100 switch and
opening a connection to it. The next step is to open the demo-template.yml file, which
contains the simple VLAN and interface variables, and apply it to the Jinja2 templat‐
ing system. Now, you print the delta between the current running configuration and
the candidate configuration loaded by Jinja2. Finally, commit the changes to the Juni‐
per QFX5100 device and close the connection.

The idea behind the two demo-template files is that a user only needs to modify the
simple demo-template.yml file to make changes to a switch. The demo-template.j2 file
is only a definition file that applies the data from demo-template.yml and makes sure
the output is in a Junos configuration format.

For more information about PyEZ and templates, visit https://github.com/Juniper/
community-NCE.

Operational Automation
You can also use Junos PyEZ to operationally interact with the Juniper QFX5100 ser‐
ies without having to make configuration changes. For example, you can create a cus‐
tom Python script that queries the Juniper QFX5100 device and only returns the
interface flap information. Let’s give it a shot. Create the following port-report.py file:

from jnpr.junos.op.phyport import *
from jnpr.junos import Device

dev = Device( user='netconf-test', host='lab-switch', password='lab123' )
dev.open()

ports = PhyPortTable(dev).get()
print "Port,Status,Flapped" #Print Header for CSV

for port in ports:
        print("%s,%s,%s" % (port.key, port.oper, port.flapped))

Just as before, you create a Device class, give it the login information for the Juniper
QFX5100 switch, and then open a NETCONF session to the switch. The next step is
to get information about the physical interfaces on the Juniper QFX5100 by using the
PhyPortTable(dev).get() function and assign it to the ports variable.
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You can now can loop through the ports variable and print the interface flap infor‐
mation for each port. Take a look at the output of the script:

root@linux:~$ python ./port-report.py
Port,Status,Flapped
ge-0/0/12,up,2012-01-01 00:25:32 UTC (00:04:27 ago)
ge-0/0/14,up,2012-01-01 00:25:32 UTC (00:04:28 ago)
ge-0/0/16,up,2012-01-01 00:25:42 UTC (00:04:18 ago)
ge-0/0/18,up,2012-01-01 00:25:42 UTC (00:04:18 ago)
ge-0/0/47,down,2012-01-01 00:03:05 UTC (00:26:55 ago)

Easy peasy! You can imagine how easy this would be to do across a set of 1,000
switches. We could simply loop through a list of IP addresses and globally see the
interface flap information across the entire data center. Any type of information you
need to get access to that isn’t natively provided by Junos can now be quickly pro‐
grammed by using the Junos PyEZ framework.

Further Reading
The PyEZ library is under constant development by Juniper Networks and members
of the community. At of this writing, the best places for up-to-date information on
the project is over on the project’s GitHub page. You can also find active library docu‐
mentation drawn directly from the code itself on the ReadTheDocs website.

To engage with our active project community, be sure to join our Google Group. We
would like to hear feedback from people using our PyEZ library in the form of feature
requests, but also by active development from the community. We regularly take Git‐
Hub “Pull Requests” from the community, and community members have contrib‐
uted several key pieces of the project.

The author has also setup a GitHub repository for configurations and other bonus
material. Please visit https://github.com/Juniper/qfx5100-book for more information.

Summary
In this chapter we covered the highlights of the network automation that’s available
on the Juniper QFX5100 family of switches. We first reviewed the architecture of the
Juniper QFX5100 series and how all of the components take advantage of the NET‐
CONF/DMI interfaces to enable network automation. We then took a look at how to
quickly get the switch up and running from a factory default configuration by using
the ZTP feature. We configured a ZTP server via the vendor DHCP options and were
able to quickly upgrade the software of the switch as well as install a new configura‐
tion.

Next, we took a look at how to use Puppet and Chef with the Juniper QFX5100 fam‐
ily. Puppet and Chef represent the most popular IT automation tools in the industry;
you can use these tools across a wide variety of servers and networking equipment.
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The end result is that you can use the same IT automation tool when deploying appli‐
cations and servers to ensure that the network is set up correctly, as well.

We explored the Junos PyEZ framework and created our first Hello, world! script. We
then took the previous laboratory data from the Chef and Puppet sections and provi‐
sioned the same VLAN and interface configuration changes by using the Junos PyEZ
framework. Finally we showed a simple operational script that looks at the interface
flap information on a Juniper QFX5100 switch. Using the Junos PyEZ framework is a
great way to quickly gain access to the information you need to operate a data center.

Network automation in the data center is an important topic, and the Juniper
QFX5100 series delivers in spades. From ZTP to Junos Enhanced Automation, the
Juniper QFX5100 supports all of the major programming languages:

• Python
• Go
• Ruby
• Perl

Juniper Networks has invested heavily in the open source community with the Pup‐
pet and Chef NetDev framework and the Junos PyEZ framework. Do you have a
project that could benefit from network automation? Go get busy!
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CHAPTER 7

IP Fabrics (Clos)

Everywhere you look in the networking world you see something about IP Fabrics or
Clos networks. Something is brewing, but what is it? What’s driving the need for IP
Fabrics? If an IP Fabric is the answer, then what is the problem we’re trying to solve?

Many over-the-top (OTT) and software-as-a-service (SaaS) companies have been
building large IP Fabrics for a long time, but have rarely received any attention for
having done so. Such companies generally have no need for compute virtualization
and write their applications in such a way that high availability is built in to the appli‐
cation. With intelligent applications and no compute virtualization, it makes a lot of
sense to build an IP Fabric using nothing but Layer 3 protocols. Layer 2 has tradition‐
ally been a point of weakness in data centers with respect to scale and high availabil‐
ity. It’s a difficult problem to solve when you have to flood traffic across a large set of
devices and prevent loops on Ethernet frames that don’t natively have a time-to-live
field.

If companies have been building large IP Fabrics for a long time, why is it that only
recently IP Fabrics have been receiving a lot of attention? The answer is because of
overlay networking in the data center. The problem being solved is twofold: first, net‐
work agility, and second, simplifying the network. Overlay networking combined
with IP Fabrics in the data center is an interesting way of providing both agility and
simplifying the provisioning of data center resources.

Overlay Networking
One of the first design considerations in a next-generation data center is do you need
to centrally orchestrate all resources within it such that you can deploy applications
within seconds? The follow-up question is do you currently virtualize your data cen‐
ter compute and storage with hypervisors or cloud management platforms? If the
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answer is “yes” to these questions, you must consider an overlay architecture when it
comes to the data center network.

Given that compute and storage have already been virtualized, the next step is to vir‐
tualize the data center network. Using an overlay architecture in the data center gives
you the freedom to decouple physical hardware from the network, which is one of the
key tenets of virtualization. Decoupling the network from the physical hardware
makes it possible for the data center network to be programmatically provisioned
within seconds

The second benefit of overlay networking is that it supports both Layer 2 and Layer 3
transport between virtual machines (VMs) and servers, which is very compelling to
traditional IT data centers. The third benefit is that overlay networking has a much
larger scale than traditional Virtual Local Area Networks (VLANs) and supports up
to 16.7 million tenants. Two great examples of products that support overlay architec‐
tures are Juniper Contrail and VMware NSX.

Moving to an overlay architecture places a different “network tax” on the data center.
Typically, when servers and virtual machines are connected to a network, they each
consume a MAC address and host route entry in the network. However, in an overlay
architecture, only the Virtual Tunnel End Points (VTEPs) consume a MAC address
and host route entry in the network. All VM and server traffic is now encapsulated
between VTEPs and the MAC address, and the host route of each VM and server isn’t
visible to the underlying networking equipment. The MAC address and host route
scale have been moved from the physical network hardware into the hypervisor.

Bare-Metal Servers
It’s rare to find a data center that has virtualized 100 percent of its compute resources.
There’s always a subset of servers that cannot be virtualized due to performance, com‐
pliance, or any other number of reasons. This raises an interesting question: if 80 per‐
cent of the servers in the data center are virtualized and take advantage of an overlay
architecture, how do you provide connectivity to the other 20 percent?

Overlay architectures support several mechanisms to provide connectivity to physical
servers. The most common option is to embed a VTEP into the physical access
switch, as shown in Figure 7-1.
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Figure 7-1. Virtual-to-physical data flow in an overlay architecture

Each server on the left and right of the IP Fabric in Figure 7-1 has been virtualized
with a hypervisor. Each hypervisor has a VTEP within it that handles the encapsula‐
tion of data plane traffic between VMs. Each VTEP also handles MAC address learn‐
ing, provisioning of new virtual networks, and other configuration changes. The
server on top of the IP Fabric is a simple physical server, but doesn’t have any VTEP
capabilities of its own. For the physical server to participate in the overlay architec‐
ture, it needs something to encapsulate the data plane traffic and perform MAC
address learning. Being able to handle the VTEP role within an access switch simpli‐
fies the overlay architecture. Now, each access switch that has physical servers con‐
nected to it can simply perform the overlay encapsulation and control plane on behalf
of the physical server. From the point of view of the physical server, it simply sends
traffic into the network without having to worry about anything else.

IP Fabric
To summarize, there are two primary drivers for an IP Fabric: OTT companies with
simple Layer 3 requirements, and the introduction of overlay networking that uses
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the IP Fabric as a foundational underlay. Let’s begin to explore these by taking a look
at the requirements of overlay networking in the data center and how an IP Fabric
can meet and exceed the requirements.

All VM and server MAC addresses, traffic, and flooding are encapsulated between
VTEPs in an overlay architecture. The only network requirements of VTEPs is Layer
3 connectivity. Creating a network that’s able to meet the networking requirements is
straightforward. The challenge is in how you design a transport architecture that’s
able to scale in a linear fashion as the size increases. A very similar problem was
solved back in 1953, by the telecommunications industry. Charles Clos invented a
method to create a multistage network that is able to grow beyond the largest switch
in the network. This is illustrated in Figure 7-2.

Figure 7-2. Charles Clos’ multistage topology

The advantage to a Clos topology is that it’s nonblocking and provides predictable
performance and scaling characteristics. Figure 7-2 represents a 3-stage Clos net‐
work: ingress, middle, and egress.
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We can take the same principals of the Clos network and apply it to creating an IP
Fabric. Many networks are already designed like this and are often referred to as
spine-and-leaf networks, which you can see demonstrated in Figure 7-3.

Figure 7-3. Spine-and-leaf topology

A spine-and-leaf network is actually identical to a three-stage Clos network; it is
sometimes referred to as a folded three-stage Clos network because the ingress and
egress points are folded back on top of each other, as illustrated in Figure 7-3. In this
example the spine switches are simple Layer 3 switches and the leaves are top-of-rack
(ToR) switches that provide connectivity to the servers and VTEPs.

The secret to scaling up the number of ports in a Clos network is adjusting two val‐
ues: the width of the spine, and over-subscription ratio. The wider the spine, the more
leaves the IP Fabric can support. The more over-subscription placed into the leaves,
the larger the IP Fabric, as well. Let’s review some example topologies in detail to
understand how the pieces are put together and what the end results are.

768×10GbE Virtual Chassis Fabric
The first example is a new Juniper technology called Virtual Chassis Fabric (VCF)
that enables you to create a three-stage IP Fabric by using a set of Juniper QFX5100
switches that are managed as a single device. As of Junos 13.2, the maximum number
of switches in a VCF is 20, as depicted in Figure 7-4.
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Figure 7-4. VCF of 768 10GbE ports

In this example, the spine comprises four QFX5100-24Q switches; each switch sup‐
ports up to 32 40GbE interfaces. The leaves are built by using the Juniper
QFX5100-48S, which supports 48 10GbE and 6 40GbE interfaces. Each leaf uses 4
40GbE interfaces as uplinks, with one link going to each spine (see Figure 7-4); this
creates an over-subscription of 480:160, or 3:1 per leaf. Because VCF only supports 20
switches, we have a total of four spine switches and 16 leaf switches for a total of 20.
Each leaf supports 48 10GbE interfaces; because there are 16 leaves total, this brings
the total port count up to 768 10GbE, with 3:1 over-subscription.

If you have scaling requirements that exceed the capacity of VCF, it’s not a problem.
The next option is to create a simple three-stage IP Fabric that is able to scale to thou‐
sands of ports.

3,072×10GbE IP Fabric
The next option is creating a simple three-stage IP Fabric by using the Juniper
QFX5100-24Q and QFX5100-96S, but this time we won’t use VCF. The Juniper
QFX5100-24Q switch has 32 40GbE ports, and the Juniper QFX5100-96S boasts 96
10GbE and 8 40GbE ports. Combining the Juniper QFX5100-24Q and the Juniper
QFX5100-96S creates an IP Fabric of 3,072 usable 10GbE ports, as shown in
Figure 7-5.
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Figure 7-5. 3,072 10GbE IP Fabric topology

The leaves are constructed by using the Juniper QFX5100-96S, and 8 40GbE inter‐
faces are used as uplinks into the spine. Because each leaf has eight uplinks into the
spine, the maximum width of the spine is eight. Each 40GbE interface per leaf will
connect to a separate spine; thus each leaf will consume one 40GbE interface per
spine. To calculate the maximum size of the IP Fabric, you need to multiply the num‐
ber of server interfaces on the leaf by the number of leaves supported by the spine. In
this example, the spine can support 32 leaves, and each leaf can support 96 ports of
10GbE; this is a total of 3,072 usable 10GbE ports with a 3:1 over-subscription ratio.

Control Plane Options
One of the big benefits to using VCF is that you need not worry about the underlying
control plane protocols of the IP Fabric. It just works. However, if you need to create
a network that exceeds the scale of VCF, you need to take a look at what the control
plane options are.

One of the fundamental requirements in creating an IP Fabric is the distribution of
prefixes. Each leaf will need to send and receive IP routing information to and from
all of the other leaves in the IP Fabric. The question now becomes what are the
options for an IP Fabric control plane, and which is the best? We can begin by
reviewing the fundamental requirements of an IP Fabric and mapping the results to
the control plane options, as is done in Table 7-1.
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Table 7-1. IP Fabric requirements and control plane options

Requirement OSPF IS-IS BGP

Advertise prefixes Yes Yes Yes

Scale Limited Limited Extensive

Traffic engineering Limited Limited Extensive

Traffic tagging Limited Limited Extensive

Multivendor stability Yes Yes Extensive

The most common options for the control plane of an IP Fabric are Open Shortest
Path First (OSPF), Intermediate System to Intermediate System (IS-IS), and Border
Gateway Protocol (BGP). Each protocol can fundamentally advertise prefixes, but
vary in terms of scale and features. OSPF and IS-IS use a flooding technique to send
updates and other routing information. Creating areas can help scope the amount of
flooding, but then you start to lose the benefits of a Shortest Path First (SPF) routing
protocol. On the other hand, BGP was created from the ground up to support a large
number of prefixes and peering points. The best use case in the world to prove this
point is the Internet.

Having the ability to shift traffic around in an IP Fabric could be useful; for example,
you could steer traffic around a specific spine switch while it’s in maintenance. OSPF
and IS-IS have limited traffic-engineering and traffic-tagging capabilities. Again, BGP
was designed from the ground up to support extensive traffic engineering and tag‐
ging with features such as Local Preference, Media Endpoint Discoveries (MEDs),
and extended communities.

One of the interesting side effects of building a large IP Fabric is that it’s generally
done iteratively and over time. It is common to see multiple vendors creating a single
IP Fabric. Although OSPF and IS-IS work well across multiple vendors, the real win‐
ner here is BGP. Again, the best use case in the world is the Internet. It consists of a
huge number of vendors, equipment, and other variables, but they all use BGP as the
control plane protocol to advertise prefixes, perform traffic engineering, and tag
traffic.

Because of the scale, traffic tagging, and multivendor stability, BGP is the best choice
when selecting a control plane protocol for an IP Fabric. The next question is how do
you design BGP in an IP Fabric?

BGP Design
One of the first decisions to make is to whether to use iBGP or eBGP. The very nature
of an IP Fabric is based on Equal-Cost Multipath (ECMP). One of the design consid‐
erations is how does each option handle ECMP? By default eBGP supports ECMP
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without a problem. However, iBGP requires a BGP route reflector and the AddPath
feature to fully support ECMP.

Let’s take a closer look at the eBGP design in an IP Fabric. Each switch represents a
different autonomous system (AS) number and each leaf must peer with every other
spine in the IP Fabric, as illustrated in Figure 7-6.

Figure 7-6. Using eBGP in an IP Fabric

Using eBGP in an IP Fabric is very simple and straightforward; it also lends itself well
to traffic engineering using Local Preference and AS padding techniques.

Designing iBGP in an IP Fabric is a bit different, due to the requirements of iBGP to
have all switches peer with every other device within the IP Fabric. To mitigate the
burden of having to peer with every other device in the IP Fabric, we can use inline
BGP route reflectors in the spine of the network (see Figure 7-7). The problem with
standard BGP route reflection is that it only reflects the best prefix and doesn’t lend
itself well to ECMP. To enable full ECMP we must use the BGP AddPath feature,
which adds additional ECMP paths into the BGP advertisements between the route
reflector and clients.

Figure 7-7. Using iBGP in an IP Fabric
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The Juniper QFX5100 series supports both the iBGP and eBGP design options. Both
options work equally well; however, the design and implementation of eBGP is sim‐
pler. Going back to designing a machine with less moving parts is always more stable;
it’s our recommendation to use eBGP when creating simple three-stage IP Fabrics.
There’s no need to worry about BGP route reflection and AddPath if you’re not
required to do so.

Implementation Requirements
There is a set of requirements that need to be worked out in order to create a blue‐
print for an IP Fabric. At a high level, it revolves around IP Address Management
(IPAM) and BGP assignments. The list that follows breaks out the requirements into
the next level of detail:

Base IP Prefix
All of the IP address assignments made within the IP Fabric must originate from
a common base IP prefix. It’s critical that the base IP prefix have enough address
space to hold all of the point-to-point addressing as well as loopback addressing
of each switch in the IP Fabric.

Point-to-Point Network Mask
Each leaf is connected to every spine in the IP Fabric; these connections are
referred to as the point-to-point links. The network mask used in the point-to-
point links will determine how much of the base IP prefix is used. For example,
using a 30-bit network mask will use twice as much space as using a 31-bit net‐
work mask.

Point-to-Point IP Addresses
For every point-to-point connection, each switch must have an IP address assign‐
ment. You need to decide whether the spine receives the lower or higher num‐
bered IP address assignment. This is more of a cosmetic decision and doesn’t
impact the functionality of the IP Fabric.

Server-Facing IP Prefix
To provide Layer 3 gateway services to VTEPs, the leaves must have a consistent
IP prefix that’s used for server-facing traffic. This is separate from the base IP
prefix used to construct the IP Fabric. The server-facing IP prefix must be large
enough to support the address requirements of each leaf in the IP Fabric. For
example, if each leaf required a 24-bit subnet and there were 512 leaves, the mini‐
mum server-facing IP prefix would need to be at least 15 bits, such as
192.168.0.0/15, which would allow you to have 512 24-bit subnets. Each leaf
would have a 24-bit subnet such as 192.168.0.0/24 and could use the first IP
address for Layer 2 gateway services such as 192.168.0.1/24.
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Loopback Addressing
Each switch in the IP Fabric needs a single loopback address using a 32-bit mask.
You can use the loopback address for troubleshooting and to verify connectivity
between switches.

BGP Autonomous System Numbers
Each switch in the IP Fabric would require its own Autonomous System Num‐
bers (ASN). Each spine and each leaf would have a unique BGP ASN. This would
make it possible for eBGP to be used between the leaves and spines.

BGP Export Policy
Each of the leaves needs to advertise its local server-facing IP prefix into the IP
Fabric so that all other servers know how to reach it. Each leaf would also need to
export its loopback address into the IP Fabric, as well.

BGP Import Policy
Because each leaf only cares about server-facing IP prefixes and loopback
addressing, all other addressing of point-to-point links can be filtered out.

Equal Cost Multi-Path Routing
Each spine and leaf should have the ability to load balance flows across a set of
equal next-hops. For example, if there are four spine switches, each leaf would
have a connection to each spine. For every flow egressing a leaf switch, there
should exist four equal next-hops: one for each spine. To do this ECMP routing
should be enabled.

These requirements can easily build a blueprint for the IP Fabric. Although the net‐
work might not be fully built out from day one, it’s good to have a scaled out blue‐
print of the IP Fabric so that there’s no question on how to scale out the network in
the future.

Decision Points
There are a couple of important decision points when designing an IP Fabric. The
first decision is whether to use iBGP or eBGP. At first this might seem like a simple
choice, but there are some other variables that make the decision a bit more compli‐
cated. The second decision point is actually a fallout of the first: should you use 16-bit
or 32-bit ASNs? Let’s walk through the decision points one at a time and take a closer
look.

The first decision point should take you back to your JNCIE or CCIE days. What are
the requirements of iBGP versus eBGP? We all know that iBGP requires a full mesh
to propagate prefixes throughout the topology. However, eBGP doesn’t require a full
mesh and is more flexible. Obviously, the reason behind this is loop prevention. To
prevent loops, iBGP will not propagate prefixes learned from one iBGP peer to
another. Each iBGP switch must have a BGP session to the other to fully propagate
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routes. On the other hand, eBGP will simply propagate all BGP prefixes to all BGP
neighbors; the exception is that any prefixes that contain the switch’s own ASN will be
dropped.

iBGP design
Let’s focus on an iBGP design that meets all of the implementation requirements of
building an IP Fabric. The first challenge is how do you get around the full mesh
requirement of iBGP? The answer will be BGP confederations or route reflection.
Given that an IP Fabric is a fixed topology, route reflection lends itself nicely. As
demonstrated in Figure 7-8, each spine switch can act as a BGP route reflector,
whereas each leaf is a BGP route reflector client.

Figure 7-8. iBGP Design with route reflectors

It’s important to ensure that the spine switches support BGP route
reflection if you want to use an iBGP design. Fortunately, you’re in
luck, because the Juniper QFX5100 series supports BGP route
reflection.

The other critical implementation requirement that you must meet in an iBGP design
is ECMP routing. By default, BGP route reflectors only reflect the best route. This
means that if four ECMP routes exist, only the single, best prefix is reflected to the
clients. Obviously, this breaks the ECMP requirement and something must be done.

The answer to this problem is to enable the BGP route reflector to send multiple
paths instead of the best. There is currently a draft in the IETF that implements this
behavior. The feature is called BGP Add Path; with it, the route reflector can offer all
ECMP routes to each client.

Ensure that the spine switches in your IP Fabric support BGP Add
Path if you want to design the network using iBGP. Thankfully, the
Juniper QFX5100 family supports BGP Add Path as well as BGP
route reflection.
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To summarize, the spine switches must support BGP route reflection as well as BGP
Add Path to meet all of the IP Fabric requirements with iBGP, but iBGP does allow
you to manage the entire IP Fabric as a single ASN.

eBGP Design
The other alternative is to use eBGP to design the IP Fabric. By default, eBGP will
meet all of the implementation requirements when building the IP Fabric. There’s no
need for BGP route reflection or BGP Add Path with eBGP.

Figure 7-9. eBGP requires a BGP ASN per switch

The only thing you really have to worry about is how many BGP ASNs you will con‐
sume with the IP Fabric. Each switch will have its own BGP ASN. Technically the
BGP private range is 64,512 to 65,535 (and 65,535 is reserved) which leaves you with
1,023 BGP ASNs. If the IP Fabric is larger than 1,023 switches, you’re going to have to
consider moving into the public BGP ASN range or move to 32-bit ASN numbers.

As you can see, eBGP has the simplest design that meets all of the
implementation requirements. This works well when creating a
multivendor IP Fabric.

Edge connectivity
The other critical decision point is how do you connect your data center to the rest of
the world and to other data centers? There are multiple decision points due to the
number of end points and options. Let’s review a simple example of two data centers.
Figure 7-10 gives you an overview.
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Figure 7-10. Edge connectivity in two data centers with IP Fabrics

Each data center has the following components:

• An IP Fabric using the same BGP ASN numbers and scheme
• Two edge routers with a unique BGP ASN
• They are connected to two ISPs
• They are connected to a private Multiprotocol Label Switching (MPLS) network

Reusing the same eBGP design in each data center reduces the operational burden of
bringing up new data centers; it also creates a consistent operational experience,
regardless of which data center you’re in. The drawback is that using the same AS
numbers throughout the entire design makes things confusing in the MPLS core. For
example, what BGP prefixes does AS 200 own? The answer is that it depends on
which data center you’re in.

One simple solution is to use the BGP AS Override feature. This allows the PE rout‐
ers in the MPLS network to change the AS used by the edge routers in each data cen‐
ter. Now, we can simply say that ASN 21,870 owns the aggregate 172.16.64/18 and
ASN 14,203 owns the aggregate 172.16/18. For example, from the perspective of Data
Center 1, the route to 172.16/18 is through BGP ASN 65,512 then 14,203. To do this,
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you must create a BGP export policy on the edge routers in each data center that
rejects all of the IP Fabric prefixes but instead advertises a single BGP aggregate.

When connecting out to the Internet, the design is a little different. The goal is that
the IP Fabric should have a default route of 0/0, but the edge routers should have a
full Internet table. Each data center has its own public IP range that needs to be
advertised out to each ISP, as well. In summary, the edge routers will perform the fol‐
lowing actions:

• Advertise a default route into the IP Fabric
• Advertise public IP ranges to each ISP
• Reject all other prefixes

IP Fabrics Review
With IP Fabrics, you can create some very large networks that are easily able to sup‐
port overlay networking architectures in the data center. There are a few decision
points that you must consider carefully when creating your own IP Fabric. How many
switches will you deploy? Do you want to design for a multivendor environment
using BGP features? How many data centers will be connected to each other? These
are the questions you must ask yourself and consider into the overall design of each
data center.

BGP Implementation
Let’s get down to brass tacks. Moving from the design phase to the implementation
phase requires physical devices, configurations, and verification. This section walks
through the implementation in detail using Junos. In this laboratory we will have two
spines and three leaves, as shown in Figure 7-11.
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Figure 7-11. BGP implementation of an IP Fabric

There’s a lot happening in Figure 7-11. The following is a breakdown of the IP
address schema:

Loopback Address
Each switch will use a 32-bit loopback address from the 10/8 range.

Point-to-Point Addresses
Each switch will use a 31-bit netmask on each point-to-point link starting from
192.168/24.

Layer 3 Server Gateway
Servers connecting to the IP Fabric will require a default gateway. Each leaf will
have gateway services starting at 172.16.1/24.

Topology Configuration
The first step is to examine the topology and understand how each switch is connec‐
ted, what the BGP attributes are, and IP address schemes. Each switch has a host‐
name, loopback, L3 gateway, and a BGP ASN. Table 7-2 lists the implementation
details for you.
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Table 7-2. BGP implementation details

Switch Loopback L3 gateway BGP ASN

S1 10.0.0.1/32 None 100

S2 10.0.0.2/32 None 101

L1 10.0.0.3/32 172.16.1.1/24 200

L2 10.0.0.4/32 172.16.2.1/24 201

L3 10.0.0.5/32 172.16.3.1/24 202

My apologies for using a public BGP ASN in my lab. Please don’t
do this in real life.

Interface and IP Configuration
Now, let’s investigate the physical connection details of each switch. Table 7.3 presents
the interface names, point-to-point network, and IP addresses.

Table 7-3. Interface and IP implementation details

Source
switch

Source
interface

Source IP Network Destination
switch

Destination
interface

Destination IP

L1 xe-0/0/14 .1 192.168.0.0/31 S1 xe-0/0/14 .0

L1 xe-0/0/15 .7 192.168.0.6/31 S2 xe-0/0/15 .6

L2 xe-0/0/16 .3 192.168.0.2/31 S1 xe-0/0/16 .2

L2 xe-0/0/17 .8 192.168.0.8/31 S2 xe-0/0/17 .8

L3 xe-0/0/18 .11 192.168.0.10/31 S1 xe-0/0/18 .10

L3 xe-0/0/19 .1 192.168.0.0/31 S2 xe-0/0/19 .0

Each leaf is connected to each spine, but notice that the spines aren’t connected to
one another. In an IP Fabric, there’s no requirement for the spines to be directly con‐
nected. Given any single-link failure scenario, all leaves will still have connectivity to
one another. The other detail is that an IP Fabric is all Layer 3. Traditional Layer 2
networks require connections between the spines to ensure proper flooding and
propagation of the broadcast domains. Yet another reason to favor Layer 3 IP Fabric:
no need to interconnect the spines.

BGP Configuration
One of the first steps is to configure each spine to peer via eBGP to each leaf. One
trick to speed up the BGP processing in Junos is to keep all the neighbors in a single
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BGP group. We can certainly do this because the import and export policies are iden‐
tical, but only the peer AS and neighbor IP vary from leaf to leaf. Here’s the BGP con‐
figuration of S1:

protocols {
    bgp {
        log-updown;
        import bgp-clos-in;
        export bgp-clos-out;
        graceful-restart;
        group CLOS {
            type external;
            mtu-discovery;
            bfd-liveness-detection {
                minimum-interval 350;
                multiplier 3;
                session-mode single-hop;
            }
            multipath multiple-as;
            neighbor 192.168.0.1 {
                peer-as 200;
            }
            neighbor 192.168.0.3 {
                peer-as 201;
            }
            neighbor 192.168.0.5 {
                peer-as 202;
            }
        }
    }
}

Each leaf has its own neighbor statement with the proper IP address. In addition,
each neighbor has its own specific peer AS; this allows all of the leaves in the IP Fab‐
ric to be placed under a single BGP group called CLOS.

There are a few global BGP options you’ll want to enable so that you don’t have to
specify them for each group and neighbor.

log-updown

This enables tracking of all BGP session state. All groups and neighbors shall
inherit this option. Now, we can keep track of the entire IP Fabric from the point
of view of each switch.

Import and Export Policies
A common import and export policy is used across the entire IP Fabric; it doesn’t
make a difference if it’s a leaf or a spine. We’ll review the policy statements in
more detail later in the chapter.

graceful-restart

Of course, you want the ability to make policy changes to BGP without having to
tear down existing sessions. To enable this functionality, you can enable the
graceful-restart feature in Junos.
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Under the CLOS BGP group, we also enable some high-level features:

type external

This enables eBGP for the entire BGP group. Given that the IP Fabric is based on
an eBGP design, there’s no need to repeat this information for each neighbor.

mtu-discovery

We’re running jumbo frames on the physical interfaces. Allowing BGP to dis‐
cover the larger MTU will help in processing control plane updates.

BFD
To ensure that you have fast convergence, you’ll offload the forwarding detection
to BFD. In this example, we’re using a 350 ms interval with a 3x multiplier.

multipath multiple-as

To allow for ECMP across a set of eBGP neighbors, you need to enable the multi
path multiple-as option.

BGP Policy Configuration
The real trick is writing the BGP policy for importing and exporting the prefixes
throughout the IP Fabric. It’s actually straightforward. We can craft a common set of
BGP policies to be used across both spines and leaves, which results in a simple copy-
and-paste operation.

First up is the BGP export policy:
policy-options {
    policy-statement bgp-clos-out {
        term loopback {
            from {
                protocol direct;
                route-filter 10.0.0.0/24 orlonger;
            }
            then {
                next-hop self;
                accept;
            }
        }
        term server-L3-gw {
            from {
                protocol direct;
                route-filter 172.16.0.0/12 orlonger;
            }
            then {
                next-hop self;
                accept;
            }
        }
    }
}

There’s a lot happening in this policy.
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term loopback

The first order of business is to identify the switch’s loopback address and export
it to all other BGP peers. You can do this by looking at the directly connected
interfaces that match 10/24 or longer bitmask; this will quickly identify all loop‐
back addresses across the entire IP Fabric. Personally, I keep next-hop self in
the policy just in case there’s a change to iBGP in the future; this way prefixes are
still exchanged and next-hops are valid.

term server-L3-gw

We already know that each leaf has Layer 3 gateway services for the servers con‐
nected to it; the range is 172.16/12. This will match all of the server gateway
addresses on each leaf. Of course, you’ll apply the next-hop self, as well. Obvi‐
ously, this has no effect on the spines and will only work on the leaves; it’s great
being able to write a single policy for both switches.

Default
Each BGP policy has a default term at the very end. It isn’t configurable, but fol‐
lows the default rules of eBGP: advertise all eBGP and iBGP prefixes to the
neighbor; otherwise, deny all other prefixes. This simply means that other BGP
prefixes in the routing table will be advertised to other peers. You can stop this
behavior by installing an explicit reject action at the end, but in this case you
want the IP Fabric to propagate all BGP prefixes to all leaves.

Here’s the import policy configuration:
policy-options {
    policy-statement bgp-clos-in {
        term loopbacks {
            from {
                route-filter 10.0.0.0/24 orlonger;
            }
            then accept;
        }
        term server-L3-gw {
            from {
                route-filter 172.16.0.0/12 orlonger;
            }
            then accept;
        }
        term reject {
            then reject;
        }
    }
}

Again, there is a lot happening in the import policy. At a high level, you want to be
very selective about what types of prefixes you accept into the routing and forwarding
table of each switch. Let’s walk through each term in detail.
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term loopbacks

Obviously, you want each switch to have reachability to every other switch in the
IP Fabric via loopback addresses. You will explicitly match on the 10/8 and allow
all loopback addresses into the routing and forwarding table.

term server-L3-gw

The same goes for server Layer 3 gateway addresses; each leaf in the IP Fabric
needs to know about all other gateway addresses. You’ll explicitly match on
172.16/12 to allow this.

term reject

At this point, you’ve had enough. Reject all other prefixes. The problem is that if
you didn’t have a reject statement at the end of the import policy, the routing and
forwarding tables would be trashed by all of the point-to-point networks. There’s
no reason to have this information in each switch, because it’s only relevant to the
immediate neighbor of its respective switch.

You simply export and import loopbacks and Layer 3 server gateways and propagate
all prefixes throughout the entire IP Fabric. The best part is that you can reuse the
same set of policies throughout the entire IP Fabric, as well. Copy and paste.

ECMP Configuration
Recall that we used the multipath multiple-as configuration knob in the BGP sec‐
tion. That alone only installs ECMP prefixes into the Routing Information Base
(RIB). To take full ECMP from the RIB and install it into the Forwarding Information
Base (FIB), you need to create another policy that enables ECMP and install it into
the FIB. Here’s the policy:

routing-options {
    forwarding-table {
        export PFE-LB;
    }
}
policy-options {
    policy-statement PFE-LB {
        then {
            load-balance per-packet;
        }
    }
}

The PFE-LB policy simply says that for any packet being forwarded by the switch,
enable load balancing; this enables full ECMP in the FIB. However, the existence of
the PFE-LB policy by itself is useless; it must be applied into the FIB directly. This is
done under routing-options forwarding-table by referencing the PFE-LB policy.
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BGP Verification
Now that you have configured the IP Fabric, the next step is to ensure that the control
plane and data plane are functional. We can verify the IP Fabric through the use of
show commands to check the state of the BGP sessions, what prefixes are being
exchanged, and passing packets through the network.

BGP State
Let’s kick things off by logging into S1 and checking the BGP sessions:

dhanks@S1> show bgp summary
Groups: 1 Peers: 3 Down peers: 0
Table          Tot Paths  Act Paths Suppressed    History Damp State    Pending
inet.0
                       6          6          0          0          0          0
Peer                     AS      InPkt     OutPkt    OutQ   Flaps Last Up/Dwn
State|#Active/Received/Accepted/Damped...
192.168.0.1             200      12380      12334       0       3 3d 21:11:35
2/2/2/0              0/0/0/0
192.168.0.3             201      12383      12333       0       2 3d 21:11:35
2/2/2/0              0/0/0/0
192.168.0.5             202      12379      12333       0       2 3d 21:11:35
2/2/2/0              0/0/0/0

All is well, and each BGP session to each leaf is connected and exchanging prefixes.
You can see that each session has two active, received, and accepted prefixes; these are
the loopback and Layer 3 gateway addresses. So far, everything is great.

Let’s dig further down the rabbit hole. You need to verify, from a control plane per‐
spective, ECMP, graceful restart, and BFD. Here it is:

dhanks@S1> show bgp neighbor 192.168.0.1
Peer: 192.168.0.1+60120 AS 200 Local: 192.168.0.0+179 AS 100
  Type: External    State: Established    Flags: <Sync>
  Last State: OpenConfirm   Last Event: RecvKeepAlive
  Last Error: Cease
  Export: [ bgp-clos-out ] Import: [ bgp-clos-in ]
  Options: <Preference LogUpDown PeerAS Multipath Refresh>
  Options: <MtuDiscovery MultipathAs BfdEnabled>
  Holdtime: 90 Preference: 170
  Number of flaps: 3
  Last flap event: Stop
  Error: 'Cease' Sent: 1 Recv: 1
  Peer ID: 10.0.0.3        Local ID: 10.0.0.1          Active Holdtime: 90
  Keepalive Interval: 30         Group index: 1    Peer index: 0
  BFD: enabled, up
  Local Interface: xe-0/0/14.0
  NLRI for restart configured on peer: inet-unicast
  NLRI advertised by peer: inet-unicast
  NLRI for this session: inet-unicast
  Peer supports Refresh capability (2)
  Stale routes from peer are kept for: 300
  Peer does not support Restarter functionality
  NLRI that restart is negotiated for: inet-unicast
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  NLRI of received end-of-rib markers: inet-unicast
  NLRI of all end-of-rib markers sent: inet-unicast
  Peer supports 4 byte AS extension (peer-as 200)
  Peer does not support Addpath
  Table inet.0 Bit: 10000
    RIB State: BGP restart is complete
    Send state: in sync
    Active prefixes:              2
    Received prefixes:            2
    Accepted prefixes:            2
    Suppressed due to damping:    0
    Advertised prefixes:          3
  Last traffic (seconds): Received 1    Sent 25   Checked 42
  Input messages:  Total 12381Updates 3Refreshes 0Octets 235340
  Output messages: Total 12334Updates 7Refreshes 0Octets 234634
  Output Queue[0]: 0

The important bits are italicized. Take a closer look at the two lines of Options. You
can see the following:

• Logging the state of the BGP session
• Support ECMP
• Support graceful restart
• MTU discovery enabled
• BFD is bound to BGP

BGP Prefixes
With BGP itself configured correctly, let’s examine what it’s doing. Take a closer look
at S1 and see what prefixes are being advertised to L1:

dhanks@S1> show route advertising-protocol bgp 192.168.0.1 extensive

inet.0: 53 destinations, 53 routes (52 active, 0 holddown, 1 hidden)
* 10.0.0.1/32 (1 entry, 1 announced)
 BGP group CLOS type External
     Nexthop: Self
     Flags: Nexthop Change
     AS path: [100] I

* 10.0.0.4/32 (1 entry, 1 announced)
 BGP group CLOS type External
     Nexthop: Self (rib-out 192.168.0.3)
     AS path: [100] 201 I

* 10.0.0.5/32 (1 entry, 1 announced)
 BGP group CLOS type External
     Nexthop: Self (rib-out 192.168.0.5)
     AS path: [100] 202 I

* 172.16.2.0/24 (1 entry, 1 announced)
 BGP group CLOS type External
     Nexthop: Self (rib-out 192.168.0.3)

BGP Verification | 197



     AS path: [100] 201 I

* 172.16.3.0/24 (1 entry, 1 announced)
 BGP group CLOS type External
     Nexthop: Self (rib-out 192.168.0.5)
     AS path: [100] 202 I

Things are really looking great. S1 is advertising five prefixes to L1. Here’s a break‐
down:

10.0.0.1/32
This is the loopback address on S1 itself. You’re advertising this prefix to L1.

10.0.0.4/32
This is the loopback address for L2. You’re simply passing this prefix on to L1.
You can see the AS path is [100] 201 I, which means that the route origin was
internal and you can simply follow the AS itself back to L2.

10.0.0.5/32
Same goes for the loopback address of L3. Passing it on to L1.

172.16.2.0/24
This is the Layer 3 gateway address for L2. Passing it on to L1.

172.16.3.0/24
Same goes for the Layer 3 gateway address for L3. Passing it on to L1.

Here’s what you’re receiving from the other leaves:
dhanks@S1> show route receive-protocol bgp 192.168.0.1

inet.0: 53 destinations, 53 routes (52 active, 0 holddown, 1 hidden)
  Prefix  Nexthop      MED     Lclpref    AS path
* 10.0.0.3/32             192.168.0.1                             200 I
* 172.16.1.0/24           192.168.0.1                             200 I

dhanks@S1> show route receive-protocol bgp 192.168.0.3

inet.0: 53 destinations, 53 routes (52 active, 0 holddown, 1 hidden)
  Prefix  Nexthop      MED     Lclpref    AS path
* 10.0.0.4/32             192.168.0.3                             201 I
* 172.16.2.0/24           192.168.0.3                             201 I

dhanks@S1> show route receive-protocol bgp 192.168.0.5

inet.0: 53 destinations, 53 routes (52 active, 0 holddown, 1 hidden)
  Prefix  Nexthop      MED     Lclpref    AS path
* 10.0.0.5/32             192.168.0.5                             202 I
* 172.16.3.0/24           192.168.0.5                             202 I

Again, you can confirm that each leaf is only advertising its loopback and Layer 3
gateway address into the spine.
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Routing Table
You have verified that the prefixes are being exchanged correctly between the
switches, At this juncture, it’s time to ensure that the RIB is being populated correctly.
The easiest way to verify this is to log in to L1 and verify that we see ECMP to the
loopback address of L3:

dhanks@L1> show route 172.16.3.1/24 exact

inet.0: 54 destinations, 58 routes (53 active, 0 holddown, 1 hidden)
+ = Active Route, - = Last Active, * = Both

172.16.3.0/24      *[BGP/170] 3d 10:55:14, localpref 100, from 192.168.0.6
                      AS path: 101 202 I
                    > to 192.168.0.0 via xe-0/0/14.0
                      to 192.168.0.6 via xe-0/0/15.0
                    [BGP/170] 3d 10:55:14, localpref 100
                      AS path: 100 202 I
                    > to 192.168.0.0 via xe-0/0/14.0

What we see here is that there are two next-hops to L3 from L1. This is a result of a
proper BGP configuration using the multipath multiple-as knob.

Forwarding Table
The next step is to ensure that the forwarding table is being programmed correctly by
the RIB. You verify this the same way. Start on L1 and verify to L3:

dhanks@L1> show route forwarding-table destination 172.16.3.1
Routing table: default.inet
Internet:
Destination        Type RtRef Next hop           Type Index NhRef Netif
172.16.3.0/24      user     0                    ulst 131070     5
                              192.168.0.0        ucst  1702     5 xe-0/0/14.0
                              192.168.0.6        ucst  1691     5 xe-0/0/15.0

Of course, what you see here are two next-hops: one toward S1 (xe-0/0/14), and the
other toward S2 (xe-0/0/15).

Ping
A simple way to verify the data plane connectivity is to log in to L1 and source a ping
from its Layer 2 gateway address and ping L3; this will force traffic through the spine
of the network:

dhanks@L1> ping source 172.16.1.1 172.16.3.1 count 5
PING 172.16.3.1 (172.16.3.1): 56 data bytes
64 bytes from 172.16.3.1: icmp_seq=0 ttl=63 time=3.009 ms
64 bytes from 172.16.3.1: icmp_seq=1 ttl=63 time=2.163 ms
64 bytes from 172.16.3.1: icmp_seq=2 ttl=63 time=2.243 ms
64 bytes from 172.16.3.1: icmp_seq=3 ttl=63 time=2.302 ms
64 bytes from 172.16.3.1: icmp_seq=4 ttl=63 time=1.723 ms

--- 172.16.3.1 ping statistics ---
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5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/stddev = 1.723/2.288/3.009/0.414 ms

So far, so good. The trick here is to source the ping from the Layer 3 gateway address;
that way you know that L3 has a return route for L1.

Traceroute
To get the next level of detail, let’s use traceroute. You can verify that traffic is moving
through the spine of the IP Fabric. Try mixing it up a bit by using the loopback
addresses, instead:

dhanks@L1> traceroute source 10.0.0.3 10.0.0.5
traceroute to 10.0.0.5 (10.0.0.5) from 10.0.0.3, 30 hops max, 40 byte packets
 1  192.168.0.6 (192.168.0.6)  2.031 ms  1.932 ms 192.168.0.0 (192.168.0.0)
2.121 ms
 2  10.0.0.5 (10.0.0.5)  2.339 ms  2.342 ms  2.196 ms

What’s interesting here is that we can see the traceroute happened to go through S2 to
get to L3. This is just a result of how the traceroute traffic was hashed by the forward‐
ing table of L1.

Configurations
If you would like to build your own IP Fabric and use this laboratory as a foundation,
feel free to use the configuration. For the sake of page count, I share just a single spine
and leaf switch. Being an astute reader, you can figure out the rest.

S1
Here is the configuration for S1:

interfaces {
    xe-0/0/14 {
        mtu 9216;
        unit 0 {
            family inet {
                mtu 9000;
                address 192.168.0.0/31;
            }
        }
    }
    xe-0/0/16 {
        mtu 9216;
        unit 0 {
            family inet {
                mtu 9000;
                address 192.168.0.2/31;
            }
        }
    }
    xe-0/0/18 {
        mtu 9216;
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        unit 0 {
            family inet {
                mtu 9000;
                address 192.168.0.4/31;
            }
        }
    }
    lo0 {
        unit 0 {
            family inet {
                address 10.0.0.1/32;
            }
        }
    }
}
routing-options {
    router-id 10.0.0.1;
    autonomous-system 100;
    forwarding-table {
        export PFE-LB;
    }
}
protocols {
    bgp {
        log-updown;
        import bgp-clos-in;
        export bgp-clos-out;
        graceful-restart;
        group CLOS {
            type external;
            mtu-discovery;
            bfd-liveness-detection {
                minimum-interval 350;
                multiplier 3;
                session-mode single-hop;
            }
            multipath multiple-as;
            neighbor 192.168.0.1 {
                peer-as 200;
            }
            neighbor 192.168.0.3 {
                peer-as 201;
            }
            neighbor 192.168.0.5 {
                peer-as 202;
            }
        }
    }
policy-options {
    policy-statement PFE-LB {
        then {
            load-balance per-packet;
        }
    }
    policy-statement bgp-clos-in {
        term loopbacks {
            from {
                route-filter 10.0.0.0/24 orlonger;
            }
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            then accept;
        }
        term server-L3-gw {
            from {
                route-filter 172.16.0.0/12 orlonger;
            }
            then accept;
        }
        term reject {
            then reject;
        }
    }
    policy-statement bgp-clos-out {
        term loopback {
            from {
                protocol direct;
                route-filter 10.0.0.0/24 orlonger;
            }
            then {
                next-hop self;
                accept;
            }
        }
        term server-L3-gw {
            from {
                protocol direct;
                route-filter 172.16.0.0/12 orlonger;
            }
            then {
                next-hop self;
                accept;
            }
        }
    }
}

L1
And now, the L1 configuration:

interfaces {
    interface-range ALL-SERVER {
        member-range xe-0/0/0 to xe-0/0/13;
        member-range xe-0/0/16 to xe-0/0/47;
        unit 0 {
            family ethernet-switching {
                port-mode access;
                vlan {
                    members SERVER;
                }
            }
        }
    }
    xe-0/0/14 {
        mtu 9216;
        unit 0 {
            family inet {
                mtu 9000;
                address 192.168.0.1/31;

202 | Chapter 7: IP Fabrics (Clos)



            }
        }
    }
    xe-0/0/15 {
        mtu 9216;
        unit 0 {
            family inet {
                mtu 9000;
                address 192.168.0.7/31;
            }
        }
    }
    lo0 {
        unit 0 {
            family inet {
                address 10.0.0.3/32;
            }
        }
    }
    vlan {
        mtu 9216;
        unit 1 {
            family inet {
                mtu 9000;
                address 172.16.1.1/24;
            }
        }
    }
}
routing-options {
    router-id 10.0.0.3;
    autonomous-system 200;
    forwarding-table {
        export PFE-LB;
    }
}
protocols {
    bgp {
        log-updown;
        import bgp-clos-in;
        export bgp-clos-out;
        graceful-restart;
        group CLOS {
            type external;
            mtu-discovery;
            bfd-liveness-detection {
                minimum-interval 350;
                multiplier 3;
                session-mode single-hop;
            }
            multipath multiple-as;
            neighbor 192.168.0.0 {
                peer-as 100;
            }
            neighbor 192.168.0.6 {
                peer-as 101;
            }
        }
    }
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}
policy-options {
    policy-statement PFE-LB {
        then {
            load-balance per-packet;
        }
    }
    policy-statement bgp-clos-in {
        term loopbacks {
            from {
                route-filter 10.0.0.0/24 orlonger;
            }
            then accept;
        }
        term server-L3-gw {
            from {
                route-filter 172.16.0.0/12 orlonger;
            }
            then accept;
        }
        term reject {
            then reject;
        }
    }
    policy-statement bgp-clos-out {
        term loopback {
            from {
                protocol direct;
                route-filter 10.0.0.0/24 orlonger;
            }
            then {
                next-hop self;
                accept;
            }
        }
        term server-L3-gw {
            from {
                protocol direct;
                route-filter 172.16.0.0/12 orlonger;
            }
            then {
                next-hop self;
                accept;
            }
        }
        term reject {
            then reject;
        }
    }
}
vlans {
    SERVER {
        vlan-id 1;
        l3-interface vlan.1;
    }
}
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Summary
This chapter covered the basic ways to build an IP Fabric. More important, it has
reviewed the decision points you must take into account when building an IP Fabric.
There are various options in the control plane that impact what features are required
on the platform. Finally, we reviewed in great detail how to implement BGP in an IP
Fabric. We walked through all of the interfaces, IP addresses, BGP configurations,
and policies. To wrap things up, we verified that BGP is working across the IP Fabric
and ran some tests on the data plane to ensure that traffic can get from leaf to leaf.

Building an IP Fabric is a straightforward task and serves as a great foundation to
overlay technologies such as VMware NSX and Juniper Contrail. Basing the design
on only Layer 3 makes the IP Fabric very resilient to failure and offers very fast end-
to-end convergence with BFD. Build your next IP Fabric with the Juniper QFX5100
series.

Chapter Review Questions
1. How do you avoid full mesh requirements in an iBGP design?

a. BGP route reflection
b. BGP confederations
c. All of the above
d. None of the above

2. What is required to enable ECMP in an iBGP design?
a. Multiple route reflectors
b. Enable load balancing
c. BGP Add Path
d. multipath multiple-as

3. How many private BGP ASNs are there?
a. 1,023
b. 1,024
c. 511
d. 512
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Chapter Review Answers
1. Answer: C. Both are valid options. I recommend using BGP route reflectors. The Juniper
QFX5100 family can easily handle both.

2. Answer: C. You require BGP Add Path for the route reflector to advertise all equal next-
hops instead of the best.

3. Answer: A. There are 1,023 private BGP ASNs.
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CHAPTER 8

Overlay Networking

What is it and what problems can we solve with it?

These are the first questions that any good network engineer will ask when he first
encounters a new technology or feature.

One of the larger problems in the data center is being able to easily orchestrate com‐
pute, storage, and networking to provide data center services with a click of a mouse.
There are tools such as OpenStack, CloudStack, VMware vSphere and others that can
help you accomplish this goal. The problem with these tools is that special plugins are
required to help orchestrate the network. For example, if a new virtual machine (VM)
was created and required to be on a separate network, the orchestration software
would have to use a plugin to automatically configure the network switches with new
Virtual Local Area Networks (VLANs), default gateways, and Access Control Lists
(ACLs). The problem is that plugins only offer basic functionality and the feature
parity varies between vendors. The other problem is that every time you create a new
VM, add a NIC to an existing VM, or move a VM, it requires a change to the physical
network.

One method of solving these problems is to decouple the virtual network from the
physical network. The basic premise being that if all changes were made on the vir‐
tual networks, the physical network wouldn’t require changes. The tradeoff is that
you’re moving complexity from one location to another. In this example, we’re mov‐
ing physical network changes to a virtual concept. However, the benefit is that we can
now abstract the way virtual networks are created, which reduces the operational
complexity of the physical network. For example if you built a physical network with
multiple vendors, the assumption is that no changes are required on the physical net‐
work when there’s a change to the virtual network. The benefit being that you don’t
need to orchestrate network changes across a set of physical switches by different
vendors; you simply worry about orchestrating change across the abstracted virtual
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network. Doing something the same way every time is much easier than doing the
same thing with different styles. In a nutshell, overlay networking in the data center
creates a hardware abstraction layer for the physical network and provides program‐
matic consistency.

Overlay networking might sound very similar to how physical servers were virtual‐
ized and abstracted from their underlying hardware. The basic premise is exactly the
same. Virtualize the physical server and create a new virtual server that’s agnostic
with respect to the underlying hardware. No need to worry about installing different
operating system drivers to support different storage or networking cards. From the
perspective of the VM, all of the operating system drivers are standardized, regardless
if the underlying physical server uses solid-state drives (SSDs) or remotely mounted
iSCSI targets. The same holds true for overlay networking in the data center. When
you create a virtual network, it doesn’t have to worry about underlying protocols such
as Spanning Tree Protocol (STP), Multi-Chassis Link Aggregation (MC-LAG), or
Open Shortest Path First (OSPF).

As of this writing, overlay networking in the data center has started to trend and gain
some adoption. The two primary options for data center overlay solutions are Juniper
Contrail and VMware NSX. Each of these solutions creates virtual networks and
decouples them from the physical hardware. You can orchestrate the virtual networks
by using solutions such as OpenStack so that servers, storage, and networking are
managed by a single tool.

Overview
As I mentioned in the introduction to this chapter, one of the key questions you
should always ask when exploring a new piece of technology is what problem can you
solve with it that you’re unable to solve today? If the answer is nothing new, the
immediate follow-up question you should ask is does the new technology have a tan‐
gible benefit when compared with existing technology? The answer can come in mul‐
tiple forms. For example, new technology might perform faster, have higher scale, or
execute more quickly. If the new technology doesn’t offer any tangible benefits when
compared with older technology, the industry refers to this as a “solution looking for
a problem.”

So, what problem does overlay networking in the data center solve that can’t be solved
today? The simple answer is that overlay networking gives you the capability to pro‐
grammatically create logical networks in a standardized workflow without having to
worry about the underlying hardware. Do you have a Juniper network? No problem,
you can spin up logical networks using a standard Application Programming Inter‐
face (API). Do you have a Juniper network with other networking gear from other
vendors? No problem. Use the same API to create logical networks.
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There’s also another problem that exists in the data center. Standard access switches
that are used as top-of-rack (ToR) switches are made by using merchant silicon (also
referred to as “off-the-shelf silicon”) such as the Broadcom Trident 2 chipset. These
switches have a limited Ternary Content Addressable Memory (TCAM) and can only
scale so far in terms of MAC addresses, host entries, and IP address prefixes. Tradi‐
tionally if you needed larger scale, you had to move away from merchant silicon and
on to something that’s purpose built for high scale such as Juniper silicon. Two good
examples of Juniper silicon are the Juniper MX routers and Juniper EX9200 switches;
these products have much higher scale than their counterparts in the access switches.
The problem is that you can’t use a Juniper MX or Juniper EX9200 as an access
switch. Overlay networking moves the scale outside of the network and into the
servers. All MAC addresses, host entries, and IP address prefixes are now stored in
standard servers using x86 CPUs and large amounts of memory, which offer much
greater scale than merchant silicon found in access switches.

Clearly, there are some unique benefits to overlay networking in the data center:
standardized programmatic creation of logical networks and much higher scale are
but two. How can you use these new advantages in a real-world use case? Two of the
most popular use cases that benefit from overlay networking are IT-as-a-Service and
Infrastructure-as-a-Service. Let’s take a look at each of these in more detail.

IT-as-a-Service
One of the most popular use cases for overlay networking is IT-as-a-Service (ITaaS),
which you can see in Figure 8-1. The scenario is that a business would implement
ITaaS so that internal corporate users could simply request IT resources through a
self-service portal. The user would be presented with a menu of services such as the
following:

• Small VM: 1 core, 512 MB of memory, and 2 GB of storage
• Medium VM: 2 cores, 2 GB of memory, and 10 GB of storage
• Large VM: 4 cores, 8 GB of memory, and 50 GB of storage

The end user would select which item she wants from the menu of services and sub‐
mit it into the self-service portal, as shown in the first step in Figure 8-1. The next
step is that the self-service portal automatically creates the VM in the data center. The
final step is that the VM is online and available to the user.
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Figure 8-1. An ITaaS use case

The benefit is that end users can create, modify, and delete VMs without using a tick‐
eting system that traditionally requires the work of three other people: a server
administrator, a storage administrator, and a network engineer. When people are
involved in the process, the time to create and deliver a VM back to the end user
could take weeks. With ITaaS, the entire workflow is automated and the VM is deliv‐
ered to the end user within minutes.

Infrastructure-as-a-Service
The second most common use case for overlay networking is Infrastructure-as-a-
Service (IaaS). The scenario is that a service provider already has an existing Multi‐
Protocol Label Switching (MPLS) network from which customers can buy transport
services. The customers need a large WAN to interconnect their sites (see Figure 8-2).
For example, the headquarters of Customer-1 is connected to his retail stores; and the
headquarters of Customer-1 is connected to all of his branch offices. So far, this is a
standard service provider offering around MPLS. The IaaS comes into play when the
service provider offers managed VMs to customers over their existing MPLS trans‐
port. For example, Customer-3 can buy a VM from the service provider’s hosted data
center and be able to access his private VM from his headquarters and data center.
The same is true for Customer-1; she can buy a private VM from the service provider
and access the VM directly from her retail stores through the service provider’s MPLS
network, as illustrated in Figure 8-2.
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Figure 8-2. An IaaS use case

The benefit to the customers is that they can simply buy private VMs from the service
provider and not have to worry about the underlying infrastructure. To make things
even better, the customers can use their existing WAN connections from the service
provider to access the VMs. Any customer locations such as headquarters, branch
offices, or data centers that are connected into the service provider network will have
connectivity to the VMs. The benefit to the service provider is that it can reuse its
existing MPLS network to deliver new services to an existing customer base.

The Rise of IP Fabrics
There’s a fundamental shift in the way data centers are built when moving to an over‐
lay network. Because the server traffic is encapsulated and transmitted through over‐
lay tunnels, the networking requirements have been reduced to support only Layer 3.
Even when two VMs require Layer 2 connectivity, you can do this through an overlay
network between the two VMs; the only core requirement on the underlying network
is to support Layer 3.

Building a data center network on top of a routed, Layer 3 network is inherently more
stable because it only has to support a single routing protocol. The requirement for
Layer 2 has been completely removed and you no longer need to worry about STP,
MC-LAG, and other Layer 2 protocols. A pure Layer 3 network is also able to scale
higher in terms of physical devices and logical routing. Each switch in the network
can simply run a routing protocol with every other switch in the network and take
advantage of full Equal-Cost Multipath (ECMP). Because each switch is in full Layer
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3 mode, it doesn’t need to worry about propagating MAC addresses and can adjust its
TCAM to support more Layer 3 entries.

Taking advantage of my personal experience in the data center, I’ve found that there’s
an even split between traditional networks and Ethernet Fabrics in the enterprise
market through tier-1 service providers (see Figure 8-3), with traditional networks
being defined as a core switch running Layer 3, distribution switches running both
Layer 2 and Layer 3, and the access switches in Layer 2 mode, and Ethernet Fabrics
being defined as a solution such as Juniper QFabric and Virtual Chassis Fabric. As of
this writing, only a small number of customers are moving toward IP Fabrics and
overlay networks.

However, there is a segment of customers in the web-services market called Massively
Scalable Data Centers (MSDC) that fully use IP Fabrics. Most of these customers do
not virtualize their workloads and have no requirement for overlay networking.
Instead, they have custom-written applications, built-in redundancy, and no require‐
ment for Layer 2. The benefit being that large web-scale companies can build data
centers that house 100,000s of servers and the application availability is very high.

Figure 8-3. Network architectures mapped to customer segments as of August 2014
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Given the benefits of overlay networking in the enterprise, it’s fully expected that as
market adoption takes place, a larger percentage of enterprise customers will move
toward an IP Fabric network architecture as depicted in Figure 8-4.

Figure 8-4. Network architectures mapped to customer segments—forecast for 2018

Today, there is a large percentage of enterprise and service-provider customers that
are moving from a traditional network architecture to an Ethernet Fabric architec‐
ture, regardless of where overlay networking is going. The driving factors to use an
Ethernet Fabric architecture is reduced operational complexity, storage convergence,
and full support for Layer 2 and Layer 3 ECMP without depending on STP and MC-
LAG.

To sum up, given the existing migration from traditional architectures to Ethernet
Fabric architectures, plus the benefits of overlay architectures, it’s my assertion that
within five years, there will be an even split between Ethernet Fabrics and IP Fabrics.
There will be no change in the way the MSDC customers do business; it’s predicted
that they will stay with an IP Fabric architecture and continue providing web-scale
Software-as-a-Service (SaaS) applications.
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Architecture
Overlay networking in the data center has many moving parts that are required to
make it all work. The promise of being able to programmatically create virtual net‐
works with standard APIs and not having to worry about the physical network isn’t
an easy task. There are layers of abstraction that must work together to create a true
end-to-end service offering to the network operator and end users.

The first thing to understand about overlay networking is that it gets its name from
building overlay networks between the hypervisor hosts (see Figure 8-5). By creating
overlay tunnels between hypervisor hosts, the underlying network simply needs to
handle Layer 3 connectivity. Figure 8-5 shows the entire data center network as a
Layer 3 cloud. When VMs need to communicate with one another, the VM-to-VM
traffic is encapsulated into an overlay tunnel and transmitted across the underlying
Layer 3 network infrastructure until it reaches the destination hypervisor. The desti‐
nation hypervisor receives the VM-to-VM traffic through the overlay tunnel, and it
will decapsulate the traffic and forward it to the destination VM.

Figure 8-5. High-level architecture of overlay networking
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Overlay networking works well when there’s nothing but VMs in your data center.
The tricky part is how to handle nonvirtualized servers such as bare-metal servers
and appliances. These servers expect to speak native Ethernet to the switch and do
not have the benefit of a hypervisor handling the overlay tunnels on their behalf. The
answer is that the access switch itself can handle the overlay tunnel encapsulation and
forwarding on behalf of the nonvirtualized servers, as demonstrated in Figure 8-5.
From the perspective of a bare-metal server, it simply speaks standard Ethernet to the
access switch, and then the access switch handles the overlay tunnels. The end result
is that both virtual and nonvirtualized servers can use the same overlay architecture
in the data center.

Controller-Based Overlay Architecture
One of the most common types of overlay architectures includes the use of a control‐
ler. The basic premise being that all of the Virtual Tunnel End Points (VTEPs) are
provisioned and MAC address learning is handled through a centralized controller.
The benefit to a controller-based architecture is that the MAC address learning hap‐
pens in the control plane, as opposed to the data plane, which is less efficient. A
controller-based architecture also provides a single point of management for the pro‐
visioning of virtualized networks through the creation of tunnels and VTEPs. Let’s
put all of the pieces together in a more detailed view of the end-to-end architecture
for overlay networking. Figure 8-6 shows how virtualized and nonvirtualized servers
are able to build overlay tunnels between the hypervisors and leaf switches.

All of the overlay tunnel end points are terminated in the host hypervisor or in the
leaf switch. Notice that the overlay controller is connected to each tunnel end point.
The controller handles the creation of overlay tunnels and MAC address learning.
The overlay controller is connected to an overlay manager, which has a set of APIs.
Cloud management software (CMS) such as OpenStack can use these APIs for net‐
work orchestration.
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Figure 8-6. Controller-based overlay network architecture

Controller-Less Overlay Architecture
The alternative to a controller-based overlay architecture is a controller-less overlay
architecture. The concept is that there is no centralized controller that’s handling the
MAC address learning.

Multicast
In the original Virtual Extensible LAN (VXLAN) draft, it was suggested to use multi‐
cast between VTEPs to enable MAC address learning. Multicast would simulate an
Ethernet switch and simply forward all broadcast and unknown unicast traffic to
every other VTEP in the network. The end result is that MAC addresses are flooded
to every port in the IP Fabric and MAC address learning happens in the data plane, as
shown in Figure 8-7.

216 | Chapter 8: Overlay Networking

http://bit.ly/vxlan-draft


Figure 8-7. Controller-less overlay network architecture with multicast IP Fabric

The multicast option portrayed in Figure 8-7 is inefficient because it uses the data
plane as a flooding mechanism for MAC address learning. It’s very common to have
multiple VTEPs in a data center, but each VTEP will have different VXLAN member‐
ships. For example a VTEP on Leaf-1 may have a VXLAN membership of VNI-1,
VNI-2, and VNI-3; VTEP on Leaf-2 may have a VXLAN membership of VNI-2,
VNI-3, and VNI-4. Using multicast in this scenario would send broadcast and
unknown cast traffic for VNI-1 to Leaf-2, although Leaf-2 doesn’t have VNI-1 in the
VTEP. The only way to work around this is to map VTEPs to a multicast group. How‐
ever, this doesn’t scale very well, because sooner or later you run out of multicast
groups. Besides, who wants to maintain a VTEP to multicast group mapping and
have to continually update it?

EVPN
The alternative to using multicast in a controller-less overlay architecture is to use a
control plane protocol such as EVPN. Most people think that Ethernet VPN (EVPN)
is tied directly to MPLS VPNs, but Juniper has decoupled the EVPN control plane
from the data plane. You can now couple the EVPN control plane protocol with any
data plane encapsulation, such as VXLAN, as shown in Figure 8-8.
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Figure 8-8. Controller-less overlay network architecture with IP Fabric and EVPN

EVPN is a very efficient control plane protocol because it uses standard
Multiprotocol-Border Gateway Protocol (MP-BGP) extended communities such as
route targets (RT) and route distinguishers (RD) to uniquely identify VTEP and
VXLAN memberships. Now, VTEPs can exchange MAC addresses through EVPN
with other VTEPs who are interested in specific VXLAN Network Identifiers (VNIs).
The result is that MAC address learning is perfectly efficient when compared to mul‐
ticast.

The controller-less overlay network architecture with EVPN is commonly referred to
as a VXLAN Fabric. One of the other architectural changes in a VXLAN Fabric is that
all of the VTEPs are now located in the networking equipment. The servers no longer
need to worry about VTEPs and MAC address learning. All of the VXLAN switching,
routing, and MAC address learning is handled by the networking equipment. From
the perspective of the server, it’s simply Ethernet.

The inter-VXLAN routing is handled in the spine with hardware that uses Juniper sil‐
icon, such as the Trio chipset. As of this writing, there is no available merchant silicon
from Broadcom that’s able to route VXLAN traffic. The default gateway of the servers
is also handled by the spine switches, as illustrated in Figure 8-9.
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Figure 8-9. Illustration of EVPN Anycast gateway and ESI overview

The default gateway is synchronized with the EVPN protocol; each spine switch
shares a common Anycast default gateway that’s able to route traffic from any server.
For example, in Figure 8-9, the server’s default gateway would be 10.0.0.1. Also notice
that the server is connected via LACP/IEEE 802.1AX to three switches: LEAF-01,
LEAF-02, and LEAF-03. Depending on how the traffic is locally hashed within the
server, the traffic can end up going to any of the three leaf switches. Because each of
the three leaf switches share a common Ethernet Segment ID (ESI) for the server,
each switch knows that any traffic that arrives from the server is part of the same vir‐
tual IEEE 802.1AX bundle.

EVPN has major benefits in a VXLAN Fabric architecture. The first is the reduction
of wasted IP space for default gateways. Now, you can use the same IP address across
a set of spine switches and serve as the Anycast default gateway for a particular
broadcast domain. The second benefit is that EVPN allows a server to be multi-
homed into the network, as opposed to dual-homed. The advantage is that EVPN can
span more than two leaf switches to provide the ultimate link resiliency.
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Traffic Profiles
Let’s take a look at the basic traffic patterns in an overlay network. It’s important to
understand where data can originate and where it can be destined. Depending on
what the source and destination end points are, different functional roles in the archi‐
tecture are used to ensure that traffic is delivered end to end. Figure 8-7 shows that in
an overlay architecture, there are three basic traffic patterns that can take place:

• VM-to-VM traffic
• VM-to–physical server traffic
• Physical server–to–physical server traffic

Regardless of the traffic profile, the thing in common is that all traffic must pass
through a VTEP. The VTEP is what terminates the tunnel at the source and destina‐
tion of each overlay tunnel, as shown in Figure 8-10.

Figure 8-10. Basic overlay traffic patterns

VM-to-VM traffic will be handled by the VTEPs in the host hypervisor. The excep‐
tion is that if a VM needs to communicate with a physical server, the traffic will still
flow from VTEP to VTEP, but in this example, the host hypervisor VTEP will com‐
municate with the access switch VTEP to handle the VM-to–physical server traffic.
The final traffic profile is physical server–to–physical server. In this example, the traf‐
fic will be handled completely by access switch VTEPs at the source and at the desti‐
nation. The end result is that regardless of the traffic profiles, overlay networking
provides a seamless architecture to the network operator.
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VTEPs
We already know that VTEPs terminate each end of an overlay tunnel. Let’s make a
closer examination to see how they actually work. There are three primary functions
for each VTEP, as shown in Figure 8-11.

Figure 8-11. VTEP architecture

Overlay Tunnel Engine
As VMs and physical servers transmit and receive traffic, that traffic needs to be
placed into and out of the overlay tunnel. As traffic enters the overlay tunnel it
will be encapsulated with the data plane of choice, which is typically VXLAN.
When the traffic exits the other end of the tunnel, the overlay data plane needs to
be removed and forwarded to the destination server.

Loopback Address
As traffic is transmitted across an overlay tunnel, it requires a source and desti‐
nation VTEP address. The loopback address provides the VTEP with Layer 3
reachability to other VTEPs in the network. Because VTEPs only require Layer 3
reachability between each other, this removes the underlying requirement for
Layer 2 in the physical network.

MAC Address–to–IP Address Lookup Table
One of the most critical roles of the VTEP is its ability to learn MAC addresses
and map them to IP addresses and VTEP addresses. If MAC-1 was learned by
VTEP-1, how would VTEP-2 know to forward any traffic with a destination
address of MAC-1 to VTEP-1? The answer is that each VTEP has a global table of
every MAC address in the network and which VTEP and IP address with which
it’s associated.

MAC address learning takes place inside the hypervisor or access switch and is repli‐
cated within each local VTEP. For every MAC address learned, its associated IP
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address and local VTEP loopback address is populated into a VTEP table, as illustra‐
ted in Figure 8-12.

Figure 8-12. VTEP MAC, IP, and loopback tables

Each VTEP knows all local and remote MAC addresses and IP addresses. For exam‐
ple, if VTEP 1.1.1.1 wanted to send traffic to a destination VM with a MAC address
ending in :0A, it knows that the VM is local and can simply perform local forwarding.
However if VTEP 1.1.1.1 wanted to send traffic to a destination VM with the MAC
address ending in :0D, it knows that the VM is owned by the VTEP with the address
of 2.2.2.2. In this case, VTEP 1.1.1.1 would encapsulate the traffic destined to the
MAC address ending in :0D in an overlay tunnel that was destined to the VTEP
address 2.2.2.2 and transmit it over Layer 3. The destination VTEP 2.2.2.2 receives
the encapsulated traffic and removes the overlay encapsulation. It inspects the desti‐
nation MAC address and sees that :0D is a local MAC address and simply forwards
the traffic to the VM. The same function is performed for both VMs and physical
servers attached to access switches that have VTEPs.

Broadcom Trident II VTEPs
One caveat regarding the Broadcom Trident II VTEP is that it only maps MAC
addresses to interfaces. This is because it’s unable to route VXLAN traffic; it can only
forward it across Layer 2. The end result is that something besides a Broadcom Tri‐
dent II VTEP is required to route VXLAN traffic. Here are three alternatives:

Juniper Silicon
Juniper switches such as the EX9200, and routers such as the MX series use
custom-built Juniper silicon called the Trio chipset. These platforms make it pos‐
sible for you to bind the MAC address, interface, and IP address within the chip‐
set. The end result is that you can both switch and route VXLAN traffic.
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Hypervisor VTEP
VTEPs that reside within a hypervisor such as Linux KVM have a specialized
function called a virtual router (vRouter). These vRouters are able to map the
MAC addresses, interfaces, and IP addresses into tables in the hypervisor, which
allow it to switch and route VXLAN traffic.

Custom Appliances
The same principle applies, except the VXLAN routing is handled by a special‐
ized piece of hardware in an appliance form factor. This option isn’t very popular,
but does exist.

Control Plane
Depending on the overlay solution used, there are various types of control plane
options. At a high level, there are two methods to take care of MAC address learning
between VTEPs: multicast and unicast. Multicast simply uses the data plane to repli‐
cate traffic between VTEPs; it’s wildly inefficient, but it works. A more elegant
method is to use a real control plane protocol with unicast traffic.

There are two major options when it comes to the control plane in an overlay net‐
work. The first option is the Open vSwitch Database (OVSDB), which is used by
VMware NSX. The second option is the more well-known EVPN protocol, which is
used by Juniper Contrail.

Juniper has led the industry in decoupling the EVPN control plane
protocol from the underlying data plane encapsulations. The first
appearance of EVPN was in the WAN with MPLS. Customers
wanting to upgrade from VPLS to enable control plane MAC
address learning and active-active ECMP use EVPN.
Juniper Contrail also uses EVPN, but with a MPLS over UDP data
plane encapsulation. The functions are identical; use a control
plane–based protocol for MAC address learning.

Solutions that take advantage of a unicast control plane require the use of an overlay
controller. The overlay controller is the centralized mechanism for MAC address
learning. As different VTEPs throughout the network learn MAC addresses, they
update the overlay controller, as shown in Figure 8-6. In return, as the overlay con‐
troller learns new MAC addresses from other VTEPs, it replicates those MAC
addresses to all other VTEPs in the network. The replication of MAC addresses
throughout the network using a control plane protocol is very efficient and scales
nicely.
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Data Plane
As traffic moves between VMs and physical servers in an overlay network, it must be
transmitted by an overlay encapsulation. Table 8-1 shows the various options that are
available when it comes to the data plane encapsulation in an overlay architecture.

Table 8-1. Overlay architecture data plane
encapsulation mapping

Product VM-to-VM traffic VM-to-physical traffic

Juniper Contrail Agnostic VXLAN or GRE. Agnostic VXLAN or GRE.

VMware NSX-MH STT VXLAN

VMware NSX-V VXLAN VXLAN

Juniper Contrail has kept an open mind in terms of what data plane encapsulation it
uses. Because it has standardized on EVPN, it’s able to use any type of data plane.
VMware NSX has two products for overlay architectures:

VMware NSX for Multi-Hypervisor (NSX-MH)
NSX-MH is focused for service providers and large enterprise customers that
have a mixed environment of hypervisors such as Linux KVM and Xen. It has
good support for OpenStack for data center orchestration. It also supports hard‐
ware accelerated VTEPs in networking switches using the OVSDB control plane
protocol.

VMware NSX for vSphere (NSX-V)
NSX-V is purely focused on enterprise customers who want a vertically integra‐
ted solution from VMware. For example, NSX-V has tight integration with
VMware vSphere, vCloud Director, and VMware vCenter Operations. However,
it doesn’t support hardware-accelerated VTEPs in networking switches using the
OVSDB control plane protocol. If you need to handle physical servers in the net‐
work, it must be performed in software through a VMware Service VM.

VXLAN
The most popular data plane encapsulation for overlay tunnels is VXLAN. It adds an
additional 64 bits to the overall packet size, as shown in Figure 8-13.

Figure 8-13. A VXLAN header
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The first 32 bits of the VXLAN header are reserved. However, at least according to
the IETF draft-mahalingam-dutt-dcops-vxlan, the fifth bit must have a value of 1 to
indicate that it’s a valid VXLAN header. Otherwise the other 31 bits have a value of 0.

The next 24 bits are the VNI. The VNI identifies the scope of the inner MAC frame
that was originated by a VM. For example, you may create multiple VNIs with over‐
lapping MAC addresses. To recap, you can think of a VNI as a bridge domain or
VLAN. The good news is that we have twice the bits to play with when compared to
traditional VXLANs. VLANs can support up to 212 bridge domains. VXLAN tunnels
can support up to 224 or over 16 million bridge domains. Of course, this is the theo‐
retical limit; real-world scaling numbers are dependent on the hardware and software
used.

However, simply calculating the additional overhead of 64 bits for the VXLAN header
doesn’t tell the entire story when creating overlay tunnels across the network. Recall
that you also need to transport this new VXLAN header across a Layer 3 network. A
new outer Ethernet header, outer IP header, and outer UDP datagram is required to
transport the VXLAN header across a Layer 3 network, as depicted in Figure 8-14.

Figure 8-14. The entire overlay tunnel packet format

To sum up, an additional 496 bits of overhead is required to support a VXLAN tunnel
between two VTEPs over a Layer 3 network. The total amount will vary slightly
depending on the size of the original Layer 2 frame from the VM or physical server
that’s being encapsulated.

Because overlay networking requires additional overhead in a
Layer 3 network, it’s a great idea to enable jumbo frames through‐
out the entire network. Juniper QFX5100 switches support a Maxi‐
mum Transmission Unit (MTU) of up to 9,216 bytes.

Overlay Controller
When using a unicast control plane protocol such as EVPN or OVSDB, a centralized
overlay controller is required. At a high level, the overlay controller performs ingress
replication for MAC learning when using a unicast control plane protocol. For exam‐
ple, with EVPN the overlay controller would speak MP-BGP to each VTEP as well as
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provide BGP route reflection services to all of the other VTEPs to propagate new
MAC addresses throughout the data center.

A controller is also required to provision VTEP across hypervisors and network
switches. For example, every time a new hypervisor is added to the data center, it
would require a management connection to the overlay controller. As new virtual
networks are created, the overlay controller can create the appropriate VTEPs in the
hypervisor and propagate MAC addresses.

The exception is using EVPN in a network-based VXLAN fabric, which does not
require a centralized controller. Each switch will be running MP-BGP with family
EVPN for MAC address learning. It’s just like building an MPLS network, but the
data plane encapsulation is VXLAN. The other note is that the VXLAN VNI is glob‐
ally significant as opposed to MPLS labels which are locally significant.

Virtual Routers
Up to this point in the chapter, I have only covered switching and forwarding of
Ethernet frames within the same bridge domain. If a VM needs to route to another
VM in a different VNI, there needs to be a Layer 3 gateway address that the VM can
use as a default router. Each VNI has a virtual router (vRouter) associated with it that
VMs can use as a default gateway. The vRouter is depicted as “L3 GW” in Figure 8-15.

Figure 8-15. Inter-VXLAN routing architecture
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Routing VM traffic
Let’s study a simple example of VM1 routing to VM3. In this scenario, the VMs are in
different VNI segments and require routing. We’ll also make the assumption that
VM1 and VM3 are in different networks, so that the operating system in VM1 sees that
the network address of VM3 isn’t part of the same subnet and must use the default
gateway. VM1 sends traffic to L3 GW1; because the L3 GW1 has full visibility of the
VTEP lookup table, it sees that the destination MAC address of VM3 is associated
with VTEP2. Because VM1 and VM3 are within the same host, there’s no need to
encapsulate the packet. The L3 GW1 can simply locally route the traffic directly to
VM3.

The next example is if VM1 needs to route traffic to VM8. The same initial steps take
place. VM1 uses its default gateway of L3 GW1. The L3 GW1 receives the traffic and
because it has full visibility into the VTEP tables, it sees that the destination IP
address is owned by VTEP4. The L3 GW1 sends the traffic to VTEP1 which encapsu‐
lates the packet and sends it off to VTEP4. When the packet arrives at VTEP4, it strips
the packet of the VXLAN encapsulation and sees that the destination address is asso‐
ciated with a MAC address in Virtual Switch4. The frame is forwarded through Vir‐
tual Switch4 with a source MAC address of the L3 GW4 and a destination MAC
address of VM8.

Routing physical traffic
Routing VM traffic between VNIs is fairly straightforward; it all happens in software
with vRouters. The more difficult use case is routing physical servers in an overlay
architecture. At a high level, there are two options:

Software-Based VXLAN Routing
The physical server uses a default gateway that’s located within a VM. This means
that traffic from the physical server destined to the virtual default gateway must
pass through overlay tunnels until it reaches the Service VM that owns the
default gateway for that VNI. When the traffic reaches the Service VM, the same
process applies as if it were a VM. The major drawback is that it creates asym‐
metric traffic flows for physical servers.

Hardware-Based VXLAN Routing
Routing between VXLAN VNIs can happen in the networking hardware if the
underlying equipment supports it. For example, the Juniper EX9200 and Juniper
MX series routers support VXLAN routing. You simply create bridge domains
and associate them with VNIs. Each bridge domain has a routed interface that is
associated with an Integrated Routing and Bridging (IRB) interface that’s able to
route traffic between bridge domains. Because the VXLAN traffic is routed in
hardware, there is no performance loss and servers can transmit at line rate.
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Routing VXLAN traffic in the networking hardware also eliminates the asym‐
metric traffic patterns that exist in the software-based VXLAN routing solution,
because the default gateways exist a single hop away in hardware. Also keep your
eyes out for some new high-density Juniper QFX switches based on Juniper sili‐
con that will support hardware.

The most preferable option would be to have a completely virtualized environment
and not have to worry about routing physical traffic across an overlay architecture.
The second best option would be to simply use the underlying networking equipment
to route between VXLAN segments so that the virtual and physical servers operate in
a seamless overlay architecture.

Storage
Many people assume that the storage must also take part in the overlay architecture
because all of the VMs and physical servers require VTEPs to communicate with one
another. However this is a common misconception. Making the assumption that the
storage is IP-based, such as iSCSI or NFS, hypervisors and physical servers can simply
use the underlying IP Fabric to reach the storage device directly over IP, as is demon‐
strated in Figure 8-16.

Figure 8-16. Storage in an overlay architecture

One of the benefits of using IP-based storage in an IP Fabric is that it’s reachable from
any location by using Layer 3. The server in Figure 8-16 needs to access the network-
attached storage (NAS) and simply routes the traffic. Although the underlying net‐
work is an IP Fabric, you can still configure lossless Ethernet queues so that storage
traffic is prioritized through the network, as shown in Figure 8-16. The path between
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the server and NAS device is shown in a double-line in Figure 8-16. Here is what hap‐
pens at each step along the way:

• The server transmits a packet destined to the NAS device.
• The first leaf switch receives the traffic and classifies the storage traffic by using a

multifield classifier with a firewall filter.
• The leaf switch gives priority to the storage traffic and sends the traffic to the

spine switch by using a high-priority IEEE 802.1p bit.
• The spine switch receives the traffic and identifies the high-priority storage traf‐

fic based on the IEEE 802.1p bit by using a behavior aggregate (BA).
• The spine switch gives priority to the storage traffic and sends the traffic to the

destination spine switch by using a high-priority IEEE 802.1p bit.
• The destination leaf switch identifies the storage traffic with a BA, gives it prior‐

ity, and transmits it to its final destination.

If your server and storage device support Priority-Based Flow Control (PFC)/IEEE
802.1Qbb, the Juniper QFX5100 series supports PFC over Layer 3, as well. The caveat
is that PFC must operate over the IEEE 802.1p bits, therefore the point-to-point links
between the spine and leaves must support IEEE 802.1Q. The result is that with loss‐
less Ethernet queuing and PFC, servers and storage will always have guaranteed
bandwidth and flow control in an overlay architecture based on an IP Fabric.

Juniper Architectures for Overlay Networks
Now that you have a better understanding of what problems an overlay architecture
solves and how overlay networks operate, the next question is how can the Juniper
QFX5100 family add additional value to an overlay network? Juniper QFX5100
switches support two key architectures to enable overlay architectures: Virtual Chas‐
sis Fabric (VCF) and an IP Fabric. Each architecture has its advantages and disadvan‐
tages. Most enterprise customers lean toward VCF because of its plug-and-play
nature and because it’s easy to manage. Large enterprises and service providers prefer
to use an IP Fabric because it offers much larger scale and a seamless routing protocol
with their existing environments.

We discussed VCF in detail in Chapter 5. The power of VCF increases when you
combine it with an overlay networking architecture. The first thing to recall about
VCF is that the routing engine is centralized and all of the other switches in the fabric
are line cards. When you create a VTEP in a VCF, you do so in the configuration only
once. However, the VTEP is programmed into every single switch in the VCF, saving
you from having to configure numerous times throughout your network, as shown in
Figure 8-17.
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Figure 8-17. VCF architecture with overlay integration

It’s also common that hypervisor hosts have multiple connections into the network. A
common standard is to use 4 10GbE or 8 10GbE ports from the host into the network
depending on the VM density of the host. Because VCF natively supports IEEE
802.3ad/LACP across multiple access switches, the host hypervisor can use standard
LACP across all its uplinks into the network.

The really cool thing is that if there’s a physical network that needs to be integrated
into the overlay architecture and requires multihoming via IEEE 802.3ad/LACP, VCF
can support it and also handle the VTEP and MAC learning across LACP on behalf
of the server.

Of course, VCF supports ISSU. When you need to perform network maintenance and
upgrade the software, you can do so without interrupting the traffic flow of the
servers.

In brief, VCF is a great solution for enterprise customers looking to move toward an
overlay architecture. It offers a single point of management, so the entire data center
looks like a single logical switch. Physical servers can seamlessly be integrated into the
overlay architecture and support multihoming.

Configuration
Let’s jump right into the configuration details of overlay networking. There are many
moving parts, as discussed in the architecture section. Let’s take each component, one
by one, and see how it works on the command line.
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The assumption made in this configuration exercise is that we’re integrating the Juni‐
per QFX5100 switch into an existing VMware NSX environment running the OVSDB
protocol.

Supported Hardware
First things first: let’s review which Juniper hardware supports overlay networking
with built-in VTEPs into the hardware. As of this writing, there are three platforms
that support hardware accelerated VTEPs:

• Juniper QFX5100 series
• Juniper EX9200 series
• Juniper MX series

The Juniper QFX5100 family uses the Broadcom Trident II chipset and accommo‐
dates basic Layer 2–only VTEPs. Keep in mind that these VTEPs can only map the
MAC addresses to an interface and aren’t capable of VXLAN routing. The Juniper
EX9200 and MX Series are based on purpose-built Juniper silicon and support map‐
ping of MAC addresses, interfaces, and IP addresses, allowing you to both switch and
route VXLAN traffic.

Controller
Let’s make the assumption that you’re configuring a controller-based overlay network
architecture by using the OVSDB control plane protocol. The first step is to configure
the controller’s IP address:

[edit]
root# set protocols ovsdb controller 192.168.61.112

After you commit the configuration, the next step is to check the connection to the
controller and see if it established an active connection:

dhanks@QFX5100> show ovsdb controller
VTEP controller information:
Controller IP address: 192.168.61.112
Controller protocol: ssl
Controller port: 6632
Controller connection: up
Controller seconds-since-connect: 56376
Controller seconds-since-disconnect: 0
Controller connection status: active

You can see that the connection to the VMware NSX controller is up and active.
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Interfaces
The next step is to identify which interfaces are to be controlled by the OVSDB proto‐
col. These are typically interfaces handling physical servers so that they can partici‐
pate in the overlay architecture with the other VMs:

[edit]
root# set protocols ovsdb interfaces xe-0/0/3.0

Now, verify that the interface is managed by OVSDB:
dhanks@QFX5100> show ovsdb statistics interface
Interface Name: xe-0/0/3.0
Num of rx pkts:  0                     Num of tx pkts:  0
Num of rx bytes: 0                     Num of tx bytes: 0

Although there’s no traffic flowing through the interface yet, you can see that the
interface now appears in the show ovsdb statistics command.

Switch Options
The last step is to configure the switch at a global level to be managed by OVSDB.
You also need to configure the source address to be used by the switch when talking
to the OVSDB controller:

[edit]
root# set switch-options ovsdb-managed
[edit]
root# set switch-options vtep-source-interface lo0.0

With the basics configured, let’s move on to the verification.

Logical Switch
Because you set a global knob called ovsdb-managed, the VMware NSX controller is
able to dynamically create logical switches on the Juniper QFX5100 switch. Take a
look at the logical switches on the switch:

dhanks@QFX5100> show ovsdb logical-switch
Logical switch information:
Logical Switch Name: 4918d9c6-0ac2-444f-b819-d763d577b099
Flags: Created by both
VNI: 100
Num of Remote MAC: 5
Num of Local MAC: 0

Notice the dynamically created logical switch name that ensures uniqueness across
the network. This particular logical switch is associated with VNI and has already
learned five remote MAC addresses.
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Remote MACs
To view what MAC addresses were learned by the controller, use the following com‐
mand:

dhanks@QFX5100> show ovsdb mac remote
Logical Switch Name: 4918d9c6-0ac2-444f-b819-d763d577b099
  Mac                    IP                 Encapsulation      Vtep
  Address                Address                               Address
  40:b4:f0:07:97:f0      0.0.0.0            Vxlan over Ipv4    100.100.120.120
  64:87:88:ac:42:0d      0.0.0.0            Vxlan over Ipv4    100.100.120.120
  64:87:88:ac:42:18      0.0.0.0            Vxlan over Ipv4    100.100.130.130
  a8:d0:e5:5b:5f:08      0.0.0.0            Vxlan over Ipv4    100.100.130.130
  ff:ff:ff:ff:ff:ff      0.0.0.0            Vxlan over Ipv4    100.100.100.1

You can see that five MAC addresses have been learned. Recall that the Juniper
QFX5100 series is based on the Broadcom Trident II chipset and is unable to see the
IP address, because the VTEP table only holds the MAC address and interface.

OVSDB Interfaces
You can also verify that the OVSDB-managed interfaces are associated to the correct
bridge domains by using the following command:

root@QFX5100> show ovsdb interface
Interface              VLAN ID         Bridge-domain
xe-0/0/3.0             0               4918d9c6-0ac2-444f-b819-d763d577b099

You can see that the xe-0/0/3.0 interface is correctly associated with the dynamically
created bridge domain from the VMware NSX controller.

VTEPs
One of the more interesting commands that you can use is to discover what other
VTEPs exist in the network. Recall that we learned five MAC addresses from the
VMware NSX controller. Let’s take a look and see how many MAC addresses are asso‐
ciated with remote VTEPs:

dhanks@QFX5100> show ovsdb virtual-tunnel-end-point
Encapsulation               Ip Address                           Num of MAC's
VXLAN over IPv4             100.100.100.1                        1
VXLAN over IPv4             100.100.120.120                      2
VXLAN over IPv4             100.100.130.130                      2

You can see that a single MAC address came from the VTEP 100.100.100.1, whereas
you received two MAC addresses from the VTEPs 100.100.120.120 and
100.100.130.130.

Switching Table
The last step is to see the Ethernet switching table. We can verify the MAC addresses
and see which logical interface to which they’re being forwarded:
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dhanks@QFX5100> show ethernet-switching table

MAC flags (S - static MAC, D - dynamic MAC, L - locally learned, P - Persistent static
           SE - statistics enabled, NM - non configured MAC, R - remote PE MAC)

Ethernet switching table : 4 entries, 0 learned
Routing instance : default-switch
  Vlan                MAC                 MAC         Age    Logical
  name                address             flags              interface
  4918d9c6-0ac2-444f-b819-d763d577b099 40:b4:f0:07:97:f0 SO       - vtep.32769
  4918d9c6-0ac2-444f-b819-d763d577b099 64:87:88:ac:42:0d SO       - vtep.32769
  4918d9c6-0ac2-444f-b819-d763d577b099 64:87:88:ac:42:18 SO       - vtep.32770
  4918d9c6-0ac2-444f-b819-d763d577b099 a8:d0:e5:5b:5f:08 SO       - vtep.32770

Each of the five MAC addresses are being forwarded within the same bridge domain,
but to different VTEPs, as shown in the Logical interface column.

Multicast VTEP Exercise
Now that you have an idea how to handle a controller-based overlay configuration,
let’s move to a controller-less architecture using multicast. In this exercise, you’ll set
up the topology in Figure 8-18.

Figure 8-18. The multicast VTEP topology

The assumption is that there is a pure Layer 3 network with multicast enabled to
which LEAF-03 and LEAF-04 are connected. The trick is to make Server 1 and Server
2 talk to each other over Layer 2 through a VXLAN tunnel that traverses the Layer 3
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network. If Server 1 can ping Server 2 through a VXLAN tunnel, the test will be con‐
sidered successful.

LEAF-03 Configuration
The first step is to configure the server-facing interface on LEAF-01 as an access port
in the foobar VLAN and configure a loopback address for the switch:

interfaces {
    xe-0/0/0 {
        unit 0 {
            family ethernet-switching {
                interface-mode access;
                vlan {
                    members foobar;
                }
            }
        }
    }
    lo0 {
        unit 0 {
            family inet {
                address 10.0.0.7/32;
            }
        }
    }

Next, configure a static VTEP and use the loopback address as its source address:
switch-options {
    vtep-source-interface lo0.0;
}

Finally, define the foobar VLAN and set up the VXLAN VNI:
vlans {
    foobar {
        vlan-id 100;
        vxlan {
            vni 100;
            multicast-group 225.10.10.10;
        }
    }
}

Notice that we have the ability to perform VLAN normalization. As long as the VNI
stays the same between remote VTEPs, the VLAN handoff can be any value back to
the server. Because we’re using multicast for the MAC learning, we need to associate
the VNI with a multicast group.

LEAF-04
The configuration for LEAF-04 is identical to that of LEAF-03:

interfaces {
    xe-0/0/0 {
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        unit 0 {
            family ethernet-switching {
                interface-mode access;
                vlan {
                    members foobar;
                }
            }
        }
    }
    lo0 {
        unit 0 {
            family inet {
                address 10.0.0.5/32;
            }
        }

}
switch-options {
    vtep-source-interface lo0.0;
}
vlans {
    foobar {
        vlan-id 100;
        vxlan {
            vni 100;
            multicast-group 225.10.10.10;
        }
    }
}

Verification
Take a moment to use some show commands to verify that you configured the basics
correctly:

{master:0}
dhanks@temp-leaf-03> show vlans

Routing instance        VLAN name             Tag          Interfaces
default-switch          foobar                100
                                                           vtep.32769*
                                                           xe-0/0/0.0*

The VLAN is there and associated with the correct interface. You can also see that the
VTEP is successfully created and associated with the foobar VLAN, as well.

Now, double-check your VTEP and ensure that it’s associated with the correct VLAN
and multicast group:

{master:0}
dhanks@temp-leaf-03> show ethernet-switching vxlan-tunnel-end-point source
Logical System Name       Id  SVTEP-IP         IFL   L3-Idx
<default>                 0   10.0.0.7         lo0.0    0
    L2-RTT                   Bridge Domain              VNID     MC-Group-IP
    default-switch           foobar+100                 100      225.10.10.10
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Very cool! You see that your foobar bridge domain is bound to the VNI 100 with the
correct multicast group. You can also see that your source VTEP is configured with
the local loopback address of 10.0.0.7.

Take a look at what remote VTEPs have been identified:
{master:0}
root@temp-leaf-03> show ethernet-switching vxlan-tunnel-end-point remote
Logical System Name       Id  SVTEP-IP         IFL   L3-Idx
<default>                 0   10.0.0.7         lo0.0    0
 RVTEP-IP         IFL-Idx   NH-Id
 10.0.0.5         567       1757
    VNID          MC-Group-IP
    100           225.10.10.10

This is great. You can see the remote VTEP on LEAF-04 as 10.0.0.5.

Now, check the Ethernet switching table and see if the two servers have exchanged
MAC addresses yet:

{master:0}
dhanks@temp-leaf-03> show ethernet-switching table

MAC flags (S - static MAC, D - dynamic MAC, L - locally learned, P - Persistent
static
           SE - statistics enabled, NM - non configured MAC, R - remote PE MAC)

Ethernet switching table : 2 entries, 2 learned
Routing instance : default-switch
    Vlan                MAC                 MAC         Age    Logical
    name                address             flags              interface
    foobar              f4:b5:2f:40:66:f8   D             -   xe-0/0/0.0
    foobar              f4:b5:2f:40:66:f9   D             -   vtep.32769

Excellent! There is a local (f4:b5:2f:40:66:f8) and remote (f4:b5:2f:40:66:f9) MAC
address in the switching table!

The last step is to ping from Server 1 to Server 2. Given that the VTEPs have discov‐
ered each other and the servers have already exchanged MAC addresses, you can be
pretty confident that the ping should work:

bash# ping –c 10.1.1.44
PING 10.1.1.44 (10.1.1.44): 56 data bytes
64 bytes from 10.1.1.44: icmp_seq=0 ttl=64 time=1.127 ms
64 bytes from 10.1.1.44: icmp_seq=1 ttl=64 time=1.062 ms
64 bytes from 10.1.1.44: icmp_seq=2 ttl=64 time=1.035 ms
64 bytes from 10.1.1.44: icmp_seq=3 ttl=64 time=1.040 ms
64 bytes from 10.1.1.44: icmp_seq=4 ttl=64 time=1.064 ms

--- 10.1.1.44 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/stddev = 1.035/1.066/1.127/0.033 ms

Indeed. Just as expected. With the tunnel successfully created, bound to the correct
VLAN, and the MAC addresses showing up in the switching table, the ping has
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worked successfully. Server 1 is able to ping Server 2 across the same Layer 2 network
through a VXLAN tunnel that’s traversing a Layer 3 network. The VTEPs on the
switches are using multicast for MAC address learning, which simulates a physical
Layer 2 switch characteristics to flood, filter, and forward broadcast and unknown
unicast Ethernet traffic.

Summary
This chapter thoroughly discussed overlay networking in the data center. There are
two categories of overlay architectures: controller-based and controller-less. The
controller-based architectures use control plane–based protocols such as OVSDB
(VMware NSX) and EVPN (Juniper Contrail) for MAC address learning. The
controller-less options include multicast for data plane learning and MP-BGP with
EVPN.

We reviewed the Juniper products that support overlay architectures and how they
vary. The Juniper QFX5100 series, which is based on the Broadcom Trident II chipset,
only supports Layer 2 VTEPs. The Juniper EX9200 and MX Series, which are based
on the Juniper Trio chipset, offer both Layer 2 and Layer 3 VTEPs with which you can
switch and route overlay traffic.

We walked through two configuration examples of overlay architectures. The first
was an assumption of an IP Fabric with VMware NSX that uses the OVSDB protocol.
We configured the controller, VTEP, interfaces, and walked through the commands to
verify the setup. The final exercise was using a controller-less architecture that used
multicast for MAC learning between the statically defined VTEPs. We were able to
ping between two servers across a Layer 2 VXLAN tunnel across a Layer 3 IP Fabric.
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CHAPTER 9

Network Analytics

One of the most difficult tasks in network operations is gathering accurate sampling
data from a switch to create a dashboard that shows the overall health of the network.
Accurate network visibility and analytics is the cornerstone to operating an efficient
and reliable network. After all, how do you know that your network is running
smoothly if you have no idea what’s going across it?

Network analytics is a broad term, but in general—as network operators—we want to
provide context and answer the following questions:

• What types of applications are consuming network resources?
• What’s the current capacity and utilization of a given switch?
• How can I quickly identify peaks and valleys?
• How can I detect microbursts?
• Are there hotspots forming in the network?

Answering these questions has become more difficult with the standardization of
10GbE access ports in the data center. The amount of traffic is increasing rapidly and
traditional sampling techniques such as sFlow and IPFIX only provide answers to
some of the questions posed. Because microbursts and latency spikes can happen in
very small windows, tools that rely on sampling every few seconds are unable to
detect these events that interrupt business applications. Microburst events occur
when there are multiple ports of ingress traffic that’s all destined to a single egress
port, and the egress port’s buffer is exceeded. For example, if server 1 sent a query to a
set of compute clusters, and all 100 compute clusters responded back to the server at
the exact same time, the physical port connected to server 1 would become congested
for that brief moment in time.
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To detect micro events in the network, the frequency at which the networking device
samples the traffic and counters must be increased dramatically. With Juniper
Enhanced Analytics, you can receive real-time information from the switch and
detect events such as latency, jitter, and microbursting.

Overview
The Juniper QFX5100 series gives you the capability to quickly gather traffic statistics
and other data out of the switch and into powerful collection tools so that you can
visualize what’s happening inside the network (see Figure 9-1). Juniper QFX5100
switches supports two major types of network analytics:

Sampled Data
The sFlow technology on the Juniper QFX5100 family uses sampling to gather
data. You can sample interface statistics and flow data on a Juniper QFX5100
switch at a frequency of one out of n packets. Data is exported from the Juniper
QFX5100 every 1,500 bytes or every 250 ms. Due to the nature of sampling, there
are no options to enable monitoring thresholds; this means you’re unable to send
real-time alerts based on events exceeding or dropping below a threshold.

Real-Time Data
Juniper Enhanced Analytics fills in the gaps of traditional sampling techniques
such as sFlow. Data is exported from the switch in real time as the data is collec‐
ted. Enhanced Analytics offers much faster polling intervals, all the way down to
8 ms. Because data is collected in real time, you are able to set high and low
thresholds for latency and queue depth, all the way down to 1 nanosecond.

One of the benefits of sFlow is that it’s able to capture the first 128 bytes of the sam‐
pled packets. It’s a small form of Deep Packet Inspection (DPI), which remote tools
can use to create detailed graphs of the application traffic within the network.
Although Enhanced Analytics doesn’t have any (current) DPI capabilities, it has the
unique ability to detect micro events and report them in real time. By combining the
power of sampled and real-time data, you can get a true end-to-end view of what’s
happening within your network.
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Figure 9-1. Overview of network analytics on the Juniper QFX5100 switch

sFlow
Figure 9-2 shows at a high level how sFlow collects samples of packets in a switched
network and sends the aggregated data to a remote collector.

There are two sampling mechanisms for sFlow:

Packet-Based Sampling
You can sample one packet out of a specified number of packets from a particular
interface. The first 128 bytes—including the raw Ethernet frame—are recorded
and sent to the collector. It’s important to note that only switched traffic can be
subject to sFlow; you cannot sample Layer 3 interfaces. The data included in the
sampled information is the aforementioned Ethernet frame, IP packet, TCP seg‐
ments or UDP datagrams, and any remaining payload information up to 128
bytes.
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Time-Based Sampling
Using this mode, you can capture interface statistics at a specified time interval to
the remote collector. If you don’t need to sample packets and get the first 128
bytes of information but instead only want to receive traffic statistics, time-based
sampling would be a good option for you.

Figure 9-2. Overview of sFlow sampling

sFlow is commonly used to enable network dashboards using collection tools such as
PRTG or nfsen. It shows what types of applications are consuming networking
resources. Because the first 128 bytes of the packet are sent to the collector, it can
easily perform DPI into the payload of the packet and see what’s happening from an
application perspective.

Adaptive Sampling
As you might imagine, enabling sFlow across all interfaces in a switch that could sup‐
port 104 10GbE interfaces would require a lot of processing to sample packets, per‐
form DPI, and send that data to an external collector. You wouldn’t want sFlow to
cause any service interruptions to the actual traffic itself. Juniper sFlow includes the
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capability to monitor the interface traffic and dynamically adjust the polling interval
of sFlow.

Agents check the interfaces every 5 seconds and create a sorted list of interfaces that
are receiving the most samples per second. The top five interfaces with the highest
number of samples are selected. Using a binary backoff algorithm, the sampling loads
on the selected interfaces are reduced by half and allocated to other interfaces that
have a lower sampling rate. Keep in mind that adaptive sampling is a transient feature
that’s adjusted every 5 seconds. If traffic spiked for 1 minute and then went back
down for the next 15 minutes, the adaptive sampling would kick in for the first
minute, but then restore sFlow to the configured values for the remaining 15 minutes.
Sampling resources are distributed evenly across the entire switch during excessive
traffic peaks, resulting in the guaranteed delivery of production traffic through the
switch.

Configuration
Be aware that an external collection tool is required to make sFlow useful. Download‐
ing and installing an external collection tool is beyond the scope of this book and is
left as an exercise to the user. However some of the better sFlow tools are Juniper’s
STRM, PRTG, ntop, nfsen, and sFlowTrend.

The first step in the configuration process is to set up the sFlow collector to which we
want to send the sampled data. The Juniper QFX5100 series supports sending data
from the management port as well as any revenue ports configured for Layer 3. It’s
recommended to use revenue ports to export sampled data, because during peak traf‐
fic loads, the amount of data being exported can be quite large.

Let’s get right to it:
{master:0}[edit]
dhanks@QFX5100# set protocols sflow collector 192.168.1.100 udp-port 5000

Next, define which interfaces will be enabled for sFlow sampling. By default all the
interfaces are excluded from sFlow, and you must enable them for sFlow to work:

{master:0}[edit]
dhanks@QFX5100# set protocols sflow interfaces et-0/0/0

The final step is to set up the polling interval and sampling rate for the interfaces. You
can define these settings per interface or simply set them globally:

{master:0}[edit]
dhanks@QFX5100# set protocols sflow sample-rate egress 10 ingress 10
{master:0}[edit]
dhanks@QFX5100# set protocols sflow polling-interval 5

You might be wondering what the difference is between the polling-interval and
the sampling-rate; these two knobs are often confused. The polling-interval sim‐
ply instructs the Juniper QFX5100 device to poll the physical interface every n sec‐
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onds to collect interface statistics. The sampling-rate specifies how many packets
the Juniper QFX5100 switch inspects in order to send sampled meta-information (the
first 128 bytes) to the collector.

sFlow Review
The Juniper QFX5100 family of switches supports sFlow for all switched traffic pass‐
ing through the switch. It allows you to quickly get an idea of what types of applica‐
tions are consuming networking resources. There are only a few configuration
statements to enable sFlow and it’s very easy to get running. However, there are a few
caveats, which are listed here:

• You cannot enable sFlow on Layer 3 interfaces or aggregated Ethernet bundles
(ae); however, you can enable sFlow on the member interfaces such as et-0/0/0.

• When using sFlow on ingress traffic, none of the CPU-bound traffic is captured.
• When using sFlow on egress traffic, no multicast or broadcast traffic is sampled.

Also the Juniper QFX5100 device doesn’t factor in egress firewall filters when
using sFlow, due to a limitation in the Broadcom chipset.

• The Juniper QFX5100 series supports sFlow version 5 as of 13.1X51D20.

Using sFlow is a great way to quickly sample application traffic in your network and
visualize it. After enabling sFlow, many network operators are surprised to learn what
types of applications and end-user traffic is going across the network.

Enhanced Analytics
With the introduction of 10GbE and higher speeds in the access layer, new use cases
have emerged such as Big Data and High-Frequency Trading (HFT). Each of these
requires high-speed networks, low latency, and no jitter. Traditional monitoring tools
such as sFlow aren’t equipped to deal with the high-speed latency and jitter problems
that can arise in high-speed networks. This is because sFlow works by sampling traf‐
fic. For example if sFlow only sampled one packet out of 2,000, it wouldn’t be able to
detect a microburst happening in the other 1,999 packets.

Overview
With Juniper Enhanced Analytics, you can monitor the Juniper QFX5100 in real time
(as opposed to sampling packets) to monitor traffic statistics, queue depth, latency,
and jitter in the network (see Figure 9-3). Being able to collect real-time traffic statis‐
tics offers more granularity when graphing traffic patterns across interfaces. The
queue depth and latency are early warning signals to application failures. For exam‐
ple, if you notice an increasing amount of tail-dropping or microbursts on a specific
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server, you know that it will have a negative impact on the application performance
and reliability.

Figure 9-3. Overview of Juniper Enhanced Analytics

Enhanced Analytics is split into two major functions; the result is that a Juniper
QFX5100 device is able to quickly export data to multiple collectors in real time for
offline analysis. Following is a brief description of each function:

Analytics Daemon
The analytics daemon (analyticsd) runs within Junos; its primary responsibility is
to collect the analytics information from the Packet Forwarding Engine (PFE)
and export it to the collectors.

Analytics Manager
The analytics manager (AM) runs within the PFE so that it’s able to read traffic,
queue depth, and latency in real time. Traffic is read off the data plane and pro‐
cessed into ring buffers so that analyticsd can retrieve the information.

Enhanced Analytics and sFlow make a perfect combination when you need to quickly
get all the data off the switch and into offline analysis tools. You get both the benefits
of sampled and real-time data to create a true end-to-end view of your network.

Architecture
Both analyticsd (AD) and AM work as a team to obtain real-time data from the PFE
and export it to remote collectors, as shown in Figure 9-4.

The two analytics engines, AD and AM, work in unison and use standard Unix Inter‐
process Communication (IPC) to pass information back and forth. The heavy lifting
is performed by the Junos µKernel. Traffic statistics are gathered from the Broadcom
chipset every second, and the queue depth information is retrieved every 8 ms (see
Figure 9-5). The information is put into ring buffers that the IPC thread uses to
retrieve the information; the traffic statistics are pulled from the ring queue every sec‐
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ond, and the queue depth is pulled from the ring queue every 100 ms. The rest of the
processing is handled by the control plane with the analytics daemon. AD uses stan‐
dard IPC to transfer data from the AM. From this point the data is shipped off to the
configured collectors.

Figure 9-4. Analytics daemon and analytics manager overview

Figure 9-5. Enhanced Analytics architecture

The end result is that data is retrieved from the data plane in real time and exported
to multiple collectors. The information gathered makes it possible for you to quickly
determine the overall network performance, health, and application stability.
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The Enhanced Analytics architecture shown in Figure 9-5 is accu‐
rate as of Junos 13.1X51D20. Given that the entire architecture is a
software solution, it can be changed and enhanced at any time with
future software releases.

Streaming Information
The information provided by Enhanced Analytics is critical in mapping out your net‐
work to detect latency and jitter between applications. The information streamed is
divided into two major categories:

Streamed Queue Depth Statistics
You can use the queue depth information to measure an interface’s latency and
see how full the transmit buffer is. If the buffer capacity is exceeded, traffic will
drop.

Streamed Traffic Statistics
You can use the traffic statistics to see the amount and velocity of traffic flowing
through the network. The information also includes any types of errors and
dropped packets.

Using the combination of queue depth and traffic statistics, you can quickly trouble‐
shoot application issues in your data center. The extensive support for streaming pro‐
tocols reduces the burden to create customized monitoring tools and increases the
compatibility with open source tools, such as LogStash, fluentd, and Elasticsearch.

Streaming formats
Enhanced Analytics is capable of streaming the queue depth and traffic information
to multiple collectors in the following streaming formats:

Google Protocol Buffer
The Google Protocol Buffer (GPB) supports nine types of messages in a hierarch‐
ical format. The format is in binary and isn’t readable by humans, unless you’re
Cypher from The Matrix.

JavaScript Object Notation (JSON)
JSON is a lightweight data-interchange format that is easy for both humans and
machines to read and parse. It’s based on a subset of the JavaScript Programming
Language.

Comma-Separated Values (CSV)
This is a simple flat file containing fields of data delimited by a single comma
(“,”).

Tab-Separated Values (TSV)
Simple flat file containing fields of data delimited by a single tab (“\t”).
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Each format has its advantages and disadvantages. If you need quick and dirty, you
might opt for the CSV or TSV formats. If you really enjoy programming in Python or
Perl, you might like to use the JSON format. If you need sheer speed and support for
remote procedure calls (RPCs), you might lean toward GPB.

GPB.    Take a moment to examine the GPB format, as presented in Table 9-1.

Table 9-1. GPB streaming format specifications

Byte position Field

0 to 3 Length of message

4 Message version

5 to 7 Reserved

The Juniper QFX5100 family uses a specific GPB prototype file (analytics-proto) to
format the streaming data, which you can download from the Juniper website.

Let’s take a look at the fields of the analytics-proto file. This is what you will need to
use in your GPB collector:

package analytics;

// Traffic statistics related info
message TrafficStatus {
    optional uint32             status          = 1;
    optional uint32             poll_interval   = 2;
}

// Queue statistics related info
message QueueStatus {
    optional uint32             status          = 1;
    optional uint32             poll_interval   = 2;
    optional uint64             lt_high         = 3;
    optional uint64             lt_low          = 4;
    optional uint64             dt_high         = 5;
    optional uint64             dt_low          = 6;
}

message LinkStatus {
    optional uint64             speed           = 1;
    optional uint32             duplex          = 2;
    optional uint32             mtu             = 3;
    optional bool               state           = 4;
    optional bool               auto_negotiation= 5;
}

message InterfaceInfo {
    optional uint32             snmp_index      = 1;
    optional uint32             index           = 2;
    optional uint32             slot            = 3;
    optional uint32             port            = 4;
    optional uint32             media_type      = 5;
    optional uint32             capability      = 6;
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    optional uint32             porttype        = 7;
}

message InterfaceStatus {
    optional LinkStatus         link            = 1;
    optional QueueStatus        queue           = 2;
    optional TrafficStatus      traffic         = 3;
}

message QueueStats {
    optional uint64             timestamp       = 1;
    optional uint64             queue_depth     = 2;
    optional uint64             latency         = 3;
    optional string             traffic_class   = 4;
}

message TrafficStats {
    optional uint64             timestamp       = 1;
    optional uint64             rxpkt           = 2;
    optional uint64             rxucpkt         = 3;
    optional uint64             rxmcpkt         = 4;
    optional uint64             rxbcpkt         = 5;
    optional uint64             rxpps           = 6;
    optional uint64             rxbyte          = 7;
    optional uint64             rxbps           = 8;
    optional uint64             rxdrop          = 9;
    optional uint64             rxerr           = 10;
    optional uint64             txpkt           = 11;
    optional uint64             txucpkt         = 12;
    optional uint64             txmcpkt         = 13;
    optional uint64             txbcpkt         = 14;
    optional uint64             txpps           = 15;
    optional uint64             txbyte          = 16;
    optional uint64             txbps           = 17;
    optional uint64             txdrop          = 18;
    optional uint64             txerr           = 19;
}

//Interface message
message Interface {
    required string             name            = 1;
    optional bool               deleted         = 2;
    optional InterfaceInfo      information     = 3;
    optional InterfaceStatus    status          = 4;
    optional QueueStats         queue_stats     = 5;
    optional TrafficStats       traffic_stats   = 6;
}

message SystemInfo {
    optional uint64             boot_time       = 1;
    optional string             model_info      = 2;
    optional string             serial_no       = 3;
    optional uint32             max_ports       = 4;
    optional string             collector       = 5;
    repeated string             interface_list  = 6;
}

message SystemStatus {
    optional QueueStatus        queue           = 1;
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    optional TrafficStatus      traffic         = 2;
}

//System message
message System {
    required string             name            = 1;
    optional bool               deleted         = 2;
    optional SystemInfo         information     = 3;
    optional SystemStatus       status          = 4;
}

JSON.    Following are two examples of JSON. The first example will be queue depth
information:

{"record-type":"queue-stats","time":1383453988263,"router-id":"qfx5100-switch",
"port":"xe-0/0/18","latency":0,"queue-depth":208}

The next example is traffic statistics:
{"record-type":"traffic-stats","time":1383453986763,"router-id":"qfx5100-switch",
"port":"xe-0/0/16","rxpkt":26524223621,"rxpps":8399588,"rxbyte":3395100629632,
"rxbps":423997832,"rxdrop":0,"rxerr":0,"txpkt":795746503,"txpps":0,"txbyte":1018555
33467, "txbps":0,"txdrop":0,"txerr":0}

CSV.    Now, let’s explore CSV, using the same data as last time. First up is the queue
depth information:

q,1383454067604,qfx5100-switch,xe-0/0/18,0,208

Here are the traffic statistics:
t,1383454072924,qfx5100-switch,xe-
0/0/19,1274299748,82950,163110341556,85603312,0,0,
  27254178291,8300088,3488534810679,600002408,27268587050,3490379142400

TSV.    Finally we have TSV. It’s the exact same thing as CSV, but uses a tab (\t) instead
of a comma (“,”) for a delimiter. First up is the queue depth information:

Q   585870192561703872    qfx5100-switch    xe-0/0/18       (null)  208     2

You get the idea. There’s no need to show you the traffic statistics.

Streamed queue depth information
The streamed queue depth information is straightforward and makes it possible for
you to easily see each interface’s buffer utilization and latency. Table 9-2 lists the data
collected in detail.
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Table 9-2. Streamed queue depth output fields

Field Description

record-type The type of statistic. Displayed as the following:

• queue-stats (JSON)
• q (CSV or TSV)

time The time at which the information was captured. The format is Unix epoch, which is the number of
seconds/microseconds since January 1, 1970.

router-id IPv4 router-id of the source switch.

port Name of the physical port.

latency Traffic queue latency in milliseconds.

queue-depth Depth of the queue in bytes.

Streamed traffic information
The streamed traffic information has a very similar format to the queue depth infor‐
mation. Take a look at each of the fields, as shown in Table 9-3.

Table 9-3. Streamed traffic statistics output fields

Field Description

record-type The type of statistic. Displayed as the following:

• traffic-stats (JSON)
• t (CSV or TSV)

time The time at which the information was captured. The format is Unix epoch.

router-id IPv4 router-id of the source switch.

port Name of the physical port.

rxpkt Total packets received.

rxpps Total packets received per second.

rxbyte Total bytes received.

rxbps Total bytes received per second.

rxdrop Total incoming packets dropped.

rxerr Total incoming packets with errors.

txpkt Total packets transmitted.

txpps Total packets transmitted per second.

txbyte Total bytes transmitted.

txbps Total bytes transmitted per second.

txdrop Total transmitted packets dropped.

txerr Total transmitted packets with errors.
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Configuration
The configuration of Enhanced Analytics is very modular in nature. At a high level,
there are resources that reference resource-profiles and there are collectors that
reference export-profiles, as shown in Figure 9-6.

Figure 9-6. Enhanced Analytics configuration hierarchy

Because the configuration is modular in nature, you can create a single Enhanced
Analytics configuration that contains multiple profiles for different applications, col‐
lectors, and streaming formats. Changing the way a Juniper QFX5100 switch per‐
forms analytics is as simple as changing a profile, which triggers all of the underlying
changes such as collector addressing, streaming formats, latency thresholds, and traf‐
fic statistics.

Let’s inspect the full configuration that’s illustrated in Figure 9-6. We’ll define the fol‐
lowing:

• Two resource profiles
• Two export profiles
• Monitor two interfaces
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• Create two collectors with different streaming formats

Here is the code:
services {
    analytics {
        traceoptions {
            file an size 10m files 3;
        }
        export-profiles {
            GPB {
                stream-format gpb;
                interface {
                    information;
                    statistics {
                        traffic;
                        queue;
                    }
                    status {
                        link;
                        traffic;
                        queue;
                    }
                }
                system {
                    information;
                    status {
                        traffic;
                        queue;
                    }
                }
            }
            JSON {
                stream-format json;
                interface {
                    information;
                    statistics {
                        traffic;
                        queue;
                    }
                    status {
                        link;
                        traffic;
                        queue;
                    }
                }
                system {
                    information;
                    status {
                        traffic;
                        queue;
                    }
                }
            }
        }
        resource-profiles {
            QUEUE-DEPTH-STANDARD {
                queue-monitoring;
                traffic-monitoring;
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                depth-threshold high 14680064 low 1024;
            }
            LATENCY {
                queue-monitoring;
                traffic-monitoring;
                latency-threshold high 900000 low 100;
            }
        }
        resource {
            system {
                resource-profile QUEUE-DEPTH-STANDARD;
                polling-interval {
                    traffic-monitoring 2;
                    queue-monitoring 100;
                }
            }
            interfaces {
                et-0/0/0 {
                    resource-profile QUEUE-DEPTH-STANDARD;
                }
                et-0/0/1 {
                    resource-profile LATENCY;
                }
            }
        }
        collector {
            local {
                file an.local size 10m files 3;
            }
            address 1.1.1.1 {
                port 3000 {
                    transport udp {
                        export-profile GPB;
                    }
                }
            }
            address 2.2.2.2 {
                port 5555 {
                    transport tcp {
                        export-profile JSON;
                    }
                }
            }
        }
    }
}

It’s just like building blocks. You define a set of attributes and then reference it in
another part of the configuration. This makes Enhanced Analytics a breeze.
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There are some tricks that you need to be aware of when configur‐
ing the queue depth thresholds. The values are given in bytes, but
it’s all relative to the physical interface being monitored.
Here are the calculations for latency, given in bytes for different
speed interfaces:

• 1GbE latency = bytes / 125

• 10GbE latency = bytes / 1250

• 40GbE latency = bytes / 5000

So, for example if you were monitoring a 10GbE interface and
wanted to detect 1µ of latency, you would set the number of bytes
to 1250.

The next step is using show commands to verify that Enhanced Analytics is set up
correctly. Verify the collectors first:

{master:0}
dhanks@QFX5100> show analytics collector
Address        Port   Transport  Stream format  State           Sent
1.1.1.1        3000   udp        gpb            n/a             8742
2.2.2.2        5555   tcp        json           Established     401

Everything looks great. Obviously, the User Datagram Protocol (UDP) collector says
“N/A” because UDP is a stateless protocol and the switch doesn’t have any acknowl‐
edgements whether the traffic was received.

Now, let’s take a look at the general analytics configuration:
{master:0}
dhanks@QFX5100> show analytics configuration
Traffic monitoring status is enabled
Traffic monitoring pollng interval : 2 seconds
Queue monitoring status is enabled
Queue monitoring polling interval : 100 milliseconds
Queue depth high threshold : 14680064 bytes
Queue depth low threshold : 1024 bytes

Interface     Traffic    Queue      Queue depth             Latency
            Statistics Statistics    threshold             threshold
                                   High       Low        High      Low
                                   bytes)               (nanoseconds)
et-0/0/0    enabled    enabled     14680064   1024       n/a       n/a
et-0/0/1    enabled    enabled     n/a        n/a        900000    100

Looking good. Both interfaces are configured for traffic and queue depth information
with the correct thresholds. The traffic monitoring polling is set correctly at every
two seconds. The queue monitoring polling interval is correct per Figure 9-5.

Take a peek at the information the Juniper QFX5100 device is gathering around traf‐
fic statistics:
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{master:0}
dhanks@QFX5100> show analytics traffic-statistics
CLI issued at 2014-07-26 20:40:43.067972
Time: 00:00:01.905564 ago, Physical interface: et-0/0/1
  Traffic Statistics:                Receive            Transmit
  Total octets:                    633916936           633662441
  Total packets:                     8703258             8699671
  Unicast packet:                    8607265             8603658
  Multicast packets:                   94802               94810
  Broadcast packets:                    1191                1203
  Octets per second:                    2048                1704
  Packets per second:                      3                   3
  CRC/Align errors:                        0                   0
  Packets dropped:                         0                   0
Time: 00:00:01.905564 ago, Physical interface: et-0/0/0
  Traffic Statistics:                Receive            Transmit
  Total octets:                    633917501           633662336
  Total packets:                     8703209             8699607
  Unicast packet:                    8607214             8603571
  Multicast packets:                   94819               94831
  Broadcast packets:                    1176                1205
  Octets per second:                    1184                1184
  Packets per second:                      2                   2
  CRC/Align errors:                        0                   0
  Packets dropped:                         0                   0

Very cool! There’s no need to log in to a collector to confirm that the Juniper
QFX5100 is configured correctly to gather traffic statistics. We can view it locally with
the show analytics traffic-statistics command. The really great thing is that
the command-line output has microsecond precision.

Summary
This chapter covered network analytics and how you can use the built-in tools to cre‐
ate a better performing and more reliable network. Network analytics comes in two
forms: sampled data and real-time data. The sampled data is performed by sFlow; the
real-time data is performed by Enhanced Analytics. The sFlow technology allows you
to quickly take a peek inside your switching network and see application-level infor‐
mation. It’s always surprising to see what type of traffic is flowing through a network.
With Enhanced Analytics, you can get precision data in terms of traffic statistics,
latency, and queue depth information in real time. Finally you learned that the Juni‐
per QFX5100 series of switches supports multiple streaming formats: GPB, JSON,
CSV, and TSV.
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APPENDIX A

Under the Hood

One of the most frustrating things about networking technology is that oftentimes
operators are caged into a box called the command-line interface (CLI). Anything
behind the curtain doesn’t exist and isn’t supported. Unfortunately, I can’t change the
not-supported part, but I can at least show you what’s behind the curtains and how it
works.

Any additional information you’re able to pull from a piece of technology ultimately
makes your network better, whether it’s better network management, graphing, or
troubleshooting.

Big Scary Disclaimer
Everything I’m about to show you in this chapter isn’t supported by Juniper Networks
or the Juniper Technical Assistance Center (JTAC). Don’t use these commands in
production. Use them at your own risk. Changing any values at a low level will cause
instability in the network because the changes will not be synchronized with the con‐
trol plane.

With that out of the way, let’s get on with having some fun!

The Broadcom Shell
The Broadcom shell, owned and maintained by Broadcom, is the standard CLI that
you can use to directly access the Broadcom chipsets. It is a simple tool that you can
put to work gathering additional debugging information from the system.
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Messing around with the Broadcom shell is really powerful but at
the same time really dangerous to production systems. Many of the
commands are simply not documented for the average user. If you
want the full documentation of the commands and command out‐
put, it’s required that you be part of the Broadcom NDA. Generally,
that’s reserved for vendors such as Juniper Networks and very, very,
very large customers who have a business need to get low-level
access. The official documentation for the Broadcom tables and
registers is well over 9,000 pages in length.
Be warned. With great power comes great responsibility. Try to
stick with simple show commands. I highly recommend that you
never use commands to write values directly to the Broadcom chip
for two simple reasons:

1. You have no idea what you’re doing. You don’t have the docu‐
mentation. Moreover, even if you did, you wouldn’t be reading
this chapter as a reference anyway.

2. Any changes you make to the Broadcom chipset are not
synchronized with Junos; they will be out of sync. Things
break.

Overview
There are three types of primary data structures in the Broadcom chipset:

Tables
Tables contain a set of views.

Views
Views contain a structured data.

Registers
Registers contains key-value pairs.

I will briefly walk you through each step on how to get data from each of the three
types of data stores.

Tables
The first step to learning the Junos µkern is logging in:

dhanks@QFX5100:RE:0% vty fpc0

TOR platform (1500Mhz Pentium processor, 255MB memory, 0KB flash)

TFXPC0(vty)#
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The next step is to determine how to list what tables exist within the Broadcom
chipset. The good news is that’s easy:

TFXPC0(vty)# set dcbcm bcmshell "listmem"

HW (unit 0)
 Flags   Name                  Entry/Copy Description
 ----bC  ALTERNATE_EMIRROR_BITMAP  256    Source Modid based blocking mask table
 ----bC  BCAST_BLOCK_MASK        107      Broadcast Block Mask, FeatureSpeci...
 -----C  COS_MAP_SEL             107      Select one of four sections of COS...
 --A-bC  CPU_COS_MAP             128      index by COPYTO_CPU reasons code a...
 -----C  CPU_COS_MAP_DATA_ONLY   128      CPU_COS_MAP Data SRAM for CPU_COS_...
 --A-bC  CPU_COS_MAP_ONLY        128      CPU_COS_MAP TCAM only view
 -----C  CPU_PBM                   1      Specifies the port(s) that is (are...
 -----C  CPU_PBM_2                 1      Specifies the port(s) that is (are...
 ----bC  CPU_TS_MAP              256      vlan range match table
 ----bC  DEST_TRUNK_BITMAP      1024      Destination Trunk Bitmap Table.

The bad news is that there are nearly 900 tables. Don’t forget that each table has mul‐
tiple views.

Views
Now that you know there are nearly 900 tables to play around with, let’s see how
many views one of them has. A really good table to look at to see the IPv4 Forwarding
Information Base (FIB) is the L3_ENTRY table:

TFXPC0(vty)# set dcbcm bcmshell "listmem L3_ENTRY"

HW (unit 0)
 Flags   Name                  Entry/Copy Description
 ------  L3_ENTRY_HIT_ONLY     36864      L3 Hit bit table
 ------  L3_ENTRY_HIT_ONLY_X   36864      L3 Hit bit table, FeatureSpecific-...
 ------  L3_ENTRY_HIT_ONLY_Y   36864      L3 Hit bit table, FeatureSpecific-...
 --h--C  L3_ENTRY_IPV4_MULTICAST73728      L3 routing table IPV4 MULTICAST view
 --h--C  L3_ENTRY_IPV4_UNICAST 147456      L3 routing table IPV4 UNICAST view
 --h--C  L3_ENTRY_IPV6_MULTICAST36864      L3 routing table IPV6 MULTICAST view
 --h--C  L3_ENTRY_IPV6_UNICAST 73728      L3 routing table IPV6 UNICAST view
 ------  L3_ENTRY_LP           36864      L3_ENTRY LP Control Table.
 --h-b-  L3_ENTRY_ONLY         147456      L3 routing table with fb_regs arch...
Flags: (r)eadonly, (d)ebug, (s)orted, (h)ashed
       C(A)M, (c)bp, (b)ist-able, (C)achable

The L3_ENTRY table has nine views. Take a glance at the data inside the view
L3_ENTRY_IPV4_UNICAST:

TFXPC0(vty)# set dcbcm bcmshell "dump chg L3_ENTRY_IPV4_UNICAST"

HW (unit 0)
L3_ENTRY_IPV4_UNICAST.ipipe0[82656]:
<VRF_ID=1,VALID=1,NEXT_HOP_INDEX=0x10e,KEY=0x0021400000e0,IP_ADDR=0xa000007,IPV4UC:
VRF_ID=1,IPV4UC:NEXT_HOP_INDEX=0x10e,IPV4UC:KEY=0x0021400000e0,IPV4UC:IP_ADDR=0xa00
0007,IPV4UC:HASH_LSB=7,IPV4UC:ECMP_PTR=0x10e,IPV4UC:DATA=0x21c000,HASH_LSB=7,ECMP_P
TR=0x10e,DATA=0x21c000,>
L3_ENTRY_IPV4_UNICAST.ipipe0[84164]:
<VRF_ID=1,VALID=1,NEXT_HOP_INDEX=0x10c,KEY=0x003815000360,IP_ADDR=0xc0a8001b,IPV4UC
:VRF_ID=1,IPV4UC:NEXT_HOP_INDEX=0x10c,IPV4UC:KEY=0x003815000360,IPV4UC:IP_ADDR=0xc0
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a8001b,IPV4UC:HASH_LSB=0x1b,IPV4UC:ECMP_PTR=0x10c,IPV4UC:DATA=0x218000,HASH_LSB=0x1
b,ECMP_PTR=0x10c,DATA=0x218000,>

A lot of the data is in hexadecimal and requires conversion to be human readable. For
an example, look at the following key-value pair:

IP_ADDR=0xa000007

The IP address would need to be translated from hexadecimal into dotted decimal. In
this example, the human-readable IP address would be 10.0.0.7.

Registers
The final place to poke around and find data is in the registers. There are over 3,800
registers; it would certainly require a lot of time to look at each of them and make
heads and tails of any of it.

The first step is to simply find out what registers exist:
TFXPC0(vty)# set dcbcm bcmshell "listreg -s *"

HW (unit 0)
 g3---  ARB_RAM_DBGCTRL            ipipe0    ARB_RAM_CONTROL
 p3---  ASF_PORT_CFG               mmu0      ASF_PORT_SPEED
 g3---  AUX_ARB_CONTROL            ipipe0    IP auxilary arbiter control re...
 g3---  AUX_ARB_CONTROL_2          ipipe0    IP auxilary arbiter control re...
 ?3---  AXI_SRAM_MEMC_CONFIG       cmic0     AXI SRAM MEMC Configuration - ...
 g3---  BFD_RX_ACH_TYPE_CONTROL0   ipipe0    Stores the ACH Channel Type va...
 g3---  BFD_RX_ACH_TYPE_CONTROL1   ipipe0    Stores the ACH Channel Type va...
 g3---  BFD_RX_ACH_TYPE_MPLSTP     ipipe0    Stores the ACH Channel Types f...
 g6---  BFD_RX_ACH_TYPE_MPLSTP1    ipipe0    Stores the ACH Channel Types f...
 g3---  BFD_RX_UDP_CONTROL         ipipe0    UDP destination Port number fo...
 g3---  BFD_RX_UDP_CONTROL_1       ipipe0    UDP destination Port number fo...
 g6--r  BKPMETERINGDISCSTATUS0     mmu0      PORT_BITMAP: Current Back Pres...
 g6--r  BKPMETERINGDISCSTATUS1     mmu0      PORT_BITMAP: Current Back Pres...
 g6--r  BKPMETERINGWARNSTATUS0     mmu0      PORT_BITMAP: Current Back Pres...
 g6--r  BKPMETERINGWARNSTATUS1     mmu0      PORT_BITMAP: Current Back Pres...
 g3---  BST_HW_SNAPSHOT_EN         mmu0      Enable Buffer Statistics Track...
 g3---  BST_SNAPSHOT_ACTION_EN     mmu0      Enable reset BST_TRACKING_ENAB...
 g3---  BST_TRACKING_ENABLE        mmu0      Enable Buffer Statistics Track...

There are no views associated with registers; you can pull the data directly from them.
A good register to look at is CPU_CONTROL_1:

TFXPC0(vty)# set dcbcm bcmshell "getreg CPU_CONTROL_1"

HW (unit 0)
CPU_CONTROL_1.ipipe0[1][0x3a000300]=0x8524020: <VXLT_MISS_TOCPU=0,
   V6L3ERR_TOCPU=0,V6L3DSTMISS_TOCPU=0,V4L3ERR_TOCPU=1,V4L3DSTMISS_TOCPU=0,
   UUCAST_TOCPU=0,URPF_MISS_TOCPU=0,UMC_TOCPU=0,TUNNEL_ERR_TOCPU=0,
   STATICMOVE_TOCPU=0,SRCROUTE_TOCPU=0,RESERVED_7=0,RESERVED_21=0,
   RESERVED_19=0,RESERVED_16=0,NONSTATICMOVE_TOCPU=0,NIP_L3ERR_TOCPU=0,
   MC_INDEX_ERROR_TOCPU=0,MARTIAN_ADDR_TOCPU=1,L3_SLOWPATH_TOCPU=1,
   L3_MTU_FAIL_TOCPU=1,L3UC_TTL_ERR_TOCPU=1,L3UC_TTL1_ERR_TOCPU=1,
   IPMC_TTL_ERR_TOCPU=0,IPMC_TTL1_ERR_TOCPU=0,IPMCPORTMISS_TOCPU=0,
   IPMCERR_TOCPU=0,HG_HDR_TYPE1_TOCPU=0,HG_HDR_ERROR_TOCPU=0,FCOE_DST_MISS_TOCPU=0,
   CLASS_BASED_SM_PREVENTED_TOCPU=0>
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The CPU_CONTROL_1 register shows you how many host packets were sent to the CPU
because of a failure.

Broadcom Shell and cprod
You can also use the cprod command to execute the Broadcom shell commands. If
you want to dump a list of the tables and views to the FreeBSD file system, use the
following:

root@temp-spine-02:RE:0% time cprod -A fpc0 -c 'set dcbcm bcmshell "listmem"' >
/tmp/listmem
0.000u 0.004s 0:00.50 0.0%      0+0k 0+0io 0pf+0w

How did I know that there are nearly 900 tables? Just use wc:
root@temp-spine-02:RE:0% wc -l /tmp/listmem
     892 /tmp/listmem

Same thing, but for the registers:
root@temp-spine-02:RE:0% time cprod -A fpc0 -c 'set dcbcm bcmshell "listreg -s *"'
> /tmp/listreg
0.006u 0.006s 0:02.00 0.0%      0+0k 0+2io 0pf+0w
root@temp-spine-02:RE:0% wc -l /tmp/listreg
    3845 /tmp/listreg

If you wanted to get a little bit fancy, you can begin parsing the data we saved from
the tables:

root@temp-spine-02:RE:0% cat /tmp/listmem | awk '{print $2}' | tail -5
VLAN_XLATE_LP
VOQ_COS_MAP
VOQ_MOD_MAP
VOQ_PORT_MAP
VRF
XLPORT_WC_UCMEM_DATA

The astute reader could then write a shell or Python script to cycle through all of the
tables, find all of the views, and then dump all of the table.view data.

Summary
This chapter introduced the Broadcom shell. Although it was littered with warnings,
the overall intent of the chapter was to give you additional tools for retrieving data
from the QFX5100 series of switches. Although I made every attempt to show rele‐
vant Broadcom Shell commands throughout each chapter, there are cases for which
you might need to dig a bit deeper. If you’re a truly fearless network operator, I
showed you how to get lost in the Broadcom shell. If you ever hit a scenario for which
Junos doesn’t provide you with enough low-level information and you have nothing
but time on your hands, you could always find it buried somewhere within the
Broadcom shell.
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APPENDIX B

Optical Guide

Juniper Data Center Optics Matrix
Table B-1 presents a listing of Juniper optics and their attributes.

Table B-1. Juniper data center optics matrix

Type Model Description

10GbE optical SFP QFX-SFP-10GE-ZR 10GBASE-ZR, SMF, 80 km

QFX-SFP-10GE-ER 10GBASE-ER, SMF, 40 km

QFX-SFP-10GE-LR 10GBASE-LR, SMF, 10 km

QFX-SFP-10GE-SR 10GBASE-SR, MMF, 300 m

QFX-SFP-10GE-USR 10GBASE-USR, MMF, 100 m

10GbE copper SFP QFX-SFP-DAC-1M Direct attach copper 10GbE to 10GbE, 1 m passive

QFX-SFP-DAC-3M Direct attach copper 10GbE to 10GbE, 3 m passive

QFX-SFP-DAC-5M Direct attach copper 10GbE to 10GbE, 5 m passive

EX-SFP-10GE-DAC-7M Direct attach copper 10GbE to 10GbE, 7 m passive

QFX-SFP-DAC-1MA Direct attach copper 10GbE to 10GbE, 1 m active

QFX-SFP-DAC-3MA Direct attach copper 10GbE to 10GbE, 3 m active

QFX-SFP-DAC-5MA Direct attach copper 10GbE to 10GbE, 5 m active

QFX-SFP-DAC-7MA Direct attach copper 10GbE to 10GbE, 7 m active

QFX-SFP-DAC-10MA Direct attach copper 10GbE to 10GbE, 10 m active

1GbE optical SFP QFX-SFP-1GE-LX 1GE-LX, SMF, 10 KM

QFX-SFP-1GE-SX 1GE-SX, MMF, 500 m

QFX-SFP-1GE-T 1GE-T, Cat5e, 100 m
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Type Model Description

40GbE optical QSFP JNP-QSFP-40G-LR4 40G-LR4, SMF, 10 km

QFX-QSFP-40G-ESR4 40G-ESR4, MMF, 400 m

QFX-QSFP-40G-SR4 40G-SR4, MMF, 300 m

40GbE copper QSFP QFX-QSFP-DAC-1M Direct attach copper 40GbE to 40GbE, 1 m

QFX-QSFP-DAC-3M Direct attach copper 40GbE to 40GbE, 3 m

JNP-QSFP-DAC-5M Direct attach copper 40GbE to 40GbE, 5 m

JNP-QSFP-DAC-5MA Direct attach copper 40GbE to 40GbE, 5 m active

JNP-QSFP-DAC-7MA Direct attach copper 40GbE to 40GbE, 7 m active

JNP-QSFP-DAC-10MA Direct attach copper 40GbE to 40GbE, 10 m active

QFX-QSFP-DACBO-1M Direct attach copper 40GbE to 4 10GbE, 1 m

QFX-QSFP-DACBO-3M Direct attach copper 40GbE to 4 10GbE, 3 m

JNP-QSFP-DACBO-5MA Direct attach copper 40GbE to 4 10GbE, 5 m active

JNP-QSFP-DACBO-7MA Direct attach copper 40GbE to 4 10GbE, 7 m active

JNP-QSFP-DACBO-10M Direct attach copper 40GbE to 4 10GbE, 10 m active

Juniper Optics Compatibility Matrix
Table B-2 presents a listing of the Juniper optics and the Juniper switches with which
they’re compatible.

Table B-2. Juniper optics compatibility matrix

Type Model QFX3500
QFX3600

QFabric QFX5100 EX4300 EX4500 EX4550 EX9200

10 GbE optical SFP QFX-SFP-10GE-ZR   ✓ ✓ ✓ ✓ ✓
QFX-SFP-10GE-ER ✓ ✓ ✓ ✓ ✓ ✓ ✓
QFX-SFP-10GE-LR ✓ ✓ ✓ ✓ ✓ ✓ ✓
EX-SFP-10GE-LRM    ✓ ✓ ✓ ✓
QFX-SFP-10GE-SR ✓ ✓ ✓ ✓ ✓ ✓ ✓
JNP-10G-SR-8PACK ✓ ✓ ✓ ✓ ✓ ✓ ✓
QFX-SFP-10GE-USR ✓ ✓ ✓ ✓ ✓ ✓ ✓
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Type Model QFX3500
QFX3600

QFabric QFX5100 EX4300 EX4500 EX4550 EX9200

10GbE copper SFP QFX-SFP-DAC-1M ✓ ✓ ✓ ✓ ✓ ✓  

QFX-SFP-DAC-3M ✓ ✓ ✓ ✓ ✓ ✓  

QFX-SFP-DAC-5M ✓ ✓ ✓ ✓ ✓ ✓  

EX-SFP-10GE-DAC-7M    ✓ ✓ ✓  

QFX-SFP-DAC-1MA ✓ ✓ ✓     

QFX-SFP-DAC-3MA ✓ ✓ ✓     

QFX-SFP-DAC-5MA ✓ ✓ ✓     

QFX-SFP-DAC-7MA ✓ ✓ ✓     

QFX-SFP-DAC-10MA ✓ ✓ ✓     

1GbE optical SFP QFX-SFP-1GE-LX ✓ ✓ ✓ ✓ ✓ ✓ ✓
JNP-1G-SX-8PACK ✓ ✓ ✓ ✓ ✓ ✓ ✓
QFX-SFP-1GE-SX ✓ ✓ ✓ ✓ ✓ ✓ ✓
JNP-1G-T-8PACK ✓ ✓ ✓ ✓ ✓ ✓ ✓
QFX-SFP-1GE-T ✓ ✓ ✓ ✓ ✓ ✓ ✓

40GbE optical QSFP JNP-QSFP-40G-LR4 ✓ ✓ ✓ ✓  ✓ ✓
QFX-QSFP-40G-ESR4 ✓ ✓ ✓ ✓    

JNP-40G-SR4-4PACK ✓ ✓ ✓ ✓  ✓ ✓
QFX-QSFP-40G-SR4 ✓ ✓ ✓ ✓  ✓ ✓

40GbE copper QSFP EX-QSFP-40GE-
DAC-50cm

   ✓    

QFX-QSFP-DAC-1M ✓ ✓ ✓ ✓ ✓ ✓  

QFX-QSFP-DAC-3M ✓ ✓ ✓ ✓ ✓ ✓  

JNP-QSFP-DAC-5M   ✓ ✓ ✓ ✓  

JNP-QSFP-DAC-5MA ✓ ✓ ✓     

JNP-QSFP-DAC-7MA ✓ ✓ ✓     

JNP-QSFP-DAC-10MA ✓ ✓ ✓     

QFX-QSFP-DACBO-1M ✓ ✓ ✓     

QFX-QSFP-DACBO-3M ✓ ✓ ✓     

JNP-QSFP-DACBO-5MA ✓ ✓ ✓     

JNP-QSFP-DACBO-7MA ✓ ✓ ✓     

JNP-QSFP-DACBO-10M ✓ ✓ ✓     
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APPENDIX C

BGP and VTEP Configurations

In the exercises in Chapter 7 and Chapter 8, we configured an IP Fabric and a basic
multicast overlay network, respectively. The full switch configurations are posted in
this appendix for your reference.

For more information and to download these configurations directly, please visit our
GitHub repository at https://github.com/Juniper/qfx5100-book.

LEAF-03
Here is the full Junos configuration of LEAF-03:

## Last commit: 2014-07-28 19:28:10 PDT by root
version "14.1-20140727_rt2_53_vjqfd.0 [dc-builder]";
/*
 * dhcpd-generated /var/etc/dhcpd.options.conf
 * Version: JDHCPD release 13.2X51-D20.2 built by builder on 2014-04-29 09:09:04
UTC
 * Written: Mon Jul 28 19:50:10 2014
 */
system {
    host-name temp-leaf-03;
    time-zone America/Los_Angeles;
    services {
        ssh {
            root-login allow;
            max-sessions-per-connection 32;
        }
        netconf {
            ssh;
        }
    }
    syslog {
        user * {
            any emergency;
        }
        file messages {
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            any notice;
            authorization info;
        }
        file interactive-commands {
            interactive-commands any;
        }
    }
    extensions {
        providers {
            juniper {
                license-type juniper deployment-scope commercial;
            }
            chef {
                license-type juniper deployment-scope commercial;
            }
        }
    }
    processes {
        dhcp-service {
            traceoptions {
                file dhcp_logfile size 10m;
                level all;
                flag all;
            }
        }
        app-engine-virtual-machine-management-service {
            traceoptions {
                level notice;
                flag all;
            }
        }
    }
}
interfaces {
    interface-range ALL-SERVER {
        member xe-0/0/*;
        unit 0 {
            family ethernet-switching {
                interface-mode access;
                vlan {
                    members SERVER;
                }
            }
        }
    }
    xe-0/0/0 {
        unit 0 {
            family ethernet-switching {
                interface-mode access;
                vlan {
                    members foobar;
                }
            }
        }
    }
    et-0/0/48 {
        mtu 9216;
        unit 0 {
            description facing_spine-01;

268 | Appendix C: BGP and VTEP Configurations



            family inet {
                mtu 9000;
                address 192.168.0.45/31;
            }
        }
    }
    et-0/0/49 {
        mtu 9216;
        unit 0 {
            description facing_spine-02;
            family inet {
                mtu 9000;
                address 192.168.0.29/31;
            }
        }
    }
    et-0/0/50 {
        mtu 9216;
        unit 0 {
            description facing_spine-03;
            family inet {
                mtu 9000;
                address 192.168.0.17/31;
            }
        }
    }
    et-0/0/51 {
        mtu 9216;
        unit 0 {
            description facing_spine-04;
            family inet {
                mtu 9000;
                address 192.168.0.21/31;
            }
        }
    }
    irb {
        mtu 9216;
        unit 1 {
            description LOCAL_SERVERS;
            family inet {
                mtu 9000;
                address 172.16.2.1/24;
            }
        }
        unit 100 {
            family inet {
                address 10.1.1.3/24;
            }
        }
    }
    lo0 {
        unit 0 {
            family inet {
                address 10.0.0.7/32;
            }
        }
    }
    vme {
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        unit 0 {
            family inet {
                address 172.32.32.103/24;
            }
        }
    }
}
routing-options {
    router-id 10.0.0.7;
    autonomous-system 202;
    forwarding-table {
        export PFE-LB;
    }
}
protocols {
    igmp {
        interface xe-0/0/0.0;
    }
    ##
    ## Warning: requires 'bgp' license
    ##
    bgp {
        log-updown;
        import bgp-clos-in;
        export bgp-clos-out;
        graceful-restart;
        group CLOS {
            type external;
            mtu-discovery;
            bfd-liveness-detection {
                minimum-interval 350;
                multiplier 3;
                session-mode single-hop;
            }
            multipath multiple-as;
            neighbor 192.168.0.44 {
                peer-as 100;
            }
            neighbor 192.168.0.28 {
                peer-as 101;
            }
            neighbor 192.168.0.16 {
                peer-as 102;
            }
            neighbor 192.168.0.20 {
                peer-as 103;
            }
        }
    }
    pim {
        rp {
            static {
                address 10.0.0.4;
            }
        }
        interface all;
    }
    lldp {
        interface all;
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    }
    igmp-snooping {
        vlan all;
    }
}
policy-options {
    policy-statement PFE-LB {
        then {
            load-balance per-packet;
        }
    }
    policy-statement bgp-clos-in {
        term loopbacks {
            from {
                route-filter 10.0.0.0/28 orlonger;
            }
            then accept;
        }
        term server-L3-gw {
            from {
                route-filter 172.16.0.0/21 orlonger;
            }
            then accept;
        }
        term reject {
            then reject;
        }
    }
    policy-statement bgp-clos-out {
        term loopback {
            from {
                protocol direct;
                route-filter 10.0.0.7/32 orlonger;
            }
            then {
                next-hop self;
                accept;
            }
        }
        term server-L3-gw {
            from {
                protocol direct;
                route-filter 172.16.2.1/24 orlonger;
            }
            then {
                next-hop self;
                accept;
            }
        }
    }
}
switch-options {
    vtep-source-interface lo0.0;
}
vlans {
    SERVER {
        vlan-id 1;
        l3-interface irb.1;
    }
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    foobar {
        vlan-id 100;
        vxlan {
            vni 100;
            multicast-group 225.10.10.10;
        }
    }
}

LEAF-04
Here is the full Junos configuration of LEAF-04:

## Last commit: 2014-07-28 19:28:10 PDT by root
version "14.1-20140727_rt2_53_vjqfd.0 [dc-builder]";
/*
 * dhcpd-generated /var/etc/dhcpd.options.conf
 * Version: JDHCPD release 13.2X51-D20.2 built by builder on 2014-04-29 09:09:04
UTC
 * Written: Mon Jul 28 19:50:10 2014
 */
system {
    host-name temp-leaf-03;
    time-zone America/Los_Angeles;
    services {
        ssh {
            root-login allow;
            max-sessions-per-connection 32;
        }
        netconf {
            ssh;
        }
    }
    syslog {
        user * {
            any emergency;
        }
        file messages {
            any notice;
            authorization info;
        }
        file interactive-commands {
            interactive-commands any;
        }
    }
    extensions {
        providers {
            juniper {
                license-type juniper deployment-scope commercial;
            }
            chef {
                license-type juniper deployment-scope commercial;
            }
        }
    }
    processes {
        dhcp-service {
            traceoptions {
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                file dhcp_logfile size 10m;
                level all;
                flag all;
            }
        }
        app-engine-virtual-machine-management-service {
            traceoptions {
                level notice;
                flag all;
            }
        }
    }
}
interfaces {
    interface-range ALL-SERVER {
        member xe-0/0/*;
        unit 0 {
            family ethernet-switching {
                interface-mode access;
                vlan {
                    members SERVER;
                }
            }
        }
    }
    xe-0/0/0 {
        unit 0 {
            family ethernet-switching {
                interface-mode access;
                vlan {
                    members foobar;
                }
            }
        }
    }
    et-0/0/48 {
        mtu 9216;
        unit 0 {
            description facing_spine-01;
            family inet {
                mtu 9000;
                address 192.168.0.45/31;
            }
        }
    }
    et-0/0/49 {
        mtu 9216;
        unit 0 {
            description facing_spine-02;
            family inet {
                mtu 9000;
                address 192.168.0.29/31;
            }
        }
    }
    et-0/0/50 {
        mtu 9216;
        unit 0 {
            description facing_spine-03;
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            family inet {
                mtu 9000;
                address 192.168.0.17/31;
            }
        }
    }
    et-0/0/51 {
        mtu 9216;
        unit 0 {
            description facing_spine-04;
            family inet {
                mtu 9000;
                address 192.168.0.21/31;
            }
        }
    }
    irb {
        mtu 9216;
        unit 1 {
            description LOCAL_SERVERS;
            family inet {
                mtu 9000;
                address 172.16.2.1/24;
            }
        }
        unit 100 {
            family inet {
                address 10.1.1.3/24;
            }
        }
    }
    lo0 {
        unit 0 {
            family inet {
                address 10.0.0.7/32;
            }
        }
    }
    vme {
        unit 0 {
            family inet {
                address 172.32.32.103/24;
            }
        }
    }
}
routing-options {
    router-id 10.0.0.7;
    autonomous-system 202;
    forwarding-table {
        export PFE-LB;
    }
}
protocols {
    igmp {
        interface xe-0/0/0.0;
    }
    ##
    ## Warning: requires 'bgp' license
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    ##
    bgp {
        log-updown;
        import bgp-clos-in;
        export bgp-clos-out;
        graceful-restart;
        group CLOS {
            type external;
            mtu-discovery;
            bfd-liveness-detection {
                minimum-interval 350;
                multiplier 3;
                session-mode single-hop;
            }
            multipath multiple-as;
            neighbor 192.168.0.44 {
                peer-as 100;
            }
            neighbor 192.168.0.28 {
                peer-as 101;
            }
            neighbor 192.168.0.16 {
                peer-as 102;
            }
            neighbor 192.168.0.20 {
                peer-as 103;
            }
        }
    }
    pim {
        rp {
            static {
                address 10.0.0.4;
            }
        }
        interface all;
    }
    lldp {
        interface all;
    }
    igmp-snooping {
        vlan all;
    }
}
policy-options {
    policy-statement PFE-LB {
        then {
            load-balance per-packet;
        }
    }
    policy-statement bgp-clos-in {
        term loopbacks {
            from {
                route-filter 10.0.0.0/28 orlonger;
            }
            then accept;
        }
        term server-L3-gw {
            from {
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                route-filter 172.16.0.0/21 orlonger;
            }
            then accept;
        }
        term reject {
            then reject;
        }
    }
    policy-statement bgp-clos-out {
        term loopback {
            from {
                protocol direct;
                route-filter 10.0.0.7/32 orlonger;
            }
            then {
                next-hop self;
                accept;
            }
        }
        term server-L3-gw {
            from {
                protocol direct;
                route-filter 172.16.2.1/24 orlonger;
            }
            then {
                next-hop self;
                accept;
            }
        }
    }
}
switch-options {
    vtep-source-interface lo0.0;
}
vlans {
    SERVER {
        vlan-id 1;
        l3-interface irb.1;
    }
    foobar {
        vlan-id 100;
        vxlan {
            vni 100;
            multicast-group 225.10.10.10;
        }
    }
}
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Colophon
The animal on the cover of Juniper QFX5100 Series is a satin bowerbird (Ptilonorhyn‐
chus violaceus). The satin bowerbird is a medium-sized bird that measures, on aver‐
age, one foot long and weighs half a pound. It is native to eastern and southeastern
Australia, and also lives in the isolated wet tropics of northern Queensland. Many of
these birds are rainforest inhabitants, especially around the Atherton Tablelands to
the southwest of Cairns.

The appearance of males and females of the species is quite different. Females are
greenish-brown with scalloped patterning; their bright lilac eyes stand out against
this background color. The black plumage of adult males often looks blue and metal‐
lic, and their bills are bluish-white. Early in life, males closely resemble females in col‐
oring, but they attain adult plumage between their fifth and seventh years.

Satin bowerbirds are largely frugivorous, yet they will consume a varied diet. Insects
are the typical food in the summer, and leaves make up the bulk of their diet in the
winter. Satin bowerbirds can be a nuisance for farmers since they often raid fruit and
vegetable crops.

The birds’ namesake bowers are built of twigs and leaves, and adorned with shiny
objects (sometimes these things are even stolen from other bowerbirds) or painted
with berries and charcoal. However, bowers are not nests. Built on forest floors, the
males build bowers as bachelor pads where they attempt to woo females after attract‐
ing their attention with an ornate show of calls and strutting. On average, young
bowerbirds only attract female visitors less than 10% of the time, and many females
don’t deign to actually enter their bowers. Success rates rise steadily as males age.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Cassell’s Natural History. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Table of Contents
	Preface
	No Apologies
	What’s in This Book?
	Conventions Used in This Book
	Using Code Examples
	Comments and Questions
	Safari® Books Online

	Chapter 1. Juniper QFX5100 Architecture
	Software-Defined Networking
	Junos
	One Junos
	Software Releases
	Three-Release Cadence
	Software Architecture
	Daemons
	Routing Sockets

	QFX5100 Platforms
	QFX5100 Modules
	QFX5100-24Q
	QFX5100-48S
	QFX5100-48T
	QFX5100-96S

	Hardware Architecture
	Chassis
	Control Plane
	Data Plane

	Design Options
	768×10GbE Ethernet Fabric
	3,072 10GbE Clos
	12,288 10GbE Clos
	49,152 10GbE Clos

	Summary
	Chapter Review Questions
	Chapter Review Answers

	Chapter 2. Control Plane Virtualization
	Architecture
	Host Operating System
	Linux KVM
	virsh
	App Engine

	ISSU
	Summary

	Chapter 3. Performance and Scaling
	Design Considerations
	Overlay Architecture
	Juniper Architectures versus Open Architectures

	Over-subscription
	Architecture
	QFX5100-24Q System Modes

	Performance
	Throughput
	Latency

	Scale
	Unified Forwarding Table
	Hashing
	Resilient Hashing
	Configuration Maximums

	Summary
	Chapter Review Questions
	Chapter Review Answers

	Chapter 4. One Box, Many Options
	Standalone
	Virtual Chassis
	QFabric
	Virtual Chassis Fabric
	MC-LAG
	Clos Fabric
	Transport Gymnastics
	MPLS
	Virtual Extensible LAN
	Ethernet
	FCoE
	HiGig2

	Summary

	Chapter 5. Virtual Chassis Fabric
	Overview
	Architecture
	Components
	Implementation

	Using Virtual Chassis Fabric
	Adding VLANs
	Configuring SNMP
	Port Mirroring

	Summary
	Chapter Review Questions
	Chapter Review Answers

	Chapter 6. Network Automation
	Overview
	Junos Enhanced Automation
	Zero Touch Provisioning
	ZTP Server
	ISC DHCP Configuration
	ISC DHCP Review

	Puppet
	Puppet Agent
	Puppet Master
	Puppet Review

	Chef
	Chef Server
	Chef Agent
	Chef Review

	Junos PyEZ
	Installation
	Hello, World!
	Configuration Management
	Operational Automation
	Further Reading

	Summary

	Chapter 7. IP Fabrics (Clos)
	Overlay Networking
	Bare-Metal Servers

	IP Fabric
	768×10GbE Virtual Chassis Fabric
	3,072×10GbE IP Fabric
	Control Plane Options

	BGP Design
	Implementation Requirements
	Decision Points
	IP Fabrics Review

	BGP Implementation
	Topology Configuration
	Interface and IP Configuration
	BGP Configuration
	BGP Policy Configuration
	ECMP Configuration

	BGP Verification
	BGP State
	BGP Prefixes
	Routing Table
	Forwarding Table
	Ping
	Traceroute

	Configurations
	S1
	L1

	Summary
	Chapter Review Questions
	Chapter Review Answers

	Chapter 8. Overlay Networking
	Overview
	IT-as-a-Service
	Infrastructure-as-a-Service
	The Rise of IP Fabrics

	Architecture
	Controller-Based Overlay Architecture
	Controller-Less Overlay Architecture
	Traffic Profiles
	VTEPs
	Control Plane
	Data Plane
	Overlay Controller
	Virtual Routers
	Storage

	Juniper Architectures for Overlay Networks
	Configuration
	Supported Hardware
	Controller
	Interfaces
	Switch Options
	Logical Switch
	Remote MACs
	OVSDB Interfaces
	VTEPs
	Switching Table

	Multicast VTEP Exercise
	LEAF-03 Configuration
	LEAF-04
	Verification

	Summary

	Chapter 9. Network Analytics
	Overview
	sFlow
	Adaptive Sampling
	Configuration
	sFlow Review

	Enhanced Analytics
	Overview
	Architecture
	Streaming Information
	Configuration

	Summary

	Appendix A. Under the Hood
	Big Scary Disclaimer
	The Broadcom Shell
	Overview
	Tables
	Views
	Registers
	Broadcom Shell and cprod

	Summary

	Appendix B. Optical Guide
	Juniper Data Center Optics Matrix
	Juniper Optics Compatibility Matrix

	Appendix C. BGP and VTEP Configurations
	LEAF-03
	LEAF-04

	Index
	About the Author

