
Peter Bell & Brent Beer

Introducing

 GitHub
A NON-TECHNICAL GUIDE

SOF T WARE DEVELOPMENT

Introducing GitHub

ISBN: 978-1-491-94974-0

US $24.99 CAN $26.99

“�GitHub�expertise�is�an�
increasingly�important�
skill.�This�book�will�clearly�
guide�readers�through�
both�the�technology�and�
the�techniques�necessary�
to�effectively�use�GitHub�
for�collaboration�with�
their�team.”

—Matthew McCullough
trainer at GitHub

Twitter: @oreillymedia
facebook.com/oreilly

If you’re new to GitHub, this concise book shows you just what you need
to get started and no more. It’s perfect for project and product managers,
stakeholders, and other team members who want to collaborate on a
development project—whether it’s to review and comment on work in
progress or to contribute specific changes. It’s also great for developers
just learning GitHub.

GitHub has rapidly become the default platform for software development,
but it’s also ideal for other text-based documents, from contracts to
screenplays. This hands-on book shows you how to use GitHub’s web
interface to view projects and collaborate effectively with your team.

 ■ Learn how and why people use GitHub to collaborate

 ■ View the status of a project—recent changes, outstanding
work, and historic changes

 ■ Create and edit files through GitHub without learning Git

 ■ Suggest changes to projects you don’t have permission to
edit directly

 ■ Use tools like issues, pull requests, and branches to specify
and collaborate on changes

 ■ Create a new GitHub repository to control who has access to
your project

Peter Bell is a contract member of the GitHub training team, and a founder of
Pragmatic Learning, an enterprise training company that helps business people
and developers build software better. He’s also founded the Startup CTO School
and CTO Summit Series.

Brent Beer has used Git and GitHub for over five years as a web developer and
contributor to open source projects. As a member of the GitHub training team,
Brent teaches people to use Git and GitHub to their full potential.

Introducing G
itH

ub
Bell &

 Beer

Peter Bell & Brent Beer

Introducing

 GitHub
A NON-TECHNICAL GUIDE

SOF T WARE DEVELOPMENT

Introducing GitHub

ISBN: 978-1-491-94974-0

US $24.99 CAN $26.99

“�GitHub�expertise�is�an�
increasingly�important�
skill.�This�book�will�clearly�
guide�readers�through�
both�the�technology�and�
the�techniques�necessary�
to�effectively�use�GitHub�
for�collaboration�with�
their�team.”

—Matthew McCullough
trainer at GitHub

Twitter: @oreillymedia
facebook.com/oreilly

If you’re new to GitHub, this concise book shows you just what you need
to get started and no more. It’s perfect for project and product managers,
stakeholders, and other team members who want to collaborate on a
development project—whether it’s to review and comment on work in
progress or to contribute specific changes. It’s also great for developers
just learning GitHub.

GitHub has rapidly become the default platform for software development,
but it’s also ideal for other text-based documents, from contracts to
screenplays. This hands-on book shows you how to use GitHub’s web
interface to view projects and collaborate effectively with your team.

 ■ Learn how and why people use GitHub to collaborate

 ■ View the status of a project—recent changes, outstanding
work, and historic changes

 ■ Create and edit files through GitHub without learning Git

 ■ Suggest changes to projects you don’t have permission to
edit directly

 ■ Use tools like issues, pull requests, and branches to specify
and collaborate on changes

 ■ Create a new GitHub repository to control who has access to
your project

Peter Bell is a contract member of the GitHub training team, and a founder of
Pragmatic Learning, an enterprise training company that helps business people
and developers build software better. He’s also founded the Startup CTO School
and CTO Summit Series.

Brent Beer has used Git and GitHub for over five years as a web developer and
contributor to open source projects. As a member of the GitHub training team,
Brent teaches people to use Git and GitHub to their full potential.

Introducing G
itH

ub
Bell &

 Beer

Peter Bell and Brent Beer

Introducing GitHub
A Non-Technical Guide

978-1-491-94974-0

[LSI]

Introducing GitHub
by Peter Bell and Brent Beer

Copyright © 2015 Pragmatic Learning, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Meghan Blanchette
Production Editor: Melanie Yarbrough
Copyeditor: Sonia Saruba
Proofreader: Sharon Wilkey

Indexer: Judy McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

November 2014: First Edition

Revision History for the First Edition
2014-11-07: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491949740 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Introducing GitHub, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491949740

Table of Contents

Preface. vii

1. Introduction. 1
What Is Git? 1
What Is GitHub? 1
Why Use Git? 1
Why Use GitHub? 2
Key Concepts 3

2. Viewing. 7
Introducing the Project Page 7
Viewing the README.md File 8
Viewing the Commit History 9
Viewing Pull Requests 11
Viewing Issues 13
Viewing the Pulse 15
Viewing GitHub Graphs 16

The Contributors Graph 17
The Commits Graph 18
The Code Frequency Graph 19
The Punch Card Graph 20
The Network Graph 21
The Members List 22
The Traffic Graph 23

3. Editing. 25
Contributing via a Fork 25
Adding a File 26

iii

Creating a Pull Request 28
Editing a File 36
Renaming or Moving a File 39
Working with Folders 41

Creating a Folder 41
Renaming a Folder 41

The Limits of Editing on GitHub 42

4. Collaboration. 43
Committing to a Branch 43
Creating a Pull Request from a Branch 46
Collaborating on Pull Requests 48

Involving People with Pull Requests 49
Reviewing Pull Requests 49
Commenting on Pull Requests 49
Adding Color to Comments 50
Contributing to Pull Requests 51
Testing a Pull Request 53
Merging a Pull Request 54
Who Should Merge a Pull Request? 55
Pull Request Notifications 55
Best Practices for Pull Requests 56

Issues 56
Creating a New Issue 57
Managing Milestones for Issues 58
Managing Labels for Issues 60
Commenting on Issues 61
Referencing Issues in a Commit 61
Best Practices for Issues 62

Wikis 62
Getting Started with a Wiki 62
Adding and Linking to a Page on Your Wiki 65

GitHub Pages 66
Creating a Website for Your Project 66
Creating a Website for Yourself or Your Organization 69

5. Creating and Configuring. 71
Creating a Repository 71
Adding Collaborators 76
Configuring a Repository 77
Integrating with Other Systems 79
Personal Versus Organizational 85

iv | Table of Contents

Creating an Organization 86
Managing Teams 87

6. Downloading. 93
Why Clone a Repository? 93
GitHub for Mac 94

Making a Commit Using GitHub for Mac 103
Viewing Changes in GitHub for Mac 106

GitHub for Windows 109
Making a Commit Using GitHub for Windows 116
Configuring Command-Line Tools in GitHub for Windows 118

7. Next Steps. 121

Index. 123

Table of Contents | v

Preface

GitHub is changing the way that software gets built. Conceived originally as a way to
make it easier for developers to contribute to open source projects, GitHub is rapidly
becoming the default platform for software development. More than just a tool for
storing source code, GitHub provides a range of powerful tools for specifying, discus‐
sing, and reviewing software.

Who This Book Is For
If you are working with developers on a software project, this book is for you,
whether you are a:

• Business stakeholder who wants to have a sense of how your project is going
• Product or project manager who needs to ensure that software is delivered on

time and within budget
• Designer who needs to deliver anything from mockups to HTML/CSS for a

project
• Copywriter who’s adding marketing copy or other content to a site or an app
• Lawyer who’s reviewing the legal implications of a project or writing the terms

and conditions or privacy policy
• Team member who needs to review, comment on, and/or contribute to the

project
• Developer who is new to using GitHub and wants to learn how to collaborate

using GitHub in a team

If you need to view the progress of a piece of software while it’s being developed, if
you would like to be able to comment on the progress, and if you’d like to have the
option of contributing changes to the project, this book will show you how to effec‐
tively collaborate with a software development team by using GitHub.

vii

Beyond Software
While GitHub is still primarily used to collaborate on the development of software,
it’s also a great way for a team to collaborate on a wide range of projects. From the
authoring of books (like this one) and the distribution of models for 3D printing to
the crafting of legislation, whenever you have a team of people collaborating on a col‐
lection of documents, you should consider using GitHub to manage the process. Our
examples will assume that you’re working on software because that is currently the
most common use case, but this book is the perfect guide to collaborating via GitHub
—whatever kind of project you’re working on.

Who This Book Is Not For
This book is designed to teach the core skills required to collaborate effectively using
GitHub. If you are already familiar with forking, cloning, and using feature branches
and pull requests for collaboration, you probably won’t learn that much.

Equally, if you are looking for an in-depth introduction to the Git version control sys‐
tem, this is not the book that you are looking for. This book covers just enough Git to
do the job of introducing GitHub, but it’s not a comprehensive introduction to Git.
For that you should read the excellent Version Control with Git by Jon Loeliger and
Matthew McCullough (O’Reilly, 2012).

How to Use This Book
We’ve deliberately made this book as concise as possible. You should be able to read it
pretty quickly. If you want to gain the confidence that comes from really understand‐
ing what GitHub is about and how to use it, try to read the book from start to finish.

However, we know that you’re busy. If you’re in a rush, start by skimming the first
chapter. Chapter 1 gives you a brief introduction to Git, GitHub, and some key terms
that you’ll need to understand to make sense of the rest of the book. Then feel free to
just jump into whatever chapters you need. We’ve tried to write the book so that each
chapter runs you through specific workflows, so you should be able to read just the
chapter you need to complete a particular task.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

viii | Preface

http://shop.oreilly.com/product/0636920022862.do
http://shop.oreilly.com/product/0636920022862.do

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers,
and business and creative professionals use Safari Books Online as their primary
resource for research, problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐

Preface | ix

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/

mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/intro-github.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Peter: I would like to thank my wife for her tireless support of the time and effort
required to write this book—and the many other projects that keep me away from her
more than I’d like that don’t have acknowledgments sections! I would also like to
thank my Mum for always going above and beyond to give me the support I needed
to always follow my dreams—even under often difficult circumstances.

Brent: I’d like to thank my Mom for her constant encouragement for reading, without
which I may never have found a love for it. And also my Dad. Without him letting me
watch him work on our computer, entertaining me with the Oscar the Grouch trash
can utility on our Macintosh, and encouraging me to learn how to program, I would
not be in the field I am today.

We would both like to thank the inspiring Matthew and Jordan McCullough and the
rest of the GitHub team for their feedback on this book and their ideas and support

x | Preface

https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/
http://bit.ly/intro-github
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

over the years. Much of the best content here came from them. We’d also like to thank
the amazing Meg Blanchette at O’Reilly, without whom this book would never have
been conceived, written, or delivered—thanks so much, Meg!

Preface | xi

CHAPTER 1

Introduction

In this chapter we’ll start by introducing Git and GitHub. What are they, what is the
difference between them, and why would you want to use them? We’ll then introduce
some other common terms that you’ll often hear mentioned when people are discus‐
sing GitHub. That way you’ll be able to understand and participate in discussions
about your projects more easily.

What Is Git?
Git is a version control system. A version control system is a piece of software designed
to keep track of the changes made to files over time. More specifically, Git is a dis‐
tributed version control system, which means that everyone working with a project in
Git has a copy of the full history of the project, not just the current state of the files.

What Is GitHub?
GitHub is a website where you can upload a copy of your Git repository. It allows you
to collaborate much more easily with other people on a project. It does that by pro‐
viding a centralized location to share the repository, a web-based interface to view it,
and features like forking, pull requests, issues, and wikis, which allow you to specify,
discuss, and review changes with your team more effectively.

Why Use Git?
Even if you’re working on your own, if you are editing text files, there are a number of
benefits to using Git. Those benefits include the following:

1

The ability to undo changes
If you make a mistake, you can go back to a previous point in time to recover an ear‐
lier version of your work.

A complete history of all the changes
If you ever want to see what your project looked like a day, week, month, or year ago,
you can check out a previous version of the project to see exactly what the state of the
files was back then.

Documentation of why changes were made
Often it’s hard to remember why a change was made. With commit messages in Git,
it’s easy to document for future reference why you’re making a change.

The confidence to change anything
Because it’s easy to recover a previous version of your project, you can have the confi‐
dence to make any changes you want. If they don’t work out, you can always get back
to an earlier version of your work.

Multiple streams of history
You can create different branches of history to experiment with different changes to
your content or to build out different features independently. You can then merge
those back into the main project history (the master branch) once they’re done, or
delete them if they end up not working out.

Working on a team, you get an even wider range of benefits when using Git to keep
track of your changes. Some of the key benefits of Git when working with a team are:

The ability to resolve conflicts
With Git, multiple people can work on the same file at the same time. Usually Git will
be able to merge the changes automatically. If it can’t, it’ll show you what the conflicts
are and will make it easy for you to resolve them.

Independent streams of history
Different people on the project can work on different branches, allowing you to work
on separate features independently and then merge the features when they’re done.

Why Use GitHub?
GitHub is much more than just a place to store your Git repositories. It provides a
number of additional benefits, including the ability to do the following:

Document requirements
Using Issues, you can either document bugs or specify new features that you’d like to
have your team develop.

Collaborate on independent streams of history
Using branches and pull requests, you can collaborate on different branches or fea‐
tures.

2 | Chapter 1: Introduction

Review work in progress
By looking at a list of pull requests, you can see all of the different features that are
currently being worked on, and by clicking any given pull request, you can see the
latest changes as well as all of the discussions about the changes.

See team progress
Skimming the pulse or looking through the commit history allows you to see what the
team has been working on.

Key Concepts
There are a number of key concepts that you’ll need to understand to work effectively
with Git and GitHub. Here is a list of some of the most common terms with a short
description of each and an example of how they might be used in conversation:

Commit
Whenever you save your changes to one or more files to history in Git, you create a
new commit. Example usage: “Let’s commit these changes and push them up to
GitHub.”

Commit message
Every time you make a commit, you need to supply a message that describes why the
change was made. That commit message is invaluable when trying to understand
later why a certain change was implemented. Example usage: “Make sure to include
Susan’s comment about the new SEC guidelines in the commit message.”

Branch
An independent series of commits off to one side that you can use to try out an
experiment or create a new feature. Example usage: “Let’s create a branch to implement
the new search functionality.”

Master branch (master)
Whenever you create a new Git project, there is a default branch created that is called
master. This is the branch that your work should end up on eventually once it’s ready
to push to production. Example usage: “Remember never to commit directly to master.”

Feature (or topic) branch
Whenever you’re building a new piece of functionality, you’ll create a branch to work
on it. That’s called a feature branch. Example usage: “We’ve got way too many feature
branches. Let’s focus on getting one or two of these finished and into production.”

Release branch
If you have a manual QA process or have to support old versions of your software for
your customers, you might need a release branch as a place to make any necessary
fixes or updates. There is no technical difference between a feature or release branch,
but the distinction is useful when talking about a project with your team. Example
usage: “We’ve got to fix the security bug on all of our supported release branches.”

Key Concepts | 3

Merge
This is a way to take completed work from one branch and incorporate it into
another branch. Most commonly you’ll merge a feature branch into the master
branch. Example usage: “Great job on the ‘my account’ feature. Could you merge it into
master so we can push it to production?”

Tag
A reference to a specific historic commit. Most often used to document production
releases so you know exactly which versions of the code went into production and
when. Example usage: “Let’s tag this release and push it to production.”

Check out
To go to a different version of the project’s history to see the files as of that point in
time. Most commonly you’ll check out a branch to see all of the work that has been
done on it, but any commit can be checked out. Example usage: “Could you check out
the last release tag? There’s a bug in production that I need you to replicate and fix.”

Pull request
Originally, a pull request was used to request that someone else review the work you
completed on a branch and then merge it into master. Now, pull requests are often
used earlier in the process to start a discussion about a possible feature. Example
usage: “Go create a pull request for the new voting feature so we can see what the rest of
the team thinks about it.”

Issue
GitHub has a feature called Issues that can be used to discuss features, track bugs, or
both. Example usage: “You’re right, the login doesn’t work on an iPhone. Could you cre‐
ate an issue on GitHub documenting the steps to replicate the bug?”

Wiki
Originally developed by Ward Cunningham, wikis are a lightweight way of creating
web pages with simple links between them. GitHub projects often use wikis for docu‐
mentation. Example usage: “Could you add a page to the wiki to explain how to config‐
ure the project to run on multiple servers?”

Clone
Often you’ll want to download a copy of a project from GitHub so you can work on it
locally. The process of copying the repository to your computer is called cloning.
Example usage: “Could you clone the repo, fix the bug, and then push the fix back up to
GitHub later tonight?”

Fork
Sometimes you don’t have the necessary permission to make changes directly to a
project. Perhaps it’s an open source project written by people you don’t know or it’s a
project written by another group at your company that you don’t work with much. If
you want to submit changes to such a project, first you need to make a copy of the
project under your user account on GitHub. That process is called forking the reposi‐

4 | Chapter 1: Introduction

tory. You can then clone it, make changes, and submit them back to the original
project using a pull request. Example usage: “I’d love to see how you’d rewrite the home
page marketing copy. Fork the repo and submit a pull request with your proposed
changes.”

Don’t worry if all the terminology seems overwhelming at first. Once you start work‐
ing with some real projects, it’ll all make a lot more sense! In the next chapter we’ll
look at the various elements of a GitHub project and how you can use them to get a
sense of progress on a project.

Key Concepts | 5

CHAPTER 2

Viewing

In this chapter we’ll look at how you can view the state of a project to see what’s going
on. We’ll use the popular Bootstrap open source project as an example.

Introducing the Project Page
Bootstrap is a project that allows developers to quickly develop attractive web appli‐
cations. Go to the project page on GitHub. There is a lot of information on the home
page. Let’s start by reviewing some of the most important elements on the page (see
Figure 2-1).

Figure 2-1. The Bootstrap project home page on GitHub

7

http://getbootstrap.com/
https://github.com/twbs/bootstrap

One of the first things you see looking at the top left of the page is that the project
name is “bootstrap” and that it’s owned by a user (or in this case an organization)
called “twbs.” If you were to go to https://github.com/twbs, you’d see a list of all of the
projects hosted by that organization at GitHub. To the left of the organization name
you’ll also see an icon that makes it clear that this is a public repository that anyone
can see. A lot of the projects you work on will have a closed lock icon instead, signify‐
ing that they are private and can be viewed only by people who have been explicitly
added as collaborators.

To the right of the project name, you can see in Figure 2-1 that at the time the screen‐
shot was taken, 3,857 people were watching the repository to get notified every time
new changes were made to it, 68,928 people had starred it to mark it as one of their
favorite projects, and 25,292 people had forked the repository, making their own copy
on GitHub where they could upload changes to the project and share them with oth‐
ers.

Further down the page, you can see a short description of the project, and below that
you’ll see that there have been a total of 9,448 changes to the project (commits), 16
different streams of history are currently being developed (branches), 27 versions of
the software have been recommended over time for people to use (releases), and 550
people wrote some part of the code (contributors).

You can also see that we’re currently viewing the master branch, that we’re in the root
bootstrap folder, that the latest commit on master was “Fixes #13872 more: add over‐
rides for lg and sm input modifiers” (whatever that means), and that the commit was
made by GitHub user “mdo.” As you look further down the figure, you can see the
folders (sometimes called directories) and files that are in the root (top-level) folder in
the project.

Viewing the README.md File
If there is a file in the root of a project named README.md, the contents of that file
will be displayed just below the list of folders and files on the project home page. This
file provides an introduction to the project and additional information that would be
useful to collaborators, such as how to install the software, how to run any automated
tests, how to use the code, and how to make contributions to the project.

These days, README files will often also include badges—images used to show the
current state of things, like the automated test suite to let you know the current state
of the project. In Figure 2-2, the Bootstrap project is showing the version of two other
projects that Bootstrap depends on. It’s also showing that the automated tests are
passing, that the dependencies are up-to-date, and the versions of browsers and oper‐
ating systems that Bootstrap should work for.

8 | Chapter 2: Viewing

https://github.com/twbs
https://github.com/mdo

Figure 2-2. The contents of the Bootstrap project’s README.md file

Viewing the Commit History
 The commit history is a great way to get a sense of the most recent small units of
work that have been completed on any given branch. Go to the Bootstrap page on
GitHub and click the “9,448 commits” link (the number of commits will have
changed by the time you do this). You’ll see a list of commits—most recent first (see
Figure 2-3).

Viewing the Commit History | 9

https://github.com/twbs/bootstrap
https://github.com/twbs/bootstrap

Figure 2-3. A list of the recent commits on the project

Clicking any of the commits will show you the commit message that should explain
why the changes were made. Below that you will see each file that was added,
removed, or modified as part of the commit, with content that was removed display‐
ing in red and content that was added displaying in green (see Figure 2-4).

10 | Chapter 2: Viewing

Figure 2-4. A recent commit on the project

Viewing Pull Requests
Pull requests give you a sense of the current work in progress. Go back to the home
page and click the “Pull requests” link in the top-right and you’ll see a list of open pull
requests. These are the outstanding features or fixes that people are currently working
on (see Figure 2-5).

Viewing Pull Requests | 11

Figure 2-5. Open pull requests for the project

Click one of the pull requests and you’ll see a short title describing the pull request.
There are one or more commits with the proposed changes, and there may be a num‐
ber of comments from people discussing the proposed changes (see Figure 2-6).

12 | Chapter 2: Viewing

Figure 2-6. A recent pull request

Looking at the pull requests is a great way to get a sense of what people are working
on now and the current state of play of each of those changes—whether bug fixes or
proposed features.

Viewing Issues
While pull requests give you a sense of the current bug fixes and features being
worked on, issues can give you a wider sense of the outstanding work that still needs
to be done on a project. Pull requests are often linked to an issue, but there will usu‐
ally also be issues that nobody has started working on yet, so they don’t yet have a pull
request.

If you click the link to view the list of issues, by default you’ll see a list of all of the
open issues (see Figure 2-7).

Viewing Issues | 13

Figure 2-7. Open issues for the project

Click an issue and you’ll see the title and any comments related to the issue. If any
work has been done and pushed to GitHub, and if the commit message references an
issue, it’ll show up on the Issue page so you can see what’s being done. In Figure 2-8
someone appears to be having a problem with one of the Bootstrap features.

14 | Chapter 2: Viewing

Figure 2-8. A recent issue

Viewing the Pulse
The pulse is a great way to get a sense for the recent activity on a project. Notice in the
top right of Figure 2-9 that you can customize the pulse to be for the last day, three
days, week, or month.

Viewing the Pulse | 15

Figure 2-9. The pulse for Bootstrap

The pulse starts with an overview of the number of pull requests that have been
merged (completed) and proposed (added). It also shows how many issues were
closed or opened. It’s important to understand that when the pulse refers to the num‐
ber of active pull requests and issues, this is not the outstanding number of each but
rather the number of requests and issues that have been started and finished in the
time period you selected. For example, at the time of writing, Bootstrap had 15
merged and 8 proposed pull requests for a total of 23 “active” pull requests in the last
week, but it had a total of 28 open pull requests.

The next paragraph on the screen is a concise summary of recent changes, listing the
number of authors, commits on master, total commits on all branches, and the num‐
ber of files added, removed, or modified on the master branch. It then gives you the
number of lines of content that have been added or removed, although it’s important
to realize that if a line of text in a file is modified, Git will treat it as if one line was
removed and another different line was added in its place.

To the right is a bar chart showing the contributors who have made the most com‐
mits during the period. Below that is a list of the titles of the merged and proposed
pull requests, followed by the closed and then opened issues. The pulse view ends
with a list of “unresolved conversations,” which is a list of all of the issues and pull
requests that have received additional comments but have not yet been closed.

Viewing GitHub Graphs
While the pulse gives you a summary of recent activity, the graph pages allow you to
get a sense of the work that has been done on a project over a longer period of time.

16 | Chapter 2: Viewing

The Contributors Graph
The contributors graph in Figure 2-10 shows you the number of contributions over
time based on the number of commits, additions, or deletions. It shows a graph for all
of the contributions, followed by smaller graphs showing the contributions by the
individual developers—from the most to the least prolific.

Figure 2-10. The contributors graph for Bootstrap

The default commits graph shows the number of commits that have been made over
time to the master branch. It’s important to realize that it shows only the commits
that have been merged into the master branch. If you have someone on your team
who has been working on a feature branch all week and whose work has not yet been
merged in, none of those contributions will show up until they are ready for release
and have been merged into the master branch.

By default, the time period for the graph is the entire lifetime of the project. If you’d
like to pick a shorter time, just click the starting point you’d like on the main graph
and then drag and release on the time you’d like the new graph to end. Figure 2-11
shows the results of doing this to focus on the commits over the summer of 2013. You
can see that the main graph at the top of the page stays the same, but at the top-left it
shows the time period we’re focused on (June 30 through September 2). The commit
graphs of the individual contributors shows the number of commits and how they
were spread out over that time period.

Viewing GitHub Graphs | 17

Figure 2-11. The contributors graph for the summer of 2013

There is no standard size for a commit. A good rule of thumb is that if developers are
writing code as opposed to researching a problem or testing something, they should
probably be committing every 5 to 10 minutes. However, depending on the team
you’re working with, you might find that some developers create many fewer com‐
mits than others, even if they’re doing a similar amount of work. If that is the case,
you might want to change the “contribution type” for your contributor graphs to
additions or deletions. In that way, you’ll get a sense of the number of lines of code
that the developers have added or removed from the project. If they modify a line, it
will show up as a deletion of the old line and an addition of the new one.

The Commits Graph
The commits graph in Figure 2-12 shows the number of commits per week over the
life of the project, giving a very rough proxy for activity and how it has varied over
time.

18 | Chapter 2: Viewing

Figure 2-12. The commits graph for Bootstrap

The first reason to look at the commits graph is to get a sense of how many commits
per week there have been over the lifetime of the project. It starts with a bar graph
showing one bar per week and is a great way to see cyclical or long-term trends. Is the
number of commits in your project slowly decreasing? If you have more developers,
is the number of commits consistently increasing? Are most of your commits in the
last week of every month, or are there seasonal trends? This graph can give you good
insight into how the number of commits—which is a very rough proxy for productiv‐
ity—are varying over time.

Below the bar graph is a line graph showing the average number of commits on each
day of the week over the lifetime of the project. This graph can be useful for getting a
sense of the cadence over the course of an average week. Are people not committing
on Mondays because of too many meetings? Are they making most of their commits
on a Thursday ahead of your Friday “demo days,” or are they working too much on
the weekend, which isn’t good for long-term sustainability?

The Code Frequency Graph
The code frequency graph in Figure 2-13 shows you the number of lines added to and
removed from your project over time and is particularly helpful for identifying large
changes to your code base.

Viewing GitHub Graphs | 19

Figure 2-13. The code frequency graph for Bootstrap

The code frequency graph is a great way to see when there have been big changes on
your project. Often when developers are doing a big refactoring, they’ll add and
delete hundreds or even thousands of lines of code per commit, whereas in the usual
course of business, a commit will probably contain only a few lines of added, modi‐
fied, or deleted code. When such a refactoring is going on, the number of commits
might not change much, but the number of lines added and deleted will spike, so if
you want to get a sense of when the biggest changes happened to your code base, you
should start by having a look at the code frequency graph. For example, you can see
in Figure 2-13 that a big refactoring was done in February and March of 2013.

The Punch Card Graph
The punch card graph in Figure 2-14 shows what time of day and which day most
commits get done.

20 | Chapter 2: Viewing

Figure 2-14. The punch card graph for Bootstrap

The punch card graph displays a circle for every hour of every day in the week. The
diameters of the circles are a function of the percentage of the commits for the
project made during that hour on that day. The bigger the circle, the more of your
project commits have been made at that time. Again, this a great way to get insight
into the times when your team is most productive.

The Network Graph
The network graph in Figure 2-15 shows the number of branches and commits on
those branches throughout a project’s history. It also shows any forks that contribu‐
tors have created.

Viewing GitHub Graphs | 21

Figure 2-15. The network graph

The network graph is useful for seeing how far ahead one branch may be, or what
kind of work someone may be working on in their own fork. When these commits
make their way back into the original repository’s master, we’ll see this come in with
an arrow and a merge commit if it was done via a pull request. We can also mouse
over these commits to see who wrote them and what the commit message was.

The Members List
The last graph that everyone can see regardless of permissions is the members list. If
there is an unusual number of forks, we’ll see a message like the one in Figure 2-16,
displaying only a partial list of members.

22 | Chapter 2: Viewing

Figure 2-16. The members list

The members list shows just the people who have forked the repository or forks of
forks. These people aren’t collaborators on the original parent repository and there‐
fore needed their own copy of the repository in order to contribute to it through a
pull request.

The Traffic Graph
One additional graph, which is available only to owners and collaborators on a
project, is the traffic graph shown in Figure 2-17.

Viewing GitHub Graphs | 23

Figure 2-17. The traffic graph

The traffic graph shows you the number of views and unique visitors over time, lists
the sites that people are linking from, and highlights the most popular content on
your GitHub project site. It can be a great way to get a sense of the popularity for
open source projects.

By now you should have a good sense of how to get up to speed with a project by
looking at the README file, commits, pull requests, issues, the pulse, and the Git‐
Hub graphs. In the next chapter we’ll look at how you can start to contribute to a
project.

24 | Chapter 2: Viewing

CHAPTER 3

Editing

In this chapter we’ll look at how you can contribute to a project. We’ll start by looking
at how to contribute to a project that you don’t have permission to push to by creat‐
ing a fork and a pull request. We’ll then look at how you can add, edit, rename, or
delete a file directly on GitHub. We’ll also look at how to work with directories on
GitHub, and finally we’ll discuss what to do when you want to make multiple changes
as part of a single commit.

Contributing via a Fork
If you want to contribute directly to a project, you either need to own it or have been
added to it as a collaborator. If you want to contribute to a project that you don’t own
and are not a collaborator on, you’ll need to make a copy of it on GitHub under your
user account. That process is called forking. Once you’ve forked a project, you’ll be
able to make any changes you want to your fork (copy) and you’ll be able to request
that your changes get incorporated into the original project by using a pull request.
Let’s go through that process now.

Go to https://github.com/pragmaticlearning/github-example. Click the Fork button in
the top right corner of the page, as shown in Figure 3-1.

Figure 3-1. The Fork button

When you click the Fork button, if you are a member of any organizations, you’ll see
a list of all of the organizations you’re involved with as well as your username. You’ll
be asked where you want to fork the repository. Figure 3-2 shows what that dialog
looks like.

25

https://github.com/pragmaticlearning/github-example

Figure 3-2. Selecting where to fork a repo

After you select where you want to fork the repository (repo), or if you are not a
member of any organizations, you’ll be taken to your new project page. Once you’ve
forked the repo, you can make any changes you want to your fork (copy). In the next
section we’ll look at how you can add a new file, and then how to create a pull request
to try to get your change incorporated into the original project.

Adding a File
In this section we’ll look at how to add a new file to a project. As you can see in
Figure 3-3, there is a small plus sign (+) to the right of the project name.

Figure 3-3. The “add new file” link

Click the plus sign and you’ll be taken to a screen in Figure 3-4.

26 | Chapter 3: Editing

Figure 3-4. The “add new file” screen

Toward the top of the page is a text box just to the right of the project name, where
you can enter the name of the file you want to add to the project. Below that is a text
area where you can enter the content you’d like to put in the file. Scroll down the page
when you’re done naming the file and entering the content, and as shown in
Figure 3-5, you’ll see a couple of text boxes where you can create a (required) short
description and an optional extended description of the change that you’re making.

Figure 3-5. The bottom of the “add new file” screen

These descriptions will be saved as the commit message for your commit. If you don’t
enter anything, the default commit message will be “Create (filename).” Generally,
you’ll want to enter a meaningful commit message so other people viewing the
project will understand what you did and why you did it. Click the green “Commit

Adding a File | 27

new file” button, and your new file will be added to the project and your commit will
be added to the commit history. You can see in Figure 3-6 that new_file.md has been
added to the list of files and that, in my case, there are now three commits—the latest
of which is the commit I just made by adding this file.

Figure 3-6. The project home page after adding the new file

Creating a Pull Request
We’ve made a change to our fork of the project, but the change hasn’t propagated
back to the original project. That makes sense. Anyone can fork any public project,
and the project owner wouldn’t want just anyone editing all of their files. However,
sometimes it’s great to allow other people to propose changes to a project. This allows
a large number of people to easily contribute to an open source project or a smaller
team to work together on an internal project. That is what pull requests are for.

With a pull request, you can request that changes you’ve made on a fork be incorpo‐
rated into the original project. Let’s go through the process now. As you can see in
Figure 3-7, on the right side of the page there is a Pull Requests tab.

Figure 3-7. The Pull Requests tab on the project home page

28 | Chapter 3: Editing

Click the Pull Requests tab, and you’ll see a screen similar to Figure 3-8 showing that
currently you don’t have any outstanding pull requests. Click the green “New pull
request” button at the top right of the screen.

Figure 3-8. The pull requests screen

When you click the button, you’ll see a screen similar to Figure 3-9.

Figure 3-9. The “preview pull request” screen

Creating a Pull Request | 29

One of the first things you see in Figure 3-9 is that it is proposing a pull request
between pragmaticlearning:master and PeterBell:master. Pull requests are requests to
incorporate the changes from one branch (stream of history) into another. In this
case, GitHub has correctly guessed that I want to take the change that I made on the
master branch on my fork (the new file I added) and have that merged back into the
master branch on the original project that I forked from. Note that the branch with
the changes that you want merged in is on the right, and the target branch you’d like
it to be merged into is on the left.

As you look lower down on Figure 3-9, you’ll also see that it provides a summary of
the changes that would occur if that pull request was merged—I did indeed make one
commit that changed a single file. It even shows in green the new content that would
be added to new_file.md. If I click the “Show diff stats” button, it would even show
numerically that one line of content was being added and no lines of content were
being removed.

Once we’ve confirmed that the proposed pull request is the one we want to create, the
next step is to click the large green “Create pull request” button. Doing so will take
you to a page similar to Figure 3-10.

Figure 3-10. The “create pull request” screen

30 | Chapter 3: Editing

This screen is your chance to tell the story about why your changes should be incor‐
porated in the other project, so take the time to create a meaningful title and descrip‐
tion of the changes you’ve made. By default the title will be the first line of your
commit message for your most recent commit, and if you’ve made more than one
commit on the branch you’re trying to have merged, the description will have a bulle‐
ted list of the first line of all of the commit messages that are part of the pull request.
That’s a fine starting point, but you’re going to want to take a little bit of time to
describe not only what changes you’ve made, but why you made them and why they’d
be a good addition to the project.

Once you’ve finished describing your pull request, click the “Create pull request” but‐
ton and you’ll see a page that looks like Figure 3-11.

Figure 3-11. A created pull request

There are a couple of things that you should notice in Figure 3-11. First, notice that
we’re now in the original project—under pragmaticlearning. This makes sense. We
wanted to create a request to pull our work into that project, so the pull request is
part of that project—not our fork. You can see that “PeterBell wants to merge 1 com‐
mit into pragmaticlearning:master from PeterBell:master,” and it shows you the pull
request (title and description) followed by the commit that was made. Clicking that
commit displays the details of the commit, as you can see in Figure 3-12.

Creating a Pull Request | 31

Figure 3-12. Viewing the commit from the pull request

Notice that the commit link has taken us back to the PeterBell version of the repo
because that is where the commit was made. It shows you the commit message, who
made the change, and the changes that were introduced in that commit.

Going back to the pull request in Figure 3-11, you’ll see that there is an option to
merge the pull request. That option is visible only to the owner of the project or to
anyone the owner has added as collaborators. If someone without those permissions
was looking at the page, he would not be able to merge the pull request. For example,
in Figure 3-13 I’ve logged in as another user, and when I view the same page, I don’t
get the option to merge in the pull request, although I can still comment on it if I
want.

32 | Chapter 3: Editing

Figure 3-13. Viewing a pull request without being able to merge it

Often there will be a discussion before a pull request is merged, but we’ll look at that
more in Chapter 4. For now I’m just going to accept the pull request and merge it in. I
can just click the “Merge pull request” button, which adds a text box where I get the
option to customize the commit message for merging the pull request, as shown in
Figure 3-14.

Creating a Pull Request | 33

Figure 3-14. Getting ready to merge a pull request

Once I’ve made any changes I want to the commit message, I can just click the “Con‐
firm merge” button below and to the right. The pull request is then merged, and the
output is displayed, as in Figure 3-15.

34 | Chapter 3: Editing

Figure 3-15. Viewing a closed (merged) pull request

Notice that we can still see the pull request message and the commit, but now we can
also see who merged in the pull request and approximately when they did so. It also
shows that the pull request was closed, which happens automatically when you merge
it. Finally, if we look at the project page in Figure 3-16, we’ll notice a couple of things.

Figure 3-16. The original (pragmaticlearning) project after merging the pull request

Creating a Pull Request | 35

First, new_file.md has been added to the project. Second, there are four commits now
in the original project. If we click the “4 commits” link, we can see why (see
Figure 3-17).

Figure 3-17. The original project commit history

There were the two original commits in the project, there is the “Create new_file.md”
commit that was made on my fork, and there is a new merge commit that brought the
work into the original project when we merged the pull request. Whenever you
merge a pull request, it will create one of these merge commits. They are really useful
because the commit message (which you can edit when you merge a pull request)
allows you to document why you decided to include the work; if you ever wanted to
get rid of all of the work you merged in from a pull request, you could ask one of your
developers to “revert the merge commit for that pull request” and she’d be able to
easily remove all of the changes that got merged in.

Editing a File
Sometimes you might want to add a new file to a project, but most of the time you’re
going to want to make changes to an existing file. Let’s say we wanted to edit
README.md to let people know how to contribute to the project. Starting on the
home page of your fork of the project, if you click the README.md filename, it’ll
take you to a page like Figure 3-18.

36 | Chapter 3: Editing

Figure 3-18. Viewing the README.md file

In Figure 3-18, you can see who last made a change to the file, how long ago the
change was made, the first line of the commit message, and how many people have
contributed content to the file. Above the display of the content are a number of but‐
tons. The option we’re going to use right now is the Edit button. Clicking that button
takes you to the screen shown in Figure 3-19, which will allow you to change the con‐
tent of the file.

Editing a File | 37

Figure 3-19. Editing the README.md file

As with the screen for adding a file, once you’re done with your changes, scroll down
the page, enter a meaningful commit message, and click the “Commit changes” but‐
ton. Once you’ve done that, you’ll see the page displaying the README.md file and
any additional content you added. In Figure 3-20 you can see the “how to contribute”
information I just added to the file. As with the addition, if you just want to make
changes to your fork, you’re done. If you’d like these changes to get incorporated into
the original project at pragmaticlearning/github-example, you’d have to create a pull
request. Figure 3-20 shows the closed pull request after I created it and then merged it
into the original project.

38 | Chapter 3: Editing

Figure 3-20. The merged pull request for the edited README.md

Renaming or Moving a File
Often you want to rename a file or move it from one folder to another. As far as Git
and GitHub are concerned, both are the same process: you’re changing the full name
for the file, and optionally including the name of its folder. In this section, I’m going
to move the new_file.md I created to a folder called documentation and I’m going to
rename it chapter_1.md.

To start, I’m going to go to the project page for my fork of the repo, and then I’ll click
the new_file.md filename to go to the view page for new_file.md. Then I’ll click the
Edit link as I did in “Adding a File” on page 26. Doing that gets me to a screen that
looks like Figure 3-21.

Renaming or Moving a File | 39

Figure 3-21. The edit screen for new_file.md

This time, instead of editing the content of the file, I’m going to go to the text box
further up the page with the filename. If I just want to rename the file but keep it in
the same folder, I’d just change the name of the file. If I want to put this file in another
folder (whether or not it exists already), all I have to do is include a forward slash (/)
in the filename. So in this case I just need to type documentation/chapter_1.md into
the filename box. As you can see in Figure 3-22, as soon as I enter the forward slash,
GitHub breaks that out as a new folder in the interface. If I wanted to move the file up
a folder, I could just start by typing ../ into the filename and the file is moved up a
folder.

Figure 3-22. Editing the folder or filename for a file

If you misspell the folder name, just click the cancel button shown in Figure 3-22 to
start over. Once you’re done with the renaming or moving of a file, scroll down the

40 | Chapter 3: Editing

page and commit the change. Figure 3-23 shows the renamed file, now in the /docu‐
mentation folder.

Figure 3-23. The renamed file in the /documentation folder

Working with Folders
It is important to understand how Git thinks about folders—it doesn’t! Git is con‐
cerned only with files. As far as it is concerned, folders are simply a place to store
those files. Because of that, there is no way to add a folder to a project unless it
includes at least one file.

Sometimes this is a problem. For example, in many software projects there needs to
be a /build folder where automatically generated files will be saved when compiling
the software. With some systems, if you don’t have such a folder, you’ll be unable to
use the project.

Creating a Folder
A common pattern that has emerged is to create an empty file called .gitkeep in any
folder that you need to create but that doesn’t really need to have any files. It seems a
bit strange, but it works well and it is a well-understood convention, so if you ever
need to create a folder, just create a .gitkeep file (see Figure 3-24.

Figure 3-24. A .gitkeep file to create a /build folder

Renaming a Folder
You might have guessed that just as you can’t create a folder directly, you can’t rename
it directly either. If you want to move a single file from one folder to another, you can

Working with Folders | 41

do that by renaming it. For example, if I wanted to move chapter_1.md from docu‐
mentation to new_docs, I can just go to the view page for the chapter_1.md file, click
the Edit link, and at the start of the filename box type ../ to go up a folder, followed
by new_docs to create or put the file into that folder instead. However, there is no way
you can just rename a folder on GitHub. You’d have to rename each of the files in the
folder one at a time to move them to the new folder.

The Limits of Editing on GitHub
We have just run into one of the limitations of editing on GitHub. Originally GitHub
was designed to allow developers to share their Git repositories with each other.
Developers would make changes to their projects locally on their laptops, save those
changes in Git, and then push the results to GitHub. Now that more and more non‐
technical people are collaborating via GitHub, it’s possible to do much of your editing
right on the site, but there are a number of things that you can’t do via the web-based
interface.

Currently, GitHub doesn’t allow you to rename folders or to make any other changes
to more than one file in a single commit. It also doesn’t give you the power of Git to
rewrite history, and it doesn’t allow you to resolve conflicts online, so if there is a pull
request that conflicts with another change, someone is going to have to download
(clone) a copy of the repo, fix the changes, and push them back up to GitHub.

If you want to learn the basics of working with Git locally, check out the instructions
in Chapter 6 for getting started with GitHub for Mac or Windows. For now, though,
we’re going to look at how to collaborate effectively with your team using GitHub.

42 | Chapter 3: Editing

CHAPTER 4

Collaboration

In this chapter we’ll start by looking at how to collaborate directly on a single reposi‐
tory—without using forks. We’ll then take some time to look more deeply into collab‐
orating using pull requests, issues, and GitHub pages.

While forks are a good way to accept contributions from people you don’t work with
regularly, they are a bit too cumbersome for everyday use in a team that is working
together closely. Because of this, you’re probably going to want to collaborate directly
on a single repository. However, it’s still important to use branches and pull requests
to keep your work separate.

Committing to a Branch
I’ve created a simple single-repo-example under the pragmaticlearning organization,
as you can see in Figure 4-1.

43

https://github.com/pragmaticlearning/single-repo-example
https://github.com/pragmaticlearning

Figure 4-1. The single-repo-example repository

If I want to augment the README.md file, the first thing I need to do is create a
branch. That way I’ll be able to keep my changes separate while I’m working on them.
To do that, I can just click the “branch:master” button. This creates a drop-down list
with the current branches in the project and a text box for entering the name of an
existing branch or the new branch that I want to create. You can see this in
Figure 4-2.

Figure 4-2. The branch drop-down list

44 | Chapter 4: Collaboration

If I create an update_readme branch, as you can see in Figure 4-3, GitHub automati‐
cally checks out that new branch. You can see this, both on the branch button where
the current branch is displayed, and in the browser URL bar that ends with tree/
update_readme, signifying that we’re on the update_readme branch.

Figure 4-3. On the update_readme branch

The next step is to start to make changes. I’ll edit the README.md file and commit
the changes. As you can see in Figure 4-4, I have only one commit on the master
branch, but if you look at Figure 4-5, where I’ve changed the branch to
update_readme, in addition to the initial commit you can also see the new commit
that I made on the update_readme branch.

Figure 4-4. There’s still only one commit on the master branch

Committing to a Branch | 45

Figure 4-5. But there are two commits on the update_readme branch

I might continue to work on the branch for a while, getting my changes just right.
Once I’m ready to get some input, I’ll want to create a pull request to start a conversa‐
tion about my proposed changes.

Creating a Pull Request from a Branch
To create a pull request, as in the previous chapter I’ll click the Pull Request tab on
the right side of the project page, and then click the green button to create a “New
pull request.” When I do this, as you can see in Figure 4-6, the experience is slightly
different. Now GitHub isn’t sure what branches I want to create a pull request
between, so I have to tell it.

Figure 4-6. Starting to create a pull request from a branch

On the left you can see the base:master. That is perfect as it means that if we create a
pull request, once it is accepted, it will get merged into the master branch, which is
exactly what we want. However, I do need to click the “compare: master” button to
tell GitHub what branch I want to create a pull request for, as you can see in

46 | Chapter 4: Collaboration

Figure 4-7. The “compare:” branch is the one that I’d like people to consider merging
into master.

Figure 4-7. Selecting the branch for the pull request

Once I’ve selected a branch, the process is just the same as it was in Chapter 3 when I
was creating a pull request from a fork. I click the green “Create pull request” button,
enter a title and description to explain the reason for the pull request, and then click
the “Create pull request” button. This creates the pull request shown in Figure 4-8.

Creating a Pull Request from a Branch | 47

Figure 4-8. The new pull request

Collaborating on Pull Requests
Pull requests are designed to start a conversation about a proposed change—usually
either a new feature or a bug fix. Originally, pull requests were created only when
coding was completed to ask someone to incorporate a completed set of changes, but
these days pull requests are used in a couple of different ways.

If you have a change that you’re confident about, you can still create a new branch,
make all your changes, and wait to create a pull request until you’re done with the
work. In such a case, the purpose of the pull request is just as a double-check to make
sure that the rest of your team agrees with the changes you made before the changes
get merged into master and pushed to production.

However, there is another way to use pull requests. In many companies, employees
will often create pull requests for features that they’d like to discuss. So if you have an
idea for a change but aren’t sure whether it’s a good idea, consider creating a branch
and making the simplest possible start on the work—maybe just a small text file
describing it. Once you have a commit on the branch, you can then create a pull
request to kick off a discussion about the idea.

48 | Chapter 4: Collaboration

Involving People with Pull Requests
 If you’ve created a pull request and would like feedback from specific people on a
team, @mention (pronounced “at-mention”) them. To do this, within the pull request
itself or a comment on the pull request, type @ and then type in the GitHub user‐
name. If the person is the owner or a collaborator on the project, the username will
auto-complete.

If I wanted to get feedback from Brent Beer (a member of the GitHub training team
and coauthor of this book) on some work I’d been doing, I might create a comment
like “hey @brntbeer, mind looking at this PR and letting me know what you think?”
The formality of the language will depend on the people you’re working with, but pull
request comments are often written in a fairly informal style.

Reviewing Pull Requests
If you want to see what people are working on within a project, go to the project
home page, click the Pull Requests tab on the right, and you’ll see a list of all of the
currently open pull requests.

On most projects there should be only a few pull requests open at any one time. A
good rule of thumb for a private repository is that you shouldn’t usually have more
than one or two open pull requests per developer. Generally, the fewer pull requests
you have open, the better, as it is more valuable to keep the team focused on finishing
up existing features rather than on starting new ones. The number of open pull
requests on open source projects will typically be much larger, as anyone can create a
pull request, and sometimes it takes a while for the core project team to review,
accept, and/or close them.

When you find a pull request that you want to review, click it to view the pull request
detail page.

Commenting on Pull Requests
A really important part of working with a development team is to take the time to
review all of the pull requests that you might care about. Nothing is more dishearten‐
ing than to work on a feature for a couple of days, create a pull request, and then get
no feedback at all. Also remember that anyone can merge their own pull request into
master, so make sure to take the time to review people’s work so they aren’t tempted
to merge it in without at least one or two people having a look at it.

Whenever you get an email or a web notification that you’ve been @mentioned in a
pull request, make sure to take the time to check it out ASAP and provide some use‐
ful feedback. Even if you’re not named personally, take a little bit of time every day to

Collaborating on Pull Requests | 49

make sure that you review any outstanding pull requests and provide your thoughts
to ensure everyone is on the same page with where the project is going.

Commenting on pull requests is pretty simple. Skim down the pull request page, go
to the comment box, type in your feedback, and click the Comment button.

Adding Color to Comments
Especially if you have a team that doesn’t work in the same office all of the time, com‐
menting on pull requests is often one of the more frequent ways that your team gets
to interact with each other. Because of that, it’s often a good idea to add a little bit of
fun to the interactions.

GitHub has built-in support for emoji. Emoji are small images that are often used for
displaying a mood or emotion graphically. If you look at Figure 4-9, you’ll see that
this comment has the :+1: (I’m in support of this feature) and the :ship: (let’s merge
this in and “ship” it) emoji.

Figure 4-9. A comment with some emoji

If you’d like to get a sense of some of the emoji available in GitHub, check out the
Emoji Cheat Sheet shown in Figure 4-10.

50 | Chapter 4: Collaboration

http://www.emoji-cheat-sheet.com/

Figure 4-10. The emoji cheat sheet

Another way to add some more color to your comments on GitHub is by using ani‐
mated gifs. While emoji are subtle, most animated gifs are much larger and more
striking—they’re often a great way to really lighten the mood or show strong support
(or disapproval) for a change or a comment. To add an animated gif (or any other
image) to a pull request, just drag and drop it into the comment box and it’ll get
uploaded automatically.

Contributing to Pull Requests
Sometimes you’ll want to make a change directly to a pull request. Perhaps someone
has added a new page and you’d like to fix up the marketing copy, the legal disclaimer,
or even the CSS to make it display better in your favorite browser. It’s easy to make a
change to someone else’s pull request.

The process is the same as for editing a file that we covered in the previous chapter.
The only difference is that you must be on the correct branch. In this case I’m looking
at the update_readme pull request for adding some content to the README.md file,
as you can see in Figure 4-11.

Collaborating on Pull Requests | 51

Figure 4-11. The update_readme pull request

If I decided that it would be great if the file contained a brief contributors guide,
rather than just commenting that the README was missing a contributors guide, I
could add one.

To make the change, all I need to do is go to the project home page and select the
update_readme branch from the drop-down list of branches. I can then click the file,
click Edit, and I’ll get the edit screen, as you can see in Figure 4-12.

Figure 4-12. Editing README.md on the update_readme branch

52 | Chapter 4: Collaboration

I can then make my changes, scroll down the page, and enter some kind of commit
message, as shown in Figure 4-13.

Figure 4-13. Adding a commit message

Now if I go back to the pull request page, you can see in Figure 4-14 that my commit
has been added to the pull request. Anyone who is watching the pull request will get a
notification that it has been updated so they can review my change and provide their
feedback.

Figure 4-14. The new commit in the pull request

Testing a Pull Request
If you’re a developer, before you approve a pull request that includes substantive code
changes that you can’t just review visually, you’re going to want to download a copy of
the repository (clone the repo). Then check out the branch that the pull request

Collaborating on Pull Requests | 53

relates to, run the automated tests to make sure they’re all passing, and then run the
code and maybe do a little bit of manual testing just to make sure it seems solid. We
cover cloning of repositories in Chapter 6.

If you’re not a developer, you can leave this to your development team, but you do
want to make sure that at least one or two people are downloading the code, running
the test suite, and maybe doing a little manual testing before approving a pull request.

Merging a Pull Request
When you’re ready to merge a pull request, just click the large green “Merge pull
request” button, as shown in Figure 4-15.

Figure 4-15. The “Merge pull request” button

When you do so, GitHub will ask for a commit message (the default will be the title of
the pull request), as shown in Figure 4-16. Once you’ve entered that, just click the
“Confirm merge” button, and the pull request will get merged and closed, as
described in Chapter 3.

Figure 4-16. Closing a pull request

You should have some kind of policy for closing pull requests. Many teams will
require one or two people other than the primary author of the pull request to pro‐
vide a :+1: before a pull request is merged. Have some kind of process, but keep it
lightweight. Remember, you can always revert a merge, so it’s generally better to
“move fast and (occasionally) break things” than have a list of 27 people who need to
approve every single pull request before it can be merged.

54 | Chapter 4: Collaboration

Who Should Merge a Pull Request?
One question that often comes up is whether a pull request should be merged by the
person who created the pull request or by someone else. I generally recommend that
pull requests be merged by the person who created them. Here’s why.

Many companies have the rule that “the person who created a pull request can’t
merge it.” The reason for this is to make sure that someone doesn’t just create a pull
request and merge it in without getting any feedback. The idea is good, but I don’t
think the recommendation is ideal.

Most of the time, the person who created the pull request is the person who knows
the most about it. As such, I always want to have that person available when her work
is merged in just in case it breaks something unexpected. One of the easiest ways of
making sure that she’s around is to ask her to do the merge. So I’d recommend asking
people to merge in their own pull requests, but making it clear that they shouldn’t do
so until they’ve got at least a couple of :+1:s from the rest of the team.

Pull Request Notifications
If you create a pull request, comment on one, commit to one, or are @mentioned in
one, by default you’ll be subscribed to the pull request. This means that whenever
anyone comments on, commits to, merges, or closes the pull request, you’ll be sent a
notification. You can see on the right side of Figure 4-17 that I am currently subscri‐
bed to that pull request.

Figure 4-17. I’m subscribed to this pull request

If you’re no longer interested in a pull request that you’ve been subscribed to, just
click the Unsubscribe button and you’ll stop receiving notifications. You will get re-
subscribed automatically if anyone @mentions you again in the comments. If you’re
not subscribed to a pull request that you’d like to keep an eye on, just click the Sub‐
scribe button, as shown on the right in Figure 4-18, and you will start getting notifi‐
cations of any activity on that pull request.

Collaborating on Pull Requests | 55

Figure 4-18. The Subscribe button on a pull request

Best Practices for Pull Requests
There are a few best practices that are worth bearing in mind when working with pull
requests:

Create pull requests for everything
Anytime you want to fix a bug or add a new feature, make sure to do it on a branch
and then create a pull request to get input before merging your work into master.

Make the titles descriptive
Other team members will be looking at the pull requests page to get a sense of what’s
going on. The title should give them a good idea of what you’re working on.

Take the time to comment
Even if you’re not @mentioned. It’ll give you a good sense of what’s going on with the
project and will improve the overall quality of the work.

@mention key people
If you want feedback from marketing, legal, and the operations team, @mention the
necessary users to ensure they see the pull request and make it more likely you get
feedback.

Run the tests
Make sure that at least one developer downloads the latest changes from a pull
request, checks out the appropriate branch, and runs your automated tests. It isn’t
enough just to look at the code visually for nontrivial changes.

Have a clear policy for approving pull requests
Most companies require that one or two people other than the primary author of the
pull request review and provide a :+1: before the pull request is merged in.

While pull requests are used to collaborate on work that is being done, Issues is a tool
for describing bugs or new feature requests that should be discussed or worked on.

Issues
GitHub Issues provides a lightweight, easy-to-use tool for managing outstanding
work—whether it’s bugs that need to be fixed or new features that need to be built.

56 | Chapter 4: Collaboration

Generally, when I start a new project, I’ll start by managing both bugs and features
using GitHub Issues, and I’ll move to another tool like Pivotal tracker, JIRA, Light‐
House, Trello, or Asana only if I need features that Issues doesn’t provide.

Creating a New Issue
To create a new issue, click the Issues tab and then click the “New issue” button,
shown in Figure 4-19.

Figure 4-19. The “New issue” button

When you click the “New issue” button, you’ll see a form similar to Figure 4-20 for
entering the details of the issue you want to document.

Issues | 57

Figure 4-20. The “New issue” form

Enter a descriptive title that will quickly give people a sense of the bug or feature you
want to describe. If you know who should be working on the issue, you can select that
person from a drop-down list of contributors by clicking the button to the right of
the “No one is assigned” text label. To the right of that label, you can also select a
milestone if you’re assigning issues to sprints or other deadlines, and then enter a
more comprehensive description below in the comment field. On the right you’ll
notice a list of labels. Select all of the labels that apply, and then click the green “Sub‐
mit new issue” button at the bottom of the page to create the issue.

Managing Milestones for Issues
The milestones feature of Issues is often used to assign issues to a particular sprint or
an external deadline like “July 29th investor presentation.” To add a new milestone,
click the Issues tab on the right side of the page. Then click the Milestones button in
the upper-left portion of the screen next to “Issues,” “Pull requests,” and “Labels.”
You’ll see the view look very similar to issues and pull requests, and on the right you’ll
see a button to create a “New milestone,” as you can see in Figure 4-21.

58 | Chapter 4: Collaboration

Figure 4-21. The “New milestone” button

Click the “New milestone” button and you’ll see a form similar to Figure 4-22 asking
you for a title, an optional description, and an optional due date.

Figure 4-22. Adding a new milestone

Enter at least a title and click the “Create milestone” button at the bottom right of the
page; you’ll see the new milestone added to your list of milestones, as shown in
Figure 4-23. You can now edit the milestone, close it, delete it, or browse a list of the
issues associated with the milestone.

Issues | 59

Figure 4-23. The new milestone

Managing Labels for Issues
You’ll probably also want to create some custom labels for your project. Click the
Labels button in the upper-left portion of the screen next to “Issues,” “Pull requests,”
and “Milestones.” From this page, shown in Figure 4-24, we’ll be able to edit titles and
colors, and delete and create new labels.

Figure 4-24. The Labels page

To delete a label, click Delete on the right side of that label’s row. To edit a label, click
Edit; it will change to allow you to edit both the text and the color for the label, as
shown in Figure 4-25.

60 | Chapter 4: Collaboration

Figure 4-25. Editing a label

If you want to add a new label, click the “New label” button and you’ll see a text box,
a set of colors to choose from, and a “Create label” button, as shown in Figure 4-26.

Figure 4-26. Adding a new label

Commenting on Issues
As with pull requests:

• To comment on an issue, just click the issue, scroll down to the comment box,
enter your comment, and click the Comment button.

• Make sure to take a little time every day to see if there are any new issues, and
respond to any @mentions ASAP.

• Feel free to use emoji and animated gifs to add a little fun to the process of col‐
laboration.

Referencing Issues in a Commit
If you make a commit that either relates to or fixes an issue, just include a pound sign
(#) followed by the number of the issue somewhere in the commit message, and the
commit will show up in the history for that issue. Prefix the issue number with a
word like “closes,” “fixes,” or “resolves” if the commit solves the issue, and when that

Issues | 61

commit is merged into your default branch (usually master), the issue will be closed
automatically!

Best Practices for Issues
 Here are some best practices to consider when thinking about how best to use Git‐
Hub issues:

Create “Bug” and “Feature” labels
To make it easy to just see outstanding bugs or features.

Use milestones if they fit your workflow
If you have either external deadlines or an internal cadence based around something
like sprints, feel free to use milestones to assign issues to delivery dates. If you don’t
use date-based deliveries, consider using milestones (without dates) to group like
pieces of work. For example, you could have a milestone for “Complete site redesign”
and another one for “Launch e-commerce features.”

Be careful when assigning issues
Generally, it’s better for members of your development team to “pull” the work
they’re interested in rather than for you to “push” a bunch of work for them to do.

Make extensive use of labels
In addition to high-level labels to distinguish “Bugs” and “Features,” you can use
labels for a range of other purposes. Consider adding labels to track the status of
work, to assign the work to different groups (“iOS,” “server side,” “frontend,” etc.),
and even for tracking other interesting information like the severity of a bug or the
business objective that the new feature is designed to support.

Wikis
At some point in the life of your project, your README.md file will start to get too
long to be usable. At that point (if not before), you should consider using the wiki
feature in GitHub.

A wiki is a very simple content management system that makes it easy for a group of
collaborators to build a set of interlinked pages. Typically, GitHub wikis are used for
capturing end-user documentation, developer documentation, or both so that all of
the information relating to a project is accessible through the project’s GitHub page.

Getting Started with a Wiki
If your project doesn’t yet have a wiki, start by going to Settings and scrolling down to
the Features area, as shown in Figure 4-27. Make sure that the Wikis checkbox is
selected. This is also a chance to check the next box if you’re going to be creating a

62 | Chapter 4: Collaboration

public project and want to limit it so that only collaborators on the project are able to
update the documentation on the wiki.

Figure 4-27. Ensuring that wikis are enabled

Once you’ve ensured that you have wikis enabled, click the Wiki tab on the right side
of any page, and if you haven’t yet added any content, you’ll see a page like
Figure 4-28.

Figure 4-28. The default wiki page

Click the green “Create the first page” button, and you’ll see a page similar to
Figure 4-29.

Wikis | 63

Figure 4-29. Creating your first wiki page

By default the first page is called “home,” although you can change this by editing the
title. Then you can enter your content in the text area. You’ll notice that there are a
number of buttons above the text area for styling, but this is deliberately not a full, in-
place WYSIWYG (what-you-see-is-what-you-get) editor. Instead, the buttons will
just insert the appropriate markdown into the text area. If you want to see what it’ll
look like, click the Preview tab above the formatting buttons and you’ll see the mark‐
down rendered, as shown in Figure 4-30.

Figure 4-30. Previewing your new wiki page

If you click the “Edit mode” drop-down list, you get the option of changing to a range
of different selected formatting syntaxes, as you can see in Figure 4-31. However, I’d
recommend using markdown as it’s the same format used by the GitHub team and is
used in other areas within GitHub, such as issues and pull request comments.

64 | Chapter 4: Collaboration

Figure 4-31. Alternative editing formats

When you’re done with the content, enter a short (optional) description in the “Edit
message” text box to describe why you made the change, and click the “Save page”
button.

Adding and Linking to a Page on Your Wiki
Anytime you want to add a new page to your wiki, just click the “New page” button at
the top right of any wiki page and it’ll allow you to add a page to the site. Once you’ve
added the page, it will appear in the Pages section to the right of the screen, as you
can see in Figure 4-32.

Figure 4-32. The Pages list in a wiki

To add a link to a new page from an existing page, start by using the Pages list to nav‐
igate to the page you want to add a link to. Then copy the URL from your browser for
that page to the clipboard—we’ll need that in a moment. Next, use the Pages list to
navigate to the page you want to add the link on. Click the Edit button at the top of
that page to the right. Go to the place in the content are a where you want to add the
link and click the link button in the top bar (it looks like two circles linked together).
Clicking it pops up a dialog box, as shown in Figure 4-33.

Wikis | 65

Figure 4-33. The Insert Link dialog box

In the first box, type whatever you want the link text to be—ideally something that
describes the page it’s linking to. Then in the URL text box, paste the URL of the wiki
page you want to link to from your clipboard.

If you’d really like to make the most of your wiki (or issues or pull request com‐
ments), make sure to check out this page that provides a really good introduction to
GitHub flavored markdown.

GitHub Pages
Wikis are a great tool for creating documentation on GitHub, and because they live
right next to the code, they’re much more likely to be kept updated than a separate
document. However, sometimes you want to create a more customized website to
share information about yourself, your organization, or your project. That’s where
GitHub pages come in. GitHub pages is a feature that allows you to create and host
web pages right on GitHub.

Creating a Website for Your Project
Whenever you create a repository on GitHub, you have the option of adding GitHub
pages to provide a web page for promoting or describing the project. To get started
with GitHub pages, click Settings, scroll down to the GitHub Pages area, and click the
“Automatic page generator” button. You’ll see a screen similar to Figure 4-34.

66 | Chapter 4: Collaboration

https://github.github.com/github-flavored-markdown/

Figure 4-34. The GitHub pages form

The form allows you to enter a project name, a tagline, a body where you can create a
first cut of the content for the page using markdown, and if you want, there is an
option to add a tracking ID to record traffic information using Google Analytics.
Once you’re done with the first page, click the “Continue to layouts” button, which
takes you to a page similar to Figure 4-35, where you can pick from a range of pre-
designed themes to get started with.

GitHub Pages | 67

Figure 4-35. Selecting a layout for your GitHub pages site

When you’re happy with the look and feel, click Publish page toward the top right of
the page, and your website will be created. You can view the website at http://organi‐
zation_name.github.io/projectname. For example, I just created a web page for a
project called github-example that is under the pragmaticlearning organization, and
the page is available at http://pragmaticlearning.github.io/github-example.

Under the hood, when you create a GitHub page for a project, it adds a new gh-pages
branch to your project. Select that branch from the drop-down list and you’ll see a
screen similar to Figure 4-36, which shows the generated website code that you can
customize if you’re comfortable working with HTML and CSS.

68 | Chapter 4: Collaboration

http://organization_name.github.io/projectname
http://organization_name.github.io/projectname
http://pragmaticlearning.github.io/github-example

Figure 4-36. The contents of your gh-pages branch

Creating a Website for Yourself or Your Organization
If you want to create a website for yourself or your organization using GitHub pages,
you need to create a project named username.github.io. For personal and organiza‐
tional GitHub pages, instead of having a gh-pages branch, the contents of your mas‐
ter branch are used to build your website.

If you want to create a website for your organization, go to the organization home
page and click the “+ New repository” button. Make sure to make the repository
name “organization_name.github.io,” and then check the “Initialize this repository
with a README” checkbox, as shown in Figure 4-37.

GitHub Pages | 69

Figure 4-37. Creating a GitHub pages repo for an organization

If you create such a project, click the Settings link, and scroll down to the GitHub
Pages section, you’ll see that it shows that you’ve already been published as a GitHub
Pages website (see Figure 4-38).

Figure 4-38. The settings tab for a GitHub pages organization site

If you know HTML and CSS, you can just build your website here. If you want to take
advantage of the built-in generator, you can overwrite the project by clicking the
Automatic page generator button, which will work just as it did for the project Git‐
Hub pages websites.

70 | Chapter 4: Collaboration

CHAPTER 5

Creating and Configuring

So far we’ve looked at how to view, edit, and collaborate on projects. In this chapter
we’re going to go through the process of creating and configuring a GitHub reposi‐
tory for a new project.

If you’re working with developers on a contract basis, you’ll want to create the reposi‐
tory they use to work on. By creating the repo, it means that you’ll always have access
to the code and the additional information contained in pull requests, issues, and
wikis. Once you’ve created the repo, you can then add the developers as collaborators
so they’ll have access to the project—until you decide to revoke it. You do not want
contract developers to create the repo for you. If they do, they’ll be able to remove
you from the project at any time.

Creating a Repository
To create a new project on GitHub, click the + sign to the right of your username at
the top right of the page. Then click the “New repository” option in the drop-down
list. You’ll see the new repository form, as shown in Figure 5-1.

71

Figure 5-1. The new repository form

The first thing to do is decide whether to create the repository under your username
or under an organization. You can see in Figure 5-2 a list of the possible organizations
to which I could add a new repository. If you don’t have access to any organizations,
you’ll just leave this defaulted to your username. Remember, you’ll always be able to
transfer the project later if you want to.

72 | Chapter 5: Creating and Configuring

Figure 5-2. Selecting who should own the new repository

The next step is to give the repository a name. Names should be comprised of letters,
numbers, hyphens, and/or underscores. Any other characters will be replaced with a
hyphen.

After entering the name, you need to decide whether to make the repository private
or not. Public repositories can be viewed by anyone. Private repositories can be
viewed only by people that you specifically invite as collaborators. In either case, the
project can be modified only by people you add as collaborators.

Generally, if your code is commercially sensitive, you’ll pay the few dollars a month to
be able to keep it private. If it isn’t, you can just create a public repository, and it won’t
cost you a thing. If you don’t see the option to make the repository private, you’ll

Creating a Repository | 73

need to upgrade the user or organization you’re creating the project under to allow it
to host private repositories.

The final decision you’ll need to make when creating a new repository is whether or
not to initialize it with a README file by checking the checkbox, as shown in
Figure 5-3.

Figure 5-3. Initializing a repository with a README.md

Most developers will not check the box to initialize the repo. They’ll just create a
project locally, save it using Git, and then push their work up to GitHub. However, if
you’re not a developer, you’ll probably want to initialize the project with a README
as it allows you to create a project without having to create a local Git repository and
upload it. Then your developers will be able to clone (download) the repo and add all
of their code. Once you’re ready, click the Create repository button, and the new repo
will be created.

If you initialize the repo with a README, it will create a project and take you to a
screen that looks something like Figure 5-4. That project is ready for your developers
to clone and start committing to.

74 | Chapter 5: Creating and Configuring

Figure 5-4. A new project initialized with a README.md

If you don’t initialize your repo, you’ll see a screen like Figure 5-5. Notice that you or
someone on your team is going to have to upload an existing Git repository before
anyone will be able to clone or work with this repository.

Figure 5-5. A new project that needs a repository to be uploaded

Creating a Repository | 75

Adding Collaborators
Once you’ve created and initialized your repository, the next step is to add any collab‐
orators. If you’ve created a public repository, you may not need to add collaborators,
especially if you’re just working with people occasionally. Ask them to fork your repo
and send you a pull request any time they have a contribution to make. However, if
you created a private repo or you have people who will be working on the project reg‐
ularly, you should add them as collaborators.

If you’ve added the repository to an organization, you can manage access using
teams, which we’ll look at later in this chapter. However, if you just added the repo to
your personal account, you’ll have to add collaborators individually.

To add collaborators, click the Settings link in the bottom-right corner of the screen
and then click the Collaborators tab, as shown in Figure 5-6. You may be asked for
your password just to confirm that it’s you making the change.

Figure 5-6. The Settings link and the Collaborators tab

To add collaborators, you’ll need to know the GitHub usernames of the people you
want to work with. Start typing a username, and the name will auto-complete, as
shown in Figure 5-7. Select the auto-completed name and then click the “Add collab‐
orator” button.

76 | Chapter 5: Creating and Configuring

Figure 5-7. Auto-completion of a collaborator

Once you’ve added collaborators, it’s worth taking a little bit of time to go through the
other configuration options to see if there’s anything else you want to set up.

Configuring a Repository
To configure a repository, start by clicking the Settings link at the bottom right of the
page. By default you’ll go to the Options tab within Settings, as shown in Figure 5-8,
which allows you to configure some high-level settings.

Figure 5-8. The Settings→Options screen

The first option is to rename the repository. If you change the repo name in the text
box, the Rename button will become active, allowing you to change the name of the
project. Don’t worry if your developers are already connected to the project. They
won’t have to change anything—anybody using the old name or URL to access the
project will be redirected automatically.

You also get the option to change the “Default branch” from master to any other
branch. Generally it’s best to leave this option alone, but if your development team

Configuring a Repository | 77

really wanted to create a new default branch, they could do so and you could make it
the default branch here. The default branch is used for features like auto-closing of
issues. Usually, when you have a commit message that says something like “closes
#10” or “fixed #10,” when that commit is merged into the master branch, it will auto‐
matically close issue #10. However, it’s really when the commit gets merged into the
default branch, so if you wanted to have a default branch named “trunk” or some‐
thing else, you could do that if you really wanted to.

On the Settings→Options screen, you also get the chance to configure wikis and
issues. By default, new projects have both wikis and issues enabled. Just uncheck the
boxes to disable them. If you want to limit the wiki on a public project so that only
collaborators can edit the content, check the necessary box.

As you go further down the Settings→Options screen, you’ll see some additional con‐
figuration settings, as shown in Figure 5-9.

Figure 5-9. The Settings→Options screen (continued)

If you’d like to add a website to the project, click “Automatic page generator” in the
GitHub Pages area to configure that.

Finally, we come to the “Danger Zone.” It allows you to change the accessibility of a
project between private and public. It also gives you the option to transfer the owner‐
ship of the project to another user or organization and, if you really want, it allows
you to delete the repository. Don’t worry about hitting the Delete button accidentally.

78 | Chapter 5: Creating and Configuring

If you click the Delete button, you’ll be asked to confirm that you really want to do
that, as shown in Figure 5-10.

Figure 5-10. The Delete confirmation pop-up

Integrating with Other Systems
Sometimes you’ll want to connect GitHub to other pieces of software that you use—
anything from continuous integration servers that regularly run automated tests, to
project management or bug tracking software. There are three ways of connecting
software to a GitHub repository.

One option is the GitHub API. Go to http://developer.github.com, as shown in
Figure 5-11, and click the API link at the top of the page to learn how to use the Git‐
Hub API to do pretty much anything with a repository automatically.

Integrating with Other Systems | 79

http://developer.github.com

Figure 5-11. The GitHub developer page

The API allows your developers to query and change almost anything they want with
a repository, but sometimes they’ll want to just be notified when a specific action
occurs. For example, they might want their program to get notified every time some‐
one adds a new issue or pushes work up to GitHub. If they want to have notifications
automatically sent to their project, they should be using the Webhooks option that
can be configured by going to Settings → Webhooks & Services, as shown in
Figure 5-12.

Figure 5-12. The Webhooks & Services page

Clicking the Add webhook button toward the top-right corner of the screen takes you
to the “Add webhook” screen, as shown in Figure 5-13.

80 | Chapter 5: Creating and Configuring

Figure 5-13. The “Add webhook” screen

This screen allows you to tell GitHub to send a notification to your custom software
every time a particular type of event occurs. You need to provide the URL that your
software will be listening on, the kind of content you want delivered, an optional
secret (so that not just anyone can send fake information to that URL), and what
kinds of events you’d like to have the software be notified about. If your developers
are implementing a custom integration, they’ll run you through exactly how they’d
like to have the webhook(s) configured.

The final integration option is one that doesn’t require developers. Go to Settings →
Webhooks & Services, and click the “Add service” link. A drop-down list will appear,
similar to Figure 5-14.

Integrating with Other Systems | 81

Figure 5-14. The “Add service” drop-down list

If you’re using popular software with a prewritten integration, start typing the name
of the software into the “Filter services” text box and fairly quickly you should see the
name of the software. Click the name to display a screen that tells you what you need
to do to integrate with that software.

For example, let’s say you wanted to integrate with Basecamp. Start typing “Base‐
camp,” select Basecamp from the list, and you’ll see a screen like Figure 5-15 asking
you to enter the URL of your Basecamp project and the credentials that you want Git‐
Hub to use to log in.

82 | Chapter 5: Creating and Configuring

Figure 5-15. Integrating GitHub with Basecamp

Each integration is different—both in terms of what information you need to provide
to connect to the third-party software and in terms of the functionality provided by
the integration. As you can see in Figure 5-16, the install notes for integrating with
Asana are quite different than those for integrating with Basecamp.

Integrating with Other Systems | 83

Figure 5-16. Integrating GitHub with Asana

“Deploy keys” is the last tab in the Settings section for a GitHub repository. Clicking
the link displays a page similar to Figure 5-17.

Figure 5-17. Configuring deploy keys

84 | Chapter 5: Creating and Configuring

In addition to other people needing access to your repository, sometimes you’ll want
to provide the ability for other software to connect to it. For example, your develop‐
ment team will probably create an automated build system that will allow them to just
click a button to deploy the latest changes from GitHub to your production server.

If they do that, the build system will need the ability to access the repository. There
are a number of ways of providing that access. One option is to create a machine
account. This is where you create a new GitHub user just for your build machine and
add that user as a collaborator. That’s a particularly good approach if your build sys‐
tem needs access to a number of different repositories.

Another option is just to create a deploy key. A deploy key is an SSH key (a Secure
Shell key) that is created to allow a particular piece of software to access a single
repository on GitHub. Don’t worry about this too much, but if your development
team asks you to set up a deploy key, just ask them to email you the public SSH key
and to give you a name for the key (e.g., “build server”), and then you can use that
information to fill out the “Add deploy key” screen, as shown in Figure 5-18.

Figure 5-18. Adding a deploy key to a GitHub repo

Personal Versus Organizational
When you create a repository, the first question you need to answer is whether you
should add the repository to your personal user account or whether you should add it
to an organization instead.

If you are creating a personal project (whether for free or for profit), you probably
want to just create it under your personal GitHub account. However, if you’re creat‐

Personal Versus Organizational | 85

ing a project that you know you will want to be owned and/or managed by an entity
other than yourself—whether a not-for-profit or a corporation—you should probably
create an organization first and then create the project under the organization so you
can easily transfer ownership of the project over time.

This isn’t the most important decision. You can always transfer the ownership of a
repository, so if in doubt, feel free to just create the repo under your user account.
However, if you know that you’re going to be building a project for an organization,
you might want to create the organization first.

Creating an Organization
To create an organization, log in to GitHub, click the + sign to the right of your user‐
name at the top right of the page, and from the drop-down list shown in Figure 5-19,
click the “New organization” option.

Figure 5-19. The first step in adding a new organization

Clicking the link will take you to a page similar to Figure 5-20 that will allow you to
create a new organization.

86 | Chapter 5: Creating and Configuring

Figure 5-20. Creating a new organization

Start by giving the organization a name and entering the email address for the billing
contact. You’ll then want to select a plan. If all of your projects are openly accessible,
you can create an open source organization for free. If you want to host private repo‐
sitories, you’ll need at least a bronze plan that will allow you to host up to 10 private
repositories (and unlimited public repositories) for $25 a month.

If you choose to create an organization that can host private repositories, you’ll be
asked for either credit card or PayPal information to make the monthly payments.

Once you’ve created an organization, the next thing you’ll want to do is set up some
teams.

Managing Teams
If you create a repository under your user account, you can just add collaborators
directly to a project. However, if you create a repository under an organization and
you want to allow other people to access it, you’ll have to create teams.

By default, when you create an organization, GitHub will create a team called “Own‐
ers” and you’ll be assigned to that team. If you want to allow other people access to

Managing Teams | 87

the project, you’ll have to either add them to the Owners team for the organization or
you’ll need to create a new team.

Most of the time you’ll want to create a new team with limited permissions. I’ll often
create a team called “Collaborators” for people I want to work with on a project. If I’m
within a larger organization, I might also create teams for business units or functions
like marketing and legal.

To create a team, go to the organization home page and click the Teams link on the
right side of the page, as shown in Figure 5-21.

Figure 5-21. The organization home page

When you get to the Teams page, you should see a screen similar to Figure 5-22. It
will show a list of all of the teams within your organization and a list of icons showing
the members of each team.

Figure 5-22. Viewing the teams within your organization

88 | Chapter 5: Creating and Configuring

To create a new team, click the green “+ New Team” button at the top right of the
content area. You’ll see a screen similar to Figure 5-23.

Figure 5-23. Adding a new team to an organization

Give your team a name. If you’re just working with a couple of developers on a single
product, it might be something as simple as a “Collaborators.” If you are part of a
larger organization, the name could be the business function or even the name of the
project team: “mobile devs,” “API team,” etc.

You can add an optional description if the intent of the team wouldn’t be obvious to
members of your organization, and then provide the team with read, write, or admin
access. If you provide read access, they’ll be able to only view, clone, and use the soft‐
ware. If you provide write access, they’ll also be able to push to the repo. If you pro‐
vide them with admin access, they’ll also be able to add additional collaborators to
the projects to which they have access. Then click the “Create team” button.

Once you’ve created a team, the next step is to add members to the team. As shown in
Figure 5-24, just start to enter the GitHub username for each person you want to add
to the team, and the name will auto-complete.

Managing Teams | 89

Figure 5-24. Adding a new user to a team

If you ever need to remove someone from a team, just click the team and then click
the Remove button to the right of the username you want to delete. If you need to
delete a team, on the Teams page, click the team you want to delete and you’ll see a
screen similar to Figure 5-25.

Figure 5-25. The team detail page

Click the Settings button on the left side of the screen and you’ll see a screen similar
to Figure 5-26.

90 | Chapter 5: Creating and Configuring

Figure 5-26. The team settings page

 If you want to delete the team, click the “Delete this team” button at the bottom of
the page. You’ll be asked whether you’re sure. Just click OK, and the team will be
deleted.

Congratulations! If you’ve gotten this far in the book, you should be ready to do
almost anything with a GitHub repo. You should be able to view the state of a project,
edit the files in a project, collaborate with your team, and create and configure a new
repository. In the next chapter, we’re going to look at how you can use the GitHub for
Windows or GitHub for Mac desktop client to download a copy of a GitHub reposi‐
tory and to make some simple changes to it on your laptop.

Managing Teams | 91

CHAPTER 6

Downloading

You may never need to clone (download) a copy of a repository at all. As we’ve seen
in this book, you can use the GitHub web interface to view the state of a project, edit
content, collaborate with your team, and set up and configure a repository. However,
sometimes it’s necessary to clone a repository. In this chapter we look at why you
might want to clone a repo and how you would do so using either GitHub for Mac or
GitHub for Windows. If you’re running Linux, you’ll probably be better off just
installing Git directly and learning the command-line interface for working with Git
repositories, but that’s outside of the scope of this book.

Why Clone a Repository?
There are a number of reasons why you might decide to clone a repository. Some of
the most common ones include the following:

Creating a backup
When you clone a repository, it creates a full copy of the project—including all
branches, tags, and history—on your computer. Sometimes it’s worth cloning a
repository and pulling the changes down regularly just to know that you have a full
copy of the project safely on your machine.

Editing in an IDE
The web-based interface isn’t as powerful as editing in an IDE (Integrated Develop‐
ment Environment) or your favorite text editor, so if you’re editing content all day,
you’re going to want to do that locally on your machine.

Editing offline
You can’t edit directly on GitHub unless you have an Internet connection, so if you
want to be able to keep working on your project whether or not you’re connected,
you’re going to want to clone your repo and work on it locally.

93

Editing multiple files
One of the key limitations when editing on GitHub directly is that there is no way to
group a set of related changes and make them as a single commit.

Running the code
Sometimes you’ll want to be able to run the code locally to test exactly how it works.

Running the tests
If you have automated tests for a project, it’s also good to be able to run those tests
locally to confirm that recent changes haven’t broken the software.

If you need to do any of the preceding things, you’ll need to either install the Git ver‐
sion control system directly onto your computer or you’ll need to install a GUI
(graphical user interface) that makes it easier for you to use Git to perform common
operations.

A number of different applications are available that provide a GUI for working with
your Git repositories. In this chapter, we’re going to cover the GUIs provided by Git‐
Hub: GitHub for Mac and GitHub for Windows.

GitHub for Mac
To get a copy of GitHub for Mac, start by going to https://mac.github.com/. You
should see a screen similar to Figure 6-1.

Figure 6-1. The GitHub Mac web page

Click the “Download GitHub for Mac” link to download a ZIP file to the folder that
your browser downloads files to—usually that will be your Downloads folder. Double-

94 | Chapter 6: Downloading

https://mac.github.com/

click the ZIP file, and it should expand to a file called GitHub.app in the same folder,
as shown in Figure 6-2.

Figure 6-2. The GitHub for Mac ZIP file and application file

Drag the GitHub.app file into your Applications folder. Then click the Applications
folder, and double-click the GitHub.app file. You might see a security warning to let
you know that GitHub.app is an application downloaded from the Internet, as shown
in Figure 6-3. That’s fine—just click the Open button in that dialog box, and the Git‐
Hub application will start.

Figure 6-3. The warning that you’re running a program downloaded from the Internet

You should see a screen similar to Figure 6-4 thanking you for trying GitHub for
Mac.

GitHub for Mac | 95

Figure 6-4. The setup wizard for GitHub for Mac

Click Continue, enter your login and password for GitHub, and click the “Sign in”
button. If you have enabled two-factor authentication to make your account more
secure, you’ll be asked to enter the code that was texted to your mobile phone.

Once you’ve done this, you should see a screen similar to Figure 6-5.

96 | Chapter 6: Downloading

Figure 6-5. Confirming your user account in GitHub for Mac

Click the Continue button again, and you’ll be prompted for some information to
configure Git. In the first text box, enter the name you want to be known by, and in
the second, enter the email address you’d like your commits to be associated with.
Usually you’ll enter your full name into the first text box and the same email address
you use for your GitHub account in the second one, as I’ve done in Figure 6-6.

Figure 6-6. Configuring your Git settings

Just below the text boxes is a section called Command Line. Click the Install Com‐
mand Line Tools button. By installing these tools, if you do ever want to use Git on
the command line, you’ll be able to. You will have to enter your system’s administra‐
tive credentials. When you’re done, you should see a screen similar to Figure 6-7

GitHub for Mac | 97

showing that the installation is complete and the command-line tools have been
installed successfully.

Figure 6-7. The command-line tools have been installed successfully

Click the OK button and then the Continue button and you’ll be taken to a screen
that allows you to find local repositories. For now, just click the Done button and
you’ll go to the home screen in GitHub for Mac that looks like Figure 6-8.

Figure 6-8. The home screen in GitHub for Mac

98 | Chapter 6: Downloading

Once you’ve configured GitHub for Mac, don’t worry if you get an email similar to
the one shown in Figure 6-9 letting you know that “A new public key was added to
your account.” This is just GitHub letting you know that you’ve successfully connec‐
ted GitHub for Mac to your GitHub account. It does that by adding a new public key
that will allow GitHub for Mac to connect to your GitHub account.

Figure 6-9. The email from GitHub letting you know you’ve added a new public key

Now that you’ve installed GitHub for Mac, go to a repository that you’d like to clone
(download) and that you own or are a collaborator on. You can clone any public repo,
but you won’t be able to push your changes back up to GitHub unless you’re either an
owner or a collaborator. If you look at the bottom-right corner of the page, you
should see the “Clone in Desktop” button, as shown at the bottom right of
Figure 6-10.

GitHub for Mac | 99

Figure 6-10. A repo with the “Clone in Desktop” button

Click the “Clone in Desktop” button. The exact result when you click the button will
depend on the browser and version that you’re running. In Chrome, I get the pop-up
in Figure 6-11 asking whether I should let the browser talk to GitHub.app. You should
get something similar.

100 | Chapter 6: Downloading

Figure 6-11. External protocol request to launch GitHub for Mac

You should allow the connection—in my case, I click the Launch Application button
to launch GitHub for Mac and open a file explorer window, as shown in Figure 6-12.

GitHub for Mac | 101

Figure 6-12. Selecting a directory to clone a repo into

Select the directory you’d like to clone the repo into, click the Clone button, and Git‐
Hub for Mac will clone the repository for you. Once the repo has been successfully
cloned, you should see a screen similar to Figure 6-13.

102 | Chapter 6: Downloading

Figure 6-13. Viewing a repo in GitHub for Mac

At the top left is a + icon that you can use to create a new repository in a given direc‐
tory or clone a repo from GitHub. Below that, the left panel shows a list of the reposi‐
tories that you’re working with locally, and it can be hidden by clicking the blue box
at the top of the page.

At the top of the screen, just to the right of the blue box is an icon that you can click
to create a new branch, and a drop-down list for selecting which branch you want to
be looking at and working on. Below that, when you select the default Changes tab,
you can see a text box where you would enter a commit message if you had changes
to commit.

Making a Commit Using GitHub for Mac
To make a new commit using GitHub for Mac, you probably want to start by creating
a new branch. In Figure 6-14 you can see that I’m creating a branch called “new_fea‐
ture.”

GitHub for Mac | 103

Figure 6-14. Creating a new branch

If you look to the right of the button you used to create the branch, you should now
see that you’re on the branch you just created. Now you need to add the content. Git‐
Hub for Mac isn’t an IDE or a text editor. It’s just a tool for committing your changes
to Git, so you’re going to need to use a text editor or some other tool to create a new
file and put it in your project directory. I created a new file called new_feature.html
and saved it in the project directory. Create a new file using a text editor, save it in the
project folder, and then go back to GitHub for Mac. You should see your changes in a
screen similar to Figure 6-15.

104 | Chapter 6: Downloading

Figure 6-15. GitHub for Mac showing changes to be committed

Click in the Uncommitted Changes→Summary text box, enter a commit message,
and then click the Commit & Sync button, and your changes will be saved to history
and then pushed up to the remote repository.

If you do not have permission to push to the remote repository or if you are not
signed into GitHub for Mac, you will see a screen similar to Figure 6-16.

GitHub for Mac | 105

Figure 6-16. Authentication failed message

If that happens, check your credentials by opening the “Preferences - Accounts” win‐
dow. Once you’ve successfully authenticated and confirmed that you are either an
owner or collaborator for the project, you can click the green button to the right of
the Commit button to sync your unsynchronized changes, uploading them to Git‐
Hub.

Viewing Changes in GitHub for Mac
There are three other tabs in the top bar of GitHub for Mac: History, Branches, and
Settings. History shows you a list of commits on your current branch, as shown in
Figure 6-17.

106 | Chapter 6: Downloading

Figure 6-17. The history view

If you click the Branches tab, you’ll see a screen similar to Figure 6-18.

GitHub for Mac | 107

Figure 6-18. The branches view

This shows a list of all of the branches that you’ve created locally and all of the other
branches that are on GitHub. Finally, if you click the Settings tab, you’ll see a screen
similar to Figure 6-19.

108 | Chapter 6: Downloading

Figure 6-19. The settings view

In the Settings screen, you get the ability to configure two things. You could change
the remote—something you’re not likely to do very often. However, you can also tell
Git to ignore certain files. Typically, you don’t want to upload operating system files
(like .DS_Store files from a Mac), IDE configurations, executable files, log files, or
large binary files into a Git repository. If you put the names of any such files into
“Ignored files,” it’ll add those to a .gitignore file that you can then commit and sync so
nobody else on your project will accidentally commit those files either.

Hopefully, now you have enough information to be able to clone and commit to a
repository locally should you need to do so using the GitHub for Mac application.
Now we’re going to look at the comparable application for Windows.

GitHub for Windows
To get a copy of GitHub for Windows, start by going to https://windows.github.com/.
You should see a screen similar to Figure 6-20.

GitHub for Windows | 109

https://windows.github.com/

Figure 6-20. The GitHub Windows web page

Click the Download GitHub for Windows link and specify whether you want to Run,
Save, or Cancel. You should click Run. You may see an application install security
warning such as Figure 6-21. If so, just click the Install button, and the app will be
downloaded and installed.

Figure 6-21. An application install security warning

110 | Chapter 6: Downloading

Start up the GitHub for Windows app, and you should see a screen similar to
Figure 6-22 welcoming you and asking you to sign in.

Figure 6-22. The setup wizard for GitHub for Windows

Enter your username or email and password for GitHub and click the “Log in” but‐
ton. If you have enabled two-factor authentication to make your account more
secure, you’ll be asked to enter the code that was texted to your mobile phone, as
shown in Figure 6-23.

GitHub for Windows | 111

Figure 6-23. Two-factor authentication

Once you’ve done this, you should see a screen asking you for some information to
configure Git. In the first text box, you should enter the name you want to be known
by, and in the second, enter the email address you’d like your commits to be associ‐
ated with. Usually you’ll enter your full name into the first box and the same email
address you use for your GitHub account in the second one, as I’ve done in
Figure 6-24.

Figure 6-24. Configuring your Git settings

112 | Chapter 6: Downloading

Click the Continue button and you’ll be taken to a screen that allows you to find local
repositories. For now, just click the Skip button to go to the home screen in GitHub
for Windows that looks like Figure 6-25.

Figure 6-25. The home screen in GitHub for Windows

Once you’ve configured GitHub for Windows, don’t worry if you get an email like the
one shown in Figure 6-26 letting you know that “A new public key was added to your
account.” This is just GitHub letting you know that you’ve successfully connected Git‐
Hub for Windows to your GitHub account. It does that by adding a new public key
that allows GitHub for Windows to connect to your GitHub account.

Figure 6-26. The email from GitHub letting you know you’ve added a new public key

Now that you’ve installed GitHub for Windows, go to a repository that you’d like to
clone (download) and that you own or are a collaborator on. You can clone any pub‐
lic repo, but you won’t be able to push your changes back up to GitHub unless you’re

GitHub for Windows | 113

either an owner or a collaborator. If you look at the bottom-right corner of the page,
you should see the “Clone in Desktop” button, as shown at the bottom right of
Figure 6-27.

Figure 6-27. A repo with the “Clone in Desktop” button

Click the “Clone in Desktop” button. The exact result when you click the button may
depend on the browser and version that you’re running. In Internet Explorer, I get
the pop-up in Figure 6-28 asking whether I meant to switch apps. You should get
something similar.

114 | Chapter 6: Downloading

Figure 6-28. Confirming that you wanted to open GitHub

Click the Yes button to launch GitHub for Windows and open a file explorer window,
as shown in Figure 6-29.

Figure 6-29. Saving your cloned repository in GitHub for Windows

Select the directory you’d like to clone the repo into, click the Clone button, and Git‐
Hub for Windows will clone the repository for you. Once the repo has been success‐
fully cloned, you should see a screen similar to Figure 6-30.

GitHub for Windows | 115

Figure 6-30. Viewing a repo in GitHub for Windows

At the top left is a + icon that you can use to create a new repository in a given direc‐
tory or clone a repo from GitHub. Below that, the left panel shows a list of the reposi‐
tories that you’re working with locally.

At the top of the screen, just to the right of the blue box is a drop-down list that you
can click to select an existing branch or to create a new branch. Below that, you can
see a text box where you would enter a commit message if you had changes to com‐
mit.

Making a Commit Using GitHub for Windows
To make a new commit using GitHub for Windows, you probably want to start by
creating a new branch. In Figure 6-31, you can see I’m creating a branch called “win‐
dows_feature.”

116 | Chapter 6: Downloading

Figure 6-31. Creating a new branch

If you click the Create button below your new branch name, then look above where
you created the branch, you should now see that you’re on the branch you just cre‐
ated. Now you need to add the content. GitHub for Windows isn’t an IDE or a text
editor. It’s just a tool for committing your changes to Git, so you’re going to need to
use a text editor or some other tool to create a new file and put it in your project
directory. I created a new file called windows_feature.html and saved it in the project
directory. Create a new file using a text editor, save it in the project folder, and then
go back to GitHub for Windows. You should see a new “Uncommitted changes” mes‐
sage. Click it and you should see a screen similar to Figure 6-32.

GitHub for Windows | 117

Figure 6-32. GitHub for Windows showing changes to be committed

Click in the Uncommitted Changes→Summary text box, enter a commit message,
and then click the Commit & Sync button, and your changes will be saved to history.
Then click the Publish button at the top right, and the changes will be uploaded to
GitHub.

Configuring Command-Line Tools in GitHub for Windows
Sometimes it’s useful to be able to use Git on the command line. If you want to be
able to do that, the command-line tools are installed by default, but it’s worth clicking
the Settings icon at the top right of GitHub for Windows. A drop-down list will
appear, as shown in Figure 6-33. Click the Options link.

118 | Chapter 6: Downloading

Figure 6-33. Settings in GitHub for Windows

When you click Options, you’ll see a screen similar to Figure 6-34.

Figure 6-34. Options in GitHub for Windows

One change that’s worth making is to change the default shell from PowerShell to Git
bash. It means that when you launch Start→GitHub→GitHub Shell, it’ll put you in a
shell that will provide access to more applications that you might need such as vi (a

GitHub for Windows | 119

text editor). Once you’re done, click the Update button at the bottom left of the page
to save your changes.

Hopefully, now you have enough information to be able to clone and commit to a
repository locally should you need to do so using the GitHub for Windows applica‐
tion.

120 | Chapter 6: Downloading

CHAPTER 7

Next Steps

We’ve covered a lot of ground in this book. We started by looking at how to view a
project and then moved through the process of forking a project, making edits, and
then collaborating on a single repository. We looked at how to create and configure a
new repository and how to use the GitHub GUI clients to download and work on
repositories locally.

For many people, this is all you’ll need to know. The important next step is to practice
until the skills become second nature and collaborating via GitHub becomes a natural
way for you to work with teams of people on text-based files—whether source code
or other projects.

There are some things that can only or best be done on the command line. For many
people, you never need to make the jump to the command line, but if you’re working
on projects in Git all day, every day, it makes sense to learn how to use Git from the
command line. Jon Loeliger and Matthew McCullough created a great book called
Version Control with Git (O’Reilly), which would be a great next step if you wanted to
learn more about using Git from the command line.

GitHub also provides a number of resources for learning more about both Git and
GitHub. For more information, go to https://training.github.com/.

GitHub is going to become an increasingly important part of the workflow of many
companies. This is a great time to get familiar with it. Best of luck with the journey!

Peter Bell
Brooklyn, NY
July, 2014

121

https://training.github.com/

Index

Symbols
(pound sign), 61
@mention, 49, 56

A
animated gifs, adding to comments, 51
"at-mention", 49, 56
auto-complete, 76
automated build systems, 85
automatic page generator, 78

B
backups, 93
badges, 8
Basecamp, integrating with, 82
best practices

for GitHub Issues, 62
for pull requests, 56

branches
basics of, 3
changing default, 77
checkouts, 4
committing to, 43
feature, 3
incorporating changes in, 30
master, 3
merging, 4
release, 3
showing number of, 21
target, 30
topic, 3
updating, 51
viewing changes in GitHub for Mac, 106

bug tracking software, connecting to, 79

build folders, 41
build systems, automated, 85

C
checkouts, 4
cloning

basics of, 4
with GitHub for Mac, 94-109
with GitHub for Windows, 109-119
purpose of, 93

closing policies, 54, 56, 77
code

development process with GitHub, 74
frequency graphs of, 19
running locally, 94
safeguarding privacy of, 73
testing, 53, 56

collaboration
adding collaborators to repos, 76
benefits of Git for, 2
benefits of GitHub for, 2
committing to a branch, 43
creating pull requests from branches, 46
using GitHub Issues, 56-61
with GitHub pages, 66-70
managing teams, 87-91
on pull requests, 48-56
using wikis, 62-66

command line tools, 97, 118, 121
commenting

on issues, 61
on pull requests, 49

commit messages
basics of, 3

123

default, 27, 54
commits

adding new files, 27
basics of, 3
frequency of, 18
with GitHub for Mac, 103
with GitHub for Windows, 116
referencing issues in, 61
showing number of, 21
tagging, 4
to a branch, 43
tracking time of day, 20
viewing graphs of, 18
viewing history, 9

conflicts, handling, 42
content management systems, 62
continuous integration servers, 79
contract developers

repo creation and, 71
SSH keys and, 85

contributions
adding files, 26
creating folders, 41
creating pull requests, 28-36
editing files, 36
limits of editing on GitHub, 42
to pull requests, 51

(see also pull requests, collaboration on)
renaming/moving files, 39
via a fork, 25
viewing graphs of, 17

copying projects (see forking)
custom labels, in Issues feature, 60, 62

D
"Danger Zone", 78
deploy keys, configuring, 84
distributed version control systems, 1
documentation, 62

(see also wikis)
downloading repos (see cloning)

E
editing (see contributions)
emoji

cheat sheet for, 51
support for in GitHub, 50

F
feature branches, 3
feedback

importance of, 56
providing, 49
requesting, 49, 56
requiring, 55

files
adding, 26
editing, 36, 93
ignoring in GitHub for Mac, 109
listing status of, 37
renaming/moving, 39

folders
build folders, 41
creating, 41
renaming, 41

forking
basics of, 4
making contributions by, 25
steps of, 25

G
gifs, adding animated to comments, 51
Git

basics of, 1
benefits of, 1
folders in, 41
key concepts of, 3
resources for learning, 121
version control system, 94

Git bash, 119
GitHub

accounts and payment plans for, 87
basics of, 1
benefits of, vii, 2
creating new projects in, 71
developer page, 80
documentation through wikis, 62
Issues feature, 56-62
key concepts of, 3
limits of editing on, 42
for Mac, 94-109
project page on, 7
resources for learning, 121
support for emoji, 50
viewing project graphs, 16-24
for Windows, 109-119

GitHub API, 79

124 | Index

GitHub pages, 66-70
creating personal/organizational websites,

69
creating project websites, 66

graphs, 16-24
code frequency, 19
commits, 18
contributors, 17
members list, 22
network, 21
punch card, 20
traffic, 23

GUIs (graphical user interfaces)
for Mac, 94-109
for Widows, 109-119

H
home page, 7, 28

I
IDEs (Integrated Development Environments),

93
integration

with Basecamp, 82
using GitHub API, 79
with other software, 84
with services, 81
using Webhooks, 80

integration servers, connecting to, 79
Issues feature, 56-62

assigning issues, 62
basics of, 4
best practices for, 62
commenting on issues, 61
configuring, 78
creating new issues, 57
managing custom labels, 60, 62
managing milestones, 58, 62
referencing issues, 61
viewing issues, 13

L
labels, managing for issues, 60, 62
Linux, command-line interface for, 93

M
Mac OS

cloning a repo, 99

configuring GitHub for Mac, 97
downloading GitHub for Mac, 94
external protocol request, 100
ignoring files, 109
making commits, 103
public key for, 99
viewing changes, 106

machine accounts, creating, 85
master branch (master), 3
members list, viewing, 22
merging, 4, 54
milestones, 58, 62
moving, files, 39

N
new feature requests (see Issues feature)
notifications, 55, 80

O
open issues, viewing, 13
open source software development, 87
organizations

creating in GitHub, 86
creating project websites for, 69
open source, 87
personal vs. organizational repos, 85

P
pages (see GitHub pages)
pound sign (#), 61
PowerShell, 119
project home page, 7, 28
project management software, 79
projects

collaborating on, 43-70
contributing to, 25-42
creating/configuring repositories for, 71-91
denying access to, 62
viewing, 7-24

pull requests
basics of, 4
best practices for, 56
collaboration on

adding color to comments, 50
closing policies, 54, 56
commenting, 49, 56
contributing to, 51
involving people in, 49

Index | 125

merging, 54
reviewing, 49
testing, 53, 56

creating, 28-36
creating from branches, 46
notifications, 55
purpose of, 48
timing of, 56
titles for, 56
viewing current, 11, 29, 49

pulse view, 15
punch card graphs, 20

R
README.md files, 8, 74
refactoring, viewing graphs of, 19
release branches, 3
renaming

files, 39
folders, 41
repositories, 77

repos (see repositories)
repositories

adding collaborators, 76
configuring, 77
creating, 71
creating organizational, 86
creating project websites, 78
downloading, 93-119

(see also cloning)
forking, 4, 25
integrating with other systems, 79
ownership of, 71, 78
personal vs. organizational, 85
public vs. private, 73, 78
renaming, 77
who should create, 71

S
servers, connecting to, 79
services, adding, 81
software, connecting to GitHub repos, 79
SSH (Secure Shell) keys, 85
subscribing (to pull requests), 55

T
tags, 4
target branches, 30

teams, managing, 87-91
(see also collaboration)

testing, 53, 56, 94
text editors, 93
third-party software, integrating with, 83
traffic graphs, 23

U
unsubscribing (to pull requests), 55

V
version control systems

definition of, 1
distributed, 1
installing, 94

viewing projects
commit history, 9
issues, 13
project page, 7
pull requests, 11
README.md files, 8
the pulse, 15

W
web-based interface

benefits of, 93
limitations of, 42, 93

Webhooks option, 80
websites, creating (see GitHub pages)
wikis

adding/linking to pages, 65
configuring, 78
creating first page, 63
definition of, 4
describing/saving, 65
enabling, 63
getting started with, 62
page content/styling, 64
selecting formatting syntaxes, 64
uses for, 62

Windows OS
cloning a repo, 113
configuring GitHub for Windows, 112
downloading GitHub for Windows, 109
making commits, 116
PowerShell vs. Git bash, 119
public key for, 113

126 | Index

About the Authors
Peter Bell is a contract member of the GitHub training team; the founder of Prag‐
matic Learning—an enterprise training company; the founder of the CTO Summit
series and the Startup CTO School; a regular presenter at technical conferences; and
an adjunct professor at the Columbia School of Business, where he teaches classes on
digital literacy and Big Data. He teaches business people how to get software built
successfully at Learn to Speak Geek!.

Brent Beer has used Git and GitHub for over five years through university classes,
contributions to open source projects, and professionally as a web developer. He now
enjoys his role teaching the world to use Git and GitHub to their full potential as a
member of the GitHub training team.

Colophon
The animal on the cover of Introducing GitHub is a Bare-tailed woolly opossum (Calur‐
omys philander), an arboreal species of marsupial also known as the white-eared
opossum. This species is restricted to only moist forests, and can be found in Brazil,
Bolivia, French Guiana, Guyana, Suriname, Trinidad and Tobago, and Venezuela.
With its prehensile tail—which allows it to climb, balance, and grasp objects—the
white-eared opossum is rarely, if ever, found on the ground and seldom found in the
understory.

Ranging in weight from 140 to 390 grams, the female bare-tailed woolly opossum is
typically smaller than males. It generally has soft and thick fur, which differs depend‐
ing on the animal’s habitat and location. It has a reddish-brown back with gray grada‐
tions along its flanks and a yellow-orange belly. It has a gray head with distinct dark-
brown strips that run down the bridge of its muzzle and out from the dark-brown
eye-rings to the nose. About a quarter of its tail has fur, the rest is furless and cream
to dark gray or brown in color with brown or white spots.

The mating rituals of the bare-tailed woolly opossum is a bit of a mystery. Generally,
individuals are solitary except when males court females. White-eared opossum have
up to three litters per year, depending on resource availability. Females can have up to
seven young at one time, averaging at around four young per litter in the wild; this,
too, depends on resource availability. Bare-tailed woolly opossums have short gesta‐
tion periods (24 days) and extended periods of parental care (up to 120 days of pouch
time and 30–45 days in the mother’s nest). Leaving the mother’s nest is an important
behavior, as demonstrated in captivity when young who have not been removed can‐
nibalize their mother.

http://praglearn.com
http://praglearn.com
http://www.speakgeek.co

The bare-tailed woolly opossum is not listed as a species of concern, which is credited
to its small size and adaptability to various types of neotropical forest. This could
change as deforestation of neotropical regions continues.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Meyers Kleines Lexicon. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Table of Contents
	Preface
	Who This Book Is For
	Beyond Software
	Who This Book Is Not For
	How to Use This Book
	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction
	What Is Git?
	What Is GitHub?
	Why Use Git?
	Why Use GitHub?
	Key Concepts

	Chapter 2. Viewing
	Introducing the Project Page
	Viewing the README.md File
	Viewing the Commit History
	Viewing Pull Requests
	Viewing Issues
	Viewing the Pulse
	Viewing GitHub Graphs
	The Contributors Graph
	The Commits Graph
	The Code Frequency Graph
	The Punch Card Graph
	The Network Graph
	The Members List
	The Traffic Graph

	Chapter 3. Editing
	Contributing via a Fork
	Adding a File
	Creating a Pull Request
	Editing a File
	Renaming or Moving a File
	Working with Folders
	Creating a Folder
	Renaming a Folder

	The Limits of Editing on GitHub

	Chapter 4. Collaboration
	Committing to a Branch
	Creating a Pull Request from a Branch
	Collaborating on Pull Requests
	Involving People with Pull Requests
	Reviewing Pull Requests
	Commenting on Pull Requests
	Adding Color to Comments
	Contributing to Pull Requests
	Testing a Pull Request
	Merging a Pull Request
	Who Should Merge a Pull Request?
	Pull Request Notifications
	Best Practices for Pull Requests

	Issues
	Creating a New Issue
	Managing Milestones for Issues
	Managing Labels for Issues
	Commenting on Issues
	Referencing Issues in a Commit
	Best Practices for Issues

	Wikis
	Getting Started with a Wiki
	Adding and Linking to a Page on Your Wiki

	GitHub Pages
	Creating a Website for Your Project
	Creating a Website for Yourself or Your Organization

	Chapter 5. Creating and Configuring
	Creating a Repository
	Adding Collaborators
	Configuring a Repository
	Integrating with Other Systems
	Personal Versus Organizational
	Creating an Organization
	Managing Teams

	Chapter 6. Downloading
	Why Clone a Repository?
	GitHub for Mac
	Making a Commit Using GitHub for Mac
	Viewing Changes in GitHub for Mac

	GitHub for Windows
	Making a Commit Using GitHub for Windows
	Configuring Command-Line Tools in GitHub for Windows

	Chapter 7. Next Steps
	Index
	About the Authors

