

WEB DEVELOPMENT

Developing Web Apps with Haskell and Yesod

ISBN: 978-1-491-91559-2

US $34.99	 CAN $40.99

“�Of all the Haskell Web
Frameworks, Yesod is
the one taking the most
advantage of Haskell's
type safety. This book is
a great reference for that
framework and really
shows the benefits of
such an approach.”

—Pat Brisbin
Developer at thoughtbot

Twitter: @oreillymedia
facebook.com/oreilly

This fast-moving guide introduces web application development with
Haskell and Yesod, a potent language/framework combination that
supports high-performing applications that are modular, type-safe, and
concise. Fully updated for Yesod 1.4, this second edition shows you how
Yesod handles widgets, forms, persistence, and RESTful content. Author
Michael Snoyman also introduces various Haskell tools to supplement your
basic knowledge of the language.

By the time you finish this book, you’ll create a production-quality web
application with Yesod’s ready-to-use scaffolding. You’ll also examine
several real-world examples, including a blog, a wiki, a JSON web service,
and a Sphinx search server.

■■ Build a simple application to learn Yesod’s foundation data type
and Web Application Interface (WAI)

■■ Output HTML, CSS, and JavaScript with Shakespearean
template languages

■■ Get an in-depth look at Yesod’s core monads for producing
cleaner, more modular code

■■ Probe Yesod’s internal workings: learn the request handling
process for a typical application

■■ Build forms on top of widgets by implementing the yesod-form
declarative API

■■ Learn how Yesod and Haskell handle persistence and session data

■■ Serve an HTML page and a machine-friendly JSON page from
the same URL

Michael Snoyman, the creator of Yesod, has been programming for about 15
years, using Haskell for the past five. He brings ten years of web development
and documentation experience to a wide variety of environments.

D
eveloping W

eb A
pps

w
ith H

askell and Yesod

SECOND
EDITION

Snoym
an

Michael Snoyman

Developing �
Web Apps with

 Haskell
and Yesod
SAFETY-DRIVEN WEB DEVELOPMENT

2nd Edition

Michael Snoyman

Developing Web Apps with
Haskell and Yesod

SECOND EDITION

978-1-491-91559-2

[LSI]

Developing Web Apps with Haskell and Yesod, Second Edition
by Michael Snoyman

Copyright © 2015 Michael Snoyman. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Simon St. Laurent and Allyson MacDonald
Production Editor: Nicole Shelby
Copyeditor: Jasmine Kwityn
Proofreader: Rachel Head

Indexer: Ellen Troutman
Interior Designer: David Futato
Cover Designer: Ellie Volckhausen
Illustrator: Rebecca Demarest

February 2015: Second Edition

Revision History for the Second Edition
2015-02-09: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491915592 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Developing Web Apps with Haskell and
Yesod, Second Edition, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491915592

Table of Contents

Preface. xi

Part I. Basics

1. Introduction. 1
Type Safety 1
Concise Code 2
Performance 2
Modularity 3
A Solid Foundation 3

2. Haskell. 5
Terminology 5
Tools 6
Language Pragmas 7
Overloaded Strings 8
Type Families 9
Template Haskell 10
QuasiQuotes 12
API Documentation 12
Summary 12

3. Basics. 13
Hello, World 13
Routing 14
Handler Function 16
The Foundation 16

iii

Running 17
Resources and Type-Safe URLs 17
Non-HTML Responses 19
The Scaffolded Site 19
Development Server 20
Summary 20

4. Shakespearean Templates. 21
Synopsis 21

Hamlet (HTML) 22
Lucius (CSS) 22
Cassius (CSS) 22
Julius (JavaScript) 22

Types 23
Type-Safe URLs 24

Syntax 25
Hamlet Syntax 26
Lucius Syntax 31
Cassius Syntax 33
Julius Syntax 33

Calling Shakespeare 33
Alternative Hamlet Types 35

Other Shakespeare 37
General Recommendations 38

5. Widgets. 39
Synopsis 39
What’s in a Widget? 41
Constructing Widgets 42
Combining Widgets 43
Generating IDs 44
whamlet 44

Types 45
Using Widgets 46
Using Handler Functions 48
Summary 49

6. The Yesod Typeclass. 51
Rendering and Parsing URLs 51

joinPath 53
cleanPath 53

defaultLayout 55

iv | Table of Contents

getMessage 56
Custom Error Pages 57
External CSS and JavaScript 58
Smarter Static Files 59
Authentication/Authorization 60
Some Simple Settings 61
Summary 61

7. Routing and Handlers. 63
Route Syntax 63

Pieces 64
Resource Name 66
Handler Specification 67

Dispatch 68
Return Type 68
Arguments 69

The Handler Functions 70
Application Information 71
Request Information 71
Short-Circuiting 71
Response Headers 72

I/O and Debugging 73
Query String and Hash Fragments 74
Summary 75

8. Forms. 77
Synopsis 77
Kinds of Forms 79
Types 80
Converting 82
Creating AForms 82

Optional Fields 83
Validation 84
More Sophisticated Fields 85
Running Forms 86
i18n 87
Monadic Forms 87
Input Forms 90
Custom Fields 91
Values That Don’t Come from the User 93
Summary 95

Table of Contents | v

9. Sessions. 97
clientsession 97
Controlling Sessions 98
Session Operations 99
Messages 100
Ultimate Destination 102
Summary 104

10. Persistent. 105
Synopsis 106
Solving the Boundary Issue 107

Types 108
Code Generation 109
PersistStore 112

Migrations 113
Uniqueness 116
Queries 117

Fetching by ID 117
Fetching by Unique Constraint 118
Select Functions 118

Manipulation 120
Insert 120
Update 122
Delete 123

Attributes 123
Relations 126
A Closer Look at Types 127

More Complicated, More Generic 128
Custom Fields 129
Persistent: Raw SQL 130
Integration with Yesod 132
More Complex SQL 134
Something Besides SQLite 134
Summary 135

11. Deploying Your Web App. 137
Keter 137
Compiling 138
Files to Deploy 138
SSL and Static Files 139
Warp 139

Nginx Configuration 140

vi | Table of Contents

Server Process 142
Nginx + FastCGI 142
Desktop 143
CGI on Apache 144
FastCGI on lighttpd 144
CGI on lighttpd 145

Part II. Advanced

12. RESTful Content. 149
Request Methods 149
Representations 150

JSON Conveniences 152
New Data Types 154

Other Request Headers 158
Summary 158

13. Yesod’s Monads. 159
Monad Transformers 159
The Three Transformers 160
Example: Database-Driven Navbar 161
Example: Request Information 163
Performance and Error Messages 165
Adding a New Monad Transformer 166
Summary 170

14. Authentication and Authorization. 171
Overview 171
Authenticate Me 172
Email 176
Authorization 180
Summary 182

15. Scaffolding and the Site Template. 183
How to Scaffold 183
File Structure 184

Cabal File 184
Routes and Entities 185
Foundation and Application Modules 185
Import 186
Handler Modules 187

Table of Contents | vii

widgetFile 187
defaultLayout 188
Static Files 188
Summary 189

16. Internationalization. 191
Synopsis 191
Overview 193
Message Files 194

Specifying Types 195
RenderMessage typeclass 195
Interpolation 196
Phrases, Not Words 197

17. Creating a Subsite. 199
Hello, World 199

18. Understanding a Request. 203
Handlers 203

Layers 204
Content 205
Short-Circuit Responses 206

Dispatch 206
toWaiApp, toWaiAppPlain, and warp 207
Generated Code 208
Complete Code 212

Summary 214

19. SQL Joins. 215
Multiauthor Blog 215
Database Queries in Widgets 217
Joins 218
Esqueleto 219
Streaming 220
Summary 222

20. Yesod for Haskellers. 225
Hello, Warp 225
What About Yesod? 230
The HandlerT Monad Transformer 232

(To)Content, (To)TypedContent 235
HasContentType and Representations 236

viii | Table of Contents

Convenience warp Function 238
Writing Handlers 238

Getting Request Parameters 238
Short-Circuiting 239
Streaming 239

Dynamic Parameters 241
Routing with Template Haskell 242

LiteApp 244
Shakespeare 245

The URL Rendering Function 247
Widgets 247
Details We Won’t Cover 248

Part III. Examples

21. Initializing Data in the Foundation Data Type. 251
Step 1: Define Your Foundation 252
Step 2: Use the Foundation 252
Step 3: Create the Foundation Value 252
Summary 253

22. Blog: i18n, Authentication, Authorization, and Database. 255

23. Wiki: Markdown, Chat Subsite, Event Source. 265
Subsite: Data 265
Subsite: Handlers 266
Subsite: Widget 269
Master Site: Data 271
Master Site: Instances 272
Master Site: Wiki Handlers 273
Master Site: Running 274
Summary 275

24. JSON Web Service. 277
Server 277
Client 278

25. Case Study: Sphinx-Based Search. 281
Sphinx Setup 281
Basic Yesod Setup 282
Searching 285

Table of Contents | ix

Streaming xmlpipe Output 288
Full Code 290

26. Visitor Counter. 297

27. Single-Process Pub/Sub. 299
Foundation Data Type 299
Allocate a Job 300
Fork Our Background Job 300
View Progress 301
Complete Application 301

28. Environment Variables for Configuration. 305

29. Route Attributes. 307
Alternative Approach: Hierarchical Routes 309

Part IV. Appendices

A. monad-control. 315

B. Web Application Interface. 325

C. Settings Types. 333

D. http-conduit. 335

E. xml-conduit. 341

Index. 357

x | Table of Contents

Preface

It’s fair to say that dynamic languages currently dominate the web development scene.
Ruby, Python, and PHP are common choices for quickly creating a powerful web
application. They provide a much faster and more comfortable development setting
than standard static languages in the C family, like Java.

But some of us are looking for a bit more in our development toolbox. We want a
language that gives us guarantees that our code is doing what it should. Instead of
writing up a unit test to cover every bit of functionality in our application, wouldn’t it
be wonderful if the compiler could automatically ensure that our code is correct? And
as an added bonus, wouldn’t it be nice if our code ran quickly too?

These are the goals of Yesod. Yesod is a web framework bringing the strengths of the
Haskell programming language to the web development world. Yesod not only uses a
pure language to interact with an impure world, but allows safe interactions with the
outside world by automatically sanitizing incoming and outgoing data. It helps us
avoid basic mistakes such as mixing up integers and strings, and even allows us to
statically prevent many cases of security holes like cross-site scripting (XSS) attacks.

Who This Book Is For
In general, there are two groups of people coming to Yesod. The first group is com‐
prised of longtime Haskell users—already convinced of the advantages of Haskell—
who are looking for a powerful framework for creating web applications. The second
consists of web developers who either are dissatisfied with their existing tools or are
looking to expand their horizons into the functional world.

This book assumes a basic familiarity with both web development and Haskell. We
don’t use many complicated Haskell concepts, and those we do use are introduced
separately. For the most part, understanding the basics of the syntax of the language
should be sufficient.

xi

If you want to come up to speed on Haskell, I recommend another wonderful
O’Reilly book: Real World Haskell by Bryan O’Sullivan, John Goerzen, and Donald
Bruce Stewart.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, commands, libraries, packages, tools, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Developing Web Apps with Haskell
and Yesod, Second Edition by Michael Snoyman (O’Reilly). Copyright 2015 Michael
Snoyman, 978-1-449-31697-6.”

xii | Preface

http://bit.ly/rw-haskell

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/dwa-haskell-yesod.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Preface | xiii

mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://bit.ly/dwa-haskell-yesod
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Yesod was created by an entire community of developers, all of whom have put in sig‐
nificant effort to make sure that the final product is as polished and user-friendly as
possible. Everyone from the core development team to the person making an API
request on the mailing list has had an impact on bringing Yesod to where it is today.

In particular, I’d like to thank Greg Weber, who has shared the maintenance burden
of the project; Kazu Yamamoto and Matt Brown, who transformed Warp from a sim‐
ple testing server to one of the fastest application servers available today; and Felipe
Lessa, Patrick Brisbin, and Luite Stegeman for their numerous contributions across
the board.

A big thank you to my editor, Simon St. Laurent, for all of his guidance and support.
Mark Lentczner, Johan Tibell, and Adam Turoff provided incredibly thorough
reviews of this book, cleaning up many of my mistakes. Additionally, there have been
dozens of readers who have looked over the content of this book online, and provided
feedback on where either the prose or the message was not coming through clearly—
not to mention numerous spelling errors.

But finally, and most importantly, I’d like to thank my wife, Miriam, for enduring all
of the time spent on both this book and Yesod in general. She has been my editor and
sounding board, though I’m sure the intricacies of Template Haskell sometimes
worked more as a sedative than any meaningful conversation. Without her support,
neither the Yesod project nor this book would have been able to happen.

Also, you’ll notice that I use my kids’ names (Eliezer and Gavriella) in some examples
throughout the book. They deserve special mention in a Haskell text, as I think
they’re the youngest people to ever use the word “monad” in a sentence.

xiv | Preface

http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

PART I

Basics

CHAPTER 1

Introduction

Since web programming began, people have been trying to make the development
process a more pleasant one. As a community, we have continually pushed new tech‐
niques in an effort to solve some of the lingering difficulties of security threats, the
stateless nature of HTTP, the multiple languages (HTML, CSS, JavaScript) necessary
to create a powerful web application, and more.

Yesod attempts to ease the web development process by playing to the strengths of the
Haskell programming language. Haskell’s strong compile-time guarantees of correct‐
ness do not encompass only types; referential transparency ensures that we don’t have
any unintended side effects. Pattern matching on algebraic data types can help guar‐
antee we’ve accounted for every possible case. By building upon Haskell, entire classes
of bugs disappear.

Unfortunately, using Haskell isn’t enough. The Web, by its very nature, is not type
safe. Even the simplest case of distinguishing between an integer and a string is
impossible: all data on the Web is transferred as raw bytes, evading our best efforts at
type safety. Every app writer is left with the task of validating all input. I call this
problem the boundary issue: however type safe your application is on the inside,
every boundary with the outside world still needs to be sanitized.

Type Safety
This is where Yesod comes in. By using high-level declarative techniques, you can
specify the exact input types you are expecting. And the process works the other way
as well: by using type-safe URLs, you can make sure that the data you send out is also
guaranteed to be well formed.

The boundary issue is not just a problem when dealing with the client: the same
problem exists when persisting and loading data. Once again, Yesod saves you on the

1

boundary by performing the marshaling of data for you. You can specify your entities
in a high-level definition and remain blissfully ignorant of the details.

Concise Code
We all know that there is a lot of boilerplate coding involved in web applications.
Wherever possible, Yesod tries to use Haskell’s features to save your fingers the work:

• The forms library reduces the amount of code used for common cases by lever‐
aging the Applicative typeclass.

• Routes are declared in a very terse format, without sacrificing type safety.
• Serializing your data to and from a database is handled automatically via code

generation.

In Yesod, we have two kinds of code generation. To get your project started, we pro‐
vide a scaffolding tool to set up your file and folder structure. However, most code
generation is done at compile time via metaprogramming. This means your gener‐
ated code will never get stale, as a simple library upgrade will bring all your generated
code up to date.

But if you prefer to retain more control, and you want to know exactly what your
code is doing, you can always run closer to the compiler and write all your code your‐
self.

Performance
Haskell’s main compiler, the Glasgow Haskell Compiler (GHC), has amazing perfor‐
mance characteristics and is improving all the time. This choice of language by itself
gives Yesod a large performance advantage over other offerings. But that’s not
enough: we need an architecture designed for performance.

Our approach to templates is one example: by allowing HTML, CSS, and JavaScript to
be analyzed at compile time, Yesod both avoids costly disk I/O at runtime and can
optimize the rendering of this code. But the architectural decisions go deeper: we use
advanced techniques such as conduits and builders in the underlying libraries to
make sure our code runs in constant memory, without exhausting precious file han‐
dles and other resources. By offering high-level abstractions, you can get highly com‐
pressed and properly cached CSS and JavaScript.

Yesod’s flagship web server, Warp, is the fastest Haskell web server around. When
these two pieces of technology are combined, it produces one of the fastest web appli‐
cation deployment solutions available.

2 | Chapter 1: Introduction

Modularity
Yesod has spawned the creation of dozens of packages, most of which are usable in a
context outside of Yesod itself. One of the goals of the project is to contribute back to
the community as much as possible; as such, even if you are not planning on using
Yesod in your next project, a large portion of this book may still be relevant for your
needs.

Of course, these libraries have all been designed to integrate well together. Using the
Yesod framework should give you a strong feeling of consistency throughout the vari‐
ous APIs.

A Solid Foundation
I remember once seeing a PHP framework advertising support for UTF-8. This
struck me as surprising: you mean having UTF-8 support isn’t automatic? In the Has‐
kell world, issues like character encoding are already well addressed and fully sup‐
ported. In fact, we usually have the opposite problem: there are a number of packages
providing powerful and well-designed support for the problem. The Haskell commu‐
nity is constantly pushing the boundaries to find the cleanest, most efficient solutions
for each challenge.

The downside of such a powerful ecosystem is the complexity of choice. By using
Yesod, you will already have most of the tools chosen for you, and you can be guaran‐
teed they work together. And of course, you always have the option of pulling in your
own solution.

As a real-life example, Yesod and Hamlet (the default templating language) use
blaze-builder for textual content generation. This choice was made because blaze-
builder provides the fastest interface for generating UTF-8 data. Anyone who wants
to use one of the other great libraries out there, such as text, should have no problem
dropping it in.

Modularity | 3

CHAPTER 2

Haskell

Haskell is a powerful, fast, type-safe, functional programming language. This book
takes as an assumption that you are already familiar with most of the basics of Has‐
kell. There are two wonderful books for learning Haskell, both of which are available
for reading online:

• Learn You a Haskell for Great Good! by Miran Lipovača (No Starch Press)
• Real World Haskell by Bryan O’Sullivan, John Goerzen, and Donald Bruce Stew‐

art (O’Reilly)

Additionally, there are a number of great articles on School of Haskell.

In order to use Yesod, you’re going to have to know at least the basics of Haskell.
Additionally, Yesod uses some features of Haskell that aren’t covered in most intro‐
ductory texts. While this book assumes the reader has a basic familiarity with Haskell,
this chapter is intended to fill in the gaps.

If you are already fluent in Haskell, feel free to completely skip this chapter. Also, if
you would prefer to start off by getting your feet wet with Yesod, you can always
come back to this chapter later as a reference.

Terminology
Even for those familiar with Haskell as a language, there can occasionally be some
confusion about terminology. Let’s establish some base terms that we can use
throughout this book:

Data type
This is one of the core building blocks for a strongly typed language like Haskell.
Some data types (e.g., Int) can be treated as primitive values, while other data

5

http://learnyouahaskell.com
http://bit.ly/rw-haskell
https://www.fpcomplete.com/school

types will build on top of these to create more complicated values. For example,
you might represent a person with:

data Person = Person Text Int

Here, the Text would give the person’s name, and the Int would give the person’s
age. Due to its simplicity, this specific example type will recur throughout the
book.

There are essentially three ways you can create a new data type:

• A type declaration such as type GearCount = Int. This merely creates a syno‐
nym for an existing type. The type system will do nothing to prevent you from
using an Int where you asked for a GearCount. Using this can make your code
more self-documenting.

• A newtype declaration such as newtype Make = Make Text. In this case, you
cannot accidentally use a Text in place of a Make; the compiler will stop you. The
newtype wrapper always disappears during compilation and will introduce no
overhead.

• A data declaration such as Person. You can also create algebraic data types
(ADTs)—for example, data Vehicle = Bicycle GearCount | Car Make

Model.

Data constructor
In our examples, Person, Make, Bicycle, and Car are all data constructors.

Type constructor
In our examples, Person, Make, and Vehicle are all type constructors.

Type variables
Consider the data type data Maybe a = Just a | Nothing. In this case, a is
a type variable.

In both our Person and Make data types, our data type and data
constructor share the same name. This is a common practice when
dealing with a data type with a single data constructor. However, it
is not a requirement; you can always name the data types and data
constructors differently.

Tools
There are two main tools you’ll need for Haskell development. The Glasgow Haskell
Compiler (GHC) is the standard Haskell compiler, and the only one officially sup‐

6 | Chapter 2: Haskell

ported by Yesod. You’ll also need Cabal, which is the standard Haskell build tool. Not
only do we use Cabal for building our local code, but it can automatically download
and install dependencies from Hackage, the Haskell package repository.

The Yesod website keeps an up-to-date quick start guide that includes information on
how to install and configure the various tools. It’s highly recommended that you fol‐
low these instructions. In particular, these steps make use of Stackage to avoid many
common dependency-resolution issues.

If you decide to install your tools yourself, make sure to avoid these common pitfalls:

• Some JavaScript tools that ship with Yesod require the build tools alex and happy
to be installed. These can be added with cabal install alex happy.

• Cabal installs an executable to a user-specific directory, which needs to be added
to your PATH. The exact location is OS-specific; be sure to add the correct direc‐
tory.

• On Windows, it’s difficult to install the network package from source, as it
requires a POSIX shell. Installing the Haskell Platform avoids this issue.

• On Mac OS X, there are multiple C preprocessors available: one from Clang, and
one from GCC. Many Haskell libraries depend on the GCC preprocessor. Again,
the Haskell Platform sets things up correctly.

• Some Linux distributions—Ubuntu in particular—typically have outdated pack‐
ages for GHC and the Haskell Platform. These may no longer be supported by
the current version of Yesod. Check the quick start guide for minimum version
requirements.

• Make sure you have all necessary system libraries installed. This is usually han‐
dled automatically by the Haskell Platform, but may require extra work on Linux
distros. If you get error messages about missing libraries, you usually just need to
apt-get install or yum install the relevant libraries.

Once you have your toolchain set up correctly, you’ll need to install a number of Has‐
kell libraries. For the vast majority of the book, the following command will install all
the libraries you need:

cabal update && cabal install yesod yesod-bin persistent-sqlite yesod-static

Again, refer to the quick start guide for the most up-to-date and accurate informa‐
tion.

Language Pragmas
GHC will run by default in something very close to Haskell98 mode. It also ships with
a large number of language extensions, allowing more powerful typeclasses, syntax

Language Pragmas | 7

http://www.yesodweb.com/page/quickstart
http://www.stackage.org/
http://www.stackage.org/install
http://www.stackage.org/install
http://hackage.haskell.org/platform/
http://www.yesodweb.com/page/quickstart

changes, and more. There are multiple ways to tell GHC to turn on these extensions.
For most of the code snippets in this book, you’ll see language pragmas, which look
like this:

{-# LANGUAGE MyLanguageExtension #-}

These should always appear at the top of your source file. Additionally, there are two
other common approaches:

• On the GHC command line, pass an extra argument: -XMyLanguageExtension.
• In your cabal file, add a default-extensions block.

I personally never use the GHC command-line argument approach. It’s a personal
preference, but I like to have my settings clearly stated in a file. In general, it’s recom‐
mended to avoid putting extensions in your cabal file; however, this rule mostly
applies when writing publicly available libraries. When you’re writing an application
that you and your team will be working on, having all of your language extensions
defined in a single location makes a lot of sense. The Yesod scaffolded site specifically
uses this approach to avoid the boilerplate of specifying the same language pragmas
in every source file.

We’ll end up using quite a few language extensions in this book (at the time of writ‐
ing, the scaffolding uses 13). We will not cover the meaning of all of them. Instead,
see the GHC documentation.

Overloaded Strings
What’s the type of "hello"? Traditionally, it’s String, which is defined as type
String = [Char]. Unfortunately, there are a few limitations with this:

• It’s a very inefficient implementation of textual data. We need to allocate extra
memory for each cons cell, plus the characters themselves each take up a full
machine word.

• Sometimes we have string-like data that’s not actually text, such as ByteStrings
and HTML.

To work around these limitations, GHC has a language extension called Overloaded
Strings. When enabled, literal strings no longer have the monomorphic type String;
instead, they have the type IsString a -> a, where IsString is defined as:

class IsString a where
 fromString :: String -> a

8 | Chapter 2: Haskell

http://bit.ly/ghc-docs

There are IsString instances available for a number of types in Haskell, such as Text
(a much more efficient packed String type), ByteString, and Html. Virtually every
example in this book will assume that this language extension is turned on.

Unfortunately, there is one drawback to this extension: it can sometimes confuse
GHC’s type checker. For example, imagine we use the following code:

{-# LANGUAGE OverloadedStrings, TypeSynonymInstances, FlexibleInstances #-}
import Data.Text (Text)

class DoSomething a where
 something :: a -> IO ()

instance DoSomething String where
 something _ = putStrLn "String"

instance DoSomething Text where
 something _ = putStrLn "Text"

myFunc :: IO ()
myFunc = something "hello"

Will the program print out String or Text? It’s not clear. So instead, you’ll need to
give an explicit type annotation to specify whether "hello" should be treated as a
String or Text.

In some cases, you can overcome these problems by using the
ExtendedDefaultRules language extension, though we’ll instead
try to be explicit in the book and not rely on defaulting.

Type Families
The basic idea of a type family is to state some association between two different
types. Suppose we want to write a function that will safely take the first element of a
list. But we don’t want it to work just on lists; we’d like it to treat a ByteString like a
list of Word8s. To do so, we need to introduce some associated type to specify what the
contents of a certain type are:

{-# LANGUAGE TypeFamilies, OverloadedStrings #-}
import Data.Word (Word8)
import qualified Data.ByteString as S
import Data.ByteString.Char8 () -- get an orphan IsString instance

class SafeHead a where
 type Content a
 safeHead :: a -> Maybe (Content a)

Type Families | 9

instance SafeHead [a] where
 type Content [a] = a
 safeHead [] = Nothing
 safeHead (x:_) = Just x

instance SafeHead S.ByteString where
 type Content S.ByteString = Word8
 safeHead bs
 | S.null bs = Nothing
 | otherwise = Just $ S.head bs

main :: IO ()
main = do
 print $ safeHead ("" :: String)
 print $ safeHead ("hello" :: String)

 print $ safeHead ("" :: S.ByteString)
 print $ safeHead ("hello" :: S.ByteString)

The new syntax is the ability to place a type inside of a class and instance. We can
also use data instead, which will create a new data type instead of referencing an
existing one.

There are other ways to use associated types outside the context of
a typeclass. For more information on type families, see the Haskell
wiki page.

Template Haskell
Template Haskell (TH) is an approach to code generation. We use it in Yesod in a
number of places to reduce boilerplate, and to ensure that the generated code is cor‐
rect. Template Haskell is essentially Haskell that generates a Haskell abstract syntax
tree (AST).

There’s actually more power in TH than that, as it can in fact intro‐
spect code. We don’t use these facilities in Yesod, however.

Writing TH code can be tricky, and unfortunately there isn’t very much type safety
involved. You can easily write TH that will generate code that won’t compile. This is
only an issue for the developers of Yesod, not for its users. During development, we
use a large collection of unit tests to ensure that the generated code is correct. As a
user, all you need to do is call these already existing functions. For example, to

10 | Chapter 2: Haskell

http://bit.ly/ghc-type-fam
http://bit.ly/ghc-type-fam

include an externally defined Hamlet template (discussed in Chapter 4), you can
write:

$(hamletFile "myfile.hamlet")

The dollar sign immediately followed by parentheses tell GHC that what follows is a
Template Haskell function. The code inside is then run by the compiler and generates
a Haskell AST, which is then compiled. And yes, it’s even possible to go meta with
this.

A nice trick is that TH code is allowed to perform arbitrary IO actions, and therefore
we can place some input in external files and have it parsed at compile time. One
example usage is to have compile-time–checked HTML, CSS, and JavaScript tem‐
plates.

If our Template Haskell code is being used to generate declarations and is being
placed at the top level of our file, we can leave off the dollar sign and parentheses. In
other words:

{-# LANGUAGE TemplateHaskell #-}

-- Normal function declaration, nothing special
myFunction = ...

-- Include some TH code
$(myThCode)

-- Or equivalently
myThCode

It can be useful to see what code is being generated by Template Haskell for you. To
do so, you should use the -ddump-splices GHC option.

There are many other features of Template Haskell not covered
here. For more information, see the Haskell wiki page.

Template Haskell introduces something called the stage restriction, which essentially
means that code before a Template Haskell splice cannot refer to code in the Template
Haskell, or what follows. This will sometimes require you to rearrange your code a
bit. The same restriction applies to QuasiQuotes.

Out of the box, Yesod is really geared for using code generation to avoid boilerplate,
but it’s perfectly acceptable to use Yesod in a Template Haskell–free way. There’s more
information on that in Chapter 20.

Template Haskell | 11

http://bit.ly/haskell-temp
http://bit.ly/haskell-temp
http://bit.ly/temp-haskell

QuasiQuotes
QuasiQuotes (QQ) are a minor extension of Template Haskell that let us embed arbi‐
trary content within our Haskell source files. For example, we mentioned previously
the hamletFile TH function, which reads the template contents from an external file.
We also have a quasiquoter named hamlet that takes the content inline:

{-# LANGUAGE QuasiQuotes #-}

[hamlet|<p>This is quasi-quoted Hamlet.|]

The syntax is set off using square brackets and pipes. The name of the quasiquoter is
given between the opening bracket and the first pipe, and the content is given
between the pipes.

Throughout the book, we will frequently use the QQ approach over a TH-powered
external file, as the former is simpler to copy and paste. However, in production,
external files are recommended for all but the shortest of inputs, as it gives a nice sep‐
aration of the non-Haskell syntax from your Haskell code.

API Documentation
The standard API documentation program in Haskell is called Haddock. The stan‐
dard Haddock search tool is called Hoogle. I recommend using FP Complete’s Hoogle
search and its accompanying Haddocks for searching and browsing documentation,
because the database covers a very large number of open source Haskell packages,
and the documentation provided is always fully generated and known to link to other
working Haddocks.

The more commonly used sources for these are Hackage itself, and Haskell.org’s
Hoogle instance. The downsides to these are that—based on build issues on the
server—documentation is sometimes not generated, and the Hoogle search defaults
to searching only a subset of available packages. Most importantly for us, Yesod is
indexed by FP Complete’s Hoogle, but not by Haskell.org’s.

If you run into types or functions that you do not understand, try doing a Hoogle
search with FP Complete’s Hoogle to get more information.

Summary
You don’t need to be an expert in Haskell to use Yesod—a basic familiarity will suffice.
This chapter hopefully gave you just enough extra information to feel more comfort‐
able as you follow along throughout the rest of the book.

12 | Chapter 2: Haskell

https://www.fpcomplete.com/hoogle
https://www.fpcomplete.com/hoogle
http://hackage.haskell.org/
http://www.haskell.org/hoogle
http://www.haskell.org/hoogle

CHAPTER 3

Basics

The first step with any new technology is getting it running. The goal of this chapter
is to get you started with a simple Yesod application and cover some of the basic con‐
cepts and terminology.

Hello, World
Let’s get this book started properly with a simple web page that says “Hello, World”:

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Yesod

data HelloWorld = HelloWorld

mkYesod "HelloWorld" [parseRoutes|
/ HomeR GET
|]

instance Yesod HelloWorld

getHomeR :: Handler Html
getHomeR = defaultLayout [whamlet|Hello, World!|]

main :: IO ()
main = warp 3000 HelloWorld

If you save the preceding code in helloworld.hs and run it with runhaskell hello
world.hs, you’ll get a web server running on port 3000. If you point your browser to
http://localhost:3000, you’ll get the following HTML:

13

http://localhost:3000

<!DOCTYPE html>
<html><head><title></title></head><body>Hello, World!</body></html>

We’ll refer back to this example throughout the rest of the chapter.

Routing
Like most modern web frameworks, Yesod follows a front controller pattern. This
means that every request to a Yesod application enters at the same point and is routed
from there. As a contrast, in systems like PHP and ASP, you usually create a number
of different files, and the web server automatically directs requests to the relevant file.

In addition, Yesod uses a declarative style for specifying routes. In our earlier exam‐
ple, this looked like:

mkYesod "HelloWorld" [parseRoutes|
/ HomeR GET
|]

mkYesod is a Template Haskell function, and parseRoutes is a
quasiquoter.

In other words, the preceding code simply creates a route in the Hello, World applica‐
tion called HomeR. It should listen for requests to / (the root of the application) and
should answer GET requests. We call HomeR a resource, which is where the R suffix
comes from.

The R suffix on resource names is simply convention, but it’s a
fairly universally followed convention. It makes it just a bit easier to
read and understand code.

The mkYesod TH function generates quite a bit of code here: a route data type, parser/
render functions, a dispatch function, and some helper types. We’ll look at this in
more detail in Chapter 7, but by using the -ddump-splices GHC option we can get
an immediate look at the generated code. Here’s a cleaned-up version of it:

instance RenderRoute HelloWorld where
 data Route HelloWorld = HomeR
 deriving (Show, Eq, Read)
 renderRoute HomeR = ([], [])

instance ParseRoute HelloWorld where
 parseRoute ([], _) = Just HomeR

14 | Chapter 3: Basics

 parseRoute _ = Nothing

instance YesodDispatch HelloWorld where
 yesodDispatch env req =
 yesodRunner handler env mroute req
 where
 mroute = parseRoute (pathInfo req, textQueryString req)
 handler =
 case mroute of
 Nothing -> notFound
 Just HomeR ->
 case requestMethod req of
 "GET" -> getHomeR
 _ -> badMethod

type Handler = HandlerT HelloWorld IO

In addition to using -ddump-splices, it can often be useful to gen‐
erate Haddock documentation for your application to see which
functions and data types were generated for you.

We can see that the RenderRoute class defines an associated data type providing the
routes for our application. In this simple example, we have just one route: HomeR. In
real-life applications, we’ll have many more, and they will be more complicated than
our HomeR.

renderRoute takes a route and turns it into path segments and query string parame‐
ters. Again, our example is simple, so the code is likewise simple: both values are
empty lists.

ParseRoute provides the inverse function, parseRoute. Here we see the first strong
motivation for our reliance on Template Haskell: it ensures that the parsing and ren‐
dering of routes correspond correctly with each other. This kind of code can easily
become difficult to keep in sync when written by hand. By relying on code genera‐
tion, we’re letting the compiler (and Yesod) handle those details for us.

YesodDispatch provides a means of taking an input request and passing it to the
appropriate handler function. The process is essentially:

1. Parse the request.
2. Choose a handler function.
3. Run the handler function.

The code generation follows a simple format for matching routes to handler function
names, which I’ll describe in the next section.

Routing | 15

Finally, we have a simple type synonym defining Handler to make our code a little
easier to write.

There’s a lot more going on here than we’ve described. The generated dispatch code
actually uses the view patterns language extension for efficiency; also, more typeclass
instances are created, and there are other cases to handle, such as subsites. We’ll get
into the details later in the book, especially in Chapter 18.

Handler Function
So we have a route named HomeR, and it responds to GET requests. How do you define
your response? You write a handler function. Yesod follows a standard naming
scheme for these functions: it’s the lowercase method name (e.g., GET becomes get)
followed by the route name. In this case, the function name would be getHomeR.

Most of the code you write in Yesod lives in handler functions. This is where you pro‐
cess user input, perform database queries, and create responses. In our simple exam‐
ple, we create a response using the defaultLayout function. This function wraps up
the content it’s given in your site’s template. By default, it produces an HTML file with
a doctype and <html>, <head>, and <body> tags. As we’ll see in Chapter 6, this func‐
tion can be overridden to do much more.

In our example, we pass [whamlet|Hello, World!|] to defaultLayout. whamlet is
another quasiquoter. In this case, it converts Hamlet syntax into a widget. Hamlet is
the default HTML templating engine in Yesod. Together with its siblings Cassius,
Lucius, and Julius, you can create HTML, CSS, and JavaScript in a fully type-safe and
compile-time-checked manner. We’ll see much more about this in Chapter 4.

Widgets are another cornerstone of Yesod. They allow you to create modular compo‐
nents of a site consisting of HTML, CSS, and JavaScript and reuse them throughout
your site. Widgets are covered in more depth in Chapter 5.

The Foundation
The string HelloWorld shows up a number of times in our example. Every Yesod
application has a foundation data type. This data type must be an instance of the
Yesod typeclass, which provides a central place for declaring a number of different
settings controlling the execution of our application.

In our case, this data type is pretty boring: it doesn’t contain any information. None‐
theless, the foundation is central to how our example runs: it ties together the routes
with the instance declaration and lets it all be run. We’ll see throughout this book that
the foundation pops up in a whole bunch of places.

16 | Chapter 3: Basics

But foundations don’t have to be boring. They can be used to store lots of useful
information—usually stuff that needs to be initialized at program launch and used
throughout. Here are some very common examples:

• A database connection pool
• Settings loaded from a config file
• An HTTP connection manager
• A random number generator

By the way, the word Yesod (יסוד) means foundation in Hebrew.

Running
We mention HelloWorld again in our main function. Our foundation contains all the
information we need to route and respond to requests in our application; now we just
need to convert it into something that can run. A useful function for this in Yesod is
warp, which runs the Warp web server with a number of default settings enabled on
the specified port (here, it’s 3000).

One of the features of Yesod is that you aren’t tied down to a single deployment strat‐
egy. Yesod is built on top of the Web Application Interface (WAI), allowing it to run
on FastCGI, SCGI, Warp, or even as a desktop application using the WebKit library.
We’ll discuss some of these options in Chapter 11. And at the end of this chapter, we
will explain the development server.

Warp is the premier deployment option for Yesod. It is a lightweight, highly efficient
web server developed specifically for hosting Yesod. It is also used outside of Yesod
for other Haskell development (both framework and nonframework applications),
and as a standard file server in a number of production environments.

Resources and Type-Safe URLs
In our Hello, World application we defined just a single resource (HomeR), but real-life
web applications are usually much more exciting and include more than one page.
Let’s take a look at another example:

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}

Running | 17

import Yesod

data Links = Links

mkYesod "Links" [parseRoutes|
/ HomeR GET
/page1 Page1R GET
/page2 Page2R GET
|]

instance Yesod Links

getHomeR = defaultLayout [whamlet|Go to page 1!|]
getPage1R = defaultLayout [whamlet|Go to page 2!|]
getPage2R = defaultLayout [whamlet|Go home!|]

main = warp 3000 Links

Overall, this is very similar to Hello, World. Our foundation is now Links instead of
HelloWorld, and in addition to the HomeR resource, we’ve added Page1R and Page2R.
As such, we’ve also added two more handler functions: getPage1R and getPage2R.

The only truly new feature is inside the whamlet quasiquotation. We’ll delve into syn‐
tax in Chapter 4, but we can see the following creates a link to the Page1R resource:

Go to page 1!

The important thing to note here is that Page1R is a data constructor. By making each
resource a data constructor, we have a feature called type-safe URLs. Instead of splic‐
ing together strings to create URLs, we simply create a plain old Haskell value. By
using at-sign interpolation (@{…}), Yesod automatically renders those values to textual
URLs before sending things off to the user. We can see how this is implemented by
looking again at the -ddump-splices output:

instance RenderRoute Links where
 data Route Links = HomeR | Page1R | Page2R
 deriving (Show, Eq, Read)

 renderRoute HomeR = ([], [])
 renderRoute Page1R = (["page1"], [])
 renderRoute Page2R = (["page2"], [])

In the Route associated type for Links, we have additional constructors for Page1R
and Page2R. We also now have a better glimpse of the return values for renderRoute.
The first part of the tuple gives the path pieces for the given route. The second part
gives the query string parameters; for almost all use cases, this will be an empty list.

It’s hard to overestimate the value of type-safe URLs. They give you a huge amount of
flexibility and robustness when developing your application. You can move URLs

18 | Chapter 3: Basics

around at will without ever breaking links. In Chapter 7, we’ll see that routes can take
parameters, such as a blog entry URL taking the blog post ID.

Let’s say you want to switch from routing on the numerical post ID to a year/month/
slug setup. In a traditional web framework, you would need to go through every sin‐
gle reference to your blog post route and update appropriately. If you miss one, you’ll
have 404s at runtime. In Yesod, all you do is update your route and compile: GHC
will pinpoint every single line of code that needs to be corrected.

Non-HTML Responses
Yesod can serve up any kind of content you want, and has first-class support for many
commonly used response formats. You’ve seen HTML so far, but JSON data is just as
easy, via the aeson package:

{-# LANGUAGE ExtendedDefaultRules #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Yesod

data App = App

mkYesod "App" [parseRoutes|
/ HomeR GET
|]

instance Yesod App

getHomeR = return $ object ["msg" .= "Hello, World"]

main = warp 3000 App

We’ll cover JSON responses in more detail in later chapters, including how to auto‐
matically switch between HTML and JSON representations depending on the Accept
request header.

The Scaffolded Site
Installing Yesod will give you both the Yesod library, and a yesod executable. This exe‐
cutable accepts a few commands, but the first one you’ll want to be acquainted with is
yesod init. It will ask you some questions, and then generate a folder containing the
default scaffolded site. Inside that directory, you can run cabal install --only-
dependencies to build any extra dependencies (such as your database backends), and
then yesod devel to run your site.

Non-HTML Responses | 19

The scaffolded site gives you a lot of best practices out of the box, setting up files and
dependencies in a time-tested approach used by most production Yesod sites. How‐
ever, all this convenience can get in the way of actually learning Yesod. Therefore,
most of this book will avoid the scaffolding tool, and instead deal directly with Yesod
as a library. But if you’re going to build a real site, I strongly recommend using the
scaffolding.

We will cover the structure of the scaffolded site in Chapter 15.

Development Server
One of the advantages interpreted languages have over compiled languages is fast
prototyping: you save changes to a file and hit refresh. If we want to make any
changes to our Yesod apps, we’ll need to call runhaskell from scratch, which can be a
bit tedious.

Fortunately, there’s a solution to this: yesod devel automatically rebuilds and reloads
your code for you. This can be a great way to develop your Yesod projects, and when
you’re ready to move to production, you still get to compile down to incredibly effi‐
cient code. The Yesod scaffolding automatically sets things up for you. This gives you
the best of both worlds: rapid prototyping and fast production code.

It’s a little bit more involved to set up your code to be used by yesod devel, so our
examples will just use warp. Fortunately, the scaffolded site is fully configured to use
the development server, so when you’re ready to move over to the real world, it will
be waiting for you.

Summary
Every Yesod application is built around a foundation data type. We associate some
resources with that data type and define some handler functions, and Yesod handles
all of the routing. These resources are also data constructors, which lets us have type-
safe URLs.

By being built on top of WAI, Yesod applications can run with a number of different
backends. For simple apps, the warp function provides a convenient way to use the
Warp web server. For rapid development, using yesod devel is a good choice. And
when you’re ready to move to production, you have the full power and flexibility to
configure Warp (or any other WAI handler) to suit your needs.

When developing in Yesod, we get a number of choices for coding style: quasiquota‐
tion or external files, warp or yesod devel, and so on. The examples in this book
deliberately use the choices that are easiest to copy and paste, but more powerful
options will be available when you start building real Yesod applications.

20 | Chapter 3: Basics

CHAPTER 4

Shakespearean Templates

Yesod uses the Shakespearean family of template languages as its standard approach
to HTML, CSS, and JavaScript creation. This language family shares some common
syntax, as well as a few overarching principles:

• As little interference to the underlying language as possible, while providing con‐
veniences where unobtrusive

• Compile-time guarantees on well-formed content
• Static type safety, greatly helping the prevention of XSS (cross-site scripting)

attacks
• Automatic validation of interpolated links, whenever possible, through type-safe

URLs

There is nothing inherently tying Yesod to these languages, or the other way around:
each can be used independently of the other. This chapter will address these template
languages on their own, while the remainder of the book will use them to enhance
Yesod application development.

Synopsis
There are four main languages at play: Hamlet is an HTML templating language,
Julius is for JavaScript, and Cassius and Lucius are both for CSS. Hamlet and Cassius
are both whitespace-sensitive formats, using indentation to denote nesting. By con‐
trast, Lucius is a superset of CSS, keeping CSS’s braces for denoting nesting. Julius is a
simple passthrough language for producing JavaScript; the only added feature is vari‐
able interpolation.

21

Cassius is, in fact, just an alternative syntax for Lucius. They both
use the same processing engine underneath, but Cassius files have
indentation converted into braces before processing. The choice
between the two is purely one of syntactical preference.

Hamlet (HTML)
$doctype 5
<html>
 <head>
 <title>#{pageTitle} - My Site
 <link rel=stylesheet href=@{Stylesheet}>
 <body>
 <h1 .page-title>#{pageTitle}
 <p>Here is a list of your friends:
 $if null friends
 <p>Sorry, I lied, you don't have any friends.
 $else

 $forall Friend name age <- friends
 #{name} (#{age} years old)
 <footer>^{copyright}

Lucius (CSS)
section.blog {
 padding: 1em;
 border: 1px solid #000;
 h1 {
 color: #{headingColor};
 background-image: url(@{MyBackgroundR});
 }
}

Cassius (CSS)
The following is equivalent to the Lucius example:

section.blog
 padding: 1em
 border: 1px solid #000
 h1
 color: #{headingColor}
 background-image: url(@{MyBackgroundR})

Julius (JavaScript)
$(function(){
 $("section.#{sectionClass}").hide();
 $("#mybutton").click(function(){document.location = "@{SomeRouteR}";});

22 | Chapter 4: Shakespearean Templates

 ^{addBling}
});

Types
Before we jump into syntax, let’s take a look at the various types involved. We men‐
tioned in the introduction that types help protect us from XSS attacks. For example,
let’s say that we have an HTML template that should display someone’s name. It might
look like this:

<p>Hello, my name is #{name}

{…} is how we do variable interpolation in Shakespeare.

What should happen to name, and what should its data type be? A naive approach
would be to use a Text value, and insert it verbatim. But that would give us quite a
problem when name is equal to something like:

<script src='http://nefarious.com/evil.js'></script>

What we want is to be able to entity-encode the name, so that < becomes <.

An equally naive approach is to simply entity-encode every piece of text that gets
embedded. What happens when you have some preexisting HTML generated from
another process? For example, on the Yesod website, all Haskell code snippets are run
through a colorizing function that wraps up words in appropriate span tags. If we
entity-escaped everything, code snippets would be completely unreadable!

Instead, we have an Html data type. In order to generate an Html value, we have two
options for APIs. The ToMarkup typeclass provides a way to convert String and Text
values into Html via its toHtml function, automatically escaping entities along the way.
This would be the approach we’d want for name. For the code snippet example, we
would use the preEscapedToMarkup function.

When you use variable interpolation in Hamlet (the HTML Shakespeare language), it
automatically applies a toHtml call to the value inside. So, if you interpolate a String,
it will be entity-escaped, but if you provide an Html value, it will appear unmodified.
In the code snippet example, we might interpolate with something like #{preEscaped
ToMarkup myHaskellHtml}.

Types | 23

The Html data type and the functions mentioned are all provided
by the blaze-html package. This allows Hamlet to interact with all
other blaze-html packages, and lets Hamlet provide a general sol‐
ution for producing blaze-html values. Also, we get to take advan‐
tage of blaze-html’s amazing performance.

Similarly, we have Css/ToCss, as well as Javascript/ToJavascript. These provide
some compile-time sanity checks to ensure we haven’t accidentally stuck some HTML
in our CSS.

One other advantage on the CSS side is some helper data types for
colors and units. For example:

.red { color: #{colorRed} }

Refer to the Haddock documentation for more details.

Type-Safe URLs
Possibly the most unique feature in Yesod is type-safe URLs, and the ability to use
them conveniently is provided directly by Shakespeare. Usage is nearly identical to
variable interpolation; we just use the at sign (@) instead of the hash (#). We’ll cover
the syntax later, but first let’s clarify the intuition.

Suppose we have an application with two routes: http://example.com/profile/home is
the homepage, and http://example.com/display/time displays the current time. If we
want to link from the homepage to the time, there are three different ways of con‐
structing the URL:

• As a relative link (e.g., ../display/time)
• As an absolute link, without a domain (e.g., /display/time)
• As an absolute link, with a domain (e.g., http://example.com/display/time)

But there are problems with each approach. The first will break if either URL
changes. Also, it’s not suitable for all use cases; RSS and Atom feeds, for instance,
require absolute URLs. The second is more resilient to change than the first, but still
won’t be acceptable for RSS and Atom. And while the third works fine for all use
cases, you’ll need to update every single URL in your application whenever your
domain name changes. You think that doesn’t happen often? Just wait till you move
from using a development server to a staging server and finally into production.

But more importantly, there is one huge issue with all three approaches: if you change
your routes at all, the compiler won’t warn you about the broken links. Not to men‐
tion that typos can wreak havoc as well.

24 | Chapter 4: Shakespearean Templates

http://www.stackage.org/package/shakespeare
http://example.com/profile/home
http://example.com/display/time
http://example.com/display/time

The goal of type-safe URLs is to let the compiler check things for us as much as possi‐
ble. In order to facilitate this, our first step must be to move away from plain old text,
which the compiler doesn’t understand, to some well-defined data types. For our sim‐
ple application, let’s model our routes with a sum type:

data MyRoute = Home | Time

Instead of placing a link like /display/time in our template, we can use the Time con‐
structor. But at the end of the day, HTML is made up of text, not data types, so we
need some way to convert these values to text. We call this a URL rendering function
—here’s a simple example:

renderMyRoute :: MyRoute -> Text
renderMyRoute Home = "http://example.com/profile/home"
renderMyRoute Time = "http://example.com/display/time"

URL rendering functions are actually a bit more complicated than
this. They need to address query string parameters, handle records
within the constructor, and more intelligently handle the domain
name. But in practice, you don’t need to worry about this, because
Yesod will automatically create your render functions. The one
thing to point out is that the type signature is actually a little more
complicated to handle query strings:

type Query = [(Text, Text)]
type Render url = url -> Query -> Text
renderMyRoute :: Render MyRoute
renderMyRoute Home _ = ...
renderMyRoute Time _ = ...

OK, we have our render function, and we have type-safe URLs embedded in the tem‐
plates. How exactly does this fit together? Instead of generating an Html (or Css or
Javascript) value directly, Shakespearean templates actually produce a function,
which takes the render function and produces HTML. Let’s take a quick peek to see
how Hamlet would work under the surface. Supposing we had a template:

The time

this would translate roughly into the Haskell code:

\render -> mconcat ["The time"]

Syntax
All Shakespearean languages share the same interpolation syntax and are able to uti‐
lize type-safe URLs. They differ in the syntax specific for their target language
(HTML, CSS, or JavaScript). Let’s explore each language in turn.

Syntax | 25

Hamlet Syntax
Hamlet is the most sophisticated of the languages. Not only does it provide syntax for
generating HTML, but it also allows for basic control structures: conditionals, loop‐
ing, and maybes.

Tags
Obviously, tags will play an important part in any HTML template language. In Ham‐
let, we try to stick very close to existing HTML syntax to make the language more
comfortable. However, instead of using closing tags to denote nesting, we use inden‐
tation. So, something like this in HTML:

<body>
<p>Some paragraph.</p>

Item 1
Item 2

</body>

would be:

<body>
 <p>Some paragraph.

 Item 1
 Item 2

In general, we find this to be easier to follow than HTML once you get accustomed to
it. The only tricky part arises when dealing with whitespace before and after tags. For
example, let’s say we want to create the following HTML:

<p>Paragraph <i>italic</i> end.</p>

We want to make sure that whitespace is preserved after the word “Paragraph” and
before the word “end.” To do so, we use two simple escape characters:

<p>
 Paragraph #
 <i>italic
 \ end.

The whitespace escape rules are actually quite simple:

• If the first non-space character in a line is a backslash, the backslash is ignored.
(Note: this will also cause any tag on this line to be treated as plain text.)

• If the last character in a line is a hash, it is ignored.

26 | Chapter 4: Shakespearean Templates

One other thing: Hamlet does not escape entities within its content. This is done on
purpose to allow existing HTML to be more easily copied in. So, the preceding exam‐
ple could also be written as:

<p>Paragraph <i>italic</i> end.

Notice that the first tag will be automatically closed by Hamlet, while the inner <i>
tag will not. You are free to use whichever approach you want; there is no penalty for
either choice. Be aware, however, that the only time you use closing tags in Hamlet is
for such inline tags; normal tags are not closed.

Another outcome of this is that any tags after the first tag do not have special treat‐
ment for IDs and classes. For example, the following Hamlet snippet:

<p #firstid>Paragraph <i #secondid>italic end.

generates the HTML:

<p id="firstid">Paragraph <i #secondid>italic</i> end.</p>

Notice how the <p> tag is automatically closed, and its attributes get special treat‐
ment, whereas the <i> tag is treated as plain text.

Interpolation
What we have so far is nice, simplified HTML, but it doesn’t let us interact with our
Haskell code at all. How do we pass in variables? The answer is simple—by using
interpolation:

<head>
 <title>#{title}

The hash followed by a pair of braces denotes variable interpolation. In this case, the
title variable from the scope in which the template was called will be used. Let me
state that again: Hamlet automatically has access to the variables in scope when it’s
called. There is no need to specifically pass variables in.

You can apply functions within an interpolation. You can use string and numeric lit‐
erals in an interpolation. You can also use qualified modules. Both parentheses and
the dollar sign can be used to group statements together. And at the end, the toHtml
function is applied to the result, meaning any instance of ToHtml can be interpolated.
Take, for instance, the following code:

-- Just ignore the QuasiQuote stuff for now, and that shamlet thing.
-- It will be explained later.
{-# LANGUAGE QuasiQuotes #-}
import Text.Hamlet (shamlet)
import Text.Blaze.Html.Renderer.String (renderHtml)
import Data.Char (toLower)
import Data.List (sort)

Syntax | 27

data Person = Person
 { name :: String
 , age :: Int
 }

main :: IO ()
main = putStrLn $ renderHtml [shamlet|
<p>Hello, my name is #{name person} and I am #{show $ age person}.
<p>
 Let's do some funny stuff with my name: #
 #{sort $ map toLower (name person)}
<p>Oh, and in 5 years I'll be #{show ((+) 5 (age person))} years old.
|]
 where
 person = Person "Michael" 26

What about our much-touted type-safe URLs? They are almost identical to variable
interpolation in every way, except they start with an at sign (@) instead. In addition,
there is embedding via a caret (^), which allows you to embed another template of the
same type. The next code sample demonstrates both of these:

{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE OverloadedStrings #-}
import Text.Hamlet (HtmlUrl, hamlet)
import Text.Blaze.Html.Renderer.String (renderHtml)
import Data.Text (Text)

data MyRoute = Home

render :: MyRoute -> [(Text, Text)] -> Text
render Home _ = "/home"

footer :: HtmlUrl MyRoute
footer = [hamlet|
<footer>
 Return to #
 Homepage
 .
|]

main :: IO ()
main = putStrLn $ renderHtml $ [hamlet|
<body>
 <p>This is my page.
 ^{footer}
|] render

Additionally, there is a variant of URL interpolation that allows you to embed query
string parameters. This can be useful, for example, for creating paginated responses.
Instead of using @{…}, you add a question mark (@?{…}) to indicate the presence of a
query string. The value you provide must be a two-tuple with the first value being a

28 | Chapter 4: Shakespearean Templates

type-safe URL and the second being a list of query string parameter pairs. The fol‐
lowing code snippet shows an example:

{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE OverloadedStrings #-}
import Text.Hamlet (HtmlUrl, hamlet)
import Text.Blaze.Html.Renderer.String (renderHtml)
import Data.Text (Text, append, pack)
import Control.Arrow (second)
import Network.HTTP.Types (renderQueryText)
import Data.Text.Encoding (decodeUtf8)
import Blaze.ByteString.Builder (toByteString)

data MyRoute = SomePage

render :: MyRoute -> [(Text, Text)] -> Text
render SomePage params = "/home" `append`
 decodeUtf8 (toByteString $ renderQueryText True (map (second Just) params))

main :: IO ()
main = do
 let currPage = 2 :: Int
 putStrLn $ renderHtml $ [hamlet|
<p>
 You are currently on page #{currPage}.
 Previous
 Next
|] render

This generates the expected HTML:

<p>You are currently on page 2.
Previous
Next
</p>

Attributes

In the preceding example, we put an href attribute on the <a> tag. Let’s elaborate on
the syntax:

• You can have interpolations within the attribute value.
• The equal sign and value for an attribute are optional, just like in HTML. So,
<input type=checkbox checked> is perfectly valid.

• There are two convenience attributes: for id, you can use the hash, and for
classes, the period (in other words, <p #paragraphid .class1 .class2>).

• Although quotes around the attribute value are optional, they are required if you
want to embed spaces.

Syntax | 29

• You can add an attribute optionally by using colons. To make a checkbox only
checked if the variable isChecked is True, you would write <input type=check
box :isChecked:checked>. To have a paragraph be optionally red, you could use
<p :isRed:style="color:red">. (This also works for class names—for example,
<p :isCurrent:.current> will set the class current to True.)

Conditionals
Eventually, you’ll want to put some logic in your page. The goal of Hamlet is to make
the logic as minimalistic as possible, pushing the heavy lifting into Haskell. As such,
our logical statements are very basic… so basic, that it’s if, elseif, and else:

$if isAdmin
 <p>Welcome to the admin section.
$elseif isLoggedIn
 <p>You are not the administrator.
$else
 <p>I don't know who you are. Please log in so I can decide if you get access.

All the same rules of normal interpolation apply to the content of the conditionals.

maybe

Similarly, we have a special construct for dealing with maybe values. These could tech‐
nically be dealt with using if, isJust, and fromJust, but this is more convenient and
avoids partial functions:

$maybe name <- maybeName
 <p>Your name is #{name}
$nothing
 <p>I don't know your name.

In addition to simple identifiers, you can use a few other, more complicated values on
the lefthand side, such as constructors and tuples:

$maybe Person firstName lastName <- maybePerson
 <p>Your name is #{firstName} #{lastName}

The righthand side follows the same rules as interpolations and allows variables,
function application, and so on.

forall
And what about looping over lists? We have you covered there too:

$if null people
 <p>No people.
$else

30 | Chapter 4: Shakespearean Templates

 $forall person <- people
 #{person}

case
Pattern matching is one of the great strengths of Haskell. Sum types allow you to
cleanly model many real-world types, and case statements let you safely match, ena‐
bling the compiler to warn you if a case was missed. Hamlet gives you the same
power:

$case foo
 $of Left bar
 <p>It was left: #{bar}
 $of Right baz
 <p>It was right: #{baz}

with

Rounding out our statements, we have with. It’s basically just a convenience for
declaring a synonym for a long expression:

$with foo <- some very (long ugly) expression that $ should only $ happen once
 <p>But I'm going to use #{foo} multiple times. #{foo}

doctype

One last bit of syntactic sugar: the doctype statement. There is support for a number
of different versions of doctype, though we recommend $doctype 5 for modern web
applications, which generates <!DOCTYPE html>:

$doctype 5
<html>
 <head>
 <title>Hamlet is Awesome
 <body>
 <p>All done.

There is an older and still supported syntax: three exclamation
points (!!!). You may still see this in code out there. There are no
plans to remove support for this, but in general the $doctype
approach is easier to read.

Lucius Syntax
Lucius is one of two CSS templating languages in the Shakespeare family. It is
intended to be a superset of CSS, leveraging the existing syntax while adding in a few
more features. Here are some key points:

• Like Hamlet, it allows both variable and URL interpolation.

Syntax | 31

• CSS blocks are allowed to nest.
• You can declare variables in your templates.
• A set of CSS properties can be created as a mixin and reused in multiple declara‐

tions.

Starting with the second point, let’s say you want to have special styling for some tags
within your article. In plain ol’ CSS, you’d have to write:

article code { background-color: grey; }
article p { text-indent: 2em; }
article a { text-decoration: none; }

In this case, there aren’t that many clauses, but having to type out article each time
is still a bit of a nuisance. Imagine if you had a dozen or so of these—not the worst
thing in the world, but a bit of an annoyance. Lucius helps you out here:

article {
 code { background-color: grey; }
 p { text-indent: 2em; }
 a { text-decoration: none; }
 > h1 { color: green; }
}

Having Lucius variables allows you to avoid repeating yourself. A simple example
would be to define a commonly used color:

@textcolor: #ccc; /* just because we hate our users */
body { color: #{textcolor} }
a:link, a:visited { color: #{textcolor} }

Mixins are a relatively new addition to Lucius. The idea is to declare a mixin provid‐
ing a collection of properties, and then embed that mixin in a template using caret
interpolation (^). The following example demonstrates how we could use a mixin to
deal with vendor prefixes:

{-# LANGUAGE QuasiQuotes #-}
import Text.Lucius
import qualified Data.Text.Lazy.IO as TLIO

-- Dummy render function.
render = undefined

-- Our mixin, which provides a number of vendor prefixes for transitions.
transition val =
 [luciusMixin|
 -webkit-transition: #{val};
 -moz-transition: #{val};
 -ms-transition: #{val};
 -o-transition: #{val};
 transition: #{val};
 |]

32 | Chapter 4: Shakespearean Templates

-- Our actual Lucius template, which uses the mixin.
myCSS =
 [lucius|
 .some-class {
 ^{transition "all 4s ease"}
 }
 |]

main = TLIO.putStrLn $ renderCss $ myCSS render

Cassius Syntax
Cassius is a whitespace-sensitive alternative to Lucius. As mentioned in the synopsis,
it uses the same processing engine as Lucius but preprocesses all input to insert
braces to enclose subblocks and semicolons to terminate lines. This means you can
leverage all features of Lucius when writing Cassius. Here’s a simple example:

#banner
 border: 1px solid #{bannerColor}
 background-image: url(@{BannerImageR})

Julius Syntax
Julius is the simplest of the languages discussed here. In fact, some might even say it’s
really just JavaScript. Julius allows the three forms of interpolation we’ve mentioned
so far, and otherwise applies no transformations to your content.

If you use Julius with the scaffolded Yesod site, you may notice that
your JavaScript is automatically minified. This is not a feature of
Julius; instead, Yesod uses the hjsmin package to minify Julius out‐
put.

Calling Shakespeare
The question, of course, arises at some point: how do I actually use this stuff? There
are three different ways to call out to Shakespeare from your Haskell code:

QuasiQuotes
QuasiQuotes allow you to embed arbitrary content within your Haskell that is
converted into Haskell code at compile time.

External file
In this case, the template code is in a separate file that is referenced via Template
Haskell.

Calling Shakespeare | 33

Reload mode
Both of the preceding modes require a full recompile to see any changes. In
reload mode, your template is kept in a separate file and referenced via Template
Haskell. But at runtime, the external file is reparsed from scratch each time.

Reload mode is not available for Hamlet but is for Cassius, Lucius,
and Julius. There are too many sophisticated features in Hamlet
that rely directly on the Haskell compiler and could not feasibly be
reimplemented at runtime.

One of the first two approaches should be used in production. They both embed the
entirety of the template in the final executable, simplifying deployment and increas‐
ing performance. The advantage of the QuasiQuotes approach is the simplicity:
everything stays in a single file. For short templates, this can be a very good fit. How‐
ever, in general, the external file approach is recommended because:

• It follows nicely in the tradition of separating logic from presentation.
• You can easily switch between external file and debug mode with some simple C

preprocessor macros, meaning you can keep development rapid and still achieve
high performance in production.

Because special quasiquoters and Template Haskell functions are involved, you need
to be sure to enable the appropriate language extensions and use correct syntax. You
can see a simple example of each approach in the following code snippets:

{-# LANGUAGE OverloadedStrings #-} -- we're using Text below
{-# LANGUAGE QuasiQuotes #-}
import Text.Hamlet (HtmlUrl, hamlet)
import Data.Text (Text)
import Text.Blaze.Html.Renderer.String (renderHtml)

data MyRoute = Home | Time | Stylesheet

render :: MyRoute -> [(Text, Text)] -> Text
render Home _ = "/home"
render Time _ = "/time"
render Stylesheet _ = "/style.css"

template :: Text -> HtmlUrl MyRoute
template title = [hamlet|
$doctype 5
<html>
 <head>
 <title>#{title}
 <link rel=stylesheet href=@{Stylesheet}>
 <body>
 <h1>#{title}

34 | Chapter 4: Shakespearean Templates

|]

main :: IO ()
main = putStrLn $ renderHtml $ template "My Title" render

{-# LANGUAGE OverloadedStrings #-} -- we're using Text below
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE CPP #-} -- to control production versus debug
import Text.Lucius (CssUrl, luciusFile, luciusFileDebug, renderCss)
import Data.Text (Text)
import qualified Data.Text.Lazy.IO as TLIO

data MyRoute = Home | Time | Stylesheet

render :: MyRoute -> [(Text, Text)] -> Text
render Home _ = "/home"
render Time _ = "/time"
render Stylesheet _ = "/style.css"

template :: CssUrl MyRoute
#if PRODUCTION
template = $(luciusFile "template.lucius")
#else
template = $(luciusFileDebug "template.lucius")
#endif

main :: IO ()
main = TLIO.putStrLn $ renderCss $ template render

-- @template.lucius
foo { bar: baz }

The naming scheme for the functions is very consistent:

Language Quasiquoter External file Reload

Hamlet hamlet hamletFile N/A

Cassius cassius cassiusFile cassiusFileReload

Lucius lucius luciusFile luciusFileReload

Julius julius juliusFile juliusFileReload

Alternative Hamlet Types
So far, we’ve seen how to generate an HtmlUrl value from Hamlet, which is a piece of
HTML with embedded type-safe URLs. There are currently three other values we can
generate using Hamlet: plain HTML, HTML with URLs, and internationalized mes‐
sages/widgets. That last one will be covered in more detail in Chapter 5.

Calling Shakespeare | 35

To generate plain HTML without any embedded URLs, we use “simplified Hamlet.”
There are a few changes:

• We use a different set of functions, prefixed with an “s”. So, the quasiquoter is
shamlet and the external file function is shamletFile. How we pronounce those
is still up for debate.

• No URL interpolation is allowed. Doing so will result in a compile-time error.
• Embedding (the caret interpolator) no longer allows arbitrary HtmlUrl values.

The rule is that the embedded value must have the same type as the template
itself, so in this case it must be Html. That means that for shamlet, embedding
can be completely replaced with normal variable interpolation (with a hash).

Dealing with internationalization (i18n) in Hamlet is a bit complicated. Hamlet sup‐
ports i18n via a message data type, very similar in concept and implementation to a
type-safe URL. As an example, let’s say we want to create an application that says
“hello” and indicates how many apples you’ve eaten. Those messages can be repre‐
sented with a data type:

data Msg = Hello | Apples Int

Next, we need to convert that into something human readable, so we define some
render functions:

renderEnglish :: Msg -> Text
renderEnglish Hello = "Hello"
renderEnglish (Apples 0) = "You did not buy any apples."
renderEnglish (Apples 1) = "You bought 1 apple."
renderEnglish (Apples i) = T.concat ["You bought ", T.pack $ show i, " apples."]

Now we want to interpolate those Msg values directly in the template. For that, we use
underscore interpolation:

$doctype 5
<html>
 <head>
 <title>i18n
 <body>
 <h1>_{Hello}
 <p>_{Apples count}

This kind of a template now needs some way to turn those values into HTML. So, just
like with type-safe URLs, we pass in a render function. To represent this, we define a
new type synonym:

type Render url = url -> [(Text, Text)] -> Text
type Translate msg = msg -> Html
type HtmlUrlI18n msg url = Translate msg -> Render url -> Html

36 | Chapter 4: Shakespearean Templates

At this point, you can pass renderEnglish, renderSpanish, or renderKlingon to this
template, and it will generate nicely translated output (depending, of course, on the
quality of your translators). Here’s the complete program:

{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE OverloadedStrings #-}
import Data.Text (Text)
import qualified Data.Text as T
import Text.Hamlet (HtmlUrlI18n, ihamlet)
import Text.Blaze.Html (toHtml)
import Text.Blaze.Html.Renderer.String (renderHtml)

data MyRoute = Home | Time | Stylesheet

renderUrl :: MyRoute -> [(Text, Text)] -> Text
renderUrl Home _ = "/home"
renderUrl Time _ = "/time"
renderUrl Stylesheet _ = "/style.css"

data Msg = Hello | Apples Int

renderEnglish :: Msg -> Text
renderEnglish Hello = "Hello"
renderEnglish (Apples 0) = "You did not buy any apples."
renderEnglish (Apples 1) = "You bought 1 apple."
renderEnglish (Apples i) = T.concat ["You bought ", T.pack $ show i, " apples."]

template :: Int -> HtmlUrlI18n Msg MyRoute
template count = [ihamlet|
$doctype 5
<html>
 <head>
 <title>i18n
 <body>
 <h1>_{Hello}
 <p>_{Apples count}
|]

main :: IO ()
main = putStrLn $ renderHtml
 $ (template 5) (toHtml . renderEnglish) renderUrl

Other Shakespeare
In addition to HTML, CSS, and JavaScript helpers, there is also some more general-
purpose Shakespeare available. shakespeare-text provides a simple way to create
interpolated strings, much like people are accustomed to in scripting languages like
Ruby and Python. This package’s utility is definitely not limited to Yesod:

{-# LANGUAGE QuasiQuotes, OverloadedStrings #-}
import Text.Shakespeare.Text

Other Shakespeare | 37

import qualified Data.Text.Lazy.IO as TLIO
import Data.Text (Text)
import Control.Monad (forM_)

data Item = Item
 { itemName :: Text
 , itemQty :: Int
 }

items :: [Item]
items =
 [Item "apples" 5
 , Item "bananas" 10
]

main :: IO ()
main = forM_ items $ \item -> TLIO.putStrLn
 [lt|You have #{show $ itemQty item} #{itemName item}.|]

Some quick points about this simple example:

• Notice that we have three different textual data types involved (String, strict
Text, and lazy Text). They all play together well.

• We use a quasiquoter named lt, which generates lazy text. There is also st.
• Also, there are longer names for these quasiquoters (ltext and stext).

General Recommendations
Here are some general hints from the Yesod community on how to get the most out
of Shakespeare:

• For actual sites, use external files. For libraries, it’s OK to use quasiquoters,
assuming they aren’t too long.

• Patrick Brisbin has put together an immensely helpful Vim code highlighter.
• You should almost always start Hamlet tags on their own line instead of embed‐

ding start/end tags after an existing tag. The only exception to this is the occa‐
sional <i> or tag inside a large block of text.

38 | Chapter 4: Shakespearean Templates

http://bit.ly/vim-highlite

CHAPTER 5

Widgets

One of the challenges in web development is that we have to coordinate three differ‐
ent client-side technologies: HTML, CSS, and JavaScript. Worse still, we have to place
these components in different locations on the page: CSS in a <style> tag in the
head, JavaScript in a <script> tag in the head, and HTML in the body. And never
mind if you want to put your CSS and JavaScript in separate files!

In practice, this works out fairly nicely when building a single page, because we can
separate our structure (HTML), style (CSS), and logic (JavaScript). But when we want
to build modular pieces of code that can be easily composed, it can be a headache to
coordinate all three pieces separately. Widgets are Yesod’s solution to the problem.
They also help with the issue of including libraries, such as jQuery, one time only.

Our four template languages—Hamlet, Cassius, Lucius, and Julius—provide the raw
tools for constructing our output. Widgets provide the glue that allows them to work
together seamlessly.

Synopsis
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Yesod

data App = App
mkYesod "App" [parseRoutes|
/ HomeR GET
|]
instance Yesod App

getHomeR = defaultLayout $ do

39

 setTitle "My Page Title"
 toWidget [lucius| h1 { color: green; } |]
 addScriptRemote
 "https://ajax.googleapis.com/ajax/libs/jquery/1.6.2/jquery.min.js"
 toWidget
 [julius|
 $(function() {
 $("h1").click(function(){
 alert("You clicked on the heading!");
 });
 });
 |]
 toWidgetHead
 [hamlet|
 <meta name=keywords content="some sample keywords">
 |]
 toWidget
 [hamlet|
 <h1>Here's one way of including content
 |]
 [whamlet|<h2>Here's another |]
 toWidgetBody
 [julius|
 alert("This is included in the body itself");
 |]

main = warp 3000 App

This produces the following HTML (indentation added):

<!DOCTYPE html>
<html>
 <head>
 <title>My Page Title</title>
 <meta name="keywords" content="some sample keywords">
 <style>h1{color:green}</style>
 </head>
 <body>
 <h1>Here's one way of including content</h1>
 <h2>Here's another</h2>
 <script>
 alert("This is included in the body itself");
 </script>
 <script src="
 https://ajax.googleapis.com/ajax/libs/jquery/1.6.2/jquery.min.js">
 </script><script>
 $(function() {
 $('h1').click(function() {
 alert("You clicked on the heading!");
 });
 });
 </script>

40 | Chapter 5: Widgets

 </body>
</html>

What’s in a Widget?
At a very superficial level, an HTML document is just a bunch of nested tags. This is
the approach most HTML-generation tools take: you define hierarchies of tags and
are done with it. But let’s imagine that we want to write a component of a page for
displaying the navbar. We want this to be “plug and play”: the function is called at the
right time, and the navbar is inserted at the correct point in the hierarchy.

This is where our superficial HTML generation breaks down. Our navbar likely con‐
sists of some CSS and JavaScript in addition to HTML. By the time we call the navbar
function, we have already rendered the <head> tag, so it is too late to add a new
<style> tag for our CSS declarations. Under normal strategies, we would need to
break up our navbar function into three parts—HTML, CSS, and JavaScript—and
make sure that we always call all three pieces.

Widgets take a different approach. Instead of viewing an HTML document as a mon‐
olithic tree of tags, widgets see a number of distinct components in the page. In par‐
ticular, widgets are interested in the following:

• The title
• External stylesheets
• External JavaScript
• CSS declarations
• JavaScript code
• Arbitrary <head> content
• Arbitrary <body> content

Different components have different semantics. For example, there can only be one
title, but there can be multiple external scripts and stylesheets. However, those exter‐
nal scripts and stylesheets should only be included once. Arbitrary head and body
content, on the other hand, has no limitation (someone may want to have five lorem
ipsum blocks, after all).

The job of a widget is to hold onto these disparate components and apply proper
logic for combining different widgets. This consists of things like taking the last title
set and ignoring others, filtering duplicates from the list of external scripts and style‐
sheets, and concatenating head and body content.

What’s in a Widget? | 41

Constructing Widgets
In order to use widgets, you’ll obviously need to be able to get your hands on them.
The most common way will be via the ToWidget typeclass and its toWidget method.
This allows you to convert your Shakespearean templates directly to a Widget: Ham‐
let code will appear in the body, Julius scripts inside a <script>, and Cassius and
Lucius in a <style> tag.

You can actually override the default behavior and have the script
and style code appear in a separate file. The scaffolded site provides
this for you automatically.

But what if you want to add some <meta> tags, which need to appear in the head? Or
if you want some JavaScript to appear in the body instead of the head? For these pur‐
poses, Yesod provides two additional typeclasses: ToWidgetHead and ToWidgetBody.
These work exactly as they seem they should. One example use case for this is to have
fine-grained control over where your <script> tags end up getting inserted:

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Yesod

data App = App

mkYesod "App" [parseRoutes|
/ HomeR GET
|]

instance Yesod App where

getHomeR :: Handler Html
getHomeR = defaultLayout $ do
 setTitle "toWidgetHead and toWidgetBody"
 toWidgetBody
 [hamlet|<script src=/included-in-body.js>|]
 toWidgetHead
 [hamlet|<script src=/included-in-head.js>|]

main :: IO ()
main = warp 3001 App

Note that even though toWidgetHead was called after toWidgetBody, the latter
<script> tag appears first in the generated HTML.

42 | Chapter 5: Widgets

In addition, there are a number of other functions for creating specific kinds of widg‐
ets:

setTitle

Turns an HTML value into the page title.

toWidgetMedia

Works the same as toWidget, but takes an additional parameter to indicate what
kind of media this applies to. Useful for creating print stylesheets, for instance.

addStylesheet

Adds a reference, via a <link> tag, to an external stylesheet. Takes a type-safe
URL.

addStylesheetRemote

Same as addStylesheet, but takes a normal URL. Useful for referring to files
hosted on a content distribution network (CDN), like Google’s jQuery UI CSS
files.

addScript

Adds a reference, via a <script> tag, to an external script. Takes a type-safe URL.

addScriptRemote

Same as addScript, but takes a normal URL. Useful for referring to files hosted
on a CDN, like Google’s jQuery.

Combining Widgets
The whole idea of widgets is to increase composability. You can take individual pieces
of HTML, CSS, and JavaScript, combine them into something more complicated, and
then combine these larger entities into complete pages. This all works naturally
through the Monad instance of Widget, meaning you can use do notation to compose
pieces:

myWidget1 = do
 toWidget [hamlet|<h1>My Title|]
 toWidget [lucius|h1 { color: green } |]

myWidget2 = do
 setTitle "My Page Title"
 addScriptRemote "http://www.example.com/script.js"

myWidget = do
 myWidget1
 myWidget2

-- or, if you want
myWidget' = myWidget1 >> myWidget2

Combining Widgets | 43

If you’re so inclined, there’s also a Monoid instance of Widget,
meaning you can use mconcat or a Writer monad to build things
up. In my experience, it’s easiest and most natural to just use do
notation.

Generating IDs
If we’re really going for true code reuse here, we’re eventually going to run into name
conflicts. Let’s say that there are two helper libraries that both use the class name “foo”
to affect styling. We want to avoid such a possibility. Therefore, we have the newIdent
function. This function automatically generates a word that is unique for this han‐
dler:

getRootR = defaultLayout $ do
 headerClass <- newIdent
 toWidget [hamlet|<h1 .#{headerClass}>My Header|]
 toWidget [lucius| .#{headerClass} { color: green; } |]

whamlet
Let’s say we’ve got a fairly standard Hamlet template that embeds another Hamlet
template to represent the footer:

page =
 [hamlet|
 <p>This is my page. I hope you enjoyed it.
 ^{footer}
 |]

footer =
 [hamlet|
 <footer>
 <p>That's all folks!
 |]

That works fine if the footer is plain old HTML, but what if we want to add some
style? Well, we can easily spice up the footer by turning it into a widget:

footer = do
 toWidget
 [lucius|
 footer {
 font-weight: bold;
 text-align: center
 }
 |]
 toWidget
 [hamlet|
 <footer>

44 | Chapter 5: Widgets

 <p>That's all folks!
 |]

But now we’ve got a problem: a Hamlet template can only embed another Hamlet
template; it knows nothing about a widget. This is where whamlet comes in. It takes
exactly the same syntax as normal Hamlet, and variable (#{…}) and URL (@{…}) inter‐
polation are unchanged. But embedding (^{…}) takes a Widget, and the final result is
a Widget. To use it, we can just do:

page =
 [whamlet|
 <p>This is my page. I hope you enjoyed it.
 ^{footer}
 |]

There is also whamletFile, if you prefer to keep your template in a separate file.

The scaffolded site has an even more convenient function, widget
File, which will also include your Lucius, Cassius, and Julius files
automatically. We’ll cover that in Chapter 15.

Types
You may have noticed that I’ve been avoiding type signatures so far. Why? The simple
answer is that each widget is a value of type Widget. But if you look through the
Yesod libraries, you’ll find no definition of the Widget type. What gives?

Yesod defines a very similar type: data WidgetT site m a. This data type is a monad
transformer. The last two arguments are the underlying monad and the monadic
value, respectively. The site parameter is the specific foundation type for your indi‐
vidual application. Because this type varies for each and every site, it’s impossible for
the libraries to define a single Widget data type that would work for every application.

Instead, the mkYesod Template Haskell function generates this type synonym for you.
Assuming your foundation data type is called MyApp, your Widget synonym is defined
as follows:

type Widget = WidgetT MyApp IO ()

We set the monadic value to be (), as a widget’s value will ultimately be thrown away.
IO is the standard base monad, and will be used in almost all cases. The only excep‐
tion is when writing a subsite. Subsites are a more advanced topic and will be covered
later, in Chapter 17.

Once we know about our Widget type synonym, it’s easy to add signatures to our pre‐
vious code samples:

whamlet | 45

footer :: Widget
footer = do
 toWidget
 [lucius|
 footer {
 font-weight: bold;
 text-align: center
 }
 |]
 toWidget
 [hamlet|
 <footer>
 <p>That's all folks!
 |]

page :: Widget
page =
 [whamlet|
 <p>This is my page. I hope you enjoyed it.
 ^{footer}
 |]

When we start digging into handler functions some more, we’ll encounter a similar
situation with the HandlerT and Handler types.

Using Widgets
It’s all well and good that we have these beautiful Widget data types, but how exactly
do we turn them into something the user can interact with? The most commonly
used function is defaultLayout, which essentially has the type signature Widget ->
Handler Html.

defaultLayout is actually a typeclass method, which can be overridden for each
application. This is how Yesod apps are themed. So we’re still left with the question:
when we’re inside defaultLayout, how do we unwrap a Widget? The answer is
widgetToPageContent. Let’s look at some (simplified) types:

data PageContent url = PageContent
 { pageTitle :: Html
 , pageHead :: HtmlUrl url
 , pageBody :: HtmlUrl url
 }
widgetToPageContent :: Widget -> Handler (PageContent url)

This is getting closer to what we need. We now have direct access to the HTML mak‐
ing up the head and body, as well as the title. At this point, we can use Hamlet to
combine them all into a single document, along with our site layout, and we use with
UrlRenderer to convert that Hamlet result into actual HTML that’s ready to be shown
to the user. The next example demonstrates this process:

46 | Chapter 5: Widgets

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Yesod

data App = App
mkYesod "App" [parseRoutes|
/ HomeR GET
|]

myLayout :: Widget -> Handler Html
myLayout widget = do
 pc <- widgetToPageContent widget
 withUrlRenderer
 [hamlet|
 $doctype 5
 <html>
 <head>
 <title>#{pageTitle pc}
 <meta charset=utf-8>
 <style>body { font-family: verdana }
 ^{pageHead pc}
 <body>
 <article>
 ^{pageBody pc}
 |]

instance Yesod App where
 defaultLayout = myLayout

getHomeR :: Handler Html
getHomeR = defaultLayout
 [whamlet|
 <p>Hello, World!
 |]

main :: IO ()
main = warp 3000 App

But there’s still one thing that bothers me: that <style> tag. There are a few problems
with it:

• Unlike with Lucius or Cassius, it doesn’t get compile-time checked for correct‐
ness.

• Granted, the current example is very simple, but in something more complicated
we could get into character escaping issues.

• We’ll now have two <style> tags instead of one: the one produced by myLayout,
and the one generated in the pageHead based on the styles set in the widget.

Using Widgets | 47

We have one more trick in our bag to address this: we apply some last-minute adjust‐
ments to the widget itself before calling widgetToPageContent. It’s actually very easy
to do—we just use do notation again:

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Yesod

data App = App
mkYesod "App" [parseRoutes|
/ HomeR GET
|]

myLayout :: Widget -> Handler Html
myLayout widget = do
 pc <- widgetToPageContent $ do
 widget
 toWidget [lucius| body { font-family: verdana } |]
 withUrlRenderer
 [hamlet|
 $doctype 5
 <html>
 <head>
 <title>#{pageTitle pc}
 <meta charset=utf-8>
 ^{pageHead pc}
 <body>
 <article>
 ^{pageBody pc}
 |]

instance Yesod App where
 defaultLayout = myLayout

getHomeR :: Handler Html
getHomeR = defaultLayout
 [whamlet|
 <p>Hello, World!
 |]

main :: IO ()
main = warp 3000 App

Using Handler Functions
We haven’t covered too much of the handler functionality yet, but once we do, the
question arises: how do we use those functions in a widget? For example, what if your
widget needs to look up a query string parameter using lookupGetParam?

48 | Chapter 5: Widgets

The first answer is the function handlerToWidget, which can convert a Handler
action into a Widget answer. However, in many cases, this won’t be necessary. Con‐
sider the type signature of lookupGetParam:

lookupGetParam :: MonadHandler m => Text -> m (Maybe Text)

This function will live in any instance of MonadHandler. And conveniently, Widget is
also a MonadHandler instance. This means that most code can be run in either
Handler or Widget. And if you need to explicitly convert from Handler to Widget,
you can always use handlerToWidget.

This is a significant departure from how Yesod worked in versions
1.1 and earlier. Previously, there was no MonadHandler typeclass,
and all functions needed to be explicitly converted using lift, not
handlerToWidget. The new system is not only easier to use, but
also avoids any strange monad transformer tricks that were previ‐
ously employed.

Summary
The basic building block of each page is the widget. Individual snippets of HTML,
CSS, and JavaScript can be turned into widgets via the polymorphic toWidget func‐
tion. Using do notation, you can combine these individual widgets into larger widg‐
ets, eventually containing all the content of your page.

Unwrapping these widgets is usually performed within the defaultLayout function,
which can be used to apply a unified look and feel to all your pages.

Summary | 49

CHAPTER 6

The Yesod Typeclass

Every one of our Yesod applications requires an instance of the Yesod typeclass. So
far, we’ve just relied on default implementations of the methods of the Yesod
typeclass. In this chapter, we’ll explore the meaning of many of these methods Yesod
typeclass.

The Yesod typeclass gives us a central place for defining settings for our application.
Everything has a default definition, which is often the right thing. But in order to
build a powerful, customized application, you’ll usually end up wanting to override at
least a few of these methods.

A common question I hear is, “Why use a typeclass instead of a
record type?” There are two main advantages:

• The methods of the Yesod typeclass may wish to call other
methods. With typeclasses, this kind of usage is trivial. It
becomes slightly more complicated with a record type.

• Simplicity of syntax. We want to provide default implementa‐
tions and allow users to override just the necessary functional‐
ity. Typeclasses make this both easy and syntactically nice.
Records have a slightly larger overhead.

Rendering and Parsing URLs
We’ve already mentioned how Yesod is able to automatically render type-safe URLs
into textual URLs that can be inserted into an HTML page. Let’s say we have a route
definition that looks like the following:

51

mkYesod "MyApp" [parseRoutes|
/some/path SomePathR GET
]

If we place SomePathR into a Hamlet template, how does Yesod render it? Yesod
always tries to construct absolute URLs. This is especially useful once we start creat‐
ing XML sitemaps and Atom feeds, or sending emails. But in order to construct an
absolute URL, we need to know the domain name of the application.

You might think we could get that information from the user’s request, but we still
need to deal with ports. And even if we get the port number from the request, are we
using HTTP or HTTPS? And even if we know that, such an approach would mean
that, depending on how the user submitted a request, different URLs would be gener‐
ated. For example, a different URL would be generated if the user connected to exam‐
ple.com versus www.example.com. For search engine optimization, we want to be able
to consolidate on a single canonical URL.

And finally, Yesod doesn’t make any assumption about where you host your applica‐
tion. For example, you may have a mostly static site (http://static.example.com/), but
want to stick a Yesod-powered wiki at /wiki/. There is no reliable way for an applica‐
tion to determine what subpath it is being hosted from. So instead of doing all of this
guesswork, Yesod needs you to tell it the application root.

Using the wiki example, you would write your Yesod instance as follows:

instance Yesod MyWiki where
 approot = ApprootStatic "http://static.example.com/wiki"

Notice that there is no trailing slash there. Next, when Yesod wants to construct a
URL for SomePathR, it determines that the relative path for SomePathR is /some/path,
appends that to your approot, and creates http://static.example.com/wiki/some/path.

The default value of approot is ApprootRelative, which essentially means “don’t add
any prefix.” In that case, the generated URL would be /some/path. This works fine for
the common case of a link within your application, and your application being hosted
at the root of your domain. But if you have any use cases that demand absolute URLs
(e.g., sending an email), it’s best to use ApprootStatic.

In addition to the ApprootStatic constructor just demonstrated, you can also use the
ApprootMaster and ApprootRequest constructors. The former allows you to deter‐
mine the approot from the foundation value, which would let you load up the
approot from a config file, for instance. The latter allows you to additionally use the
request value to determine the approot; using this, you could, for example, provide a
different domain name depending on how the user requested the site in the first
place.

The scaffolded site uses ApprootMaster by default, and pulls your approot from
either the APPROOT environment variable or a config file on launch. Additionally, it

52 | Chapter 6: The Yesod Typeclass

http://static.example.com/
http://static.example.com/wiki/some/path

loads different settings for testing and production builds, so you can easily test on one
domain (e.g., localhost) and serve from a different domain. You can modify these val‐
ues from the config file.

joinPath
In order to convert a type-safe URL into a text value, Yesod uses two helper functions.
The first is the renderRoute method of the RenderRoute typeclass. Every type-safe
URL is an instance of this typeclass. renderRoute converts a value into a list of path
pieces. For example, the SomePathR we used earlier would be converted into ["some",
"path"].

Actually, renderRoute produces both the path pieces and a list of
query string parameters. The default instances of renderRoute
always provide an empty list of query string parameters. However,
it is possible to override this. One notable case is the static subsite,
which puts a hash of the file contents in the query string for cach‐
ing purposes.

The other function is the joinPath method of the Yesod typeclass. This function
takes four arguments:

• The foundation value
• The application root
• A list of path segments
• A list of query string parameters

It returns a textual URL. The default implementation does the “right thing”: it sepa‐
rates the path pieces by forward slashes, prepends the application root, and appends
the query string.

If you are happy with the default URL rendering, you should not need to modify it.
However, if you want to modify URL rendering to do things like append a trailing
slash, this would be the place to do it.

cleanPath
The flip side of joinPath is cleanPath. Let’s look at how it gets used in the dispatch
process:

1. The path info requested by the user is split into a series of path pieces.
2. We pass the path pieces to the cleanPath function.

Rendering and Parsing URLs | 53

3. If cleanPath indicates a redirect (a Left response), then a 301 response is sent to
the client. This is used to force canonical URLs (e.g., remove extra slashes).

4. Otherwise, we try to dispatch using the response from cleanPath (a Right). If
this works, we return a response. Otherwise, we return a 404.

This combination allows subsites to retain full control over how their URLs appear,
yet allows master sites to have modified URLs. As a simple example, let’s see how we
could modify Yesod to always produce trailing slashes on URLs:

{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Blaze.ByteString.Builder.Char.Utf8 (fromText)
import Control.Arrow ((***))
import Data.Monoid (mappend)
import qualified Data.Text as T
import qualified Data.Text.Encoding as TE
import Network.HTTP.Types (encodePath)
import Yesod

data Slash = Slash

mkYesod "Slash" [parseRoutes|
/ RootR GET
/foo FooR GET
|]

instance Yesod Slash where
 joinPath _ ar pieces' qs' =
 fromText ar `mappend` encodePath pieces qs
 where
 qs = map (TE.encodeUtf8 *** go) qs'
 go "" = Nothing
 go x = Just $ TE.encodeUtf8 x
 pieces = pieces' ++ [""]

 -- We want to keep canonical URLs. Therefore, if the URL is missing a
 -- trailing slash, redirect. But the empty set of pieces always stays the
 -- same.
 cleanPath _ [] = Right []
 cleanPath _ s
 | dropWhile (not . T.null) s == [""] =
 -- the only empty string is the last one
 Right $ init s
 -- Because joinPath will append the missing trailing slash, we
 -- simply remove empty pieces.
 | otherwise = Left $ filter (not . T.null) s

getRootR :: Handler Html

54 | Chapter 6: The Yesod Typeclass

getRootR = defaultLayout
 [whamlet|
 <p>
 RootR
 <p>
 FooR
 |]

getFooR :: Handler Html
getFooR = getRootR

main :: IO ()
main = warp 3000 Slash

First, let’s look at our joinPath implementation. This is copied almost verbatim from
the default Yesod implementation, with one difference: we append an extra empty
string to the end. When dealing with path pieces, an empty string will append
another slash, so adding an extra empty string will force a trailing slash.

cleanPath is a little bit trickier. First, we check for the empty path like before, and if
found, we pass it through as is. We use Right to indicate that a redirect is not neces‐
sary. The next clause is actually checking for two different possible URL issues:

• There is a double slash, which would show up as an empty string in the middle of
our paths.

• There is a missing trailing slash, which would show up as the last piece not being
an empty string.

Assuming neither of those conditions hold, then only the last piece is empty, and we
should dispatch based on all but the last piece. However, if this is not the case, we
want to redirect to a canonical URL. In this case, we strip out all empty pieces and do
not bother appending a trailing slash, as joinPath will do that for us.

defaultLayout
Most websites like to apply some general template to all of their pages. defaultLay
out is the recommended approach for this. While you could just as easily define your
own function and call that instead, when you override defaultLayout all of the
Yesod-generated pages (error pages, authentication pages) automatically get this style.

Overriding is very straightforward: we use widgetToPageContent to convert a Widget
to a title, <head> tags, and <body> tags, and then use withUrlRenderer to convert a
Hamlet template into an Html value. We can even add extra widget components, like a
Lucius template, from within defaultLayout. For more information, see Chapter 5.

defaultLayout | 55

If you are using the scaffolded site, you can modify the files templates/default-
layout.hamlet and templates/default-layout-wrapper.hamlet. The former contains most
of the contents of the <body> tag, while the latter has the rest of the HTML, such as
the doctype and the <head> tag. See those files for more details.

getMessage
Even though we haven’t covered sessions yet, I’d like to mention getMessage here. A
common pattern in web development is setting a message in one handler and display‐
ing it in another. For example, if a user POSTs a form, you may want to redirect her to
another page along with a “Form submission complete” message. This is commonly
known as Post/Redirect/Get.

To facilitate this, Yesod comes with a pair of functions built in: setMessage sets a
message in the user session, and getMessage retrieves the message (and clears it, so it
doesn’t appear a second time). It’s recommended that you put the result of
getMessage into your defaultLayout. For example:

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Yesod
import Data.Time (getCurrentTime)

data App = App

mkYesod "App" [parseRoutes|
/ HomeR GET
|]

instance Yesod App where
 defaultLayout contents = do
 PageContent title headTags bodyTags <- widgetToPageContent contents
 mmsg <- getMessage
 withUrlRenderer [hamlet|
 $doctype 5

 <html>
 <head>
 <title>#{title}
 ^{headTags}
 <body>
 $maybe msg <- mmsg
 <div #message>#{msg}
 ^{bodyTags}
 |]

getHomeR :: Handler Html

56 | Chapter 6: The Yesod Typeclass

getHomeR = do
 now <- liftIO getCurrentTime
 setMessage $ toHtml $ "You previously visited at: " ++ show now
 defaultLayout [whamlet|<p>Try refreshing|]

main :: IO ()
main = warp 3000 App

We’ll cover getMessage/setMessage in more detail when we discuss sessions in
Chapter 9.

Custom Error Pages
One of the marks of a professional website is a properly designed error page. Yesod
gets you a long way there by automatically using your defaultLayout for displaying
error pages. But sometimes you’ll want to go even further. For this, you’ll want to
override the errorHandler method:

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Yesod

data App = App

mkYesod "App" [parseRoutes|
/ HomeR GET
/error ErrorR GET
/not-found NotFoundR GET
|]

instance Yesod App where
 errorHandler NotFound = fmap toTypedContent $ defaultLayout $ do
 setTitle "Request page not located"
 toWidget [hamlet|
<h1>Not Found
<p>
We apologize for the inconvenience, but the requested page could not be located.
|]
 errorHandler other = defaultErrorHandler other

getHomeR :: Handler Html
getHomeR = defaultLayout
 [whamlet|
 <p>
 Internal server error
 Not found
 |]

getErrorR :: Handler ()

Custom Error Pages | 57

getErrorR = error "This is an error"

getNotFoundR :: Handler ()
getNotFoundR = notFound

main :: IO ()
main = warp 3000 App

Here we specify a custom 404 error page. We can also use the defaultErrorHandler
when we don’t want to write a custom handler for each error type. Due to type con‐
straints, we need to start off our methods with fmap toTypedContent, but otherwise
we can write a typical handler function. (We’ll learn more about TypedContent in the
next chapter.)

In fact, you could even use special responses like redirects:

 errorHandler NotFound = redirect HomeR
 errorHandler other = defaultErrorHandler other

Although you can do this, I don’t actually recommend such practi‐
ces. A 404 should be a 404.

External CSS and JavaScript
One of the most powerful, and most intimidating, methods in the Yesod typeclass is
addStaticContent. Remember that a widget consists of multiple components,
including CSS and JavaScript. How exactly does that CSS/JS arrive in the user’s
browser? By default, these resources are served in the <head> of the page, inside
<style> and <script> tags, respectively.

The functionality described here is automatically included in the
scaffolded site, so you don’t need to worry about implementing this
yourself.

That might be simple, but it’s far from efficient. Every page load will now require
loading up the CSS/JS from scratch, even if nothing has changed! What we really
want is to store this content in an external file and then refer to it from the HTML.

This is where addStaticContent comes in. It takes three arguments: the filename
extension of the content (.css or .js), the MIME type of the content (text/css or
text/javascript), and the content itself. It will then return one of three possible
results:

58 | Chapter 6: The Yesod Typeclass

Nothing
No static file saving occurred; embed this content directly in the HTML. This is
the default behavior.

Just (Left Text)

This content was saved in an external file. The given textual link should be used
to refer to it.

Just (Right (Route a, Query))

Same as Just (Left Text), but now a type-safe URL should be used along with
some query string parameters.

The Left result is useful if you want to store your static files on an external server,
such as a CDN or memory-backed server. The Right result is more commonly used,
and ties in very well with the static subsite. This is the recommended approach for
most applications, and is provided by the scaffolded site by default.

You might be wondering: if this is the recommended approach,
why isn’t it the default? The problem is that it makes a number of
assumptions that don’t universally hold, such as the presence of a
static subsite and the location of your static files.

The scaffolded addStaticContent does a number of intelligent things to help
you out:

• It automatically minifies your JavaScript using the hjsmin package.
• It names the output files based on a hash of the file contents. This means you can

set your cache headers to far in the future without fears of stale content.
• Because filenames are based on hashes, you can be guaranteed that a file doesn’t

need to be written if a file with the same name already exists. The scaffold code
automatically checks for the existence of that file, and avoids the costly disk I/O
of a write if it’s not necessary.

Smarter Static Files
Google recommends an important optimization: serve static files from a separate
domain. The advantage to this approach is that cookies set on your main domain are
not sent when retrieving static files, thus saving on a bit of bandwidth.

To facilitate this, we have the urlRenderOverride method. This method intercepts
the normal URL rendering and sets a special value for some routes. For example, the
scaffolding defines this method as:

Smarter Static Files | 59

http://bit.ly/gdev-comp
http://bit.ly/gdev-comp

urlRenderOverride y (StaticR s) =
 Just $ uncurry (joinPath y (Settings.staticRoot $ settings y))
 $ renderRoute s

urlRenderOverride _ _ = Nothing

This means that static routes are served from a special static root, which you can con‐
figure to be a different domain. This is a great example of the power and flexibility of
type-safe URLs: with a single line of code, you’re able to change the rendering of
static routes throughout all of your handlers.

Authentication/Authorization
For simple applications, checking permissions inside each handler function can be a
simple, convenient approach. However, it doesn’t scale well. Eventually, you’re going
to want to have a more declarative approach. Many systems out there define access
control lists, special config files, and a lot of other hocus-pocus. In Yesod, it’s just
plain old Haskell. There are three methods involved:

isWriteRequest

Determines if the current request is a “read” or “write” operation. By default,
Yesod follows RESTful principles and assumes GET, HEAD, OPTIONS, and TRACE
requests are read-only, while all others are writable.

isAuthorized

Takes a route (i.e., type-safe URL) and a Boolean indicating whether or not the
request is a write request. It returns an AuthResult, which can have one of the
following three values. By default, it returns Authorized for all requests.

• Authorized

• AuthenticationRequired

• Unauthorized

authRoute

If isAuthorized returns AuthenticationRequired, then redirects to the given
route. If no route is provided (the default), returns a 401 “authentication
required” message.

These methods tie in nicely with the yesod-auth package, which is used by the
scaffolded site to provide a number of authentication options, such as OpenID,
Mozilla Persona, email, username, and Twitter. We’ll cover more concrete examples
in Chapter 14.

60 | Chapter 6: The Yesod Typeclass

Some Simple Settings
Not everything in the Yesod typeclass is complicated. Some methods are simple func‐
tions. Let’s just go through the list:

maximumContentLength

To prevent denial-of-service (DoS) attacks, Yesod will limit the size of request
bodies. Some of the time, you’ll want to bump that limit for some routes (e.g., a
file upload page). This is where you’d do that.

fileUpload

Determines how uploaded files are treated, based on the size of the request. The
two most common approaches are saving the files in memory, or streaming to
temporary files. By default, small requests are kept in memory and large ones are
stored to disk.

shouldLog

Determines if a given log message (with associated source and level) should be
sent to the log. This allows you to put lots of debugging information into your
app, but only turn it on as necessary.

For the most up-to-date information, see the Haddock API documentation for the
Yesod typeclass.

Summary
The Yesod typeclass has a number of overrideable methods that allow you to config‐
ure your application. They are all optional, and provide sensible defaults. By using
built-in Yesod constructs like defaultLayout and getMessage, you’ll get a consistent
look and feel throughout your site, including pages automatically generated by Yesod
such as error pages and authentication.

We haven’t covered all the methods in the Yesod typeclass in this chapter. For a full
listing of methods available, you should consult the Haddock documentation.

Some Simple Settings | 61

http://www.stackage.org/package/yesod-core
http://www.stackage.org/package/yesod-core
http://www.stackage.org/package/yesod-core

CHAPTER 7

Routing and Handlers

If we look at Yesod as a model-view-controller framework, routing and handlers
make up the controller. For contrast, let’s describe two other routing approaches used
in other web development environments:

• Dispatch based on filename. This is how PHP and ASP work, for example.
• Have a centralized routing function that parses routes based on regular expres‐

sions. Django and Rails follow this approach.

Yesod is closer in principle to the latter technique. Even so, there are significant dif‐
ferences. Instead of using regular expressions, Yesod matches on pieces of a route.
Instead of having a one-way route-to-handler mapping, Yesod has an intermediate
data type (called the route or type-safe URL data type) and creates two-way conver‐
sion functions.

Coding this more advanced system manually is tedious and error prone. Therefore,
Yesod defines a domain-specific language (DSL) for specifying routes, and provides
Template Haskell functions to convert this DSL to Haskell code. This chapter will
explain the syntax of the routing declarations, give you a glimpse of what code is gen‐
erated for you, and explain the interaction between routing and handler functions.

Route Syntax
Instead of trying to shoehorn route declarations into an existing syntax, Yesod’s
approach is to use a simplified syntax designed just for routes. This has the advantage
of making the code not only easy to write, but simple enough that someone with no
Yesod experience can read and understand the sitemap of your application.

63

A basic example of this syntax is:

/ HomeR GET
/blog BlogR GET POST
/blog/#BlogId BlogPostR GET POST

/static StaticR Static getStatic

The next few sections explain the full details of what goes on in the route declaration.

Pieces
One of the first things Yesod does when it gets a request is split up the requested path
into pieces. The pieces are tokenized at all forward slashes. For example:

toPieces "/" = []
toPieces "/foo/bar/baz/" = ["foo", "bar", "baz", ""]

You may notice that there are some funny things going on with trailing slashes, or
double slashes (/foo//bar//), or a few other things. Yesod believes in having canonical
URLs; if users request a URL with a trailing slash, or with a double slash, they are
automatically redirected to the canonical version. This ensures you have one URL for
one resource, and can help with your search rankings.

What this means for you is that you needn’t concern yourself with the exact structure
of your URLs: you can safely think about pieces of a path, and Yesod automatically
handles intercalating the slashes and escaping problematic characters.

If, by the way, you want more fine-tuned control of how paths are split into pieces
and joined together again, you’ll want to look at the cleanPath and joinPath meth‐
ods in Chapter 6.

Types of pieces
When you are declaring your routes, you have three types of pieces at your disposal:

Static
This is a plain string that must be matched against precisely in the URL.

Dynamic single
This is a single piece (i.e., between two forward slashes), but represents a user-
submitted value. This is the primary method of receiving extra user input on a
page request. These pieces begin with a hash (#) and are followed by a data type.
The data type must be an instance of PathPiece.

Dynamic multi
The same as the previous type, but can receive multiple pieces of the URL. This
must always be the last piece in a resource pattern. It is specified by an asterisk
(*) followed by a data type, which must be an instance of PathMultiPiece. Multi‐

64 | Chapter 7: Routing and Handlers

pieces are not as common as the other two, though they are very important for
implementing features like static trees representing file structure or wikis with
arbitrary hierarchies.

Since Yesod 1.4, you can additionally use a + to indicate a dynamic
multi. This is important, because the C preprocessor can be con‐
fused by the /* character combination.

Let us take a look at some standard kinds of resource patterns you may want to write.
Starting simply, the root of an application will just be /. Similarly, you may want to
place your FAQ at /page/faq.

Now let’s say we are going to write a Fibonacci website. We might construct our URLs
like /fib/#Int. But there’s a slight problem with this: we do not want to allow negative
numbers or zero to be passed into our application. Fortunately, the type system can
protect us:

newtype Natural = Natural Int
instance PathPiece Natural where
 toPathPiece (Natural i) = T.pack $ show i
 fromPathPiece s =
 case reads $ T.unpack s of
 (i, ""):_
 | i < 1 -> Nothing
 | otherwise -> Just $ Natural i
 [] -> Nothing

On line 1 we define a simple newtype wrapper around Int to protect ourselves from
invalid input. We can see that PathPiece is a typeclass with two methods. toPath
Piece does nothing more than convert to a Text. fromPathPiece attempts to convert
a Text to our data type, returning Nothing when this conversion is impossible. By
using this data type, we can ensure that our handler function is only ever given natu‐
ral numbers, allowing us to once again use the type system to battle the boundary
issue.

In a real-life application, we would also want to ensure we never
accidentally constructed an invalid Natural value internally to our
app. To do so, we could use an approach like smart constructors.
For the purposes of this example, we’ve kept the code simple.

Defining a PathMultiPiece is just as simple. Let’s say we want to have a wiki with at
least two levels of hierarchy. We might define a data type such as:

Route Syntax | 65

http://www.haskell.org/haskellwiki/Smart_constructors

data Page = Page Text Text [Text] -- 2 or more
instance PathMultiPiece Page where
 toPathMultiPiece (Page x y z) = x : y : z
 fromPathMultiPiece (x:y:z) = Just $ Page x y z
 fromPathMultiPiece _ = Nothing

Overlap checking
By default, Yesod will ensure that no two routes have the potential to overlap with
each other. So, for example, consider the following routes:

/foo/bar Foo1R GET
/foo/#Text Foo2R GET

This route declaration will be rejected as overlapping, because /foo/bar will match
both routes. However, there are two cases where you may wish to allow overlapping:

• If you know by the definition of your data type that the overlap can never hap‐
pen. For example, if you replace Text with Int in the preceding example, it’s easy
to convince yourself that there’s no route that exists that will overlap. Yesod is
currently not capable of performing such an analysis.

• If you have some extra knowledge about how your application operates, and
know that such a situation should never be allowed—for example, if the Foo2R
route should never be allowed to receive the parameter bar.

You can turn off overlap checking by using an exclamation mark at the beginning of
your route. For example, the following will be accepted by Yesod:

/foo/bar Foo1R GET
!/foo/#Int Foo2R GET
!/foo/#Text Foo3R GET

You can also place the exclamation point at the beginning of any of
the path pieces, or following the #, *, or + characters. However, this
newer syntax should be preferred as it’s clearer what the goal is.

One issue that overlapping routes introduces is ambiguity. In the preceding example,
should /foo/bar route to Foo1R or Foo3R? And should /foo/42 route to Foo2R or
Foo3R? Yesod’s rule for this is simple: the first route wins.

Resource Name
Each resource pattern also has a name associated with it. That name will become the
constructor for the type-safe URL data type associated with your application. There‐

66 | Chapter 7: Routing and Handlers

fore, it has to start with a capital letter. By convention, these resource names all end
with a capital R. There is nothing forcing you to do this; it is just common practice.

The exact definition of our constructor depends on the resource pattern it is attached
to. Whatever data types are used as single pieces or multipieces of the pattern become
arguments to the data type. This gives us a one-to-one correspondence between our
type-safe URL values and valid URLs in our application.

This doesn’t necessarily mean that every value is a working page,
just that it is a potentially valid URL. As an example, the value
PersonR "Michael" may not resolve to a valid page if there is no
Michael in the database.

Let’s get some real examples going here. If you had the resource patterns /person/
#Text named PersonR, /year/#Int named YearR, and /page/faq named FaqR, you
would end up with a route data type roughly looking like:

data MyRoute = PersonR Text
 | YearR Int
 | FaqR

If a user requests /year/2009, Yesod will convert it into the value YearR

2009. /person/Michael becomes PersonR "Michael", and /page/faq becomes FaqR.
On the other hand, /year/two-thousand-nine, /person/michael/snoyman, and /
page/FAQ would all result in 404 errors without ever seeing your code.

Handler Specification
The last piece of the puzzle when declaring your resources is how they will be han‐
dled. There are three options in Yesod:

• A single handler function for all request methods on a given route.
• A separate handler function for each request method on a given route. Any other

request method will generate a 405 Method Not Allowed response.
• You want to pass off to a subsite.

The first two can be easily specified. A single handler function will be a line with just
a resource pattern and the resource name, such as /page/faq FaqR. In this case, the
handler function must be named handleFaqR.

A separate handler for each request method will be the same, plus a list of request
methods. The request methods must be in all capital letters; for example, /person/
#String PersonR GET POST DELETE. In this case, you would need to define three
handler functions: getPersonR, postPersonR, and deletePersonR.

Route Syntax | 67

Subsites are a very useful—but more complicated—topic in Yesod. We will cover
writing subsites later, but using them is not too difficult. The most commonly used
subsite is the static subsite, which serves static files for your application. In order to
serve static files from /static, you would need a resource line like:

/static StaticR Static getStatic

In this line, /static just says where in your URL structure to serve the static files
from. There is nothing magical about the word “static”; you could easily replace it
with /my/non-dynamic/files.

The next word, StaticR, gives the resource name. The next two words specify that we
are using a subsite. Static is the name of the subsite foundation data type, and get
Static is a function that gets a Static value from a value of your master foundation
data type.

Let’s not get too caught up in the details of subsites now. We will look more closely at
the static subsite in Chapter 15.

Dispatch
Once you have specified your routes, Yesod will take care of all the pesky details of
URL dispatch for you. You just need to make sure to provide the appropriate handler
functions. For subsite routes, you do not need to write any handler functions, but you
do for the other two. We mentioned the naming rules earlier (MyHandlerR GET
becomes getMyHandlerR, MyOtherHandlerR becomes handleMyOtherHandlerR).

Now that we know which functions we need to write, let’s figure out what their type
signatures should be.

Return Type
Let’s look at a simple handler function:

mkYesod "Simple" [parseRoutes|
/ HomeR GET
|]

getHomeR :: Handler Html
getHomeR = defaultLayout [whamlet|<h1>This is simple|]

There are two components to this return type: Handler and Html. Let’s analyze each
in more depth.

Handler monad

Like the Widget type, the Handler data type is not defined anywhere in the Yesod
libraries. Instead, the libraries provide the data type:

68 | Chapter 7: Routing and Handlers

data HandlerT site m a

And like WidgetT, this has three arguments: a base monad m, a monadic value a, and
the foundation data type site. Each application defines a Handler synonym that con‐
strains site to that application’s foundation data type, and sets m to IO. If your foun‐
dation is MyApp, in other words, you’d have the synonym:

type Handler = HandlerT MyApp IO

We need to be able to modify the underlying monad when writing subsites, but
otherwise we’ll use IO.

The HandlerT monad provides access to information about the user request (e.g.,
query string parameters), allows modifying the response (e.g., response headers), and
more. This is the monad that most of your Yesod code will live in.

In addition, there’s a typeclass called MonadHandler. Both HandlerT and WidgetT are
instances of this typeclass, allowing many common functions to be used in both
monads. If you see MonadHandler in any API documentation, you should remember
that the function can be used in your Handler functions.

Html
There’s nothing too surprising about this type. This function returns some HTML
content, represented by the Html data type. But clearly Yesod would not be useful if it
only allowed HTML responses to be generated. We want to respond with CSS, Java‐
Script, JSON, images, and more. So the question is: what data types can be returned?

In order to generate a response, we need to know two pieces of information: the con‐
tent type (e.g., text/html, image/png) and how to serialize it to a stream of bytes.
This is represented by the TypedContent data type:

data TypedContent = TypedContent !ContentType !Content

We also have a typeclass for all data types, which can be converted to a TypedContent:

class ToTypedContent a where
 toTypedContent :: a -> TypedContent

Many common data types are instances of this typeclass, including Html, Value (from
the aeson package, representing JSON), Text, and even () (for representing an empty
response).

Arguments
Let’s return to our simple example:

mkYesod "Simple" [parseRoutes|
/ HomeR GET
|]

Dispatch | 69

getHomeR :: Handler Html
getHomeR = defaultLayout [whamlet|<h1>This is simple|]

Not every route is as simple as this HomeR. Take, for instance, our PersonR route from
earlier. The name of the person needs to be passed to the handler function. This
translation is very straightforward, and hopefully intuitive. For example:

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ViewPatterns #-}
import Data.Text (Text)
import qualified Data.Text as T
import Yesod

data App = App
instance Yesod App

mkYesod "App" [parseRoutes|
/person/#Text PersonR GET
/year/#Integer/month/#Text/day/#Int DateR
/wiki/*Texts WikiR GET
|]

getPersonR :: Text -> Handler Html
getPersonR name = defaultLayout [whamlet|<h1>Hello #{name}!|]

handleDateR :: Integer -> Text -> Int -> Handler Text -- text/plain
handleDateR year month day =
 return $
 T.concat [month, " ", T.pack $ show day, ", ", T.pack $ show year]

getWikiR :: [Text] -> Handler Text
getWikiR = return . T.unwords

main :: IO ()
main = warp 3000 App

The arguments have the types of the dynamic pieces for each route, in the order
specified. Also notice how we are able to use both Html and Text return values.

The Handler Functions
Because the majority of your code will live in the Handler monad, it’s important to
invest some time in understanding it better. The remainder of this chapter will give a
brief introduction to some of the most common functions living in the Handler
monad. I am specifically not covering any of the session functions; those will be
addressed in Chapter 9.

70 | Chapter 7: Routing and Handlers

Application Information
There are a number of functions that return information about your application as a
whole, and give no information about individual requests. Some of these are:

getYesod

Returns your application foundation value. If you store configuration values in
your foundation, you will probably end up using this function a lot. (If you’re so
inclined, you can also use ask from Control.Monad.Reader; getYesod is simply a
type-constrained synonym for it.)

getUrlRender

Returns the URL rendering function, which converts a type-safe URL into a
Text. Most of the time—like with Hamlet—Yesod calls this function for you, but
you may occasionally need to call it directly.

getUrlRenderParams

A variant of getUrlRender that converts both a type-safe URL and a list of query
string parameters. This function handles all percent-encoding necessary.

Request Information
The most common information you will want to get about the current request is the
requested path, the query string parameters, and POSTed form data. The first of those
is dealt with in the routing, as described earlier. The other two are best dealt with
using the forms module.

That said, you will sometimes need to get the data in a more raw format. For this pur‐
pose, Yesod exposes the YesodRequest data type along with the getRequest function
to retrieve it. This gives you access to the full list of GET parameters, cookies, and pre‐
ferred languages. There are some convenient functions to make these lookups easier,
such as lookupGetParam, lookupCookie, and languages. For raw access to the POST
parameters, you should use runRequestBody.

If you need even more raw data, like request headers, you can use waiRequest to
access the Web Application Interface (WAI) request value. See Appendix B for more
details.

Short-Circuiting
The following functions immediately end execution of a handler function and return
a result to the user:

redirect

Sends a redirect response to the user (a 303 response). If you want to use a differ‐
ent response code (e.g., a permanent 301 redirect), you can use redirectWith.

The Handler Functions | 71

Yesod uses a 303 response for HTTP/1.1 clients, and a 302 response
for HTTP/1.0 clients. You can read up on this sordid saga in the
HTTP spec.

notFound

Returns a 404 response. This can be useful if a user requests a database value that
doesn’t exist.

permissionDenied

Returns a 403 response with a specific error message.

invalidArgs

Returns a 400 response with a list of invalid arguments.

sendFile

Sends a file from the filesystem with a specified content type. This is the prefer‐
red way to send static files, because the underlying WAI handler may be able to
optimize this to a sendfile system call. Using readFile for sending static files
should not be necessary.

sendResponse

Sends a normal response with a 200 status code. This is really just a convenience
for when you need to break out of some deeply nested code with an immediate
response. Any instance of ToTypedContent may be used.

sendWaiResponse

Used when you need to get low-level and send out a raw WAI response. This can
be especially useful for creating streaming responses or for a technique like
server-sent events.

Response Headers
The following functions allow you to generate various response headers:

setCookie

Sets a cookie on the client. Instead of taking an expiration date, this function
takes a cookie duration in minutes. Remember, you won’t see this cookie using
lookupCookie until the following request.

deleteCookie

Tells the client to remove a cookie. Once again, lookupCookie will not reflect this
change until the next request.

setHeader

Sets an arbitrary response header.

72 | Chapter 7: Routing and Handlers

http://bit.ly/stat-codes

setLanguage

Sets the preferred user language, which will show up in the result of the
languages function.

cacheSeconds

Sets a Cache-Control header to indicate how many seconds this response can be
cached. This can be particularly useful if you are using Varnish on your server.

neverExpires

Sets the Expires header to the year 2037. You can use this for content that should
never expire, such as when the request path has a hash value associated with it.

alreadyExpired

Sets the Expires header to the past.

expiresAt

Sets the Expires header to the specified date/time.

I/O and Debugging
The HandlerT and WidgetT monad transformers are both instances of a number of
typeclasses. For this section, the important typeclasses are MonadIO and MonadLogger.
The former allows you to perform arbitrary IO actions inside your handler, such as
reading from a file. In order to achieve this, you just need to prepend liftIO to the
call.

MonadLogger provides a built-in logging system. There are many ways you can cus‐
tomize this system, including what messages get logged and where logs are sent. By
default, logs are sent to standard output. In development, all messages are logged, and
in production, warnings and errors are logged.

When logging, we often want to know where in the source code the logging occurred.
For this, MonadLogger provides a number of convenience Template Haskell functions
that will automatically insert the source code location into the log messages. These
functions are $logDebug, $logInfo, $logWarn, and $logError. Let’s look at a short
example of some of these functions:

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Control.Exception (IOException, try)
import Control.Monad (when)
import Yesod

data App = App
instance Yesod App where

I/O and Debugging | 73

http://www.varnish-cache.org

 -- This function controls which messages are logged
 shouldLog App src level =
 True -- good for development
 -- level == LevelWarn || level == LevelError -- good for production

mkYesod "App" [parseRoutes|
/ HomeR GET
|]

getHomeR :: Handler Html
getHomeR = do
 $logDebug "Trying to read data file"
 edata <- liftIO $ try $ readFile "datafile.txt"
 case edata :: Either IOException String of
 Left e -> do
 $logError $ "Could not read datafile.txt"
 defaultLayout [whamlet|An error occurred|]
 Right str -> do
 $logInfo "Reading of data file succeeded"
 let ls = lines str
 when (length ls < 5) $ $logWarn "Less than 5 lines of data"
 defaultLayout
 [whamlet|

 $forall l <- ls
 #{l}
 |]

main :: IO ()
main = warp 3000 App

Query String and Hash Fragments
We’ve seen a number of functions that work on URL-like things, such as redirect.
These functions all work with type-safe URLs, but what else do they work with?
There’s a typeclass called RedirectUrl that contains the logic for converting some
type into a textual URL. This includes type-safe URLs, textual URLs, and two special
instances:

• A tuple of a URL and a list of key/value pairs of query string parameters
• The Fragment data type, used for adding a hash fragment to the end of a URL

Both of these instances allow you to “add on” extra information to a type-safe URL.
Let’s see some examples of how these can be used:

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}

74 | Chapter 7: Routing and Handlers

import Data.Set (member)
import Data.Text (Text)
import Yesod
import Yesod.Auth
import Yesod.Auth.Dummy

data App = App

mkYesod "App" [parseRoutes|
/ HomeR GET
/link1 Link1R GET
/link2 Link2R GET
/link3 Link3R GET
/link4 Link4R GET
|]

instance Yesod App where

getHomeR :: Handler Html
getHomeR = defaultLayout $ do
 setTitle "Redirects"
 [whamlet|
 <p>
 Click to start the redirect loop!
 |]

getLink1R, getLink2R, getLink3R :: Handler ()
getLink1R = redirect Link2R -- /link1
getLink2R = redirect (Link3R, [("foo", "bar")]) -- /link3?foo=bar
getLink3R = redirect $ Link4R :#: ("baz" :: Text) -- /link4#baz

getLink4R :: Handler Html
getLink4R = defaultLayout
 [whamlet|
 <p>You made it!
 |]

main :: IO ()
main = warp 3000 App

Of course, inside a Hamlet template this is usually not necessary, as you can simply
include the hash after the URL directly. For example:

Link to hash

Summary
Routing and dispatch is arguably the core of Yesod: it is from here that our type-safe
URLs are defined, and the majority of our code is written within the Handler monad.
This chapter covered some of the most important and central concepts of Yesod, so it
is important that you properly digest it.

Summary | 75

This chapter also hinted at a number of more complex Yesod topics that we will be
covering later, but you should be able to write some very sophisticated web applica‐
tions with just the knowledge you have learned up until this point.

76 | Chapter 7: Routing and Handlers

CHAPTER 8

Forms

I’ve mentioned the boundary issue already: whenever data enters or leaves an applica‐
tion, we need to validate it. Probably the most difficult place this occurs is in forms.
Coding forms is complex; in an ideal world, we’d like a solution that can do all of the
following:

• Ensure data is valid.
• Marshal string data in the form submission to Haskell data types.
• Generate HTML code for displaying the form.
• Generate JavaScript to do client-side validation and provide more user-friendly

widgets, such as date pickers.
• Build up more complex forms by combining together simpler forms.
• Automatically assign names to our fields that are guaranteed to be unique.

The yesod-form package provides all these features in a simple, declarative API. It
builds on top of Yesod’s widgets to simplify styling of forms and applying JavaScript
appropriately. And like the rest of Yesod, it uses Haskell’s type system to make sure
everything is working correctly.

Synopsis
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Control.Applicative ((<$>), (<*>))
import Data.Text (Text)
import Data.Time (Day)

77

import Yesod
import Yesod.Form.Jquery

data App = App

mkYesod "App" [parseRoutes|
/ HomeR GET
/person PersonR POST
|]

instance Yesod App

-- Tells our application to use the standard English messages.
-- If you want i18n, then you can supply a translating function instead.
instance RenderMessage App FormMessage where
 renderMessage _ _ = defaultFormMessage

-- And tell us where to find the jQuery libraries. We'll just use the defaults,
-- which point to the Google CDN.
instance YesodJquery App

-- The data type we wish to receive from the form
data Person = Person
 { personName :: Text
 , personBirthday :: Day
 , personFavoriteColor :: Maybe Text
 , personEmail :: Text
 , personWebsite :: Maybe Text
 }
 deriving Show

-- Declare the form. The type signature is a bit intimidating, but here's the
-- overview:
--
-- * The Html parameter is used for encoding some extra information. See the
-- discussion regarding runFormGet and runFormPost below for further
-- explanation.
--
-- * We have our Handler as the inner monad, which indicates which site this is
-- running in.
--
-- * FormResult can be in three states: FormMissing (no data available),
-- FormFailure (invalid data), and FormSuccess.
--
-- * The Widget is the viewable form to place into the web page.
--
-- Note that the scaffolded site provides a convenient Form type synonym,
-- so that our signature could be written as:
--
-- > personForm :: Form Person
--
-- For our purposes, it's good to see the long version.

78 | Chapter 8: Forms

personForm :: Html -> MForm Handler (FormResult Person, Widget)
personForm = renderDivs $ Person
 <$> areq textField "Name" Nothing
 <*> areq (jqueryDayField def
 { jdsChangeYear = True -- give a year drop-down
 , jdsYearRange = "1900:-5" -- 1900 to five years ago
 }) "Birthday" Nothing
 <*> aopt textField "Favorite color" Nothing
 <*> areq emailField "Email address" Nothing
 <*> aopt urlField "Website" Nothing

-- The GET handler displays the form
getHomeR :: Handler Html
getHomeR = do
 -- Generate the form to be displayed
 (widget, enctype) <- generateFormPost personForm
 defaultLayout
 [whamlet|
 <p>
 The widget generated contains only the contents
 of the form, not the form tag itself. So...
 <form method=post action=@{PersonR} enctype=#{enctype}>
 ^{widget}
 <p>It also doesn't include the submit button.
 <button>Submit
 |]

-- The POST handler processes the form. If it is successful, it displays the
-- parsed person. Otherwise, it displays the form again with error messages.
postPersonR :: Handler Html
postPersonR = do
 ((result, widget), enctype) <- runFormPost personForm
 case result of
 FormSuccess person -> defaultLayout [whamlet|<p>#{show person}|]
 _ -> defaultLayout
 [whamlet|
 <p>Invalid input, let's try again.
 <form method=post action=@{PersonR} enctype=#{enctype}>
 ^{widget}
 <button>Submit
 |]

main :: IO ()
main = warp 3000 App

Kinds of Forms
Before jumping into the types themselves, we should begin with an overview of the
different kinds of forms. There are three categories:

Kinds of Forms | 79

Applicative
These are the most commonly used (it’s what appeared in the preceding code).
This approach has some nice properties: it lets error messages coalesce and
remains a very high-level, declarative approach. (For more information on appli‐
cative code, see the Haskell wiki.)

Monadic
A more powerful alternative to the applicative style. Although this approach
allows for more flexibility, it does so at the cost of being more verbose. However,
it’s useful if you want to create forms that don’t fit into the standard two-column
look.

Input
Used only for receiving input. No HTML is generated for receiving the user
input. Useful for interacting with existing forms.

In addition, there are a number of different variables that come into play for each
form and field you will want to set up:

• Is the field required or optional?
• Should it be submitted with GET or POST?
• Does it have a default value, or not?

An overriding goal is to minimize the number of field definitions and let them work
in as many contexts as possible. One result of this is that we end up with a few extra
words for each field. In the synopsis, you may have noticed things like areq and that
extra Nothing parameter. We’ll cover why all of those exist in the course of this chap‐
ter, but for now realize that by making these parameters explicit, we are able to reuse
the individual fields (like intField) in many different ways.

A quick note on naming conventions: each form type has a one-letter prefix (A, M, or
I) that is used in a few places, such as MForm. We also use req and opt to mean
required and optional. Combining these, we create a required applicative field with
areq, or an optional input field with iopt.

Types
The Yesod.Form.Types module declares a few types. We won’t cover all the types
available, but will instead focus on the most crucial. Let’s start with some of the sim‐
ple ones:

enctype

The encoding type, either UrlEncoded or Multipart. This data type declares an
instance of ToHtml, so you can use the enctype directly in Hamlet.

80 | Chapter 8: Forms

http://bit.ly/app-functor

FormResult

This data type has one of three possible states: FormMissing if no data was sub‐
mitted, FormFailure if there was an error parsing the form (e.g., missing a
required field or including invalid content), or FormSuccess if everything went
smoothly.

FormMessage

Represents all of the different messages that can be generated as a data type. For
example, MsgInvalidInteger is used by the library to indicate that the textual
value provided is not an integer. By keeping this data highly structured, you are
able to provide any kind of rendering function you want, which allows for inter‐
nationalization (i18n) of your application.

Next, we have some data types used for defining individual fields. We define a field as
a single piece of information, such as a number, a string, or an email address. Fields
are combined to build forms. The two key data types here are:

Field

Defines two pieces of functionality: how to parse the text input from a user into a
Haskell value, and how to create the widget to be displayed to the user. yesod-
form defines a number of individual Field+s in +Yesod.Form.Fields.

FieldSettings

Contains basic information on how a field should be displayed, such as the dis‐
play name, an optional tooltip, and possibly hardcoded id and name attributes. (If
none are provided, they are automatically generated.) Note that FieldSettings
provides an IsString instance, so when you need to provide a FieldSettings
value, you can actually type in a literal string. That’s how we interacted with it in
the synopsis.

And finally, we get to the important stuff: the forms themselves. There are three
types: MForm is for monadic forms, AForm for applicative, and FormInput for input.
MForm is actually a type synonym for a monad stack that provides the following fea‐
tures:

• A Reader monad giving us the parameters submitted by the user, the foundation
data type, and the list of languages the user supports. The last two are used for
rendering of the FormMessages to support i18n (more on this later).

• A Writer monad keeping track of the Enctype. A form will be UrlEncoded by
default unless there is a file input field, which will force us to use Multipart
instead.

• A State monad keeping track of generated names and identifiers for fields.

An AForm is pretty similar. However, there are a few major differences:

Types | 81

• It produces a list of FieldViews, which are used for tracking what we will display
to the user. This allows us to keep an abstract idea of the form display, and then at
the end of the day choose an appropriate function for laying it out on the page. In
the synopsis, we used renderDivs, which creates a bunch of <div> tags. Two
other options are renderBootstrap and renderTable.

• It does not provide a Monad instance. The goal of Applicative is to allow the
entire form to run, grab as much information on each field as possible, and then
create the final result. This cannot work in the context of Monad.

A FormInput is even simpler: it returns either a list of error messages or a result.

Converting
“But wait a minute,” you say. “You said the synopsis code uses an applicative form, but
I’m sure the type signature said MForm. Shouldn’t it be monadic?” That’s true; the final
form we produced was monadic. But what really happened is that we converted an
applicative form to a monadic one.

Again, our goal is to reuse code as much as possible, and minimize the number of
functions in the API. And monadic forms are more powerful than applicative forms,
if a bit clumsy, so anything that can be expressed in an applicative form could also be
expressed in a monadic form. There are two core functions that help out with this:
aformToForm converts any applicative form to a monadic one, and formToAForm con‐
verts certain kinds of monadic forms to applicative forms.

“But wait another minute,” you insist. “I didn’t see any aformToForm!” Also true. The
renderDivs function takes care of that for us.

Creating AForms
Now that I’ve (hopefully) convinced you that we were really dealing with applicative
forms, let’s have a look and try to understand how these things get created. Let’s take a
simple example:

data Car = Car
 { carModel :: Text
 , carYear :: Int
 }
 deriving Show

carAForm :: AForm Handler Car
carAForm = Car
 <$> areq textField "Model" Nothing
 <*> areq intField "Year" Nothing

82 | Chapter 8: Forms

carForm :: Html -> MForm Handler (FormResult Car, Widget)
carForm = renderTable carAForm

Here, we’ve explicitly split up applicative and monadic forms. In carAForm, we use the
<$> and <*> operators. This should not be surprising; these are almost always used in
applicative-style code. And we have one line for each record in our Car data type. Per‐
haps also unsurprisingly, we have a textField for the Text record, and an intField
for the Int record.

Let’s look a bit more closely at the areq function. Its (simplified) type signature is
Field a -> FieldSettings -> Maybe a -> AForm a. That first argument specifies
the data type of this field, how to parse it, and how to render it. The next argument,
FieldSettings, tells us the label, tooltip, name, and ID of the field. In this case, we’re
using the previously mentioned IsString instance of FieldSettings.

And what’s up with that Maybe a? It provides the optional default value. For example,
if we wanted our form to fill in “2007” as the default car year, we would use areq int
Field "Year" (Just 2007). We can even take this to the next level, and have a form
that takes an optional parameter giving the default values:

carAForm :: Maybe Car -> AForm Handler Car
carAForm mcar = Car
 <$> areq textField "Model" (carModel <$> mcar)
 <*> areq intField "Year" (carYear <$> mcar)

Optional Fields
Suppose we wanted to have an optional field (like the car color). All we do for this is
use the aopt function:

carAForm :: AForm Handler Car
carAForm = Car
 <$> areq textField "Model" Nothing
 <*> areq intField "Year" Nothing
 <*> aopt textField "Color" Nothing

Like with required fields, the last argument is the optional default value. However,
this has two layers of Maybe wrapping. This is actually a bit redundant, but it makes it
much easier to write code that takes an optional default form parameter, such as in
the next example:

carAForm :: Maybe Car -> AForm Handler Car
carAForm mcar = Car
 <$> areq textField "Model" (carModel <$> mcar)
 <*> areq intField "Year" (carYear <$> mcar)
 <*> aopt textField "Color" (carColor <$> mcar)

carForm :: Html -> MForm Handler (FormResult Car, Widget)
carForm = renderTable $ carAForm $ Just $ Car "Forte" 2010 $ Just "gray"

Creating AForms | 83

Validation
How would we make our form only accept cars created after 1990? If you remember,
the Field itself contained the information on what is a valid entry. So all we need to
do is write a new Field, right? Well, that would be a bit tedious. Instead, let’s just
modify an existing one:

carAForm :: Maybe Car -> AForm Handler Car
carAForm mcar = Car
 <$> areq textField "Model" (carModel <$> mcar)
 <*> areq carYearField "Year" (carYear <$> mcar)
 <*> aopt textField "Color" (carColor <$> mcar)
 where
 errorMessage :: Text
 errorMessage = "Your car is too old, get a new one!"

 carYearField = check validateYear intField

 validateYear y
 | y < 1990 = Left errorMessage
 | otherwise = Right y

The trick here is the check function. It takes a function (validateYear) that returns
either an error message or a modified field value. In this example, we haven’t modi‐
fied the value at all. That is usually going to be the case. This kind of checking is very
common, so we have a shortcut:

carYearField = checkBool (>= 1990) errorMessage intField

checkBool takes two parameters: a condition that must be fulfilled, and an error mes‐
sage to be displayed if it was not.

You may have noticed the explicit Text type signature on
errorMessage. In the presence of OverloadedStrings, this is nec‐
essary. In order to support i18n, messages can have many different
data types, and GHC has no way of determining which instance of
IsString you intended to use.

It’s great to make sure the car isn’t too old. But what if we want to make sure that the
year specified is not in the future? In order to look up the current year, we’ll need to
run some IO. For such circumstances, we’ll need checkM, which allows our validation
code to perform arbitrary actions:

 carYearField = checkM inPast $ checkBool (>= 1990) errorMessage intField

 inPast y = do
 thisYear <- liftIO getCurrentYear
 return $ if y <= thisYear
 then Right y

84 | Chapter 8: Forms

 else Left ("You have a time machine!" :: Text)

getCurrentYear :: IO Int
getCurrentYear = do
 now <- getCurrentTime
 let today = utctDay now
 let (year, _, _) = toGregorian today
 return $ fromInteger year

inPast is a function that will return an Either result in the Handler monad. We use
liftIO getCurrentYear to get the current year and then compare it against the user-
supplied year. Also, notice how we can chain together multiple validators.

Because the checkM validator runs in the Handler monad, it has
access to a lot of the stuff you can normally do in Yesod. This is
especially useful for running database actions, which we’ll cover in
Chapter 10.

More Sophisticated Fields
Our color entry field is nice, but it’s not exactly user-friendly. What we really want is a
drop-down list:

data Car = Car
 { carModel :: Text
 , carYear :: Int
 , carColor :: Maybe Color
 }
 deriving Show

data Color = Red | Blue | Gray | Black
 deriving (Show, Eq, Enum, Bounded)

carAForm :: Maybe Car -> AForm Handler Car
carAForm mcar = Car
 <$> areq textField "Model" (carModel <$> mcar)
 <*> areq carYearField "Year" (carYear <$> mcar)
 <*> aopt (selectFieldList colors) "Color" (carColor <$> mcar)
 where
 colors :: [(Text, Color)]
 colors = [("Red", Red), ("Blue", Blue), ("Gray", Gray), ("Black", Black)]

selectFieldList takes a list of pairs. The first item in the pair is the text displayed to
the user in the drop-down list, and the second item is the actual Haskell value. Of
course, this code looks really repetitive; we can get the same result using the Enum and
Bounded instance GHC automatically derives for us:

colors = map (pack . show &&& id) [minBound..maxBound]

More Sophisticated Fields | 85

[minBound..maxBound] gives us a list of all the different Color values. We then apply
a map and &&& (a.k.a., the to turn that into a list of pairs. And even this can be simpli‐
fied by using the optionsEnum function provided by yesod-form, which would turn
our original code into:

carAForm :: Maybe Car -> AForm Handler Car
carAForm mcar = Car
 <$> areq textField "Model" (carModel <$> mcar)
 <*> areq carYearField "Year" (carYear <$> mcar)
 <*> aopt (selectFieldList optionsEnum) "Color" (carColor <$> mcar)

Some people prefer radio buttons to drop-down lists. Fortunately, this is just a one-
word change:

carAForm = Car
 <$> areq textField "Model" Nothing
 <*> areq intField "Year" Nothing
 <*> aopt (radioFieldList optionsEnum) "Color" Nothing

Running Forms
At some point, we’re going to need to take our beautiful forms and produce some
results. There are a number of different functions available for this, each with its own
purpose. I’ll go through them, starting with the most common:

runFormPost

This will run your form against any submitted POST parameters. If this is not a
POST submission, it will return FormMissing. This automatically inserts a security
token as a hidden form field to avoid cross-site request forgery (CSRF) attacks.

runFormGet

The equivalent of runFormPost for GET parameters. In order to distinguish a nor‐
mal GET page load from a GET submission, it includes an extra _hasdata hidden
field in the form. Unlike runFormPost, it does not include CSRF protection.

runFormPostNoToken

Same as runFormPost, but does not include (or require) the CSRF security token.

generateFormPost

Instead of binding to existing POST parameters, acts as if there are none. This can
be useful when you want to generate a new form after a previous form was sub‐
mitted, such as in a wizard.

generateFormGet

Same as generateFormPost, but for GET.

The return type from the first three is ((FormResult a, Widget), Enctype). The
Widget will already have any validation errors and previously submitted values.

86 | Chapter 8: Forms

Why the nested tuple instead of a specialized data type? It’s because
runFormPostNoToken and runFormGet can both be used with forms
that don’t return a FormResult or Widget, which can be useful
when dealing with more complicated monadic forms (discussed
later).

i18n
There have been a few references to i18n in this chapter. The topic will get more thor‐
ough coverage in Chapter 22, but because it has such a profound effect on yesod-
form, I wanted to give a brief overview here. The idea behind i18n in Yesod is to have
data types represent messages. Each site can have an instance of RenderMessage for a
given data type, which will translate that message based on a list of languages the user
accepts. As a result of all this, there are a few things you should be aware of:

• There is an automatic instance of RenderMessage for Text in every site, so you
can just use plain strings if you don’t care about i18n support. However, you may
need to use explicit type signatures occasionally.

• yesod-form expresses all of its messages in terms of the FormMessage data type.
Therefore, to use yesod-form, you’ll need to have an appropriate RenderMessage
instance. A simple one that uses the default English translations would be:

instance RenderMessage App FormMessage where
 renderMessage _ _ = defaultFormMessage

This is provided automatically by the scaffolded site.

Monadic Forms
Oftentimes, a simple form layout is adequate, and applicative forms excel at this
approach. Sometimes, however, you’ll want your form to have a more customized
look, such as that shown in Figure 8-1.

Figure 8-1. A nonstandard form layout

For these use cases, monadic forms fit the bill. They are a bit more verbose than their
applicative cousins, but this verbosity allows you to have complete control over what
the form will look like. In order to generate the form in Figure 8-1, we could use code
like the following:

{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}

i18n | 87

{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Control.Applicative
import Data.Text (Text)
import Yesod

data App = App

mkYesod "App" [parseRoutes|
/ HomeR GET
|]

instance Yesod App

instance RenderMessage App FormMessage where
 renderMessage _ _ = defaultFormMessage

data Person = Person
 { personName :: Text
 , personAge :: Int
 }
 deriving Show

personForm :: Html -> MForm Handler (FormResult Person, Widget)
personForm extra = do
 (nameRes, nameView) <- mreq textField "this is not used" Nothing
 (ageRes, ageView) <- mreq intField "neither is this" Nothing
 let personRes = Person <$> nameRes <*> ageRes
 let widget = do
 toWidget
 [lucius|
 ##{fvId ageView} {
 width: 3em;
 }
 |]
 [whamlet|
 #{extra}
 <p>
 Hello, my name is #
 ^{fvInput nameView}
 \ and I am #
 ^{fvInput ageView}
 \ years old. #
 <input type=submit value="Introduce myself">
 |]
 return (personRes, widget)

getHomeR :: Handler Html
getHomeR = do
 ((res, widget), enctype) <- runFormGet personForm
 defaultLayout

88 | Chapter 8: Forms

 [whamlet|
 <p>Result: #{show res}
 <form enctype=#{enctype}>
 ^{widget}
 |]

main :: IO ()
main = warp 3000 App

Similar to the applicative areq, we use mreq for monadic forms. (And yes, there’s also
mopt for optional fields.) But there’s a big difference: mreq gives us back a pair of val‐
ues. Instead of hiding away the FieldView value and automatically inserting it into a
widget, we have the ability to insert it as we see fit.

FieldView has a number of pieces of information. The most important is fvInput,
which is the actual form field. In this example, we also use fvId, which gives us back
the HTML id attribute of the <input> tag. In our example, we use that to specify the
width of the field.

You might be wondering what the story is with the “this is not used” and “neither is
this” values. mreq takes FieldSettings as its second argument. FieldSettings pro‐
vides an IsString instance, so the strings are essentially expanded by the compiler as
follows:

fromString "this is not used" == FieldSettings
 { fsLabel = "this is not used"
 , fsTooltip = Nothing
 , fsId = Nothing
 , fsName = Nothing
 , fsAttrs = []
 }

In the case of applicative forms, the fsLabel and fsTooltip values are used when
constructing your HTML. In the case of monadic forms, Yesod does not generate any
of the “wrapper” HTML for you, and therefore these values are ignored. However, we
still keep the FieldSettings parameter to allow you to override the id and name
attributes of your fields if desired.

The other interesting bit is the extra value. GET forms include an extra field to indi‐
cate that they have been submitted, and POST forms include a security token to pre‐
vent CSRF attacks. If you don’t include this extra hidden field in your form, the form
submission will fail.

Other than that, things are pretty straightforward. We create our personRes value by
combining the nameRes and ageRes values, and then return a tuple of the person and
the widget. And in the getHomeR function, everything looks just like an applicative
form. In fact, you could swap our monadic form with an applicative one and the code
would still work.

Monadic Forms | 89

Input Forms
Applicative and monadic forms handle both the generation of your HTML code and
the parsing of user input. Sometimes you only want to do the latter, such as when
there’s an already existing form in HTML somewhere, or if you want to generate a
form dynamically using JavaScript. In such a case, you’ll want input forms.

These work mostly the same as applicative and monadic forms, with some differ‐
ences:

• You use runInputPost and runInputGet.
• You use ireq and iopt. These functions now only take two arguments: the field

type and the name (i.e., HTML name attribute) of the field in question.
• After running a form, it returns the value. It doesn’t return a widget or an encod‐

ing type.
• If there are any validation errors, the page returns an “invalid arguments” error

page.

You can use input forms to re-create the previous example. Note, however, that the
input version is less user-friendly. If you make a mistake in an applicative or monadic
form, you will be brought back to the same page, with your previously entered values
in the form, and an error message explaining what you need to correct. With input
forms, the user simply gets an error message:

{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Control.Applicative
import Data.Text (Text)
import Yesod

data App = App

mkYesod "App" [parseRoutes|
/ HomeR GET
/input InputR GET
|]

instance Yesod App

instance RenderMessage App FormMessage where
 renderMessage _ _ = defaultFormMessage

data Person = Person
 { personName :: Text

90 | Chapter 8: Forms

 , personAge :: Int
 }
 deriving Show

getHomeR :: Handler Html
getHomeR = defaultLayout
 [whamlet|
 <form action=@{InputR}>
 <p>
 My name is
 <input type=text name=name>
 and I am
 <input type=text name=age>
 years old.
 <input type=submit value="Introduce myself">
 |]

getInputR :: Handler Html
getInputR = do
 person <- runInputGet $ Person
 <$> ireq textField "name"
 <*> ireq intField "age"
 defaultLayout [whamlet|<p>#{show person}|]

main :: IO ()
main = warp 3000 App

Custom Fields
The fields that come built in with Yesod will likely cover the vast majority of your
form needs. But occasionally, you’ll need something more specialized. Fortunately,
you can create new fields in Yesod yourself. The Field constructor has three values.
The first, fieldParse, takes a list of values submitted by the user and returns one of
three results:

• An error message saying validation failed
• The parsed value
• Nothing, indicating that no data was supplied

That last case might sound surprising. It would seem that Yesod can automatically
know that no information is supplied when the input list is empty. But in reality, for
some field types, the lack of any input is actually valid input. Checkboxes, for
instance, indicate an unchecked state by sending in an empty list.

Also, what’s up with the list? Shouldn’t it be a Maybe? That’s also not the case. With
grouped checkboxes and multiselect lists, you’ll have multiple widgets with the same
name. We also use this trick in our example.

Custom Fields | 91

The second value in the constructor is fieldView, and it renders a widget to display
to the user. This function has the following arguments:

• The id attribute.
• The name attribute.
• Any other arbitrary attributes.
• The result, given as an Either value. This will provide either the unparsed input

(when parsing failed) or the successfully parsed value. intField is a great exam‐
ple of how this works. If you type in 42, the value of the result will be Right 42.
But if you type in turtle, the result will be Left "turtle". This lets you put in a
value attribute on your <input> tag that will give the user a consistent experi‐
ence.

• A Bool indicating if the field is required.

The final value in the constructor is fieldEnctype. If you’re dealing with file uploads,
this should be Multipart; otherwise, it should be UrlEncoded.

As a small example, let’s create a new field type that is a password confirm field. This
field has two text inputs—both with the same name attribute—and returns an error
message if the values don’t match. Note that, unlike most fields, it does not provide a
value attribute on the <input> tags, as you don’t ever want to send back a user-
entered password in your HTML:

passwordConfirmField :: Field Handler Text
passwordConfirmField = Field
 { fieldParse = \rawVals _fileVals ->
 case rawVals of
 [a, b]
 | a == b -> return $ Right $ Just a
 | otherwise -> return $ Left "Passwords don't match"
 [] -> return $ Right Nothing
 _ -> return $ Left "You must enter two values"
 , fieldView = \idAttr nameAttr otherAttrs eResult isReq ->
 [whamlet|
 <input id=#{idAttr} name=#{nameAttr} *{otherAttrs} type=password>
 <div>Confirm:
 <input id=#{idAttr}-confirm name=#{nameAttr} *{otherAttrs}
 type=password>
 |]
 , fieldEnctype = UrlEncoded
 }

getHomeR :: Handler Html
getHomeR = do
 ((res, widget), enctype) <- runFormGet $ renderDivs
 $ areq passwordConfirmField "Password" Nothing

92 | Chapter 8: Forms

 defaultLayout
 [whamlet|
 <p>Result: #{show res}
 <form enctype=#{enctype}>
 ^{widget}
 <input type=submit value="Change password">
 |]

Values That Don’t Come from the User
Imagine you’re writing a blog hosting web app, and you want to have a form for users
to enter a blog post. A blog post will consist of four pieces of information:

• Title
• HTML contents
• User ID of the author
• Publication date

We want the user to enter the first two values, but not the second two. User ID should
be determined automatically by authenticating the user (a topic we haven’t covered
yet), and the publication date should just be the current time. The question is, how do
we keep our simple applicative form syntax, and yet pull in values that don’t come
from the user?

The answer is two separate helper functions:

• pure allows us to wrap up a plain value as an applicative form value.
• lift allows us to run arbitrary Handler actions inside an applicative form.

Let’s see an example of using these two functions:

{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Control.Applicative
import Data.Text (Text)
import Data.Time
import Yesod

-- We'll address this properly in Chapter 14
newtype UserId = UserId Int
 deriving Show

data App = App

Values That Don’t Come from the User | 93

mkYesod "App" [parseRoutes|
/ HomeR GET POST
|]

instance Yesod App

instance RenderMessage App FormMessage where
 renderMessage _ _ = defaultFormMessage

type Form a = Html -> MForm Handler (FormResult a, Widget)

data Blog = Blog
 { blogTitle :: Text
 , blogContents :: Textarea
 , blogUser :: UserId
 , blogPosted :: UTCTime
 }
 deriving Show

form :: UserId -> Form Blog
form userId = renderDivs $ Blog
 <$> areq textField "Title" Nothing
 <*> areq textareaField "Contents" Nothing
 <*> pure userId
 <*> lift (liftIO getCurrentTime)

getHomeR :: Handler Html
getHomeR = do
 let userId = UserId 5 -- again, see Chapter 14
 ((res, widget), enctype) <- runFormPost $ form userId
 defaultLayout
 [whamlet|
 <p>Previous result: #{show res}
 <form method=post action=@{HomeR} enctype=#{enctype}>
 ^{widget}
 <input type=submit>
 |]

postHomeR :: Handler Html
postHomeR = getHomeR

main :: IO ()
main = warp 3000 App

One trick we’ve introduced here is using the same handler code for both the GET and
POST request methods. This is enabled by the implementation of runFormPost, which
will behave exactly like generateFormPost in the case of a GET request. Using the
same handler for both request methods cuts down on some boilerplate.

94 | Chapter 8: Forms

Summary
Forms in Yesod are broken up into three groups. Applicative is the most common, as
it provides a nice user interface with an easy-to-use API. Monadic forms give you
more power, but are harder to use. Input forms are intended for when you just want
to read data from the user, not generate the input widgets.

Out of the box, Yesod provides a number of different Fields. In order to use these in
your forms, you need to indicate the kind of form and whether the field is required or
optional. The result is six helper functions: areq, aopt, mreq, mopt, ireq, and iopt.

Forms have significant power available. They can automatically insert JavaScript to
help you leverage nicer UI controls, such as a jQuery UI date picker. Forms are also
fully i18n-ready, so you can support a global community of users. And when you
have more specific needs, you can slap some validation functions onto an existing
field, or write a new one from scratch.

Summary | 95

CHAPTER 9

Sessions

HTTP is a stateless protocol. Although some view this as a disadvantage, advocates of
RESTful web development laud this as a plus. When state is removed from the pic‐
ture, we get some automatic benefits, such as easier scalability and caching. You can
draw many parallels with the nonmutable nature of Haskell in general.

As much as possible, RESTful applications should avoid storing state about an inter‐
action with a client. However, it is sometimes unavoidable. Features like shopping
carts are the classic example, but other, more mundane interactions like proper login
handling can be greatly enhanced by correct usage of sessions.

This chapter will describe how Yesod stores session data, how you can access this
data, and some special functions to help you make the most of sessions.

clientsession
One of the earliest packages spun off from Yesod was clientsession. This package
uses encryption and signatures to store data in a client-side cookie. The encryption
prevents the user from inspecting the data, and the signature ensures that the session
cannot be tampered with.

It might sound like a bad idea from an efficiency standpoint to store data in a cookie.
After all, this means that the data must be sent on every request. However, in practice,
clientsession can be a great boon for performance:

• No server-side database lookup is required to service a request.
• We can easily scale horizontally: each request contains all the information we

need to send a response.

97

• To avoid undue bandwidth overhead, production sites can serve their static con‐
tent from a separate domain name, thereby skipping transmission of the session
cookie for each request.

Storing megabytes of information in the session will be a bad idea. But for that mat‐
ter, most session implementations recommend against such practices. If you really
need massive storage for a user, it is best to store a lookup key in the session and put
the actual data in a database.

All of the interaction with clientsession is handled by Yesod internally, but there
are a few spots where you can tweak the behavior just a bit.

Controlling Sessions
By default, your Yesod application will use clientsession for its session storage, get‐
ting the encryption key from the client client-session-key.aes and giving a session a
two-hour timeout. (Note: timeout is measured from the last time the client sent a
request to the site, not from when the session was first created.) However, all of those
points can be modified by overriding the makeSessionBackend method in the Yesod
typeclass.

One simple way to override this method is to simply turn off session handling. To do
so, return Nothing:

instance Yesod App where
 makeSessionBackend _ = return Nothing

If your app has absolutely no session needs, disabling them can give a bit of a perfor‐
mance increase. But be careful about disabling sessions: this will also disable such fea‐
tures as cross-site request forgery protection.

Another common approach is to modify the filepath or timeout value, but con‐
tinue using clientsession. In order to do so, use the defaultClientSessionBack
end helper function:

instance Yesod App where
 makeSessionBackend _ = do
 let minutes = 24 * 60 -- 1 day
 filepath = "mykey.aes"
 backend <- defaultClientSessionBackend minutes filepath

There are a few other functions to grant you more fine-grained control over client
session, but they will rarely be necessary. Refer to Yesod.Core’s documentation if
you are interested. It’s also possible to implement some other form of session, such as
a server-side session. To my knowledge, at the time of writing, no other such imple‐
mentations exist.

98 | Chapter 9: Sessions

https://hackage.haskell.org/package/yesod-core-1.2.4/docs/Yesod-Core.html?

If the given key file does not exist, it will be created and populated
with a randomly generated key. When you deploy your app to pro‐
duction, you should include a pregenerated key with it; otherwise,
all existing sessions will be invalidated when your new key file is
generated. The scaffolding addresses this for you.

Session Operations
As in most frameworks, a session in Yesod is a key/value store. The base session API
boils down to four functions: lookupSession gets a value for a key (if available), get
Session returns all of the key/value pairs, setSession sets a value for a key, and
deleteSession clears a value for a key. Let’s look at an example:

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE MultiParamTypeClasses #-}
import Control.Applicative ((<$>), (<*>))
import qualified Web.ClientSession as CS
import Yesod

data App = App

mkYesod "App" [parseRoutes|
/ HomeR GET POST
|]

getHomeR :: Handler Html
getHomeR = do
 sess <- getSession
 defaultLayout
 [whamlet|
 <form method=post>
 <input type=text name=key>
 <input type=text name=val>
 <input type=submit>
 <h1>#{show sess}
 |]

postHomeR :: Handler ()
postHomeR = do
 (key, mval) <- runInputPost $ (,)
 <$> ireq textField "key"
 <*> iopt textField "val"
 case mval of
 Nothing -> deleteSession key
 Just val -> setSession key val
 liftIO $ print (key, mval)
 redirect HomeR

Session Operations | 99

instance Yesod App where
 -- Make the session timeout 1 minute so that it's easier to play with
 makeSessionBackend _ = do
 backend <- defaultClientSessionBackend 1 "keyfile.aes"
 return $ Just backend

instance RenderMessage App FormMessage where
 renderMessage _ _ = defaultFormMessage

main :: IO ()
main = warp 3000 App

Messages
One usage of sessions previously alluded to is for messages. They solve a common
problem in web development: the user performs a POST request, the web app makes a
change, and then the web app wants to simultaneously redirect the user to a new page
and send the user a success message. (This is known as Post/Redirect/Get.)

Yesod provides a pair of functions to enable this workflow: setMessage stores a value
in the session, and getMessage both reads the value most recently put into the session
and clears the old value so it is not displayed twice.

It is recommended to have a call to getMessage in defaultLayout so that any avail‐
able message is shown to the user immediately, without having to add getMessage
calls to every handler:

{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Yesod

data App = App

mkYesod "App" [parseRoutes|
/ HomeR GET
/set-message SetMessageR POST
|]

instance Yesod App where
 defaultLayout widget = do
 pc <- widgetToPageContent widget
 mmsg <- getMessage
 withUrlRenderer
 [hamlet|
 $doctype 5
 <html>

100 | Chapter 9: Sessions

 <head>
 <title>#{pageTitle pc}
 ^{pageHead pc}
 <body>
 $maybe msg <- mmsg
 <p>Your message was: #{msg}
 ^{pageBody pc}
 |]

instance RenderMessage App FormMessage where
 renderMessage _ _ = defaultFormMessage

getHomeR :: Handler Html
getHomeR = defaultLayout
 [whamlet|
 <form method=post action=@{SetMessageR}>
 My message is: #
 <input type=text name=message>
 <button>Go
 |]

postSetMessageR :: Handler ()
postSetMessageR = do
 msg <- runInputPost $ ireq textField "message"
 setMessage $ toHtml msg
 redirect HomeR

main :: IO ()
main = warp 3000 App

The screenshots in Figures 9-1 through 9-4 demonstrate how you would interact with
this program.

Figure 9-1. Initial page load, no message

Figure 9-2. New message entered in text box

Messages | 101

Figure 9-3. After form submit, message appears at top of page

Figure 9-4. After refresh, message is cleared

Ultimate Destination
Not to be confused with a horror film, “ultimate destination” is a technique that was
originally developed for Yesod’s authentication framework, but which has more gen‐
eral usefulness. Suppose a user requests a page that requires authentication. If the
user is not yet logged in, you need to send him to the login page. A well-designed web
app will then send the user back to the first page he requested. That’s what we call the
ultimate destination.

redirectUltDest sends the user to the ultimate destination set in that user’s session,
clearing that value from the session. It takes a default destination as well, in case there
is no destination set. For setting the session, there are three options:

• setUltDest sets the destination to the given URL, which can be provided either
as a textual URL or a type-safe URL.

• setUltDestCurrent sets the destination to the currently requested URL.
• setUltDestReferer sets the destination based on the Referer header (the page

that led the user to the current page).

Additionally, there is the clearUltDest function, to drop the ultimate destination
value from the session if present.

Let’s look at a small sample app. It will allow the user to set her name in the session,
and then tell the user her name from another route. If the name hasn’t been set yet,
the user will be redirected to the set name page, with an ultimate destination set to
come back to the current page:

{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Yesod

102 | Chapter 9: Sessions

data App = App

mkYesod "App" [parseRoutes|
/ HomeR GET
/setname SetNameR GET POST
/sayhello SayHelloR GET
|]

instance Yesod App

instance RenderMessage App FormMessage where
 renderMessage _ _ = defaultFormMessage

getHomeR :: Handler Html
getHomeR = defaultLayout
 [whamlet|
 <p>
 Set your name
 <p>
 Say hello
 |]

-- Display the set name form
getSetNameR :: Handler Html
getSetNameR = defaultLayout
 [whamlet|
 <form method=post>
 My name is #
 <input type=text name=name>
 . #
 <input type=submit value="Set name">
 |]

-- Retrieve the submitted name from the user
postSetNameR :: Handler ()
postSetNameR = do
 -- Get the submitted name and set it in the session
 name <- runInputPost $ ireq textField "name"
 setSession "name" name

 -- After we get a name, redirect to the ultimate destination.
 -- If no destination is set, default to the homepage.
 redirectUltDest HomeR

getSayHelloR :: Handler Html
getSayHelloR = do
 -- Look up the name value set in the session
 mname <- lookupSession "name"
 case mname of
 Nothing -> do
 -- No name in the session, so set the current page as

Ultimate Destination | 103

 -- the ultimate destination and redirect to the
 -- SetName page
 setUltDestCurrent
 setMessage "Please tell me your name"
 redirect SetNameR
 Just name -> defaultLayout [whamlet|<p>Welcome #{name}|]

main :: IO ()
main = warp 3000 App

Summary
Sessions are the primary means by which we bypass the statelessness imposed by
HTTP. We shouldn’t consider this an escape hatch to perform whatever actions we
want: statelessness in web applications is a virtue, and we should respect it whenever
possible. However, there are specific cases where it is vital to retain some state.

The session API in Yesod is very simple. It provides a key/value store and a few con‐
venience functions built on top for common use cases. If used properly, with small
payloads, sessions should be an unobtrusive part of your web development.

104 | Chapter 9: Sessions

CHAPTER 10

Persistent

Forms deal with the boundary between the user and the application. Another bound‐
ary we need to deal with is between the application and the storage layer. Whether it
be a SQL database, a YAML file, or a binary blob, odds are your storage layer does not
natively understand your application’s data types, and you’ll need to perform some
marshaling. Persistent is Yesod’s answer to data storage—a type-safe, universal data
store interface for Haskell.

Haskell has many different database bindings available. However, most of these have
little knowledge of a schema and therefore do not provide useful static guarantees.
They also force database-dependent APIs and data types on the programmer.

Some Haskellers have attempted a more revolutionary route: creating Haskell-specific
data stores that allow one to easily store any strongly typed Haskell data. These
options are great for certain use cases, but they constrain one to the storage techni‐
ques provided by the library and do not interface well with other languages.

In contrast, Persistent allows us to choose among existing databases that are highly
tuned for different data storage use cases, to interoperate with other programming
languages, and to use a safe and productive query interface, while still keeping the
type safety of Haskell data types.

Persistent follows the guiding principles of type safety and concise, declarative syntax.
Some other nice features include the following:

Database agnosticity
There is first-class support for PostgreSQL, SQLite, MySQL, and MongoDB, and
experimental Redis support.

105

Convenient data modeling
Persistent lets you model relationships and use them in type-safe ways. The
default type-safe persistent API does not support joins, allowing support for a
wider number of storage layers. Joins and other SQL-specific functionality can be
achieved through using a raw SQL layer (with very little type safety). An addi‐
tional library, Esqueleto, builds on top of the Persistent data model, adding type-
safe joins and SQL functionality.

Easy database migrations
Persistent automatically performs database migrations.

Persistent works well with Yesod, but it is quite usable on its own as a standalone
library. Most of this chapter will address Persistent on its own.

Synopsis
{-# LANGUAGE EmptyDataDecls #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Control.Monad.IO.Class (liftIO)
import Database.Persist
import Database.Persist.Sqlite
import Database.Persist.TH

share [mkPersist sqlSettings, mkMigrate "migrateAll"] [persistLowerCase|
Person
 name String
 age Int Maybe
 deriving Show
BlogPost
 title String
 authorId PersonId
 deriving Show
|]

main :: IO ()
main = runSqlite ":memory:" $ do
 runMigration migrateAll

 johnId <- insert $ Person "John Doe" $ Just 35
 janeId <- insert $ Person "Jane Doe" Nothing

 insert $ BlogPost "My fr1st p0st" johnId
 insert $ BlogPost "One more for good measure" johnId

106 | Chapter 10: Persistent

http://hackage.haskell.org/package/esqueleto

 oneJohnPost <- selectList [BlogPostAuthorId ==. johnId] [LimitTo 1]
 liftIO $ print (oneJohnPost :: [Entity BlogPost])

 john <- get johnId
 liftIO $ print (john :: Maybe Person)

 delete janeId
 deleteWhere [BlogPostAuthorId ==. johnId]

The type annotations in the preceding snippet are not required to
get your code to compile, but are present to clarify the types of each
value.

Solving the Boundary Issue
Suppose you are storing information on people in a SQL database. Your table might
look something like:

CREATE TABLE person(id SERIAL PRIMARY KEY, name VARCHAR NOT NULL, age INTEGER)

And if you are using a database like PostgreSQL, you can be guaranteed that the data‐
base will never store some arbitrary text in your age field. (The same cannot be said
of SQLite, but let’s forget about that for now.) To mirror this database table, you
would likely create a Haskell data type that looks something like:

data Person = Person
 { personName :: Text
 , personAge :: Int
 }

It looks like everything is type safe: the database schema matches our Haskell data
types, the database ensures that invalid data can never make it into our data store, and
everything is generally awesome. Well, until you encounter scenarios such as the fol‐
lowing:

• You want to pull data from the database, and the database layer gives you the data
in an untyped format.

• You want to find everyone older than 32, and you accidentally write “thirtytwo”
in your SQL statement. Guess what: that will compile just fine, and you won’t
find out you have a problem until runtime.

• You decide you want to find the first 10 people alphabetically. No problem…
until you make a typo in your SQL. Once again, you don’t find out until runtime.

Solving the Boundary Issue | 107

In dynamic languages, the answer to these issues is unit testing. For everything that
can go wrong, make sure you write a test case. But as I am sure you are aware by now,
that doesn’t jive well with the Yesod approach to things. We like to take advantage of
Haskell’s strong typing to save us wherever possible, and data storage is no exception.

So the question remains: how can we use Haskell’s type system to save the day?

Types
Like routing, there is nothing intrinsically difficult about type-safe data access. It just
requires a lot of monotonous, error-prone boilerplate code. As usual, this means we
can use the type system to keep us honest. And to avoid some of the drudgery, we’ll
use a sprinkling of Template Haskell.

PersistValue is the basic building block of Persistent. It is a sum type that can repre‐
sent data that gets sent to and from a database. Its definition is:

data PersistValue
 = PersistText Text
 | PersistByteString ByteString
 | PersistInt64 Int64
 | PersistDouble Double
 | PersistRational Rational
 | PersistBool Bool
 | PersistDay Day
 | PersistTimeOfDay TimeOfDay
 | PersistUTCTime UTCTime
 | PersistNull
 | PersistList [PersistValue]
 | PersistMap [(Text, PersistValue)]
 | PersistObjectId ByteString
 -- ^ Intended especially for MongoDB backend
 | PersistDbSpecific ByteString
 -- ^ Using 'PersistDbSpecific' allows you to use types
 -- specific to a particular backend

Each Persistent backend needs to know how to translate the relevant values into
something the database can understand. However, it would be awkward to have to
express all of our data simply in terms of these basic types. The next layer is the
PersistField typeclass, which defines how an arbitrary Haskell data type can be
marshaled to and from a PersistValue. A PersistField correlates to a column in a
SQL database. In our person example, name and age would be our PersistFields.

To tie up the user side of the code, our last typeclass is PersistEntity. An instance of
PersistEntity correlates with a table in a SQL database. This typeclass defines a
number of functions and some associated types. To review, we have the following cor‐
respondence between Persistent and SQL:

108 | Chapter 10: Persistent

SQL Persistent

Data type (VARCHAR, INTEGER, etc.) PersistValue

Column PersistField

Table PersistEntity

Code Generation
In order to ensure that the PersistEntity instances match up properly with your
Haskell data types, Persistent takes responsibility for both. This is also good from a
DRY (Don’t Repeat Yourself) perspective: you only need to define your entities once.
Let’s see a quick example:

{-# LANGUAGE GADTs #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Database.Persist
import Database.Persist.TH
import Database.Persist.Sqlite
import Control.Monad.IO.Class (liftIO)

mkPersist sqlSettings [persistLowerCase|
Person
 name String
 age Int
 deriving Show
|]

We use a combination of Template Haskell and quasiquotation (like when defining
routes): persistLowerCase is a quasiquoter that converts a whitespace-sensitive syn‐
tax into a list of entity definitions. LowerCase refers to the format of the generated
table names. In this scheme, an entity like SomeTable would become the SQL table
some_table. You can also declare your entities in a separate file using persistFile
With. mkPersist takes that list of entities and declares:

• One Haskell data type for each entity
• A PersistEntity instance for each data type defined

The preceding example generates code that looks like the following:

{-# LANGUAGE TypeFamilies, GeneralizedNewtypeDeriving,
OverloadedStrings, GADTs #-}
import Database.Persist

Solving the Boundary Issue | 109

import Database.Persist.Sqlite
import Control.Monad.IO.Class (liftIO)
import Control.Applicative

data Person = Person
 { personName :: !String
 , personAge :: !Int
 }
 deriving Show

type PersonId = Key Person

instance PersistEntity Person where
 newtype Key Person = PersonKey (BackendKey SqlBackend)
 deriving (PersistField, Show, Eq, Read, Ord)
 -- A generalized algebraic data type (GADT).
 -- This gives us a type-safe approach to matching fields with
 -- their data types.
 data EntityField Person typ where
 PersonId :: EntityField Person PersonId
 PersonName :: EntityField Person String
 PersonAge :: EntityField Person Int

 data Unique Person
 type PersistEntityBackend Person = SqlBackend

 toPersistFields (Person name age) =
 [SomePersistField name
 , SomePersistField age
]

 fromPersistValues [nameValue, ageValue] = Person
 <$> fromPersistValue nameValue
 <*> fromPersistValue ageValue
 fromPersistValues _ = Left "Invalid fromPersistValues input"

 -- Information on each field, used internally to generate SQL statements
 persistFieldDef PersonId = FieldDef
 (HaskellName "Id")
 (DBName "id")
 (FTTypeCon Nothing "PersonId")
 SqlInt64
 []
 True
 NoReference
 persistFieldDef PersonName = FieldDef
 (HaskellName "name")
 (DBName "name")
 (FTTypeCon Nothing "String")
 SqlString
 []
 True

110 | Chapter 10: Persistent

 NoReference
 persistFieldDef PersonAge = FieldDef
 (HaskellName "age")
 (DBName "age")
 (FTTypeCon Nothing "Int")
 SqlInt64
 []
 True
 NoReference

As you might expect, our Person data type closely matches the definition we gave in
the original Template Haskell version. We also have a generalized algebraic data type
(GADT) that gives a separate constructor for each field. This GADT encodes both the
type of the entity and the type of the field. We use its constructors throughout Persis‐
tent, such as to ensure that when we apply a filter, the types of the filtering value
match the field. There’s another associated newtype for the database primary key of
this entity.

We can use the generated Person type like any other Haskell type, and then pass it off
to other Persistent functions:

{-# LANGUAGE EmptyDataDecls #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Control.Monad.IO.Class (liftIO)
import Database.Persist
import Database.Persist.Sqlite
import Database.Persist.TH

share [mkPersist sqlSettings, mkMigrate "migrateAll"] [persistLowerCase|
Person
 name String
 age Int Maybe
 deriving Show
|]

main :: IO ()
main = runSqlite ":memory:" $ do
 michaelId <- insert $ Person "Michael" $ Just 26
 michael <- get michaelId
 liftIO $ print michael

Solving the Boundary Issue | 111

This code compiles, but will generate a runtime exception about a
missing table. We’ll explain and address that problem next.

We start off with some standard database connection code. In this case, we used the
single-connection functions. Persistent also comes built in with connection pool
functions, which we will generally want to use in production.

In this example, we have seen two functions. insert creates a new record in the data‐
base and returns its ID. Like everything else in Persistent, IDs are type safe. (We’ll get
into more details of how these IDs work later.) So, when you call insert $ Person
"Michael" 26, it gives you a value back of type PersonId.

The next function we see is get, which attempts to load a value from the database
using an Id. In Persistent, you never need to worry that you are using the key from
the wrong table: trying to load up a different entity (like House) using a PersonId will
never compile.

PersistStore
One last detail is left unexplained from the previous example: what exactly does run
Sqlite do, and what is that monad that our database actions are running in?

All database actions require a parameter that is an instance of PersistStore. As its
name implies, every data store (PostgreSQL, SQLite, MongoDB) has an instance of
PersistStore. This is where all the translations from PersistValue to database-
specific values occur, where SQL query generation happens, and so on.

As you can imagine, even though PersistStore provides a safe,
well-typed interface to the outside world, there are a lot of database
interactions that could go wrong. However, by testing this code
automatically and thoroughly in a single location, we can centralize
our error-prone code and make sure it is as bug-free as possible.

runSqlite creates a single connection to a database using its supplied connection
string. For our test cases, we will use :memory:, which uses an in-memory database.
All of the SQL backends share the same instance of PersistStore: SqlBackend. run
Sqlite then provides the SqlBackend value as an environment parameter to the
action via runReaderT.

112 | Chapter 10: Persistent

There are actually a couple of other typeclasses: PersistUpdate
and PersistQuery. Different typeclasses provide different func‐
tionality, which allows us to write backends that use simpler data
stores (e.g., Redis) even though they can’t provide us with all the
high-level functionality available in Persistent.

One important thing to note is that everything that occurs inside a single call to run
Sqlite runs in a single transaction. This has two important implications:

• For many databases, committing a transaction can be a costly activity. By putting
multiple steps into a single transaction, you can speed up code dramatically.

• If an exception is thrown anywhere inside a single call to runSqlite, all actions
will be rolled back (assuming your backend has rollback support).

This actually has farther-reaching impact than it may initially
seem. A number of the short-circuit functions in Yesod, such
as redirects, are implemented using exceptions. If you use such
a call from inside a Persistent block, it will roll back the entire
transaction.

Migrations
I’m sorry to tell you, but so far I have lied to you a bit: the example from the previous
section does not actually work. If you try to run it, you will get an error message
about a missing table.

For SQL databases, one of the major pains can be managing schema changes. Instead
of leaving this to the user, Persistent steps in to help, but you have to ask it to help.
Let’s see what this looks like:

{-# LANGUAGE EmptyDataDecls #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Database.Persist
import Database.Persist.TH
import Database.Persist.Sqlite
import Control.Monad.IO.Class (liftIO)

Migrations | 113

share [mkPersist sqlSettings, mkSave "entityDefs"] [persistLowerCase|
Person
 name String
 age Int
 deriving Show
|]

main :: IO ()
main = runSqlite ":memory:" $ do
 -- this line added: that's it!
 runMigration $ migrate entityDefs $ entityDef (Nothing :: Maybe Person)
 michaelId <- insert $ Person "Michael" 26
 michael <- get michaelId
 liftIO $ print michael

With this one little code change, Persistent will automatically create your Person table
for you. This split between runMigration and migrate allows you to migrate multiple
tables simultaneously.

This works when dealing with just a few entities, but can quickly get tiresome once
you are dealing with a dozen entities. Instead of repeating yourself, Persistent pro‐
vides a helper function, mkMigrate:

{-# LANGUAGE EmptyDataDecls #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Database.Persist
import Database.Persist.Sqlite
import Database.Persist.TH

share [mkPersist sqlSettings, mkMigrate "migrateAll"] [persistLowerCase|
Person
 name String
 age Int
 deriving Show
Car
 color String
 make String
 model String
 deriving Show
|]

main :: IO ()
main = runSqlite ":memory:" $ do runMigration migrateAll

114 | Chapter 10: Persistent

mkMigrate is a Template Haskell function that creates a new function that will auto‐
matically call migrate on all entities defined in the persist block. The share func‐
tion is just a little helper that passes the information from the persist block to each
Template Haskell function and concatenates the results.

Persistent has very conservative rules about what it will do during a migration. It
starts by loading up table information from the database, complete with all defined
SQL data types. It then compares that against the entity definition given in the code.
For the following cases, it will automatically alter the schema:

• The data type of a field changed. However, the database may object to this modi‐
fication if the data cannot be translated.

• A field was added. However, if the field is not null, no default value is supplied
(we’ll discuss defaults later), and there is already data in the database, the data‐
base will not allow this to happen.

• A field was converted from not null to null. In the opposite case, Persistent will
attempt the conversion, contingent upon the database’s approval.

• A brand new entity was added.

However, there are some cases that Persistent will not handle:

Field or entity renames
Persistent has no way of knowing that name has now been renamed to fullName:
all it sees is an old field called name and a new field called fullName.

Field removals
Because this can result in data loss, Persistent by default will refuse to perform
the action (you can force the issue by using runMigrationUnsafe instead of run
Migration, though it is not recommended).

runMigration will print out the migrations it is running on stderr (you can bypass
this by using runMigrationSilent). Whenever possible, it uses ALTER TABLE calls.
However, in SQLite, ALTER TABLE has very limited abilities, and therefore Persistent
must resort to copying the data from one table to another.

Finally, if instead of performing a migration you want Persistent to give you hints
about what migrations are necessary, use the printMigration function. This function
will print out the migrations that runMigration would perform for you. This may be
useful for performing migrations that Persistent is not capable of, for adding arbitrary
SQL to a migration, or just to log what migrations occurred.

Migrations | 115

Uniqueness
In addition to declaring fields within an entity, you can also declare uniqueness con‐
straints. A typical example would be requiring that a username be unique:

User
 username Text
 UniqueUsername username

Each field name must begin with a lowercase letter, but the uniqueness constraint
must begin with an uppercase letter because it will be represented in Haskell as a data
constructor:

{-# LANGUAGE EmptyDataDecls #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Database.Persist
import Database.Persist.Sqlite
import Database.Persist.TH
import Data.Time
import Control.Monad.IO.Class (liftIO)

share [mkPersist sqlSettings, mkMigrate "migrateAll"] [persistLowerCase|
Person
 firstName String
 lastName String
 age Int
 PersonName firstName lastName
 deriving Show
|]

main :: IO ()
main = runSqlite ":memory:" $ do
 runMigration migrateAll
 insert $ Person "Michael" "Snoyman" 26
 michael <- getBy $ PersonName "Michael" "Snoyman"
 liftIO $ print michael

To declare a unique combination of fields, we add an extra line to our declaration.
Persistent knows that it is defining a unique constructor, because the line begins with
a capital letter. Each following word must be a field in this entity.

The main restriction on uniqueness is that it can only be applied to non-null fields.
The reason for this is that the SQL standard is ambiguous on how uniqueness should
be applied to NULL (e.g., is NULL=NULL true or false?). Besides that ambiguity, most

116 | Chapter 10: Persistent

SQL engines in fact implement rules that would be contrary to what the Haskell data
types anticipate (e.g., PostgreSQL says that NULL=NULL is false, whereas Haskell says
Nothing == Nothing is true).

In addition to providing nice guarantees at the database level about the consistency of
your data, uniqueness constraints can also be used to perform some specific queries
within your Haskell code, like the getBy demonstrated earlier. This happens via the
Unique associated type. In the preceding example, we end up with a new constructor:

PersonName :: String -> String -> Unique Person

With the MongoDB backend, a uniqueness constraint cannot be
created: you must place a unique index on the field.

Queries
Depending on what your goal is, there are different approaches to querying the data‐
base. Some commands query based on a numeric ID, while others will filter. Queries
also differ in the number of results they return: some lookups should return no more
than one result (if the lookup key is unique), while others can return many results.

Persistent therefore provides a few different query functions. As usual, we try to
encode as many invariants in the types as possible. For example, a query that can
return only zero or one result will use a Maybe wrapper, whereas a query returning
many results will return a list.

Fetching by ID
The simplest query you can perform in Persistent is getting based on an ID. Because
this value may or may not exist, its return type is wrapped in a Maybe:

personId <- insert $ Person "Michael" "Snoyman" 26
maybePerson <- get personId
case maybePerson of
 Nothing -> liftIO $ putStrLn "Just kidding, not really there"
 Just person -> liftIO $ print person

This can be very useful for sites that provide URLs like /person/5. However, in such a
case, we don’t usually care about the Maybe wrapper and just want the value, returning
a 404 message if it is not found. Fortunately, the get404 function (provided by the
yesod-persistent package) helps us out here. We’ll go into more details when we
look at integration with Yesod.

Queries | 117

Fetching by Unique Constraint
getBy is almost identical to get, except:

• It takes a uniqueness constraint (i.e., instead of an ID it takes a Unique value).
• It returns an Entity instead of a value. An Entity is a combination of database

ID and value:
personId <- insert $ Person "Michael" "Snoyman" 26
maybePerson <- getBy $ PersonName "Michael" "Snoyman"
case maybePerson of
 Nothing -> liftIO $ putStrLn "Just kidding, not really there"
 Just (Entity personId person) -> liftIO $ print person

Like get404, there is also a getBy404 function.

Select Functions
Most likely, you’re going to want more powerful queries. You’ll want to find everyone
over a certain age; all cars available in blue; all users without a registered email
address. For this, you need one of the select functions.

All the select functions use a similar interface, with slightly different outputs. They
are:

selectSource
Returns a Source containing all the IDs and values from the database. This allows
you to write streaming code.

selectList
Returns a list containing all the IDs and values from the database. All records will
be loaded into memory.

selectFirst
Takes just the first ID and value from the database, if available.

selectKeys
Returns only the keys, without the values, as a Source.

A Source is a stream of data, and is part of the conduit package. I recommend read‐
ing the School of Haskell conduit tutorial to get started.

selectList is the most commonly used, so we will cover it specifically. Understand‐
ing the others should be trivial after that.

selectList takes two arguments: a list of Filters, and a list of SelectOpts. The for‐
mer is what limits your results based on characteristics; it allows for equals, less than,
is member of, and such. The SelectOpts list provides for three different features:

118 | Chapter 10: Persistent

http://bit.ly/h-conduit

sorting, limiting output to a certain number of rows, and offsetting results by a cer‐
tain number of rows.

The combination of limits and offsets is very important; it allows
for efficient pagination in your web apps.

Let’s jump straight into an example of filtering, and then analyze it:

people <- selectList [PersonAge >. 25, PersonAge <=. 30] []
liftIO $ print people

As simple as that example is, we really need to cover three points:

• PersonAge is a constructor for an associated phantom type. That might sound
scary, but what’s important is that it uniquely identifies the “age” column of the
“person” table, and that it knows that the age field is an Int. (That’s the phantom
part.)

• We have a bunch of Persistent filtering operators. They’re all pretty straight-
forward: just tack a period onto the end of what you’d expect. There are three
gotchas here, which I’ll explain momentarily.

• The list of filters is ANDed together, so that our constraint means “age is greater
than 25 AND age is less than or equal to 30.” We’ll describe ORing later.

The one operator that’s surprisingly named is “not equals.” We use !=., because /=. is
used for updates (described later). Don’t worry: if you use the wrong one, the com‐
piler will catch you. The other two surprising operators are “is member” and “is not
member.” They are, respectively, <-. and /<-. (both end with a period).

And regarding ORs, we use the ||. operator. For example:

people <- selectList
 ([PersonAge >. 25, PersonAge <=. 30]
 ||. [PersonFirstName /<-. ["Adam", "Bonny"]]
 ||. ([PersonAge ==. 50] ||. [PersonAge ==. 60])
)
 []
liftIO $ print people

This (completely nonsensical) example means: find people who are 26–30 years old,
inclusive, OR whose names are neither Adam nor Bonny, OR whose age is either 50
or 60.

Queries | 119

SelectOpt

All of our selectList calls have included an empty list as the second parameter. That
specifies no options, meaning: sort however the database wants, return all results, and
don’t skip any results. A SelectOpt has four constructors that can be used to change
all that:

Asc

Sorts by the given column in ascending order. This uses the same phantom type
as filtering, such as PersonAge.

Desc

Same as Asc, but in descending order.

LimitTo

Takes an Int argument. Only returns up to the specified number of results.

OffsetBy

Takes an Int argument. Skips the specified number of results.

The following code defines a function that will break down results into pages. It
returns all people aged 18 and over, and then sorts them by age (oldest person first).
People with the same age are sorted alphabetically by last name, then first name:

resultsForPage pageNumber = do
 let resultsPerPage = 10
 selectList
 [PersonAge >=. 18
]
 [Desc PersonAge
 , Asc PersonLastName
 , Asc PersonFirstName
 , LimitTo resultsPerPage
 , OffsetBy $ (pageNumber - 1) * resultsPerPage
]

Manipulation
Querying is only half the battle. We also need to be able to add data to and modify
existing data in the database.

Insert
It’s all well and good to be able to play with data in the database, but how does it get
there in the first place? The answer is the insert function. You just give it a value,
and it gives back an ID.

120 | Chapter 10: Persistent

At this point, it makes sense to explain a bit of the philosophy behind Persistent. In
many other object-relational mapping (ORM) solutions, the data types used to hold
data are opaque: you need to go through their defined interfaces to get at and modify
the data. That’s not the case with Persistent: we’re using plain old algebraic data types
for the whole thing. This means you still get all the great benefits of pattern matching,
currying, and everything else you’re used to.

There are a few things you can’t do. For one, there’s no way to automatically update
values in the database every time the record is updated in Haskell. Of course, with
Haskell’s normal stance of purity and immutability, this wouldn’t make much sense
anyway, so I don’t shed any tears over it.

However, there is one issue that newcomers are often bothered by: why are IDs and
values completely separate? It seems like it would be very logical to embed the ID
inside the value. In other words, instead of having:

data Person = Person { name :: String }

have:

data Person = Person { personId :: PersonId, name :: String }

Well, there’s one problem with this right off the bat: how do we do an insert? If a
Person needs to have an Id, and we get the Id by inserting, and an insert needs a
Person, we have an impossible loop. We could solve this with undefined, but that’s
just asking for trouble.

OK, you say, let’s try something a bit safer:

data Person = Person { personId :: Maybe PersonId, name :: String }

Most definitely prefer insert $ Person Nothing "Michael" to insert $ Person
undefined "Michael". And now our types will be much simpler, right? For example,
selectList could return a simple [Person] instead of that ugly [Entity SqlPersist
Person].

The problem is that the “ugliness” is incredibly useful. Having Entity Person makes
it obvious, at the type level, that we’re dealing with a value that exists in the database.
Let’s say we want to create a link to another page that requires the PersonId (not an
uncommon occurrence, as we’ll discuss later). The Entity Person form gives us
unambiguous access to that information; embedding PersonId within Person with a
Maybe wrapper means an extra runtime check for Just, instead of a more error-proof
compile-time check.

Finally, there’s a semantic mismatch with embedding the ID within the value. The
Person is the value. Two people are identical (in the context of Haskell) if all their
fields are the same. By embedding the ID in the value, we’re no longer talking about a

Manipulation | 121

person, but about a row in the database. Equality is no longer really equality, it’s iden‐
tity; we want to know if this is the same person, as opposed to an equivalent person.

In other words, there are some annoyances with having the ID separated out, but
overall, it’s the right approach, which in the grand scheme of things leads to better,
less buggy code.

Update
Now, in the context of that discussion, let’s think about updating. The simplest way to
update is:

let michael = Person "Michael" 26
 michaelAfterBirthday = michael { personAge = 27 }

But that’s not actually updating anything; it’s just creating a new Person value based
on the old one. When we say “update,” we’re not talking about modifications to the
values in Haskell (we’d better not be, of course, because data in Haskell is immutable).

Instead, we’re looking at ways of modifying rows in a table. And the simplest way to
do that is with the update function:

personId <- insert $ Person "Michael" "Snoyman" 26
update personId [PersonAge =. 27]

update takes two arguments: an ID, and a list of updates. The simplest update is
assignment, but it’s not always the best. What if you want to increase someone’s age
by 1, but you don’t have that person’s current age? Persistent has you covered:

haveBirthday personId = update personId [PersonAge +=. 1]

And as you might expect, we have all the basic mathematical operators: +=., -=., *=.,
and /=. (full stop). These can be convenient for updating a single record, but they are
also essential for proper ACID guarantees. Imagine the alternative: pull out a Person,
increment the age, and update the new value. If you have two threads/processes
working on this database at the same time, you’re in for a world of hurt (hint: race
conditions).

Sometimes you’ll want to update many rows at once (give all your employees a 5%
pay increase, for example). updateWhere takes two parameters—a list of filters, and a
list of updates to apply:

updateWhere [PersonFirstName ==. "Michael"] [PersonAge *=. 2]
-- it's been a long day

Occasionally, you’ll just want to completely replace the value in a database with a dif‐
ferent value. For that, you use (surprise) the replace function:

personId <- insert $ Person "Michael" "Snoyman" 26
replace personId $ Person "John" "Doe" 20

122 | Chapter 10: Persistent

Delete
As much as it pains us, sometimes we must part with our data. To do so, we have
three functions:

delete

Deletes based on an ID

deleteBy

Deletes based on a unique constraint

deleteWhere

Deletes based on a set of filters:

personId <- insert $ Person "Michael" "Snoyman" 26
delete personId
deleteBy $ PersonName "Michael" "Snoyman"
deleteWhere [PersonFirstName ==. "Michael"]

We can even use deleteWhere to wipe out all the records in a table; we just need to
give some hints to GHC as to what table we’re interested in:

 deleteWhere ([] :: [Filter Person])

Attributes
So far, we have seen a basic syntax for our persistLowerCase blocks: a line for the
name of our entities; and then an indented line for each field with two words, the
name of the field and the data type of the field. Persistent handles more than this,
though you can assign an arbitrary list of attributes after the first two words on a line.

Suppose we want to have a Person entity with an (optional) age and the timestamp of
when the entity was added to the system. For entities already in the database, we want
to just use the current date-time for that timestamp:

{-# LANGUAGE EmptyDataDecls #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Database.Persist
import Database.Persist.Sqlite
import Database.Persist.TH
import Data.Time
import Control.Monad.IO.Class

Attributes | 123

share [mkPersist sqlSettings, mkMigrate "migrateAll"] [persistLowerCase|
Person
 name String
 age Int Maybe
 created UTCTime default=CURRENT_TIME
 deriving Show
|]

main :: IO ()
main = runSqlite ":memory:" $ do
 time <- liftIO getCurrentTime
 runMigration migrateAll
 insert $ Person "Michael" (Just 26) time
 insert $ Person "Greg" Nothing time
 return ()

Maybe is a built-in, single-word attribute. It makes the field optional. In Haskell, this
means it is wrapped in a Maybe. In SQL, it makes the column nullable.

The default attribute is backend-specific and uses whatever syntax is understood by
the database. In this case, it uses the database’s built-in CURRENT_TIME function. Sup‐
pose that we now want to add a field for a person’s favorite programming language:

{-# LANGUAGE EmptyDataDecls #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Database.Persist
import Database.Persist.Sqlite
import Database.Persist.TH
import Data.Time

share [mkPersist sqlSettings, mkMigrate "migrateAll"] [persistLowerCase|
Person
 name String
 age Int Maybe
 created UTCTime default=CURRENT_TIME
 language String default='Haskell'
 deriving Show
|]

main :: IO ()
main = runSqlite ":memory:" $ do
 runMigration migrateAll

124 | Chapter 10: Persistent

The default attribute has absolutely no impact on the Haskell code
itself; you still need to fill in all values. This will only affect the
database schema and automatic migrations.

We need to surround the string with single quotes so that the database can properly
interpret it. Finally, Persistent can use double quotes for containing whitespace, so if
we want to set someone’s default home country to be El Salvador, we would use the
following:

{-# LANGUAGE EmptyDataDecls #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Database.Persist
import Database.Persist.Sqlite
import Database.Persist.TH
import Data.Time

share [mkPersist sqlSettings, mkMigrate "migrateAll"] [persistLowerCase|
Person
 name String
 age Int Maybe
 created UTCTime default=CURRENT_TIME
 language String default='Haskell'
 country String "default='El Salvador'"
 deriving Show
|]

main :: IO ()
main = runSqlite ":memory:" $ do
 runMigration migrateAll

One last trick you can do with attributes is to specify the names to be used for the
SQL tables and columns. This can be convenient when interacting with existing data‐
bases:

share [mkPersist sqlSettings, mkMigrate "migrateAll"] [persistLowerCase|
Person sql=the-person-table id=numeric_id
 firstName String sql=first_name
 lastName String sql=fldLastName
 age Int "sql=The Age of the Person"
 PersonName firstName lastName
 deriving Show
|]

Attributes | 125

There are a number of other features to the entity definition syntax. An up-to-date
list is maintained on the Persistent wiki.

Relations
Persistent allows references between your data types in a manner that is consistent
with supporting non-SQL databases. You do this by embedding an ID in the related
entity. So if a person has many cars:

{-# LANGUAGE EmptyDataDecls #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Database.Persist
import Database.Persist.Sqlite
import Database.Persist.TH
import Control.Monad.IO.Class (liftIO)
import Data.Time

share [mkPersist sqlSettings, mkMigrate "migrateAll"] [persistLowerCase|
Person
 name String
 deriving Show
Car
 ownerId PersonId
 name String
 deriving Show
|]

main :: IO ()
main = runSqlite ":memory:" $ do
 runMigration migrateAll
 bruce <- insert $ Person "Bruce Wayne"
 insert $ Car bruce "Bat Mobile"
 insert $ Car bruce "Porsche"
 -- this could go on a while
 cars <- selectList [CarOwnerId ==. bruce] []
 liftIO $ print cars

Using this technique, you can define one-to-many relationships. To define many-to-
many relationships, you need a join entity, which has a one-to-many relationship
with each of the original tables. It is also a good idea to use uniqueness constraints on
these. For example, to model a situation where we want to track which people have
shopped in which stores:

126 | Chapter 10: Persistent

http://bit.ly/yesod-pers

{-# LANGUAGE EmptyDataDecls #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Database.Persist
import Database.Persist.Sqlite
import Database.Persist.TH
import Data.Time

share [mkPersist sqlSettings, mkMigrate "migrateAll"] [persistLowerCase|
Person
 name String
Store
 name String
PersonStore
 personId PersonId
 storeId StoreId
 UniquePersonStore personId storeId
|]

main :: IO ()
main = runSqlite ":memory:" $ do
 runMigration migrateAll

 bruce <- insert $ Person "Bruce Wayne"
 michael <- insert $ Person "Michael"

 target <- insert $ Store "Target"
 gucci <- insert $ Store "Gucci"
 sevenEleven <- insert $ Store "7-11"

 insert $ PersonStore bruce gucci
 insert $ PersonStore bruce sevenEleven

 insert $ PersonStore michael target
 insert $ PersonStore michael sevenEleven

 return ()

A Closer Look at Types
So far, we’ve spoken about Person and PersonId without really explaining what they
are. In the simplest sense, for a SQL-only system, the PersonId could just be type
PersonId = Int64. However, that means there is nothing binding a PersonId at the
type level to the Person entity. As a result, you could accidentally use a PersonId and

A Closer Look at Types | 127

get a Car. In order to model this relationship, we could use phantom types. So, our
next naive step would be:

newtype Key entity = Key Int64
type PersonId = Key Person

And that works out really well, until you get to a backend that doesn’t use Int64 for
its IDs. And that’s not just a theoretical possibility; MongoDB uses ByteStrings
instead. So what we need is a key value that can contain an Int and a ByteString.
Seems like a great time for a sum type:

data Key entity = KeyInt Int64 | KeyByteString ByteString

But that’s just asking for trouble. Next we’ll have a backend that uses timestamps, so
we’ll need to add another constructor to Key. This could go on for a while. Fortu‐
nately, we already have a sum type intended for representing arbitrary data, called
PersistValue:

newtype Key entity = Key PersistValue

And this is (more or less) what Persistent did until version 2.0. However, this has a
different problem: it throws away data. For example, when dealing with a SQL data‐
base, we know that the key type will be an Int64 (assuming defaults are being used).
However, we can’t assert that at the type level with this construction. So instead, start‐
ing with Persistent 2.0, we now use an associated data type inside the PersistEntity
class:

class PersistEntity record where
 data Key record
 ...

When you’re working with a SQL backend and aren’t using a custom key type, this
becomes a newtype wrapper around an Int64, and the toSqlKey/fromSqlKey func‐
tions can perform that type-safe conversion for you. With MongoDB, on the other
hand, it’s a wrapper around a ByteString.

More Complicated, More Generic
By default, Persistent will hardcode your data types to work with a specific database
backend. When using sqlSettings, this is the SqlBackend type. But if you want to
write Persistent code that can be used on multiple backends, you can enable more
generic types by replacing sqlSettings with sqlSettings { mpsGeneric = True }.

To understand why this is necessary, consider relations. Let’s say we want to represent
blogs and blog posts. We would use the entity definition:

Blog
 title Text
Post

128 | Chapter 10: Persistent

 title Text
 blogId BlogId

We know that BlogId is just a type synonym for Key Blog, but how will Key Blog be
defined? We can’t use an Int64, as that won’t work for MongoDB. And we can’t use
ByteString, because that won’t work for SQL databases.

To allow for this, once mpsGeneric is set to True, our resulting data types have a type
parameter to indicate the database backend they use, so that keys can be properly
encoded. This looks like the following:

data BlogGeneric backend = Blog { blogTitle :: Text }
data PostGeneric backend = Post
 { postTitle :: Text
 , postBlogId :: Key (BlogGeneric backend)
 }

Notice that we still keep the short names for the constructors and the records. Finally,
to give a simple interface for normal code, we define some type synonyms:

type Blog = BlogGeneric SqlBackend
type BlogId = Key Blog
type Post = PostGeneric SqlBackend
type PostId = Key Post

And no, SqlBackend isn’t hardcoded into Persistent anywhere. That sqlSettings
parameter you’ve been passing to mkPersist is what tells it to use SqlBackend.
Mongo code will use mongoSettings instead.

This might be quite complicated under the surface, but user code hardly ever touches
this. Look back through this whole chapter: not once did we need to deal with the Key
or Generic stuff directly. The most common place for it to pop up is in compiler
error messages. So, it’s important to be aware that this exists, but it shouldn’t affect
you on a day-to-day basis.

Custom Fields
Occasionally, you will want to define a custom field to be used in your data store. The
most common case is an enumeration, such as employment status. For this, Persistent
provides a helper Template Haskell function:

-- @Employment.hs
{-# LANGUAGE TemplateHaskell #-}
module Employment where

import Database.Persist.TH

data Employment = Employed | Unemployed | Retired
 deriving (Show, Read, Eq)
derivePersistField "Employment"

Custom Fields | 129

{-# LANGUAGE EmptyDataDecls #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Database.Persist.Sqlite
import Database.Persist.TH
import Employment

share [mkPersist sqlSettings, mkMigrate "migrateAll"] [persistLowerCase|
Person
 name String
 employment Employment
|]

main :: IO ()
main = runSqlite ":memory:" $ do
 runMigration migrateAll

 insert $ Person "Bruce Wayne" Retired
 insert $ Person "Peter Parker" Unemployed
 insert $ Person "Michael" Employed

 return ()

derivePersistField stores the data in the database using a string field, and performs
marshaling using the Show and Read instances of the data type. This may not be as
efficient as storing via an integer, but it is much more future-proof: even if you add
extra constructors in the future, your data will still be valid.

We split our definition into two separate modules in this case. This
is necessary due to the GHC stage restriction, which essentially
means that, in many cases, Template Haskell generated code cannot
be used in the same module it was created in.

Persistent: Raw SQL
The Persistent package provides a type-safe interface to data stores. It tries to be
backend-agnostic (e.g., by not relying on relational features of SQL). My experience
has been that you can easily perform 95% of what you need to do with the high-level
interface (in fact, most of my web apps use the high-level interface exclusively).

But occasionally you’ll want to use a feature that’s specific to a backend. One feature
I’ve used in the past is full-text search. In this case, we’ll use the SQL LIKE operator,

130 | Chapter 10: Persistent

which is not modeled in Persistent. We’ll get all people with the last name “Snoyman”
and print the records out:

{-# LANGUAGE EmptyDataDecls #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Database.Persist.TH
import Data.Text (Text)
import Database.Persist.Sqlite
import Control.Monad.IO.Class (liftIO)
import Data.Conduit
import qualified Data.Conduit.List as CL

share [mkPersist sqlSettings, mkMigrate "migrateAll"] [persistLowerCase|
Person
 name Text
|]

main :: IO ()
main = runSqlite ":memory:" $ do
 runMigration migrateAll
 insert $ Person "Michael Snoyman"
 insert $ Person "Miriam Snoyman"
 insert $ Person "Eliezer Snoyman"
 insert $ Person "Gavriella Snoyman"
 insert $ Person "Greg Weber"
 insert $ Person "Rick Richardson"

 -- Persistent does not provide the LIKE keyword, but we'd like to get the
 -- whole Snoyman family...
 let sql = "SELECT name FROM Person WHERE name LIKE '%Snoyman'"
 rawQuery sql [] $$ CL.mapM_ (liftIO . print)

There is also higher-level support that allows for automated data marshaling. Refer to
the Haddock API docs for more details.

Actually, you can express a LIKE operator directly in the normal
syntax due to a feature added in Persistent 0.6, which allows
backend-specific operators. But this is still a good example, so let’s
roll with it.

Persistent: Raw SQL | 131

http://www.stackage.org/package/persistent

Integration with Yesod
So you’ve been convinced of the power of Persistent. How do you integrate it with
your Yesod application? If you use the scaffolding, most of the work is done for you
already. But as we normally do, we’ll build up everything manually here to point out
how it works under the surface.

The yesod-persistent package provides the meeting point between Persistent and
Yesod. It provides the YesodPersist typeclass, which standardizes access to the data‐
base via the runDB method. Let’s see this in action:

{-# LANGUAGE EmptyDataDecls #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ViewPatterns #-}
import Yesod
import Database.Persist.Sqlite
import Control.Monad.Trans.Resource (runResourceT)
import Control.Monad.Logger (runStderrLoggingT)

-- Define our entities as usual
share [mkPersist sqlSettings, mkMigrate "migrateAll"] [persistLowerCase|
Person
 firstName String
 lastName String
 age Int
 deriving Show
|]

-- We keep our connection pool in the foundation. At program initialization, we
-- create our initial pool, and each time we need to perform an action we check
-- out a single connection from the pool.
data PersistTest = PersistTest ConnectionPool

-- We'll create a single route, to access a person. It's a very common
-- occurrence to use an Id type in routes.
mkYesod "PersistTest" [parseRoutes|
/ HomeR GET
/person/#PersonId PersonR GET
|]

-- Nothing special here
instance Yesod PersistTest

-- Now we need to define a YesodPersist instance, which will keep track of

132 | Chapter 10: Persistent

-- which backend we're using and how to run an action.
instance YesodPersist PersistTest where
 type YesodPersistBackend PersistTest = SqlBackend

 runDB action = do
 PersistTest pool <- getYesod
 runSqlPool action pool

-- List all people in the database
getHomeR :: Handler Html
getHomeR = do
 people <- runDB $ selectList [] [Asc PersonAge]
 defaultLayout
 [whamlet|

 $forall Entity personid person <- people

 #{personFirstName person}
 |]

-- We'll just return the show value of a person, or a 404 if the Person doesn't
-- exist.
getPersonR :: PersonId -> Handler String
getPersonR personId = do
 person <- runDB $ get404 personId
 return $ show person

openConnectionCount :: Int
openConnectionCount = 10

main :: IO ()
main = runStderrLoggingT $ withSqlitePool "test.db3" openConnectionCount
 $ \pool -> liftIO $ do
 runResourceT $ flip runSqlPool pool $ do
 runMigration migrateAll
 insert $ Person "Michael" "Snoyman" 26
 warp 3000 $ PersistTest pool

There are two important pieces here for general use. runDB is used to run a DB action
from within a Handler. Within the runDB, you can use any of the functions we’ve spo‐
ken about so far, such as insert and selectList.

The type of runDB is YesodDB site a -> HandlerT site IO a.
YesodDB is defined as:

type YesodDB site =
 YesodPersistBackend site (HandlerT site IO)

Because it is built on top of the YesodPersistBackend associated
type, it uses the appropriate database backend based on the current
site.

Integration with Yesod | 133

The other new feature is get404. It works just like get, but instead of returning a
Nothing when a result can’t be found, it returns a 404 message page. The getPersonR
function is a very common approach used in real-world Yesod applications: get404 a
value and then return a response based on it.

More Complex SQL
Persistent strives to be backend-agnostic. The advantage of this approach is code that
easily moves between different backend types. The downside is that you lose out on
some backend-specific features. Probably the biggest casualty is SQL join support.

Fortunately, thanks to Felipe Lessa, you can have your cake and eat it too. The Esque‐
leto library provides support for writing type-safe SQL queries, using the existing
Persistent infrastructure. The Haddocks for that package provide a good introduction
to its usage. And because it uses many Persistent concepts, most of your existing Per‐
sistent knowledge should transfer over easily.

For a simple example of using Esqueleto, see Chapter 19.

Something Besides SQLite
To keep the examples in this chapter simple, we’ve used the SQLite backend. Just to
round things out, here’s our original code rewritten to work with PostgreSQL:

{-# LANGUAGE EmptyDataDecls #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Control.Monad.IO.Class (liftIO)
import Control.Monad.Logger (runStderrLoggingT)
import Database.Persist
import Database.Persist.Postgresql
import Database.Persist.TH

share [mkPersist sqlSettings, mkMigrate "migrateAll"] [persistLowerCase|
Person
 name String
 age Int Maybe
 deriving Show
BlogPost
 title String
 authorId PersonId
 deriving Show
|]

134 | Chapter 10: Persistent

http://hackage.haskell.org/package/esqueleto
http://hackage.haskell.org/package/esqueleto

connStr = "host=localhost dbname=test user=test password=test port=5432"

main :: IO ()
main = runStderrLoggingT $ withPostgresqlPool connStr 10 $ \pool -> liftIO $ do
 flip runSqlPersistMPool pool $ do
 runMigration migrateAll

 johnId <- insert $ Person "John Doe" $ Just 35
 janeId <- insert $ Person "Jane Doe" Nothing

 insert $ BlogPost "My fr1st p0st" johnId
 insert $ BlogPost "One more for good measure" johnId

 oneJohnPost <- selectList [BlogPostAuthorId ==. johnId] [LimitTo 1]
 liftIO $ print (oneJohnPost :: [Entity BlogPost])

 john <- get johnId
 liftIO $ print (john :: Maybe Person)

 delete janeId
 deleteWhere [BlogPostAuthorId ==. johnId]

Summary
Persistent brings the type safety of Haskell to your data access layer. Instead of writing
error-prone untyped data access code, or manually writing boilerplate marshal code,
you can rely on Persistent to automate the process for you.

The goal is to provide everything you need, most of the time. For the times when you
need something a bit more powerful, Persistent gives you direct access to the underly‐
ing data store, so you can write whatever five-way joins you want.

Persistent integrates directly into the general Yesod workflow. Not only do helper
packages like yesod-persistent provide a nice layer, but packages like yesod-form
and yesod-auth also leverage Persistent’s features.

Summary | 135

CHAPTER 11

Deploying Your Web App

I can’t speak for others, but I personally prefer programming to system administra‐
tion. But the fact is that eventually you’ll need to serve your app somehow, and odds
are that you’ll need to be the one to set it up.

There are some promising initiatives in the Haskell web community toward making
deployment easier. In the future, we may even have a service that allows you to
deploy your app with a single command.

But we’re not there yet. And even if we were, such a solution will never work for
everyone. This chapter covers the different deployment options, and gives some gen‐
eral recommendations on what you should choose in different situations.

Keter
The Yesod scaffolding comes with some built-in support for the Keter deployment
engine, which is also written in Haskell and uses many of the same underlying tech‐
nologies, like WAI and http-client. Keter works as a reverse proxy to your applica‐
tions, as well as a system for starting, monitoring, and redeploying running apps. If
you’d like to deploy with Keter, follow these steps:

1. Edit the config/keter.yaml file in your scaffolded application as necessary.
2. Set up some kind of server for hosting your apps. I recommend trying Ubuntu

on Amazon EC2.
3. Install Keter on that machine (follow the instructions on the Keter website, as

they will be the most up to date).
4. Run yesod keter to generate a Keter bundle (e.g., myapp.keter).

137

https://github.com/snoyberg/keter/

5. Copy myapp.keter to the /opt/keter/incoming directory on your server.

If you’ve gotten things configured correctly, you should now be able to view your
website, running in a production environment! In the future, upgrades can be han‐
dled by simply rerunning yesod keter and recopying the myapp.keter bundle to the
server. Note that Keter will automatically detect the presence of the new file and
reload your application.

The rest of this chapter will provide some more details about various steps, and
present some alternatives in case you’d prefer not to use the scaffolding or Keter.

Compiling
The biggest advice I can give is this: don’t compile on your server. It’s tempting to do
so, as you just have to transfer source code around and you avoid confusing depend‐
ency issues. However, compiling a Yesod application takes significiant memory and
CPU resources, which means:

• While you’re recompiling your app, your existing applications will suffer
performance-wise.

• You will need to get a much larger machine to handle compilation, and that
capacity will likely sit idle most of the time, as Yesod applications tend to require
far less CPU and memory than GHC itself.

Once you’re ready to compile, you should always make sure to run cabal clean
before a new production build, to make sure no old files are lying around. Then, you
can run cabal configure && cabal build to get an executable, which will be loca‐
ted at dist/build/myapp/myapp. (The yesod keter command does cabal clean for
you automatically.)

Files to Deploy
With a Yesod scaffolded application, there are essentially three sets of files that need
to be deployed:

• Your executable
• The config/ folder
• The static/ folder

Everything else (e.g., Shakespearean templates), gets compiled into the executable
itself.

138 | Chapter 11: Deploying Your Web App

There is one caveat, however, regarding the config/client_session_key.aes file. This file
controls the server-side encryption used for securing client-side session cookies.
Yesod will automatically generate a new one of these keys if none is present. In prac‐
tice, this means that, if you do not include this file in your deployment, all of your
users will have to log in again when you redeploy. If you follow this advice and
include the config/ folder, this issue will be partially resolved. Another approach is to
put your session key in an environment variable.

The other half of the resolution is to ensure that once you generate a config/
client_session_key.aes file, you keep the same one for all future deployments. The
simplest way to ensure this is to keep that file in your version control. However, if
your version control is open source, this will be dangerous: anyone with access to
your repository will be able to spoof login credentials!

The problem described here is essentially one of system administration, not program‐
ming. Yesod does not provide any built-in approach for securely storing client session
keys. If you have an open source repository, or do not trust everyone who has access
to your source code repository, it’s vital to figure out a safe storage solution for the
client session key.

SSL and Static Files
There are two commonly used features in the Yesod world: serving your site over
HTTPS, and placing your static files in a separate domain name. Both of these are
good practices, but used together they can lead to problems if you’re not careful. In
particular, most web browsers will not load up JavaScript files from a non-HTTPS
domain name if your HTML is served from an HTTPS domain name. In this situa‐
tion, you’ll need to do one of two things:

• Serve your static files over HTTPS as well.
• Serve your static files from the same domain name as your main site.

Note that if you go for the first option (which is the better one), you’ll need either two
separate SSL certificates or a wildcard certificate.

Warp
As we have mentioned before, Yesod is built on the Web Application Interface (WAI),
allowing it to run on any WAI backend. At the time of writing, the following back‐
ends are available:

• Warp
• FastCGI

SSL and Static Files | 139

• SCGI
• CGI
• WebKit
• Development server

The last two are not intended for production deployments. Of the remaining four, all
can be used for production deployment in theory. In practice, a CGI backend will
likely be horribly inefficient, because a new process must be spawned for each con‐
nection. And SCGI is not nearly as well supported by frontend web servers as Warp
(via reverse proxying) or FastCGI.

Between the two remaining choices, Warp gets a very strong recommendation, for
the following reasons:

• It is significantly faster.
• Like FastCGI, it can run behind a frontend server like Nginx, using a reverse

HTTP proxy.
• It is a fully capable server of its own accord, and can therefore be used without

any frontend server.

So that leaves one last question: should Warp run on its own, or via a reverse proxy
behind a frontend server? For most use cases I recommend the latter, because:

• Having a reverse proxy in front of your app makes it easier to deploy new ver‐
sions.

• If you have a bug in your application, a reverse proxy can give slightly nicer error
messages to users.

• You can host multiple applications from a single host via virtual hosting.
• Your reverse proxy can function as a load balancer or SSL proxy as well, simplify‐

ing your application.

As already discussed, Keter is a great way to get started. If you have an existing web
server running, like Nginx, Yesod will work just fine sitting behind it instead.

Nginx Configuration
Keter configuration is trivial, as it is designed to work with Yesod applications. But if
you want to instead use Nginx, how do you set it up?

In general, Nginx will listen on port 80 and your Yesod/Warp app will listen on some
unprivileged port (let’s say 4321). You will then need to provide an nginx.conf file,
such as the following:

140 | Chapter 11: Deploying Your Web App

daemon off; # Don't run nginx in the background, good for monitoring apps
events {
 worker_connections 4096;
}

http {
 server {
 listen 80; # Incoming port for Nginx
 server_name www.myserver.com;
 location / {
 proxy_pass http://127.0.0.1:4321; # Reverse proxy to your Yesod app
 }
 }
}

You can add as many server blocks as you like. A common addition is to ensure users
always access your pages with the www prefix on the domain name, guaranteeing the
RESTful principle of canonical URLs. (You could just as easily do the opposite and
always strip the www; just make sure that your choice is reflected in both the Nginx
config and the approot of your site.) In this case, we would add the block:

server {
 listen 80;
 server_name myserver.com;
 rewrite ^/(.*) http://www.myserver.com/$1 permanent;
}

A highly recommended optimization is to serve static files from a separate domain
name, thereby bypassing the cookie transfer overhead. Assuming that our static files
are stored in the static/ folder within our site folder, and the site folder is located
at /home/michael/sites/mysite, this would look like:

server {
 listen 80;
 server_name static.myserver.com;
 root /home/michael/sites/mysite/static;
 # Because yesod-static appends a content hash in the query string,
 # we are free to set expiration dates far in the future without
 # concerns of stale content.
 expires max;
}

In order for this to work, your site must properly rewrite static URLs to this alterna‐
tive domain name. The scaffolded site is set up to make this fairly simple via the Set
tings.staticRoot function and the definition of urlRenderOverride. However, if
you just want to get the benefit of Nginx’s faster static file serving without dealing
with separate domain names, you can instead modify your original server block like
so:

server {
 listen 80; # Incoming port for Nginx

Warp | 141

 server_name www.myserver.com;
 location / {
 proxy_pass http://127.0.0.1:4321; # Reverse proxy to your Yesod app
 }
 location /static {
 root /home/michael/sites/mysite; # Notice we do *not* include /static
 expires max;
 }
}

Server Process
Many people are familiar with an Apache/mod_php or Lighttpd/FastCGI kind of
setup, where the web server automatically spawns the web application. With Nginx,
either for reverse proxying or with FastCGI, this is not the case: you are responsible
for running your own process. I strongly recommend using a monitoring utility that
will automatically restart your application in case it crashes. There are many great
options out there, such as angel or daemontools.

To give a concrete example, here is an Upstart config file. The file must be placed
in /etc/init/mysite.conf:

description "My awesome Yesod application"
start on runlevel [2345];
stop on runlevel [!2345];
respawn
chdir /home/michael/sites/mysite
exec /home/michael/sites/mysite/dist/build/mysite/mysite

Once this is in place, bringing up your application is as simple as sudo start

mysite.

Nginx + FastCGI
Some people may prefer using FastCGI for deployment. In this case, you’ll need to
add an extra tool to the mix. FastCGI works by receiving new connections from a file
descriptor. The C library assumes that this file descriptor will be 0 (standard input),
so you need to use the spawn-fcgi program to bind your application’s standard input
to the correct socket.

It can be very convenient to use Unix named sockets for this instead of binding to a
port, especially when hosting multiple applications on a single host. A possible script
to load up your app could be:

spawn-fcgi \
 -d /home/michael/sites/mysite \
 -s /tmp/mysite.socket \
 -n \
 -M 511 \

142 | Chapter 11: Deploying Your Web App

 -u michael \
 -- /home/michael/sites/mysite/dist/build/mysite-fastcgi/mysite-fastcgi

You will also need to configure your frontend server to speak to your app over
FastCGI. This is relatively painless in Nginx:

server {
 listen 80;
 server_name www.myserver.com;
 location / {
 fastcgi_pass unix:/tmp/mysite.socket;
 }
}

That should look pretty familiar. The only last trick is that, with Nginx, you need to
manually specify all of the FastCGI variables. It is recommended to store these in a
separate file (say, fastcgi.conf) and then add include fastcgi.conf; to the end of
your http block. The contents of the file, to work with WAI, should be:

fastcgi_param QUERY_STRING $query_string;
fastcgi_param REQUEST_METHOD $request_method;
fastcgi_param CONTENT_TYPE $content_type;
fastcgi_param CONTENT_LENGTH $content_length;
fastcgi_param PATH_INFO $fastcgi_script_name;
fastcgi_param SERVER_PROTOCOL $server_protocol;
fastcgi_param GATEWAY_INTERFACE CGI/1.1;
fastcgi_param SERVER_SOFTWARE nginx/$nginx_version;
fastcgi_param REMOTE_ADDR $remote_addr;
fastcgi_param SERVER_ADDR $server_addr;
fastcgi_param SERVER_PORT $server_port;
fastcgi_param SERVER_NAME $server_name;

Desktop
Another nifty backend is wai-handler-webkit. This backend combines Warp and
QtWebKit to create an executable that a user simply double-clicks. This can be a con‐
venient way to provide an offline version of your application.

One of the very nice conveniences of Yesod for this is that your templates are all
compiled into the executable, and thus do not need to be distributed with your appli‐
cation. Static files do, however.

There’s actually support for embedding your static files directly in
the executable as well. See the yesod-static docs for more details.

Desktop | 143

http://www.stackage.org/package/yesod-static

A similar approach, without requiring the QtWebKit library, is using wai-handler-
launch, which launches a Warp server and then opens up the user’s default web
browser. There’s a little trickery involved here: in order to know that the user is still
using the site, wai-handler-launch inserts a “ping” JavaScript snippet to every
HTML page it serves. If wai-handler-launch doesn’t receive a ping for two minutes,
it shuts down.

CGI on Apache
CGI and FastCGI work almost identically on Apache, so it should be fairly straight-
forward to port this configuration. You essentially need to accomplish two goals:

1. Get the server to serve your file as (Fast)CGI.
2. Rewrite all requests to your site to go through the (Fast)CGI executable.

Here is a configuration file for serving a blog application, with an executable named
bloggy.cgi, living in a subfolder named blog/ of the document root. This example was
taken from an application living in the path /f5/snoyman/public/blog:

Options +ExecCGI
AddHandler cgi-script .cgi
Options +FollowSymlinks

RewriteEngine On
RewriteRule ^/f5/snoyman/public/blog$ /blog/ [R=301,S=1]
RewriteCond $1 !^bloggy.cgi
RewriteCond $1 !^static/
RewriteRule ^(.*) bloggy.cgi/$1 [L]

The first RewriteRule is to deal with subfolders. In particular, it redirects a request
for /blog to /blog/. The first RewriteCond prevents directly requesting the executable,
the second allows Apache to serve the static files, and the last line does the actual
rewriting.

FastCGI on lighttpd
For this example, I’ve left off some of the basic FastCGI settings like MIME types. I
also have a more complex file in production that prepends www when absent and
serves static files from a separate domain. However, this should serve to show the
basics.

Here, /home/michael/fastcgi is the FastCGI application. The idea is to rewrite all
requests to start with /app, and then serve everything beginning with /app via the
FastCGI executable:

144 | Chapter 11: Deploying Your Web App

server.port = 3000
server.document-root = "/home/michael"
server.modules = ("mod_fastcgi", "mod_rewrite")

url.rewrite-once = (
 "(.*)" => "/app/$1"
)

fastcgi.server = (
 "/app" => ((
 "socket" => "/tmp/test.fastcgi.socket",
 "check-local" => "disable",
 "bin-path" => "/home/michael/fastcgi", # full path to executable
 "min-procs" => 1,
 "max-procs" => 30,
 "idle-timeout" => 30
))
)

CGI on lighttpd
This is basically the same as the FastCGI version, but tells lighttpd to run a file end‐
ing in .cgi as a CGI executable. In this case, the file lives at /home/michael/myapp.cgi:

server.port = 3000
server.document-root = "/home/michael"
server.modules = ("mod_cgi", "mod_rewrite")

url.rewrite-once = (
 "(.*)" => "/myapp.cgi/$1"
)

cgi.assign = (".cgi" => "")

CGI on lighttpd | 145

PART II

Advanced

CHAPTER 12

RESTful Content

One of the stories from the early days of the Web is how search engines wiped out
entire websites. When dynamic websites were still a new concept, developers didn’t
appreciate the difference between a GET and POST request. As a result, they created
pages—accessed with the GET method—that would delete pages. When search
engines started crawling these sites, they could wipe out all the content.

If these web developers had followed the HTTP spec properly, this would not have
happened. A GET request is supposed to cause no side effects (you know, like wiping
out a site). Recently, there has been a move in web development to properly embrace
representational state transfer (a.k.a. REST). This chapter describes the RESTful fea‐
tures in Yesod and how you can use them to create more robust web applications.

Request Methods
In many web frameworks, you write one handler function per resource. In Yesod, the
default is to have a separate handler function for each request method. The two most
common request methods you will deal with in creating websites are GET and POST.
These are the most well supported methods in HTML, as they are the only ones sup‐
ported by web forms. However, when creating RESTful APIs, the other methods are
very useful.

Technically speaking, you can create whichever request methods you like, but it is
strongly recommended to stick to the ones spelled out in the HTTP spec. The most
common of these are the following:

GET

Used for read-only requests. Assuming no other changes occur on the server,
calling a GET request multiple times should result in the same response, barring
such things as “current time” or randomly assigned results.

149

POST

Used for general mutating requests. A POST request should never be submitted
twice by the user. A common example of this would be to transfer funds from
one bank account to another.

PUT

Creates a new resource on the server, or replaces an existing one. It is safe to call
this method multiple times.

DELETE

Just like it sounds: wipes out a resource on the server. Calling multiple times
should be OK.

To a certain extent, this fits in very well with Haskell philosophy: a GET request is sim‐
ilar to a pure function, which cannot have side effects. In practice, your GET functions
will probably perform IO, such as reading information from a database, logging user
actions, and so on.

See Chapter 7 for more information on the syntax of defining handler functions for
each request method.

Representations
Suppose we have a Haskell data type and value:

data Person = Person { name :: String, age :: Int }
michael = Person "Michael" 25

We could represent that data as HTML:

<table>
 <tr>
 <th>Name</th>
 <td>Michael</td>
 </tr>
 <tr>
 <th>Age</th>
 <td>25</td>
 </tr>
</table>

or we could represent it as JSON:

{"name":"Michael","age":25}

or as XML:

<person>
 <name>Michael</name>
 <age>25</age>
</person>

150 | Chapter 12: RESTful Content

Web applications often use a different URL to get each of these representations—per‐
haps /person/michael.html, /person/michael.json, and so on. But Yesod follows the
RESTful principle of a single URL for each resource, so in Yesod, all of these would be
accessed from /person/michael.

Then the question becomes how we determine which representation to serve. The
answer is the HTTP Accept header: it gives a prioritized list of content types the cli‐
ent is expecting. Yesod provides a pair of functions to abstract away the details of
parsing that header directly, and instead allows you to talk at a much higher level of
representations. Let’s make that last sentence a bit more concrete with some code:

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Data.Text (Text)
import Yesod

data App = App

mkYesod "App" [parseRoutes|
/ HomeR GET
|]

instance Yesod App

getHomeR :: Handler TypedContent
getHomeR = selectRep $ do
 provideRep $ return
 [shamlet|
 <p>Hello, my name is #{name} and I am #{age} years old.
 |]
 provideRep $ return $ object
 ["name" .= name
 , "age" .= age
]
 where
 name = "Michael" :: Text
 age = 28 :: Int

main :: IO ()
main = warp 3000 App

The selectRep function says, “I’m about to give you some possible representations.”
Each provideRep call provides an alternative representation. Yesod uses the Haskell
types to determine the MIME type for each representation. Because shamlet (a.k.a.,
simple Hamlet) produces an Html value, Yesod can determine that the relevant MIME
type is text/html. Similarly, object generates a JSON value, which implies the
MIME type application/json. TypedContent is a data type provided by Yesod for

Representations | 151

some raw content with an attached MIME type. We’ll cover it in more detail in a little
bit.

To test this, start up the server and try running each of the following curl com‐
mands:

curl http://localhost:3000 --header "accept: application/json"
curl http://localhost:3000 --header "accept: text/html"
curl http://localhost:3000

Notice how the response changes based on the Accept header value. Also, when you
leave off the header, the HTML response is displayed by default. The rule here is that
if there is no Accept header, the first representation is displayed. If an Accept header
is present, but we have no matches, then a 406 Not Acceptable response is returned.

By default, Yesod provides a convenience middleware that lets you set the Accept
header via a query string parameter. This can make it easier to test from your
browser. To try this out, you can visit http://localhost:3000/?_accept=application/json.

JSON Conveniences
Because JSON is such a commonly used data format in web applications today, we
have some built-in helper functions for providing JSON representations. These are
built off of the wonderful aeson library, so let’s start off with a quick explanation of
how that library works.

aeson has a core data type, Value, which represents any valid JSON value. It also pro‐
vides two typeclasses—ToJSON and FromJSON—to automate marshaling to and from
JSON values, respectively. For our purposes, we’re currently interested in ToJSON. Let’s
look at a quick example of creating a ToJSON instance for our ever-recurring Person
data type examples:

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE RecordWildCards #-}
import Data.Aeson
import qualified Data.ByteString.Lazy.Char8 as L
import Data.Text (Text)

data Person = Person
 { name :: Text
 , age :: Int
 }

instance ToJSON Person where
 toJSON Person {..} = object
 ["name" .= name
 , "age" .= age
]

152 | Chapter 12: RESTful Content

http://localhost:3000/?_accept=application/json

main :: IO ()
main = L.putStrLn $ encode $ Person "Michael" 28

I won’t go into further detail on aeson, as the Haddock documentation already pro‐
vides a great introduction to the library. What I’ve described so far is enough to
understand our convenience functions.

Let’s suppose that you have such a Person data type, with a corresponding value, and
you’d like to use it as the representation for your current page. For that, you can use
the returnJson function:

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Data.Text (Text)
import Yesod

data Person = Person
 { name :: Text
 , age :: Int
 }

instance ToJSON Person where
 toJSON Person {..} = object
 ["name" .= name
 , "age" .= age
]

data App = App

mkYesod "App" [parseRoutes|
/ HomeR GET
|]

instance Yesod App

getHomeR :: Handler Value
getHomeR = returnJson $ Person "Michael" 28

main :: IO ()
main = warp 3000 App

returnJson is actually a trivial function—it is implemented as return . toJSON—
but, it makes things just a bit more convenient. Similarly, if you would like to provide
a JSON value as a representation inside a selectRep, you can use provideJson:

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE TemplateHaskell #-}

Representations | 153

https://www.fpcomplete.com/haddocks/aeson

{-# LANGUAGE TypeFamilies #-}
import Data.Text (Text)
import Yesod

data Person = Person
 { name :: Text
 , age :: Int
 }

instance ToJSON Person where
 toJSON Person {..} = object
 ["name" .= name
 , "age" .= age
]

data App = App

mkYesod "App" [parseRoutes|
/ HomeR GET
|]

instance Yesod App

getHomeR :: Handler TypedContent
getHomeR = selectRep $ do
 provideRep $ return
 [shamlet|
 <p>Hello, my name is #{name} and I am #{age} years old.
 |]
 provideJson person
 where
 person@Person {..} = Person "Michael" 28

main :: IO ()
main = warp 3000 App

provideJson is similarly trivial; in this case, it is implemented as provideRep .
returnJson.

New Data Types
Let’s say I’ve come up with some new data format based on using Haskell’s Show
instance; I’ll call it “Haskell Show,” and give it a MIME type of text/haskell-show.
And let’s say that I decide to include this representation from my web app. How do I
do it? For a first attempt, let’s use the TypedContent data type directly:

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Data.Text (Text)

154 | Chapter 12: RESTful Content

import Yesod

data Person = Person
 { name :: Text
 , age :: Int
 }
 deriving Show

data App = App

mkYesod "App" [parseRoutes|
/ HomeR GET
|]

instance Yesod App

mimeType :: ContentType
mimeType = "text/haskell-show"

getHomeR :: Handler TypedContent
getHomeR =
 return $ TypedContent mimeType $ toContent $ show person
 where
 person = Person "Michael" 28

main :: IO ()
main = warp 3000 App

There are a few important things to note here:

• We’ve used the toContent function. This is a typeclass function that can convert
a number of data types to raw data ready to be sent over the wire. In this case,
we’ve used the instance for String, which uses UTF8 encoding. Other common
data types with instances are Text, ByteString, Html, and the aeson library’s
Value.

• We’re using the TypedContent constructor directly. It takes two arguments: a
MIME type and the raw content. Note that ContentType is simply a type alias for
a strict ByteString.

That’s all well and good, but it bothers me that the type signature for getHomeR is so
uninformative. Also, the implementation of getHomeR looks pretty boilerplate. I’d
rather just have a data type representing “Haskell Show” data, and provide some sim‐
ple means of creating such values. Let’s try this on for size:

{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}

Representations | 155

import Data.Text (Text)
import Yesod

data Person = Person
 { name :: Text
 , age :: Int
 }
 deriving Show

data App = App

mkYesod "App" [parseRoutes|
/ HomeR GET
|]

instance Yesod App

mimeType :: ContentType
mimeType = "text/haskell-show"

data HaskellShow = forall a. Show a => HaskellShow a

instance ToContent HaskellShow where
 toContent (HaskellShow x) = toContent $ show x
instance ToTypedContent HaskellShow where
 toTypedContent = TypedContent mimeType . toContent

getHomeR :: Handler HaskellShow
getHomeR =
 return $ HaskellShow person
 where
 person = Person "Michael" 28

main :: IO ()
main = warp 3000 App

The magic here lies in two typeclasses. As we mentioned before, ToContent tells how
to convert a value into a raw response. In our case, we would like to show the original
value to get a String, and then convert that String into the raw content. Oftentimes,
instances of ToContent will build on each other in this way.

ToTypedContent is used internally by Yesod and is called on the result of all handler
functions. As you can see, the implementation is fairly trivial, simply stating the
MIME type and then calling out to toContent.

Finally, let’s make this a bit more complicated and get it to play well with selectRep:

{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE TemplateHaskell #-}

156 | Chapter 12: RESTful Content

{-# LANGUAGE TypeFamilies #-}
import Data.Text (Text)
import Yesod

data Person = Person
 { name :: Text
 , age :: Int
 }
 deriving Show

instance ToJSON Person where
 toJSON Person {..} = object
 ["name" .= name
 , "age" .= age
]

data App = App

mkYesod "App" [parseRoutes|
/ HomeR GET
|]

instance Yesod App

mimeType :: ContentType
mimeType = "text/haskell-show"

data HaskellShow = forall a. Show a => HaskellShow a

instance ToContent HaskellShow where
 toContent (HaskellShow x) = toContent $ show x
instance ToTypedContent HaskellShow where
 toTypedContent = TypedContent mimeType . toContent
instance HasContentType HaskellShow where
 getContentType _ = mimeType

getHomeR :: Handler TypedContent
getHomeR = selectRep $ do
 provideRep $ return $ HaskellShow person
 provideJson person
 where
 person = Person "Michael" 28

main :: IO ()
main = warp 3000 App

The important addition here is the HasContentType instance. This may seem redun‐
dant, but it serves an important role. We need to be able to determine the MIME type
of a possible representation before creating that representation. ToTypedContent only
works on a concrete value, and therefore can’t be used before creating the value.

Representations | 157

getContentType instead takes a proxy value, indicating the type without providing
anything concrete.

If you want to provide a representation for a value that doesn’t have
a HasContentType instance, you can use the provideRepType func‐
tion, which requires you to explicitly state the MIME type present.

Other Request Headers
There are a great deal of other request headers available. Some of them only affect the
transfer of data between the server and client, and should not affect the application at
all. For example, Accept-Encoding informs the server which compression schemes
the client understands, and Host informs the server which virtual host to serve up.

Other headers do affect the application, but are automatically read by Yesod. For
example, the Accept-Language header specifies which human language (English,
Spanish, German, Swiss-German) the client prefers. See Chapter 22 for details on
how this header is used.

Summary
Yesod adheres to the following tenets of REST:

• Use the correct request method.
• Each resource should have precisely one URL.
• Allow multiple representations of data on the same URL.
• Inspect request headers to determine extra information about what the client

wants.

This makes it easy to use Yesod not just for building websites, but for building APIs.
In fact, using techniques such as selectRep/provideRep, you can serve both a user-
friendly HTML page and a machine-friendly JSON page from the same URL.

158 | Chapter 12: RESTful Content

CHAPTER 13

Yesod’s Monads

As you’ve progressed through this book so far, a number of monads have appeared:
Handler, Widget, and YesodDB (for Persistent). As with most monads, each one pro‐
vides some specific functionality: Handler gives access to the request and allows you
to send responses; a Widget contains HTML, CSS, and JavaScript; and YesodDB lets
you make database queries. In model-view-controller (MVC) terms, we could con‐
sider YesodDB to be the model, Widget to be the view, and Handler to be the control‐
ler.

So far, we’ve presented some very straightforward ways to use these monads: your
main handler will run in Handler, using runDB to execute a YesodDB query and
defaultLayout to return a Widget, which in turn was created by calls to toWidget.

However, if we have a deeper understanding of these types, we can achieve some
fancier results.

Monad Transformers
Monads are like onions. Monads are not like cakes.

—Variation on a quote from Shrek

Before we get into the heart of Yesod’s monads, we need to understand a bit about
monad transformers. (If you already know all about monad transformers, you can
likely skip this section.) Different monads provide different functionality: Reader
allows read-only access to some piece of data throughout a computation, Error
allows you to short-circuit computations, and so on.

Oftentimes, however, you’ll want to be able to combine a few of these features
together. After all, why not have a computation with read-only access to some settings
variable, that could error out at any time? One approach to this would be to write a

159

new monad like ReaderError, but this has the obvious downside of exponential com‐
plexity: you’ll need to write a new monad for every single possible combination.

Instead, we have monad transformers. For example, in addition to Reader, we have
ReaderT, which adds reader functionality to any other monad. So, conceptually, we
could represent our ReaderError as follows:

type ReaderError = ReaderT Error

In order to access our settings variable, we can use the ask function. But what about
short-circuiting a computation? We’d like to use throwError, but that won’t exactly
work. Instead, we need to lift our call into the next monad up. In other words:

throwError :: errValue -> Error
lift . throwError :: errValue -> ReaderT Error

There are a few things you should pick up here:

• A transformer can be used to add functionality to an existing monad.
• A transformer must always wrap around an existing monad.
• The functionality available in a wrapped monad will be dependent not only on

the monad transformer, but also on the inner monad that is being wrapped.

A great example of that last point is the IO monad. No matter how many layers of
transformers you have around an IO, there’s still an IO at the core, meaning you can
perform I/O in any of these monad transformer stacks. You’ll often see code that
looks like liftIO $ putStrLn "Hello There!".

The Three Transformers
We’ve already discussed two of our transformers: Handler and Widget. Remember
that these are each application-specific synonyms for the more generic HandlerT and
WidgetT. Each of those transformers takes two type parameters: your foundation data
type, and a base monad. The most commonly used base monad is IO.

In earlier versions of Yesod, Handler and Widget were far more
magical and scary. Since version 1.2, things are much simplified.
So, if you remember reading some scary stuff about fake trans‐
formers and subsite parameters, rest assured: you haven’t gone
crazy, things have actually changed a bit. The story with Persistent
is likewise much simpler.

In Persistent, we have a typeclass called PersistStore. This typeclass defines all of
the primitive operations you can perform on a database, like get. There are instances
of this typeclass for each database backend supported by Persistent. For example, for

160 | Chapter 13: Yesod’s Monads

SQL databases, there is a data type called SqlBackend. We then use a standard Read
erT transformer to provide that SqlBackend value to all of our operations. This
means that we can run a SQL database with any underlying monad that is an instance
of MonadIO. The takeaway here is that we can layer our Persistent transformer on top
of Handler or Widget.

In order to make it simpler to refer to the relevant Persistent transformer, the yesod-
persistent package defines the YesodPersistBackend associated type. For example,
if I have a site called MyApp and it uses SQL, I would define something like type
instance YesodPersistBackend MyApp = SqlBackend. And for more convenience,
we have a type synonym called YesodDB, which is defined as:

type YesodDB site = ReaderT (YesodPersistBackend site) (HandlerT site IO)

Our database actions will then have types that look like YesodDB MyApp SomeResult.
In order to run these, we can use the standard Persistent unwrap functions (like run
SqlPool) to run the action and get back a normal Handler. To automate this, we pro‐
vide the runDB function. Putting it all together, we can now run database actions
inside our handlers.

Most of the time in Yesod code, and especially thus far in this book, widgets have
been treated as actionless containers that simply combine HTML, CSS, and Java‐
Script. But in reality, a Widget can do anything that a Handler can do, by using the
handlerToWidget function. So, for example, you can run database queries inside a
Widget by using something like handlerToWidget . runDB.

Example: Database-Driven Navbar
Let’s put some of this new knowledge into action. We want to create a Widget that
generates its output based on the contents of the database. Previously, our approach
would have been to load up the data in a Handler, and then pass that data into a
Widget. Now, we’ll do the loading of data in the Widget itself. This is a boon for mod‐
ularity, as this Widget can be used in any Handler we want, without any need to pass
in the database contents:

{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Control.Monad.Logger (runNoLoggingT)
import Data.Text (Text)
import Data.Time

Example: Database-Driven Navbar | 161

import Database.Persist.Sqlite
import Yesod

share [mkPersist sqlSettings, mkMigrate "migrateAll"] [persistLowerCase|
Link
 title Text
 url Text
 added UTCTime
|]

data App = App ConnectionPool

mkYesod "App" [parseRoutes|
/ HomeR GET
/add-link AddLinkR POST
|]

instance Yesod App

instance RenderMessage App FormMessage where
 renderMessage _ _ = defaultFormMessage

instance YesodPersist App where
 type YesodPersistBackend App = SqlBackend
 runDB db = do
 App pool <- getYesod
 runSqlPool db pool

getHomeR :: Handler Html
getHomeR = defaultLayout
 [whamlet|
 <form method=post action=@{AddLinkR}>
 <p>
 Add a new link to
 <input type=url name=url value=http://>
 titled
 <input type=text name=title>
 <input type=submit value="Add link">
 <h2>Existing links
 ^{existingLinks}
 |]

existingLinks :: Widget
existingLinks = do
 links <- handlerToWidget $ runDB $ selectList [] [LimitTo 5, Desc LinkAdded]
 [whamlet|

 $forall Entity _ link <- links

 #{linkTitle link}
 |]

162 | Chapter 13: Yesod’s Monads

postAddLinkR :: Handler ()
postAddLinkR = do
 url <- runInputPost $ ireq urlField "url"
 title <- runInputPost $ ireq textField "title"
 now <- liftIO getCurrentTime
 runDB $ insert $ Link title url now
 setMessage "Link added"
 redirect HomeR

main :: IO ()
main = runNoLoggingT $ withSqlitePool "links.db3" 10 $ \pool -> liftIO $ do
 runSqlPersistMPool (runMigration migrateAll) pool
 warp 3000 $ App pool

Pay attention in particular to the existingLinks function. Notice how all we needed
to do was apply handlerToWidget . runDB to a normal database action. And from
within getHomeR, we treated existingLinks like any ordinary Widget, with no special
parameters at all. Figure 13-1 shows the output of this app.

Figure 13-1. Screenshot of the navbar

Example: Request Information
Likewise, you can get request information inside a Widget. Here we can determine
the sort order of a list based on a GET parameter:

{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Data.List (sortBy)
import Data.Ord (comparing)
import Data.Text (Text)
import Yesod

data Person = Person
 { personName :: Text
 , personAge :: Int
 }

Example: Request Information | 163

people :: [Person]
people =
 [Person "Miriam" 25
 , Person "Eliezer" 3
 , Person "Michael" 26
 , Person "Gavriella" 1
]

data App = App

mkYesod "App" [parseRoutes|
/ HomeR GET
|]

instance Yesod App

instance RenderMessage App FormMessage where
 renderMessage _ _ = defaultFormMessage

getHomeR :: Handler Html
getHomeR = defaultLayout
 [whamlet|
 <p>
 Sort by name
 |
 Sort by age
 |
 No sort
 ^{showPeople}
 |]

showPeople :: Widget
showPeople = do
 msort <- runInputGet $ iopt textField "sort"
 let people' =
 case msort of
 Just "name" -> sortBy (comparing personName) people
 Just "age" -> sortBy (comparing personAge) people
 _ -> people
 [whamlet|
 <dl>
 $forall person <- people'
 <dt>#{personName person}
 <dd>#{show $ personAge person}
 |]

main :: IO ()
main = warp 3000 App

164 | Chapter 13: Yesod’s Monads

Notice that in this case, we didn’t even have to call handlerToWidget. The reason is
that a number of the functions included in Yesod automatically work for both
Handler and Widget, by means of the MonadHandler typeclass. In fact, MonadHandler
will allow these functions to be “autolifted” through many common monad trans‐
formers.

But if you want to, you can wrap up the call to runInputGet using handlerToWidget,
and everything will work the same.

Performance and Error Messages
At this point, you may be just a bit confused. As I already mentioned, the Widget
synonym uses IO as its base monad, not Handler. So how can Widget perform
Handler actions? And why not just make Widget a transformer on top of Handler,
and then use lift instead of this special handlerToWidget? And finally, I mentioned
that Widget and Handler were both instances of MonadResource. If you’re familiar
with MonadResource, you may be wondering why ResourceT doesn’t appear in the
monad transformer stack.

You can consider this section extra credit. It gets into some of the
design motivation behind Yesod, which isn’t necessary for usage of
Yesod.

The fact of the matter is that there’s a much simpler (in terms of implementation)
approach we could take for all of these monad transformers. Handler could be a
transformer on top of ResourceT IO instead of just IO, which would be a bit more
accurate. And Widget could be layered on top of Handler. The end result would look
something like this:

type Handler = HandlerT App (ResourceT IO)
type Widget = WidgetT App (HandlerT App (ResourceT IO))

Doesn’t look too bad, especially considering you mostly deal with the friendlier type
synonyms instead of directly with the transformer types. The problem is that any
time those underlying transformers leak out, these larger type signatures can be
incredibly confusing. And the most common time for them to leak out is in error
messages, when you’re probably already pretty confused! (Another time is when
working on subsites, which happens to be confusing too.)

One other concern is that each monad transformer layer does add some amount of
performance penalty. This will probably be negligible compared to the I/O you’ll be
performing, but the overhead is there.

Performance and Error Messages | 165

So, instead of having properly layered transformers, we flatten out each of HandlerT
and WidgetT into a one-level transformer. Here’s a high-level overview of the
approach we use:

• HandlerT is really just a ReaderT monad. (We give it a different name to make
error messages clearer.) This is a reader for the HandlerData type, which contains
request information and some other immutable contents.

• In addition, HandlerData holds an IORef to a GHState (badly named for histori‐
cal reasons), which holds some data that can be mutated during the course of a
handler (e.g., session variables). The reason we use an IORef instead of a StateT
kind of approach is that IORef will maintain the mutated state even if a runtime
exception is thrown.

• The ResourceT monad transformer is essentially a ReaderT holding onto an
IORef. This IORef contains the information on all cleanup actions that must be
performed. (This is called InternalState.) Instead of having a separate trans‐
former layer to hold onto that reference, we hold onto the reference ourselves in
HandlerData. (And yes, the reason for an IORef here is also for runtime excep‐
tions.)

• A WidgetT is essentially just a WriterT on top of everything that a HandlerT does.
But because HandlerT is just a ReaderT, we can easily compress the two aspects
into a single transformer, which looks something like newtype WidgetT site m
a = WidgetT (HandlerData -> m (a, WidgetData)).

The definitions of HandlerT and WidgetT in Yesod.Core.Types are useful if you want
to better understand this.

Adding a New Monad Transformer
At times, you’ll want to add your own monad transformer in part of your application.
As a motivating example, let’s consider the monadcryptorandom package from Hack‐
age, which defines both a MonadCRandom typeclass for monads that allow generating
cryptographically secure random values, and CRandT as a concrete instance of that
typeclass. Say we want to write some code that generates a random Bytestring such
as the following:

import Control.Monad.CryptoRandom
import Data.ByteString.Base16 (encode)
import Data.Text.Encoding (decodeUtf8)

getHomeR = do
 randomBS <- getBytes 128
 defaultLayout
 [whamlet|

166 | Chapter 13: Yesod’s Monads

http://hackage.haskell.org/package/monadcryptorandom

 <p>Here's some random data: #{decodeUtf8 $ encode randomBS}
 |]

However, this results in an error message along the lines of:

 No instance for (MonadCRandom e0 (HandlerT App IO))
 arising from a use of 'getBytes'
 In a stmt of a 'do' block: randomBS <- getBytes 128

How do we get such an instance? One approach is to simply use the CRandT monad
transformer when we call getBytes. A complete example of doing so would be:

{-# LANGUAGE OverloadedStrings, QuasiQuotes, TemplateHaskell, TypeFamilies #-}
import Yesod
import Crypto.Random (SystemRandom, newGenIO)
import Control.Monad.CryptoRandom
import Data.ByteString.Base16 (encode)
import Data.Text.Encoding (decodeUtf8)

data App = App

mkYesod "App" [parseRoutes|
/ HomeR GET
|]

instance Yesod App

getHomeR :: Handler Html
getHomeR = do
 gen <- liftIO newGenIO
 eres <- evalCRandT (getBytes 16) (gen :: SystemRandom)
 randomBS <-
 case eres of
 Left e -> error $ show (e :: GenError)
 Right gen -> return gen
 defaultLayout
 [whamlet|
 <p>Here's some random data: #{decodeUtf8 $ encode randomBS}
 |]

main :: IO ()
main = warp 3000 App

Note that what we’re doing is layering the CRandT transformer on top of the HandlerT
transformer. It does not work to do things the other way around: Yesod itself would
ultimately have to unwrap the CRandT transformer, and it has no knowledge of how to
do so. Notice that this is the same approach we take with Persistent: its transformer
goes on top of HandlerT.

But there are two downsides to this approach:

Adding a New Monad Transformer | 167

• It requires you to jump into this alternative monad each time you want to work
with random values.

• It’s inefficient: you need to create a new random seed each time you enter this
other monad.

The second point could be worked around by storing the random seed in the founda‐
tion data type, in a mutable reference like an IORef, and then atomically sampling it
each time we enter the CRandT transformer. But we can even go a step further, and use
this trick to make our Handler monad itself an instance of MonadCRandom! Let’s look
at the code, which is in fact a bit involved:

{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeSynonymInstances #-}
import Control.Monad (join)
import Control.Monad.Catch (catch, throwM)
import Control.Monad.CryptoRandom
import Control.Monad.Error.Class (MonadError (..))
import Crypto.Random (SystemRandom, newGenIO)
import Data.ByteString.Base16 (encode)
import Data.IORef
import Data.Text.Encoding (decodeUtf8)
import Yesod

data App = App
 { randGen :: IORef SystemRandom
 }

mkYesod "App" [parseRoutes|
/ HomeR GET
|]

instance Yesod App

getHomeR :: Handler Html
getHomeR = do
 randomBS <- getBytes 16
 defaultLayout
 [whamlet|
 <p>Here's some random data: #{decodeUtf8 $ encode randomBS}
 |]

instance MonadError GenError Handler where
 throwError = throwM
 catchError = catch
instance MonadCRandom GenError Handler where

168 | Chapter 13: Yesod’s Monads

 getCRandom = wrap crandom
 {-# INLINE getCRandom #-}
 getBytes i = wrap (genBytes i)
 {-# INLINE getBytes #-}
 getBytesWithEntropy i e = wrap (genBytesWithEntropy i e)
 {-# INLINE getBytesWithEntropy #-}
 doReseed bs = do
 genRef <- fmap randGen getYesod
 join $ liftIO $ atomicModifyIORef genRef $ \gen ->
 case reseed bs gen of
 Left e -> (gen, throwM e)
 Right gen' -> (gen', return ())
 {-# INLINE doReseed #-}

wrap :: (SystemRandom -> Either GenError (a, SystemRandom)) -> Handler a
wrap f = do
 genRef <- fmap randGen getYesod
 join $ liftIO $ atomicModifyIORef genRef $ \gen ->
 case f gen of
 Left e -> (gen, throwM e)
 Right (x, gen') -> (gen', return x)

main :: IO ()
main = do
 gen <- newGenIO
 genRef <- newIORef gen
 warp 3000 App
 { randGen = genRef
 }

This really comes down to a few different concepts:

1. We modify the App data type to have a field for an IORef SystemRandom.
2. Similarly, we modify the main function to generate an IORef SystemRandom.
3. Our getHomeR function has become a lot simpler: we can now simply call get

Bytes without playing with transformers.
4. However, we have gained some complexity in needing a MonadCRandom instance.

This is a book about Yesod, not monadcryptorandom, so I’m not going to go into
details on this instance, but I encourage you to inspect it and, if you’re interested,
compare it to the instance for CRandT.

Hopefully, this helps get across an important point: the power of the HandlerT trans‐
former. As it provides you with a readable environment, you’re able to re-create a
StateT transformer by relying on mutable references. In fact, if you rely on the
underlying IO monad for runtime exceptions, you can implement most cases of Read
erT, WriterT, StateT, and ErrorT with this abstraction.

Adding a New Monad Transformer | 169

Summary
If you completely ignore this chapter, you’ll still be able to use Yesod to great benefit.
The advantage of understanding how Yesod’s monads interact that it enables you to
produce cleaner, more modular code. Being able to perform arbitrary actions in a
Widget can be a powerful tool, and understanding how Persistent and your Handler
code interact can help you make more informed design decisions in your app.

170 | Chapter 13: Yesod’s Monads

CHAPTER 14

Authentication and Authorization

Authentication and authorization are conceptually related, but they are not one and
the same. The former deals with identifying a user, whereas the latter determines
what a user is allowed to do. Unfortunately, because both terms are frequently abbre‐
viated as “auth,” the concepts are often conflated.

Yesod provides built-in support for a number of third-party authentication systems,
such as OpenID, BrowserID, and OAuth. These are systems where your application
trusts some external system for validating a user’s credentials. Additionally, there is
support for more commonly used username/password and email/password systems.
The former route ensures simplicity for users (no new passwords to remember) and
implementors (no need to deal with an entire security architecture), and the latter
gives the developer more control.

On the authorization side, we are able to take advantage of REST and type-safe URLs
to create simple, declarative systems. Additionally, because all authorization code is
written in Haskell, you have the full flexibility of the language at your disposal.

This chapter will cover how to set up an “auth” solution in Yesod and discuss some
trade-offs in the different authentication options.

Overview
The yesod-auth package provides a unified interface for a number of different
authentication plug-ins. The only real requirement for these backends is that they
identify a user based on some unique string. In OpenID, for instance, this would be
the actual OpenID value. In BrowserID, it’s the email address. For HashDB (which
uses a database of hashed passwords), it’s the username.

171

Each authentication plug-in provides its own system for logging in, whether it be via
passing tokens with an external site or a email/password form. After a successful
login, the plug-in sets a value in the user’s session to indicate his AuthId. This AuthId
is usually a Persistent ID from a table used for keeping track of users.

There are a few functions available for querying a user’s AuthId—most commonly
maybeAuthId, requireAuthId, maybeAuth, and requireAuth. The “require” versions
will redirect to a login page if the user is not logged in, while the second set of func‐
tions (the ones not ending in Id) give both the table ID and entity value.

All of the storage of AuthId is built on top of sessions, so the same rules from there
apply. In particular, the data is stored in an encrypted, HMACed client cookie, which
automatically times out after a certain configurable period of inactivity. Additionally,
because there is no server-side component to sessions, logging out simply deletes the
data from the session cookie; if a user reuses an older cookie value, the session will
still be valid.

You can replace the default client-side sessions with server-side ses‐
sions to provide a forced logout capability, if this is desired.

On the flip side, authorization is handled by a few methods inside the Yesod type‐
class. For every request, these methods are run to determine if access should be
allowed or denied, or if the user needs to be authenticated. By default, these methods
allow access for every request. Alternatively, you can implement authorization in a
more adhoc way by adding calls to requireAuth and the like within individual han‐
dler functions, though this undermines many of the benefits of a declarative authori‐
zation system.

Authenticate Me
Let’s jump right in with an example of authentication:

{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Data.Default (def)
import Data.Text (Text)
import Network.HTTP.Client.Conduit (Manager, newManager)
import Yesod
import Yesod.Auth
import Yesod.Auth.BrowserId

172 | Chapter 14: Authentication and Authorization

import Yesod.Auth.GoogleEmail

data App = App
 { httpManager :: Manager
 }

mkYesod "App" [parseRoutes|
/ HomeR GET
/auth AuthR Auth getAuth
|]

instance Yesod App where
 -- Note: In order to log in with BrowserID, you must correctly
 -- set your hostname here.
 approot = ApprootStatic "http://localhost:3000"

instance YesodAuth App where
 type AuthId App = Text
 getAuthId = return . Just . credsIdent

 loginDest _ = HomeR
 logoutDest _ = HomeR

 authPlugins _ =
 [authBrowserId def
 , authGoogleEmail
]

 authHttpManager = httpManager

 -- The default maybeAuthId assumes a Persistent database. We're going for a
 -- simpler AuthId, so we'll just do a direct lookup in the session.
 maybeAuthId = lookupSession "_ID"

instance RenderMessage App FormMessage where
 renderMessage _ _ = defaultFormMessage

getHomeR :: Handler Html
getHomeR = do
 maid <- maybeAuthId
 defaultLayout
 [whamlet|
 <p>Your current auth ID: #{show maid}
 $maybe _ <- maid
 <p>
 Logout
 $nothing
 <p>
 Go to the login page
 |]

main :: IO ()

Authenticate Me | 173

main = do
 man <- newManager
 warp 3000 $ App man

We’ll start with the route declarations. First we declare our standard HomeR route, and
then we set up the authentication subsite. Remember that a subsite needs four param‐
eters: the path to the subsite, the route name, the subsite name, and a function to get
the subsite value. In other words, based on the line:

/auth AuthR Auth getAuth

we need to have getAuth :: MyAuthSite -> Auth. Although we haven’t written that
function ourselves, yesod-auth provides it automatically. With other subsites (like
static files), we provide configuration settings in the subsite value, and therefore need
to specify the get function. In the auth subsite, we specify these settings in a separate
typeclass, YesodAuth.

Why not use the subsite value? There are a number of settings we
would like to give for an auth subsite, and doing so from a record
type would be inconvenient. Also, we want to have an AuthId asso‐
ciated type, so a typeclass is more natural. Why not use a typeclass
for all subsites? It comes with a downside: you can then only have a
single instance per site, disallowing serving different sets of static
files from different routes. Also, the subsite value works better
when we want to load data at app initialization.

So what exactly goes in this YesodAuth instance? There are six required declarations:

• AuthId is an associated type. This is the value yesod-auth will give you when you
ask if a user is logged in (via maybeAuthId or requireAuthId). In the example,
we’ll simply use Text to store the raw identifier (email address, in this case).

• getAuthId gets the actual AuthId from the Creds (credentials) data type. This
type has three pieces of information: the authentication backend used (Brows‐
erID or Google Email, in our case), the actual identifier, and an associated list of
arbitrary extra information. Each backend provides different extra information;
see their docs for more information.

• loginDest gives the route to redirect to after a successful login.
• Likewise, logoutDest gives the route to redirect to after a logout.
• authPlugins is a list of individual authentication backends to use. In our exam‐

ple we’re using BrowserID, which logs in via Mozilla’s BrowserID system, and
Google Email, which authenticates a user’s email address using the user’s Google
account. The nice thing about these two backends is:

174 | Chapter 14: Authentication and Authorization

— They require no setup, as opposed to Facebook or OAuth, which require set‐
ting up credentials.

— They use email addresses as identifiers, which people are comfortable with, as
opposed to OpenID, which uses a URL.

• authHttpManager gets an HTTP connection manager from the foundation type.
This allow authentication backends that use HTTP connections (i.e., almost all
third-party login systems) to share connections, avoiding the cost of restarting a
TCP connection for each request.

In addition to these six methods, there are other methods available to control other
behavior of the authentication system, such as what the login page looks like. For
more information, see the API documentation.

In our HomeR handler, we have some simple links to the login and logout pages,
depending on whether or not the user is logged in. Notice how we construct these
subsite links: first we give the subsite route name (AuthR), followed by the route
within the subsite (LoginR and LogoutR).

Figures 14-1 through 14-3 show what the login process looks like from a user’s per‐
spective.

Figure 14-1. Initial page load

Figure 14-2. BrowserID login screen

Authenticate Me | 175

http://haddocks.fpcomplete.com/fp/7.8/20140916-162/yesod-auth/Yesod-Auth.html

Figure 14-3. Homepage after logging in

Email
For many use cases, third-party authentication using email will be sufficient. Occa‐
sionally, however, you’ll want users to create passwords on your site. The scaffolded
site does not include this setup, because:

• In order to securely accept passwords, you need to be running over SSL. Many
users are not serving their sites over SSL.

• Although the email backend properly salts and hashes passwords, a compro‐
mised database could still be problematic. Again, we make no assumptions that
Yesod users are following secure deployment practices.

• You need to have a working system for sending email. Many web servers these
days are not equipped to deal with all of the spam protection measures used by
mail servers.

The following example will use the system’s built-in sendmail exe‐
cutable. If you would like to avoid the hassle of dealing with an
email server yourself, you can use Amazon SES. There is a package
called mime-mail-ses that provides a drop-in replacement for the
sendmail code, which we’ll use. This is the approach I generally rec‐
ommend, and it’s what I use on most of my sites, including FP Has‐
kell Center and haskellers.com.

But assuming you are able to meet these demands, and you want to have a separate
password login specifically for your site, Yesod offers a built-in backend. It requires
quite a bit of code to set up, because it needs to store passwords securely in the data‐
base and send a number of different emails to users (for account verification, pass‐
word retrieval, etc.).

Let’s have a look at a site that provides email authentication, storing passwords in a
Persistent SQLite database:

{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiParamTypeClasses #-}

176 | Chapter 14: Authentication and Authorization

http://hackage.haskell.org/package/mime-mail-ses
http://bit.ly/fp-center
http://bit.ly/fp-center
http://www.haskellers.com

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Control.Monad (join)
import Control.Monad.Logger (runNoLoggingT)
import Data.Maybe (isJust)
import Data.Text (Text)
import qualified Data.Text.Lazy.Encoding
import Data.Typeable (Typeable)
import Database.Persist.Sqlite
import Database.Persist.TH
import Network.Mail.Mime
import Text.Blaze.Html.Renderer.Utf8 (renderHtml)
import Text.Hamlet (shamlet)
import Text.Shakespeare.Text (stext)
import Yesod
import Yesod.Auth
import Yesod.Auth.Email

share [mkPersist sqlSettings { mpsGeneric = False }, mkMigrate "migrateAll"]
 [persistLowerCase|
User
 email Text
 password Text Maybe -- Password may not be set yet
 verkey Text Maybe -- Used for resetting passwords
 verified Bool
 UniqueUser email
 deriving Typeable
|]

data App = App SqlBackend

mkYesod "App" [parseRoutes|
/ HomeR GET
/auth AuthR Auth getAuth
|]

instance Yesod App where
 -- Emails will include links, so be sure to include an approot so that
 -- the links are valid!
 approot = ApprootStatic "http://localhost:3000"

instance RenderMessage App FormMessage where
 renderMessage _ _ = defaultFormMessage

-- Set up Persistent
instance YesodPersist App where
 type YesodPersistBackend App = SqlBackend
 runDB f = do
 App conn <- getYesod
 runSqlConn f conn

Email | 177

instance YesodAuth App where
 type AuthId App = UserId

 loginDest _ = HomeR
 logoutDest _ = HomeR
 authPlugins _ = [authEmail]

 -- Need to find the UserId for the given email address.
 getAuthId creds = runDB $ do
 x <- insertBy $ User (credsIdent creds) Nothing Nothing False
 return $ Just $
 case x of
 Left (Entity userid _) -> userid -- newly added user
 Right userid -> userid -- existing user

 authHttpManager = error "Email doesn't need an HTTP manager"

instance YesodAuthPersist App

-- Here's all of the email-specific code
instance YesodAuthEmail App where
 type AuthEmailId App = UserId

 afterPasswordRoute _ = HomeR

 addUnverified email verkey =
 runDB $ insert $ User email Nothing (Just verkey) False

 sendVerifyEmail email _ verurl =
 liftIO $ renderSendMail (emptyMail $ Address Nothing "noreply")
 { mailTo = [Address Nothing email]
 , mailHeaders =
 [("Subject", "Verify your email address")
]
 , mailParts = [[textPart, htmlPart]]
 }
 where
 textPart = Part
 { partType = "text/plain; charset=utf-8"
 , partEncoding = None
 , partFilename = Nothing
 , partContent = Data.Text.Lazy.Encoding.encodeUtf8
 [stext|
 Please confirm your email address
 by clicking on the link below.

 #{verurl}

 Thank you
 |]
 , partHeaders = []

178 | Chapter 14: Authentication and Authorization

 }
 htmlPart = Part
 { partType = "text/html; charset=utf-8"
 , partEncoding = None
 , partFilename = Nothing
 , partContent = renderHtml
 [shamlet|
 <p>Please confirm your email address
 by clicking on the link below.
 <p>
 #{verurl}
 <p>Thank you
 |]
 , partHeaders = []
 }
 getVerifyKey = runDB . fmap (join . fmap userVerkey) . get
 setVerifyKey uid key = runDB $ update uid [UserVerkey =. Just key]
 verifyAccount uid = runDB $ do
 mu <- get uid
 case mu of
 Nothing -> return Nothing
 Just u -> do
 update uid [UserVerified =. True]
 return $ Just uid
 getPassword = runDB . fmap (join . fmap userPassword) . get
 setPassword uid pass = runDB $ update uid [UserPassword =. Just pass]
 getEmailCreds email = runDB $ do
 mu <- getBy $ UniqueUser email
 case mu of
 Nothing -> return Nothing
 Just (Entity uid u) -> return $ Just EmailCreds
 { emailCredsId = uid
 , emailCredsAuthId = Just uid
 , emailCredsStatus = isJust $ userPassword u
 , emailCredsVerkey = userVerkey u
 , emailCredsEmail = email
 }
 getEmail = runDB . fmap (fmap userEmail) . get

getHomeR :: Handler Html
getHomeR = do
 maid <- maybeAuthId
 defaultLayout
 [whamlet|
 <p>Your current auth ID: #{show maid}
 $maybe _ <- maid
 <p>
 Logout
 $nothing
 <p>
 Go to the login page
 |]

Email | 179

main :: IO ()
main = runNoLoggingT $ withSqliteConn "email.db3" $ \conn -> liftIO $ do
 runSqlConn (runMigration migrateAll) conn
 warp 3000 $ App conn

Authorization
Once you can authenticate your users, you can use their credentials to authorize
requests. Authorization in Yesod is simple and declarative: most of the time, you just
need to add the authRoute and isAuthorized methods to your Yesod typeclass
instance. Let’s look at an example:

{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Data.Default (def)
import Data.Text (Text)
import Network.HTTP.Conduit (Manager, conduitManagerSettings,
 newManager)
import Yesod
import Yesod.Auth
import Yesod.Auth.Dummy -- just for testing; don't use in real life!

data App = App
 { httpManager :: Manager
 }

mkYesod "App" [parseRoutes|
/ HomeR GET POST
/admin AdminR GET
/auth AuthR Auth getAuth
|]

instance Yesod App where
 authRoute _ = Just $ AuthR LoginR

 -- route name, then a Boolean indicating if it's a write request
 isAuthorized HomeR True = isAdmin
 isAuthorized AdminR _ = isAdmin

 -- anyone can access other pages
 isAuthorized _ _ = return Authorized

isAdmin = do
 mu <- maybeAuthId
 return $ case mu of
 Nothing -> AuthenticationRequired
 Just "admin" -> Authorized

180 | Chapter 14: Authentication and Authorization

 Just _ -> Unauthorized "You must be an admin"

instance YesodAuth App where
 type AuthId App = Text
 getAuthId = return . Just . credsIdent

 loginDest _ = HomeR
 logoutDest _ = HomeR

 authPlugins _ = [authDummy]

 authHttpManager = httpManager

 maybeAuthId = lookupSession "_ID"

instance RenderMessage App FormMessage where
 renderMessage _ _ = defaultFormMessage

getHomeR :: Handler Html
getHomeR = do
 maid <- maybeAuthId
 defaultLayout
 [whamlet|
 <p>Note: Log in as "admin" to be an administrator.
 <p>Your current auth ID: #{show maid}
 $maybe _ <- maid
 <p>
 Logout
 <p>
 Go to admin page
 <form method=post>
 Make a change (admins only)
 \ #
 <input type=submit>
 |]

postHomeR :: Handler ()
postHomeR = do
 setMessage "You made some change to the page"
 redirect HomeR

getAdminR :: Handler Html
getAdminR = defaultLayout
 [whamlet|
 <p>I guess you're an admin!
 <p>
 Return to homepage
 |]

main :: IO ()
main = do

Authorization | 181

 manager <- newManager conduitManagerSettings
 warp 3000 $ App manager

authRoute should be your login page, almost always AuthR LoginR. isAuthorized is a
function that takes two parameters: the requested route, and whether or not the
request was a “write” request. You can actually change the meaning of what a write
request is using the isWriteRequest method, but the out-of-the-box version follows
RESTful principles: anything but a GET, HEAD, OPTIONS, or TRACE request is a write
request.

What’s convenient about the body of isAuthorized is that you can run any Handler
code you want in it. This means you can:

• Access the filesystem (normal I/O).
• Look up values in the database.
• Pull any session or request values you want.

Using these techniques, you can develop as sophisticated an authorization system as
you like, or even tie into existing systems used by your organization.

Summary
This chapter covered the basics of setting up user authentication, as well as how the
built-in authorization functions provide a simple, declarative approach for users.
Although these are complicated concepts, with many approaches, Yesod should
provide you with the building blocks you need to create your own customized auth
solution.

182 | Chapter 14: Authentication and Authorization

CHAPTER 15

Scaffolding and the Site Template

So you’re tired of running small examples, and ready to write a real site? Then you’ve
arrived at the right chapter. Even with the entire Yesod library at your fingertips, there
are still a lot of steps you need to go through to get a production-quality site set up.
Considerations include:

• Config file parsing
• Signal handling (*nix)
• More efficient static file serving
• A good file layout

The scaffolded site is a combination of many Yesoders’ best practices, rolled into a
ready-to-use skeleton for your sites. It is highly recommended for all sites. This chap‐
ter will explain the overall structure of the scaffolding, how to use it, and some of its
less-than-obvious features.

For the most part, this chapter will not contain code samples. It is recommended that
you follow along with an actual scaffolded site.

Due to the nature of the scaffolded site, it is the most fluid compo‐
nent of Yesod, and can change from version to version. It is possi‐
ble that the information in this chapter will be slightly outdated by
the time you are reading it.

How to Scaffold
The yesod-bin package installs an executable (conveniently named yesod as well).
This executable provides a few commands (run yesod by itself to get a list). In order

183

to generate a scaffolding, the command is yesod init. This will start a question-and-
answer process where you get to provide basic details. After answering the questions,
you will have a site template in a subfolder with the name of your project.

The most important of these questions concerns the database backend. You get a few
choices here, including SQL and MongoDB backends, or you can select the simple
option and skip database support. This last option also turns off a few extra depen‐
dencies, giving you a leaner overall site. The remainder of this chapter will focus on
the scaffoldings for one of the database backends. There will be minor differences for
the simple backend.

After creating your files, the scaffolder will print a message about getting started. You
should follow those instructions to ensure a reliable installation. In particular, the
commands provided will ensure that any missing dependencies are built and
installed. Even if you’ve installed the yesod package, you most likely do not yet have
in place all the dependencies needed by your site. For example, none of the database
backends (or the JavaScript minifier, hjsmin) are installed when installing the yesod
package.

Finally, to launch your development site, you’ll use yesod devel. This site will auto‐
matically be rebuilt and reloaded whenever you change your code.

File Structure
The scaffolded site is built as a fully cabalized Haskell package. In addition to source
files, config files, templates, and static files are produced.

Cabal File
Whether directly using cabal or indirectly using yesod devel, building your code
will always go through the cabal file. If you open the file, you’ll see that there are both
library and executable blocks. If the library-only flag is turned on, then the exe‐
cutable block is not built. This is how yesod devel calls your app. Otherwise, the
executable is built.

The library-only flag should only be used by yesod devel; you should never be
explicitly passing it into cabal. There is an additional flag, dev, that allows Cabal to
build an executable but turns on some of the same features as the library-only flag
—i.e., no optimizations and reload versions of the Shakespearean template functions.

In general, you will build as follows:

• When developing, use yesod devel exclusively.

184 | Chapter 15: Scaffolding and the Site Template

• When building a production build, perform cabal clean && cabal configure
&& cabal build. This will produce an optimized executable in your dist folder.
(You can also use the yesod keter command for this.)

You might be surprised to see the NoImplicitPrelude extension. We turn this on
because the site includes its own module, Import, with a few changes to Prelude that
make working with Yesod a little more convenient.

The last thing to note is the exported-modules list. If you add any modules to your
application, you must update this list to get yesod devel to work correctly. Unfortu‐
nately, neither Cabal nor GHC will give you a warning if you forget to make this
update, and instead you’ll get a very scary-looking error message from yesod devel.

Routes and Entities
Multiple times in this book, you’ve seen comments stating that while we’re declaring
our routes/entities with quasiquotes for convenience, “in a production site, you
should use an external file.'' The scaffolding uses such an external file.

Routes are defined in config/routes, and entities in config/models. They have the exact
same syntax as the quasiquoting you’ve seen throughout the book, and yesod devel
knows to automatically recompile the appropriate modules when these files change.

The models file is referenced by Model.hs. You are free to declare whatever you like in
this file, but here are some guidelines:

• Any data types used in entities must be imported/declared in Model.hs, above the
persistFile call.

• Helper utilities should be declared either in Import.hs or, if very model-centric, in
a file within the Model/ folder and imported into Import.hs.

Foundation and Application Modules
The mkYesod function that we have used throughout the book declares a few things:

• Route type
• Route render function
• Dispatch function

The dispatch function refers to all of the handler functions, and therefore all of those
must either be defined in the same file as the dispatch function, or be imported into
the module containing the dispatch function.

File Structure | 185

Meanwhile, the handler functions will almost certainly refer to the route type. There‐
fore, they either must be in the same file where the route type is defined, or must
import that file. If you follow the logic here, your entire application must essentially
live in a single file!

Clearly this isn’t what we want. So, instead of using mkYesod, the scaffolded site uses a
decomposed version of the function. Foundation calls mkYesodData, which declares
the route type and render function. It does not declare the dispatch function, so the
handler functions need not be in scope. The Import.hs file imports Foundation.hs, and
all the handler modules import Import.hs.

In Application.hs, we call mkYesodDispatch, which creates our dispatch function. For
this to work, all handler functions must be in scope, so be sure to add an import
statement for any new handler modules you create.

Other than that, Application.hs is pretty simple. It provides two primary functions:
getApplicationDev is used by yesod devel to launch your app, and makeApplica
tion is used by the executable to launch.

Foundation.hs is much more exciting because it does the following:

• It declares your foundation data type and a number of instances, such as Yesod,
YesodAuth, and YesodPersist.

• It imports the message files. If you look for the line starting with mkMessage, you
will see that it specifies the folder containing the messages (messages/) and the
default language (en, for English).

This is the right file for adding extra instances for your foundation, such as YesodAu
thEmail or YesodBreadcrumbs.

We’ll be referring back to this file later, as we discuss some of the special implementa‐
tions of Yesod typeclass methods.

Import
The Import module was born out of a few commonly recurring patterns:

• I want to define some helper functions (maybe the <> = mappend operator) to be
used by all handlers.

• I’m always adding the same five import statements (e.g., Data.Text, Con
trol.Applicative, etc.) to every handler module.

• I want to make sure I never use some evil function (head, readFile, etc.) from
Prelude.

186 | Chapter 15: Scaffolding and the Site Template

Yes, “evil” is hyperbole. If you’re wondering why I listed those func‐
tions as bad, head is partial and throws exceptions on an empty list,
and readFile uses lazy I/O, which doesn’t close file handles quickly
enough. Also, readFile uses String instead of Text.

The solution is to turn on the NoImplicitPrelude language extension, re-export the
parts of Prelude we want, add in all the other stuff we want, define our own functions
as well, and then import this file in all handlers.

It is likely that, at some point after publishing this chapter, the scaf‐
folded site will switch to an alternative prelude, such as classy-
prelude-yesod. Don’t be surprised if Import looks quite different
than described here.

Handler Modules
Handler modules should go inside the Handler/ folder. The site template includes one
module: Handler/Home.hs. How you split up your handler functions into individual
modules is your decision, but a good rule of thumb is:

• Different methods for the same route should go in the same file (e.g., getBlogR
and postBlogR).

• Related routes should also go in the same file (e.g., getPeopleR and getPersonR).

Of course, it’s entirely up to you. When you add a new handler file, make sure you do
the following:

1. Add it to version control (you are using version control, right?).
2. Add it to the cabal file.
3. Add it to the Application.hs file.
4. Put a module statement at the top, and an import Import line below it.

You can use the yesod add-handler command to automate the last three steps.

widgetFile
It’s very common to want to include CSS and JavaScript specific to a page. You don’t
want to have to include those Lucius and Julius files manually every time you refer to
a Hamlet file. For this, the site template provides the widgetFile function.

If you have a handler function:

widgetFile | 187

getHomeR = defaultLayout $(widgetFile "homepage")

Yesod will look for the following files:

• templates/homepage.hamlet
• templates/homepage.lucius
• templates/homepage.cassius
• templates/homepage.julius

If any of those files are present, they will be automatically included in the output.

Due to the nature of how this works, if you launch your app with
yesod devel and then create a new file (e.g., templates/home‐
page.julius), the contents will not be included until the file calling
widgetFile is recompiled. In such a case, you may need to force a
save of that file to get yesod devel to recompile.

defaultLayout
One of the first things you’ll want to customize is the look of your site. The layout is
actually broken up into two files:

templates/default-layout-wrapper.hamlet
This contains just the basic shell of a page. This file is interpreted as plain Ham‐
let, not as a Widget, and therefore cannot refer to other widgets, embed i18n
strings, or add extra CSS/JS.

templates/default-layout.hamlet
This is where you would put the bulk of your page. You must remember to
include the widget value in the page, as that contains the per-page contents. This
file is interpreted as a Widget.

Also, because default-layout is included via the widgetFile function, any Lucius, Cas‐
sius, or Julius files named default-layout.* will automatically be included as well.

Static Files
The scaffolded site automatically includes the static file subsite, optimized for serving
files that will not change over the lifetime of the current build. What this means is
that:

• When your static file identifiers are generated (e.g., static/mylogo.png becomes
mylogo_png), a query string parameter is added to it with a hash of the contents
of the file. All of this happens at compile time.

188 | Chapter 15: Scaffolding and the Site Template

• When yesod-static serves your static files, it sets expiration headers far in the
future and includes an etag based on a hash of your content.

• Whenever you embed a link to mylogo_png, the rendering includes the query
string parameter. If you change the logo, recompile, and launch your new app,
the query string will have changed, causing users to ignore the cached copy and
download a new version.

Additionally, you can set a specific static root in your Settings.hs file to serve from a
different domain name. This has the advantage of not requiring transmission of
cookies for static file requests, and also lets you offload static file hosting to a CDN or
a service like Amazon S3. See the comments in the file for more details.

Another optimization is that CSS and JavaScript included in your widgets will not be
included inside your HTML. Instead, their contents will be written to an external file,
and a link given. This file will be named based on a hash of the contents as well,
meaning:

• Caching works properly.
• Yesod can avoid an expensive disk write of the CSS/JavaScript file contents if a

file with the same hash already exists.

Finally, all of your JavaScript is automatically minified via hjsmin.

Summary
The purpose of this chapter was not to explain every line that exists in the scaffolded
site, but instead to give a general overview of how it works. The best way to become
more familiar with it is to jump right in and start writing a Yesod site with it.

Summary | 189

CHAPTER 16

Internationalization

Users expect our software to speak their language. Unfortunately for us, there will
likely be more than one language involved. While doing simple string replacement
isn’t too involved, correctly dealing with all the grammar issues can be tricky. After
all, who wants to see “List 1 file(s)” from a program output?

But a real i18n solution needs to do more than just provide a means of achieving the
correct output. It needs to make this process relatively error-proof, and easy for both
the programmer and the translator. Yesod’s answer to the problem gives you:

• Intelligent guessing of the user’s desired language based on request headers, with
the ability to override.

• A simple syntax for giving translations that requires no Haskell knowledge.
(After all, most translators aren’t programmers.)

• The ability to bring in the full power of Haskell for tricky grammar issues as nec‐
essary, along with a default selection of helper functions to cover most needs.

• Absolutely no issues at all with word order.

Synopsis
-- @messages/en.msg
Hello: Hello
EnterItemCount: I would like to buy:
Purchase: Purchase
ItemCount count@Int: You have purchased #{showInt count}
 #{plural count "item" "items"}.
SwitchLanguage: Switch language to:
Switch: Switch

191

-- @messages/he.msg
Hello: שלום
EnterItemCount: לקנות רוצה אני :
Purchase: קנה
ItemCount count: קנית #{showInt count} #{plural count " דברים" "דבר "}.
SwitchLanguage: ל שפה החלף :
Switch: החלף

{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Yesod

data App = App

mkMessage "App" "messages" "en"

plural :: Int -> String -> String -> String
plural 1 x _ = x
plural _ _ y = y

showInt :: Int -> String
showInt = show

instance Yesod App

instance RenderMessage App FormMessage where
 renderMessage _ _ = defaultFormMessage

mkYesod "App" [parseRoutes|
/ HomeR GET
/buy BuyR GET
/lang LangR POST
|]

getHomeR :: Handler Html
getHomeR = defaultLayout
 [whamlet|
 <h1>_{MsgHello}
 <form action=@{BuyR}>
 _{MsgEnterItemCount}
 <input type=text name=count>
 <input type=submit value=_{MsgPurchase}>
 <form action=@{LangR} method=post>
 _{MsgSwitchLanguage}
 <select name=lang>
 <option value=en>English
 <option value=he>Hebrew
 <input type=submit value=_{MsgSwitch}>
 |]

192 | Chapter 16: Internationalization

getBuyR :: Handler Html
getBuyR = do
 count <- runInputGet $ ireq intField "count"
 defaultLayout [whamlet|<p>_{MsgItemCount count}|]

postLangR :: Handler ()
postLangR = do
 lang <- runInputPost $ ireq textField "lang"
 setLanguage lang
 redirect HomeR

main :: IO ()
main = warp 3000 App

Overview
Most existing i18n solutions out there, like gettext or Java message bundles, work on
the principle of string lookups. Usually some form of printf interpolation is used to
interpolate variables into the strings. In Yesod, as you might guess, we instead rely on
types. This gives us all of our normal advantages, such as the compiler automatically
catching mistakes.

Let’s take a concrete example. Suppose our application needs to accomplish two sim‐
ple tasks: saying “hello,” and stating how many users are logged into the system. This
can be modeled with a sum type:

data MyMessage = MsgHello | MsgUsersLoggedIn Int

We can also write a function to turn this data type into an English representation:

toEnglish :: MyMessage -> String
toEnglish MsgHello = "Hello there!"
toEnglish (MsgUsersLoggedIn 1) = "There is 1 user logged in."
toEnglish (MsgUsersLoggedIn i) = "There are " ++ show i ++ " users logged in."

We can write similar functions for other languages, too. The advantage to this inside-
Haskell approach is that we have the full power of Haskell for addressing tricky gram‐
mar issues, especially pluralization.

The downside, however, is that you have to write all of this inside of Haskell, which
won’t be very translator-friendly. To solve this problem, Yesod introduces the concept
of message files. We’ll cover those in the next section.

You may think pluralization isn’t so complicated: you have one ver‐
sion for one item, and another for any other count. That might be
true in English, but it’s not true for every language. Russian, for
example, has six different forms, and you need to use some modu‐
lus logic to determine which one to use.

Overview | 193

Assuming we have this full set of translation functions, how do we go about using
them? What we need is a new function to wrap them all up together, and then choose
the appropriate translation function based on the user’s selected language. Once we
have that, Yesod can automatically choose the most relevant render function and call
it on the values provided.

As we’ll see shortly, in order to simplify things a bit Hamlet has a special interpolation
syntax, _{…}, which handles all the calls to the render functions. To associate a render
function with your application, you use the YesodMessage typeclass.

Message Files
The simplest approach to creating translations is via message files. The setup is sim‐
ple: there is a single folder containing all of your translation files, with a single file for
each language. Each file is named based on its language code (e.g., en.msg), and each
line in a file handles one phrase, which correlates to a single constructor in your mes‐
sage data type.

The scaffolded site already includes a fully configured message
folder.

So first, a word about language codes. There are really two choices available: using a
two-letter language code or a language-LOCALE code. For example, when I load up a
page in my web browser, it sends two language codes: en-US and en. What my
browser is saying is, “If you have American English, I like that the most. If you have
English, I’ll take that instead.”

So which format should you use in your application? Most likely two-letter codes,
unless you are actually creating separate translations by locale. This ensures that
someone asking for Canadian English will still see your English. Behind the scenes,
Yesod will add the two-letter codes where relevant. For example, suppose a user has
the following language list:

pt-BR, es, he

What this means is “I like Brazilian Portuguese, then Spanish, and then Hebrew.”
Suppose your application provides the languages pt (general Portuguese) and en
(English), with English as the default. Strictly following the user’s language list would
result in the user being served English. Instead, Yesod translates that list into:

pt-BR, es, he, pt

194 | Chapter 16: Internationalization

In other words, unless you’re giving different translations based on locale, just stick to
the two-letter language codes.

Now what about these message files? The syntax should be very familiar after your
work with Hamlet and Persistent. The line starts off with the name of the message.
Because this is a data constructor, it must start with a capital letter. Next, you can have
individual parameters, which must be given as lowercase. These will be arguments to
the data constructor.

The argument list is terminated by a colon, and then followed by the translated
string, which allows usage of our typical variable interpolation syntax #{myVar}. By
referring to the parameters defined before the colon, and using translation helper
functions to deal with issues like pluralization, you can create all the translated mes‐
sages you need.

Specifying Types
We will be creating a data type out of our message specifications, so each parameter
to a data constructor must be given a data type. We use @-syntax for this. For exam‐
ple, to create the data type data MyMessage = MsgHello | MsgSayAge Int, we
would write:

Hello: Hi there!
SayAge age@Int: Your age is: #{show age}

But there are two problems with this:

• It’s not very DRY (Don’t Repeat Yourself) to specify this data type in every file.
• Translators will be confused by having to specify these data types.

So instead, the type specification is only required in the main language file. This is
specified as the third argument in the mkMessage function. This also specifies what
the backup language will be, to be used when none of the languages provided by your
application match the user’s language list.

RenderMessage typeclass
Your call to mkMessage creates an instance of the RenderMessage typeclass, which is
the core of Yesod’s i18n. It is defined as:

class RenderMessage master message where
 renderMessage :: master
 -> [Text] -- ^ languages
 -> message
 -> Text

RenderMessage typeclass | 195

Notice that there are two parameters to the RenderMessage class: the master site and
the message type. In theory, we could skip the master type here, but that would mean
that every site would need to have the same set of translations for each message type.
When it comes to shared libraries like forms, that would not be a workable solution.

The renderMessage function takes a parameter for each of the class’s type parame‐
ters: master and message. The extra parameter is a list of languages the user will
accept, in descending order of priority. The method then returns a user-ready Text
that can be displayed.

A simple instance of RenderMessage may involve no actual translation of strings;
instead, it will just display the same value for every language. For example:

data MyMessage = Hello | Greet Text
instance RenderMessage MyApp MyMessage where
 renderMessage _ _ Hello = "Hello"
 renderMessage _ _ (Greet name) = "Welcome, " <> name <> "!"

Notice how we ignore the first two parameters to renderMessage. We can now extend
this to support multiple languages:

renderEn Hello = "Hello"
renderEn (Greet name) = "Welcome, " <> name <> "!"
renderHe Hello = "שלום"
renderHe (Greet name) = " הבאים ברוכים , " <> name <> "!"
instance RenderMessage MyApp MyMessage where
 renderMessage _ ("en":_) = renderEn
 renderMessage _ ("he":_) = renderHe
 renderMessage master (_:langs) = renderMessage master langs
 renderMessage _ [] = renderEn

The idea here is fairly straightforward: we define helper functions to support each
language. We then add a clause to catch each of those languages in the renderMes
sage definition. We then have two final cases: if no languages matched, continue
checking with the next language in the user’s priority list; or, if we’ve exhausted all
languages the user specified, then use the default language (in our case, English).

Odds are that you will never need to worry about writing this stuff manually, as the
message file interface does all this for you. But it’s always a good idea to have an
understanding of what’s going on under the surface.

Interpolation
One way to use your new RenderMessage instance would be to directly call the ren
derMessage function. This would work, but it’s a bit tedious: you need to pass in the
foundation value and the language list manually. Instead, Hamlet provides a special‐
ized i18n interpolation, which looks like _{…}.

196 | Chapter 16: Internationalization

Why the underscore? The underscore is already a well-established
character for i18n, as it is used in the gettext library.

Hamlet will then automatically translate that to a call to renderMessage. Once Ham‐
let gets the output Text value, it uses the toHtml function to produce an Html value,
meaning that any special characters (e.g., <, &, >) will be automatically escaped.

Phrases, Not Words
As a final note, I’d just like to give some general i18n advice. Let’s say you have an
application for selling turtles. You’re going to use the word “turtle” in multiple places,
like “You have added 4 turtles to your cart.” and “You have purchased 4 turtles, con‐
gratulations!” As a programmer, you’ll immediately notice the code reuse potential:
we have the phrase “4 turtles” twice. So, you might structure your message file as:

AddStart: You have added
AddEnd: to your cart.
PurchaseStart: You have purchased
PurchaseEnd: , congratulations!
Turtles count@Int: #{show count} #{plural count "turtle" "turtles"}

Stop right there! This is all well and good from a programming perspective, but trans‐
lations are not programming. There are a many things that could go wrong with this,
such as:

• Some languages might put “to your cart.” before “You have added”.
• Maybe “added” will be constructed differently depending on whether the user

added one or more turtles.
• There are a bunch of whitespace issues.

So the general rule is: translate entire phrases, not just words.

Phrases, Not Words | 197

CHAPTER 17

Creating a Subsite

How many sites provide authentication systems? Or need to provide create, read,
update, and delete (CRUD) management of some objects? Or a blog? Or a wiki?

The theme here is that many websites include common components that can be
reused throughout multiple sites. However, it is often quite difficult to get code to be
modular enough to be truly plug and play: a component will require hooks into the
routing system, usually for multiple routes, and will need some way of sharing styling
information with the master site.

In Yesod, the solution is subsites. A subsite is a collection of routes and their handlers
that can be easily inserted into a master site.The use of typeclasses makes it easy to
ensure that the master site provides certain capabilities, and to access the default site
layout. And with type-safe URLs, it’s easy to link from the master site to subsites.

Hello, World
Perhaps the trickiest part of writing subsites is getting started. Let’s dive in with a sim‐
ple Hello, World subsite. We need to create one module to contain our subsite’s data
types, another for the subsite’s dispatch code, and then a final module for an applica‐
tion that uses the subsite.

The reason for the breakdown between the data and dispatch code
is due to the GHC stage restriction. This requirement makes
smaller demos a bit more verbose, but in practice, this splitting up
into multiple modules is a good practice to adhere to.

-- @HelloSub/Data.hs
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}

199

{-# LANGUAGE TypeFamilies #-}
module HelloSub.Data where

import Yesod

-- Subsites have foundations just like master sites.
data HelloSub = HelloSub

-- We have a familiar analogue from mkYesod, with just one extra parameter.
-- We'll discuss that later.
mkYesodSubData "HelloSub" [parseRoutes|
/ SubHomeR GET
|]

-- @HelloSub.hs
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
module HelloSub
 (module HelloSub.Data
 , module HelloSub
) where

import HelloSub.Data
import Yesod

-- We'll spell out the handler type signature.
getSubHomeR :: Yesod master => HandlerT HelloSub (HandlerT master IO) Html
getSubHomeR = lift $ defaultLayout [whamlet|Welcome to the subsite!|]

instance Yesod master => YesodSubDispatch HelloSub (HandlerT master IO) where
 yesodSubDispatch = $(mkYesodSubDispatch resourcesHelloSub)

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import HelloSub
import Yesod

-- And let's create a master site that calls it.
data Master = Master
 { getHelloSub :: HelloSub
 }

mkYesod "Master" [parseRoutes|
/ HomeR GET
/subsite SubsiteR HelloSub getHelloSub
|]

instance Yesod Master

200 | Chapter 17: Creating a Subsite

-- Spelling out type signature again.
getHomeR :: HandlerT Master IO Html
getHomeR = defaultLayout
 [whamlet|
 <h1>Welcome to the homepage
 <p>
 Feel free to visit the #
 subsite
 \ as well.
 |]

main = warp 3000 $ Master HelloSub

This simple example actually shows most of the complications involved in creating a
subsite. Like in a normal Yesod application, everything in a subsite is centered around
a foundation data type (HelloSub, in our case). We then use mkYesodSubData to gen‐
erate our subsite route data type and associated parse and render functions.

On the dispatch side, we start off by defining our handler function for the SubHomeR
route. You should pay special attention to the type signature on this function:

getSubHomeR :: Yesod master
 => HandlerT HelloSub (HandlerT master IO) Html

This is the heart and soul of what a subsite is all about. All of our actions live in this
layered monad, where we have our subsite wrapping around our main site. Given this
monadic layering, it should come as no surprise that we end up calling lift. In this
case, our subsite is using the master site’s defaultLayout function to render a widget.

The defaultLayout function is part of the Yesod typeclass. Therefore, in order to call
it, the master type argument must be an instance of Yesod. The advantage of this
approach is that any modifications to the master site’s defaultLayout method will
automatically be reflected in subsites.

When we embed a subsite in our master site route definition, we need to specify four
pieces of information: the route to use as the base of the subsite (/subsite, in this case),
the constructor for the subsite routes (SubsiteR), the subsite foundation data type
(HelloSub), and a function that takes a master foundation value and returns a subsite
foundation value (getHelloSub).

In the definition of getHomeR, we can see how the route constructor gets used. In a
sense, SubsiteR promotes any subsite route to a master site route, making it possible
to safely link to it from any master site template.

Hello, World | 201

CHAPTER 18

Understanding a Request

You can oftentimes get away with using Yesod for quite a while without needing to
understand its internal workings. However, developing an understanding of its ins
and outs is advantageous. This chapter will walk you through the request handling
process for a fairly typical Yesod application. Note that a fair amount of this discus‐
sion involves code changes in Yesod 1.2. Most of the concepts are the same in previ‐
ous versions, though the data types involved were a bit messier.

Yesod’s usage of Template Haskell to bypass boilerplate code can make it a bit difficult
to understand this process sometimes. If you wish to go beyond the information in
this chapter, it can be useful to view GHC’s generated code using -ddump-splices.

A lot of this information was originally published as a blog series
on the 1.2 release. You can see the blog posts at:

• Yesod 1.2’s cleaner internals

• Big Subsite Rewrite

• Yesod dispatch, version 1.2

Handlers
When trying to understand Yesod request handling, we need to look at two compo‐
nents: how a request is dispatched to the appropriate handler code, and how handler
functions are processed. We’ll start off with the latter, and then circle back to under‐
standing the dispatch process itself.

203

http://bit.ly/12-cleaner
http://bit.ly/subsite-write
http://bit.ly/12-dispatch

Layers
Yesod builds itself on top of WAI, which provides a protocol for web servers (or,
more generally, handlers) and applications to communicate with each other. This is
expressed through two data types: Request and Response. Then, an Application is
defined as:

type Application = Request
 -> (Response -> IO ResponseReceived)
 -> IO ResponseReceived

A WAI handler will take an application and run it.

The structure of Application looks a bit complicated. It uses con‐
tinuation passing style to allow an application to safely acquire
resources, similar to the bracket function. See the WAI API docu‐
mentation for more details.

Request and Response are both very low level, trying to represent the HTTP protocol
without too much embellishment. This keeps WAI as a generic tool, but also leaves
out a lot of the information we need in order to implement a web framework. For
example, WAI will provide us with the raw data for all request headers. But Yesod
needs to parse that to get cookie information, and then parse the cookies in order to
extract session information.

To deal with this dichotomy, Yesod introduces two new data types: YesodRequest and
YesodResponse. YesodRequest contains a WAI Request, and also adds in such
request information as cookies and session variables. On the response side can either
be a standard WAI Response or a higher-level representation of such a response
including such things as updated session information and extra response headers. To
parallel WAI’s Application, we have:

type YesodApp = YesodRequest -> ResourceT IO YesodResponse

Yesod uses ResourceT for exception safety, instead of continuation
passing style. This makes it much easier to write exception-safe
code in Yesod.

But as a Yesod user, you never really see YesodApp. There’s another layer on top of
that, which you are used to dealing with: HandlerT. When you write handler func‐
tions, you need to have access to three different things:

• The YesodRequest value for the current request.

204 | Chapter 18: Understanding a Request

• Some basic environment information, like how to log messages or handle error
conditions. This is provided by the data type RunHandlerEnv.

• A mutable variable to keep track of updateable information, such as the headers
to be returned and the user session state. This is called GHState. (I know that’s
not a great name, but it’s there for historical reasons.)

So when you’re writing a handler function, you’re essentially just writing a ReaderT
transformer that has access to all of this information. The runHandler function will
turn a HandlerT into a YesodApp. yesodRunner takes this a step further and converts
it to a WAI Application.

Content
The preceding example, and many others you’ve already seen, gives a handler with a
type of Handler Html. We’ve just described what the Handler means, but how does
Yesod know how to deal with Html? The answer lies in the ToTypedContent typeclass.
The relevant bit of code are:

data Content = ContentBuilder !BBuilder.Builder !(Maybe Int)
 -- ^ The content and optional content length.
 | ContentSource !(Source (ResourceT IO) (Flush BBuilder.Builder))
 | ContentFile !FilePath !(Maybe FilePart)
 | ContentDontEvaluate !Content
data TypedContent = TypedContent !ContentType !Content

class ToContent a where
 toContent :: a -> Content
class ToContent a => ToTypedContent a where
 toTypedContent :: a -> TypedContent

The Content data type represents the different ways you can provide a response body.
The first three mirror WAI’s representation directly. The fourth option (ContentDon
tEvaluate) is used to indicate to Yesod whether response bodies should be fully eval‐
uated before being returned to users. The advantage to fully evaluating is that we can
provide meaningful error messages if an exception is thrown from pure code. The
downside is possibly increased time and memory usage.

In any event, Yesod knows how to turn a Content into a response body. The ToCon
tent typeclass provides a way to allow many different data types to be converted into
response bodies. Many commonly used types are already instances of ToContent,
including strict and lazy ByteString and Text, and of course Html.

TypedContent adds an extra piece of information: the content type of the value. As
you might expect, there are ToTypedContent instances for a number of common data
types, including Html, the aeson library’s Value (for JSON), and Text (treated as plain
text):

Handlers | 205

instance ToTypedContent J.Value where
 toTypedContent v = TypedContent typeJson (toContent v)
instance ToTypedContent Html where
 toTypedContent h = TypedContent typeHtml (toContent h)
instance ToTypedContent T.Text where
 toTypedContent t = TypedContent typePlain (toContent t)

Putting this all together, a Handler is able to return any value that is an instance of
ToTypedContent, and Yesod will handle turning it into an appropriate representation
and setting the Content-Type response header.

Short-Circuit Responses
One other oddity is how short-circuiting works. For example, you can call redirect
in the middle of a handler function, and the rest of the function will not be called.
The mechanism we use is standard Haskell exceptions. Calling redirect just throws
an exception of type HandlerContents. The runHandler function will catch any
exceptions thrown and produce an appropriate response. For HandlerContents, each
constructor gives a clear action to perform, be it redirecting or sending a file. For all
other exception types, an error message is displayed to the user.

Dispatch
Dispatch is the act of taking an incoming request and generating an appropriate
response. We have a few different constraints, depending on how we want to handle
dispatch:

• Dispatch based on path segments (or pieces).
• Optionally dispatch on request method.
• Support subsites: packaged collections of functionality providing multiple routes

under a specific URL prefix.
• Support using WAI Applications as subsites, while introducing as little runtime

overhead to the process as possible. In particular, we want to avoid performing
any unnecessary parsing to generate a YesodRequest if it won’t be used.

The lowest common denominator for this is to simply use a WAI Application. How‐
ever, this doesn’t provide quite enough information: we need access to the foundation
data type, and the logger, and for subsites, we need to know how a subsite route is
converted to a parent site route. To address this, we have two helper data types—Yeso

dRunnerEnv and YesodSubRunnerEnv—providing this extra information for normal
sites and subsites.

206 | Chapter 18: Understanding a Request

With those types, dispatch now becomes a relatively simple matter: give me an envi‐
ronment and a request, and I’ll give you a response. This is represented by the type‐
classes YesodDispatch and YesodSubDispatch:

class Yesod site => YesodDispatch site where
 yesodDispatch :: YesodRunnerEnv site -> W.Application

class YesodSubDispatch sub m where
 yesodSubDispatch :: YesodSubRunnerEnv sub (HandlerSite m) m
 -> W.Application

We’ll see a bit later how YesodSubDispatch is used. Let’s first understand how Yesod
Dispatch comes into play.

toWaiApp, toWaiAppPlain, and warp
Let’s assume for the moment that you have a data type that is an instance of YesodDis
patch. You’ll want to now actually run this thing somehow. To do this, you need to
convert it into a WAI Application and pass it to some kind of WAI handler/server.
To start this journey, we use toWaiAppPlain. It performs any app-wide initialization
necessary. At the time of writing, this means allocating a logger and setting up the
session backend, but more functionality may be added in the future. Using this data,
we can create a YesodRunnerEnv. And when that value is passed to yesodDispatch,
we get a WAI Application.

We’re almost done. The final remaining modification is path segment cleanup. The
Yesod typeclass includes a member function named cleanPath that can be used to
create canonical URLs. For example, the default implementation would remove dou‐
ble slashes and redirect a user from /foo//bar to /foo/bar. toWaiAppPlain adds in
some preprocessing to the normal WAI request by analyzing the requested path and
performing cleanup/redirects as necessary.

At this point, we have a fully functional WAI Application. There are two other
helper functions included. toWaiApp wraps toWaiAppPlain and additionally includes
some commonly used WAI middlewares, including request logging and gzip com‐
pression (see the Haddocks for an up-to-date list). Finally, we have the warp function,
which as you might guess, runs your application with Warp.

There’s also the warpEnv function, which reads the port number
information from the PORT environment variable. This is used for
interacting with certain tools, including the Keter deployment
manager and FP Haskell Center.

Dispatch | 207

Generated Code
The last remaining black box is the Template Haskell generated code. This generated
code is responsible for handling some of the tedious, error-prone pieces of your site.
If you want to, you can write these all by hand instead. We’ll demonstrate what that
translation would look like, and in the process elucidate how YesodDispatch and
YesodSubDispatch work. Let’s start with a fairly typical Yesod application:

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ViewPatterns #-}
import qualified Data.ByteString.Lazy.Char8 as L8
import Network.HTTP.Types (status200)
import Network.Wai (pathInfo, rawPathInfo,
 requestMethod, responseLBS)
import Yesod

data App = App

mkYesod "App" [parseRoutes|
/only-get OnlyGetR GET
/any-method AnyMethodR
/has-param/#Int HasParamR GET
/my-subsite MySubsiteR WaiSubsite getMySubsite
|]

instance Yesod App

getOnlyGetR :: Handler Html
getOnlyGetR = defaultLayout
 [whamlet|
 <p>Accessed via GET method
 <form method=post action=@{AnyMethodR}>
 <button>POST to /any-method
 |]

handleAnyMethodR :: Handler Html
handleAnyMethodR = do
 req <- waiRequest
 defaultLayout
 [whamlet|
 <p>In any-method, method == #{show $ requestMethod req}
 |]

getHasParamR :: Int -> Handler String
getHasParamR i = return $ show i

getMySubsite :: App -> WaiSubsite
getMySubsite _ =

208 | Chapter 18: Understanding a Request

 WaiSubsite app
 where
 app req sendResponse = sendResponse $ responseLBS
 status200
 [("Content-Type", "text/plain")]
 $ L8.pack $ concat
 ["pathInfo == "
 , show $ pathInfo req
 , ", rawPathInfo == "
 , show $ rawPathInfo req
]

main :: IO ()
main = warp 3000 App

For completeness, we’ve provided a full listing, but let’s focus on just the Template
Haskell portion:

mkYesod "App" [parseRoutes|
/only-get OnlyGetR GET
/any-method AnyMethodR
/has-param/#Int HasParamR GET
/my-subsite MySubsiteR WaiSubsite getMySubsite
|]

Although this generates a few pieces of code, we only need to replicate three compo‐
nents to make our site work. Let’s start with the simplest—the Handler type synonym:

type Handler = HandlerT App IO

Next is the type-safe URL and its rendering function. The rendering function is
allowed to generate both path segments and query string parameters. Standard Yesod
sites never generate query string parameters, but it is technically possible. And in the
case of subsites, this often does happen. Notice how we handle the qs parameter for
the MySubsiteR case:

instance RenderRoute App where
 data Route App = OnlyGetR
 | AnyMethodR
 | HasParamR Int
 | MySubsiteR (Route WaiSubsite)
 deriving (Show, Read, Eq)

 renderRoute OnlyGetR = (["only-get"], [])
 renderRoute AnyMethodR = (["any-method"], [])
 renderRoute (HasParamR i) = (["has-param", toPathPiece i], [])
 renderRoute (MySubsiteR subRoute) =
 let (ps, qs) = renderRoute subRoute
 in ("my-subsite" : ps, qs)

You can see that there’s a fairly simple mapping from the higher-level route syntax
and the RenderRoute instance. Each route becomes a constructor, each URL parame‐

Dispatch | 209

ter becomes an argument to its constructor, we embed a route for the subsite, and we
use toPathPiece to render parameters to text.

The final component is the YesodDispatch instance. Let’s look at this in a few pieces:

instance YesodDispatch App where
 yesodDispatch env req =
 case pathInfo req of
 ["only-get"] ->
 case requestMethod req of
 "GET" -> yesodRunner
 getOnlyGetR
 env
 (Just OnlyGetR)
 req
 _ -> yesodRunner
 (badMethod >> return ())
 env
 (Just OnlyGetR)
 req

As just described, yesodDispatch is handed both an environment and a WAI
Request value. We can now perform dispatch based on the requested path, or, in WAI
terms, the pathInfo. Referring back to our original high-level route syntax, we can
see that our first route is going to be the single piece only-get, which we pattern
match for.

Once that match has succeeded, we additionally pattern match on the request
method. If it’s GET, we use the handler function getOnlyGetR. Otherwise, we want to
return a 405 Bad Method response, and therefore use the badMethod handler. At this
point, we’ve come full circle to our original handler discussion. You can see that we’re
using yesodRunner to execute our handler function. As a reminder, this will take our
environment and WAI Request, convert it to a YesodRequest, construct a RunHand
lerEnv, hand that to the handler function, and then convert the resulting YesodRes
ponse into a WAI Response.

Wonderful; one down, three to go. The next one is even easier:

 ["any-method"] ->
 yesodRunner handleAnyMethodR env (Just AnyMethodR) req

Unlike OnlyGetR, AnyMethodR will work for any request method, so we don’t need to
perform any further pattern matching:

 ["has-param", t] | Just i <- fromPathPiece t ->
 case requestMethod req of
 "GET" -> yesodRunner
 (getHasParamR i)
 env
 (Just $ HasParamR i)

210 | Chapter 18: Understanding a Request

 req
 _ -> yesodRunner
 (badMethod >> return ())
 env
 (Just $ HasParamR i)
 req

We add in one extra complication here: a dynamic parameter. While we used toPath
Piece to render to a textual value earlier, we now use fromPathPiece to perform the
parsing. Assuming the parse succeeds, we then follow a very similar dispatch system
as was used for OnlyGetR. The prime difference is that our parameter needs to be
passed to both the handler function and the route data constructor.

Next, we’ll look at the subsite, which is quite different:

 ("my-subsite":rest) -> yesodSubDispatch
 YesodSubRunnerEnv
 { ysreGetSub = getMySubsite
 , ysreParentRunner = yesodRunner
 , ysreToParentRoute = MySubsiteR
 , ysreParentEnv = env
 }
 req { pathInfo = rest }

Unlike the other pattern matches, here we just look to see if our pattern prefix
matches. Any route beginning with /my-subsite should be passed off to the subsite for
processing. This is where we finally get to use yesodSubDispatch. This function
closely mirrors yesodDispatch. We need to construct a new environment to be
passed to it. Let’s discuss the four fields:

• ysreGetSub demonstrates how to get the subsite foundation type from the mas‐
ter site. We provide getMySubsite, which is the function we provided in the
high-level route syntax.

• ysreParentRunner provides a means of running a handler function. It may seem
a bit boring to just provide yesodRunner, but by having a separate parameter we
allow the construction of deeply nested subsites, which will wrap and unwrap
many layers of interleaving subsites. (This is a more advanced concept, and we
won’t be covering it in this chapter.)

• ysreToParentRoute will convert a route for the subsite into a route for the parent
site. This is the purpose of the MySubsiteR constructor. This allows subsites to
use functions such as getRouteToParent.

• ysreParentEnv simply passes on the initial environment, which contains a num‐
ber of things the subsite may need (such as the logger).

Dispatch | 211

The other interesting thing is how we modify the pathInfo. This allows subsites to
continue dispatching from where the parent site left off. Figure 18-1 shows screenshots
of a few requests.

Figure 18-1. Path info in subsite

And finally, not all requests will be valid routes. For those cases, we just want to
respond with a 404 Not Found:

 _ -> yesodRunner (notFound >> return ()) env Nothing req

Complete Code
Here is the full code for the non-Template Haskell approach:

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ViewPatterns #-}
import qualified Data.ByteString.Lazy.Char8 as L8
import Network.HTTP.Types (status200)
import Network.Wai (pathInfo, rawPathInfo,
 requestMethod, responseLBS)
import Yesod
import Yesod.Core.Types (YesodSubRunnerEnv (..))

data App = App

instance RenderRoute App where
 data Route App = OnlyGetR
 | AnyMethodR
 | HasParamR Int
 | MySubsiteR (Route WaiSubsite)
 deriving (Show, Read, Eq)

 renderRoute OnlyGetR = (["only-get"], [])
 renderRoute AnyMethodR = (["any-method"], [])
 renderRoute (HasParamR i) = (["has-param", toPathPiece i], [])
 renderRoute (MySubsiteR subRoute) =
 let (ps, qs) = renderRoute subRoute
 in ("my-subsite" : ps, qs)

212 | Chapter 18: Understanding a Request

type Handler = HandlerT App IO

instance Yesod App

instance YesodDispatch App where
 yesodDispatch env req =
 case pathInfo req of
 ["only-get"] ->
 case requestMethod req of
 "GET" -> yesodRunner
 getOnlyGetR
 env
 (Just OnlyGetR)
 req
 _ -> yesodRunner
 (badMethod >> return ())
 env
 (Just OnlyGetR)
 req
 ["any-method"] ->
 yesodRunner handleAnyMethodR env (Just AnyMethodR) req
 ["has-param", t] | Just i <- fromPathPiece t ->
 case requestMethod req of
 "GET" -> yesodRunner
 (getHasParamR i)
 env
 (Just $ HasParamR i)
 req
 _ -> yesodRunner
 (badMethod >> return ())
 env
 (Just $ HasParamR i)
 req
 ("my-subsite":rest) -> yesodSubDispatch
 YesodSubRunnerEnv
 { ysreGetSub = getMySubsite
 , ysreParentRunner = yesodRunner
 , ysreToParentRoute = MySubsiteR
 , ysreParentEnv = env
 }
 req { pathInfo = rest }
 _ -> yesodRunner (notFound >> return ()) env Nothing req

getOnlyGetR :: Handler Html
getOnlyGetR = defaultLayout
 [whamlet|
 <p>Accessed via GET method
 <form method=post action=@{AnyMethodR}>
 <button>POST to /any-method
 |]

handleAnyMethodR :: Handler Html

Dispatch | 213

handleAnyMethodR = do
 req <- waiRequest
 defaultLayout
 [whamlet|
 <p>In any-method, method == #{show $ requestMethod req}
 |]

getHasParamR :: Int -> Handler String
getHasParamR i = return $ show i

getMySubsite :: App -> WaiSubsite
getMySubsite _ =
 WaiSubsite app
 where
 app req sendResponse = sendResponse $ responseLBS
 status200
 [("Content-Type", "text/plain")]
 $ L8.pack $ concat
 ["pathInfo == "
 , show $ pathInfo req
 , ", rawPathInfo == "
 , show $ rawPathInfo req
]

main :: IO ()
main = warp 3000 App

Summary
Yesod abstracts away quite a bit of the plumbing from you as a developer. Most of this
is boilerplate code that you’ll be happy to ignore. But it can be empowering to under‐
stand exactly what’s going on under the surface. At this point, you should hopefully
be able—with help from the Haddocks—to write a site without any of the autogener‐
ated Template Haskell code. Not that I’d recommend it; I think using the generated
code is easier and safer.

One particular advantage of understanding this material is seeing where Yesod sits in
the world of WAI. This makes it easier to see how Yesod will interact with WAI
middleware, or how to include code from other WAI frameworks in a Yesod applica‐
tion (or vice versa!).

214 | Chapter 18: Understanding a Request

CHAPTER 19

SQL Joins

Persistent touts itself as a database-agnostic interface. How, then, are you supposed to
do things that are inherently backend-specific? This most often comes up in Yesod
when you want to join two tables together. There are some pure-Haskell solutions
that are completely backend-agonistic, but there are also more efficient methods at
our disposal. In this chapter, we’ll introduce a common problem you might want to
solve, and then build up more sophisticated solutions.

Multiauthor Blog
Blogs are a well-understood problem domain, so let’s use that for our problem setup.
Consider a blog engine that allows for multiple authors in the database, but supports
blog posts that have a single author. In Persistent, we may model this as:

Author
 name Text
Blog
 author AuthorId
 title Text
 content Html

Let’s set up our initial Yesod application to show a blog post index indicating the blog
title and the author:

{-# LANGUAGE EmptyDataDecls #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}

215

{-# LANGUAGE ViewPatterns #-}
import Control.Monad.Logger
import Data.Text (Text)
import Database.Persist.Sqlite
import Yesod

share [mkPersist sqlSettings, mkMigrate "migrateAll"] [persistLowerCase|
Author
 name Text
Blog
 author AuthorId
 title Text
 content Html
|]

data App = App
 { persistConfig :: SqliteConf
 , connPool :: ConnectionPool
 }
instance Yesod App
instance YesodPersist App where
 type YesodPersistBackend App = SqlBackend
 runDB = defaultRunDB persistConfig connPool
instance YesodPersistRunner App where
 getDBRunner = defaultGetDBRunner connPool

mkYesod "App" [parseRoutes|
/ HomeR GET
/blog/#BlogId BlogR GET
|]

getHomeR :: Handler Html
getHomeR = do
 blogs <- runDB $ selectList [] []

 defaultLayout $ do
 setTitle "Blog posts"
 [whamlet|

 $forall Entity blogid blog <- blogs

 #{blogTitle blog} by #{show $ blogAuthor blog}
 |]

getBlogR :: BlogId -> Handler Html
getBlogR _ = error "Implementation left as exercise to reader"

main :: IO ()
main = do
 -- Use an in-memory database with 1 connection. Terrible for production,
 -- but useful for testing.

216 | Chapter 19: SQL Joins

 let conf = SqliteConf ":memory:" 1
 pool <- createPoolConfig conf
 flip runSqlPersistMPool pool $ do
 runMigration migrateAll

 -- Fill in some testing data
 alice <- insert $ Author "Alice"
 bob <- insert $ Author "Bob"

 insert_ $ Blog alice "Alice's first post" "Hello, World!"
 insert_ $ Blog bob "Bob's first post" "Hello, World!!!"
 insert_ $ Blog alice "Alice's second post" "Goodbye, World!"

 warp 3000 App
 { persistConfig = conf
 , connPool = pool
 }

That’s all well and good, but let’s look at the output, shown in Figure 19-1.

Figure 19-1. Authors appear as numeric identifiers

All we’re doing is displaying the numeric identifier of each author, instead of the
author’s name. In order to fix this, we need to pull extra information from the Author
table as well. Let’s dive into getting that done.

Database Queries in Widgets
I’ll address this one right off the bat, as it catches many users by surprise. You might
think that you can solve the problem of database queries in the Hamlet template
itself. For example:

 $forall Entity blogid blog <- blogs
 $with author <- runDB $ get404 $ blogAuthor

 #{blogTitle blog} by #{authorName author}

However, this isn’t allowed, because Hamlet will not allow you to run database actions
inside of it. One of the goals of Shakespearean templates is to help you keep your pure
and impure code separated, with the idea being that all impure code needs to stay in
Haskell.

Database Queries in Widgets | 217

But we can actually tweak the preceding code to work in Yesod. The idea is to sepa‐
rate out the code for each blog entry into a Widget function, and then perform the
database action in the Haskell portion of the function:

getHomeR :: Handler Html
getHomeR = do
 blogs <- runDB $ selectList [] []

 defaultLayout $ do
 setTitle "Blog posts"
 [whamlet|

 $forall blogEntity <- blogs
 ^{showBlogLink blogEntity}
 |]

showBlogLink :: Entity Blog -> Widget
showBlogLink (Entity blogid blog) = do
 author <- handlerToWidget $ runDB $ get404 $ blogAuthor blog
 [whamlet|

 #{blogTitle blog} by #{authorName author}
 |]

We need to use handlerToWidget to turn our Handler action into a Widget action,
but otherwise the code is straightforward. And furthermore, we now get exactly the
output we wanted, as shown in Figure 19-2.

Figure 19-2. Authors appear as names

Joins
If we have the exact result we’re looking for, why isn’t this chapter over? The problem
is that this technique is highly inefficient. We’re performing one database query to
load up all of the blog posts, then a separate query for each blog post to get the author
names. This is far less efficient than simply using a SQL join. The question is: how do
we do a join in Persistent? We’ll start off by writing some raw SQL:

getHomeR :: Handler Html
getHomeR = do
 blogs <- runDB $ rawSql
 "SELECT ??, ?? \
 \FROM blog INNER JOIN author \
 \ON blog.author=author.id"

218 | Chapter 19: SQL Joins

 []

 defaultLayout $ do
 setTitle "Blog posts"
 [whamlet|

 $forall (Entity blogid blog, Entity _ author) <- blogs

 #{blogTitle blog} by #{authorName author}
 |]

We pass the rawSql function two parameters: a SQL query, and a list of additional
parameters to replace placeholders in the query. That list is empty, because we’re not
using any placeholders. However, note that we’re using ?? in our SELECT statement.
This is a form of type inspection: rawSql will detect the type of entities being deman‐
ded and automatically fill in the fields that are necessary to make the query.

rawSql is certainly powerful, but it’s also unsafe. There’s no syntax checking on your
SQL query string, so you can get runtime errors. Also, it’s easy to end up querying for
the wrong type, resulting in some very confusing runtime error messages.

Esqueleto
Persistent has a companion library called Esqueleto that provides an expressive, type-
safe DSL for writing SQL queries. It takes advantage of the Persistent types to ensure
it generates valid SQL queries and produces the results requested by the program. In
order to use Esqueleto, we’re going to add some imports:

import qualified Database.Esqueleto as E
import Database.Esqueleto ((^.))

We can then write our query using Esqueleto as follows:

getHomeR :: Handler Html
getHomeR = do
 blogs <- runDB
 $ E.select
 $ E.from $ \(blog `E.InnerJoin` author) -> do
 E.on $ blog ^. BlogAuthor E.==. author ^. AuthorId
 return
 (blog ^. BlogId
 , blog ^. BlogTitle
 , author ^. AuthorName
)

 defaultLayout $ do
 setTitle "Blog posts"
 [whamlet|

Esqueleto | 219

http://hackage.haskell.org/package/esqueleto

 $forall (E.Value blogid, E.Value title, E.Value name) <- blogs

 #{title} by #{name}
 |]

Notice how similar the query looks to the SQL we wrote previously. One thing of par‐
ticular interest is the \^. operator, which is a projection. blog ^. BlogAuthor, for
example, means “take the author column of the blog table.” And thanks to the type
safety of Esqueleto, you could never accidentally project AuthorName from blog: the
type system will stop you!

In addition to safety, there’s also a performance advantage to Esqueleto. Notice the
returned tuple; it explicitly lists the three columns that we need to generate our list‐
ing. This can provide a huge performance boost: unlike all other examples we’ve had,
this one does not require transferring the (potentially quite large) content column of
the blog post to generate the listing.

For the record, it’s possible to achieve this with rawSql as well (it’s
just a bit trickier).

Esqueleto is really the gold standard in writing SQL queries in Persistent. The rule of
thumb should be: if you’re doing something that fits naturally into Persistent’s query
syntax, use Persistent, as it’s database-agnostic and a bit easier to use. But if you’re
doing something that would be more efficient with a SQL-specific feature, you should
strongly consider Esqueleto.

Streaming
There’s still a problem with our Esqueleto approach. If there are thousands of blog
posts, then the workflow will be:

1. Read thousands of blog posts into memory on the server.
2. Render out the entire HTML page.
3. Send the HTML page to the client.

This has two downsides: it uses a lot of memory, and it results in high latency for the
user. If this is a bad approach, why does Yesod gear you toward it out of the box,
instead of following a streaming approach? Two reasons:

Correctness
Imagine if there was an error reading the 243rd record from the database. By
sending a non-streaming response, Yesod can catch the exception and send a

220 | Chapter 19: SQL Joins

meaningful 500 error response. If we were already streaming, the streaming body
would simply stop in the middle of a misleading 200 OK response.

Ease of use
It’s usually easier to work with non-streaming bodies.

The standard recommendation I’d give someone who wants to generate listings that
may be large is to use pagination. This allows you to do less work on the server, write
simple code, get the correctness guarantees Yesod provides out of the box, and reduce
user latency. However, there are times when you’ll really want to generate a streaming
response, so let’s cover that here.

Switching Esqueleto to a streaming response is easy: replace select with select
Source. The Esqueleto query itself remains unchanged. Then we’ll use the respond
SourceDB function to generate a streaming database response, and manually
construct our HTML to wrap up the listing:

getHomeR :: Handler TypedContent
getHomeR = do
 let blogsSrc =
 E.selectSource
 $ E.from $ \(blog `E.InnerJoin` author) -> do
 E.on $ blog ^. BlogAuthor E.==. author ^. AuthorId
 return
 (blog ^. BlogId
 , blog ^. BlogTitle
 , author ^. AuthorName
)

 render <- getUrlRenderParams
 respondSourceDB typeHtml $ do
 sendChunkText "<html><head><title>Blog posts</title></head><body>"
 blogsSrc $= CL.map (\(E.Value blogid, E.Value title, E.Value name) ->
 toFlushBuilder $
 [hamlet|

 #{title} by #{name}
 |] render
)
 sendChunkText "</body></html>"

Notice the usage of sendChunkText, which sends some raw Text values over the net‐
work. We then take each of our blog tuples and use conduit’s map function to create a
streaming value. We use hamlet to get templating, and then pass in our render func‐
tion to convert the type-safe URLs into their textual versions. Finally, toFlush
Builder converts our Html value into a Flush Builder value, as needed by Yesod’s
streaming framework.

Streaming | 221

Unfortunately, we’re no longer able to take advantage of Hamlet to do our overall
page layout, as we need to explicitly generate start and end tags separately. This intro‐
duces another point for possible bugs, if we accidentally create unbalanced tags. We
also lose the ability to use defaultLayout, for exactly the same reason.

Streaming HTML responses are a powerful tool, and are sometimes necessary. But
generally speaking, I’d recommend sticking to safer options.

Summary
This chapter covered a number of ways of doing a SQL join:

• Avoid the join entirely, and manually grab the associated data in Haskell. This is
also known as an application-level join.

• Write the SQL explicitly with rawSql. This is somewhat convenient, but it loses a
lot of Persistent’s type safety.

• Use Esqueleto’s DSL functionality to create a type-safe SQL query.
• If you need it, you can even generate a streaming response from Esqueleto.

For completeness, here’s the entire body of the final, streaming example:

{-# LANGUAGE EmptyDataDecls #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ViewPatterns #-}
import Control.Monad.Logger
import Data.Text (Text)
import qualified Database.Esqueleto as E
import Database.Esqueleto ((^.))
import Database.Persist.Sqlite
import Yesod
import qualified Data.Conduit.List as CL
import Data.Conduit (($=))

share [mkPersist sqlSettings, mkMigrate "migrateAll"] [persistLowerCase|
Author
 name Text
Blog
 author AuthorId
 title Text
 content Html
|]

222 | Chapter 19: SQL Joins

data App = App
 { persistConfig :: SqliteConf
 , connPool :: ConnectionPool
 }
instance Yesod App
instance YesodPersist App where
 type YesodPersistBackend App = SqlBackend
 runDB = defaultRunDB persistConfig connPool
instance YesodPersistRunner App where
 getDBRunner = defaultGetDBRunner connPool

mkYesod "App" [parseRoutes|
/ HomeR GET
/blog/#BlogId BlogR GET
|]

getHomeR :: Handler TypedContent
getHomeR = do
 let blogsSrc =
 E.selectSource
 $ E.from $ \(blog `E.InnerJoin` author) -> do
 E.on $ blog ^. BlogAuthor E.==. author ^. AuthorId
 return
 (blog ^. BlogId
 , blog ^. BlogTitle
 , author ^. AuthorName
)

 render <- getUrlRenderParams
 respondSourceDB typeHtml $ do
 sendChunkText "<html><head><title>Blog posts</title></head><body>"
 blogsSrc $= CL.map (\(E.Value blogid, E.Value title, E.Value name) ->
 toFlushBuilder $
 [hamlet|

 #{title} by #{name}
 |] render
)
 sendChunkText "</body></html>"

getBlogR :: BlogId -> Handler Html
getBlogR _ = error "Implementation left as exercise to reader"

main :: IO ()
main = do
 -- Use an in-memory database with 1 connection. Terrible for production,
 -- but useful for testing.
 let conf = SqliteConf ":memory:" 1
 pool <- createPoolConfig conf
 flip runSqlPersistMPool pool $ do
 runMigration migrateAll

Summary | 223

 -- Fill in some testing data
 alice <- insert $ Author "Alice"
 bob <- insert $ Author "Bob"

 insert_ $ Blog alice "Alice's first post" "Hello, World!"
 insert_ $ Blog bob "Bob's first post" "Hello, World!!!"
 insert_ $ Blog alice "Alice's second post" "Goodbye, World!"

 warp 3000 App
 { persistConfig = conf
 , connPool = pool
 }

224 | Chapter 19: SQL Joins

CHAPTER 20

Yesod for Haskellers

The majority of this book is built around giving practical information on how to get
common tasks done, without drilling too much into the details of what’s going on
under the surface. This book presumes knowledge of Haskell, but it does not follow
the typical style of many introductions to Haskell libraries. Many seasoned Haskellers
may be put off by this hiding of implementation details. The purpose of this chapter
is to address those concerns. We’ll start off with a bare-minimum web application and
build up to more complicated examples, explaining the components and their types
along the way.

Hello, Warp
Let’s start off with the most bare-minimum application I can think of:

{-# LANGUAGE OverloadedStrings #-}
import Network.HTTP.Types (status200)
import Network.Wai (Application, responseLBS)
import Network.Wai.Handler.Warp (run)

main :: IO ()
main = run 3000 app

app :: Application
app _req sendResponse = sendResponse $ responseLBS
 status200
 [("Content-Type", "text/plain")]
 "Hello, Warp!"

Wait a minute, there’s no Yesod in there! Don’t worry, we’ll get there. Remember,
we’re building from the ground up, and in Yesod the ground floor is WAI, the Web
Application Interface. WAI sits between a web handler, such as a web server or a test

225

framework, and a web application. In our case, the handler is Warp, a high-
performance web server, and our application is the app function.

What’s this mysterious Application type? It’s a type synonym defined as:

type Application = Request
 -> (Response -> IO ResponseReceived)
 -> IO ResponseReceived

The Request value contains information such as the requested path, query string,
request headers, request body, and the IP address of the client. The second argument
is the “send response” function. Instead of simply having the application return an IO
Response, WAI uses continuation passing style (CPS) to allow for full exception
safety, similar to how the bracket function works.

We can use this to do some simple dispatching:

{-# LANGUAGE OverloadedStrings #-}
import Network.HTTP.Types (status200)
import Network.Wai (Application, pathInfo, responseLBS)
import Network.Wai.Handler.Warp (run)

main :: IO ()
main = run 3000 app

app :: Application
app req sendResponse =
 case pathInfo req of
 ["foo", "bar"] -> sendResponse $ responseLBS
 status200
 [("Content-Type", "text/plain")]
 "You requested /foo/bar"
 _ -> sendResponse $ responseLBS
 status200
 [("Content-Type", "text/plain")]
 "You requested something else"

WAI mandates that the path be split into individual fragments (the stuff between for‐
ward slashes) and converted into text. This allows for easy pattern matching. If you
need the original, unmodified ByteString, you can use rawPathInfo. For more infor‐
mation on the available fields, see the WAI Haddocks.

That addresses the request side; what about responses? We’ve already seen respon
seLBS, which is a convenient way of creating a response from a lazy ByteString. That
function takes three arguments: the status code, a list of response headers (as key/
value pairs), and the body itself. But responseLBS is just a convenience wrapper.
Under the surface, WAI uses blaze-builder’s Builder data type to represent the raw
bytes. Let’s dig down another level and use that directly:

{-# LANGUAGE OverloadedStrings #-}
import Blaze.ByteString.Builder (Builder, fromByteString)

226 | Chapter 20: Yesod for Haskellers

import Network.HTTP.Types (status200)
import Network.Wai (Application, responseBuilder)
import Network.Wai.Handler.Warp (run)

main :: IO ()
main = run 3000 app

app :: Application
app _req sendResponse = sendResponse $ responseBuilder
 status200
 [("Content-Type", "text/plain")]
 (fromByteString "Hello from blaze-builder!" :: Builder)

This opens up some nice opportunities for efficiently building up response bodies, as
Builder allows for O(1) append operations. We’re also able to take advantage of
blaze-html, which sits on top of blaze-builder. Let’s take a look at our first HTML
application:

{-# LANGUAGE OverloadedStrings #-}
import Network.HTTP.Types (status200)
import Network.Wai (Application, responseBuilder)
import Network.Wai.Handler.Warp (run)
import Text.Blaze.Html.Renderer.Utf8 (renderHtmlBuilder)
import Text.Blaze.Html5 (Html, docTypeHtml)
import qualified Text.Blaze.Html5 as H

main :: IO ()
main = run 3000 app

app :: Application
app _req sendResponse = sendResponse $ responseBuilder
 status200
 [("Content-Type", "text/html")] -- yay!
 (renderHtmlBuilder myPage)

myPage :: Html
myPage = docTypeHtml $ do
 H.head $ do
 H.title "Hello from blaze-html and Warp"
 H.body $ do
 H.h1 "Hello from blaze-html and Warp"

There’s a limitation with using a pure Builder value: we need to create the entire
response body before returning the Response value. With lazy evaluation, that’s not as
bad as it sounds, because not all of the body will live in memory at once. However, if
we need to perform some I/O to generate our response body (such as reading data
from a database), we’ll be in trouble.

To deal with that situation, WAI provides a means for generating streaming response
bodies. It also allows explicit control of flushing the stream. Let’s see how this works:

Hello, Warp | 227

{-# LANGUAGE OverloadedStrings #-}
import Blaze.ByteString.Builder (Builder, fromByteString)
import Blaze.ByteString.Builder.Char.Utf8 (fromShow)
import Control.Concurrent (threadDelay)
import Control.Monad (forM_)
import Control.Monad.Trans.Class (lift)
import Data.Monoid ((<>))
import Network.HTTP.Types (status200)
import Network.Wai (Application,
 responseStream)
import Network.Wai.Handler.Warp (run)

main :: IO ()
main = run 3000 app

app :: Application
app _req sendResponse = sendResponse $ responseStream
 status200
 [("Content-Type", "text/plain")]
 myStream

myStream :: (Builder -> IO ()) -> IO () -> IO ()
myStream send flush = do
 send $ fromByteString "Starting streaming response.\n"
 send $ fromByteString "Performing some I/O.\n"
 flush
 -- pretend we're performing some I/O
 threadDelay 1000000
 send $ fromByteString "I/O performed, here are some results.\n"
 forM_ [1..50 :: Int] $ \i -> do
 send $ fromByteString "Got the value: " <>
 fromShow i <>
 fromByteString "\n"

WAI previously relied on the conduit library for its streaming data
abstraction, but has since gotten rid of that dependency. However,
conduit is still well supported in the WAI ecosystem, via the wai-
conduit helper package.

Another common requirement when dealing with a streaming response is safely allo‐
cating a scarce resource, such as a file handle. By safely, I mean ensuring that the
response will be released, even in the case of some exception. This is where the con‐
tinuation passing style mentioned earlier comes into play:

{-# LANGUAGE OverloadedStrings #-}
import Blaze.ByteString.Builder (fromByteString)
import qualified Data.ByteString as S
import Data.Conduit (Flush (Chunk), ($=))
import Data.Conduit.Binary (sourceHandle)
import qualified Data.Conduit.List as CL

228 | Chapter 20: Yesod for Haskellers

import Network.HTTP.Types (status200)
import Network.Wai (Application, responseStream)
import Network.Wai.Handler.Warp (run)
import System.IO (IOMode (ReadMode), withFile)

main :: IO ()
main = run 3000 app

app :: Application
app _req sendResponse = withFile "index.html" ReadMode $ \handle ->
 sendResponse $ responseStream
 status200
 [("Content-Type", "text/html")]
 $ \send _flush ->
 let loop = do
 bs <- S.hGet handle 4096
 if S.null bs
 then return ()
 else send (fromByteString bs) >> loop
 in loop

Notice how we’re able to take advantage of existing exception-safe functions like with
File to deal with exceptions properly.

But in the case of serving files, it’s more efficient to use responseFile, which can use
the sendfile system call to avoid unnecessary buffer copies:

{-# LANGUAGE OverloadedStrings #-}
import Network.HTTP.Types (status200)
import Network.Wai (Application, responseFile)
import Network.Wai.Handler.Warp (run)

main :: IO ()
main = run 3000 app

app :: Application
app _req sendResponse = sendResponse $ responseFile
 status200
 [("Content-Type", "text/html")]
 "index.html"
 Nothing -- means "serve whole file"
 -- you can also serve specific ranges in the file

There are many aspects of WAI we haven’t covered here. One important topic is WAI
middlewares. We also haven’t inspected request bodies at all. But for the purposes of
understanding Yesod, we’ve covered enough for the moment.

Hello, Warp | 229

What About Yesod?
In all our excitement about WAI and Warp, we still haven’t seen anything about
Yesod! We just learned all about WAI, so our first question should be: how does Yesod
interact with WAI? The answer to that is one very important function:

toWaiApp :: YesodDispatch site => site -> IO Application

There’s an even more basic function in Yesod, called toWaiApp
Plain. The distinction is that toWaiAppPlain doesn’t install any
additional WAI middlewares, while toWaiApp provides commonly
used middlewares for logging, gzip compression, HEAD request
method handling, etc.

This function takes some site value, which must be an instance of YesodDispatch,
and creates an Application. The function lives in the IO monad, because it will likely
perform actions like allocating a shared logging buffer. The more interesting question
is what this site value is all about.

Yesod has a concept of a foundation data type. This is a data type at the core of each
application, and is used in three important ways:

• It can hold onto values that are initialized and shared amongst all aspects of your
application, such as an HTTP connection manager, a database connection pool,
settings loaded from a file, or some shared mutable state like a counter or cache.

• Typeclass instances provide even more information about your application. The
Yesod typeclass has various settings, such as what the default template of your
app should be, or the maximum allowed request body size. The YesodDispatch
class indicates how incoming requests should be dispatched to handler functions.
And there are a number of typeclasses commonly used in Yesod helper libraries,
such as RenderMessage for i18n support or YesodJquery for providing the
shared location of the jQuery JavaScript library.

• Associated types (i.e., type families) are used to create a related route data type for
each application. This is a simple algebraic data type that represents all legal
routes in your application. By using this intermediate data type instead of dealing
directly with strings, Yesod applications can take advantage of the compiler to
prevent creating invalid links. This feature is known as type-safe URLs.

In keeping with the spirit of this chapter, we’re going to create our first Yesod applica‐
tion the hard way, by writing everything manually. We’ll progressively add more con‐
venience helpers on top as we go along:

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE TypeFamilies #-}

230 | Chapter 20: Yesod for Haskellers

import Network.HTTP.Types (status200)
import Network.Wai (responseBuilder)
import Network.Wai.Handler.Warp (run)
import Text.Blaze.Html.Renderer.Utf8 (renderHtmlBuilder)
import qualified Text.Blaze.Html5 as H
import Yesod.Core (Html, RenderRoute (..), Yesod,
 YesodDispatch (..), toWaiApp)
import Yesod.Core.Types (YesodRunnerEnv (..))

-- | Our foundation data type
data App = App
 { welcomeMessage :: !Html
 }

instance Yesod App

instance RenderRoute App where
 data Route App = HomeR -- just one accepted URL
 deriving (Show, Read, Eq, Ord)

 renderRoute HomeR = ([] -- empty path info, means "/"
 , [] -- empty query string
)

instance YesodDispatch App where
 yesodDispatch
 (YesodRunnerEnv _logger site _sessionBackend _)
 _req
 sendResponse =
 sendResponse $ responseBuilder
 status200
 [("Content-Type", "text/html")]
 (renderHtmlBuilder $ welcomeMessage site)

main :: IO ()
main = do
 -- We could get this message from a file instead if we wanted.
 let welcome = H.p "Welcome to Yesod!"
 waiApp <- toWaiApp App
 { welcomeMessage = welcome
 }
 run 3000 waiApp

OK, we’ve added quite a few new pieces here, so let’s attack them one at a time. First
we created a new data type, App. This is commonly used as the foundation data type
name for each application, though you’re free to use whatever name you want. We’ve
added one field to this data type, welcomeMessage, which will hold the content for our
homepage.

Next, we declare our Yesod instance. We just use the default values for all of the
methods for this example. More interesting is the RenderRoute typeclass. This is the

What About Yesod? | 231

heart of type-safe URLs. We create an associated data type for App that lists all of our
app’s accepted routes. In this case, we have just one: the homepage, which we call
HomeR. It’s yet another Yesod naming convention to append R to all of the route data
constructors.

We also need to create a renderRoute method, which converts each type-safe route
value into a tuple of path pieces and query string parameters. We’ll get to more inter‐
esting examples later, but for now, our homepage has an empty list for both of those.

YesodDispatch determines how our application behaves. It has one method, yesod
Dispatch, of type:

yesodDispatch :: YesodRunnerEnv site -> Application

YesodRunnerEnv provides three values: a Logger value for outputting log messages,
the foundation data type value itself, and a session backend used for storing and
retrieving information for the user’s active session. In real Yesod applications, as
you’ll see shortly, you don’t need to interact with these values directly, but it’s infor‐
mative to understand what’s under the surface.

The return type of yesodDispatch is Application from WAI. But as we saw earlier,
Application is simply a CPSed function from Request to Response. So, our imple‐
mentation of yesodDispatch is able to use everything we’ve learned about WAI.
Notice also how we accessed the welcomeMessage from our foundation data type.

Finally, we have the main function. The App value is easy to create, and as you can see,
you could just as easily have performed some I/O to acquire the welcome message.
We use toWaiApp to obtain a WAI application and then pass off our application to
Warp, just like we did in the past.

Congratulations! You’ve now seen your first Yesod application (or at least, your first
Yesod application in this chapter).

The HandlerT Monad Transformer
The preceding example was technically using Yesod, but it wasn’t incredibly inspiring.
In fact, Yesod did nothing more than get in our way relative to WAI. And that’s
because we haven’t started taking advantage of any of Yesod’s features. Let’s address
that, starting with the HandlerT monad transformer.

There are many common things you’ll want to do when handling a single request,
including the following:

• Return some HTML.
• Redirect to a different URL.
• Return a 404 Not Found response.

232 | Chapter 20: Yesod for Haskellers

• Do some logging.

To encapsulate all of this common functionality, Yesod provides a HandlerT monad
transformer. The vast majority of the code you write in Yesod will live in this trans‐
former, so you should get acquainted with it. Let’s start off by replacing our previous
YesodDispatch instance with a new one that takes advantage of HandlerT:

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE TypeFamilies #-}
import Network.Wai (pathInfo)
import Network.Wai.Handler.Warp (run)
import qualified Text.Blaze.Html5 as H
import Yesod.Core (HandlerT, Html, RenderRoute (..),
 Yesod, YesodDispatch (..), getYesod,
 notFound, toWaiApp, yesodRunner)

-- | Our foundation data type
data App = App
 { welcomeMessage :: !Html
 }

instance Yesod App

instance RenderRoute App where
 data Route App = HomeR -- just one accepted URL
 deriving (Show, Read, Eq, Ord)

 renderRoute HomeR = ([] -- empty path info, means "/"
 , [] -- empty query string
)

getHomeR :: HandlerT App IO Html
getHomeR = do
 site <- getYesod
 return $ welcomeMessage site

instance YesodDispatch App where
 yesodDispatch yesodRunnerEnv req sendResponse =
 let maybeRoute =
 case pathInfo req of
 [] -> Just HomeR
 _ -> Nothing
 handler =
 case maybeRoute of
 Nothing -> notFound
 Just HomeR -> getHomeR
 in yesodRunner handler yesodRunnerEnv maybeRoute req sendResponse

main :: IO ()
main = do
 -- We could get this message from a file instead if we wanted.

The HandlerT Monad Transformer | 233

 let welcome = H.p "Welcome to Yesod!"
 waiApp <- toWaiApp App
 { welcomeMessage = welcome
 }
 run 3000 waiApp

getHomeR is our first handler function. (That name is yet another naming convention
in the Yesod world: the lowercase HTTP request method, followed by the route con‐
structor name.) Notice its signature: HandlerT App IO Html. It’s so common to have
the monad stack HandlerT App IO that most applications have a type synonym for it,
type Handler = HandlerT App IO. The function is returning some Html. You might
be wondering if Yesod is hardcoded to only work with Html values. I’ll explain that
detail in a moment.

Our function body is short. We use the getYesod function to get the foundation data
type value, and then return the welcomeMessage field. We’ll build up more interesting
handlers as we continue.

The implementation of yesodDispatch is now quite different. The key to it is the yes
odRunner function, which is a low-level function for converting HandlerT stacks into
WAI Applications. Let’s look at its type signature:

yesodRunner :: (ToTypedContent res, Yesod site)
 => HandlerT site IO res
 -> YesodRunnerEnv site
 -> Maybe (Route site)
 -> Application

We’re already familiar with YesodRunnerEnv from our previous example. As you can
see in our call to yesodRunner, we pass that value in unchanged. The Maybe (Route
site) is a bit interesting, and gives us more insight into how type-safe URLs work.
Until now, we’ve only seen the rendering side of these URLs. But just as important is
the parsing side: converting a requested path into a route value. In our example, this
code is just a few lines, and we store the result in maybeRoute.

It’s true that our current parse function is small, but in a larger
application it would need to be more complex, also dealing with
issues like dynamic parameters. At that point, it becomes a non-
trivial endeavor to ensure that our parsing and rendering functions
remain in proper alignment. We’ll discuss how Yesod deals with
that later.

Coming back to the parameters to yesodRunner: we’ve now addressed the Maybe
(Route site) and YesodRunerEnv site. To get our HandlerT site IO res value,
we pattern match on maybeRoute. If it’s Just HomeR, we use getHomeR. Otherwise, we
use the notFound function, which is a built-in function that returns a 404 Not Found

234 | Chapter 20: Yesod for Haskellers

response, using your default site template. That template can be overridden in the
Yesod typeclass; out of the box, it’s just a boring HTML page.

This almost all makes sense, except for one issue: what’s that ToTypedContent type‐
class, and what does it have to do with our Html response? Let’s start by answering
that earlier question: no, Yesod does not in any way hardcode support for Html. A
handler function can return any value that has an instance of ToTypedContent. This
typeclass (which we will examine in a moment) provides both a MIME type and a
representation of the data that WAI can consume. yesodRunner then converts that
into a WAI response, setting the Content-Type response header to the MIME type,
using a 200 OK status code, and sending the response body.

(To)Content, (To)TypedContent
At the very core of Yesod’s content system are the following types:

data Content = ContentBuilder !Builder !(Maybe Int)
 -- ^ The content and optional content length.
 | ContentSource !(Source (ResourceT IO) (Flush Builder))
 | ContentFile !FilePath !(Maybe FilePart)
 | ContentDontEvaluate !Content

type ContentType = ByteString
data TypedContent = TypedContent !ContentType !Content

Content should remind you a bit of the WAI response types. ContentBuilder is simi‐
lar to responseBuilder, ContentSource is like responseStream but specialized to
conduit, and ContentFile is like responseFile. Unlike their WAI counterparts,
none of these constructors contain information on the status code or response head‐
ers; that’s handled orthogonally in Yesod.

The one completely new constructor is ContentDontEvaluate. By default, when you
create a response body in Yesod, Yesod fully evaluates the body before generating the
response. The reason for this is to ensure that there are no impure exceptions in your
value. Yesod wants to make sure to catch any such exceptions before starting to send
your response so that, if there is an exception, it can generate a proper 500 Internal
Server Error response instead of simply dying in the middle of sending a non-error
response. However, performing this evaluation can cause more memory usage.
Therefore, Yesod provides a means of opting out of this protection.

TypedContent is then a minor addition to Content: it includes the ContentType as
well. Together with a convention that an application returns a 200 OK status unless
otherwise specified, we have everything we need from the TypedContent type to cre‐
ate a response.

Although Yesod could have required users to always return TypedContent from a
handler function, that approach would have required manually converting to that

The HandlerT Monad Transformer | 235

type. Instead, Yesod uses a pair of typeclasses for this, appropriately named ToCon
tent and ToTypedContent. They have exactly the definitions you’d expect:

class ToContent a where
 toContent :: a -> Content
class ToContent a => ToTypedContent a where
 toTypedContent :: a -> TypedContent

And Yesod provides instances for many common data types, including Text, Html,
and the aeson library’s Value type (containing JSON data). That’s how the getHomeR
function was able to return Html: Yesod knows how to convert it to TypedContent,
and from there it can be converted into a WAI response.

HasContentType and Representations
This typeclass approach allows for one other nice abstraction. For many types, the
type system itself lets us know what the content type for the content should be. For
example, Html will always be served with a text/html content type.

This isn’t true for all instance of ToTypedContent. For a counterex‐
ample, consider the ToTypedContent TypedContent instance.

Some requests to a web application can be displayed with various representations. For
example, a request for tabular data could be served with:

• An HTML table
• A CSV file
• XML
• JSON data to be consumed by some client-side JavaScript

The HTTP spec allows a client to specify its preference of representation via the
Accept request header. And Yesod allows a handler function to use the selectRep/
provideRep function combo to provide multiple representations, and have the frame‐
work automatically choose the appropriate one based on the client headers.

The last missing piece to make this all work is the HasContentType typeclass:

class ToTypedContent a => HasContentType a where
 getContentType :: Monad m => m a -> ContentType

The parameter m a is just a poor man’s Proxy type. And, in hindsight, we should have
used Proxy, but that would now be a breaking change. There are instances for this

236 | Chapter 20: Yesod for Haskellers

typeclass for most data types supported by ToTypedContent. Here is our previous
example, tweaked just a bit to provide multiple representations of the data:

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE TypeFamilies #-}
import Data.Text (Text)
import Network.Wai (pathInfo)
import Network.Wai.Handler.Warp (run)
import qualified Text.Blaze.Html5 as H
import Yesod.Core (HandlerT, Html, RenderRoute (..),
 TypedContent, Value, Yesod,
 YesodDispatch (..), getYesod,
 notFound, object, provideRep,
 selectRep, toWaiApp, yesodRunner,
 (.=))

-- | Our foundation data type
data App = App
 { welcomeMessageHtml :: !Html
 , welcomeMessageText :: !Text
 , welcomeMessageJson :: !Value
 }

instance Yesod App

instance RenderRoute App where
 data Route App = HomeR -- just one accepted URL
 deriving (Show, Read, Eq, Ord)

 renderRoute HomeR = ([] -- empty path info, means "/"
 , [] -- empty query string
)

getHomeR :: HandlerT App IO TypedContent
getHomeR = do
 site <- getYesod
 selectRep $ do
 provideRep $ return $ welcomeMessageHtml site
 provideRep $ return $ welcomeMessageText site
 provideRep $ return $ welcomeMessageJson site

instance YesodDispatch App where
 yesodDispatch yesodRunnerEnv req sendResponse =
 let maybeRoute =
 case pathInfo req of
 [] -> Just HomeR
 _ -> Nothing
 handler =
 case maybeRoute of
 Nothing -> notFound
 Just HomeR -> getHomeR
 in yesodRunner handler yesodRunnerEnv maybeRoute req sendResponse

The HandlerT Monad Transformer | 237

main :: IO ()
main = do
 waiApp <- toWaiApp App
 { welcomeMessageHtml = H.p "Welcome to Yesod!"
 , welcomeMessageText = "Welcome to Yesod!"
 , welcomeMessageJson = object ["msg" .= ("Welcome to Yesod!" :: Text)]
 }
 run 3000 waiApp

Convenience warp Function
One minor convenience you’ll see quite a bit in the Yesod world: it’s very common to
call toWaiApp to create a WAI Application and then pass that to Warp’s run function,
so Yesod provides a convenience warp wrapper function. We can therefore replace
our previous main function with the following:

main :: IO ()
main =
 warp 3000 App
 { welcomeMessageHtml = H.p "Welcome to Yesod!"
 , welcomeMessageText = "Welcome to Yesod!"
 , welcomeMessageJson = object ["msg" .= ("Welcome to Yesod!" :: Text)]
 }

There’s also a warpEnv function that reads the port number from the PORT environ‐
ment variable, which is useful for working with platforms such as FP Haskell Center
or deployment tools like Keter.

Writing Handlers
The vast majority of your application will end up living in the HandlerT monad trans‐
former, so it’s not surprising that there are quite a few functions that work in that
context. HandlerT is an instance of many common typeclasses, including MonadIO,
MonadTrans, MonadBaseControl, MonadLogger, and MonadResource, and so can auto‐
matically take advantage of those functionalities.

In addition to that standard functionality, the following are some common categories
of functions. The only requirement Yesod places on your handler functions is that,
ultimately, they return a type that is an instance of ToTypedContent.

This section is just a short overview of functionality. For more information, you
should either look through the Haddocks or read the rest of this book.

Getting Request Parameters
There are a few pieces of information provided by the client in a request:

238 | Chapter 20: Yesod for Haskellers

• The requested path. This is usually handled by Yesod’s routing framework, and is
not directly queried in a handler function.

• Query string parameters. These can be queried using lookupGetParam.
• Request bodies. In the case of URL-encoded and multipart bodies, you can use
lookupPostParam to get the request parameter. For multipart bodies, there’s also
lookupFile for file parameters.

• Request headers can be queried via lookupHeader. (And response headers can be
set with addHeader.)

• Yesod parses cookies for you automatically, and they can be queried using lookup
Cookie. (Cookies can be set via the setCookie function.)

• Finally, Yesod provides a user session framework, where data can be set in a cryp‐
tographically secure session and associated with each user. This can be queried
and set using the functions lookupSession, setSession, and deleteSession.

Although you can use these functions directly for such purposes as processing forms,
you usually will want to use the yesod-form library, which provides a higher-level
form abstraction based on applicative functors.

Short-Circuiting
In some cases, you’ll want to short-circuit the handling of a request. Reasons for
doing this would be:

• Sending an HTTP redirect via the redirect function. This will default to using
the 303 status code. You can use redirectWith to get more control over this.

• Returning a 404 Not Found with notFound, or a 405 Bad Method via badMethod.
• Indicating some error in the request via notAuthenticated, permissionDenied,

or invalidArgs.
• Sending a special response, such as with sendFile or sendResponseStatus (to

override the status 200 response code)
• Using sendWaiResponse to drop down a level of abstraction, bypass some Yesod

abstractions, and use WAI itself.

Streaming
So far, the examples of ToTypedContent instances we’ve seen have all involved non-
streaming responses. Html, Text, and Value all get converted into a ContentBuilder
constructor. As such, they cannot interleave I/O with sending data to the user. What
happens if we want to perform such interleaving?

Writing Handlers | 239

When we encountered this issue in WAI, we introduced the responseSource method
of constructing a response. Using sendWaiResponse, we could reuse that same
method for creating a streaming response in Yesod. But there’s also a simpler API for
doing this: respondSource. The respondSource API takes two parameters: the con‐
tent type of the response, and a Source of Flush Builder. Yesod also provides a
number of convenience functions for creating that Source, such as sendChunk, send
ChunkBS, and sendChunkText.

Here’s an example, which just converts our initial responseSource example from
WAI to Yesod:

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE TypeFamilies #-}
import Blaze.ByteString.Builder (fromByteString)
import Blaze.ByteString.Builder.Char.Utf8 (fromShow)
import Control.Concurrent (threadDelay)
import Control.Monad (forM_)
import Data.Monoid ((<>))
import Network.Wai (pathInfo)
import Yesod.Core (HandlerT, RenderRoute (..),
 TypedContent, Yesod,
 YesodDispatch (..), liftIO,
 notFound, respondSource,
 sendChunk, sendChunkBS,
 sendChunkText, sendFlush,
 warp, yesodRunner)

-- | Our foundation data type
data App = App

instance Yesod App

instance RenderRoute App where
 data Route App = HomeR -- just one accepted URL
 deriving (Show, Read, Eq, Ord)

 renderRoute HomeR = ([] -- empty path info, means "/"
 , [] -- empty query string
)

getHomeR :: HandlerT App IO TypedContent
getHomeR = respondSource "text/plain" $ do
 sendChunkBS "Starting streaming response.\n"
 sendChunkText "Performing some I/O.\n"
 sendFlush
 -- pretend we're performing some I/O
 liftIO $ threadDelay 1000000
 sendChunkBS "I/O performed, here are some results.\n"
 forM_ [1..50 :: Int] $ \i -> do
 sendChunk $ fromByteString "Got the value: " <>
 fromShow i <>

240 | Chapter 20: Yesod for Haskellers

 fromByteString "\n"

instance YesodDispatch App where
 yesodDispatch yesodRunnerEnv req sendResponse =
 let maybeRoute =
 case pathInfo req of
 [] -> Just HomeR
 _ -> Nothing
 handler =
 case maybeRoute of
 Nothing -> notFound
 Just HomeR -> getHomeR
 in yesodRunner handler yesodRunnerEnv maybeRoute req sendResponse

main :: IO ()
main = warp 3000 App

Dynamic Parameters
Now that we’ve finished our detour into the details of the HandlerT transformer, let’s
get back to higher-level Yesod request processing. So far, all of our examples have
dealt with a single supported request route. Let’s make this more interesting. We now
want to have an application that serves Fibonacci numbers. If you make a request
to /fib/5, it will return the fifth Fibonacci number. And if you visit /, it will automati‐
cally redirect you to /fib/1.

In the Yesod world, the first question to ask is: how do we model our route data type?
This is pretty straightforward: data Route App = HomeR | FibR Int. The next
question is, how do we want to define our RenderRoute instance? We need to convert
the Int to a Text. What function should we use?

Before you answer that, realize that we’ll also need to be able to parse a Text back into
an Int for dispatch purposes. So we need to make sure that we have a pair of func‐
tions with the property fromText . toText == Just. Show/Read could be a candi‐
date for this, except that:

• We’d be required to convert through String.
• The Show/Read instances for Text and String both involve extra escaping, which

we don’t want to incur.

Instead, the approach taken by Yesod is to use the path-pieces package, and in par‐
ticular the PathPiece typeclass, defined as:

class PathPiece s where
 fromPathPiece :: Text -> Maybe s
 toPathPiece :: s -> Text

Using this typeclass, we can write parse and render functions for our route data type:

Dynamic Parameters | 241

instance RenderRoute App where
 data Route App = HomeR | FibR Int
 deriving (Show, Read, Eq, Ord)

 renderRoute HomeR = ([], [])
 renderRoute (FibR i) = (["fib", toPathPiece i], [])

parseRoute' [] = Just HomeR
parseRoute' ["fib", i] = FibR <$> fromPathPiece i
parseRoute' _ = Nothing

And then we can write our YesodDispatch typeclass instance:

instance YesodDispatch App where
 yesodDispatch yesodRunnerEnv req sendResponse =
 let maybeRoute = parseRoute' (pathInfo req)
 handler =
 case maybeRoute of
 Nothing -> notFound
 Just HomeR -> getHomeR
 Just (FibR i) -> getFibR i
 in yesodRunner handler yesodRunnerEnv maybeRoute req sendResponse

getHomeR = redirect (FibR 1)

fibs :: [Int]
fibs = 0 : scanl (+) 1 fibs

getFibR i = return $ show $ fibs !! i

Notice our call to redirect in getHomeR. We’re able to use the route data type as the
parameter to redirect, and Yesod takes advantage of our renderRoute function to
create a textual link.

Routing with Template Haskell
Now let’s suppose we want to add a new route to our previous application. We’d have
to make the following changes:

1. Modify the route data type itself.
2. Add a clause to renderRoute.
3. Add a clause to parseRoute, and make sure it corresponds correctly to render

Route.
4. Add a clause to the case statement in yesodDispatch to call our handler func‐

tion.
5. Write our handler function.

242 | Chapter 20: Yesod for Haskellers

That’s a lot of changes! And lots of manual, boilerplate changes means lots of poten‐
tial for mistakes. Some of the mistakes can be caught by the compiler if you turn on
warnings (forgetting to add a clause in renderRoute or a match in yesodDispatch’s
case statement), but others cannot (ensuring that renderRoute and parseRoute have
the same logic, or adding the parseRoute clause).

This is where Template Haskell comes into the Yesod world. Instead of dealing with
all of these changes manually, Yesod declares a high-level routing syntax. This syntax
lets you specify your route syntax, dynamic parameters, constructor names, and
accepted request methods, and automatically generates parse, render, and dispatch
functions.

To get an idea of how much manual coding this saves, have a look at our previous
example converted to the Template Haskell version:

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ViewPatterns #-}
import Yesod.Core (RenderRoute (..), Yesod, mkYesod, parseRoutes,
 redirect, warp)

-- | Our foundation data type
data App = App

instance Yesod App

mkYesod "App" [parseRoutes|
/ HomeR GET
/fib/#Int FibR GET
|]

getHomeR :: Handler ()
getHomeR = redirect (FibR 1)

fibs :: [Int]
fibs = 0 : scanl (+) 1 fibs

getFibR :: Int -> Handler String
getFibR i = return $ show $ fibs !! i

main :: IO ()
main = warp 3000 App

What’s wonderful about this is that, as the developer, you can now focus on the
important part of your application and not get involved in the details of writing pars‐
ers and renderers. But there are of course some downsides to the usage of Template
Haskell:

Routing with Template Haskell | 243

• Compile times are a bit slower.
• The details of what’s going on behind the scenes aren’t easily apparent. (Though

you can use cabal haddock to see what identifiers have been generated for you.)
• You don’t have as much fine-grained control. For example, in the Yesod route

syntax, each dynamic parameter has to be a separate field in the route construc‐
tor, as opposed to bundling fields together. This is a conscious trade-off in Yesod
between flexibility and complexity.

This usage of Template Haskell is likely the most controversial decision in Yesod. I
personally think the benefits definitely justify its usage, but if you’d rather avoid Tem‐
plate Haskell, you’re free to do so. Every example so far in this chapter has done so,
and you can follow those techniques. We also have another, simpler approach in the
Yesod world: LiteApp.

LiteApp
LiteApp allows you to throw away type-safe URLs and Template Haskell. It uses a
simple routing DSL in pure Haskell. Once again, as a simple comparison, let’s rewrite
our Fibonacci example to use it:

import Data.Text (pack)
import Yesod.Core (LiteHandler, dispatchTo, dispatchTo, liteApp,
 onStatic, redirect, warp, withDynamic)

getHomeR :: LiteHandler ()
getHomeR = redirect "/fib/1"

fibs :: [Int]
fibs = 0 : scanl (+) 1 fibs

getFibR :: Int -> LiteHandler String
getFibR i = return $ show $ fibs !! i

main :: IO ()
main = warp 3000 $ liteApp $ do
 dispatchTo getHomeR
 onStatic (pack "fib") $ withDynamic $ \i -> dispatchTo (getFibR i)

There you go: a simple Yesod app without any language extensions at all! However,
even this application still demonstrates some type safety. Yesod will use fromPath
Piece to convert the parameter for getFibR from Text to an Int, so any invalid
parameter will be caught by Yesod itself. It’s just one less piece of checking that you
have to perform.

244 | Chapter 20: Yesod for Haskellers

Shakespeare
Generating plain text pages can be fun, but it’s hardly what one normally expects
from a web framework. As you’d hope, Yesod comes with built-in support for gener‐
ating HTML, CSS, and JavaScript as well.

Before we get into templating languages, let’s do it the raw, low-level way, and then
build up to something a bit more pleasant:

import Data.Text (pack)
import Yesod.Core

getHomeR :: LiteHandler TypedContent
getHomeR = return $ TypedContent typeHtml $ toContent
 "<html><head><title>Hi There!</title>\
 \<link rel='stylesheet' href='/style.css'>\
 \<script src='/script.js'></script></head>\
 \<body><h1>Hello, World!</h1></body></html>"

getStyleR :: LiteHandler TypedContent
getStyleR = return $ TypedContent typeCss $ toContent
 "h1 { color: red }"

getScriptR :: LiteHandler TypedContent
getScriptR = return $ TypedContent typeJavascript $ toContent
 "alert('Yay, Javascript works too!');"

main :: IO ()
main = warp 3000 $ liteApp $ do
 dispatchTo getHomeR
 onStatic (pack "style.css") $ dispatchTo getStyleR
 onStatic (pack "script.js") $ dispatchTo getScriptR

We’re just reusing all of the TypedContent stuff we’ve already learned. We now have
three separate routes, providing HTML, CSS, and JavaScript. We write our content as
Strings, convert them to Content using toContent, and then wrap them with a Type
dContent constructor to give them the appropriate content type headers.

But as usual, we can do better. Dealing with Strings is not very efficient, and it’s tedi‐
ous to have to manually put in the content type all the time. We already know the
solution to those problems: use the Html data type from blaze-html. Let’s convert our
getHomeR function to use it:

import Data.Text (pack)
import Text.Blaze.Html5 (toValue, (!))
import qualified Text.Blaze.Html5 as H
import qualified Text.Blaze.Html5.Attributes as A
import Yesod.Core

getHomeR :: LiteHandler Html
getHomeR = return $ H.docTypeHtml $ do

Shakespeare | 245

 H.head $ do
 H.title $ toHtml "Hi There!"
 H.link ! A.rel (toValue "stylesheet") ! A.href (toValue "/style.css")
 H.script ! A.src (toValue "/script.js") $ return ()
 H.body $ do
 H.h1 $ toHtml "Hello, World!"

getStyleR :: LiteHandler TypedContent
getStyleR = return $ TypedContent typeCss $ toContent
 "h1 { color: red }"

getScriptR :: LiteHandler TypedContent
getScriptR = return $ TypedContent typeJavascript $ toContent
 "alert('Yay, Javascript works too!');"

main :: IO ()
main = warp 3000 $ liteApp $ do
 dispatchTo getHomeR
 onStatic (pack "style.css") $ dispatchTo getStyleR
 onStatic (pack "script.js") $ dispatchTo getScriptR

Ahh, far nicer. blaze-html provides a convenient combinator library, and will exe‐
cute far faster in most cases than whatever String concatenation you might attempt.

If you’re happy with blaze-html combinators, by all means use them. However, many
people like to use a more specialized templating language. Yesod’s standard providers
for this are the Shakespearean languages: Hamlet, Lucius, and Julius. You are by all
means welcome to use a different system if so desired; the only requirement is that
you can produce a Content value from the template.

Because Shakespearean templates are compile-time–checked, their usage requires
either quasiquotation or Template Haskell. We’ll use the former approach here (see
Chapter 4 for more information):

{-# LANGUAGE QuasiQuotes #-}
import Data.Text (Text, pack)
import Text.Julius (Javascript)
import Text.Lucius (Css)
import Yesod.Core

getHomeR :: LiteHandler Html
getHomeR = withUrlRenderer $
 [hamlet|
 $doctype 5
 <html>
 <head>
 <title>Hi There!
 <link rel=stylesheet href=/style.css>
 <script src=/script.js>
 <body>
 <h1>Hello, World!

246 | Chapter 20: Yesod for Haskellers

 |]

getStyleR :: LiteHandler Css
getStyleR = withUrlRenderer [lucius|h1 { color: red }|]

getScriptR :: LiteHandler Javascript
getScriptR = withUrlRenderer [julius|alert('Yay, Javascript works too!');|]

main :: IO ()
main = warp 3000 $ liteApp $ do
 dispatchTo getHomeR
 onStatic (pack "style.css") $ dispatchTo getStyleR
 onStatic (pack "script.js") $ dispatchTo getScriptR

The URL Rendering Function
Likely the most confusing part of this is the withUrlRenderer calls. This gets into one
of the most powerful features of Yesod: type-safe URLs. If you notice in our HTML,
we’re providing links to the CSS and JavaScript URLs via strings. This leads to a
duplication of that information, as in our main function we have to provide those
strings a second time. This is very fragile: our codebase is one refactor away from
having broken links.

The recommended approach would be to use our type-safe URL data type in our
template instead of including explicit strings. As mentioned earlier, LiteApp doesn’t
provide any meaningful type-safe URLs, so we don’t have that option here. But if you
use the Template Haskell generators, you get type-safe URLs for free.

In any event, the Shakespearean templates all expect to receive a function to handle
the rendering of type-safe URLs. Because we don’t actually use any type-safe URLs,
just about any function would work here (the function will be ignored entirely), but
withUrlRenderer is a convenient option.

As we’ll see next, withUrlRenderer isn’t really needed most of the time, as widgets
end up providing the render function for us automatically.

Widgets
Dealing with HTML, CSS, and JavaScript as individual components can be nice in
many cases. However, when you want to build up reusable components for a page, it
can get in the way of composability. If you want more motivation for why widgets are
useful, see Chapter 5. For now, let’s just dig into using them:

{-# LANGUAGE QuasiQuotes #-}
import Yesod.Core

getHomeR :: LiteHandler Html
getHomeR = defaultLayout $ do

Widgets | 247

 setTitle $ toHtml "Hi There!"
 [whamlet|<h1>Hello, World!|]
 toWidget [lucius|h1 { color: red }|]
 toWidget [julius|alert('Yay, Javascript works too!');|]

main :: IO ()
main = warp 3000 $ liteApp $ dispatchTo getHomeR

This is the same example as earlier, but we’ve now condensed it into a single handler.
Yesod will automatically handle providing the CSS and JavaScript to the HTML. By
default, it will place them in <style> and <script> tags in the <head> and <body> of
the page, respectively, but Yesod provides many customization settings to do other
things (such as automatically creating temporary static files and linking to them).

Widgets also have another advantage. The defaultLayout function is a member of
the Yesod typeclass, and can be modified to provide a customized look and feel for
your website. Many built-in pieces of Yesod, such as error messages, take advantage
of the widget system, so by using widgets you get a consistent feel throughout your
site.

Details We Won’t Cover
Hopefully this chapter has pulled back enough of the “magic” in Yesod to let you
understand what’s going on under the surface. We could of course continue using this
approach for analyzing the rest of the Yesod ecosystem, but that would be mostly
redundant with the rest of this book. Hopefully you can now feel more informed as
you read chapters on using Persistent, forms, subsites, and sessions.

248 | Chapter 20: Yesod for Haskellers

PART III

Examples

CHAPTER 21

Initializing Data in the
Foundation Data Type

This chapter demonstrates a relatively simple concept: performing some initialization
of data to be kept in the foundation data type. There are various reasons to do this,
though the two most important are:

Efficiency
By initializing data once, at process startup, you can avoid having to recompute
the same value in each request.

Persistence
We want to store some information in a mutable location that will be persisted
between individual requests. This is frequently done via an external database, but
it can also be done via an in-memory mutable variable.

Mutable variables can be a convenient storage mechanism, but
remember that they have some downsides. If your process dies, you
lose your data. Also, if you scale horizontally to more than one pro‐
cess, you’ll need some way to synchronize the data between pro‐
cesses. We’ll punt on both of those issues here, but the problems are
real. This is one of the reasons Yesod puts such a strong emphasis
on using an external database for persistence.

To demonstrate, we’ll implement a very simple website. It will contain a single route
and will serve content stored in a Markdown file. In addition to serving that content,
we’ll also display an old-school visitor counter indicating how many visitors have
been to the site.

251

Step 1: Define Your Foundation
We’ve identified two pieces of information to be initialized: the Markdown content to
be display on the homepage, and a mutable variable holding the visitor count.
Remember that our goal is to perform as much of the work in the initialization phase
as possible and thereby avoid performing the same work in the handlers themselves.
Therefore, we want to preprocess the Markdown content into HTML. As for the visi‐
tor count, a simple IORef should be sufficient. So, our foundation data type is:

data App = App
 { homepageContent :: Html
 , visitorCount :: IORef Int
 }

Step 2: Use the Foundation
For this trivial example, we only have one route: the homepage. All we need to do is:

1. Increment the visitor count.
2. Get the new visitor count.
3. Display the Markdown content together with the visitor count.

One trick we’ll use to make the code a bit shorter is to utilize record wildcard syntax:
App {..}. This is convenient when we want to deal with a number of different fields
in a data type:

getHomeR :: Handler Html
getHomeR = do
 App {..} <- getYesod
 currentCount <- liftIO $ atomicModifyIORef visitorCount
 $ \i -> (i + 1, i + 1)
 defaultLayout $ do
 setTitle "Homepage"
 [whamlet|
 <article>#{homepageContent}
 <p>You are visitor number: #{currentCount}.
 |]

Step 3: Create the Foundation Value
When we initialize our application, we’ll now need to provide values for the two fields
we described previously. This is normal IO code and can perform any arbitrary
actions needed. In our case, we need to:

1. Read the Markdown from the file.
2. Convert that Markdown to HTML.

252 | Chapter 21: Initializing Data in the Foundation Data Type

3. Create the visitor counter variable.

The code ends up being just as simple as those steps imply:

go :: IO ()
go = do
 rawMarkdown <- TLIO.readFile "homepage.md"
 countRef <- newIORef 0
 warp 3000 App
 { homepageContent = markdown def rawMarkdown
 , visitorCount = countRef
 }

Summary
There’s no rocket science involved in this example—just very straightforward pro‐
gramming. The purpose of this chapter is to demonstrate the commonly used best
practice, for achieving these often-needed objectives. In your own applications, the
initialization steps will likely be much more complicated: setting up database connec‐
tion pools, starting background jobs to batch-process large data, or anything else.
After reading this chapter, you should now have a good idea of where to place your
application-specific initialization code.

Here is the full source code for the example:

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Data.IORef
import qualified Data.Text.Lazy.IO as TLIO
import Text.Markdown
import Yesod

data App = App
 { homepageContent :: Html
 , visitorCount :: IORef Int
 }

mkYesod "App" [parseRoutes|
/ HomeR GET
|]
instance Yesod App

getHomeR :: Handler Html
getHomeR = do
 App {..} <- getYesod
 currentCount <- liftIO $ atomicModifyIORef visitorCount
 $ \i -> (i + 1, i + 1)
 defaultLayout $ do

Summary | 253

 setTitle "Homepage"
 [whamlet|
 <article>#{homepageContent}
 <p>You are visitor number: #{currentCount}.
 |]

main :: IO ()
main = do
 rawMarkdown <- TLIO.readFile "homepage.md"
 countRef <- newIORef 0
 warp 3000 App
 { homepageContent = markdown def rawMarkdown
 , visitorCount = countRef
 }

254 | Chapter 21: Initializing Data in the Foundation Data Type

CHAPTER 22

Blog: i18n, Authentication,
Authorization, and Database

This chapter presents a simple blog app. It allows an admin to add blog posts via a
rich text editor (nicedit), allows logged-in users to comment, and has full i18n sup‐
port. It is also a good example of using a Persistent database, leveraging Yesod’s
authorization system, and using templates.

It is generally recommended to place templates, Persist entity definitions, and rout‐
ing in separate files, but we’ll keep it all in one file here for convenience. The one
exception you’ll see will be i18n messages.

We’ll start off with our language extensions. In scaffolded code, the language exten‐
sions are specified in the cabal file, so you won’t need to put this in your individual
Haskell files:

{-# LANGUAGE OverloadedStrings, TypeFamilies, QuasiQuotes,
 TemplateHaskell, GADTs, FlexibleContexts,
 MultiParamTypeClasses, DeriveDataTypeable,
 GeneralizedNewtypeDeriving, ViewPatterns #-}

Now our imports:

import Yesod
import Yesod.Auth
import Yesod.Form.Nic (YesodNic, nicHtmlField)
import Yesod.Auth.BrowserId (authBrowserId, def)
import Data.Text (Text)
import Network.HTTP.Client.TLS (tlsManagerSettings)
import Network.HTTP.Conduit (Manager, newManager)
import Database.Persist.Sqlite
 (ConnectionPool, SqlBackend, runSqlPool, runMigration
 , createSqlitePool, runSqlPersistMPool
)

255

import Data.Time (UTCTime, getCurrentTime)
import Control.Applicative ((<$>), (<*>), pure)
import Data.Typeable (Typeable)
import Control.Monad.Logger (runStdoutLoggingT)

First, we’ll set up our Persistent entities. We’re going to create our data types (via
mkPersist) and a migration function, which will automatically create and update our
SQL schema (if we were using the MongoDB backend, migration would not be
needed):

share [mkPersist sqlSettings, mkMigrate "migrateAll"] [persistLowerCase|

The following keeps track of users (in a more robust application, we would also keep
the account creation date, display name, etc.):

User
 email Text
 UniqueUser email

In order to work with yesod-auth’s caching, our User type must be an instance of
Typeable:

 deriving Typeable

An individual blog entry has this format (I’ve avoided using the word “post” due to
the confusion with the request method POST):

Entry
 title Text
 posted UTCTime
 content Html

And a comment on the blog post looks like this:

Comment
 entry EntryId
 posted UTCTime
 user UserId
 name Text
 text Textarea
|]

Every site has a foundation data type. This value is initialized before launching your
application, and is available throughout. We’ll store a database connection pool and
HTTP connection manager in ours. See the very end of the file for how those are ini‐
tialized:

data Blog = Blog
 { connPool :: ConnectionPool
 , httpManager :: Manager
 }

256 | Chapter 22: Blog: i18n, Authentication, Authorization, and Database

To make i18n easy and translator-friendly, we have a special file format for translated
messages. There is a single file for each language, and each file is named based on the
language code (e.g., en, es, de-DE) and placed in that folder. We also specify the main
language file (here, "en“) as a default language:

mkMessage "Blog" "blog-messages" "en"

Our blog-messages/en.msg file contains the following content:

-- @blog-messages/en.msg
NotAnAdmin: You must be an administrator to access this page.

WelcomeHomepage: Welcome to the homepage
SeeArchive: See the archive

NoEntries: There are no entries in the blog
LoginToPost: Admins can login to post
NewEntry: Post to blog
NewEntryTitle: Title
NewEntryContent: Content

PleaseCorrectEntry: Your submitted entry had some errors,
 please correct and try again.
EntryCreated title@Text: Your new blog post, #{title}, has been created

EntryTitle title@Text: Blog post: #{title}
CommentsHeading: Comments
NoComments: There are no comments
AddCommentHeading: Add a Comment
LoginToComment: You must be logged in to comment
AddCommentButton: Add comment

CommentName: Your display name
CommentText: Comment
CommentAdded: Your comment has been added
PleaseCorrectComment: Your submitted comment had some errors,
 please correct and try again.

HomepageTitle: Yesod Blog Demo
BlogArchiveTitle: Blog Archive

Now we’re going to set up our routing table. We have four entries: a homepage, an
entry list page (BlogR), an individual entry page (EntryR), and our authentication
subsite. Note that BlogR and EntryR both accept GET and POST methods. The POST
methods are for adding a new blog post and adding a new comment, respectively:

mkYesod "Blog" [parseRoutes|
/ HomeR GET
/blog BlogR GET POST
/blog/#EntryId EntryR GET POST
/auth AuthR Auth getAuth
|]

Blog: i18n, Authentication, Authorization, and Database | 257

Every foundation needs to be an instance of the Yesod typeclass. This is where we
configure various settings:

instance Yesod Blog where

This is the base of our application (note that in order to make BrowserID work prop‐
erly, a valid URL must be used):

 approot = ApprootStatic "http://localhost:3000"

For our authorization scheme, we want to have the following rules:

• Only admins can add a new entry.
• Only logged-in users can add a new comment.
• All other pages can be accessed by anyone.

We set up our routes in a RESTful way, where the actions that could make changes are
always using a POST method. As a result, we can simply check for whether a request is
a write request, given by the True in the second field.

First, we’ll authorize requests to add a new entry:

 isAuthorized BlogR True = do
 mauth <- maybeAuth
 case mauth of
 Nothing -> return AuthenticationRequired
 Just (Entity _ user)
 | isAdmin user -> return Authorized
 | otherwise -> unauthorizedI MsgNotAnAdmin

Now we’ll authorize requests to add a new comment:

 isAuthorized (EntryR _) True = do
 mauth <- maybeAuth
 case mauth of
 Nothing -> return AuthenticationRequired
 Just _ -> return Authorized

And for all other requests, the result is always authorized:

 isAuthorized _ _ = return Authorized

We’ll also specify where users should be redirected to if they get an Authentication
Required:

 authRoute _ = Just (AuthR LoginR)

Next is where we define our site’s look and feel. The function is given the content for
the individual page, and wraps it up with a standard template:

 defaultLayout inside = do

258 | Chapter 22: Blog: i18n, Authentication, Authorization, and Database

Yesod encourages the get-following-post pattern, where after a POST, the user is redi‐
rected to another page. In order to allow the POST page to give the user some kind of
feedback, we have the getMessage and setMessage functions. It’s a good idea to
always check for pending messages in your defaultLayout function:

 mmsg <- getMessage

We use widgets to compose HTML, CSS, and JavaScript resources. At the end of the
day, we need to unwrap all of that into simple HTML. That’s what the widgetToPage
Content function is for. We’re going to give it a widget consisting of the content we
received from the individual page (inside), plus a standard CSS stylesheet for all
pages. We’ll use the Lucius template language to create the latter:

 pc <- widgetToPageContent $ do
 toWidget [lucius|
body {
 width: 760px;
 margin: 1em auto;
 font-family: sans-serif;
}
textarea {
 width: 400px;
 height: 200px;
}
#message {
 color: #900;
}
|]
 inside

And finally, we’ll use a new Hamlet template to wrap up the individual components
(title, head data, and body data) into the final output:

 withUrlRenderer [hamlet|
$doctype 5
<html>
 <head>
 <title>#{pageTitle pc}
 ^{pageHead pc}
 <body>
 $maybe msg <- mmsg
 <div #message>#{msg}
 ^{pageBody pc}
|]

This is a simple function to check if a user is the admin. In a real application, we
would likely store the admin bit in the database itself, or check with some external
system. For now, I’ve just hardcoded my own email address:

isAdmin :: User -> Bool
isAdmin user = userEmail user == "michael@snoyman.com"

Blog: i18n, Authentication, Authorization, and Database | 259

In order to access the database we need to create a YesodPersist instance, which says
which backend we’re using and how to run an action:

instance YesodPersist Blog where
 type YesodPersistBackend Blog = SqlBackend
 runDB f = do
 master <- getYesod
 let pool = connPool master
 runSqlPool f pool

This is a convenience synonym. It is defined automatically for you in the scaffolding:

type Form x = Html -> MForm Handler (FormResult x, Widget)

In order to use yesod-form and yesod-auth, we need an instance of RenderMessage
for FormMessage. This allows us to control the i18n of individual form messages:

instance RenderMessage Blog FormMessage where
 renderMessage _ _ = defaultFormMessage

In order to use the built-in Nic HTML editor, we need this instance. We just take the
default values, which use a CDN-hosted version of Nic:

instance YesodNic Blog

In order to use yesod-auth, we need a YesodAuth instance:

instance YesodAuth Blog where
 type AuthId Blog = UserId
 loginDest _ = HomeR
 logoutDest _ = HomeR
 authHttpManager = httpManager

We’ll use BrowserID (a.k.a., Mozilla Persona), which is a third-party system using
email addresses as identifiers. This makes it easy to switch to other systems in the
future, such as locally authenticated email addresses (also included with yesod-auth):

 authPlugins _ = [authBrowserId def]

This function takes someone’s login credentials (i.e., email address) and gives back a
UserId:

 getAuthId creds = do
 let email = credsIdent creds
 user = User email
 res <- runDB $ insertBy user
 return $ Just $ either entityKey id res

We also need to provide a YesodAuthPersist instance to work with Persistent:

instance YesodAuthPersist Blog

260 | Chapter 22: Blog: i18n, Authentication, Authorization, and Database

https://browserid.org/

The one important detail in the homepage handler is our usage of setTitleI, which
allows us to use i18n messages for the title. We also use this message with a _{Msg…}
interpolation in Hamlet:

getHomeR :: Handler Html
getHomeR = defaultLayout $ do
 setTitleI MsgHomepageTitle
 [whamlet|
<p>_{MsgWelcomeHomepage}
<p>
 _{MsgSeeArchive}
|]

Next, we define a form for adding new entries. We want the user to provide the title
and content, and then we fill in the post date automatically via getCurrentTime.

Note that slightly strange lift (liftIO getCurrentTime) manner of running an IO
action. The reason is that applicative forms are not monads, and therefore cannot be
instances of MonadIO. Instead, we use lift to run the action in the underlying
Handler monad, and liftIO to convert the IO action into a Handler action:

entryForm :: Form Entry
entryForm = renderDivs $ Entry
 <$> areq textField (fieldSettingsLabel MsgNewEntryTitle) Nothing
 <*> lift (liftIO getCurrentTime)
 <*> areq nicHtmlField (fieldSettingsLabel MsgNewEntryContent) Nothing

Here we get the list of all blog entries, and present an admin with a form to create a
new entry:

getBlogR :: Handler Html
getBlogR = do
 muser <- maybeAuth
 entries <- runDB $ selectList [] [Desc EntryPosted]
 (entryWidget, enctype) <- generateFormPost entryForm
 defaultLayout $ do
 setTitleI MsgBlogArchiveTitle
 [whamlet|
$if null entries
 <p>_{MsgNoEntries}
$else

 $forall Entity entryId entry <- entries

 #{entryTitle entry}

We have three possibilities: the user is logged in as an admin, the user is logged in and
is not an admin, and the user is not logged in. In the first case, we should display the
entry form. In the second, we’ll do nothing. In the third, we’ll provide a login link:

$maybe Entity _ user <- muser
 $if isAdmin user

Blog: i18n, Authentication, Authorization, and Database | 261

 <form method=post enctype=#{enctype}>
 ^{entryWidget}
 <div>
 <input type=submit value=_{MsgNewEntry}>
$nothing
 <p>
 _{MsgLoginToPost}
|]

Next, we need to process an incoming entry addition. We don’t do any permissions
checking, because isAuthorized handles it for us. If the form submission was valid,
we add the entry to the database and redirect to the new entry. Otherwise, we ask the
user to try again:

postBlogR :: Handler Html
postBlogR = do
 ((res, entryWidget), enctype) <- runFormPost entryForm
 case res of
 FormSuccess entry -> do
 entryId <- runDB $ insert entry
 setMessageI $ MsgEntryCreated $ entryTitle entry
 redirect $ EntryR entryId
 _ -> defaultLayout $ do
 setTitleI MsgPleaseCorrectEntry
 [whamlet|
<form method=post enctype=#{enctype}>
 ^{entryWidget}
 <div>
 <input type=submit value=_{MsgNewEntry}>
|]

Next up is a form for comments, very similar to our entryForm. It takes the EntryId
of the entry the comment is attached to. By using pure, we embed this value in the
resulting Comment output, without having it appear in the generated HTML:

commentForm :: EntryId -> Form Comment
commentForm entryId = renderDivs $ Comment
 <$> pure entryId
 <*> lift (liftIO getCurrentTime)
 <*> lift requireAuthId
 <*> areq textField (fieldSettingsLabel MsgCommentName) Nothing
 <*> areq textareaField (fieldSettingsLabel MsgCommentText) Nothing

We show an individual entry, comments, and an add comment form if the user is
logged in:

getEntryR :: EntryId -> Handler Html
getEntryR entryId = do
 (entry, comments) <- runDB $ do
 entry <- get404 entryId
 comments <- selectList [CommentEntry ==. entryId] [Asc CommentPosted]
 return (entry, map entityVal comments)

262 | Chapter 22: Blog: i18n, Authentication, Authorization, and Database

 muser <- maybeAuth
 (commentWidget, enctype) <-
 generateFormPost (commentForm entryId)
 defaultLayout $ do
 setTitleI $ MsgEntryTitle $ entryTitle entry
 [whamlet|
<h1>#{entryTitle entry}
<article>#{entryContent entry}
 <section .comments>
 <h1>_{MsgCommentsHeading}
 $if null comments
 <p>_{MsgNoComments}
 $else
 $forall Comment _entry posted _user name text <- comments
 <div .comment>
 #{name}
 #{show posted}
 <div .content>#{text}
 <section>
 <h1>_{MsgAddCommentHeading}
 $maybe _ <- muser
 <form method=post enctype=#{enctype}>
 ^{commentWidget}
 <div>
 <input type=submit value=_{MsgAddCommentButton}>
 $nothing
 <p>
 _{MsgLoginToComment}
|]

Here’s how we receive an incoming comment submission:

postEntryR :: EntryId -> Handler Html
postEntryR entryId = do
 ((res, commentWidget), enctype) <-
 runFormPost (commentForm entryId)
 case res of
 FormSuccess comment -> do
 _ <- runDB $ insert comment
 setMessageI MsgCommentAdded
 redirect $ EntryR entryId
 _ -> defaultLayout $ do
 setTitleI MsgPleaseCorrectComment
 [whamlet|
<form method=post enctype=#{enctype}>
 ^{commentWidget}
 <div>
 <input type=submit value=_{MsgAddCommentButton}>
|]

Finally, our main function:

main :: IO ()
main = do

Blog: i18n, Authentication, Authorization, and Database | 263

 pool <- runStdoutLoggingT $ createSqlitePool "blog.db3" 10
 -- create a new pool
 -- perform any necessary migration
 runSqlPersistMPool (runMigration migrateAll) pool
 manager <- newManager tlsManagerSettings -- create a new HTTP manager
 warp 3000 $ Blog pool manager -- start our server

264 | Chapter 22: Blog: i18n, Authentication, Authorization, and Database

CHAPTER 23

Wiki: Markdown, Chat Subsite,
Event Source

This chapter ties together a few different ideas. We’ll start with a chat subsite, which
allows us to embed a chat widget on any page. We’ll use the HTML5 event source API
to handle sending events from the server to the client. You can view the entire project
on FP Haskell Center.

Subsite: Data
In order to define a subsite, we first need to create a foundation type for the subsite,
the same as we would do for a normal Yesod application. In our case, we want to keep
a channel of all the events to be sent to the individual participants of a chat. This ends
up looking like:

-- @Chat/Data.hs
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
module Chat.Data where

import Blaze.ByteString.Builder.Char.Utf8 (fromText)
import Control.Concurrent.Chan
import Data.Monoid ((<>))
import Data.Text (Text)
import Network.Wai.EventSource
import Network.Wai.EventSource.EventStream
import Yesod

265

http://www.bit.ly/fp-h-center

-- | Our subsite foundation. We keep a channel of events that all connections
-- will share.
data Chat = Chat (Chan ServerEvent)

We also need to define our subsite routes in the same module. We need to have two
commands—one to send a new message to all users, and another to receive the
stream of messages:

-- @Chat/Data.hs
mkYesodSubData "Chat" [parseRoutes|
/send SendR POST
/recv ReceiveR GET
|]

Subsite: Handlers
Now that we’ve defined our foundation and routes, we need to create a separate mod‐
ule for providing the subsite dispatch functionality. We’ll call this module Chat, and
it’s where we’ll start to see how a subsite functions.

A subsite always sits as a layer on top of some master site, which will be provided by
the user. In many cases, a subsite will require specific functionality to be present in
the master site. In the case of our chat subsite, we want user authentication to be pro‐
vided by the master site. The subsite needs to be able to query whether the current
user is logged into the site, and to get the user’s name.

The way we represent this concept is by defining a typeclass that encapsulates the
necessary functionality. Let’s have a look at our YesodChat typeclass:

-- @Chat/Data.hs
class (Yesod master, RenderMessage master FormMessage)
 => YesodChat master where
 getUserName :: HandlerT master IO Text
 isLoggedIn :: HandlerT master IO Bool

Any master site that wants to use the chat subsite will need to provide a YesodChat
instance. (We’ll see in a bit how this requirement is enforced.)

There are a few interesting things to note:

• We can put further constraints on the master site, such as providing a Yesod
instance and allowing rendering of form messages. The former allows us to use
defaultLayout, while the latter allows us to use standard form widgets.

• Previously in the book, we’ve used the Handler monad quite a bit. Remember
that Handler is just an application-specific type synonym for HandlerT. This code

266 | Chapter 23: Wiki: Markdown, Chat Subsite, Event Source

is intended to work with many different applications, so we use the full HandlerT
form of the transformer.

Speaking of the Handler type synonym, we’re going to want to have something simi‐
lar for our subsite. The question is: what does this monad look like? In a subsite situa‐
tion, we end up with two layers of HandlerT transformers: one for the subsite, and
one for the master site. We want to have a synonym that works for any master site
that is an instance of YesodChat, so we end up with:

-- @Chat/Data.hs
type ChatHandler a =
 forall master. YesodChat master =>
 HandlerT Chat (HandlerT master IO) a

Now that we have our machinery out of the way, it’s time to write our subsite handler
functions. We had two routes: one for sending messages, and one for receiving mes‐
sages. Let’s start with sending. We need to:

1. Get the username for the person sending the message.
2. Parse the message from the incoming parameters. (Note that we’re going to use

GET parameters for simplicity of the client-side Ajax code.)
3. Write the message to the Chan.

The trickiest bit of all this code is knowing when to use lift. Let’s look at the imple‐
mentation, and then discuss those lift usages:

-- @Chat/Data.hs
postSendR :: ChatHandler ()
postSendR = do
 from <- lift getUserName
 body <- lift $ runInputGet $ ireq textField "message"
 Chat chan <- getYesod
 liftIO $ writeChan chan $ ServerEvent Nothing Nothing $ return $
 fromText from <> fromText ": " <> fromText body

getUserName is the function we defined in our YesodChat typeclass earlier. If we look
at that type signature, we see that it lives in the master site’s Handler monad. There‐
fore, we need to lift that call out of the subsite.

The call to runInputGet is a little more subtle. Theoretically, we could run this in
either the subsite or the master site. However, we use lift here as well, for one spe‐
cific reason: message translations. By using the master site, we can take advantage of
whatever RenderMessage instance the master site defines. This also explains why we
have a RenderMessage constraint on the YesodChat typeclass.

The next call to getYesod is not lifted. The reasoning here is simple: we want to get
the subsite’s foundation type in order to access the message channel. If we instead

Subsite: Handlers | 267

lifted that call, we’d get the master site’s foundation type instead, which is not what
we want in this case.

The final line puts the new message into the channel. Because this is an IO action, we
use liftIO. ServerEvent is part of the wai-eventsource package and is the means by
which we’re providing server-sent events in this example.

The receiving side is similarly simple:

-- @Chat/Data.hs
getReceiveR :: ChatHandler ()
getReceiveR = do
 Chat chan0 <- getYesod
 chan <- liftIO $ dupChan chan0
 sendWaiApplication $ eventSourceAppChan chan

We use dupChan so that each new connection receives its own copy of newly gener‐
ated messages. This is a standard method in concurrent Haskell of creating broadcast
channels. The last line in our function exposes the underlying wai-eventsource
application as a Yesod handler, using the sendWaiApplication function to promote a
WAI application to a Yesod handler.

Now that we’ve defined our handler functions, we can set up our dispatch. In a nor‐
mal application, dispatching is handled by calling mkYesod, which creates the appro‐
priate YesodDispatch instance. In subsites, things are a little bit more complicated,
because you’ll often want to place constraints on the master site. The formula we use
is the following:

-- @Chat.hs
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
module Chat where

import Chat.Data
import Yesod

instance YesodChat master => YesodSubDispatch Chat (HandlerT master IO) where
 yesodSubDispatch = $(mkYesodSubDispatch resourcesChat)

We’re stating that our chat subsite can live on top of any master site that is an instance
of YesodChat. We then use the mkYesodSubDispatch Template Haskell function to
generate all of our dispatching logic. This is a bit more difficult to write than mkYesod,
but it provides the necessary flexibility and is mostly identical for any subsite you’ll
write.

268 | Chapter 23: Wiki: Markdown, Chat Subsite, Event Source

Subsite: Widget
We now have a fully working subsite. The final component we want as part of our
chat library is a widget to be embedded inside a page that will provide chat function‐
ality. By creating this as a widget, we can include all of our HTML, CSS, and Java‐
script as a reusable component.

Our widget will need to take in one argument: a function to convert a chat subsite
URL into a master site URL. The reasoning here is that an application developer
could place the chat subsite anywhere in the URL structure, and this widget needs to
be able to generate Javascript that will point at the correct URLs. Let’s start off our
widget:

-- @Chat.hs
chatWidget :: YesodChat master
 => (Route Chat -> Route master)
 -> WidgetT master IO ()
chatWidget toMaster = do

Next, we’re going to generate some identifiers to be used by our widget. It’s always
good practice to let Yesod generate unique identifiers for you instead of creating them
manually, to avoid name collisions:

-- @Chat.hs
 chat <- newIdent -- the containing div
 output <- newIdent -- the box containing the messages
 input <- newIdent -- input field from the user

And next, we need to check if the user is logged in, using the isLoggedIn function in
our YesodChat typeclass. We’re in a Widget and that function lives in the Handler
monad, so we need to use handlerToWidget:

-- @Chat.hs
 ili <- handlerToWidget isLoggedIn -- check if we're already logged in

If the user is logged in, we want to display the chat box, style it with some CSS, and
then make it interactive using some Javascript. This is mostly client-side code wrap‐
ped in a Widget:

-- @Chat.hs
 if ili
 then do
 -- Logged in: show the widget
 [whamlet|
 <div ##{chat}>
 <h2>Chat
 <div ##{output}>
 <input ##{input} type=text placeholder="Enter Message">
 |]
 -- Just some CSS
 toWidget [lucius|

Subsite: Widget | 269

 ##{chat} {
 position: absolute;
 top: 2em;
 right: 2em;
 }
 ##{output} {
 width: 200px;
 height: 300px;
 border: 1px solid #999;
 overflow: auto;
 }
 |]
 -- And now that Javascript
 toWidgetBody [julius|
 // Set up the receiving end
 var output = document.getElementById(#{toJSON output});
 var src = new EventSource("@{toMaster ReceiveR}");
 src.onmessage = function(msg) {
 // This function will be called for each new message.
 var p = document.createElement("p");
 p.appendChild(document.createTextNode(msg.data));
 output.appendChild(p);

 // And now scroll down within the output div
 so the most recent message
 // is displayed.
 output.scrollTop = output.scrollHeight;
 };

 // Set up the sending end: send a message via Ajax
 whenever the user hits Enter.
 var input = document.getElementById(#{toJSON input});
 input.onkeyup = function(event) {
 var keycode = (event.keyCode ? event.keyCode : event.which);
 if (keycode == '13') {
 var xhr = new XMLHttpRequest();
 var val = input.value;
 input.value = "";
 var params = "?message=" + encodeURI(val);
 xhr.open("POST", "@{toMaster SendR}" + params);
 xhr.send(null);
 }
 }
 |]

And finally, if the user isn’t logged in, we’ll ask her to log in to use the chat app:

-- @Chat.hs
 else do
 -- User isn't logged in, give a not-logged-in message.
 master <- getYesod
 [whamlet|
 <p>

270 | Chapter 23: Wiki: Markdown, Chat Subsite, Event Source

 You must be #
 $maybe ar <- authRoute master
 logged in
 $nothing
 logged in
 \ to chat.
 |]

Master Site: Data
Now we can proceed with writing our main application. This application will include
the chat subsite and a wiki. The first thing we need to consider is how to store the
wiki contents. Normally, we’d want to put this in some kind of a Persistent database.
For simplicity, we’ll just use an in-memory representation. Each wiki page is indicated
by a list of names, and the content of each page is going to be a piece of Text. So, our
full foundation data type is:

-- @ChatMain.hs
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ViewPatterns #-}
module ChatMain where

import Chat
import Chat.Data
import Control.Concurrent.Chan (newChan)
import Data.IORef
import Data.Map (Map)
import qualified Data.Map as Map
import Data.Text (Text)
import qualified Data.Text.Lazy as TL
import Text.Markdown
import Yesod
import Yesod.Auth
import Yesod.Auth.Dummy

data App = App
 { getChat :: Chat
 , wikiContent :: IORef (Map [Text] Text)
 }

Next, we want to set up our routes:

-- @ChatMain.hs
mkYesod "App" [parseRoutes|
/ HomeR GET -- the homepage
/wiki/*Texts WikiR GET POST -- note the multipiece for the wiki hierarchy

Master Site: Data | 271

/chat ChatR Chat getChat -- the chat subsite
/auth AuthR Auth getAuth -- the auth subsite
|]

Master Site: Instances
We need to make two modifications to the default Yesod instance. First, we want to
provide an implementation of authRoute, so that our chat subsite widget can provide
a proper link to a login page. Second, we’ll provide an override to the defaultLayout.
Besides providing login/logout links, this function will add in the chat widget on
every page:

-- @ChatMain.hs
instance Yesod App where
 authRoute _ = Just $ AuthR LoginR -- get a working login link

 -- Our custom defaultLayout will add the chat widget to every page.
 -- We'll also add login and logout links to the top.
 defaultLayout widget = do
 pc <- widgetToPageContent $ do
 widget
 chatWidget ChatR
 mmsg <- getMessage
 withUrlRenderer
 [hamlet|
 $doctype 5
 <html>
 <head>
 <title>#{pageTitle pc}
 ^{pageHead pc}
 <body>
 $maybe msg <- mmsg
 <div .message>#{msg}
 <nav>
 Login
 \ | #
 Logout
 ^{pageBody pc}
 |]

Because we’re using the chat subsite, we have to provide an instance of YesodChat:

-- @ChatMain.hs
instance YesodChat App where
 getUserName = do
 muid <- maybeAuthId
 case muid of
 Nothing -> do
 setMessage "Not logged in"
 redirect $ AuthR LoginR
 Just uid -> return uid

272 | Chapter 23: Wiki: Markdown, Chat Subsite, Event Source

 isLoggedIn = do
 ma <- maybeAuthId
 return $ maybe False (const True) ma

Our YesodAuth and RenderMessage instances, as well as the homepage handler, are
rather bland:

-- @ChatMain.hs
-- Fairly standard YesodAuth instance. We'll use the dummy plug-in so that you
-- can create any name you want, and store the login name as the AuthId.
instance YesodAuth App where
 type AuthId App = Text
 authPlugins _ = [authDummy]
 loginDest _ = HomeR
 logoutDest _ = HomeR
 getAuthId = return . Just . credsIdent
 authHttpManager = error "authHttpManager" -- not used by authDummy
 maybeAuthId = lookupSession "_ID"

instance RenderMessage App FormMessage where
 renderMessage _ _ = defaultFormMessage

-- Nothing special here, just giving a link to the root of the wiki.
getHomeR :: Handler Html
getHomeR = defaultLayout
 [whamlet|
 <p>Welcome to the Wiki!
 <p>
 Wiki root
 |]
 where
 wikiRoot = WikiR []

Master Site: Wiki Handlers
Now it’s time to write our wiki handlers: a GET for displaying a page, and a POST for
updating a page. We’ll also define a wikiForm function to be used on both handlers:

-- @ChatMain.hs
-- A form for getting wiki content
wikiForm :: Maybe Textarea -> Html -> MForm Handler (FormResult Textarea, Widget)
wikiForm mtext = renderDivs $ areq textareaField "Page body" mtext

-- Show a wiki page and an edit form
getWikiR :: [Text] -> Handler Html
getWikiR page = do
 -- Get the reference to the contents map
 icontent <- fmap wikiContent getYesod

 -- And read the map from inside the reference
 content <- liftIO $ readIORef icontent

Master Site: Wiki Handlers | 273

 -- Look up the contents of the current page, if available
 let mtext = Map.lookup page content

 -- Generate a form with the current contents as the default value.
 -- Note that we use the Textarea wrapper to get a <textarea>.
 (form, _) <- generateFormPost $ wikiForm $ fmap Textarea mtext
 defaultLayout $ do
 case mtext of
 -- We're treating the input as markdown. The markdown package
 -- automatically handles XSS protection for us.
 Just text -> toWidget $ markdown def $ TL.fromStrict text
 Nothing -> [whamlet|<p>Page does not yet exist|]
 [whamlet|
 <h2>Edit page
 <form method=post>
 ^{form}
 <div>
 <input type=submit>
 |]

-- Get a submitted wiki page and update the contents.
postWikiR :: [Text] -> Handler Html
postWikiR page = do
 icontent <- fmap wikiContent getYesod
 content <- liftIO $ readIORef icontent
 let mtext = Map.lookup page content
 ((res, form), _) <- runFormPost $ wikiForm $ fmap Textarea mtext
 case res of
 FormSuccess (Textarea t) -> do
 liftIO $ atomicModifyIORef icontent $
 \m -> (Map.insert page t m, ())
 setMessage "Page updated"
 redirect $ WikiR page
 _ -> defaultLayout
 [whamlet|
 <form method=post>
 ^{form}
 <div>
 <input type=submit>
 |]

Master Site: Running
Finally, we’re ready to run our application. Unlike many of the previous examples in
this book, we need to perform some real initialization in the main function. The chat
subsite requires an empty Chan to be created, and we need to create a mutable vari‐
able to hold the wiki contents. Once we have those values, we can create an App value
and pass it to the warp function:

-- @ChatMain.hs
main :: IO ()

274 | Chapter 23: Wiki: Markdown, Chat Subsite, Event Source

main = do
 -- Create our server event channel
 chan <- newChan

 -- Initially have a blank database of wiki pages
 icontent <- newIORef Map.empty

 -- Run our app
 warpEnv App
 { getChat = Chat chan
 , wikiContent = icontent
 }

Summary
This chapter demonstrated the creation of a nontrivial subsite. Some important
points to notice include the usage of typeclasses to express constraints on the master
site, how data initialization was performed in the main function, and how lifting
allowed us to operate in either the subsite or master site context.

If you’re looking for a way to test out your subsite skills, I’d recommend modifying
this example so that the wiki code also lives in its own subsite.

Summary | 275

CHAPTER 24

JSON Web Service

Let’s create a very simple web service: it takes a JSON request and returns a JSON
response. We’re going to write the server in WAI/Warp and the client in http-
conduit. We’ll be using aeson for JSON parsing and rendering. We could also write
the server in Yesod itself, but for such a simple example, the extra features of Yesod
don’t add much.

Server
WAI uses the conduit package to handle streaming request bodies and efficiently
generates responses using blaze-builder. aeson uses attoparsec for parsing; by
using attoparsec-conduit we get easy interoperability with WAI. This plays out as:

{-# LANGUAGE OverloadedStrings #-}
import Control.Exception (SomeException)
import Control.Exception.Lifted (handle)
import Control.Monad.IO.Class (liftIO)
import Data.Aeson (Value, encode, object, (.=))
import Data.Aeson.Parser (json)
import Data.ByteString (ByteString)
import Data.Conduit (($$))
import Data.Conduit.Attoparsec (sinkParser)
import Network.HTTP.Types (status200, status400)
import Network.Wai (Application, Response, responseLBS)
import Network.Wai.Conduit (sourceRequestBody)
import Network.Wai.Handler.Warp (run)

main :: IO ()
main = run 3000 app

app :: Application
app req sendResponse = handle (sendResponse . invalidJson) $ do

277

 value <- sourceRequestBody req $$ sinkParser json
 newValue <- liftIO $ modValue value
 sendResponse $ responseLBS
 status200
 [("Content-Type", "application/json")]
 $ encode newValue

invalidJson :: SomeException -> Response
invalidJson ex = responseLBS
 status400
 [("Content-Type", "application/json")]
 $ encode $ object
 [("message" .= show ex)
]

-- Application-specific logic would go here.
modValue :: Value -> IO Value
modValue = return

Client
http-conduit was written as a companion to WAI. It too uses conduit and blaze-
builder pervasively, meaning we once again get easy interop with aeson. A few extra
comments for those not familiar with http-conduit:

• A Manager is present to keep track of open connections, so that multiple requests
to the same server use the same connection. You usually want to use the withMan
ager function to create and clean up this Manager, as it is exception-safe.

• We need to know the size of our request body, which can’t be determined directly
from a Builder. Instead, we convert the Builder into a lazy ByteString and take
the size from there.

• There are a number of different functions for initiating a request. We use http,
which allows us to directly access the data stream. There are other higher-level
functions (such as httpLbs) that let you ignore the issue of sources and get the
entire body directly.

{-# LANGUAGE OverloadedStrings #-}
import Control.Monad.IO.Class (liftIO)
import Data.Aeson (Value (Object, String))
import Data.Aeson (encode, object, (.=))
import Data.Aeson.Parser (json)
import Data.Conduit (($$+-))
import Data.Conduit.Attoparsec (sinkParser)
import Network.HTTP.Conduit (RequestBody (RequestBodyLBS),
 Response (..), http, method, parseUrl,
 requestBody, withManager)

278 | Chapter 24: JSON Web Service

main :: IO ()
main = withManager $ \manager -> do
 value <- liftIO makeValue
 -- We need to know the size of the request body, so we convert to a
 -- ByteString
 let valueBS = encode value
 req' <- liftIO $ parseUrl "http://localhost:3000/"
 let req = req' { method = "POST", requestBody = RequestBodyLBS valueBS }
 res <- http req manager
 resValue <- responseBody res $$+- sinkParser json
 liftIO $ handleResponse resValue

-- Application-specific function to make the request value
makeValue :: IO Value
makeValue = return $ object
 [("foo" .= ("bar" :: String))
]

-- Application-specific function to handle the response from the server
handleResponse :: Value -> IO ()
handleResponse = print

Client | 279

CHAPTER 25

Case Study: Sphinx-Based Search

Sphinx is a search server, and it powers the search feature on many sites. The actual
code necessary to integrate Yesod with Sphinx is relatively short, but it touches on a
number of complicated topics and is therefore a great case study on how to play with
some of the under-the-surface details of Yesod.

There are essentially three different pieces at play here:

Storing the content we wish to search
This is fairly straightforward Persistent code, and we won’t dwell on it much in
this chapter.

Accessing Sphinx search results from inside Yesod
Thanks to the Sphinx package, this is actually very easy.

Providing the document content to Sphinx
This is where the interesting stuff happens. We’ll show how to deal with stream‐
ing content from a database to XML, which then gets sent directly over the wire
to the client.

The full code for this example can be found on FP Haskell Center.

Sphinx Setup
Unlike in many of our other examples, to start with here we’ll need to actually config‐
ure and run our external Sphinx server. I’m not going to go into all the details of
Sphinx, partly because it’s not relevant to our point here, but mostly because I’m not
an expert on Sphinx.

Sphinx provides three main command-line utilities: searchd is the actual search dae‐
mon that receives requests from the client (in this case, our web app) and returns the

281

http://sphinxsearch.com/
http://www.bit.ly/fp-h-center

search results; indexer parses the set of documents and creates the search index; and
search is a debugging utility that will run simple queries against Sphinx.

There are two important settings: the source and the index. The source tells Sphinx
where to read document information from. It has direct support for MySQL and
PostgreSQL, as well as a more general XML format known as xmlpipe2. We’re going
to use the last one. This not only will give us more flexibility with choosing Persistent
backends, but will also demonstrate some more powerful Yesod concepts.

The second setting is the index. Sphinx can handle multiple indices simultaneously,
which allows it to provide search functionality for multiple services at once. Each
index will have a source it pulls from.

In our case, we’re going to provide a URL from our application (/search/xmlpipe) that
provides the XML file required by Sphinx, and then pipe that through to the indexer.
So, we’ll add the following to our Sphinx config file:

source searcher_src
{
 type = xmlpipe2
 xmlpipe_command = curl http://localhost:3000/search/xmlpipe
}

index searcher
{
 source = searcher_src
 path = /var/data/searcher
 docinfo = extern
 charset_type = utf-8
}

searchd
{
 listen = 9312
 pid_file = /var/run/sphinxsearch/searchd.pid
}

In order to build your search index, you would run indexer searcher. Obviously,
this won’t work until you have your web app running. For a production site, it would
make sense to run this command via a cron job so the index is regularly updated.

Basic Yesod Setup
Let’s get our basic Yesod setup going. We’re going to have a single table in the data‐
base for holding documents, which each consist of a title and content. We’ll store this
in a SQLite database and provide routes for searching, adding documents, viewing
documents, and providing the xmlpipe file to Sphinx:

282 | Chapter 25: Case Study: Sphinx-Based Search

share [mkPersist sqlSettings, mkMigrate "migrateAll"] [persistLowerCase|
Doc
 title Text
 content Textarea
|]

data Searcher = Searcher
 { connPool :: ConnectionPool
 }

mkYesod "Searcher" [parseRoutes|
/ HomeR GET
/doc/#DocId DocR GET
/add-doc AddDocR POST
/search SearchR GET
/search/xmlpipe XmlpipeR GET
|]

instance Yesod Searcher

instance YesodPersist Searcher where
 type YesodPersistBackend Searcher = SqlBackend

 runDB action = do
 Searcher pool <- getYesod
 runSqlPool action pool

instance YesodPersistRunner Searcher where -- see below
 getDBRunner = defaultGetDBRunner connPool

instance RenderMessage Searcher FormMessage where
 renderMessage _ _ = defaultFormMessage

Hopefully all of this looks pretty familiar by now. The one new thing we’ve defined
here is an instance of YesodPersistRunner. This is a typeclass necessary for creating
streaming database responses. The default implementation (defaultGetDBRunner) is
almost always appropriate.

Next, we’ll define some forms—one for creating documents, and one for searching:

addDocForm :: Html -> MForm Handler (FormResult Doc, Widget)
addDocForm = renderTable $ Doc
 <$> areq textField "Title" Nothing
 <*> areq textareaField "Contents" Nothing

searchForm :: Html -> MForm Handler (FormResult Text, Widget)
searchForm = renderDivs $ areq (searchField True) "Query" Nothing

The True parameter to searchField makes the field autofocus on page load. Finally,
we have some standard handlers for the homepage (shows the add document form
and the search form), the document display, and adding a document:

Basic Yesod Setup | 283

getHomeR :: Handler Html
getHomeR = do
 docCount <- runDB $ count ([] :: [Filter Doc])
 ((_, docWidget), _) <- runFormPost addDocForm
 ((_, searchWidget), _) <- runFormGet searchForm
 let docs = if docCount == 1
 then "There is currently 1 document."
 else "There are currently " ++ show docCount ++ " documents."
 defaultLayout
 [whamlet|
 <p>Welcome to the search application. #{docs}
 <form method=post action=@{AddDocR}>
 <table>
 ^{docWidget}
 <tr>
 <td colspan=3>
 <input type=submit value="Add document">
 <form method=get action=@{SearchR}>
 ^{searchWidget}
 <input type=submit value=Search>
 |]

postAddDocR :: Handler Html
postAddDocR = do
 ((res, docWidget), _) <- runFormPost addDocForm
 case res of
 FormSuccess doc -> do
 docid <- runDB $ insert doc
 setMessage "Document added"
 redirect $ DocR docid
 _ -> defaultLayout
 [whamlet|
 <form method=post action=@{AddDocR}>
 <table>
 ^{docWidget}
 <tr>
 <td colspan=3>
 <input type=submit value="Add document">
 |]

getDocR :: DocId -> Handler Html
getDocR docid = do
 doc <- runDB $ get404 docid
 defaultLayout
 [whamlet|
 <h1>#{docTitle doc}
 <div .content>#{docContent doc}
 |]

284 | Chapter 25: Case Study: Sphinx-Based Search

Searching
Now that we’ve got the boring stuff out of the way, let’s jump into the actual search‐
ing. We’re going to need three pieces of information for displaying a result: the ID of
the document it comes from, the title of that document, and the excerpts. Excerpts
are the highlighted portions of the document that contain the search term (see
Figure 25-1).

Figure 25-1. Search result

So, let’s start off by defining a Result data type:

data Result = Result
 { resultId :: DocId
 , resultTitle :: Text
 , resultExcerpt :: Html
 }

Next, we’ll look at the search handler:

getSearchR :: Handler Html
getSearchR = do
 ((formRes, searchWidget), _) <- runFormGet searchForm
 searchResults <-
 case formRes of
 FormSuccess qstring -> getResults qstring
 _ -> return []
 defaultLayout $ do
 toWidget
 [lucius|
 .excerpt {
 color: green; font-style: italic
 }
 .match {
 background-color: yellow;

Searching | 285

 }
 |]
 [whamlet|
 <form method=get action=@{SearchR}>
 ^{searchWidget}
 <input type=submit value=Search>
 $if not $ null searchResults
 <h1>Results
 $forall result <- searchResults
 <div .result>
 #{resultTitle result}
 <div .excerpt>#{resultExcerpt result}
 |]

Nothing magical here; we’re just relying on the searchForm defined earlier and the
getResults function, which hasn’t been defined yet. This function just takes a search
string and returns a list of results. This is where we first interact with the Sphinx API.
We’ll be using two functions: query will return a list of matches, and buildExcerpts
will return the highlighted excerpts. Let’s first look at getResults:

getResults :: Text -> Handler [Result]
getResults qstring = do
 sphinxRes' <- liftIO $ S.query config "searcher" qstring
 case sphinxRes' of
 ST.Ok sphinxRes -> do
 let docids = map (toSqlKey . ST.documentId) $ ST.matches sphinxRes
 fmap catMaybes $ runDB $ forM docids $ \docid -> do
 mdoc <- get docid
 case mdoc of
 Nothing -> return Nothing
 Just doc -> liftIO $ Just <$> getResult docid doc qstring
 _ -> error $ show sphinxRes'
 where
 config = S.defaultConfig
 { S.port = 9312
 , S.mode = ST.Any
 }

query takes three parameters: the configuration options, the index to search against
(searcher in this case), and the search string. It returns a list of document IDs that
contain the search string. The tricky bit here is that those documents are returned as
Int64 values, whereas we need DocIds. Fortunately, for the SQL Persistent backends,
we can just use the toSqlKey function to perform the conversion.

If you’re dealing with a backend that has nonnumeric IDs, like
MongoDB, you’ll need to work out something a bit cleverer than
this.

286 | Chapter 25: Case Study: Sphinx-Based Search

We then loop over the resulting IDs to get a [Maybe Result] value, and use cat
Maybes to turn it into a [Result]. In the where clause, we define our local settings,
which override the default port and set up the search to work when any term matches
the document.

Let’s finally look at the getResult function:

getResult :: DocId -> Doc -> Text -> IO Result
getResult docid doc qstring = do
 excerpt' <- S.buildExcerpts
 excerptConfig
 [escape $ docContent doc]
 "searcher"
 qstring
 let excerpt =
 case excerpt' of
 ST.Ok texts -> preEscapedToHtml $ mconcat texts
 _ -> ""
 return Result
 { resultId = docid
 , resultTitle = docTitle doc
 , resultExcerpt = excerpt
 }
 where
 excerptConfig = E.altConfig { E.port = 9312 }

escape :: Textarea -> Text
escape =
 T.concatMap escapeChar . unTextarea
 where
 escapeChar '<' = "<"
 escapeChar '>' = ">"
 escapeChar '&' = "&"
 escapeChar c = T.singleton c

buildExcerpts takes four parameters: the configuration options, the textual contents
of the document, the search index, and the search term. The interesting bit is that we
entity-escape the text content. Sphinx won’t automatically escape these for us, so we
must do it explicitly.

Similarly, the result from Sphinx is a list of Texts. But of course, we’d rather have
HTML, so we concat that list into a single Text and use preEscapedToHtml to make
sure that the tags inserted for matches are not escaped. Here’s a sample of this HTML:

… Departments. The President shall have Power
to fill up all Vacancies
… people. Amendment 11 The Judicial power
of the United States shall
… jurisdiction. 2. Congress shall have power
to enforce this article by
… 5. The Congress shall have power

Searching | 287

to enforce, by appropriate legislation
…

Streaming xmlpipe Output
I’ve saved the best for last. For the majority of Yesod handlers, the recommended
approach is to load up the database results into memory and then produce the output
document based on that. It’s simpler to work with, but more importantly it’s more
resilient to exceptions. If there’s a problem loading the data from the database, the
user will get a proper 500 response code.

What do I mean by “proper 500 response code?” If you start
streaming a response to a client and encounter an exception half‐
way through, there’s no way to change the status code; the user will
see a 200 response that simply stops in the middle. Not only can
this partial content be confusing, but it’s an invalid usage of the
HTTP spec.

However, generating the xmlpipe output is a perfect example of the alternative. There
are potentially a huge number of documents, and documents could easily be several
hundred kilobytes each. If we take a non-streaming approach, this can lead to huge
memory usage and slow response times.

So how exactly do we create a streaming response? Yesod provides a helper function
for this case: responseSourceDB. This function takes two arguments: a content type,
and a conduit Source providing a stream of blaze-builder Builders. Yesod then
handles all of the issues of grabbing a database connection from the connection pool,
starting a transaction, and streaming the response to the user.

Now we know we want to create a stream of Builders from some XML content. For‐
tunately, the xml-conduit package provides this interface directly. xml-conduit pro‐
vides some high-level interfaces for dealing with documents as a whole, but in our
case, we’re going to need to use the low-level Event interface to ensure minimal mem‐
ory impact. So, the function we’re interested in is:

renderBuilder :: Monad m => RenderSettings -> Conduit Event m Builder

In plain English, that means renderBuilder takes some settings (we’ll just use the
defaults), and will then convert a stream of Events to a stream of Builders. This is
looking pretty good; all we need now is a stream of Events.

Speaking of which, what should our XML document actually look like? It’s pretty sim‐
ple: we have a <sphinx:docset> root element, a <sphinx:schema> element contain‐
ing a single <sphinx:field> (which defines the content field), and then a

288 | Chapter 25: Case Study: Sphinx-Based Search

<sphinx:document> for each document in our database. That last element will have
an id attribute and a child content element. Here is an example of such a document:

<sphinx:docset xmlns:sphinx="http://sphinxsearch.com/">
 <sphinx:schema>
 <sphinx:field name="content"/>
 </sphinx:schema>
 <sphinx:document id="1">
 <content>bar</content>
 </sphinx:document>
 <sphinx:document id="2">
 <content>foo bar baz</content>
 </sphinx:document>
</sphinx:docset>

If you’re not familiar with XML namespaces, the xmlns: syntax and
sphinx: prefixes may look pretty weird. I don’t want to get into an
XML tutorial in this chapter, so I’ll avoid an explanation. If you’re
curious, feel free to look up the XML namespace specification.

Every document is going to start off with the same events (start the docset, start the
schema, etc.) and end with the same event (end the docset). We’ll start off by defining
those:

toName :: Text -> X.Name
toName x = X.Name x (Just "http://sphinxsearch.com/") (Just "sphinx")

docset, schema, field, document, content :: X.Name
docset = toName "docset"
schema = toName "schema"
field = toName "field"
document = toName "document"
content = "content" -- no prefix

startEvents, endEvents :: [X.Event]
startEvents =
 [X.EventBeginDocument
 , X.EventBeginElement docset []
 , X.EventBeginElement schema []
 , X.EventBeginElement field [("name", [X.ContentText "content"])]
 , X.EventEndElement field
 , X.EventEndElement schema
]

endEvents =
 [X.EventEndElement docset
]

Now that we have the shell of our document, we need to get the Events for each indi‐
vidual document. This is actually a fairly simple function:

Streaming xmlpipe Output | 289

entityToEvents :: Entity Doc -> [X.Event]
entityToEvents (Entity docid doc) =
 [X.EventBeginElement document [("id", [X.ContentText $ toPathPiece docid])]
 , X.EventBeginElement content []
 , X.EventContent $ X.ContentText $ unTextarea $ docContent doc
 , X.EventEndElement content
 , X.EventEndElement document
]

We start the document element with an id attribute, start the content, insert the con
tent, and then close both elements. We use toPathPiece to convert a DocId into a
Text value. Next, we need to be able to convert a stream of these entities into a stream
of events. For this, we can use the built-in concatMap function from Data.Con
duit.List: CL.concatMap entityToEvents.

But what we really want is to stream those events directly from the database. For most
of this book, we’ve used the selectList function, but Persistent also provides the
(more powerful) selectSource function. So we end up with the function:

docSource :: Source (YesodDB Searcher) X.Event
docSource = selectSource [] [] $= CL.concatMap entityToEvents

The $= operator joins together a source and a conduit into a new source. Now that we
have our Event source, all we need to do is surround it with the document start and
end events. With Source’s Monad instance, this is a piece of cake:

fullDocSource :: Source (YesodDB Searcher) X.Event
fullDocSource = do
 mapM_ yield startEvents
 docSource
 mapM_ yield endEvents

Now we need to tie it together in getXmlpipeR. We can do so by using the respond
SourceDB function mentioned earlier. The last trick we need to do is convert our
stream of Events into a stream of Chunk Builders. Converting to a stream of
Builders is achieved with renderBuilder, and finally we’ll just wrap each Builder in
its own Chunk:

getXmlpipeR :: Handler TypedContent
getXmlpipeR =
 respondSourceDB "text/xml"
 $ fullDocSource
 $= renderBuilder def
 $= CL.map Chunk

Full Code
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}

290 | Chapter 25: Case Study: Sphinx-Based Search

{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ViewPatterns #-}
import Control.Applicative ((<$>), (<*>))
import Control.Monad (forM)
import Control.Monad.Logger (runStdoutLoggingT)
import Data.Conduit
import qualified Data.Conduit.List as CL
import Data.Maybe (catMaybes)
import Data.Monoid (mconcat)
import Data.Text (Text)
import qualified Data.Text as T
import Data.Text.Lazy.Encoding (decodeUtf8)
import qualified Data.XML.Types as X
import Database.Persist.Sqlite
import Text.Blaze.Html (preEscapedToHtml)
import qualified Text.Search.Sphinx as S
import qualified Text.Search.Sphinx.ExcerptConfiguration as E
import qualified Text.Search.Sphinx.Types as ST
import Text.XML.Stream.Render (def, renderBuilder)
import Yesod

share [mkPersist sqlSettings, mkMigrate "migrateAll"] [persistLowerCase|
Doc
 title Text
 content Textarea
|]

data Searcher = Searcher
 { connPool :: ConnectionPool
 }

mkYesod "Searcher" [parseRoutes|
/ HomeR GET
/doc/#DocId DocR GET
/add-doc AddDocR POST
/search SearchR GET
/search/xmlpipe XmlpipeR GET
|]

instance Yesod Searcher

instance YesodPersist Searcher where
 type YesodPersistBackend Searcher = SqlBackend

 runDB action = do
 Searcher pool <- getYesod
 runSqlPool action pool

Full Code | 291

instance YesodPersistRunner Searcher where
 getDBRunner = defaultGetDBRunner connPool

instance RenderMessage Searcher FormMessage where
 renderMessage _ _ = defaultFormMessage

addDocForm :: Html -> MForm Handler (FormResult Doc, Widget)
addDocForm = renderTable $ Doc
 <$> areq textField "Title" Nothing
 <*> areq textareaField "Contents" Nothing

searchForm :: Html -> MForm Handler (FormResult Text, Widget)
searchForm = renderDivs $ areq (searchField True) "Query" Nothing

getHomeR :: Handler Html
getHomeR = do
 docCount <- runDB $ count ([] :: [Filter Doc])
 ((_, docWidget), _) <- runFormPost addDocForm
 ((_, searchWidget), _) <- runFormGet searchForm
 let docs = if docCount == 1
 then "There is currently 1 document."
 else "There are currently " ++ show docCount ++ " documents."
 defaultLayout
 [whamlet|
 <p>Welcome to the search application. #{docs}
 <form method=post action=@{AddDocR}>
 <table>
 ^{docWidget}
 <tr>
 <td colspan=3>
 <input type=submit value="Add document">
 <form method=get action=@{SearchR}>
 ^{searchWidget}
 <input type=submit value=Search>
 |]

postAddDocR :: Handler Html
postAddDocR = do
 ((res, docWidget), _) <- runFormPost addDocForm
 case res of
 FormSuccess doc -> do
 docid <- runDB $ insert doc
 setMessage "Document added"
 redirect $ DocR docid
 _ -> defaultLayout
 [whamlet|
 <form method=post action=@{AddDocR}>
 <table>
 ^{docWidget}
 <tr>
 <td colspan=3>
 <input type=submit value="Add document">

292 | Chapter 25: Case Study: Sphinx-Based Search

 |]

getDocR :: DocId -> Handler Html
getDocR docid = do
 doc <- runDB $ get404 docid
 defaultLayout
 [whamlet|
 <h1>#{docTitle doc}
 <div .content>#{docContent doc}
 |]

data Result = Result
 { resultId :: DocId
 , resultTitle :: Text
 , resultExcerpt :: Html
 }

getResult :: DocId -> Doc -> Text -> IO Result
getResult docid doc qstring = do
 excerpt' <- S.buildExcerpts
 excerptConfig
 [escape $ docContent doc]
 "searcher"
 qstring
 let excerpt =
 case excerpt' of
 ST.Ok texts -> preEscapedToHtml $ mconcat texts
 _ -> ""
 return Result
 { resultId = docid
 , resultTitle = docTitle doc
 , resultExcerpt = excerpt
 }
 where
 excerptConfig = E.altConfig { E.port = 9312 }

escape :: Textarea -> Text
escape =
 T.concatMap escapeChar . unTextarea
 where
 escapeChar '<' = "<"
 escapeChar '>' = ">"
 escapeChar '&' = "&"
 escapeChar c = T.singleton c

getResults :: Text -> Handler [Result]
getResults qstring = do
 sphinxRes' <- liftIO $ S.query config "searcher" qstring
 case sphinxRes' of
 ST.Ok sphinxRes -> do
 let docids = map (toSqlKey . ST.documentId) $ ST.matches sphinxRes
 fmap catMaybes $ runDB $ forM docids $ \docid -> do

Full Code | 293

 mdoc <- get docid
 case mdoc of
 Nothing -> return Nothing
 Just doc -> liftIO $ Just <$> getResult docid doc qstring
 _ -> error $ show sphinxRes'
 where
 config = S.defaultConfig
 { S.port = 9312
 , S.mode = ST.Any
 }

getSearchR :: Handler Html
getSearchR = do
 ((formRes, searchWidget), _) <- runFormGet searchForm
 searchResults <-
 case formRes of
 FormSuccess qstring -> getResults qstring
 _ -> return []
 defaultLayout $ do
 toWidget
 [lucius|
 .excerpt {
 color: green; font-style: italic
 }
 .match {
 background-color: yellow;
 }
 |]
 [whamlet|
 <form method=get action=@{SearchR}>
 ^{searchWidget}
 <input type=submit value=Search>
 $if not $ null searchResults
 <h1>Results
 $forall result <- searchResults
 <div .result>
 #{resultTitle result}
 <div .excerpt>#{resultExcerpt result}
 |]

getXmlpipeR :: Handler TypedContent
getXmlpipeR =
 respondSourceDB "text/xml"
 $ fullDocSource
 $= renderBuilder def
 $= CL.map Chunk

entityToEvents :: (Entity Doc) -> [X.Event]
entityToEvents (Entity docid doc) =
 [X.EventBeginElement document [("id", [X.ContentText $ toPathPiece docid])]
 , X.EventBeginElement content []
 , X.EventContent $ X.ContentText $ unTextarea $ docContent doc

294 | Chapter 25: Case Study: Sphinx-Based Search

 , X.EventEndElement content
 , X.EventEndElement document
]

fullDocSource :: Source (YesodDB Searcher) X.Event
fullDocSource = do
 mapM_ yield startEvents
 docSource
 mapM_ yield endEvents

docSource :: Source (YesodDB Searcher) X.Event
docSource = selectSource [] [] $= CL.concatMap entityToEvents

toName :: Text -> X.Name
toName x = X.Name x (Just "http://sphinxsearch.com/") (Just "sphinx")

docset, schema, field, document, content :: X.Name
docset = toName "docset"
schema = toName "schema"
field = toName "field"
document = toName "document"
content = "content" -- no prefix

startEvents, endEvents :: [X.Event]
startEvents =
 [X.EventBeginDocument
 , X.EventBeginElement docset []
 , X.EventBeginElement schema []
 , X.EventBeginElement field [("name", [X.ContentText "content"])]
 , X.EventEndElement field
 , X.EventEndElement schema
]

endEvents =
 [X.EventEndElement docset
]

main :: IO ()
main = runStdoutLoggingT $ withSqlitePool "searcher.db3" 10 $
 \pool -> liftIO $ do
 runSqlPool (runMigration migrateAll) pool
 warp 3000 $ Searcher pool

Full Code | 295

CHAPTER 26

Visitor Counter

Remember back in the good ol’ days of the Internet, when no website was complete
without a little “you are visitor number 32” thingy? Ahh, those were the good times!
Let’s re-create that wonderful experience in Yesod!

Now, if we wanted to do this properly, we’d store this information in some kind of
persistent storage layer, like a database, so that the information could be shared across
multiple horizontally scaled web servers and would survive an app restart.

But our goal here isn’t to demonstrate good practice (after all, if it was about good
practice, I wouldn’t be demonstrating a visitor counter, right?). Instead, this is meant
to provide a simple example of sharing some state among multiple handlers. A real-
world use case would be caching information across requests. Just remember that
when you use the technique shown here, you need to be careful about multiple app
servers and app restarts.

The technique is simple: we create a new field in the foundation data type for a muta‐
ble reference to some data, and then access it in each handler. The technique is so
simple, it’s worth just diving into the code:

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Data.IORef
import Yesod

data App = App
 { visitors :: IORef Int
 }

mkYesod "App" [parseRoutes|
/ HomeR GET

297

|]

instance Yesod App

getHomeR :: Handler Html
getHomeR = do
 visitorsRef <- fmap visitors getYesod
 visitors <-
 liftIO $ atomicModifyIORef visitorsRef $ \i ->
 (i + 1, i + 1)
 defaultLayout
 [whamlet|
 <p>Welcome, you are visitor number #{visitors}.
 |]

main :: IO ()
main = do
 visitorsRef <- newIORef 0
 warp 3000 App
 { visitors = visitorsRef
 }

I used IORef here, because we didn’t need anything more than it provided, but you’re
free to use MVars or TVars as well. In fact, a good exercise for the reader is to modify
this program to store the visitor count in a TVar instead.

298 | Chapter 26: Visitor Counter

CHAPTER 27

Single-Process Pub/Sub

The example in the previous chapter was admittedly quite simple. Let’s build on that
foundation (pun intended) to do something a bit more interesting. Suppose we have a
workflow on our site like the following:

1. Enter some information on page X, and submit.
2. Submission starts a background job, and the user is redirected to a page to view

the status of that job.
3. That second page will subscribe to updates from the background job and display

them to the user.

The core principle here is the ability to let one thread publish updates, and have
another thread subscribe to receive those updates. This is known generally as pub/
sub, and fortunately is very easy to achieve in Haskell via STM (the Software Transac‐
tional Memory library).

Like in the previous chapter, let me start off with the following caveat: this technique
only works properly if you have a single web application process. If you have two dif‐
ferent servers and a load balancer, you’ll either need sticky sessions or some other sol‐
ution to make sure that the requests from a single user are going to the same
machine. In those situations, you may want to consider using an external pub/sub
solution, such as Redis.

With that caveat out of the way, let’s get started.

Foundation Data Type
We’ll need two different mutable references in our foundation. The first will keep
track of the next “job ID” we’ll hand out. Each of these background jobs will be

299

represented by a unique identifier that will be used in our URLs. The second piece of
data will be a map from the job ID to the broadcast channel used for publishing
updates. In code:

data App = App
 { jobs :: TVar (IntMap (TChan (Maybe Text)))
 , nextJob :: TVar Int
 }

Notice that our TChan contains Maybe Text values. The reason for the Maybe wrapper
is so that we can indicate that the channel is complete, by providing a Nothing value.

Allocate a Job
In order to allocate a job, we need to:

1. Get a job ID.
2. Create a new broadcast channel.
3. Add the channel to the channel map.

Due to the beauty of STM, this is pretty easy:

(jobId, chan) <- liftIO $ atomically $ do
 jobId <- readTVar nextJob
 writeTVar nextJob $! jobId + 1
 chan <- newBroadcastTChan
 m <- readTVar jobs
 writeTVar jobs $ IntMap.insert jobId chan m
 return (jobId, chan)

Fork Our Background Job
There are many different ways we could go about this, and they depend entirely on
what the background job is going to be. Here’s a minimal example of a background
job that prints out a few messages, with a one-second delay between each message.
Note how after our final message, we broadcast a Nothing value and remove our
channel from the map of channels:

liftIO $ forkIO $ do
 threadDelay 1000000
 atomically $ writeTChan chan $ Just "Did something\n"
 threadDelay 1000000
 atomically $ writeTChan chan $ Just "Did something else\n"
 threadDelay 1000000
 atomically $ do
 writeTChan chan $ Just "All done\n"
 writeTChan chan Nothing

300 | Chapter 27: Single-Process Pub/Sub

 m <- readTVar jobs
 writeTVar jobs $ IntMap.delete jobId m

View Progress
For this demonstration, I’ve elected for a very simple progress viewing: a plain text
page with a streaming response. There are a few other possibilities here: an HTML
page that autorefreshes every X seconds, or using EventSource or WebSockets. I
encourage you to give those a shot also, but here’s the simplest implementation I can
think of:

getViewProgressR jobId = do
 App {..} <- getYesod
 mchan <- liftIO $ atomically $ do
 m <- readTVar jobs
 case IntMap.lookup jobId m of
 Nothing -> return Nothing
 Just chan -> fmap Just $ dupTChan chan
 case mchan of
 Nothing -> notFound
 Just chan -> respondSource typePlain $ do
 let loop = do
 mtext <- liftIO $ atomically $ readTChan chan
 case mtext of
 Nothing -> return ()
 Just text -> do
 sendChunkText text
 sendFlush
 loop
 loop

We start off by looking up the channel in the map. If we can’t find it, it means the job
either never existed, or has already been completed. In either event, we return a 404.
(Another possible enhancement would be to store some information on all previously
completed jobs and let the user know if the job is done.)

Assuming the channel exists, we use respondSource to start a streaming response.
We then repeatedly call readTChan until we get a Nothing value, at which point we
exit (via return ()). Notice that on each iteration, we call both sendChunkText and
sendFlush. Without that second call, the user won’t receive any updates until the out‐
put buffer completely fills up, which is not acceptable for a real-time update system.

Complete Application
For completeness, here’s the full source code for this application:

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE RecordWildCards #-}

View Progress | 301

{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ViewPatterns #-}
import Control.Concurrent (forkIO, threadDelay)
import Control.Concurrent.STM
import Data.IntMap (IntMap)
import qualified Data.IntMap as IntMap
import Data.Text (Text)
import Yesod

data App = App
 { jobs :: TVar (IntMap (TChan (Maybe Text)))
 , nextJob :: TVar Int
 }

mkYesod "App" [parseRoutes|
/ HomeR GET POST
/view-progress/#Int ViewProgressR GET
|]

instance Yesod App

getHomeR :: Handler Html
getHomeR = defaultLayout $ do
 setTitle "PubSub example"
 [whamlet|
 <form method=post>
 <button>Start new background job
 |]

postHomeR :: Handler ()
postHomeR = do
 App {..} <- getYesod
 (jobId, chan) <- liftIO $ atomically $ do
 jobId <- readTVar nextJob
 writeTVar nextJob $! jobId + 1
 chan <- newBroadcastTChan
 m <- readTVar jobs
 writeTVar jobs $ IntMap.insert jobId chan m
 return (jobId, chan)
 liftIO $ forkIO $ do
 threadDelay 1000000
 atomically $ writeTChan chan $ Just "Did something\n"
 threadDelay 1000000
 atomically $ writeTChan chan $ Just "Did something else\n"
 threadDelay 1000000
 atomically $ do
 writeTChan chan $ Just "All done\n"
 writeTChan chan Nothing
 m <- readTVar jobs
 writeTVar jobs $ IntMap.delete jobId m
 redirect $ ViewProgressR jobId

302 | Chapter 27: Single-Process Pub/Sub

getViewProgressR :: Int -> Handler TypedContent
getViewProgressR jobId = do
 App {..} <- getYesod
 mchan <- liftIO $ atomically $ do
 m <- readTVar jobs
 case IntMap.lookup jobId m of
 Nothing -> return Nothing
 Just chan -> fmap Just $ dupTChan chan
 case mchan of
 Nothing -> notFound
 Just chan -> respondSource typePlain $ do
 let loop = do
 mtext <- liftIO $ atomically $ readTChan chan
 case mtext of
 Nothing -> return ()
 Just text -> do
 sendChunkText text
 sendFlush
 loop
 loop

main :: IO ()
main = do
 jobs <- newTVarIO IntMap.empty
 nextJob <- newTVarIO 1
 warp 3000 App {..}

Complete Application | 303

CHAPTER 28

Environment Variables for Configuration

There’s a recent move, perhaps most prominently advocated by the twelve-factor app,
to store all app configuration in environment variables instead of using config files or
hardcoding them into the application source code (you don’t do that, right?).

Yesod’s scaffolding comes built in with some support for this—most specifically, for
respecting the APPROOT environment variable to indicate how URLs should be gener‐
ated, the PORT environment variable for which port to listen for requests on, and data‐
base connection settings. (Incidentally, this ties in nicely with the Keter deployment
manager.)

The technique for doing this is quite easy: just do the environment variable lookup in
your main function. The following example demonstrates this technique, along with
the slightly special handling necessary for setting the application root:

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Data.Text (Text, pack)
import System.Environment
import Yesod

data App = App
 { myApproot :: Text
 , welcomeMessage :: Text
 }

mkYesod "App" [parseRoutes|
/ HomeR GET
|]

305

http://12factor.net/config
https://github.com/snoyberg/keter
https://github.com/snoyberg/keter

instance Yesod App where
 approot = ApprootMaster myApproot

getHomeR :: Handler Html
getHomeR = defaultLayout $ do
 App {..} <- getYesod
 setTitle "Environment variables"
 [whamlet|
 <p>Here's the welcome message: #{welcomeMessage}
 <p>
 And a link to: @{HomeR}
 |]

main :: IO ()
main = do
 myApproot <- fmap pack $ getEnv "APPROOT"
 welcomeMessage <- fmap pack $ getEnv "WELCOME_MESSAGE"
 warp 3000 App {..}

The only tricky things here are:

• You need to convert the String value returned by getEnv into a Text by using
pack.

• We use the ApprootMaster constructor for approot, which says “Apply this func‐
tion to the foundation data type to get the actual application root.”

306 | Chapter 28: Environment Variables for Configuration

CHAPTER 29

Route Attributes

Route attributes allow you to set some metadata on each of your routes, in the route
description itself. The syntax is trivial: just an exclamation point followed by a value.
Using it is also trivial: just use the routeAttrs function.

It’s easiest to understand how all this fits together, and when you might want to use it,
with a motivating example. The case I personally most use this for is annotating
administrative routes. Imagine having a website with about 12 different admin
actions. You could manually add a call to requireAdmin or some such at the begin‐
ning of each action, but:

• It’s tedious.
• It’s error prone: you could easily forget one.
• Worse yet, it’s not easy to notice that you’ve missed one.

Modifying your isAuthorized method with an explicit list of administrative routes is
a bit better, but it’s still difficult to see at a glance when you’ve missed one.

This is why I like to use route attributes for this: you add a single word to each rele‐
vant part of the route definition, and then you just check for that attribute in
isAuthorized. Let’s see the code!

{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Data.Set (member)
import Data.Text (Text)
import Yesod
import Yesod.Auth

307

import Yesod.Auth.Dummy

data App = App

mkYesod "App" [parseRoutes|
/ HomeR GET
/unprotected UnprotectedR GET
/admin1 Admin1R GET !admin
/admin2 Admin2R GET !admin
/admin3 Admin3R GET
/auth AuthR Auth getAuth
|]

instance Yesod App where
 authRoute _ = Just $ AuthR LoginR
 isAuthorized route _writable
 | "admin" `member` routeAttrs route = do
 muser <- maybeAuthId
 case muser of
 Nothing -> return AuthenticationRequired
 Just ident
 -- Just a hack because we're using the dummy module
 | ident == "admin" -> return Authorized
 | otherwise -> return $ Unauthorized "Admin access only"
 | otherwise = return Authorized

instance RenderMessage App FormMessage where
 renderMessage _ _ = defaultFormMessage

-- Hacky YesodAuth instance for just the dummy auth plug-in
instance YesodAuth App where
 type AuthId App = Text

 loginDest _ = HomeR
 logoutDest _ = HomeR
 getAuthId = return . Just . credsIdent
 authPlugins _ = [authDummy]
 maybeAuthId = lookupSession credsKey
 authHttpManager = error "no http manager provided"

getHomeR :: Handler Html
getHomeR = defaultLayout $ do
 setTitle "Route attr homepage"
 [whamlet|
 <p>
 Unprotected
 <p>
 Admin 1
 <p>
 Admin 2
 <p>
 Admin 3

308 | Chapter 29: Route Attributes

 |]

getUnprotectedR, getAdmin1R, getAdmin2R, getAdmin3R :: Handler Html
getUnprotectedR = defaultLayout [whamlet|Unprotected|]
getAdmin1R = defaultLayout [whamlet|Admin1|]
getAdmin2R = defaultLayout [whamlet|Admin2|]
getAdmin3R = defaultLayout [whamlet|Admin3|]

main :: IO ()
main = warp 3000 App

And it was so glaring, I bet you even caught the security hole about Admin3R.

Alternative Approach: Hierarchical Routes
Another approach that can be used in some cases is hierarchical routes. This allows
you to group a number of related routes under a single parent. If you want to keep all
of your admin routes under a single URL structure (e.g., /admin), this can be a good
solution. Using hierarchical routes is fairly simple. You need to add a line to your
routes declaration with a path, a name, and a colon:

/admin AdminR:

Then, you place all child routes beneath that line, indented at least one space:

 /1 Admin1R GET
 /2 Admin2R GET
 /3 Admin3R GET

To refer to these routes using type-safe URLs, you simply wrap them with the AdminR
constructor (e.g., AdminR Admin1R). Here is the previous route attribute example
rewritten to use hierarchical routes:

{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
import Data.Set (member)
import Data.Text (Text)
import Yesod
import Yesod.Auth
import Yesod.Auth.Dummy

data App = App

mkYesod "App" [parseRoutes|
/ HomeR GET
/unprotected UnprotectedR GET
/admin AdminR:
 /1 Admin1R GET
 /2 Admin2R GET

Alternative Approach: Hierarchical Routes | 309

 /3 Admin3R GET
/auth AuthR Auth getAuth
|]

instance Yesod App where
 authRoute _ = Just $ AuthR LoginR
 isAuthorized (AdminR _) _writable = do
 muser <- maybeAuthId
 case muser of
 Nothing -> return AuthenticationRequired
 Just ident
 -- Just a hack because we're using the dummy module
 | ident == "admin" -> return Authorized
 | otherwise -> return $ Unauthorized "Admin access only"
 isAuthorized _route _writable = return Authorized

instance RenderMessage App FormMessage where
 renderMessage _ _ = defaultFormMessage

-- Hacky YesodAuth instance for just the dummy auth plug-in
instance YesodAuth App where
 type AuthId App = Text

 loginDest _ = HomeR
 logoutDest _ = HomeR
 getAuthId = return . Just . credsIdent
 authPlugins _ = [authDummy]
 maybeAuthId = lookupSession credsKey
 authHttpManager = error "no http manager provided"

getHomeR :: Handler Html
getHomeR = defaultLayout $ do
 setTitle "Route attr homepage"
 [whamlet|
 <p>
 Unprotected
 <p>
 Admin 1
 <p>
 Admin 2
 <p>
 Admin 3
 |]

getUnprotectedR, getAdmin1R, getAdmin2R, getAdmin3R :: Handler Html
getUnprotectedR = defaultLayout [whamlet|Unprotected|]
getAdmin1R = defaultLayout [whamlet|Admin1|]
getAdmin2R = defaultLayout [whamlet|Admin2|]
getAdmin3R = defaultLayout [whamlet|Admin3|]

main :: IO ()
main = warp 3000 App

310 | Chapter 29: Route Attributes

PART IV

Appendices

APPENDIX A

monad-control

monad-control is used in a few places within Yesod, most notably to ensure proper
exception handling within Persistent. It is a general-purpose package to extend stan‐
dard functionality in monad transformers.

Overview
One of the powerful, and sometimes confusing, features in Haskell is monad trans‐
formers. They allow you to take different pieces of functionality—such as mutable
state, error handling, or logging—and compose them easily. Though I swore I’d never
write a monad tutorial, I’m going to employ a painful analogy here: monads are like
onions. (Monads are not like cakes.) By that, I mean layers.

We have the core monad, also known as the innermost or bottom monad. On top of
this core, we add layers, each adding a new feature and spreading outward/upward.
As a motivating example, let’s consider an ErrorT transformer stacked on top of the
IO monad:

newtype ErrorT e m a = ErrorT { runErrorT :: m (Either e a) }
type MyStack = ErrorT MyError IO

Now pay close attention here: ErrorT is just a simple newtype around an Either
wrapped in a monad. Getting rid of the newtype, we have:

type ErrorTUnwrapped e m a = m (Either e a)

At some point, we’ll need to actually perform some I/O inside our MyStack. If we
went with the unwrapped approach, it would be trivial, as there would be no ErrorT
constructor in the way. However, we need that newtype wrapper for a whole bunch of
type reasons I won’t go into here (this isn’t a monad transformer tutorial, after all). So
the solution is the MonadTrans typeclass:

315

class MonadTrans t where
 lift :: Monad m => m a -> t m a

I’ll admit, the first time I saw that type signature my response was stunned confusion,
and incredulity that it actually meant anything. But looking at an instance helps a bit:

instance (Error e) => MonadTrans (ErrorT e) where
 lift m = ErrorT $ do
 a <- m
 return (Right a)

All we’re doing is wrapping the inside of the IO with a Right value, and then applying
our newtype wrapper. This allows us to take an action that lives in IO and “lift” it to
the outer/upper monad.

But now to the point at hand. This works very well for simple functions. For example:

sayHi :: IO ()
sayHi = putStrLn "Hello"

sayHiError :: ErrorT MyError IO ()
sayHiError = lift $ putStrLn "Hello"

But let’s take something slightly more complicated, like a callback:

withMyFile :: (Handle -> IO a) -> IO a
withMyFile = withFile "test.txt" WriteMode

sayHi :: Handle -> IO ()
sayHi handle = hPutStrLn handle "Hi there"

useMyFile :: IO ()
useMyFile = withMyFile sayHi

So far so good, right? Now let’s say that we need a version of sayHi that has access to
the Error monad:

sayHiError :: Handle -> ErrorT MyError IO ()
sayHiError handle = do
 lift $ hPutStrLn handle "Hi there, error!"
 throwError MyError

We would like to write a function that combines withMyFile and sayHiError.
Unfortunately, GHC doesn’t like this very much:

useMyFileErrorBad :: ErrorT MyError IO ()
useMyFileErrorBad = withMyFile sayHiError

 Couldn't match expected type `ErrorT MyError IO ()'
 with actual type `IO ()'

Why does this happen, and how can we work around it?

316 | Appendix A: monad-control

Intuition
Let’s try and develop an external intuition of what’s happening here. The ErrorT
monad transformer adds extra functionality to the IO monad. We’ve defined a way to
“tack on” that extra functionality to normal IO actions: we add that Right constructor
and wrap it all in ErrorT. Wrapping in Right is our way of saying “it went OK”; i.e.,
there wasn’t anything wrong with this action.

Now this intuitively makes sense: because the IO monad doesn’t have the concept of
returning a MyError when something goes wrong, it will always succeed in the lifting
phase. (Note: This has nothing to do with runtime exceptions, so don’t even think
about them.) What we have is a guaranteed one-directional translation up the monad
stack.

Let’s take another example: the Reader monad. A Reader has access to some extra
piece of data that’s floating around. Whatever is running in the inner monad doesn’t
know about that extra piece of information. So how would you do a lift? You just
ignore that extra information. The Writer monad? Don’t write anything. State?
Don’t change anything. I’m seeing a pattern here.

But now let’s try and go in the opposite direction: I have something in a Reader, and
I’d like to run it in the base monad (e.g., IO). Well… that’s not going to work, is it? I
need that extra piece of information; I’m relying on it, and it’s not there. There’s sim‐
ply no way to go in the opposite direction without providing that extra value.

Or is there? If you remember, we pointed out earlier that ErrorT is just a simple
wrapper around the inner monad. In other words, if I have errorValue :: ErrorT
MyError IO MyValue, I can apply runErrorT and get a value of type IO (Either
MyError MyValue). The looks quite a bit like bidirectional translation, doesn’t it?

Well, not exactly. We originally had an ErrorT MyError IO monad, with a value of
type MyValue. Now we have a monad of type IO with a value of type Either MyError
MyValue. So, this process has in fact changed the value, while the lifting process leaves
it the same.

But still, with a little fancy footwork we can unwrap the ErrorT, do some processing,
and then wrap it back up again:

useMyFileError1 :: ErrorT MyError IO ()
useMyFileError1 =
 let unwrapped :: Handle -> IO (Either MyError ())
 unwrapped handle = runErrorT $ sayHiError handle
 applied :: IO (Either MyError ())
 applied = withMyFile unwrapped
 rewrapped :: ErrorT MyError IO ()
 rewrapped = ErrorT applied
 in rewrapped

monad-control | 317

This is the crucial point of this whole discussion, so look closely. We first unwrap our
monad. This means that, to the outside world, it’s now just a plain old IO value. Inter‐
nally, we’ve stored all the information from our ErrorT transformer. Now that we
have a plain old IO, we can easily pass it off to withMyFile. withMyFile takes in the
internal state and passes it back out unchanged. Finally, we wrap everything back up
into our original ErrorT.

This is the entire pattern of monad-control. We embed the extra features of our
monad transformer inside the value. Once in the value, the type system ignores it and
focuses on the inner monad. When we’re done playing around with that inner
monad, we can pull our state back out and reconstruct our original monad stack.

Types
I purposely started with the ErrorT transformer, as it is one of the simplest for this
inversion mechanism. Unfortunately, others are a bit more complicated. Take, for
instance, ReaderT. It is defined as newtype ReaderT r m a = ReaderT { runRea
derT :: r -> m a }. If we apply runReaderT to it, we get a function that returns a
monadic value. We’re going to need some extra machinery to deal with all that stuff.
And this is when we leave Kansas behind.

There are a few approaches to solving these problems. In the past, I implemented a
solution using type families in the neither package. Anders Kaseorg implemented a
much more straightforward solution in monad-peel. And for efficiency, in monad-
control, Bas van Dijk uses CPS (continuation passing style) and existential types.

The code taken from monad-control actually applies to version 0.2.
0.3 changed things just a bit, by making the state explicit with an
associated type and generalizing MonadControlIO to MonadBaseCon
trol, but the concepts are still the same.

The first type we’re going to look at is the following:

type Run t = forall n o b. (Monad n, Monad o, Monad (t o)) => t n b -> n (t o b)

That’s incredibly dense, so let’s talk it out. The only “input” data type to this thing is t,
a monad transformer. A Run is a function that will then work with any combination
of types n, o, and b (that’s what the forall means). n and o are both monads, while b
is a simple value contained by them.

The lefthand side of the Run function, t n b, is our monad transformer wrapped
around the n monad and holding a b value. So, for example, that could be a MyTrans
FirstMonad MyValue. It then returns a value with the transformer “popped” inside,

318 | Appendix A: monad-control

with a brand new monad at its core. In other words, FirstMonad (MyTrans NewMonad
MyValue).

That might sound pretty scary at first, but it actually isn’t as foreign as you’d think:
this is essentially what we did with ErrorT. We started with ErrorT on the outside,
wrapping around IO, and ended up with an IO by itself containing an Either. Well
guess what: another way to represent an Either is ErrorT MyError Identity. So
essentially, we pulled the IO to the outside and plunked an Identity in its place.
We’re doing the same thing in a Run—pulling the FirstMonad outside and replacing it
with a NewMonad:

errorRun :: Run (ErrorT MyError)
errorRun = undefined

useMyFileError2 :: IO (ErrorT MyError Identity ())
useMyFileError2 =
 let afterRun :: Handle -> IO (ErrorT MyError Identity ())
 afterRun handle = errorRun $ sayHiError handle
 applied :: IO (ErrorT MyError Identity ())
 applied = withMyFile afterRun
 in applied

This looks eerily similar to our previous example. In fact, errorRun is acting almost
identically to runErrorT. However, we’re still left with two problems: we don’t know
where to get that errorRun value from, and we still need to restructure the original
ErrorT after we’re done.

MonadTransControl
Obviously, in the specific case we have before us we could use our knowledge of the
ErrorT transformer to beat the types into submission and create our Run function
manually. But what we really want is a general solution for many transformers. At this
point, you know we need a typeclass.

So let’s review what we need: access to a Run function, and some way to restructure
our original transformer after the fact. And thus was born MonadTransControl, with
its single method liftControl:

class MonadTrans t => MonadTransControl t where
 liftControl :: Monad m => (Run t -> m a) -> t m a

Let’s look at this closely. liftControl takes a function (the one we’ll be writing). That
function is provided with a Run function, and must return a value in some monad (m).
liftControl will then take the result of that function and reinstate the original trans‐
former on top of everything:

useMyFileError3 :: Monad m => ErrorT MyError IO (ErrorT MyError m ())
useMyFileError3 =

monad-control | 319

 liftControl inside
 where
 inside :: Monad m => Run (ErrorT MyError) -> IO (ErrorT MyError m ())
 inside run = withMyFile $ helper run
 helper :: Monad m
 => Run (ErrorT MyError) -> Handle -> IO (ErrorT MyError m ())
 helper run handle = run (sayHiError handle :: ErrorT MyError IO ())

Close, but not exactly what I had in mind. What’s up with the double monads? Well,
let’s start at the end. The sayHiError handle returns a value of type ErrorT MyError
IO (). This we knew already; no surprises. What might be a little surprising (it got
me, at least) is the next two steps.

First, we apply run to that value. Like we discussed before, the result is that the IO
inner monad is popped to the outside, to be replaced by some arbitrary monad (rep‐
resented by m here). So we end up with an IO (ErrorT MyError m ()). OK… we
then get the same result after applying withMyFile. Not surprising.

The last step took me a long time to understand correctly. Remember how we said
that we reconstruct the original transformer? Well, so we do: by plopping it right on
top of everything else we have. So our end result is the previous type—IO (ErrorT

MyError m ())—with an ErrorT MyError stuck on the front.

That seems just about utterly worthless, right? Well, almost. But don’t forget, that m
can be any monad, including IO. If we treat it that way, we get ErrorT MyError IO
(ErrorT MyError IO ()). That looks a lot like m (m a), and we want just plain old m
a. Fortunately, now we’re in luck:

useMyFileError4 :: ErrorT MyError IO ()
useMyFileError4 = join useMyFileError3

And it turns out that this usage is so common, that Bas had mercy on us and defined
a helper function:

control :: (Monad m, Monad (t m), MonadTransControl t)
 => (Run t -> m (t m a)) -> t m a
control = join . liftControl

So all we need to write is the following:

useMyFileError5 :: ErrorT MyError IO ()
useMyFileError5 =
 control inside
 where
 inside :: Monad m => Run (ErrorT MyError) -> IO (ErrorT MyError m ())
 inside run = withMyFile $ helper run
 helper :: Monad m
 => Run (ErrorT MyError) -> Handle -> IO (ErrorT MyError m ())
 helper run handle = run (sayHiError handle :: ErrorT MyError IO ())

And just to make it a little shorter:

320 | Appendix A: monad-control

useMyFileError6 :: ErrorT MyError IO ()
useMyFileError6 = control $ \run -> withMyFile $ run . sayHiError

MonadControlIO
The MonadTrans class provides the lift method, which allows us to lift an action one
level in the stack. There is also the MonadIO class: this provides liftIO, which lifts an
IO action as far in the stack as desired. We have the same breakdown in monad-
control. But first, we need a corollary to Run:

type RunInBase m base = forall b. m b -> base (m b)

Instead of dealing with a transformer, we’re dealing with two monads. base is the
underlying monad, and m is a stack built on top of it. RunInBase is a function that
takes the entire stack as a value, pops out that base, and puts in on the outside. Unlike
in the Run type, we don’t replace it with an arbitrary monad, but with the original one.
To use some more concrete types:

RunInBase (ErrorT MyError IO) IO = forall b. ErrorT MyError IO b
 -> IO (ErrorT MyError IO b)

This should look fairly similar to what we’ve been looking at so far; the only differ‐
ence is that we want to deal with a specific inner monad. Our MonadControlIO class is
really just an extension of MonadControlTrans using this RunInBase:

class MonadIO m => MonadControlIO m where
 liftControlIO :: (RunInBase m IO -> IO a) -> m a

Simply put, liftControlIO takes a function that receives a RunInBase. That RunIn
Base can be used to strip down our monad to just an IO, and then liftControlIO
builds everything back up again. And like MonadControlTrans, it comes with a helper
function:

controlIO :: MonadControlIO m => (RunInBase m IO -> IO (m a)) -> m a
controlIO = join . liftControlIO

We can easily rewrite our previous example with it:

useMyFileError7 :: ErrorT MyError IO ()
useMyFileError7 = controlIO $ \run -> withMyFile $ run . sayHiError

And as an advantage, it easily scales to multiple transformers:

sayHiCrazy :: Handle -> ReaderT Int (StateT Double (ErrorT MyError IO)) ()
sayHiCrazy handle = liftIO $ hPutStrLn handle "Madness!"

useMyFileCrazy :: ReaderT Int (StateT Double (ErrorT MyError IO)) ()
useMyFileCrazy = controlIO $ \run -> withMyFile $ run . sayHiCrazy

monad-control | 321

Real-Life Examples
Let’s solve some real-life problems with this code. Probably the biggest motivating use
case is exception handling in a transformer stack. For example, let’s say that we want
to automatically run some cleanup code when an exception is thrown. If this were
normal IO code, we’d use:

onException :: IO a -> IO b -> IO a

But if we’re in the ErrorT monad, we can’t pass in either the action or the cleanup. In
comes controlIO to the rescue:

onExceptionError :: ErrorT MyError IO a
 -> ErrorT MyError IO b
 -> ErrorT MyError IO a
onExceptionError action after = controlIO $ \run ->
 run action `onException` run after

Let’s say we need to allocate some memory to store a Double in. In the IO monad, we
could just use the alloca function. Once again, our solution is simple:

allocaError :: (Ptr Double -> ErrorT MyError IO b)
 -> ErrorT MyError IO b
allocaError f = controlIO $ \run -> alloca $ run . f

Lost State
Let’s rewind a bit to our onExceptionError. It uses onException under the surface,
which has a type signature of IO a -> IO b -> IO a. Let me ask you something:
what happened to the b in the output? Well, it was thoroughly ignored. But that
seems to cause us a bit of a problem. After all, we store our transformer state infor‐
mation in the value of the inner monad. If we ignore it, we’re essentially ignoring the
monadic side effects as well!

And yes, this does happen with monad-control. Certain functions will drop some of
the monadic side effects. This is put best by Bas, in the comments on the relevant
functions:

Note, any monadic side effects in m of the “release” computation will be discarded; it is
run only for its side effects in IO.

In practice, monad-control will usually be doing the right thing for you, but you need
to be aware that some side effects may disappear.

322 | Appendix A: monad-control

More Complicated Cases
In order to make our tricks work so far, we’ve needed to have functions that give us
full access to play around with their values. Sometimes, this isn’t the case. Take, for
instance:

addMVarFinalizer :: MVar a -> IO () -> IO ()

In this case, we are required to have no value inside our finalizer function. Intuitively,
the first thing we should notice is that there will be no way to capture our monadic
side effects. So how do we get something like this to compile? Well, we need to explic‐
itly tell it to drop all of its state-holding information:

addMVarFinalizerError :: MVar a -> ErrorT MyError IO () -> ErrorT MyError IO ()
addMVarFinalizerError mvar f = controlIO $ \run ->
 return $ liftIO $ addMVarFinalizer mvar (run f >> return ())

Another case from the same module is:

modifyMVar :: MVar a -> (a -> IO (a, b)) -> IO b

Here, we have a restriction on the return type in the second argument: it must be a
tuple of the value passed to that function and the final return value. Unfortunately, I
can’t see a way of writing a little wrapper around modifyMVar to make it work for
ErrorT. Instead, in this case, I copied the definition of modifyMVar and modified it:

modifyMVar :: MVar a
 -> (a -> ErrorT MyError IO (a, b))
 -> ErrorT MyError IO b
modifyMVar m io =
 Control.Exception.Control.mask $ \restore -> do
 a <- liftIO $ takeMVar m
 (a',b) <- restore (io a) `onExceptionError` liftIO (putMVar m a)
 liftIO $ putMVar m a'
 return b

monad-control | 323

APPENDIX B

Web Application Interface

It is a problem almost every language used for web development has dealt with: the
low-level interface between the web server and the application. The earliest example
of a solution is the venerable and battle-worn Common Gateway Interface (CGI),
providing a language-agnostic interface using only standard input, standard output,
and environment variables.

This chapter covers WAI version 3.0, which has a number of
changes from previous versions.

Back when Perl was becoming the de facto web programming language, a major
shortcoming of CGI became apparent: the process needed to be started anew for each
request. When dealing with an interpreted language and an application requiring a
database connection, this overhead became unbearable. FastCGI (and later SCGI)
arose as a successor to CGI, but it seems that much of the programming world went
in a different direction.

Each language began creating its own standard for interfacing with servers:
mod_perl, mod_python, mod_php, mod_ruby. Within the same language, multiple
interfaces arose. In some cases, we even had interfaces on top of interfaces. And all of
this led to much duplicated effort: a Python application designed to work with
FastCGI wouldn’t work with mod_python; mod_python only exists for certain web
servers; and these programming language-specific web server extensions need to be
written for each programming language.

Haskell has its own history. We originally had the cgi package, which provided a
monadic interface. The fastcgi package then provided the same interface. Mean‐

325

while, it seemed that the majority of Haskell web development focused on the stand‐
alone server. The problem here is that each server comes with its own interface,
meaning that you need to target a specific backend. This means that it is impossible
to share common features, like gzip encoding, development servers, and testing
frameworks.

WAI attempts to solve this, by providing a generic and efficient interface between web
servers and applications. Any handler supporting the interface can serve any WAI
application, while any application using the interface can run on any handler.

At the time of writing, there are various backends, including Warp, FastCGI, and the
development server. There are even more esoteric backends, like wai-handler-
webkit for creating desktop apps. wai-extra provides many common middleware
components like gzip, JSON-P, and virtual hosting. wai-test makes it easy to write
unit tests, and wai-handler-devel lets you develop your applications without worry‐
ing about stopping to compile. Yesod targets WAI, as well as other Haskell web
frameworks such as Scotty and MFlow. It’s also used by some applications that skip
the framework entirely, including Hoogle.

Yesod provides an alternative approach for a devel server, known as
yesod devel. The difference from wai-handler-devel is that
yesod devel actually compiles your code each time, respecting all
settings in your cabal file. This is the recommended approach for
general Yesod development.

The Interface
The interface itself is very straightforward: an application takes a request and returns
a response. A response consists of an HTTP status, a list of headers, and a response
body. A request contains various information: the requested path, query string,
request body, HTTP version, and so on.

In order to handle resource management in an exception-safe manner, we use contin‐
uation passing style for returning the response, similar to how the bracket function
works. This makes our definition of an application look like:

type Application =
 Request ->
 (Response -> IO ResponseReceived) ->
 IO ResponseReceived

The first argument is a Request, which shouldn’t be too surprising. The second argu‐
ment is the continuation, or what we should do with a Response. Generally speaking,
this will just be sending it to the client. We use the special ResponseReceived type to
ensure that the application does in fact call the continuation.

326 | Appendix B: Web Application Interface

This may seem a little strange, but usage is pretty straightforward, as we’ll demon‐
strate next.

Response Body
Haskell has a data type known as a “lazy” ByteString. By utilizing laziness, you can
create large values without exhausting memory. Using lazy I/O, you can do such
tricks as having a value that represents the entire contents of a file, yet only occupies a
small memory footprint. In theory, a lazy ByteString is the only representation nec‐
essary for a response body.

In practice, while lazy ByteStrings are wonderful for generating “pure” values, the
lazy I/O necessary to read a file introduces some nondeterminism into our programs.
When serving thousands of small files a second, the limiting factor is not memory,
but file handles. Using lazy I/O, file handles may not be freed immediately, leading to
resource exhaustion. To deal with this, WAI provides its own streaming data inter‐
face.

The core of this streaming interface is the Builder. A Builder represents an action to
fill up a buffer with bytes of data. This is more efficient than simply passing Byte
Strings around, as it can avoid multiple copies of data. In many cases, an application
needs to provide only a single Builder value. For that simple case, we have the
ResponseBuilder constructor.

However, there are times when an application will need to interleave IO actions with
yielding of data to the client. For that case, we have ResponseStream. With Response
Stream, you provide a function. This function in turn takes two actions: a “yield more
data” action, and a “flush the buffer” action. This allows you to yield data, perform IO
actions, and flush, as many times as you need, and with any interleaving desired.

There is one further optimization: many operating systems provide a sendfile sys‐
tem call, which sends a file directly to a socket, bypassing a lot of the memory copy‐
ing inherent in more general I/O system calls. For that case, we have ResponseFile.

Finally, there are some cases where we need to break out of the HTTP mode entirely.
Two examples are WebSockets, where we need to upgrade a half-duplex HTTP con‐
nection to a full-duplex connection and HTTPS proxying, which requires our proxy
server to establish a connection, and then become a dumb data transport agent. For
these cases, we have the ResponseRaw constructor. Note that not all WAI handlers can
in fact support ResponseRaw, though the most commonly used handler, Warp, does
provide this support.

Web Application Interface | 327

Request Body
Like with response bodies, we could theoretically use a lazy ByteString for request
bodies, but in practice we want to avoid lazy I/O. Instead, the request body is repre‐
sented with an IO ByteString action (ByteString here being a strict ByteString).
Note that this does not return the entire request body, but rather just the next chunk
of data. Once you’ve consumed the entire request body, further calls to this action will
return an empty ByteString.

Note that, unlike with response bodies, we have no need for using Builders on the
request side, as our purpose is purely for reading.

The request body could in theory contain any type of data, but the most common are
URL-encoded and multipart form data. The wai-extra package contains built-in
support for parsing these in a memory-efficient manner.

Hello, World
To demonstrate the simplicity of WAI, let’s look at a Hello, World example. In this
example, we’re going to use the OverloadedStrings language extension to avoid
explicitly packing string values into ByteStrings:

{-# LANGUAGE OverloadedStrings #-}
import Network.Wai
import Network.HTTP.Types (status200)
import Network.Wai.Handler.Warp (run)

application _ respond = respond $
 responseLBS status200 [("Content-Type", "text/plain")] "Hello, World"

main = run 3000 application

Lines 2 through 4 perform our imports. Warp is provided by the warp package, and is
the premier WAI backend. WAI is also built on top of the http-types package, which
provides a number of data types and convenience values, including status200.

First, we define our application. Because we don’t care about the specific request
parameters, we ignore the first argument to the function, which contains the request
value. The second argument is our “send a response” function, which we immediately
use. The response value we send is built from a lazy ByteString (thus responseLBS),
with status code of 200 OK, a text/plain content type, and a body containing the
words “Hello, World”. Pretty straightforward.

328 | Appendix B: Web Application Interface

Resource Allocation
Let’s make this a little more interesting, and try to allocate a resource for our
response. We’ll create an MVar in our main function to track the number of requests,
and then hold that MVar while sending each response:

{-# LANGUAGE OverloadedStrings #-}
import Blaze.ByteString.Builder (fromByteString)
import Blaze.ByteString.Builder.Char.Utf8 (fromShow)
import Control.Concurrent.MVar
import Data.Monoid ((<>))
import Network.HTTP.Types (status200)
import Network.Wai
import Network.Wai.Handler.Warp (run)

application countRef _ respond = do
 modifyMVar countRef $ \count -> do
 let count' = count + 1
 msg = fromByteString "You are visitor number: " <>
 fromShow count'
 responseReceived <- respond $ responseBuilder
 status200
 [("Content-Type", "text/plain")]
 msg
 return (count', responseReceived)

main = do
 visitorCount <- newMVar 0
 run 3000 $ application visitorCount

This is where WAI’s continuation interface shines. We can use the standard modifyM
Var function to acquire the MVar lock and send our response. Note how we thread the
responseReceived value through, though we never actually use the value for any‐
thing. It is merely witness to the fact that we have, in fact, sent a response.

Notice also how we take advantage of Builders in constructing our msg value. Instead
of concatenating two ByteStrings together directly, we monoidally append two dif‐
ferent Builder values. The advantage to this is that the results will end up being
copied directly into the final output buffer, instead of first being copied into a tempo‐
rary ByteString buffer to only later be copied into the final buffer.

Streaming Response
Let’s give our streaming interface a test as well:

{-# LANGUAGE OverloadedStrings #-}
import Blaze.ByteString.Builder (fromByteString)
import Control.Concurrent (threadDelay)
import Network.HTTP.Types (status200)

Web Application Interface | 329

import Network.Wai
import Network.Wai.Handler.Warp (run)

application _ respond = respond $ responseStream status200
 [("Content-Type", "text/plain")]
 $ \send flush -> do
 send $ fromByteString "Starting the response...\n"
 flush
 threadDelay 1000000
 send $ fromByteString "All done!\n"

main = run 3000 application

We use responseStream, and our third argument is a function that takes our “send a
builder” and “flush the buffer” functions. Notice how we flush after our first chunk of
data, to make sure the client sees the data immediately. However, there’s no need to
flush at the end of a response. WAI requires that the handler automatically flush at
the end of a stream.

Middleware
In addition to allowing our applications to run on multiple backends without code
changes, WAI allows us another benefit: middleware. Middleware is essentially an
application transformer, taking one application and returning another one.

Middleware components can be used to provide lots of services: cleaning up URLs,
authentication, caching, JSON-P requests. But perhaps the most useful and most
intuitive middleware is the one for gzip compression. This middleware works very
simply: it parses the request headers to determine if a client supports compression,
and if so, it compresses the response body and adds the appropriate response header.

The great thing about middleware is that it is unobtrusive. Let’s see how we would
apply the gzip middleware to our Hello, World application:

{-# LANGUAGE OverloadedStrings #-}
import Network.Wai
import Network.Wai.Handler.Warp (run)
import Network.Wai.Middleware.Gzip (gzip, def)
import Network.HTTP.Types (status200)

application _ respond = respond $ responseLBS status200
 [("Content-Type", "text/plain")]
 "Hello, World"

main = run 3000 $ gzip def application

We added an import line to actually have access to the middleware, and then simply
applied gzip to our application. You can also chain together multiple middleware
components: a line such as gzip False $ jsonp $ othermiddleware $ myapplica

330 | Appendix B: Web Application Interface

tion is perfectly valid. One word of warning: the order the middleware is applied in
can be important. For example, jsonp needs to work on uncompressed data, so if you
apply it after you apply gzip, you’ll have trouble.

Web Application Interface | 331

APPENDIX C

Settings Types

Let’s say you’re writing a web server. You want the server to take a port to listen on,
and an application to run. So you create the following function:

run :: Int -> Application -> IO ()

But suddenly you realize that some people will want to customize their timeout dura‐
tions. So you modify your API:

run :: Int -> Int -> Application -> IO ()

So, which Int is the timeout, and which is the port? Well, you could create some type
aliases, or comment your code. But there’s another problem creeping into the code:
this run function is getting unmanageable. Soon you’ll need to take an extra parame‐
ter to indicate how exceptions should be handled, and then another one to control
which host to bind to, and so on.

A more extensible solution is to introduce a settings data type:

data Settings = Settings
 { settingsPort :: Int
 , settingsHost :: String
 , settingsTimeout :: Int
 }

And this makes the calling code almost self-documenting:

run Settings
 { settingsPort = 8080
 , settingsHost = "127.0.0.1"
 , settingsTimeout = 30
 } myApp

333

Great—couldn’t be clearer, right? True, but what happens when you have 50 settings
to your web server? Do you really want to have to specify all of those each time? Of
course not. So instead, the web server should provide a set of defaults:

defaultSettings = Settings 3000 "127.0.0.1" 30

And now, instead of needing to write that long bit of code, you can get away with:

run defaultSettings { settingsPort = 8080 } myApp -- (1)

This is great, except for one minor hitch. Let’s say you now decide to add an extra
record to Settings. Any code out in the wild looking like this:

run (Settings 8080 "127.0.0.1" 30) myApp -- (2)

will be broken, because the Settings constructor now takes four arguments. The
proper thing to do would be to bump the major version number so that dependent
packages don’t get broken. But having to change major versions for every minor set‐
ting you add is a nuisance. The solution? Don’t export the Settings constructor:

module MyServer
 (Settings
 , settingsPort
 , settingsHost
 , settingsTimeout
 , run
 , defaultSettings
) where

With this approach, no one can write code like (2), so you can freely add new records
without any fear of code breaking.

The one downside of this approach is that it’s not immediately obvious from the Had‐
docks that you can actually change the settings via record syntax. That’s the point of
this chapter: to clarify what’s going on in the libraries that use this technique.

I personally use this technique in a few places—feel free to have a look at the Had‐
docks to see what I mean:

• Warp: Settings
• http-conduit: Request and ManagerSettings
• xml-conduit

• Parsing: ParseSettings
• Rendering: RenderSettings

As a tangential issue, http-conduit and xml-conduit actually create instances of the
Default typeclass instead of declaring brand new identifiers. This means you can just
type def instead of defaultParserSettings.

334 | Appendix C: Settings Types

APPENDIX D

http-conduit

Most of Yesod is about serving content over HTTP. But that’s only half the story:
someone has to receive it. And even when you’re writing a web app, sometimes that
someone will be you. If you want to consume content from other services or interact
with RESTful APIs, you’ll need to write client code. And the recommended approach
for that is http-conduit.

This chapter is not directly connected to Yesod, and will be
generally useful for anyone wanting to make HTTP requests.

Synopsis
{-# LANGUAGE OverloadedStrings #-}
import Network.HTTP.Conduit -- the main module

-- The streaming interface uses conduits
import Data.Conduit
import Data.Conduit.Binary (sinkFile)

import qualified Data.ByteString.Lazy as L
import Control.Monad.IO.Class (liftIO)
import Control.Monad.Trans.Resource (runResourceT)

main :: IO ()
main = do
 -- Simplest query: just download the information from the given URL as a
 -- lazy ByteString.
 simpleHttp "http://www.example.com/foo.txt" >>= L.writeFile "foo.txt"

335

 -- Use the streaming interface instead. We need to run all of this inside a
 -- ResourceT, to ensure that all our connections get properly cleaned up in
 -- the case of an exception.
 runResourceT $ do
 -- We need a Manager, which keeps track of open connections. simpleHttp
 -- creates a new manager on each run (i.e., it never reuses
 -- connections).
 manager <- liftIO $ newManager conduitManagerSettings

 -- A more efficient version of the simpleHttp query above. First we
 -- parse the URL to a request.
 req <- liftIO $ parseUrl "http://www.example.com/foo.txt"

 -- Now get the response
 res <- http req manager

 -- And finally stream the value to a file
 responseBody res $$+- sinkFile "foo.txt"

 -- Make it a POST request, don't follow redirects, and accept any
 -- status code
 let req2 = req
 { method = "POST"
 , redirectCount = 0
 , checkStatus = _ _ _ -> Nothing
 }
 res2 <- http req2 manager
 responseBody res2 $$+- sinkFile "post-foo.txt"

Concepts
The simplest way to make a request in http-conduit is with the simpleHttp func‐
tion. This function takes a String giving a URL and returns a ByteString with the
contents of that URL. But under the surface, there are a few more steps:

• A new connection Manager is allocated.
• The URL is parsed to a Request. If the URL is invalid, then an exception is

thrown.
• The HTTP request is made, following any redirects from the server.
• If the response has a status code outside the 200 range, an exception is thrown.
• The response body is read into memory and returned.
• runResourceT is called, which will free up any resources (e.g., the open socket to

the server).

336 | Appendix D: http-conduit

If you want more control over what’s going on, you can configure any of these steps
(plus a few more) by explicitly creating a Request value, allocating your Manager
manually, and using the http and httpLbs functions.

Request
The easiest way to create a Request is with the parseUrl function. This function will
return a value in any Failure monad, such as Maybe or IO. The last of those is the
most commonly used, and results in a runtime exception whenever an invalid URL is
provided. However, you can use a different monad if, for example, you want to vali‐
date user input:

import Network.HTTP.Conduit
import System.Environment (getArgs)
import qualified Data.ByteString.Lazy as L
import Control.Monad.IO.Class (liftIO)

main :: IO ()
main = do
 args <- getArgs
 case args of
 [urlString] ->
 case parseUrl urlString of
 Nothing -> putStrLn "Sorry, invalid URL"
 Just req -> withManager $ \manager -> do
 res <- httpLbs req manager
 liftIO $ L.putStr $ responseBody res
 _ -> putStrLn "Sorry, please provide exactly one URL"

The Request type is abstract, so that http-conduit can add new settings in the future
without breaking the API (see Appendix C for more information). In order to make
changes to individual records, you use record notation. For example, a modification
to our program that issues HEAD requests and prints the response headers would be:

{-# LANGUAGE OverloadedStrings #-}
import Network.HTTP.Conduit
import System.Environment (getArgs)
import qualified Data.ByteString.Lazy as L
import Control.Monad.IO.Class (liftIO)

main :: IO ()
main = do
 args <- getArgs
 case args of
 [urlString] ->
 case parseUrl urlString of
 Nothing -> putStrLn "Sorry, invalid URL"
 Just req -> withManager $ \manager -> do
 let reqHead = req { method = "HEAD" }
 res <- http reqHead manager

http-conduit | 337

 liftIO $ do
 print $ responseStatus res
 mapM_ print $ responseHeaders res
 _ -> putStrLn "Sorry, please provide example one URL"

There are a number of different configuration settings in the API; some noteworthy
ones are:

proxy

Allows you to pass the request through the given proxy server.

redirectCount

Indicates how many redirects to follow. The default is 10.

checkStatus

Checks the status code of the return value. By default, gives an exception for any
non-2XX response.

requestBody

Specifies the request body to be sent. Be sure to also update the method. For the
common case of URL-encoded data, you can use the urlEncodedBody function.

Manager
The connection manager allows you to reuse connections. When making multiple
queries to a single server (e.g., accessing Amazon S3), this can be critical for creating
efficient code. A manager will keep track of multiple connections to a given server
(taking into account ports and SSL as well), automatically reaping unused connec‐
tions as needed. When you make a request, http-conduit first tries to check out an
existing connection. When you’re finished with the connection (if the server allows
keep-alive), the connection is returned to the manager. If anything goes wrong, the
connection is closed.

To keep our code exception-safe, we use the ResourceT monad transformer. All this
means for you is that your code needs to be wrapped inside a call to runResourceT,
either implicitly or explicitly, and that code inside that block will need to use liftIO
to perform normal IO actions.

There are two ways you can get ahold of a manager. newManager will return a man‐
ager that will not be automatically closed (you can use closeManager to do so man‐
ually), while withManager will start a new ResourceT block, allow you to use the
manager, and then automatically close the ResourceT when you’re done. If you want
to use a ResourceT for an entire application, and have no need to close it, you should
probably use newManager.

338 | Appendix D: http-conduit

One other thing to point out: you obviously don’t want to create a new manager for
each and every request; that would defeat the whole purpose. You should create your
Manager early and then share it.

Response
The Response data type contains three pieces of information: the status code, the
response headers, and the response body. The first two are straightforward; let’s dis‐
cuss the body.

The Response type has a type variable to allow the response body to be of multiple
types. If you want to use http-conduit’s streaming interface, you want this to be a
Source. For the simple interface, it will be a lazy ByteString. One thing to note is
that, even though we use a lazy ByteString, the entire response is held in memory. In
other words, we perform no lazy I/O in this package.

The conduit package does provide a lazy module that will allow
you to read this value in lazily, but like any lazy I/O, it’s a bit unsafe,
and definitely nondeterministic. If you need it, though, you can
use it.

http and httpLbs
So let’s tie it together. The http function gives you access to the streaming interface
(i.e., it returns a Response using a ResumableSource), while httpLbs returns a lazy
ByteString. Both of these return values in the ResourceT transformer so that they
can access the Manager and have connections handled properly in the case of excep‐
tions.

If you want to ignore the remainder of a large response body, you
can connect to the sinkNull sink. The underlying connection will
automatically be closed, preventing you from having to read a large
response body over the network.

http-conduit | 339

APPENDIX E

xml-conduit

Many developers cringe at the thought of dealing with XML files. XML has the repu‐
tation of having a complicated data model, with obfuscated libraries and huge layers
of complexity sitting between you and your goal. I’d like to posit that a lot of that pain
is actually a language and library issue, not inherent to XML.

Once again, Haskell’s type system allows us to easily break down the problem to its
most basic form. The xml-types package neatly deconstructs the XML data model
(both a streaming and a DOM-based approach) into some simple algebraic data
types. Haskell’s standard immutable data structures make it easier to apply transforms
to documents, and a simple set of functions makes parsing and rendering a breeze.

We’re going to be covering the xml-conduit package. Under the surface, this package
uses a lot of the approaches Yesod in general does for high performance: blaze-
builder, text, conduit, and attoparsec. But from a user perspective, it provides
everything from the simplest APIs (readFile/writeFile) through full control of
XML event streams.

In addition to xml-conduit, there are a few related packages that come into play, like
xml-hamlet and xml2html. We’ll cover both how to use all these packages, and when
they should be used.

Synopsis
<!-- Input XML file -->
<document title="My Title">
 <para>This is a paragraph. It has emphasized
 and strong words.</para>
 <image href="myimage.png"/>
</document>

341

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
import qualified Data.Map as M
import Prelude hiding (readFile, writeFile)
import Text.Hamlet.XML
import Text.XML

main :: IO ()
main = do
 -- readFile will throw any parse errors as runtime exceptions.
 -- def uses the default settings.
 Document prologue root epilogue <- readFile def "input.xml"

 -- root is the root element of the document; let's modify it
 let root' = transform root

 -- And now we write out. Let's indent our output.
 writeFile def
 { rsPretty = True
 } "output.html" $ Document prologue root' epilogue

-- We'll turn our <document> into an XHTML document
transform :: Element -> Element
transform (Element _name attrs children) = Element "html" M.empty
 [xml|
 <head>
 <title>
 $maybe title <- M.lookup "title" attrs
 \#{title}
 $nothing
 Untitled Document
 <body>
 $forall child <- children
 ^{goNode child}
 |]

goNode :: Node -> [Node]
goNode (NodeElement e) = [NodeElement $ goElem e]
goNode (NodeContent t) = [NodeContent t]
goNode (NodeComment _) = [] -- hide comments
goNode (NodeInstruction _) = [] -- and hide processing instructions too

-- convert each source element to its XHTML equivalent
goElem :: Element -> Element
goElem (Element "para" attrs children) =
 Element "p" attrs $ concatMap goNode children
goElem (Element "em" attrs children) =
 Element "i" attrs $ concatMap goNode children
goElem (Element "strong" attrs children) =
 Element "b" attrs $ concatMap goNode children
goElem (Element "image" attrs _children) =
 Element "img" (fixAttr attrs) [] -- images can't have children

342 | Appendix E: xml-conduit

 where
 fixAttr mattrs
 | "href" `M.member` mattrs =
 M.delete "href" $ M.insert "src" (mattrs M.! "href") mattrs
 | otherwise = mattrs
goElem (Element name attrs children) =
 -- don't know what to do, just pass it through...
 Element name attrs $ concatMap goNode children

<?xml version="1.0" encoding="UTF-8"?>
<!-- Output XHTML -->
<html>
 <head>
 <title>
 My Title
 </title>
 </head>
 <body>
 <p>
 This is a paragraph. It has
 <i>
 emphasized
 </i>
 and

 strong

 words.
 </p>

 </body>
</html>

Types
Let’s take a bottom-up approach to analyzing types. This section will also serve as a
primer on the XML data model itself, so don’t worry if you’re not completely familiar
with it.

I think the first place where Haskell really shows its strength is with the Name data
type. Many languages (like Java) struggle with properly expressing names. The issue
is that there are, in fact, three components to a name: its local name, its namespace
(optional), and its prefix (also optional). Let’s look at some XML to explain:

<no-namespace/>
<no-prefix xmlns="first-namespace" first-attr="value1"/>
<foo:with-prefix xmlns:foo="second-namespace" foo:second-attr="value2"/>

The first tag has a local name of no-namespace, and no namespace or prefix. The sec‐
ond tag (local name: no-prefix) also has no prefix, but it does have a namespace

xml-conduit | 343

(first-namespace). first-attr, however, does not inherit that namespace: attribute
namespaces must always be explicitly set with a prefix.

Namespaces are almost always URIs of some sort, though there is
nothing in any specification requiring that it be so.

The third tag has a local name of with-prefix, a prefix of foo, and a namespace of
second-namespace. Its attribute has a second-attr local name and the same prefix
and namespace. The xmlns and xmlns:foo attributes are part of the namespace speci‐
fication, and are not considered attributes of their respective elements.

So let’s review what we need from a name: every name has a local name, and it can
optionally have a prefix and namespace. Seems like a simple fit for a record type:

data Name = Name
 { nameLocalName :: Text
 , nameNamespace :: Maybe Text
 , namePrefix :: Maybe Text
 }

According to the XML namespace standard, two names are considered equivalent if
they have the same local name and namespace. In other words, the prefix is not
important. Therefore, xml-types defines Eq and Ord instances that ignore the prefix.

The last class instance worth mentioning is IsString. It would be very tedious to
have to manually type out Name "p" Nothing Nothing every time we want a para‐
graph. If you turn on OverloadedStrings, "p" will resolve to that all by itself! In
addition, the IsString instance recognizes something called Clark notation, which
allows you to prefix the namespace surrounded in curly brackets. In other words:

"{namespace}element" == Name "element" (Just "namespace") Nothing
"element" == Name "element" Nothing Nothing

The Four Types of Nodes
An XML document is a tree of nested nodes. There are in fact four different types of
nodes allowed: elements, content (i.e., text), comments, and processing instructions.

344 | Appendix E: xml-conduit

You may not be familiar with that last one, as it’s less commonly
used. It is marked up as:

<?target data?>

There are two surprising facts about processing instructions (PIs):

• PIs don’t have attributes. Although you’ll often see processing
instructions that appear to have attributes, there are in fact no
rules about that data of an instruction.

• The <?xml …?> stuff at the beginning of a document is not a
processing instruction. It is simply the beginning of the docu‐
ment (known as the XML declaration), and happens to look an
awful lot like a PI. The difference is that the <?xml …?> line
will not appear in your parsed content.

Processing instructions have two pieces of text associated with them (the target and
the data), so we have a simple data type:

data Instruction = Instruction
 { instructionTarget :: Text
 , instructionData :: Text
 }

Comments have no special data type, because they are just text. But content is an
interesting one: it can contain either plain text or unresolved entities (e.g.,
©right-statement;). xml-types keeps those unresolved entities in all the data
types in order to completely match the spec. However, in practice, it can be very tedi‐
ous to program against those data types. And in most use cases, an unresolved entity
is going to end up as an error anyway.

Therefore, the Text.XML module defines its own set of data types for nodes, elements,
and documents that remove all unresolved entities. If you need to deal with unre‐
solved entities instead, you should use the Text.XML.Unresolved module. From now
on, we’ll be focusing only on the Text.XML data types, though they are almost identi‐
cal to the xml-types versions.

Anyway, after that detour: content is just a piece of text, and therefore it too does not
have a special data type. The last node type is an element, which contains three pieces
of information: a name, a map of attribute name/value pairs, and a list of child nodes.
(In xml-types, this value could contain unresolved entities as well.) So our Element is
defined as:

data Element = Element
 { elementName :: Name
 , elementAttributes :: Map Name Text
 , elementNodes :: [Node]
 }

xml-conduit | 345

Which of course begs the question: what does a Node look like? This is where Haskell
really shines—its sum types model the XML data model perfectly:

data Node
 = NodeElement Element
 | NodeInstruction Instruction
 | NodeContent Text
 | NodeComment Text

Documents
So now we have elements and nodes, but what about an entire document? Let’s just
lay out the data types:

data Document = Document
 { documentPrologue :: Prologue
 , documentRoot :: Element
 , documentEpilogue :: [Miscellaneous]
 }

data Prologue = Prologue
 { prologueBefore :: [Miscellaneous]
 , prologueDoctype :: Maybe Doctype
 , prologueAfter :: [Miscellaneous]
 }

data Miscellaneous
 = MiscInstruction Instruction
 | MiscComment Text

data Doctype = Doctype
 { doctypeName :: Text
 , doctypeID :: Maybe ExternalID
 }

data ExternalID
 = SystemID Text
 | PublicID Text Text

The XML spec says that a document has a single root element (documentRoot). It also
has an optional DOCTYPE statement. Before and after both the DOCTYPE and the root
element, you are allowed to have comments and processing instructions. (You can
also have whitespace, but that is ignored in the parsing.)

So what’s up with the DOCTYPE? Well, it specifies the root element of the document,
and then optional public and system identifiers. These are used to refer to document
type definition (DTD) files, which give more information about the file (e.g., valida‐
tion rules, default attributes, entity resolution). Let’s take a look at some examples:

<!-- no external identifier -->
<!DOCTYPE root>

346 | Appendix E: xml-conduit

<!-- a system identifier -->
<!DOCTYPE root SYSTEM "root.dtd">
<!-- public identifiers have a system ID as well -->
<!DOCTYPE root PUBLIC "My Root Public Identifier" "root.dtd">

And that, my friends, is the entire XML data model. For many parsing purposes,
you’ll be able to simply ignore the entire Document data type and go immediately to
the documentRoot.

Events
In addition to the document API, xml-types defines an Event data type. This can be
used for constructing streaming tools, which can be much more memory-efficient for
certain kinds of processing (e.g., adding an extra attribute to all elements). We will
not be covering the streaming API here, though it should look very familiar after ana‐
lyzing the document API.

You can see an example of the streaming API in the Sphinx case
study (Chapter 25).

Text.XML
The recommended entry point to xml-conduit is the Text.XML module. This module
exports all of the data types you’ll need to manipulate XML in a DOM fashion, as well
as a number of different approaches for parsing and rendering XML content. Let’s
start with the simple ones:

readFile :: ParseSettings -> FilePath -> IO Document
writeFile :: RenderSettings -> FilePath -> Document -> IO ()

This introduces the ParseSettings and RenderSettings data types. You can use
these to modify the behavior of the parser and renderer, such as adding character
entities and turning on pretty (i.e., indented) output. Both these types are instances of
the Default typeclass, so you can simply use def when these need to be supplied.
That is how we will supply these values throughout the rest of this appendix; see the
API docs for more information.

It’s worth pointing out that in addition to the file-based API, there is also a Text- and
ByteString-based API. The BytesString-powered functions all perform intelligent
encoding detections and support UTF-8, UTF-16, and UTF-32, in either big- or little-
endian format, with and without a byte-order marker (BOM). All output is generated
in UTF-8.

xml-conduit | 347

For complex data lookups, we recommend using the higher-level cursor API. The
standard Text.XML API not only forms the basis for that higher level, but is also a
great API for simple XML transformations and for XML generation. See the synopsis
for an example.

A Note About File Paths
In the type signature, we have a type called FilePath. However, this isn’t Prelude.Fil
ePath. The standard Prelude defines a type synonym type FilePath = [Char].
Unfortunately, there are many limitations to using such an approach, including con‐
fusion of filename character encodings and differences in path separators.

Instead, xml-conduit uses the system-filepath package, which defines an abstract
FilePath type. I’ve personally found this to be a much nicer approach to work with.
The package is fairly easy to follow, so I won’t go into details here, but I do want to
give a few quick explanations of how to use it:

• Because a FilePath is an instance of IsString, you can type in regular strings
and they will be treated properly, as long as the OverloadedStrings extension is
enabled. (I highly recommend enabling it anyway, as it makes dealing with Text
values much more pleasant.)

• If you need to explicitly convert to or from Prelude’s FilePath, you should use
encodeString and decodeString, respectively. This takes into account file path
encodings.

• Instead of manually splicing together directory names and filenames with exten‐
sions, use the operators in the Filesystem.Path.CurrentOS module—for exam‐
ple, myfolder </> filename <.> extension.

Cursor
Suppose you want to pull the title out of an XHTML document. You could do so with
the Text.XML interface we just described, using standard pattern matching on the
children of elements. But that would get very tedious, very quickly. Probably the gold
standard for these kinds of lookups is XPath, where you would be able to
write /html/head/title. And that’s exactly what inspired the design of the
Text.XML.Cursor combinators.

A cursor is an XML node that knows its location in the tree; it’s able to traverse up,
down, and side-to-side (under the surface, this is achieved by tying the knot). There
are two functions available for creating cursors from Text.XML types: fromDocument
and fromNode.

348 | Appendix E: xml-conduit

http://www.haskell.org/haskellwiki/Tying_the_Knot

We also have the concept of an axis, defined as type Axis = Cursor -> [Cursor].
It’s easiest to get started by looking at example axes: child returns zero or more cur‐
sors that are the child of the current one, parent returns the single parent cursor of
the input (or an empty list if the input is the root element), and so on.

In addition, there are some axes that take predicates. element is a commonly used
function that filters down to only elements that match the given name. For example,
element "title" will return the input element if its name is “title”, or an empty list
otherwise.

Another common function that isn’t quite an axis is content :: Cursor -> [Text].
For all content nodes, it returns the contained text; otherwise, it returns an empty list.

And thanks to the monad instance for lists, it’s easy to string all of these together. For
example, to do our title lookup, we would write the following program:

{-# LANGUAGE OverloadedStrings #-}
import Prelude hiding (readFile)
import Text.XML
import Text.XML.Cursor
import qualified Data.Text as T

main :: IO ()
main = do
 doc <- readFile def "test.xml"
 let cursor = fromDocument doc
 print $ T.concat $
 child cursor >>= element "head" >>= child
 >>= element "title" >>= descendant >>= content

What this says is:

1. Get me all the child nodes of the root element.
2. Filter down to only the elements named “head”.
3. Get all the children of all those head elements.
4. Filter down to only the elements named “title”.
5. Get all the descendants of all those title elements. (A descendant is a child, or a

descendant of a child. Yes, that was a recursive definition.)
6. Get only the text nodes.

So for the input document:

<html>
 <head>
 <title>My Title</title>
 </head>
 <body>
 <p>Foo bar baz</p>

xml-conduit | 349

 </body>
</html>

we end up with the output My Title. This is all well and good, but it’s much more
verbose than the XPath solution. To combat this verbosity, Aristid Breitkreuz added a
set of operators to the Cursor module to handle many common cases. So, we can
rewrite our example as:

{-# LANGUAGE OverloadedStrings #-}
import Prelude hiding (readFile)
import Text.XML
import Text.XML.Cursor
import qualified Data.Text as T

main :: IO ()
main = do
 doc <- readFile def "test.xml"
 let cursor = fromDocument doc
 print $ T.concat $
 cursor $/ element "head" &/ element "title" &// content

$/ says to apply the axis on the right to the children of the cursor on the left. &/ is
almost identical, but is instead used to combine two axes together. This is a general
rule in Text.XML.Cursor: operators beginning with $ directly apply an axis, while &
will combine two together. &// is used for applying an axis to all descendants.

Let’s go for a more complex, if more contrived, example. We have a document that
looks like:

<html>
 <head>
 <title>Headings</title>
 </head>
 <body>
 <hgroup>
 <h1>Heading 1 foo</h1>
 <h2 class="foo">Heading 2 foo</h2>
 </hgroup>
 <hgroup>
 <h1>Heading 1 bar</h1>
 <h2 class="bar">Heading 2 bar</h2>
 </hgroup>
 </body>
</html>

We want to get the content of all the <h1> tags that precede an <h2> tag with a class
attribute of "bar". To perform this convoluted lookup, we can write:

{-# LANGUAGE OverloadedStrings #-}
import Prelude hiding (readFile)
import Text.XML
import Text.XML.Cursor

350 | Appendix E: xml-conduit

import qualified Data.Text as T

main :: IO ()
main = do
 doc <- readFile def "test2.xml"
 let cursor = fromDocument doc
 print $ T.concat $
 cursor $// element "h2"
 >=> attributeIs "class" "bar"
 >=> precedingSibling
 >=> element "h1"
 &// content

Let’s step through that. First we get all <h2> elements in the document. ($// gets all
descendants of the root element.) Then we filter out only those with class=bar. That
>=> operator is actually the standard operator from Control.Monad; yet another
advantage of the monad instance of lists. precedingSibling finds all nodes that come
before our node and share the same parent. (There is also a preceding axis, which
takes all elements earlier in the tree.) We then take just the <h1> elements, and grab
their content.

The equivalent XPath, for comparison, would be //h2[@class =
'bar’]/preceding-sibling::h1//text().

While the cursor API isn’t quite as succinct as XPath, it has the advantages of being
standard Haskell code and of type safety.

xml-hamlet
Thanks to the simplicity of Haskell’s data type system, creating XML content with the
Text.XML API is easy, if a bit verbose. The following code:

{-# LANGUAGE OverloadedStrings #-}
import Data.Map (empty)
import Prelude hiding (writeFile)
import Text.XML

main :: IO ()
main =
 writeFile def "test3.xml" $ Document (Prologue [] Nothing []) root []
 where
 root = Element "html" empty
 [NodeElement $ Element "head" empty
 [NodeElement $ Element "title" empty
 [NodeContent "My "
 , NodeElement $ Element "b" empty

xml-conduit | 351

 [NodeContent "Title"
]
]
]
 , NodeElement $ Element "body" empty
 [NodeElement $ Element "p" empty
 [NodeContent "foo bar baz"
]
]
]

produces:

<?xml version="1.0" encoding="UTF-8"?>
<html><head><title>My Title</title></head>
<body><p>foo bar baz</p></body></html>

This is leaps and bounds easier than having to deal with an imperative, mutable-
value-based API (cough, Java, cough), but it’s far from pleasant and obscures what
we’re really trying to achieve. To simplify things, we have the xml-hamlet package,
which uses quasiquotation to allow you to type in your XML in a natural syntax. For
example, the preceding code could be rewritten as:

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
import Data.Map (empty)
import Prelude hiding (writeFile)
import Text.Hamlet.XML
import Text.XML

main :: IO ()
main =
 writeFile def "test3.xml" $ Document (Prologue [] Nothing []) root []
 where
 root = Element "html" empty [xml|
<head>
 <title>
 My #
 Title
<body>
 <p>foo bar baz
|]

There are a few points to keep in mind:

• The syntax is almost identical to normal Hamlet, except URL interpolation
(@{…}) has been removed. As such:
— There are no close tags.
— It’s whitespace-sensitive.

352 | Appendix E: xml-conduit

— If you want to have whitespace at the end of a line, use a # at the end. At the
beginning, use a backslash.

• An xml interpolation will return a list of Nodes, so you still need to wrap up the
output in all the normal Document and root Element constructs.

• There is no support for the special .class and #id attribute forms.

Like in normal Hamlet, you can use variable interpolation and control structures. So,
a slightly more complex example would be:

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
import Text.XML
import Text.Hamlet.XML
import Prelude hiding (writeFile)
import Data.Text (Text, pack)
import Data.Map (empty)

data Person = Person
 { personName :: Text
 , personAge :: Int
 }

people :: [Person]
people =
 [Person "Michael" 26
 , Person "Miriam" 25
 , Person "Eliezer" 3
 , Person "Gavriella" 1
]

main :: IO ()
main =
 writeFile def "people.xml" $ Document (Prologue [] Nothing []) root []
 where
 root = Element "html" empty [xml|
<head>
 <title>Some People
<body>
 <h1>Some People
 $if null people
 <p>There are no people.
 $else
 <dl>
 $forall person <- people
 ^{personNodes person}
|]

personNodes :: Person -> [Node]
personNodes person = [xml|
<dt>#{personName person}

xml-conduit | 353

<dd>#{pack $ show $ personAge person}
|]

A few more notes:

• The caret interpolation (^{…}) takes a list of nodes, so it can easily embed other
xml quotations.

• Unlike in Hamlet, hash interpolations (#{…}) are not polymorphic and can only
accept Text values.

xml2html
The preceding examples have revolved around XHTML. I’ve done that so far simply
because it is likely to be the most familiar form of XML for most readers. But there’s
an ugly side to all this that we must acknowledge: not all XHTML will be correct
HTML. The following discrepancies exist:

• There are some void tags (e.g., ,
) in HTML that do not need to have
close tags, and in fact are not allowed to.

• HTML does not understand self-closing tags, so <script></script> and
<script/> mean very different things.

• Combining the previous two points: you are free to self-close void tags, though to
a browser it won’t mean anything.

• In order to avoid quirks mode, you should start your HTML documents with a
DOCTYPE statement.

• We do not want the XML declaration <?xml …?> at the top of an HTML page.
• We do not want any namespaces used in HTML, while XHTML is fully name‐

spaced.
• The contents of <style> and <script> tags should not be escaped.

Fortunately, xml-conduit provides ToHtml instances for Nodes, Documents, and
Elements that respect these discrepancies. So by just using toHtml, we can get the cor‐
rect output:

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
import Data.Map (empty)
import Text.Blaze.Html (toHtml)
import Text.Blaze.Html.Renderer.String (renderHtml)
import Text.Hamlet.XML
import Text.XML

main :: IO ()

354 | Appendix E: xml-conduit

main = putStr $ renderHtml $ toHtml $ Document (Prologue [] Nothing []) root []

root :: Element
root = Element "html" empty [xml|
<head>
 <title>Test
 <script>if (5 < 6 || 8 > 9) alert("Hello, World!");
 <style>body > h1 { color: red }
<body>
 <h1>Hello World!
|]

Here is the output (with whitespace added):

<!DOCTYPE HTML>
<html>
 <head>
 <title>Test</title>
 <script>if (5 < 6 || 8 > 9) alert("Hello, World!");</script>
 <style>body > h1 { color: red }</style>
 </head>
 <body>
 <h1>Hello, World!</h1>
 </body>
</html>

xml-conduit | 355

Index

Symbols
! (exclamation point)

!!! for doctype statement, 31
!= (not equal) operator, 119
turning off overlap checking for routes, 66

(hash)
beginning dynamic single pieces of paths, 64
using for id attributes in Hamlet, 29

$ (dollar sign)
$(), 11
$= operator, 290

&&& (fan-out) operator, 86
() (parentheses), representing an empty

response, 69
* (asterisk), beginning dynamic multi pieces, 64
+ (plus sign), indicating dynamic multi pieces,

65
. (period), using for class attributes in Hamlet,

29
/<-. (is not member) operator, 119
/=. (divide and set) operator, 119
: (colon), using to add attributes in Hamlet, 30
<$> operator, 83
<*> operator, 83
<-. (is member) operator, 119
= (equals sign), in attributes in Hamlet, 29
@ (at sign)

@?{…}, using to embed query string param‐
eters, 28

interpolation (@{…}), 18, 28
^. (projection) operator, 220
_ (underscore)

interpolation with, 36
_{Msg…} interpolation in Hamlet, 261

_{…} i18n interpolation, 196
{…}, variable interpolation in Shakespeare, 23
|| (OR) operator, 119
ʌ (caret)

embedding templates in Hamlet, 28
using for embedding in simplified Hamlet,

36
using for interpolation in Lucius, 32

A
absolute URLs, 52
Accept header, 151, 236
Accept-Encoding header, 158
Accept-Language header, 158
addStaticContent function, 58

on scaffold site, capabilities of, 59
aeson package, 19, 152, 277

documentation, 153
AForms, 81

creating, 82
optional fields, 83

features, 81
alreadyExpired function, 73
ALTER TABLE command, 115
Amazon SES, 176
AND operator, 119
AnyMethodR, 210
aopt function, 83
Apache web server, CGI on, 144
API documentation, Haskell, 12
App type, 231
App {..}, 252
Application class, 204, 226

357

converting HandlerT stacks to Applications,
234

converting instance of YesodDispatch to,
207

return type for yesodDispatch, 232
Application module, 186
application/json mime type, 151
applicative forms, 80, 81, 261

(see also AForms)
monadic forms and, 89

APPROOT environment variable, 52
approot, value of, 52
ApprootMaster typeclass, 52
ApprootRelative typeclass, 52
ApprootRequest typeclass, 52
AprootStatic typeclass, 52
areq function, 83
associated types, 230
at-sign interpolation (@{…}), 18, 28
attoparsec, 277
attributes

HTML attributes, in Hamlet, 29
in Persistent, 123-126

authentication and authorization, 171-182
auhorization, 180
authentication example, 172
blog application (example), 258
defined, 171
email authentication, 176-180
overview, 171
with Yesod typeclass, 60

authHttpManager, 175
AuthId type, 172, 174
authPlugins, 174
authRoute function, 60, 180
axes, 349

B
badMethod function, 210
blaze-builder package, 226, 277
blaze-html packages, 24, 227, 245

combinators, 246
blog application, 255-264

authentication, 258
authorization, 258
comment on blog post, 256
database, 260
imports, 255
individual blog entry, 256

internationalization (i18n), 257
language extensions in cabal file, 255
routing table, setting up, 257
setting up Persistent entities, 256
users, tracking, 256
widget, 259

blog post, form for, 93
blogs, multiauthor, 215
boundary issue, 1

between application and storage layer, 105
solving with Persistent, 107

Bounded type, 85
bracket function, 226
broadcast channels

creating, 268
for publishing updates, 300
readTChannel function, 301

BrowserID, 171, 260
build tools

Cabal, 7
for JavaScript tools, 7

Builder type, 226, 278, 327
creating stream of Builders from XML con‐

tent, 288
buildExcerpts function, 286, 287

C
C preprocessors, 7
Cabal, 7

cabal file, 184
command to install necessary libraries, 7
installation, common pitfalls, 7
language pragmas in cabal file, 8

cabal clean command, 138
cabal install --only-dependencies command, 19
cacheSeconds function, 73
callbacks, 316
canonical URLs, 64
case statement, 31
Cassius, 16, 21

example of use, 22
syntax, 33
using to construct widgets, 39

CGI, 140, 325
on Apache, 144
on lighttpd, 145

chat subsite (example), 265-271
defining routes, 266
foundation data type, 265

358 | Index

handler functions, 266
widget, 269

check function, 84
checkBool function, 84
checkM function, 84
cleanPath function, 53, 55, 207
clearUltDest function, 102
client-session-key.aes, 98
client-side session cookies, server-side encryp‐

tion for, 139
clientsession, 97
code generation

in Yesod, 2
with Template Haskell (TH), 10

combinators (blaze-html), 246
comment nodes (XML), 345
Common Gateway Interface (see CGI)
compiled languages versus interpreted lan‐

guages, 20
compiling web applications, 138
concatMap function, 290
conditionals in Hamlet, 30
conduit library, 228, 277, 339
configuration, environment variables for,

305-306
content nodes (XML), 345
content system (Yesod), types, 235
Content type, 205, 235
content types, 69
ContentBuilder typeclass, 235
ContentDontEvaluate, 235
ContentFile typeclass, 235
ContentSource typeclass, 235
continuation passing style, 226, 228, 318
cookies, 239

handler functions for, 72
session information in, 97

counters (see visitor counter)
CRandT monad transformer, 166
cross-site request forgery (CSRF) attacks, 86
CSS

Cassius and Lucius templating languages
for, 21

Cassius templating language, 33
coordination with HTML and JavaScript, 39
Css type and ToCSS typeclass, 24
for widgets in static files, 189
helper data types for colors and units, 24
in external files, 58

Lucius templating language, 31
producing using Cassius and Lucius (exam‐

ple), 22
curl commands, 152
CURRENT_TIME function, 124
Cursor module, 350
cursors (XML), 348

D
data constructors, 6
data declarations, 6
data types (see types)
database migrations, 113
database-driven navbar (example), 161
databases

backend, selecting, 184
blog application (example), 260
data sent to and from, types representing,

108
database queries in widgets, 217
manipulating data in, 120
SQLite, for Sphinx-based search, 282
storing information in SQL database, 107
supported by Persistent, 105

-ddump-splices GHC option, 11
debugging, using MonadIO and MonadLogger

for, 73
declarations, generated by Template Haskell

code, 11
default attribute, 124
defaultClientSessionBackend function, 98
defaultErrorHandler function, 58
defaultGetDBRunner, 283
defaultLayout function, 16

for scaffolded site, 188
getMessage in, 100
overriding, 55

wiki master site (example), 272
use by subsite, 201
using for widgets, 46, 248

delete function, 123
DELETE method, 150
deleteBy function, 123
deleteCookie function, 72
deleteWhere function, 123
dependencies, scaffolded site, 184
deploying web applications, 137-145

CGI on Apache, 144
CGI on lighttpd, 145

Index | 359

compiling, 138
desktop, 143
FastCGI on lighttpd, 144
files to deploy, 138
Keter, 137
Nginx and FastCGI, 142
SSL and static files, 139
Warp, 139

Nginx configuration, 140
server process, 142

derivePersistentField function, 130
development servers, 20, 140, 326
dispatch, 68

arguments for handler function, 69
complete code for non–Template Haskell

approach, 212
dispatch function, 185
handling for requests, 206
module for subsite dispatch code, 199
return type for handler functions, 68

Handler monad, 68
Html, 69

setting up for chat subsite (example), 268
Template Haskell generated code, 208
toWaiApp, toWaiAppPlain, and warp, 207
using continuation passing style, 226

do notation, using to construct widget pieces,
43

doctype statement, 31
drop-down lists, 85
dynamic multi pieces, 64
dynamic parameters, 241
dynamic single piece, 64

E
Either, 315
element nodes (XML), 345
else statement, 30
elseif statement, 30
email, authentication with, 176-180
encryption

server-side, for client-side session cookies,
139

session information, 98
Enctype, 80, 86

for form fields, 92
English, language codes for, 194
entities

defining in Persistent, 125

defining routes for scaffolded site, 185
entity encodings, 23
Entity typeclass, 118
Enum tye, 85
environment information, 205
environment variables for configuration,

305-306
error messages, monad transformers and, 165
Error monad, 159, 316
error pages, custom, 57
errorHandler function, 57
errorMessage function, 84
ErrorT monad transformer, 169, 315, 317
escapes (in Hamlet), 26
Esqueleto, 106, 134

switching to streaming response, 221
type-safe DSL for writing SQL queries, 219

Event interface, 288
events

server-sent, for chat subsite (example), 268
stream of, 288
XML, 347

exceptions, 206
running clean-up code when exception is

thrown, 322
streamed responses and, 228, 288

existingLinks function, 163
Expires header, 73
expiresAt function, 73
extensions (Haskell), 8
external files, calling Shakespeare from in Has‐

kell code, 33

F
fan-out operator (&&&), 86
FastCGI, 140, 325

Nginx and, 142
specifying FastCGI variables, 143

on lighttpd, 144
Field type, 81, 83, 91
fieldEnctype function, 92
FieldSettings type, 81, 83, 89
fieldView function, 92
FieldView type, 89
file descriptors, 142
FilePath type, 348
files, serving, 229
Filesystem.Path.CurrentOS module, 348
fileUpload function, 61

360 | Index

Filter typeclass, 118
filtering

Persistent operators for, 119
using in deleteWhere function, 123
using with selectList function, 119

Flush Builder values, 221
forall statement, 30
FormInput, 81

features, 82
FormMessage type, 81, 87, 260
FormResult type, 81, 86
forms, 77-95, 239

categories of, 79
converting between kinds of, 82
creating AForms, 82
custom fields, 91
for blog application (example), 261
input, 90
internationalization (i18n), 87
monadic, 87
more sophisticated fields, 85
naming conventions for form types, 80
running, 86
Sphinx-based search (example), 283
types, 80
validation, 84
values not coming from the user, 93

foundation data type, 16, 186
blog application (example), 256
creating for chat subsite (example), 265
creating for single process pub-sub (exam‐

ple), 299
creating for visitor counter (example), 297
for wiki master site (example), 271
HelloSub (example), 201
initializing data in, 251-254

creating foundation value, 252
defining foundation type, 252
example, complete soure code, 253
using foundation type, 252

uses of, 230
Foundation module, 186
fragments, adding hash fragments to URLs, 74
FromJSON typeclass, 152
fromPathPiece function, 65, 211
functions

for creating widgets, 42
naming scheme for Shakespeare functions

in Haskell code, 35

Template Haskell (TH), 11

G
GADT (generalized algebraic data type), 111
GCC preprocessor, 7
generateFormGet function, 86
generateFormPost function, 86
generic types, 128
get function, 112
GET requests, 149

for forms, 86, 89
handler code for, 94

handler function for, 210
information about, 71
information on, getting inside a Widget, 163
responses to, 16

get404 function, 134
getApplicationDev function, 186
getAuthId function, 174
getBy function, 118
getContentType function, 158
getHomeR function, 155
getMessage function, 56, 100, 259
getOnlyGetR function, 210
getRequest function, 71
getResults function, 286
getSession function, 99
getUrlRender function, 71
getUrlRenderParams function, 71
getXmlpipeR function, 290
getYesod function, 71
GHState typeclass, 205
Glasgow Haskell Compiler (GHC), 2, 6

-ddump-splices option, 11
installation, common pitfalls, 7
language pragmas on the command line, 8
viewing generated code with -ddump-

splices, 203
gzip, 330

H
Hackage, 12
Haddock, 12

documentation, 24
Hamlet, 16, 21

blaze-html packages, 24
converting a template to an Html value, 55
database actions and, 217
i18n interpolation (_{…}), 196

Index | 361

internationalization in, 36
syntax, 26-31

attributes, 29
case statement, 31
conditionals, 30
doctype statement, 31
forall statement, 30
interpolation, 27
maybe, 30
tags, 26
with statement, 31

types, alternatives to HtmlUrl, 35
using to construct widgets, 39

whamlet, 44
variable interpolation in, 23

hamlet (quasi-quoter), 12
handler functions, 15, 204

arguments, 70
dealing with content, 205
defining for subsite route type, 201
dispatch function and route type, 185
for chat subsite (example), 266
Handler modules for, 187
in Handler monad, 70-73

application information from, 71
generating response headers, 72
getting request information, 71
short circuiting, 71

information needed for, 204
naming conventions, 16
return type, 68

HandlerT monad, 68
Html, 69

search handler, Sphinx-based search, 285
short circuiting, 239
short-circuit responses, 206
specifying for resources, 67
streaming responses, 239
using in widgets, 48
writing, 238-241

getting request parameters, 238
return type, ToTypedContext, 238
wiki master site (example), 273

Handler monad, 159
checkM function in, 85
converting IO action to Handler action, 261
isAuthorized method and, 182

HandlerContents typeclass, 206
HandlerData typeclass, 166

HandlerT monad transformer, 68, 160, 166,
232-238
(To)Content and (To)TypedContent, 235
HandlerT App IO monad stack, 234
HasContentType and representations, 236
layering CRandT on top of, 167
power of, 169
warp function, 238

handlerToWidget . runDB, 163
handlerToWidget function, 49, 161, 218

using in Chat widget (example), 269
wrapping call to runInputGet, 165

HasContentType typeclass, 157, 236
hash fragments, 74
HashDB, 171
Haskell, xi

API documentation, 12
calling Shakespeare from, 33
language pragmas, 7
learning, resources for, 5
overloaded strings, 8
packages and libraries available in, 3
QuasiQuotes (QQ), 12
Template Haskell (TH), 10
terminology, 5
tools, Glasgow Haskell Compiler (GHC)

and Cabal, 6
type families, 9

Haskell Platform, 7
Haskell.org Hoogle instance, 12
head tags, external CSS and JavaScript in, 58
headers

Content-Type, 245
request, 158
request and response, 239

Hello, World application, 13, 328
subsite, 199

hierarchical routes, 309
Hoogle, 12
Host header, 158
HTML

coordination with CSS and JavaScript, 39
generation of, superficial approach to, 41
Hamlet templating engine for, 16, 22

how Hamlet produces HTML, 25
handlers dealing with, 205
Html response, 235
in widgets, 41
Nic editor, 260

362 | Index

representations of data, 150
result from Sphinx-based search, 287
xmltohtml, 354

Html type, 23, 245
as return type for handler functions, 69

HtmlUrl type, 35
HTTP

Accept request header, 236
connection manager, 175
methods, 149
Request and Response classes representing,

204
statelessness of, 97

http function, 278, 339
http-conduit package, 278, 335-339

http and httpLbs functions, 339
Manager, 338
Request, 337
Response, 339

httpLbs function, 278, 339
HTTPS, 139

I
i18n (see internationalization)
identifiers

email addresses as, 174, 260
generating for Chat widget (example), 269

IDs
AuthId, 172
database queries fetching by, 117
document IDs containing search string, 286
generating for widgets, 44
insert function and, 121
UserId for blog application, 260

if statement, 30
Import module, 186
Import.hs file, 185
index setting (Sphinx), 282
indexer, 282
indexer searcher command, 282
input forms, 80, 90

differences from applicative and monadic
forms, 90

FormInput, 81
insert function, 112, 120
internationalization (i18n), 191-197

blog application (example)
setting title messages, 261

error messages, 84

form messages in blog application (exam‐
ple), 260

in blog application (example), 257
in forms, 87
in Hamlet, 36
interpolation, 196
message files, 194

specifying types, 195
overview, 193
RenderMessage typeclass, 195
translating phrases, not words, 197

interpolation, 27
(see also variable interpolation)
i18n (_{…}), 196
in Julius, 33
in Lucius, 31
in whamlet, 45
URL, 28
using a ʌ (caret), 28
variable, 27
_ (underscore), using, 36

interpreted languages versus compiled lan‐
guages, 20

invalidArgs function, 72
IO base monad, 45, 84, 160

ErrorT transformer stacked on, 315
IO Response, 226
iopt function, 90
IORef typeclass, 166, 252, 298
ireq function, 90
is member operator (<-.), 119
is not member operator (/<-.), 119
isAuthorized function, 60, 180, 307
isLoggedIn function, 269
IsString type, 8, 83, 344

drawback to, 9
isWriteRequest function, 60

J
JavaScript

coordination with HTML and CSS, 39
for form controls, 95
for widgets in static files, 189
in external files, 58
Javascript type and ToJavascript typeclass,

24
Julius templating language for, 21

syntax, 33
minification, with hjsmin package, 33

Index | 363

joinPath function, 53, 55
JSON

helper functions for, 152
representations of data, 150
responses, 19

JSON web service, creating, 277-279
client, 278
server, 277

Julius, 16, 21
example of use, 23
syntax, 33
using to construct widgets, 39

K
Keter, 137

deploying web applications, 137

L
language pragmas, 8
languages

Accept-Language header, 158
language codes, 194

languages function, 73
lazy bytestrings, 327
lift

functions autolifted with MonadHandler,
165

in chat subsite handlers (example), 267
lifting a call to next monad up, 160
lifting IO action to upper monad, 316
liftIO, 73
liftIO getCurrentTime, 261
running Handler actions in applicative

form, 93
using in subsite to get master site default‐

Layout, 201
liftControl function, 319
liftIO function, 321
lighttpd

CGI on, 145
FastCGI on, 144

LIKE operator (SQL), 131
limits and offsets, SelectOpt, 119
Linux, GHC and Haskell Platform packages on,

7
LiteApp, 244
logging

MonadLogger typeclass, 73
shouldLog function, 61

loginDest, 174
logoutDest, 174
lookupCookie function, 72
lookupGetParam function, 48
lookupSession function, 99
Lucius, 16, 21

example of use, 22
syntax, 31-33
using to construct widgets, 39

M
Mac OS X, installing GHC and Cabal, 7
main function, 232

environment variable lookup in, 305
for wiki master site (example), 274
replacing with warp function, 238

makeApplication function, 186
makeSessionBackend function, 98
Manager type, 278, 338
many-to-many relationships, 126
maximumContentLength function, 61
maybe

database query results, 117
in Hamlet, 30
in SQL, 124
optional default value in AForm, 83
optional fields in AForm, 83

maybeRoute, 234
message files, 186, 194

blog application (example), 257
specifying types, 195

messages
in blog application (example), 259
session, 100
using i18n messages for title in blog applica‐

tion, 261
meta tags, 42
MForms, 81, 87
migrate function, 114
migrations (see database migrations)
mime types, 151

discovering for a possible representation,
157

mime-mail-ses package, 176
mixins (in Lucius), 32
mkMessage function, 195
mkMessages function, 186
mkMigrate function, 114
mkPersist function, 109

364 | Index

mkYesod TH function, 14, 185
mkYesodData function, 186
mkYesodDispatch function, 186
mkYesodSubData function, 201
mkYesodSubDispatch function, 268
MMVars, 298
Model.hs file, 185
modularity (Yesod), 3
modules for a subsite, 199
Monad instance (of Widget), 43
monad transformers, 45, 315
monad-control, 315-323

lost state, 322
more complicated cases, 323
overview, 315
real-life examples, 322
types, 318

MonadControlIO, 321
MonadTransControl, 319

MonadBaseControl typeclass, 238
MonadControlIO typeclass, 321
MonadCRandom typeclass, 166
monadcryptorandom package, 166
MonadHandler typeclass, 49, 69, 165
monadic forms, 80, 81, 87

(see also MForms)
MonadIO typeclass, 73, 161, 238, 321
MonadLogger typeclass, 73, 238
MonadResource typeclass, 165, 238
monads, 159-170

adding a new monad transformer, 166-169
database-driven navbar (example), 161
HandlerT App IO monad stack, 234
monad transformers, 159
performance and error messages, 165
request information (example), 163

MonadTrans typeclass, 238, 315, 321
MonadTransControl typeclass, 319
MongoDB, 112

ByteStrings, use for IDs, 128
mongoSettings, 129
uniqueness constraints and, 117

mopt function, 89
mpsGeneric, 129
mreq function, 89

N
Name type, 343
namespaces (XML), 289, 344

neverExpires function, 73
newIdent function, 44
newtype declarations, 6
Nginx, 140

and FastCGI, 142
specifying FastCGI variables, 143

server process, 142
Nic HTML editor, 260
NoImplicitPrelude extension, 187
notFound function, 72
Nothing, NULL versus, 117
NULL values, uniqueness and, 116

O
OAuth, 171
one-to-many relationships, 126
OpenID, 171
optionsEnum function, 86
OR operator, 119
overlapping in routes, 66
OverloadedStrings type, 8, 84, 328

P
pagination, 221
ParseRoute class and parseRoute function, 15
parsing routes, 234
paseUrl function, 337
path pieces, 64

beginning with exclamation point (!), 66
types of, 64

pathInfo, 210
in a subsite, 212

PathMultiPiece typeclass, 64
defining an instance, 65

PathPiece typeclass, 65, 241
paths

converting requested path into route value,
234

in WAI, 226
performance

advantage of using Esqueleto, 220
advantages of Yesod and Haskell, 2
monad transformer levels and, 165

permissionDenied function, 72
persistence, 251
Persistent, 105-135

attributes, 123-126
custom fields, 129
database migrations, 113

Index | 365

cases not handled by Persistent, 115
rules about, 115

features, 105
filtering operators, 119
integration with Yesod, 132
joins in, 218
manipulating database data, 120

deleting data, 123
insert function, 120
update function, 122

monad transformers, 160
PostgreSQL, working with, 134
queries, 117

fetching by ID, 117
fetching by unique constraint, 118
using select functions, 118

raw SQL, 130
relationships in data, 126
setting up entities for blog application, 256
solving the boundary issue, 107

code generation, 109
PersistStore, 112
types, 108

types, closer examination of, 127
uniqueness constraints, 116
writing SQL queries in, using Esqueleto, 220

PersistEntity typeclass, 108, 128
generating instance for each data type

defined, 109
PersistField typeclass, 108
persistFileWith function, 109
persistLowerCase quasi-quoter, 109
PersistStore typeclass, 112, 160
PersistValue typeclass, 108, 128
pluralization, 193
PORT environment variable, 207
POST requests, 149

for forms, 86, 89
handler code for, 94

information about, 71
Post/Redirect/Get, 56, 100, 259
PostgreSQL, 107, 112

working with, 134
preEscapedToHtml, 287
Prelude, 186, 348
printMigration function, 115
processing instructions (PIs), 345
progress, viewing (publish/subscribe example),

301

projections, 220
provideJson function, 153
provideRep function, 151, 236
provideRepType function, 158
publish/subscribe, single process, 299-303

allocating a job, 300
complete source code, 301-303
forking the background job, 300
foundation data type, 299
viewing progress, 301

PUT method, 150

Q
QtWebkit, 143
QuasiQuotes (QQ), 12, 16

persistLowerCase, 109
using to embed Shakespeare in Haskell

code, 33
correct language extensions and syntax,

34
queries, database, 117

fetching by ID, 117
fetching by unique constraint, 118
in widgets, 217
using select functions, 118
writing SQL queries with Esqueleto, 219

query function, 286
query strings, 74

embedding query string parameters in
Hamlet, 28

generating parameters for, 209
handling by URL rendering functions, 25
parameters produced by renderRoute func‐

tion, 53
quotation marks, Hamlet attributes, 29

R
R suffix on resource names, 14
race conditions, 122
radio buttons, 86
rapid prototyping, 20
rawSql function, 219
Reader monad, 159, 317
ReaderT monad transformer, 160, 166, 169,

205, 318
readTChannel function, 301
record wildcard syntax, 252
redirect function, 71, 242

366 | Index

calling during handler function execution,
206

redirects, indicated by cleanPath function, 54
RedirectUrl typeclass, 74
redirectUrlDest function, 102
redirectWith function, 71
relationships in database data, 126, 128
reload mode, calling Shakespeare from Haskell

code, 34
renderBuilder function, 288, 290
rendering functions (URL), 25
renderMessage function, 196
RenderMessage typeclass, 87, 195

creating instance for blog application
(example), 260

creating instance for wiki master site (exam‐
ple), 273

RenderRoute class, 15
renderRoute function, 15, 53, 232
RenderRoute typeclass, 53, 231
replace function, 122
representations, 236
Request class, 204, 226, 326, 337
request headers, 158
request methods, 67, 149
requests, 203-214

auhorization in blog application (example),
258

code changes in Yesod 1.2, 203
dispatch, 206

complete code for non-Template Haskell
approach, 212

generated code, 208
toWaiApp, toWaiAppPlain, and warp,

207
getting request parameters, 238
handlers, 203

content, 205
layers, 204
short-circuit responsed, 206

handling, 232
representations of data, 236
request body (WAI), 328

resources, 17
handler functions, specifying, 67
HomeR route (example), 14
names of, 66
resource allocation in WAI, 329
single URL for each resource, 151

writing, patterns for, 65
ResourceT monad transformer, 166, 204, 338
respondSource API, 240
respondSource function, 301
respondSourceDB function, 221
Response class, 204, 326, 339
response headers, handler functions generating,

72
responseFile function, 229
responseLBS function, 226
responses, 226

generating streaming response bodies, 227
non-HTML, 19
response body (WAI), 327
streaming response in WAI, 329

responseSource function, converting from WAI
to Yesod, 240

responseSourceDB function, 288
RESTful features in Yesod, 149-158

representations of data, 150
JSON, conveniences for, 152
new data types, 154

request headers, 158
request methods, 149

Result type, 285
returnJson function, 153
reverse proxy, running Warp via, 140
route attributes, 307-311

alternative to, hierarchical routes, 309
routeAttrs function, 307
routing, 14, 18, 63-68

blog application (example), 257
converting requested path into route value,

234
defining routes for chat subsite (example),

266
defining routes for scaffolded site, 185
generating routes for subsites, 209
generating subsite route data type and parse

and render functions, 201
handler functions for routes, 187
handler specification for requests, 67
links and, 24
mkYesod TH function, 14
modeling route data type, 241
overlap checking for routes, 66
resource names, 66
route data type, 230
route syntax, 63

Index | 367

splitting requested path into pieces, 64
route type and route render function, 185
setting up routes for wiki master site (exam‐

ple), 271
subsite embedded in master site route defi‐

nition, 201
using LiteApp, 244
using Template Haskell, 242

runDB function, 132, 161
runErrorT function, 317
runFormGet function, 86
runFormPost function, 86
runFormPostNoToken function, 86
runHandler function, 206
RunHandlerEnv typeclass, 205
RunInBase function, 321
runInputGet function, 90, 267
runInputPost function, 90
runMigration function, 114

printing of migrations on stderr, 115
runMigrationSilent function, 115
running applications, 17
runSqlite function, 112

S
scaffold sites, 19
scaffolded site

defaultLayout function, 188
file structure, 184

cabal file, 184
Foundation and Application modules,

185
Handler modules, 187
Import module, 186
routes and entities, 185

static files, 188
widgetFile function, 187

scaffolding, 183
SCGI, 140, 325
script tags

external JavaScript in, 58
fine-grained control over insertion of, 42

search (debugging utility), 282
search, Sphinx-based (see Sphinx-based search)
searchd, 281
select functions, 118

select, replacing with selectSource, 221
selectList, 118
selectSource, 290

SELECT statement, 219
SelectOpt typeclass, 118

constructors setting options, 120
selectRep function, 151, 236
sendChunkText function, 301
sendFile function, 72
sendfile system call, 229
sendFlush function, 301
sendmail executable, 176
sendResponse function, 72
sendWaiApplication function, 268
sendwaiResponse function, 72
sessions, 97-104

AuthId and, 172
clientsession, 97
controlling, 98
messages, 100
operations, 99
server-side, 172
session state, GHState typeclass, 205
ultimate destination, 102
Yesod user session framework, 239

setCookie function, 72
setHeader function, 72
setLanguage function, 73
setMessage function, 56, 100, 259
setSession function, 99
Settings types, 333-334
Settings.staticRoot function, 141
setTitleI function, 261
setUltDest function, 102
setUltDestCurrent function, 102
setUltDestReferer function, 102
Shakespearean family of template languages,

21, 245
calling Shakespeare from Haskell code, 33
getting the most from, guidelines for, 38
in widgets, 39
other Shakespeare languages, 37
synopsis of, 21
syntax, 25

Hamlet, 26-31
Lucius,

type-safe URLs, 24
types, 23
URL rendering function, 247

shamlet (quasiquoter), 36
Html value produced by, 151

shamletFile function, 36

368 | Index

share function, 115
short circuiting handler functions, 71, 239
short-circuit responses, 206
shouldLog function, 61
simpleHttp function, 336
single process pub-sub (see publish/subscribe,

single process)
sinkNull sink, 339
site template, 184
source setting (Sphinx), 282
Source type, 240
Source typeclass, 118
spawn-fcgi program, 142
Sphinx package, 281
Sphinx-based search (case study), 281-295

basic Yesod setup, 282
complete code, 290-295
searching, 285
setting up Sphinx, 281
streaming xmlpipe output, 288

SQL
more complex, in Esqueleto library, 134
raw SQL in Persistent, 130
uniqueness, NULL values and, 116

SQL joins, 215-224
database queries in widgets, 217
multiauthor blogs, 215
streaming, 220
using Esqueleto, 219
writing joins, 218

SqlBackend typeclass, 112, 128, 160
Persistent and, 129

SQLite, 112
Sphinx-based search database, 282

sqlSettings function, 128
SSL, 176
SSL certificates, 139
Stackage, 7
stage restriction, 11
statelessness of HTTP, 97
StateT monad transformer, 169
static files

in scaffolded site, 188
serving from a separate domain name, 141
serving from a subsite, 68
serving over HTTPS, 139
smarter, 59

static pieces, 64
static root in Settings.hs file, 189

streaming, 220
complete code for streaming HTML

response, 222
database responses, 283
generating streaming response bodies, 227
streaming response in WAI, 329
xmlpipe output from Sphinx-based search,

288
strings

interpolated, creating with shakespeare-text,
37

overloaded Strings, 8
String type, converting to raw content, 156

style tags, external CSS in, 58
subsites, 199-201

creating, Hello, World (example), 199
for authentication, 174
generated code for dispatch of responses,

211
generating query string parameters for, 209
static, 68
support for, in dispatch, 206

system libraries for GHC and Haskell Platform,
7

system-filepath package, 348

T
tags (HTML), 26

closing tags furnished by Hamlet, 27
Template Haskell (TH), 10

functions inserting source code location
into log messages, 73

generated code for dispatch of responses,
208

parsing and rendering of routes, 15
routing with, 242

templates, 2
text

creating interpolated strings in shakespeare-
text, 37

RenderMessage instance for Text, 87
Text.XML module, 345, 347
Text.XML.Cursor module, 350
text/html mime type, 151
TH (see Template Haskell)
timeouts (session), 98
toContent function, 155
ToContent typeclass, 156, 205, 236
ToCss typeclass, 24

Index | 369

toHtml function, 23
ToJavascript typeclass, 24
ToJSON typeclass, 152
ToMarkup typeclass, 23
toPathPiece function, 65, 210, 290
toSqlKey function, 286
ToTypedContent typeclass, 156, 205, 236

return type for handler functions, 238
toWaiApp function, 207, 230
toWaiAppPlain function, 207, 230
toWidget method, 42
ToWidget typeclass, 42
ToWidgetBody typeclass, 42
ToWidgetHead typeclass, 42
transactions, 113
translations

message files, 194
messages for chat subsite (example), 267
translating phrases, not words, 197

TVars, 298
type constructors, 6
type safety, 1
type variables, 6
type-safe URLs, 18, 24, 230

syntax, 28
Typeable type, 256
typeclasses, 230

advantages over record type, 51
TypedContent typeclass, 69, 151, 154, 235
types

associated, 230
data sent to and from a database, 108
foundation data type in Yesod, 230
in Haskell, 5

and data constructors, names of, 6
in Persistent, 127

more complicated, more generic, 128
in Shakespearean templates, 23
in whamlet, 45
module for subsite data types, 199
monad-control, 318
new data types representing data, 154
Settings, 333-334
specifying for messages, 195
textual data types in shakespeare-text exam‐

ple, 38
type declarations in Haskell, 6
type families, 9

U
ultimate destination, 102
unique identifiers, 269
Unique typeclass, 117
uniqueness constraints, 116

database queries on, 118
update function, 122
Update typeclass, 122
updateWhere function, 122
urlEncodeBody function, 338
urlRenderOverride function, 59, 141
URLs

adding information to, with RedirectUrl and
Fragment, 74

interpolation
simplified Hamlet and, 36

pieces, splitting requested path into, 64
types of pieces, 64

rendering and parsing with Yesod typeclass,
51
using cleanPath, 53
using joinPath, 53

rendering functions, 25, 247
type-safe, 18, 24
used in linking, types of, 24

V
validation (forms), 84
variable interpolation, 23

in Hamlet, 23, 27
variables (in Lucius), 32
visitor counter (example), 297-298

W
WAI (Web Application Interface), 17, 225-229,

225, 325-331
handlers, 204
Hello, World application (example), 328
interface, 326

request body, 328
response body, 327

interoperability with, JSON web service
server (example), 277

middleware, 330
pathInfo, 210
promoting WAI applicaion to a Yesod han‐

dler, 268
resource allocation, 329

370 | Index

sending raw WAI response, 72
streaming response, 329
support for using WAI applications as sub‐

sites, 206
version 3.0, 325
Yesod interaction with, 230-232

WAI backends, 139
wai-conduit helper package, 228
wai-eventsource package, 268
wai-handler-launch, 144
wai-handler-webkit, 143
waiRequest function, 71
warp function, 207, 238, 274
Warp web server, 2, 17, 139

advantages of using, 140
Nginx configuration, 140
server process, 142
warp function, 20

warpEnv function, 207, 238
Web Application Interface (see WAI)
web development

challenge of coordinating HTML, CSS, and
JavaScript, 39

type safety and, 1
Yesod and Haskell, 1

WebKit, 140
wai-handler-webkit, 143

whamlet, 44
types, 45

whitespace
escape rules in Hamlet, 26
in Hamlet and Cassius, 21

Widget monad, 159
getting request information in (example),

163
Widget type synonyms, 45
widgetFile function, 187
widgets, 16, 39-49, 247

capabilities of Widget and Handler, 161
combining, 43
components of, 41
constructing, 42

functions for, 42
database queries in, 217
for chat subsite (example), 269
generating ids for, 44
using, 46
using handler fuctions in, 48
using whamlet, 44

types, 45
Widget type, returned from running forms,

86
WidgetT monad transformer, 69, 160, 166
widgetToPageContent function, 55, 259
wihUrlRenderer function, 247
wiki (example), 265-275

chat subsite, 265-271
handlers for master site, writing, 273
master site data, 271
master site instances, 272
running the master site, 274

Windows systems, installing GHC and Cabal, 7
with statement, 31
withManager function, 278
withUrlRenderer function, 55, 259
write requests, 182, 258
Writer monad, 317
WriterT monad transformer, 169

X
XML

representations of data, 150
Sphinx search results document, 288
streaming database content to, 281

xml-conduit package, 288, 341-355
cursor, 348
documents, 346
file paths, 348
Text.XML module, 347
types, 343

events, 347
nodes, types of, 344

xml-hamlet package, 351-354
xml-types package, 341
xml2html, 354
xmlpipe2, 282

streaming output, 288
XPath, 348

Y
Yesod, xi, 225-248

1.2 release, 203
code generation, 2
concise code for web applications, 2
dynamic parameters, 241
handler functions, writing, 238-241
HandlerT monad transformer, 232-238
Hello, Warp application (example), 225

Index | 371

interaction with WAI, 230-232
Yesod application (example), 230

language pragmas, handling of, 8
modularity, 3
MonadHandler typeclass, 49
monads (see monads)
performance advantages of, 2
powerful ecosystem available with, 3
quick start guide for GHC and Cabal, 7
scaffold site, 19
Shakespeare, 245
widgets, 247

yesod add-handler command, 187
yesod devel command, 19, 184, 326

library-only and dev flags, 184
yesod executable, 183
yesod init command, 19, 184
Yesod typeclass, 51-61, 230

advantages of typeclass over record type, 51
authentication/authorization, 60
cleanPath member function, 207
creating instance for wiki master site (exam‐

ple), 272
custom error pages, 57
defaultLayout function, 55
documentation, 61
external CSS and JavaScript, 58
methods handling authorization, 172
rendering and parsing URLs, 51

using cleanPath, 53
using joinPath, 53

simple settings, methods for, 61

smarter static files, 59
yesod-auth package, 60, 171
yesod-form package, 77
yesod-static command, 189
Yesod.Core, documentation, 98
Yesod.Core.Types, 166
YesodApp typeclass, 204
YesodAuth typeclass, 174

creating instance for blog application
(example), 260

creating instance for wiki master site (exam‐
ple), 273

required declarations in an instance, 174
YesodAuthPersist typeclass, 260
YesodDB monad, 159, 161
yesodDispatch function, 232
YesodDispatch typeclass, 15, 207, 230, 232

instance of, 210
writing an instance, 242

YesodMessage typeclass, 194
YesodPersist typeclass, 132

creating instance for blog application
(example), 260

YesodPersistentBackend typeclass, 161
YesodPersistRunner typeclass, 283
YesodRequest data type, 71, 204
YesodResponse data type, 204
yesodRunner function, 210, 234
YesodRunnerEnv typeclass, 206, 232, 234
yesodSubDispatch function, 211
YesodSubDispatch typeclass, 207
YesodSubRunnerEnv typeclass, 206

372 | Index

About the Author
Michael Snoyman, creator of Yesod, has been programming for about 15 years, using
Haskell for the past five. He has ten years of web development experience in a wide
variety of environments as well as time spent creating documentation.

Colophon
The animals on the cover of Developing Web Apps with Haskell and Yesod, Second Edi‐
tion are a common rhinoceros beetle (Xylotrupes ulysses) and an Apollo butterfly
(Parnassius apollo).

Common rhinoceros beetles are famous for their size and unique head shape—the
males possess a set of large horns, one pointing from the top of the head and another
from the center of the thorax. These horns are used to fight other males for mating
rights, and also to dig in search of food. The size of the horn relative to the body is a
good indication of physical health and nutrition.

Male rhinoceros beetles can reach up to six inches in length, and this large size pro‐
vides protection from most predators. However, these beetles cannot bite or sting,
which makes them popular pets in some Asian countries. Their violent bids for
female attention also make them widely used for gambling fights.

The Apollo butterfly is a beautiful white butterfly with black spots on the forewings
and red eyespots on the hindwings. The size, placement, and shade of these spots can
vary depending on the region the butterfly is from. This makes them a very attractive
species to collectors, who endeavor to capture one of each variant.

These butterflies are native to Europe, and can be found as far east as central Asia.
They prefer a habitat of mountain meadows that contain many nectar-providing
flowers and rocky outcroppings for cocoon formation.

Due in part to over-collecting, but mostly to habitat loss, these butterflies are listed as
“vulnerable” on the IUCN Red List. There are laws in place to restrict trade of indi‐
vidual Apollo butterflies, but more conservation needs to be done to prevent further
loss of habitat. Climate change, acid rain, and urbanization are all contributing fac‐
tors to the displacement of this species, but thankfully countries like Poland and Ger‐
many have small groups of conservationists working to protect their local
populations.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

http://animals.oreilly.com

The cover fonts are URW Typewriter and Guardian Sans. The text font is Adobe
Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is Dal‐
ton Maag’s Ubuntu Mono.

	Cover
	Table of Contents
	Preface
	Who This Book Is For
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Part I. Basics
	Chapter 1. Introduction
	Type Safety
	Concise Code
	Performance
	Modularity
	A Solid Foundation

	Chapter 2. Haskell
	Terminology
	Tools
	Language Pragmas
	Overloaded Strings
	Type Families
	Template Haskell
	QuasiQuotes
	API Documentation
	Summary

	Chapter 3. Basics
	Hello, World
	Routing
	Handler Function
	The Foundation
	Running
	Resources and Type-Safe URLs
	Non-HTML Responses
	The Scaffolded Site
	Development Server
	Summary

	Chapter 4. Shakespearean Templates
	Synopsis
	Hamlet (HTML)
	Lucius (CSS)
	Cassius (CSS)
	Julius (JavaScript)

	Types
	Type-Safe URLs

	Syntax
	Hamlet Syntax
	Lucius Syntax
	Cassius Syntax
	Julius Syntax

	Calling Shakespeare
	Alternative Hamlet Types

	Other Shakespeare
	General Recommendations

	Chapter 5. Widgets
	Synopsis
	What’s in a Widget?
	Constructing Widgets
	Combining Widgets
	Generating IDs
	whamlet
	Types

	Using Widgets
	Using Handler Functions
	Summary

	Chapter 6. The Yesod Typeclass
	Rendering and Parsing URLs
	joinPath
	cleanPath

	defaultLayout
	getMessage

	Custom Error Pages
	External CSS and JavaScript
	Smarter Static Files
	Authentication/Authorization
	Some Simple Settings
	Summary

	Chapter 7. Routing and Handlers
	Route Syntax
	Pieces
	Resource Name
	Handler Specification

	Dispatch
	Return Type
	Arguments

	The Handler Functions
	Application Information
	Request Information
	Short-Circuiting
	Response Headers

	I/O and Debugging
	Query String and Hash Fragments
	Summary

	Chapter 8. Forms
	Synopsis
	Kinds of Forms
	Types
	Converting
	Creating AForms
	Optional Fields

	Validation
	More Sophisticated Fields
	Running Forms
	i18n
	Monadic Forms
	Input Forms
	Custom Fields
	Values That Don’t Come from the User
	Summary

	Chapter 9. Sessions
	clientsession
	Controlling Sessions
	Session Operations
	Messages
	Ultimate Destination
	Summary

	Chapter 10. Persistent
	Synopsis
	Solving the Boundary Issue
	Types
	Code Generation
	PersistStore

	Migrations
	Uniqueness
	Queries
	Fetching by ID
	Fetching by Unique Constraint
	Select Functions

	Manipulation
	Insert
	Update
	Delete

	Attributes
	Relations
	A Closer Look at Types
	More Complicated, More Generic

	Custom Fields
	Persistent: Raw SQL
	Integration with Yesod
	More Complex SQL
	Something Besides SQLite
	Summary

	Chapter 11. Deploying Your Web App
	Keter
	Compiling
	Files to Deploy
	SSL and Static Files
	Warp
	Nginx Configuration
	Server Process

	Nginx + FastCGI
	Desktop
	CGI on Apache
	FastCGI on lighttpd
	CGI on lighttpd

	Part II. Advanced
	Chapter 12. RESTful Content
	Request Methods
	Representations
	JSON Conveniences
	New Data Types

	Other Request Headers
	Summary

	Chapter 13. Yesod’s Monads
	Monad Transformers
	The Three Transformers
	Example: Database-Driven Navbar
	Example: Request Information
	Performance and Error Messages
	Adding a New Monad Transformer
	Summary

	Chapter 14. Authentication and Authorization
	Overview
	Authenticate Me
	Email
	Authorization
	Summary

	Chapter 15. Scaffolding and the Site Template
	How to Scaffold
	File Structure
	Cabal File
	Routes and Entities
	Foundation and Application Modules
	Import
	Handler Modules

	widgetFile
	defaultLayout
	Static Files
	Summary

	Chapter 16. Internationalization
	Synopsis
	Overview
	Message Files
	Specifying Types

	RenderMessage typeclass
	Interpolation
	Phrases, Not Words

	Chapter 17. Creating a Subsite
	Hello, World

	Chapter 18. Understanding a Request
	Handlers
	Layers
	Content
	Short-Circuit Responses

	Dispatch
	toWaiApp, toWaiAppPlain, and warp
	Generated Code
	Complete Code

	Summary

	Chapter 19. SQL Joins
	Multiauthor Blog
	Database Queries in Widgets
	Joins
	Esqueleto
	Streaming
	Summary

	Chapter 20. Yesod for Haskellers
	Hello, Warp
	What About Yesod?
	The HandlerT Monad Transformer
	(To)Content, (To)TypedContent
	HasContentType and Representations
	Convenience warp Function

	Writing Handlers
	Getting Request Parameters
	Short-Circuiting
	Streaming

	Dynamic Parameters
	Routing with Template Haskell
	LiteApp

	Shakespeare
	The URL Rendering Function

	Widgets
	Details We Won’t Cover

	Part III. Examples
	Chapter 21. Initializing Data in the Foundation Data Type
	Step 1: Define Your Foundation
	Step 2: Use the Foundation
	Step 3: Create the Foundation Value
	Summary

	Chapter 22. Blog: i18n, Authentication, Authorization, and Database
	Chapter 23. Wiki: Markdown, Chat Subsite, Event Source
	Subsite: Data
	Subsite: Handlers
	Subsite: Widget
	Master Site: Data
	Master Site: Instances
	Master Site: Wiki Handlers
	Master Site: Running
	Summary

	Chapter 24. JSON Web Service
	Server
	Client

	Chapter 25. Case Study: Sphinx-Based Search
	Sphinx Setup
	Basic Yesod Setup
	Searching
	Streaming xmlpipe Output
	Full Code

	Chapter 26. Visitor Counter
	Chapter 27. Single-Process Pub/Sub
	Foundation Data Type
	Allocate a Job
	Fork Our Background Job
	View Progress
	Complete Application

	Chapter 28. Environment Variables for Configuration
	Chapter 29. Route Attributes
	Alternative Approach: Hierarchical Routes

	Part IV. Appendices
	Appendix A. monad-control
	Overview
	Intuition
	Types
	MonadTransControl
	MonadControlIO

	Real-Life Examples
	Lost State
	More Complicated Cases

	Appendix B. Web Application Interface
	The Interface
	Response Body
	Request Body

	Hello, World
	Resource Allocation
	Streaming Response
	Middleware

	Appendix C. Settings Types
	Appendix D. http-conduit
	Synopsis
	Concepts
	Request
	Manager
	Response
	http and httpLbs

	Appendix E. xml-conduit
	Synopsis
	Types
	The Four Types of Nodes
	Documents
	Events

	Text.XML
	A Note About File Paths

	Cursor
	xml-hamlet
	xml2html

	Index
	About the Author

