

JavaScript lies at the heart of almost every
modern web application, from social apps to
the newest browser-based games. Though
simple for beginners to pick up and play with,
JavaScript is a flexible, complex language that
you can use to build full-scale applications.

Eloquent JavaScript, 2nd Edition dives
deep into the JavaScript language to show you
how to write beautiful, effective code. Author
Marijn Haverbeke immerses you in example
code from the start, while exercises and full-
chapter projects give you hands-on experience
with writing your own programs. As you build
projects such as an artificial life simulation,
a simple programming language, and a paint
program, you’ll learn:

	 The essential elements of programming,
including syntax, control, and data

	How to organize and clarify your code with
object-oriented and functional programming
techniques

	How to script the browser and make basic
web applications

	How to use the DOM effectively to interact
with browsers

	How to harness Node.js to build servers and
utilities

This edition is thoroughly revised and modern-
ized to reflect the current state of JavaScript
and web browsers, with brand-new material,
such as a chapter on code performance in
JavaScript, and expanded coverage of recursion
and closures. All source code is available online
in an interactive sandbox, where you can edit
the code, run it, and see its output instantly.

Isn’t it time you became fluent in the language
of the Web?

About the Author
Marijn Haverbeke is an independent developer
and author, focused primarily on programming
languages and tools for programmers. He
spends most of his time working on open
source software, such as the CodeMirror
editor and the Tern type inference engine.

$39.95 ($41.95 CDN)	 Shelve In: Programming Languages/JavaScript

TH E F I N EST I N G E E K E NTE RTA I N M E NT™
www.nostarch.com

“I LIE FLAT.” This book uses a durable binding that won’t snap shut.

5 3 9 9 5

9 781593 275846

ISBN: 978-1-59327-584-6

6 89145 75846 7

SFI-00000

Master the Language
of the Web

A Modern Introduction
to Programming

Marijn Haverbeke

Eloquent JavaScript
H

averbeke

2nd Edition

Second Edition

ELOQUENT JAVASCRIPT

Praise for the first edition of Eloquent JavaScript

“I became a better architect, author, mentor and developer because of this

book. It deserves to share shelf space with Flannagan and Crockford.”

—Angus Croll, Twitter Developer

“This is the book I give out when people ask me how to learn proper

JavaScript.”

—Chris Williams, organizer of JSConf US

“One of the best JavaScript books I’ve read.”

—Rey Bango, jQuery Team Member and Client-Web Community Program
Manager at Microsoft

“A really good guide to JavaScript; but even more than that, this book is a

great guide to programming.”

—Ben Nadel, Chief Software Engineer at Epicenter Consulting

“A good book, suitable for those without experience in JavaScript and even

those without programming experience.”

—Nicholas Zakas, author of High Performance JavaScript and
The Principles of Object-Oriented JavaScript

“Does a good job of detailing the fundamentals and explaining concepts like

the stack and the environment. This attention to detail is what sets the book

apart from other JavaScript books.”

—Designorati

“If you’re new to JavaScript, the first thing I’d recommend you do is visit

Eloquent JavaScript and check out Marijn Haverbeke’s introduction to the

language.”

—CNET UK

E l o q u e n t
J a v a S c r i p t

A M o d e r n I n t r o d u c t i o n
t o P r o g r a m m i n g

by Mari jn Haverbeke

San Francisco

Eloquent JavaScript, 2nd Edition. Copyright © 2015 by Marijn Haverbeke.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,

electronic or mechanical, including photocopying, recording, or by any information storage or retrieval

system, without the prior written permission of the copyright owner and the publisher.

Printed in USA

First printing

18 17 16 15 14   1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-584-6

ISBN-13: 978-1-59327-584-6

Publisher: William Pollock

Production Editor: Serena Yang

Cover Illustration: Wasif Hyder

Developmental Editor: Jennifer Griffith-Delgado

Technical Reviewers: Alex Cash, Angus Croll, and Peter van der Zee

Copyeditor: Kim Wimpsett

Compositor: Serena Yang

Proofreader: James M. Fraleigh

The illustrations are contributed by various artists: computer (introduction) and unicycle people

(Chapter 21) by Max Xiantu. Sea of bits (Chapter 1) and weresquirrel (Chapter 4) by Margarita

Martínez and José Menor. Octopuses (Chapter 2 and 4) by Jim Tierney. Object with on/off switch

(Chapter 6) by Dyle MacGregor. Regular expression diagrams in Chapter 9 generated with Regexper

by Jeff Avallone. Game concept for Chapter 15 by Thomas Palef. Pixel art in Chapter 16 by Antonio

Perdomo Pastor.

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.

245 8th Street, San Francisco, CA 94103

phone: 415.863.9900; info@nostarch.com

www.nostarch.com

The Library of Congress has catalogued the first edition as follows:

Haverbeke, Marijn.
 Eloquent JavaScript: a modern introduction to programming / by Marijn Haverbeke.
 p. cm.
 Includes index.
 ISBN-13: 978-1-59327-282-1
 ISBN-10: 1-59327-282-0
 1. JavaScript (Computer program language) I. Title.
 QA76.73.J39H38 2009
 005.13'3--dc22
 2010032246

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other

product and company names mentioned herein may be the trademarks of their respective owners. Rather

than use a trademark symbol with every occurrence of a trademarked name, we are using the names only

in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the

trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution

has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any

liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or

indirectly by the information contained in it.

For Lotte and Jan

BRIEF CONTENTS

Introduction . 1

PART I: LANGUAGE

Chapter 1: Values, Types, and Operators . 11
Chapter 2: Program Structure . 23
Chapter 3: Functions . 41
Chapter 4: Data Structures: Objects and Arrays . 59
Chapter 5: Higher-Order Functions . 81
Chapter 6: The Secret Life of Objects . 99
Chapter 7: Project: Electronic Life .119
Chapter 8: Bugs and Error Handling. .139
Chapter 9: Regular Expressions .153
Chapter 10: Modules .175
Chapter 11: Project: A Programming Language. .191

PART II: BROWSER

Chapter 12: JavaScript and the Browser .207
Chapter 13: The Document Object Model .215
Chapter 14: Handling Events .235
Chapter 15: Project: A Platform Game .253
Chapter 16: Drawing on Canvas .275
Chapter 17: HTTP .299
Chapter 18: Forms and Form Fields .315
Chapter 19: Project: A Paint Program .331

PART III: BEYOND

Chapter 20: Node.js .347
Chapter 21: Project: Skill-Sharing Website .367
Chapter 22: JavaScript and Performance. .389
Exercise Hints .407
Index. .429

CONTENTS IN DETA IL

INTRODUCTION 1
On Programming . 2
Why Language Matters . 3
What Is JavaScript? . 6
Code, and What to Do with It . 7
Overview of This Book . 7
Typographic Conventions . 8

PART I: LANGUAGE

1
VALUES, TYPES, AND OPERATORS 11
Values . 12
Numbers . 12

Arithmetic . 13
Special Numbers . 14

Strings . 14
Unary Operators . 15
Boolean Values . 16

Comparisons . 16
Logical Operators . 17

Undefined Values . 18
Automatic Type Conversion . 18

Short-Circuiting of Logical Operators . 19
Summary . 20

2
PROGRAM STRUCTURE 23
Expressions and Statements . 23
Variables . 24
Keywords and Reserved Words . 26
The Environment . 26
Functions . 27
The console.log Function . 27
Return Values . 28
Prompt and Confirm . 28
Control Flow . 29

Conditional Execution . 29
while and do Loops . 31
Indenting Code . 32
for Loops . 33
Breaking Out of a Loop . 33
Updating Variables Succinctly . 34
Dispatching on a Value with switch . 35
Capitalization . 35
Comments . 36
Summary . 37
Exercises . 37

Looping a Triangle . 37
FizzBuzz . 38
Chess Board . 38

3
FUNCTIONS 41
Defining a Function . 42
Parameters and Scopes . 43
Nested Scopes . 44
Functions as Values . 45
Declaration Notation . 45
The Call Stack . 46
Optional Arguments . 47
Closure . 48
Recursion . 50
Growing Functions . 52
Functions and Side Effects . 54
Summary . 55
Exercises . 56

Minimum . 56
Recursion . 56
Bean Counting . 56

4
DATA STRUCTURES: OBJECTS AND ARRAYS 59
The Weresquirrel . 60
Data Sets . 60
Properties . 61
Methods . 62
Objects . 63
Mutability . 65
The Lycanthrope’s Log . 66
Computing Correlation . 68
Objects as Maps . 69

x Contents in Detail

The Final Analysis . 70
Further Arrayology . 72
Strings and Their Properties . 73
The arguments Object . 74
The Math Object . 75
The Global Object . 77
Summary . 77
Exercises . 78

The Sum of a Range . 78
Reversing an Array . 78
A List . 78
Deep Comparison . 79

5
HIGHER-ORDER FUNCTIONS 81
Abstraction . 82
Abstracting Array Traversal . 83
Higher-Order Functions . 84
Passing Along Arguments . 86
JSON . 87
Filtering an Array . 88
Transforming with map . 89
Summarizing with reduce . 89
Composability . 90
The Cost . 91
Great-great-great-great-. 92
Binding . 94
Summary . 95
Exercises . 95

Flattening . 95
Mother-Child Age Difference . 95
Historical Life Expectancy . 96
Every and Then Some . 96

6
THE SECRET LIFE OF OBJECTS 99
History . 99
Methods . 100
Prototypes . 101
Constructors . 103
Overriding Derived Properties . 104
Prototype Interference . 105
Prototype-less Objects . 107
Polymorphism . 107
Laying Out a Table . 108

Contents in Detail xi

Getters and Setters . 113
Inheritance . 114
The instanceof Operator . 115
Summary . 116
Exercises . 117

A Vector Type . 117
Another Cell . 117
Sequence Interface . 117

7
PROJECT: ELECTRONIC LIFE 119
Definition . 119
Representing Space . 120
A Critter’s Programming Interface . 122
The World Object . 123
this and Its Scope . 125
Animating Life . 126
It Moves . 128
More Life-forms . 129
A More Lifelike Simulation . 130
Action Handlers . 131
Populating the New World . 133
Bringing the World to Life . 134
Exercises . 135

Artificial Stupidity . 135
Predators . 136

8
BUGS AND ERROR HANDLING 139
Programmer Mistakes . 139
Strict Mode . 140
Testing . 141
Debugging . 142
Error Propagation . 144
Exceptions . 145
Cleaning Up After Exceptions . 146
Selective Catching . 147
Assertions . 149
Summary . 150
Exercises . 150

Retry . 150
The Locked Box . 151

xii Contents in Detail

9
REGULAR EXPRESSIONS 153
Creating a Regular Expression . 153
Testing for Matches . 154
Matching a Set of Characters . 154
Repeating Parts of a Pattern . 156
Grouping Subexpressions . 157
Matches and Groups . 157
The Date Type . 158
Word and String Boundaries . 160
Choice Patterns . 160
The Mechanics of Matching . 161
Backtracking . 162
The replace Method . 163
Greed . 165
Dynamically Creating RegExp Objects . 166
The search Method . 167
The lastIndex Property . 167

Looping over Matches . 168
Parsing an INI File . 168
International Characters . 170
Summary . 171
Exercises . 172

Regexp Golf . 172
Quoting Style . 173
Numbers Again . 173

10
MODULES 175
Why Modules Help . 175

Namespacing . 176
Reuse . 176
Decoupling . 177

Using Functions as Namespaces . 177
Objects as Interfaces . 179
Detaching from the Global Scope . 180
Evaluating Data as Code . 180
The require Function . 181
Slow-Loading Modules . 183
Interface Design . 185

Predictability . 186
Composability . 186
Layered Interfaces . 186

Contents in Detail xiii

Summary . 187
Exercises . 187

Month Names . 187
A Return to Electronic Life . 187
Circular Dependencies . 188

11
PROJECT: A PROGRAMMING LANGUAGE 191
Parsing . 191
The Evaluator . 195
Special Forms . 196
The Environment . 198
Functions . 199
Compilation . 200
Cheating . 201
Exercises . 202

Arrays . 202
Closure . 202
Comments . 202
Fixing Scope . 202

PART II: BROWSER

12
JAVASCRIPT AND THE BROWSER 207
Networks and the Internet . 207
The Web . 209
HTML . 209
HTML and JavaScript . 211
In the Sandbox . 212
Compatibility and the Browser Wars . 213

13
THE DOCUMENT OBJECT MODEL 215
Document Structure . 215
Trees . 216
The Standard . 217
Moving Through the Tree . 218
Finding Elements . 219
Changing the Document . 220
Creating Nodes . 221
Attributes . 222
Layout . 224

xiv Contents in Detail

Styling . 226
Cascading Styles . 227
Query Selectors . 229
Positioning and Animating . 229
Summary . 231
Exercises . 232

Build a Table . 232
Elements by Tag Name . 232
The Cat’s Hat . 233

14
HANDLING EVENTS 235
Event Handlers . 235
Events and DOM Nodes . 236
Event Objects . 237
Propagation . 237
Default Actions . 239
Key Events . 239
Mouse Clicks . 241
Mouse Motion . 242
Scroll Events . 244
Focus Events . 245
Load Event . 246
Script Execution Timeline . 246
Setting Timers . 247
Debouncing . 248
Summary . 250
Exercises . 250

Censored Keyboard . 250
Mouse Trail . 250
Tabs . 251

15
PROJECT: A PLATFORM GAME 253
The Game . 254
The Technology . 254
Levels . 255
Reading a Level . 256
Actors . 257
Encapsulation as a Burden . 259
Drawing . 260
Motion and Collision . 264
Actors and Actions . 266
Tracking Keys . 270
Running the Game . 271

Contents in Detail xv

Exercises . 273
Game Over . 273
Pausing the Game . 273

16
DRAWING ON CANVAS 275
SVG . 276
The Canvas Element . 277
Filling and Stroking . 278
Paths . 278
Curves . 280
Drawing a Pie Chart . 283
Text . 284
Images . 284
Transformation . 286
Storing and Clearing Transformations . 288
Back to the Game . 290
Choosing a Graphics Interface . 295
Summary . 295
Exercises . 296

Shapes . 296
The Pie Chart . 297
A Bouncing Ball . 297
Precomputed Mirroring . 297

17
HTTP 299
The Protocol . 299
Browsers and HTTP . 301
XMLHttpRequest . 302
Sending a Request . 303
Asynchronous Requests . 304
Fetching XML Data . 304
HTTP Sandboxing . 305
Abstracting Requests . 306
Promises . 308
Appreciating HTTP . 310
Security and HTTPS . 311
Summary . 311
Exercises . 312

Content Negotiation . 312
Waiting for Multiple Promises . 313

xvi Contents in Detail

18
FORMS AND FORM FIELDS 315
Fields . 315
Focus . 317
Disabled Fields . 318
The Form as a Whole . 318
Text Fields . 319
Checkboxes and Radio Buttons . 321
Select Fields . 322
File Fields . 323
Storing Data Client-Side . 325
Summary . 327
Exercises . 327

A JavaScript Workbench . 327
Autocompletion . 328
Conway’s Game of Life . 328

19
PROJECT: A PAINT PROGRAM 331
Implementation . 332
Building the DOM . 332
The Foundation . 333
Tool Selection . 334
Color and Brush Size . 336
Saving . 337
Loading Image Files . 339
Finishing Up . 340
Exercises . 341

Rectangles . 342
Color Picker . 342
Flood Fill . 343

PART III: BEYOND

20
NODE.JS 347
Background . 347
Asynchronicity . 348
The node Command . 349
Modules . 350
Installing with NPM . 351

Contents in Detail xvii

The Filesystem Module . 353
The HTTP Module . 354
Streams . 356
A Simple File Server . 357
Error Handling . 361
Summary . 363
Exercises . 363

Content Negotiation, Again . 363
Fixing a Leak . 364
Creating Directories . 364
A Public Space on the Web . 364

21
PROJECT: SKILL-SHARING WEBSITE 367
Design . 368
Long Polling . 369
HTTP Interface . 369
The Server . 372

Routing . 372
Serving Files . 373
Talks as Resources . 374
Long-Polling Support . 376

The Client . 379
HTML . 379
Starting up . 380
Displaying Talks . 382
Updating the Server . 384
Noticing Changes . 385

Exercises . 386
Disk Persistence . 386
Comment Field Resets . 386
Better Templates . 387
The Unscriptables . 387

22
JAVASCRIPT AND PERFORMANCE 389
Staged Compilation . 390
Graph Layout . 390
Defining a Graph . 392
A First Force-Directed Layout Function . 393
Profiling . 395
Function Inlining . 396
Going Back to Old-school Loops . 397
Avoiding Work . 398

xviii Contents in Detail

Creating Less Garbage . 399
Garbage Collection . 400
Writing to Objects . 401
Dynamic Types . 402
Summary . 403
Exercises . 404

Pathfinding . 404
Timing . 404
Optimizing . 405

EXERCISE HINTS 407
Program Structure . 407

Looping a Triangle . 407
FizzBuzz . 408
Chess Board . 408

Functions . 408
Minimum . 408
Recursion . 408
Bean Counting . 409

Data Structures: Objects and Arrays . 409
The Sum of a Range . 409
Reversing an Array . 409
A List . 410
Deep Comparison . 410

Higher-Order Functions . 411
Mother-Child Age Difference . 411
Historical Life Expectancy . 411
Every and Then Some . 411

The Secret Life of Objects . 411
A Vector Type . 411
Another Cell . 412
Sequence Interface . 412

Project: Electronic Life . 412
Artificial Stupidity . 412
Predators . 413

Bugs and Error Handling . 413
Retry . 413
The Locked Box . 413

Regular Expressions . 414
Quoting Style . 414
Numbers Again . 414

Modules . 414
Month Names . 414
A Return to Electronic Life . 414
Circular Dependencies . 415

Contents in Detail xix

Project: A Programming Language . 415
Arrays . 415
Closure . 416
Comments . 416
Fixing Scope . 416

The Document Object Model . 416
Build a Table . 416
Elements by Tag Name . 417

Handling Events . 417
Censored Keyboard . 417
Mouse Trail . 417
Tabs . 418

Project: A Platform Game . 418
Game Over . 418
Pausing the Game . 418

Drawing on Canvas . 419
Shapes . 419
The Pie Chart . 419
A Bouncing Ball . 420
Precomputed Mirroring . 420

HTTP . 420
Content Negotiation . 420
Waiting for Multiple Promises . 421

Forms and Form Fields . 421
A JavaScript Workbench . 421
Autocompletion . 421
Conway’s Game of Life . 422

Project: A Paint Program . 422
Rectangles . 422
Color Picker . 423
Flood Fill . 423

Node.js . 424
Content Negotiation, Again . 424
Fixing a Leak . 424
Creating Directories . 424
A Public Space on the Web . 425

Project: Skill-Sharing Website . 425
Disk Persistence . 425
Comment Field Resets . 425
Better Templates . 426
The Unscriptables . 426

JavaScript and Performance . 426
Pathfinding . 426
Optimizing . 427

INDEX 429

xx Contents in Detail

INTRODUCTION

This is a book about getting computers to do what you
want them to do. Computers are about as common as
screwdrivers today, but they contain a lot more hidden
complexity and thus are harder to operate and under-
stand. To many, they remain alien, slightly threatening
things.

We’ve found two effective ways of bridging the communication gap be-
tween us, squishy biological organisms with a talent for social and spatial rea-
soning, and computers, unfeeling manipulators of meaningless data. The
first is to appeal to our sense of the physical world and build interfaces that

mimic that world and allow us to manipulate shapes on a screen with our
fingers. This works very well for casual machine interaction.

But we have not yet found a good way to use the point-and-click ap-
proach to communicate things to the computer that the designer of the in-
terface did not anticipate. For open-ended interfaces, such as instructing the
computer to perform arbitrary tasks, we’ve had more luck with an approach
that makes use of our talent for language: teaching the machine a language.

Human languages allow words and phrases to be combined in many
ways, which allows us to say many different things. Computer languages,
though typically less grammatically flexible, follow a similar principle.

Casual computing has become much more widespread in the past
20 years, and language-based interfaces, which once were the default way
in which people interacted with computers, have largely been replaced with
graphical interfaces. But they are still there, if you know where to look. One
such language, JavaScript, is built into almost every web browser and is thus
available on just about every consumer device.

This book intends to make you familiar enough with this language to be
able to make a computer do what you want.

On Programming
I do not enlighten those who are not eager to learn, nor arouse
those who are not anxious to give an explanation themselves. If I
have presented one corner of the square and they cannot come
back to me with the other three, I should not go over the points
again.
—Confucius

Besides explaining JavaScript, I also will introduce the basic principles of
programming. Programming, it turns out, is hard. The fundamental rules
are typically simple and clear. But programs built on top of these rules tend
to become complex enough to introduce their own rules and complexity.
You’re building your own maze, in a way, and you might just get lost in it.

There will be times when reading this book will feel terribly frustrating.
If you are new to programming, there will be a lot of new material to digest.
Much of this material will then be combined in ways that require you to make
additional connections.

It is up to you to make the necessary effort. When you are struggling to
follow the book, do not jump to any conclusions about your own capabilities.
You are fine—you just need to keep at it. Take a break, reread some mate-
rial, and always make sure you read and understand the example programs
and exercises. Learning is hard work, but everything you learn is yours and
will make subsequent learning easier.

The computer programmer is a creator of universes for which he
[sic] alone is responsible. Universes of virtually unlimited com-
plexity can be created in the form of computer programs.
—Joseph Weizenbaum, Computer Power and Human Reason

2 Introduction

A program is many things. It is a piece of text typed by a programmer; it
is the directing force that makes the computer do what it does; it is data in
the computer’s memory, yet it controls the actions performed on this same
memory. Analogies that try to compare programs to objects we are familiar
with tend to fall short. A superficially fitting one is that of a machine—lots
of separate parts tend to be involved, and to make the whole thing tick, we
have to consider the ways in which these parts interconnect and contribute
to the operation of the whole.

A computer is a machine built to act as a host for these immaterial ma-
chines. Computers themselves can do only stupidly straightforward things.
The reason they are so useful is that they do these things at an incredibly
high speed. A program can ingeniously combine an enormous number of
these simple actions in order to do very complicated things.

To some of us, writing computer programs is a fascinating game. A pro-
gram is a building of thought. It is costless to build, it is weightless, and it
grows easily under our typing hands.

But without care, a program’s size and complexity will grow out of con-
trol, confusing even the person who created it. Keeping programs under
control is the main problem of programming. When a program works, it is
beautiful. The art of programming is the skill of controlling complexity. The
great program is subdued—simple in its complexity.

Many programmers believe that this complexity is best managed by us-
ing only a small set of well-understood techniques in their programs. They
have composed strict rules (“best practices”) prescribing the form programs
should have, and the more zealous among them will consider those who go
outside of this safe little zone to be bad programmers.

What hostility to the richness of programming—to try to reduce it to
something straightforward and predictable, to place a taboo on all the weird
and beautiful programs! The landscape of programming techniques is enor-
mous, fascinating in its diversity, and still largely unexplored. It is certainly
dangerous going, luring the inexperienced programmer into all kinds of
confusion, but that only means you should proceed with caution and keep
your wits about you. There will always be new challenges and new territory
to explore. Programmers who refuse to keep exploring will stagnate, forget
their joy, and get bored with their craft.

Why Language Matters
In the beginning, at the birth of computing, there were no programming
languages. Programs looked something like this:

00110001 00000000 00000000

00110001 00000001 00000001

00110011 00000001 00000010

01010001 00001011 00000010

00100010 00000010 00001000

01000011 00000001 00000000

Introduction 3

01000001 00000001 00000001

00010000 00000010 00000000

01100010 00000000 00000000

This program adds the numbers from 1 to 10 together and prints out
the result: 1 + 2 + ... + 10 = 55. It could run on a simple, hypothetical
machine. To program early computers, it was necessary to set large arrays
of switches in the right position or punch holes in strips of cardboard and
feed them to the computer. You can probably imagine how how tedious
and error-prone this procedure was. Even writing simple programs required
much cleverness and discipline. Complex ones were nearly inconceivable.

Of course, manually entering these arcane patterns of bits (the ones and
zeros) did give the programmer a profound sense of being a mighty wizard.
And that has to be worth something in terms of job satisfaction.

Each line of the previous program contains a single instruction. It could
be written in English like this:

1. Store the number 0 in memory location 0.

2. Store the number 1 in memory location 1.

3. Store the value of memory location 1 in memory location 2.

4. Subtract the number 11 from the value in memory location 2.

5. If the value in memory location 2 is the number 0,

continue with instruction 9.

6. Add the value of memory location 1 to memory location 0.

7. Add the number 1 to the value of memory location 1.

8. Continue with instruction 3.

9. Output the value of memory location 0.

Although that is already more readable than the soup of bits, it is still
rather unpleasant. It might help to use names instead of numbers for the
instructions and memory locations.

Set "total" to 0.

Set "count" to 1.

[loop]

Set "compare" to "count".

Subtract 11 from "compare".

If "compare" is zero, continue at [end].

Add "count" to "total".

Add 1 to "count".

Continue at [loop].

[end]

Output "total".

Can you see how the program works at this point? The first two lines
give two memory locations their starting values: total will build up the re-
sult of the computation, and count will keep track of the number that we are
currently looking at. The lines using compare are probably the weirdest ones.

4 Introduction

The program wants to see whether count is equal to 11 in order to decide
whether it can stop running. Because our hypothetical machine is rather
primitive, it can only test whether a number is zero and make a decision (or
jump) based on that. So it uses the memory location labeled compare to com-
pute the value of count - 11 and makes a decision based on that value. The
next two lines add the value of count to the result and increment count by 1
every time the program has decided that count is not 11 yet.

Here is the same program in JavaScript:

var total = 0, count = 1;

while (count <= 10) {

total += count;

count += 1;

}

console.log(total);

// . 55

This version gives us a few more improvements. Most importantly, there
is no need to specify the way we want the program to jump back and forth
anymore. The while language construct takes care of that. It continues exe-
cuting the block (wrapped in braces) below it as long as the condition it was
given holds. That condition is count <= 10, which means “count is less than
or equal to 10.” We no longer have to create a temporary value and com-
pare that to zero, which was an uninteresting detail. Part of the power of
programming languages is that they take care of uninteresting details for us.

At the end of the program, after while has finished, the console.log oper-
ation is applied to the result in order to write it as output.

Finally, here is what the program could look like if we happened to have
the convenient operations range and sum available, which create a collection
of numbers within a range and compute the sum of a collection of numbers,
respectively:

console.log(sum(range(1, 10)));

// . 55

The moral of this story is that the same program can be expressed in
long and short, unreadable and readable ways. The first version of the pro-
gram was extremely obscure, whereas this last one is almost English: log the
sum of the range of numbers from 1 to 10. (We will see in later chapters how
to build operations like sum and range.)

A good programming language helps the programmer by allowing them
to talk about the actions that the computer has to perform on a higher level.
It helps omit uninteresting details, provides convenient building blocks (such
as while and console.log), allows you to define your own building blocks (such
as sum and range), and makes those blocks easy to compose.

Introduction 5

What Is JavaScript?
JavaScript was introduced in 1995 as a way to add programs to web pages in
the Netscape Navigator browser. The language has since been adopted by all
other major graphical web browsers. It has made modern web applications
possible—applications with which you can interact directly, without doing a
page reload for every action. But it is also used in more traditional websites
to provide various forms of interactivity and cleverness.

It is important to note that JavaScript has almost nothing to do with the
programming language named Java. The similar name was inspired by mar-
keting considerations, rather than good judgment. When JavaScript was
introduced, the Java language was being heavily marketed and was gaining
popularity. Someone thought it was a good idea to ride on the coattails of
this success. Now we are stuck with the name.

After JavaScript’s widespread adoption, a standard document was writ-
ten to describe the way the language should work to make sure the various
pieces of software that claimed to support JavaScript were actually talking
about the same language. This is called the ECMAScript standard, after the
ECMA organization that did the standardization. In practice, the terms EC-
MAScript and JavaScript can be used interchangeably—they are two names
for the same language.

There are those who will say terrible things about the JavaScript language.
Many of these things are true. When I was required to write something in
JavaScript for the first time, I quickly came to despise it. It would accept al-
most anything I typed but interpret it in a way that was completely different
from what I meant. This had a lot to do with the fact that I did not have a
clue what I was doing, of course, but there is a real issue here: JavaScript is
ridiculously liberal in what it allows. The idea behind this design was that it
would make programming in JavaScript easier for beginners. In actuality, it
mostly makes finding problems in your programs harder because the system
will not point them out to you.

This flexibility also has its advantages, though. It leaves space for a lot of
techniques that are impossible in more rigid languages, and as you will see
(for example, in Chapter 10), it can be used to overcome some of JavaScript’s
shortcomings. After learning the language properly and working with it for a
while, I have learned to actually like JavaScript.

There have been several versions of JavaScript. ECMAScript version 3
was the most widely supported version at the time of JavaScript’s ascent to
dominance, roughly between 2000 and 2010. During this time, work was
underway on an ambitious version 4, which planned a number of radical
improvements and extensions to the language. Changing a living, widely
used language in such a radical way turned out to be politically difficult,
and work on version 4 was abandoned in 2008, leading to the much less
ambitious version 5 that came out in 2009. We’re now at the point where
all major browsers support version 5, which is the version that this book
will be focusing on. Version 6 is in the process of being finalized, and some
browsers are starting to support new features from this version.

6 Introduction

Web browsers are not the only platforms on which JavaScript is used.
Some databases, such as MongoDB and CouchDB, use JavaScript as their
scripting and query language. Several platforms for desktop and server pro-
gramming, most notably the Node.js project (the subject of Chapter 20), are
providing a powerful environment for programming JavaScript outside of
the browser.

Code, and What to Do with It
Code is the text that makes up programs. Most chapters in this book con-
tain quite a lot of it. In my experience, reading code and writing code are
indispensable parts of learning to program, so try to not just glance over the
examples. Read them attentively and understand them. This may be slow
and confusing at first, but I promise that you will quickly get the hang of it.
The same goes for the exercises. Don’t assume you understand them until
you’ve actually written a working solution.

I recommend you try your solutions to exercises in an actual JavaScript
interpreter. That way, you’ll get immediate feedback on whether what you
are doing is working, and, I hope, you’ll be tempted to experiment and go
beyond the exercises.

The easiest way to run the example code in the book, and to exper-
iment with it, is to look it up in the online version of the book at http://

eloquentjavascript.net/ . There, you can click any code example to edit and
run it and to see the output it produces. To work on the exercises, go to
http://eloquentjavascript.net/code/ , which provides starting code for each cod-
ing exercise and allows you to look at the solutions.

If you want to run the programs defined in this book outside of the
book’s sandbox, some care is required. Many examples stand on their own
and should work in any JavaScript environment. But code in later chapters
is mostly written for a specific environment (the browser or Node.js) and
can run only there. In addition, many chapters define bigger programs, and
the pieces of code that appear in them depend on each other or on external
files. The sandbox on the website provides links to Zip files containing all of
the scripts and data files necessary to run the code for a given chapter.

Overview of This Book
This book contains roughly three parts. The first 11 chapters discuss the
JavaScript language itself. The next eight chapters are about web browsers
and the way JavaScript is used to program them. Finally, two chapters are
devoted to Node.js, another environment to program JavaScript in.

Throughout the book, there are five project chapters, which describe larger
example programs to give you a taste of real programming. In order of ap-
pearance, we will work through building an artificial life simulation, a pro-
gramming language, a platform game, a paint program, and a dynamic
website.

Introduction 7

http://eloquentjavascript.net/
http://eloquentjavascript.net/
http://eloquentjavascript.net/code/
http://eloquentjavascript.net/code

The language part of the book starts with four chapters to introduce the
basic structure of the JavaScript language. They introduce control structures
(such as the while word you saw in this introduction), functions (writing your
own operations), and data structures. After these, you will be able to write
simple programs. Next, Chapters 5 and 6 introduce techniques to use func-
tions and objects to write more abstract code and thus keep complexity un-
der control.

After a first project chapter, the first part of the book continues with
chapters on error handling and fixing, on regular expressions (an impor-
tant tool for working with text data), and on modularity—another weapon
against complexity. The second project chapter concludes the first part of
the book.

The second part, Chapters 12 to 19, describes the tools that browser
JavaScript has access to. You’ll learn to display things on the screen (Chap-
ters 13 and 16), respond to user input (Chapters 14 and 18), and communi-
cate over the network (Chapter 17). There are again two project chapters in
this part.

After that, Chapter 20 describes Node.js, and Chapter 21 builds a simple
web system using that tool.

Finally, Chapter 22 describes some of the considerations that come up
when optimizing JavaScript programs for speed.

Typographic Conventions
In this book, text written in a monospaced font will represent elements of
programs—sometimes they are self-sufficient fragments, and sometimes
they just refer to part of a nearby program. Programs (of which you have
already seen a few), are written as follows:

function fac(n) {

if (n == 0)

return 1;

else

return fac(n - 1) * n;

}

Sometimes, in order to show the output that a program produces, the
expected output is written after it, with two slashes and an arrow in front.

console.log(fac(8));

// . 40320

Good luck!

8 Introduction

PART I
LANGUAGE

“Below the surface of the machine, the program

moves. Without effort, it expands and contracts.

In great harmony, electrons scatter and regroup.

The forms on the monitor are but ripples on the

water. The essence stays invisibly below.”

— Master Yuan-Ma, The Book of Programming

1
VALUES, TYPES, AND OPERATORS

Inside the computer’s world, there is only data. You
can read data, modify data, create new data—but any-
thing that isn’t data simply does not exist. All this data
is stored as long sequences of bits and is thus funda-
mentally alike.

Bits are any kind of two-valued things, usually described as zeros and
ones. Inside the computer, they take forms such as a high or low electrical
charge, a strong or weak signal, or a shiny or dull spot on the surface of a
CD. Any piece of discrete information can be reduced to a sequence of zeros
and ones and thus represented in bits.

For example, think about how you might show the number 13 in bits. It
works the same way you write decimal numbers, but instead of 10 different
digits, you have only 2, and the weight of each increases by a factor of 2 from
right to left. Here are the bits that make up the number 13, with the weights
of the digits shown below them:

0 0 0 0 1 1 0 1

128 64 32 16 8 4 2 1

So that’s the binary number 00001101, or 8 + 4 + 1, which equals 13.

Values
Imagine a sea of bits. An ocean of them. A typical modern computer has
more than 30 billion bits in its volatile data storage. Nonvolatile storage (the
hard disk or equivalent) tends to have yet a few orders of magnitude more.

To be able to work with such quantities of bits without getting lost, you
can separate them into chunks that represent pieces of information. In a
JavaScript environment, those chunks are called values. Though all values
are made of bits, they play different roles. Every value has a type that de-
termines its role. There are six basic types of values in JavaScript: numbers,
strings, Booleans, objects, functions, and undefined values.

To create a value, you must merely invoke its name. This is conve-
nient. You don’t have to gather building material for your values or pay
for them. You just call for one, and woosh, you have it. They are not created
from thin air, of course. Every value has to be stored somewhere, and if you
want to use a gigantic amount of them at the same time, you might run out
of bits. Fortunately, this is a problem only if you need them all simultane-
ously. As soon as you no longer use a value, it will dissipate, leaving behind
its bits to be recycled as building material for the next generation of values.

This chapter introduces the atomic elements of JavaScript programs,
that is, the simple value types and the operators that can act on such values.

Numbers
Values of the number type are, unsurprisingly, numeric values. In a JavaScript
program, they are written as follows:

13

Use that in a program, and it will cause the bit pattern for the number
13 to come into existence inside the computer’s memory.

JavaScript uses a fixed number of bits, namely 64 of them, to store a
single number value. There are only so many patterns you can make with
64 bits, which means that the amount of different numbers that can be rep-
resented is limited. For N decimal digits, the amount of numbers that can
be represented is 10N . Similarly, given 64 binary digits, you can represent

12 Chapter 1

264 different numbers, which is about 18 quintillion (an 18 with 18 zeros
after it). This is a lot.

Computer memory used to be a lot smaller, and people tended to use
groups of 8 or 16 bits to represent their numbers. It was easy to acciden-
tally overflow such small numbers—to end up with a number that did not fit
into the given amount of bits. Today, even personal computers have plenty
of memory, so you are free to use 64-bit chunks, which means you need to
worry about overflow only when dealing with truly astronomical numbers.

Not all whole numbers below 18 quintillion fit in a JavaScript number,
though. Those bits also store negative numbers, so one bit indicates the sign
of the number. A bigger issue is that nonwhole numbers must also be repre-
sented. To do this, some of the bits are used to store the position of the deci-
mal point. The actual maximum whole number that can be stored is more in
the range of 9 quadrillion (15 zeros), which is still plenty huge.

Fractional numbers are written by using a dot.

9.81

For very big or very small numbers, you can also use scientific notation
by adding an “e” (for “exponent”), followed by the exponent of the number:

2.998e8

That is 2.998 × 108 = 299,800,000.
Calculations with whole numbers (also called integers) smaller than the

aforementioned 9 quadrillion are guaranteed to always be precise. Unfortu-
nately, calculations with fractional numbers are generally not. Just as π (pi)
cannot be precisely expressed by a finite number of decimal digits, many
numbers lose some precision when only 64 bits are available to store them.
This is a shame, but it causes practical problems only in specific situations.
The important thing is to be aware of it and treat fractional digital numbers
as approximations, not as precise values.

Arithmetic
The main thing to do with numbers is arithmetic. Arithmetic operations
such as addition or multiplication take two number values and produce a
new number from them. Here is what they look like in JavaScript:

100 + 4 * 11

The + and * symbols are called operators. The first stands for addition,
and the second stands for multiplication. Putting an operator between two
values will apply it to those values and produce a new value.

Does the example mean “add 4 and 100, and multiply the result by 11,”
or is the multiplication done before the adding? As you might have guessed,
the multiplication happens first. But as in mathematics, you can change this
by wrapping the addition in parentheses.

Values, Types, and Operators 13

(100 + 4) * 11

For subtraction, there is the - operator, and division can be done with
the / operator.

When operators appear together without parentheses, the order in
which they are applied is determined by the precedence of the operators. The
example shows that multiplication comes before addition. The / operator
has the same precedence as *. Likewise for + and -. When multiple operators
with the same precedence appear next to each other, as in 1 - 2 + 1, they
are applied left to right: (1 - 2) + 1.

These rules of precedence are not something you should worry about.
When in doubt, just add parentheses.

There is one more arithmetic operator, which you might not immedi-
ately recognize. The % symbol is used to represent the remainder operation.
X % Y is the remainder of dividing X by Y. For example, 314 % 100 produces 14,
and 144 % 12 gives 0. Remainder’s precedence is the same as that of multi-
plication and division. You’ll often see this operator referred to as modulo,
though technically remainder is more accurate.

Special Numbers
There are three special values in JavaScript that are considered numbers but
don’t behave like normal numbers.

The first two are Infinity and -Infinity, which represent the positive
and negative infinities. Infinity - 1 is still Infinity, and so on. Don’t put too
much trust in infinity-based computation. It isn’t mathematically solid, and
it will quickly lead to our next special number: NaN.

NaN stands for “not a number,” even though it is a value of the number
type. You’ll get this result when you, for example, try to calculate 0 / 0 (zero
divided by zero), Infinity - Infinity, or any number of other numeric opera-
tions that don’t yield a precise, meaningful result.

Strings
The next basic data type is the string. Strings are used to represent text. They
are written by enclosing their content in quotes.

"Patch my boat with chewing gum"

'Monkeys wave goodbye'

Both single and double quotes can be used to mark strings as long as the
quotes at the start and the end of the string match.

Almost anything can be put between quotes, and JavaScript will make a
string value out of it. But a few characters are more difficult. You can imag-
ine how putting quotes between quotes might be hard. Newlines (the char-
acters you get when you press ENTER) also can’t be put between quotes. The
string has to stay on a single line.

14 Chapter 1

To include such characters in a string, the following notation is used:
whenever a backslash (\) is found inside quoted text, it indicates that the
character after it has a special meaning. This is called escaping the charac-
ter. A quote that is preceded by a backslash will not end the string but be
part of it. When an n character occurs after a backslash, it is interpreted as
a newline. Similarly, a t after a backslash means a tab character. Take the
following string:

"This is the first line\nAnd this is the second"

The actual text contained is this:

This is the first line

And this is the second

There are, of course, situations where you want a backslash in a string to
be just a backslash, not a special code. If two backslashes follow each other,
they will collapse together, and only one will be left in the resulting string
value. This is how the string "A newline character is written like "\n"." can
be expressed:

"A newline character is written like \"\\n\"."

Strings cannot be divided, multiplied, or subtracted, but the + operator
can be used on them. It does not add, but rather concatenates—it glues two
strings together. The following line will produce the string "concatenate":

"con" + "cat" + "e" + "nate"

There are more ways of manipulating strings, which we will discuss when
we get to methods in Chapter 4.

Unary Operators
Not all operators are symbols. Some are written as words. One example is
the typeof operator, which produces a string value naming the type of the
value you give it.

console.log(typeof 4.5)

// . number

console.log(typeof "x")

// . string

We will use console.log in example code to indicate that we want to see
the result of evaluating something. When you run such code, the value pro-
duced should be shown on the screen, though how it appears will depend
on the JavaScript environment you use to run it.

Values, Types, and Operators 15

The other operators we saw all operated on two values, but typeof takes
only one. Operators that use two values are called binary operators, while
those that take one are called unary operators. The minus operator can be
used both as a binary operator and as a unary operator.

console.log(- (10 - 2))

// . -8

Boolean Values
Often, you will need a value that simply distinguishes between two possibil-
ities, like “yes” and “no” or “on” and “off.” For this, JavaScript has a Boolean

type, which has just two values: true and false (which are written simply as
those words).

Comparisons
Here is one way to produce Boolean values:

console.log(3 > 2)

// . true

console.log(3 < 2)

// . false

The > and < signs are the traditional symbols for “is greater than” and “is
less than,” respectively. They are binary operators. Applying them results in
a Boolean value that indicates whether they hold true in this case.

Strings can be compared in the same way.

console.log("Aardvark" < "Zoroaster")

// . true

The way strings are ordered is more or less alphabetic: uppercase letters
are always “less” than lowercase ones, so "Z" < "a" is true, and nonalphabetic
characters (!, -, and so on) are also included in the ordering. The actual
comparison is based on the Unicode standard. This standard assigns a num-
ber to virtually every character you would ever need, including characters
from Greek, Arabic, Japanese, Tamil, and so on. Having such numbers is
useful for storing strings inside a computer because it makes it possible to
represent them as a sequence of numbers. When comparing strings, Java-
Script goes over them from left to right, comparing the numeric codes of
the characters one by one.

Other similar operators are >= (greater than or equal to), <= (less than or
equal to), == (equal to), and != (not equal to).

console.log("Itchy" != "Scratchy")

// . true

16 Chapter 1

There is only one value in JavaScript that is not equal to itself, and that is
NaN (“not a number”).

console.log(NaN == NaN)

// . false

NaN is supposed to denote the result of a nonsensical computation, and
as such, it isn’t equal to the result of any other nonsensical computations.

Logical Operators
There are also some operations that can be applied to Boolean values them-
selves. JavaScript supports three logical operators: and, or, and not. These
can be used to “reason” about Booleans.

The && operator represents logical and. It is a binary operator, and its
result is true only if both the values given to it are true.

console.log(true && false)

// . false

console.log(true && true)

// . true

The || operator denotes logical or. It produces true if either of the
values given to it is true.

console.log(false || true)

// . true

console.log(false || false)

// . false

Not is written as an exclamation mark (!). It is a unary operator that flips
the value given to it—!true produces false and !false gives true.

When mixing these Boolean operators with arithmetic and other oper-
ators, it is not always obvious when parentheses are needed. In practice, you
can usually get by with knowing that of the operators we have seen so far, ||
has the lowest precedence, then comes &&, then the comparison operators
(>, ==, and so on), and then the rest. This order has been chosen such that,
in typical expressions like the following one, as few parentheses as possible
are necessary:

1 + 1 == 2 && 10 * 10 > 50

The last logical operator I will discuss is not unary, not binary, but ter-

nary, operating on three values. It is written with a question mark and a
colon, like this:

console.log(true ? 1 : 2);

// . 1

Values, Types, and Operators 17

console.log(false ? 1 : 2);

// . 2

This one is called the conditional operator (or sometimes just ternary op-
erator since it is the only such operator in the language). The value on the
left of the question mark “picks” which of the other two values will come out.
When it is true, the middle value is chosen, and when it is false, the value on
the right comes out.

Undefined Values
There are two special values, written null and undefined, that are used to
denote the absence of a meaningful value. They are themselves values, but
they carry no information.

Many operations in the language that don’t produce a meaningful value
(you’ll see some later) yield undefined simply because they have to yield some

value.
The difference in meaning between undefined and null is an accident

of JavaScript’s design, and it doesn’t matter most of the time. In the cases
where you actually have to concern yourself with these values, I recommend
treating them as interchangeable (more on that in a moment).

Automatic Type Conversion
In the introduction, I mentioned that JavaScript goes out of its way to accept
almost any program you give it, even programs that do odd things. This is
nicely demonstrated by the following expressions:

console.log(8 * null)

// . 0

console.log("5" - 1)

// . 4

console.log("5" + 1)

// . 51

console.log("five" * 2)

// . NaN

console.log(false == 0)

// . true

When an operator is applied to the “wrong” type of value, JavaScript will
quietly convert that value to the type it wants, using a set of rules that often
aren’t what you want or expect. This is called type coercion. So the null in the
first expression becomes 0, and the "5" in the second expression becomes 5

(from string to number). Yet in the third expression, + tries string concate-
nation before numeric addition, so the 1 is converted to "1" (from number
to string).

18 Chapter 1

When something that doesn’t map to a number in an obvious way (such
as "five" or undefined) is converted to a number, the value NaN is produced.
Further arithmetic operations on NaN keep producing NaN, so if you find your-
self getting one of those in an unexpected place, look for accidental type
conversions.

When comparing values of the same type using ==, the outcome is easy
to predict: you should get true when both values are the same, except in
the case of NaN. But when the types differ, JavaScript uses a complicated and
confusing set of rules to determine what to do. In most cases, it just tries to
convert one of the values to the other value’s type. However, when null or
undefined occurs on either side of the operator, it produces true only if both
sides are one of null or undefined.

console.log(null == undefined);

// . true

console.log(null == 0);

// . false

That last piece of behavior is often useful. When you want to test whether
a value has a real value instead of null or undefined, you can simply compare
it to null with the == (or !=) operator.

But what if you want to test whether something refers to the precise
value false? The rules for converting strings and numbers to Boolean values
state that 0, NaN, and the empty string ("") count as false, while all the other
values count as true. Because of this, expressions like 0 == false and "" ==

false are also true. For cases like this, where you do not want any automatic
type conversions to happen, there are two extra operators: === and !==. The
first tests whether a value is precisely equal to the other, and the second tests
whether it is not precisely equal. So "" === false is false as expected.

I recommend using the three-character comparison operators defen-
sively to prevent unexpected type conversions from tripping you up. But
when you’re certain the types on both sides will be the same, there is no
problem with using the shorter operators.

Short-Circuiting of Logical Operators
The logical operators && and || handle values of different types in a peculiar
way. They will convert the value on their left side to Boolean type in order
to decide what to do, but depending on the operator and the result of that
conversion, they return either the original left-hand value or the right-hand
value.

The || operator, for example, will return the value to its left when that
can be converted to true and will return the value on its right otherwise. This
conversion works as you’d expect for Boolean values and should do some-
thing analogous for values of other types.

Values, Types, and Operators 19

console.log(null || "user")

// . user

console.log("Karl" || "user")

// . Karl

This functionality allows the || operator to be used as a way to fall
back on a default value. If you give it an expression that might produce
an empty value on the left, the value on the right will be used as a replace-
ment in that case.

The && operator works similarly, but the other way around. When the
value to its left is something that converts to false, it returns that value, and
otherwise it returns the value on its right.

Another important property of these two operators is that the expres-
sion to their right is evaluated only when necessary. In the case of true || X,
no matter what X is—even if it’s an expression that does something terrible—
the result will be true, and X is never evaluated. The same goes for false && X,
which is false and will ignore X. This is called short-circuit evaluation.

The conditional operator works in a similar way. The first expression is
always evaluated, but the second or third value, the one that is not picked,
is not.

Summary
We looked at four types of JavaScript values in this chapter: numbers, strings,
Booleans, and undefined values.

Such values are created by typing in their name (true, null) or value (13,
"abc"). You can combine and transform values with operators. We saw binary
operators for arithmetic (+, -, *, /, and %), string concatenation (+), compar-
ison (==, !=, ===, !==, <, >, <=, >=), and logic (&&, ||), as well as several unary
operators (- to negate a number, ! to negate logically, and typeof to find a
value’s type).

This gives you enough information to use JavaScript as a pocket calcula-
tor, but not much more. The next chapter will start tying these expressions
together into basic programs.

20 Chapter 1

“And my heart glows bright red under my

filmy, translucent skin and they have to admin-

ister 10cc of JavaScript to get me to come back.

(I respond well to toxins in the blood.) Man, that

stuff will kick the peaches right out your gills!”

— why, Why’s (Poignant) Guide to Ruby

2
PROGRAM STRUCTURE

In this chapter, we will start to do things that can actu-
ally be called programming. We will expand our com-
mand of the JavaScript language beyond the nouns
and sentence fragments we’ve seen so far, to the point
where we can express some meaningful prose.

Expressions and Statements

In Chapter 1, we made some values and then applied operators to them to
get new values. Creating values like this is an essential part of every JavaScript
program, but it is only a part.

A fragment of code that produces a value is called an expression. Every
value that is written literally (such as 22 or "psychoanalysis") is an expression.
An expression between parentheses is also an expression, as is a binary oper-
ator applied to two expressions or a unary operator applied to one.

This shows part of the beauty of a language-based interface. Expres-
sions can nest in a way very similar to the way subsentences in human lan-
guages are nested—a subsentence can contain its own subsentences, and
so on. This allows us to combine expressions to express arbitrarily complex
computations.

If an expression corresponds to a sentence fragment, a JavaScript state-

ment corresponds to a full sentence in a human language. A program is sim-
ply a list of statements.

The simplest kind of statement is an expression with a semicolon after it.
This is a program:

1;

!false;

It is a useless program, though. An expression can be content to just
produce a value, which can then be used by the enclosing expression. A
statement stands on its own and amounts to something only if it affects the
world. It could display something on the screen—that counts as changing
the world—or it could change the internal state of the machine in a way that
will affect the statements that come after it. These changes are called side

effects. The statements in the previous example just produce the values 1

and true and then immediately throw them away. This leaves no impres-
sion on the world at all. When executing the program, nothing observable
happens.

In some cases, JavaScript allows you to omit the semicolon at the end of
a statement. In other cases, it has to be there, or the next line will be treated
as part of the same statement. The rules for when it can be safely omitted
are somewhat complex and error-prone. In this book, every statement that
needs a semicolon will always be terminated by one. I recommend you do
the same in your own programs, at least until you’ve learned more about
subtleties involved in leaving out semicolons.

Variables
How does a program keep an internal state? How does it remember things?
We have seen how to produce new values from old values, but this does not
change the old values, and the new value has to be immediately used or it
will dissipate again. To catch and hold values, JavaScript provides a thing
called a variable.

var caught = 5 * 5;

And that gives us our second kind of statement. The special word (key-

word) var indicates that this sentence is going to define a variable. It is fol-
lowed by the name of the variable and, if we want to immediately give it a
value, by an = operator and an expression.

The previous statement creates a variable called caught and uses it to
grab hold of the number that is produced by multiplying 5 by 5.

24 Chapter 2

After a variable has been defined, its name can be used as an expression.
The value of such an expression is the value the variable currently holds.
Here’s an example:

var ten = 10;

console.log(ten * ten);

// . 100

Variable names can be any word that isn’t reserved as a keyword (such
as var). They may not include spaces. Digits can also be part of variable
names—catch22 is a valid name, for example—but the name must not start
with a digit. A variable name cannot include punctuation, except for the
characters $ and _.

When a variable points at a value, that does not mean it is tied to that
value forever. The = operator can be used at any time on existing variables
to disconnect them from their current value and have them point to a
new one.

var mood = "light";

console.log(mood);

// . light

mood = "dark";

console.log(mood);

// . dark

You should imagine variables as tentacles, rather than boxes. They do
not contain values; they grasp them—two variables can refer to the same
value. A program can access only the values that it still has a hold on. When
you need to remember something, you grow a tentacle to hold on to it or
reattach one of your existing tentacles to it.

Program Structure 25

Let’s look at an example. To remember the number of dollars that Luigi
still owes you, you create a variable. And then when he pays back $35, you
give this variable a new value.

var luigisDebt = 140;

luigisDebt = luigisDebt - 35;

console.log(luigisDebt);

// . 105

When you define a variable without giving it a value, the tentacle has
nothing to grasp, so it ends in thin air. If you ask for the value of an empty
variable, you’ll get the value undefined.

A single var statement may define multiple variables. The definitions
must be separated by commas.

var one = 1, two = 2;

console.log(one + two);

// . 3

Keywords and Reserved Words
Words with a special meaning, such as var, are keywords, and they may not be
used as variable names. There are also a number of words that are “reserved
for use” in future versions of JavaScript. These are also officially not allowed
to be used as variable names, though some JavaScript environments do allow
them. The full list of keywords and reserved words is rather long.

break case catch continue debugger default delete

do else false finally for function if implements

in instanceof interface let new null package private

protected public return static switch throw true

try typeof var void while with yield this

Don’t worry about memorizing these, but remember that this might be
the problem when a variable definition does not work as expected.

The Environment
The collection of variables and their values that exist at a given time is called
the environment. When a program starts up, this environment is not empty.
It always contains variables that are part of the language standard, and most
of the time, it has variables that provide ways to interact with the surround-
ing system. For example, in a browser, there are variables and functions to
inspect and influence the currently loaded website and to read mouse and
keyboard input.

26 Chapter 2

Functions
A lot of the values provided in the default environment have the type func-

tion. A function is a piece of program wrapped in a value. Such values can be
applied in order to run the wrapped program. For example, in a browser en-
vironment, the variable alert holds a function that shows a little dialog box
with a message. It is used like this:

alert("Good morning!");

Executing a function is called invoking, calling, or applying it. You can
call a function by putting parentheses after an expression that produces a
function value. Usually you’ll directly use the name of the variable that holds
the function. The values between the parentheses are given to the program
inside the function. In the example, the alert function uses the string that
we give it as the text to show in the dialog box. Values given to functions are
called arguments. The alert function needs only one of them, but other func-
tions might need a different number or different types of arguments.

The console.log Function
The alert function can be useful as an output device when experimenting,
but clicking away all those little windows will get on your nerves. In past ex-
amples, we’ve used console.log to output values. Most JavaScript systems (in-
cluding all modern web browsers and Node.js) provide a console.log func-
tion that writes out its arguments to some text output device. In browsers, the
output lands in the JavaScript console. This part of the browser interface is
hidden by default, but most browsers open it when you press F12 or, on Mac,
when you press COMMAND-OPTION-I. If that does not work, search through
the menus for an item named “web console” or “developer tools.”

var x = 30;

console.log("the value of x is", x);

// . the value of x is 30

Though variable names cannot contain period characters, console.log
clearly has one. This is because console.log isn’t a simple variable. It is actu-
ally an expression that retrieves the log property from the value held by the
console variable. We will find out exactly what this means in Chapter 4.

Program Structure 27

Return Values
Showing a dialog box or writing text to the screen is a side effect. A lot of
functions are useful because of the side effects they produce. Functions may
also produce values, and in that case, they don’t need to have a side effect to
be useful. For example, the function Math.max takes any number of number
values and gives back the greatest.

console.log(Math.max(2, 4));

// . 4

When a function produces a value, it is said to return that value. Anything
that produces a value is an expression in JavaScript, which means function
calls can be used within larger expressions. Here a call to Math.min, which is
the opposite of Math.max, is used as an input to the plus operator:

console.log(Math.min(2, 4) + 100);

// . 102

The next chapter explains how to write your own functions.

Prompt and Confirm
Browser environments contain other functions besides alert for popping
up windows. You can ask the user an OK/Cancel question using confirm.
This returns a Boolean: true if the user clicks OK and false if the user clicks
Cancel.

confirm("Shall we, then?");

The prompt function can be used to ask an “open” question. The first ar-
gument is the question, the second one is the text that the user starts with. A
line of text can be typed into the dialog window, and the function will return
this text as a string.

prompt("Tell me everything you know.", "...");

28 Chapter 2

These two functions aren’t used much in modern web programming,
mostly because you have no control over the way the resulting windows look,
but they are useful for toy programs and experiments.

Control Flow
When your program contains more than one statement, the statements are
executed, predictably, from top to bottom. As a basic example, this program
has two statements. The first one asks the user for a number, and the sec-
ond, which is executed afterward, shows the square of that number.

var theNumber = Number(prompt("Pick a number", ""));

alert("Your number is the square root of " +

theNumber * theNumber);

The function Number converts a value to a number. We need that con-
version because the result of prompt is a string value, and we want a number.
There are similar functions called String and Boolean that convert values to
those types.

Here is the rather trivial schematic representation of straight con-
trol flow:

Conditional Execution
Executing statements in straight-line order isn’t the only option we have. An
alternative is conditional execution, where we choose between two different
routes based on a Boolean value, like this:

Conditional execution is written with the if keyword in JavaScript. In
the simple case, we just want some code to be executed if, and only if, a cer-
tain condition holds. For example, in the previous program, we might want
to show the square of the input only if the input is actually a number.

var theNumber = prompt("Pick a number", "");

if (!isNaN(theNumber))

alert("Your number is the square root of " +

theNumber * theNumber);

With this modification, if you enter “cheese,” no output will be shown.

Program Structure 29

The keyword if executes or skips a statement depending on the value of
a Boolean expression. The deciding expression is written after the keywords,
between parentheses, followed by the statement to execute.

The isNaN function is a standard JavaScript function that returns true

only if the argument it is given is NaN. The Number function happens to return
NaN when you give it a string that doesn’t represent a valid number. Thus, the
condition translates to “unless theNumber is not-a-number, do this.”

You often won’t just have code that executes when a condition holds
true, but also code that handles the other case. This alternate path is repre-
sented by the second arrow in the diagram. The else keyword can be used,
together with if, to create two separate, alternative execution paths.

var theNumber = Number(prompt("Pick a number", ""));

if (!isNaN(theNumber))

alert("Your number is the square root of " +

theNumber * theNumber);

else

alert("Hey. Why didn't you give me a number?");

If we have more than two paths to choose from, multiple if/else pairs
can be “chained” together. Here’s an example:

var num = Number(prompt("Pick a number", "0"));

if (num < 10)

alert("Small");

else if (num < 100)

alert("Medium");

else

alert("Large");

The program will first check whether num is less than 10. If it is, it chooses
that branch, shows "Small", and is done. If it isn’t, it takes the else branch,
which itself contains a second if. If the second condition (< 100) holds, that
means the number is between 10 and 100, and "Medium" is shown. If it doesn’t,
the second, and last, else branch is chosen.

The flow chart for this program looks something like this:

30 Chapter 2

while and do Loops
Consider a program that prints all even numbers from 0 to 12. One way to
write this is as follows:

console.log(0);

console.log(2);

console.log(4);

console.log(6);

console.log(8);

console.log(10);

console.log(12);

That works, but the idea of writing a program is to make something less

work, not more. If we needed all even numbers less than 1,000, the previ-
ous would be unworkable. What we need is a way to repeat some code. This
form of control flow is called a loop.

Looping control flow allows us to go back to some point in the program
where we were before and repeat it with our current program state. If we
combine this with a variable that counts, we can do something like this:

var number = 0;

while (number <= 12) {

console.log(number);

number = number + 2;

}

// . 0

// . 2

// ... etcetera

A statement starting with the keyword while creates a loop. The word
while is followed by an expression in parentheses and then a statement, much
like if. The loop executes that statement as long as the expression produces
a value that is true when converted to Boolean type.

In this loop, we want to both print the current number and add two to
our variable. Whenever we need to execute multiple statements inside a
loop, we wrap them in braces, { and }. Braces do for statements what paren-
theses do for expressions: they group them together, making them count as
a single statement. A sequence of statements wrapped in braces is called a
block.

Many JavaScript programmers wrap every single loop or if body in braces.
They do this both for the sake of consistency and to avoid having to add or
remove braces when changing the number of statements in the body later.

Program Structure 31

In this book, I will write most single-statement bodies without braces, since I
value brevity. You are free to go with whichever style you prefer.

The variable number demonstrates the way a variable can track the progress
of a program. Every time the loop repeats, number is incremented by 2. Then,
at the beginning of every repetition, it is compared with the number 12 to
decide whether the program has done all the work it intended to do.

As an example that actually does something useful, we can now write a
program that calculates and shows the value of 210 (2 to the 10th power).
We use two variables: one to keep track of our result and one to count how
often we have multiplied this result by 2. The loop tests whether the second
variable has reached 10 yet and then updates both variables.

var result = 1;

var counter = 0;

while (counter < 10) {

result = result * 2;

counter = counter + 1;

}

console.log(result);

// . 1024

The counter could also start at 1 and check for <= 10, but, for reasons
that will become apparent in Chapter 4, it is a good idea to get used to count-
ing from 0.

The do loop is a control structure similar to the while loop. It differs only
on one point: a do loop always executes its body at least once, and it starts
testing whether it should stop only after that first execution. To reflect this,
the test appears after the body of the loop:

do {

var name = prompt("Who are you?");

} while (!name);

console.log(name);

This program will force you to enter a name. It will ask again and again
until it gets something that is not an empty string. Applying the ! operator
will convert a value to Boolean type before negating it, and all strings except
"" convert to true.

Indenting Code
You’ve probably noticed the spaces I put in front of some statements.
In JavaScript, these are not required—the computer will accept the pro-
gram just fine without them. In fact, even the line breaks in programs are
optional. You could write a program as a single long line if you felt like it.
The role of the indentation inside blocks is to make the structure of the
code stand out. In complex code, where new blocks are opened inside other

32 Chapter 2

blocks, it can become hard to see where one block ends and another begins.
With proper indentation, the visual shape of a program corresponds to the
shape of the blocks inside it. I like to use two spaces for every open block,
but tastes differ—some people use four spaces, and some people use tab
characters.

for Loops
Many loops follow the pattern seen in the previous while examples. First, a
“counter” variable is created to track the progress of the loop. Then comes
a while loop, whose test expression usually checks whether the counter has
reached some boundary yet. At the end of the loop body, the counter is up-
dated to track progress.

Because this pattern is so common, JavaScript and similar languages pro-
vide a slightly shorter and more comprehensive form, the for loop.

for (var number = 0; number <= 12; number = number + 2)

console.log(number);

// . 0

// . 2

// ... etcetera

This program is exactly equivalent to the earlier even number printing
example. The only change is that all the statements that are related to the
“state” of the loop are now grouped together.

The parentheses after a for keyword must contain two semicolons. The
part before the first semicolon initializes the loop, usually by defining a vari-
able. The second part is the expression that checks whether the loop must
continue. The final part updates the state of the loop after every iteration. In
most cases, this is shorter and clearer than a while construct.

Here is the code that computes 210, using for instead of while:

var result = 1;

for (var counter = 0; counter < 10; counter = counter + 1)

result = result * 2;

console.log(result);

// . 1024

Note that even though no block is opened with a {, the statement in the
loop is still indented two spaces to make it clear that it “belongs” to the line
before it.

Breaking Out of a Loop
Having the loop’s condition produce false is not the only way a loop can
finish. There is a special statement called break that has the effect of immedi-
ately jumping out of the enclosing loop.

Program Structure 33

This program illustrates the break statement. It finds the first number
that is both greater than or equal to 20 and divisible by 7.

for (var current = 20; ; current++) {

if (current % 7 == 0)

break;

}

console.log(current);

// . 21

Using the remainder (%) operator is an easy way to test whether a num-
ber is divisible by another number. If it is, the remainder of their division
is zero.

The for construct in the example does not have a part that checks for
the end of the loop. This means that the loop will never stop unless the break

statement inside is executed.
If you were to leave out that break statement or accidentally write a con-

dition that always produces true, your program would get stuck in an infinite

loop. A program stuck in an infinite loop will never finish running, which is
usually a bad thing.

The continue keyword is similar to break, in that it influences the progress
of a loop. When continue is encountered in a loop body, control jumps out of
the body and continues with the loop’s next iteration.

Updating Variables Succinctly
Especially when looping, a program often needs to “update” a variable to
hold a value based on that variable’s previous value.

counter = counter + 1;

JavaScript provides a shortcut for this:

counter += 1;

Similar shortcuts work for many other operators, such as result *= 2 to
double result or counter -= 1 to count downward.

This allows us to shorten our counting example a little more.

for (var number = 0; number <= 12; number += 2)

console.log(number);

For counter += 1 and counter -= 1, there are even shorter equivalents:
counter++ and counter- -.

34 Chapter 2

Dispatching on a Value with switch
It is common for code to look like this:

if (variable == "value1") action1();

else if (variable == "value2") action2();

else if (variable == "value3") action3();

else defaultAction();

There is a construct called switch that is intended to solve such a “dis-
patch” in a more direct way. Unfortunately, the syntax JavaScript uses for
this (which it inherited from the C/Java line of programming languages) is
somewhat awkward—a chain of if statements often looks better. Here is an
example:

switch (prompt("What is the weather like?")) {

case "rainy":

console.log("Remember to bring an umbrella.");

break;

case "sunny":

console.log("Dress lightly.");

case "cloudy":

console.log("Go outside.");

break;

default:

console.log("Unknown weather type!");

break;

}

You may put any number of case labels inside the block opened by switch.
The program will jump to the label that corresponds to the value that switch
was given or to default if no matching value is found. It starts executing state-
ments there, even if they’re under another label, until it reaches a break state-
ment. In some cases, such as the "sunny" case in the example, this can be used
to share some code between cases (it recommends going outside for both
sunny and cloudy weather). But beware: it is easy to forget such a break,
which will cause the program to execute code you do not want executed.

Capitalization
Variable names may not contain spaces, yet it is often helpful to use multi-
ple words to clearly describe what the variable represents. These are pretty
much your choices for writing a variable name with several words in it:

fuzzylittleturtle

fuzzy_little_turtle

FuzzyLittleTurtle

fuzzyLittleTurtle

Program Structure 35

The first style can be hard to read. Personally, I like the look of the un-
derscores, though that style is a little painful to type. The standard JavaScript
functions, and most JavaScript programmers, follow the bottom style—they
capitalize every word except the first. It is not hard to get used to little things
like that, and code with mixed naming styles can be jarring to read, so we
will just follow this convention.

In a few cases, such as the Number function, the first letter of a variable
is also capitalized. This was done to mark this function as a constructor.
What a constructor is will become clear in Chapter 6. For now, the impor-
tant thing is not to be bothered by this apparent lack of consistency.

Comments
Often, raw code does not convey all the information you want a program to
convey to human readers, or it conveys it in such a cryptic way that people
might not understand it. At other times, you might just feel poetic or want
to include some thoughts as part of your program. This is what comments

are for.
A comment is a piece of text that is part of a program but is completely

ignored by the computer. JavaScript has two ways of writing comments. To
write a single-line comment, you can use two slash characters (//) and then
the comment text after it.

var accountBalance = calculateBalance(account);

// It's a green hollow where a river sings

accountBalance.adjust();

// Madly catching white tatters in the grass.

var report = new Report();

// Where the sun on the proud mountain rings:

addToReport(accountBalance, report);

// It's a little valley, foaming like light in a glass.

A // comment goes only to the end of the line. A section of text between
/* and */ will be ignored, regardless of whether it contains line breaks. This
is often useful for adding blocks of information about a file or a chunk of
program.

/*
I first found this number scrawled on the back of one of

my notebooks a few years ago. Since then, it has often

dropped by, showing up in phone numbers and the serial

numbers of products that I've bought. It obviously likes

me, so I've decided to keep it.

*/

var myNumber = 11213;

36 Chapter 2

Summary
You now know that a program is built out of statements, which themselves
sometimes contain more statements. Statements tend to contain expres-
sions, which themselves can be built out of smaller expressions.

Putting statements after one another gives you a program that is exe-
cuted from top to bottom. You can introduce disturbances in the flow of
control by using conditional (if, else, and switch) and looping (while, do,
and for) statements.

Variables can be used to file pieces of data under a name, and they are
useful for tracking states in your program. The environment is the set of
variables that are defined. JavaScript systems always put a number of useful
standard variables into your environment.

Functions are special values that encapsulate a piece of a program. You
can invoke them by writing functionName(argument1, argument2). Such a func-
tion call is an expression, and may produce a value.

Exercises
If you are unsure how to check your solutions to the exercises, refer to the
introduction.

Each exercise starts with a problem description. Read that and try to
solve the exercise. If you run into problems, consider reading the hints at
the end of the book. Full solutions to the exercises are not included in this
book, but you can find them online at http://eloquentjavascript.net/code/ . If
you want to learn something from the exercises, I recommend looking at
the solutions only after you’ve solved the exercise, or at least after you’ve
attacked it long and hard enough to have a slight headache.

Looping a Triangle
Write a loop that makes seven calls to console.log to output the following
triangle:

#

##

###

####

#####

######

#######

It may be useful to know that you can find the length of a string by
writing .length after it.

var abc = "abc";

console.log(abc.length);

// . 3

Program Structure 37

http://eloquentjavascript.net/code

FizzBuzz
Write a program that uses console.log to print all the numbers from 1 to 100,
with two exceptions. For numbers divisible by 3, print "Fizz" instead of the
number, and for numbers divisible by 5 (and not 3), print "Buzz" instead.

When you have that working, modify your program to print "FizzBuzz"
for numbers that are divisible by both 3 and 5.

(This is actually an interview question that has been claimed to weed
out a significant percentage of programmer candidates. So if you solved it,
you’re now allowed to feel good about yourself.)

Chess Board
Write a program that creates a string that represents an 8×8 grid, using new-
line characters to separate lines. At each position of the grid there is either a
space or a “#” character. The characters should form a chess board.

Passing this string to console.log should show something like this:

#

#

#

#

#

#

#

#

When you have a program that generates this pattern, define a variable
size = 8 and change the program so that it works for any size, outputting a
grid of the given width and height.

38 Chapter 2

“People think that computer science is the art

of geniuses but the actual reality is the oppo-

site, just many people doing things that build

on each other, like a wall of mini stones.”

— Donald Knuth

3
FUNCTIONS

You’ve seen function values, such as alert, and how
to call them. Functions are the bread and butter of
JavaScript programming. The concept of wrapping a
piece of program in a value has many uses. It is a tool
to structure larger programs, to reduce repetition, to
associate names with subprograms, and to isolate these
subprograms from each other.

The most obvious application of functions is defining new vocabulary.
Creating new words in regular, human-language prose is usually bad style.
But in programming, it is indispensable.

Typical adult English speakers have some 20,000 words in their vocab-
ulary. Few programming languages come with 20,000 commands built in.
And the vocabulary that is available tends to be more precisely defined, and
thus less flexible, than in human language. Therefore, we usually have to
add some of our own vocabulary to avoid repeating ourselves too much.

Defining a Function
A function definition is just a regular variable definition where the value
given to the variable happens to be a function. For example, the follow-
ing code defines the variable square to refer to a function that produces the
square of a given number:

var square = function(x) {

return x * x;

};

console.log(square(12));

// . 144

A function is created by an expression that starts with the keyword function.
Functions have a set of parameters (in this case, only x) and a body, which con-
tains the statements that are to be executed when the function is called. The
function body must always be wrapped in braces, even when it consists of
only a single statement (as in the previous example).

A function can have multiple parameters or no parameters at all. In the
following example, makeNoise does not list any parameter names, whereas
power lists two:

var makeNoise = function() {

console.log("Pling!");

};

makeNoise();

// . Pling!

var power = function(base, exponent) {

var result = 1;

for (var count = 0; count < exponent; count++)

result *= base;

return result;

};

console.log(power(2, 10));

// . 1024

Some functions produce a value, such as power and square, and some
don’t, such as makeNoise, which produces only a side effect. A return state-
ment determines the value the function returns. When control comes across
such a statement, it immediately jumps out of the current function and gives
the returned value to the code that called the function. The return keyword
without an expression after it will cause the function to return undefined.

42 Chapter 3

Parameters and Scopes
The parameters to a function behave like regular variables, but their initial
values are given by the caller of the function, not the code in the function
itself.

An important property of functions is that the variables created inside of
them, including their parameters, are local to the function. This means, for
example, that the result variable in the power example will be newly created
every time the function is called, and these separate incarnations do not in-
terfere with each other.

This “localness” of variables applies only to the parameters and to vari-
ables declared with the var keyword inside the function body. Variables
declared outside of any function are called global, because they are visible
throughout the program. It is possible to access such variables from inside
a function, as long as you haven’t declared a local variable with the same
name.

The following code demonstrates this. It defines and calls two functions
that both assign a value to the variable x. The first one declares the variable
as local and thus changes only the local variable. The second does not de-
clare x locally, so references to x inside of it refer to the global variable x de-
fined at the top of the example.

var x = "outside";

var f1 = function() {

var x = "inside f1";

};

f1();

console.log(x);

// . outside

var f2 = function() {

x = "inside f2";

};

f2();

console.log(x);

// . inside f2

This behavior helps prevent accidental interference between functions.
If all variables were shared by the whole program, it’d take a lot of effort to
make sure no name is ever used for two different purposes. And if you did

reuse a variable name, you might see strange effects from unrelated code
messing with the value of your variable. By treating function-local variables
as existing only within the function, the language makes it possible to read
and understand functions as small universes, without having to worry about
all the code at once.

Functions 43

Nested Scopes
JavaScript distinguishes not just between global and local variables. Functions
can be created inside other functions, producing several degrees of locality.

For example, this rather nonsensical function has two functions inside
of it:

var landscape = function() {

var result = "";

var flat = function(size) {

for (var count = 0; count < size; count++)

result += "_";

};

var mountain = function(size) {

result += "/";

for (var count = 0; count < size; count++)

result += "'";

result += "\\";

};

flat(3);

mountain(4);

flat(6);

mountain(1);

flat(1);

return result;

};

console.log(landscape());

// . ___/''''______/'_

The flat and mountain functions can “see” the variable called result, since
they are inside the function that defines it. But they cannot see each other’s
count variables since they are outside each other’s scope. The environment
outside of the landscape function doesn’t see any of the variables defined in-
side landscape.

In short, each local scope can also see all the local scopes that contain
it. The set of variables visible inside a function is determined by the place of
that function in the program text. All variables from blocks around a func-
tion’s definition are visible—meaning both those in function bodies that en-
close it and those at the top level of the program. This approach to variable
visibility is called lexical scoping.

People who have experience with other programming languages might
expect that any block of code between braces produces a new local envi-
ronment. But in JavaScript, functions are the only things that create a new
scope. You are allowed to use free-standing blocks.

44 Chapter 3

var something = 1;

{

var something = 2;

// Do stuff with variable something...

}

// Outside of the block again...

But the something inside the block refers to the same variable as the one
outside the block. In fact, although blocks like this are allowed, they are use-
ful only to group the body of an if statement or a loop.

If you find this odd, you’re not alone. The next version of JavaScript will
introduce a let keyword, which works like var but creates a variable that is
local to the enclosing block, not the enclosing function.

Functions as Values
Function variables usually simply act as names for a specific piece of the pro-
gram. Such a variable is defined once and never changed. This makes it easy
to start confusing the function and its name.

But the two are different. A function value can do all the things that
other values can do—you can use it in arbitrary expressions, not just call it.
It is possible to store a function value in a new place, pass it as an argument
to a function, and so on. Similarly, a variable that holds a function is still just
a regular variable and can be assigned a new value, like so:

var launchMissiles = function(value) {

missileSystem.launch("now");

};

if (safeMode)

launchMissiles = function(value) {/* do nothing */};

In Chapter 5, we will discuss the wonderful things that can be done by
passing around function values to other functions.

Declaration Notation
There is a slightly shorter way to say “var square = function...”. The function

keyword can also be used at the start of a statement, as in the following:

function square(x) {

return x * x;

}

This is a function declaration. The statement defines the variable square

and points it at the given function. So far so good. There is one subtlety with
this form of function definition, however.

Functions 45

console.log("The future says:", future());

function future() {

return "We STILL have no flying cars.";

}

This code works, even though the function is defined below the code
that uses it. This is because function declarations are not part of the regu-
lar top-to-bottom flow of control. They are conceptually moved to the top of
their scope and can be used by all the code in that scope. This is sometimes
useful because it gives us the freedom to order code in a way that seems
meaningful, without worrying about having to define all functions above
their first use.

What happens when you put such a function definition inside a condi-
tional (if) block or a loop? Well, don’t do that. Different JavaScript plat-
forms in different browsers have traditionally done different things in that
situation, and the latest standard actually forbids it. If you want your pro-
grams to behave consistently, only use this form of function-defining state-
ments in the outermost block of a function or program.

function example() {

function a() {} // Okay

if (something) {

function b() {} // Danger!

}

}

The Call Stack
It will be helpful to take a closer look at the way control flows through func-
tions. Here is a simple program that makes a few function calls:

function greet(who) {

console.log("Hello " + who);

}

greet("Harry");

console.log("Bye");

A run through this program goes roughly like this: the call to greet

causes control to jump to the start of that function (line 2). It calls console

.log (a built-in browser function), which takes control, does its job, and then
returns control to line 2. Then it reaches the end of the greet function, so
it returns to the place that called it, at line 4. The line after that calls console

.log again.

46 Chapter 3

We could show the flow of control schematically like this:

top

greet

console.log

greet

top

console.log

top

Because a function has to jump back to the place of the call when it re-
turns, the computer must remember the context from which the function
was called. In one case, console.log has to jump back to the greet function.
In the other case, it jumps back to the end of the program.

The place where the computer stores this context is the call stack. Every
time a function is called, the current context is put on top of this “stack.”
When the function returns, it removes the top context from the stack and
uses it to continue execution.

Storing this stack requires space in the computer’s memory. When the
stack grows too big, the computer will fail with a message like “out of stack
space” or “too much recursion.” The following code illustrates this by asking
the computer a really hard question, which causes an infinite back-and-forth
between two functions. Rather, it would be infinite, if the computer had an
infinite stack. As it is, we will run out of space, or “blow the stack.”

function chicken() {

return egg();

}

function egg() {

return chicken();

}

console.log(chicken() + " came first.");

// . ??

Optional Arguments
The following code is allowed and executes without any problem:

alert("Hello", "Good Evening", "How do you do?");

The function alert officially accepts only one argument. Yet when you
call it like this, it doesn’t complain. It simply ignores the other arguments
and shows you “Hello.”

JavaScript is extremely broad-minded about the number of arguments
you pass to a function. If you pass too many, the extra ones are ignored.
If you pass too few, the missing parameters simply get assigned the value
undefined.

Functions 47

The downside of this is that it is possible—likely, even—that you’ll acci-
dentally pass the wrong number of arguments to functions and no one will
tell you about it.

The upside is that this behavior can be used to have a function take “op-
tional” arguments. For example, the following version of power can be called
either with two arguments or with a single argument, in which case the expo-
nent is assumed to be two, and the function behaves like square.

function power(base, exponent) {

if (exponent == undefined)

exponent = 2;

var result = 1;

for (var count = 0; count < exponent; count++)

result *= base;

return result;

}

console.log(power(4));

// . 16

console.log(power(4, 3));

// . 64

In the next chapter, we will see a way in which a function body can get at
the exact list of arguments that were passed. This is helpful because it makes
it possible for a function to accept any number of arguments. For example,
console.log makes use of this—it outputs all of the values it is given.

console.log("R", 2, "D", 2);

// . R 2 D 2

Closure
The ability to treat functions as values, combined with the fact that local vari-
ables are “re-created” every time a function is called, brings up an interest-
ing question. What happens to local variables when the function call that
created them is no longer active?

The following code shows an example of this. It defines a function,
wrapValue, which creates a local variable. It then returns a function that
accesses and returns this local variable.

function wrapValue(n) {

var localVariable = n;

return function() { return localVariable; };

}

48 Chapter 3

var wrap1 = wrapValue(1);

var wrap2 = wrapValue(2);

console.log(wrap1());

// . 1

console.log(wrap2());

// . 2

This is allowed and works as you’d hope—the variable can still be ac-
cessed. In fact, multiple instances of the variable can be alive at the same
time, which is another good illustration of the concept that local variables
really are re-created for every call—different calls can’t trample on one an-
other’s local variables.

This feature—being able to reference a specific instance of local vari-
ables in an enclosing function—is called closure. A function that “closes over”
some local variables is called a closure. This behavior not only frees you
from having to worry about lifetimes of variables but also allows for some
creative use of function values.

With a slight change, we can turn the previous example into a way to
create functions that multiply by an arbitrary amount.

function multiplier(factor) {

return function(number) {

return number * factor;

};

}

var twice = multiplier(2);

console.log(twice(5));

// . 10

The explicit localVariable from the wrapValue example isn’t needed since
a parameter is itself a local variable.

Thinking about programs like this takes some practice. A good men-
tal model is to think of the function keyword as “freezing” the code in its
body and wrapping it into a package (the function value). So when you read
return function(...) {...}, think of it as returning a handle to a piece of
computation, frozen for later use.

In the example, multiplier returns a frozen chunk of code that gets stored
in the twice variable. The last line then calls the value in this variable, caus-
ing the frozen code (return number * factor;) to be activated. It still has ac-
cess to the factor variable from the multiplier call that created it, and in addi-
tion it gets access to the argument passed when unfreezing it, 5, through its
number parameter.

Functions 49

Recursion
It is perfectly okay for a function to call itself, as long as it takes care not to
overflow the stack. A function that calls itself is called recursive. Recursion
allows some functions to be written in a different style. Take, for example,
this alternative implementation of power:

function power(base, exponent) {

if (exponent == 0)

return 1;

else

return base * power(base, exponent - 1);

}

console.log(power(2, 3));

// . 8

This is rather close to the way mathematicians define exponentiation
and arguably describes the concept in a more elegant way than the loop-
ing variant does. The function calls itself multiple times with different argu-
ments to achieve the repeated multiplication.

But this implementation has one important problem: in typical JavaScript
implementations, it’s about 10 times slower than the looping version. Run-
ning through a simple loop is a lot cheaper than calling a function multiple
times.

The dilemma of speed versus elegance is an interesting one. You can
see it as a kind of continuum between human-friendliness and machine-
friendliness. Almost any program can be made faster by making it bigger
and more convoluted. The programmer must decide on an appropriate
balance.

In the case of the earlier power function, the inelegant (looping) version
is still fairly simple and easy to read. It doesn’t make much sense to replace
it with the recursive version. Often, though, a program deals with such com-
plex concepts that giving up some efficiency in order to make the program
more straightforward becomes an attractive choice.

The basic rule, which has been repeated by many programmers and
with which I wholeheartedly agree, is to not worry about efficiency until
you know for sure that the program is too slow. If it is, find out which parts
are taking up the most time, and start exchanging elegance for efficiency in
those parts.

Of course, this rule doesn’t mean one should start ignoring perfor-
mance altogether. In many cases, like the power function, not much simplic-
ity is gained from the “elegant” approach. And sometimes an experienced
programmer can see right away that a simple approach is never going to be
fast enough.

The reason I’m stressing this is that, surprisingly, many beginning pro-
grammers focus fanatically on efficiency, even in the smallest details. The re-
sult is bigger, more complicated, and often less correct programs, that take

50 Chapter 3

longer to write than their more straightforward equivalents and that usually
run only marginally faster.

But recursion is not always just a less-efficient alternative to looping.
Some problems are much easier to solve with recursion than with loops.
Most often these are problems that require exploring or processing several
“branches,” each of which might branch out again into more branches.

Consider this puzzle: by starting from the number 1 and repeatedly
either adding 5 or multiplying by 3, an infinite amount of new numbers can
be produced. How would you write a function that, given a number, tries
to find a sequence of such additions and multiplications that produce that
number? For example, the number 13 could be reached by first multiply-
ing by 3 and then adding 5 twice, whereas the number 15 cannot be reached
at all.

Here is a recursive solution:

function findSolution(target) {

function find(start, history) {

if (start == target)

return history;

else if (start > target)

return null;

else

return find(start + 5, "(" + history + " + 5)") ||

find(start * 3, "(" + history + " * 3)");

}

return find(1, "1");

}

console.log(findSolution(24));

// . (((1 * 3) + 5) * 3)

Note that this program doesn’t necessarily find the shortest sequence of
operations. It is satisfied when it finds any sequence at all.

I don’t necessarily expect you to see how it works right away. But let’s
work through it, since it makes for a great exercise in recursive thinking.

The inner function find does the actual recursing. It takes two argu-
ments—the current number and a string that records how we reached this
number—and returns either a string that shows how to get to the target
or null.

To do this, the function performs one of three actions. If the current
number is the target number, the current history is a way to reach that tar-
get, so it is simply returned. If the current number is greater than the target,
there’s no sense in further exploring this history since both adding and mul-
tiplying will only make the number bigger. And finally, if we’re still below
the target, the function tries both possible paths that start from the current
number, by calling itself twice, once for each of the allowed next steps. If
the first call returns something that is not null, it is returned. Otherwise, the
second call is returned—regardless of whether it produces a string or null.

Functions 51

To better understand how this function produces the effect we’re look-
ing for, let’s look at all the calls to find that are made when searching for a
solution for the number 13.

find(1, "1")

find(6, "(1 + 5)")

find(11, "((1 + 5) + 5)")

find(16, "(((1 + 5) + 5) + 5)")

too big

find(33, "(((1 + 5) + 5) * 3)")

too big

find(18, "((1 + 5) * 3)")

too big

find(3, "(1 * 3)")

find(8, "((1 * 3) + 5)")

find(13, "(((1 * 3) + 5) + 5)")

found!

The indentation suggests the depth of the call stack. The first time find

is called, it calls itself twice to explore the solutions that start with (1 + 5)

and (1 * 3). The first call tries to find a solution that starts with (1 + 5) and,
using recursion, explores every solution that yields a number less than or
equal to the target number. Since it doesn’t find a solution that hits the tar-
get, it returns null back to the first call. There the || operator causes the call
that explores (1 * 3) to happen. This search has more luck because its first
recursive call, through yet another recursive call, hits upon the target num-
ber, 13. This innermost recursive call returns a string, and each of the || op-
erators in the intermediate calls pass that string along, ultimately returning
our solution.

Growing Functions
There are two more or less natural ways for functions to be introduced into
programs.

The first is that you find yourself writing very similar code multiple times.
We want to avoid doing that since having more code means more space for
mistakes to hide and more material to read for people trying to understand
the program. So we take the repeated functionality, find a good name for it,
and put it into a function.

The second way is that you find you need some functionality that you
haven’t written yet and that sounds like it deserves its own function. You’ll
start by naming the function, and you’ll then write its body. You might
even start writing code that uses the function before you actually define
the function itself.

How difficult it is to find a good name for a function is a good indica-
tion of how clear a concept it is that you’re trying to wrap. Let’s go through
an example.

52 Chapter 3

We want to write a program that prints two numbers, the numbers
of cows and chickens on a farm, with the words Cows and Chickens after
them, and zeros padded before both numbers so that they are always
three digits long.

007 Cows

011 Chickens

That clearly asks for a function of two arguments. Let’s get coding.

function printFarmInventory(cows, chickens) {

var cowString = String(cows);

while (cowString.length < 3)

cowString = "0" + cowString;

console.log(cowString + " Cows");

var chickenString = String(chickens);

while (chickenString.length < 3)

chickenString = "0" + chickenString;

console.log(chickenString + " Chickens");

}

printFarmInventory(7, 11);

Adding .length after a string value will give us the length of that string.
Thus, the while loops keep adding zeros in front of the number strings until
they are at least three characters long.

Mission accomplished! But just as we are about to send the farmer the
code (along with a hefty invoice, of course), he calls and tells us he’s also
started keeping pigs, and couldn’t we please extend the software to also
print pigs?

We sure can. But just as we’re in the process of copying and pasting
those four lines one more time, we stop and reconsider. There has to be a
better way. Here’s a first attempt:

function printZeroPaddedWithLabel(number, label) {

var numberString = String(number);

while (numberString.length < 3)

numberString = "0" + numberString;

console.log(numberString + " " + label);

}

function printFarmInventory(cows, chickens, pigs) {

printZeroPaddedWithLabel(cows, "Cows");

printZeroPaddedWithLabel(chickens, "Chickens");

printZeroPaddedWithLabel(pigs, "Pigs");

}

printFarmInventory(7, 11, 3);

Functions 53

It works! But that name, printZeroPaddedWithLabel, is a little awkward. It
conflates three things—printing, zero-padding, and adding a label—into a
single function.

Instead of lifting out the repeated part of our program wholesale, let’s
try to pick out a single concept.

function zeroPad(number, width) {

var string = String(number);

while (string.length < width)

string = "0" + string;

return string;

}

function printFarmInventory(cows, chickens, pigs) {

console.log(zeroPad(cows, 3) + " Cows");

console.log(zeroPad(chickens, 3) + " Chickens");

console.log(zeroPad(pigs, 3) + " Pigs");

}

printFarmInventory(7, 16, 3);

A function with a nice, obvious name like zeroPad makes it easier for
someone who reads the code to figure out what it does. And it is useful in
more situations than just this specific program. For example, you could use
it to help print nicely aligned tables of numbers.

How smart and versatile should our function be? We could write any-
thing from a terribly simple function that simply pads a number so that it’s
three characters wide to a complicated generalized number-formatting sys-
tem that handles fractional numbers, negative numbers, alignment of dots,
padding with different characters, and so on.

A useful principle is not to add cleverness unless you are absolutely sure
you’re going to need it. It can be tempting to write general “frameworks” for
every little bit of functionality you come across. Resist that urge. You won’t
get any real work done, and you’ll end up writing a lot of code that no one
will ever use.

Functions and Side Effects
Functions can be roughly divided into those that are called for their side
effects and those that are called for their return value. (Though it is defi-
nitely also possible to have both side effects and return a value.)

The first helper function in the farm example, printZeroPaddedWithLabel,
is called for its side effect: it prints a line. The second version, zeroPad, is
called for its return value. It is no coincidence that the second is useful in
more situations than the first. Functions that create values are easier to com-
bine in new ways than functions that directly perform side effects.

54 Chapter 3

A pure function is a specific kind of value-producing function that not
only has no side effects but also doesn’t rely on side effects from other code—
for example, it doesn’t read global variables that are occasionally changed by
other code. A pure function has the pleasant property that, when called with
the same arguments, it always produces the same value (and doesn’t do any-
thing else). This makes it easy to reason about. A call to such a function can
be mentally substituted by its result, without changing the meaning of the
code. When you are not sure that a pure function is working correctly, you
can test it by simply calling it, and know that if it works in that context, it will
work in any context. Nonpure functions might return different values based
on all kinds of factors and have side effects that might be hard to test and
think about.

Still, there’s no need to feel bad when writing functions that are not
pure or to wage a holy war to purge them from your code. Side effects are
often useful. There’d be no way to write a pure version of console.log, for ex-
ample, and console.log is certainly useful. Some operations are also easier to
express in an efficient way when we use side effects, so computing speed can
be a reason to avoid purity.

Summary
This chapter taught you how to write your own functions. The function key-
word, when used as an expression, can create a function value. When used
as a statement, it can be used to declare a variable and give it a function as
its value.

// Create a function value f

var f = function(a) {

console.log(a + 2);

};

// Declare g to be a function

function g(a, b) {

return a * b * 3.5;

}

A key aspect in understanding functions is understanding local scopes.
Parameters and variables declared inside a function are local to the func-
tion, re-created every time the function is called, and not visible from the
outside. Functions declared inside another function have access to the outer
function’s local scope.

Separating the tasks your program performs into different functions is
helpful. You won’t have to repeat yourself as much, and functions can make
a program more readable by grouping code into conceptual chunks, in the
same way that chapters and sections help organize regular text.

Functions 55

Exercises

Minimum
The previous chapter introduced the standard function Math.min that returns
its smallest argument. We can do that ourselves now. Write a function min

that takes two arguments and returns their minimum.

Recursion
We’ve seen that % (the remainder operator) can be used to test whether a
number is even or odd by using % 2 to check whether it’s divisible by two.
Here’s another way to define whether a positive whole number is even
or odd:

• Zero is even.

• One is odd.

• For any other number N, its evenness is the same as N − 2.

Define a recursive function isEven corresponding to this description.
The function should accept a number parameter and return a Boolean.

Test it on 50 and 75. See how it behaves on −1. Why? Can you think
of a way to fix this?

Bean Counting
You can get the N th character, or letter, from a string by writing "string"

.charAt(N), similar to how you get its length with "s".length. The returned
value will be a string containing only one character (for example, "b"). The
first character has position zero, which causes the last one to be found at po-
sition string.length - 1. In other words, a two-character string has length 2,
and its characters have positions 0 and 1.

Write a function countBs that takes a string as its only argument and re-
turns a number that indicates how many uppercase “B” characters are in the
string.

Next, write a function called countChar that behaves like countBs, except
it takes a second argument that indicates the character that is to be counted
(rather than counting only uppercase “B” characters). Rewrite countBs to
make use of this new function.

56 Chapter 3

“On two occasions I have been asked, ‘Pray,

Mr. Babbage, if you put into the machine wrong

figures, will the right answers come out?’ . . . I am

not able rightly to apprehend the kind of confusion

of ideas that could provoke such a question.”

— Charles Babbage,

Passages from the Life of a Philosopher (1864)

4
DATA STRUCTURES:

OBJECTS AND ARRAYS

Numbers, Booleans, and strings are the bricks that data
structures are built from. But you can’t make much of
a house out of a single brick. Objects allow us to group
values—including other objects—together and thus
build more complex structures.

The programs we have built so far have been seriously hampered by the
fact that they were operating only on simple data types. This chapter will
add a basic understanding of data structures to your toolkit. By the end of it,
you’ll know enough to start writing some useful programs.

The chapter will work through a more or less realistic programming
example, introducing concepts as they apply to the problem at hand.
The example code will often build on functions and variables that were
introduced earlier in the text.

The online coding sandbox for the book (http://eloquentjavascript.net/

code/) provides a way to run code in the context of a specific chapter. If you
decide to work through the examples in another environment, be sure to
first download the full code for this chapter from the sandbox page.

http://eloquentjavascript.net/code
http://eloquentjavascript.net/code

The Weresquirrel
Every now and then, usually between eight and ten in the evening, Jacques
finds himself transforming into a small furry rodent with a bushy tail.

On one hand, Jacques is quite glad that he doesn’t have classic lycan-
thropy. Turning into a squirrel tends to cause fewer problems than turn-
ing into a wolf. Instead of having to worry about accidentally eating the
neighbor (that would be awkward), he worries about being eaten by the
neighbor’s cat. After two occasions where he woke up on a precariously thin
branch in the crown of an oak, naked and disoriented, he has taken to lock-
ing the doors and windows of his room at night and putting a few walnuts on
the floor to keep himself busy.

That takes care of the cat and oak problems. But Jacques still suffers
from his condition. The irregular occurrences of the transformation make
him suspect that they might be triggered by something. For a while, he be-
lieved that it happened only on days when he had touched trees. So he
stopped touching trees entirely and even avoided going near them. But
the problem persisted.

Switching to a more scientific approach, Jacques intends to start keeping
a daily log of everything he did that day and whether he changed form. With
this data he hopes to narrow down the conditions that trigger the transfor-
mations.

The first thing he does is design a data structure to store this informa-
tion.

Data Sets
To work with a chunk of digital data, we’ll first have to find a way to repre-
sent it in our machine’s memory. Say, as a simple example, that we want to
represent a collection of numbers: 2, 3, 5, 7, and 11.

We could get creative with strings—after all, strings can be any length,
so we can put a lot of data into them—and use "2 3 5 7 11" as our represen-
tation. But this is awkward. You’d have to somehow extract the digits and
convert them back to numbers to access them.

60 Chapter 4

Fortunately, JavaScript provides a data type specifically for storing se-
quences of values. It is called an array and is written as a list of values be-
tween square brackets, separated by commas.

var listOfNumbers = [2, 3, 5, 7, 11];

console.log(listOfNumbers[1]);

// . 3

console.log(listOfNumbers[1 - 1]);

// . 2

The notation for getting at the elements inside an array also uses square
brackets. A pair of square brackets immediately after an expression, with
another expression inside of them, will look up the element in the left-hand
expression that corresponds to the index given by the expression in the
brackets.

The first index of an array is zero, not one. So the first element can be
read with listOfNumbers[0]. If you don’t have a programming background,
this convention might take some getting used to. But zero-based counting
has a long tradition in technology, and as long as this convention is followed
consistently (which it is, in JavaScript), it works well.

Properties
We’ve seen a few suspicious-looking expressions like myString.length (to
get the length of a string) and Math.max (the maximum function) in past
examples. These are expressions that access a property of some value. In the
first case, we access the length property of the value in myString. In the sec-
ond, we access the property named max in the Math object (which is a collec-
tion of mathematics-related values and functions).

Almost all JavaScript values have properties. The exceptions are null and
undefined. If you try to access a property on one of these nonvalues, you get
an error.

null.length;

// . TypeError: Cannot read property 'length' of null

The two most common ways to access properties in JavaScript are with
a dot and with square brackets. Both value.x and value[x] access a property
on value—but not necessarily the same property. The difference is in how x

is interpreted. When using a dot, the part after the dot must be a valid vari-
able name, and it directly names the property. When using square brackets,
the expression between the brackets is evaluated to get the property name.
Whereas value.x fetches the property of value named “x,” value[x] tries to
evaluate the expression x and uses the result as the property name.

Data Structures: Objects and Arrays 61

So if you know that the property you are interested in is called “length,”
you say value.length. If you want to extract the property named by the value
held in the variable i, you say value[i]. And because property names can be
any string, if you want to access a property named “0” or “John Doe,” you
must use square brackets: value[0] or value["John Doe"]. This is the case even
though you know the precise name of the property in advance, because nei-
ther “0” nor “John Doe” is a valid variable name and so cannot be accessed
through dot notation.

The elements in an array are stored in properties. Because the names of
these properties are numbers and we often need to get their name from a
variable, we have to use the bracket syntax to access them. The length prop-
erty of an array tells us how many elements it contains. This property name
is a valid variable name, and we know its name in advance, so to find the
length of an array, you typically write array.length because that is easier to
write than array["length"].

Methods
Both string and array objects contain, in addition to the length property, a
number of properties that refer to function values.

var doh = "Doh";

console.log(typeof doh.toUpperCase);

// . function

console.log(doh.toUpperCase());

// . DOH

Every string has a toUpperCase property. When called, it will return a copy
of the string, in which all letters have been converted to uppercase. There is
also toLowerCase. You can guess what that does.

Interestingly, even though the call to toUpperCase does not pass any argu-
ments, the function somehow has access to the string "Doh", the value whose
property we called. How this works is described in Chapter 6.

Properties that contain functions are generally called methods of the
value they belong to. As in, “toUpperCase is a method of a string.”

This example demonstrates some methods that array objects have:

var mack = [];

mack.push("Mack");

mack.push("the", "Knife");

console.log(mack);

// . ["Mack", "the", "Knife"]

console.log(mack.join(" "));

// . Mack the Knife

console.log(mack.pop());

// . Knife

console.log(mack);

// . ["Mack", "the"]

62 Chapter 4

The push method can be used to add values to the end of an array. The
pop method does the opposite: it removes the value at the end of the array
and returns it. An array of strings can be flattened to a single string with the
join method. The argument given to join determines the text that is glued
between the array’s elements.

Objects
Back to the weresquirrel. A set of daily log entries can be represented as an
array. But the entries do not consist of just a number or a string—each entry
needs to store a list of activities and a Boolean value that indicates whether
Jacques turned into a squirrel. Ideally, we would like to group these values
together into a single value and then put these grouped values into an array
of log entries.

Values of the type object are arbitrary collections of properties, and we
can add or remove these properties as we please. One way to create an ob-
ject is by using a brace notation.

var day1 = {

squirrel: false,

events: ["work", "touched tree", "pizza", "running",

"television"]

};

console.log(day1.squirrel);

// . false

console.log(day1.wolf);

// . undefined

day1.wolf = false;

console.log(day1.wolf);

// . false

Inside the braces, we can give a list of properties separated by commas.
Each property is written as a name, followed by a colon, followed by an ex-
pression that provides a value for the property. Spaces and line breaks are
not significant. When an object spans multiple lines, indenting it like in
the previous example improves readability. Properties whose names are not
valid variable names or valid numbers have to be quoted.

var descriptions = {

work: "Went to work",

"touched tree": "Touched a tree"

};

This means that braces have two meanings in JavaScript. At the start of
a statement, they start a block of statements. In any other position, they de-
scribe an object. Fortunately, it is almost never useful to start a statement
with a brace object, and in typical programs, there is no ambiguity between
these two uses.

Data Structures: Objects and Arrays 63

Reading a property that doesn’t exist will produce the value undefined,
which happens the first time we try to read the wolf property in the previous
example.

It is possible to assign a value to a property expression with the = opera-
tor. This will replace the property’s value if it already existed or create a new
property on the object if it didn’t.

To briefly return to our tentacle model of variable bindings—property
bindings are similar. They grasp values, but other variables and properties
might be holding onto those same values. You may think of objects as octo-
puses with any number of tentacles, each of which has a name inscribed
on it.

The delete operator cuts off a tentacle from such an octopus. It is a
unary operator that, when applied to a property access expression, will re-
move the named property from the object. This is not a common thing to
do, but it is possible.

var anObject = {left: 1, right: 2};

console.log(anObject.left);

// . 1

delete anObject.left;

console.log(anObject.left);

// . undefined

console.log("left" in anObject);

// . false

console.log("right" in anObject);

// . true

The binary in operator, when applied to a string and an object, returns
a Boolean value that indicates whether that object has that property. The
difference between setting a property to undefined and actually deleting it is
that, in the first case, the object still has the property (it just doesn’t have a
very interesting value), whereas in the second case the property is no longer
present and in will return false.

Arrays, then, are just a kind of object specialized for storing sequences
of things. If you evaluate typeof [1, 2], this produces "object". You can see

64 Chapter 4

them as long, flat octopuses with all their arms in a neat row, labeled with
numbers.

So we can represent Jacques’s journal as an array of objects.

var journal = [

{events: ["work", "touched tree", "pizza",

"running", "television"],

squirrel: false},

{events: ["work", "ice cream", "cauliflower",

"lasagna", "touched tree", "brushed teeth"],

squirrel: false},

{events: ["weekend", "cycling", "break",

"peanuts", "beer"],

squirrel: true},

/* and so on... */

];

Mutability
We will get to actual programming real soon now. But first, there’s one last
piece of theory to understand.

We’ve seen that object values can be modified. The types of values dis-
cussed in earlier chapters, such as numbers, strings, and Booleans, are all
immutable—it is impossible to change an existing value of those types. You
can combine them and derive new values from them, but when you take a
specific string value, that value will always remain the same. The text inside
it cannot be changed. If you have reference to a string that contains "cat", it
is not possible for other code to change a character in that string to make it
spell "rat".

With objects, on the other hand, the content of a value can be modified
by changing its properties.

When we have two numbers, 120 and 120, we can consider them pre-
cisely the same number, whether or not they refer to the same physical bits.
But with objects, there is a difference between having two references to the

Data Structures: Objects and Arrays 65

same object and having two different objects that contain the same proper-
ties. Consider the following code:

var object1 = {value: 10};

var object2 = object1;

var object3 = {value: 10};

console.log(object1 == object2);

// . true

console.log(object1 == object3);

// . false

object1.value = 15;

console.log(object2.value);

// . 15

console.log(object3.value);

// . 10

The object1 and object2 variables grasp the same object, which is why
changing object1 also changes the value of object2. The variable object3 points
to a different object, which initially contains the same properties as object1

but lives a separate life.
JavaScript’s == operator, when comparing objects, will return true only if

both objects are precisely the same value. Comparing different objects will
return false, even if they have identical contents. There is no deep compari-
son operation built into JavaScript, which looks at object’s contents, but it is
possible to write it yourself (which will be one of the exercises at the end of
this chapter).

The Lycanthrope’s Log
So Jacques starts up his JavaScript interpreter and sets up the environment
he needs to keep his journal.

var journal = [];

function addEntry(events, didITurnIntoASquirrel) {

journal.push({

events: events,

squirrel: didITurnIntoASquirrel

});

}

And then, every evening at ten—or sometimes the next morning, after
climbing down from the top shelf of his bookcase—he records the day.

66 Chapter 4

addEntry(["work", "touched tree", "pizza", "running",

"television"], false);

addEntry(["work", "ice cream", "cauliflower", "lasagna",

"touched tree", "brushed teeth"], false);

addEntry(["weekend", "cycling", "break", "peanuts",

"beer"], true);

Once he has enough data points, he intends to compute the correlation
between his squirrelification and each of the day’s events and ideally learn
something useful from those correlations.

Correlation is a measure of dependence between variables (“variables” in
the statistical sense, not the JavaScript sense). It is usually expressed as a co-
efficient that ranges from −1 to 1. Zero correlation means the variables are
not related, whereas a correlation of one indicates that the two are perfectly
related—if you know one, you also know the other. Negative one also means
that the variables are perfectly related but that they are opposites—when
one is true, the other is false.

For binary (Boolean) variables, the phi coefficient (ϕ) provides a good
measure of correlation and is relatively easy to compute. To compute ϕ, we
need a table n that contains the number of times the various combinations
of the two variables were observed. For example, we could take the event of
eating pizza and put that in a table like this:

76

4

9No pizza, no squirrel

No pizza, squirrel

Pizza, no squirrel

Pizza, squirrel 1

ϕ can be computed using the following formula, where n refers to the
numbers in the table:

φ =
n11n00 − n10n01√

n1•n0•n•1n•0
(4.1)

Data Structures: Objects and Arrays 67

The notation n01 indicates the number of measurements where the first
measurement (pizza) is false (0) and the second measurement (squirrel-
ness) is true (1). In this example, n01 is 4.

The value n1• refers to the sum of all measurements where the first vari-
able is true, which is 10 in the example table. Likewise, n•0 refers to the sum
of the measurements where the squirrel variable is false.

So for the pizza table, the part above the division line (the dividend)
would be 1×76 − 9×4 = 40, and the part below it (the divisor) would be
the square root of 10×80×5×85, or

√
340000. This comes out to ϕ ≈ 0.069,

which is tiny. Eating pizza does not appear to have influence on the transfor-
mations.

Computing Correlation
We can represent a two-by-two table in JavaScript with a four-element array
([76, 9, 4, 1]). We could also use other representations, such as an array
containing two two-element arrays ([[76, 9], [4, 1]]) or an object with prop-
erty names like "11" and "01", but the flat array is simple and makes the ex-
pressions that access the table pleasantly short. We’ll interpret the indices to
the array as a two-bit binary number, where the leftmost (most significant)
digit refers to the squirrel variable and the rightmost (least significant) digit
refers to the event variable. For example, the binary number 10 refers to
the case where Jacques did turn into a squirrel, but the event (say, "pizza")

didn’t occur. This happened four times. And since binary 10 is 2 in decimal
notation, we will store this value at index 2 in the array.

This is the function that computes the ϕ coefficient from such an array:

function phi(table) {

return (table[3] * table[0] - table[2] * table[1]) /

Math.sqrt((table[2] + table[3]) *
(table[0] + table[1]) *
(table[1] + table[3]) *
(table[0] + table[2]));

}

console.log(phi([76, 9, 4, 1]));

// . 0.068599434

This is simply a direct translation of the ϕ formula into JavaScript. Math
.sqrt is the square root function, as provided by the Math object in a standard
JavaScript environment. We have to sum two fields from the table to get
fields like n1• because the sums of rows or columns are not stored directly
in our data structure.

Jacques kept his journal for three months. The resulting data set is avail-
able in the coding sandbox for this chapter(http://eloquentjavascript.net/code/),
where it is stored in the JOURNAL variable and in a downloadable file.

68 Chapter 4

http://eloquentjavascript.net/code/
http://eloquentjavascript.net/code/jacques_{}journal.js

To extract a two-by-two table for a specific event from this journal, we
must loop over all the entries and tally up how many times the event occurs
in relation to squirrel transformations.

function hasEvent(event, entry) {

return entry.events.indexOf(event) != -1;

}

function tableFor(event, journal) {

var table = [0, 0, 0, 0];

for (var i = 0; i < journal.length; i++) {

var entry = journal[i], index = 0;

if (hasEvent(event, entry)) index += 1;

if (entry.squirrel) index += 2;

table[index] += 1;

}

return table;

}

console.log(tableFor("pizza", JOURNAL));

// . [76, 9, 4, 1]

The hasEvent function tests whether an entry contains a given event. Ar-
rays have an indexOf method that tries to find a given value (in this case, the
event name) in the array and returns the index at which it was found or −1
if it wasn’t found. So if the call to indexOf doesn’t return −1, then we know
the event was found in the entry.

The body of the loop in tableFor figures out which box in the table each
journal entry falls into by checking whether the entry contains the specific
event it’s interested in and whether the event happens alongside a squir-
rel incident. The loop then adds one to the number in the array that corre-
sponds to this box on the table.

We now have the tools we need to compute individual correlations. The
only step remaining is to find a correlation for every type of event that was
recorded and see whether anything stands out. But how should we store
these correlations once we compute them?

Objects as Maps
One possible way is to store all the correlations in an array, using objects
with name and value properties. But that makes looking up the correlation for
a given event somewhat cumbersome: you’d have to loop over the whole ar-
ray to find the object with the right name. We could wrap this lookup process
in a function, but we would still be writing more code, and the computer
would be doing more work than necessary.

Data Structures: Objects and Arrays 69

A better way is to use object properties named after the event types. We
can use the square bracket access notation to create and read the properties
and can use the in operator to test whether a given property exists.

var map = {};

function storePhi(event, phi) {

map[event] = phi;

}

storePhi("pizza", 0.069);

storePhi("touched tree", -0.081);

console.log("pizza" in map);

// . true

console.log(map["touched tree"]);

// . -0.081

A map is a way to go from values in one domain (in this case, event names)
to corresponding values in another domain (in this case, ϕ coefficients).

There are a few potential problems with using objects like this, which we
will discuss in Chapter 6, but for the time being, we won’t worry about those.

What if we want to find all the events for which we have stored a coeffi-
cient? The properties don’t form a predictable series, like they would in an
array, so we cannot use a normal for loop. JavaScript provides a loop con-
struct specifically for going over the properties of an object. It looks a little
like a normal for loop but distinguishes itself by the use of the word in.

for (var event in map)

console.log("The correlation for '" + event + "' is " + map[event]);

// . The correlation for 'pizza' is 0.069

// . The correlation for 'touched tree' is -0.081

The Final Analysis
To find all the types of events that are present in the data set, we simply pro-
cess each entry in turn and then loop over the events in that entry. We keep
an object phis that has correlation coefficients for all the event types we have
seen so far. Whenever we run across a type that isn’t in the phis object yet,
we compute its correlation and add it to the object.

function gatherCorrelations(journal) {

var phis = {};

for (var entry = 0; entry < journal.length; entry++) {

var events = journal[entry].events;

for (var i = 0; i < events.length; i++) {

var event = events[i];

70 Chapter 4

if (!(event in phis))

phis[event] = phi(tableFor(event, journal));

}

}

return phis;

}

var correlations = gatherCorrelations(JOURNAL);

console.log(correlations.pizza);

// . 0.068599434

Let’s see what came out.

for (var event in correlations)

console.log(event + ": " + correlations[event]);

// . carrot: 0.0140970969

// . exercise: 0.0685994341

// . weekend: 0.1371988681

// . bread: -0.0757554019

// . pudding: -0.0648203724

// and so on...

Most correlations seem to lie close to zero. Eating carrots, bread, or
pudding apparently does not trigger squirrel-lycanthropy. It does seem to
occur somewhat more often on weekends, however. Let’s filter the results
to show only correlations greater than 0.1 or less than −0.1.

for (var event in correlations) {

var correlation = correlations[event];

if (correlation > 0.1 || correlation < -0.1)

console.log(event + ": " + correlation);

}

// . weekend: 0.1371988681

// . brushed teeth: -0.3805211953

// . candy: 0.1296407447

// . work: -0.1371988681

// . spaghetti: 0.2425356250

// . reading: 0.1106828054

// . peanuts: 0.5902679812

A-ha! There are two factors whose correlation is clearly stronger than
the others. Eating peanuts has a strong positive effect on the chance of turn-
ing into a squirrel, whereas brushing his teeth has a significant negative
effect.

Interesting. Let’s try something.

Data Structures: Objects and Arrays 71

for (var i = 0; i < JOURNAL.length; i++) {

var entry = JOURNAL[i];

if (hasEvent("peanuts", entry) &&

!hasEvent("brushed teeth", entry))

entry.events.push("peanut teeth");

}

console.log(phi(tableFor("peanut teeth", JOURNAL)));

// . 1

Well, that’s unmistakable! The phenomenon occurs precisely when
Jacques eats peanuts and fails to brush his teeth. If only he weren’t such a
slob about dental hygiene, he’d have never even noticed his affliction.

Knowing this, Jacques simply stops eating peanuts altogether and finds
that this completely puts an end to his transformations.

All is well with Jacques for a while. But a few years later, he loses his job
and is eventually forced to take employment with a circus, where he per-
forms as The Incredible Squirrelman by stuffing his mouth with peanut butter
before every show. One day, fed up with this pitiful existence, Jacques fails to
change back into his human form, hops through a crack in the circus tent,
and vanishes into the forest. He is never seen again.

Further Arrayology
Before finishing up this chapter, I want to introduce you to a few more
object-related concepts. We’ll start by introducing some generally useful
array methods.

We saw push and pop, which add and remove elements at the end of an
array, earlier in this chapter. The corresponding methods for adding and
removing things at the start of an array are called unshift and shift.

var todoList = [];

function rememberTo(task) {

todoList.push(task);

}

function whatIsNext() {

return todoList.shift();

}

function urgentlyRememberTo(task) {

todoList.unshift(task);

}

The previous program manages lists of tasks. You add tasks to the end of
the list by calling rememberTo("eat"), and when you’re ready to do something,
you call whatIsNext() to get (and remove) the front item from the list. The
urgentlyRememberTo function also adds a task but adds it to the front instead of
the back of the list.

72 Chapter 4

The indexOf method has a sibling called lastIndexof, which starts search-
ing for the given element at the end of the array instead of the front.

console.log([1, 2, 3, 2, 1].indexOf(2));

// . 1

console.log([1, 2, 3, 2, 1].lastIndexOf(2));

// . 3

Both indexOf and lastIndexOf take an optional second argument that indi-
cates where to start searching from.

Another fundamental method is slice, which takes a start index and an
end index and returns an array that has only the elements between those
indices. The start index is inclusive, the end index exclusive.

console.log([0, 1, 2, 3, 4].slice(2, 4));

// . [2, 3]

console.log([0, 1, 2, 3, 4].slice(2));

// . [2, 3, 4]

When the end index is not given, slice will take all of the elements after
the start index. Strings also have a slice method, which has a similar effect.

The concat method can be used to glue arrays together, similar to what
the + operator does for strings. The following example shows both concat

and slice in action. It takes an array and an index, and it returns a new ar-
ray that is a copy of the original array with the element at the given index
removed.

function remove(array, index) {

return array.slice(0, index)

.concat(array.slice(index + 1));

}

console.log(remove(["a", "b", "c", "d", "e"], 2));

// . ["a", "b", "d", "e"]

Strings and Their Properties
We can read properties like length and toUpperCase from string values. But if
you try to add a new property, it doesn’t stick.

var myString = "Fido";

myString.myProperty = "value";

console.log(myString.myProperty);

// . undefined

Values of type string, number, and Boolean are not objects, and though
the language doesn’t complain if you try to set new properties on them, it

Data Structures: Objects and Arrays 73

doesn’t actually store those properties. The values are immutable and can-
not be changed.

But these types do have some built-in properties. Every string value has
a number of methods. The most useful ones are probably slice and indexOf,
which resemble the array methods of the same name.

console.log("coconuts".slice(4, 7));

// . nut

console.log("coconut".indexOf("u"));

// . 5

One difference is that a string’s indexOf can take a string containing
more than one character, whereas the corresponding array method looks
only for a single element.

console.log("one two three".indexOf("ee"));

// . 11

The trim method removes whitespace (spaces, newlines, tabs, and similar
characters) from the start and end of a string.

console.log(" okay \n ".trim());

// . okay

We have already seen the string type’s length property. Accessing the
individual characters in a string can be done with the charAt method but also
by simply reading numeric properties, like you’d do for an array.

var string = "abc";

console.log(string.length);

// . 3

console.log(string.charAt(0));

// . a

console.log(string[1]);

// . b

The arguments Object
Whenever a function is called, a special variable named arguments is added
to the environment in which the function body runs. This variable refers to
an object that holds all of the arguments passed to the function. Remember
that in JavaScript you are allowed to pass more (or fewer) arguments to a
function than the number of parameters the function itself declares.

function noArguments() {}

noArguments(1, 2, 3); // This is okay

74 Chapter 4

function threeArguments(a, b, c) {}

threeArguments(); // And so is this

The arguments object has a length property that tells us the number of
arguments that were really passed to the function. It also has a property for
each argument, named 0, 1, 2, and so on.

If that sounds a lot like an array to you, you’re right, it is a lot like an
array. But this object, unfortunately, does not have any array methods (like
slice or indexOf), so it is a little harder to use than a real array.

function argumentCounter() {

console.log("You gave me", arguments.length, "arguments.");

}

argumentCounter("Straw man", "Tautology", "Ad hominem");

// . You gave me 3 arguments.

Some functions can take any number of arguments, like console.log.
These typically loop over the values in their arguments object. They can be
used to create very pleasant interfaces. For example, remember how we
created the entries to Jacques’s journal.

addEntry(["work", "touched tree", "pizza", "running",

"television"], false);

Since he is going to be calling this function a lot, we could create an al-
ternative that is easier to call.

function addEntry(squirrel) {

var entry = {events: [], squirrel: squirrel};

for (var i = 1; i < arguments.length; i++)

entry.events.push(arguments[i]);

journal.push(entry);

}

addEntry(true, "work", "touched tree", "pizza",

"running", "television");

This version reads its first argument (squirrel) in the normal way and
then goes over the rest of the arguments (the loop starts at index 1, skipping
the first) to gather them into an array.

The Math Object
As we’ve seen, Math is a grab-bag of number-related utility functions, such as
Math.max (maximum), Math.min (minimum), and Math.sqrt (square root).

The Math object is used simply as a container to group a bunch of related
functionality. There is only one Math object, and it is almost never useful as

Data Structures: Objects and Arrays 75

a value. Rather, it provides a namespace so that all these functions and values
do not have to be global variables.

Having too many global variables “pollutes” the namespace. The more
names that have been taken, the more likely you are to accidentally over-
write the value of some variable. For example, it’s not unlikely that you’ll
want to name something max in one of your programs. Since JavaScript’s
built-in max function is tucked safely inside the Math object, we don’t have to
worry about overwriting it.

Many languages will stop you, or at least warn you, when you are defin-
ing a variable with a name that is already taken. JavaScript does neither, so
be careful.

Back to the Math object. If you need to do trigonometry, Math can help.
It contains cos (cosine), sin (sine), and tan (tangent), as well as their inverse
functions, acos, asin, and atan, respectively. The number π (pi)—or at least
the closest approximation that fits in a JavaScript number—is available as
Math.PI. (There is an old programming tradition of writing the names of con-
stant values in all caps.)

function randomPointOnCircle(radius) {

var angle = Math.random() * 2 * Math.PI;

return {x: radius * Math.cos(angle),

y: radius * Math.sin(angle)};

}

console.log(randomPointOnCircle(2));

// . {x: 0.3667, y: 1.966}

If sines and cosines are not something you are very familiar with, don’t
worry. When they are used in this book, in Chapter 13, I’ll explain them.

The previous example uses Math.random. This is a function that returns a
new pseudorandom number between zero (inclusive) and one (exclusive)
every time you call it.

console.log(Math.random());

// . 0.36993729369714856

console.log(Math.random());

// . 0.727367032552138

console.log(Math.random());

// . 0.40180766698904335

Though computers are deterministic machines—they always react the
same way if given the same input—it is possible to have them produce num-
bers that appear random. To do this, the machine keeps a number (or a
bunch of numbers) in its internal state. Then, every time a random number
is requested, it performs some complicated deterministic computations on
this internal state and returns part of the result of those computations. The
machine also uses the outcome to change its own internal state so that the
next “random” number produced will be different.

76 Chapter 4

If we want a whole random number instead of a fractional one, we can
use Math.floor (which rounds down to the nearest whole number) on the
result of Math.random.

console.log(Math.floor(Math.random() * 10));

// . 2

Multiplying the random number by 10 gives us a number greater than
or equal to zero, and below 10. Since Math.floor rounds down, this expres-
sion will produce, with equal chance, any number from 0 through 9.

There are also the functions Math.ceil (for “ceiling,” which rounds up to
a whole number) and Math.round (to the nearest whole number).

The Global Object
The global scope, the space in which global variables live, can also be ap-
proached as an object in JavaScript. Each global variable is present as a prop-
erty of this object. In browsers, the global scope object is stored in the window

variable.

var myVar = 10;

console.log("myVar" in window);

// . true

console.log(window.myVar);

// . 10

Summary
Objects and arrays (which are a specific kind of object) provide ways to group
several values into a single value. Conceptually, this allows us to put a bunch
of related things in a bag and run around with the bag, instead of trying to
wrap our arms around all of the individual things and trying to hold on to
them separately.

Most values in JavaScript have properties, the exceptions being null and
undefined. Properties are accessed using value.propName or value["propName"].
Objects tend to use names for their properties and store more or less a fixed
set of them. Arrays, on the other hand, usually contain varying numbers
of conceptually identical values and use numbers (starting from 0) as the
names of their properties.

There are some named properties in arrays, such as length and a number
of methods. Methods are functions that live in properties and (usually) act
on the value they are a property of.

Objects can also serve as maps, associating values with names. The in

operator can be used to find out whether an object contains a property with
a given name. The same keyword can also be used in a for loop (for (var

name in object)) to loop over an object’s properties.

Data Structures: Objects and Arrays 77

Exercises

The Sum of a Range
The introduction of this book alluded to the following as a nice way to com-
pute the sum of a range of numbers:

console.log(sum(range(1, 10)));

Write a range function that takes two arguments, start and end, and
returns an array containing all the numbers from start up to (and includ-
ing) end.

Next, write a sum function that takes an array of numbers and returns the
sum of these numbers. Run the previous program and see whether it does
indeed return 55.

As a bonus assignment, modify your range function to take an optional
third argument that indicates the “step” value used to build up the array. If
no step is given, the array elements go up by increments of one, correspond-
ing to the old behavior. The function call range(1, 10, 2) should return
[1, 3, 5, 7, 9]. Make sure it also works with negative step values so that
range(5, 2, -1) produces [5, 4, 3, 2].

Reversing an Array
Arrays have a method reverse, which changes the array by inverting the
order in which its elements appear. For this exercise, write two functions,
reverseArray and reverseArrayInPlace. The first, reverseArray, takes an array
as an argument and produces a new array that has the same elements in
the inverse order. The second, reverseArrayInPlace, does what the reverse

method does: it modifies the array given as argument in order to reverse
its elements. Neither may use the standard reverse method.

Thinking back to the notes about side effects and pure functions in the
previous chapter, which variant do you expect to be useful in more situa-
tions? Which one is more efficient?

A List
Objects, as generic blobs of values, can be used to build all sorts of data
structures. A common data structure is the list (not to be confused with the
array). A list is a nested set of objects, with the first object holding a refer-
ence to the second, the second to the third, and so on.

var list = {

value: 1,

rest: {

value: 2,

78 Chapter 4

rest: {

value: 3,

rest: null

}

}

};

The resulting objects form a chain, like this:

value: 1

rest:
value: 2

rest:
value: 3

rest: null

A nice thing about lists is that they can share parts of their structure.
For example, if I create two new values {value: 0, rest: list} and {value:

-1, rest: list} (with list referring to the variable defined earlier), they are
both independent lists, but they share the structure that makes up their last
three elements. In addition, the original list is also still a valid three-element
list.

Write a function arrayToList that builds up a data structure like the
previous one when given [1, 2, 3] as an argument, and write a listToArray

function that produces an array from a list. Also write the helper functions
prepend, which takes an element and a list and creates a new list that adds
the element to the front of the input list, and nth, which takes a list and a
number and returns the element at the given position in the list, or undefined

when there is no such element.
If you haven’t already, also write a recursive version of nth.

Deep Comparison
The == operator compares objects by identity. But sometimes, you would
prefer to compare the values of their actual properties.

Write a function, deepEqual, that takes two values and returns true only if
they are the same value or are objects with the same properties whose values
are also equal when compared with a recursive call to deepEqual.

To find out whether to compare two things by identity (use the ===

operator for that) or by looking at their properties, you can use the typeof

operator. If it produces "object" for both values, you should do a deep com-
parison. But you have to take one silly exception into account: by a historical
accident, typeof null also produces "object".

Data Structures: Objects and Arrays 79

“There are two ways of constructing a software

design: One way is to make it so simple that

there are obviously no deficiencies, and the

other way is to make it so complicated that

there are no obvious deficiencies”

— C.A.R. Hoare,

1980 ACM Turing Aware Lecture

5
HIGHER-ORDER FUNCTIONS

A large program is a costly program, and not just be-
cause of the time it takes to build. Size almost always
involves complexity, and complexity confuses program-
mers. Confused programmers, in turn, tend to intro-
duce mistakes (bugs) into programs. A large program
also provides a lot of space for these bugs to hide, mak-
ing them hard to find.

Let’s briefly go back to the final two example programs in the introduc-
tion. The first is self-contained and six lines long.

var total = 0, count = 1;

while (count <= 10) {

total += count;

count += 1;

}

console.log(total);

The second relies on two external functions and is one line long.

console.log(sum(range(1, 10)));

Which one is more likely to contain a bug?
If we count the size of the definitions of sum and range, the second pro-

gram is also big—even bigger than the first. But still, I’d argue that it is more
likely to be correct.

It is more likely to be correct because the solution is expressed in a vo-
cabulary that corresponds to the problem being solved. Summing a range of
numbers isn’t about loops and counters. It is about ranges and sums.

The definitions of this vocabulary (the functions sum and range) will still
involve loops, counters, and other incidental details. But because they are
expressing simpler concepts than the program as a whole, they are easier to
get right.

Abstraction
In the context of programming, these kinds of vocabularies are usually
called abstractions. Abstractions hide details and give us the ability to talk
about problems at a higher (or more abstract) level.

As an analogy, compare these two recipes for pea soup:

Put 1 cup of dried peas per person into a container. Add water un-
til the peas are well covered. Leave the peas in water for at least 12
hours. Take the peas out of the water and put them in a cooking
pan. Add 4 cups of water per person. Cover the pan and keep the
peas simmering for two hours. Take half an onion per person. Cut
it into pieces with a knife. Add it to the peas. Take a stalk of celery
per person. Cut it into pieces with a knife. Add it to the peas. Take
a carrot per person. Cut it into pieces. With a knife! Add it to the
peas. Cook for 10 more minutes.

And the second recipe:

Per person: 1 cup dried split peas, half a chopped onion, a stalk of
celery, and a carrot.

Soak peas for 12 hours. Simmer for 2 hours in 4 cups of
water (per person). Chop and add vegetables. Cook for 10 more
minutes.

The second is shorter and easier to interpret. But you do need to un-
derstand a few more cooking-related words—soak, simmer, chop, and, I guess,
vegetable.

When programming, we can’t rely on all the words we need to be wait-
ing for us in the dictionary. Thus, you might fall into the pattern of the first
recipe—work out the precise steps the computer has to perform, one by
one, blind to the higher-level concepts that they express.

It has to become second nature, for a programmer, to notice when a
concept is begging to be abstracted into a new word.

82 Chapter 5

Abstracting Array Traversal
Plain functions, as we’ve seen them so far, are a good way to build abstrac-
tions. But sometimes they fall short.

In the previous chapter, this type of for loop made several appearances:

var array = [1, 2, 3];

for (var i = 0; i < array.length; i++) {

var current = array[i];

console.log(current);

}

It’s trying to say, “For each element in the array, log it to the console.”
But it uses a roundabout way that involves a counter variable i, a check against
the array’s length, and an extra variable declaration to pick out the current
element. Apart from being a bit of an eyesore, this provides a lot of space
for potential mistakes. We might accidentally reuse the i variable, misspell
length as lenght, confuse the i and current variables, and so on.

So let’s try to abstract this into a function. Can you think of a way?
Well, it’s easy to write a function that goes over an array and calls

console.log on every element.

function logEach(array) {

for (var i = 0; i < array.length; i++)

console.log(array[i]);

}

But what if we want to do something other than logging the elements?
Since “doing something” can be represented as a function and functions are
just values, we can pass our action as a function value.

function forEach(array, action) {

for (var i = 0; i < array.length; i++)

action(array[i]);

}

forEach(["Wampeter", "Foma", "Granfalloon"], console.log);

// . Wampeter

// . Foma

// . Granfalloon

Often, you don’t pass a predefined function to forEach but create a func-
tion value on the spot instead.

var numbers = [1, 2, 3, 4, 5], sum = 0;

forEach(numbers, function(number) {

sum += number;

});

Higher-Order Functions 83

console.log(sum);

// . 15

This looks quite a lot like the classical for loop, with its body written as
a block below it. However, now the body is inside the function value, as well
as inside the parentheses of the call to forEach. This is why it has to be closed
with the closing brace and closing parenthesis.

Using this pattern, we can specify a variable name for the current ele-
ment (number), rather than having to pick it out of the array manually.

In fact, we don’t need to write forEach ourselves. It is available as a stan-
dard method on arrays. Since the array is already provided as the thing the
method acts on, forEach takes only one required argument: the function to
be executed for each element.

To illustrate how helpful this is, let’s look back at a function from the
previous chapter. It contains two array-traversing loops.

function gatherCorrelations(journal) {

var phis = {};

for (var entry = 0; entry < journal.length; entry++) {

var events = journal[entry].events;

for (var i = 0; i < events.length; i++) {

var event = events[i];

if (!(event in phis))

phis[event] = phi(tableFor(event, journal));

}

}

return phis;

}

Working with forEach makes it slightly shorter and quite a bit cleaner.

function gatherCorrelations(journal) {

var phis = {};

journal.forEach(function(entry) {

entry.events.forEach(function(event) {

if (!(event in phis))

phis[event] = phi(tableFor(event, journal));

});

});

return phis;

}

Higher-Order Functions
Functions that operate on other functions, either by taking them as argu-
ments or by returning them, are called higher-order functions. If you have al-
ready accepted the fact that functions are regular values, there is nothing

84 Chapter 5

particularly remarkable about the fact that such functions exist. The term
comes from mathematics, where the distinction between functions and other
values is taken more seriously.

Higher-order functions allow us to abstract over actions, not just values.
They come in several forms. For example, you can have functions that create
new functions.

function greaterThan(n) {

return function(m) { return m > n; };

}

var greaterThan10 = greaterThan(10);

console.log(greaterThan10(11));

// . true

And you can have functions that change other functions.

function noisy(f) {

return function(arg) {

console.log("calling with", arg);

var val = f(arg);

console.log("called with", arg, "- got", val);

return val;

};

}

noisy(Boolean)(0);

// . calling with 0

// . called with 0 - got false

You can even write functions that provide new types of control flow.

function unless(test, then) {

if (!test) then();

}

function repeat(times, body) {

for (var i = 0; i < times; i++) body(i);

}

repeat(3, function(n) {

unless(n % 2, function() {

console.log(n, "is even");

});

});

// . 0 is even

// . 2 is even

The lexical scoping rules that we discussed in Chapter 3 work to our
advantage when using functions in this way. In the previous example, the
n variable is a parameter to the outer function. Because the inner function

Higher-Order Functions 85

lives inside the environment of the outer one, it can use n. The bodies of
such inner functions can access the variables around them. They can play
a role similar to the {} blocks used in regular loops and conditional state-
ments. An important difference is that variables declared inside inner func-
tions do not end up in the environment of the outer function. And that is
usually a good thing.

Passing Along Arguments
The noisy function defined earlier, which wraps its argument in another
function, has a rather serious deficit.

function noisy(f) {

return function(arg) {

console.log("calling with", arg);

var val = f(arg);

console.log("called with", arg, "- got", val);

return val;

};

}

If f takes more than one parameter, it gets only the first one. We could
add a bunch of arguments to the inner function (arg1, arg2, and so on) and
pass them all to f, but it is not clear how many would be enough. This solu-
tion would also deprive f of the information in arguments.length. Since we’d
always pass the same number of arguments, it wouldn’t know how many ar-
guments were originally given.

For these kinds of situations, JavaScript functions have an apply method.
You pass it an array (or array-like object) of arguments, and it will call the
function with those arguments.

function transparentWrapping(f) {

return function() {

return f.apply(null, arguments);

};

}

That’s a useless function, but it shows the pattern we are interested in—
the function it returns passes all of the given arguments, and only those ar-
guments, to f. It does this by passing its own arguments object to apply. The
first argument to apply, for which we are passing null here, can be used to
simulate a method call. We will come back to that in the next chapter.

86 Chapter 5

JSON
Higher-order functions that somehow apply a function to the elements of an
array are widely used in JavaScript. The forEach method is the most primitive
such function. There are a number of other variants available as methods
on arrays. To familiarize ourselves with them, let’s play around with another
data set.

A few years ago, someone crawled through a lot of archives and put
together a book on the history of my family name (Haverbeke—meaning
Oatbrook). I opened it hoping to find knights, pirates, and alchemists . . .
but the book turns out to be mostly full of Flemish farmers. For my amuse-
ment, I extracted the information on my direct ancestors and put it into a
computer-readable format.

The file I created looks something like this:

[

{"name": "Emma de Milliano", "sex": "f",

"born": 1876, "died": 1956,

"father": "Petrus de Milliano",

"mother": "Sophia van Damme"},

{"name": "Carolus Haverbeke", "sex": "m",

"born": 1832, "died": 1905,

"father": "Carel Haverbeke",

"mother": "Maria van Brussel"},

... and so on

]

This format is called JSON (pronounced “Jason”), which stands for
JavaScript Object Notation. It is widely used as a data storage and commu-
nication format on the Web.

JSON is similar to JavaScript’s way of writing arrays and objects, with a
few restrictions. All property names have to be surrounded by double quotes,
and only simple data expressions are allowed—no function calls, variables,
or anything that involves actual computation. Comments are not allowed
in JSON.

JavaScript gives us functions, JSON.stringify and JSON.parse, that convert
data from and to this format. The first takes a JavaScript value and returns a
JSON-encoded string. The second takes such a string and converts it to the
value it encodes.

var string = JSON.stringify({name: "X", born: 1980});

console.log(string);

// . {"name":"X","born":1980}

console.log(JSON.parse(string).born);

// . 1980

Higher-Order Functions 87

The variable ANCESTRY_FILE, available in the sandbox for this chapter and
in a downloadable file on the website(http://eloquentjavascript.net/code/), con-
tains the content of my JSON file as a string. Let’s decode it and see how
many people it contains.

var ancestry = JSON.parse(ANCESTRY_FILE);

console.log(ancestry.length);

// . 39

Filtering an Array
To find the people in the ancestry data set who were young in 1924, the fol-
lowing function might be helpful. It filters out the elements in an array that
don’t pass a test.

function filter(array, test) {

var passed = [];

for (var i = 0; i < array.length; i++) {

if (test(array[i]))

passed.push(array[i]);

}

return passed;

}

console.log(filter(ancestry, function(person) {

return person.born > 1900 && person.born < 1925;

}));

// . [{name: "Philibert Haverbeke", ...}, ...]

This uses the argument named test, a function value, to fill in a “gap” in
the computation. The test function is called for each element, and its return
value determines whether an element is included in the returned array.

Three people in the file were alive and young in 1924: my grandfather,
grandmother, and great-aunt.

Note how the filter function, rather than deleting elements from the
existing array, builds up a new array with only the elements that pass the test.
This function is pure. It does not modify the array it is given.

Like forEach, filter is also a standard method on arrays. The example
defined the function only in order to show what it does internally. From now
on, we’ll use it like this instead:

console.log(ancestry.filter(function(person) {

return person.father == "Carel Haverbeke";

}));

// . [{name: "Carolus Haverbeke", ...}]

88 Chapter 5

http://eloquentjavascript.net/code/ancestry.js
http://eloquentjavascript.net/code/

Transforming with map
Say we have an array of objects representing people, produced by filtering
the ancestry array somehow. But we want an array of names, which is easier
to read.

The map method transforms an array by applying a function to all of its
elements and building a new array from the returned values. The new array
will have the same length as the input array, but its content will have been
“mapped” to a new form by the function.

function map(array, transform) {

var mapped = [];

for (var i = 0; i < array.length; i++)

mapped.push(transform(array[i]));

return mapped;

}

var overNinety = ancestry.filter(function(person) {

return person.died - person.born > 90;

});

console.log(map(overNinety, function(person) {

return person.name;

}));

// . ["Clara Aernoudts", "Emile Haverbeke",

// "Maria Haverbeke"]

Interestingly, the people who lived to at least 90 years of age are the
same three people who we saw before—the people who were young in the
1920s, which happens to be the most recent generation in my data set. I
guess medicine has come a long way.

Like forEach and filter, map is also a standard method on arrays.

Summarizing with reduce
Another common pattern of computation on arrays is computing a single
value from them. Our recurring example, summing a collection of numbers,
is an instance of this. Another example would be finding the person with the
earliest year of birth in the data set.

The higher-order operation that represents this pattern is called reduce

(or sometimes fold). You can think of it as folding up the array, one element
at a time. When summing numbers, you’d start with the number zero and,
for each element, combine it with the current sum by adding the two.

The parameters to the reduce function are, apart from the array, a com-
bining function and a start value. This function is a little less straightforward
than filter and map, so pay careful attention.

Higher-Order Functions 89

function reduce(array, combine, start) {

var current = start;

for (var i = 0; i < array.length; i++)

current = combine(current, array[i]);

return current;

}

console.log(reduce([1, 2, 3, 4], function(a, b) {

return a + b;

}, 0));

// . 10

The standard array method reduce, which of course corresponds to this
function, has an added convenience. If your array contains at least one ele-
ment, you are allowed to leave off the start argument. The method will take
the first element of the array as its start value and start reducing at the sec-
ond element.

To use reduce to find my most ancient known ancestor, we can write
something like this:

console.log(ancestry.reduce(function(min, cur) {

if (cur.born < min.born) return cur;

else return min;

}));

// . {name: "Pauwels van Haverbeke", born: 1535, ...}

Composability
Consider how we would have written the previous example (finding the per-
son with the earliest year of birth) without higher-order functions. The code
is not that much worse.

var min = ancestry[0];

for (var i = 1; i < ancestry.length; i++) {

var cur = ancestry[i];

if (cur.born < min.born)

min = cur;

}

console.log(min);

// . {name: "Pauwels van Haverbeke", born: 1535, ...}

There are a few more variables, and the program is two lines longer but
still quite easy to understand.

Higher-order functions start to shine when you need to compose func-
tions. As an example, let’s write code that finds the average age for men and
for women in the data set.

90 Chapter 5

function average(array) {

function plus(a, b) { return a + b; }

return array.reduce(plus) / array.length;

}

function age(p) { return p.died - p.born; }

function male(p) { return p.sex == "m"; }

function female(p) { return p.sex == "f"; }

console.log(average(ancestry.filter(male).map(age)));

// . 61.67

console.log(average(ancestry.filter(female).map(age)));

// . 54.56

(It’s a bit silly that we have to define plus as a function, but operators
in JavaScript, unlike functions, are not values, so you can’t pass them as
arguments.)

Instead of tangling the logic into a big loop, it is neatly composed into
the concepts we are interested in—determining sex, computing age, and
averaging numbers. We can apply these one by one to get the result we are
looking for.

This is fabulous for writing clear code. Unfortunately, this clarity comes
at a cost.

The Cost
In the happy land of elegant code and pretty rainbows, there lives a spoil-
sport monster called inefficiency.

A program that processes an array is most elegantly expressed as a se-
quence of cleanly separated steps that each do something with the array and
produce a new array. But building up all those intermediate arrays is some-
what expensive.

Likewise, passing a function to forEach and letting that method handle
the array iteration for us is convenient and easy to read. But function calls in
JavaScript are costly compared to simple loop bodies.

And so it goes with a lot of techniques that help improve the clarity of
a program. Abstractions add layers between the raw things the computer is
doing and the concepts we are working with and thus cause the machine to
perform more work. This is not an iron law—there are programming lan-
guages that have better support for building abstractions without adding
inefficiencies, and even in JavaScript, an experienced programmer can find
ways to write abstract code that is still fast. But it is a problem that comes up
a lot.

Fortunately, most computers are insanely fast. If you are processing a
modest set of data or doing something that has to happen only on a human
time scale (say, every time the user clicks a button), then it does not matter

whether you wrote a pretty solution that takes half a millisecond or a super-
optimized solution that takes a tenth of a millisecond.

Higher-Order Functions 91

It is helpful to roughly keep track of how often a piece of your pro-
gram is going to run. If you have a loop inside a loop (either directly or
through the outer loop calling a function that ends up performing the in-
ner loop), the code inside the inner loop will end up running N×M times,
where N is the number of times the outer loop repeats and M is the num-
ber of times the inner loop repeats within each iteration of the outer loop. If
that inner loop contains another loop that makes P rounds, its body will run
M×N×P times, and so on. This can add up to large numbers, and when a
program is slow, the problem can often be traced to only a small part of the
code, which sits inside an inner loop.

Great-great-great-great-. . .
My grandfather, Philibert Haverbeke, is included in the data file. By starting
with him, I can trace my lineage to find out whether the most ancient per-
son in the data, Pauwels van Haverbeke, is my direct ancestor. And if he is, I
would like to know how much DNA I theoretically share with him.

To be able to go from a parent’s name to the actual object that rep-
resents this person, we first build up an object that associates names with
people.

var byName = {};

ancestry.forEach(function(person) {

byName[person.name] = person;

});

console.log(byName["Philibert Haverbeke"]);

// . {name: "Philibert Haverbeke", ...}

Now, the problem is not entirely as simple as following the father prop-
erties and counting how many we need to reach Pauwels. There are several
cases in the family tree where people married their second cousins (tiny vil-
lages and all that). This causes the branches of the family tree to rejoin in
a few places, which means I share more than 1/2G of my genes with this
person, where G for the number of generations between Pauwels and me.
This formula comes from the idea that each generation splits the gene pool
in two.

A reasonable way to think about this problem is to look at it as being
analogous to reduce, which condenses an array to a single value by repeat-
edly combining values, left to right. In this case, we also want to condense
our data structure to a single value but in a way that follows family lines.
The shape of the data is that of a family tree, rather than a flat list.

The way we want to reduce this shape is by computing a value for a given
person by combining values from their ancestors. This can be done recur-
sively: if we are interested in person A, we have to compute the values for
A’s parents, which in turn requires us to compute the value for A’s grand-
parents, and so on. In principle, that’d require us to look at an infinite

92 Chapter 5

number of people, but since our data set is finite, we have to stop some-
where. We’ll allow a default value to be given to our reduction function,
which will be used for people who are not in the data. In our case, that value
is simply zero, on the assumption that people not in the list don’t share DNA
with the ancestor we are looking at.

Given a person, a function to combine values from the two parents of a
given person, and a default value, reduceAncestors condenses a value from a
family tree.

function reduceAncestors(person, f, defaultValue) {

function valueFor(person) {

if (person == null)

return defaultValue;

else

return f(person, valueFor(byName[person.mother]),

valueFor(byName[person.father]));

}

return valueFor(person);

}

The inner function (valueFor) handles a single person. Through the
magic of recursion, it can simply call itself to handle the father and the
mother of this person. The results, along with the person object itself, are
passed to f, which returns the actual value for this person.

We can then use this to compute the amount of DNA my grandfather
shared with Pauwels van Haverbeke and divide that by four.

function sharedDNA(person, fromMother, fromFather) {

if (person.name == "Pauwels van Haverbeke")

return 1;

else

return (fromMother + fromFather) / 2;

}

var ph = byName["Philibert Haverbeke"];

console.log(reduceAncestors(ph, sharedDNA, 0) / 4);

// . 0.00049

The person with the name Pauwels van Haverbeke obviously shared
100 percent of his DNA with Pauwels van Haverbeke (there are no people
who share names in the data set), so the function returns 1 for him. All
other people share the average of the amounts that their parents share.

So, statistically speaking, I share about 0.05 percent of my DNA with
this 16th-century person. It should be noted that this is only a statistical ap-
proximation, not an exact amount. It is a rather small number, but given
how much genetic material we carry (about 3 billion base pairs), there’s still
probably some aspect in the biological machine that is me that originates
with Pauwels.

Higher-Order Functions 93

We could also have computed this number without relying on
reduceAncestors. But separating the general approach (condensing a fam-
ily tree) from the specific case (computing shared DNA) can improve the
clarity of the code and allows us to reuse the abstract part of the program
for other cases. For example, the following code finds the percentage of
known ancestors, for a given person, who lived past 70:

function countAncestors(person, test) {

function combine(person, fromMother, fromFather) {

var thisOneCounts = test(person);

return fromMother + fromFather + (thisOneCounts ? 1 : 0);

}

return reduceAncestors(person, combine, 0);

}

function longLivingPercentage(person) {

var all = countAncestors(person, function(person) {

return true;

});

var longLiving = countAncestors(person, function(person) {

return (person.died - person.born) >= 70;

});

return longLiving / all;

}

console.log(longLivingPercentage(byName["Emile Haverbeke"]));

// . 0.145

Such numbers are not to be taken too seriously, given that our data set
contains a rather arbitrary collection of people. But the code illustrates the
fact that reduceAncestors gives us a useful piece of vocabulary for working with
the family tree data structure.

Binding
The bind method, which all functions have, creates a new function that will
call the original function but with some of the arguments already fixed.

The following code shows an example of bind in use. It defines a func-
tion isInSet that tells us whether a person is in a given set of strings. To call
filter in order to collect those person objects whose names are in a specific
set, we can either write a function expression that makes a call to isInSet

with our set as its first argument or partially apply the isInSet function.

var theSet = ["Carel Haverbeke", "Maria van Brussel",

"Donald Duck"];

function isInSet(set, person) {

return set.indexOf(person.name) > -1;

}

94 Chapter 5

console.log(ancestry.filter(function(person) {

return isInSet(theSet, person);

}));

// . [{name: "Maria van Brussel", ...},

// {name: "Carel Haverbeke", ...}]

console.log(ancestry.filter(isInSet.bind(null, theSet)));

// same result

The call to bind returns a function that will call isInSet with theSet as the
first argument, followed by any remaining arguments given to the bound
function.

The first argument, where the example passes null, is used for method
calls, similar to the first argument to apply. I’ll describe this in more detail in
the next chapter.

Summary
Being able to pass function values to other functions is not just a gimmick
but a deeply useful aspect of JavaScript. It allows us to write computations
with “gaps” in them as functions and have the code that calls these func-
tions fill in those gaps by providing function values that describe the miss-
ing computations.

Arrays provide a number of useful higher-order methods—forEach to do
something with each element in an array, filter to build a new array with
some elements filtered out, map to build a new array where each element has
been put through a function, and reduce to combine all an array’s elements
into a single value.

Functions have an apply method that can be used to call them with an ar-
ray specifying their arguments. They also have a bind method, which is used
to create a partially applied version of the function.

Exercises

Flattening
Use the reduce method in combination with the concat method to “flatten”
an array of arrays into a single array that has all the elements of the input
arrays.

Mother-Child Age Difference
Using the example data set from this chapter, compute the average age
difference between mothers and children (the age of the mother when
the child is born). You can use the average function defined earlier in this
chapter.

Higher-Order Functions 95

Note that not all the mothers mentioned in the data are themselves
present in the array. The byName object, which makes it easy to find a person’s
object from their name, might be useful here.

Historical Life Expectancy
When we looked up all the people in our data set that lived more than
90 years, only the latest generation in the data came out. Let’s take a closer
look at that phenomenon.

Compute and output the average age of the people in the ancestry
data set per century. A person is assigned to a century by taking their year
of death, dividing it by 100, and rounding it up, as in Math.ceil(person.died /

100).
For bonus points, write a function groupBy that abstracts the grouping

operation. It should accept as arguments an array and a function that com-
putes the group for an element in the array and returns an object that maps
group names to arrays of group numbers.

Every and Then Some
Arrays also come with the standard methods every and some. Both take a
predicate function that, when called with an array element as argument, re-
turns true or false. Just like && returns a true value only when the expressions
on both sides are true, every returns true only when the predicate returns
true for all elements of the array. Similarly, some returns true as soon as the
predicate returns true for any of the elements. They do not process more el-
ements than necessary—for example, if some finds that the predicate holds
for the first element of the array, it will not look at the values after that.

Write two functions, every and some, that behave like these methods,
except that they take the array as their first argument rather than being a
method.

96 Chapter 5

“The problem with object-oriented languages

is they’ve got all this implicit environment that

they carry around with them. You wanted a

banana but what you got was a gorilla holding

the banana and the entire jungle.”

— Joe Armstrong,

interviewed in Coders at Work

6
THE SECRET LIFE OF OBJECTS

When a programmer says “object,” this is a loaded term.
In my profession, objects are a way of life, the subject
of holy wars, and a beloved buzzword that still hasn’t
quite lost its power.

To an outsider, this is probably a little confusing. Let’s start with a brief
history of objects as a programming construct.

History
This story, like most programming stories, starts with the problem of com-
plexity. One philosophy is that complexity can be made manageable by sep-
arating it into small compartments that are isolated from each other. These
compartments have ended up with the name objects.

An object is a hard shell that hides the gooey complexity inside it and
instead offers us a few knobs and connectors (such as methods) that present
an interface through which the object is to be used. The idea is that the inter-
face is relatively simple and all the complex things going on inside the object
can be ignored when working with it.

As an example, you can imagine an object that provides an interface to
an area on your screen. It provides a way to draw shapes or text onto this
area but hides all the details of how these shapes are converted to the actual
pixels that make up the screen. You’d have a set of methods—for example,
drawCircle—and those are the only things you need to know in order to use
such an object.

These ideas were initially worked out in the 1970s and 1980s and, in the
1990s, were carried up by a huge wave of hype—the object-oriented pro-
gramming revolution. Suddenly, there was a large tribe of people declaring
that objects were the right way to program—and that anything that did not
involve objects was outdated nonsense.

That kind of zealotry always produces a lot of impractical silliness, and
there has been a sort of counter-revolution since then. In some circles, ob-
jects have a rather bad reputation nowadays.

I prefer to look at the issue from a practical, rather than ideological,
angle. There are several useful concepts, most importantly that of encapsu-

lation (distinguishing between internal complexity and external interface),
that the object-oriented culture has popularized. These are worth studying.

This chapter describes JavaScript’s rather eccentric take on objects and
the way they relate to some classical object-oriented techniques.

Methods
Methods are simply properties that hold function values. This is a simple
method:

var rabbit = {};

rabbit.speak = function(line) {

console.log("The rabbit says '" + line + "'");

};

100 Chapter 6

rabbit.speak("I'm alive.");

// . The rabbit says 'I'm alive.'

Usually a method needs to do something with the object it was called
on. When a function is called as a method—looked up as a property and
immediately called, as in object.method()—the special variable this in its body
will point to the object that it was called on.

function speak(line) {

console.log("The " + this.type + " rabbit says '" +

line + "'");

}

var whiteRabbit = {type: "white", speak: speak};

var fatRabbit = {type: "fat", speak: speak};

whiteRabbit.speak("Oh my ears and whiskers, " +

"how late it's getting!");

// . The white rabbit says 'Oh my ears and whiskers, how

// late it's getting!'

fatRabbit.speak("I could sure use a carrot right now.");

// . The fat rabbit says 'I could sure use a carrot

// right now.'

The code uses the this keyword to output the type of rabbit that is speak-
ing. Recall that the apply and bind methods both take a first argument that
can be used to simulate method calls. This first argument is in fact used to
give a value to this.

There is a method similar to apply, called call. It also calls the function
it is a method of but takes its arguments normally, rather than as an array.
Like apply and bind, call can be passed a specific this value.

speak.apply(fatRabbit, ["Burp!"]);

// . The fat rabbit says 'Burp!'

speak.call({type: "old"}, "Oh my.");

// . The old rabbit says 'Oh my.'

Prototypes
Watch closely.

var empty = {};

console.log(empty.toString);

// . function toString(){...}

console.log(empty.toString());

// . [object Object]

The Secret Life of Objects 101

I just pulled a property out of an empty object. Magic!
Well, not really. I have simply been withholding information about the

way JavaScript objects work. In addition to their set of properties, almost all
objects also have a prototype. A prototype is another object that is used as a
fallback source of properties. When an object gets a request for a property
that it does not have, its prototype will be searched for the property, then
the prototype’s prototype, and so on.

So who is the prototype of that empty object? It is the great ancestral
prototype, the entity behind almost all objects, Object.prototype.

console.log(Object.getPrototypeOf({}) ==

Object.prototype);

// . true

console.log(Object.getPrototypeOf(Object.prototype));

// . null

As you might expect, the Object.getPrototypeOf function returns the pro-
totype of an object.

The prototype relations of JavaScript objects form a tree-shaped struc-
ture, and at the root of this structure sits Object.prototype. It provides a few
methods that show up in all objects, such as toString, which converts an ob-
ject to a string representation.

Many objects don’t directly have Object.prototype as their prototype, but
instead have another object, which provides its own default properties. Func-
tions derive from Function.prototype, and arrays derive from Array.prototype.

console.log(Object.getPrototypeOf(isNaN) ==

Function.prototype);

// . true

console.log(Object.getPrototypeOf([]) ==

Array.prototype);

// . true

Such a prototype object will itself have a prototype, often Object.prototype,
so that it still indirectly provides methods like toString.

The Object.getPrototypeOf function obviously returns the prototype of
an object. You can use Object.create to create an object with a specific
prototype.

var protoRabbit = {

speak: function(line) {

console.log("The " + this.type + " rabbit says '" +

line + "'");

}

};

102 Chapter 6

var killerRabbit = Object.create(protoRabbit);

killerRabbit.type = "killer";

killerRabbit.speak("SKREEEE!");

// . The killer rabbit says 'SKREEEE!'

The “proto” rabbit acts as a container for the properties that are shared
by all rabbits. An individual rabbit object, like the killer rabbit, contains
properties that apply only to itself—in this case its type—and derives
shared properties from its prototype.

Constructors
A more convenient way to create objects that derive from some shared pro-
totype is to use a constructor. In JavaScript, calling a function with the new key-
word in front of it causes it to be treated as a constructor. The constructor
will have its this variable bound to a fresh object, and unless it explicitly re-
turns another object value, this new object will be returned from the call.

An object created with new is said to be an instance of its constructor.
Here is a simple constructor for rabbits. It is a convention to capitalize

the names of constructors so that they are easily distinguished from other
functions.

function Rabbit(type) {

this.type = type;

}

var killerRabbit = new Rabbit("killer");

var blackRabbit = new Rabbit("black");

console.log(blackRabbit.type);

// . black

Constructors (in fact, all functions) automatically get a property named
prototype, which by default holds a plain, empty object that derives from
Object.prototype. Every instance created with this constructor will have this
object as its prototype. So to add a speak method to rabbits created with the
Rabbit constructor, we can simply do this:

Rabbit.prototype.speak = function(line) {

console.log("The " + this.type + " rabbit says '" +

line + "'");

};

blackRabbit.speak("Doom...");

// . The black rabbit says 'Doom...'

The Secret Life of Objects 103

It is important to note the distinction between the way a prototype is
associated with a constructor (through its prototype property) and the way
objects have a prototype (which can be retrieved with Object.getPrototypeOf).
The actual prototype of a constructor is Function.prototype since constructors
are functions. Its prototype property will be the prototype of instances created
through it but is not its own prototype.

Overriding Derived Properties
When you add a property to an object, whether it is present in the prototype
or not, the property is added to the object itself, which will henceforth have
it as its own property. If there is a property by the same name in the proto-
type, this property will no longer affect the object. The prototype itself is not
changed.

Rabbit.prototype.teeth = "small";

console.log(killerRabbit.teeth);

// . small

killerRabbit.teeth = "long, sharp, and bloody";

console.log(killerRabbit.teeth);

// . long, sharp, and bloody

console.log(blackRabbit.teeth);

// . small

console.log(Rabbit.prototype.teeth);

// . small

The following diagram sketches the situation after this code has run. The
Rabbit and Object prototypes lie behind killerRabbit as a kind of backdrop,
where properties that are not found in the object itself can be looked up.

toString: <function>

...

teeth: "small"

speak: <function>

killerRabbit

teeth: "long, sharp, ..."

adjective: "killer"

Rabbit

prototype

Object

create: <function>

prototype

...

Overriding properties that exist in a prototype is often a useful thing to
do. As the rabbit teeth example shows, it can be used to express exceptional
properties in instances of a more generic class of objects, while letting the
nonexceptional objects simply take a standard value from their prototype.

104 Chapter 6

It is also used to give the standard function and array prototypes a differ-
ent toString method than the basic object prototype.

console.log(Array.prototype.toString ==

Object.prototype.toString);

// . false

console.log([1, 2].toString());

// . 1,2

Calling toString on an array gives a result similar to calling .join(",")

on it—it puts commas between the values in the array. Directly calling
Object.prototype.toString with an array produces a different string. That
function doesn’t know about arrays, so it simply puts the word “object” and
the name of the type between square brackets.

console.log(Object.prototype.toString.call([1, 2]));

// . [object Array]

Prototype Interference
A prototype can be used at any time to add new properties and methods to
all objects based on it. For example, it might become necessary for our rab-
bits to dance.

Rabbit.prototype.dance = function() {

console.log("The " + this.type + " rabbit dances a jig.");

};

killerRabbit.dance();

// . The killer rabbit dances a jig.

That’s convenient. But there are situations where it causes problems. In
previous chapters, we used an object as a way to associate values with names
by creating properties for the names and giving them the corresponding
value as their value. Here’s an example from Chapter 4:

var map = {};

function storePhi(event, phi) {

map[event] = phi;

}

storePhi("pizza", 0.069);

storePhi("touched tree", -0.081);

We can iterate over all phi values in the object using a for/in loop and
test whether a name is in there using the regular in operator. But unfortu-
nately, the object’s prototype gets in the way.

The Secret Life of Objects 105

Object.prototype.nonsense = "hi";

for (var name in map)

console.log(name);

// . pizza

// . touched tree

// . nonsense

console.log("nonsense" in map);

// . true

console.log("toString" in map);

// . true

// Delete the problematic property again

delete Object.prototype.nonsense;

That’s all wrong. There is no event called “nonsense” in our data set.
And there definitely is no event called “toString.”

Oddly, toString did not show up in the for/in loop, but the in operator
returned true for it. This is because JavaScript distinguishes between enumer-

able and nonenumerable properties.
All properties that we create by simply assigning to them are enumer-

able. The standard properties in Object.prototype are all nonenumerable,
which is why they do not show up in such a for/in loop.

It is possible to define our own nonenumerable properties by using the
Object.defineProperty function, which allows us to control the type of prop-
erty we are creating.

Object.defineProperty(Object.prototype, "hiddenNonsense",

{enumerable: false, value: "hi"});

for (var name in map)

console.log(name);

// . pizza

// . touched tree

console.log(map.hiddenNonsense);

// . hi

So now the property is there, but it won’t show up in a loop. That’s
good. But we still have the problem with the regular in operator claiming
that the Object.prototype properties exist in our object. For that, we can use
the object’s hasOwnProperty method.

console.log(map.hasOwnProperty("toString"));

// . false

This method tells us whether the object itself has the property, without
looking at its prototypes. This is often a more useful piece of information
than what the in operator gives us.

106 Chapter 6

When you are worried that someone (some other code you loaded into
your program) might have messed with the base object prototype, I recom-
mend you write your for/in loops like this:

for (var name in map) {

if (map.hasOwnProperty(name)) {

// ... this is an own property

}

}

Prototype-less Objects
But the rabbit hole doesn’t end there. What if someone registered the name
hasOwnProperty in our map object and set it to the value 42? Now the call to
map.hasOwnProperty will try to call the local property, which holds a number,
not a function.

In such a case, prototypes just get in the way, and we would actually pre-
fer to have objects without prototypes. We saw the Object.create function,
which allows us to create an object with a specific prototype. You are allowed
to pass null as the prototype to create a fresh object with no prototype. For
objects like map, where the properties could be anything, this is exactly what
we want.

var map = Object.create(null);

map["pizza"] = 0.069;

console.log("toString" in map);

// . false

console.log("pizza" in map);

// . true

Much better! We no longer need the hasOwnProperty kludge because all
the properties the object has are its own properties. Now we can safely use
for/in loops, no matter what people have been doing to Object.prototype.

Polymorphism
When you call the String function, which converts a value to a string, on an
object, it will call the toString method on that object to try to create a mean-
ingful string to return. I mentioned that some of the standard prototypes
define their own version of toString so they can create a string that contains
more useful information than "[object Object]".

This is a simple instance of a powerful idea. When a piece of code is
written to work with objects that have a certain interface—in this case, a
toString method—any kind of object that happens to support this interface
can be plugged into the code, and it will just work.

The Secret Life of Objects 107

This technique is called polymorphism—though no actual shape-shifting is
involved. Polymorphic code can work with values of different shapes, as long
as they support the interface it expects.

Laying Out a Table
I am going to work through a slightly more involved example in an attempt
to give you a better idea what polymorphism, as well as object-oriented pro-
gramming in general, looks like. The project is this: we will write a program
that, given an array of arrays of table cells, builds up a string that contains a
nicely laid out table—meaning that the columns are straight and the rows
are aligned. Something like this:

name height country

------------ ------ -------------

Kilimanjaro 5895 Tanzania

Everest 8848 Nepal

Mount Fuji 3776 Japan

Mont Blanc 4808 Italy/France

Vaalserberg 323 Netherlands

Denali 6168 United States

Popocatepetl 5465 Mexico

The way our table-building system will work is that the builder function
will ask each cell how wide and high it wants to be and then use this informa-
tion to determine the width of the columns and the height of the rows. The
builder function will then ask the cells to draw themselves at the correct size
and assemble the results into a single string.

The layout program will communicate with the cell objects through a
well-defined interface. That way, the types of cells that the program supports
is not fixed in advance. We can add new cell styles later—for example, un-
derlined cells for table headers—and if they support our interface, they will
just work, without requiring changes to the layout program.

This is the interface:

• minHeight() returns a number indicating the minimum height this cell
requires (in lines).

• minWidth() returns a number indicating this cell’s minimum width (in
characters).

• draw(width, height) returns an array of length height, which contains a
series of strings that are each width characters wide. This represents the
content of the cell.

I’m going to make heavy use of higher-order array methods in this
example since it lends itself well to that approach.

108 Chapter 6

The first part of the program computes arrays of minimum column
widths and row heights for a grid of cells. The rows variable will hold an
array of arrays, with each inner array representing a row of cells.

function rowHeights(rows) {

return rows.map(function(row) {

return row.reduce(function(max, cell) {

return Math.max(max, cell.minHeight());

}, 0);

});

}

function colWidths(rows) {

return rows[0].map(function(_, i) {

return rows.reduce(function(max, row) {

return Math.max(max, row[i].minWidth());

}, 0);

});

}

Using a variable name starting with an underscore (_) or consisting en-
tirely of a single underscore is a way to indicate (to human readers) that this
argument is not going to be used.

The rowHeights function shouldn’t be too hard to follow. It uses reduce

to compute the maximum height of an array of cells and wraps that in map in
order to do it for all rows in the rows array.

Things are slightly harder for the colWidths function because the outer
array is an array of rows, not of columns. I have failed to mention so far
that map (as well as forEach, filter, and similar array methods) passes a sec-
ond argument to the function it is given: the index of the current element.
By mapping over the elements of the first row and only using the mapping
function’s second argument, colWidths builds up an array with one element
for every column index. The call to reduce runs over the outer rows array for
each index and picks out the width of the widest cell at that index.

Here’s the code to draw a table:

function drawTable(rows) {

var heights = rowHeights(rows);

var widths = colWidths(rows);

function drawLine(blocks, lineNo) {

return blocks.map(function(block) {

return block[lineNo];

}).join(" ");

}

The Secret Life of Objects 109

function drawRow(row, rowNum) {

var blocks = row.map(function(cell, colNum) {

return cell.draw(widths[colNum], heights[rowNum]);

});

return blocks[0].map(function(_, lineNo) {

return drawLine(blocks, lineNo);

}).join("\n");

}

return rows.map(drawRow).join("\n");

}

The drawTable function uses the internal helper function drawRow to draw
all rows and then joins them together with newline characters.

The drawRow function itself first converts the cell objects in the row to
blocks, which are arrays of strings representing the content of the cells, split
by line. A single cell containing simply the number 3776 might be repre-
sented by a single-element array like ["3776"], whereas an underlined cell
might take up two lines and be represented by the array ["name", "---"].

The blocks for a row, which all have the same height, should appear
next to each other in the final output. The second call to map in drawRow builds
up this output line by line by mapping over the lines in the leftmost block
and, for each of those, collecting a line that spans the full width of the table.
These lines are then joined with newline characters to provide the whole
row as drawRow’s return value.

The function drawLine extracts lines that should appear next to each
other from an array of blocks and joins them with a space character to
create a one-character gap between the table’s columns.

Now let’s write a constructor for cells that contain text, which imple-
ments the interface for table cells. The constructor splits a string into an
array of lines using the string method split, which cuts up a string at every
occurrence of its argument and returns an array of the pieces. The minWidth

method finds the maximum line width in this array.

function repeat(string, times) {

var result = "";

for (var i = 0; i < times; i++)

result += string;

return result;

}

function TextCell(text) {

this.text = text.split("\n");

}

TextCell.prototype.minWidth = function() {

return this.text.reduce(function(width, line) {

return Math.max(width, line.length);

}, 0);

110 Chapter 6

};

TextCell.prototype.minHeight = function() {

return this.text.length;

};

TextCell.prototype.draw = function(width, height) {

var result = [];

for (var i = 0; i < height; i++) {

var line = this.text[i] || "";

result.push(line + repeat(" ", width - line.length));

}

return result;

};

The code uses a helper function called repeat, which builds a string
whose value is the string argument repeated times number of times. The
draw method uses it to add “padding” to lines so that they all have the re-
quired length.

Let’s try everything we’ve written so far by building up a 5×5 checker-
board.

var rows = [];

for (var i = 0; i < 5; i++) {

var row = [];

for (var j = 0; j < 5; j++) {

if ((j + i) % 2 == 0)

row.push(new TextCell("##"));

else

row.push(new TextCell(" "));

}

rows.push(row);

}

console.log(drawTable(rows));

// . ## ## ##

// ## ##

// ## ## ##

// ## ##

// ## ## ##

It works! But since all cells have the same size, the table-layout code
doesn’t really do anything interesting.

The source data for the table of mountains that we are trying to build
is available in the MOUNTAINS variable in the sandbox and also downloadable
from the list of data sets on the website(http://eloquentjavascript.net/code/).

We will want to highlight the top row, which contains the column names,
by underlining the cells with a series of dash characters. No problem—we
simply write a cell type that handles underlining.

The Secret Life of Objects 111

http://eloquentjavascript.net/code/mountains.js
http://eloquentjavascript.net/code/

function UnderlinedCell(inner) {

this.inner = inner;

};

UnderlinedCell.prototype.minWidth = function() {

return this.inner.minWidth();

};

UnderlinedCell.prototype.minHeight = function() {

return this.inner.minHeight() + 1;

};

UnderlinedCell.prototype.draw = function(width, height) {

return this.inner.draw(width, height - 1)

.concat([repeat("-", width)]);

};

An underlined cell contains another cell. It reports its minimum size
as being the same as that of its inner cell (by calling through to that cell’s
minWidth and minHeight methods) but adds one to the height to account for
the space taken up by the underline.

Drawing such a cell is quite simple—we take the content of the inner
cell and concatenate a single line full of dashes to it.

Having an underlining mechanism, we can now write a function that
builds up a grid of cells from our data set.

function dataTable(data) {

var keys = Object.keys(data[0]);

var headers = keys.map(function(name) {

return new UnderlinedCell(new TextCell(name));

});

var body = data.map(function(row) {

return keys.map(function(name) {

return new TextCell(String(row[name]));

});

});

return [headers].concat(body);

}

console.log(drawTable(dataTable(MOUNTAINS)));

// . name height country

// ------------ ------ -------------

// Kilimanjaro 5895 Tanzania

// ... etcetera

The standard Object.keys function returns an array of property names in
an object. The top row of the table must contain underlined cells that give
the names of the columns. Below that, the values of all the objects in the
data set appear as normal cells—we extract them by mapping over the keys

array so that we are sure that the order of the cells is the same in every row.

112 Chapter 6

The resulting table resembles the example shown before, except that it
does not right-align the numbers in the height column. We will get to that in
a moment.

Getters and Setters
When specifying an interface, it is possible to include properties that are
not methods. We could have defined minHeight and minWidth to simply hold
numbers. But that’d have required us to compute them in the constructor,
which adds code there that isn’t strictly relevant to constructing the object.
It would cause problems if, for example, the inner cell of an underlined
cell was changed, at which point the size of the underlined cell should also
change.

This has led some people to adopt a principle of never including non-
method properties in interfaces. Rather than directly access a simple value
property, they’d use getSomething and setSomething methods to read and write
the property. This approach has the downside that you will end up writing—
and reading—a lot of additional methods.

Fortunately, JavaScript provides a technique that gets us the best of both
worlds. We can specify properties that, from the outside, look like normal
properties but secretly have methods associated with them.

var pile = {

elements: ["eggshell", "orange peel", "worm"],

get height() {

return this.elements.length;

},

set height(value) {

console.log("Ignoring attempt to set height to", value);

}

};

console.log(pile.height);

// . 3

pile.height = 100;

// . Ignoring attempt to set height to 100

In object literal, the get or set notation for properties allows you to spec-
ify a function to be run when the property is read or written. You can also
add such a property to an existing object, for example a prototype, using the
Object.defineProperty function (which we previously used to create nonenu-
merable properties).

Object.defineProperty(TextCell.prototype, "heightProp", {

get: function() { return this.text.length; }

});

The Secret Life of Objects 113

var cell = new TextCell("no\nway");

console.log(cell.heightProp);

// . 2

cell.heightProp = 100;

console.log(cell.heightProp);

// . 2

You can use a similar set property, in the object passed to defineProperty,
to specify a setter method. When a getter but no setter is defined, writing to
the property is simply ignored.

Inheritance
We are not quite done yet with our table layout exercise. It helps readability
to right-align columns of numbers. We should create another cell type that
is like TextCell, but rather than padding the lines on the right side, it pads
them on the left side so that they align to the right.

We could simply write a whole new constructor with all three methods in
its prototype. But prototypes may themselves have prototypes, and this allows
us to do something clever.

function RTextCell(text) {

TextCell.call(this, text);

}

RTextCell.prototype = Object.create(TextCell.prototype);

RTextCell.prototype.draw = function(width, height) {

var result = [];

for (var i = 0; i < height; i++) {

var line = this.text[i] || "";

result.push(repeat(" ", width - line.length) + line);

}

return result;

};

We reuse the constructor and the minHeight and minWidth methods from
the regular TextCell. An RTextCell is now basically equivalent to a TextCell,
except that its draw method contains a different function.

This pattern is called inheritance. It allows us to build slightly different
data types from existing data types with relatively little work. Typically, the
new constructor will call the old constructor (using the call method in order
to be able to give it the new object as its this value). Once this constructor
has been called, we can assume that all the fields that the old object type
is supposed to contain have been added. We arrange for the constructor’s
prototype to derive from the old prototype so that instances of this type will
also have access to the properties in that prototype. Finally, we can override
some of these properties by adding them to our new prototype.

114 Chapter 6

Now, if we slightly adjust the dataTable function to use RTextCells for cells
whose value is a number, we get the table we were aiming for.

function dataTable(data) {

var keys = Object.keys(data[0]);

var headers = keys.map(function(name) {

return new UnderlinedCell(new TextCell(name));

});

var body = data.map(function(row) {

return keys.map(function(name) {

var value = row[name];

// This was changed:

if (typeof value == "number")

return new RTextCell(String(value));

else

return new TextCell(String(value));

});

});

return [headers].concat(body);

}

console.log(drawTable(dataTable(MOUNTAINS)));

// beautifully aligned table

Inheritance is a fundamental part of the object-oriented tradition, along-
side encapsulation and polymorphism. But while the latter two are now gen-
erally regarded as wonderful ideas, inheritance is somewhat controversial.

The main reason for this is that it is often confused with polymorphism,
sold as a more powerful tool than it really is, and subsequently overused in
all kinds of ugly ways. Whereas encapsulation and polymorphism can be
used to separate pieces of code from each other, reducing the tangledness
of the overall program, inheritance fundamentally ties types together, creat-
ing more tangle.

You can have polymorphism without inheritance, as we saw. I am not
going to tell you to avoid inheritance entirely—I use it regularly in my own
programs. But you should see it as a slightly dodgy trick that can help you
define new types with little code, not as a grand principle of code organiza-
tion. A preferable way to extend types is through composition, such as how
UnderlinedCell builds on another cell object by simply storing it in a property
and forwarding method calls to it in its own methods.

The instanceof Operator
It is occasionally useful to know whether an object was derived from a
specific constructor. For this, JavaScript provides a binary operator
called instanceof.

The Secret Life of Objects 115

console.log(new RTextCell("A") instanceof RTextCell);

// . true

console.log(new RTextCell("A") instanceof TextCell);

// . true

console.log(new TextCell("A") instanceof RTextCell);

// . false

console.log([1] instanceof Array);

// . true

The operator will see through inherited types. An RTextCell is an instance
of TextCell because RTextCell.prototype derives from TextCell.prototype. The
operator can be applied to standard constructors like Array. Almost every
object is an instance of Object.

Summary
So objects are more complicated than I initially portrayed them. They have
prototypes, which are other objects, and will act as if they have properties
they don’t have as long as the prototype has that property. Simple objects
have Object.prototype as their prototype.

Constructors, which are functions whose names usually start with a cap-
ital letter, can be used with the new operator to create new objects. The new
object’s prototype will be the object found in the prototype property of the
constructor function. You can make good use of this by putting the proper-
ties that all values of a given type share into their prototype. The instanceof

operator can, given an object and a constructor, tell you whether that object
is an instance of that constructor.

One useful thing to do with objects is to specify an interface for them
and tell everybody that they are supposed to talk to your object only through
that interface. The rest of the details that make up your object are now en-

capsulated, hidden behind the interface.
Once you are talking in terms of interfaces, who says that only one kind

of object may implement this interface? Having different objects expose the
same interface and then writing code that works on any object with the inter-
face is called polymorphism. It is very useful.

When implementing multiple types that differ in only some details, it
can be helpful to simply make the prototype of your new type derive from
the prototype of your old type and have your new constructor call the old
one. This gives you an object type similar to the old type but for which you
can add and override properties as you see fit.

116 Chapter 6

Exercises

A Vector Type
Write a constructor Vector that represents a vector in two-dimensional space.
It takes x and y parameters (numbers), which it should save to properties of
the same name.

Give the Vector prototype two methods, plus and minus, that take another
vector as a parameter and return a new vector that has the sum or difference
of the two vectors’ (the one in this and the parameter) x and y values.

Add a getter property length to the prototype that computes the length
of the vector—that is, the distance of the point (x, y) from the origin (0, 0).

Another Cell
Implement a cell type named StretchCell(inner, width, height) that conforms
to the table cell interface described earlier in the chapter. It should wrap
another cell (like UnderlinedCell does) and ensure that the resulting cell has
at least the given width and height, even if the inner cell would naturally be
smaller.

Sequence Interface
Design an interface that abstracts iteration over a collection of values. An
object that provides this interface represents a sequence, and the interface
must somehow make it possible for code that uses such an object to iterate
over the sequence, looking at the element values it is made up of and having
some way to find out when the end of the sequence is reached.

When you have specified your interface, try to write a function logFive

that takes a sequence object and calls console.log on its first five elements—
or fewer, if the sequence has fewer than five elements.

Then implement an object type ArraySeq that wraps an array and allows
iteration over the array using the interface you designed. Implement an-
other object type RangeSeq that iterates over a range of integers (taking from

and to arguments to its constructor) instead.

The Secret Life of Objects 117

“The question of whether

Machines Can Think . . . is about as

relevant as the question of whether

Submarines Can Swim.”

— Edsger Dijkstra,

The Threats to Computing Science

7
PROJECT: ELECTRONIC LIFE

In “project” chapters, I’ll stop pummeling you with new
theory for a brief moment and instead work through a
program with you. Theory is indispensable when learn-
ing to program, but it should also be accompanied by
reading and understanding nontrivial programs.

Our project in this chapter is to build a virtual ecosystem, a little world
populated with critters that move around and struggle for survival.

Definition
To make this task manageable, we will radically simplify the concept of a
world. Namely, a world will be a two-dimensional grid where each entity takes
up one full square of the grid. On every turn, the critters all get a chance to
take some action.

Thus, we chop both time and space into units with a fixed size: squares
for space and turns for time. Of course, this is a somewhat crude and inac-
curate approximation. But our simulation is intended to be amusing, not
accurate, so we can freely cut such corners.

We can define a world with a plan, an array of strings that lays out the
world’s grid using one character per square.

var plan =

["############################",

"# # # o ##",

"# #",

"# ##### #",

"## # # ## #",

"### ## # #",

"# ### # #",

"# #### #",

"# ## o #",

"# o # o ### #",

"# # #",

"############################"];

The # characters in this plan represent walls and rocks, and the o char-
acters represent critters. The spaces, as you might have guessed, are empty
space.

A plan array can be used to create a world object. Such an object keeps
track of the size and content of the world. It has a toString method, which
converts the world back to a printable string (similar to the plan it was based
on) so that we can see what’s going on inside. The world object also has a
turn method, which allows all the critters in it to take one turn and updates
the world to reflect their actions.

Representing Space
The grid that models the world has a fixed width and height. Squares are
identified by their x- and y-coordinates. We use a simple type, Vector (as seen
in the exercises for the previous chapter), to represent these coordinate
pairs.

function Vector(x, y) {

this.x = x;

this.y = y;

}

Vector.prototype.plus = function(other) {

return new Vector(this.x + other.x, this.y + other.y);

};

Next, we need an object type that models the grid itself. A grid is part of
a world, but we are making it a separate object (which will be a property of a
world object) to keep the world object itself simple. The world should con-
cern itself with world-related things, and the grid should concern itself with
grid-related things.

120 Chapter 7

To store a grid of values, we have several options. We can use an array of
row arrays and use two property accesses to get to a specific square, like this:

var grid = [["top left", "top middle", "top right"],

["bottom left", "bottom middle", "bottom right"]];

console.log(grid[1][2]);

// . bottom right

Or we can use a single array, with size width × height, and decide that
the element at (x,y) is found at position x + (y × width) in the array.

var grid = ["top left", "top middle", "top right",

"bottom left", "bottom middle", "bottom right"];

console.log(grid[2 + (1 * 3)]);

// . bottom right

Since the actual access to this array will be wrapped in methods on the
grid object type, it doesn’t matter to outside code which approach we take.
I chose the second representation because it makes it much easier to create
the array. When calling the Array constructor with a single number as an
argument, it creates a new empty array of the given length.

This code defines the Grid object, with some basic methods:

function Grid(width, height) {

this.space = new Array(width * height);

this.width = width;

this.height = height;

}

Grid.prototype.isInside = function(vector) {

return vector.x >= 0 && vector.x < this.width &&

vector.y >= 0 && vector.y < this.height;

};

Grid.prototype.get = function(vector) {

return this.space[vector.x + this.width * vector.y];

};

Grid.prototype.set = function(vector, value) {

this.space[vector.x + this.width * vector.y] = value;

};

And here is a trivial test:

var grid = new Grid(5, 5);

console.log(grid.get(new Vector(1, 1)));

// . undefined

grid.set(new Vector(1, 1), "X");

console.log(grid.get(new Vector(1, 1)));

// . X

Project: Electronic Life 121

A Critter’s Programming Interface
Before we can start on the World constructor, we must get more specific about
the critter objects that will be living inside it. I mentioned that the world
will ask the critters what actions they want to take. This works as follows:
each critter object has an act method that, when called, returns an action.
An action is an object with a type property, which names the type of action
the critter wants to take, for example "move". The action may also contain
extra information, such as the direction the critter wants to move in.

Critters are terribly myopic and can see only the squares directly around
them on the grid. But even this limited vision can be useful when deciding
which action to take. When the act method is called, it is given a view object
that allows the critter to inspect its surroundings. We name the eight sur-
rounding squares by their compass directions: "n" for north, "ne" for north-
east, and so on. Here’s the object we will use to map from direction names
to coordinate offsets:

var directions = {

"n": new Vector(0, -1),

"ne": new Vector(1, -1),

"e": new Vector(1, 0),

"se": new Vector(1, 1),

"s": new Vector(0, 1),

"sw": new Vector(-1, 1),

"w": new Vector(-1, 0),

"nw": new Vector(-1, -1)

};

The view object has a method look, which takes a direction and returns
a character, for example "#" when there is a wall in that direction, or " "

(space) when there is nothing there. The object also provides the conve-
nient methods find and findAll. Both take a map character as an argument.
The first returns a direction in which the character can be found next to
the critter or returns null if no such direction exists. The second returns an
array containing all directions with that character. For example, a creature
sitting left (west) of a wall will get ["ne", "e", "se"] when calling findAll on
its view object with the "#" character as argument.

Here is a simple, stupid critter that just follows its nose until it hits an
obstacle and then bounces off in a random open direction:

function randomElement(array) {

return array[Math.floor(Math.random() * array.length)];

}

var directionNames = "n ne e se s sw w nw".split(" ");

function BouncingCritter() {

this.direction = randomElement(directionNames);

};

122 Chapter 7

BouncingCritter.prototype.act = function(view) {

if (view.look(this.direction) != " ")

this.direction = view.find(" ") || "s";

return {type: "move", direction: this.direction};

};

The randomElement helper function simply picks a random element from
an array, using Math.random plus some arithmetic to get a random index.
We’ll use this again later because randomness can be useful in simulations.

To pick a random direction, the BouncingCritter constructor calls
randomElement on an array of direction names. We could also have used
Object.keys to get this array from the directions object we defined earlier,
but that provides no guarantees about the order in which the properties are
listed. In most situations, modern JavaScript engines will return properties
in the order they were defined, but they are not required to.

The || "s" in the act method is there to prevent this.direction from get-
ting the value null if the critter is somehow trapped with no empty space
around it (for example when crowded into a corner by other critters).

The World Object
Now we can start on the World object type. The constructor takes a plan (the
array of strings representing the world’s grid, described earlier) and a legend

as arguments. A legend is an object that tells us what each character in the
map means. It contains a constructor for every character—except for the
space character, which always refers to null, the value we’ll use to represent
empty space.

function elementFromChar(legend, ch) {

if (ch == " ")

return null;

var element = new legend[ch]();

element.originChar = ch;

return element;

}

function World(map, legend) {

var grid = new Grid(map[0].length, map.length);

this.grid = grid;

this.legend = legend;

map.forEach(function(line, y) {

for (var x = 0; x < line.length; x++)

grid.set(new Vector(x, y),

elementFromChar(legend, line[x]));

});

}

Project: Electronic Life 123

In elementFromChar, first we create an instance of the right type by look-
ing up the character’s constructor and applying new to it. Then we add an
originChar property to it to make it easy to find out what character the ele-
ment was originally created from.

We need this originChar property when implementing the world’s toString

method. This method builds up a maplike string from the world’s current
state by performing a two-dimensional loop over the squares on the grid.

function charFromElement(element) {

if (element == null)

return " ";

else

return element.originChar;

}

World.prototype.toString = function() {

var output = "";

for (var y = 0; y < this.grid.height; y++) {

for (var x = 0; x < this.grid.width; x++) {

var element = this.grid.get(new Vector(x, y));

output += charFromElement(element);

}

output += "\n";

}

return output;

};

A wall is a simple object—it is used only for taking up space and has no
act method.

function Wall() {}

When we try the World object by creating an instance based on the plan
from earlier in the chapter and then calling toString on it, we get a string
very similar to the plan we put in.

var world = new World(plan,

{"#": Wall,

"o": BouncingCritter});

console.log(world.toString());

// . ############################

// # # # o ##

// # #

// # ##### #

// ## # # ## #

// ### ## # #

// # ### # #

// # #### #

124 Chapter 7

// # ## o #

// # o # o ### #

// # # #

// ############################

this and Its Scope
The World constructor contains a call to forEach. One interesting thing to
note is that inside the function passed to forEach, we are no longer directly
in the function scope of the constructor. Each function call gets its own this

binding, so the this in the inner function does not refer to the newly con-
structed object that the outer this refers to. In fact, when a function isn’t
called as a method, this will refer to the global object.

This means that we can’t write this.grid to access the grid from inside
the loop. Instead, the outer function creates a normal local variable, grid,
through which the inner function gets access to the grid.

This is a bit of a design blunder in JavaScript. Fortunately, the next
version of the language provides a solution for this problem. Meanwhile,
there are workarounds. A common pattern is to say var self = this and from
then on refer to self, which is a normal variable and thus visible to inner
functions.

Another solution is to use the bind method, which allows us to provide
an explicit this object to bind to.

var test = {

prop: 10,

addPropTo: function(array) {

return array.map(function(elt) {

return this.prop + elt;

}.bind(this));

}

};

console.log(test.addPropTo([5]));

// . [15]

The function passed to map is the result of the bind call and thus has its
this bound to the first argument given to bind—the outer function’s this

value (which holds the test object).
Most standard higher-order methods on arrays, such as forEach and map,

take an optional second argument that can also be used to provide a this

for the calls to the iteration function. So you could express the previous
example in a slightly simpler way.

var test = {

prop: 10,

addPropTo: function(array) {

return array.map(function(elt) {

Project: Electronic Life 125

return this.prop + elt;

}, this); // ← no bind

}

};

console.log(test.addPropTo([5]));

// . [15]

This works only for higher-order functions that support such a context

parameter. When they don’t, you’ll need to use one of the other approaches.
In our own higher-order functions, we can support such a context pa-

rameter by using the call method to call the function given as an argument.
For example, here is a forEach method for our Grid type, which calls a given
function for each element in the grid that isn’t null or undefined:

Grid.prototype.forEach = function(f, context) {

for (var y = 0; y < this.height; y++) {

for (var x = 0; x < this.width; x++) {

var value = this.space[x + y * this.width];

if (value != null)

f.call(context, value, new Vector(x, y));

}

}

};

Animating Life
The next step is to write a turn method for the World object that gives the crit-
ters a chance to act. It will go over the grid using the forEach method we just
defined, looking for objects with an act method. When it finds one, turn
calls that method to get an action object and carries out the action when it
is valid. For now, only "move" actions are understood.

There is one potential problem with this approach. Can you spot it?
If we let critters move as we come across them, they may move to a square
that we haven’t looked at yet, and we’ll allow them to move again when
we reach that square. Thus, we have to keep an array of critters that have
already had their turn and ignore them when we see them again.

World.prototype.turn = function() {

var acted = [];

this.grid.forEach(function(critter, vector) {

if (critter.act && acted.indexOf(critter) == -1) {

acted.push(critter);

this.letAct(critter, vector);

}

}, this);

};

126 Chapter 7

We use the second parameter to the grid’s forEach method to be able to
access the correct this inside the inner function. The letAct method con-
tains the actual logic that allows the critters to move.

World.prototype.letAct = function(critter, vector) {

var action = critter.act(new View(this, vector));

if (action && action.type == "move") {

var dest = this.checkDestination(action, vector);

if (dest && this.grid.get(dest) == null) {

this.grid.set(vector, null);

this.grid.set(dest, critter);

}

}

};

World.prototype.checkDestination = function(action, vector) {

if (directions.hasOwnProperty(action.direction)) {

var dest = vector.plus(directions[action.direction]);

if (this.grid.isInside(dest))

return dest;

}

};

First, we simply ask the critter to act, passing it a view object that knows
about the world and the critter’s current position in that world (we’ll define
View in a moment). The act method returns an action of some kind.

If the action’s type is not "move", it is ignored. If it is "move", if it has a
direction property that refers to a valid direction, and if the square in that
direction is empty (null), we set the square where the critter used to be to
hold null and store the critter in the destination square.

Note that letAct takes care to ignore nonsense input—it doesn’t assume
that the action’s direction property is valid or that the type property makes
sense. This kind of defensive programming makes sense in some situations.
The main reason for doing it is to validate inputs coming from sources you
don’t control (such as user or file input), but it can also be useful to isolate
subsystems from each other. In this case, the intention is that the critters
themselves can be programmed sloppily—they don’t have to verify if their
intended actions make sense. They can just request an action, and the world
will figure out whether to allow it.

These two methods are not part of the external interface of a World ob-
ject. They are an internal detail. Some languages provide ways to explicitly
declare certain methods and properties private and signal an error when you
try to use them from outside the object. JavaScript does not, so you will have
to rely on some other form of communication to describe what is part of an
object’s interface. Sometimes it can help to use a naming scheme to distin-
guish between external and internal properties, for example by prefixing all
internal ones with an underscore character (_). This will make accidental
uses of properties that are not part of an object’s interface easier to spot.

Project: Electronic Life 127

The one missing part, the View type, looks like this:

function View(world, vector) {

this.world = world;

this.vector = vector;

}

View.prototype.look = function(dir) {

var target = this.vector.plus(directions[dir]);

if (this.world.grid.isInside(target))

return charFromElement(this.world.grid.get(target));

else

return "#";

};

View.prototype.findAll = function(ch) {

var found = [];

for (var dir in directions)

if (this.look(dir) == ch)

found.push(dir);

return found;

};

View.prototype.find = function(ch) {

var found = this.findAll(ch);

if (found.length == 0) return null;

return randomElement(found);

};

The look method figures out the coordinates that we are trying to look at
and, if they are inside the grid, finds the character corresponding to the el-
ement that sits there. For coordinates outside the grid, look simply pretends
that there is a wall there so that if you define a world that isn’t walled in, the
critters still won’t be tempted to try to walk off the edges.

It Moves
We instantiated a World object earlier. Now that we’ve added all the necessary
methods, it should be possible to actually make the world move.

for (var i = 0; i < 5; i++) {

world.turn();

console.log(world.toString());

}

// five turns of moving critters

128 Chapter 7

The first two maps that are displayed will look something like this (de-
pending on the random direction the critters picked):

############################ ############################

##

o # #

o

#

#

#

#

#

o ### # #o # ###

#o # o # # # o o #

############################ ############################

They move! To get a more interactive view of these critters crawling
around and bouncing off the walls, open this chapter in the online version
of the book at http://eloquentjavascript.net/ .

More Life-forms
The dramatic highlight of our world, if you watch for a bit, is when two crit-
ters bounce off each other. Can you think of another interesting form of
behavior?

The one I came up with is a critter that moves along walls. Conceptu-
ally, the critter keeps its left hand (paw, tentacle, whatever) to the wall and
follows along. This turns out to be not entirely trivial to implement.

We need to be able to “compute” with compass directions. Since direc-
tions are modeled by a set of strings, we need to define our own operation
(dirPlus) to calculate relative directions. So dirPlus("n", 1) means one 45-
degree turn clockwise from north, giving "ne". Similarly, dirPlus("s", -2)

means 90 degrees counterclockwise from south, which is east.

function dirPlus(dir, n) {

var index = directionNames.indexOf(dir);

return directionNames[(index + n + 8) % 8];

}

function WallFollower() {

this.dir = "s";

}

Project: Electronic Life 129

http://eloquentjavascript.net/

WallFollower.prototype.act = function(view) {

var start = this.dir;

if (view.look(dirPlus(this.dir, -3)) != " ")

start = this.dir = dirPlus(this.dir, -2);

while (view.look(this.dir) != " ") {

this.dir = dirPlus(this.dir, 1);

if (this.dir == start) break;

}

return {type: "move", direction: this.dir};

};

The act method only has to “scan” the critter’s surroundings, starting
from its left side and going clockwise until it finds an empty square. It then
moves in the direction of that empty square.

What complicates things is that a critter may end up in the middle of
empty space, either as its start position or as a result of walking around an-
other critter. If we apply the approach I just described in empty space, the
poor critter will just keep on turning left at every step, running in circles.

So there is an extra check (the if statement) to start scanning to the left
only if it looks like the critter has just passed some kind of obstacle—that is,
if the space behind and to the left of the critter is not empty. Otherwise, the
critter starts scanning directly ahead, so that it’ll walk straight when in empty
space.

And finally, there’s a test comparing this.dir to start after every pass
through the loop to make sure that the loop won’t run forever when the
critter is walled in or crowded in by other critters and can’t find an empty
square.

A More Lifelike Simulation
To make life in our world more interesting, we will add the concepts of food
and reproduction. Each living thing in the world gets a new property, energy,
which is reduced by performing actions and increased by eating things.
When the critter has enough energy, it can reproduce, generating a new
critter of the same kind. To keep things simple, the critters in our world re-
produce asexually, all by themselves.

If critters only move around and eat one another, the world will soon
succumb to the law of increasing entropy, run out of energy, and become a
lifeless wasteland. To prevent this from happening (too quickly, at least), we
add plants to the world. Plants do not move. They just use photosynthesis to
grow (that is, increase their energy) and reproduce.

To make this work, we’ll need a world with a different letAct method.
We could just replace the method of the World prototype, but I’ve become
very attached to our simulation with the wall-following critters and would
hate to break that old world.

One solution is to use inheritance. We create a new constructor,
LifelikeWorld, whose prototype is based on the World prototype but which

130 Chapter 7

overrides the letAct method. The new letAct method delegates the work of
actually performing an action to various functions stored in the actionTypes

object.

function LifelikeWorld(map, legend) {

World.call(this, map, legend);

}

LifelikeWorld.prototype = Object.create(World.prototype);

var actionTypes = Object.create(null);

LifelikeWorld.prototype.letAct = function(critter, vector) {

var action = critter.act(new View(this, vector));

var handled = action &&

action.type in actionTypes &&

actionTypes[action.type].call(this, critter,

vector, action);

if (!handled) {

critter.energy -= 0.2;

if (critter.energy <= 0)

this.grid.set(vector, null);

}

};

The new letAct method first checks whether an action was returned
at all, then whether a handler function for this type of action exists, and
finally whether that handler returned true, indicating that it successfully
handled the action. Note the use of call to give the handler access to the
world, through its this binding.

If the action didn’t work for whatever reason, the default action is for
the critter to simply wait. It loses one-fifth point of energy, and if its energy
level drops to zero or below, the critter dies and is removed from the grid.

Action Handlers
The simplest action a critter can perform is "grow", used by plants. When an
action object like {type: "grow"} is returned, the following handler method
will be called:

actionTypes.grow = function(critter) {

critter.energy += 0.5;

return true;

};

Growing always succeeds and adds half a point to the plant’s energy
level.

Project: Electronic Life 131

Moving is more involved.

actionTypes.move = function(critter, vector, action) {

var dest = this.checkDestination(action, vector);

if (dest == null ||

critter.energy <= 1 ||

this.grid.get(dest) != null)

return false;

critter.energy -= 1;

this.grid.set(vector, null);

this.grid.set(dest, critter);

return true;

};

This action first checks, using the checkDestination method defined ear-
lier, whether the action provides a valid destination. If not, or if the destina-
tion isn’t empty, or if the critter lacks the required energy, move returns false
to indicate no action was taken. Otherwise, it moves the critter and subtracts
the energy cost.

In addition to moving, critters can eat.

actionTypes.eat = function(critter, vector, action) {

var dest = this.checkDestination(action, vector);

var atDest = dest != null && this.grid.get(dest);

if (!atDest || atDest.energy == null)

return false;

critter.energy += atDest.energy;

this.grid.set(dest, null);

return true;

};

Eating another critter also involves providing a valid destination square.
This time, the destination must not be empty and must contain something
with energy, like a critter (but not a wall—walls are not edible). If so, the
energy from the eaten is transferred to the eater, and the victim is removed
from the grid.

And finally, we allow our critters to reproduce.

actionTypes.reproduce = function(critter, vector, action) {

var baby = elementFromChar(this.legend,

critter.originChar);

var dest = this.checkDestination(action, vector);

if (dest == null ||

critter.energy <= 2 * baby.energy ||

this.grid.get(dest) != null)

return false;

critter.energy -= 2 * baby.energy;

this.grid.set(dest, baby);

132 Chapter 7

return true;

};

Reproducing costs twice the energy level of the newborn critter. So we
first create a (hypothetical) baby using elementFromChar on the critter’s own
origin character. Once we have a baby, we can find its energy level and test
whether the parent has enough energy to successfully bring it into the world.
We also require a valid (and empty) destination.

If everything is okay, the baby is put onto the grid (it is now no longer
hypothetical), and the energy is spent.

Populating the New World
We now have a framework to simulate these more lifelike creatures. We
could put the critters from the old world into it, but they would just die since
they don’t have an energy property. So let’s make new ones. First we’ll write
a plant, which is a rather simple life-form.

function Plant() {

this.energy = 3 + Math.random() * 4;

}

Plant.prototype.act = function(context) {

if (this.energy > 15) {

var space = context.find(" ");

if (space)

return {type: "reproduce", direction: space};

}

if (this.energy < 20)

return {type: "grow"};

};

Plants start with an energy level between 3 and 7, randomized so that
they don’t all reproduce in the same turn. When a plant reaches 15 energy
points and there is empty space nearby, it reproduces into that empty space.
If a plant can’t reproduce, it simply grows until it reaches energy level 20.

We now define a plant eater.

function PlantEater() {

this.energy = 20;

}

PlantEater.prototype.act = function(context) {

var space = context.find(" ");

if (this.energy > 60 && space)

return {type: "reproduce", direction: space};

var plant = context.find("*");

if (plant)

return {type: "eat", direction: plant};

Project: Electronic Life 133

if (space)

return {type: "move", direction: space};

};

We’ll use the * character for plants, so that’s what critters will look for
when they search for food.

Bringing the World to Life
And that gives us enough elements to try our new world. Imagine the follow-
ing map as a grassy valley with a herd of herbivores in it, some boulders, and
lush plant life everywhere.

var valley = new LifelikeWorld(

["############################",

"##### ######",

"## *** **##",

"# *##** ** O *##",

"# *** O ##** *#",

"# O ##*** #",

"# ##** #",

"# O #* #",

"#* #** O #",

"#*** ##** O **#",

"##**** ###*** *###",

"############################"],

{"#": Wall,

"O": PlantEater,

"*": Plant}

);

Let’s see what happens if we run this. These snapshots illustrate a typical
run of this world.

############################ ############################

**

*** O *## ## ** * O

** *## # **##

** ##* *# # ** O ##O

##* # # *O * * ##

O # # *** ## O

#* O # #** #***

#* #** O # #** O #**** #

#* O O ##* **# #*** ##*** O #

##* ###* ### ##** ###** O ###

############################ ############################

134 Chapter 7

############################ ############################

#####O O ###### ##### O ######

##

##O ## # ## O

O O *## # # ##

O O O **## O # # ##

**## O # # O ## *

*** * # # # O

O***** O # # O # O

##****** # # ## O O

###****** ### ## ### O

############################ ############################

############################ ############################

######

** *

##****

##* * # # ##*****

O ## * # # ##******

** **

#

#

###

############################ ############################

Most of the time, the plants multiply and expand quite quickly, but then
the abundance of food causes a population explosion of the herbivores, who
proceed to wipe out all or nearly all of the plants, resulting in a mass star-
vation of the critters. Sometimes, the ecosystem recovers and another cycle
starts. At other times, one of the species dies out completely. If it’s the her-
bivores, the whole space will fill with plants. If it’s the plants, the remaining
critters starve, and the valley becomes a desolate wasteland. Ah, the cruelty
of nature.

Exercises

Artificial Stupidity
Having the inhabitants of our world go extinct after a few minutes is kind of
depressing. To deal with this, we could try to create a smarter plant eater.

There are several obvious problems with our herbivores. First, they are
terribly greedy, stuffing themselves with every plant they see until they have
wiped out the local plant life. Second, their randomized movement (recall
that the view.find method returns a random direction when multiple di-
rections match) causes them to stumble around ineffectively and starve if
there don’t happen to be any plants nearby. And finally, they breed very fast,
which makes the cycles between abundance and famine quite intense.

Project: Electronic Life 135

Write a new critter type that tries to address one or more of these points
and substitute it for the old PlantEater type in the valley world. See how it
fares. Tweak it some more if necessary.

Predators
Any serious ecosystem has a food chain longer than a single link. Write an-
other critter that survives by eating the herbivore critter. You’ll notice that
stability is even harder to achieve now that there are cycles at multiple levels.
Try to find a strategy to make the ecosystem run smoothly for at least a little
while.

One thing that will help is to make the world bigger. This way, local
population booms or busts are less likely to wipe out a species entirely, and
there is space for the relatively large prey population needed to sustain a
small predator population.

136 Chapter 7

“Debugging is twice as hard as writing the

code in the first place. Therefore, if you write

the code as cleverly as possible, you are, by

definition, not smart enough to debug it.”

— Brian Kernighan and P.J. Plauger,

The Elements of Programming Style

8
BUGS AND ERROR HANDLING

A program is crystallized thought. Sometimes those
thoughts are confused. Other times, mistakes are in-
troduced when converting thought into code. Either
way, the result is a flawed program.

Flaws in a program are usually called bugs. Bugs can be programmer
errors or problems in other systems that the program interacts with. Some
bugs are immediately apparent, while others are subtle and might remain
hidden in a system for years.

Often, problems surface only when a program encounters a situation
that the programmer didn’t originally consider. Sometimes such situations
are unavoidable. When the user is asked to input their age and types orange,
this puts our program in a difficult position. The situation has to be antici-
pated and handled somehow.

Programmer Mistakes
When it comes to programmer mistakes, our aim is simple. We want to find
them and fix them. Such mistakes can range from simple typos that cause
the computer to complain as soon as it lays eyes on our program to subtle
mistakes in our understanding of the way the program operates, causing in-
correct outcomes only in specific situations. Bugs of the latter type can take
weeks to diagnose.

The degree to which languages help you find such mistakes varies. Un-
surprisingly, JavaScript is at the “hardly helps at all” end of that scale. Some
languages want to know the types of all your variables and expressions be-
fore even running a program and will tell you right away when a type is used
in an inconsistent way. JavaScript considers types only when actually running
the program, and even then, it allows you to do some clearly nonsensical
things without complaint, such as x = true * "monkey".

There are some things that JavaScript does complain about, though.
Writing a program that is not syntactically valid will immediately trigger an
error. Other things, such as calling something that’s not a function or look-
ing up a property on an undefined value, will cause an error to be reported
when the program is running and encounters the nonsensical action.

But often, your nonsense computation will simply produce a NaN (not
a number) or undefined value. And the program happily continues, con-
vinced that it’s doing something meaningful. The mistake will manifest it-
self only later, after the bogus value has traveled though several functions. It
might not trigger an error at all but silently cause the program’s output to
be wrong. Finding the source of such problems can be difficult.

The process of finding mistakes—bugs—in programs is called debugging.

Strict Mode
JavaScript can be made a little more strict by enabling strict mode. This is
done by putting the string "use strict" at the top of a file or a function body.
Here’s an example:

function canYouSpotTheProblem() {

"use strict";

for (counter = 0; counter < 10; counter++)

console.log("Happy happy");

}

canYouSpotTheProblem();

// . ReferenceError: counter is not defined

Normally, when you forget to put var in front of your variable, as with
counter in the example, JavaScript quietly creates a global variable and uses
that. In strict mode, however, an error is reported instead. This is very help-
ful. It should be noted, though, that this doesn’t work when the variable
in question already exists as a global variable, but only when assigning to it
would have created it.

Another change in strict mode is that the this binding holds the value
undefined in functions that are not called as methods. When making such a
call outside of strict mode, this refers to the global scope object. So if you ac-
cidentally call a method or constructor incorrectly in strict mode, JavaScript
will produce an error as soon as it tries to read something from this, rather

140 Chapter 8

than happily working with the global object, creating and reading global
variables.

For example, consider the following code, which calls a constructor
without the new keyword so that its this will not refer to a newly constructed
object:

function Person(name) { this.name = name; }

var ferdinand = Person("Ferdinand"); // oops

console.log(name);

// . Ferdinand

So the bogus call to Person succeeded but returned an undefined value
and created the global variable name. In strict mode, the result is different.

"use strict";

function Person(name) { this.name = name; }

// Oops, forgot 'new'

var ferdinand = Person("Ferdinand");

// . TypeError: Cannot set property 'name' of undefined

We are immediately told that something is wrong. This is helpful.
Strict mode does a few more things. It disallows giving a function mul-

tiple parameters with the same name and removes certain problematic lan-
guage features entirely (such as the with statement, which is so misguided it
is not further discussed in this book).

In short, putting a "use strict" at the top of your program rarely hurts
and might help you spot a problem.

Testing
If the language is not going to do much to help us find mistakes, we’ll have
to find them the hard way: by running the program and seeing whether it
does the right thing.

Doing this by hand, again and again, is a sure way to drive yourself in-
sane. Fortunately, it is often possible to write a second program that auto-
mates testing your actual program.

As an example, we once again use the Vector type.

function Vector(x, y) {

this.x = x;

this.y = y;

}

Vector.prototype.plus = function(other) {

return new Vector(this.x + other.x, this.y + other.y);

};

Bugs and Error Handling 141

We will write a program to check that our implementation of Vector
works as intended. Then, every time we change the implementation, we
follow up by running the test program so that we can be reasonably confi-
dent that we didn’t break anything. When we add extra functionality (for
example, a new method) to the Vector type, we also add tests for the new
feature.

function testVector() {

var p1 = new Vector(10, 20);

var p2 = new Vector(-10, 5);

var p3 = p1.plus(p2);

if (p1.x !== 10) return "fail: x property";

if (p1.y !== 20) return "fail: y property";

if (p2.x !== -10) return "fail: negative x property";

if (p3.x !== 0) return "fail: x from plus";

if (p3.y !== 25) return "fail: y from plus";

return "everything ok";

}

console.log(testVector());

// . everything ok

Writing tests like this tends to produce rather repetitive, awkward code.
Fortunately, there exist pieces of software that help you build and run col-
lections of tests (test suites) by providing a language (in the form of functions
and methods) suited to expressing tests and by outputting informative infor-
mation when a test fails. These are called testing frameworks.

Debugging
Once you notice that there is something wrong with your program because it
misbehaves or produces errors, the next step is to figure out what the prob-
lem is.

Sometimes it is obvious. The error message will point at a specific line of
your program, and if you look at the error description and that line of code,
you can often see the problem.

But not always. Sometimes the line that triggered the problem is sim-
ply the first place where a bogus value produced elsewhere gets used in an
invalid way. And sometimes there is no error message at all—just an invalid
result. If you have been solving the exercises in the earlier chapters, you will
probably have already experienced such situations.

The following example program tries to convert a whole number to a
string in any base (decimal, binary, and so on) by repeatedly picking out
the last digit and then dividing the number to get rid of this digit. But the
insane output that it currently produces suggests that it has a bug.

142 Chapter 8

function numberToString(n, base) {

var result = "", sign = "";

if (n < 0) {

sign = "-";

n = -n;

}

do {

result = String(n % base) + result;

n /= base;

} while (n > 0);

return sign + result;

}

console.log(numberToString(13, 10));

// . 1.5e-3231.3e-3221.3e-3211.3e-3201.3e-3191.3e-3181.3...

Even if you see the problem already, pretend for a moment that you
don’t. We know that our program is malfunctioning, and we want to find
out why.

This is where you must resist the urge to start making random changes
to the code. Instead, think. Analyze what is happening and come up with a
theory of why it might be happening. Then, make additional observations to
test this theory—or, if you don’t yet have a theory, make additional observa-
tions that might help you come up with one.

Putting a few strategic console.log calls into the program is a good way to
get additional information about what the program is doing. In this case, we
want n to take the values 13, 1, and then 0. Let’s write out its value at the start
of the loop.

13

1.3

0.13

0.013

...

1.5e-323

Right. Dividing 13 by 10 does not produce a whole number. Instead of n
/= base, what we actually want is n = Math.floor(n / base) so that the number
is properly “shifted” to the right.

An alternative to using console.log is to use the debugger capabilities of
your browser. Modern browsers come with the ability to set a breakpoint on
a specific line of your code. This will cause the execution of the program to
pause every time the line with the breakpoint is reached and allow you to
inspect the values of variables at that point. I won’t go into details here since
debuggers differ from browser to browser, but look in your browser’s devel-
oper tools and search the Web for more information. Another way to set a

Bugs and Error Handling 143

breakpoint is to include a debugger statement (consisting of simply that key-
word) in your program. If the developer tools of your browser are active, the
program will pause whenever it reaches that statement, and you will be able
to inspect its state.

Error Propagation
Not all problems can be prevented by the programmer, unfortunately. If
your program communicates with the outside world in any way, there is a
chance that the input it gets will be invalid or that other systems that it tries
to talk to are broken or unreachable.

Simple programs, or programs that run only under your supervision,
can afford to just give up when such a problem occurs. You’ll look into the
problem and try again. “Real” applications, on the other hand, are expected
to not simply crash. Sometimes the right thing to do is take the bad input in
stride and continue running. In other cases, it is better to report to the user
what went wrong and then give up. But in either situation, the program has
to actively do something in response to the problem.

Say you have a function promptInteger that asks the user for a whole num-
ber and returns it. What should it return if the user inputs orange?

One option is to make it return a special value. Common choices for
such values are null and undefined.

function promptNumber(question) {

var result = Number(prompt(question, ""));

if (isNaN(result)) return null;

else return result;

}

console.log(promptNumber("How many trees do you see?"));

This is a sound strategy. Now any code that calls promptNumber must
check whether an actual number was read and, failing that, must somehow
recover—maybe by asking again or by filling in a default value. Or it could
again return a special value to its caller to indicate that it failed to do what
it was asked.

In many situations, mostly when errors are common and the caller should
be explicitly taking them into account, returning a special value is a perfectly
fine way to indicate an error. It does, however, have its downsides. First, what
if the function can already return every possible kind of value? For such a
function, it is hard to find a special value that can be distinguished from a
valid result.

The second issue with returning special values is that it can lead to some
very cluttered code. If a piece of code calls promptNumber 10 times, it has to
check 10 times whether null was returned. And if its response to finding null

is to simply return null itself, the caller will in turn have to check for it, and
so on.

144 Chapter 8

Exceptions
When a function cannot proceed normally, what we would like to do is just
stop what we are doing and immediately jump back to a place that knows
how to handle the problem. This is what exception handling does.

Exceptions are a mechanism that make it possible for code that runs
into a problem to raise (or throw) an exception, which is simply a value. Rais-
ing an exception somewhat resembles a super-charged return from a func-
tion: it jumps out of not just the current function but also out of its callers,
all the way down to the first call that started the current execution. This is
called unwinding the stack. You may remember the stack of function calls that
was mentioned in Chapter 3. An exception zooms down this stack, throwing
away all the call contexts it encounters.

If exceptions always zoomed right down to the bottom of the stack, they
would not be of much use. They would just provide a novel way to blow up
your program. Their power lies in the fact that you can set “obstacles” along
the stack to catch the exception as it is zooming down. Then you can do
something with it, after which the program continues running at the point
where the exception was caught.

Here’s an example:

function promptDirection(question) {

var result = prompt(question, "");

if (result.toLowerCase() == "left") return "L";

if (result.toLowerCase() == "right") return "R";

throw new Error("Invalid direction: " + result);

}

function look() {

if (promptDirection("Which way?") == "L")

return "a house";

else

return "two angry bears";

}

try {

console.log("You see", look());

} catch (error) {

console.log("Something went wrong: " + error);

}

The throw keyword is used to raise an exception. Catching one is done
by wrapping a piece of code in a try block, followed by the keyword catch.
When the code in the try block causes an exception to be raised, the catch

block is evaluated. The variable name (in parentheses) after catch will be
bound to the exception value. After the catch block finishes—or if the try

block finishes without problems—control proceeds beneath the entire
try/catch statement.

Bugs and Error Handling 145

In this case, we used the Error constructor to create our exception value.
This is a standard JavaScript constructor that creates an object with a message

property. In modern JavaScript environments, instances of this construc-
tor also gather information about the call stack that existed when the ex-
ception was created, a so-called stack trace. This information is stored in the
stack property and can be helpful when trying to debug a problem: it tells us
the precise function where the problem occurred and which other functions
led up to the call that failed.

Note that the function look completely ignores the possibility that
promptDirection might go wrong. This is the big advantage of exceptions—
error-handling code is necessary only at the point where the error occurs
and at the point where it is handled. The functions in between can forget
all about it.

Well, almost. . .

Cleaning Up After Exceptions
Consider the following situation: a function, withContext, wants to make sure
that, during its execution, the top-level variable context holds a specific con-
text value. After it finishes, it restores this variable to its old value.

var context = null;

function withContext(newContext, body) {

var oldContext = context;

context = newContext;

var result = body();

context = oldContext;

return result;

}

What if body raises an exception? In that case, the call to withContext will
be thrown off the stack by the exception, and context will never be set back
to its old value.

There is one more feature that try statements have. They may be fol-
lowed by a finally block either instead of or in addition to a catch block. A
finally block means “No matter what happens, run this code after trying to
run the code in the try block.” If a function has to clean something up, the
cleanup code should usually be put into a finally block.

function withContext(newContext, body) {

var oldContext = context;

context = newContext;

try {

return body();

146 Chapter 8

} finally {

context = oldContext;

}

}

Note that we no longer have to store the result of body (which we want
to return) in a variable. Even if we return directly from the try block, the
finally block will be run. Now we can do this and be safe:

try {

withContext(5, function() {

if (context < 10)

throw new Error("Not enough context!");

});

} catch (e) {

console.log("Ignoring: " + e);

}

// . Ignoring: Error: Not enough context!

console.log(context);

// . null

Even though the function called from withContext exploded, withContext
itself still properly cleaned up the context variable.

Selective Catching
When an exception makes it all the way to the bottom of the stack without
being caught, it gets handled by the environment. What this means differs
between environments. In browsers, a description of the error typically gets
written to the JavaScript console (reachable through the browser’s Tools or
Developer menu).

For programmer mistakes or problems that the program cannot possi-
bly handle, just letting the error go through is often okay. An unhandled
exception is a reasonable way to signal a broken program, and the JavaScript
console will, on modern browsers, provide you with some information about
which function calls were on the stack when the problem occurred.

For problems that are expected to happen during routine use, crashing
with an unhandled exception is not a very friendly response.

Invalid uses of the language, such as referencing a nonexistent variable,
looking up a property on null, or calling something that’s not a function,
will also result in exceptions being raised. Such exceptions can be caught
just like your own exceptions.

When a catch body is entered, all we know is that something in our try

body caused an exception. But we don’t know what, or which exception it
caused.

Bugs and Error Handling 147

JavaScript (in a rather glaring omission) doesn’t provide direct support
for selectively catching exceptions: either you catch them all or you don’t
catch any. This makes it very easy to assume that the exception you get is the
one you were thinking about when you wrote the catch block.

But it might not be. Some other assumption might be violated, or you
might have introduced a bug somewhere that is causing an exception. Here
is an example, which attempts to keep on calling promptDirection until it gets a
valid answer:

for (;;) {

try {

var dir = promtDirection("Where?"); // ← typo!

console.log("You chose ", dir);

break;

} catch (e) {

console.log("Not a valid direction. Try again.");

}

}

The for (;;) construct is a way to intentionally create a loop that doesn’t
terminate on its own. We break out of the loop only when a valid direction is
given. But we misspelled promptDirection, which will result in an “undefined
variable” error. Because the catch block completely ignores its exception
value (e), assuming it knows what the problem is, it wrongly treats the vari-
able error as indicating bad input. Not only does this cause an infinite loop,
but it also “buries” the useful error message about the misspelled variable.

As a general rule, don’t blanket-catch exceptions unless it is for the pur-
pose of “routing” them somewhere—for example, over the network to tell
another system that our program crashed. And even then, think carefully
about how you might be hiding information.

So we want to catch a specific kind of exception. We can do this by
checking in the catch block whether the exception we got is the one we are
interested in and by rethrowing it otherwise. But how do we recognize an
exception?

Of course, we could match its message property against the error message
we happen to expect. But that’s a shaky way to write code—we’d be using
information that’s intended for human consumption (the message) to make
a programmatic decision. As soon as someone changes (or translates) the
message, the code will stop working.

Rather, let’s define a new type of error and use instanceof to identify it.

function InputError(message) {

this.message = message;

this.stack = (new Error()).stack;

}

InputError.prototype = Object.create(Error.prototype);

InputError.prototype.name = "InputError";

148 Chapter 8

The prototype is made to derive from Error.prototype so that instanceof
Error will also return true for InputError objects. It’s also given a name property
since the standard error types (Error, SyntaxError, ReferenceError, and so on)
also have such a property.

The assignment to the stack property tries to give this object a somewhat
useful stack trace, on platforms that support it, by creating a regular error
object and then using that object’s stack property as its own.

Now promptDirection can throw such an error.

function promptDirection(question) {

var result = prompt(question, "");

if (result.toLowerCase() == "left") return "L";

if (result.toLowerCase() == "right") return "R";

throw new InputError("Invalid direction: " + result);

}

And the loop can catch it more carefully.

for (;;) {

try {

var dir = promptDirection("Where?");

console.log("You chose ", dir);

break;

} catch (e) {

if (e instanceof InputError)

console.log("Not a valid direction. Try again.");

else

throw e;

}

}

This will catch only instances of InputError and let unrelated exceptions
through. If you reintroduce the typo, the undefined variable error will be
properly reported.

Assertions
Assertions are a tool to do basic sanity checking for programmer errors. Con-
sider this helper function, assert:

function AssertionFailed(message) {

this.message = message;

}

AssertionFailed.prototype = Object.create(Error.prototype);

function assert(test, message) {

if (!test)

throw new AssertionFailed(message);

}

Bugs and Error Handling 149

function lastElement(array) {

assert(array.length > 0, "empty array in lastElement");

return array[array.length - 1];

}

This provides a compact way to enforce expectations, helpfully blow-
ing up the program if the stated condition does not hold. For instance, the
lastElement function, which fetches the last element from an array, would
return undefined on empty arrays if the assertion was omitted. Fetching the
last element from an empty array does not make much sense, so it is almost
certainly a programmer error to do so.

Assertions are a way to make sure mistakes cause failures at the point of
the mistake, rather than silently producing nonsense values that may go on
to cause trouble in an unrelated part of the system.

Summary
Mistakes and bad input are facts of life. Bugs in programs need to be
found and fixed. They can become easier to notice by having automated
test suites and adding assertions to your programs.

Problems caused by factors outside the program’s control should usu-
ally be handled gracefully. Sometimes, when the problem can be handled
locally, special return values are a sane way to track them. Otherwise, excep-
tions are preferable.

Throwing an exception causes the call stack to be unwound until the
next enclosing try/catch block or until the bottom of the stack. The excep-
tion value will be given to the catch block that catches it, which should ver-
ify that it is actually the expected kind of exception and then do something
with it. To deal with the unpredictable control flow caused by exceptions,
finally blocks can be used to ensure a piece of code is always run when a
block finishes.

Exercises

Retry
Say you have a function primitiveMultiply that, in 50 percent of cases, multi-
plies two numbers and, in the other 50 percent, raises an exception of type
MultiplicatorUnitFailure. Write a function that wraps this clunky function
and just keeps trying until a call succeeds and returns the result.

Make sure you handle only the exceptions you are trying to handle.

150 Chapter 8

The Locked Box
Consider the following (rather contrived) object:

var box = {

locked: true,

unlock: function() { this.locked = false; },

lock: function() { this.locked = true; },

_content: [],

get content() {

if (this.locked) throw new Error("Locked!");

return this._content;

}

};

It is a box with a lock. Inside is an array, but you can get at it only when
the box is unlocked. Directly accessing the _content property is not allowed.

Write a function called withBoxUnlocked that takes a function value as ar-
gument, unlocks the box, runs the function, and then ensures that the box
is locked again before returning, regardless of whether the argument func-
tion returned normally or threw an exception.

Bugs and Error Handling 151

“Some people, when confronted

with a problem, think ‘I know,

I’ll use regular expressions.’

Now they have two problems.”

— Jamie Zawinski

9
REGULAR EXPRESSIONS

Programming tools and techniques survive and spread
in a chaotic, evolutionary way. It’s not always the pretty
or brilliant ones that win but rather the ones that func-
tion well enough within the right niche—for example,
by being integrated with another successful piece of
technology.

In this chapter, I will discuss one such tool, regular expressions. Regular
expressions are a way to describe patterns in string data. They form a small,
separate language that is part of JavaScript and many other languages and
tools.

Regular expressions are both terribly awkward and extremely useful.
Their syntax is cryptic, and the programming interface JavaScript provides
for them is clumsy. But they are a powerful tool for inspecting and pro-
cessing strings. Properly understanding regular expressions will make you
a more effective programmer.

Creating a Regular Expression
A regular expression is a type of object. It can either be constructed with
the RegExp constructor or written as a literal value by enclosing the pattern
in forward slash (/) characters.

var re1 = new RegExp("abc");

var re2 = /abc/;

Both of these regular expression objects represent the same pattern: an
a character followed by a b followed by a c.

When using the RegExp constructor, the pattern is written as a normal
string, so the usual rules apply for backslashes.

The second notation, where the pattern appears between slash char-
acters, treats backslashes somewhat differently. First, since a forward slash
ends the pattern, we need to put a backslash before any forward slash that
we want to be part of the pattern. In addition, backslashes that aren’t part
of special character codes (like \n) will be preserved, rather than ignored as
they are in strings, and change the meaning of the pattern. Some characters,
such as question marks and plus signs, have special meanings in regular ex-
pressions and must be preceded by a backslash if they are meant to repre-
sent the character itself.

var eighteenPlus = /eighteen\+/;

Knowing precisely what characters to backslash-escape when writing reg-
ular expressions requires you to know every character with a special mean-
ing. For the time being, this may not be realistic, so when in doubt, just put
a backslash before any character that is not a letter, number, or whitespace.

Testing for Matches
Regular expression objects have a number of methods. The simplest one is
test. If you pass it a string, it will return a Boolean telling you whether the
string contains a match of the pattern in the expression.

console.log(/abc/.test("abcde"));

// . true

console.log(/abc/.test("abxde"));

// . false

A regular expression consisting of only nonspecial characters simply rep-
resents that sequence of characters. If abc occurs anywhere in the string we
are testing against (not just at the start), test will return true.

Matching a Set of Characters
Finding out whether a string contains abc could just as well be done with a
call to indexOf. Regular expressions allow us to go beyond that and express
more complicated patterns.

154 Chapter 9

Say we want to match any number. In a regular expression, putting a
set of characters between square brackets makes that part of the expression
match any of the characters between the brackets.

Both of the following expressions match all strings that contain a digit:

console.log(/[0123456789]/.test("in 1992"));

// . true

console.log(/[0-9]/.test("in 1992"));

// . true

Within square brackets, a dash (-) between two characters can be used
to indicate a range of characters, where the ordering is determined by the
character’s Unicode number. Characters 0 to 9 sit right next to each other
in this ordering (codes 48 to 57), so [0-9] covers all of them and matches
any digit.

There are a number of common character groups that have their own
built-in shortcuts. Digits are one of them: \d means the same thing as [0-9].

\d Any digit character

\w An alphanumeric character (“word character”)

\s Any whitespace character (space, tab, newline, and similar)

\D A character that is not a digit

\W A nonalphanumeric character

\S A nonwhitespace character

. Any character except for newline

So you could match a date and time format like 30-01-2003 15:20 with
the following expression:

var dateTime = /\d\d-\d\d-\d\d\d\d \d\d:\d\d/;

console.log(dateTime.test("30-01-2003 15:20"));

// . true

console.log(dateTime.test("30-jan-2003 15:20"));

// . false

That looks completely awful, doesn’t it? It has way too many backslashes,
producing background noise that makes it hard to spot the actual pattern
expressed. We’ll see a slightly improved version of this expression later.

These backslash codes can also be used inside square brackets. For ex-
ample, [\d.] means any digit or a period character. But note that the period
itself, when used between square brackets, loses its special meaning. The
same goes for other special characters, such as +.

To invert a set of characters—that is, to express that you want to match
any character except the ones in the set—you can write a caret (^) character
after the opening bracket.

Regular Expressions 155

var notBinary = /[^01]/;

console.log(notBinary.test("1100100010100110"));

// . false

console.log(notBinary.test("1100100010200110"));

// . true

Repeating Parts of a Pattern
We now know how to match a single digit. What if we want to match a whole
number—a sequence of one or more digits?

When you put a plus sign (+) after something in a regular expression,
it indicates that the element may be repeated more than once. Thus, /\d+/
matches one or more digit characters.

console.log(/'\d+'/.test("'123'"));

// . true

console.log(/'\d+'/.test("''"));

// . false

console.log(/'\d*'/.test("'123'"));

// . true

console.log(/'\d*'/.test("''"));

// . true

The star (*) has a similar meaning but also allows the pattern to match
zero times. Something with a star after it never prevents a pattern from
matching—it’ll just match zero instances if it can’t find any suitable text
to match.

A question mark makes a part of a pattern “optional,” meaning it may
occur zero or one time. In the following example, the u character is allowed
to occur, but the pattern also matches when it is missing.

var neighbor = /neighbou?r/;

console.log(neighbor.test("neighbour"));

// . true

console.log(neighbor.test("neighbor"));

// . true

To indicate that a pattern should occur a precise number of times, use
braces. Putting {4} after an element, for example, requires it to occur exactly
four times. It is also possible to specify a range this way: {2,4} means the ele-
ment must occur at least twice and at most four times.

Here is another version of the date and time pattern that allows both
single- and double-digit days, months, and hours. It is also slightly more
readable.

156 Chapter 9

var dateTime = /\d{1,2}-\d{1,2}-\d{4} \d{1,2}:\d{2}/;

console.log(dateTime.test("30-1-2003 8:45"));

// . true

You can also specify open-ended ranges when using curly braces by omit-
ting the number on either side of the comma. So {,5} means zero to five
times, and {5,} means five or more times.

Grouping Subexpressions
To use an operator like * or + on more than one element at a time, you
can use parentheses. A part of a regular expression that is enclosed in pa-
rentheses counts as a single element as far as the operators following it are
concerned.

var cartoonCrying = /boo+(hoo+)+/i;

console.log(cartoonCrying.test("Boohoooohoohooo"));

// . true

The first and second + characters apply only to the second o in boo and
hoo, respectively. The third + applies to the whole group (hoo+), matching
one or more sequences like that.

The i at the end of the expression in the previous example makes this
regular expression case insensitive, allowing it to match the uppercase B in
the input string, even though the pattern is itself all lowercase.

Matches and Groups
The test method is the absolute simplest way to match a regular expression.
It tells you only whether it matched and nothing else. Regular expressions
also have an exec (execute) method that will return null if no match was
found and return an object with information about the match otherwise.

var match = /\d+/.exec("one two 100");

console.log(match);

// . ["100"]

console.log(match.index);

// . 8

An object returned from exec has an index property that tells us where

in the string the successful match begins. Other than that, the object looks
like (and in fact is) an array of strings, whose first element is the string that
was matched—in the previous example, this is the sequence of digits that we
were looking for.

Regular Expressions 157

String values have a match method that behaves similarly.

console.log("one two 100".match(/\d+/));

// . ["100"]

When the regular expression contains subexpressions grouped with
parentheses, the text that matched those groups will also show up in the ar-
ray. The whole match is always the first element. The next element is the
part matched by the first group (the one whose opening parenthesis comes
first in the expression), then the second group, and so on.

var quotedText = /'([^']*)'/;

console.log(quotedText.exec("she said 'hello'"));

// . ["'hello'", "hello"]

When a group does not end up being matched at all (for example,
when followed by a question mark), its position in the output array will hold
undefined. Similarly, when a group is matched multiple times, only the last
match ends up in the array.

console.log(/bad(ly)?/.exec("bad"));

// . ["bad", undefined]

console.log(/(\d)+/.exec("123"));

// . ["123", "3"]

Groups can be useful for extracting parts of a string. If we don’t just
want to verify whether a string contains a date but also extract it and con-
struct an object that represents it, we can wrap parentheses around the digit
patterns and directly pick the date out of the result of exec.

But first, a brief detour, in which we discuss the preferred way to store
date and time values in JavaScript.

The Date Type
JavaScript has a standard object type for representing dates—or rather,
points in time. It is called Date. If you simply create a Date object using new,
you get the current date and time.

console.log(new Date());

// . Wed Dec 04 2013 14:24:57 GMT+0100 (CET)

158 Chapter 9

You can also create an object for a specific time.

console.log(new Date(2009, 11, 9));

// . Wed Dec 09 2009 00:00:00 GMT+0100 (CET)

console.log(new Date(2009, 11, 9, 12, 59, 59, 999));

// . Wed Dec 09 2009 12:59:59 GMT+0100 (CET)

JavaScript uses a convention where month numbers start at zero (so
December is 11), yet day numbers start at one. This is confusing and silly.
Be careful.

The last four arguments (hours, minutes, seconds, and milliseconds) are
optional and taken to be zero when not given.

Timestamps are stored as the number of milliseconds since the start of
1970, using negative numbers for times before 1970 (following a conven-
tion set by “Unix time,” which was invented around that time). The getTime

method on a Date object returns this number. It is big, as you can imagine.

console.log(new Date(2013, 11, 19).getTime());

// . 1387407600000

console.log(new Date(1387407600000));

// . Thu Dec 19 2013 00:00:00 GMT+0100 (CET)

If you give the Date constructor a single argument, that argument is
treated as a millisecond count. You can get the current millisecond count
by creating a new Date object and calling getTime on it but also by calling the
Date.now function.

Date objects provide methods like getFullYear, getMonth, getDate, getHours,
getMinutes, and getSeconds to extract their components. There’s also getYear,
which gives you a rather useless two-digit year value (such as 93 or 14).

Putting parentheses around the parts of the expression that we are inter-
ested in, we can now easily create a Date object from a string.

function findDate(string) {

var dateTime = /(\d{1,2})-(\d{1,2})-(\d{4})/;

var match = dateTime.exec(string);

return new Date(Number(match[3]),

Number(match[2]),

Number(match[1]));

}

console.log(findDate("30-1-2003"));

// . Sun Mar 02 2003 00:00:00 GMT+0100 (CET)

Regular Expressions 159

Word and String Boundaries
Unfortunately, findDate will also happily extract the nonsensical date
00-1-3000 from the string "100-1-30000". A match may happen anywhere
in the string, so in this case, it’ll just start at the second character and end
at the second-to-last character.

If we want to enforce that the match must span the whole string, we can
add the markers ^ and $. The caret matches the start of the input string,
while the dollar sign matches the end. So, /^\d+$/ matches a string consist-
ing entirely of one or more digits, /^!/ matches any string that starts with an
exclamation mark, and /x^/ does not match any string (there cannot be an x

before the start of the string).
If, on the other hand, we just want to make sure the date starts and ends

on a word boundary, we can use the marker \b. A word boundary can be the
start or end of the string or any point in the string that has a word character
(as in \w) on one side and a nonword character on the other.

console.log(/cat/.test("concatenate"));

// . true

console.log(/\bcat\b/.test("concatenate"));

// . false

Note that a boundary marker doesn’t represent an actual character. It
just enforces that the regular expression matches only when a certain condi-
tion holds at the place where it appears in the pattern.

Choice Patterns
Say we want to know whether a piece of text contains not only a number but
a number followed by one of the words pig, cow, or chicken, or any of their
plural forms.

We could write three regular expressions and test them in turn, but
there is a nicer way. The pipe character (|) denotes a choice between the
pattern to its left and the pattern to its right. So I can say this:

var animalCount = /\b\d+ (pig|cow|chicken)s?\b/;

console.log(animalCount.test("15 pigs"));

// . true

console.log(animalCount.test("15 pigchickens"));

// . false

Parentheses can be used to limit the part of the pattern that the pipe
operator applies to, and you can put multiple such operators next to each
other to express a choice between more than two patterns.

160 Chapter 9

The Mechanics of Matching
Regular expressions can be thought of as flow diagrams. This is the diagram
for the livestock expression in the previous example:

" "boundary boundary

Group #1

"chicken"

"cow"

"pig"

digit "s"

Our expression matches a string if we can find a path from the left side
of the diagram to the right side. We keep a current position in the string,
and every time we move through a box, we verify that the part of the string
after our current position matches that box.

So if we try to match "the 3 pigs" with our regular expression, our
progress through the flow chart would look like this:

• At position 4, there is a word boundary, so we can move past the first box.

• Still at position 4, we find a digit, so we can also move past the second box.

• At position 5, one path loops back to before the second (digit) box,
while the other moves forward through the box that holds a single space
character. There is a space here, not a digit, so we must take the sec-
ond path.

• We are now at position 6 (the start of “pigs”) and at the three-way branch
in the diagram. We don’t see “cow” or “chicken” here, but we do see
“pig,” so we take that branch.

• At position 9, after the three-way branch, one path skips the s box and
goes straight to the final word boundary, while the other path matches
an s. There is an s character here, not a word boundary, so we go through
the s box.

• We’re at position 10 (the end of the string) and can match only a word
boundary. The end of a string counts as a word boundary, so we go
through the last box and have successfully matched this string.

Conceptually, a regular expression engine looks for a match in a string
as follows: it starts at the start of the string and tries a match there. In this
case, there is a word boundary there, so it’d get past the first box—but there
is no digit, so it’d fail at the second box. Then it moves on to the second
character in the string and tries to begin a new match there . . . and so on,
until it finds a match or reaches the end of the string and decides that there
really is no match.

Regular Expressions 161

Backtracking
The regular expression /\b([01]+b|\d+|[\da-f]h)\b/ matches either a binary
number followed by a b, a regular decimal number with no suffix character,
or a hexadecimal number (that is, base 16, with the letters a to f standing
for the digits 10 to 15) followed by an h. This is the corresponding diagram:

boundary

Group #1

"h"

One of:

- "f""a"

digit

digit

"b"

One of:

"1"

"0"

boundary

When matching this expression, it will often happen that the top (bi-
nary) branch is entered even though the input does not actually contain a
binary number. When matching the string "103", for example, it becomes
clear only at the 3 that we are in the wrong branch. The string does match
the expression, just not the branch we are currently in.

So the matcher backtracks. When entering a branch, it remembers its
current position (in this case, at the start of the string, just past the first
boundary box in the diagram) so that it can go back and try another branch
if the current one does not work out. After encountering the 3 character,
the string "103" will start trying the branch for decimal numbers. This one
matches, so a match is reported after all.

The matcher stops as soon as it finds a full match. This means that if
multiple branches could potentially match a string, only the first one (or-
dered by where the branches appear in the regular expression) is used.

Backtracking also happens for repetition operators like + and *. If you
match /^.*x/ against "abcxe", the .* part will first try to consume the whole
string. The engine will then realize that it needs an x to match the pattern.
Since there is no x past the end of the string, the star operator tries to match
one character less. But the matcher doesn’t find an x after abcx either, so
it backtracks again, matching the star operator to just abc. Now it finds an x

where it needs it and reports a successful match from positions 0 to 4.

162 Chapter 9

It is possible to write regular expressions that will do a lot of backtrack-
ing. This problem occurs when a pattern can match a piece of input in many
different ways. For example, if we get confused while writing a binary-number
regular expression, we might accidentally write something like /([01]+)+b/.

"b"

Group #1

One of:

"1"

"0"

If that tries to match some long series of zeroes and ones with no trail-
ing b character, the matcher will first go through the inner loop until it runs
out of digits. Then it notices there is no b, so it backtracks one position,
goes through the outer loop once, and gives up again, trying to backtrack
out of the inner loop once more. It will continue to try every possible route
through these two loops. This means the amount of work doubles with each
additional character. For even just a few dozen characters, the resulting
match will take practically forever.

The replace Method
String values have a replace method, which can be used to replace part of the
string with another string.

console.log("papa".replace("p", "m"));

// . mapa

The first argument can also be a regular expression, in which case the
first match of the regular expression is replaced. When a g option (for global)
is added to the regular expression, all matches in the string will be replaced,
not just the first.

console.log("Borobudur".replace(/[ou]/, "a"));

// . Barobudur

console.log("Borobudur".replace(/[ou]/g, "a"));

// . Barabadar

It would have been sensible if the choice between replacing one match
or all matches was made through an additional argument to replace or by
providing a different method, replaceAll. But for some unfortunate reason,
the choice relies on a property of the regular expression instead.

The real power of using regular expressions with replace comes from the
fact that we can refer back to matched groups in the replacement string. For

Regular Expressions 163

example, say we have a big string containing the names of people, one name
per line, in the format Lastname, Firstname. If we want to swap these names
and remove the comma to get a simple Firstname Lastname format, we can use
the following code:

console.log(

"Hopper, Grace\nMcCarthy, John\nRitchie, Dennis"

.replace(/([\w]+), ([\w]+)/g, "$2 $1"));

// . Grace Hopper

// John McCarthy

// Dennis Ritchie

The $1 and $2 in the replacement string refer to the parenthesized groups
in the pattern. $1 is replaced by the text that matched against the first group,
$2 by the second, and so on, up to $9. The whole match can be referred to
with $&.

It is also possible to pass a function, rather than a string, as the second
argument to replace. For each replacement, the function will be called with
the matched groups (as well as the whole match) as arguments, and its re-
turn value will be inserted into the new string.

Here’s a simple example:

var s = "the cia and fbi";

console.log(s.replace(/\b(fbi|cia)\b/g, function(str) {

return str.toUpperCase();

}));

// . the CIA and FBI

And here’s a more interesting one:

var stock = "1 lemon, 2 cabbages, and 101 eggs";

function minusOne(match, amount, unit) {

amount = Number(amount) - 1;

if (amount == 1) // only one left, remove the 's'

unit = unit.slice(0, unit.length - 1);

else if (amount == 0)

amount = "no";

return amount + " " + unit;

}

console.log(stock.replace(/(\d+) (\w+)/g, minusOne));

// . no lemon, 1 cabbage, and 100 eggs

This takes a string, finds all occurrences of a number followed by an
alphanumeric word, and returns a string wherein every such occurrence is
decremented by one.

164 Chapter 9

The (\d+) group ends up as the amount argument to the function, and the
(\w+) group gets bound to unit. The function converts amount to a number—
which always works, since it matched \d+—and makes some adjustments in
case there is only one or zero left.

Greed
It isn’t hard to use replace to write a function that removes all comments
from a piece of JavaScript code. Here is a first attempt:

function stripComments(code) {

return code.replace(/\/\/.*|\/*[^]**\//g, "");

}

console.log(stripComments("1 + /* 2 */3"));

// . 1 + 3

console.log(stripComments("x = 10;// ten!"));

// . x = 10;

console.log(stripComments("1 /* a */+/* b */ 1"));

// . 1 1

The part before the or operator simply matches two slash characters fol-
lowed by any number of non-newline characters. The part for multiline com-
ments is more involved. We use [^] (any character that is not in the empty
set of characters) as a way to match any character. We cannot just use a dot
here because block comments can continue on a new line, and dots do not
match the newline character.

But the output of the previous example appears to have gone wrong.
Why?

The [^]* part of the expression, as I described in the section on back-
tracking, will first match as much as it can. If that causes the next part of the
pattern to fail, the matcher moves back one character and tries again from
there. In the example, the matcher first tries to match the whole rest of the
string and then moves back from there. It will find an occurrence of */ after
going back four characters and match that. This is not what we wanted—the
intention was to match a single comment, not to go all the way to the end of
the code and find the end of the last block comment.

Because of this behavior, we say the repetition operators (+, *, ?, and
{}) are greedy, meaning they match as much as they can and backtrack from
there. If you put a question mark after them (+?, *?, ??, {}?), they become
nongreedy and start by matching as little as possible, matching more only
when the remaining pattern does not fit the smaller match.

And that is exactly what we want in this case. By having the star match
the smallest stretch of characters that brings us to a */, we consume one
block comment and nothing more.

Regular Expressions 165

function stripComments(code) {

return code.replace(/\/\/.*|\/*[^]*?*\//g, "");

}

console.log(stripComments("1 /* a */+/* b */ 1"));

// . 1 + 1

A lot of bugs in regular expression programs can be traced to uninten-
tionally using a greedy operator where a nongreedy one would work better.
When using a repetition operator, consider the nongreedy variant first.

Dynamically Creating RegExp Objects
There are cases where you might not know the exact pattern you need to
match against when you are writing your code. Say you want to look for the
user’s name in a piece of text and enclose it in underscore characters to
make it stand out. Since you will know the name only once the program is
actually running, you can’t use the slash-based notation.

But you can build up a string and use the RegExp constructor on that.
Here’s an example:

var name = "harry";

var text = "Harry is a suspicious character.";

var regexp = new RegExp("\\b(" + name + ")\\b", "gi");

console.log(text.replace(regexp, "_$1_"));

// . _Harry_ is a suspicious character.

When creating the \b boundary markers, we have to use two backslashes
because we are writing them in a normal string, not a slash-enclosed reg-
ular expression. The second argument to the RegExp constructor contains
the options for the regular expression—in this case "gi" for global and case-
insensitive.

But what if the name is "dea+hl[]rd" because our user is a nerdy teenager?
That would result in a nonsensical regular expression, which won’t actually
match the user’s name.

To work around this, we can add backslashes before any character that
we don’t trust. Adding backslashes before alphabetic characters is a bad idea
because things like \b and \n have a special meaning. But escaping every-
thing that’s not alphanumeric or whitespace is safe.

var name = "dea+hl[]rd";

var text = "This dea+hl[]rd guy is super annoying.";

var escaped = name.replace(/[^\w\s]/g, "\\$&");

var regexp = new RegExp("\\b(" + escaped + ")\\b", "gi");

console.log(text.replace(regexp, "_$1_"));

// . This _dea+hl[]rd_ guy is super annoying.

166 Chapter 9

The search Method
The indexOf method on strings cannot be called with a regular expression.
But there is another method, search, which does expect a regular expression.
Like indexOf, it returns the first index on which the expression was found, or
−1 when it wasn’t found.

console.log(" word".search(/\S/));

// . 2

console.log(" ".search(/\S/));

// . -1

Unfortunately, there is no way to indicate that the match should start
at a given offset (like we can with the second argument to indexOf), which
would often be useful.

The lastIndex Property
The exec method similarly does not provide a convenient way to start
searching from a given position in the string. But it does provide an incon-
venient way.

Regular expression objects have properties. One such property is source,
which contains the string that expression was created from. Another prop-
erty is lastIndex, which controls, in some limited circumstances, where the
next match will start.

Those circumstances are that the regular expression must have the
global (g) option enabled, and the match must happen through the exec

method. Again, a more sane solution would have been to just allow an extra
argument to be passed to exec, but sanity is not a defining characteristic of
JavaScript’s regular expression interface.

var pattern = /y/g;

pattern.lastIndex = 3;

var match = pattern.exec("xyzzy");

console.log(match.index);

// . 4

console.log(pattern.lastIndex);

// . 5

If the match was successful, the call to exec automatically updates the
lastIndex property to point after the match. If no match was found, lastIndex
is set back to zero, which is also the value it has in a newly constructed regu-
lar expression object.

When using a global regular expression value for multiple exec calls,
these automatic updates to the lastIndex property can cause problems. Your
regular expression might be accidentally starting at an index that was left
over from a previous call.

Regular Expressions 167

var digit = /\d/g;

console.log(digit.exec("here it is: 1"));

// . ["1"]

console.log(digit.exec("and now: 1"));

// . null

Another interesting effect of the global option is that it changes the way
the match method on strings works. When called with a global expression,
instead of returning an array similar to that returned by exec, match will find
all matches of the pattern in the string and return an array containing the
matched strings.

console.log("Banana".match(/an/g));

// . ["an", "an"]

So be cautious with global regular expressions. The cases where they
are necessary—calls to replace and places where you want to explicitly use
lastIndex—are typically the only places where you want to use them.

Looping over Matches
A common pattern is to scan through all occurrences of a pattern in a string,
in a way that gives us access to the match object in the loop body, by using
lastIndex and exec.

var input = "A string with 3 numbers in it... 42 and 88.";

var number = /\b(\d+)\b/g;

var match;

while (match = number.exec(input))

console.log("Found", match[1], "at", match.index);

// . Found 3 at 14

// Found 42 at 33

// Found 88 at 40

This makes use of the fact that the value of an assignment expression (=)
is the assigned value. So by using match = re.exec(input) as the condition in
the while statement, we perform the match at the start of each iteration, save
its result in a variable, and stop looping when no more matches are found.

Parsing an INI File
To conclude the chapter, we’ll look at a problem that calls for regular ex-
pressions. Imagine we are writing a program to automatically harvest infor-
mation about our enemies from the Internet. (We will not actually write that

168 Chapter 9

program here, just the part that reads the configuration file. Sorry to disap-
point.) The configuration file looks like this:

searchengine=http://www.google.com/search?q=$1

spitefulness=9.7

; comments are preceded by a semicolon...

; each section concerns an individual enemy

[larry]

fullname=Larry Doe

type=kindergarten bully

website=http://www.geocities.com/CapeCanaveral/11451

[gargamel]

fullname=Gargamel

type=evil sorcerer

outputdir=/home/marijn/enemies/gargamel

The exact rules for this format (which is actually a widely used format,
usually called an INI file) are as follows:

• Blank lines and lines starting with semicolons are ignored.

• Lines wrapped in [and] start a new section.

• Lines containing an alphanumeric identifier followed by an = character
add a setting to the current section.

• Anything else is invalid.

Our task is to convert a string like this into an array of objects, each with
a name property and an array of settings. We’ll need one such object for each
section and one for the global settings at the top.

Since the format has to be processed line by line, splitting up the file
into separate lines is a good start. We used string.split("\n") to do this in
Chapter 6. Some operating systems, however, use not just a newline charac-
ter to separate lines but a carriage return character followed by a newline
("\r\n"). Given that the split method also allows a regular expression as its
argument, we can split on a regular expression like /\r?\n/ to split in a way
that allows both "\n" and "\r\n" between lines.

function parseINI(string) {

// Start with an object to hold the top-level fields

var currentSection = {name: null, fields: []};

var categories = [currentSection];

string.split(/\r?\n/).forEach(function(line) {

var match;

Regular Expressions 169

if (/^\s*(;.*)?$/.test(line)) {

return;

} else if (match = line.match(/^\[(.*)\]$/)) {

currentSection = {name: match[1], fields: []};

categories.push(currentSection);

} else if (match = line.match(/^(\w+)=(.*)$/)) {

currentSection.fields.push({name: match[1],

value: match[2]});

} else {

throw new Error("Line '" + line + "' is invalid.");

}

});

return categories;

}

This code goes over every line in the file, updating the “current section”
object as it goes along. First, it checks whether the line can be ignored, using
the expression /^\s*(;.*)?$/. Do you see how it works? The part between the
parentheses will match comments, and the ? will make sure it also matches
lines containing only whitespace.

If the line is not a comment, the code then checks whether the line
starts a new section. If so, it creates a new current section object, to which
subsequent settings will be added.

The last meaningful possibility is that the line is a normal setting, which
the code adds to the current section object.

If a line matches none of these forms, the function throws an error.
Note the recurring use of ^ and $ to make sure the expression matches

the whole line, not just part of it. Leaving these out results in code that mostly
works but behaves strangely for some input, which can be a difficult bug to
track down.

The pattern if (match = string.match(...)) is similar to the trick of using
an assignment as the condition for while. You often aren’t sure that your call
to match will succeed, so you can access the resulting object only inside an if

statement that tests for this. To not break the pleasant chain of if forms, we
assign the result of the match to a variable and immediately use that assign-
ment as the test in the if statement.

International Characters
Because of JavaScript’s initial simplistic implementation and the fact that
this simplistic approach was later set in stone as standard behavior, Java-
Script’s regular expressions are rather dumb about non-English charac-
ters. For example, as far as JavaScript’s regular expressions are concerned,
a “word character” is only one of the 26 characters in the Latin alphabet
(uppercase or lowercase) and, for some reason, the underscore character.

170 Chapter 9

Things like à or ß, which most definitely are word characters, will not match
\w (and will match uppercase \W, the nonword category).

By a strange historical accident, \s (whitespace) does not have this prob-
lem and matches all characters that the Unicode standard considers white-
space, including things like the nonbreaking space and the Mongolian vowel
separator.

Some regular expression implementations in other programming lan-
guages have syntax to match specific Unicode character categories, such as
“all uppercase letters,” “all punctuation,” or “control characters.” There are
plans to add support for such categories in JavaScript, but it unfortunately
looks like they won’t be realized in the near future.

Summary
Regular expressions are objects that represent patterns in strings. They use
their own syntax to express these patterns.

/abc/ A sequence of characters

/[abc]/ Any character from a set of characters

/[^abc]/ Any character not in a set of characters

/[0-9]/ Any character in a range of characters

/x+/ One or more occurrences of the pattern x

/x+?/ One or more occurrences, nongreedy

/x*/ Zero or more occurrences

/x?/ Zero or one occurrence

/x{2,4}/ Between two and four occurrences

/(abc)/ A group

/a|b|c/ Any one of several patterns

/\d/ Any digit character

/\w/ An alphanumeric character (“word character”)

/\s/ Any whitespace character

/./ Any character except newlines

/\b/ A word boundary

/^/ Start of input

/$/ End of input

A regular expression has a method, test, to test whether a given string
matches it. It also has an exec method that, when a match is found, returns
an array containing all matched groups. Such an array has an index property
that indicates where the match started.

Strings have a match method to match them against a regular expression
and a search method to search for one, returning only the starting position

Regular Expressions 171

of the match. Their replace method can replace matches of a pattern with a
replacement string. Alternatively, you can pass a function to replace, which
will be used to build up a replacement string based on the match text and
matched groups.

Regular expressions can have options, which are written after the clos-
ing slash. The i option makes the match case insensitive, while the g option
makes the expression global, which, among other things, causes the replace

method to replace all instances instead of just the first.
The RegExp constructor can be used to create a regular expression value

from a string.
Regular expressions are a sharp tool with an awkward handle. They sim-

plify some tasks tremendously but can quickly become unmanageable when
applied to complex problems. Part of knowing how to use them is resisting
the urge to try to shoehorn things that they cannot sanely express into them.

Exercises
It is almost unavoidable that, in the course of working on these exercises,
you will get confused and frustrated by some regular expression’s inexpli-
cable behavior. Sometimes it helps to enter your expression into an online
tool like http://debuggex.com/ to see whether its visualization corresponds to
what you intended and to experiment with the way it responds to various
input strings.

Regexp Golf
Code golf is a term used for the game of trying to express a particular pro-
gram in as few characters as possible. Similarly, regexp golf is the practice of
writing as tiny a regular expression as possible to match a given pattern, and
only that pattern.

For each of the following items, write a regular expression to test whether
any of the given substrings occur in a string. The regular expression should
match only strings containing one of the substrings described. Do not worry
about word boundaries unless explicitly mentioned. When your expression
works, see whether you can make it any smaller.

1. car and cat

2. pop and prop

3. ferret, ferry, and ferrari

4. Any word ending in ious

5. A whitespace character followed by a dot, comma, colon, or semicolon

6. A word longer than six letters

7. A word without the letter e

Refer to the table in the chapter summary for help. Test each solution
with a few test strings.

172 Chapter 9

https://www.debuggex.com/

Quoting Style
Imagine you have written a story and used single quotation marks through-
out to mark pieces of dialogue. Now you want to replace all the dialogue
quotes with double quotes, while keeping the single quotes used in contrac-
tions like aren’t.

Think of a pattern that distinguishes these two kinds of quote usage and
craft a call to the replace method that does the proper replacement.

Numbers Again
A series of digits can be matched by the simple regular expression /\d+/.

Write an expression that matches only JavaScript-style numbers. It must
support an optional minus or plus sign in front of the number, the decimal
dot, and exponent notation—5e-3 or 1E10— again with an optional sign in
front of the exponent. Also note that it is not necessary for there to be digits
in front of or after the dot, but the number cannot be a dot alone. That is,
.5 and 5. are valid JavaScript numbers, but a lone dot isn’t.

Regular Expressions 173

10
MODULES

Every program has a shape. On a small scale, this
shape is determined by its division into functions and
the blocks inside those functions. Programmers have a
lot of freedom in the way they structure their programs.
Shape follows more from the taste of the programmer
than from the program’s intended functionality.

When looking at a larger program in its entirety, individual functions
start to blend into the background. Such a program can be made more read-
able if we have a larger unit of organization.

Modules divide programs into clusters of code that, by some criterion, be-
long together. This chapter explores some of the benefits that such division
provides and shows techniques for building modules in JavaScript.

Why Modules Help
There are a number of reasons why authors divide their books into chapters
and sections. These divisions make it easier for a reader to see how the book
is built up and to find specific parts that they are interested in. They also
help the author by providing a clear focus for every section.

The benefits of organizing a program into several files or modules are
similar. Structure helps people who aren’t yet familiar with the code find
what they are looking for and makes it easier for the programmer to keep
things that are related close together.

Some programs are even organized along the model of a traditional
text, with a well-defined order in which the reader is encouraged to go
through the program and with lots of prose (comments) providing a co-
herent description of the code. This makes reading the program a lot less
intimidating—reading unknown code is usually intimidating—but has the
downside of being more work to set up. It also makes the program more dif-
ficult to change because prose tends to be more tightly interconnected than
code. This style is called literate programming. The “project” chapters of this
book can be considered literate programs.

As a general rule, structuring things costs energy. In the early stages of
a project, when you are not quite sure yet what goes where or what kind of
modules the program needs at all, I endorse a minimalist, structureless at-
titude. Just put everything wherever it is convenient to put it until the code
stabilizes. That way, you won’t be wasting time moving pieces of the program
back and forth, and you won’t accidentally lock yourself into a structure that
does not actually fit your program.

Namespacing
Most modern programming languages have a scope level between global (ev-
eryone can see it) and local (only this function can see it). JavaScript does
not. Thus, by default, everything that needs to be visible outside of the scope
of a top-level function is visible everywhere.

Namespace pollution, the problem of a lot of unrelated code having
to share a single set of global variable names, was mentioned in Chapter 4,
where the Math object was given as an example of an object that acts like a
module by grouping math-related functionality.

Though JavaScript provides no actual module construct yet, objects can
be used to create publicly accessible subnamespaces, and functions can be
used to create an isolated, private namespace inside of a module. Later in
this chapter, I will discuss a way to build reasonably convenient, namespace-
isolating modules on top of the primitive concepts that JavaScript gives us.

Reuse
In a “flat” project, which isn’t structured as a set of modules, it is not ap-
parent which parts of the code are needed to use a particular function. In
my program for spying on my enemies (see Chapter 9), I wrote a function
for reading configuration files. If I want to use that function in another
project, I must go and copy out the parts of the old program that look like
they are relevant to the functionality that I need and paste them into my
new program. Then, if I find a mistake in that code, I’ll fix it only in which-
ever program that I’m working with at the time and forget to also fix it in
the other program.

176 Chapter 10

Once you have lots of such shared, duplicated pieces of code, you will
find yourself wasting a lot of time and energy on moving them around and
keeping them up-to-date.

Putting pieces of functionality that stand on their own into separate files
and modules makes them easier to track, update, and share because all the
various pieces of code that want to use the module load it from the same
actual file.

This idea gets even more powerful when the relations between modules—
which other modules each module depends on—are explicitly stated. You
can then automate the process of installing and upgrading external modules
(libraries).

Taking this idea even further, imagine an online service that tracks and
distributes hundreds of thousands of such libraries, allowing you to search
for the functionality you need and, once you find it, set up your project to
automatically download it.

This service exists. It is called NPM (http://npmjs.org/). NPM consists of
an online database of modules and a tool for downloading and upgrading
the modules your program depends on. It grew out of Node.js, the browser-
less JavaScript environment we will discuss in Chapter 20, but can also be
useful when programming for the browser.

Decoupling
Another important role of modules is isolating pieces of code from each
other, in the same way that the object interfaces from Chapter 6 do. A well-
designed module will provide an interface for external code to use. As the
module gets updated with bug fixes and new functionality, the existing in-
terface stays the same (it is stable) so that other modules can use the new,
improved version without any changes to themselves.

Note that a stable interface does not mean no new functions, methods,
or variables are added. It just means that existing functionality isn’t removed
and its meaning is not changed.

A good module interface should allow the module to grow without
breaking the old interface. This means exposing as few of the module’s in-
ternal concepts as possible while also making the “language” that the inter-
face exposes powerful and flexible enough to be applicable in a wide range
of situations.

For interfaces that expose a single, focused concept, such as a configura-
tion file reader, this design comes naturally. For others, such as a text editor,
which has many different aspects that external code might need to access
(content, styling, user actions, and so on), it requires careful design.

Using Functions as Namespaces
Functions are the only things in JavaScript that create a new scope. So if we
want our modules to have their own scope, we will have to base them on
functions.

Modules 177

http://npmjs.org

Consider this trivial module for associating names with day-of-the-week
numbers, as returned by a Date object’s getDay method:

var names = ["Sunday", "Monday", "Tuesday", "Wednesday",

"Thursday", "Friday", "Saturday"];

function dayName(number) {

return names[number];

}

console.log(dayName(1));

// . Monday

The dayName function is part of the module’s interface, but the names vari-
able is not. We would prefer not to spill it into the global scope.

We can do this:

var dayName = function() {

var names = ["Sunday", "Monday", "Tuesday", "Wednesday",

"Thursday", "Friday", "Saturday"];

return function(number) {

return names[number];

};

}();

console.log(dayName(3));

// . Wednesday

Now names is a local variable in an (unnamed) function. This function
is created and immediately called, and its return value (the actual dayName
function) is stored in a variable. We could have pages and pages of code in
this function, with 100 local variables, and they would all be internal to our
module—visible to the module itself but not to outside code.

We can use a similar pattern to isolate code from the outside world en-
tirely. The following module logs a value to the console but does not actually
provide any values for other modules to use:

(function() {

function square(x) { return x * x; }

var hundred = 100;

console.log(square(hundred));

})();

// . 10000

178 Chapter 10

This code simply outputs the square of 100, but in the real world it could
be a module that adds a method to some prototype or sets up a widget on a
web page. It is wrapped in a function to prevent the variables it uses inter-
nally from polluting the global scope.

Why did we wrap the namespace function in a pair of parentheses? This
has to do with a quirk in JavaScript’s syntax. If an expression starts with the
keyword function, it is a function expression. However, if a statement starts
with function, it is a function declaration, which requires a name and, not be-
ing an expression, cannot be called by writing parentheses after it. You can
think of the extra wrapping parentheses as a trick to force the function to be
interpreted as an expression.

Objects as Interfaces
Now imagine that we want to add another function to our day-of-the-week
module, one that goes from a day name to a number. We can’t simply re-
turn the function anymore but must wrap the two functions in an object.

var weekDay = function() {

var names = ["Sunday", "Monday", "Tuesday", "Wednesday",

"Thursday", "Friday", "Saturday"];

return {

name: function(number) { return names[number]; },

number: function(name) { return names.indexOf(name); }

};

}();

console.log(weekDay.name(weekDay.number("Sunday")));

// . Sunday

For bigger modules, gathering all the exported values into an object at
the end of the function becomes awkward since many of the exported func-
tions are likely to be big and you’d prefer to write them somewhere else,
near related internal code. A convenient alternative is to declare an object
(conventionally named exports) and add properties to that whenever we are
defining something that needs to be exported. In the following example,
the module function takes its interface object as an argument, allowing code
outside of the function to create it and store it in a variable. (Outside of a
function, this refers to the global scope object.)

(function(exports) {

var names = ["Sunday", "Monday", "Tuesday", "Wednesday",

"Thursday", "Friday", "Saturday"];

exports.name = function(number) {

return names[number];

};

Modules 179

exports.number = function(name) {

return names.indexOf(name);

};

})(this.weekDay = {});

console.log(weekDay.name(weekDay.number("Saturday")));

// . Saturday

Detaching from the Global Scope
The previous pattern is commonly used by JavaScript modules intended for
the browser. The module will claim a single global variable and wrap its code
in a function in order to have its own private namespace. But this pattern
still causes problems if multiple modules happen to claim the same name or
if you want to load two versions of a module alongside each other.

With a little plumbing, we can create a system that allows one module
to directly ask for the interface object of another module, without going
through the global scope. Our goal is a require function that, when given a
module name, will load that module’s file (from disk or the Web, depending
on the platform we are running on) and return the appropriate interface
value.

This approach solves the problems mentioned previously and has the
added benefit of making your program’s dependencies explicit, making it
harder to accidentally make use of some module without stating that you
need it.

For require we need two things. First, we want a function readFile, which
returns the content of a given file as a string. (A single such function is not
present in standard JavaScript, but different JavaScript environments, such
as the browser and Node.js, provide their own ways of accessing files. For
now, let’s just pretend we have this function.) Second, we need to be able
to actually execute this string as JavaScript code.

Evaluating Data as Code
There are several ways to take data (a string of code) and run it as part of
the current program.

The most obvious way is the special operator eval, which will execute
a string of code in the current scope. This is usually a bad idea because it
breaks some of the sane properties that scopes normally have, such as being
isolated from the outside world.

function evalAndReturnX(code) {

eval(code);

return x;

}

180 Chapter 10

console.log(evalAndReturnX("var x = 2"));

// . 2

A better way of interpreting data as code is to use the Function construc-
tor. This takes two arguments: a string containing a comma-separated list of
argument names and a string containing the function’s body.

var plusOne = new Function("n", "return n + 1;");

console.log(plusOne(4));

// . 5

This is precisely what we need for our modules. We can wrap a module’s
code in a function, with that function’s scope becoming our module scope.

The require Function
The following is a minimal implementation of require:

function require(name) {

var code = new Function("exports", readFile(name));

var exports = {};

code(exports);

return exports;

}

console.log(require("weekDay").name(1));

// . Monday

Since the new Function constructor wraps the module code in a function,
we don’t have to write a wrapping namespace function in the module file
itself. And since we make exports an argument to the module function, the
module does not have to declare it. This removes a lot of clutter from our
example module.

var names = ["Sunday", "Monday", "Tuesday", "Wednesday",

"Thursday", "Friday", "Saturday"];

exports.name = function(number) {

return names[number];

};

exports.number = function(name) {

return names.indexOf(name);

};

When using this pattern, a module typically starts with a few variable
declarations that load the modules it depends on.

Modules 181

var weekDay = require("weekDay");

var today = require("today");

console.log(weekDay.name(today.dayNumber()));

The simplistic implementation of require given previously has several
problems. For one, it will load and run a module every time it is required, so
if several modules have the same dependency or a require call is put inside a
function that will be called multiple times, time and energy will be wasted.

This can be solved by storing the modules that have already been loaded
in an object and simply returning the existing value when one is loaded mul-
tiple times.

The second problem is that it is not possible for a module to directly ex-
port a value other than the exports object, such as a function. For example,
a module might want to export only the constructor of the object type it de-
fines. Right now, it cannot do that because require always uses the exports

object it creates as the exported value.
The traditional solution for this is to provide modules with another vari-

able, module, which is an object that has a property exports. This property ini-
tially points at the empty object created by require but can be overwritten
with another value in order to export something else.

function require(name) {

if (name in require.cache)

return require.cache[name];

var code = new Function("exports, module", readFile(name));

var exports = {}, module = {exports: exports};

code(exports, module);

require.cache[name] = module.exports;

return module.exports;

}

require.cache = Object.create(null);

We now have a module system that uses a single global variable (require)
to allow modules to find and use each other without going through the glo-
bal scope.

This style of module system is called CommonJS modules, after the pseudo-
standard that first specified it. It is built into the Node.js system. Real im-
plementations do a lot more than the example I showed. Most importantly,
they have a much more intelligent way of going from a module name to an
actual piece of code, allowing both pathnames relative to the current file
and module names that point directly to locally installed modules.

182 Chapter 10

Slow-Loading Modules
Though it is possible to use the CommonJS module style when writing Java-
Script for the browser, it is somewhat involved. The reason for this is that
reading a file (module) from the Web is a lot slower than reading it from
the hard disk. While a script is running in the browser, nothing else can hap-
pen to the website on which it runs, for reasons that will become clear in
Chapter 14. This means that if every require call went and fetched something
from some faraway web server, the page would freeze for a painfully long
time while loading its scripts.

One way to work around this problem is to run a program like Browser-
ify (http://browserify.com/) on your code before you serve it on a web page.
This will look for calls to require, resolve all dependencies, and gather the
needed code into a single big file. The website itself can simply load this file
to get all the modules it needs.

Another solution is to wrap the code that makes up your module in a
function so that the module loader can first load its dependencies in the
background and then call the function, initializing the module, when the
dependencies have been loaded. That is what the Asynchronous Module
Definition (AMD) module system does.

Our trivial program with dependencies would look like this in AMD:

define(["weekDay", "today"], function(weekDay, today) {

console.log(weekDay.name(today.dayNumber()));

});

The define function is central to this approach. It takes first an array of
module names and then a function that takes one argument for each depen-
dency. It will load the dependencies (if they haven’t already been loaded)
in the background, allowing the page to continue working while the files are
being fetched. Once all dependencies are loaded, define will call the func-
tion it was given, with the interfaces of those dependencies as arguments.

The modules that are loaded this way must themselves contain a call
to define. The value used as their interface is whatever was returned by the
function passed to define. Here is the weekDay module again:

define([], function() {

var names = ["Sunday", "Monday", "Tuesday", "Wednesday",

"Thursday", "Friday", "Saturday"];

return {

name: function(number) { return names[number]; },

number: function(name) { return names.indexOf(name); }

};

});

Modules 183

http://browserify.org/

To be able to show a minimal implementation of define, we will pretend
we have a backgroundReadFile function that takes a filename and a function
and calls the function with the content of the file as soon as it has finished
loading it. (Chapter 17 will explain how to write that function.)

For the purpose of keeping track of modules while they are being loaded,
the implementation of define will use objects that describe the state of mod-
ules, telling us whether they are available yet and providing their interface
when they are.

The getModule function, when given a name, will return such an object
and ensure that the module is scheduled to be loaded. It uses a cache object
to avoid loading the same module twice.

var defineCache = Object.create(null);

var currentMod = null;

function getModule(name) {

if (name in defineCache)

return defineCache[name];

var module = {exports: null,

loaded: false,

onLoad: []};

defineCache[name] = module;

backgroundReadFile(name, function(code) {

currentMod = module;

new Function("", code)();

});

return module;

}

We assume the loaded file also contains a (single) call to define. The
currentMod variable is used to tell this call about the module object that is cur-
rently being loaded so that it can update this object when it finishes loading.
We will come back to this mechanism in a moment.

The define function itself uses getModule to fetch or create the module
objects for the current module’s dependencies. Its task is to schedule the
moduleFunction (the function that contains the module’s actual code) to be
run whenever those dependencies are loaded. For this purpose, it defines a
function whenDepsLoaded that is added to the onLoad array of all dependencies
that are not yet loaded. This function immediately returns if there are still
unloaded dependencies, so it will do actual work only once, when the last
dependency has finished loading. It is also called immediately, from define

itself, in case there are no dependencies that need to be loaded.

function define(depNames, moduleFunction) {

var myMod = currentMod;

var deps = depNames.map(getModule);

184 Chapter 10

deps.forEach(function(mod) {

if (!mod.loaded)

mod.onLoad.push(whenDepsLoaded);

});

function whenDepsLoaded() {

if (!deps.every(function(m) { return m.loaded; }))

return;

var args = deps.map(function(m) { return m.exports; });

var exports = moduleFunction.apply(null, args);

if (myMod) {

myMod.exports = exports;

myMod.loaded = true;

myMod.onLoad.every(function(f) { f(); });

}

}

whenDepsLoaded();

}

When all dependencies are available, whenDepsLoaded calls the function
that holds the module, giving it the dependencies’ interfaces as arguments.

The first thing define does is store the value that currentMod had when
it was called in a variable myMod. Remember that getModule, just before eval-
uating the code for a module, stored the corresponding module object in
currentMod. This allows whenDepsLoaded to store the return value of the module
function in that module’s exports property, set the module’s loaded property
to true, and call all the functions that are waiting for the module to load.

This code is a lot harder to follow than the require function. Its execu-
tion does not follow a simple, predictable path. Instead, multiple operations
are set up to happen at some unspecified time in the future, which obscures
the way the code executes.

A real AMD implementation is, again, quite a lot more clever about re-
solving module names to actual URLs and generally more robust than the
one shown previously. The RequireJS project (http://requirejs.org/) provides
a popular implementation of this style of module loader.

Interface Design
Designing interfaces for modules and object types is one of the subtler as-
pects of programming. Any nontrivial piece of functionality can be modeled
in various ways. Finding a way that works well requires insight and foresight.

The best way to learn the value of good interface design is to use lots of
interfaces—some good, some bad. Experience will teach you what works and
what doesn’t. Never assume that a painful interface is “just the way it is.” Fix
it, or wrap it in a new interface that works better for you.

Modules 185

http://requirejs.org/

Predictability
If programmers can predict the way your interface works, they (or you) won’t
get sidetracked as often by the need to look up how to use it. Thus, try to
follow conventions. When there is another module or part of the standard
JavaScript environment that does something similar to what you are imple-
menting, it might be a good idea to make your interface resemble the ex-
isting interface. That way, it’ll feel familiar to people who know the existing
interface.

Another area where predictability is important is the actual behavior of
your code. It can be tempting to make an unnecessarily clever interface with
the justification that it’s more convenient to use. For example, you could
accept all kinds of different types and combinations of arguments and do
the “right thing” for all of them. Or you could provide dozens of specialized
convenience functions that provide slightly different flavors of your mod-
ule’s functionality. These might make code that builds on your interface
slightly shorter, but they will also make it much harder for people to build
a clear mental model of the module’s behavior.

Composability
In your interfaces, try to use the simplest data structures possible and
make functions do a single, clear thing. Whenever practical, make them
pure functions (see Chapter 3).

For example, it is not uncommon for modules to provide their own
array-like collection objects, with their own interface for counting and ex-
tracting elements. Such objects won’t have map or forEach methods, and any
existing function that expects a real array won’t be able to work with them.
This is an example of poor composability—the module cannot be easily com-
posed with other code.

One example would be a module for spell-checking text, which we might
need when we want to write a text editor. The spell-checker could be made
to operate directly on whichever complicated data structures the editor uses
and directly call internal functions in the editor to have the user choose be-
tween spelling suggestions. If we go that way, the module cannot be used
with any other programs. On the other hand, if we define the spell-checking
interface so that you can pass it a simple string and it will return the posi-
tion in the string where it found a possible misspelling, along with an array
of suggested corrections, then we have an interface that could also be com-
posed with other systems because strings and arrays are always available in
JavaScript.

Layered Interfaces
When designing an interface for a complex piece of functionality—sending
email, for example—you often run into a dilemma. On the one hand, you
do not want to overload the user of your interface with details. They shouldn’t
have to study your interface for 20 minutes before they can send an email.

186 Chapter 10

On the other hand, you do not want to hide all the details either—when
people need to do complicated things with your module, they should be
able to.

Often the solution is to provide two interfaces: a detailed low-level one
for complex situations and a simple high-level one for routine use. The sec-
ond can usually be built easily using the tools provided by the first. In the
email module, the high-level interface could just be a function that takes a
message, a sender address, and a receiver address and then sends the email.
The low-level interface would allow full control over email headers, attach-
ments, HTML mail, and so on.

Summary
Modules provide structure to bigger programs by separating the code into
different files and namespaces. Giving these modules well-defined interfaces
makes them easier to use and reuse and makes it possible to continue using
them as the module itself evolves.

Though the JavaScript language is characteristically unhelpful when it
comes to modules, the flexible functions and objects it provides make it pos-
sible to define rather nice module systems. Function scopes can be used as
internal namespaces for the module, and objects can be used to store sets of
exported values.

There are two popular, well-defined approaches to such modules.
One is called CommonJS Modules and revolves around a require function that
fetches a module by name and returns its interface. The other is called AMD

and uses a define function that takes an array of module names and a func-
tion and, after loading the modules, runs the function with their interfaces
as arguments.

Exercises

Month Names
Write a simple module similar to the weekDay module that can convert month
numbers (zero-based, as in the Date type) to names and can convert names
back to numbers. Give it its own namespace since it will need an internal
array of month names, and use plain JavaScript, without any module loader
system.

A Return to Electronic Life
With my hope that Chapter 7 is still somewhat fresh in your mind, think
back to the system designed in that chapter and come up with a way to sepa-
rate the code into modules. To refresh your memory, these are the functions
and types defined in that chapter, in order of appearance:

1. Vector

2. Grid

Modules 187

3. directions

4. randomElement

5. BouncingCritter

6. elementFromChar

7. World

8. charFromElement

9. Wall

10. View

11. directionNames

12. WallFollower

13. dirPlus

14. LifelikeWorld

15. Plant

16. PlantEater

17. SmartPlantEater

18. Tiger

Don’t exaggerate and create too many modules. A book that starts a new
chapter for every page would probably get on your nerves, if only because of
all the space wasted on titles. Similarly, having to open 10 files to read a tiny
project isn’t helpful. Aim for three to five modules.

You can choose to have some functions become internal to their module
and thus inaccessible to other modules.

There is no single correct solution here. Module organization is largely
a matter of taste.

Circular Dependencies
A tricky subject in dependency management is circular dependencies, where
module A depends on B, and B also depends on A. Many module systems
simply forbid this. CommonJS modules allow a limited form: it works as long
as the modules do not replace their default exports object with another value
and start accessing each other’s interface only after they finish loading.

Can you think of a way in which support for this feature could be im-
plemented? Look back to the definition of require and consider what the
function would have to do to allow this.

188 Chapter 10

“The evaluator, which determines the meaning

of expressions in a programming language,

is just another program.”

— Hal Abelson and Gerald Sussman,

Structure and Interpretation of Computer Programs

11
PROJECT: A PROGRAMMING

LANGUAGE

Building your own programming language is surpris-
ingly easy (as long as you do not aim too high) and
very enlightening.

The main thing I want to show in this chapter is that there is no magic
involved in building your own language. I’ve often felt that some human in-
ventions were so immensely clever and complicated that I’d never be able to
understand them. But with a little reading and tinkering, such things often
turn out to be quite mundane.

We will build a programming language called Egg. It will be a tiny, sim-
ple language but one that is powerful enough to express any computation
you can think of. It will also allow simple abstraction based on functions.

Parsing
The most immediately visible part of a programming language is its syntax,
or notation. A parser is a program that reads a piece of text and produces a
data structure that reflects the structure of the program contained in that
text. If the text does not form a valid program, the parser should complain
and point out the error.

Our language will have a simple and uniform syntax. Everything in Egg
is an expression. An expression can be a variable, a number, a string, or an

application. Applications are used for function calls but also for constructs
such as if or while.

To keep the parser simple, strings in Egg do not support anything like
backslash escapes. A string is simply a sequence of characters that are not
double quotes, wrapped in double quotes. A number is a sequence of digits.
Variable names can consist of any character that is not whitespace and does
not have a special meaning in the syntax.

Applications are written the way they are in JavaScript, by putting paren-
theses after an expression and having any number of arguments between
those parentheses, separated by commas.

do(define(x, 10),

if(>(x, 5)),

print("large"),

print("small"))

The uniformity of the Egg language means that things that are opera-
tors in JavaScript (such as >) are normal variables in this language, applied
just like other functions. And since the syntax has no concept of a block, we
need a do construct to represent doing multiple things in sequence.

The data structure that the parser will use to describe a program will
consist of expression objects, each of which has a type property indicating
the kind of expression it is and other properties to describe its content.

Expressions of type "value" represent literal strings or numbers. Their
value property contains the string or number value that they represent. Ex-
pressions of type "word" are used for identifiers (names). Such objects have a
name property that holds the identifier’s name as a string. Finally, "apply" ex-
pressions represent applications. They have an operator property that refers
to the expression that is being applied, and they have an args property that
refers to an array of argument expressions.

The >(x, 5) part of the previous program would be represented like this:

{

type: "apply",

operator: {type: "word", name: ">"},

args: [

{type: "word", name: "x"},

{type: "value", value: 5}

]

}

Such a data structure is called a syntax tree. If you imagine the objects as
dots and the links between them as lines between those dots, it has a treelike
shape. The fact that expressions contain other expressions, which in turn
might contain more expressions, is similar to the way branches split and split
again.

192 Chapter 11

do

define

x

10

if

>

x

5

print

"large"

print

"small"

Contrast this to the parser we wrote for the configuration file format
in Chapter 9, which had a simple structure: it split the input into lines and
handled those lines one at a time. There were only a few simple forms that a
line was allowed to have.

Here we must find a different approach. Expressions are not separated
into lines, and they have a recursive structure. Application expressions con-

tain other expressions.
Fortunately, this problem can be solved elegantly by writing a parser

function that is recursive in a way that reflects the recursive nature of the
language.

We define a function parseExpression, which takes a string as input and
returns an object containing the data structure for the expression at the start
of the string, along with the part of the string left after parsing this expres-
sion. When parsing subexpressions (the argument to an application, for ex-
ample), this function can be called again, yielding the argument expression
as well as the text that remains. This text may in turn contain more argu-
ments or may be the closing parenthesis that ends the list of arguments.

This is the first part of the parser:

function parseExpression(program) {

program = skipSpace(program);

var match, expr;

if (match = /^"([^"]*)"/.exec(program))

expr = {type: "value", value: match[1]};

else if (match = /^\d+\b/.exec(program))

expr = {type: "value", value: Number(match[0])};

else if (match = /^[^\s(),"]+/.exec(program))

expr = {type: "word", name: match[0]};

else

throw new SyntaxError("Unexpected syntax: " + program);

return parseApply(expr, program.slice(match[0].length));

}

Project: A Programming Language 193

function skipSpace(string) {

var first = string.search(/\S/);

if (first == -1) return "";

return string.slice(first);

}

Because Egg allows any amount of whitespace between its elements, we
have to repeatedly cut the whitespace off the start of the program string.
This is what the skipSpace function helps with.

After skipping any leading space, parseExpression uses three regular
expressions to spot the three simple (atomic) elements that Egg supports:
strings, numbers, and words. The parser constructs a different kind of data
structure depending on which one matches. If the input does not match
one of these three forms, it is not a valid expression, and the parser throws
an error. SyntaxError is a standard error object type, which is raised when an
attempt is made to run an invalid JavaScript program.

We can then cut off the part that we matched from the program string
and pass that, along with the object for the expression, to parseApply, which
checks whether the expression is an application. If so, it parses a parenthe-
sized list of arguments.

function parseApply(expr, program) {

program = skipSpace(program);

if (program[0] != "(")

return {expr: expr, rest: program};

program = skipSpace(program.slice(1));

expr = {type: "apply", operator: expr, args: []};

while (program[0] != ")") {

var arg = parseExpression(program);

expr.args.push(arg.expr);

program = skipSpace(arg.rest);

if (program[0] == ",")

program = skipSpace(program.slice(1));

else if (program[0] != ")")

throw new SyntaxError("Expected ',' or ')'");

}

return parseApply(expr, program.slice(1));

}

If the next character in the program is not an opening parenthesis,
this is not an application, and parseApply simply returns the expression it
was given.

Otherwise, it skips the opening parenthesis and creates the syntax tree
object for this application expression. It then recursively calls parseExpression

to parse each argument until a closing parenthesis is found. The recursion is
indirect, through parseApply and parseExpression calling each other.

194 Chapter 11

Because an application expression can itself be applied (such as in
multiplier(2)(1)), parseApply must, after it has parsed an application, call
itself again to check whether another pair of parentheses follows.

This is all we need to parse Egg. We wrap it in a convenient parse func-
tion that verifies that it has reached the end of the input string after parsing
the expression (an Egg program is a single expression), and that gives us the
program’s data structure.

function parse(program) {

var result = parseExpression(program);

if (skipSpace(result.rest).length > 0)

throw new SyntaxError("Unexpected text after program");

return result.expr;

}

console.log(parse("+(a, 10)"));

// . {type: "apply",

// operator: {type: "word", name: "+"},

// args: [{type: "word", name: "a"},

// {type: "value", value: 10}]}

It works! It doesn’t give us very helpful information when it fails and
doesn’t store the line and column on which each expression starts, which
might be helpful when reporting errors later, but it’s good enough for our
purposes.

The Evaluator
What can we do with the syntax tree for a program? Run it, of course! And
that is what the evaluator does. You give it a syntax tree and an environment
object that associates names with values, and it will evaluate the expression
that the tree represents and return the value that this produces.

function evaluate(expr, env) {

switch(expr.type) {

case "value":

return expr.value;

case "word":

if (expr.name in env)

return env[expr.name];

else

throw new ReferenceError("Undefined variable: " + expr.name);

case "apply":

if (expr.operator.type == "word" && expr.operator.name in specialForms)

return specialForms[expr.operator.name](expr.args, env);

Project: A Programming Language 195

var op = evaluate(expr.operator, env);

if (typeof op != "function")

throw new TypeError("Applying a non-function.");

return op.apply(null, expr.args.map(function(arg) {

return evaluate(arg, env);

}));

}

}

var specialForms = Object.create(null);

The evaluator has code for each of the expression types. A literal value
expression simply produces its value. (For example, the expression 100 just
evaluates to the number 100.) For a variable, we must check whether it is
actually defined in the environment and, if it is, fetch the variable’s value.

Applications are more involved. If they are a special form, like if, we do
not evaluate anything and simply pass the argument expressions, along with
the environment, to the function that handles this form. If it is a normal
call, we evaluate the operator, verify that it is a function, and call it with the
result of evaluating the arguments.

We will use plain JavaScript function values to represent Egg’s function
values. We will come back to this later, when the special form called fun is
defined.

The recursive structure of evaluate resembles the similar structure of
the parser. Both mirror the structure of the language itself. It would also
be possible to integrate the parser with the evaluator and evaluate during
parsing, but splitting them up this way makes the program more readable.

This is really all that is needed to interpret Egg. It is that simple. But
without defining a few special forms and adding some useful values to the
environment, you can’t do anything with this language yet.

Special Forms
The specialForms object is used to define special syntax in Egg. It associates
words with functions that evaluate such special forms. It is currently empty.
Let’s add some forms.

specialForms["if"] = function(args, env) {

if (args.length != 3)

throw new SyntaxError("Bad number of args to if");

if (evaluate(args[0], env) !== false)

return evaluate(args[1], env);

else

return evaluate(args[2], env);

};

196 Chapter 11

Egg’s if construct expects exactly three arguments. It will evaluate the
first, and if the result isn’t the value false, it will evaluate the second. Other-
wise, the third gets evaluated. This if form is more similar to JavaScript’s
ternary ?: operator than to JavaScript’s if. It is an expression, not a state-
ment, and it produces a value, namely, the result of the second or third
argument.

Egg differs from JavaScript in how it handles the condition value to if. It
will not treat things like zero or the empty string as false, but only the precise
value false.

The reason we need to represent if as a special form, rather than a regu-
lar function, is that all arguments to functions are evaluated before the func-
tion is called, whereas if should evaluate only either its second or its third
argument, depending on the value of the first.

The while form is similar.

specialForms["while"] = function(args, env) {

if (args.length != 2)

throw new SyntaxError("Bad number of args to while");

while (evaluate(args[0], env) !== false)

evaluate(args[1], env);

// Since undefined does not exist in Egg, we return false,

// for lack of a meaningful result.

return false;

};

Another basic building block is do, which executes all its arguments from
top to bottom. Its value is the value produced by the last argument.

specialForms["do"] = function(args, env) {

var value = false;

args.forEach(function(arg) {

value = evaluate(arg, env);

});

return value;

};

To be able to create variables and give them new values, we also create a
form called define. It expects a word as its first argument and an expression
producing the value to assign to that word as its second argument. Since
define, like everything, is an expression, it must return a value. We’ll make
it return the value that was assigned (just like JavaScript’s = operator).

specialForms["define"] = function(args, env) {

if (args.length != 2 || args[0].type != "word")

throw new SyntaxError("Bad use of define");

var value = evaluate(args[1], env);

Project: A Programming Language 197

env[args[0].name] = value;

return value;

};

The Environment
The environment accepted by evaluate is an object with properties whose
names correspond to variable names and whose values correspond to the
values those variables are bound to. Let’s define an environment object to
represent the global scope.

To be able to use the if construct we just defined, we must have access
to Boolean values. Since there are only two Boolean values, we do not need
special syntax for them. We simply bind two variables to the values true and
false and use those.

var topEnv = Object.create(null);

topEnv["true"] = true;

topEnv["false"] = false;

We can now evaluate a simple expression that negates a Boolean value.

var prog = parse("if(true, false, true)");

console.log(evaluate(prog, topEnv));

// . false

To supply basic arithmetic and comparison operators, we will also add
some function values to the environment. In the interest of keeping the code
short, we’ll use new Function to synthesize a bunch of operator functions in a
loop, rather than defining them all individually.

["+", "-", "*", "/", "==", "<", ">"].forEach(function(op) {

topEnv[op] = new Function("a, b", "return a " + op + " b;");

});

A way to output values is also very useful, so we’ll wrap console.log in a
function and call it print.

topEnv["print"] = function(value) {

console.log(value);

return value;

};

That gives us enough elementary tools to write simple programs. The
following run function provides a convenient way to write and run them. It
creates a fresh environment and parses and evaluates the strings we give it as
a single program.

198 Chapter 11

function run() {

var env = Object.create(topEnv);

var program = Array.prototype.slice.call(arguments, 0).join("\n");

return evaluate(parse(program), env);

}

The use of Array.prototype.slice.call is a trick to turn an array-like ob-
ject, such as arguments, into a real array so that we can call join on it. It takes
all the arguments given to run and treats them as the lines of a program.

run("do(define(total, 0),",

" define(count, 1),",

" while(<(count, 11),",

" do(define(total, +(total, count)),",

" define(count, +(count, 1)))),",

" print(total))");

// . 55

This is the program we’ve seen several times before, which computes the
sum of the numbers 1 to 10, expressed in Egg. It is clearly uglier than the
equivalent JavaScript program but not bad for a language implemented in
less than 150 lines of code.

Functions
A programming language without functions is a poor programming lan-
guage indeed.

Fortunately, it is not hard to add a fun construct, which treats its last ar-
gument as the function’s body and treats all the arguments before that as
the names of the function’s arguments.

specialForms["fun"] = function(args, env) {

if (!args.length)

throw new SyntaxError("Functions need a body");

function name(expr) {

if (expr.type != "word")

throw new SyntaxError("Arg names must be words");

return expr.name;

}

var argNames = args.slice(0, args.length - 1).map(name);

var body = args[args.length - 1];

return function() {

if (arguments.length != argNames.length)

throw new TypeError("Wrong number of arguments");

var localEnv = Object.create(env);

Project: A Programming Language 199

for (var i = 0; i < arguments.length; i++)

localEnv[argNames[i]] = arguments[i];

return evaluate(body, localEnv);

};

};

Functions in Egg have their own local environment, just like in JavaScript.
We use Object.create to make a new object that has access to the variables in
the outer environment (its prototype) but that can also contain new vari-
ables without modifying that outer scope.

The function created by the fun form creates this local environment and
adds the argument variables to it. It then evaluates the function body in this
environment and returns the result.

run("do(define(plusOne, fun(a, +(a, 1))),",

" print(plusOne(10)))");

// . 11

run("do(define(pow, fun(base, exp,",

" if(==(exp, 0),",

" 1,",

" *(base, pow(base, -(exp, 1)))))),",

" print(pow(2, 10)))");

// . 1024

Compilation
What we have built is an interpreter. During evaluation, it acts directly on
the representation of the program produced by the parser.

Compilation is the process of adding another step between the parsing
and the running of a program, which transforms the program into some-
thing that can be evaluated more efficiently by doing as much work as pos-
sible in advance. For example, in well-designed languages it is obvious, for
each use of a variable, which variable is being referred to, without actually
running the program. This can be used to avoid looking up the variable by
name every time it is accessed and to directly fetch it from some predeter-
mined memory location.

Traditionally, compilation involves converting the program to machine
code, the raw format that a computer’s processor can execute. But any pro-
cess that converts a program to a different representation can be thought of
as compilation.

It would be possible to write an alternative evaluation strategy for Egg,
one that first converts the program to a JavaScript program, uses new Function

to invoke the JavaScript compiler on it, and then runs the result. When done
right, this would make Egg run very fast while still being quite simple to
implement.

200 Chapter 11

If you are interested in this topic and willing to spend some time on it,
I encourage you to try to implement such a compiler as an exercise.

Cheating
When we defined if and while, you probably noticed that they were more
or less trivial wrappers around JavaScript’s own if and while. Similarly, the
values in Egg are just regular old JavaScript values.

If you compare the implementation of Egg, built on top of JavaScript,
with the amount of work and complexity required to build a programming
language directly on the raw functionality provided by a machine, the differ-
ence is huge. Regardless, this example hopefully gave you an impression of
the way programming languages work.

And when it comes to getting something done, cheating is more effec-
tive than doing everything yourself. Though the toy language in this chapter
doesn’t do anything that couldn’t be done better in JavaScript, there are situ-
ations where writing small languages helps get real work done.

Such a language does not have to resemble a typical programming lan-
guage. If JavaScript didn’t come equipped with regular expressions, you
could write your own parser and evaluator for such a sublanguage.

Or imagine you are building a giant robotic dinosaur and need to pro-
gram its behavior. JavaScript might not be the most effective way to do this.
You might instead opt for a language that looks like this:

behavior walk

perform when

destination ahead

actions

move left-foot

move right-foot

behavior attack

perform when

Godzilla in-view

actions

fire laser-eyes

launch arm-rockets

This is what is usually called a domain-specific language, a language tai-
lored to express a narrow domain of knowledge. Such a language can be
more expressive than a general-purpose language because it is designed to
express exactly the things that need expressing in its domain and nothing
else.

Project: A Programming Language 201

Exercises

Arrays
Add support for arrays to Egg by adding the following three functions to the
top scope: array(...) to construct an array containing the argument values,
length(array) to get an array’s length, and element(array, n) to fetch the nth
element from an array.

Closure
The way we have defined fun allows functions in Egg to “close over” the sur-
rounding environment, allowing the function’s body to use local values that
were visible at the time the function was defined, just like JavaScript func-
tions do.

The following program illustrates this: function f returns a function that
adds its argument to f’s argument, meaning that it needs access to the local
scope inside f to be able to use variable a.

run("do(define(f, fun(a, fun(b, +(a, b)))),",

" print(f(4)(5)))");

// . 9

Go back to the definition of the fun form and explain which mechanism
causes this to work.

Comments
It would be nice if we could write comments in Egg. For example, whenever
we find a hash sign (#), we could treat the rest of the line as a comment and
ignore it, similar to // in JavaScript.

We do not have to make any big changes to the parser to support this.
We can simply change skipSpace to skip comments like they are whitespace
so that all the points where skipSpace is called will now also skip comments.
Make this change.

Fixing Scope
Currently, the only way to assign a variable a value is define. This construct
acts as a way both to define new variables and to give existing ones a new
value.

This ambiguity causes a problem. When you try to give a nonlocal vari-
able a new value, you will end up defining a local one with the same name
instead. (Some languages work like this by design, but I’ve always found it a
silly way to handle scope.)

Add a special form set, similar to define, which gives a variable a new
value, updating the variable in an outer scope if it doesn’t already exist in
the inner scope. If the variable is not defined at all, throw a ReferenceError

(which is another standard error type).

202 Chapter 11

The technique of representing scopes as simple objects, which has made
things convenient so far, will get in your way a little at this point. You might
want to use the Object.getPrototypeOf function, which returns the prototype
of an object. Also remember that scopes do not derive from Object.prototype,
so if you want to call hasOwnProperty on them, you have to use this clumsy
expression:

Object.prototype.hasOwnProperty.call(scope, name);

This fetches the hasOwnProperty method from the Object prototype and
then calls it on a scope object.

Project: A Programming Language 203

PART II
BROWSER

“The browser is a really hostile

programming environment.”

— Douglas Crockford,

The JavaScript Programming

Language (video lecture)

12
JAVASCRIPT AND THE BROWSER

The next part of this book will talk about web browsers.
Without web browsers, there would be no JavaScript.
And even if there were, no one would ever have paid
any attention to it.

Web technology has, from the start, been decentralized, not just techni-
cally but also in the way it has evolved. Various browser vendors have added
new functionality in ad hoc and sometimes poorly thought out ways, which
then sometimes ended up being adopted by others and finally set down as a
standard.

This is both a blessing and a curse. On the one hand, it is empowering
to not have a central party control a system but have various parties working
in loose collaboration (or occasionally, open hostility). On the other hand,
the haphazard way in which the Web was developed means that the resulting
system is not exactly a shining example of internal consistency. In fact, some
parts of it are downright messy and confusing.

Networks and the Internet
Computer networks have been around since the 1950s. If you put cables be-
tween two or more computers and allow them to send data back and forth
through these cables, you can do all kinds of wonderful things.

If connecting two machines in the same building allows us to do won-
derful things, connecting machines all over the planet should be even bet-
ter. The technology to start implementing this vision was developed in the
1980s, and the resulting network is called the Internet. It has lived up to its
promise.

A computer can use this network to spew bits at another computer. For
any effective communication to arise out of this bit-spewing, the computers
at both ends must know what the bits are supposed to represent. The mean-
ing of any given sequence of bits depends entirely on the kind of thing that
it is trying to express and on the encoding mechanism used.

A network protocol describes a style of communication over a network.
There are protocols for sending email, for fetching email, for sharing files,
or even for controlling computers that happen to be infected by malicious
software.

For example, a simple chat protocol might consist of one computer
sending the bits that represent the text “CHAT?” to another machine and
the other responding with “OK!” to confirm that it understands the proto-
col. They can then proceed to send each other strings of text, read the text
sent by the other from the network, and display whatever they receive on
their screens.

Most protocols are built on top of other protocols. Our example chat
protocol treats the network as a streamlike device into which you can put
bits and have them arrive at the correct destination in the correct order. En-
suring those things is already a rather difficult technical problem.

The Transmission Control Protocol (TCP) is a protocol that solves this prob-
lem. All Internet-connected devices “speak” it, and most communication on
the Internet is built on top of it.

A TCP connection works as follows: one computer must be waiting, or
listening, for other computers to start talking to it. To be able to listen for dif-
ferent kinds of communication at the same time on a single machine, each
listener has a number (called a port) associated with it. Most protocols spec-
ify which port should be used by default. For example, when we want to send
an email using the SMTP protocol, the machine through which we send it is
expected to be listening on port 25.

Another computer can then establish a connection by connecting to the
target machine using the correct port number. If the target machine can be
reached and is listening on that port, the connection is successfully created.
The listening computer is called the server, and the connecting computer is
called the client.

Such a connection acts as a two-way pipe through which bits can flow—
the machines on both ends can put data into it. Once the bits are success-
fully transmitted, they can be read out again by the machine on the other
side. This is a convenient model. You could say that TCP provides an ab-
straction of the network.

208 Chapter 12

The Web
The World Wide Web (not to be confused with the Internet as a whole) is a set
of protocols and formats that allow us to visit web pages in a browser. The
“Web” part in the name refers to the fact that such pages can easily link to
each other, thus connecting into a huge mesh that users can move through.

To add content to the Web, all you need to do is connect a machine to
the Internet, and have it listen on port 80, using the Hypertext Transfer Protocol

(HTTP). This protocol allows other computers to request documents over
the network.

Each document on the Web is named by a Universal Resource Locator

(URL), which looks something like this:

http://eloquentjavascript.net/12_browser.html

| | | |

protocol server path

The first part tells us that this URL uses the HTTP protocol (as opposed
to, for example, encrypted HTTP, which would be https://). Then comes
the part that identifies which server we are requesting the document from.
Last is a path string that identifies the specific document (or resource) we are
interested in.

Each machine connected to the Internet gets a unique IP address,
which looks something like 37.187.37.82. You can use these directly as the
server part of a URL. But lists of more or less random numbers are hard
to remember and awkward to type, so you can instead register a domain

name to point toward a specific machine or set of machines. I registered
eloquentjavascript.net to point at the IP address of a machine I control and
can thus use that domain name to serve web pages.

If you type the previous URL into your browser’s address bar, it will try
to retrieve and display the document at that URL. First, your browser has to
find out what address eloquentjavascript.net refers to. Then, using the HTTP
protocol, it makes a connection to the server at that address and asks for the
resource /12_browser.html.

We will take a closer look at the HTTP protocol in Chapter 17.

HTML
HTML, which stands for Hypertext Markup Language, is the document format
used for web pages. An HTML document contains text, as well as tags that
give structure to the text, describing things such as links, paragraphs, and
headings.

JavaScript and the Browser 209

A simple HTML document looks like this:

<!doctype html>

<html>

<head>

<title>My home page</title>

</head>

<body>

<h1>My home page</h1>

<p>Hello, I am Marijn and this is my home page.</p>

<p>I also wrote a book! Read it

here.</p>

</body>

</html>

This is what such a document would look like in the browser:

The tags, wrapped in angle brackets (< and >), provide information
about the structure of the document. The other text is just plaintext.

The document starts with <!doctype html>, which tells the browser to in-
terpret it as modern HTML, as opposed to various dialects that were in use in
the past.

HTML documents have a head and a body. The head contains infor-
mation about the document, and the body contains the document itself. In
this case, we first declared that the title of this document is “My home page”
and then gave a document containing a heading (<h1>, meaning “heading
1”—<h2> to <h6> produce more minor headings) and two paragraphs (<p>).

Tags come in several forms. An element, such as the body, a paragraph,
or a link, is started by an opening tag like <p> and ended by a closing tag like
</p>. Some opening tags, such as the one for the link (<a>), contain extra
information in the form of name="value" pairs. These are called attributes. In
this case, the destination of the link is indicated with href="http://eloquent

javascript.net", where href stands for “hypertext reference.”
Some kinds of tags do not enclose anything and thus do not need to be

closed. An example of this would be ,
which will display the image found at the given source URL.

To be able to include angle brackets in the text of a document, even
though they have a special meaning in HTML, yet another form of special
notation has to be introduced. A plain opening angle bracket is written as
< (“less than”), and a closing bracket is written as > (“greater than”). In

210 Chapter 12

HTML, an ampersand (&) character followed by a word and a semicolon (;)
is called an entity, and will be replaced by the character it encodes.

This is analogous to the way backslashes are used in JavaScript strings.
Since this mechanism gives ampersand characters a special meaning, too,
those need to be escaped as &. Inside an attribute, which is wrapped in
double quotes, " can be used to insert an actual quote character.

HTML is parsed in a remarkably error-tolerant way. When tags that
should be there are missing, the browser reconstructs them. The way in
which this is done has been standardized, and you can rely on all modern
browsers to do it in the same way.

The following document will be treated just like the one shown
previously:

<!doctype html>

<title>My home page</title>

<h1>My home page</h1>

<p>Hello, I am Marijn and this is my home page.

<p>I also wrote a book! Read it

here.

The <html>, <head>, and <body> tags are gone completely. The browser
knows that <title> belongs in a head, and that <h1> in a body. Furthermore,
I am no longer explicitly closing the paragraphs since opening a new para-
graph or ending the document will close them implicitly. The quotes around
the link target are also gone.

This book will usually omit the <html>, <head>, and <body> tags from
examples to keep them short and free of clutter. But I will close tags and
include quotes around attributes.

I will also usually omit the doctype. This is not to be taken as an en-
couragement to omit doctype declarations. Browsers will often do ridicu-
lous things when you forget them. You should consider doctypes implicitly
present in examples, even when they are not actually shown in the text.

HTML and JavaScript
In the context of this book, the most important HTML tag is <script>. This
tag allows us to include a piece of JavaScript in a document.

<h1>Testing alert</h1>

<script>alert("hello!");</script>

Such a script will run as soon as its <script> tag is encountered as the
browser reads the HTML. The page shown earlier will pop up an alert dia-
log when opened.

JavaScript and the Browser 211

Including large programs directly in HTML documents is often imprac-
tical. The <script> tag can be given an src attribute in order to fetch a script
file (a text file containing a JavaScript program) from a URL.

<h1>Testing alert</h1>

<script src="code/hello.js"></script>

The code/hello.js file included here contains the same simple program,
alert("hello!"). When an HTML page references other URLs as part of
itself—for example, an image file or a script—web browsers will retrieve
them immediately and include them in the page.

A script tag must always be closed with </script>, even if it refers to a
script file and doesn’t contain any code. If you forget this, the rest of the
page will be interpreted as part of the script.

Some attributes can also contain a JavaScript program. The <button> tag
shown next (which shows up as a button) has an onclick attribute, whose
content will be run whenever the button is clicked.

<button onclick="alert('Boom!');">DO NOT PRESS</button>

Note that I had to use single quotes for the string in the onclick attribute
because double quotes are already used to quote the whole attribute. I could
also have used ", but that’d make the program harder to read.

In the Sandbox
Running programs downloaded from the Internet is potentially dangerous.
You do not know much about the people behind most sites you visit, and
they do not necessarily mean well. Running programs by people who do
not mean well is how you get your computer infected by viruses, your data
stolen, and your accounts hacked.

Yet the attraction of the Web is that you can surf it without necessarily
trusting all the pages you visit. This is why browsers severely limit the things
a JavaScript program may do: it can’t look at the files on your computer or
modify anything not related to the web page it was embedded in.

Isolating a programming environment in this way is called sandboxing,
the idea being that the program is harmlessly playing in a sandbox. But you
should imagine this particular kind of sandbox as having a cage of thick steel
bars over it, which makes it somewhat different from your typical playground
sandbox.

The hard part of sandboxing is allowing the programs enough room to
be useful yet at the same time restricting them from doing anything danger-
ous. Lots of useful functionality, such as communicating with other servers
or reading the content of the copy-paste clipboard, can also be used to do
problematic, privacy-invading things.

212 Chapter 12

Every now and then, someone comes up with a new way to circumvent
the limitations of a browser and do something harmful, ranging from leak-
ing minor private information to taking over the whole machine that the
browser runs on. The browser developers respond by fixing the hole, and
all is well again—that is, until the next problem is discovered, and hopefully
publicized, rather than secretly exploited by some government or mafia.

Compatibility and the Browser Wars
In the early stages of the Web, a browser called Mosaic dominated the mar-
ket. After a few years, the balance had shifted to Netscape, which was then,
in turn, largely supplanted by Microsoft’s Internet Explorer. At any point
where a single browser was dominant, that browser’s vendor would feel en-
titled to unilaterally invent new features for the Web. Since most users used
the same browser, websites would simply start using those features—never
mind the other browsers.

This was the dark age of compatibility, often called the browser wars. Web
developers were left with not one unified Web but two or three incompatible
platforms. To make things worse, the browsers in use around 2003 were all
full of bugs, and of course the bugs were different for each browser. Life was
hard for people writing web pages.

Mozilla Firefox, a not-for-profit offshoot of Netscape, challenged Inter-
net Explorer’s hegemony in the late 2000s. Because Microsoft was not par-
ticularly interested in staying competitive at the time, Firefox took quite a
chunk of market share away from it. Around the same time, Google intro-
duced its Chrome browser, and Apple’s Safari browser gained popularity,
leading to a situation where there were four major players, rather than one.

The new players had a more serious attitude toward standards and bet-
ter engineering practices, leading to less incompatibility and fewer bugs.
Microsoft, seeing its market share crumble, came around and adopted these
attitudes. If you are starting to learn web development today, consider your-
self lucky. The latest versions of the major browsers behave quite uniformly
and have relatively few bugs.

That is not to say that the situation is perfect just yet. Some of the
people using the Web are, for reasons of inertia or corporate policy, stuck
with very old browsers. Until those browsers die out entirely, writing websites
that work for them will require a lot of arcane knowledge about their short-
comings and quirks. This book is not about those quirks. Rather, it aims to
present the modern, sane style of web programming.

JavaScript and the Browser 213

13
THE DOCUMENT OBJECT MODEL

When you open a web page in your browser, the
browser retrieves the page’s HTML text and parses
it, much like the way our parser from Chapter 11
parsed programs. The browser builds up a model of
the document’s structure and then uses this model to
draw the page on the screen.

This representation of the document is one of the toys that a JavaScript
program has available in its sandbox. You can read from the model and also
change it. It acts as a live data structure: when it is modified, the page on the
screen updates to reflect the changes.

Document Structure
You can imagine an HTML document as a nested set of boxes. Tags such
as <body> and </body> enclose other tags, which in turn contain other tags or
text. Here’s the example document from the previous chapter:

<!doctype html>

<html>

<head>

<title>My home page</title>

</head>

<body>

<h1>My home page</h1>

<p>Hello, I am Marijn and this is my home page.</p>

<p>I also wrote a book! Read it

here.</p>

</body>

</html>

This page has the following structure:

here

a

.I also wrote a book! Read it

p

Hello, I am Marijn and this is...

p

My home page

h1

body

My home page

title

head

html

The data structure the browser uses to represent the document follows
this shape. For each box, there is an object, which we can interact with to
find out things such as what HTML tag it represents and which boxes and
text it contains. This representation is called the Document Object Model, or
DOM for short.

The global variable document gives us access to these objects. Its
documentElement property refers to the object representing the <html> tag.
It also provides the properties head and body, which hold the objects for
those elements.

Trees
Think back to the syntax trees from Chapter 11 for a moment. Their struc-
tures are strikingly similar to the structure of a browser’s document. Each
node may refer to other nodes, children, which in turn may have their own

216 Chapter 13

children. This shape is typical of nested structures where elements can con-
tain subelements that are similar to themselves.

We call a data structure a tree when it has a branching structure, has no
cycles (a node may not contain itself, directly or indirectly), and has a single,
well-defined “root.” In the case of the DOM, document.documentElement serves
as the root.

Trees come up a lot in computer science. In addition to representing
recursive structures such as HTML documents or programs, they are often
used to maintain sorted sets of data because elements can usually be found
or inserted more efficiently in a sorted tree than in a sorted flat array.

A typical tree has different kinds of nodes. The syntax tree for the Egg
language had variables, values, and application nodes. Application nodes al-
ways have children, whereas variables and values are leaves, or nodes without
children.

The same goes for the DOM. Nodes for regular elements, which represent
HTML tags, determine the structure of the document. These can have child
nodes. An example of such a node is document.body. Some of these children
can be leaf nodes, such as pieces of text or comments (comments are written
between <!- and -> in HTML).

Each DOM node object has a nodeType property, which contains a nu-
meric code that identifies the type of node. Regular elements have the
value 1, which is also defined as the constant property document.ELEMENT_NODE.
Text nodes, representing a section of text in the document, have the value 3
(document.TEXT_NODE). Comments have the value 8 (document.COMMENT_NODE).

So another way to visualize our document tree is as follows:

here

html head title My home page

body h1 My home page

p Hello! I am...

p I also wrote...

a

.

The leaves are text nodes, and the arrows indicate parent-child relation-
ships between nodes.

The Standard
Using cryptic numeric codes to represent node types is not a very JavaScript-
like thing to do. Later in this chapter, we’ll see that other parts of the DOM
interface also feel cumbersome and alien. The reason for this is that the
DOM wasn’t designed for just JavaScript. Rather, it tries to define a language-

The Document Object Model 217

neutral interface that can be used in other systems as well—not just HTML
but also XML, which is a generic data format with an HTML-like syntax.

This is unfortunate. Standards are often useful. But in this case, the ad-
vantage (cross-language consistency) isn’t all that compelling. Having an
interface that is properly integrated with the language you are using will save
you more time than having a familiar interface across languages.

As an example of such poor integration, consider the childNodes prop-
erty that element nodes in the DOM have. This property holds an array-like
object, with a length property and properties labeled by numbers to access
the child nodes. But it is an instance of the NodeList type, not a real array, so
it does not have methods such as slice and forEach.

Then there are issues that are simply poor design. For example, there is
no way to create a new node and immediately add children or attributes to
it. Instead, you have to first create it, then add the children one by one, and
finally set the attributes one by one, using side effects. Code that interacts
heavily with the DOM tends to get long, repetitive, and ugly.

But these flaws aren’t fatal. Since JavaScript allows us to create our
own abstractions, it is easy to write some helper functions that allow you
to express the operations you are performing in a clearer and shorter way.
In fact, many libraries intended for browser programming come with such
tools.

Moving Through the Tree
DOM nodes contain a wealth of links to other nearby nodes. The following
diagram illustrates these:

I also wrote a book! ...

p

Hello, I am Marijn...

p

My home page

h1

body

0

1

2

childNodes firstChild

lastChild

previousSibling

nextSibling

parentNode

Although the diagram shows only one link of each type, every node has
a parentNode property that points to its containing node. Likewise, every el-
ement node (node type 1) has a childNodes property that points to an array-
like object holding its children.

218 Chapter 13

In theory, you could move anywhere in the tree using just these par-
ent and child links. But JavaScript also gives you access to a number of ad-
ditional convenience links. The firstChild and lastChild properties point
to the first and last child elements or have the value null for nodes without
children. Similarly, previousSibling and nextSibling point to adjacent nodes,
which are nodes with the same parent that appear immediately before or
after the node itself. For a first child, previousSibling will be null, and for a
last child, nextSibling will be null.

When dealing with a nested data structure like this one, recursive
functions are often useful. The following recursive function scans a docu-
ment for text nodes containing a given string and returns true when it has
found one:

function talksAbout(node, string) {

if (node.nodeType == document.ELEMENT_NODE) {

for (var i = 0; i < node.childNodes.length; i++) {

if (talksAbout(node.childNodes[i], string))

return true;

}

return false;

} else if (node.nodeType == document.TEXT_NODE) {

return node.nodeValue.indexOf(string) > -1;

}

}

console.log(talksAbout(document.body, "book"));

// . true

The nodeValue property of a text node refers to the string of text that it
represents.

Finding Elements
Navigating these links among parents, children, and siblings is often use-
ful, as in the previous function, which runs through the whole document.
But if we want to find a specific node in the document, reaching it by start-
ing at document.body and blindly following a hard-coded path of links is a bad
idea. Doing so bakes assumptions into our program about the precise struc-
ture of the document—a structure we might want to change later. Another
complicating factor is that text nodes are created even for the whitespace
between nodes. The example document’s body tag does not have just three
children (<h1> and two <p> elements) but actually has seven: those three, plus
the spaces before, after, and between them.

So if we want to get the href attribute of the link in that document, we
don’t want to say something like “Get the second child of the sixth child of
the document body.” It’d be better if we could say “Get the first link in the
document.” And we can.

The Document Object Model 219

var link = document.body.getElementsByTagName("a")[0];

console.log(link.href);

All element nodes have a getElementsByTagName method, which collects all
elements with the given tag name that are descendants (direct or indirect
children) of the given node and returns them as an array-like object.

To find a specific single node, you can give it an id attribute and use
document.getElementById instead.

<p>My ostrich Gertrude:</p>

<p></p>

<script>

var ostrich = document.getElementById("gertrude");

console.log(ostrich.src);

</script>

A third, similar method is getElementsByClassName, which, like
getElementsByTagName, searches through the contents of an element node and
retrieves all elements that have the given string in their class attribute.

Changing the Document
Almost everything about the DOM data structure can be changed. Element
nodes have a number of methods that can be used to change their content.
The removeChild method removes the given child node from the document.
To add a child, we can use appendChild, which puts it at the end of the list of
children, or insertBefore, which inserts the node given as the first argument
before the node given as the second argument.

<p>One</p>

<p>Two</p>

<p>Three</p>

<script>

var paragraphs = document.body.getElementsByTagName("p");

document.body.insertBefore(paragraphs[2], paragraphs[0]);

</script>

A node can exist in the document in only one place. Thus, inserting
paragraph “Three” in front of paragraph “One” will first remove it from the
end of the document and then insert it at the front, resulting in “Three/
One/Two.” All operations that insert a node somewhere will, as a side effect,
cause it to be removed from its current position (if it has one).

The replaceChild method is used to replace a child node with another
one. It takes as arguments two nodes: a new node and the node to be re-
placed. The replaced node must be a child of the element the method is

220 Chapter 13

called on. Note that both replaceChild and insertBefore expect the new node
as their first argument.

Creating Nodes
In the following example, we want to write a script that replaces all images
(tags) in the document with the text held in their alt attributes, which
specifies an alternative textual representation of the image.

This involves not only removing the images but adding a new text node
to replace them. For this, we use the document.createTextNode method.

<p>The in the

.</p>

<p><button onclick="replaceImages()">Replace</button></p>

<script>

function replaceImages() {

var images = document.body.getElementsByTagName("img");

for (var i = images.length - 1; i >= 0; i--) {

var image = images[i];

if (image.alt) {

var text = document.createTextNode(image.alt);

image.parentNode.replaceChild(text, image);

}

}

}

</script>

Given a string, createTextNode gives us a type 3 DOM node (a text node),
which we can insert into the document to make it show up on the screen.

The loop that goes over the images starts at the end of the list of
nodes. This is necessary because the node list returned by a method like
getElementsByTagName (or a property like childNodes) is live. That is, it is up-
dated as the document changes. If we started from the front, removing the
first image would cause the list to lose its first element so that the second
time the loop repeats, where i is 1, it would stop because the length of the
collection is now also 1.

If you want a solid collection of nodes, as opposed to a live one, you can
convert the collection to a real array by calling the array slice method on it.

var arrayish = {0: "one", 1: "two", length: 2};

var real = Array.prototype.slice.call(arrayish, 0);

real.forEach(function(elt) { console.log(elt); });

// . one

// two

The Document Object Model 221

To create regular element nodes (type 1), you can use the document

.createElement method. This method takes a tag name and returns a new
empty node of the given type.

The following example defines a utility elt, which creates an element
node and treats the rest of its arguments as children to that node. This func-
tion is then used to add a simple attribution to a quote.

<blockquote id="quote">

No book can ever be finished. While working on it we learn

just enough to find it immature the moment we turn away

from it.

</blockquote>

<script>

function elt(type) {

var node = document.createElement(type);

for (var i = 1; i < arguments.length; i++) {

var child = arguments[i];

if (typeof child == "string")

child = document.createTextNode(child);

node.appendChild(child);

}

return node;

}

document.getElementById("quote").appendChild(

elt("footer", "--",

elt("strong", "Karl Popper"),

", preface to the second editon of ",

elt("em", "The Open Society and Its Enemies"),

", 1950"));

</script>

This is what the resulting document looks like:

No book can ever be finished. While working on it we learn

just enough to find it immature the moment we turn away

from it.

—Karl Popper, preface to the second edition of The Open

Society and Its Enemies, 1950

Attributes
Some element attributes, such as href for links, can be accessed through a
property of the same name on the element’s DOM object. This is the case
for a limited set of commonly used standard attributes.

But HTML allows you to set any attribute you want on nodes. This can
be useful because it allows you to store extra information in a document. If

222 Chapter 13

you make up your own attribute names, though, such attributes will not be
present as a property on the element’s node. Instead, you’ll have to use the
getAttribute and setAttribute methods to work with them.

<p data-classified="secret">The launch code is 00000000.</p>

<p data-classified="unclassified">I have two feet.</p>

<script>

var paras = document.body.getElementsByTagName("p");

Array.prototype.forEach.call(paras, function(para) {

if (para.getAttribute("data-classified") == "secret")

para.parentNode.removeChild(para);

});

</script>

I recommended prefixing the names of such made-up attributes with
data- to ensure they do not conflict with any other attributes.

As a simple example, we’ll write a “syntax highlighter” that looks
for <pre> tags (“preformatted,” used for code and similar plaintext) with a
data- language attribute and crudely tries to highlight the keywords for that
language.

function highlightCode(node, keywords) {

var text = node.textContent;

node.textContent = ""; // Clear the node

var match, pos = 0;

while (match = keywords.exec(text)) {

var before = text.slice(pos, match.index);

node.appendChild(document.createTextNode(before));

var strong = document.createElement("strong");

strong.appendChild(document.createTextNode(match[0]));

node.appendChild(strong);

pos = keywords.lastIndex;

}

var after = text.slice(pos);

node.appendChild(document.createTextNode(after));

}

The function highlightCode takes a <pre> node and a regular expression
(with the “global” option turned on) that matches the keywords of the pro-
gramming language that the element contains.

The textContent property is used to get all the text in the node and is
then set to an empty string, which has the effect of emptying the node. We
loop over all matches of the keyword expression, appending the text between

them as regular text nodes, and the text matched (the keywords) as text
nodes wrapped in (bold) elements.

The Document Object Model 223

We can automatically highlight all programs on the page by looping
over all the <pre> elements that have a data-language attribute and calling
highlightCode on each one with the correct regular expression for the
language.

var languages = {

javascript: /\b(function|return|var)\b/g /* ... etc */

};

function highlightAllCode() {

var pres = document.body.getElementsByTagName("pre");

for (var i = 0; i < pres.length; i++) {

var pre = pres[i];

var lang = pre.getAttribute("data-language");

if (languages.hasOwnProperty(lang))

highlightCode(pre, languages[lang]);

}

}

Here is an example:

<p>Here it is, the identity function:</p>

<pre data-language="javascript">

function id(x) { return x; }

</pre>

<script>highlightAllCode();</script>

This produces a page that looks like this:

Here it is, the identity function:

function id(x) { return x; }

There is one commonly used attribute, class, which is a reserved word
in the JavaScript language. For historical reasons—some old JavaScript im-
plementations could not handle property names that matched keywords or
reserved words—the property used to access this attribute is called className.
You can also access it under its real name, "class", by using the getAttribute

and setAttribute methods.

Layout
You might have noticed that different types of elements are laid out differ-
ently. Some, such as paragraphs (<p>) or headings (<h1>), take up the whole
width of the document and are rendered on separate lines. These are called
block elements. Others, such as links (<a>) or the element used in

224 Chapter 13

the previous example, are rendered on the same line with their surrounding
text. Such elements are called inline elements.

For any given document, browsers are able to compute a layout, which
gives each element a size and position based on its type and content. This
layout is then used to actually draw the document.

The size and position of an element can be accessed from JavaScript.
The offsetWidth and offsetHeight properties give you the space the element
takes up in pixels. A pixel is the basic unit of measurement in the browser
and typically corresponds to the smallest dot that your screen can display.
Similarly, clientWidth and clientHeight give you the size of the space inside

the element, ignoring border width.

<p style="border: 3px solid red">

I'm boxed in

</p>

<script>

var para = document.body.getElementsByTagName("p")[0];

console.log("clientHeight:", para.clientHeight);

console.log("offsetHeight:", para.offsetHeight);

</script>

Giving a paragraph a border draws a rectangle around it.

I’m boxed in

The most effective way to find the precise position of an element on
the screen is the getBoundingClientRect method. It returns an object with top,
bottom, left, and right properties, indicating the pixel positions of the sides
of the element relative to the top left of the screen. If you want them rela-
tive to the whole document, you must add the current scroll position, found
under the global pageXOffset and pageYOffset variables.

Laying out a document can be quite a lot of work. In the interest of
speed, browser engines do not immediately re-layout a document every time
it is changed but rather wait as long as they can. When a JavaScript program
that changed the document finishes running, the browser will have to com-
pute a new layout in order to display the changed document on the screen.
When a program asks for the position or size of something by reading prop-
erties such as offsetHeight or calling getBoundingClientRect, providing correct
information also requires computing a layout.

A program that repeatedly alternates between reading DOM layout in-
formation and changing the DOM forces a lot of layouts to happen and
will consequently run really slowly. The following code shows an example of
this. It contains two different programs that build up a line of X characters
2,000 pixels wide and measures the time each one takes.

<p></p>

<p></p>

The Document Object Model 225

<script>

function time(name, action) {

var start = Date.now(); // Current time in milliseconds

action();

console.log(name, "took", Date.now() - start, "ms");

}

time("naive", function() {

var target = document.getElementById("one");

while (target.offsetWidth < 2000)

target.appendChild(document.createTextNode("X"));

});

// . naive took 32 ms

time("clever", function() {

var target = document.getElementById("two");

target.appendChild(document.createTextNode("XXXXX"));

var total = Math.ceil(2000 / (target.offsetWidth / 5));

for (var i = 5; i < total; i++)

target.appendChild(document.createTextNode("X"));

});

// . clever took 1 ms

</script>

Styling
We have seen that different HTML elements display different behavior.
Some are displayed as blocks, others inline. Some add styling, such as

making its content bold and <a> making it blue and underlining it.
The way an tag shows an image or an <a> tag causes a link to be fol-

lowed when it is clicked is strongly tied to the element type. But the default
styling associated with an element, such as the text color or underline, can
be changed by us. Here is an example using the style property:

<p>Normal link</p>

<p>Green link</p>

The second link will be green instead of the default link color.

Normal link

Green link

A style attribute may contain one or more declarations, which are a prop-
erty (such as color) followed by a colon and a value (such as green). When
there is more than one declaration, they must be separated by semicolons, as
in "color: red; border: none".

226 Chapter 13

There are a lot of aspects that can be influenced by styling. For example,
the display property controls whether an element is displayed as a block or
an inline element.

This text is displayed inline,

<strong style="display: block">as a block, and

<strong style="display: none">not at all.

The block tag will end up on its own line since block elements are not
displayed inline with the text around them. The last tag is not displayed at
all—display: none prevents an element from showing up on the screen. This
is a way to hide elements. It is often preferable to removing them from the
document entirely because it makes it easy to reveal them again at a later
time.

This text is displayed inline,

as a block

, and .

JavaScript code can directly manipulate the style of an element through
the node’s style property. This property holds an object that has properties
for all possible style properties. The values of these properties are strings,
which we can write to in order to change a particular aspect of the element’s
style.

<p id="para" style="color: purple">

Pretty text

</p>

<script>

var para = document.getElementById("para");

console.log(para.style.color);

para.style.color = "magenta";

</script>

Some style property names contain dashes, such as font-family. Because
such property names are awkward to work with in JavaScript (you’d have to
say style["font-family"]), the property names in the style object for such
properties have their dashes removed and the letters that follow them cap-
italized (style.fontFamily).

Cascading Styles
The styling system for HTML is called CSS for Cascading Style Sheets. A style

sheet is a set of rules for how to style elements in a document. It can be given
inside a <style> tag.

The Document Object Model 227

<style>

strong {

font-style: italic;

color: gray;

}

</style>

<p>Now strong text is italic and gray.</p>

The cascading in the name refers to the fact that multiple such rules
are combined to produce the final style for an element. In the previous ex-
ample, the default styling for tags, which gives them font-weight:

bold, is overlaid by the rule in the <style> tag, which adds font-style and
color.

When multiple rules define a value for the same property, the most
recently read rule gets a higher precedence and wins. So if the rule in
the <style> tag included font-weight: normal, conflicting with the default
font- weight rule, the text would be normal, not bold. Styles in a style at-
tribute applied directly to the node have the highest precedence and al-
ways win.

It is possible to target things other than tag names in CSS rules. A rule
for .abc applies to all elements with "abc" in their class attributes. A rule for
#xyz applies to the element with an id attribute of "xyz" (which should be
unique within the document).

.subtle {

color: gray;

font-size: 80%;

}

#header {

background: blue;

color: white;

}

/* p elements, with classes a and b, and id main */

p.a.b#main {

margin-bottom: 20px;

}

The precedence rule (favoring the most recently defined rule) holds
true only when the rules have the same specificity. A rule’s specificity is a mea-
sure of how precisely it describes matching elements, determined by the
number and kind (tag, class, or ID) of element aspects it requires. For ex-
ample, a rule that targets p.a is more specific than rules that target just p or
just .a and would thus take precedence over them.

The notation p > a {...} applies the given styles to all <a> tags that are
direct children of <p> tags. Similarly, p a {...} applies to all <a> tags inside
<p> tags, whether they are direct or indirect children.

228 Chapter 13

Query Selectors
We won’t be using style sheets all that much in this book. Although under-
standing them is crucial to programming in the browser, properly explain-
ing all the properties they support and the interaction among those proper-
ties would take two or three books.

The main reason I introduced selector syntax—the notation used in style
sheets to determine which elements a set of styles apply to—is that we can
use this same mini-language as an effective way to find DOM elements.

The querySelectorAll method, which is defined both on the document ob-
ject and on element nodes, takes a selector string and returns an array-like
object containing all the elements that it matches.

<p>And if you go chasing

rabbits</p>

<p>And you know you're going to fall</p>

<p>Tell 'em a hookah smoking

caterpillar</p>

<p>Has given you the call</p>

<script>

function count(selector) {

return document.querySelectorAll(selector).length;

}

console.log(count("p")); // All <p> elements

// . 4

console.log(count(".animal")); // Class animal

// . 2

console.log(count("p .animal")); // Animal inside of <p>

// . 2

console.log(count("p > .animal")); // Direct child of <p>

// . 1

</script>

Unlike methods such as getElementsByTagName, the object returned by
querySelectorAll is not live. It won’t change when you change the document.

The querySelector method (without the All part) works in a similar way.
This one is useful if you want a specific, single element. It will return only
the first matching element or null if no elements match.

Positioning and Animating
The position style property influences layout in a powerful way. By default
it has a value of static, meaning the element sits in its normal place in the
document. When it is set to relative, the element still takes up space in the
document, but now the top and left style properties can be used to move
it relative to its normal place. When position is set to absolute, the element
is removed from the normal document flow—that is, it no longer takes up

The Document Object Model 229

space and may overlap with other elements. Also, its top and left proper-
ties can be used to absolutely position it relative to the top-left corner of the
nearest enclosing element whose position property isn’t static, or relative to
the document if no such enclosing element exists.

We can use this to create an animation. The following document dis-
plays a picture of a cat that floats around in an ellipse:

<p style="text-align: center">

</p>

<script>

var cat = document.querySelector("img");

var angle = 0, lastTime = null;

function animate(time) {

if (lastTime != null)

angle += (time - lastTime) * 0.001;

lastTime = time;

cat.style.top = (Math.sin(angle) * 20) + "px";

cat.style.left = (Math.cos(angle) * 200) + "px";

requestAnimationFrame(animate);

}

requestAnimationFrame(animate);

</script>

The gray arrow shows the path along which the image moves.

The picture is centered on the page and given a position of relative.
We’ll repeatedly update that picture’s top and left styles in order to move it.

The script uses requestAnimationFrame to schedule the animate function
to run whenever the browser is ready to repaint the screen. The animate

function itself again calls requestAnimationFrame to schedule the next update.
When the browser window (or tab) is active, this will cause updates to hap-
pen at a rate of about 60 per second, which tends to produce a good-looking
animation.

If we just updated the DOM in a loop, the page would freeze and noth-
ing would show up on the screen. Browsers do not update their display while
a JavaScript program is running, nor do they allow any interaction with the
page. This is why we need requestAnimationFrame—it lets the browser know that
we are done for now, and it can go ahead and do the things that browsers
do, such as updating the screen and responding to user actions.

Our animation function is passed the current time as an argument,
which it compares to the time it saw before (the lastTime variable) to ensure

230 Chapter 13

the motion of the cat per millisecond is stable, and the animation moves
smoothly. If it just moved a fixed amount per step, the motion would stutter
if, for example, another heavy task running on the same computer were to
prevent the function from running for a fraction of a second.

Moving in circles is done using the trigonometry functions Math.cos and
Math.sin. For those of you who aren’t familiar with these, I’ll briefly intro-
duce them since we will occasionally need them in this book.

Math.cos and Math.sin are useful for finding points that lie on a circle
around point (0,0) with a radius of one unit. Both functions interpret their
argument as the position on this circle, with zero denoting the point on the
far right of the circle, going clockwise until 2π (about 6.28) has taken us
around the whole circle. Math.cos tells you the x-coordinate of the point that
corresponds to the given position around the circle, while Math.sin yields the
y-coordinate. Positions (or angles) greater than 2π or less than 0 are valid—
the rotation repeats so that a+2π refers to the same angle as a.

cos(¼π)

sin(¼π)

cos(-⅔ π)

sin(-⅔ π)

The cat animation code keeps a counter, angle, for the current angle
of the animation and increments it in proportion to the elapsed time ev-
ery time the animate function is called. It can then use this angle to com-
pute the current position of the image element. The top style is computed
with Math.sin and multiplied by 20, which is the vertical radius of our circle.
The left style is based on Math.cos and multiplied by 200 so that the circle is
much wider than it is high, resulting in an elliptic motion.

Note that styles usually need units. In this case, we have to append "px"

to the number to tell the browser we are counting in pixels (as opposed to
centimeters, “ems,” or other units). This is easy to forget. Using numbers
without units will result in your style being ignored—unless the number is 0,
which always means the same thing, regardless of its unit.

Summary
JavaScript programs may inspect and interfere with the current document
that a browser is displaying through a data structure called the DOM. This
data structure represents the browser’s model of the document, and a Java-
Script program can modify it to change the visible document.

The DOM is organized like a tree, in which elements are arranged hi-
erarchically according to the structure of the document. The objects rep-
resenting elements have properties such as parentNode and childNodes, which
can be used to navigate through this tree.

The Document Object Model 231

The way a document is displayed can be influenced by styling, both by
attaching styles to nodes directly and by defining rules that match certain
nodes. There are many different style properties, such as color or display.
JavaScript can manipulate an element’s style directly through its style

property.

Exercises

Build a Table
We built plaintext tables in Chapter 6. HTML makes laying out tables quite
a bit easier. An HTML table is built with the following tag structure:

<table>

<tr>

<th>name</th>

<th>height</th>

<th>country</th>

</tr>

<tr>

<td>Kilimanjaro</td>

<td>5895</td>

<td>Tanzania</td>

</tr>

</table>

For each row, the <table> tag contains a <tr> tag. Inside of these <tr> tags,
we can put cell elements: either heading cells (<th>) or regular cells (<td>).

The same source data that was used in Chapter 6 is again available in
the MOUNTAINS variable in the sandbox. It can also be downloaded from the
website (http://eloquentjavascript.net/code/).

Write a function buildTable that, given an array of objects that all have
the same set of properties, builds up a DOM structure representing a table.
The table should have a header row with the property names wrapped in
<th> elements and should have one subsequent row per object in the array,
with its property values in <td> elements.

The Object.keys function, which returns an array containing the prop-
erty names that an object has, will probably be helpful here.

Once you have the basics working, right-align cells containing numbers
by setting their style.textAlign property to "right".

Elements by Tag Name
The getElementsByTagName method returns all child elements with a given tag
name. Implement your own version of it as a regular nonmethod function
that takes a node and a string (the tag name) as arguments and returns an
array containing all descendant element nodes with the given tag name.

232 Chapter 13

http://eloquentjavascript.net/code/mountains.js
http://eloquentjavascript.net/code

To find the tag name of an element, use its tagName property. But note
that this will return the tag name in all uppercase. Use the toLowerCase or
toUpperCase string method to compensate for this.

The Cat’s Hat
Extend the cat animation defined earlier so that both the cat and his hat
() orbit at opposite sides of the ellipse.

You can also try to make the hat circle around the cat or alter the anima-
tion in some other interesting way.

To make positioning multiple objects easier, it is probably a good idea
to switch to absolute positioning. This means that top and left are counted
relative to the top left of the document. To avoid using negative coordinates,
you can simply add a fixed number of pixels to the position values.

The Document Object Model 233

“You have power over your mind—

not outside events. Realize this,

and you will find strength.”

— Marcus Aurelius, Meditations

14
HANDLING EVENTS

Some programs work with direct user input, such as
mouse and keyboard interaction. The timing and or-
der of such input can’t be predicted in advance. This
requires a different approach to control flow than the
one we have used so far.

Event Handlers

Imagine an interface where the only way to find out whether a key on the
keyboard is being pressed is to read the current state of that key. To be able
to react to keypresses, you would have to constantly read the key’s state so
that you’d catch it before it’s released again. It would be dangerous to per-
form other time-intensive computations since you might miss a keypress.

That is how such input was handled on primitive machines. A step up
would be for the hardware or operating system to notice the keypress and
put it in a queue. A program can then periodically check the queue for new
events and react to what it finds there.

Of course, it has to remember to look at the queue, and to do it often,
because any time between the key being pressed and the program notic-
ing the event will cause the software to feel unresponsive. This approach is
called polling. Most programmers avoid it whenever possible.

A better mechanism is for the underlying system to give our code a
chance to react to events as they occur. Browsers do this by allowing us to
register functions as handlers for specific events.

<p>Click this document to activate the handler.</p>

<script>

addEventListener("click", function() {

console.log("You clicked!");

});

</script>

The addEventListener function registers its second argument to be called
whenever the event described by its first argument occurs.

Events and DOM Nodes
Each browser event handler is registered in a context. When you call
addEventListener as shown previously, you are calling it as a method on the
whole window because in the browser the global scope is equivalent to the
window object. Every DOM element has its own addEventListener method,
which allows you to listen specifically on that element.

<button>Click me</button>

<p>No handler here.</p>

<script>

var button = document.querySelector("button");

button.addEventListener("click", function() {

console.log("Button clicked.");

});

</script>

The example attaches a handler to the button node. Thus, clicks on the
button cause that handler to run, whereas clicks on the rest of the document
do not.

Giving a node an onclick attribute has a similar effect. But a node has
only one onclick attribute, so you can register only one handler per node
that way. The addEventListener method allows you to add any number of
handlers, so you can’t accidentally replace a handler that has already been
registered.

The removeEventListener method, called with arguments similar to
addEventListener, removes a handler.

<button>Act-once button</button>

<script>

var button = document.querySelector("button");

236 Chapter 14

function once() {

console.log("Done.");

button.removeEventListener("click", once);

}

button.addEventListener("click", once);

</script>

To be able to unregister a handler function, we give it a name (such as
once) so that we can pass it to both addEventListener and removeEventListener.

Event Objects
Though we have ignored it in the previous examples, event handler func-
tions are passed an argument: the event object. This object gives us additional
information about the event. For example, if we want to know which mouse
button was pressed, we can look at the event object’s which property.

<button>Click me any way you want</button>

<script>

var button = document.querySelector("button");

button.addEventListener("mousedown", function(event) {

if (event.which == 1)

console.log("Left button");

else if (event.which == 2)

console.log("Middle button");

else if (event.which == 3)

console.log("Right button");

});

</script>

The information stored in an event object differs per type of event. We’ll
discuss various types later in this chapter. The object’s type property always
holds a string identifying the event (for example "click" or "mousedown").

Propagation
Event handlers registered on nodes with children will also receive some
events that happen in the children. If a button inside a paragraph is clicked,
event handlers on the paragraph will also receive the click event.

But if both the paragraph and the button have a handler, the more spe-
cific handler—the one on the button—gets to go first. The event is said to
propagate outward, from the node where it happened to that node’s parent
node and on to the root of the document. Finally, after all handlers reg-
istered on a specific node have had their turn, handlers registered on the
whole window get a chance to respond to the event.

Handling Events 237

At any point, an event handler can call the stopPropagation method on
the event object to prevent handlers “further up” from receiving the event.
This can be useful when, for example, you have a button inside another
clickable element and you don’t want clicks on the button to activate the
outer element’s click behavior.

The following example registers "mousedown" handlers on both a button
and the paragraph around it. When clicked with the right mouse button, the
handler for the button calls stopPropagation, which will prevent the handler
on the paragraph from running. When the button is clicked with another
mouse button, both handlers will run.

<p>A paragraph with a <button>button</button>.</p>

<script>

var para = document.querySelector("p");

var button = document.querySelector("button");

para.addEventListener("mousedown", function() {

console.log("Handler for paragraph.");

});

button.addEventListener("mousedown", function(event) {

console.log("Handler for button.");

if (event.which == 3)

event.stopPropagation();

});

</script>

Most event objects have a target property that refers to the node where
they originated. You can use this property to ensure that you’re not acciden-
tally handling something that propagated up from a node you do not want
to handle.

It is also possible to use the target property to cast a wide net for a spe-
cific type of event. For example, if you have a node containing a long list
of buttons, it may be more convenient to register a single click handler on
the outer node and have it use the target property to figure out whether
a button was clicked, rather than register individual handlers on all of the
buttons.

<button>A</button>

<button>B</button>

<button>C</button>

<script>

document.body.addEventListener("click", function(event) {

if (event.target.nodeName == "BUTTON")

console.log("Clicked", event.target.textContent);

});

</script>

238 Chapter 14

Default Actions
Many events have a default action associated with them. If you click a link,
you will be taken to the link’s target. If you press the down arrow, the browser
will scroll the page down. If you right-click, you’ll get a context menu. And
so on.

For most types of events, the JavaScript event handlers are called before

the default behavior is performed. If the handler doesn’t want the normal
behavior to happen, typically because it has already taken care of handling
the event, it can call the preventDefault method on the event object.

This can be used to implement your own keyboard shortcuts or context
menu. It can also be used to obnoxiously interfere with the behavior that
users expect. For example, here is a link that cannot be followed:

MDN

<script>

var link = document.querySelector("a");

link.addEventListener("click", function(event) {

console.log("Nope.");

event.preventDefault();

});

</script>

Try not to do such things unless you have a really good reason to. For
people using your page, it can be unpleasant when the behavior they expect
is broken.

Depending on the browser, some events can’t be intercepted. On
Chrome, for example, keyboard shortcuts to close the current tab (CTRL-W
or COMMAND-W) cannot be handled by JavaScript.

Key Events
When a key on the keyboard is pressed, your browser fires a "keydown" event.
When it is released, a "keyup" event is fired.

<p>This page turns violet when you hold the V key.</p>

<script>

addEventListener("keydown", function(event) {

if (event.keyCode == 86)

document.body.style.background = "violet";

});

addEventListener("keyup", function(event) {

if (event.keyCode == 86)

document.body.style.background = "";

});

</script>

Handling Events 239

Despite its name, "keydown" is fired not only when the key is physically
pushed down. When a key is pressed and held, the event is fired again every
time the key repeats. Sometimes—for example, if you want to increase the
acceleration of a game character when an arrow key is pressed and decrease
it again when the key is released—you have to be careful not to increase it
again every time the key repeats or you’d end up with unintentionally huge
values.

The previous example looked at the keyCode property of the event object.
This is how you can identify which key is being pressed or released. Unfor-
tunately, it’s not always obvious how to translate the numeric key code to an
actual key.

For letter and number keys, the associated key code will be the Unicode
character code associated with the (uppercase) letter or number printed on
the key. The charCodeAt method on strings gives us a way to find this code.

console.log("Violet".charCodeAt(0));

// . 86

console.log("1".charCodeAt(0));

// . 49

Other keys have less predictable key codes. The best way to find the
codes you need is usually by experimenting—register a key event handler
that logs the key codes it gets and press the key you are interested in.

Modifier keys such as SHIFT, CTRL, ALT, and META (COMMAND on Mac)
generate key events just like normal keys. But when looking for key combi-
nations, you can also find out whether these keys are held down by looking
at the shiftKey, ctrlKey, altKey, and metaKey properties of keyboard and mouse
events.

<p>Press Ctrl-Space to continue.</p>

<script>

addEventListener("keydown", function(event) {

if (event.keyCode == 32 && event.ctrlKey)

console.log("Continuing!");

});

</script>

The "keydown" and "keyup" events give you information about the physical
key that is being pressed. But what if you are interested in the actual text
being typed? Getting that text from key codes is awkward. Instead, there
exists another event, "keypress", which is fired right after "keydown" (and re-
peated along with "keydown" when the key is held) but only for keys that pro-
duce character input. The charCode property in the event object contains a
code that can be interpreted as a Unicode character code. We can use the
String.fromCharCode function to turn this code into an actual single-character
string.

240 Chapter 14

<p>Focus this page and type something.</p>

<script>

addEventListener("keypress", function(event) {

console.log(String.fromCharCode(event.charCode));

});

</script>

The DOM node where a key event originates depends on the element
that has focus when the key is pressed. Normal nodes cannot have focus (un-
less you give them a tabindex attribute), but things such as links, buttons, and
form fields can. We’ll come back to form fields in Chapter 18. When noth-
ing in particular has focus, document.body acts as the target node of key events.

Mouse Clicks
Pressing a mouse button also causes a number of events to fire. The
"mousedown" and "mouseup" events are similar to "keydown" and "keyup" and
fire when the button is pressed and released. These will happen on the
DOM nodes that are immediately below the mouse pointer when the event
occurs.

After the "mouseup" event, a "click" event fires on the most specific node
that contained both the press and the release of the button. For example,
if I press down the mouse button on one paragraph and then move the
pointer to another paragraph and release the button, the "click" event will
happen on the element that contains both those paragraphs.

If two clicks happen close together, a "dblclick" (double-click) event
also fires, after the second click event.

To get precise information about the place where a mouse event
happened, you can look at its pageX and pageY properties, which contain
the event’s coordinates (in pixels) relative to the top-left corner of the
document.

The following implements a primitive drawing program. Every time you
click the document, it adds a dot under your mouse pointer. See Chapter 19
for a less primitive drawing program.

<style>

body {

height: 200px;

background: beige;

}

.dot {

height: 8px; width: 8px;

border-radius: 4px; /* rounds corners */

background: blue;

position: absolute;

}

</style>

Handling Events 241

<script>

addEventListener("click", function(event) {

var dot = document.createElement("div");

dot.className = "dot";

dot.style.left = (event.pageX - 4) + "px";

dot.style.top = (event.pageY - 4) + "px";

document.body.appendChild(dot);

});

</script>

The clientX and clientY properties are similar to pageX and pageY but
relative to the part of the document that is currently scrolled into view.
These can be useful when comparing mouse coordinates with the coordi-
nates returned by getBoundingClientRect, which also returns viewport-relative
coordinates.

Mouse Motion
Every time the mouse pointer moves, a "mousemove" event fires. This event
can be used to track the position of the mouse. A common situation in
which this is useful is when implementing some form of mouse-dragging
functionality.

As an example, the following program displays a bar and sets up event
handlers so that dragging to the left or right on this bar makes it narrower
or wider:

<p>Drag the bar to change its width:</p>

<div style="background: orange; width: 60px; height: 20px">

</div>

<script>

var lastX; // Tracks the last observed mouse X position

var rect = document.querySelector("div");

rect.addEventListener("mousedown", function(event) {

if (event.which == 1) {

lastX = event.pageX;

addEventListener("mousemove", moved);

event.preventDefault(); // Prevent selection

}

});

function moved(event) {

if (event.which != 1) {

removeEventListener("mousemove", moved);

} else {

var dist = event.pageX - lastX;

var newWidth = Math.max(10, rect.offsetWidth + dist);

242 Chapter 14

rect.style.width = newWidth + "px";

lastX = event.pageX;

}

}

</script>

The resulting page looks like this:

Note that the "mousemove" handler is registered on the whole window.
Even if the mouse goes outside of the bar during resizing, we still want to
update its size and stop dragging when the mouse is released.

Whenever the mouse pointer enters or leaves a node, a "mouseover" or
"mouseout" event is fired. These two events can be used, among other things,
to create hover effects, showing or styling something when the mouse is over
a given element.

Unfortunately, creating such an effect is not as simple as starting the
effect on "mouseover" and ending it on "mouseout". When the mouse moves
from a node onto one of its children, "mouseout" is fired on the parent node,
though the mouse did not actually leave the node’s extent. To make things
worse, these events propagate just like other events, and thus you will also
receive "mouseout" events when the mouse leaves one of the child nodes of
the node on which the handler is registered.

To work around this problem, we can use the relatedTarget property
of the event objects created for these events. It tells us, in the case of
"mouseover", what element the pointer was over before and, in the case of
"mouseout", what element it is going to. We want to change our hover effect
only when the relatedTarget is outside of our target node. Only in that case
does this event actually represent a crossing over from outside to inside the
node (or the other way around).

<p>Hover over this paragraph.</p>

<script>

var para = document.querySelector("p");

function isInside(node, target) {

for (; node != null; node = node.parentNode)

if (node == target) return true;

}

para.addEventListener("mouseover", function(event) {

if (!isInside(event.relatedTarget, para))

para.style.color = "red";

});

para.addEventListener("mouseout", function(event) {

if (!isInside(event.relatedTarget, para))

para.style.color = "";

Handling Events 243

});

</script>

The isInside function follows the given node’s parent links until it ei-
ther reaches the top of the document (when node becomes null) or finds the
parent we are looking for.

I should add that a hover effect like this can be much more easily
achieved using the CSS pseudoselector :hover, as the next example shows. But
when your hover effect involves doing something more complicated than
changing a style on the target node, you must use the trick with "mouseover"

and "mouseout" events.

<style>

p:hover { color: red }

</style>

<p>Hover over this paragraph.</p>

Scroll Events
Whenever an element is scrolled, a "scroll" event fires on it. This has vari-
ous uses, such as knowing what the user is currently looking at (for disabling
off-screen animations or sending spy reports to your evil headquarters) or
showing some indication of progress (by highlighting part of a table of con-
tents or showing a page number).

The following example draws a progress bar in the top-right corner of
the document and updates it to fill up as you scroll down:

<style>

.progress {

border: 1px solid blue;

width: 100px;

position: fixed;

top: 10px; right: 10px;

}

.progress > div {

height: 12px;

background: blue;

width: 0%;

}

body {

height: 2000px;

}

</style>

<div class="progress"><div></div></div>

<p>Scroll me...</p>

244 Chapter 14

<script>

var bar = document.querySelector(".progress div");

addEventListener("scroll", function() {

var max = document.body.scrollHeight - innerHeight;

var percent = (pageYOffset / max) * 100;

bar.style.width = percent + "%";

});

</script>

Giving an element a position of fixed acts much like an absolute posi-
tion but also prevents it from scrolling along with the rest of the document.
The effect is to make our progress bar stay in its corner. Inside it is another
element, which is resized to indicate the current progress. We use %, rather
than px, as a unit when setting the width so that the element is sized relative
to the whole bar.

The global innerHeight variable gives us the height of the window, which
we have to subtract from the total scrollable height—you can’t keep scrolling
when you hit the bottom of the document. (There’s also an innerWidth to go
along with innerHeight.) By dividing pageYOffset, the current scroll position,
by the maximum scroll position and multiplying by 100, we get the percent-
age for the progress bar.

Calling preventDefault on a scroll event does not prevent the scrolling
from happening. In fact, the event handler is called only after the scrolling
takes place.

Focus Events
When an element gains focus, the browser fires a "focus" event on it. When
it loses focus, a "blur" event fires.

Unlike the events discussed earlier, these two events do not propagate.
A handler on a parent element is not notified when a child element gains or
loses focus.

The following example displays help text for the text field that currently
has focus:

<p>Name: <input type="text" data-help="Your full name"></p>

<p>Age: <input type="text" data-help="Age in years"></p>

<p id="help"></p>

<script>

var help = document.querySelector("#help");

var fields = document.querySelectorAll("input");

for (var i = 0; i < fields.length; i++) {

fields[i].addEventListener("focus", function(event) {

var text = event.target.getAttribute("data-help");

help.textContent = text;

});

Handling Events 245

fields[i].addEventListener("blur", function(event) {

help.textContent = "";

});

}

</script>

In the following screenshot, help text for the Age field is shown.

The window object will receive "focus" and "blur" events when the user
moves from or to the browser tab or window in which the document is shown.

Load Event
When a page finishes loading, the "load" event fires on the window and the
document body objects. This is often used to schedule initialization actions
that require the whole document to have been built. Remember that the
content of <script> tags is run immediately when the tag is encountered.
This is often too soon, such as when the script needs to do something with
parts of the document that appear after the <script> tag.

Elements such as images and script tags that load an external file also
have a "load" event that indicates the files they reference were loaded. Like
the focus-related events, loading events do not propagate.

When a page is closed or navigated away from (for example by follow-
ing a link), a "beforeunload" event fires. The main use of this event is to
prevent the user from accidentally losing work by closing a document. Pre-
venting the page from unloading is not, as you might expect, done with the
preventDefault method. Instead, it is done by returning a string from the
handler. The string will be used in a dialog that asks the user if they want
to stay on the page or leave it. This mechanism ensures that a user is able to
leave the page, even if it is running a malicious script that would prefer to
keep them there forever in order to force them to look at dodgy weight
loss ads.

Script Execution Timeline
There are various things that can cause a script to start executing. Reading
a <script> tag is one such thing. An event firing is another. Chapter 13 dis-
cussed the requestAnimationFrame function, which schedules a function to be
called before the next page redraw. That is yet another way in which a script
can start running.

It is important to understand that even though events can fire at any
time, no two scripts in a single document ever run at the same moment. If

246 Chapter 14

a script is already running, event handlers and pieces of code scheduled in
other ways have to wait for their turn. This is the reason why a document will
freeze when a script runs for a long time. The browser cannot react to clicks
and other events inside the document because it can’t run event handlers
until the current script finishes running.

Some programming environments do allow multiple threads of execu-

tion to run at the same time. Doing multiple things at the same time can be
used to make a program faster. But when you have multiple actors touch-
ing the same parts of the system at the same time, thinking about a program
becomes at least an order of magnitude harder.

The fact that JavaScript programs do only one thing at a time makes our
lives easier. For cases where you really do want to do some time-consuming
thing in the background without freezing the page, browsers provide some-
thing called web workers. A worker is an isolated JavaScript environment that
runs alongside the main program for a document and can communicate
with it only by sending and receiving messages.

Assume we have the following code in a file called code/squareworker.js:

addEventListener("message", function(event) {

postMessage(event.data * event.data);

});

Imagine that squaring a number is a heavy, long-running computation
that we want to perform in a background thread. This code spawns a worker,
sends it a few messages, and outputs the responses.

var squareWorker = new Worker("code/squareworker.js");

squareWorker.addEventListener("message", function(event) {

console.log("The worker responded:", event.data);

});

squareWorker.postMessage(10);

squareWorker.postMessage(24);

The postMessage function sends a message, which will cause a "message"

event to fire in the receiver. The script that created the worker sends and
receives messages through the Worker object, whereas the worker talks to the
script that created it by sending and listening directly on its global scope—
which is a new global scope, not shared with the original script.

Setting Timers
The setTimeout function is similar to requestAnimationFrame. It schedules an-
other function to be called later. But instead of calling the function at the
next redraw, it waits for a given amount of milliseconds. This page turns
from blue to yellow after two seconds:

<script>

document.body.style.background = "blue";

Handling Events 247

setTimeout(function() {

document.body.style.background = "yellow";

}, 2000);

</script>

Sometimes you need to cancel a function you have scheduled. This is
done by storing the value returned by setTimeout and calling clearTimeout

on it.

var bombTimer = setTimeout(function() {

console.log("BOOM!");

}, 500);

if (Math.random() < 0.5) { // 50% chance

console.log("Defused.");

clearTimeout(bombTimer);

}

The cancelAnimationFrame function works in the same way as clearTimeout—
calling it on a value returned by requestAnimationFrame will cancel that frame
(assuming it hasn’t already been called).

A similar set of functions, setInterval and clearInterval are used to set
timers that should repeat every X milliseconds.

var ticks = 0;

var clock = setInterval(function() {

console.log("tick", ticks++);

if (ticks == 10) {

clearInterval(clock);

console.log("stop.");

}

}, 200);

Debouncing
Some types of events have the potential to fire rapidly, many times in a row
(the "mousemove" and "scroll" events, for example). When handling such
events, you must be careful not to do anything too time-consuming or your
handler will take up so much time that interaction with the document starts
to feel slow and choppy.

If you do need to do something nontrivial in such a handler, you can
use setTimeout to make sure you are not doing it too often. This is usually
called debouncing the event. There are several slightly different approaches
to this.

In the first example, we want to do something when the user has typed
something, but we don’t want to do it immediately for every key event. When
they are typing quickly, we just want to wait until a pause occurs. Instead of

248 Chapter 14

immediately performing an action in the event handler, we set a timeout in-
stead. We also clear the previous timeout (if any) so that when events occur
close together (closer than our timeout delay), the timeout from the previ-
ous event will be canceled.

<textarea>Type something here...</textarea>

<script>

var textarea = document.querySelector("textarea");

var timeout;

textarea.addEventListener("keydown", function() {

clearTimeout(timeout);

timeout = setTimeout(function() {

console.log("You stopped typing.");

}, 500);

});

</script>

Giving an undefined value to clearTimeout or calling it on a timeout that
has already fired has no effect. Thus, we don’t have to be careful about when
to call it, and we simply do so for every event.

We can use a slightly different pattern if we want to space responses so
that they’re separated by at least a certain length of time but want to fire
them during a series of events, not just afterward. For example, we might
want to respond to "mousemove" events by showing the current coordinates of
the mouse, but only every 250 milliseconds.

<script>

function displayCoords(event) {

document.body.textContent =

"Mouse at " + event.pageX + ", " + event.pageY;

}

var scheduled = false, lastEvent;

addEventListener("mousemove", function(event) {

lastEvent = event;

if (!scheduled) {

scheduled = true;

setTimeout(function() {

scheduled = false;

displayCoords(lastEvent);

}, 250);

}

});

</script>

Handling Events 249

Summary
Event handlers make it possible to detect and react to events we have no
direct control over. The addEventListener method is used to register such a
handler.

Each event has a type ("keydown", "focus", and so on) that identifies it.
Most events are called on a specific DOM element and then propagate to
that element’s ancestors, allowing handlers associated with those elements
to handle them.

When an event handler is called, it is passed an event object with addi-
tional information about the event. This object also has methods that allow
us to stop further propagation (stopPropagation) and prevent the browser’s
default handling of the event (preventDefault).

Pressing a key fires "keydown", "keypress", and "keyup" events. Pressing
a mouse button fires "mousedown", "mouseup", and "click" events. Moving the
mouse fires "mousemove" and possibly "mouseenter" and "mouseout" events.

Scrolling can be detected with the "scroll" event, and focus changes can
be detected with the "focus" and "blur" events. When the document finishes
loading, a "load" event fires on the window.

Only one piece of JavaScript program can run at a time. Thus, event
handlers and other scheduled scripts have to wait until other scripts finish
before they get their turn.

Exercises

Censored Keyboard
Between 1928 and 2013, Turkish law forbade the use of the letters Q, W, and
X in official documents. This was part of a wider initiative to stifle Kurdish
culture—those letters occur in the language used by Kurdish people but not
in Istanbul Turkish.

As an exercise in doing ridiculous things with technology, I’m asking
you to program a text field (an <input type="text"> tag) that these letters can-
not be typed into.

(Do not worry about copy and paste and other such loopholes.)

Mouse Trail
In JavaScript’s early days, which was the high time of gaudy home pages with
lots of animated images, people came up with some truly inspiring ways to
use the language.

One of these was the “mouse trail”—a series of images that would follow
the mouse pointer as you moved it across the page.

In this exercise, I want you to implement a mouse trail. Use absolutely
positioned <div> elements with a fixed size and background color (refer to
the code in the “Mouse Clicks” section for an example). Create a bunch of
such elements and, when the mouse moves, display them in the wake of the
mouse pointer.

250 Chapter 14

There are various possible approaches here. You can make your solu-
tion as simple or as complex as you want. A simple solution to start with is
to keep a fixed number of trail elements and cycle through them, moving
the next one to the mouse’s current position every time a "mousemove" event
occurs.

Tabs
A tabbed interface is a common design pattern. It allows you to select an
interface panel by choosing from a number of tabs “sticking out” above an
element.

In this exercise you’ll implement a simple tabbed interface. Write a
function, asTabs, that takes a DOM node and creates a tabbed interface show-
ing the child elements of that node. It should insert a list of <button> ele-
ments at the top of the node, one for each child element, containing text
retrieved from the data-tabname attribute of the child. All but one of the orig-
inal children should be hidden (given a display style of none), and the cur-
rently visible node can be selected by clicking the buttons.

When it works, extend it to also style the currently active button
differently.

Handling Events 251

“All reality is a game.”

— Iain Banks, The Player of Games

15
PROJECT: A PLATFORM GAME

My initial fascination with computers, like that of many
kids, originated with computer games. I was drawn into
the tiny computer-simulated worlds that I could manip-
ulate and in which stories (sort of) unfolded—more, I
suppose, because of the way I could project my imagi-
nation into them than because of the possibilities they
actually offered.

I wouldn’t wish a career in game programming on anyone. Much like
the music industry, the discrepancy between the many eager young people
wanting to work in it and the actual demand for such people creates a rather
unhealthy environment. But writing games for fun is amusing.

This chapter will walk through the implementation of a simple platform
game. Platform games (or “jump and run” games) are games that expect the
player to move a figure through a world, which is often two-dimensional and
viewed from the side, and do lots of jumping onto and over things.

The Game
Our game will be roughly based on Dark Blue (www.lessmilk.com/games/10)
by Thomas Palef. I chose this game because it is both entertaining and mini-
malist, and because it can be built without too much code. It looks like this:

Coins

Lava

Player

The dark box represents the player, whose task is to collect the yellow
boxes (coins) while avoiding the red stuff (which I’ll call lava). A level is
completed when all coins have been collected.

The player can walk around with the left and right arrow keys and jump
with the up arrow. Jumping is a specialty of this game character. It can reach
several times its own height and is able to change direction in midair. This
may not be entirely realistic, but it helps give the player the feeling of being
in direct control of the onscreen avatar.

The game consists of a fixed background, laid out like a grid, with the
moving elements overlaid on that background. Each field on the grid is ei-
ther empty, solid, or lava. The moving elements are the player, coins, and
certain pieces of lava. Unlike the artificial life simulation from Chapter 7,
the positions of these elements are not constrained to the grid—their coor-
dinates may be fractional, allowing smooth motion.

The Technology
We will use the browser DOM to display the game, and we’ll read user input
by handling key events.

The screen- and keyboard-related code is only a tiny part of the work
we need to do to build this game. Since everything looks like colored boxes,
drawing is uncomplicated: we create DOM elements and use styling to give
them a background color, size, and position.

We can represent the background as a table since it is an unchanging
grid of squares. The free-moving elements can be overlaid on top of that,
using absolutely positioned elements.

254 Chapter 15

http://www.lessmilk.com/games/10
www.lessmilk.com/games/10

In games and other programs that have to animate graphics and
respond to user input without noticeable delay, efficiency is important.
Although the DOM was not originally designed for high-performance
graphics, it is actually better at this than you would expect. You saw some
animations in Chapter 13. On a modern machine, a simple game like this
performs well, even if we don’t think about optimization much.

In the next chapter, we will explore another browser technology, the
<canvas> tag, which provides a more traditional way to draw graphics, work-
ing in terms of shapes and pixels rather than DOM elements.

Levels
In Chapter 7 we used arrays of strings to describe a two-dimensional grid.
We can do the same here. It will allow us to design levels without first build-
ing a level editor.

A simple level would look like this:

var simpleLevelPlan = [

" ",

" ",

" x = x ",

" x o o x ",

" x @ xxxxx x ",

" xxxxx x ",

" x!!!!!!!!!!!!x ",

" xxxxxxxxxxxxxx ",

" "

];

Both the fixed grid and the moving elements are included in the plan.
The x characters stand for walls, the space characters for empty space, and
the exclamation marks represent fixed, nonmoving lava tiles.

The @ defines the place where the player starts. Every o is a coin, and
the equal sign (=) stands for a block of lava that moves back and forth hor-
izontally. Note that the grid for these positions will be set to contain empty
space, and another data structure is used to track the position of such mov-
ing elements.

We’ll support two other kinds of moving lava: the pipe character (|) for
vertically moving blobs, and v for dripping lava—vertically moving lava that
doesn’t bounce back and forth but only moves down, jumping back to its
start position when it hits the floor.

A whole game consists of multiple levels that the player must complete.
A level is completed when all coins have been collected. If the player touches
lava, the current level is restored to its starting position, and the player may
try again.

Project: A Platform Game 255

Reading a Level
The following constructor builds a Level object. Its argument should be the
array of strings that define the level.

function Level(plan) {

this.width = plan[0].length;

this.height = plan.length;

this.grid = [];

this.actors = [];

for (var y = 0; y < this.height; y++) {

var line = plan[y], gridLine = [];

for (var x = 0; x < this.width; x++) {

var ch = line[x], fieldType = null;

var Actor = actorChars[ch];

if (Actor)

this.actors.push(new Actor(new Vector(x, y), ch));

else if (ch == "x")

fieldType = "wall";

else if (ch == "!")

fieldType = "lava";

gridLine.push(fieldType);

}

this.grid.push(gridLine);

}

this.player = this.actors.filter(function(actor) {

return actor.type == "player";

})[0];

this.status = this.finishDelay = null;

}

For brevity, the code does not check for malformed input. It assumes
that you’ve given it a proper level plan, complete with a player start position
and other essentials.

A level stores its width and height, along with two arrays—one for the
grid and one for the actors, which are the dynamic elements. The grid is rep-
resented as an array of arrays, where each of the inner arrays represents a
horizontal line and each square contains either null, for empty squares, or a
string indicating the type of the square—"wall" or "lava".

The actors array holds objects that track the current position and state
of the dynamic elements in the level. Each of these is expected to have a
pos property that gives its position (the coordinates of its top-left corner),
a size property that gives its size, and a type property that holds a string iden-
tifying the element ("lava", "coin", or "player").

256 Chapter 15

After building the grid, we use the filter method to find the "player"

actor object, which we store in a property of the level. The status property
tracks whether the player has won or lost. When this happens, finishDelay
is used to keep the level active for a short period of time so that a simple
animation can be shown. (Immediately resetting or advancing the level
would look cheap.) This method can be used to find out whether a level is
finished:

Level.prototype.isFinished = function() {

return this.status != null && this.finishDelay < 0;

};

Actors
To store the position and size of an actor, we will return to our trusty Vector

type, which groups an x-coordinate and a y-coordinate into an object.

function Vector(x, y) {

this.x = x; this.y = y;

}

Vector.prototype.plus = function(other) {

return new Vector(this.x + other.x, this.y + other.y);

};

Vector.prototype.times = function(factor) {

return new Vector(this.x * factor, this.y * factor);

};

The times method scales a vector by a given amount. It will be useful
when we need to multiply a speed vector by a time interval to get the dis-
tance traveled during that time.

In the previous section, the actorChars object was used by the Level con-
structor to associate characters with constructor functions. The object looks
like this:

var actorChars = {

"@": Player,

"o": Coin,

"=": Lava, "|": Lava, "v": Lava

};

Three characters map to Lava. The Level constructor passes the actor’s
source character as the second argument to the constructor, and the Lava

constructor uses that to adjust its behavior (bouncing horizontally, bouncing
vertically, or dripping).

The player type is built with the following constructor. It has a property
speed that stores its current speed, which will help simulate momentum and
gravity.

Project: A Platform Game 257

function Player(pos) {

this.pos = pos.plus(new Vector(0, -0.5));

this.size = new Vector(0.8, 1.5);

this.speed = new Vector(0, 0);

}

Player.prototype.type = "player";

Because a player is one-and-a-half squares high, its initial position is set
to be half a square above the position where the @ character appeared. This
way, its bottom aligns with the bottom of the square it appeared in.

When constructing a dynamic Lava object, we need to initialize the ob-
ject differently depending on the character it is based on. Dynamic lava
moves along at its given speed until it hits an obstacle. At that point, if it has
a repeatPos property, it will jump back to its start position (dripping). If it
does not, it will invert its speed and continue in the other direction (bounc-
ing). The constructor only sets up the necessary properties. The method
that does the actual moving will be written later.

function Lava(pos, ch) {

this.pos = pos;

this.size = new Vector(1, 1);

if (ch == "=") {

this.speed = new Vector(2, 0);

} else if (ch == "|") {

this.speed = new Vector(0, 2);

} else if (ch == "v") {

this.speed = new Vector(0, 3);

this.repeatPos = pos;

}

}

Lava.prototype.type = "lava";

Coin actors are simple. They mostly just sit in their place. But to liven up
the game a little, they are given a “wobble,” a slight vertical motion back and
forth. To track this, a coin object stores a base position as well as a wobble

property that tracks the phase of the bouncing motion. Together, these de-
termine the coin’s actual position (stored in the pos property).

function Coin(pos) {

this.basePos = this.pos = pos.plus(new Vector(0.2, 0.1));

this.size = new Vector(0.6, 0.6);

this.wobble = Math.random() * Math.PI * 2;

}

Coin.prototype.type = "coin";

258 Chapter 15

In Chapter 13, we saw that Math.sin gives us the y-coordinate of a point
on a circle. That coordinate goes back and forth in a smooth wave form as
we move along the circle, which makes the sine function useful for modeling
a wavy motion.

To avoid a situation where all coins move up and down synchronously,
the starting phase of each coin is randomized. The phase of Math.sin’s wave,
the width of a wave it produces, is 2π. We multiply the value returned by
Math.random by that number to give the coin a random starting position on
the wave.

We have now written all the parts needed to represent the state of a
level.

var simpleLevel = new Level(simpleLevelPlan);

console.log(simpleLevel.width, "by", simpleLevel.height);

// . 22 by 9

The task ahead is to display such levels on the screen and to model time
and motion inside them.

Encapsulation as a Burden
Most of the code in this chapter does not worry about encapsulation for
two reasons. First, encapsulation takes extra effort. It makes programs big-
ger and requires additional concepts and interfaces to be introduced. Since
there is only so much code you can throw at a reader before their eyes glaze
over, I’ve made an effort to keep the program small.

Second, the various elements in this game are so closely tied together
that if the behavior of one of them changed, it is unlikely that any of the oth-
ers would be able to stay the same. Interfaces between the elements would
end up encoding a lot of assumptions about the way the game works. This
makes them a lot less effective—whenever you change one part of the sys-
tem, you still have to worry about the way it impacts the other parts because
their interfaces wouldn’t cover the new situation.

Some cutting points in a system lend themselves well to separation through
rigorous interfaces, but others don’t. Trying to encapsulate something that
isn’t a suitable boundary is a sure way to waste a lot of energy. When you are
making this mistake, you’ll usually notice that your interfaces are getting
awkwardly large and detailed and that they need to be modified often, as the
program evolves.

There is one thing that we will encapsulate in this chapter, and that is
the drawing subsystem. The reason for this is that we will display the same
game in a different way in the next chapter. By putting the drawing behind
an interface, we can simply load the same game program there and plug in a
new display module.

Project: A Platform Game 259

Drawing
The encapsulation of the drawing code is done by defining a display object,
which displays a given level. The display type we define in this chapter is
called DOMDisplay because it uses simple DOM elements to show the level.

We will be using a style sheet to set the actual colors and other fixed
properties of the elements that make up the game. It would also be possible
to directly assign to the elements’ style property when we create them, but
that would produce more verbose programs.

The following helper function provides a short way to create an element
and give it a class:

function elt(name, className) {

var elt = document.createElement(name);

if (className) elt.className = className;

return elt;

}

A display is created by giving it a parent element to which it should ap-
pend itself and a level object.

function DOMDisplay(parent, level) {

this.wrap = parent.appendChild(elt("div", "game"));

this.level = level;

this.wrap.appendChild(this.drawBackground());

this.actorLayer = null;

this.drawFrame();

}

We used the fact that appendChild returns the appended element to
create the wrapper element and store it in the wrap property in a single
statement.

The level’s background, which never changes, is drawn once. The actors
are redrawn every time the display is updated. The actorLayer property will
be used by drawFrame to track the element that holds the actors so that they
can be easily removed and replaced.

Our coordinates and sizes are tracked in units relative to the grid size,
where a size or distance of 1 means 1 grid unit. When setting pixel sizes, we
will have to scale these coordinates up—everything in the game would be
ridiculously small at a single pixel per square. The scale variable gives the
number of pixels that a single unit takes up on the screen.

var scale = 20;

DOMDisplay.prototype.drawBackground = function() {

var table = elt("table", "background");

table.style.width = this.level.width * scale + "px";

260 Chapter 15

this.level.grid.forEach(function(row) {

var rowElt = table.appendChild(elt("tr"));

rowElt.style.height = scale + "px";

row.forEach(function(type) {

rowElt.appendChild(elt("td", type));

});

});

return table;

};

As mentioned earlier, the background is drawn as a <table> element.
This nicely corresponds to the structure of the grid property in the level—
each row of the grid is turned into a table row (<tr> element). The strings
in the grid are used as class names for the table cell (<td>) elements. The
following CSS helps the resulting table look like the background we want:

.background { background: rgb(52, 166, 251);

border-spacing: 0; }

.background td { padding: 0; }

.lava { background: rgb(255, 100, 100); }

.wall { background: white; }

Some of these (border-spacing and padding) are simply used to suppress
unwanted default behavior. We don’t want space between the table cells or
padding inside them.

The background rule sets the background color. CSS allows colors to be
specified both as words (white) and with a format such as rgb(R, G, B), where
the red, green, and blue components of the color are separated into three
numbers from 0 to 255. So, in rgb(52, 166, 251), the red component is 52,
green is 166, and blue is 251. Since the blue component is the largest, the
resulting color will be bluish. You can see that in the .lava rule, the first
number (red) is the largest.

We draw each actor by creating a DOM element for it and setting that
element’s position and size based on the actor’s properties. The values have
to be multiplied by scale to go from game units to pixels.

DOMDisplay.prototype.drawActors = function() {

var wrap = elt("div");

this.level.actors.forEach(function(actor) {

var rect = wrap.appendChild(elt("div", "actor " + actor.type));

rect.style.width = actor.size.x * scale + "px";

rect.style.height = actor.size.y * scale + "px";

rect.style.left = actor.pos.x * scale + "px";

rect.style.top = actor.pos.y * scale + "px";

});

return wrap;

};

Project: A Platform Game 261

To give an element more than one class, we separate the class names
by spaces. In the CSS code shown next, the actor class gives the actors their
absolute position. Their type name is used as an extra class to give them a
color. We don’t have to define the lava class again because we reuse it for
the lava grid squares, which we defined earlier.

.actor { position: absolute; }

.coin { background: rgb(241, 229, 89); }

.player { background: rgb(64, 64, 64); }

When it updates the display, the drawFrame method first removes the old
actor graphics, if any, and then redraws them in their new positions. It may
be tempting to try to reuse the DOM elements for actors, but to make that
work, we would need a lot of additional information flow between the dis-
play code and the simulation code. We’d need to associate actors with DOM
elements, and the drawing code must remove elements when their actors
vanish. Since there will typically be only a handful of actors in the game, re-
drawing all of them is not expensive.

DOMDisplay.prototype.drawFrame = function() {

if (this.actorLayer)

this.wrap.removeChild(this.actorLayer);

this.actorLayer = this.wrap.appendChild(this.drawActors());

this.wrap.className = "game " + (this.level.status || "");

this.scrollPlayerIntoView();

};

By adding the level’s current status as a class name to the wrapper, we
can style the player actor slightly differently when the game is won or lost
by adding a CSS rule that takes effect only when the player has an ancestor
element with a given class.

.lost .player {

background: rgb(160, 64, 64);

}

.won .player {

box-shadow: -4px -7px 8px white, 4px -7px 8px white;

}

After touching lava, the player’s color turns dark red, suggesting scorch-
ing. When the last coin has been collected, we use two blurred white box
shadows, one to the top left and one to the top right, to create a white halo
effect.

We can’t assume that levels always fit in the viewport. That is why the
scrollPlayerIntoView call is needed—it ensures that if the level is protruding
outside the viewport, we scroll that viewport to make sure the player is near
its center. The following CSS gives the game’s wrapping DOM element a
maximum size and ensures that anything that sticks out of the element’s box

262 Chapter 15

is not visible. We also give the outer element a relative position so that the
actors inside it are positioned relative to the level’s top-left corner.

.game {

overflow: hidden;

max-width: 600px;

max-height: 450px;

position: relative;

}

In the scrollPlayerIntoView method, we find the player’s position and
update the wrapping element’s scroll position. We change the scroll position
by manipulating that element’s scrollLeft and scrollTop properties when the
player is too close to the edge.

DOMDisplay.prototype.scrollPlayerIntoView = function() {

var width = this.wrap.clientWidth;

var height = this.wrap.clientHeight;

var margin = width / 3;

// The viewport

var left = this.wrap.scrollLeft, right = left + width;

var top = this.wrap.scrollTop, bottom = top + height;

var player = this.level.player;

var center = player.pos.plus(player.size.times(0.5))

.times(scale);

if (center.x < left + margin)

this.wrap.scrollLeft = center.x - margin;

else if (center.x > right - margin)

this.wrap.scrollLeft = center.x + margin - width;

if (center.y < top + margin)

this.wrap.scrollTop = center.y - margin;

else if (center.y > bottom - margin)

this.wrap.scrollTop = center.y + margin - height;

};

The way the player’s center is found shows how the methods on our
Vector type allow computations with objects to be written in a readable way.
To find the actor’s center, we add its position (its top-left corner) and half
its size. That is the center in level coordinates, but we need it in pixel coordi-
nates, so we then multiply the resulting vector by our display scale.

Next, a series of checks verify that the player position isn’t outside of the
allowed range. Note that sometimes this will set nonsense scroll coordinates,
below zero or beyond the element’s scrollable area. This is okay—the DOM
will constrain them to sane values. Setting scrollLeft to −10 will cause it to
become 0.

Project: A Platform Game 263

It would have been slightly simpler to always try to scroll the player to
the center of the viewport. But this creates a rather jarring effect. As you
are jumping, the view will constantly shift up and down. It is more pleas-
ant to have a “neutral” area in the middle of the screen where you can move
around without causing any scrolling.

Finally, we’ll need a way to clear a displayed level, to be used when the
game moves to the next level or resets a level.

DOMDisplay.prototype.clear = function() {

this.wrap.parentNode.removeChild(this.wrap);

};

We are now able to display our tiny level.

<link rel="stylesheet" href="css/game.css">

<script>

var simpleLevel = new Level(simpleLevelPlan);

var display = new DOMDisplay(document.body, simpleLevel);

</script>

The <link> tag, when used with rel="stylesheet", is a way to load a CSS
file into a page. The file game.css contains the styles necessary for our game.

Motion and Collision
Now we’re at the point where we can start adding motion—the most inter-
esting aspect of the game. The basic approach, taken by most games like
this, is to split time into small steps and, for each step, move the actors by a
distance corresponding to their speed (distance moved per second) multi-
plied by the size of the time step (in seconds).

That is easy. The difficult part is dealing with the interactions between
the elements. When the player hits a wall or floor, they should not simply
move through it. The game must notice when a given motion causes an ob-
ject to hit another object and respond accordingly. For walls, the motion
must be stopped. For coins, the coin must be collected, and so on.

264 Chapter 15

Solving this for the general case is a big task. You can find libraries, usu-
ally called physics engines, that simulate interaction between physical objects
in two or three dimensions. We’ll take a more modest approach in this chap-
ter, handling only collisions between rectangular objects and handling them
in a rather simplistic way.

Before moving the player or a block of lava, we test whether the motion
would take it inside of a nonempty part of the background. If it does, we
simply cancel the motion altogether. The response to such a collision de-
pends on the type of actor—the player will stop, whereas a lava block will
bounce back.

This approach requires our time steps to be rather small since it will
cause motion to stop before the objects actually touch. If the time steps (and
thus the motion steps) are too big, the player would end up hovering a no-
ticeable distance above the ground. Another approach, arguably better but
more complicated, would be to find the exact collision spot and move there.
We will take the simple approach and hide its problems by ensuring the ani-
mation proceeds in small steps.

This method tells us whether a rectangle (specified by a position and a
size) overlaps with any nonempty space on the background grid:

Level.prototype.obstacleAt = function(pos, size) {

var xStart = Math.floor(pos.x);

var xEnd = Math.ceil(pos.x + size.x);

var yStart = Math.floor(pos.y);

var yEnd = Math.ceil(pos.y + size.y);

if (xStart < 0 || xEnd > this.width || yStart < 0)

return "wall";

if (yEnd > this.height)

return "lava";

for (var y = yStart; y < yEnd; y++) {

for (var x = xStart; x < xEnd; x++) {

var fieldType = this.grid[y][x];

if (fieldType) return fieldType;

}

}

};

This method computes the set of grid squares that the body overlaps
with by using Math.floor and Math.ceil on the body’s coordinates. Remember
that grid squares are 1×1 units in size. By rounding the sides of a box up
and down, we get the range of background squares that the box touches.

Project: A Platform Game 265

If the body sticks out of the level, we always return "wall" for the sides
and top and "lava" for the bottom. This ensures that the player dies when
falling out of the world. When the body is fully inside the grid, we loop over
the block of grid squares found by rounding the coordinates and return the
content of the first nonempty square we find.

Collisions between the player and other dynamic actors (coins, mov-
ing lava) are handled after the player moved. When the motion has taken
the player into another actor, the appropriate effect—collecting a coin or
dying—is activated.

This method scans the array of actors, looking for an actor that overlaps
the one given as an argument:

Level.prototype.actorAt = function(actor) {

for (var i = 0; i < this.actors.length; i++) {

var other = this.actors[i];

if (other != actor &&

actor.pos.x + actor.size.x > other.pos.x &&

actor.pos.x < other.pos.x + other.size.x &&

actor.pos.y + actor.size.y > other.pos.y &&

actor.pos.y < other.pos.y + other.size.y)

return other;

}

};

Actors and Actions
The animate method on the Level type gives all actors in the level a chance to
move. Its step argument is the time step in seconds. The keys object contains
information about the arrow keys the player has pressed.

var maxStep = 0.05;

Level.prototype.animate = function(step, keys) {

if (this.status != null)

this.finishDelay -= step;

while (step > 0) {

var thisStep = Math.min(step, maxStep);

266 Chapter 15

this.actors.forEach(function(actor) {

actor.act(thisStep, this, keys);

}, this);

step -= thisStep;

}

};

When the level’s status property has a non-null value (which is the case
when the player has won or lost), we must count down the finishDelay prop-
erty, which tracks the time between the point where winning or losing hap-
pens and the point where we want to stop showing the level.

The while loop cuts the time step we are animating into suitably small
pieces. It ensures that no step larger than maxStep is taken. For example, a
step of 0.12 second would be cut into two steps of 0.05 second and one step
of 0.02.

Actor objects have an act method, which takes as arguments the time
step, the level object, and the keys object. Here is one, for the Lava actor
type, which ignores the keys object:

Lava.prototype.act = function(step, level) {

var newPos = this.pos.plus(this.speed.times(step));

if (!level.obstacleAt(newPos, this.size))

this.pos = newPos;

else if (this.repeatPos)

this.pos = this.repeatPos;

else

this.speed = this.speed.times(-1);

};

It computes a new position by adding the product of the time step and
its current speed to its old position. If no obstacle blocks that new position,
it moves there. If there is an obstacle, the behavior depends on the type of
the lava block—dripping lava has a repeatPos property, to which it jumps
back when it hits something. Bouncing lava simply inverts its speed (multi-
plies it by −1) in order to start moving in the other direction.

Coins use their act method to wobble. They ignore collisions since they
are simply wobbling around inside of their own square, and collisions with
the player will be handled by the player ’s act method.

var wobbleSpeed = 8, wobbleDist = 0.07;

Coin.prototype.act = function(step) {

this.wobble += step * wobbleSpeed;

var wobblePos = Math.sin(this.wobble) * wobbleDist;

this.pos = this.basePos.plus(new Vector(0, wobblePos));

};

Project: A Platform Game 267

The wobble property is updated to track time and then used as an argu-
ment to Math.sin to create a wave, which is used to compute a new position.

That leaves the player itself. Player motion is handled separately per axis
because hitting the floor should not prevent horizontal motion, and hitting
a wall should not stop falling or jumping motion. This method implements
the horizontal part:

var playerXSpeed = 7;

Player.prototype.moveX = function(step, level, keys) {

this.speed.x = 0;

if (keys.left) this.speed.x -= playerXSpeed;

if (keys.right) this.speed.x += playerXSpeed;

var motion = new Vector(this.speed.x * step, 0);

var newPos = this.pos.plus(motion);

var obstacle = level.obstacleAt(newPos, this.size);

if (obstacle)

level.playerTouched(obstacle);

else

this.pos = newPos;

};

The horizontal motion is computed based on the state of the left and
right arrow keys. When a motion causes the player to hit something, the
level’s playerTouched method, which handles things like dying in lava and
collecting coins, is called. Otherwise, the object updates its position.

Vertical motion works in a similar way but for jumping and gravity.

var gravity = 30;

var jumpSpeed = 17;

Player.prototype.moveY = function(step, level, keys) {

this.speed.y += step * gravity;

var motion = new Vector(0, this.speed.y * step);

var newPos = this.pos.plus(motion);

var obstacle = level.obstacleAt(newPos, this.size);

if (obstacle) {

level.playerTouched(obstacle);

if (keys.up && this.speed.y > 0)

this.speed.y = -jumpSpeed;

else

this.speed.y = 0;

} else {

this.pos = newPos;

}

};

268 Chapter 15

At the start of the method, the player is accelerated vertically to account
for gravity. The gravity, jumping speed, and pretty much all other constants
in this game have been set by trial and error. I tested various values until I
found a combination I liked.

Next, we check for obstacles again. If we hit an obstacle, there are two
possible outcomes. When the up arrow is pressed and we are moving down
(meaning the thing we hit is below us), the speed is set to a relatively large,
negative value. This causes the player to jump. If that is not the case, we sim-
ply bumped into something, and the speed is reset to zero.

The actual act method looks like this:

Player.prototype.act = function(step, level, keys) {

this.moveX(step, level, keys);

this.moveY(step, level, keys);

var otherActor = level.actorAt(this);

if (otherActor)

level.playerTouched(otherActor.type, otherActor);

// Losing animation

if (level.status == "lost") {

this.pos.y += step;

this.size.y -= step;

}

};

After moving, the method checks for other actors that the player is col-
liding with and again calls playerTouched when it finds one. This time, it passes
the actor object as the second argument because if the other actor is a coin,
playerTouched needs to know which coin is being collected.

Finally, when the player dies (touches lava), we set up a little animation
that causes them to “shrink” or “sink” down by reducing the height of the
player object.

And here is the method that handles collisions between the player and
other objects:

Level.prototype.playerTouched = function(type, actor) {

if (type == "lava" && this.status == null) {

this.status = "lost";

this.finishDelay = 1;

} else if (type == "coin") {

this.actors = this.actors.filter(function(other) {

return other != actor;

});

if (!this.actors.some(function(actor) {

return actor.type == "coin";

})) {

Project: A Platform Game 269

this.status = "won";

this.finishDelay = 1;

}

}

};

When lava is touched, the game’s status is set to "lost". When a coin is
touched, that coin is removed from the array of actors, and if it was the last
one, the game’s status is set to "won".

This gives us a level that can actually be animated. All that is missing
now is the code that drives the animation.

Tracking Keys
For a game like this, we do not want keys to take effect once per keypress.
Rather, we want their effect (moving the player figure) to continue happen-
ing as long as they are pressed.

We need to set up a key handler that stores the current state of the left,
right, and up arrow keys. We will also want to call preventDefault for those
keys so that they don’t end up scrolling the page.

The following function, when given an object with key codes as property
names and key names as values, will return an object that tracks the current
position of those keys. It registers event handlers for "keydown" and "keyup"

events and, when the key code in the event is present in the set of codes that
it is tracking, updates the object.

var arrowCodes = {37: "left", 38: "up", 39: "right"};

function trackKeys(codes) {

var pressed = Object.create(null);

function handler(event) {

if (codes.hasOwnProperty(event.keyCode)) {

var down = event.type == "keydown";

pressed[codes[event.keyCode]] = down;

event.preventDefault();

}

}

addEventListener("keydown", handler);

addEventListener("keyup", handler);

return pressed;

}

Note how the same handler function is used for both event types. It
looks at the event object’s type property to determine whether the key state
should be updated to true ("keydown") or false ("keyup").

270 Chapter 15

Running the Game
The requestAnimationFrame function, which we saw in Chapter 13, provides
a good way to animate a game. But its interface is quite primitive—using it
requires us to track the time at which our function was called the last time
around and call requestAnimationFrame again after every frame.

Let’s define a helper function that wraps those boring parts in a con-
venient interface and allows us to simply call runAnimation, giving it a func-
tion that expects a time difference as an argument and draws a single frame.
When the frame function returns the value false, the animation stops.

function runAnimation(frameFunc) {

var lastTime = null;

function frame(time) {

var stop = false;

if (lastTime != null) {

var timeStep = Math.min(time - lastTime, 100) / 1000;

stop = frameFunc(timeStep) === false;

}

lastTime = time;

if (!stop)

requestAnimationFrame(frame);

}

requestAnimationFrame(frame);

}

I have set a maximum frame step of 100 milliseconds (one-tenth
of a second). When the browser tab or window with our page is hidden,
requestAnimationFrame calls will be suspended until the tab or window is shown
again. In this case, the difference between lastTime and time will be the en-
tire time in which the page was hidden. Advancing the game by that much
in a single step will look silly and might be a lot of work (remember the time-
splitting in the animate method).

The function also converts the time steps to seconds, which are an easier
quantity to think about than milliseconds.

The runLevel function takes a Level object, a constructor for a display,
and, optionally, a function. It displays the level (in document.body) and lets
the user play through it. When the level is finished (lost or won), runLevel
clears the display, stops the animation, and, if an andThen function was given,
calls that function with the level’s status.

var arrows = trackKeys(arrowCodes);

function runLevel(level, Display, andThen) {

var display = new Display(document.body, level);

runAnimation(function(step) {

level.animate(step, arrows);

display.drawFrame(step);

Project: A Platform Game 271

if (level.isFinished()) {

display.clear();

if (andThen)

andThen(level.status);

return false;

}

});

}

A game is a sequence of levels. Whenever the player dies, the current
level is restarted. When a level is completed, we move on to the next level.
This can be expressed by the following function, which takes an array of
level plans (arrays of strings) and a display constructor:

function runGame(plans, Display) {

function startLevel(n) {

runLevel(new Level(plans[n]), Display, function(status) {

if (status == "lost")

startLevel(n);

else if (n < plans.length - 1)

startLevel(n + 1);

else

console.log("You win!");

});

}

startLevel(0);

}

These functions show a peculiar style of programming. Both runAnimation

and runLevel are higher-order functions but are not in the style we saw in
Chapter 5. The function argument is used to arrange things to happen at
some time in the future, and neither of the functions returns anything use-
ful. Their task is, in a way, to schedule actions. Wrapping these actions in
functions gives us a way to store them as a value so that they can be called
at the right moment.

This programming style is usually called asynchronous programming.
Event handling is also an instance of this style, and we will see much more
of it when working with tasks that can take an arbitrary amount of time, such
as network requests in Chapter 17 and input and output in general in Chap-
ter 20.

272 Chapter 15

There is a set of level plans available in the GAME_LEVELS variable (down-
loadable from http://eloquentjavascript.net/code#15). This page feeds them to
runGame, starting an actual game:

<link rel="stylesheet" href="css/game.css">

<script>

runGame(GAME_LEVELS, DOMDisplay);

</script>

Exercises

Game Over
It’s traditional for platform games to have the player start with a limited
number of lives and subtract one life each time they die. When the player
is out of lives, the game restarts from the beginning.

Adjust runGame to implement lives. Have the player start with three.

Pausing the Game
Make it possible to pause (suspend) and unpause the game by pressing the
ESC key.

This can be done by changing the runLevel function to use another key-
board event handler and interrupting or resuming the animation whenever
the ESC key is hit.

The runAnimation interface may not look like it is suitable for this at first
glance, but it is, if you rearrange the way runLevel calls it.

When you have that working, there is something else you could try. The
way we have been registering keyboard event handlers is somewhat problem-
atic. The arrows object is currently a global variable, and its event handlers
are kept around even when no game is running. You could say they leak out
of our system. Extend trackKeys to provide a way to unregister its handlers,
and then change runLevel to register its handlers when it starts and unregis-
ter them again when it is finished.

Project: A Platform Game 273

http://eloquentjavascript.net/code#{}15

“Drawing is deception.”

— M.C. Escher, cited by Bruno Ernst

in The Magic Mirror of M.C. Escher

16
DRAWING ON CANVAS

Browsers give us several ways to display graphics. The
simplest way is to use styles to position and color reg-
ular DOM elements. This can get you quite far, as the
game in the previous chapter showed. By adding par-
tially transparent background images to the nodes, we
can make them look exactly the way we want. It is even
possible to rotate or skew nodes by using the transform
style.

But we’d be using the DOM for something that it wasn’t originally de-
signed for. Some tasks, such as drawing a line between arbitrary points, are
extremely awkward to do with regular HTML elements.

There are two alternatives. The first is DOM-based but utilizes Scalable

Vector Graphics (SVG), rather than HTML elements. Think of SVG as a dia-
lect for describing documents that focuses on shapes rather than text. You
can embed an SVG document in an HTML document, or you can include it
through an tag.

The second alternative is called a canvas. A canvas is a single DOM ele-
ment that encapsulates a picture. It provides a programming interface for
drawing shapes onto the space taken up by the node. The main difference
between a canvas and an SVG picture is that in SVG the original description
of the shapes is preserved so that they can be moved or resized at any time.

A canvas, on the other hand, converts the shapes to pixels (colored dots on
a raster) as soon as they are drawn and does not remember what these pixels
represent. The only way to move a shape on a canvas is to clear the canvas
(or the part of the canvas around the shape) and redraw it with the shape in
a new position.

SVG
This book will not go into SVG in detail, but I will briefly explain how it
works. At the end of the chapter, I’ll come back to the trade-offs that you
must consider when deciding which drawing mechanism is appropriate for
a given application.

This is an HTML document with a simple SVG picture in it:

<p>Normal HTML here.</p>

<svg xmlns="http://www.w3.org/2000/svg">

<circle r="50" cx="50" cy="50" fill="red"/>

<rect x="120" y="5" width="90" height="90"

stroke="blue" fill="none"/>

</svg>

The xmlns attribute changes an element (and its children) to a different
XML namespace. This namespace, identified by a URL, specifies the dialect
that we are currently speaking. The <circle> and <rect> tags, which do not
exist in HTML, do have a meaning in SVG—they draw shapes using the style
and position specified by their attributes.

The document is displayed like this:

Normal HTML here.

These tags create DOM elements, just like HTML tags. For example, this
changes the <circle> element to be colored cyan instead:

var circle = document.querySelector("circle");

circle.setAttribute("fill", "cyan");

276 Chapter 16

The Canvas Element
Canvas graphics can be drawn onto a <canvas> element. You can give such an
element width and height attributes to determine its size in pixels.

A new canvas is empty, meaning it is entirely transparent and thus shows
up simply as empty space in the document.

The <canvas> tag is intended to support different styles of drawing. To
get access to an actual drawing interface, we first need to create a context,
which is an object whose methods provide the drawing interface. There
are currently two widely supported drawing styles: "2d" for two-dimensional
graphics and "webgl" for three-dimensional graphics through the OpenGL
interface.

This book won’t discuss WebGL. We stick to two dimensions. But if you
are interested in three-dimensional graphics, I do encourage you to look
into WebGL. It provides a very direct interface to modern graphics hard-
ware and thus allows you to render even complicated scenes efficiently from
JavaScript.

A context is created through the getContext method on the <canvas>

element.

<p>Before canvas.</p>

<canvas width="120" height="60"></canvas>

<p>After canvas.</p>

<script>

var canvas = document.querySelector("canvas");

var context = canvas.getContext("2d");

context.fillStyle = "red";

context.fillRect(10, 10, 100, 50);

</script>

After creating the context object, the example draws a red rectangle
100 pixels wide and 50 pixels high, with its top-left corner at coordinates
(10,10).

Before canvas.

After canvas.

Just like in HTML (and SVG), the coordinate system that the canvas
uses puts (0,0) at the top-left corner, and the positive y-axis goes down from
there. So (10,10) is 10 pixels below and to the right of the top-left corner.

Drawing on Canvas 277

Filling and Stroking
In the canvas interface, a shape can be filled, meaning its area is given a cer-
tain color or pattern, or it can be stroked, which means a line is drawn along
its edge. The same terminology is used by SVG.

The fillRect method fills a rectangle. It takes first the x- and y-coordinates
of the rectangle’s top-left corner, then its width, and then its height. A simi-
lar method, strokeRect, draws the outline of a rectangle.

Neither method takes any further parameters. The color of the fill,
thickness of the stroke, and so on are not determined by an argument to
the method (as you might justly expect) but rather by properties of the con-
text object.

Setting fillStyle changes the way shapes are filled. It can be set to a
string that specifies a color, and any color understood by CSS can also be
used here.

The strokeStyle property works similarly but determines the color used
for a stroked line. The width of that line is determined by the lineWidth prop-
erty, which may contain any positive number.

<canvas></canvas>

<script>

var cx = document.querySelector("canvas").getContext("2d");

cx.strokeStyle = "blue";

cx.strokeRect(5, 5, 50, 50);

cx.lineWidth = 5;

cx.strokeRect(135, 5, 50, 50);

</script>

This code draws two blue squares, using a thicker line for the
second one.

When no width or height attribute is specified, as in the previous
example, a canvas element gets a default width of 300 pixels and height
of 150 pixels.

Paths
A path is a sequence of lines. The 2D canvas interface takes a peculiar ap-
proach to describing such a path. It is done entirely through side effects.
Paths are not values that can be stored and passed around. Instead, if you
want to do something with a path, you make a sequence of method calls to
describe its shape.

278 Chapter 16

<canvas></canvas>

<script>

var cx = document.querySelector("canvas").getContext("2d");

cx.beginPath();

for (var y = 10; y < 100; y += 10) {

cx.moveTo(10, y);

cx.lineTo(90, y);

}

cx.stroke();

</script>

The path described by the previous program looks like this:

This example creates a path with a number of horizontal line segments
and then strokes it using the stroke method. Each segment created with
lineTo starts at the path’s current position. That position is usually the end
of the last segment, unless moveTo was called. In that case, the next segment
would start at the position passed to moveTo.

When filling a path (using the fill method), each shape is filled sepa-
rately. A path can contain multiple shapes—each moveTo motion starts a new
one. But the path needs to be closed (meaning its start and end are in the
same position) before it can be filled. If the path is not already closed, a line
is added from its end to its start, and the shape enclosed by the completed
path is filled.

<canvas></canvas>

<script>

var cx = document.querySelector("canvas").getContext("2d");

cx.beginPath();

cx.moveTo(50, 10);

cx.lineTo(10, 70);

cx.lineTo(90, 70);

cx.fill();

</script>

This example draws a filled triangle. Note that only two of the triangle’s
sides are explicitly drawn. The third, from the bottom-right corner back to
the top, is implied and won’t be there when you stroke the path.

Drawing on Canvas 279

You could also use the closePath method to explicitly close a path by
adding an actual line segment back to the path’s start. This segment is

drawn when stroking the path.

Curves
A path may also contain curved lines. These are, unfortunately, a bit more
involved to draw than straight lines.

The quadraticCurveTo method draws a curve to a given point. To deter-
mine the curvature of the line, the method is given a control point as well
as a destination point. Imagine this control point as attracting the line, giv-
ing the line its curve. The line won’t go through the control point. Rather,
the direction of the line at its start and end points will be such that it aligns
with the line from there to the control point. The following example illus-
trates this:

<canvas></canvas>

<script>

var cx = document.querySelector("canvas").getContext("2d");

cx.beginPath();

cx.moveTo(10, 90);

// control=(60,10) goal=(90,90)

cx.quadraticCurveTo(60, 10, 90, 90);

cx.lineTo(60, 10);

cx.closePath();

cx.stroke();

</script>

The program produces a path that looks like this:

We draw a quadratic curve from the left to the right, with (60,10) as
control point, and then draw two line segments going through that con-
trol point and back to the start of the line. The result somewhat resembles
a Star Trek insignia. You can see the effect of the control point: the lines

280 Chapter 16

leaving the lower corners start off in the direction of the control point and
then curve toward their target.

The bezierCurve method draws a similar kind of curve. Instead of a single
control point, this one has two—one for each of the line’s endpoints. Here
is a similar sketch to illustrate the behavior of such a curve:

<canvas></canvas>

<script>

var cx = document.querySelector("canvas").getContext("2d");

cx.beginPath();

cx.moveTo(10, 90);

// control1=(10,10) control2=(90,10) goal=(50,90)

cx.bezierCurveTo(10, 10, 90, 10, 50, 90);

cx.lineTo(90, 10);

cx.lineTo(10, 10);

cx.closePath();

cx.stroke();

</script>

The two control points specify the direction at both ends of the curve.
The further they are away from their corresponding point, the more the
curve will “bulge” in that direction.

Such curves can be hard to work with—it’s not always clear how to find
the control points that provide the shape you are looking for. Sometimes
you can compute them, and sometimes you’ll just have to find a suitable
value by trial and error.

Arcs—fragments of a circle—are easier to reason about. The arcTo

method takes no less than five arguments. The first four arguments act
somewhat like the arguments to quadraticCurveTo. The first pair provides a
sort of control point, and the second pair gives the line’s destination. The
fifth argument provides the radius of the arc. The method will conceptually
project a corner—a line going to the control point and then to the desti-
nation point—and round the corner’s point so that it forms part of a circle
with the given radius. The arcTo method then draws the rounded part, as
well as a line from the starting position to the start of the rounded part.

<canvas></canvas>

<script>

var cx = document.querySelector("canvas").getContext("2d");

cx.beginPath();

Drawing on Canvas 281

cx.moveTo(10, 10);

// control=(90,10) goal=(90,90) radius=20

cx.arcTo(90, 10, 90, 90, 20);

cx.moveTo(10, 10);

// control=(90,10) goal=(90,90) radius=80

cx.arcTo(90, 10, 90, 90, 80);

cx.stroke();

</script>

This produces two rounded corners with different radii.

The arcTo method won’t draw the line from the end of the rounded part
to the goal position, though the word to in its name would suggest it does.
You can follow up with a call to lineTo with the same goal coordinates to add
that part of the line.

To draw a circle, you could use four calls to arcTo (each turning 90 de-
grees). But the arc method provides a simpler way. It takes a pair of coordi-
nates for the arc’s center, a radius, and then a start and end angle.

Those last two parameters make it possible to draw only part of circle.
The angles are measured in radians, not degrees. This means a full circle
has an angle of 2π, or 2 * Math.PI, which is about 6.28. The angle starts count-
ing at the point to the right of the circle’s center and goes clockwise from
there. You can use a start of 0 and an end bigger than 2π (say, 7) to draw a
full circle.

<canvas></canvas>

<script>

var cx = document.querySelector("canvas").getContext("2d");

cx.beginPath();

// center=(50,50) radius=40 angle=0 to 7

cx.arc(50, 50, 40, 0, 7);

// center=(150,50) radius=40 angle=0 to 1
2π

cx.arc(150, 50, 40, 0, 0.5 * Math.PI);

cx.stroke();

</script>

The resulting picture contains a line from the left of the full circle (first
call to arc) to the left of the quarter-circle (second call). Like other path-
drawing methods, a line drawn with arc is connected to the previous path
segment by default. You’d have to call moveTo or start a new path if you want
to avoid this.

282 Chapter 16

Drawing a Pie Chart
Imagine you’ve just taken a job at EconomiCorp, Inc., and your first assign-
ment is to draw a pie chart of their customer satisfaction survey results.

The results variable contains an array of objects that represent the sur-
vey responses.

var results = [

{name: "Satisfied", count: 1043, color: "lightblue"},

{name: "Neutral", count: 563, color: "lightgreen"},

{name: "Unsatisfied", count: 510, color: "pink"},

{name: "No comment", count: 175, color: "silver"}

];

To draw a pie chart, we draw a number of pie slices, each made up
of an arc and a pair of lines to the center of that arc. We can compute the
angle taken up by each arc by dividing a full circle (2π) by the total number
of responses and then multiplying that number (the angle per response) by
the number of people who picked a given choice.

<canvas width="200" height="200"></canvas>

<script>

var cx = document.querySelector("canvas").getContext("2d");

var total = results.reduce(function(sum, choice) {

return sum + choice.count;

}, 0);

// Start at the top

var currentAngle = -0.5 * Math.PI;

results.forEach(function(result) {

var sliceAngle = (result.count / total) * 2 * Math.PI;

cx.beginPath();

// center=100,100, radius=100

// from current angle, clockwise by slice's angle

cx.arc(100, 100, 100,

currentAngle, currentAngle + sliceAngle);

currentAngle += sliceAngle;

cx.lineTo(100, 100);

cx.fillStyle = result.color;

cx.fill();

});

</script>

Drawing on Canvas 283

This draws the following chart:

But a chart that doesn’t tell us what it means isn’t very helpful. We need
a way to draw text to the canvas.

Text
A 2D canvas drawing context provides the methods fillText and strokeText.
The latter can be useful for outlining letters, but usually fillText is what you
need. It will fill the given text with the current fillColor.

<canvas></canvas>

<script>

var cx = document.querySelector("canvas").getContext("2d");

cx.font = "28px Georgia";

cx.fillStyle = "fuchsia";

cx.fillText("I can draw text, too!", 10, 50);

</script>

You can specify the size, style, and font of the text with the font property.
This example just gives a font size and family name. You can add italic or
bold to the start of the string to select a style.

The last two arguments to fillText (and strokeText) provide the position
at which the font is drawn. By default, they indicate the position of the start
of the text’s alphabetic baseline, which is the line that letters “stand” on, not
counting hanging parts in letters like j or p. You can change the horizontal
position by setting the textAlign property to "end" or "center" and the verti-
cal position by setting textBaseline to "top", "middle", or "bottom".

We will come back to our pie chart, and the problem of labeling the
slices, in the exercises at the end of the chapter.

Images
In computer graphics, a distinction is often made between vector graph-
ics and bitmap graphics. The first is what we have been doing so far in this
chapter—specifying a picture by giving a logical description of shapes. Bitmap
graphics, on the other hand, don’t specify actual shapes but rather work with
pixel data (rasters of colored dots).

284 Chapter 16

The drawImage method allows us to draw pixel data onto a canvas. This
pixel data can originate from an element or from another canvas, and
neither has to be visible in the actual document. The following example cre-
ates a detached element and loads an image file into it. But it cannot
immediately start drawing from this picture because the browser may not
have fetched it yet. To deal with this, we register a "load" event handler and
do the drawing after the image has loaded.

<canvas></canvas>

<script>

var cx = document.querySelector("canvas").getContext("2d");

var img = document.createElement("img");

img.src = "img/hat.png";

img.addEventListener("load", function() {

for (var x = 10; x < 200; x += 30)

cx.drawImage(img, x, 10);

});

</script>

By default, drawImage will draw the image at its original size. You can also
give it two additional arguments to dictate a different width and height.

When drawImage is given nine arguments, it can be used to draw only
a fragment of an image. The second through fifth arguments indicate the
rectangle (x, y, width, and height) in the source image that should be copied,
and the sixth to ninth arguments give the rectangle (on the canvas) into
which it should be copied.

This can be used to pack multiple sprites (image elements) into a single
image file and then draw only the part you need. For example, we have this
picture containing a game character in multiple poses:

By alternating which pose we draw, we can show an animation that looks
like a walking character.

To animate the picture on a canvas, the clearRect method is useful. It
resembles fillRect, but instead of coloring the rectangle, it makes it trans-
parent, removing the previously drawn pixels.

We know that each sprite, each subpicture, is 24 pixels wide and 30 pix-
els high. The following code loads the image and then sets up an interval
(repeated timer) to draw the next frame:

<canvas></canvas>

<script>

var cx = document.querySelector("canvas").getContext("2d");

var img = document.createElement("img");

img.src = "img/player.png";

var spriteW = 24, spriteH = 30;

Drawing on Canvas 285

img.addEventListener("load", function() {

var cycle = 0;

setInterval(function() {

cx.clearRect(0, 0, spriteW, spriteH);

cx.drawImage(img,

// source rectangle

cycle * spriteW, 0, spriteW, spriteH,

// destination rectangle

0, 0, spriteW, spriteH);

cycle = (cycle + 1) % 8;

}, 120);

});

</script>

The cycle variable tracks our position in the animation. Each frame, it is
incremented and then clipped back to the 0 to 7 range by using the remain-
der operator. This variable is then used to compute the x-coordinate that
the sprite for the current pose has in the picture.

Transformation
But what if we want our character to walk to the left instead of to the right?
We could add another set of sprites, of course. But we can also instruct the
canvas to draw the picture the other way round.

Calling the scale method will cause anything drawn after it to be scaled.
This method takes two parameters, one to set a horizontal scale and one to
set a vertical scale.

<canvas></canvas>

<script>

var cx = document.querySelector("canvas").getContext("2d");

cx.scale(3, .5);

cx.beginPath();

cx.arc(50, 50, 40, 0, 7);

cx.lineWidth = 3;

cx.stroke();

</script>

Due to the call to scale, the circle is drawn three times as wide and half
as high.

Scaling will cause everything about the drawn image, including the line
width, to be stretched out or squeezed together as specified. Scaling by a

286 Chapter 16

negative amount will flip the picture around. The flipping happens around
point (0,0), which means it will also flip the direction of the coordinate sys-
tem. When a horizontal scaling of −1 is applied, a shape drawn at x position
100 will end up at what used to be position −100.

So to turn a picture around, we can’t simply add cx.scale(-1, 1) before
the call to drawImage since that would move our picture outside of the canvas,
where it won’t be visible. You could adjust the coordinates given to drawImage

to compensate for this by drawing the image at x position −50 instead of 0.
Another solution, which doesn’t require the code that does the drawing to
know about the scale change, is to adjust the axis around which the scaling
happens.

There are several other methods besides scale that influence the coordi-
nate system for a canvas. You can rotate subsequently drawn shapes with the
rotate method and move them with the translate method. The interesting—
and confusing—thing is that these transformations stack, meaning that each
one happens relative to the previous transformations.

So if we translate by 10 horizontal pixels twice, everything will be drawn
20 pixels to the right. If we first move the center of the coordinate system
to (50,50) and then rotate by 20 degrees (0.1π in radians), that rotation will
happen around point (50,50).

translate(50, 50)

rotate(0.1*Math.PI)

rotate(0.1*Math.PI)

translate(50, 50)

But if we first rotate by 20 degrees and then translate by (50,50), the
translation will happen in the rotated coordinate system and thus produce
a different orientation. The order in which transformations are applied
matters.

To flip a picture around the vertical line at a given x position, we can do
the following:

function flipHorizontally(context, around) {

context.translate(around, 0);

context.scale(-1, 1);

context.translate(-around, 0);

}

Drawing on Canvas 287

We move the y-axis to where we want our mirror to be, apply the mir-
roring, and finally move the y-axis back to its proper place in the mirrored
universe. The following picture explains why this works:

mirror

1 23 4

This shows the coordinate systems before and after mirroring across
the central line. If we draw a triangle at a positive x position, it would, by
default, be in the place where triangle 1 is. A call to flipHorizontally first
does a translation to the right, which gets us to triangle 2. It then scales, flip-
ping the triangle back to position 3. This is not where it should be, if it were
mirrored in the given line. The second translate call fixes this—it “cancels”
the initial translation and makes triangle 4 appear exactly where it should.

We can now draw a mirrored character at position (100,0) by flipping
the world around the character’s vertical center.

<canvas></canvas>

<script>

var cx = document.querySelector("canvas").getContext("2d");

var img = document.createElement("img");

img.src = "img/player.png";

var spriteW = 24, spriteH = 30;

img.addEventListener("load", function() {

flipHorizontally(cx, 100 + spriteW / 2);

cx.drawImage(img, 0, 0, spriteW, spriteH,

100, 0, spriteW, spriteH);

});

</script>

Storing and Clearing Transformations
Transformations stick around. Everything else we draw after drawing that
mirrored character would also be mirrored. That might be a problem.

It is possible to save the current transformation, do some drawing and
transforming, and then restore the old transformation. This is usually the
proper thing to do for a function that needs to temporarily transform the co-
ordinate system. First, we save whatever transformation the code that called
the function was using. Then, the function does its thing (on top of the ex-
isting transformation), possibly adding more transformations. And finally,
we revert to the transformation that we started with.

288 Chapter 16

The save and restore methods on the 2D canvas context perform this
kind of transformation management. They conceptually keep a stack of
transformation states. When you call save, the current state is pushed onto
the stack, and when you call restore, the state on top of the stack is taken off
and used as the context’s current transformation.

The branch function in the following example illustrates what you can
do with a function that changes the transformation and then calls another
function (in this case itself), which continues drawing with the given trans-
formation.

This function draws a treelike shape by drawing a line, moving the cen-
ter of the coordinate system to the end of the line, and calling itself twice—
first rotated to the left and then rotated to the right. Every call reduces the
length of the branch drawn, and the recursion stops when the length drops
below 8.

<canvas width="600" height="300"></canvas>

<script>

var cx = document.querySelector("canvas").getContext("2d");

function branch(length, angle, scale) {

cx.fillRect(0, 0, 1, length);

if (length < 8) return;

cx.save();

cx.translate(0, length);

cx.rotate(-angle);

branch(length * scale, angle, scale);

cx.rotate(2 * angle);

branch(length * scale, angle, scale);

cx.restore();

}

cx.translate(300, 0);

branch(60, 0.5, 0.8);

</script>

The result is a simple fractal.

Drawing on Canvas 289

If the calls to save and restore were not there, the second recursive call
to branch would end up with the position and rotation created by the first
call. It wouldn’t be connected to the current branch but rather to the inner-
most, rightmost branch drawn by the first call. The resulting shape might
also be interesting, but it is definitely not a tree.

Back to the Game
We now know enough about canvas drawing to start working on a canvas-
based display system for the game from the previous chapter. The new dis-
play will no longer be showing just colored boxes. Instead, we’ll use drawImage

to draw pictures that represent the game’s elements.
We will define an object type CanvasDisplay, supporting the same inter-

face as DOMDisplay from Chapter 15, namely, the methods drawFrame and clear.
This object keeps a little more information than DOMDisplay. Rather than

using the scroll position of its DOM element, it tracks its own viewport, which
tells us what part of the level we are currently looking at. It also tracks time
and uses that to decide which animation frame to use. And finally, it keeps
a flipPlayer property so that even when the player is standing still, it keeps
facing the direction it last moved in.

function CanvasDisplay(parent, level) {

this.canvas = document.createElement("canvas");

this.canvas.width = Math.min(600, level.width * scale);

this.canvas.height = Math.min(450, level.height * scale);

parent.appendChild(this.canvas);

this.cx = this.canvas.getContext("2d");

this.level = level;

this.animationTime = 0;

this.flipPlayer = false;

this.viewport = {

left: 0,

top: 0,

width: this.canvas.width / scale,

height: this.canvas.height / scale

};

this.drawFrame(0);

}

CanvasDisplay.prototype.clear = function() {

this.canvas.parentNode.removeChild(this.canvas);

};

290 Chapter 16

The animationTime counter is the reason we passed the step size to
drawFrame in Chapter 15, even though DOMDisplay does not use it. Our
new drawFrame function uses the counter to track time so that it can switch
between animation frames based on the current time.

CanvasDisplay.prototype.drawFrame = function(step) {

this.animationTime += step;

this.updateViewport();

this.clearDisplay();

this.drawBackground();

this.drawActors();

};

Other than tracking time, the method updates the viewport for the cur-
rent player position, fills the whole canvas with a background color, and
draws the background and actors onto that. Note that this is different from
the approach in Chapter 15, where we drew the background once and
scrolled the wrapping DOM element to move it.

Because shapes on a canvas are just pixels, after we draw them, there is
no way to move them (or remove them). The only way to update the canvas
display is to clear it and redraw the scene.

The updateViewport method is similar to DOMDisplay’s scrollPlayerIntoView

method. It checks whether the player is too close to the edge of the screen
and moves the viewport when this is the case.

CanvasDisplay.prototype.updateViewport = function() {

var view = this.viewport, margin = view.width / 3;

var player = this.level.player;

var center = player.pos.plus(player.size.times(0.5));

if (center.x < view.left + margin)

view.left = Math.max(center.x - margin, 0);

else if (center.x > view.left + view.width - margin)

view.left = Math.min(center.x + margin - view.width,

this.level.width - view.width);

if (center.y < view.top + margin)

view.top = Math.max(center.y - margin, 0);

else if (center.y > view.top + view.height - margin)

view.top = Math.min(center.y + margin - view.height,

this.level.height - view.height);

};

The calls to Math.max and Math.min ensure that the viewport does not end
up showing space outside of the level. Math.max(x, 0) ensures that the result-
ing number is not less than zero. Math.min, similarly, ensures a value stays be-
low a given bound.

Drawing on Canvas 291

When clearing the display, we’ll use a slightly different color depending
on whether the game is won (brighter) or lost (darker).

CanvasDisplay.prototype.clearDisplay = function() {

if (this.level.status == "won")

this.cx.fillStyle = "rgb(68, 191, 255)";

else if (this.level.status == "lost")

this.cx.fillStyle = "rgb(44, 136, 214)";

else

this.cx.fillStyle = "rgb(52, 166, 251)";

this.cx.fillRect(0, 0,

this.canvas.width, this.canvas.height);

};

To draw the background, we run through the tiles that are visible in
the current viewport, using the same trick used in obstacleAt in the previous
chapter.

var otherSprites = document.createElement("img");

otherSprites.src = "img/sprites.png";

CanvasDisplay.prototype.drawBackground = function() {

var view = this.viewport;

var xStart = Math.floor(view.left);

var xEnd = Math.ceil(view.left + view.width);

var yStart = Math.floor(view.top);

var yEnd = Math.ceil(view.top + view.height);

for (var y = yStart; y < yEnd; y++) {

for (var x = xStart; x < xEnd; x++) {

var tile = this.level.grid[y][x];

if (tile == null) continue;

var screenX = (x - view.left) * scale;

var screenY = (y - view.top) * scale;

var tileX = tile == "lava" ? scale : 0;

this.cx.drawImage(otherSprites,

tileX, 0, scale, scale,

screenX, screenY, scale, scale);

}

}

};

Tiles that are not empty (null) are drawn with drawImage. The otherSprites

image contains the pictures used for elements other than the player. It con-
tains, from left to right, the wall tile, the lava tile, and the sprite for a coin.

292 Chapter 16

Background tiles are 20 by 20 pixels, since we will use the same scale
that we used in DOMDisplay. Thus, the offset for lava tiles is 20 (the value of
the scale variable), and the offset for walls is 0.

We don’t bother waiting for the sprite image to load. Calling drawImage

with an image that hasn’t been loaded yet will simply do nothing. Thus, we
might fail to draw the game properly for the first few frames, while the im-
age is still loading, but that is not a serious problem. Since we keep updating
the screen, the correct scene will appear as soon as the loading finishes.

The walking character shown earlier will be used to represent the player.
The code that draws it needs to pick the right sprite and direction based on
the player’s current motion. The first eight sprites contain a walking anima-
tion. When the player is moving along a floor, we cycle through them based
on the display’s animationTime property. This is measured in seconds, and
we want to switch frames 12 times per second, so the time is multiplied by
12 first. When the player is standing still, we draw the ninth sprite. During
jumps, which are recognized by the fact that the vertical speed is not zero,
we use the tenth, rightmost sprite.

Because the sprites are slightly wider than the player object—24 instead
of 16 pixels, to allow some space for feet and arms—the method has to ad-
just the x-coordinate and width by a given amount (playerXOverlap).

var playerSprites = document.createElement("img");

playerSprites.src = "img/player.png";

var playerXOverlap = 4;

CanvasDisplay.prototype.drawPlayer = function(x, y, width, height) {

var sprite = 8, player = this.level.player;

width += playerXOverlap * 2;

x -= playerXOverlap;

if (player.speed.x != 0)

this.flipPlayer = player.speed.x < 0;

if (player.speed.y != 0)

sprite = 9;

else if (player.speed.x != 0)

sprite = Math.floor(this.animationTime * 12) % 8;

this.cx.save();

if (this.flipPlayer)

flipHorizontally(this.cx, x + width / 2);

this.cx.drawImage(playerSprites,

sprite * width, 0, width, height,

x, y, width, height);

this.cx.restore();

};

Drawing on Canvas 293

The drawPlayer method is called by drawActors, which is responsible for
drawing all the actors in the game.

CanvasDisplay.prototype.drawActors = function() {

this.level.actors.forEach(function(actor) {

var width = actor.size.x * scale;

var height = actor.size.y * scale;

var x = (actor.pos.x - this.viewport.left) * scale;

var y = (actor.pos.y - this.viewport.top) * scale;

if (actor.type == "player") {

this.drawPlayer(x, y, width, height);

} else {

var tileX = (actor.type == "coin" ? 2 : 1) * scale;

this.cx.drawImage(otherSprites,

tileX, 0, width, height,

x, y, width, height);

}

}, this);

};

When drawing something that is not the player, we look at its type to
find the offset of the correct sprite. The lava tile is found at offset 20, and
the coin sprite is found at 40 (two times scale).

We have to subtract the viewport’s position when computing the actor’s
position since (0,0) on our canvas corresponds to the top left of the view-
port, not the top left of the level. We could also have used translate for this.
Either way works.

That concludes the new display system. The resulting game looks some-
thing like this:

294 Chapter 16

Choosing a Graphics Interface
Whenever you need to generate graphics in the browser, you can choose
between plain HTML, SVG, and canvas. There is no single best approach
that works in all situations. Each option has strengths and weaknesses.

Plain HTML has the advantage of being simple. It also integrates well
with text. Both SVG and canvas allow you to draw text, but they won’t help
you position that text or wrap it when it takes up more than one line. In an
HTML-based picture, it is easy to include blocks of text.

SVG can be used to produce crisp graphics that look good at any zoom
level. It is more difficult to use than plain HTML but also much more
powerful.

Both SVG and HTML build up a data structure (the DOM) that repre-
sents the picture. This makes it possible to modify elements after they are
drawn. If you need to repeatedly change a small part of a big picture in re-
sponse to what the user is doing or as part of an animation, doing it in a can-
vas can be needlessly expensive. The DOM also allows us to register mouse
event handlers on every element in the picture (even on shapes drawn with
SVG). You can’t do that with canvas.

But canvas’s pixel-oriented approach can be an advantage when drawing
a huge amount of tiny elements. The fact that it does not build up a data
structure but only repeatedly draws onto the same pixel surface gives canvas
a lower cost per shape.

There are also effects, such as rendering a scene one pixel at a time
(for example, using a ray tracer) or postprocessing an image with JavaScript
(blurring or distorting it), that can only be realistically handled by a pixel-
based technique.

In some cases, you may want to combine several of these techniques.
For example, you might draw a graph with SVG or canvas but show textual
information by positioning an HTML element on top of the picture.

For nondemanding applications, it really doesn’t matter much which in-
terface you choose. The second display we built for our game in this chapter
could have been implemented using any of these three graphics technolo-
gies since it does not need to draw text, handle mouse interaction, or work
with an extraordinarily large amount of elements.

Summary
In this chapter, we discussed techniques for drawing graphics in the browser,
focusing on the <canvas> element.

A canvas node represents an area in a document that our program may
draw on. This drawing is done through a drawing context object, created
with the getContext method.

The 2D drawing interface allows us to fill and stroke various shapes.
The context’s fillStyle property determines how shapes are filled. The
strokeStyle and lineWidth properties control the way lines are drawn.

Drawing on Canvas 295

Rectangles and pieces of text can be drawn with a single method call.
The fillRect and strokeRect methods draw rectangles, and the fillText and
strokeText methods draw text. To create custom shapes, we must first build
up a path.

Calling beginPath starts a new path. A number of other methods add
lines and curves to the current path. For example, lineTo can add a straight
line. When a path is finished, it can be filled with the fill method or stroked
with the stroke method.

Moving pixels from an image or another canvas onto our canvas is done
with the drawImage method. By default, this method draws the whole source
image, but by giving it more parameters, you can copy a specific area of the
image. We used this for our game by copying individual poses of the game
character out of an image that contained many such poses.

Transformations allow you to draw a shape in multiple orientations.
A 2D drawing context has a current transformation that can be changed
with the translate, scale, and rotate methods. These will affect all subse-
quent drawing operations. A transformation state can be saved with the
save method and restored with the restore method.

When drawing an animation on a canvas, the clearRect method can be
used to clear part of the canvas before redrawing it.

Exercises

Shapes
Write a program that draws the following shapes on a canvas:

1. A trapezoid (a rectangle that is wider on one side)

2. A red diamond (a rectangle rotated 45 degrees or 1
4π radians)

3. A zigzagging line

4. A spiral made up of 100 straight line segments

5. A yellow star

When drawing the last two, you may want to refer to the explanation of
Math.cos and Math.sin in Chapter 13, which describes how to get coordinates
on a circle using these functions.

I recommend creating a function for each shape. Pass the position, and
optionally other properties, such as the size or the number of points, as pa-
rameters. The alternative, which is to hard-code numbers all over your code,
tends to make the code needlessly hard to read and modify.

296 Chapter 16

The Pie Chart
Earlier in the chapter, we saw an example program that drew a pie chart.
Modify this program so that the name of each category is shown next to the
slice that represents it. Try to find a pleasing-looking way to automatically
position this text, which would work for other data sets as well. You may as-
sume that categories are no smaller than 5 percent (that is, there won’t be a
bunch of tiny ones next to each other).

You might again need Math.sin and Math.cos, as described in the previous
exercise.

A Bouncing Ball
Use the requestAnimationFrame technique that we saw in Chapter 13 and Chap-
ter 15 to draw a box with a bouncing ball in it. The ball moves at a constant
speed and bounces off the box’s sides when it hits them.

Precomputed Mirroring
One unfortunate thing about transformations is that they slow down draw-
ing of bitmaps. For vector graphics, the effect is less serious since only a few
points (for example, the center of a circle) need to be transformed, after
which drawing can happen as normal. For a bitmap image, the position of
each pixel has to be transformed, and though it is possible that browsers will
get more clever about this in the future, this currently causes a measurable
increase in the time it takes to draw a bitmap.

In a game like ours, where we are drawing only a single transformed
sprite, this is a nonissue. But imagine that we need to draw hundreds of
characters or thousands of rotating particles from an explosion.

Think of a way to allow us to draw an inverted character without loading
additional image files and without having to make transformed drawImage

calls every frame.

Drawing on Canvas 297

“The dream behind the Web is of a common

information space in which we communicate by

sharing information. Its universality is essential:

the fact that a hypertext link can point to any-

thing, be it personal, local or global,

be it draft or highly polished.”

— Tim Berners-Lee,

The World Wide Web: A very short personal history

17
HTTP

The Hypertext Transfer Protocol, already mentioned in
Chapter 12, is the mechanism through which data is
requested and provided on the World Wide Web. This
chapter describes the protocol in more detail and ex-
plains the way browser JavaScript has access to it.

The Protocol

If you type eloquentjavascript.net/17_http.html into your browser’s address
bar, the browser first looks up the address of the server associated with
eloquentjavascript.net and tries to open a TCP connection to it on port 80,
the default port for HTTP traffic. If the server exists and accepts the con-
nection, the browser sends something like this:

GET /17_http.html HTTP/1.1

Host: eloquentjavascript.net

User-Agent: Your browser's name

Then the server responds, through that same connection.

HTTP/1.1 200 OK

Content-Length: 65585

Content-Type: text/html

Last-Modified: Wed, 09 Apr 2014 10:48:09 GMT

<!doctype html>

... the rest of the document

The browser then takes the part of the response after the blank line and
displays it as an HTML document.

The information sent by the client is called the request. It starts with
this line:

GET /17_http.html HTTP/1.1

The first word is the method of the request. GET means that we want to
get the specified resource. Other common methods are DELETE to delete a
resource, PUT to replace it, and POST to send information to it. Note that the
server is not obliged to carry out every request it gets. If you walk up to a ran-
dom website and tell it to DELETE its main page, it’ll probably refuse.

The part after the method name is the path of the resource the request
applies to. In the simplest case, a resource is simply a file on the server, but
the protocol doesn’t require it to be. A resource may be anything that can
be transferred as if it is a file. Many servers generate the responses they
produce on the fly. For example, if you open twitter.com/marijnjh, the server
looks in its database for a user named marijnjh, and if it finds one, it will gen-
erate a profile page for that user.

After the resource path, the first line of the request mentions HTTP/1.1 to
indicate the version of the HTTP protocol it is using.

The server’s response will start with a version as well, followed by the
status of the response, first as a three-digit status code and then as a human-
readable string.

HTTP/1.1 200 OK

Status codes starting with a 2 indicate that the request succeeded. Codes
starting with 4 mean there was something wrong with the request. 404 is
probably the most famous HTTP status code—it means that the resource
that was requested could not be found. Codes that start with 5 mean an er-
ror happened on the server and the request is not to blame.

The first line of a request or response may be followed by any number of
headers. These are lines in the form “name: value” that specify extra informa-
tion about the request or response. These headers were part of the example
response:

Content-Length: 65585

Content-Type: text/html

Last-Modified: Wed, 09 Apr 2014 10:48:09 GMT

300 Chapter 17

http://twitter.com/marijnjh

This tells us the size and type of the response document. In this case, it
is an HTML document of 65,585 bytes. It also tells us when that document
was last modified.

For the most part, a client or server decides which headers to include in
a request or response, though a few headers are required. For example, the
Host header, which specifies the hostname, should be included in a request
because a server might be serving multiple hostnames on a single IP address,
and without that header, the server won’t know which host the client is try-
ing to talk to.

After the headers, both requests and responses may include a blank
line followed by a body, which contains the data being sent. GET and DELETE

requests don’t send along any data, but PUT and POST requests do. Similarly,
some response types, such as error responses, do not require a body.

Browsers and HTTP
As we saw in the example, a browser will make a request when we enter a
URL in its address bar. When the resulting HTML page references other
files, such as images and JavaScript files, those are also fetched.

A moderately complicated website can easily include anywhere from 10
to 200 resources. To be able to fetch those quickly, browsers will make sev-
eral requests simultaneously, rather than waiting for the responses one at a
time. Such documents are always fetched using GET requests.

HTML pages may include forms, which allow the user to fill out informa-
tion and send it to the server. This is an example of a form:

<form method="GET" action="example/message.html">

<p>Name: <input type="text" name="name"></p>

<p>Message:
<textarea name="message"></textarea></p>

<p><button type="submit">Send</button></p>

</form>

This code describes a form with two fields: a small one asking for a
name and a larger one to write a message in. When you click the Send
button, the information in those fields will be encoded into a query string.
When the <form> element’s method attribute is GET (or is omitted), that query
string is tacked onto the action URL, and the browser makes a GET request
to that URL.

GET /example/message.html?name=Jean&message=Yes%3F HTTP/1.1

The start of a query string is indicated by a question mark. After that
follow pairs of names and values, corresponding to the name attribute on the
form field elements and the content of those elements, respectively. An am-
persand character (&) is used to separate the pairs.

The actual message encoded in the previous URL is “Yes?,” even though
the question mark is replaced by a strange code. Some characters in query
strings must be escaped. The question mark, represented as %3F, is one of

HTTP 301

those. There seems to be an unwritten rule that every format needs its own
way of escaping characters. This one, called URL encoding, uses a percent
sign followed by two hexadecimal digits that encode the character code. In
this case, 3F, which is 63 in decimal notation, is the code of a question mark
character. JavaScript provides the encodeURIComponent and decodeURIComponent

functions to encode and decode this format.

console.log(encodeURIComponent("Hello & goodbye"));

// . Hello%20%26%20goodbye

console.log(decodeURIComponent("Hello%20%26%20goodbye"));

// . Hello & goodbye

If we change the method attribute of the HTML form in the example we
saw earlier to POST, the HTTP request made to submit the form will use the
POST method and put the query string in body of the request, rather than
adding it to the URL.

POST /example/message.html HTTP/1.1

Content-length: 24

Content-type: application/x-www-form-urlencoded

name=Jean&message=Yes%3F

By convention, the GET method is used for requests that do not have
side effects, such as doing a search. Requests that change something on
the server, such as creating a new account or posting a message, should be
expressed with other methods, such as POST. Client-side software, such as a
browser, knows that it shouldn’t blindly make POST requests but will often im-
plicitly make GET requests—for example, to prefetch a resource it believes
the user will soon need.

The next chapter will return to forms and talk about how we can script
them with JavaScript.

XMLHttpRequest
The interface through which browser JavaScript can make HTTP requests is
called XMLHttpRequest (note the inconsistent capitalization). It was designed
by Microsoft, for its Internet Explorer browser, in the late 1990s. During
this time, the XML file format was very popular in the world of business
software—a world where Microsoft has always been at home. In fact, it was
so popular that the acronym XML was tacked onto the front of the name
of an interface for HTTP, which is in no way tied to XML.

The name isn’t completely nonsensical, though. The interface allows
you to parse response documents as XML if you want. Conflating two dis-
tinct concepts (making a request and parsing the response) makes for ter-
rible design, of course, but so it goes.

302 Chapter 17

When the XMLHttpRequest interface was added to Internet Explorer, it
allowed people to do things with JavaScript that had been very hard before.
For example, websites started showing lists of suggestions when the user
was typing something into a text field. The script would send the text to the
server over HTTP as the user typed. The server, which had some database of
possible inputs, would match the database entries against the partial input
and send back possible completions to show the user. This was considered
spectacular—people were used to waiting for a full page reload for every in-
teraction with a website.

The other significant browser at that time, Mozilla (later Firefox), did
not want to be left behind. To allow people to do similarly neat things in its

browser, Mozilla copied the interface, including the bogus name. The next
generation of browsers followed this example, and today XMLHttpRequest is a
de facto standard interface.

Sending a Request
To make a simple request, we create a request object with the XMLHttpRequest

constructor and call its open and send methods.

var req = new XMLHttpRequest();

req.open("GET", "example/data.txt", false);

req.send(null);

console.log(req.responseText);

// . This is the content of data.txt

The open method configures the request. In this case, we choose to make
a GET request for the example/data.txt file. URLs that don’t start with a proto-
col name (such as http:) are relative, which means that they are interpreted
relative to the current document. When they start with a slash (/), they re-
place the current path, which is the part after the server name. When they
do not, the part of the current path up to and including its last slash charac-
ter is put in front of the relative URL.

After opening the request, we can send it with the send method. The
argument to send is the request body. For GET requests, we can pass null. If
the third argument to open was false, send will return only after the response
to our request was received. We can read the request object’s responseText

property to get the response body.
The other information included in the response can also be extracted

from this object. The status code is accessible through the status property,
and the human-readable status text is accessible through statusText. Headers
can be read with getResponseHeader.

var req = new XMLHttpRequest();

req.open("GET", "example/data.txt", false);

req.send(null);

console.log(req.status, req.statusText);

// . 200 OK

HTTP 303

console.log(req.getResponseHeader("content-type"));

// . text/plain

Header names are case insensitive. They are usually written with a cap-
ital letter at the start of each word, such as “Content-Type,” but “content-
type” and “cOnTeNt-TyPe” refer to the same header.

The browser will automatically add some request headers, such as
“Host” and those needed for the server to figure out the size of the body.
But you can add your own headers with the setRequestHeader method. This
is needed only for advanced uses and requires the cooperation of the server
you are talking to—a server is free to ignore headers it does not know how
to handle.

Asynchronous Requests
In the examples we saw, the request has finished when the call to send re-
turns. This is convenient because it means properties such as responseText

are available immediately. But it also means that our program is suspended
as long as the browser and server are communicating. When the connec-
tion is bad, the server is slow, or the file is big, that might take quite a while.
Worse, because no event handlers can fire while our program is suspended,
the whole document will become unresponsive.

If we pass true as the third argument to open, the request is asynchronous.
This means that when we call send, the only thing that happens right away
is that the request is scheduled to be sent. Our program can continue, and
the browser will take care of the sending and receiving of data in the back-
ground.

But as long as the request is running, we won’t be able to access the re-
sponse. We need a mechanism that will notify us when the data is available.

For this, we must listen for the "load" event on the request object.

var req = new XMLHttpRequest();

req.open("GET", "example/data.txt", true);

req.addEventListener("load", function() {

console.log("Done:", req.status);

});

req.send(null);

Just like the use of requestAnimationFrame in Chapter 15, this forces us to
use an asynchronous style of programming, wrapping the things that have to
be done after the request in a function and arranging for that to be called at
the appropriate time. We will come back to this later.

Fetching XML Data
When the resource retrieved by an XMLHttpRequest object is an XML docu-
ment, the object’s responseXML property will hold a parsed representation of

304 Chapter 17

this document. This representation works much like the DOM discussed in
Chapter 13, except that it doesn’t have HTML-specific functionality like the
style property. The object that responseXML holds corresponds to the document

object. Its documentElement property refers to the outer tag of the XML docu-
ment. In the following document (example/fruit.xml), that would would be
the <fruits> tag:

<fruits>

<fruit name="banana" color="yellow"/>

<fruit name="lemon" color="yellow"/>

<fruit name="cherry" color="red"/>

</fruits>

We can retrieve such a file like this:

var req = new XMLHttpRequest();

req.open("GET", "example/fruit.xml", false);

req.send(null);

console.log(req.responseXML.querySelectorAll("fruit").length);

// . 3

XML documents can be used to exchange structured information with
the server. Their form—tags nested inside other tags—lends itself well to
storing most types of data, at least better than flat text files. The DOM
interface is rather clumsy for extracting information, though, and XML
documents tend to be verbose. It is often a better idea to communicate
using JSON data, which is easier to read and write, both for programs and
for humans.

var req = new XMLHttpRequest();

req.open("GET", "example/fruit.json", false);

req.send(null);

console.log(JSON.parse(req.responseText));

// . {banana: "yellow", lemon: "yellow", cherry: "red"}

HTTP Sandboxing
Making HTTP requests in web page scripts once again raises concerns about
security. The person who controls the script might not have the same in-
terests as the person on whose computer it is running. More specifically, if
I visit themafia.org, I do not want its scripts to be able to make a request to
mybank.com, using identifying information from my browser, with instruc-
tions to transfer all my money to some random mafia account.

It is possible for websites to protect themselves against such attacks, but
that requires effort, and many websites fail to do it. For this reason, browsers
protect us by disallowing scripts to make HTTP requests to other domains

(names such as themafia.org and mybank.com).

HTTP 305

This can be an annoying problem when building systems that want to ac-
cess several domains for legitimate reasons. Fortunately, servers can include
a header like this in their response to explicitly indicate to browsers that it is
okay for the request to come from other domains:

Access-Control-Allow-Origin: *

Abstracting Requests
In Chapter 10, in our implementation of the AMD module system, we used
a hypothetical function called backgroundReadFile. It took a filename and a
function and called that function with the contents of the file when it had
finished fetching it. Here’s a simple implementation of that function:

function backgroundReadFile(url, callback) {

var req = new XMLHttpRequest();

req.open("GET", url, true);

req.addEventListener("load", function() {

if (req.status < 400)

callback(req.responseText);

});

req.send(null);

}

This simple abstraction makes it easier to use XMLHttpRequest for simple
GET requests. If you are writing a program that has to make HTTP requests,
it is a good idea to use a helper function so that you don’t end up repeating
the ugly XMLHttpRequest pattern all through your code.

The function argument’s name, callback, is a term that is often used to
describe functions like this. A callback function is given to other code to
provide that code with a way to “call us back” later.

It is not hard to write an HTTP utility function tailored to what your
application is doing. The previous one does only GET requests and doesn’t
give us control over the headers or the request body. You could write an-
other variant for POST requests or a more generic one that supports vari-
ous kinds of requests. Many JavaScript libraries also provide wrappers for
XMLHttpRequest.

The main problem with the previous wrapper is its handling of failure.
When the request returns a status code that indicates an error (400 and up),
it does nothing. This might be okay, in some circumstances, but imagine we
put a “loading” indicator on the page to indicate that we are fetching infor-
mation. If the request fails because the server crashed or the connection is
briefly interrupted, the page will just sit there, misleadingly looking like it is
doing something. The user will wait for a while, get impatient, and consider
the site uselessly flaky.

306 Chapter 17

We should also have an option to be notified when the request fails
so that we can take appropriate action. For example, we could remove the
“loading” message and inform the user that something went wrong.

Error handling in asynchronous code is even trickier than error han-
dling in synchronous code. Because we often need to defer part of our work,
putting it in a callback function, the scope of a try block becomes meaning-
less. In the following code, the exception will not be caught because the call
to backgroundReadFile returns immediately. Control then leaves the try block,
and the function it was given won’t be called until later.

try {

backgroundReadFile("example/data.txt", function(text) {

if (text != "expected")

throw new Error("That was unexpected");

});

} catch (e) {

console.log("Hello from the catch block");

}

To handle failing requests, we have to allow an additional function to
be passed to our wrapper and call that when a request goes wrong. Alter-
natively, we can use the convention that if the request fails, an additional
argument describing the problem is passed to the regular callback function.
Here’s an example:

function getURL(url, callback) {

var req = new XMLHttpRequest();

req.open("GET", url, true);

req.addEventListener("load", function() {

if (req.status < 400)

callback(req.responseText);

else

callback(null, new Error("Request failed: " +

req.statusText));

});

req.addEventListener("error", function() {

callback(null, new Error("Network error"));

});

req.send(null);

}

We have added a handler for the "error" event, which will be signaled
when the request fails entirely. We also call the callback function with an
error argument when the request completes with a status code that indicates
an error.

HTTP 307

Code using getURL must then check whether an error was given and, if it
finds one, handle it.

getURL("data/nonsense.txt", function(content, error) {

if (error != null)

console.log("Failed to fetch nonsense.txt: " + error);

else

console.log("nonsense.txt: " + content);

});

This does not help when it comes to exceptions. When chaining sev-
eral asynchronous actions together, an exception at any point of the chain
will still (unless you wrap each handling function in its own try/catch block)
land at the top level and abort your chain of actions.

Promises
For complicated projects, writing asynchronous code in plain callback style
is hard to do correctly. It is easy to forget to check for an error or to allow an
unexpected exception to cut the program short in a crude way. Additionally,
arranging for correct error handling when the error has to flow through
multiple callback functions and catch blocks is tedious.

There have been a lot of attempts to solve this with extra abstractions.
One of the more successful ones is called promises. Promises wrap an asyn-
chronous action in an object, which can be passed around and told to do
certain things when the action finishes or fails. This interface is set to be-
come part of the next version of the JavaScript language but can already be
used as a library.

The interface for promises isn’t entirely intuitive, but it is powerful. This
chapter will only roughly describe it. You can find a more thorough treat-
ment at http://www.promisejs.org/ .

To create a promise object, we call the Promise constructor, giving it a
function that initializes the asynchronous action. The constructor calls that
function, passing it two arguments, which are themselves functions. The
first should be called when the action finishes successfully, and the second
should be called when it fails.

Once again, here is our wrapper for GET requests, this time returning a
promise. We’ll simply call it get this time.

function get(url) {

return new Promise(function(succeed, fail) {

var req = new XMLHttpRequest();

req.open("GET", url, true);

req.addEventListener("load", function() {

if (req.status < 400)

succeed(req.responseText);

else

fail(new Error("Request failed: " + req.statusText));

308 Chapter 17

https://www.promisejs.org/

});

req.addEventListener("error", function() {

fail(new Error("Network error"));

});

req.send(null);

});

}

Note that the interface to the function itself is now a lot simpler. You
give it a URL, and it returns a promise. That promise acts as a handle to the
request’s outcome. It has a then method that you can call with two functions:
one to handle success and one to handle failure.

get("example/data.txt").then(function(text) {

console.log("data.txt: " + text);

}, function(error) {

console.log("Failed to fetch data.txt: " + error);

});

So far, this is just another way to express the same thing we already ex-
pressed. It is only when you need to chain actions together that promises
make a significant difference.

Calling then produces a new promise, whose result (the value passed
to success handlers) depends on the return value of the first function we
passed to then. This function may return another promise to indicate that
more asynchronous work is being done. In this case, the promise returned
by then itself will wait for the promise returned by the handler function, suc-
ceeding or failing with the same value when it is resolved. When the handler
function returns a nonpromise value, the promise returned by then immedi-
ately succeeds with that value as its result.

This means you can use then to transform the result of a promise. For ex-
ample, this returns a promise whose result is the content of the given URL,
parsed as JSON:

function getJSON(url) {

return get(url).then(JSON.parse);

}

That last call to then did not specify a failure handler. This is allowed.
The error will be passed to the promise returned by then, which is exactly
what we want—getJSON does not know what to do when something goes
wrong, but hopefully its caller does.

As an example that shows the use of promises, we will build a program
that fetches a number of JSON files from the server and, while it is doing
that, shows the word loading. The JSON files contain information about
people, with links to files that represent other people in properties such as
father, mother, or spouse.

HTTP 309

We want to get the name of the mother of the spouse of example/bert.json.
And if something goes wrong, we want to remove the loading text and show
an error message instead. Here is how that might be done with promises:

<script>

function showMessage(msg) {

var elt = document.createElement("div");

elt.textContent = msg;

return document.body.appendChild(elt);

}

var loading = showMessage("Loading...");

getJSON("example/bert.json").then(function(bert) {

return getJSON(bert.spouse);

}).then(function(spouse) {

return getJSON(spouse.mother);

}).then(function(mother) {

showMessage("The name is " + mother.name);

}).catch(function(error) {

showMessage(String(error));

}).then(function() {

document.body.removeChild(loading);

});

</script>

The resulting program is relatively compact and readable. The catch

method is similar to then, except that it only expects a failure handler and
will pass through the result unmodified in case of success. Much like with
the catch clause for the try statement, control will continue as normal after
the failure is caught. That way, the final then, which removes the loading
message, is always executed, even if something went wrong.

You can think of the promise interface as implementing its own lan-
guage for asynchronous control flow. The extra method calls and function
expressions needed to achieve this make the code look somewhat awkward
but not remotely as awkward as it would look if we took care of all the error
handling ourselves.

Appreciating HTTP
When building a system that requires communication between a JavaScript
program running in the browser (client-side) and a program on a server
(server-side), there are several different ways to model this communication.

A commonly used model is that of remote procedure calls. In this model,
communication follows the patterns of normal function calls, except that the
function is actually running on another machine. Calling it involves making
a request to the server that includes the function’s name and arguments.
The response to that request contains the returned value.

310 Chapter 17

When thinking in terms of remote procedure calls, HTTP is just a ve-
hicle for communication, and you will most likely write an abstraction layer
that hides it entirely.

Another approach is to build your communication around the con-
cept of resources and HTTP methods. Instead of a remote procedure called
addUser, you use a PUT request to /users/larry. Instead of encoding that user’s
properties in function arguments, you define a document format or use
an existing format that represents a user. The body of the PUT request to
create a new resource is then simply such a document. A resource is fetched
by making a GET request to the resource’s URL (for example, /user/larry),
which returns the document representing the resource.

This second approach makes it easier to use some of the features that
HTTP provides, such as support for caching resources (keeping a copy on
the client side). It can also help the coherence of your interface since re-
sources are easier to reason about than a jumble of functions.

Security and HTTPS
Data traveling over the Internet tends to follow a long, dangerous road.
To get to its destination, it must hop through anything from coffee-shop
Wi-Fi networks to networks controlled by various companies and states. At
any point along its route it may be inspected or even modified.

If it is important that something remain secret, such as the password to
your email account, or that it arrive at its destination unmodified, such as
the account number you transfer money to from your bank’s website, plain
HTTP is not good enough.

The secure HTTP protocol, whose URLs start with https://, wraps HTTP
traffic in a way that makes it harder to read and tamper with. First, the client
verifies that the server is who it claims to be by requiring that server to prove
that it has a cryptographic certificate issued by a certificate authority that the
browser recognizes. Next, all data going over the connection is encrypted in
a way that should prevent eavesdropping and tampering.

Thus, when it works right, HTTPS prevents both someone impersonat-
ing the website you were trying to talk to and someone snooping on your
communication. It is not perfect, and there have been various incidents
where HTTPS failed because of forged or stolen certificates and broken
software. Still, plain HTTP is trivial to mess with, whereas breaking HTTPS
requires the kind of effort that only states or sophisticated criminal organi-
zations can hope to make.

Summary
In this chapter, we saw that HTTP is a protocol for accessing resources over
the Internet. A client sends a request, which contains a method (usually GET)
and a path that identifies a resource. The server then decides what to do
with the request and responds with a status code and a response body. Both

HTTP 311

requests and responses may contain headers that provide additional
information.

Browsers make GET requests to fetch the resources needed to display a
web page. A web page may also contain forms, which allow information en-
tered by the user to be sent along in the request made when the form is sub-
mitted. You will learn more about that in the next chapter.

The interface through which browser JavaScript can make HTTP requests
is called XMLHttpRequest. You can usually ignore the “XML” part of that name
(but you still have to type it). There are two ways in which it can be used—
synchronous, which blocks everything until the request finishes, and asyn-
chronous, which requires an event handler to notice that the response came
in. In almost all cases, asynchronous is preferable. Making a request looks
like this:

var req = new XMLHttpRequest();

req.open("GET", "example/data.txt", true);

req.addEventListener("load", function() {

console.log(req.statusCode);

});

req.send(null);

Asynchronous programming is tricky. Promises are an interface that
makes it slightly easier by helping route error conditions and exceptions to
the right handler and by abstracting away some of the more repetitive and
error-prone elements in this style of programming.

Exercises

Content Negotiation
One of the things that HTTP can do, but that we have not discussed yet in
this chapter, is called content negotiation. The Accept header for a request can
be used to tell the server what type of document the client would like to get.
Many servers ignore this header, but when a server knows of various ways
to encode a resource, it can look at this header and send the one that the
client prefers.

The URL eloquentjavascript.net/author is configured to respond with
either plaintext, HTML, or JSON, depending on what the client asks for.
These formats are identified by the standardized media types text/plain,
text/html, and application/json.

Send requests to fetch all three formats of this resource. Use the
setRequestHeader method of your XMLHttpRequest object to set the header
named Accept to one of the media types given earlier. Make sure you set
the header after calling open but before calling send.

Finally, try asking for the media type application/rainbows+unicorns and
see what happens.

312 Chapter 17

http://eloquentjavascript.net/author

Waiting for Multiple Promises
The Promise constructor has an all method that, given an array of promises,
returns a promise that waits for all of the promises in the array to finish. It
then succeeds, yielding an array of result values. If any of the promises in the
array fail, the promise returned by all fails too (with the failure value from
the failing promise).

Try to implement something like this yourself as a regular function
called all.

Note that after a promise is resolved (has succeeded or failed), it can’t
succeed or fail again, and further calls to the functions that resolve it are
ignored. This can simplify the way you handle failure of your promise.

HTTP 313

“I shall this very day, at Doctor’s feast,

My bounden service duly pay thee.

But one thing!—For insurance’ sake, I pray thee,

Grant me a line or two, at least.”

— Mephistopheles, in Goethe’s Faust

18
FORMS AND FORM FIELDS

Forms were introduced briefly in the previous chap-
ter as a way to submit information provided by the user
over HTTP. They were designed for a pre-JavaScript
Web, assuming that interaction with the server always
happens by navigating to a new page.

But their elements are part of the DOM like the rest of the page, and
the DOM elements that represent form fields support a number of proper-
ties and events that are not present on other elements. These make it pos-
sible to inspect and control such input fields with JavaScript programs and
do things such as adding functionality to a traditional form or using forms
and fields as building blocks in a JavaScript application.

Fields
A web form consists of any number of input fields grouped in a <form> tag.
HTML allows a number of different styles of fields, ranging from simple
on/off checkboxes to drop-down menus and fields for text input. This book
won’t try to comprehensively discuss all field types, but we will start with a
rough overview.

A lot of field types use the <input> tag. This tag’s type attribute is used to
select the field’s style. These are some commonly used <input> types:

text A single-line text field

password Same as text but hides the text that is typed

checkbox An on/off switch

radio (Part of) a multiple-choice field

file Allows the user to choose a file from their computer

Form fields do not necessarily have to appear in a <form> tag. You can
put them anywhere in a page. Such fields cannot be submitted (only a form
as a whole can), but when responding to input with JavaScript, we often do
not want to submit our fields normally anyway.

<p><input type="text" value="abc"> (text)</p>

<p><input type="password" value="abc"> (password)</p>

<p><input type="checkbox" checked> (checkbox)</p>

<p><input type="radio" value="A" name="choice">

<input type="radio" value="B" name="choice">

<input type="radio" value="C" name="choice" checked> (radio)</p>

<p><input type="file" checked> (file)</p>

The fields created with this HTML code look like this:

The JavaScript interface for such elements differs with the type of the
element. We’ll go over each of them later in the chapter.

Multiline text fields have their own tag, <textarea>, mostly because us-
ing an attribute to specify a multiline starting value would be awkward. The
<textarea> requires a matching </textarea> closing tag and uses the text be-
tween those two, instead of using its value attribute, as starting text.

<textarea>

one

two

three

</textarea>

Finally, the <select> tag is used to create a field that allows the user to
select from a number of predefined options.

316 Chapter 18

<select>

<option>Pancakes</option>

<option>Pudding</option>

<option>Ice cream</option>

</select>

Such a field looks like this:

Whenever the value of a form field changes, it fires a "change" event.

Focus
Unlike most elements in an HTML document, form fields can get keyboard

focus. When clicked—or activated in some other way—they become the cur-
rently active element, the main recipient of keyboard input.

If a document has a text field, text typed will end up in there only when
the field is focused. Other fields respond differently to keyboard events. For
example, a <select> menu tries to move to the option that contains the text
the user typed and responds to the arrow keys by moving its selection up
and down.

We can control focus from JavaScript with the focus and blur methods.
The first moves focus to the DOM element it is called on, and the second
removes focus. The value in document.activeElement corresponds to the cur-
rently focused element.

<input type="text">

<script>

document.querySelector("input").focus();

console.log(document.activeElement.tagName);

// . INPUT

document.querySelector("input").blur();

console.log(document.activeElement.tagName);

// . BODY

</script>

For some pages, the user is expected to want to interact with a form field
immediately. JavaScript can be used to focus this field when the document
is loaded, but HTML also provides the autofocus attribute, which produces
the same effect but lets the browser know what we are trying to achieve. This
makes it possible for the browser to disable the behavior when it is not ap-
propriate, such as when the user has focused on something else.

<input type="text" autofocus>

Forms and Form Fields 317

Browsers traditionally also allow the user to move the focus through the
document by pressing the TAB key. We can influence the order in which ele-
ments receive focus with the tabindex attribute. The following example doc-
ument will let focus jump from the text input to the OK button, rather than
going through the help link first:

<input type="text" tabindex=1> (help)

<button onclick="console.log('ok')" tabindex=2>OK</button>

By default, most types of HTML elements cannot be focused. But you
can add a tabindex attribute to any element, which will make it focusable.

Disabled Fields
All form fields can be disabled through their disabled attribute, which also
exists as a property on the element’s DOM object.

<button>I'm all right</button>

<button disabled>I'm out</button>

Disabled fields cannot be focused or changed, and unlike active fields,
they usually look gray and faded.

When a program is in the process of handling an action caused by some
button or other control, which might require communication with the server
and thus take a while, it can be a good idea to disable the control until the
action finishes. That way, when the user gets impatient and clicks it again,
they don’t accidentally repeat their action.

The Form as a Whole
When a field is contained in a <form> element, its DOM element will have a
property form linking back to the form’s DOM element. The <form> element,
in turn, has a property called elements that contains an array-like collection
of the fields inside it.

The name attribute of a form field determines the way its value will be
identified when the form is submitted. It can also be used as a property
name when accessing the form’s elements property, which acts both as an
array-like object (accessible by number) and a map (accessible by name).

<form action="example/submit.html">

Name: <input type="text" name="name">

Password: <input type="password" name="password">

<button type="submit">Log in</button>

</form>

<script>

318 Chapter 18

var form = document.querySelector("form");

console.log(form.elements[1].type);

// . password

console.log(form.elements.password.type);

// . password

console.log(form.elements.name.form == form);

// . true

</script>

A button with a type attribute of submit will, when pressed, cause the
form to be submitted. Pressing ENTER when a form field is focused has the
same effect.

Submitting a form normally means that the browser navigates to the
page indicated by the form’s action attribute, using either a GET or a POST

request. But before that happens, a "submit" event is fired. This event can
be handled by JavaScript, and the handler can prevent the default behavior
by calling preventDefault on the event object.

<form action="example/submit.html">

Value: <input type="text" name="value">

<button type="submit">Save</button>

</form>

<script>

var form = document.querySelector("form");

form.addEventListener("submit", function(event) {

console.log("Saving value", form.elements.value.value);

event.preventDefault();

});

</script>

Intercepting "submit" events in JavaScript has various uses. We can write
code to verify that the values the user entered make sense and immediately
show an error message instead of submitting the form when they don’t. Or
we can disable the regular way of submitting the form entirely, as in the
previous example, and have our program handle the input, possibly using
XMLHttpRequest to send it over to a server without reloading the page.

Text Fields
Fields created by <input> tags with a type of text or password, as well as textarea

tags, share a common interface. Their DOM elements have a value property
that holds their current content as a string value. Setting this property to an-
other string changes the field’s content.

The selectionStart and selectionEnd properties of text fields give us infor-
mation about the cursor and selection in the text. When nothing is selected,
these two properties hold the same number, indicating the position of the
cursor. For example, 0 indicates the start of the text, and 10 indicates that

Forms and Form Fields 319

the cursor is after the 10th character. When part of the field is selected, the
two properties will differ, giving us the start and end of the selected text.
Like value, these properties may also be written to.

As an example, imagine you are writing an article about Khasekhemwy
but have some trouble spelling his name. The following code wires up a
<textarea> tag with an event handler that, when you press F2, inserts the
string “Khasekhemwy” for you.

<textarea></textarea>

<script>

var textarea = document.querySelector("textarea");

textarea.addEventListener("keydown", function(event) {

// The key code for F2 happens to be 113

if (event.keyCode == 113) {

replaceSelection(textarea, "Khasekhemwy");

event.preventDefault();

}

});

function replaceSelection(field, word) {

var from = field.selectionStart, to = field.selectionEnd;

field.value = field.value.slice(0, from) + word +

field.value.slice(to);

// Put the cursor after the word

field.selectionStart = field.selectionEnd =

from + word.length;

};

</script>

The replaceSelection function replaces the currently selected part of a
text field’s content with the given word and then moves the cursor after that
word so that the user can continue typing.

The "change" event for a text field does not fire every time something is
typed. Rather, it fires when the field loses focus after its content was changed.
To respond immediately to changes in a text field, you should register a han-
dler for the "input" event instead, which fires for every time the user types a
character, deletes text, or otherwise manipulates the field’s content.

The following example shows a text field and a counter showing the cur-
rent length of the text entered:

<input type="text"> length: 0

<script>

var text = document.querySelector("input");

var output = document.querySelector("#length");

text.addEventListener("input", function() {

output.textContent = text.value.length;

});

</script>

320 Chapter 18

Checkboxes and Radio Buttons
A checkbox field is a simple binary toggle. Its value can be extracted or
changed through its checked property, which holds a Boolean value.

<input type="checkbox" id="purple">

<label for="purple">Make this page purple</label>

<script>

var checkbox = document.querySelector("#purple");

checkbox.addEventListener("change", function() {

document.body.style.background =

checkbox.checked ? "mediumpurple" : "";

});

</script>

The <label> tag is used to associate a piece of text with an input field. Its
for attribute should refer to the id of the field. Clicking the label will activate
the field, which focuses it and toggles its value when it is a checkbox or radio
button.

A radio button is similar to a checkbox, but it’s implicitly linked to other
radio buttons with the same name attribute so that only one of them can be
active at any time.

Color:

<input type="radio" name="color" value="mediumpurple"> Purple

<input type="radio" name="color" value="lightgreen"> Green

<input type="radio" name="color" value="lightblue"> Blue

<script>

var buttons = document.getElementsByName("color");

function setColor(event) {

document.body.style.background = event.target.value;

}

for (var i = 0; i < buttons.length; i++)

buttons[i].addEventListener("change", setColor);

</script>

The document.getElementsByName method gives us all elements with a given
name attribute. The example loops over those (with a regular for loop, not
forEach, because the returned collection is not a real array) and registers an
event handler for each element. Remember that event objects have a target

property referring to the element that triggered the event. This is often use-
ful in event handlers like this one, which will be called on different elements
and need some way to access the current target.

Forms and Form Fields 321

Select Fields
Select fields are conceptually similar to radio buttons—they also allow the
user to choose from a set of options. But where a radio button puts the lay-
out of the options under our control, the appearance of a <select> tag is de-
termined by the browser.

Select fields also have a variant that is more akin to a list of checkboxes,
rather than radio boxes. When given the multiple attribute, a <select> tag
will allow the user to select any number of options, rather than just a single
option.

<select multiple>

<option>Pancakes</option>

<option>Pudding</option>

<option>Ice cream</option>

</select>

This will, in most browsers, show up differently than a non-multiple se-
lect field, which is commonly drawn as a drop-down control that shows the
options only when you open it.

The size attribute to the <select> tag is used to set the number of op-
tions that are visible at the same time, which gives you explicit control over
the drop-down’s appearance. For example, setting the size attribute to "3"

will make the field show three lines, whether it has the multiple option en-
abled or not.

Each <option> tag has a value. This value can be defined with a value at-
tribute, but when that is not given, the text inside the option will count as
the option’s value. The value property of a <select> element reflects the cur-
rently selected option. For a multiple field, though, this property doesn’t
mean much since it will give the value of only one of the currently selected
options.

The <option> tags for a <select> field can be accessed as an array-like ob-
ject through the field’s options property. Each option has a property called
selected, which indicates whether that option is currently selected. The prop-
erty can also be written to select or deselect an option.

The following example extracts the selected values from a multiple select
field and uses them to compose a binary number from individual bits. Hold
CTRL (or COMMAND on a Mac) to select multiple options.

<select multiple>

<option value="1">0001</option>

<option value="2">0010</option>

<option value="4">0100</option>

<option value="8">1000</option>

322 Chapter 18

</select> = 0

<script>

var select = document.querySelector("select");

var output = document.querySelector("#output");

select.addEventListener("change", function() {

var number = 0;

for (var i = 0; i < select.options.length; i++) {

var option = select.options[i];

if (option.selected)

number += Number(option.value);

}

output.textContent = number;

});

</script>

File Fields
File fields were originally designed as a way to upload files from the browser’s
machine through a form. In modern browsers, they also provide a way to
read such files from JavaScript programs. The field acts as a manner of gate-
keeper. The script cannot simply start reading private files from the user’s
computer, but if the user selects a file in such a field, the browser interprets
that action to mean that the script may read the file.

A file field usually looks like a button labeled with something like “choose
file” or “browse,” with information about the chosen file next to it.

<input type="file">

<script>

var input = document.querySelector("input");

input.addEventListener("change", function() {

if (input.files.length > 0) {

var file = input.files[0];

console.log("You chose", file.name);

if (file.type)

console.log("It has type", file.type);

}

});

</script>

The files property of a file field element is an array-like object (again,
not a real array) containing the files chosen in the field. It is initially empty.
The reason there isn’t simply a file property is that file fields also support
a multiple attribute, which makes it possible to select multiple files at the
same time.

Objects in the files property have properties such as name (the filename),
size (the file’s size in bytes), and type (the media type of the file, such as
text/plain or image/jpeg).

Forms and Form Fields 323

What it does not have is a property that contains the content of the file.
Getting at that is a little more involved. Since reading a file from disk can
take time, the interface will have to be asynchronous to avoid freezing the
document. You can think of the FileReader constructor as being similar to
XMLHttpRequest but for files.

<input type="file" multiple>

<script>

var input = document.querySelector("input");

input.addEventListener("change", function() {

Array.prototype.forEach.call(input.files, function(file) {

var reader = new FileReader();

reader.addEventListener("load", function() {

console.log("File", file.name, "starts with",

reader.result.slice(0, 20));

});

reader.readAsText(file);

});

});

</script>

Reading a file is done by creating a FileReader object, registering a "load"

event handler for it, and calling its readAsText method, giving it the file we
want to read. Once loading finishes, the reader’s result property contains
the file’s content.

The example uses Array.prototype.forEach to iterate over the array since
in a normal loop it would be awkward to get the correct file and reader ob-
jects from the event handler. The variables would be shared by all iterations
of the loop.

FileReaders also fire an "error" event when reading the file fails for any
reason. The error object itself will end up in the reader’s error property.
If you don’t want to remember the details of yet another inconsistent asyn-
chronous interface, you could wrap it in a Promise (see Chapter 17) like this:

function readFile(file) {

return new Promise(function(succeed, fail) {

var reader = new FileReader();

reader.addEventListener("load", function() {

succeed(reader.result);

});

reader.addEventListener("error", function() {

fail(reader.error);

});

reader.readAsText(file);

});

}

324 Chapter 18

It is possible to read only part of a file by calling slice on it and passing
the result (a so-called blob object) to the file reader.

Storing Data Client-Side
Simple HTML pages with a bit of JavaScript can be a great medium for
“mini applications”—small helper programs that automate everyday things.
By connecting a few form fields with event handlers, you can do anything
from converting between degrees Celsius and Fahrenheit to computing
passwords from a master password and a website name.

When such an application needs to remember something between ses-
sions, you cannot use JavaScript variables since those are thrown away every
time a page is closed. You could set up a server, connect it to the Internet,
and have your application store something there. We will see how to do that
in Chapter 20. But this adds a lot of extra work and complexity. Sometimes
it is enough to just keep the data in the browser. But how?

You can store string data in a way that survives page reloads by putting it
in the localStorage object. This object allows you to file string values under
names (also strings), as in this example:

localStorage.setItem("username", "marijn");

console.log(localStorage.getItem("username"));

// . marijn

localStorage.removeItem("username");

A value in localStorage sticks around until it is overwritten, it is removed
with removeItem, or the user clears their local data.

Sites from different domains get different storage compartments. That
means data stored in localStorage by a given website can, in principle, only
be read (and overwritten) by scripts on that same site.

Browsers also enforce a limit on the size of the data a site can store
in localStorage, typically on the order of a few megabytes. That restriction,
along with the fact that filling up people’s hard drives with junk is not really
profitable, prevents this feature from eating up too much space.

The following code implements a simple note-taking application. It
keeps the user’s notes as an object, associating note titles with content strings.
This object is encoded as JSON and stored in localStorage. The user can se-
lect a note from a <select> field and change that note’s text in a <textarea>. A
note can be added by clicking a button.

Notes: <select id="list"></select>

<button onclick="addNote()">new</button>

<textarea id="currentnote" style="width: 100%; height: 10em">

</textarea>

<script>

var list = document.querySelector("#list");

Forms and Form Fields 325

function addToList(name) {

var option = document.createElement("option");

option.textContent = name;

list.appendChild(option);

}

// Initialize the list from localStorage

var notes = JSON.parse(localStorage.getItem("notes")) ||

{"shopping list": ""};

for (var name in notes)

if (notes.hasOwnProperty(name))

addToList(name);

function saveToStorage() {

localStorage.setItem("notes", JSON.stringify(notes));

}

var current = document.querySelector("#currentnote");

current.value = notes[list.value];

list.addEventListener("change", function() {

current.value = notes[list.value];

});

current.addEventListener("change", function() {

notes[list.value] = current.value;

saveToStorage();

});

function addNote() {

var name = prompt("Note name", "");

if (!name) return;

if (!notes.hasOwnProperty(name)) {

notes[name] = "";

addToList(name);

saveToStorage();

}

list.value = name;

current.value = notes[name];

}

</script>

The script initializes the notes variable to the value stored in localStorage

or, if that is missing, to a simple object with only an empty "shopping list"

note in it. Reading a field that does not exist from localStorage will yield null.
Passing null to JSON.parse will make it parse the string "null" and return null.
Thus, the || operator can be used to provide a default value in a situation
like this.

326 Chapter 18

Whenever the note data changes (when a new note is added or an exist-
ing note changed), the saveToStorage function is called to update the storage
field. If this application was intended to handle thousands of notes, rather
than a handful, this would be too expensive, and we’d have to come up with
a more complicated way to store them, such as giving each note its own stor-
age field.

When the user adds a new note, the code must update the text field ex-
plicitly, even though the <select> field has a "change" handler that does the
same thing. This is necessary because "change" events fire only when the user

changes the field’s value, not when a script does it.
There is another object similar to localStorage called sessionStorage. The

difference between the two is that the content of sessionStorage is forgotten
at the end of each session, which for most browsers means whenever the
browser is closed.

Summary
HTML can express various types of form fields, such as text fields, check-
boxes, multiple-choice fields, and file pickers.

Such fields can be inspected and manipulated with JavaScript. They fire
the "change" event when changed, the "input" event when text is typed, and
various keyboard events. These events allow us to notice when the user is
interacting with the fields. Properties like value (for text and select fields) or
checked (for checkboxes and radio buttons) are used to read or set the field’s
content.

When a form is submitted, its "submit" event fires. A JavaScript handler
can call preventDefault on that event to prevent the submission from happen-
ing. Form field elements do not have to be wrapped in <form> tags.

When the user has selected a field from their local filesystem in a file
picker field, the FileReader interface can be used to access the content of this
file from a JavaScript program.

The localStorage and sessionStorage objects can be used to save informa-
tion in a way that survives page reloads. The first saves the data forever (or
until the user decides to clear it), and the second saves it until the browser is
closed.

Exercises

A JavaScript Workbench
Build an interface that allows people to type and run pieces of JavaScript
code.

Put a button next to a <textarea> field, which, when pressed, uses the
Function constructor we saw in Chapter 10 to wrap the text in a function and
call it. Convert the return value of the function, or any error it raised, to a
string and display it after the text field.

Forms and Form Fields 327

Autocompletion
Extend a text field so that when the user types, a list of suggested values is
shown below the field. You have an array of possible values available and
should show those that start with the text that was typed. When a suggestion
is clicked, replace the text field’s current value with it.

Conway’s Game of Life
Conway’s Game of Life is a simple simulation that creates artificial life on
a grid, each cell of which is either live or not. Each generation (turn), the
following rules are applied:

• Any live cell with fewer than two or more than three live neighbors dies.

• Any live cell with two or three live neighbors lives on to the next
generation.

• Any dead cell with exactly three live neighbors becomes a live cell.

A neighbor is defined as any adjacent cell, including diagonally adjacent
ones.

Note that these rules are applied to the whole grid at once, not one
square at a time. That means the counting of neighbors is based on the
situation at the start of the generation, and changes happening to neigh-
bor cells during this generation should not influence the new state of a
given cell.

Implement this game using whichever data structure you find appropri-
ate. Use Math.random to populate the grid with a random pattern initially. Dis-
play it as a grid of checkbox fields, with a button next to it to advance to the
next generation. When the user checks or unchecks the checkboxes, their
changes should be included when computing the next generation.

328 Chapter 18

“I look at the many colors before me.

I look at my blank canvas. Then, I try

to apply colors like words that shape

poems, like notes that shape music.”

— Joan Miro

19
PROJECT: A PAINT PROGRAM

The material from the previous chapters gives you all
the elements you need to build a simple web applica-
tion. In this chapter, we will do just that.

Our application will be a web-based drawing program, along the lines
of Microsoft Paint. You can use it to open image files, scribble on them with
your mouse, and save them. This is what it will look like:

Painting on a computer is great. You don’t need to worry about materi-
als, skill, or talent. You just start smearing.

Implementation
The interface for the paint program shows a big <canvas> element on top,
with a number of form fields below it. The user draws on the picture by se-
lecting a tool from a <select> field and then clicking or dragging across the
canvas. There are tools for drawing lines, erasing parts of the picture, adding
text, and so on.

Clicking the canvas will hand off the "mousedown" event to the currently
selected tool, which can handle it in whichever way it chooses. The line
drawing tool, for example, will listen for "mousemove" events until the mouse
button is released and draw lines along the mouse’s path using the current
color and brush size.

Color and brush size are selected with additional form fields. These are
hooked up to update the canvas drawing context’s fillStyle, strokeStyle, and
lineWidth whenever they are changed.

You can load an image into the program in two ways. The first uses a file
field, where the user can select a file on their own filesystem. The second
asks for a URL and will fetch an image from the Web.

Images are saved in a somewhat atypical way. The save link at the right
side points at the current image. It can be followed, shared, or saved. I will
explain how this is achieved in a moment.

Building the DOM
Our program’s interface is built from more than 30 DOM elements. We
need to construct these somehow.

HTML is the most obvious format for defining complex DOM struc-
tures. But separating the program into a piece of HTML and a script is
made difficult by the fact that many of the DOM elements need event han-
dlers or have to be touched by the script in some other way. Thus, our script
would have to make lots of querySelector (or similar) calls in order to find
the DOM elements that it needs to act on.

It would be nice if the DOM structure for each part of our interface is
defined close to the JavaScript code that drives it. Thus, I’ve chosen to do all
creation of DOM nodes in JavaScript. As we saw in Chapter 13, the built-in
interface for building up a DOM structure is horrendously verbose. If we are
going to do a lot of DOM construction, we need a helper function.

This helper function is an extended version of the elt function from
Chapter 13. It creates an element with the given name and attributes and ap-
pends all further arguments it gets as child nodes, automatically converting
strings to text nodes.

function elt(name, attributes) {

var node = document.createElement(name);

332 Chapter 19

if (attributes) {

for (var attr in attributes)

if (attributes.hasOwnProperty(attr))

node.setAttribute(attr, attributes[attr]);

}

for (var i = 2; i < arguments.length; i++) {

var child = arguments[i];

if (typeof child == "string")

child = document.createTextNode(child);

node.appendChild(child);

}

return node;

}

This allows us to create elements easily, without making our source code
as long and dull as a corporate end-user agreement.

The Foundation
The core of our program is the createPaint function, which appends the
paint interface to the DOM element it is given as an argument. Because
we want to build our program piece by piece, we define an object called
controls, which will hold functions to initialize the various controls below
the image.

var controls = Object.create(null);

function createPaint(parent) {

var canvas = elt("canvas", {width: 500, height: 300});

var cx = canvas.getContext("2d");

var toolbar = elt("div", {class: "toolbar"});

for (var name in controls)

toolbar.appendChild(controls[name](cx));

var panel = elt("div", {class: "picturepanel"}, canvas);

parent.appendChild(elt("div", null, panel, toolbar));

}

Each control has access to the canvas drawing context and, through
that context’s canvas property, to the <canvas> element. Most of the pro-
gram’s state lives in this canvas—it contains the current picture as well as
the selected color (in its fillStyle property) and brush size (in its lineWidth

property).
We wrap the canvas and the controls in <div> elements with classes so we

can add some styling, such as a gray border around the picture.

Project: A Paint Program 333

Tool Selection
The first control we add is the <select> element that allows the user to pick
a drawing tool. As with controls, we will use an object to collect the various
tools so that we do not have to hard-code them all in one place and can add
more tools later. This object associates the names of the tools with the func-
tion that should be called when they are selected and the canvas is clicked.

var tools = Object.create(null);

controls.tool = function(cx) {

var select = elt("select");

for (var name in tools)

select.appendChild(elt("option", null, name));

cx.canvas.addEventListener("mousedown", function(event) {

if (event.which == 1) {

tools[select.value](event, cx);

event.preventDefault();

}

});

return elt("span", null, "Tool: ", select);

};

The tool field is populated with <option> elements for all tools that have
been defined, and a "mousedown" handler on the canvas element takes care
of calling the function for the current tool, passing it both the event object
and the drawing context as arguments. It also calls preventDefault so that
holding the mouse button and dragging does not cause the browser to se-
lect parts of the page.

The most basic tool is the line tool, which allows the user to draw lines
with the mouse. To put the line ends in the right place, we need to find the
canvas-relative coordinates that a given mouse event corresponds to. The
getBoundingClientRect method, briefly mentioned in Chapter 13, can help us
here. It tells us where an element is shown, relative to the top-left corner
of the screen. The clientX and clientY properties on mouse events are also
relative to this corner, so we can subtract the top-left corner of the canvas
from them to get a position relative to that corner.

function relativePos(event, element) {

var rect = element.getBoundingClientRect();

return {x: Math.floor(event.clientX - rect.left),

y: Math.floor(event.clientY - rect.top)};

}

334 Chapter 19

Several of the drawing tools need to listen for "mousemove" events as long
as the mouse button is held down. The trackDrag function takes care of the
event registration and unregistration for such situations.

function trackDrag(onMove, onEnd) {

function end(event) {

removeEventListener("mousemove", onMove);

removeEventListener("mouseup", end);

if (onEnd)

onEnd(event);

}

addEventListener("mousemove", onMove);

addEventListener("mouseup", end);

}

This function takes two arguments. One is a function to call for each
"mousemove" event, and the other is a function to call when the mouse button
is released. Either argument can be omitted when it is not needed.

The line tool uses these two helpers to do the actual drawing.

tools.Line = function(event, cx, onEnd) {

cx.lineCap = "round";

var pos = relativePos(event, cx.canvas);

trackDrag(function(event) {

cx.beginPath();

cx.moveTo(pos.x, pos.y);

pos = relativePos(event, cx.canvas);

cx.lineTo(pos.x, pos.y);

cx.stroke();

}, onEnd);

};

The function starts by setting the drawing context’s lineCap property to
"round", which causes both ends of a stroked path to be round rather than
the default square form. This is a trick to make sure that multiple separate
lines, drawn in response to separate events, look like a single, coherent line.
With bigger line widths, you will see gaps at corners if you use the default flat
line caps.

Then, for every "mousemove" event that occurs as long as the mouse but-
ton is down, a simple line segment is drawn between the mouse’s old and
new position, using whatever strokeStyle and lineWidth happen to be cur-
rently set.

The onEnd argument to tools.Line is simply passed through to trackDrag.
The normal way to run tools won’t pass a third argument, so when using
the line tool, that argument will hold undefined, and nothing happens at the
end of the mouse drag. The argument is there to allow us to implement the
erase tool on top of the line tool with very little additional code.

Project: A Paint Program 335

tools.Erase = function(event, cx) {

cx.globalCompositeOperation = "destination-out";

tools.Line(event, cx, function() {

cx.globalCompositeOperation = "source-over";

});

};

The globalCompositeOperation property influences the way drawing oper-
ations on a canvas change the color of the pixels they touch. By default, the
property’s value is "source-over", which means that the drawn color is over-
laid on the existing color at that spot. If the color is opaque, it will simply
replace the old color, but if it is partially transparent, the two will be mixed.

The erase tool sets globalCompositeOperation to "destination-out", which
has the effect of erasing the pixels we touch, making them transparent again.

That gives us two tools in our paint program. We can draw black lines
a single pixel wide (the default strokeStyle and lineWidth for a canvas) and
erase them again. It is a working, albeit rather limited, paint program.

Color and Brush Size
Assuming that users will want to draw in colors other than black and use dif-
ferent brush sizes, let’s add controls for those two settings.

In Chapter 18, I discussed a number of different form fields. Color fields
were not among those. Traditionally, browsers don’t have built-in support
for color pickers, but in the past few years, a number of new form field types
have been standardized. One of those is <input type="color">. Others include
"date", "email", "url", and "number". Not all browsers support them yet—at
the time of writing, no version of Internet Explorer supports color fields.
The default type of an <input> tag is "text", and when an unsupported type
is used, browsers will treat it as a text field. This means that Internet Ex-
plorer users running our paint program will have to type in the name of
the color they want, rather than select it from a convenient widget.

This is what a color picker may look like:

336 Chapter 19

controls.color = function(cx) {

var input = elt("input", {type: "color"});

input.addEventListener("change", function() {

cx.fillStyle = input.value;

cx.strokeStyle = input.value;

});

return elt("span", null, "Color: ", input);

};

Whenever the value of the color field changes, the drawing context’s
fillStyle and strokeStyle are updated to hold the new value.

The field for configuring the brush size works similarly.

controls.brushSize = function(cx) {

var select = elt("select");

var sizes = [1, 2, 3, 5, 8, 12, 25, 35, 50, 75, 100];

sizes.forEach(function(size) {

select.appendChild(elt("option", {value: size},

size + " pixels"));

});

select.addEventListener("change", function() {

cx.lineWidth = select.value;

});

return elt("span", null, "Brush size: ", select);

};

The code generates options from an array of brush sizes, and again en-
sures that the canvas’s lineWidth updates when a brush size is chosen.

Saving
To explain the implementation of the save link, I must first tell you about
data URLs. A data URL is a URL with data: as its protocol. Unlike regular
http: and https: URLs, data URLs don’t point at a resource but rather contain
the entire resource in them. This is a data URL containing a simple HTML
document:

data:text/html,<h1 style="color:red">Hello!</h1>

Data URLs are useful for various tasks, such as including small images
directly in a style sheet file. They also allow us to link to files that we created
on the client side, in the browser, without first moving them to some server.

Canvas elements have a convenient method, called toDataURL, which will
return a data URL that contains the picture on the canvas as an image file.
We don’t want to update our save link every time the picture is changed,
however. For big pictures, that involves moving quite a lot of data into a link

Project: A Paint Program 337

and would be noticeably slow. Instead, we rig the link to update its href attri-
bute whenever it is focused with the keyboard or the mouse is moved over it.

controls.save = function(cx) {

var link = elt("a", {href: "/"}, "Save");

function update() {

try {

link.href = cx.canvas.toDataURL();

} catch (e) {

if (e instanceof SecurityError)

link.href = "javascript:alert(" +

JSON.stringify("Can't save: " + e.toString()) + ")";

else

throw e;

}

}

link.addEventListener("mouseover", update);

link.addEventListener("focus", update);

return link;

};

Thus, the link just quietly sits there, pointing at the wrong thing, but
when the user approaches it, it magically updates itself to point at the cur-
rent picture.

If you load a big image, some browsers will choke on the giant data URLs
that this produces. For small pictures, this approach works without problem.

But here we once again run into the subtleties of browser sandboxing.
When an image is loaded from a URL on another domain, if the server’s
response doesn’t include a header that tells the browser the resource may
be used from other domains (see Chapter 17), then the canvas will contain
information that the user may look at but that the script may not.

We may have requested a picture that contains private information (for
example, a graph showing the user’s bank account balance) using the user’s
session. If scripts could get information out of that picture, they could snoop
on the user in undesirable ways.

To prevent these kinds of information leaks, browsers will mark a canvas
as tainted when an image that the script may not see is drawn onto it. Pixel
data, including data URLs, may not be extracted from a tainted canvas. You
can write to it, but you can no longer read it.

This is why we need the try/catch statement in the update function for
the save link. When the canvas has become tainted, calling toDataURL will
raise an exception that is an instance of SecurityError. When that happens,
we set the link to point at yet another kind of URL, using the javascript: pro-
tocol. Such links simply execute the script given after the colon when they
are followed so that the link will show an alert window informing the user of
the problem when it is clicked.

338 Chapter 19

Loading Image Files
The final two controls are used to load images from local files and from
URLs. We’ll need the following helper function, which tries to load an im-
age file from a URL and replace the contents of the canvas with it:

function loadImageURL(cx, url) {

var image = document.createElement("img");

image.addEventListener("load", function() {

var color = cx.fillStyle, size = cx.lineWidth;

cx.canvas.width = image.width;

cx.canvas.height = image.height;

cx.drawImage(image, 0, 0);

cx.fillStyle = color;

cx.strokeStyle = color;

cx.lineWidth = size;

});

image.src = url;

}

We want to change the size of the canvas to precisely fit the image. For
some reason, changing the size of a canvas will cause its drawing context to
forget configuration properties such as fillStyle and lineWidth, so the func-
tion saves those and restores them after it has updated the canvas size.

The control for loading a local file uses the FileReader technique from
Chapter 18. Apart from the readAsText method we used there, such reader
objects also have a method called readAsDataURL, which is exactly what we
need here. We load the file that the user chose as a data URL and pass it
to loadImageURL to put it into the canvas.

controls.openFile = function(cx) {

var input = elt("input", {type: "file"});

input.addEventListener("change", function() {

if (input.files.length == 0) return;

var reader = new FileReader();

reader.addEventListener("load", function() {

loadImageURL(cx, reader.result);

});

reader.readAsDataURL(input.files[0]);

});

return elt("div", null, "Open file: ", input);

};

Loading a file from a URL is even simpler. But with a text field, it is less
clear when the user has finished writing the URL, so we can’t simply listen
for "change" events. Instead, we will wrap the field in a form and respond
when the form is submitted, either because the user pressed ENTER or be-
cause they clicked the load button.

Project: A Paint Program 339

controls.openURL = function(cx) {

var input = elt("input", {type: "text"});

var form = elt("form", null,

"Open URL: ", input,

elt("button", {type: "submit"}, "load"));

form.addEventListener("submit", function(event) {

event.preventDefault();

loadImageURL(cx, form.querySelector("input").value);

});

return form;

};

We have now defined all the controls that our simple paint program
needs, but it could still use a few more tools.

Finishing Up
We can easily add a text tool that uses prompt to ask the user which string it
should draw.

tools.Text = function(event, cx) {

var text = prompt("Text:", "");

if (text) {

var pos = relativePos(event, cx.canvas);

cx.font = Math.max(7, cx.lineWidth) + "px sans-serif";

cx.fillText(text, pos.x, pos.y);

}

};

You could add extra fields for the font size and the font, but for simplic-
ity’s sake, we always use a sans-serif font and base the font size on the current
brush size. The minimum size is 7 pixels because text smaller than that is
unreadable.

Another indispensable tool for drawing amateurish computer graph-
ics is the spray paint tool. This one draws dots in random locations under
the brush as long as the mouse is held down, creating denser or less dense
speckling based on how fast or slow the mouse moves.

tools.Spray = function(event, cx) {

var radius = cx.lineWidth / 2;

var area = radius * radius * Math.PI;

var dotsPerTick = Math.ceil(area / 30);

var currentPos = relativePos(event, cx.canvas);

var spray = setInterval(function() {

for (var i = 0; i < dotsPerTick; i++) {

var offset = randomPointInRadius(radius);

340 Chapter 19

cx.fillRect(currentPos.x + offset.x,

currentPos.y + offset.y, 1, 1);

}

}, 25);

trackDrag(function(event) {

currentPos = relativePos(event, cx.canvas);

}, function() {

clearInterval(spray);

});

};

The spray tool uses setInterval to spit out colored dots every 25 milli-
seconds as long as the mouse button is held down. The trackDrag function is
used to keep currentPos pointing at the current mouse position and to turn
off the interval when the mouse button is released.

To determine how many dots to draw every time the interval fires, the
function computes the area of the current brush and divides that by 30. To
find a random position under the brush, the randomPointInRadius function
is used.

function randomPointInRadius(radius) {

for (;;) {

var x = Math.random() * 2 - 1;

var y = Math.random() * 2 - 1;

if (x * x + y * y <= 1)

return {x: x * radius, y: y * radius};

}

}

This function generates points in the square between (−1,−1) and (1,1).
Using the Pythagorean theorem, it tests whether the generated point lies
within a circle of radius 1. As soon as the function finds such a point, it re-
turns the point multiplied by the radius argument.

The loop is necessary for a uniform distribution of dots. The straight-
forward way of generating a random point within a circle would be to use a
random angle and distance and call Math.sin and Math.cos to create the cor-
responding point. But with that method, the dots are more likely to appear
near the center of the circle. There are other ways around that, but they’re
more complicated than the previous loop.

We now have a functioning paint program.

Exercises
There is still plenty of room for improvement in this program. Let’s add a
few more features as exercises.

Project: A Paint Program 341

Rectangles
Define a tool called Rectangle that fills a rectangle (see the fillRect method
from Chapter 16) with the current color. The rectangle should span from
the point where the user pressed the mouse button to the point where they
released it. Note that the latter might be above or to the left of the former.

Once it works, you’ll notice that it is somewhat jarring to not see the
rectangle as you are dragging the mouse to select its size. Can you come up
with a way to show some kind of rectangle during the dragging, without actu-
ally drawing to the canvas until the mouse button is released?

If nothing comes to mind, think back to the position: absolute style dis-
cussed in Chapter 13, which can be used to overlay a node on the rest of the
document. The pageX and pageY properties of a mouse event can be used
to position an element precisely under the mouse, by setting the left, top,
width, and height styles to the correct pixel values.

Color Picker
Another tool that is commonly found in graphics programs is a color picker,
which allows the user to click the picture and selects the color under the
mouse pointer. Build this.

For this tool, we need a way to access the content of the canvas. The
toDataURL method more or less did that, but getting pixel information out
of such a data URL is hard. Instead, we’ll use the getImageData method on the
drawing context, which returns a rectangular piece of the image as an object
with width, height, and data properties. The data property holds an array of
numbers from 0 to 255, using four numbers to represent each pixel’s red,
green, blue, and alpha (opaqueness) components.

This example retrieves the numbers for a single pixel from a canvas
once when the canvas is blank (all pixels are transparent black) and once
when the pixel has been colored red.

function pixelAt(cx, x, y) {

var data = cx.getImageData(x, y, 1, 1);

console.log(data.data);

}

var canvas = document.createElement("canvas");

var cx = canvas.getContext("2d");

pixelAt(cx, 10, 10);

// . [0, 0, 0, 0]

cx.fillStyle = "red";

cx.fillRect(10, 10, 1, 1);

pixelAt(cx, 10, 10);

// . [255, 0, 0, 255]

342 Chapter 19

The arguments to getImageData indicate the starting x- and y-coordinates
of the rectangle we want to retrieve, followed by its width and height.

Ignore transparency during this exercise and look only at the first three
values for a given pixel. Also, do not worry about updating the color field
when the user picks a color. Just make sure that the drawing context’s
fillStyle and strokeStyle are set to the color under the mouse cursor.

Remember that these properties accept any color that CSS understands,
which includes the rgb(R, G, B) style you saw in Chapter 15.

The getImageData method is subject to the same restrictions as toDataURL—
it will raise an error when the canvas contains pixels that originate from an-
other domain. Use a try/catch statement to report such errors with an alert

dialog.

Flood Fill
This is a more advanced exercise than the preceding two, and it will require
you to design a nontrivial solution to a tricky problem. Make sure you have
plenty of time and patience before starting to work on this exercise, and do
not get discouraged by initial failures.

A flood fill tool colors the pixel under the mouse and the surround-
ing pixels of the same color. For the purpose of this exercise, we will con-
sider such a group to include all pixels that can be reached from our starting
pixel by moving in single-pixel horizontal and vertical steps (not diagonal),
without ever touching a pixel that has a color differ-
ent from the starting pixel.

The following image illustrates the set of pixels colored when the flood
fill tool is used at the marked pixel:

The flood fill does not leak through diagonal gaps and does not touch
pixels that are not reachable, even if they have the same color as the target
pixel.

You will once again need getImageData to find out the color for each
pixel. It is probably a good idea to fetch the whole image in one go and then
pick out pixel data from the resulting array. The pixels are organized in this
array in a similar way to the grid elements in Chapter 7, one row at a time,
except that each pixel is represented by four values. The first value for the
pixel at (x,y) is at position (x + y × width) × 4.

Project: A Paint Program 343

Do include the fourth (alpha) value this time since we want to be able to
tell the difference between empty and black pixels.

Finding all adjacent pixels with the same color requires you to “walk”
over the pixel surface, one pixel up, down, left, or right, as long as new same-
colored pixels can be found. But you won’t find all pixels in a group on the
first walk. Rather, you have to do something similar to the backtracking done
by the regular expression matcher, described in Chapter 9. Whenever more
than one possible direction to proceed is seen, you must store all the direc-
tions you do not take immediately and look at them later, when you finish
your current walk.

In a normal-sized picture, there are a lot of pixels. Thus, you must take
care to do the minimal amount of work required or your program will take
a very long time to run. For example, every walk must ignore pixels seen by
previous walks so that it does not redo work that has already been done.

I recommend calling fillRect for individual pixels when a pixel that
should be colored is found, and keeping some data structure that tells you
about all the pixels that have already been looked at.

344 Chapter 19

PART III
BEYOND

“A student asked ‘The programmers of old used only

simple machines and no programming languages, yet

they made beautiful programs. Why do we use compli-

cated machines and programming languages?’

Fu-Tzu replied ‘The builders of old used only sticks

and clay, yet they made beautiful huts.’”

— Master Yuan-Ma, The Book of Programming

20
NODE.JS

So far, you have learned the JavaScript language and
used it within a single environment: the browser. This
chapter and the next one will briefly introduce you
to Node.js, a program that allows you to apply your
JavaScript skills outside of the browser. With it, you
can build anything from simple command-line tools
to dynamic HTTP servers.

These chapters aim to teach you the important ideas that Node.js builds
on and to give you enough information to write some useful programs for it.
They do not try to be a complete, or even a thorough, treatment of Node.

If you want to follow along and run the code in this chapter, start by go-
ing to http://nodejs.org/ and following the installation instructions for your
operating system. Also refer to that website for further documentation about
Node and its built-in modules.

Background
One of the more difficult problems with writing systems that communicate
over the network is managing input and output—that is, the reading and

http://nodejs.org

writing of data to and from the network, the hard drive, and other such de-
vices. Moving data around takes time, and scheduling it cleverly can make
a big difference in how quickly a system responds to the user or to network
requests.

The traditional way to handle input and output is to have a function,
such as readFile, start reading a file and return only when the file has been
fully read. This is called synchronous I/O (I/O stands for input/output).

Node was initially conceived for the purpose of making asynchronous

I/O easy and convenient. We have seen asynchronous interfaces before,
such as a browser’s XMLHttpRequest object, discussed in Chapter 17. An asyn-
chronous interface allows the script to continue running while it does its
work and calls a callback function when it’s done. This is the way Node
does all its I/O.

JavaScript lends itself well to a system like Node. It is one of the few
programming languages that does not have a built-in way to do I/O. Thus,
JavaScript could be fit onto Node’s rather eccentric approach to I/O with-
out ending up with two inconsistent interfaces. In 2009, when Node was be-
ing designed, people were already doing callback-based I/O in the browser,
so the community around the language was used to an asynchronous pro-
gramming style.

Asynchronicity
I’ll try to illustrate synchronous versus asynchronous I/O with a small example,
where a program needs to fetch two resources from the Internet and then
do some simple processing with the result.

In a synchronous environment, the obvious way to perform this task is to
make the requests one after the other. This method has the drawback that
the second request will be started only when the first has finished. The total
time taken will be at least the sum of the two response times. This is not an
effective use of the machine, which will be mostly idle when it is transmitting
and receiving data over the network.

The solution to this problem, in a synchronous system, is to start addi-
tional threads of control. (Refer to Chapter 14 for a previous discussion of
threads.) A second thread could start the second request, and then both
threads wait for their results to come back, after which they resynchronize to
combine their results.

In the following diagram, the thick lines represent time the program
spends running normally, and the thin lines represent time spent waiting for
I/O. In the synchronous model, the time taken by I/O is part of the timeline
for a given thread of control. In the asynchronous model, starting an I/O
action conceptually causes a split in the timeline. The thread that initiated
the I/O continues running, and the I/O itself is done alongside it, finally
calling a callback function when it is finished.

348 Chapter 20

Synchronous, single thread of control

Synchronous, two threads of control

Asynchronous

Another way to express this difference is that waiting for I/O to finish is
implicit in the synchronous model, while it is explicit, directly under our con-
trol, in the asynchronous one. But asynchronicity cuts both ways. It makes
expressing programs that do not fit the straight-line model of control eas-
ier, but it also makes expressing programs that do follow a straight line more
awkward.

In Chapter 17, I already touched on the fact that all those callbacks add
quite a lot of noise and indirection to a program. Whether this style of asyn-
chronicity is a good idea in general can be debated. In any case, it takes
some getting used to.

But for a JavaScript-based system, I would argue that callback-style asyn-
chronicity is a sensible choice. One of the strengths of JavaScript is its sim-
plicity, and trying to add multiple threads of control to it would add a lot of
complexity. Though callbacks don’t tend to lead to simple code, as a concept,
they’re pleasantly simple yet powerful enough to write high-performance
web servers.

The node Command
When Node.js is installed on a system, it provides a program called node,
which is used to run JavaScript files. Say you have a file hello.js, containing
this code:

var message = "Hello world";

console.log(message);

You can then run node from the command line like this to execute the
program:

$ node hello.js

Hello world

The console.log method in Node does something similar to what it does
in the browser. It prints out a piece of text. But in Node, the text will go to
the process’s standard output stream, rather than to a browser’s JavaScript
console.

Node.js 349

If you run node without giving it a file, it provides you with a prompt at
which you can type JavaScript code and immediately see the result.

$ node

> 1 + 1

2

> [-1, -2, -3].map(Math.abs)

[1, 2, 3]

> process.exit(0)

$

The process variable, just like the console variable, is available globally in
Node. It provides various ways to inspect and manipulate the current pro-
gram. The exit method ends the process and can be given an exit status
code, which tells the program that started node (in this case, the command-
line shell) whether the program completed successfully (code zero) or en-
countered an error (any other code).

To find the command-line arguments given to your script, you can read
process.argv, which is an array of strings. Note that it also includes the name
of the node commands and your script name, so the actual arguments start at
index 2. If showargv.js simply contains the statement console.log(process.argv),
you could run it like this:

$ node showargv.js one --and two

["node", "/home/marijn/showargv.js", "one", "--and", "two"]

All the standard JavaScript global variables, such as Array, Math, and JSON,
are also present in Node’s environment. Browser-related functionality, such
as document and alert, is absent.

The global scope object, which is called window in the browser, has the
more sensible name global in Node.

Modules
Beyond the few variables I mentioned, such as console and process, Node
puts little functionality in the global scope. If you want to access other built-
in functionality, you have to ask the module system for it.

The CommonJS module system, based on the require function, was de-
scribed in Chapter 10. This system is built into Node and is used to load any-
thing from built-in modules to downloaded libraries to files that are part of
your own program.

When require is called, Node has to resolve the given string to an actual
file to load. Pathnames that start with "/", "./", or "../" are resolved relative
to the current module’s path, where "./" stands for the current directory,
"../" for one directory up, and "/" for the root of the filesystem. So if you
ask for "./world/world" from the file /home/marijn/elife/run.js, Node will try

350 Chapter 20

to load the file /home/marijn/elife/world/world.js. The .js extension may be
omitted.

When a string that does not look like a relative or absolute path is given
to require, it is assumed to refer to either a built-in module or a module in-
stalled in a node_modules directory. For example, require("fs") will give you
Node’s built-in filesystem module, and require("elife") will try to load the li-
brary found in node_modules/elife/. A common way to install such libraries is
by using NPM, which I will discuss in a moment.

To illustrate the use of require, let’s set up a simple project consisting
of two files. The first one is called main.js, which defines a script that can be
called from the command line to garble a string.

var garble = require("./garble");

// Index 2 holds the first actual command-line argument

var argument = process.argv[2];

console.log(garble(argument));

The file garble.js defines a library for garbling strings, which can be
used both by the command-line tool defined earlier and by other scripts
that need direct access to a garbling function.

module.exports = function(string) {

return string.split("").map(function(ch) {

return String.fromCharCode(ch.charCodeAt(0) + 5);

}).join("");

};

Remember that replacing module.exports, rather than adding proper-
ties to it, allows us to export a specific value from a module. In this case, we
make the result of requiring our garble file the garbling function itself.

The function splits the string it is given into single characters by split-
ting on the empty string and then replaces each character with the character
whose code is five points higher. Finally, it joins the result back into a string.

We can now call our tool like this:

$ node main.js JavaScript

Of{fXhwnuy

Installing with NPM
NPM, which was briefly discussed in Chapter 10, is an online repository of
JavaScript modules, many of which are specifically written for Node. When
you install Node on your computer, you also get a program called npm, which
provides a convenient interface to this repository.

Node.js 351

For example, one module you will find on NPM is figlet, which can con-
vert text into ASCII art—drawings made out of text characters. The following
transcript shows how to install and use it:

$ npm install figlet

npm GET https://registry.npmjs.org/figlet

npm 200 https://registry.npmjs.org/figlet

npm GET https://registry.npmjs.org/figlet/-/figlet-1.0.9.tgz

npm 200 https://registry.npmjs.org/figlet/-/figlet-1.0.9.tgz

figlet@1.0.9 node_modules/figlet

$ node

> var figlet = require("figlet");

> figlet.text("Hello world!", function(error, data) {

if (error)

console.error(error);

else

console.log(data);

});

_ _ _ _ _ _ _

| | | | ___| | | ___ __ _____ _ __| | __| | |

| |_| |/ _ \ | |/ _ \ \ \ /\ / / _ \| '__| |/ _` | |

| _ | __/ | | (_) | \ V V / (_) | | | | (_| |_|

|_| |_|___|_|_|___/ _/_/ ___/|_| |_|__,_(_)

After running npm install, NPM will have created a directory called
node_modules. Inside that directory will be a figlet directory, which contains
the library. When we run node and call require("figlet"), this library is loaded,
and we can call its text method to draw some big letters.

Somewhat unexpectedly perhaps, instead of simply returning the string
that makes up the big letters, figlet.text takes a callback function that it
passes its result to. It also passes the callback another argument, error, which
will hold an error object when something goes wrong or null when every-
thing is all right.

This is a common pattern in Node code. Rendering something with
figlet requires the library to read a file that contains the letter shapes. Read-
ing that file from disk is an asynchronous operation in Node, so figlet.text

can’t immediately return its result. Asynchronicity is infectious, in a way—
every function that calls an asynchronous function must itself become
asynchronous.

There is much more to NPM than npm install. It reads package.json files,
which contain JSON-encoded information about a program or library, such
as which other libraries it depends on. Doing npm install in a directory that
contains such a file will automatically install all dependencies, as well as their

dependencies. The npm tool is also used to publish libraries to NPM’s on-
line repository of packages so that other people can find, download, and
use them.

352 Chapter 20

This book won’t delve further into the details of NPM usage. Refer
to http://npmjs.org/ for further documentation and for an easy way to search
for libraries.

The Filesystem Module
One of the most commonly used built-in modules that comes with Node is
the "fs" module, which stands for filesystem. This module provides functions
for working with files and directories.

For example, there is a function called readFile, which reads a file and
then calls a callback with the file’s contents.

var fs = require("fs");

fs.readFile("file.txt", "utf8", function(error, text) {

if (error)

throw error;

console.log("The file contained:", text);

});

The second argument to readFile indicates the character encoding used to
decode the file into a string. There are several ways in which text can be en-
coded to binary data, but most modern systems use UTF-8 to encode text, so
unless you have reasons to believe another encoding is used, passing "utf8"

when reading a text file is a safe bet. If you do not pass an encoding, Node
will assume you are interested in the binary data and will give you a Buffer

object instead of a string. This is an array-like object that contains numbers
representing the bytes in the files.

var fs = require("fs");

fs.readFile("file.txt", function(error, buffer) {

if (error)

throw error;

console.log("The file contained", buffer.length, "bytes.",

"The first byte is:", buffer[0]);

});

A similar function, writeFile, is used to write a file to disk.

var fs = require("fs");

fs.writeFile("graffiti.txt", "Node was here", function(err) {

if (err)

console.log("Failed to write file:", err);

else

console.log("File written.");

});

Node.js 353

http://npmjs.org

Here, it was not necessary to specify the encoding since writeFile will as-
sume that if it is given a string to write, rather than a Buffer object, it should
write it out as text using its default character encoding, which is UTF-8.

The "fs" module contains many other useful functions: readdir will re-
turn the files in a directory as an array of strings, stat will retrieve informa-
tion about a file, rename will rename a file, unlink will remove one, and so on.
See the documentation at http://nodejs.org/ for specifics.

Many of the functions in "fs" come in both synchronous and asynchro-
nous variants. For example, there is a synchronous version of readFile called
readFileSync.

var fs = require("fs");

console.log(fs.readFileSync("file.txt", "utf8"));

Synchronous functions require less ceremony to use and can be useful
in simple scripts, where the extra speed provided by asynchronous I/O is
irrelevant. But note that while such a synchronous operation is being per-
formed, your program will be stopped entirely. If it should be responding to
the user or to other machines on the network, being stuck on synchronous
I/O might produce annoying delays.

The HTTP Module
Another central module is called "http". It provides functionality for run-
ning HTTP servers and making HTTP requests.

This is all it takes to start a simple HTTP server:

var http = require("http");

var server = http.createServer(function(request, response) {

response.writeHead(200, {"Content-Type": "text/html"});

response.write("<h1>Hello!</h1><p>You asked for <code>" +

request.url + "</code></p>");

response.end();

});

server.listen(8000);

If you run this script on your own machine, you can point your web
browser at http://localhost:8000/hello to make a request to your server. It will
respond with a small HTML page.

The function passed as an argument to createServer is called every time
a client tries to connect to the server. The request and response variables are
objects representing the incoming and outgoing data. The first contains in-
formation about the request, such as its url property, which tells us to what
URL the request was made.

To send something back, you call methods on the response object. The
first, writeHead, will write out the response headers (see Chapter 17). You
give it the status code (200 for “OK” in this case) and an object that contains

354 Chapter 20

http://nodejs.org
http://localhost:8000/hello

header values. Here we tell the client that we will be sending back an HTML
document.

Next, the actual response body (the document itself) is sent with response

.write. You are allowed to call this method multiple times if you want to send
the response piece by piece, possibly streaming data to the client as it be-
comes available. Finally, response.end signals the end of the response.

The call to server.listen causes the server to start waiting for connec-
tions on port 8000. This is the reason you have to connect to localhost:8000,
rather than just localhost (which would use the default port, 80), to speak to
this server.

To stop running a Node script like this, which doesn’t finish automat-
ically because it is waiting for further events (in this case, network connec-
tions), press CTRL-C.

A real web server usually does more than the one in the previous
example—it looks at the request’s method (the method property) to see
what action the client is trying to perform and at the request’s URL to find
out which resource this action is being performed on. You’ll see a more ad-
vanced server later in this chapter.

To act as an HTTP client, we can use the request function in the "http"

module.

var http = require("http");

var request = http.request({

hostname: "eloquentjavascript.net",

path: "/20_node.html",

method: "GET",

headers: {Accept: "text/html"}

}, function(response) {

console.log("Server responded with status code",

response.statusCode);

});

request.end();

The first argument to request configures the request, telling Node what
server to talk to, what path to request from that server, which method to
use, and so on. The second argument is the function that should be called
when a response comes in. It is given an object that allows us to inspect the
response, for example to find out its status code.

Just like the response object we saw in the server, the object returned by
request allows us to stream data into the request with the write method and
finish the request with the end method. The example does not use write be-
cause GET requests should not contain data in their request body.

To make requests to secure HTTP (HTTPS) URLs, Node provides a
package called https, which contains its own request function, similar to
http.request.

Node.js 355

Streams
We have seen two examples of writable streams in HTTP—namely, the re-
sponse object that the server could write to and the request object that was
returned from http.request.

Writable streams are a widely used concept in Node interfaces. All
writable streams have a write method, which can be passed a string or a
Buffer object. Their end method closes the stream and, if given an argument,
will also write out a piece of data before it does so. Both of these methods
can also be given a callback as an additional argument, which they will call
when the writing to or closing of the stream has finished.

It is possible to create a writable stream that points at a file with the
fs.createWriteStream function. Then you can use the write method on the
resulting object to write the file one piece at a time, rather than in one shot
as with fs.writeFile.

Readable streams are a little more involved. Both the request variable
that was passed to the HTTP server’s callback function and the response

variable passed to the HTTP client are readable streams. (A server reads
requests and then writes responses, whereas a client first writes a request and
then reads a response.) Reading from a stream is done using event handlers,
rather than methods.

Objects that emit events in Node have a method called on that is similar
to the addEventListener method in the browser. You give it an event name
and then a function, and it will register that function to be called whenever
the given event occurs.

Readable streams have "data" and "end" events. The first is fired every
time some data comes in, and the second is called whenever the stream is at
its end. This model is most suited for “streaming” data, which can be imme-
diately processed, even when the whole document isn’t available yet. A file
can be read as a readable stream by using the fs.createReadStream function.

The following code creates a server that reads request bodies and streams
them back to the client as all-uppercase text:

var http = require("http");

http.createServer(function(request, response) {

response.writeHead(200, {"Content-Type": "text/plain"});

request.on("data", function(chunk) {

response.write(chunk.toString().toUpperCase());

});

request.on("end", function() {

response.end();

});

}).listen(8000);

The chunk variable passed to the data handler will be a binary Buffer,
which we can convert to a string by calling toString on it, which will decode
the variable using the default encoding (UTF-8).

356 Chapter 20

The following piece of code, if run while the uppercasing server is run-
ning, will send a request to that server and write out the response it gets:

var http = require("http");

var request = http.request({

hostname: "localhost",

port: 8000,

method: "POST"

}, function(response) {

response.on("data", function(chunk) {

process.stdout.write(chunk.toString());

});

});

request.end("Hello server");

The example writes to process.stdout (the process’s standard output,
as a writable stream) instead of using console.log. We can’t use console.log

because it adds an extra newline character after each piece of text that it
writes, which isn’t appropriate here.

A Simple File Server
Let’s combine our newfound knowledge about HTTP servers and talking
to the filesystem and create a bridge between them: an HTTP server that
allows remote access to a filesystem. Such a server has many uses. It allows
web applications to store and share data or give a group of people shared
access to a bunch of files.

When we treat files as HTTP resources, the HTTP methods GET, PUT, and
DELETE can be used to read, write, and delete the files, respectively. We will
interpret the path in the request as the path of the file that the request
refers to.

We probably don’t want to share our whole filesystem, so we’ll interpret
these paths as starting in the server’s working directory, which is the direc-
tory in which it was started. If I ran the server from /home/marijn/public/ (or
C:\Users\marijn\public\ on Windows), then a request for /file.txt should re-
fer to /home/marijn/public/file.txt (or C:\Users\marijn\public\file.txt).

We’ll build the program piece by piece, using an object called methods to
store the functions that handle the various HTTP methods.

var http = require("http"), fs = require("fs");

var methods = Object.create(null);

http.createServer(function(request, response) {

function respond(code, body, type) {

if (!type) type = "text/plain";

response.writeHead(code, {"Content-Type": type});

Node.js 357

if (body && body.pipe)

body.pipe(response);

else

response.end(body);

}

if (request.method in methods)

methods[request.method](urlToPath(request.url),

respond, request);

else

respond(405, "Method " + request.method +

" not allowed.");

}).listen(8000);

This starts a server that just returns 405 error responses, which is the
code used to indicate that a given method isn’t handled by the server.

The respond function is passed to the functions that handle the various
methods and acts as a callback to finish the request. It takes an HTTP status
code, a body, and optionally a content type as arguments. If the value passed
as the body is a readable stream, it will have a pipe method, which is used to
forward a readable stream to a writable stream. If not, it is assumed to be
either null (no body) or a string and is passed directly to the response’s end

method.
To get a path from the URL in the request, the urlToPath function uses

Node’s built-in "url" module to parse the URL. It takes its pathname, which
will be something like /file.txt, decodes that to get rid of the %20-style es-
cape codes, and prefixes a single dot to produce a path relative to the cur-
rent directory.

function urlToPath(url) {

var path = require("url").parse(url).pathname;

return "." + decodeURIComponent(path);

}

If you are worried about the security of the urlToPath function, you are
right. We will return to that in the exercises.

We will set up the GET method to return a list of files when reading a di-
rectory and to return the file’s content when reading a regular file.

One tricky question is what kind of Content-Type header we should add
when returning a file’s content. Since these files could be anything, our
server can’t simply return the same type for all of them. But NPM can help
with that. The mime package (content type indicators like text/plain are also
called MIME types) knows the correct type for a huge number of file exten-
sions.

If you run the following npm command in the directory where the server
script lives, you’ll be able to use require("mime") to get access to the library:

$ npm install mime

npm http GET https://registry.npmjs.org/mime

358 Chapter 20

npm http 304 https://registry.npmjs.org/mime

mime@1.2.11 node_modules/mime

When a requested file does not exist, the correct HTTP error code to
return is 404. We will use fs.stat, which looks up information on a file, to
find out both whether the file exists and whether it is a directory.

methods.GET = function(path, respond) {

fs.stat(path, function(error, stats) {

if (error && error.code == "ENOENT")

respond(404, "File not found");

else if (error)

respond(500, error.toString());

else if (stats.isDirectory())

fs.readdir(path, function(error, files) {

if (error)

respond(500, error.toString());

else

respond(200, files.join("\n"));

});

else

respond(200, fs.createReadStream(path),

require("mime").lookup(path));

});

};

Because it has to touch the disk and thus might take a while, fs.stat is
asynchronous. When the file does not exist, fs.stat will pass an error object
with a code property of "ENOENT" to its callback. It would be nice if Node de-
fined different subtypes of Error for different types of error, but it doesn’t.
Instead, it just puts obscure, Unix-inspired codes in there.

We are going to report any errors we didn’t expect with status code 500,
which indicates that the problem exists in the server, as opposed to codes
starting with 4 (such as 404), which refer to bad requests. There are some
situations in which this is not entirely accurate, but for a small example pro-
gram like this, it will have to be good enough.

The stats object returned by fs.stat tells us a number of things about
a file, such as its size (size property) and its modification date (mtime prop-
erty). Here we are interested in the question of whether it is a directory or a
regular file, which the isDirectory method tells us.

We use fs.readdir to read the list of files in a directory and, in yet an-
other callback, return it to the user. For normal files, we create a readable
stream with fs.createReadStream and pass it to respond, along with the content
type that the "mime" module gives us for the file’s name.

The code to handle DELETE requests is slightly simpler.

methods.DELETE = function(path, respond) {

fs.stat(path, function(error, stats) {

Node.js 359

if (error && error.code == "ENOENT")

respond(204);

else if (error)

respond(500, error.toString());

else if (stats.isDirectory())

fs.rmdir(path, respondErrorOrNothing(respond));

else

fs.unlink(path, respondErrorOrNothing(respond));

});

};

You may be wondering why trying to delete a nonexistent file returns
a 204 status, rather than an error. When the file that is being deleted is not
there, you could say that the request’s objective is already fulfilled. The HTTP
standard encourages people to make requests idempotent, which means that
applying them multiple times does not produce a different result.

function respondErrorOrNothing(respond) {

return function(error) {

if (error)

respond(500, error.toString());

else

respond(204);

};

}

When an HTTP response does not contain any data, the status code 204
(“no content”) can be used to indicate this. Since we need to provide call-
backs that either report an error or return a 204 response in a few differ-
ent situations, I wrote a respondErrorOrNothing function that creates such a
callback.

This is the handler for PUT requests:

methods.PUT = function(path, respond, request) {

var outStream = fs.createWriteStream(path);

outStream.on("error", function(error) {

respond(500, error.toString());

});

outStream.on("finish", function() {

respond(204);

});

request.pipe(outStream);

};

Here, we don’t need to check whether the file exists—if it does, we’ll
just overwrite it. We again use pipe to move data from a readable stream to a
writable one, in this case from the request to the file. If creating the stream
fails, an "error" event is raised for it, which we report in our response. When

360 Chapter 20

the data is transferred successfully, pipe will close both streams, which will
cause a "finish" event to fire on the writable stream. When that happens, we
can report success to the client with a 204 response.

The full script for the server is available at http://eloquentjavascript.net/

code/file_server.js. You can download that and run it with Node to start your
own file server. And of course, you can modify and extend it to solve this
chapter’s exercises or to experiment.

The command-line tool curl, widely available on Unix-like systems,
can be used to make HTTP requests. The following session briefly tests our
server. Note that -X is used to set the request’s method and -d is used to in-
clude a request body.

$ curl http://localhost:8000/file.txt

File not found

$ curl -X PUT -d hello http://localhost:8000/file.txt

$ curl http://localhost:8000/file.txt

hello

$ curl -X DELETE http://localhost:8000/file.txt

$ curl http://localhost:8000/file.txt

File not found

The first request for file.txt fails since the file does not exist yet. The
PUT request creates the file, and behold, the next request successfully re-
trieves it. After deleting it with a DELETE request, the file is again missing.

Error Handling
In the code for the file server, there are six places where we are explicitly
routing exceptions for which we don’t know how to handle error responses.
Because exceptions aren’t automatically propagated to callbacks but rather
passed to them as arguments, they have to be handled explicitly every time.
This completely defeats the advantage of exception handling, namely, the
ability to centralize the handling of failure conditions.

What happens when something actually throws an exception in this sys-
tem? Since we are not using any try blocks, the exception will propagate to
the top of the call stack. In Node, that aborts the program and writes infor-
mation about the exception (including a stack trace) to the program’s stan-
dard error stream.

This means that our server will crash whenever a problem is encoun-
tered in the server’s code itself, as opposed to asynchronous problems, which
will be passed as arguments to the callbacks. If we wanted to handle all ex-
ceptions raised during the handling of a request, to make sure we send a
response, we would have to add try/catch blocks to every callback.

This is not workable. Many Node programs are written to make as little
use of exceptions as possible, with the assumption that if an exception is
raised, it is not something the program can handle, and crashing is the right
response.

Node.js 361

http://eloquentjavascript.net/code/file_server.js
http://eloquentjavascript.net/code/file_server.js

Another approach is to use promises, which were introduced in Chap-
ter 17. Those catch exceptions raised by callback functions and propagate
them as failures. It is possible to load a promise library in Node and use
that to manage your asynchronous control. Few Node libraries integrate
promises, but it is often trivial to wrap them. The excellent "promise" module
from NPM contains a function called denodeify, which takes an asynchronous
function like fs.readFile and converts it to a promise-returning function.

var Promise = require("promise");

var fs = require("fs");

var readFile = Promise.denodeify(fs.readFile);

readFile("file.txt", "utf8").then(function(content) {

console.log("The file contained: " + content);

}, function(error) {

console.log("Failed to read file: " + error);

});

For comparison, I’ve written another version of the file server based on
promises, which you can find at http://eloquentjavascript.net/code/file_server

_promises.js. It is slightly cleaner because functions can now return their re-
sults, rather than having to call callbacks, and the routing of exceptions is
implicit, rather than explicit.

I’ll list a few lines from the promise-based file server to illustrate the dif-
ference in the style of programming.

The fsp object that is used by this code contains promise-style variants of
a number of fs functions, wrapped by Promise.denodeify. The object returned
from the method handler, with code and body properties, will become the
final result of the chain of promises, and it will be used to determine what
kind of response to send to the client.

methods.GET = function(path) {

return inspectPath(path).then(function(stats) {

if (!stats) // Does not exist

return {code: 404, body: "File not found"};

else if (stats.isDirectory())

return fsp.readdir(path).then(function(files) {

return {code: 200, body: files.join("\n")};

});

else

return {code: 200,

type: require("mime").lookup(path),

body: fs.createReadStream(path)};

});

};

362 Chapter 20

http://eloquentjavascript.net/code/file_server_promises.js
http://eloquentjavascript.net/code/file_server_promises.js

function inspectPath(path) {

return fsp.stat(path).then(null, function(error) {

if (error.code == "ENOENT") return null;

else throw error;

});

}

The inspectPath function is a simple wrapper around fs.stat, which
handles the case where the file is not found. In that case, we replace the
failure with a success that yields null. All other errors are allowed to propa-
gate. When the promise that is returned from these handlers fails, the HTTP
server responds with a 500 status code.

Summary
Node is a nice, straightforward system that lets us run JavaScript in a non-
browser context. It was originally designed for network tasks to play the role
of a node in a network. But it lends itself to all kinds of scripting tasks, and
if writing JavaScript is something you enjoy, automating everyday tasks with
Node works wonderfully.

NPM provides libraries for everything you can think of (and quite a few
things you’d probably never think of), and it allows you to fetch and install
those libraries by running a simple command. Node also comes with a num-
ber of built-in modules, including the "fs" module, for working with the
filesystem, and the "http" module, for running HTTP servers and making
HTTP requests.

All input and output in Node is done asynchronously, unless you ex-
plicitly use a synchronous variant of a function, such as fs.readFileSync. You
provide callback functions, and Node will call them at the appropriate time,
when the I/O you asked for has finished.

Exercises

Content Negotiation, Again
In Chapter 17, the first exercise was to make several requests to http://

eloquentjavascript.net/author/ , asking for different types of content by pass-
ing different Accept headers.

Do this again, using Node’s http.request function. Ask for at least the
media types text/plain, text/html, and application/json. Remember that
headers to a request can be given as an object, in the headers property of
http.request’s first argument.

Write out the content of the responses to each request.

Node.js 363

http://eloquentjavascript.net/author
http://eloquentjavascript.net/author

Fixing a Leak
For easy remote access to some files, I might get into the habit of having
the file server defined in this chapter running on my machine, in the /home/

marijn/public directory. Then, one day, I find that someone has gained ac-
cess to all the passwords I stored in my browser.

What happened?
If it isn’t clear to you yet, think back to the urlToPath function, defined

like this:

function urlToPath(url) {

var path = require("url").parse(url).pathname;

return "." + decodeURIComponent(path);

}

Now consider the fact that paths passed to the "fs" functions can be
relative—they may contain "../" to go up a directory. What happens when
a client sends requests to URLs like the ones shown here?

http://myhostname:8000/../.config/config/google-chrome/Default/Web%20Data

http://myhostname:8000/../.ssh/id_dsa

http://myhostname:8000/../../../etc/passwd

Change urlToPath to fix this problem. Take into account the fact that
Node on Windows allows both forward slashes and backslashes to separate
directories.

Also, meditate on the fact that as soon as you expose some half-baked
system on the Internet, the bugs in that system might be used to do bad
things to your machine.

Creating Directories
Though the DELETE method is wired up to delete directories (using fs.rmdir),
the file server currently does not provide any way to create a directory.

Add support for a method MKCOL, which should create a directory by
calling fs.mkdir. MKCOL is not one of the basic HTTP methods, but it does ex-
ist, for this same purpose, in the WebDAV standard, which specifies a set of
extensions to HTTP, making it suitable for writing resources, not just read-
ing them.

A Public Space on the Web
Since the file server serves up any kind of file and even includes the right
Content-Type header, you can use it to serve a website. Since it allows every-
body to delete and replace files, it would be an interesting kind of website:
one that can be modified, vandalized, and destroyed by everybody who takes
the time to create the right HTTP request. Still, it would be a website.

364 Chapter 20

Write a basic HTML page that includes a simple JavaScript file. Put the
files in a directory served by the file server and open them in your browser.

Next, as an advanced exercise or even a weekend project, combine all
the knowledge you gained from this book to build a more user-friendly inter-
face for modifying the website from inside the website.

Use an HTML form (Chapter 18) to edit the content of the files that
make up the website, allowing the user to update them on the server by us-
ing HTTP requests as described in Chapter 17.

Start by making only a single file editable. Then make it so that the user
can select which file to edit. Use the fact that our file server returns lists of
files when reading a directory.

Don’t work directly in the code on the file server; if you make a mistake,
you are likely to damage the files there. Instead, keep your work outside of
the publicly accessible directory and copy it there when testing.

If your computer is directly connected to the Internet, without a firewall,
router, or other interfering device in between, you might be able to invite a
friend to use your website. To check, go to http://whatismyip.com/ , copy the
IP address it gives you into the address bar of your browser, and add :8000

after it to select the right port. If that brings you to your site, it is online for
everybody to see.

Node.js 365

http://www.whatismyip.com/

21
PROJECT: SKILL-SHARING WEBSITE

A skill-sharing meeting is an event where people with a
shared interest come together and give small, informal
presentations about things they know. At a gardening
skill-sharing meeting, someone might explain how to
cultivate celery. Or in a programming-oriented skill-
sharing group, you could drop by and tell everybody
about Node.js.

Such meetups, also often called users’ groups when they are about com-
puters, are a great way to broaden your horizon, learn about new develop-
ments, or simply meet people with similar interests. Many large cities have a
JavaScript meetup. They are typically free to attend, and I’ve found the ones
I’ve visited to be friendly and welcoming.

In this final project chapter, our goal is to set up a website for managing
talks given at a skill-sharing meeting. Imagine a small group of people meet-
ing up regularly in a member’s office to talk about unicycling. The problem
is that when the previous organizer of the meetings moved to another town,
nobody stepped forward to take over this task. We want a system that will let
the participants propose and discuss talks among themselves, without a cen-
tral organizer.

The full code for the project can be downloaded from http://

eloquentjavascript.net/code/skillsharing.zip.

Design
There is a server part to this project, written for Node.js, and a client part,
written for the browser. The server stores the system’s data and provides it to
the client. It also serves the HTML and JavaScript files that implement the
client-side system.

The server keeps a list of talks proposed for the next meeting, and the
client shows this list. Each talk has a presenter name, a title, a summary, and
a list of comments associated with it. The client allows users to propose new
talks (adding them to the list), delete talks, and comment on existing talks.
Whenever the user makes such a change, the client makes an HTTP request
to tell the server about it.

The application will be set up to show a live view of the current pro-
posed talks and their comments. Whenever someone, somewhere, submits
a new talk or adds a comment, all people who have the page open in their
browsers should immediately see the change. This poses a bit of a challenge
since there is no way for a web server to open up a connection to a client,
nor is there a good way to know which clients currently are looking at a
given website.

A common solution to this problem is called long polling, which happens
to be one of the motivations for Node’s design.

368 Chapter 21

http://eloquentjavascript.net/code/skillsharing.zip
http://eloquentjavascript.net/code/skillsharing.zip

Long Polling
To be able to immediately notify a client that something changed, we
need a connection to that client. Since web browsers do not traditionally
accept connections and clients are usually behind devices that would block
such connections anyway, having the server initiate this connection is not
practical.

We can arrange for the client to open the connection and keep it around
so that the server can use it to send information when it needs to do so.

But an HTTP request allows only a simple flow of information, where
the client sends a request, the server comes back with a single response,
and that is it. There is a technology called web sockets, supported by modern
browsers, which makes it possible to open connections for arbitrary data ex-
change. But using them properly is somewhat tricky.

In this chapter, we will use a relatively simple technique, long polling,
where clients continuously ask the server for new information using regular
HTTP requests, and the server simply stalls its answer when it has nothing
new to report.

As long as the client makes sure it constantly has a polling request open,
it will receive information from the server immediately. For example, if Alice
has our skill-sharing application open in her browser, that browser will have
made a request for updates and be waiting for a response to that request.
When Bob submits a talk on Extreme Downhill Unicycling from his own
browser, the server will notice that Alice is waiting for updates and send in-
formation about the new talk as a response to her pending request. Alice’s
browser will receive the data and update the screen to show the talk.

To prevent connections from timing out (being aborted because of a
lack of activity), long-polling techniques usually set a maximum time for
each request, after which the server will respond anyway, even though it has
nothing to report, and the client will start a new request. Periodically restart-
ing the request also makes the technique more robust, allowing clients to
recover from temporary connection failures or server problems.

A busy server that is using long polling may have thousands of waiting
requests, and thus TCP connections, open. Node, which makes it easy to
manage many connections without creating a separate thread of control for
each one, is a good fit for such a system.

HTTP Interface
Before we start fleshing out either the server or the client, let’s think
about the point where they touch: the HTTP interface over which they
communicate.

We will base our interface on JSON, and like in the file server from Chap-
ter 20, we’ll try to make good use of HTTP methods. The interface is cen-
tered around the /talks path. Paths that do not start with /talks will be used
for serving static files—the HTML and JavaScript code that implements the
client-side system.

Project: Skill-Sharing Website 369

A GET request to /talks returns a JSON document like this:

{"serverTime": 1405438911833,

"talks": [{"title": "Unituning",

"presenter": "Carlos",

"summary": "Modifying your cycle for extra style",

"comment": []}]}

The serverTime field will be used to make reliable long polling possible. I
will return to it later.

Creating a new talk is done by making a PUT request to a URL like /talks/

Unituning, where the part after the second slash is the title of the talk. The PUT

request’s body should contain a JSON object that has presenter and summary

properties.
Since talk titles may contain spaces and other characters that may

not appear normally in a URL, title strings must be encoded with the
encodeURIComponent function when building up such a URL.

console.log("/talks/" + encodeURIComponent("How to Idle"));

// . /talks/How%20to%20Idle

A request to create a talk about idling might look something like this:

PUT /talks/How%20to%20Idle HTTP/1.1

Content-Type: application/json

Content-Length: 92

{"presenter": "Dana",

"summary": "Standing still on a unicycle"}

Such URLs also support GET requests to retrieve the JSON representation
of a talk and DELETE requests to delete a talk.

Adding a comment to a talk is done with a POST request to a URL like
/talks/Unituning/comments, with a JSON object that has author and message

properties as the body of the request.

POST /talks/Unituning/comments HTTP/1.1

Content-Type: application/json

Content-Length: 72

{"author": "Alice",

"message": "Will you talk about raising a cycle?"}

To support long polling, GET requests to /talks may include a query pa-
rameter called changesSince, which is used to indicate that the client is inter-
ested in updates that happened since a given point in time. When there are

370 Chapter 21

such changes, they are immediately returned. When there aren’t, the re-
sponse is delayed until something happens or until a given time period (we
will use 90 seconds) has elapsed.

The time must be indicated as the number of milliseconds elapsed since
the start of 1970, the same type of number that is returned by Date.now(). To
ensure that it receives all updates and doesn’t receive the same update more
than once, the client must pass the time at which it last received informa-
tion from the server. The server’s clock might not be exactly in sync with
the client’s clock, and even if it were, it would be impossible for the client to
know the precise time at which the server sent a response because transfer-
ring data over the network takes time.

This is the reason for the existence of the serverTime property in responses
sent to GET requests to /talks. That property tells the client the precise time,
from the server’s perspective, at which the data it receives was created. The
client can then simply store this time and pass it along in its next polling re-
quest to make sure that it receives exactly the updates that it has not seen
before.

GET /talks?changesSince=1405438911833 HTTP/1.1

(time passes)

HTTP/1.1 200 OK

Content-Type: application/json

Content-Length: 95

{"serverTime": 1405438913401,

"talks": [{"title": "Unituning",

"deleted": true}]}

When a talk has been changed, has been newly created, or has a com-
ment added, the full representation of the talk is included in the response to
the client’s next polling request. When a talk is deleted, only its title and the
property deleted are included. The client can then add talks with titles it has
not seen before to its display, update talks that it was already showing, and
remove those that were deleted.

The protocol described in this chapter does not do any access control.
Everybody can comment, modify talks, and even delete them. Since the In-
ternet is filled with hooligans, putting such a system online without further
protection is likely to end in disaster.

A simple solution would be to put the system behind a reverse proxy, which
is an HTTP server that accepts connections from outside the system and for-
wards them to HTTP servers that are running locally. Such a proxy can be
configured to require a username and password, and you could make sure
only the participants in the skill-sharing group have this password.

Project: Skill-Sharing Website 371

The Server
Let’s start by writing the server-side part of the program. The code in this
section runs on Node.js.

Routing
Our server will use http.createServer to start an HTTP server. In the function
that handles a new request, we must distinguish between the various kinds of
requests (as determined by the method and the path) that we support. This
can be done with a long chain of if statements, but there is a nicer way.

A router is a component that helps dispatch a request to the function
that can handle it. You can tell the router, for example, that PUT requests
with a path that matches the regular expression /^\/talks\/([^\/]+)$/ (which
matches /talks/ followed by a talk title) can be handled by a given function.
In addition, it can help extract the meaningful parts of the path, in this case
the talk title, wrapped in parentheses in the regular expression and pass
those to the handler function.

There are a number of good router packages on NPM, but here we will
write one ourselves to illustrate the principle.

This is router.js, which we will later require from our server module:

var Router = module.exports = function() {

this.routes = [];

};

Router.prototype.add = function(method, url, handler) {

this.routes.push({method: method,

url: url,

handler: handler});

};

Router.prototype.resolve = function(request, response) {

var path = require("url").parse(request.url).pathname;

return this.routes.some(function(route) {

var match = route.url.exec(path);

if (!match || route.method != request.method)

return false;

var urlParts = match.slice(1).map(decodeURIComponent);

route.handler.apply(null, [request, response]

.concat(urlParts));

return true;

});

};

372 Chapter 21

The module exports the Router constructor. A router object allows new
handlers to be registered with the add method and can resolve requests with
its resolve method.

The latter will return a Boolean that indicates whether a handler was
found. The some method on the array of routes will try the routes one at a
time (in the order in which they were defined) and stop, returning true,
when a matching one is found.

The handler functions are called with the request and response objects.
When the regular expression that matches the URL contains any groups,
the strings they match are passed to the handler as extra arguments. These
strings have to be URL-decoded since the raw URL contains %20-style codes.

Serving Files
When a request matches none of the request types defined in our router,
the server must interpret it as a request for a file in the public directory.
It would be possible to use the file server defined in Chapter 20 to serve
such files, but we neither need nor want to support PUT and DELETE requests
on files, and we would like to have advanced features such as support for
caching. So let’s use a solid, well-tested static file server from NPM instead.

I opted for ecstatic. This isn’t the only such server on NPM, but it works
well and fits our purposes. The ecstatic module exports a function that can
be called with a configuration object to produce a request handler function.
We use the root option to tell the server where it should look for files. The
handler function accepts request and response parameters and can be passed
directly to createServer to create a server that serves only files. We want to first
check for requests that we handle specially, though, so we wrap it in another
function.

var http = require("http");

var Router = require("./router");

var ecstatic = require("ecstatic");

var fileServer = ecstatic({root: "./public"});

var router = new Router();

http.createServer(function(request, response) {

if (!router.resolve(request, response))

fileServer(request, response);

}).listen(8000);

The respond and respondJSON helper functions are used throughout the
server code to send off responses with a single function call.

function respond(response, status, data, type) {

response.writeHead(status, {

"Content-Type": type || "text/plain"

});

Project: Skill-Sharing Website 373

response.end(data);

}

function respondJSON(response, status, data) {

respond(response, status, JSON.stringify(data),

"application/json");

}

Talks as Resources
The server keeps the talks that have been proposed in an object called talks,
whose property names are the talk titles. These will be exposed as HTTP
resources under /talks/[title], so we need to add handlers to our router
that implement the various methods that clients can use to work with them.

The handler for requests that GET a single talk must look up the talk and
respond either with the talk’s JSON data or with a 404 error response.

var talks = Object.create(null);

router.add("GET", /^\/talks\/([^\/]+)$/,

function(request, response, title) {

if (title in talks)

respondJSON(response, 200, talks[title]);

else

respond(response, 404, "No talk '" + title + "' found");

});

Deleting a talk is done by removing it from the talks object.

router.add("DELETE", /^\/talks\/([^\/]+)$/,

function(request, response, title) {

if (title in talks) {

delete talks[title];

registerChange(title);

}

respond(response, 204, null);

});

The registerChange function, which we will define later, notifies waiting
long-polling requests about the change.

To retrieve the content of JSON-encoded request bodies, we define
a function called readStreamAsJSON, which reads all content from a stream,
parses it as JSON, and then calls a callback function.

374 Chapter 21

function readStreamAsJSON(stream, callback) {

var data = "";

stream.on("data", function(chunk) {

data += chunk;

});

stream.on("end", function() {

var result, error;

try { result = JSON.parse(data); }

catch (e) { error = e; }

callback(error, result);

});

stream.on("error", function(error) {

callback(error);

});

}

One handler that needs to read JSON responses is the PUT handler, which
is used to create new talks. It has to check whether the data it was given has
presenter and summary properties, which are strings. Any data coming from
outside the system might be nonsense, and we don’t want to corrupt our in-
ternal data model, or even crash, when bad requests come in.

If the data looks valid, the handler stores an object that represents the
new talk in the talks object, possibly overwriting an existing talk with this
title, and again calls registerChange.

router.add("PUT", /^\/talks\/([^\/]+)$/,

function(request, response, title) {

readStreamAsJSON(request, function(error, talk) {

if (error) {

respond(response, 400, error.toString());

} else if (!talk ||

typeof talk.presenter != "string" ||

typeof talk.summary != "string") {

respond(response, 400, "Bad talk data");

} else {

talks[title] = {title: title,

presenter: talk.presenter,

summary: talk.summary,

comments: []};

registerChange(title);

respond(response, 204, null);

}

});

});

Project: Skill-Sharing Website 375

Adding a comment to a talk works similarly. We use readStreamAsJSON to
get the content of the request, validate the resulting data, and store it as a
comment when it looks valid.

router.add("POST", /^\/talks\/([^\/]+)\/comments$/,

function(request, response, title) {

readStreamAsJSON(request, function(error, comment) {

if (error) {

respond(response, 400, error.toString());

} else if (!comment ||

typeof comment.author != "string" ||

typeof comment.message != "string") {

respond(response, 400, "Bad comment data");

} else if (title in talks) {

talks[title].comments.push(comment);

registerChange(title);

respond(response, 204, null);

} else {

respond(response, 404, "No talk '" + title + "' found");

}

});

});

Trying to add a comment to a nonexistent talk should return a 404 er-
ror, of course.

Long-Polling Support
The most interesting aspect of the server is the part that handles long polling.
When a GET request comes in for /talks, it can be either a simple request for
all talks or a request for updates, with a changesSince parameter.

There will be various situations in which we have to send a list of talks
to the client, so we first define a small helper function that attaches the
serverTime field to such responses.

function sendTalks(talks, response) {

respondJSON(response, 200, {

serverTime: Date.now(),

talks: talks

});

}

The handler itself needs to look at the query parameters in the request’s
URL to see whether a changesSince parameter is given. If you give the "url"

module’s parse function a second argument of true, it will also parse the
query part of a URL. The object it returns will have a query property, which
holds another object that maps parameter names to values.

376 Chapter 21

router.add("GET", /^\/talks$/, function(request, response) {

var query = require("url").parse(request.url, true).query;

if (query.changesSince == null) {

var list = [];

for (var title in talks)

list.push(talks[title]);

sendTalks(list, response);

} else {

var since = Number(query.changesSince);

if (isNaN(since)) {

respond(response, 400, "Invalid parameter");

} else {

var changed = getChangedTalks(since);

if (changed.length > 0)

sendTalks(changed, response);

else

waitForChanges(since, response);

}

}

});

When the changesSince parameter is missing, the handler simply builds
up a list of all talks and returns that.

Otherwise, the changeSince parameter first has to be checked to make
sure that it is a valid number. The getChangedTalks function, to be defined
shortly, returns an array of changed talks since a given point in time. If it
returns an empty array, the server does not yet have anything to send back
to the client, so it stores the response object (using waitForChanges) to be re-
sponded to at a later time.

var waiting = [];

function waitForChanges(since, response) {

var waiter = {since: since, response: response};

waiting.push(waiter);

setTimeout(function() {

var found = waiting.indexOf(waiter);

if (found > -1) {

waiting.splice(found, 1);

sendTalks([], response);

}

}, 90 * 1000);

}

The splice method is used to cut a piece out of an array. You give it
an index and a number of elements, and it mutates the array, removing
that many elements after the given index. In this case, we remove a single

Project: Skill-Sharing Website 377

element, the object that tracks the waiting response, whose index we found
by calling indexOf. If you pass additional arguments to splice, their values
will be inserted into the array at the given position, replacing the removed
elements.

When a response object is stored in the waiting array, a timeout is im-
mediately set. After 90 seconds, this timeout sees whether the request is still
waiting and, if it is, sends an empty response and removes it from the waiting

array.
To be able to find exactly those talks that have been changed since a

given point in time, we need to keep track of the history of changes. Regis-
tering a change with registerChange will remember that change, along with
the current time, in an array called changes. When a change occurs, that
means there is new data, so all waiting requests can be responded to imme-
diately.

var changes = [];

function registerChange(title) {

changes.push({title: title, time: Date.now()});

waiting.forEach(function(waiter) {

sendTalks(getChangedTalks(waiter.since), waiter.response);

});

waiting = [];

}

Finally, getChangedTalks uses the changes array to build up an array of
changed talks, including objects with a deleted property for talks that no
longer exist. When building that array, getChangedTalks has to ensure that it
doesn’t include the same talk twice since there might have been multiple
changes to a talk since the given time.

function getChangedTalks(since) {

var found = [];

function alreadySeen(title) {

return found.some(function(f) {return f.title == title;});

}

for (var i = changes.length - 1; i >= 0; i--) {

var change = changes[i];

if (change.time <= since)

break;

else if (alreadySeen(change.title))

continue;

else if (change.title in talks)

found.push(talks[change.title]);

else

found.push({title: change.title, deleted: true});

}

378 Chapter 21

return found;

}

That concludes the server code. Running the program defined so far
will get you a server running on port 8000, which serves files from the public

subdirectory alongside a talk-managing interface under the /talks URL.

The Client
The client-side part of the talk-managing website consists of three files: an
HTML page, a style sheet, and a JavaScript file.

HTML
It is a widely used convention for web servers to try to serve a file named
index.html when a request is made directly to a path that corresponds to a
directory. The file server module we use, ecstatic, supports this convention.
When a request is made to the path /, the server looks for the file ./public/

index.html (./public being the root we gave it) and returns that file if found.
Thus, if we want a page to show up when a browser is pointed at our

server, we should put it in public/index.html. This is how our index file starts:

<!doctype html>

<title>Skill Sharing</title>

<link rel="stylesheet" href="skillsharing.css">

<h1>Skill sharing</h1>

<p>Your name: <input type="text" id="name"></p>

<div id="talks"></div>

It defines the document title and includes a style sheet, which defines a
few styles to, among other things, add a border around talks. Then it adds
a heading and a name field. The user is expected to put their name in the
latter so that it can be attached to talks and comments they submit.

The <div> element with the ID "talks" will contain the current list of
talks. The script fills the list in when it receives talks from the server.

Next comes the form that is used to create a new talk.

<form id="newtalk">

<h3>Submit a talk</h3>

Title: <input type="text" style="width: 40em" name="title">

Summary: <input type="text" style="width: 40em" name="summary">

<button type="submit">Send</button>

</form>

Project: Skill-Sharing Website 379

The script will add a "submit" event handler to this form, from which it
can make the HTTP request that tells the server about the talk.

Next comes a rather mysterious block, which has its display style set to
none, preventing it from actually showing up on the page. Can you guess
what it is for?

<div id="template" style="display: none">

<div class="talk">

<h2>{{title}}</h2>

<div>by {{presenter}}</div>

<p>{{summary}}</p>

<div class="comments"></div>

<form>

<input type="text" name="comment">

<button type="submit">Add comment</button>

<button type="button" class="del">Delete talk</button>

</form>

</div>

<div class="comment">

{{author}}: {{message}}

</div>

</div>

Creating complicated DOM structures with JavaScript code produces
ugly code. You can make the code slightly better by introducing helper func-
tions like the elt function from Chapter 13, but the result will still look worse
than HTML, which can be thought of as a domain-specific language for ex-
pressing DOM structures.

To create DOM structures for the talks, our program will define a
simple templating system, which uses hidden DOM structures included in
the document to instantiate new DOM structures, replacing the place-
holders between double braces with the values of a specific talk.

Finally, the HTML document includes the script file that contains the
client-side code.

<script src="skillsharing_client.js"></script>

Starting up
The first thing the client has to do when the page is loaded is ask the server
for the current set of talks. Since we are going to make a lot of HTTP re-
quests, we will again define a small wrapper around XMLHttpRequest, which
accepts an object to configure the request as well as a callback to call when
the request finishes.

380 Chapter 21

function request(options, callback) {

var req = new XMLHttpRequest();

req.open(options.method || "GET", options.pathname, true);

req.addEventListener("load", function() {

if (req.status < 400)

callback(null, req.responseText);

else

callback(new Error("Request failed: " + req.statusText));

});

req.addEventListener("error", function() {

callback(new Error("Network error"));

});

req.send(options.body || null);

}

The initial request displays the talks it receives on the screen and starts
the long-polling process by calling waitForChanges.

var lastServerTime = 0;

request({pathname: "talks"}, function(error, response) {

if (error) {

reportError(error);

} else {

response = JSON.parse(response);

displayTalks(response.talks);

lastServerTime = response.serverTime;

waitForChanges();

}

});

The lastServerTime variable is used to track the time of the last update
that was received from the server. After the initial request, the client’s view
of the talks corresponds to the view that the server had when it responded
to that request. Thus, the serverTime property included in the response pro-
vides an appropriate initial value for lastServerTime.

When the request fails, we don’t want to have our page just sit there,
doing nothing without explanation. So we define a simple function called
reportError, which at least shows the user a dialog that tells them something
went wrong.

function reportError(error) {

if (error)

alert(error.toString());

}

Project: Skill-Sharing Website 381

The function checks whether there is an actual error, and it alerts only
when there is one. That way, we can also directly pass this function to request

for requests where we can ignore the response. This makes sure that if the
request fails, the error is reported to the user.

Displaying Talks
To be able to update the view of the talks when changes come in, the client
must keep track of the talks that it is currently showing. That way, when a
new version of a talk that is already on the screen comes in, the talk can
be replaced (in place) with its updated form. Similarly, when information
comes in that a talk is being deleted, the right DOM element can be re-
moved from the document.

The function displayTalks is used both to build up the initial display and
to update it when something changes. It will use the shownTalks object, which
associates talk titles with DOM nodes, to remember the talks it currently has
on the screen.

var talkDiv = document.querySelector("#talks");

var shownTalks = Object.create(null);

function displayTalks(talks) {

talks.forEach(function(talk) {

var shown = shownTalks[talk.title];

if (talk.deleted) {

if (shown) {

talkDiv.removeChild(shown);

delete shownTalks[talk.title];

}

} else {

var node = drawTalk(talk);

if (shown)

talkDiv.replaceChild(node, shown);

else

talkDiv.appendChild(node);

shownTalks[talk.title] = node;

}

});

}

Building up the DOM structure for talks is done using the tem-
plates that were included in the HTML document. First, we must define
instantiateTemplate, which looks up and fills in a template.

The name parameter is the template’s name. To look up the template
element, we search for an element whose class name matches the tem-
plate name, which is a child of the element with ID "template". Using the
querySelector method makes this easy. There were templates named "talk"

and "comment" in the HTML page.

382 Chapter 21

function instantiateTemplate(name, values) {

function instantiateText(text) {

return text.replace(/\{\{(\w+)\}\}/g, function(_, name) {

return values[name];

});

}

function instantiate(node) {

if (node.nodeType == document.ELEMENT_NODE) {

var copy = node.cloneNode();

for (var i = 0; i < node.childNodes.length; i++)

copy.appendChild(instantiate(node.childNodes[i]));

return copy;

} else if (node.nodeType == document.TEXT_NODE) {

return document.createTextNode(

instantiateText(node.nodeValue));

}

}

var template = document.querySelector("#template ." + name);

return instantiate(template);

}

The cloneNode method, which all DOM nodes have, creates a copy of a
node. It won’t copy the node’s child nodes unless true is given as a first argu-
ment. The instantiate function recursively builds up a copy of the template,
filling in the template as it goes.

The second argument to instantiateTemplate should be an object, whose
properties hold the strings that are to be filled into the template. A place-
holder like {{title}} will be replaced with the value of values’ title property.

This is a crude approach to templating, but it is enough to implement
drawTalk.

function drawTalk(talk) {

var node = instantiateTemplate("talk", talk);

var comments = node.querySelector(".comments");

talk.comments.forEach(function(comment) {

comments.appendChild(

instantiateTemplate("comment", comment));

});

node.querySelector("button.del").addEventListener(

"click", deleteTalk.bind(null, talk.title));

var form = node.querySelector("form");

form.addEventListener("submit", function(event) {

event.preventDefault();

addComment(talk.title, form.elements.comment.value);

Project: Skill-Sharing Website 383

form.reset();

});

return node;

}

After instantiating the "talk" template, there are various things that
need to be patched up. First, the comments have to be filled in by repeat-
edly instantiating the "comment" template and appending the results to the
node with class "comments". Next, event handlers have to be attached to the
button that deletes the task and the form that adds a new comment.

Updating the Server
The event handlers registered by drawTalk call the function deleteTalk and
addComment to perform the actual actions required to delete a talk or add a
comment. These will need to build up URLs that refer to talks with a given
title, for which we define the talkURL helper function.

function talkURL(title) {

return "talks/" + encodeURIComponent(title);

}

The deleteTalk function fires off a DELETE request and reports the error
when that fails.

function deleteTalk(title) {

request({pathname: talkURL(title), method: "DELETE"},

reportError);

}

Adding a comment requires building up a JSON representation of the
comment and submitting that as part of a POST request.

function addComment(title, comment) {

var comment = {author: nameField.value, message: comment};

request({pathname: talkURL(title) + "/comments",

body: JSON.stringify(comment),

method: "POST"},

reportError);

}

The nameField variable used to set the comment’s author property is a ref-
erence to the <input> field at the top of the page that allows the user to spec-
ify their name. We also wire up that field to localStorage so that it does not
have to be filled in again every time the page is reloaded.

384 Chapter 21

var nameField = document.querySelector("#name");

nameField.value = localStorage.getItem("name") || "";

nameField.addEventListener("change", function() {

localStorage.setItem("name", nameField.value);

});

The form at the bottom of the page, for proposing a new talk, gets a
"submit" event handler. This handler prevents the event’s default effect
(which would cause a page reload), clears the form, and fires off a PUT

request to create the talk.

var talkForm = document.querySelector("#newtalk");

talkForm.addEventListener("submit", function(event) {

event.preventDefault();

request({pathname: talkURL(talkForm.elements.title.value),

method: "PUT",

body: JSON.stringify({

presenter: nameField.value,

summary: talkForm.elements.summary.value

})}, reportError);

talkForm.reset();

});

Noticing Changes
I should point out that the various functions that change the state of the ap-
plication by creating or deleting talks or adding a comment do absolutely
nothing to ensure that the changes they make are visible on the screen.
They simply tell the server and rely on the long-polling mechanism to trig-
ger the appropriate updates to the page.

Given the mechanism that we implemented in our server and the way we
defined displayTalks to handle updates of talks that are already on the page,
the actual long polling is surprisingly simple.

function waitForChanges() {

request({pathname: "talks?changesSince=" + lastServerTime},

function(error, response) {

if (error) {

setTimeout(waitForChanges, 2500);

console.error(error.stack);

} else {

response = JSON.parse(response);

Project: Skill-Sharing Website 385

displayTalks(response.talks);

lastServerTime = response.serverTime;

waitForChanges();

}

});

}

This function is called once when the program starts up and then keeps
calling itself to ensure that a polling request is always active. When the re-
quest fails, we don’t call reportError since popping up a dialog every time we
fail to reach the server would get annoying when the server is down. Instead,
the error is written to the console (to ease debugging), and another attempt
is made 2.5 seconds later.

When the request succeeds, the new data is put onto the screen, and
lastServerTime is updated to reflect the fact that we received data correspond-
ing to this new point in time. The request is immediately restarted to wait
for the next update.

If you run the server and open two browser windows for localhost:8000/

next to each other, you can see that the actions you perform in one window
are immediately visible in the other.

Exercises
The following exercises will involve modifying the system defined in this
chapter. To work on them, make sure you download the code first (http://

eloquentjavascript.net/code/skillshare.zip) and have Node installed (http://

nodejs.org/).

Disk Persistence
The skill-sharing server keeps its data purely in memory. This means that
when it crashes or is restarted for any reason, all talks and comments are
lost.

Extend the server so that it stores the talk data to disk and automatically
reloads the data when it is restarted. Do not worry about efficiency—do the
simplest thing that works.

Comment Field Resets
The wholesale redrawing of talks works pretty well because you usually can’t
tell the difference between a DOM node and its identical replacement. But
there are exceptions. If you start typing something in the comment field for
a talk in one browser window and then, in another, add a comment to that
talk, the field in the first window will be redrawn, removing both its content
and its focus.

386 Chapter 21

http://localhost:8000/
http://eloquentjavascript.net/code/skillshare.zip
http://eloquentjavascript.net/code/skillshare.zip
http://nodejs.org
http://nodejs.org

In a heated discussion, where multiple people are adding comments to
a single talk, this would be very annoying. Can you come up with a way to
avoid it?

Better Templates
Most templating systems do more than just fill in some strings. At the very
least, they also allow conditional inclusion of parts of the template, analo-
gous to if statements, and repetition of parts of a template, similar to a loop.

If we were able to repeat a piece of template for each element in an ar-
ray, we would not need the second template ("comment"). Rather, we could
specify the "talk" template to loop over the array held in a talk’s comments

property and render the nodes that make up a comment for every element
in the array.

It could look like this:

<div class="comments">

<div class="comment" template-repeat="comments">

{{author}}: {{message}}

</div>

</div>

The idea is that whenever a node with a template-repeat attribute is found
during template instantiation, the instantiating code loops over the array
held in the property named by that attribute. For each element in the array,
it adds an instance of the node. The template’s context (the values variable
in instantiateTemplate) would, during this loop, point at the current element
of the array so that {{author}} would be looked up in the comment object
rather than in the original context (the talk).

Rewrite instantiateTemplate to implement this and then change the tem-
plates to use this feature and remove the explicit rendering of comments
from the drawTalk function.

How would you add conditional instantiation of nodes, making it pos-
sible to omit parts of the template when a given value is true or false?

The Unscriptables
When someone visits our website with a browser that has JavaScript disabled
or is simply not capable of displaying JavaScript, they will get a completely
broken, inoperable page. This is not nice.

Some types of web applications really can’t be done without JavaScript.
For others, you just don’t have the budget or patience to bother about clients
that can’t run scripts. But for pages with a wide audience, it is polite to sup-
port scriptless users.

Project: Skill-Sharing Website 387

Try to think of a way the skill-sharing website could be set up to preserve
basic functionality when run without JavaScript. The automatic updates will
have to go, and people will have to refresh their page the old-fashioned way.
But being able to see existing talks, create new ones, and submit comments
would be nice.

Don’t feel obliged to actually implement this. Outlining a solution is
enough. Does the revised approach strike you as more or less elegant than
what we did initially?

388 Chapter 21

22
JAVASCRIPT AND PERFORMANCE

Running a computer program on a machine requires
bridging the gap between the programming language
and the machine’s own instruction format. This can
be done by writing a program that interprets other pro-
grams, as we did in Chapter 11, but it is usually done
by compiling (translating) the program to machine code.

Some programming languages, such as C, are designed to express ex-
actly those things that the machine is known to be good at. This makes them
easy to compile efficiently. But JavaScript is designed in an entirely differ-
ent way, with a focus on simplicity and ease of use instead, and almost none
of its features correspond directly to features of the machine. That makes
JavaScript difficult to execute efficiently.

Yet somehow modern JavaScript engines (the programs that compile
and run JavaScript) manage to run scripts at a surprising speed. It is possi-
ble to write JavaScript programs that are less than 10 times slower than the
speed of an equivalent C program. That may sound like a huge gap, but
older JavaScript engines (as well as contemporary implementations of lan-
guages with a similar design, such as Python and Ruby) tend to be closer to
100 times slower than C. Compared to these, modern JavaScript is strikingly
fast—so fast that you will rarely be forced to switch to another language be-
cause of performance problems.

Still, you may occasionally need to rewrite your code to avoid aspects of
JavaScript that remain slow. As an example of that, this chapter will work
through a speed-hungry program and make it faster. In the process, we will
discuss the way JavaScript engines compile your programs.

Staged Compilation
First, you must understand that JavaScript compilers do not simply compile a
program once—the way classical compilers for languages like C do. Instead,
code is compiled and recompiled as needed, while the program is running.

Traditionally, compiling a big program takes a while. That has usually
been acceptable because with traditional languages, a program is compiled
ahead of time and distributed in compiled form.

For JavaScript, the situation is different. A website might include a huge
amount of code, which is retrieved in text form, and that code must be com-
piled every time the website is opened. If that took five minutes, the user
would not be happy. A JavaScript compiler must be able to start running a
program, even a big program, almost instantaneously.

To do this, JavaScript compilers contain multiple compilation strategies.
When a website is opened, the scripts are first compiled in a cheap, super-
ficial way. This doesn’t result in very fast execution, but it happens quickly.
In fact, some JavaScript engines don’t compile functions at all until the first
time they are called. Each major browser has its own JavaScript engine, and
each engine has its own compilation strategies.

In a typical program, most code is run only a handful of times (or not
at all). For these parts of the program, the cheap compilation strategy is suf-
ficient since they won’t take up much time anyway. But functions that are
called often, or that contain loops that do a lot of work, have to be treated
differently. While running the program, the JavaScript engine observes how
often each piece of code is run. When it looks like the code in a function
might consume a serious amount of time (this is called hot code), the func-
tion is recompiled with an advanced (but slower) compiler. This compiler
performs more optimizations and will thus produce faster code. Some engines
have a third, even more advanced (and thus even slower) compiler to use on
very hot code.

Interleaving running and compiling code means that by the time the
clever compiler starts working with a piece of code, it has already been run
multiple times. This makes it possible to observe the running code and gather
information about it. Later in the chapter, we’ll see how that can allow the
compiler to create more efficient code.

Graph Layout
Our example problem for this chapter concerns graphs. A graph is a set
of points (nodes) with connections (edges) between them. It can be used
to describe networks of roads, family trees, the way control flows through
a computer program, and so on. The following picture shows a graph

390 Chapter 22

representing some countries in the Middle East, with edges between those
that share land borders:

Deriving a picture like this from the definition of a graph is called graph

layout. It involves assigning a place to each node in such a way that connected
nodes are near each other but don’t crowd into each other. A random lay-
out of the same graph is a lot harder to interpret.

Finding a nice-looking layout for a given graph is a notoriously difficult
problem. For big graphs with lots of edges, there is no known solution that
works well for all types of graphs—though there are solutions for graphs
with a specific form.

To lay out a small graph (say, up to 100 nodes) that is not too tangled,
we can apply an approach called force-directed graph layout. This runs a simple
physics simulation on the nodes of the graph, treating edges between nodes
as if they are springs and having the nodes themselves repel each other as if
electrically charged.

In this chapter, we will implement a force-directed graph layout and ob-
serve its performance. We can run such a physical simulation by repeatedly
computing the forces that act on each node and moving the nodes around
in response to those forces. Performance of such a program is important
since it might take a lot of iterations to reach a good-looking, stable layout,
and each iteration has to compute a lot of forces.

JavaScript and Performance 391

Defining a Graph
We can represent a graph as an array of GraphNode objects, each of which
carries its current position and an array of the other nodes to which it has
edges. The starting positions of nodes are randomized.

function GraphNode() {

this.pos = new Vector(Math.random() * 1000,

Math.random() * 1000);

this.edges = [];

}

GraphNode.prototype.connect = function(other) {

this.edges.push(other);

other.edges.push(this);

};

GraphNode.prototype.hasEdge = function(other) {

for (var i = 0; i < this.edges.length; i++)

if (this.edges[i] == other)

return true;

};

We use the familiar Vector type from previous chapters to represent posi-
tions and forces.

The connect and hasEdge methods provide a way to connect a node to
another node when building up a graph and to test whether two nodes are
connected.

The treeGraph function builds a simple graph on which we can test our
layout program. It takes two parameters—the depth of the tree and the
number of branches to create at each level—and recursively constructs a
tree-shaped graph with the specified shape.

function treeGraph(depth, branches) {

var graph = [];

function buildNode(depth) {

var node = new GraphNode();

graph.push(node);

if (depth > 1)

for (var i = 0; i < branches; i++)

node.connect(buildNode(depth - 1));

return node;

}

buildNode(depth);

return graph;

}

Tree-shaped graphs don’t contain cycles, which makes them relatively
easy to lay out and allows even the unsophisticated program we’ll use in this
chapter to produce good-looking shapes.

392 Chapter 22

The graph created by treeGraph(3, 5) would be a tree of depth 3, with
five branches.

So you can inspect the layouts produced by the code in this chapter, I’ve
defined a drawGraph function that draws the graph onto a canvas. This func-
tion is defined in the code at http://eloquentjavascript.net/code/draw_graph.js

and is available in the online sandbox.

A First Force-Directed Layout Function
We will move nodes one at a time, computing the forces that act on the cur-
rent node and immediately moving that node according to these forces.

The force that an (idealized) spring applies can be approximated with
Hooke’s law, which says that this force is proportional to the difference
between the spring’s resting length and its current length. The variable
springLength defines the resting length of our edge springs, and the vari-
able springStrength defines a constant that is used to model the rigidity of
the spring, which we’ll multiply by the length difference to determine the
resulting force.

var springLength = 40;

var springStrength = 0.1;

To model the repulsion between nodes, we use another physical law,
Coulomb’s law, which states that the repulsion between two electrically
charged particles is inversely proportional to the square of the distance be-
tween them. When two nodes are almost on top of each other, the squared
distance is tiny, so the resulting force is gigantic. As the nodes move further
apart, the squared distance grows rapidly, and the repelling force quickly
weakens.

We’ll again multiply by an experimentally determined constant,
repulsionStrength, which defines the degree to which nodes repel each other.

var repulsionStrength = 1500;

JavaScript and Performance 393

http://eloquentjavascript.net/code/draw_{}graph.js
http://eloquentjavascript.net/code#{}22

The force that acts on a given node is computed by looping over all
other nodes and applying the repelling force for each of them. When
another node shares an edge with the current node, the spring’s force
is also applied.

Both of these forces depend on the distance between the two nodes.
The function computes a vector named apart that represents the path from
the current node to the other node. The function then takes the length
of the vector to find the actual distance. When the distance is less than one,
we set it to one to prevent dividing by zero or by very small numbers because
that will produce NaN values or forces so gigantic they catapult the node into
outer space.

Using this distance, we can compute the magnitude of the force that
acts between these two given nodes. To go from a magnitude to a force vec-
tor, we must multiply the magnitude by a normalized version of the apart

vector. Normalizing a vector means creating a vector with the same direction
but with a length of one, and it can be done by dividing a vector by its own
length.

function forceDirected_simple(graph) {

graph.forEach(function(node) {

graph.forEach(function(other) {

if (other == node) return;

var apart = other.pos.minus(node.pos);

var distance = Math.max(1, apart.length);

var forceSize = -repulsionStrength / (distance * distance);

if (node.hasEdge(other))

forceSize += (distance - springLength) * springStrength;

var normalized = apart.times(1 / distance);

node.pos = node.pos.plus(normalized.times(forceSize));

});

});

}

We will use the runLayout function to test a given implementation of our
graph layout system. It runs the model for 4,000 steps and tracks the time
this takes. To give us something to look at while the code runs, it will draw
the current layout of the graph after every 100 steps.

function runLayout(implementation, graph) {

var totalSteps = 0, time = 0;

function step() {

var startTime = Date.now();

for (var i = 0; i < 100; i++)

implementation(graph);

totalSteps += 100;

time += Date.now() - startTime;

drawGraph(graph);

394 Chapter 22

if (totalSteps < 4000)

requestAnimationFrame(step);

else

console.log(time);

}

step();

}

We can now run our first implementation and see how much time it
takes.

<script>

runLayout(forceDirected_simple, treeGraph(4, 4));

</script>

My machine, using version 38 of the Chrome browser, reports that those
4,000 iterations took a little more than four seconds. That’s a lot. Let’s see if
we can do better.

Profiling
So our code is slow. You may already have some theories on why that is. But
performance problems can come from unexpected corners, and if you just
start changing code on the assumption that your idea will make your code
run faster, you are likely to waste a lot of time on changes that don’t actu-
ally help.

Our runLayout function measures the time the program currently takes.
That’s already a good start. To improve something, you must first measure
it so that you can get useful feedback on whether a change you make is actu-
ally having an effect.

The developer tools in modern browsers provide an even better way to
measure the time used by your program. The profiler tool will, while a pro-
gram is running, gather information on how much time the various parts of
the program take to run.

When your browser has a profiler, it will be available from the developer
tool interface, probably as a tab listed in the top bar. The profiler in Chrome
spits out a three-column table for our program.

Self Total Function

3787.5 ms 47.48 % 5015.4 ms 62.87 % (anonymous function)

2528.3 ms 31.70 % 7545.7 ms 94.60 % (anonymous function)

1229.9 ms 15.42 % 1229.9 ms 15.42 % Vector

188.4 ms 2.36 % 188.4 ms 2.36 % (garbage collector)

44.3 ms 0.56 % 7590.1 ms 95.15 % forceDirected_simple

39.3 ms 0.49 % 39.3 ms 0.49 % stroke

22.2 ms 0.28 % 22.2 ms 0.28 % fill

11.1 ms 0.14 % 11.1 ms 0.14 % clearRect

JavaScript and Performance 395

6.0 ms 0.08 % 6.0 ms 0.08 % arc

4.0 ms 0.05 % 88.6 ms 1.11 % drawGraph

2.0 ms 0.03 % 7680.7 ms 96.29 % step

The numbers give us the time spent executing a given function, both in
milliseconds and as a percentage of the total time taken. The first column
shows only the time that control was actually in the function, while the sec-
ond column includes time spent in functions called by this function.

From this data, we can tell that the time spent drawing the graph is tiny
compared to the time spent running the simulation. In the browser, we can
click through to the definition of each function. This allows us to confirm
that the two anonymous functions at the top of the profile are the functions
passed to forEach in forceDirected_simple. As expected, the bulk of the time
the program takes is spent computing forces.

The row labeled (garbage collector) gives us the time spent cleaning
up memory that is no longer being used. Given that our program creates
a huge number of vector objects, the 2.36 percent of time spent reclaim-
ing memory is strikingly low. Chrome has an advanced garbage collector.
But note that we are spending more than 15 percent of our time creating
vector objects. This is definitely an opportunity for optimization, which we
will explore later in the chapter. But first, we will address another source of
slowness.

Function Inlining
Not one of the vector methods, such as plus, shows up in the profile we saw,
even though they are being used heavily. This is because the engine inlined

them. This means that rather than having the code in the inner function call
an actual method to add vectors, the vector-adding code is put directly in-
side the function, and no actual method call happens in the compiled code.

There are various ways in which inlining helps make code fast. Func-
tions and methods are, at the machine level, called using a protocol, which
requires putting the arguments and the return address (the place where ex-
ecution must continue when the function returns) somewhere the function
can find them. The way a function call gives control to another part of the
program also often requires saving some of the processor’s state so that the
called function can use the processor without interfering with data that the
caller still needs. All of this becomes unnecessary when a function is inlined.

Furthermore, a good compiler will do its best to find ways to simplify the
code it generates. If functions are treated as black boxes that might do any-
thing, the compiler does not have a lot to work with. On the other hand, if it
can see and include the function body in its analysis, it might find additional
opportunities to optimize the resulting code.

For example, a JavaScript engine could avoid creating some of the vec-
tor objects in our code altogether. In an expression like the following one, if
we can see through the methods, it is clear that the resulting vector’s coordi-
nates are the result of adding force’s coordinates to the product of normalized’s

396 Chapter 22

coordinates and the forceSize variable. Thus, there is no need to create the
intermediate object produced by the times method.

force.plus(normalized.times(forceSize))

But JavaScript is a dynamic language. How does the compiler figure out
which function this plus method actually is? And what if someone changes
the value stored in Vector.prototype.plus later? The next time code that has
inlined that function runs, it might continue to use the old definition, violat-
ing the programmer’s assumptions about the way their program behaves.

This is where the interleaving of execution and compilation starts to pay
off. When a hot function is compiled, it has already run a number of times.
If, during those runs, it always called the same function, it is reasonable to
try inlining that function. The code is optimistically compiled with the as-
sumption that, in the future, the same function is going to be called here.

To handle the pessimistic case, where another function ends up being
called, the compiler inserts a test that compares the called function to the
one that was inlined. If the two do not match, the optimistically compiled
code is useless, and the JavaScript engine must deoptimize, meaning it falls
back to a less optimized version of the code.

Going Back to Old-school Loops
The fact that the two anonymous functions passed to forEach in our simula-
tion function show up at the top of the profile tells us that those were not
inlined. These are called very often, and we would really like the compiler to
optimize the body of the simulation function as tightly as possible.

At the time of writing, no JavaScript engine seems capable of inlining
forEach calls. This means that a function object has to be created for each
call, that the closed-over variables (graph and node) have to be put in a special
shared piece of memory, and that there are a lot function calls happening.

The solution is easy. Use a traditional for loop instead. It makes the
code a little less pleasant to look at, but for my inner loops, I am willing to
pay that price.

function forceDirected_forloop(graph) {

for (var i = 0; i < graph.length; i++) {

var node = graph[i];

for (var j = 0; j < graph.length; j++) {

if (i == j) continue;

var other = graph[j];

var apart = other.pos.minus(node.pos);

var distance = Math.max(1, apart.length);

var forceSize = -1 * repulsionStrength / (distance * distance);

if (node.hasEdge(other))

forceSize += (distance - springLength) * springStrength;

var normalized = apart.times(1 / distance);

JavaScript and Performance 397

node.pos = node.pos.plus(normalized.times(forceSize));

}

}

}

The result is that the code is about 30 percent faster both in Chrome 38
and in Firefox 32. If I profile again, the forceDirected_forloop function takes
up most of the time. Interestingly, the Vector constructor also disappears
from the profile, suggesting that the engine either avoided creating vectors
or inlined the constructor.

Avoiding Work
You can make code faster by finding a cheaper way to do the work the code
is already doing, as we did earlier. But sometimes you can also find ways to
avoid doing some of the work altogether. There are cases where this can
improve your code’s performance by orders of magnitude, without doing
the finicky micro-optimizing work like replacing forEach loops with for loops.

In the case of our example project, there is a modest opportunity for
doing less work. Every pair of nodes has the forces between them computed
twice, once when moving the first node and once when moving the second.
Since the force that node X exerts on node Y is exactly the opposite of the
force Y exerts on X, we do not need to compute these forces twice.

The next version of the function changes the inner loop to loop over
only the nodes that come after the current one so that each pair of nodes is
looked at only once. At the end of that loop, it updates the position of both
nodes.

function forceDirected_norepeat(graph) {

for (var i = 0; i < graph.length; i++) {

var node = graph[i];

for (var j = i + 1; j < graph.length; j++) {

var other = graph[j];

var apart = other.pos.minus(node.pos);

var distance = Math.max(1, apart.length);

var forceSize = -1 * repulsionStrength / (distance * distance);

if (node.hasEdge(other))

forceSize += (distance - springLength) * springStrength;

var applied = apart.times(forceSize / distance);

node.pos = node.pos.plus(applied);

other.pos = other.pos.minus(applied);

}

}

}

398 Chapter 22

If I measure this code, I see another big speed boost compared to the
version before it—over 40 percent less time taken on Chrome 38, and around
30 percent less on Firefox 32 and Internet Explorer 11.

Creating Less Garbage
Though some of the vector objects that we are using to do two-dimensional
arithmetic might be optimized away entirely by some engines, there is likely
still a cost to creating all those objects. To estimate the size of this cost, let’s
write a version of the code that does the vector computations “by hand,” us-
ing local variables for both dimensions.

function forceDirected_novector(graph) {

for (var i = 0; i < graph.length; i++) {

var node = graph[i];

for (var j = i + 1; j < graph.length; j++) {

var other = graph[j];

var apartX = other.pos.x - node.pos.x;

var apartY = other.pos.y - node.pos.y;

var distance = Math.max(1, Math.sqrt(apartX * apartX + apartY * apartY));

var forceSize = -repulsionStrength / (distance * distance);

if (node.hasEdge(other))

forceSize += (distance - springLength) * springStrength;

var forceX = apartX * forceSize / distance;

var forceY = apartY * forceSize / distance;

node.pos.x += forceX; node.pos.y += forceY;

other.pos.x -= forceX; other.pos.y -= forceY;

}

}

}

The new code is wordier and more repetitive, but if I measure it, the im-
provement is large enough to consider doing this kind of manual object flat-
tening in performance-sensitive code. Chrome 38 appears to be quite good
at optimizing object creation, and the new code produces a speedup of ap-
proximately 40 percent compared to the version that came before. On Fire-
fox 32, the speedup is more than 60 percent. And on Internet Explorer 11,
this piece of manual optimization makes the code run 80 percent faster!

This disparity makes it clear that the speed at which a piece of JavaScript
executes is very much tied to the engine that is running it. JavaScript, be-
cause of its hard-to-compile nature, forces compilers to be extremely compli-
cated pieces of software. This complexity makes them unpredictable. Small
changes in your code, the way the code is used, or the version of the engine
that you are running it on can cause big fluctuations in its performance.

JavaScript and Performance 399

Garbage Collection
So why are objects expensive? There are two reasons. First, the engine has to
find a place to store them, and second, it has to figure out when they are no
longer used and reclaim them. Both are tricky to do.

Imagine memory, again, as a long, long series of bits. When the pro-
gram starts, it might receive an empty piece of memory and just start putting
the objects it creates in there, one after the other. But at some point, the
space is full, and some of the objects in it are no longer used by the pro-
gram. The JavaScript engine has to figure out which objects are used and
which are not, and then mark the unused pieces of memory as ready to be
reused.

Now the program’s memory space is a bit of a mess, containing living
objects interspersed with free space. Creating a new object involves finding
a piece of free space large enough for the object, which might require some
searching. Alternatively, the engine could move all live objects to the start of
the memory space, which makes creating new objects cheaper (they can just
be put one after the other again) but requires more work when moving the
old objects.

In principle, figuring out which objects are still used requires tracing
through all reachable objects, starting from the global scope and the cur-
rently active local scope. Any object referenced from those scopes, directly
or indirectly, is still alive. If your program has a lot of data in memory, this is
quite a lot of work.

A technique called generational garbage collection can help reduce these
costs. Chrome uses this technique, which is probably the main reason why
getting rid of the intermediate vector objects made a smaller difference in
that browser than in other browsers. Firefox is, at the time of writing, work-
ing on moving to this approach as well.

Generational garbage collection exploits the fact that most objects have
short lives. It splits the memory available to the JavaScript program into two
or more generations. New objects are created in the space reserved for the
young generation. When this space is full, the engine figures out which of
the objects in it are still alive and moves those to the next generation. If
only a small fraction of the objects in the young generation are still alive
when this occurs, only a small amount of work has to be done to move these
objects.

Of course, figuring out which objects are alive requires knowing about
all references to objects in the live generation. The engine wants to avoid
looking through all the objects in the older generations every time the young
generation is collected. For this reason, when a reference is created from an
old object to a new object, this reference must be recorded so that it can be
taken into account during the next collection. This makes writing to old ob-
jects slightly more expensive, but that cost is more than compensated for by
the time saved during garbage collection.

400 Chapter 22

Writing to Objects
Given that writing to old objects might incur a cost, you can rightly feel a bit
worried about the way our code is applying forces. The inner loop updates
the x and y properties of the long-lived node position objects. For a graph
with N nodes, the inner loop runs N 2 times. For our 85-node test graph, this
is 7,225 times for every iteration of the simulation.

Computing the forces locally and updating the node positions only after
all forces have been fully computed might help. This requires some addi-
tional code to build up the arrays that hold the forces and to apply those
forces at the end of the function.

function forceDirected_localforce(graph) {

var forcesX = [], forcesY = [];

for (var i = 0; i < graph.length; i++)

forcesX[i] = forcesY[i] = 0;

for (var i = 0; i < graph.length; i++) {

var node = graph[i];

for (var j = i + 1; j < graph.length; j++) {

var other = graph[j];

var apartX = other.pos.x - node.pos.x;

var apartY = other.pos.y - node.pos.y;

var distance = Math.max(1, Math.sqrt(apartX * apartX + apartY * apartY));

var forceSize = -repulsionStrength / (distance * distance);

if (node.hasEdge(other))

forceSize += (distance - springLength) * springStrength;

var forceX = apartX * forceSize / distance;

var forceY = apartY * forceSize / distance;

forcesX[i] += forceX; forcesY[i] += forceY;

forcesX[j] -= forceX; forcesY[j] -= forceY;

}

}

for (var i = 0; i < graph.length; i++) {

graph[i].pos.x += forcesX[i];

graph[i].pos.y += forcesY[i];

}

}

Batching position updates like this improves the program’s speed by
another 20 percent. Interestingly, this improvement is consistently visible on
all three browsers I tested on, even though two of them supposedly don’t use

JavaScript and Performance 401

generational garbage collection. This most likely has to do with the way they
do their garbage collection incrementally, cutting up the work of tracing all
live memory into small chunks, rather than doing it all at once, which could
cause noticeable pauses in the program’s execution. This technique also
requires keeping track of newly created references.

Step by step, we’ve transformed our small program, making it less pretty
but about 85 percent faster (the last version takes about 15 percent of the
time that the first version took).

I want to urge you again to not apply these techniques to all code you
write. For most code, it won’t make a difference. Only code in inner loops
that runs very often benefits from this kind of tweaking.

Dynamic Types
JavaScript expressions that fetch a property from an object, like node.pos,
are far from trivial to compile. In many languages, variables have a type, and
thus, when you perform an operation on the value they hold, the compiler
already knows what kind of operation you need. In JavaScript, only values

have types, and a variable can end up holding values of different types.
This means that, initially, the compiler knows little about the property

the code might be trying to access and has to produce code that handles
all possible types. If node holds an undefined value, the code must throw an
error. If it holds a string, it must look up pos in String.prototype. If it holds
an object, the way the pos property is extracted from it depends on the type
of object. And so on.

Fortunately, variables in most programs do have a single type, though
JavaScript does not require it. And if the compiler knows the variable type,
it can use this information to create more efficient code. If node has always
been an object with pos and edges properties so far, the optimizing compiler
code can simply create code that fetches the property from its known posi-
tion in such an object, which is simple and fast.

But events observed in the past do not give any guarantees about events
that will occur in the future. Some piece of code that hasn’t run yet might
still pass another type of value to our function—a different kind of node ob-
ject, for example, which also has an id property.

So the compiled code still has to check whether its assumptions hold and
take an appropriate action if they do not. An engine could deoptimize en-
tirely, falling back to the unoptimized version of the function. Or it could
compile a new version of the function that also handles the newly observed
type.

You can observe the slowdown caused by the failure to predict object
types by intentionally messing up the uniformity of the input objects for our
graph layout function, as in this example:

var mangledGraph = treeGraph(4, 4);

mangledGraph.forEach(function(node) {

var letter = Math.floor(Math.random() * 26);

402 Chapter 22

node[String.fromCharCode("A".charCodeAt(0) + letter)] = true;

});

runLayout(forceDirected_localforce, mangledGraph);

Every node gets an extra property, named with a random uppercase let-
ter. The letter is computed by taking the character code of the A character
and adding a random number to it.

If we run our fast simulation code on the resulting graph, it becomes
three times as slow on Chrome 38 and nine (!) times as slow on Firefox 32.
Now that object types vary, the code has to look up the properties without
prior knowledge about the shape of the object, which is a lot more expensive
to do.

A similar technique is used for things other than property access. The
+ operator, for example, means different things depending on what kind of
values it is applied to. Instead of always running the full code that handles
all these meanings, a smart JavaScript compiler will use previous observa-
tions to build up some expectation of the type that the operator is probably
being applied to. If it is applied only to numbers, a much simpler piece of
machine code can be generated to handle it. But again, such assumptions
must be checked every time the function runs.

The moral of the story is that if a piece of code needs to be fast, you
can help by feeding it consistent types. JavaScript engines can handle cases
where a handful of different types occur relatively well—they will generate
code that handles all of these types and deoptimizes only when a new type
is seen. But the resulting code is still slower than what you would get for a
single type.

Summary
Thanks to the enormous amount of money being poured into the Web, as
well as the rivalry between the different browsers, JavaScript compilers are
good at what they do: making code run fast.

But sometimes you have to help them a little and rewrite your inner
loops to avoid more expensive JavaScript features. Higher-order functions
are one such feature. Creating fewer objects (and arrays and strings) can
also help.

Before you start mangling your code to make it faster, think about ways
to make it do less work. The biggest opportunities for optimization are often
found in this direction.

JavaScript engines compile hot code multiple times and will use infor-
mation gathered during previous execution to compile more efficient code.
You can help by giving your variables a consistent type.

JavaScript and Performance 403

Exercises

Pathfinding
Write a function findPath that tries to find the shortest path between two
nodes in a graph. It takes two GraphNode objects (as used throughout this
chapter) as arguments and returns either null, if no path could be found,
or an array of nodes that represents a path through the graph. Nodes that
occur next to each other in this array should have an edge between them.

A good approach for finding a path in a graph goes like this:

1. Create a work list that contains a single, single-node path that consists of
the starting node.

2. Start with the first path in the work list.

3. If the node at the end of the current path is the goal node, return
this path.

4. Otherwise, for each neighbor of the node at the end of the path, if that
node has not been looked at before (does not occur at the end of any
paths in the work list), create a new path by extending the current path
with that neighbor and add the path to the work list.

5. If there are more paths in the work list, go to the next path and con-
tinue at step 3.

6. Otherwise, there is no path.

By “spreading out” paths from the start node, this approach ensures that
it always reaches a given other node by the shortest path since longer paths
are considered only after all shorter paths have been tried.

Implement this program and test it on some simple tree graphs. Con-
struct a graph with a cycle in it (for example, by adding edges to a tree graph
with the connect method) and see whether your function can find the short-
est path when there are multiple possibilities.

Timing
Use Date.now() to measure the time it takes your findPath function to find a
path in a more complicated graph. Since treeGraph always puts the root at
the start of the graph array and a leaf at the end, you can give your function
a nontrivial task by doing something like this:

var graph = treeGraph(5, 3);

console.log(findPath(graph[0], graph[graph.length - 1]).length);

// . 5

Create a test case that has a running time of around half a second. Be
careful with passing larger numbers to treeGraph—the size of the graph in-
creases exponentially, so you can easily make your graph so big that it’ll take
huge amounts of time and memory to find a path through them.

404 Chapter 22

Optimizing
Now that you have a measured test case, find ways to make your findPath

function faster.
Think both about macro-optimization (doing less work) and micro-

optimization (doing the given work in a cheaper way). Also, consider ways
to use less memory and allocate fewer or smaller data structures.

If you need to, you can start by adding id properties to nodes to make it
easier to store information about them in a map. Use a function like this one:

function withIDs(graph) {

for (var i = 0; i < graph.length; i++) graph[i].id = i;

return graph;

}

JavaScript and Performance 405

EXERCISE HINTS

The hints below might help when you are stuck with
one of the exercises in this book. They don’t give away
the entire solution, but rather try to help you find it
yourself.

Program Structure

Looping a Triangle
You can start with a program that simply prints out the numbers 1 to 7, which
you can derive by making a few modifications to the even number printing
example given earlier in the chapter, where the for loop was introduced.

Now consider the equivalence between numbers and strings of hash
characters. Similarly, you can go from 1 to 2 by adding 1 (+= 1). You can
go from "#" to "##" by adding a character (+= "#"). Thus, your solution can
closely follow the number printing program.

FizzBuzz
Going over the numbers is clearly a looping job, and selecting what to print
is a matter of conditional execution. Remember the trick of using the re-
mainder (%) operator for checking whether a number is divisible by another
number (has a remainder of zero).

In the first version, there are three possible outcomes for every number,
so you’ll have to create an if/else if/else chain.

The second version of the program has a straightforward solution and a
clever one. The simple way is to add another “branch” to precisely test the
given condition. For the clever method, build up a string containing the
word or words to output and print either this word or the number if there
is no word, potentially by making elegant use of the || operator.

Chess Board
The string can be built by starting with an empty one ("") and repeatedly
adding characters. A newline character is written "\n".

Use console.log to inspect the output of your program.
To work with two dimensions, you will need a loop inside of a loop. Put

braces around the bodies of both loops to make it easy to see where they
start and end. Try to properly indent these bodies. The order of the loops
must follow the order in which we build up the string (line by line, left to
right, top to bottom). So the outer loop handles the lines, and the inner
loop handles the characters on a line.

You’ll need two variables to track your progress. To know whether to put
a space or a hash sign at a given position, you could test whether the sum of
the two counters is even (% 2).

Terminating a line by adding a newline character happens after the
line has been built up, so do this after the inner loop but inside of the
outer loop.

Functions

Minimum
If you have trouble putting braces and parentheses in the right place to get a
valid function definition, start by copying one of the examples in this chap-
ter and modifying it.

A function may contain multiple return statements.

Recursion
Your function will likely look somewhat similar to the inner find function in
the recursive findSolution example in this chapter, with an if/else if/else
chain that tests which of the three cases applies. The final else, correspond-
ing to the third case, makes the recursive call. Each of the branches should

408 Exercise Hints

contain a return statement or in some other way arrange for a specific value
to be returned.

When given a negative number, the function will recurse again and
again, passing itself an ever more negative number, thus getting further and
further away from returning a result. It will eventually run out of stack space
and abort.

Bean Counting
A loop in your function will have to look at every character in the string by
running an index from zero to one below its length (< string.length). If
the character at the current position is the same as the one the function is
looking for, it adds 1 to a counter variable. Once the loop has finished, the
counter can be returned.

Take care to make all the variables used in the function local to the func-
tion by using the var keyword.

Data Structures: Objects and Arrays

The Sum of a Range
Building up an array is most easily done by first initializing a variable to []

(a fresh, empty array) and repeatedly calling its push method to add a value.
Don’t forget to return the array at the end of the function.

Since the end boundary is inclusive, you’ll need to use the <= operator
rather than simply < to check for the end of your loop.

To check whether the optional step argument was given, either check
arguments.length or compare the value of the argument to undefined. If it
wasn’t given, simply set it to its default value (1) at the top of the function.

Having range understand negative step values is probably best done by
writing two separate loops—one for counting up and one for counting
down—because the comparison that checks whether the loop is finished
needs to be >= rather than <= when counting down.

It might also be worthwhile to use a different default step, namely, −1,
when the end of the range is smaller than the start. That way, range(5, 2)

returns something meaningful, rather than getting stuck in an infinite loop.

Reversing an Array
There are two obvious ways to implement reverseArray. The first is to
simply go over the input array from front to back and use the unshift

method on the new array to insert each element at its start. The second is
to loop over the input array backward and use the push method. Iterating
over an array backward requires a (somewhat awkward) for specification like
(var i = array.length - 1; i \textgreater{}= 0; i--).

Reversing the array in place is harder. You have to be careful not to
overwrite elements that you will need later. Using reverseArray or otherwise

Exercise Hints 409

copying the whole array (array.slice(0) is a good way to copy an array) works
but is cheating.

The trick is to swap the first and last elements, then the second and
second-to-last, and so on. You can do this by looping over half the length
of the array (use Math.floor to round down—you don’t need to touch the
middle element in an array with an odd length) and swapping the element
at position i with the one at position array.length - 1 - i. You can use a lo-
cal variable to briefly hold on to one of the elements, overwrite that one with
its mirror image, and then put the value from the local variable in the place
where the mirror image used to be.

A List
Building up a list is best done back to front. So arrayToList could iterate over
the array backward (see previous exercise) and, for each element, add an
object to the list. You can use a local variable to hold the part of the list that
was built so far and use a pattern like list = {value: X, rest: list} to add
an element.

To run over a list (in listToArray and nth), a for loop specification like
this can be used:

for (var node = list; node; node = node.rest) {}

Can you see how that works? Every iteration of the loop, node points
to the current sublist, and the body can read its value property to get the
current element. At the end of an iteration, node moves to the next sub-
list. When that is null, we have reached the end of the list and the loop is
finished.

The recursive version of nth will, similarly, look at an ever smaller part
of the “tail” of the list and at the same time count down the index until it
reaches zero, at which point it can return the value property of the node it
is looking at. To get the zeroeth element of a list, you simply take the value

property of its head node. To get element N + 1, you take the N th element
of the list that’s in this list’s rest property.

Deep Comparison
Your test for whether you are dealing with a real object will look something
like typeof x == "object" && x != null. Be careful to compare properties only
when both arguments are objects. In all other cases you can just immediately
return the result of applying ===.

Use a for/in loop to go over the properties. You need to test whether
both objects have the same set of property names and whether those prop-
erties have identical values. The first test can be done by counting the prop-
erties in both objects and returning false if the numbers of properties are
different. If they’re the same, then go over the properties of one object, and
for each of them, verify that the other object also has the property. The val-
ues of the properties are compared by a recursive call to deepEqual.

410 Exercise Hints

Returning the correct value from the function is best done by immedi-
ately returning false when a mismatch is noticed and returning true at the
end of the function.

Higher-Order Functions

Mother-Child Age Difference
Because not all elements in the ancestry array produce useful data (we can’t
compute the age difference unless we know the birth date of the mother),
we will have to apply filter in some manner before calling average. You could
do it as a first pass, by defining a hasKnownMother function and filtering on that
first. Alternatively, you could start by calling map and in your mapping func-
tion return either the age difference or null if no mother is known. Then,
you can call filter to remove the null elements before passing the array to
average.

Historical Life Expectancy
The essence of this example lies in grouping the elements of a collection
by some common aspect. Here, we want to split the array of ancestors into
smaller arrays, grouping ancestors by century.

During the grouping process, keep an object that associates century
names (numbers) with arrays of either person objects or ages. Since we do
not know in advance what categories we will find, we’ll have to create them
on the fly. For each person, after computing their century, we test whether
that century was already known. If not, add an array for it. Then add the per-
son (or age) to the array for the proper century.

Finally, a for/in loop can be used to print the average ages for the indi-
vidual centuries.

Every and Then Some
The functions can follow a similar pattern to the definition of forEach at the
start of the chapter, except that they must return immediately (with the
right value) when the predicate function returns false—or true. Don’t for-
get to put another return statement after the loop so that the function also
returns the correct value when it reaches the end of the array.

The Secret Life of Objects

A Vector Type
Your solution can follow the pattern of the Rabbit constructor from this chap-
ter quite closely.

Adding a getter property to the constructor can be done with the
Object.defineProperty function. To compute the distance from (0, 0) to
(x, y), you can use the Pythagorean theorem, which says that the square

Exercise Hints 411

of the distance we are looking for is equal to the square of the x-coordinate
plus the square of the y-coordinate. Thus,

√
x2 + y2 is the number you want,

and Math.sqrt is the way you compute a square root in JavaScript.

Another Cell
You’ll have to store all three constructor arguments in the instance object.
The minWidth and minHeight methods should call through to the correspond-
ing methods in the inner cell but ensure that no number less than the given
size is returned (possibly using Math.max).

Don’t forget to add a draw method that simply forwards the call to the
inner cell.

Sequence Interface
One way to solve this is to give the sequence objects state, meaning their
properties are changed in the process of using them. You could store a
counter that indicates how far the sequence object has advanced.

At least, your interface will need to expose a way to get the next element
and to find out whether the iteration has reached the end of the sequence
yet. It is tempting to roll these into one method, next, which returns null or
undefined when the sequence is at its end. But now you have a problem when
a sequence actually contains null. So a separate method (or getter property)
to find out whether the end has been reached is probably preferable.

Another solution is to avoid changing state in the object. You can expose
a method for getting the current element (without advancing any counter)
and another for getting a new sequence that represents the remaining ele-
ments after the current one (or a special value if the end of the sequence is
reached). This is quite elegant—a sequence value will “stay itself” even after
it is used and can thus be shared with other code without worrying about
what might happen to it. It is, unfortunately, also somewhat inefficient in a
language like JavaScript because it involves creating a lot of objects during
iteration.

Project: Electronic Life

Artificial Stupidity
The greediness problem can be attacked in several ways. The critters could
stop eating when they reach a certain energy level. Or they could eat only
every N turns (by keeping a counter of the turns since their last meal in a
property on the critter object). Or to make sure plants never go entirely
extinct, the critters could refuse to eat a plant unless they see at least one
other plant nearby (using the findAll method on the view). A combination
of these, or some entirely different strategy, might also work.

412 Exercise Hints

Making the critters move more effectively could be done by stealing one
of the movement strategies from the critters in our old, energyless world.
Both the bouncing behavior and the wall-following behavior showed a much
wider range of movement than completely random staggering.

Making critters breed more slowly is trivial. Just increase the mini-
mum energy level at which they reproduce. Of course, making the ecosys-
tem more stable also makes it more boring. If you have a handful of fat, im-
mobile critters forever munching on a sea of plants and never reproducing,
that makes for a very stable ecosystem. But no one wants to watch that.

Predators
Many of the same tricks that worked for the previous exercise also apply
here. Making the predators big (lots of energy) and having them reproduce
slowly is recommended. That’ll make them less vulnerable to periods of star-
vation when the herbivores are scarce.

Beyond staying alive, keeping its food stock alive is a predator’s main
objective. Find some way to make predators hunt more aggressively when
there are a lot of herbivores and hunt more slowly (or not at all) when prey
is rare. Since herbivores move around, the simple trick of eating one only
when others are nearby is unlikely to work—that’ll happen so rarely that
your predator will starve. But you could keep track of observations in pre-
vious turns, in some data structure kept on the predator objects, and have it
base its behavior on what it has seen recently.

Bugs and Error Handling

Retry
The call to primitiveMultiply should obviously happen in a try block. The
corresponding catch block should rethrow the exception when it is not an
instance of MultiplicatorUnitFailure and ensure the call is retried when it is.

To do the retrying, you can either use a loop that breaks only when a
call succeeds—as in the look example earlier in this chapter—or use recur-
sion and hope you don’t get a string of failures so long that it overflows the
stack (which is a pretty safe bet).

The Locked Box
This exercise calls for a finally block, as you probably guessed. Your func-
tion should first unlock the box and then call the argument function from
inside a try body. The finally block after it should lock the box again.

To make sure we don’t lock the box when it wasn’t already locked, check
its lock at the start of the function and unlock and lock it only when it started
out locked.

Exercise Hints 413

Regular Expressions

Quoting Style
The most obvious solution is to only replace quotes with a nonword charac-
ter on at least one side. Something like /\W'|'\W/. But you also have to take
the start and end of the line into account.

In addition, you must ensure that the replacement also includes the
characters that were matched by the \W pattern so that those are not dropped.
This can be done by wrapping them in parentheses and including their
groups in the replacement string ($1, $2). Groups that are not matched will
be replaced by nothing.

Numbers Again
First, do not forget the backslash in front of the dot.

Matching the optional sign in front of the number, as well as in front of
the exponent, can be done with [+\-]? or (\+|-|) (plus, minus, or nothing).

The more complicated part of the exercise is the problem of matching
both "5." and ".5" without also matching ".". For this, a good solution is to
use the | operator to separate the two cases—either one or more digits op-
tionally followed by a dot and zero or more digits or a dot followed by one or
more digits.

Finally, to make the e case insensitive, either add an i option to the regu-
lar expression or use [eE].

Modules

Month Names
This follows the weekDay module almost exactly. A function expression, called
immediately, wraps the variable that holds the array of names, along with the
two functions that must be exported. The functions are put in an object and
returned. The returned interface object is stored in the month variable.

A Return to Electronic Life
Here is what I came up with. I’ve put parentheses around internal functions.

Module "grid"

Vector

Grid

directions

directionNames

Module "world"

(randomElement)

(elementFromChar)

(charFromElement)

414 Exercise Hints

View

World

LifelikeWorld

directions [reexported]

Module "simple_ecosystem"

(randomElement) [duplicated]

(dirPlus)

Wall

BouncingCritter

WallFollower

Module "ecosystem"

Wall [duplicated]

Plant

PlantEater

SmartPlantEater

Tiger

I have reexported the directions array from the grid module from world

so that modules built on that (the ecosystems) don’t have to know or worry
about the existence of the grid module.

I also duplicated two generic and tiny helper values (randomElement and
Wall) since they are used as internal details in different contexts and do not
belong in the interfaces for these modules.

Circular Dependencies
The trick is to add the exports object created for a module to require’s cache
before actually running the module. This means the module will not yet have
had a chance to override module.exports, so we do not know whether it wants
to export some other value. After loading, the cache object is overridden
with module.exports, which may be a different value.

But if in the course of loading the module, a second module is loaded
that asks for the first module, its default exports object, which is likely still
empty at this point, will be in the cache, and the second module will receive
a reference to it. If it doesn’t try to do anything with the object until the first
module has finished loading, things will work.

Project: A Programming Language

Arrays
The easiest way to do this is to represent Egg arrays with JavaScript arrays.

The values added to the top environment must be functions.
Array.prototype.slice can be used to convert an arguments array-like object
into a regular array.

Exercise Hints 415

Closure
Again, we are riding along on a JavaScript mechanism to get the equivalent
feature in Egg. Special forms are passed the local environment in which they
are evaluated so that they can evaluate their subforms in that environment.
The function returned by fun closes over the env argument given to its en-
closing function and uses that to create the function’s local environment
when it is called.

This means that the prototype of the local environment will be the envi-
ronment in which the function was created, which makes it possible to access
variables in that environment from the function. This is all there is to im-
plementing closure (though to compile it in a way that is actually efficient,
you’d need to do some more work).

Comments
Make sure your solution handles multiple comments in a row, with white-
space potentially between or after them.

A regular expression is probably the easiest way to solve this. Write some-
thing that matches “whitespace or a comment, zero or more times.” Use the
exec or match method and look at the length of the first element in the re-
turned array (the whole match) to find out how many characters to slice off.

Fixing Scope
You will have to loop through one scope at a time, using Object.getPrototypeOf

to go the next outer scope. For each scope, use hasOwnProperty to find out
whether the variable, indicated by the name property of the first argument to
set, exists in that scope. If it does, set it to the result of evaluating the second
argument to set and then return that value.

If the outermost scope is reached (Object.getPrototypeOf returns null)
and we haven’t found the variable yet, it doesn’t exist, and an error should
be thrown.

The Document Object Model

Build a Table
Use document.createElement to create new element nodes, document
.createTextNode to create text nodes, and the appendChild method to
put nodes into other nodes.

You should loop over the key names once to fill in the top row and
then again for each object in the array to construct the data rows.

Don’t forget to return the enclosing <table> element at the end of the
function.

416 Exercise Hints

Elements by Tag Name
The solution is most easily expressed with a recursive function, similar to the
talksAbout function defined earlier in this chapter.

You could call byTagname itself recursively, concatenating the resulting
arrays to produce the output. For a more efficient approach, define an inner
function that calls itself recursively and that has access to an array variable
defined in the outer function to which it can add the matching elements it
finds. Don’t forget to call the inner function once from the outer function.

The recursive function must check the node type. Here we are inter-
ested only in node type 1 (document.ELEMENT_NODE). For such nodes, we must
loop over their children and, for each child, see whether the child matches
the query while also doing a recursive call on it to inspect its own children.

Handling Events

Censored Keyboard
The solution to this exercise involves preventing the default behavior of key
events. You can handle either "keypress" or "keydown". If either of them has
preventDefault called on it, the letter will not appear.

Identifying the letter typed requires looking at the keyCode or charCode

property and comparing that with the codes for the letters you want to filter.
In "keydown", you do not have to worry about lowercase and uppercase letters,
since it identifies only the key pressed. If you decide to handle "keypress"

instead, which identifies the actual character typed, you have to make sure
you test for both cases. Here’s one way to do that:

/[qwx]/i.test(String.fromCharCode(event.charCode))

Mouse Trail
Creating the elements is best done in a loop. Append them to the document
to make them show up. Store the trail elements in an array, so you can ac-
cess them later to change their position.

Cycling through them can be done by keeping a counter variable and
adding 1 to it every time the "mousemove" event fires. The remainder operator
(% 10) can then be used to get a valid array index to pick the element you
want to position during a given event.

Another interesting effect can be achieved by modeling a simple physics
system. Use only the "mousemove" event to update a pair of variables that track
the mouse position. Then use requestAnimationFrame to simulate the trailing
elements being attracted to the position of the mouse pointer. At every an-
imation step, update their position based on their position relative to the
pointer (and optionally, a speed that is stored for each element). Figuring
out a good way to do this is up to you.

Exercise Hints 417

Tabs
One pitfall you’ll probably run into is that you can’t directly use the node’s
childNodes property as a collection of tab nodes. For one thing, when you
add the buttons, they will also become child nodes and end up in this ob-
ject because it is live. For another, the text nodes created for the whitespace
between the nodes are also in there and should not get their own tabs.

To work around this, start by building up a real array of all the children
in the wrapper that have a nodeType of 1.

When registering event handlers on the buttons, the handler functions
will need to know which tab element is associated with the button. If they
are created in a normal loop, you can access the loop index variable from
inside the function, but it won’t give you the correct number because that
variable will have been further changed by the loop.

A simple workaround is to use the forEach method and create the handler
functions from inside the function passed to forEach. The loop index, which
is passed as a second argument to that function, will be a normal local vari-
able there and won’t be overwritten by further iterations.

Project: A Platform Game

Game Over
The most obvious solution would be to make lives a variable that lives in
runGame and is thus visible to the startLevel closure.

Another approach, which fits nicely with the spirit of the rest of the
function, would be to add a second parameter to startLevel that gives the
number of lives. When the whole state of a system is stored in the arguments
to a function, calling that function provides an elegant way to transition to a
new state.

In any case, when a level is lost, there should now be two possible state
transitions. If that was the last life, we go back to level zero with the start-
ing amount of lives. If not, we repeat the current level with one less life
remaining.

Pausing the Game
An animation can be interrupted by returning false from the function given
to runAnimation. It can be continued by calling runAnimation again.

To communicate that the animation should be interrupted to the func-
tion passed to runAnimation so that it can return false, you can use a variable
that both the event handler and that function have access to.

When finding a way to unregister the handlers registered by
trackKeys, remember that the exact same function value that was passed
to addEventListener must be passed to removeEventListener to successfully
remove a handler. Thus, the handler function value created in trackKeys

must be available to the code that unregisters the handlers.

418 Exercise Hints

You can add a property to the object returned by trackKeys, which con-
tains either that function value or a method that handles the unregistering
directly.

Drawing on Canvas

Shapes
The trapezoid (1) is easy to draw using a path. Pick suitable center coordi-
nates and add each of the four corners around that.

The diamond (2) can be drawn the easy way, with a path, or the interest-
ing way, with a rotate transformation. To use rotation, you will have to apply
a trick similar to what we did in the flipHorizontally function. Because you
want to rotate around the center of your rectangle and not around the point
(0,0), you must first translate to there, then rotate, and then translate back.

For the zigzag (3) it becomes impractical to write a new call to lineTo

for each line segment. Instead, you should use a loop. You can have each
iteration draw either two line segments (right and then left again) or one, in
which case you must use the evenness (% 2) of the loop index to determine
whether to go left or right.

You’ll also need a loop for the spiral (4). If you draw a series of points,
with each point moving further along a circle around the spiral’s center, you
get a circle. If, during the loop, you vary the radius of the circle on which
you are putting the current point and go around more than once, the result
is a spiral.

The star (5) depicted is built out of quadraticCurveTo lines. You could
also draw one with straight lines. Divide a circle into eight pieces, or a piece
for each point you want your star to have. Draw lines between these points,
making them curve toward the center of the star. With quadraticCurveTo, you
can use the center as the control point.

The Pie Chart
You will need to call fillText and set the context’s textAlign and textBaseline

properties in such a way that the text ends up where you want it.
A sensible way to position the labels would be to put the text on the line

going from the center of the pie through the middle of the slice. You don’t
want to put the text directly against the side of the pie but rather move the
text out to the side of the pie by a given number of pixels.

The angle of this line is currentAngle + 0.5 * sliceAngle. The following
code finds a position on this line, 120 pixels from the center:

var middleAngle = currentAngle + 0.5 * sliceAngle;

var textX = Math.cos(middleAngle) * 120 + centerX;

var textY = Math.sin(middleAngle) * 120 + centerY;

For textBaseline, the value "middle" is probably appropriate when using
this approach. What to use for textAlign depends on the side of the circle we

Exercise Hints 419

are on. On the left, it should be "right", and on the right, it should be "left"

so that the text is positioned away from the pie.
If you are not sure how to find out which side of the circle a given angle

is on, look to the explanation of Math.cos in the previous exercise. The co-
sine of an angle tells us which x-coordinate it corresponds to, which in turn
tells us exactly which side of the circle we are on.

A Bouncing Ball
A box is easy to draw with strokeRect. Define a variable that holds its size or
define two variables if your box’s width and height differ. To create a round
ball, start a path, call arc(x, y, radius, 0, 7), which creates an arc going
from zero to more than a whole circle, and fill it.

To model the ball’s position and speed, you can use the Vector type from
Chapter 15. Give it a starting speed, preferably one that is not purely ver-
tical or horizontal, and every frame, multiply that speed by the amount of
time that elapsed. When the ball gets too close to a vertical wall, invert the
x component in its speed. Likewise, invert the y component when it hits a
horizontal wall.

After finding the ball’s new position and speed, use clearRect to delete
the scene and redraw it using the new position.

Precomputed Mirroring
The key to the solution is the fact that we can use a canvas element as a
source image when using drawImage. It is possible to create an extra <canvas>

element, without adding it to the document, and draw our inverted sprites
to it once. When drawing an actual frame, we just copy the already inverted
sprites to the main canvas.

Some care would be required because images do not load instantly.
We do the inverted drawing only once, and if we do it before the image
loads, it won’t draw anything. A "load" handler on the image can be used
to draw the inverted images to the extra canvas. This canvas can be used as a
drawing source immediately (it’ll simply be blank until we draw the charac-
ter onto it).

HTTP

Content Negotiation
Look at the various examples of using an XMLHttpRequest in this chapter to see
the method calls involved in making a request. You can use a synchronous
request (by setting the third parameter to open to false) if you want.

Asking for a bogus media type will return a response with code 406, “Not
acceptable,” which is the code a server should return when it can’t fulfill the
Accept header.

420 Exercise Hints

Waiting for Multiple Promises
The function passed to the Promise constructor will have to call then on each
of the promises in the given array. When one of them succeeds, two things
need to happen. The resulting value needs to be stored in the correct posi-
tion of a result array, and we must check whether this was the last pending
promise and finish our own promise if it was.

The latter can be done with a counter, which is initialized to the length
of the input array and from which we subtract 1 every time a promise suc-
ceeds. When it reaches 0, we are done. Make sure you take the situation
where the input array is empty (and thus no promise will ever resolve) into
account.

Handling failure requires some thought but turns out to be extremely
simple. Just pass the failure function of the wrapping promise to each of the
promises in the array so that a failure in one of them triggers the failure of
the whole wrapper.

Forms and Form Fields

A JavaScript Workbench
Use document.querySelector or document.getElementById to get access to the ele-
ments defined in your HTML. An event handler for "click" or "mousedown"

events on the button can get the value property of the text field and call new
Function on it.

Make sure you wrap both the call to new Function and the call to its result
in a try block so that you can catch exceptions that it produces. In this case,
we really don’t know what type of exception we are looking for, so catch
everything.

The textContent property of the output element can be used to fill it with
a string message. Or if you want to keep the old content around, create a
new text node using document.createTextNode and append it to the element.
Remember to add a newline character to the end so that not all output ap-
pears on a single line.

Autocompletion
The best event for updating the suggestion list is "input" since that will fire
immediately when the content of the field is changed.

Then loop over the array of terms and see whether they start with the
given string. For example, you could call indexOf and see whether the result
is zero. For each matching string, add an element to the suggestions <div>.
You should probably also empty that each time you start updating the sug-
gestions, for example, by setting its textContent to the empty string.

You could either add a "click" event handler to every suggestion ele-
ment or add a single one to the outer <div> that holds them and look at the
target property of the event to find out which suggestion was clicked.

Exercise Hints 421

To get the suggestion text out of a DOM node, you could look at its
textContent or set an attribute to explicitly store the text when you create the
element.

Conway’s Game of Life
To solve the problem of having the changes conceptually happen at the
same time, try to see the computation of a generation as a pure function,
which takes one grid and produces a new grid that represents the next turn.

Representing the grid can be done in any of the ways shown in Chap-
ters 7 and 15. Counting live neighbors can be done with two nested loops,
looping over adjacent coordinates. Take care not to count cells outside
of the field and to ignore the cell in the center, whose neighbors we are
counting.

Making changes to checkboxes that will take effect on the next genera-
tion can be done in two ways. An event handler could notice these changes
and update the current grid to reflect them, or you could generate a fresh
grid from the values in the checkboxes before computing the next turn.

If you choose to go with event handlers, you might want to attach at-
tributes that identify the position that each checkbox corresponds to so that
it is easy to find out which cell to change.

To draw the grid of checkboxes, you either can use a <table> element
(see Chapter 13) or simply put them all in the same element with
 (line
break) elements between the rows.

Project: A Paint Program

Rectangles
You can use relativePos to find the corner corresponding to the start of the
mouse drag. Figuring out where the drag ends can be done with trackDrag or
by registering your own event handler.

When you have two corners of the rectangle, you must somehow trans-
late these into the arguments that fillRect expects: the top-left corner,
width, and height of the rectangle. Math.min can be used to find the leftmost
x-coordinate and topmost y-coordinate. To get the width or height, you can
call Math.abs (the absolute value) on the difference between two sides.

Showing the rectangle during the mouse drag requires a similar set of
numbers but in the context of the whole page rather than relative to the
canvas. Consider writing a function findRect, which converts two points into
an object with top, left, width, and height properties so that you don’t have to
write the same logic twice.

You can then create a <div> node and set its style.position to absolute.
When setting positioning styles, do not forget to append "px" to the num-
bers. The node must be added to the document (you can append it to
document.body) and also removed again when the drag ends and the actual
rectangle is drawn onto the canvas.

422 Exercise Hints

Color Picker
You’ll again need to use relativePos to find out which pixel was clicked.
The pixelAt function in the example demonstrates how to get the values for
a given pixel. Putting those into an rgb string merely requires some string
concatenation.

Make sure you verify that the exception you catch is an instance of
SecurityError so that you don’t accidentally handle the wrong kind of
exception.

Flood Fill
Given a pair of starting coordinates and the image data for the whole canvas,
this approach should work:

1. Create an array to hold information about already colored coordinates.

2. Create a work list array to hold coordinates that must be looked at. Put
the start position in it.

3. When the work list is empty, we are done.

4. Remove one pair of coordinates from the work list.

5. If those coordinates are already in our array of colored pixels, go back to
step 3.

6. Color the pixel at the current coordinates and add the coordinates to
the array of colored pixels.

7. Add the coordinates of each adjacent pixel whose color is the same as
the starting pixel’s original color to the work list.

8. Return to step 3.

The work list can simply be an array of vector objects. The data structure
that tracks colored pixels will be consulted very often. Searching through the
whole thing every time a new pixel is visited will take a lot of time. You could
instead create an array that has a value in it for every pixel, using again the
x + y × width scheme for associating positions with pixels. When checking
whether a pixel has been colored already, you could directly access the field
corresponding to the current pixel.

You can compare colors by running over the relevant part of the data ar-
ray, comparing one field at a time. Or you can “condense” a color to a single
number or string and compare those. When doing this, ensure that every
color produces a unique value. For example, simply adding the color’s com-
ponents is not safe since multiple colors will have the same sum.

When enumerating the neighbors of a given point, take care to exclude
neighbors that are not inside of the canvas or your program might run off
into one direction forever.

Exercise Hints 423

Node.js

Content Negotiation, Again
Don’t forget to call the end method on the object returned by http.request in
order to actually fire off the request.

The response object passed to http.request’s callback is a readable stream.
This means that it is not entirely trivial to get the whole response body from
it. The following utility function reads a whole stream and calls a callback
function with the result, using the usual pattern of passing any errors it en-
counters as the first argument to the callback:

function readStreamAsString(stream, callback) {

var data = "";

stream.on("data", function(chunk) {

data += chunk;

});

stream.on("end", function() {

callback(null, data);

});

stream.on("error", function(error) {

callback(error);

});

}

Fixing a Leak
It is enough to strip out all occurrences of two dots that have a slash, a back-
slash, or the end of the string on both sides. Using the replace method with
a regular expression is the easiest way to do this. Do not forget the g flag
on the expression, or replace will replace only a single instance, and peo-
ple could still get around this safety measure by including additional double
dots in their paths! Also, make sure you do the replace after decoding the
string, or it would be possible to foil the check by encoding a dot or a slash.

Another potentially worrying case is when paths start with a slash, which
are interpreted as absolute paths. But because urlToPath puts a dot character
in front of the path, it is impossible to create requests that result in such a
path. Multiple slashes in a row, inside the path, are odd but will be treated as
a single slash by the filesystem.

Creating Directories
You can use the function that implements the DELETE method as a blueprint
for the MKCOL method. When no file is found, try to create a directory with
fs.mkdir. When a directory exists at that path, you can return a 204 response
so that directory creation requests are idempotent. If a nondirectory file ex-
ists here, return an error code. The code 400 (“bad request”) would be ap-
propriate here.

424 Exercise Hints

A Public Space on the Web
You can create a <textarea> element to hold the content of the file that is
being edited. A GET request, using XMLHttpRequest, can be used to get the cur-
rent content of the file. You can use relative URLs like index.html, instead
of http://localhost:8000/index.html , to refer to files on the same server as the
running script.

Then, when the user clicks a button (you can use a <form> element and
"submit" event or simply a "click" handler), make a PUT request to the same
URL, with the content of the <textarea> as request body, to save the file.

You can then add a <select> element that contains all the files in the
server’s root directory by adding <option> elements containing the lines re-
turned by a GET request to the URL /. When the user selects another file (a
"change" event on the field), the script must fetch and display that file. Also,
make sure that when saving a file, you use the currently selected filename.

Unfortunately, the server is too simplistic to be able to reliably read files
from subdirectories since it does not tell us whether the thing we fetched
with a GET request is a regular file or a directory. Can you think of a way to
extend the server to address this?

Project: Skill-Sharing Website

Disk Persistence
The simplest solution I can come up with is to encode the whole talks object
as JSON and dump it to a file with fs.writeFile. There is already a function
(registerChange) that is called every time the server’s data changes. It can be
extended to write the new data to disk.

Pick a filename, for example, ./talks.json. When the server starts, it can
try to read that file with fs.readFile, and if that succeeds, the server can use
the file’s contents as its starting data.

Beware, though. The talks object started as a prototype-less object so
that the in operator could be sanely used. JSON.parse will return regular ob-
jects with Object.prototype as their prototype. If you use JSON as your file for-
mat, you’ll have to copy the properties of the object returned by JSON.parse

into a new, prototype-less object.

Comment Field Resets
The ad hoc approach is to simply store the state of a talk’s comment field
(its content and whether it is focused) before redrawing the talk and then
reset the field to its old state afterward.

Another solution would be to not simply replace the old DOM structure
with the new one but recursively compare them, node by node, and update
only the parts that actually changed. This is a lot harder to implement, but
it’s more general and continues working even if we add another text field.

Exercise Hints 425

http://localhost:8000/index.html

Better Templates
You could change instantiateTemplate so that its inner function takes not just
a node but also a current context as an argument. You can then, when loop-
ing over a node’s child nodes, check whether the child has a template-repeat

attribute. If it does, don’t instantiate it once but instead loop over the array
indicated by the attribute’s value and instantiate it once for every element in
the array, passing the current array element as context.

Conditionals can be implemented in a similar way, with attributes called,
for example, template-when and template-unless, which cause a node to be in-
stantiated only when a given property is true (or false).

The Unscriptables
Two central aspects of the approach taken in this chapter—a clean HTTP
interface and client-side template rendering—don’t work without JavaScript.
Normal HTML forms can send GET and POST requests but not PUT or DELETE

requests and can send their data only to a fixed URL.
Thus, the server would have to be revised to accept comments, new

talks, and deleted talks through POST requests, whose bodies aren’t JSON but
rather use the URL-encoded format that HTML forms use (see Chapter 17).
These requests would have to return the full new page so that users see the
new state of the site after they make a change. This would not be too hard to
engineer and could be implemented alongside the “clean” HTTP interface.

The code for rendering talks would have to be duplicated on the server.
The index.html file, rather than being a static file, would have to be gener-
ated dynamically by adding a handler for it to the router. That way, it al-
ready includes the current talks and comments when it gets served.

JavaScript and Performance

Pathfinding
The work list can be an array, and you can add paths to it with the push method.
You cannot use the built-in forEach method to loop over the work items since
that uses the initial length of the array to bound the loop. We will be adding
new items to the array from inside the loop, so its length has to be checked
again on every iteration.

If you use arrays to represent paths, you can extend them with the concat

method, as in path.concat([node]).
To find out whether a node has already been seen, you can loop over

the existing work list normally or use the some method.

426 Exercise Hints

Optimizing
The main opportunity for macro-optimization is to get rid of the inner loop
that figures out whether a node has already been looked at. Looking this up
in an object is much faster than iterating over the work list to search for the
node. But since JavaScript map objects require strings, not objects, as prop-
erty names, we need a trick like withIDs to be able to use a map to associate
information with a given object. (The next version of JavaScript defines an
object type Map, which is a real map, whose keys can be any JavaScript values,
not just strings.)

Another improvement can be made by changing the way paths are stored.
Extending an array with a new element without modifying the existing array
requires copying the whole array. A data structure like the list from Chap-
ter 4 does not have this problem—it allows multiple extensions of a list to
share the data that they have in common.

You can make your function internally store paths as objects with last

and via properties, where last is the last node in the path and via is either
null or another such object. This way, extending a path only requires creat-
ing an object with two properties, rather than copying a whole array. Make
sure you convert the list to an actual array before returning it.

Exercise Hints 427

INDEX

Symbols
&& operator, 17, 20, 96
* operator, 13, 18, 156
*= operator, 34
{} (block), 31, 44, 85
{} (object), 63, 113
- operator, 14, 15, 18
-= operator, 34
= operator, 25, 64, 168, 170, 197
== operator, 16, 19, 66, 79
=== operator, 19, 79, 410
/ operator, 14
/= operator, 34
> operator, 16
>= operator, 16
< operator, 16
<= operator, 16
− operator, 34
% operator, 14, 34, 286, 408, 417, 419
+ operator, 13, 15, 18, 156, 403
++ operator, 34
+= operator, 34
?: operator, 17, 20
[] (array), 60
[] (subscript), 61
|| operator, 17, 19, 51, 96, 123,

326, 408
200 (HTTP status code), 300, 354
204 (HTTP status code), 360
2d (canvas context), 277
400 (HTTP status code), 424
404 (HTTP status code), 300, 359,

374, 376
405 (HTTP status code), 358
406 (HTTP status code), 420
500 (HTTP status code), 359, 363

A
a (HTML tag), 210, 224, 226, 318
Abelson, Hal, 190
absolute path, 424

absolute positioning, 229, 233, 241,
245, 250

abstract syntax tree, see syntax tree
abstraction, 82, 84, 85, 91, 191,

208, 218
acceleration, 268
Accept header, 312, 363, 420
access control, 127, 151, 178, 371
Access-Control-Allow-Origin header, 305
actionTypes object, 130
activeElement property, 317
actor, 256, 261, 266–267, 291
actorAt method, 266
addEntry function, 66
addEventListener method, 236, 270, 356
addition, 13, 117
address, 299
address bar, 209, 299, 301
adoption, 153
age difference (exercise), 95, 411
alert function, 27, 47, 211
algorithm, 423
algorithmic optimization, 398, 405
alignment, 114
all function, 313, 421
alpha, 343
alphanumeric character, 155
alt attribute, 221
ALT key, 240
altKey property, 240
ambiguity, 202
AMD, 183, 185
American English, 156
ampersand character, 211, 301
analysis, 139, 143
ancestor element, 262
ancestry example, 87–90, 92–95
ANCESTRY_FILE data set, 88
angle, 231, 282–283, 341, 419
angle brackets, 210
animate method, 266

animation
avoiding stutter, 230
cat in ellipse, 230
collision detection, 265
frames for, 285–286, 290–291
game, 264, 266–269, 271
getting elements by tag name, 233
mouse trail, 250
off-screen, 244
scheduling, 230
simple, 129, 134
sprite, 293
stopping, 271
SVG vs. canvas, 295

anonymous function, 178
appendChild method, 220, 260, 416
Apple, 213
application (of functions), see function

application
apply method, 86, 101
approximation, 119
arc, 281–283
arc method, 282, 420
arcTo method, 281, 282
area, 341
argument, 27, 47, 51, 163, 192
arguments object, 74, 86, 409
argv property, 350
arithmetic, 13, 18, 198
Armstrong, Joe, 98
array

creation, 60, 91, 121, 409
defined, 64
Egg support, 202
every method, 96
filtering, 88
flattening, 95
forEach method, 84
as grid, 120, 343
higher-order functions and, 87
indexing, 61, 409, 417
length property, 62, 121
map method, 89
methods, 72
objects and, 78
random element from, 123
reverse method, 78
searching, 69, 72
slice method, 73

some method, 96
splice method, 377
as table, 68
traversal, 83

Array constructor, 121
Array prototype, 102, 104
array-like object, 86, 186, 318, 323, 353
arrow function, 125
artificial intelligence, 119, 130, 135,

201, 412
artificial life, 119, 254, 328
artificial stupidity (exercise), 135, 412
ASCII art, 352
assert function, 149
assertion, 149, 150
assignment, 25, 34, 168, 170, 202, 416
assumption, 148, 150
asterisk, 13, 156
asynchronous I/O, 183, 304, 348
asynchronous programming

callbacks, 304, 308
code execution path and, 185
defined, 272
dependencies and, 183
error handling, 307
functions and, 352
Node and, 348
overview, 348, 349
parallelism and, 349
promise interface, 310
reading files, 323
writable streams, 356

attack, 305
attribute, 210, 222, 332, 421, 422
Aurelius, Marcus, 234
authorization, 371
autocompletion (exercise), 328, 421
autofocus attribute, 317
automatic semicolon insertion, 24
avatar, 254
average function, 90, 95, 96, 411
axis, 268, 277, 287–288

B
Babbage, Charles, 58
background, 254, 260–261, 265, 291
background (CSS), 250, 254, 261
backgroundReadFile function, 184, 306

430 INDEX

backslash character
boundary markers, 166
escaping in regular expressions,

154, 166
escaping in strings, 14
paths using, 364

backtracking, 162, 165
backward compatibility, 177
ball, 297, 420
Banks, Iain, 252
bean counting (exercise), 56, 409
beforeunload event, 246
behavior, 122, 129, 172, 201, 412–413
benchmark, 225, 389, 395
Berners-Lee, Tim, 298
best practices, 3
bezierCurve method, 281
binary data, 3, 353
binary number, 11, 12, 68, 142,

162, 322
binary operator, 13, 15, 23
bind method, 94, 101, 125
bit, 4, 12, 16, 68
bitmap graphics, 284, 297
Blob type, 324
block, 31, 32, 42, 145, 146, 192
block comment, 36, 165
block element, 224, 226–227
blocking, 183, 230, 246, 248, 304,

348, 354
blur event, 245–246
blur method, 317
body (HTML tag), 210–211, 216
body (HTTP), 301–303, 355, 360,

361, 374
body property, 216, 217, 219
bold, 226
book analogy, 175, 188
Book of Programming, The, 10, 346
Boolean

conditional execution, 29
conversion to, 19, 29, 32
defined, 16
Egg support, 197
immutable types, 65
using with while loop, 31

Boolean function, 29
border (CSS), 225, 226
border-radius (CSS), 241

bouncing, 122, 255, 257–258, 265,
267, 297

BouncingCritter type, 122
boundary, 160, 161, 166, 170, 172,

291, 414
box, 151, 215, 254, 297, 420
box shadow (CSS), 262
br (HTML tag), 422
braces, see curly braces
branching, 160, 162
branching recursion, 51, 289
break keyword, 33, 35
breakpoint, 143
British English, 156
browser

bitmaps in, 297
color field support, 336
compatibility between, 213
console output, 27
dialog boxes in, 28
doctype and, 211
events in, 236
global scope, 77
graceful degradation, 387
history of JavaScript, 6
JavaScript support, 2
long polling, 369
old, 213
private namespace pattern, 180
responsiveness, 390
security, 212–213, 305, 364
sessionStorage, 327
XMLHttpRequest and, 302–304

browser wars, 213
Browserify, 183
brush, 332, 336–337, 340
bubbling, see event propagation
bucket fill, 343, 423
budget, 387
Buffer type, 353, 356
bug

browser history, 213
decoupling and, 177
defined, 81, 139
lastIndex property and, 167
regular expressions and, 166

business software, 302
button, 235, 301, 318, 328, 339

INDEX 431

button (HTML tag), 212, 236, 241, 251,
319, 325, 327

byName object, 92, 95

C
C (programming language), 389
cache, 182, 184, 415
call method, 101, 105, 114, 126,

131, 199
call protocol, 396
call stack, 46–48, 51, 145, 147, 149, 396
callback function

defined, 306
error arguments, 307
event handlers, 235
promises and, 308
readable streams, 355
writable streams, 356

calling (of functions), see function
application

camel case, 36, 227
cancelAnimationFrame function, 248
canvas

arcTo method, 282
bezierCurve method, 281
circles, 281
clearRect method, 285
color picker exercise, 342
context, 277, 339
cross-domain requests, 338
defined, 275
drawGraph function, 393
drawing text in, 284
filling and stroking, 278
graphics options in browser, 295
loading pixel data into, 285
path, 278
performance and, 295
size, 277, 278
strokeTo method, 279
toDataURL method, 337
transformations in, 286–288

canvas (HTML tag), 277, 332
canvas property, 333
CanvasDisplay type, 290, 291, 293
capitalization

with censored keyboard, 417
in header names, 304

in property names, 227
in variable names, 35–36

capture group, 158, 159, 163–164, 373
career, 253
caret character, 155, 160, 170
carnivore, 136
carriage return, 169
cascading, 228
Cascading Style Sheets, see CSS
case conversion, 62
case keyword, 35
case-sensitivity, 157, 304, 414
casual computing, 2
cat’s hat (exercise), 233
catch keyword, 145, 147–148, 150, 413
catch method, 310
CD, 11
celery, 367
cell, 328
censored keyboard (exercise), 250, 417
center, 263
centering, 230
century, 96, 411
certificate, 311
chaining, 309, 362
change event, 317, 320, 327, 339, 425
chapter, 175
character, 14, 240, 320
character category, 171
character encoding, 353
charAt method, 56, 74
charCode property, 240, 417
charCodeAt method, 240, 403
chat, 208
checkbox, 316, 321, 328, 422
checked attribute, 316, 321
chess board (exercise), 38, 408
child node, 217, 218, 220, 243
childNodes property, 218, 221, 418
choice, 160
Chrome, 213
circle, 231, 281–282, 341
circle (SVG tag), 276
circular dependency, 188, 415
circus, 72
class attribute, 220, 224, 228, 260, 262,

333, 382
className property, 224
cleaning up, 146, 264

432 INDEX

clearing, 223, 275, 285, 288–289,
291–292, 420

clearInterval function, 248
clearRect method, 285, 420
clearTimeout function, 248
cleverness, 186
click event, 236, 238, 241, 421, 425
client, 208, 310, 355, 368, 379
clientHeight property, 225
clientWidth property, 225
clientX property, 242, 334
clientY property, 242, 334
clipboard, 212, 250
clipping, 291
cloneNode method, 383
cloning, 383
closePath method, 279
closing tag, 210, 212
closure, 48, 85, 202, 324, 397, 416–418
code, 7, 23, 43, 165, 254
code golf, 172
code structure, 32, 41, 115, 175
coin, 254, 255, 266–270, 294
Coin type, 258, 267
collaboration, 207
collection, 5, 60, 62, 64, 78, 117, 412
collision detection, 264–269, 420
colon character, 17, 35, 63, 226
color, 276, 278, 292, 332, 336, 342
color (CSS), 226, 227
color picker, 336
color picker (exercise), 342, 423
colWidths function, 108
comma character, 192
command key, 240
command line, 347, 349–351
comment, 36, 165, 202, 217, 368, 370,

384, 416
comment field reset (exercise),

386, 425
COMMENT_NODE code, 217
CommonJS, 180–182, 188, 350, 351
communication, 208, 310
community, 348
comparison

of colors, 423
creating Boolean values, 16
of DOM nodes, 425
of NaN, 17

of numbers, 16, 28
of objects, 66
of strings, 16
for switch statement, 35
of undefined values, 19

compass direction, 122, 129
compatibility, 6, 207, 213, 303, 336
compilation, 200, 389–390, 402, 416
completion, 303, 328
complexity, 3, 81, 91, 99, 186, 399
composability, 5, 90, 91, 186
compositing, 336
composition, 115
computed property, 61
computer, 1, 3
concat method, 73, 95, 112, 417, 426
concatenation, 15, 73, 112, 417,

423, 424
concurrency, 246
conditional execution, 17, 29, 35, 38,

196, 387
conditional operator, 17, 20
configuration, 169
confirm function, 28
Confucius, 2
connection, 208, 299, 304, 306,

311, 369
consistency, 36, 207, 218
console.log, 15, 27, 46, 75, 143
constant, 76, 269
constructor

Error, 146
inheritance using, 114
instanceof operator and, 115
overview, 103
prototype property for, 103
using without new keyword, 141

content negotiation (exercise), 312,
363, 420, 424

Content-Length header, 300
Content-Type header, 300, 354, 358, 364
context, 277, 333–334, 339
context menu, 239
context parameter, 125, 126
continue keyword, 34
control flow, 29, 31–33, 46, 85,

145, 310
control key, 240
control point, 280, 281

INDEX 433

controls object, 333, 336
convention, 36, 186
Conway’s Game of Life, 328
coordinates, 120, 241, 260, 277, 278,

334, 422–423
copying, 383
copy-paste programming, 53, 176
correlation, 67–69, 71
cosine, 76, 231
counter variable, 31, 33, 231, 408, 409,

417, 421
crash, 147, 150, 361, 375, 386
createElement method, 221, 332, 416
createPaint function, 333
createReadStream function, 356, 359
createServer function, 354, 356,

372, 373
createTextNode method, 221, 421
createWriteStream function, 356, 360
crisp, 295
critters, 119

action handlers and, 131–133
animating, 126–128
behavior, 129–130
predators of, 136

Crockford, Douglas, 206
cross-domain request, 305, 338, 343
cryptography, 311
CSS, 227, 244, 261–262, 264, 275, 333
ctrlKey property, 240
curl program, 361
curly braces, 31

brace notation, 63
for function body, 42
for multiple loops, 408
with parentheses, 84
with pattern, 156–157

cursor, 319–320
curve, 280–281
cycle, 217

D
Dark Blue (game), 254
dash character, 14, 155, 227
data, 2, 59
data attribute, 222, 223, 251
data event, 356
data format, 87, 218, 305
data loss, 386

data set, 68, 87, 111
data structure, 59–79

in ancestor example, 92–93
when building programming

language, 192
lists, 78–79
trees, 216–217
using simple, 186
in weresquirrel example, 60–61

data URL, 337
database, 303
dataTable function, 112, 114
date, 155, 156, 158
Date constructor, 158–159
date field, 336
Date type, 177, 187
Date.now function, 159, 371, 404
dblclick event, 241
debouncing, 248
debugger statement, 143
debugging

defined, 140
Error constructor, 145
JavaScript weaknesses, 6
overview, 139
use strict and, 141
using assertions, 150
using catch keyword, 148
using console.log, 143

decentralization, 207
decimal number, 11, 142, 162
declaration, 226
decodeURIComponent function, 301, 358,

373, 424
decoupling, 177
deep comparison, 66, 79
deep comparison (exercise), 79, 410
default behavior, 226, 239, 417
default keyword, 35
default value, 20, 93, 278, 326, 409
defensive programming, 127, 128
define function, 183–185
defineProperty function, 106, 113, 411
degree, 282, 287
DELETE method, 300–301, 357, 359,

374, 384
delete operator, 64
denodeify function, 361
deoptimization, 397, 402

434 INDEX

dependence, 67
dependency, 176–177, 180, 183–184,

188, 352
deserialization, 87
developer tools, 7, 27, 144, 147
dialog box, 27, 28
diamond, 296, 419
digit, 11, 12, 142, 155–157, 173
Dijkstra, Edsger, 118
dimensions, 117, 119, 225, 253, 255,

265, 277, 408
dinosaur, 201
direct child node, 228
directions object, 122, 129
directory, 353–354, 357–359, 364, 425
disabled attribute, 318
discretization, 119, 254, 265, 267, 271
dispatching, 35, 372
display, 260, 290, 295
display (CSS), 226, 251, 380
distance, 394
division, 14
division by zero, 14
DNA, 92, 93
do loop, 32
doctype, 210–211
document, 209, 215, 246, 275
document format, 311, 312
Document Object Model, see DOM
documentation, 186, 347
documentElement property, 216, 217, 304
dollar sign, 25, 160, 163, 170
DOM

addEventListener, 236
canvas element, 275
cloneNode, 383
construction, 218, 220, 222, 332, 380
creating structures in JavaScript, 380
CSS and, 275
documentElement, 217
events and, 241
forms in, 315
graphics in, 255
object properties, 222
overview, 216, 220
selectors and, 229
value property, 319

domain, 209, 301, 305, 325, 338

domain-specific language, 82, 142, 153,
201, 229, 310, 380

DOMDisplay type, 260, 290
dot character, see period character
double-click, 241
double-quote character, 14, 173,

192, 211
download, 7, 177, 232, 361, 368, 386
draggable bar example, 242
dragging, 242
drawGraph function, 393
drawImage method, 285, 287, 290,

292–293, 420
drawing

building a program for, 331–344
and canvas element, 275–297
checkboxes, 422
subsystems, in platform game,

259–264
drawing program example, 241, 331
drawTable function, 109
drawTalk function, 382, 383, 387
drop-down menu, 316, 322
duplication, 176, 415
dynamic scope, 146
dynamic typing, 139, 402

E
ECMAScript, 6, 45, 125, 308, 427
ecosystem, 119, 135, 136
ecstatic module, 373
editor, 255
efficiency, 50, 182, 200, 255, 412
Egg language, 191–203

array support, 202
comments in, 202
environment, 198
evaluator, 195
functions in, 199
overview, 191, 201
parsing, 195
uniformity, 192

elegance, 50, 91, 193
element, 210, 217, 222
elementFromChar function, 124
ELEMENT_NODE code, 217, 417
elements property, 318
ellipse, 230, 231

INDEX 435

else keyword, 30
elt function, 222, 332, 380
email, 311
email field, 336
empty set, 165
encapsulation

defined, 99, 100
importance of, 176
inheritance and, 115
using modules, 177–178, 186, 188

encodeURIComponent function, 301, 370
encoding, 208
encryption, 311
end event, 356
end method, 355, 356, 358, 424
enemies example, 168
energy, 130–133, 412
engine, 389
engineering, 213
ENOENT (status code), 359, 363
ENTER key, 319, 339
entity, 211
entropy, 130
enumerability, 106
environment, 26, 196, 198, 247, 416
equality, 16
erase tool, 335, 336
error, 139–142, 144, 147, 148
error event, 307, 324, 360
error handling

asynchronous programming
and, 307

catch keyword, 145
catch method, 310
ENOENT, 359
for file server, 361
HTTP status codes, 359
long polling and, 386
overview, 144, 145
then method, 310
unhandled exceptions, 147
user experience and, 381
using promises, 361

error message, 195, 309, 327
error recovery, 144
error response, 300, 306, 359–361
error tolerance, 127, 211
Error type, 145, 147, 148, 359
ESC key, 273

escaping
in HTML, 210, 212
in regular expressions, 154–155, 166
in strings, 14, 192
in URLs, 301, 358, 370, 373

Escher, M.C., 274
eval, 180
evaluate function, 195–196, 198
evaluation, 180, 195, 200
even number, 31, 56
event handling

asynchronous programming and,
272, 304

callbacks, 235
default behavior, 239
DOM and, 236
event objects, 237
event propogation, 237
focus events, 245
in games, 254, 273
keyboard events, 239, 320
load event, 284, 304
reading from streams, 356
scroll events, 244
starting scripts, 246
submitting forms, 319
target property, 321

event object, 237, 240–242, 334, 342
event propagation, 237–238, 243,

245, 246
event type, 237
every and some (exercise), 96, 411
every method, 96
evolution, 153, 176
exception, 307, 361
exception handling

asynchronous programming
and, 307

chaining actions and, 308
vs. crashing, 361
error handling and, 145
overview, 148
purpose of, 361
toDataURL method and, 338
try keyword, 145
uncaught exceptions, 147

exec method, 157–158, 167–168
execution order, 29, 45, 46
exercises, 2, 7, 37, 142

436 INDEX

exit method, 350
expectation, 239
experiment, 3, 7, 172, 240
exploit, 213
exponent, 13, 173, 414
exponentiation, 32, 33
exporting, 179, 182, 415
exports object, 179, 181–182, 351, 415
expression, 23–25, 28, 31, 33, 196
expressivity, 2, 201
extinction, 135
extraction, 158

F
factorial function, 8
failure, 306
fallthrough, 35
false, 16
farm example, 52, 54, 160
farmer, 87
field, 315, 318, 321, 328, 425
figlet module, 352
file extension, 358
file field, 316, 323
file format, 168
file reading, 323
file server module, 379
file server example, 357–362, 364,

424, 425
File type, 323
FileReader type, 324, 339
files property, 323
filesystem, 323, 332, 339, 353–354,

357, 425
fill method, 279
fillColor property, 284
filling, 278–279, 284, 296
fillRect method, 278, 285, 342,

344, 422
fillStyle property, 278, 332, 333, 337
fillText method, 284, 419
filter method, 88, 94, 109, 257, 411
finally keyword, 146, 151, 413
finish event, 361
Firefox, 213, 303
firewall, 365, 369
firstChild property, 218
fixed positioning, 245
FizzBuzz (exercise), 38, 408

flattening (exercise), 95
flexibility, 6
flipHorizontally function, 293, 419
flipHorizontally method, 287
flipping, see mirroring
floating-point number, 13
flood fill (exercise), 343, 423
flow diagram, 161, 162
focus, 241, 245, 317–318, 320, 321,

386, 425
focus event, 245–246, 338
focus method, 317
fold function, 89
font, 284, 340
font-family (CSS), 227
font-weight (CSS), 228
food, for critters, 130, 132,

134–135, 413
food chain, 133, 136
for attribute, 321
for loop, 33, 124, 148, 397, 409, 410
force-directed graph layout, 391,

393–394
for/in loop, 70–71, 105–107, 410, 411
forEach method, 84, 125, 324, 418, 426
form, 301–302, 315, 318–319, 365
form (HTML tag), 315–316, 318, 339,

379, 385, 425, 426
form property, 318
forwarding, 371
fractal example, 289
fractional number, 13, 173, 254
fragmentation, 400
frame, 285–286, 290–291, 293, 420
framework, 54, 133
fromCharCode function, 240, 403
fs module, 353–354, 364
fsp object, 362
function

body, 42
declaration, 45–46
definition, 27, 42, 45, 52
higher-order, 84–86, 87, 89, 90, 125
model of, 49
as namespace, 177–179
naming, 52–54
overview, 41
program division and, 175
as property, 62

INDEX 437

function, continued

purity, 54
scope, 43, 44, 125, 202
as value, 45, 48, 83–84, 306, 418
wrapping, 86

Function constructor, 181, 184, 198,
200, 327, 421

function keyword, 42, 45, 179
Function prototype, 102, 104
future of JavaScript, 6, 26, 171,

185, 308

G
game

acceleration of character in, 240
drawing display for, 290–294
platform, 253–273
running, 270

game of life (exercise), 328, 422
GAME_LEVELS data set, 273
garbage collection, 12, 396, 399, 400
garble example, 351
gardening, 367
gatherCorrelations function, 70
gaudy home pages, 250
generation, 328, 422
generational garbage collection, 400
get function, 308
GET method, 300, 301, 303, 319,

357, 425
getAttribute method, 222, 224
getBoundingClientRect method, 225,

242, 334
getContext method, 277
getDate method, 159
getDay method, 177
getElementById method, 220
getElementsByClassName method, 220
getElementsByName method, 321
getElementsByTagName method, 219, 221,

223, 232, 417
getFullYear method, 159
getHours method, 159
getImageData method, 342, 343
getItem method, 325–326
getMinutes method, 159
getMonth method, 159
getPrototypeOf function, 102, 104,

202, 416

getResponseHeader method, 303
getSeconds method, 159
getter, 113, 117
getTime method, 159
getURL function, 307
getYear method, 159
global object, 77, 125, 140, 350
global scope, 43, 176, 178–179, 182,

236, 350, 416
globalCompositeOperation property, 336
Goethe, Johann Wolfgang von, 314
Google, 213
graceful degradation, 388
grammar, 23, 169
grandfather, 92–93
graph, 295, 390, 404
graph layout, 391
graphical user interface, 1
graphics

and canvas, 275
canvas element, 277

interface, 295
in platform game, 262

and DOM, 254–255
encapsulation, 259

vector vs. bitmap, 284
GraphNode type, 392
gravity, 268, 269
greater than, 16
greed, 165
grid, 119–121, 422
Grid type, 121
groupBy function, 96
grouping, 31, 96, 157–158, 163–164,

411, 414

H
h1 (HTML tag), 210, 224
hard drive, 12, 323, 325, 348, 386
hard-coding, 219, 296, 334
hasEvent function, 68
hash character, 202
hasOwnProperty method, 106–107,

202, 416
head (HTML tag), 210–211, 216
head property, 216
header, 300–301, 303, 304, 306, 354
height (CSS), 342
help text example, 245

438 INDEX

helper function, 218
herbivore, 133–136, 413
hexadecimal number, 162, 301
hidden element, 227, 251, 380
higher-order function, 84–86, 87, 89,

90, 125
highlightCode function, 223
history, 6, 99, 378
Hoare, C.A.R., 80
Hooke’s law, 393
hooligan, 371
Host header, 301, 304
hot code, 390
hover effect, 243, 244
href attribute, 210, 219, 222, 337
HTML, 209, 215, 217, 276, 332
html (HTML tag), 211, 216
HTML5 form fields, 336
HTTP, 209, 299–301, 305,

310–311, 360
http module, 354–355, 363
HTTPS, 209, 311, 355
https module, 355
human language, 2, 23, 41
Hypertext Markup Language,

see HTML
Hypertext Transfer Prototol, see HTTP

I
id attribute, 220, 228, 321, 379
idempotency, 360, 424
identifier, 192
identitiy, 65
if keyword, 29–30, 35, 170, 408
image, 210, 221, 246, 275, 301,

332, 338
imagination, 253
img (HTML tag), 210, 221, 226, 246,

275, 285, 339
implementation, 171
implementation detail, 177
implements (reserved word), 26
in operator, 64, 69, 105–107, 410
indentation, 32, 33
index, 61, 109
index property, 157
index.html, 379
indexOf method, 69, 72, 74, 154, 167,

377, 421

infinite loop, 34, 47, 130, 148, 409
infinity, 14
inheritance, 102, 114–116, 130,

148, 359
ini file, 168, 176
initialization, 246, 379, 380
inline caching, 402, 403
inline element, 224, 226
inlining, 396, 397
inner function, 44, 85, 110, 417
inner loop, 91, 163, 397, 401, 402
innerHeight property, 245
innerWidth property, 245
input, 28, 144, 235, 255
input (HTML tag), 245, 250, 316, 319,

321, 323
input event, 320, 421
insertBefore method, 220
install, 352
installation, 177
instance, 103
instanceof operator, 115, 148
instantiateTemplate function, 387, 426
instantiation, 382
instruction, 4
integer, 13
integration, 153, 218
interconnection, 176
interface

canvas, 275
design, 54, 177, 185, 217–218
DOM as, 218
modules and, 180
objects as, 179
overview, 99, 107
sequence, 117
table, 108

interface (reserved word), 26
interface design, 54, 177, 185, 217–218
internationalization, 170
Internet, 168, 208, 209, 212, 364, 365
Internet Explorer, 213, 302
interpretation, 7, 180, 195–196,

200, 389
interview question, 38
inversion, 155
invoking (of functions), see function

application
IP address, 209, 299, 301, 365

INDEX 439

isEven (exercise), 56, 408
isInside function, 243
isNaN function, 30
isolation, 99, 176–178, 180, 212
iteration, 117

J
Jacques, the weresquirrel, 60
Java, 6
JavaScript

absence of, 387
availability of, 2
flexibility of, 6
history of, 6, 207
in HTML, 211
syntax, 23
uses of, 6
versions of, 6
weaknesses of, 6

JavaScript console, 7, 15, 27, 143, 147,
327, 349

JavaScript Object Notation, see JSON
join method, 62, 105, 110, 199, 351
journal, 60, 63, 65, 66, 70, 75
JOURNAL data set, 68
JSON, 87, 305, 309, 325, 352, 425
JSON.parse function, 87, 425
JSON.stringify function, 87
jump, 4
jump-and-run game, 253
jumping, 254, 268, 269
just-in-time compilation, 390

K
Kernighan, Brian, 138
key code, 240, 270
keyboard, 26, 239, 254, 270, 317–318
keyboard focus, see focus
keyCode property, 240, 417
keydown event, 239–240, 248, 270, 417
keypress event, 240, 417
keyup event, 239, 240, 270
keyword, 24, 26, 223
Khasekhemwy, 320
Knuth, Donald, 40
Kurds, and censored keyboard, 250

L
label, 284, 297
label (HTML tag), 321
labeling, 321
landscape example, 44
lastChild property, 218
lastIndex property, 167–168
lastIndexOf method, 72
Last-Modified header, 300
Lava type, 258, 267
layering, 186, 208
layout, 224–226
laziness, 225
leaf node, 217
leak, 213, 273, 338, 364, 424
left (CSS), 229–231, 233, 342
legend, 123
length property

for arrays, 62, 83
for strings, 53, 61, 74, 409

less than, 16
let keyword, 26, 45
level, 418
Level type, 256
lexical scoping, 44, 85
library, 177, 218, 306, 350–352
life expectancy (exercise), 96, 411
LifeLikeWorld type, 130
line, 278–282, 335, 419
line break, 14, 169
line comment, 36, 165
line tool, 332, 334–335
line width, 278, 286
lineCap property, 335
lines of code, 199
lineTo method, 279, 282
lineWidth property, 278, 333, 335, 337
link, 210, 218–219, 239, 241, 332
link (HTML tag), 264
linked list, 78, 410, 427
list (exercise), 78, 410
listen method, 354–355
listening (TCP), 208, 354
literal expression, 23, 153, 194, 196
literate programming, 176
live data structure, 215, 221, 229, 418
live view, 368, 382
lives (exercise), 273, 418

440 INDEX

load event, 246, 284, 293, 304, 324,
339, 420

loading, 183
local scope, 176, 200
local variable, 43, 48, 84, 85, 202,

409, 418
localhost, 354
localStorage object, 325–326, 384
locked box (exercise), 151, 413
logging, 143
logical operators, 17
long polling, 368–370, 376–377, 386
loop

body, 32, 34
defined, 31
for, 33, 83
nested, 84, 92
over matches, 168
termination of, 33
while, 5

lycanthropy, 60, 66

M
machine code, 3, 200, 389
malicious script, 212, 246
man-in-the-middle, 311
map, 70, 105, 107, 257, 318, 405,

411, 427
map method, 89, 108–110, 125, 351, 411
Marcus Aurelius, 234
match method, 158, 168
matching, 154, 160–162, 167, 172
Math object, 56, 61, 75–76
Math.abs function, 422
Math.acos function, 76
Math.asin function, 76
Math.atan function, 76
Math.ceil function, 77, 265, 292
Math.cos function, 76, 231, 341, 420
mathematics, 50, 85
Math.floor function, 76, 265, 292
Math.max function, 28, 61, 75, 291
Math.min function, 28, 56, 75, 291, 422
Math.PI constant, 76, 282
Math.random function, 76, 123, 133,

259, 328
Math.round function, 77
Math.sin function, 76, 231, 259,

268, 341

Math.sqrt function, 68, 75, 411
Math.tan function, 76
max-height (CSS), 262
maximum, 28, 75, 108
max-width (CSS), 262
media type, 312, 358
meetups, JavaScript, 367
memory, 12, 79, 200, 386, 396,

400, 405
mental model, 186
Mephistopheles, 314
mesh, 209
message, 247
message box, 27
message event, 247
meta key, 240
metaKey property, 240
method, 100, 102, 113, 115
method attribute, 301
method call, 95, 101
methods object, 357
micro-optimization, 398, 405
Microsoft, 213, 302
Microsoft Paint, 331
Middle East, graph of, 390
mime module, 358
MIME type, 312, 358, 363
mini application, 325
minimalism, 176, 254
minimum, 28, 56, 75, 90
minimum (exercise), 56, 408
minus, 14, 173
Miro, Joan, 330
mirror, 288, 297, 420
mirroring, 286, 287
MKCOL method, 364, 424
mkdir function, 424
modification date, 359
modifier key, 240
modularity, 302
module

AMD system, 183
interface, 177, 180
large, 179
NPM and, 351
purpose of, 176
requiring, 351
scope for, 177

module loader, 180, 183, 185, 350

INDEX 441

module object, 182
modulo operator, 14
Mongolian vowel separator, 171
month name (exercise), 187, 414
Mosaic, 213
motion, 254
MOUNTAINS data set, 108, 111, 232
mouse, 26, 332, 334, 342, 421

button, 237, 238, 241
cursor, 241

mouse trail (exercise), 250, 417
mousedown event, 238, 241, 332,

334, 421
mousemove event, 242–243, 248,

334–335, 417
mouseout event, 243
mouseover event, 243, 338
mouseup event, 241, 243, 332, 334
moveTo method, 279, 282
Mozilla, 213, 303
multiple attribute, 322, 323
multiple-choice, 316, 321, 322
multiplication, 13, 257, 267
multiplier function, 49
mutability, 64, 65, 105
mutation, 412

N
name attribute, 318, 321
namespace, 75, 176, 177, 180, 181
namespace pollution, 75, 176, 179
naming, 4, 6
NaN, 14, 17, 18, 140
negation, 15, 17
neighbor, 328, 422
nerd, 166
nesting

of arrays, 68
of expressions, 23, 193
of functions, 44, 85, 110
of loops, 38, 91, 124, 408
of objects, 216, 219
in regular expressions, 163
of scope, 44

Netscape, 6, 213
network, 207–209, 311, 371
new operator, 103
newline character, 14, 38, 155, 165,

169, 421

nextSibling property, 218
node, 216–217
node program, 349, 350
Node.js

asynchronous programming
and, 352

console.log and, 27
DELETE method, 359
file server example, 361
fs module, 353
GET method, 358
HTTP module, 354
long polling and, 368–370
module system, 182, 350–351
NPM, 177, 351
overview, 347–349, 363
PUT method, 360
stopping script, 355
streams and, 356

node_modules directory, 351–352
NodeList type, 218
nodeType property, 217, 417, 418
nodeValue property, 219
nonbreaking space, 171
normalizing, 394
not a number, 14
note-taking example, 325
notification, 369
NPM, 177, 351–353, 358, 362, 372–373
null, 18, 19, 79, 95, 144, 411
number

conversion to, 18, 29
immutable types, 65
matching with regular expression,

155, 173
notation, 12, 13
precision of, 13
representation, 12
special values, 14

number field, 336
Number function, 29, 36
number puzzle example, 51

O
object

creation, 103
DOM and, 216
global, 77
identity, 65

442 INDEX

immutable, 65
instanceof operator, 115
looping over, 70
as map, 105, 124, 257, 411
Math, 75
OOP history, 99
overview, 59, 102
property, 61

Object prototype, 102, 106, 107
object shape, 403
Object.create function, 102, 107, 200
Object.keys function, 112, 123, 232
object-oriented programming, 99–100,

107–108, 115
obstacle, 130, 264–265
obstacleAt method, 265
offsetHeight property, 225
offsetWidth property, 225
on method, 356
onclick attribute, 212, 236
open method, 303–304
OpenGL, 277
opening tag, 210
operator, 13, 15–16, 19, 192, 198, 403
optimization

batching updates, 401
benchmarking, 225
canvas elements, 337
clarity of code, 91
compiling, 390, 396
profiling, 395
pure functions, 55
transformations, 297
type observation, 402

option (HTML tag), 316–317, 322,
334, 425

optional, in pattern, 156
optional argument, 48, 74, 78
options property, 322
ordering, 208
organization, 175–176
outline, 278
output, 15, 27, 143, 198, 421
overflow, with numbers, 13
overflow (CSS), 262
overlap, 265
overlay, 228
overriding, 104, 107, 114, 415
overwriting, 360, 365, 375

P
p (HTML tag), 210, 224
package (reserved word), 26
package manager, 177
package.json file, 352
padding (CSS), 261
page reload, 246, 315, 319, 325, 426
pageX property, 241, 342
pageXOffset property, 225
pageY property, 241, 342
pageYOffset property, 225, 245
Palef, Thomas, 254
paragraph, 210
parallelism, 246, 301, 348–349
parameter, 42, 43, 47, 74, 86, 141, 418
parent node, 237
parentheses

declaring precedence, 13
expressions, 23
for loops, 33
functions and, 27, 179, 192
if statements, 30
regular expressions, 157, 159

160, 170
while loops, 31

parentNode property, 218
parse function, 195
parseApply function, 194
parseExpression function, 193
parseINI function, 170
parsing, 191–193, 211, 376
partial application, 94
password, 311, 364, 371
password field, 316
path

canvas, 278–280, 282, 335, 419
closing, 279
filesystem, 350, 357–358, 424
URL, 300, 303, 357–358, 369, 372

pathfinding, 130, 135, 413
pathfinding (exercise), 404–405,

426–427
patience, 343
pattern, 153–155, 166
pausing (exercise), 273, 418
pea soup, recipe analogy, 82
peanuts, in weresquirrel example,

71–72
percent, 245

INDEX 443

percent sign, 301
performance

canvas, 295, 344
compilation and, 200
games and, 255
JavaScript engine, 389
regular expressions and, 162
single thread and, 247
synchronous functions, 354

period character, 27, 61, 155, 165,
173, 424

persistence, 325, 368, 384, 386, 425
phase, 258–259, 268
phi coefficient, 67–68
phi function, 68
photosynthesis, 130–131, 133
physics, 264, 268, 391, 417
physics engine, 265
pi, 13, 76, 231, 259, 282
PI constant, 76
picture, 275–276, 285, 295, 332
pie chart example, 283–284, 297, 419
pipe, 208
pipe character, 160, 414
pipe method, 358, 360
pixel, 225, 231, 276, 285, 291, 295,

297, 342
pixel art, 285
pizza, in weresquirrel example, 67–68
placeholder, 380, 383
plant, 130–131, 133–135, 412
Plant type, 133
PlantEater type, 133
platform game, 253, 273
Plauger, P.J., 138
player character, 285, 293
Player type, 257, 268
plus character, 13, 156, 173
plus function, 91
pointer, 218
polling, 235
polymorphism, 107–108, 115
pop method, 62, 72
Popper, Karl, 222
port, 208, 299, 354–355
pose, 285
position, 225
position (CSS), 229, 233, 245, 254, 262,

342, 422

POST method, 301, 302, 319, 370,
384, 426

postMessage method, 247
power example, 42, 48, 50, 200
pre (HTML tag), 223
precedence, 13, 14, 17, 228
predators (exercise), 136, 413
predicate function, 88, 96
predictability, 186, 399
premature optimization, 50, 402
preprocessing, 183
preventDefault method, 239, 245–246,

270, 319, 334, 417
previousSibling property, 218
primitiveMultiply (exercise), 150, 413
privacy, 212, 338
private (reserved word), 26
private property, 127, 151
process object, 350
profiling, 50, 91, 395, 398
program, 2, 23, 29
program size, 81–82, 172, 259, 310
programming

difficulty of, 2
history of, 4
joy of, 3

programming language
creating, 191
history, 3
JavaScript as, 139
machine language and, 389
Node.js and, 348
power of, 5
scopes in, 176

programming style
complexity and, 3
encapsulation, 259
indentation, 33
inheritance, 115
interfaces, 113
loops, 31
promises, 362
semicolons, 24
using underscores, 36, 109
whitespace, 32

progress bar, 244
project chapter, 119, 176, 191, 253,

331, 367

444 INDEX

promise, 308–310, 313, 324,
362–363, 421

Promise constructor, 308, 313, 421
prompt function, 28, 340
promptDirection function, 148–149
promptInteger function, 144
propagation, see event propagation
property

adding, 104
assignment, 64
brace notation, 63
console.log, 27
deletion, 64
DOM objects and, 222
global scope and, 77
interfaces and, 113
methods and, 100
model of, 64
naming, 127
Object.keys function, 112
overview, 61, 102, 140
own, 106
square brackets and, 61
testing for, 64

protected (reserved word), 26
protocol, 208, 209, 299–300, 337
prototype

avoidance, 107
creating objects from, 102
deriving, 114
diagram, 104
functions and, 102
interference, 105
Object.prototype, 102
overview, 102, 105
pollution, 106

prototype property, 103–104
proxy, 371
pseudo array, see array-like object
pseudorandom number, 76
pseudoselector, 244
public (reserved word), 26
public space (exercise), 364, 425
publishing, 352
punch card, 4
pure function, 54, 78, 88, 91, 186, 328,

412, 422
push method, 62, 72, 426
pushing data, 368

PUT method, 300–301, 357, 360, 370,
375, 385, 425

Pythagoras, 341, 411

Q
quadratic curve, 280
quadraticCurveTo method, 280, 419
query string, 301–302, 370, 376, 426
querySelector method, 229, 332, 382
querySelectorAll method, 229
question mark, 17, 156, 165, 301
quirks, 213
quotation mark, 14, 173
quoting

in JSON, 87
of object properties, 63

quoting style (exercise), 173, 414

R
rabbit example, 100–103, 105
radian, 282, 287
radio button, 316, 321
radius, 281, 341
radix, 11
raising exception, 145
random number, 76, 123, 133,

259, 340
randomElement function, 123
range, 155–157
range function, 5, 78, 409
ray tracer, 295
readability, 5, 36, 54, 144, 176, 308, 310
readable stream, 356, 358, 424
readAsDataURL method, 339
readAsText method, 324
readdir function, 354, 359
readFile function, 180, 353, 361, 425
readFileSync function, 354
reading code, 7, 119
readStreamAsJSON function, 374–375
readStreamAsString function, 424
real-time, 235
reasoning, 17
recipe analogy, 82
record, 63, 122
recovery, 386
rect (SVG tag), 276
rectangle, 254, 265, 277, 278, 296

INDEX 445

rectangle tool (exercise), 342, 422
recursion, 50, 196, 219, 408, 417,

425, 426
reduce method, 89–90, 92, 95, 108–109
reduceAncestors function, 93
ReferenceError type, 202
RegExp constructor, 153–154, 166
regexp golf (exercise), 172
registerChange function, 374–375,

378, 425
regular expressions

alternatives, 160
backtracking, 162
boundary, 160
character categories, 171
character sets, 154
creation, 153, 166
debugging, 166
escaping, 154, 155, 166, 414
flags, 157, 163, 166, 414
global option, 163, 167–168, 223
greedy operators, 165
grouping, 157, 163
internationalization, 170
lastIndex property, 167
matching, 161, 167
methods, 154, 158, 167
overview, 153, 154
repetition, 156
replace method and, 163

relatedTarget property, 243
relative path, 350, 357, 364, 425
relative positioning, 229, 230
relative URL, 303
relativePos function, 334, 422, 423
remainder operator, 14, 34, 286, 408,

417, 419
remote access, 357
remote procedure call, 310
removeChild method, 220
removeEventListener method, 236, 418
removeItem method, 325
rename function, 354
rendering, 277
repeating key, 239
repetition, 52, 156, 162, 166, 248,

387, 426
replace method, 163, 173, 414, 424

replaceChild method, 220
replaceSelection function, 320
reproduction, 130, 132, 133, 135, 413
repulsion, 391, 393
request, 300, 301, 303, 319, 354–355,

361, 368
request function, 355, 356, 363, 424
requestAnimationFrame function, 230,

246, 248, 271, 297, 417
require function, 180, 181, 183, 188,

350, 352
RequireJS, 185
reserved word, 26, 224
reset, 425
resize, 339
resolution, 350
resource, 209, 300, 301, 311, 337,

357, 374
response, 300, 301, 306, 354, 358, 360,

362, 424
responseText property, 303, 304
responseXML property, 304
responsiveness, 235, 347, 390
restore method, 288, 289
result property, 324
return keyword, 42, 47, 103, 408, 411
return value, 28, 42, 144, 352, 410
reuse, 54, 177, 351
reverse method, 78
reverse proxy, 371
reversing (exercise), 78, 409
rgb (CSS), 261, 343, 423
right-aligning, 112, 232
robustness, 369
root, 217
rotate method, 287, 289
rotation, 296, 419
rounding, 76, 143, 265–266, 281, 292
router, 365, 369, 372
Router type, 372
row, 232
rowHeights function, 108
RTextCell type, 114
rules (CSS), 227–228
run function, 198
runAnimation function, 271, 273
runGame function, 272–273, 418
runLayout function, 394

446 INDEX

runLevel function, 271, 273
running code, 7
run-time error, 139, 141, 142, 144,

150, 416

S
Safari, 213
sandbox, 59, 212, 215, 305, 338
save link, 337
save method, 288–289
saving, 332
scalar replacement of aggregates,

396, 399
scale method, 286, 288
scaling, 260, 285–286, 293, 420
scheduling, 348
scientific notation, 13, 173
scope, 43, 44, 77, 125, 176, 177,

181, 416
script (HTML tag), 211–212, 246, 380
scroll event, 244, 248
scrolling, 239, 244–245, 263, 270, 291
search method, 167
searching, 161, 162, 167, 219, 344, 404
section, 169, 170
Secure HTTP, see HTTPS
security, 212–213, 305, 311, 323,

338, 358
SecurityError type, 338, 423
select (HTML tag), 316–317, 322, 325,

332, 334, 425
selected attribute, 322
selection, 319, 334
selectionEnd property, 319
selectionStart property, 319
selector, 229
self variable, 125
self-closing tag, 210
semicolon, 24, 33, 226
send method, 303, 304
sequence, 156
sequence (exercise), 117, 412
serialization, 87
server, 208, 299–301, 306, 347,

354–357
session, 327, 338
sessionStorage object, 327
set, 155, 217

setAttribute method, 222, 224
setInterval function, 248, 285, 341
setItem method, 325, 326
setRequestHeader method, 304, 312
setter, 113
setTimeout function, 248, 378
shape, 275, 279, 281, 284, 296
shapes (exercise), 296, 419
shared property, 103, 104, 114
SHIFT key, 240
shift method, 72
shiftKey property, 240
short-circuit evaluation, 20, 51,

197, 411
SICP, 191
side effect, 24, 28, 42, 54, 220, 278
sign, 13, 173, 414
sign bit, 13
signal, 11
simplicity, 186, 200
simulation, 119, 123, 126, 128, 130,

391, 417
sine, 76, 231, 259, 268
single-quote character, 14, 173, 212
size attribute, 322
skill, 332
skill-sharing project, 367–369, 372,

379, 387
skipSpace function, 194, 202
slash character, 14, 36, 153, 154, 165,

303, 364, 424
slice method, 73, 74, 221, 324, 415
sloppy programming, 127, 249
smooth animation, 230
SMTP, 208
some method, 96, 373, 426
sorting, 217
source property, 167
special form, 191, 196
special return value, 144
specialForms object, 196
specificity, 228
speed, 297, 420
spell-check example, 186
spiral, 296, 419
splice method, 377
split method, 110, 351
spray paint tool, 340
spring, 391, 393

INDEX 447

sprite, 285, 292–293
square, 29, 42
square brackets, 61, 69, 155, 409
square example, 45
square root, 68, 75, 411
src attribute, 210, 211
stability, 135, 136, 177, 413
stack, see call stack
stack overflow, 47, 50, 56, 409
stack trace, 145, 149, 361
staged compilation, 390
standard, 6, 26, 46, 170, 207, 336
standard environment, 26
standard output, 349, 357
standards, 213
star, 296, 419
Star Trek, 280
starvation, 135, 413
stat function, 354, 359, 363
state, 24, 32–34, 289, 412, 418
statement, 23, 24, 29, 31, 33, 42, 179
static (reserved word), 26
static file, 369, 373
static typing, 139, 402
Stats type, 359
status code, 300, 303, 306–307,

350, 358
status property, 303
statusText property, 303
stdout property, 357
stopPropagation method, 238
stream, 208, 355, 356, 358, 360
StretchCell (exercise), 117, 412
strict mode, 140
string

immutable types, 65
indexing, 56, 73, 74, 157
methods, 74, 110, 158, 240
notation, 14
overview, 14, 60
properties, 62, 73
searching, 74

String function, 29, 107
stroke method, 279, 280
strokeRect method, 278, 420
strokeStyle property, 278, 332, 335, 337
strokeText method, 284
stroking, 278, 284, 296
strong (HTML tag), 223, 224, 226

structure, 176, 210, 215
structure sharing, 79
style, 226
style (HTML tag), 227–228
style attribute, 226–228, 260
style sheet, see CSS
submit, 315–316, 318, 319
submit event, 319, 339, 380, 385, 425
substitution, 54
subtraction, 14, 117
suggestion, 328
sum function, 5, 78
summing (exercise), 78, 409
summing example, 4, 81, 89, 199
survey, 283
Sussman, Gerald, 190
SVG, 275–278, 295
switch keyword, 35
synchronization, 371, 381, 382, 385
synchronous I/O, 183, 304, 348,

354, 420
syntax

arithmetic, 13
brace notation, 63
conditional execution, 29, 35
declaration notation, 45
error handling, 145
expressions, 23
functions, 42
loops, 31, 33
namespace function, 179
numbers, 12, 173
reserved words, 26
statements, 24
strict mode, 140
strings, 14
variables, 24

syntax highlighting example, 223–224
syntax tree, 192–195, 216–217
SyntaxError type, 194

T
tab character, 15, 33
TAB key, 318
tabbed interface (exercise), 251, 418
tabindex attribute, 241, 318
table, 67–69, 108, 232, 261
table (HTML tag), 232, 254, 261, 422

448 INDEX

table example, 108–111, 114, 232, 416
tableFor function, 68
tag, 209–210, 215, 228. See also names

of specific tags

tagName property, 232
tainting, 338
talk, 367–368, 374–376, 382
talksAbout function, 219
tampering, 311
tangent, 76
target property, 238, 243, 321, 421
task management example, 72
taste, 175, 188
TCP, 208, 299, 369
td (HTML tag), 232
template, 380, 382, 387, 426
template-repeat attribute, 387, 426
tentacle (analogy), 25, 64, 66
ternary operator, 17, 20
test method, 154
test suite, 141–142
testing framework, 142
text, 421
text field, 245, 250, 316–317, 319–320,

328, 339
text input, 28
text node, 217, 219, 221, 332, 418
text wrapping, 295
text-align (CSS), 232
textAlign property, 284, 419
textarea (HTML tag), 248, 316, 319,

320, 325, 327, 425
textBaseline property, 284, 419
TextCell type, 111, 114
textContent property, 223, 421
TEXT_NODE code, 217, 418
th (HTML tag), 232
then method, 309–310, 421
theory, 143
this, 62, 101, 103, 125–126, 131,

140, 179
thread, 247, 348, 349
throw keyword, 145, 148, 150, 361, 413
Tiger type, 136
tile, 292
time, 155, 158, 381
time field, 336
timeline, 211, 230, 235, 246, 348

timeout, 247, 369, 370, 378
times method, 257
timing, 394
title, 379
title (HTML tag), 210, 211
toDataURL method, 337–338, 342
toLowerCase method, 62, 232
tool, 153, 172, 332, 334, 340, 342
tools object, 334
top (CSS), 229–231, 233, 342
top-level scope, see global scope
toString method, 102, 104, 105,

107, 120
toUpperCase method, 62, 232, 356
tr (HTML tag), 232
trackDrag function, 334, 341, 422
trackKeys function, 270, 273
transform (CSS), 275
transformation, 286–289, 297, 419
translate method, 287, 288
Transmission Control Protocol,

see TCP
transparent, 277, 285, 343
transpilation, 200
trapezoid, 296, 419
traversal, 161
tree, 92, 102, 192, 217
treeGraph function, 392
trial and error, 269, 281
triangle (exercise), 37, 407
trigonometry, 76, 231
trim method, 74
true, 16
trust, 212
try keyword, 145–146, 307–308, 338,

361, 413, 421
Turkish, and censored keyboard, 250
turn, 119, 120
Twitter, 300
type, 12, 15, 115, 139
type attribute, 316, 319
type coercion, 18–19, 29
type observation, 390, 397, 402
type property, 192, 237
typeof operator, 15, 79, 410
typing, 240, 248, 250
typo, 139

INDEX 449

U
unary operator, 15
uncaught exception, 147, 308, 361
undefined, 18–19, 26, 42, 47, 63,

140, 144
underline, 226
underscore character, 25, 36, 109,

127, 166
Unicode, 16, 155, 170–171, 240, 351
unicycling, 367
uniformity, 192, 341
uniqueness, 228
unit (CSS), 231, 245
Universal Resource Locator, see URL
Unix, 359, 361
Unix time, 159, 371
unlink function, 354
unshift method, 72
UnterlinedCell type, 112
unwinding the stack, 145
upcasing server example, 356
upgrading, 177
upload, 323
URL, 209, 303, 311, 337, 358
URL encoding, 301, 426
URL field, 336
url module, 358, 376
urlToPath function, 358, 364
use strict, 140
user experience, 235, 306, 318, 342,

368, 381
user interface, 147
users’ group, 367
UTF-8, 353, 354

V
validation, 144, 150, 319, 375, 377
value, 12
value attribute, 316, 319, 322
var keyword, 24, 26, 43, 140
variable

assignment, 25, 43, 45
best practices, 200
debugging, 147
definition, 24, 202, 416
functions as, 42, 45
global, 43, 140, 180, 273, 350
for loop, 33
model of, 25, 66

naming, 25–27, 35, 43, 52, 76, 141
overview, 32
from parameter, 43, 49
persistence, 325
scope and, 202

variadic function, 75
vector (exercise), 117, 411
vector graphics, 284
Vector type, 117, 120, 141, 257, 420
verbosity, 332, 349, 361
version, 180, 210, 300
version control, 176
View type, 122, 127, 130
viewport, 242, 262, 264, 290–291, 294
virus, 212
vocabulary, 41, 82, 91, 94
void operator, 26
volatile data storage, 12

W
walk, 344
walking, 293
wall, 120, 124, 255
wall following, 129, 413
Wall type, 124
WallFollower type, 129
wave, 259, 267, 268
Web, see World Wide Web
web application, 6, 325, 331, 387
web browser, see browser
web programming, 213
web sockets, 369
web worker, 247
WebDAV, 364
webgl (canvas context), 277
website, 212–213, 301, 305, 364, 367
weekday example, 177, 181, 183, 187
weekend project, 365
Weizenbaum, Joseph, 2
weresquirrel example, 60

analysis, 70–72
correlation in, 66–68

computing, 68–69
objects, 63–65

as maps, 69–70
which property, 237
while loop, 5, 31, 33, 53, 168, 267
whitespace, 32, 35, 74, 155, 171, 219,

416, 418

450 INDEX

Why’s Poignant Guide to Ruby, 22
width (CSS), 342
window, 236, 237, 243, 246, 350
window variable, 77
Windows, 364
with statement, 141
withContext function, 146–147
word boundary, 160
word character, 155, 160, 170
work list, 423
workbench (exercise), 327, 421
world, 119, 120, 253
World type, 12–124, 126–127, 130
World Wide Web, 6, 87, 183, 207, 209,

212–213, 299
writable stream, 355–358
write method, 355, 356
writeFile function, 353, 356, 425
writeHead method, 354
writing code, 7, 119
WWW, see World Wide Web

X
XML, 218, 276, 302, 304, 305
XML namespace, 276
XMLHttpRequest, 302–304, 306, 312,

319, 425
xmlns attribute, 276

Y
yield (reserved word), 26
Yuan-Ma, 10, 346

Z
Zawinski, Jamie, 152
zero-based counting, 56, 61, 159
zeroPad function, 54
zigzag shape, 419
zooming, 295

INDEX 451

Updates
Visit http://nostarch.com/ejs2/ for updates, errata, and other information.

phone:
800.420.7240 or

415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

The book of css3,
2nd Edition
A Developer’s Guide to
the Future of Web Design
by peter gasston

november 2014, 304 pp., $34.95
isbn 978-1-59327-580-8

Python for Kids
A Playful Introduction to Programming
by jason r. briggs

december 2012, 344 pp., $34.95
isbn 978-1-59327-407-8
full color

The Principles of
Object-Oriented JavaScript
by nicholas c. zakas

february 2014, 120 pp., $24.95
isbn 978-1-59327-540-2

JavaScript for Kids
A Playful Introduction to Programming
by nick morgan

december 2014, 348 pp., $34.95
isbn 978-1-59327-408-5
full color

If Hemingway
Wrote JavaScript
by angus croll

october 2014, 192 pp., $19.95
isbn 978-1-59327-585-3

More no-nonsense books from No Starch Press

Rails Crash Course
A No-Nonsense Guide to
Rails Development
by anthony lewis

october 2014, 296 pp., $34.95
isbn 978-1-59327-572-3

JavaScript lies at the heart of almost every
modern web application, from social apps to
the newest browser-based games. Though
simple for beginners to pick up and play with,
JavaScript is a flexible, complex language that
you can use to build full-scale applications.

Eloquent JavaScript, 2nd Edition dives
deep into the JavaScript language to show you
how to write beautiful, effective code. Author
Marijn Haverbeke immerses you in example
code from the start, while exercises and full-
chapter projects give you hands-on experience
with writing your own programs. As you build
projects such as an artificial life simulation,
a simple programming language, and a paint
program, you’ll learn:

	 The essential elements of programming,
including syntax, control, and data

	How to organize and clarify your code with
object-oriented and functional programming
techniques

	How to script the browser and make basic
web applications

	How to use the DOM effectively to interact
with browsers

	How to harness Node.js to build servers and
utilities

This edition is thoroughly revised and modern-
ized to reflect the current state of JavaScript
and web browsers, with brand-new material,
such as a chapter on code performance in
JavaScript, and expanded coverage of recursion
and closures. All source code is available online
in an interactive sandbox, where you can edit
the code, run it, and see its output instantly.

Isn’t it time you became fluent in the language
of the Web?

About the Author
Marijn Haverbeke is an independent developer
and author, focused primarily on programming
languages and tools for programmers. He
spends most of his time working on open
source software, such as the CodeMirror
editor and the Tern type inference engine.

$39.95 ($41.95 CDN)	 Shelve In: Programming Languages/JavaScript

TH E F I N EST I N G E E K E NTE RTA I N M E NT™
www.nostarch.com

5 3 9 9 5

9 781593 275846

ISBN: 978-1-59327-584-6

6 89145 75846 7

SFI-00000

Master the Language
of the Web

A Modern Introduction
to Programming

Marijn Haverbeke

Eloquent JavaScript
H

averbeke

2nd Edition

Second Edition

	Brief Contents

	Contents in Detail

	Introduction
	On Programming

	Why Language Matters

	What Is JavaScript?

	Code, and What to Do with It

	Overview of This Book

	Typographic Conventions

	Part I: Language

	Chapter 1: Values, Types, and Operators

	Values

	Numbers

	Arithmetic

	Special Numbers

	Strings

	Unary Operators

	Boolean Values

	Comparisons

	Logical Operators

	Undefined Values

	Automatic Type Conversion

	Short-Circuiting of Logical Operators

	Summary

	Chapter 2: Program Structure

	Expressions and Statements

	Variables

	Keywords and Reserved Words

	The Environment

	Functions

	The console.log Function

	Return Values

	Prompt and Confirm

	Control Flow

	Conditional Execution

	while and do Loops

	Indenting Code

	for Loops

	Breaking Out of a Loop

	Updating Variables Succinctly

	Dispatching on a Value with switch

	Capitalization

	Comments

	Summary

	Exercises

	Looping a Triangle

	FizzBuzz

	Chess Board

	Chapter 3: Functions

	Defining a Function

	Parameters and Scopes

	Nested Scopes

	Functions as Values

	Declaration Notation

	The Call Stack

	Optional Arguments

	Closure

	Recursion

	Growing Functions

	Functions and Side Effects

	Summary

	Exercises

	Minimum

	Recursion

	Bean Counting

	Chapter 4: Data Structures: Objects and Arrays

	The Weresquirrel

	Data Sets

	Properties

	Methods

	Objects

	Mutability

	The Lycanthrope's Log

	Computing Correlation

	Objects as Maps

	The Final Analysis

	Further Arrayology

	Strings and Their Properties

	The arguments Object

	The Math Object

	The Global Object

	Summary

	Exercises
	The Sum of a Range

	Reversing an Array

	A List

	Deep Comparison

	Chapter 5: Higher-Order Functions

	Abstraction

	Abstracting Array Traversal

	Higher-Order Functions

	Passing Along Arguments

	JSON

	Filtering an Array

	Transforming with map

	Summarizing with reduce

	Composability

	The Cost

	Great-great-great-great-. . .

	Binding

	Summary

	Exercises

	Flattening

	Mother-Child Age Difference

	Historical Life Expectancy

	Every and Then Some

	Chapter 6: The Secret Life of Objects

	History

	Methods

	Prototypes

	Constructors

	Overriding Derived Properties

	Prototype Interference

	Prototype-less Objects

	Polymorphism

	Laying Out a Table

	Getters and Setters

	Inheritance

	The instanceof Operator

	Summary

	Exercises

	A Vector Type

	Another Cell

	Sequence Interface

	Chapter 7: Electronic Life

	Definition

	Representing Space

	A Critter's Programming Interface

	The World Object

	this and Its Scope

	Animating Life

	It Moves

	More Life-forms

	A More Lifelike Simulation

	Action Handlers

	Populating the New World

	Bringing the World to Life

	Exercises

	Artificial Stupidity

	Predators

	Chapter 8: Bugs and Error Handling

	Programmer Mistakes

	Strict Mode

	Testing

	Debugging

	Error Propagation

	Exceptions

	Cleaning Up After Exceptions

	Selective Catching

	Assertions

	Summary

	Exercises

	Retry

	The Locked Box

	Chapter 9: Regular Expressions

	Creating a Regular Expression

	Testing for Matches

	Matching a Set of Characters

	Repeating Parts of a Pattern

	Grouping Subexpressions

	Matches and Groups

	The Date Type

	Word and String Boundaries

	Choice Patterns

	The Mechanics of Matching

	Backtracking

	The replace Method

	Greed

	Dynamically Creating RegExp Objects

	The search Method

	The lastIndex Property

	Looping over Matches

	Parsing an INI File

	International Characters

	Summary

	Exercises

	Regexp Golf

	Quoting Style

	Numbers Again

	Chapter 10: Modules

	Why Modules Help

	Namespacing

	Reuse

	Decoupling

	Using Functions as NameSpaces

	Objects as Interfaces

	Detaching from the Global Scope

	Evaluating Data as Code

	The require Function

	Slow-Loading Modules

	Interface Design

	Predictability

	Composability

	Layered Interfaces

	Summary

	Exercises

	Month Names

	A Return to Electronic Life

	Circular Dependencies

	Chapter 11: Project: A Programming Language

	Parsing

	The Evaluator

	Special Forms

	The Environment

	Functions

	Compilation

	Cheating

	Exercises
	Arrays

	Closure

	Comments

	Fixing Scope

	Part II: Browser

	Chapter 12: JavaScript and the Browser

	Networks and the Internet

	The Web

	HTML

	HTML and JavaScript

	In the Sandbox

	Compatibility and the Browser Wars

	Chapter 13: The Document Object Model

	Document Structure

	Trees

	The Standard

	Moving Through the Tree

	Finding Elements

	Changing the Document

	Creating Nodes

	Attributes

	Layout

	Styling

	Cascading Styles

	Query Selectors

	Positioning and Animating

	Summary

	Exercises

	Build a Table

	Elements by Tag Name

	The Cat's Hat

	Chapter 14: Handling Events

	Event Handlers

	Events and DOM Nodes

	Event Objects

	Propagation

	Default Actions

	Key Events

	Mouse Clicks

	Mouse Motion

	Scroll Events

	Focus Events

	Load Event

	Script Execution Timeline

	Setting Timers

	Debouncing

	Summary

	Exercises

	Censored Keyboard

	Mouse Trail

	Tabs

	Chapter 15: Project: A Platform Game

	The Game

	The Technology

	Levels

	Reading a Level

	Actors

	Encapsulation as a Burden

	Drawing

	Motion and Collision

	Actors and Actions

	Tracking Keys

	Running the Game

	Exercises

	Game Over

	Pausing the Game

	Chapter 16: Drawing on Canvas

	SVG

	The Canvas Element

	Filling and Stroking

	Curves

	Drawing a Pie Chart

	Text

	Images

	Transformation

	Storing and Clearing Transformations

	Back to the Game

	Choosing a Graphics Interface

	Summary

	Exercises

	Shapes

	The Pie Chart

	A Bouncing Ball

	Precomputed Mirroring

	Chapter 17: HTTP

	The Protocol

	Browsers and HTTP

	XMLHttpRequest

	Sending a Request

	Asynchronous Requests

	Fetching XML Data

	HTTP Sandboxing

	Abstracting Requests

	Promises

	Appreciating HTTP

	Security and HTTPS

	Summary

	Exercises

	Content Negotiation

	Waiting for Multiple Promises

	Chapter 18: Forms and Form Fields

	Fields

	Focus

	Disabled Fields

	The Form as a Whole

	Text Fields

	Checkboxes and Radio Buttons

	Select Fields

	File Fields

	Storing Data Client-Side

	Summary

	Exercises

	A JavaScript Workbench

	Autocompletion

	Conway's Game of Life

	Chapter 19: Project: A Paint Program

	Implementation
	Building the DOM

	The Foundation

	Tool Selection

	Color and Brush Size

	Saving

	Loading Image Files

	Finishing Up

	Exercises

	Rectangles

	Color Picker

	Flood Fill

	Part III: Beyond

	Chapter 20: Node.js

	Background

	Asynchronicity

	The node Command

	Modules

	Installing with NPM

	The Filesystem Module

	The HTTP Module

	Streams

	A Simple File Server

	Error Handling

	Summary

	Exercises

	Content Negotiation, Again

	Fixing a Leak

	Creating Directories

	A Public Space on the Web

	Chapter 21: Project: Skill-Sharing Website

	Design

	Long Polling

	HTTP Interface

	The Server

	Routing

	Serving Files

	Talks as Resources

	Long-Polling Support

	The Client

	HTML

	Starting up

	Displaying Talks

	Updating the Server

	Noticing Changes

	Exercises

	Disk Persistence

	Comment Field Resets

	Better Templates

	Unscriptables

	Chapter 22: JavaScript and Performance

	Staged Compilation

	Graph Layout

	Defining a Graph

	A First Force-Directed Layout Function

	Profiling

	Function Inlining

	Going Back to Old-school Loops

	Avoiding Work

	Creating Less Garbage

	Garbage Collection

	Writing to Objects

	Dynamic Types

	Summary

	Exercises

	Pathfinding

	Timing

	Optimizing

	Exercise Hints

	Program Structure

	Looping a Triangle

	FizzBuzz

	Chess Board

	Functions

	Minimum

	Recursion

	Bean Counting

	Data Structures: Objects and Arrays

	The Sum of a Range

	Reversing an Array

	A List

	Deep Comparison

	Higher-Order Functions

	Mother-Child Age Difference

	Historical Life Expectancy

	Every and Then Some

	The Secret Life of Objects

	A Vector Type

	Another Cell

	Sequence Interface

	Project: Electronic Life

	Artificial Stupidity

	Predators

	Bugs and Error Handling

	Retry

	The Locked Box

	Regular Expressions

	Quoting Style

	Numbers Again

	Module

	Month Names

	A Return to Electronic Life

	Circular Dependencies

	Project: A Programming Language

	Arrarys

	Closure

	Comments

	Fixing Scope

	The Document Object Model

	Build a Table

	Elements by Tag Name

	Handling Events

	Censored Keyboard

	Mouse Trail

	Tabs

	Project: A Platform Game

	Game Over

	Pausing the Game

	Drawing on Canvas

	Shapes

	The Pie Chart

	A Bouncing Ball

	Precomputed Mirroring

	HTTP

	Content Negotiation

	Waiting for Multiple Promises

	Forms and Form Fields

	A JavaScript Workbench

	Autocompletion

	Conway's Game of Life

	Project: A Paint Program

	Rectangles

	Color Picker

	Flood Fill

	Node.js

	Content Negotiation, Again

	Fixing a Leak

	Creating Directories

	A Public Space on the Web

	Project: Skill-Sharing Website

	Disk Persistence

	Comment Field Resets

	Better Templates

	The Unscriptables

	JavaScript and Performance

	Pathfinding

	Optimizing

	Index
	Updates

	About the Author

