

Software Patterns,
Knowledge Maps, and

Domain Analysis

Mohamed E. Fayad • Huascar A. Sanchez
Srikanth G.K. Hegde • Anshu Basia • Ashka Vakil

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20141006

International Standard Book Number-13: 978-1-4665-7144-0 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Dedication

To the land of the Delta—Egypt, and the land of Dreams—The
United States of America, and the love of science and humanity
that they share . . . Pouring out a flood of knowledge for centuries

and centuries between the Nile and the Mississippi . . . Between the
millstones of my heart, Egypt and the United States of America . . .

Mohamed E. Fayad

To my wife, Claudia, and my two beautiful daughters, Isabella and Camilla.

Huascar A. Sanchez

To my wife, Kumuda.

Srikanth G. K. Hegde

To my family, for their encouragement and support.

Ashka Vakil

v

Contents
Preface ... xvii
Acknowledgments .. xxi
Authors ... xxiii

Section i introduction

Chapter 1 An Overview of Knowledge Maps ..5

1.1 Introduction: Key Concepts—Software Stable Models,
Knowledge Maps, Pattern Language, Goals, Capabilities
(Enduring Business Themes + Business Objects)5

1.2 The Motivation ..6
1.3 The Problem ..7
1.4 The Objectives ...7
1.5 Overview of Software Stability Concepts ..8
1.6 Overview of Knowledge Maps ..8
1.7 Pattern Languages versus Knowledge Maps: A Brief Comparison9
1.8 The Solution ...11
1.9 Knowledge Maps Methodology or Concurrent Software

Development Model ...11
1.10 Why Knowledge Maps? ...14

1.10.1 Research Methodology Undertaken14
1.10.2 Research Verification and Validation15
1.10.3 The Stratification of This Book ..15

Summary ...16
Open Research Issues ..16
Review Questions ..19
Exercises ..20
Projects ..20

Chapter 2 Abstraction: Knowledge Maps, Stability, and Patterns29

2.1 Introduction ...29
2.2 Levels of Abstraction in Knowledge Maps ..30
2.3 Mapping Elements in Knowledge Maps to Software Stability

Concepts and Patterns ..31
2.4 The Software Stability Model ..32

2.4.1 Goals ...33
2.4.2 Capabilities ...34
2.4.3 Knowledge Maps: Formation and Stable Architectural

Patterns ...35

vi Contents

2.4.4 Development Scenarios ...36
2.4.5 Deployment and Verification and Validation38

Summary ...39
Open Research Issues ..39
Review Questions ..40
Exercises ..41
Projects ..41

Section ii Goals of the Knowledge Maps

Chapter 3 The Goals: Significance and Identification ..49

3.1 Introduction ...49
3.2 Significance of Goals ...50

3.2.1 An Example: A Simple E-Commerce Application52
3.3 Dealing with Goals: Extraction and Assessment53
3.4 Extracting the Goals of a Discipline: The Process55

3.4.1 Dealing with Subgoals ...57
3.5 Goals of Knowledge Maps ..58

3.5.1 Goal 1: Learning..58
3.5.2 Goal 2: Discovery ..60
3.5.3 Goal 3: Knowledge ..60

3.6 Subgoals ...62
3.6.1 Use an Analogy: Marriage or Friendship62

Summary ...63
Open Research Issues ..63
Review Questions ... 64
Exercises ..65
Projects ..67

Chapter 4 Discovery Stable Analysis Pattern ..73

4.1 Introduction ...73
4.2 Discovery Stable Analysis Pattern ...74

4.2.1 Pattern Name: Discovery Stable Analysis Pattern74
4.2.2 Known As ..74
4.2.3 Context ...75
4.2.4 Problem ..75

4.2.4.1 Functional Requirements ...76
4.2.4.2 Nonfunctional Requirements78

4.2.5 Challenges and Constraints ...78
4.2.5.1 Challenges ...79
4.2.5.2 Constraints...79

4.2.6 Solution ..80
4.2.6.1 CRC Cards...83

4.2.7 Consequences ..86

viiContents

4.2.8 Applicability ..86
4.2.8.1 Case Study 1: Discovery of a New Vitamin K86

4.2.9 Related Patterns and Measurability ...90
4.2.9.1 Related Pattern ..90
4.2.9.2 Measurability ...91

4.2.10 Modeling Issues, Criteria, and Constraints92
4.2.10.1 Modeling Heuristics ..92

4.2.11 Design and Implementation Issues ..92
4.2.11.1 Delegation versus Inheritance93
4.2.11.2 Model Implemented with Delegation93

4.2.12 Testability ..94
4.2.13 Formalization Using Object Constraint

Language, Z++ or Object Z, and/or Extended
Backus– Naur Form ...95

4.2.14 Business Issues ..97
4.2.14.1 Business Rules ...97
4.2.14.2 Business Integration ..98
4.2.14.3 Business Enduring Themes98

4.2.15 Known Usages ...98
4.2.16 Tips and Heuristics ..99

Summary ...99
Open Research Issues ..100
Review Questions ..101
Exercises ..103
Projects ..105

Chapter 5 The Knowledge Stable Analysis Pattern ...109

5.1 Introduction ...109
5.2 Pattern Documentation .. 110

5.2.1 Pattern Name: Knowledge Stable Analysis Pattern 110
5.2.2 Known As .. 110
5.2.3 Context ... 111
5.2.4 Problem .. 111

5.2.4.1 Functional Requirements 111
5.2.4.2 Nonfunctional Requirements113

5.2.5 Challenges and Constraints ...113
5.2.6 Solution: Pattern Structure and Participants 114

5.2.6.1 Structure .. 114
5.2.6.2 Participants ..115
5.2.6.3 CRC Cards...115

5.2.7 Applicability with Illustrated Examples120
5.2.7.1 Scenario 1—Autonomic Computing Context120
5.2.7.2 Scenario 2—CRM System123

5.2.8 Related Patterns and Measurability127
5.2.8.1 Measurability ...127

5.2.9 Known Usages ...128

viii Contents

Summary ...128
Open Research Issues ..129
Review Questions ..129
Exercise ...130
Projects ..130

Section iii Knowledge Map capabilities

Chapter 6 Capabilities: The Heart of Business ..135

6.1 Introduction ...135
6.1.1 The Heart of the Business ...135
6.1.2 Work Flow Metaphor—Workhorses137
6.1.3 Dealing with Capabilities: Identification and Assessment137

6.1.3.1 The Impact of BO on Creating Multiple
Applications: Generality ..139

6.1.3.2 BO = Stable Design Patterns139
6.1.3.3 Essential Properties of BO139

6.1.4 A Goal with No Capability ..139
6.1.5 A Capability with No Goal ..140
6.1.6 Identification Process of Capabilities: An Example 141

6.2 Capabilities of Knowledge Maps ...144
6.2.1 Capability 1 ...144
6.2.2 Capability 2 ...145
6.2.3 Capability 3 ...146
6.2.4 Capability 4 ...147

Summary ...148
Open Research Issues ..149
Review Questions ..149
Exercises ..150
Projects ..152

Chapter 7 AnyMap Stable Design Pattern ...157

7.1 Introduction ...157
7.2 Pattern Documentation ..160

7.2.1 Pattern Name: AnyMap Stable Design Pattern......................160
7.2.2 Known As ..160
7.2.3 Context ... 161
7.2.4 Problem ..162

7.2.4.1 Functional Requirements ...162
7.2.4.2 Nonfunctional Requirements168

7.2.5 Challenges and Constraints ...169
7.2.5.1 Challenges ...169
7.2.5.2 Constraints...170

ixContents

7.2.6 Solution Structure and Participants 171
7.2.6.1 Structures ... 171
7.2.6.2 Participants .. 171
7.2.6.3 CRC Cards ...172

7.2.7 Consequences ..178
7.2.8 Applicability with Illustrated Examples178

7.2.8.1 Case Study 1: Navigation—Google Road Map
for Planning Driving Routes178

7.2.8.2 Case Study 2: Mathematical Mapping182
7.2.9 Related Patterns and Measurability188

7.2.9.1 Traditional Model versus SSM188
7.2.9.2 Measurability ...190

7.2.10 Modeling Issues, Criteria, and Constraints191
7.2.10.1 Abstraction ..191

7.2.11 Design and Implementation Issues ..193
7.2.12 Formalization ..194
7.2.13 Testability ..202
7.2.14 Business Issues ..203
7.2.15 Known Usage ..205
7.2.16 Tips and Heuristics ... 206

Summary ...207
Open Research Issues ..207
Review Questions ..207
Exercises ... 209

Research and Development ...210
Indexing and Dictionary Search ..210
Site Map Development .. 211

Projects .. 211

Chapter 8 AnyContext Stable Design Pattern ..215

8.1 Introduction ...215
8.2 Pattern Documentation .. 216

8.2.1 Pattern Name: AnyContext Stable Design Pattern 216
8.2.2 Known As .. 216
8.2.3 Context ... 217
8.2.4 Problem .. 217
8.2.5 Challenges and Constraints ... 218

8.2.5.1 Challenges ... 218
8.2.5.2 Constraints ... 218

8.2.6 Solution: Pattern Structure and Participants 218
8.2.6.1 CRC Cards ...220
8.2.6.2 Consequences ..221
8.2.6.3 Applicability with Illustrated Examples221

Summary ...226
Open Research Issues ..226

x Contents

Review Questions ..226
Exercises ..227
Projects ..227

Section iV Knowledge Maps, Development, and Deployment

Chapter 9 Knowledge Maps: System of Patterns ...231

9.1 Introduction ..231
9.2 Representation of Knowledge Maps: Structure, Quality

Factors, and Properties ...232
9.2.1 Structure of the Knowledge Maps....................................233

9.2.1.1 The Notation Used in Knowledge
Map Structures .. 233

9.2.1.2 Knowledge Map Template234
9.2.1.3 Structure of Knowledge Maps

and Its Relationship with UML236
9.2.1.4 Quality Factors in Knowledge Maps239
9.2.1.5 Properties of Knowledge Maps 240

9.3 Knowledge Maps versus Traditional Pattern Languages247
9.4 Samples of SArchPs ...248

9.4.1 Architecture 1 ..248
9.4.2 Architecture 2 ..250

Summary..251
Open Research Issues ..251
Review Questions ...253
Exercises ..255
Projects ..255

Chapter 10 Development Scenarios: Setting the Stage ..263

10.1 Introduction ..263
10.2 Implementation Issues of the Knowledge Maps 264

10.2.1 Type versus Class within TOP .. 264
10.2.2 Design Type Specification Template266

10.2.2.1 Design Type Specification Template 1: EBT267
10.2.2.2 Design Type Specification Template 2: BO267

10.2.3 The Uses of Contracts in the Specification
of Design Types ..267

10.2.4 The Hook Specification Template268
10.2.5 Specification of the User Model or Storyteller268

10.2.5.1 Packages Overview ...269
10.2.6 Components ...271

10.3 Aspect-Oriented Modeling ...272
10.3.1 Aspects as Core Design Features in a System273
10.3.2 Difference between the Aspect-Oriented Design

Approach and SSM ..274

xiContents

10.3.3 Identification of Whether Aspects Will Be All
the EBTs and All the BOs in a System276

10.3.4 Understanding Whether Aspects in AOP
Will Represent either EBTs or BOs of SSM
in a System ..277

10.3.5 Comparison between Extraction of Aspects in AOP,
EBTs, and BOs in SSM ..277

10.3.6 Modeling EBTs and BOs as Aspects278
Summary..278
Open Research Issues ..279
Review Questions ...279
Exercises ..279
Projects ..280

Chapter 11 Deployment, Verification and Validation, and Quality Factors281

11.1 Introduction ..281
11.2 Deployment of Knowledge Maps ...282

11.2.1 The Conceptual Point of View of Deployment282
11.2.2 The Practical Point of View of Deployment283

11.3 The Quality Factors of Deployment ...284
11.4 Deployment—V&V Process ...285
Summary..287
Open Research Issues ..287
Review Questions ...287
Exercises ..288
Projects ..288

Section V case Studies of the Knowledge Maps

Chapter 12 Knowledge Map Engine: Initial Work ...291

12.1 Introduction ..291
12.2 Interfaces Supported by the Knowledge Map Engine291
12.3 Implementations of the Interfaces ..292
12.4 Structures of Types ...294
12.5 Construction Heuristics of Engines ..297
12.6 The Hooking Facility of the Knowledge Map Engine298

12.6.1 An Example: Creating Associations between
BOs and IOs ...300

Summary..301
Open Research Issues ..302
Review Questions ...302
Exercises ..302
Projects ..302

xii Contents

Chapter 13 CRC Cards Knowledge Map ...303

13.1 Introduction ..303
13.2 What Makes Effective CRC Cards .. 304
13.3 CRC Cards Knowledge Classification ..305
13.4 Toward a Knowledge Map for CRC Cards307

13.4.1 Goals or Classification ...307
13.4.2 Capabilities or Properties ...307
13.4.3 Development Scenarios ..308
13.4.4 Deployment ..308
13.4.5 Family of Patterns—Bird’s-Eye View308

13.5 Knowledge Map for CRC Cards ..309
13.5.1 The Main Step in the Classification309
13.5.2 Pattern 1—Brainstorming Stable Analysis Pattern 310

13.5.2.1 Context ...311
13.5.2.2 Problem ..311
13.5.2.3 Solution ..311
13.5.2.4 Example ...313

13.5.3 Pattern 2—Engagement Stable Analysis Pattern313
13.5.3.1 Context ...313
13.5.3.2 Problem ..314
13.5.3.3 Solution ..314
13.5.3.4 Example: Conceptual Map Creation314

13.5.4 Pattern 3—CRC Card Modeling Stable
Analysis Pattern ... 315
13.5.4.1 Context ...315
13.5.4.2 Problem .. 316
13.5.4.3 Forces ... 317
13.5.4.4 Solution ... 317

13.5.5 The Main Step in the Capability 319
13.5.6 Pattern 4—Effective CRC Card Format Pattern 319

13.5.6.1 Context ...319
13.5.6.2 Problem ..319
13.5.6.3 Forces ...320
13.5.6.4 Solution ... 321
13.5.6.5 Example .. 321

Summary ...325
Open Research Issues ..325
Review Questions ..325
Exercises ..327
Projects ..335

Chapter 14 Future Work and Conclusions ..337

14.1 Future Work ...338
Summary..339
Review Questions ...340

xiiiContents

Exercises ..340
Projects ..340

Appendix A: Pattern Documentation Templates ...341
A.1 Pattern Documentation—Detailed Template (Preferred)341
A.2 Pattern Documentation—Short Template350

Appendix B: Other Templates ...351
B.1 Fayad’s Class Responsibility and Collaboration Card Layout 351
B.2 Fayad’s Use Case Template ...351
B.3 Fayad’s Stable Analysis/Design/Architectural

Patterns (Layout) ... 352
B.3.1 Stable Analysis Pattern or Stable Design Pattern

Layout (1 EBT and 2–14 BOs) ..352
B.3.2 Stable Architectural Patterns Layout (2–5 EBTs

Where 3 Is the Most Common) ..353
B.4 Fayad’s Stable Analysis/Design Pattern Applications Layout353

B.4.1 Stable Analysis Pattern or Stable Design Pattern
Applications Layout ...353

B.4.2 Stable Architectural Pattern Applications Layout354
B.5 Fayad’s Knowledge Map Template..354

Appendix C: Stable Patterns Catalog ..357
C.1 Stable Analysis Patterns ...357
C.2 Stable Design Patterns ...357

Appendix D: Sample Requirements ..359
D.1 Ocean Resources Management System ..359

D.1.1 Introduction ..359
D.1.2 Description of Domain ...359
D.1.3 Block Diagram ...360
D.1.4 Description of the Program That Is Wanted360
D.1.5 Detailed Requirements ...361

D.1.5.1 Functional Requirements361
D.1.5.2 Nonfunctional Requirements363

D.1.6 Use Case and User Context ..363
D.1.6.1 Use Case 1 ...363
D.1.6.2 Use Case 2 ...363
D.1.6.3 Use Case 3 ...364
D.1.6.4 Use Case 4 ...364
D.1.6.5 Use Case 5 ...364
D.1.6.6 Use Case 6 ...364
D.1.6.7 Use Case 7 ...364
D.1.6.8 Use Case 8 ...364
D.1.6.9 Use Case 9 ...364
D.1.6.10 Use Case 10 ...365

Sources ..365

xiv Contents

D.2 Dengue Fever Prevention and Outbreak
Management System ... 365
D.2.1 Introduction .. 365
D.2.2 Description of Domain ... 365
D.2.3 Description of the Program That Is Required 366
D.2.4 Detailed Requirements ... 366
D.2.5 Use Cases and User Context ... 367
Sources ..369

D.3 Organizing Cricket World Cup ...370
D.3.1 Domain Description ...370
D.3.2 Description of the Program That Is Wanted370
D.3.3 Detailed Requirements ...371
D.3.4 Use Cases and User Context ...373

D.3.4.1 Use Case 1 ..373
D.3.4.2 Use Case 2 ..373
D.3.4.3 Use Case 3 ..373
D.3.4.4 Use Case 4 ..373
D.3.4.5 Use Case 5 ..374
D.3.4.6 Use Case 6 ..374
D.3.4.7 Use Case 7 ..374
D.3.4.8 Use Case 8 ..374
D.3.4.9 Use Case 9 ..375
D.3.4.10 Use Case 10 ...375
D.3.4.11 Use Case 11 ...375
D.3.4.12 Use Case 12 ..375

Sources ..376
D.4 Pollution Management ..376

D.4.1 Description of Domain ...376
D.4.2 Block Diagram ...377
D.4.3 Description of the Program That Is Wanted377
D.4.4 Detailed Requirements ...377

D.4.4.1 Functional Requirements377
D.4.4.2 Nonfunctional Requirements378

D.4.5 Use Cases and User Context ...378
D.4.5.1 Use Case 1 ..378
D.4.5.2 Use Case 2 ..378
D.4.5.3 Use Case 3 ..379
D.4.5.4 Use Case 4 ..379
D.4.5.5 Use Case 5 ..379
D.4.5.6 Use Case 6 ..379
D.4.5.7 Use Case 7 ..379
D.4.5.8 Use Case 8 ..380
D.4.5.9 Use Case 9 ..380
D.4.5.10 Use Case 10 ...380
D.4.5.11 Use Case 11 ...380
D.4.5.12 Use Case 12 ..380
D.4.5.13 Use Case 13...380

xvContents

D.4.5.14 Use Case 14 ..381
D.4.5.15 Use Case 15 ..381

D.4.6 Interfaces ...381
Sources ..381

D.5 Natural Disaster Tracking System ..381
D.5.1 Goals/Purposes ..381
D.5.2 Motivations ..381
D.5.3 Brief Description ...382
D.5.4 Challenges ...382
D.5.5 Accomplishments...382
D.5.6 Project Results ...383
D.5.7 Description of the Domain ..383
D.5.8 Block Diagram ...383
D.5.9 Use Cases and User Context ..384

D.5.9.1 Use Case: Gather Satellite Information384
D.5.9.2 Use Case: Communicate with Media384
D.5.9.3 Use Case: Manage and Model Data384
D.5.9.4 Use Case: Backup and Transfer Information384
D.5.9.5 Use Case: Monitor in Real Time385
D.5.9.6 Use Case: Gather Remote Aerial Sensor Data ... 385
D.5.9.7 Use Case: Correlate Information385
D.5.9.8 Use Case: Allocate and Manage Resources.....385
D.5.9.9 Use Case: Track Natural Disasters386

D.5.10 Detailed Requirements ..386
D.5.10.1 Nonfunctional Requirements386
D.5.10.2 Functional Requirements386

D.5.11 Interface ...387
Sources ..387

D.6 Global Warming Control System ..387
D.6.1 Description of the Domain ..389
D.6.2 Description of the Program That Is Required389
D.6.3 Detailed Requirements ..390

D.6.3.1 Functional Requirements390
D.6.3.2 Nonfunctional Requirements391

D.6.4 Use Cases ...391
D.6.4.1 Use Case 1 ...391
D.6.4.2 Use Case 2 ...392
D.6.4.3 Use Case 3 ...392
D.6.4.4 Use Case 4 ...392
D.6.4.5 Use Case 5 ...392
D.6.4.6 Use Case 6 ...392

D.6.5 Interfaces ...393
Sources ..393

D.7 Circus ...393
D.7.1 Description of the Domain ..393
D.7.2 Description of the Program That Is Wanted394

D.7.2.1 Detailed Requirements395

xvi Contents

D.7.3 Use Cases and User Context ..395
D.7.3.1 Use Case 1 ...396
D.7.3.2 Use Case 2 ...396
D.7.3.3 Use Case 2.1 ..396
D.7.3.4 Use Case 3 ...396
D.7.3.5 Use Case 3.1 ..396
D.7.3.6 Use Case 4 ...397
D.7.3.7 Use Case 4.1 ..397
D.7.3.8 Use Case 4.2 ..397
D.7.3.9 Use Case 5 ...397
D.7.3.10 Use Case 6 ...397
D.7.3.11 Use Case 7 ...398

Sources ..398
D.8 Jurassic Park ..398

D.8.1 Goals/Purposes ..398
D.8.2 Motivation ..398
D.8.3 Description of Domain ..398
D.8.4 Jurassic Park Block Diagram ...399

D.8.4.1 Description of the Program That Is Wanted399
D.8.4.2 Detailed Requirements 400

D.8.5 Use Cases .. 402
D.8.5.1 Use Case 1: Attack by Velociraptor,

While Releasing.. 402
D.8.5.2 Use Case 2: Tour at the Park......................... 402
D.8.5.3 Use Case 3: Attempt to Steal Dinosaur

Embryo ... 402
D.8.5.4 Use Case 4: Attack Due to Park’s Shut

Down Security System 402
D.8.5.5 Use Case 5: Visiting Paleontologist

and Children Hike to Safety403
D.8.5.6 Use Case 6: Attempt to Restart Computer

and Power ..403
D.8.5.7 Use Case 7: Children and Visiting

Paleontologist Reach the Shelter403
D.8.5.8 Use Case 8: Children Are Attacked

by Raptors ..403
D.8.5.9 Use Case 9: Raptors Attack the Control

Room ...403
D.8.5.10 Use Case 10: Escape from the Island............ 404

Sources ... 404

References ...405

Index .. 417

xvii

Preface
This book delineates a new creation process and provides an understanding of software
 pattern languages and true domain analysis based on the fundamental concepts of soft-
ware stability. It also introduces a well-defined paradigm for creating pattern languages,
 software patterns, and better software development methodology that leads to highly
reusable artifacts and high-quality, cost-effective systems. Each chapter of the book
concludes with an open research issue, review questions, exercises, and projects.

The main goal of this book is to define knowledge maps as the groundwork for an
insightful classification of the software patterns governing or administering a particular
discipline. Knowledge maps are the enduring mirrors of experience and best practices of
what a discipline is, why it is so necessary, and how developers can exploit it.

This book addresses various issues related to stable software patterns, knowledge maps,
and domain analysis and eventually analyzes different paradigms and factors that result in
the creation of stable software systems that are reusable and extremely cost-effective to pro-
duce. It is written for use as an advanced textbook for software course developers, students
of software development, researchers, and academicians.

WHY THIS BOOK?

Software analysis and design patterns are known to play a vital role in enhancing the qual-
ity and merit of a software product. In addition, they are also known to lessen the final cost
of software products as well as reduce their life cycle. Despite the immense usefulness
of these patterns, we may still need to sort out a series of critical problems that usually
occur in today’s domain of contemporary analysis and design patterns, such as instability,
absence of right abstraction levels, and improper/insufficient documentation of procedures
and processes. All these factors, in combination, might significantly bring down factors like
reusability, repeatability, stability, robustness, and overall effectiveness of finished software
products.

Hence, software developers, pattern makers, and programmers may need to focus their
professional attention on using different patterns in combination, to solve myriad problems
that might pose numerous challenges, while developing a product, and to provide practi-
cal solutions to those problems to bring effective resolutions, which eventually lead to the
development of a robust and stable product with sustained life cycle and durability.

While conducting detailed research on these issues, we analyzed how numerous draw-
backs of current software approaches that deal with software patterns, especially in soft-
ware pattern compositions, traceability, generality, and so on, hindered the quality of built
systems in one way or another (e.g., design trade-offs, loss of generality). In order to
overcome these drawbacks, we have provided a standard way for conceiving, building,
and deploying systems by using a topology of software patterns. This topology is known
as knowledge maps. The knowledge map will serve as the road map or supporting tech-
nique to guide software practitioners as they delve into the rationale, business rules,
and context of application of a set of problem domains and come up with a high-quality
software system.

xviii Preface

The essence of knowledge maps is twofold: a clear methodology and a precise visual
representation. For the methodology approach, we have provided a set of guidelines,
 heuristics, and quality factors that will simplify the process of creating knowledge maps,
along with their realization and documentation. However, for visual representation, we have
provided the visual gadgets or symbols that convey how the knowledge maps and their
enclosed elements look, and in what manner they interact with other enclosed elements or
other knowledge maps. Together, both methodology and visual representation serve as the
road map for building systems from software patterns in a cost-effective manner. In addi-
tion to this, this road map will also allow the creation of synergies between managers and
technical staff, especially when creating systems in terms of goals and capabilities. As a
result, these synergies will provide the ways and means for reducing existing communica-
tion gaps between the managerial and technical staff.

In essence, this book provides readers with a detailed view of the art and practice of cre-
ating meaningful knowledge maps that help software developers build software products
from stable, enduring, and cost-effective software patterns.

WHOM IS THIS BOOK FOR?

Software students who read this book will gain a basic, as well as advanced, under-
standing of principles and issues related to the creation of stable and robust software
patterns, meaningful knowledge maps, and their domain analysis. While using knowl-
edge maps, we can expect great team dynamics between managers and technical staffs.
They are capable of creating an environment where the initial clashing of ideas that
might occur because of one’s own beliefs and experience is immediately detected and
recognized for immediate action and identification of suitable solutions. This environ-
ment will also allow managers and technical staff to focus on the merit of the problem
and not on the irrelevant and trifles, for example, implementation details. At the same
time, it will also create a common language for communicating ideas between manag-
ers and the technical staff.

Students, software developers, software designers, and technical managers with a
basic background in software development and engineering will find information con-
tained in this book easy to understand. Although some of the material in this book
relates to advanced programming, readers (both beginning and advanced) can easily
understand its essence and get the big picture of creating knowledge maps and robust
software patterns.

This book could be of great help for a large community of computing and modeling aca-
demics, students, software technologists, software methodologists, software pattern com-
munities, component developers, software reuse communities, and software professionals
(analysts, designers, architects, programmers, testers, maintainers, and developers) who are
involved in the management, research, and development of methodologies and software
patterns. Industry agents, who work on any technology project and want to improve the
project’s reliability and cost-effectiveness, will also benefit hugely by reading this book.

We also anticipate and assume that the concepts presented in this book will greatly affect
the development of new software systems and application frameworks for the next two or
three decades. This book will be very valuable for database designers, knowledge manage-
ment and development professionals, and knowledge ontology scientists. We expect this
book to be a leading choice for many graduate courses on software engineering, system

xixPreface

engineering, software modeling, knowledge modeling, domain analysis, requirement
 engineering, software architectures, software design, and programmers.

HOW TO USE THIS BOOK

This book is designed to allow readers to master the basics of knowledge maps from their
theoretical aspects to practical application. To allow easy reading and better understanding
of individual topics, this book is divided into 14 chapters, each of which deals with separate
aspects of knowledge maps.

CHAPTER CONTENTS IN DETAIL

This book is stratified and segregated as follows. Chapter 1 provides an overview of the con-
tents of the entire book and sets the stage for its proper development. Chapter 2 examines the
methodology for forming knowledge maps in a cost-effective manner. Chapter 3 explores the
term goals and its importance in the formation of knowledge maps, whereas Chapters 4 and 5
provide a set of complete documentation of two stable analysis patterns: discovery and knowl-
edge. A goal without a trace of capability is not a goal; therefore, in Chapter 6, we will give
readers a detailed description of the capabilities of the element of knowledge maps and their
role in building them. Chapters 7 and 8 provide complete documentation of two stable design
patterns: AnyMap and AnyContext. Chapter 9 provides additional details and describes what
knowledge maps and their system of patterns are and their role in the understanding and
mastering of any discipline of interest. Chapter 10 concentrates and focuses on the formation
of development scenarios, especially in the identification of context-specific classes, and how
they are hooked into the core formed by goals and capabilities. Chapter 11 provides insight
and a summary of the ways and manner in which knowledge maps are deployed. Chapter 12
provides detailed descriptions on knowledge map engines and how software protagonists
can start initial work on the formation of a stable engine. Chapter 13 provides information
on CRC cards and their relationship with knowledge maps. Chapter 14 focuses on the book’s
concluding remarks, where we provide a summary of what we have performed throughout the
book and what we will do as a future task.

Mohamed E. Fayad
San Jose State University

Huascar A. Sanchez
University of California Santa Cruz

Srikanth G.K. Hegde
Freelance Writer

Anshu Basia
Quisk

Ashka Vakil
SAP

xxi

Acknowledgments
This book would not have been completed without the help of many great people; I thank
them all. I am honored to work with my friend and coauthor of this book, Srikanth G. K.
Hegde, and three of my best students and coauthors of this book, Huascar A. Sanchez, Anshu
Basia, and Ashka Vakil. This was a great and fun project because of your tremendous help
and extensive patience. I also thank all of my student assistants, Hema Veeraragavathatham,
Vishnu Sai Reddy Gangireddy, Mansi Joshi, Siddharth Jindal, and Pavan Pavuluri, for their
work on the figures and diagrams. Thanks to my dear friend and colleague Professor Supratik
Mukhopadhyay for his contribution of two sidebars, on formality and goal-oriented devel-
opment. Special thanks to my San Jose State University students—Chintan Shah, Hardik
Shah, Viral Sonawala, Ashutosh Kulkarni, Sapna Suku, Shashi Bhushan Kedilaya , Swetha
Seshadri; the Magnum team—Santosh Kumar Gottipamula, Vamseedhar Vuppu, Dhiwakar
Mani, Nirav Kumar Patel, Ashka Vakil, Lalitha Venkataramani, Padmavathi Chaganti, Suju
Koshy, Lois Desplat, Fayad Hussain, Ashira Khera, Ali Parandian, Mary Elaine David, Anu
Ganesan, and Joselyn Tapas; and Abhishek Maloo, Rahul Panjrath, Ruchin Kabra, Fan Ieong,
Priya Lobo, and Mrunali Mohane for helping me create the sample requirements in Appendix D.

Special thanks to my wife, Raefa, my lovely daughters Rodina and Rawan and my son
Ahmad for their great patience and understanding. Special thanks also to Srikanth’s wife,
Kumuda Srikanth, for help with reviewing some of the chapters. Special thanks to all my
friends all over the world for their encouragement and long discussions about the topics and
the issues in this book. Thanks to all my students and coauthors of many articles related to
this topic, in particular, Haitham Hamza, Ahmed Mahdy, Shasha Wu, Peeyush Tugnawat,
and Shivanshu Singh; to my friends Davide Brugali and Ahmed Yousif for their encourage-
ment during this project; and to the Communications of the ACM staff—my friends Diana
Crawford, the executive editor, Thomas E. Lambert, the managing editor, and Andrew
Rosenbloom, the senior editor.

On behalf of the authors of this book, I acknowledge and thank all of those who have had
a part in the production of this book. First, and foremost, we owe our families a huge debt
of gratitude for being so patient while we put their world in a whirl by injecting this writ-
ing activity into their already busy lives. We also thank the various reviewers and editors
who have helped in so many ways to get the book together. We thank our associates who
offered their advice and wisdom in defining the content of the book. We owe special thanks
to those who have worked on the various projects covered in the case studies and examples.

Finally, we acknowledge and thank the work of some of the people who helped us in
this effort: John Wyzalek, acquisition editor, Jill J. Jurgensen, senior project coordinator,
Keyle Meyer, project editor, and Rebecca Rothschild, the marketing manager at CRC Press,
Taylor & Francis Group, LLC, for their excellent and quality support and work done to
produce this book; a special note of acknowledgment and thanks to Indumathi S., project
management executive at Lumina Datamatics Ltd., whose team did a tremendous job
 proofreading and copy editing all the chapters in detail, including the elegant and focused
way in which Indumathi took care of the day-to-day handling of this book; and special
thanks to all the people in marketing and design and the support staff at CRC Press,
Taylor & Francis Group, LLC, and Lumina Datamatics Ltd.

xxiii

Authors
Dr. Mohamed E. Fayad is a full professor of computer engineering at San Jose State
University from 2002 to the present. He was a J.D. Edwards Professor, Computer Science
and Engineering, at the University of Nebraska, Lincoln, from 1999 to 2002; an associate
professor at the computer science and computer engineering faculty at the University of
Nevada, from 1995 to 1999; and an editor-in-chief for IEEE Computer Society Press—
Computer Science and Engineering Practice Press, from 1995 to 1997. He has 15+ years
of industrial experience. Dr. Fayad is an IEEE distinguished speaker, an associate editor,
editorial advisor, a columnist for the Communications of the ACM (Thinking Objectively),
and a columnist for the Al-Ahram newspaper (two million subscribers); he was a gen-
eral chair of the IEEE/Arab Computer Society International Conference on Computer
Systems and Applications (AICCSA 2001), Beirut, Lebanon, June 26–29, 2001; he is the
founder of the Arab Computer Society (ACS), serving as its president from April 2004
to April 2007.

Dr. Fayad is a known and well-recognized authority in the domain of theory and the
applications of software engineering. Dr. Fayad was a guest editor on 12 theme issues:
CACM’s OO Experiences, October 1995; IEEE Computer’s Managing OO Software
Development Projects, September 1996; CACM’s Software Patterns, October 1996; CACM’s
OO Application Frameworks, October 1997; ACM Computing Surveys—OO Application
Frameworks, March 2000; IEEE Software—Software Engineering in-the-Small, September/
October 2000; International Journal on Software Practice and Experiences, July 2001;
IEEE Transaction on Robotics and Automation—Object-Oriented Methods for Distributed
Control Architecture, October 2002; Annals of Software Engineering Journal—OO Web-
Based Software Engineering, October 2002; Journal of Systems and Software, Software
Architectures and Mobility, July 2010; and Pattern Languages: Addressing the Challenges,
Wiley Software: Practice and Experience, March–April 2012.

Dr. Fayad has published more than 218 high-quality papers, which include profound and
well-cited reports (more than 50) in reputed journals, 84 articles in refereed conferences,
more than 20 well-received and cited journal columns, 16 blogged columns; 12 well-cited
theme issues in prestigious journals and flagship magazines; 24 different workshops in
respected conferences; and over 125 tutorials, seminars, and short presentations in 30+
different countries, such as Hong Kong (thrice), Canada (12 times), Bahrain (twice), Saudi
Arabia (4 times), Egypt (30 times), Lebanon (twice), UAE (twice), Qatar (twice), Portugal
(twice), Finland (twice), United Kingdom (thrice), Holland (thrice), Germany (4 times),
Mexico (once), Argentina (thrice), Chile (once), Peru (once), Spain (once), and Brazil
(once). Dr. Fayad is founder of 7 online journals, NASA Red Team Review of QRAS and
 NSF-USA Research Delegations’ Workshops to Argentina and Chile, and 4 authoritative
books, of which three are translated into different languages, such as Chinese; over 5 books
are currently in progress. Dr. Fayad is filing for 8 valuable and innovative patents and has
developed over 800 stable software patterns. Dr. Fayad earned an MS and a PhD in com-
puter science from the University of Minnesota at Minneapolis. His research title was OO
Software Engineering: Problems and Perspectives. He is the lead author of several clas-
sic works: Transition to OO Software Development, August 1998; Building Application

xxiv Authors

Frameworks, September 1999; Implementing Application Frameworks, September 1999;
Domain-Specific Application Frameworks, October 1999. Dr. Fayad’s books in progress
include Stable Analysis Patterns, Stable Design Patterns, Unified Software Architectures,
Service and Production Engines, Moviemaking: UML and Knowledge Map in Action,
UML in Action, Unified Software Engine, and Knowledge Map: True Domain Analysis
Approach.

Huascar A. Sanchez is a PhD candidate in the University of California Santa Cruz’s
Computer Science Department. His research interests include software engineering, specif-
ically source code curation, an approach to discovering, cleaning, and refining online code
snippets upon which to build programs. Sanchez has earned an MS in software engineering
from San Jose State University.

Srikanth G. K. Hegde is a professional Internet security consultant and a freelance writer
with a master’s degree to his credit. His areas of interest include Internet security, net-
working, social media marketing, antivirus software, adware, spyware removal and its
management, Internet safety, network security policy, and broadband and Internet/security
protocols. In addition, his domains of interest also include preparing articles, whitepapers,
and status reports on diverse industries, businesses, global events, finance, and business
management. Furthermore, he has published numerous articles on software patterns (analy-
sis and design), pattern development, patterns composition, and knowledge maps, in asso-
ciation with Dr. Prof. M. E. Fayad. Srikanth is also an experienced freelance writer with
more than 15 years of experience in writing books, articles, columns, critiques, and various
other e-publications.

Anshu Basia is a software engineer with extensive experience and management skills.
Her specialization includes analyzing, designing, and developing complex enterprise solu-
tions in agile environments. Anshu is highly proficient in Java, Spring, Struts, HTML,
JavaScript, Rest Web services, SQL, and a multitude of other technologies used in modern
applications.

Currently, Anshu works for Quisk, a global technology company that partners with
financial institutions and others to digitize cash and provide safe, simple, and secure
 financial services and cashless transactions for anyone with a mobile phone number.
Prior to joining Quisk, Anshu worked as a software engineer at A2Z (subsidiary of
Amazon.com) now known as Amazon Music. Anshu completed her second masters in
software engineering with a focus on enterprise software technologies from San Jose
State University, graduating with highest honors. Anshu’s first master’s degree is in
 computer applications from Banasthali Vidyapith, India.

Ashka Vakil is an accomplished software engineer who specializes in building highly
complex enterprise applications. Ashka has 8+ years of extensive experience in architec-
ture, design, and agile development. She is an expert in mobile application and cloud appli-
cation development. Ashka is highly proficient in Java, HTML, JavaScript, web services,
SQL, and a multitude of other technologies used in modern web applications.

Currently, Ashka works for SAP, a German multinational software corporation that
makes enterprise software to manage business operations and customer relations. As a

xxvAuthors

senior software engineer, she is responsible for building custom enterprise-grade mobile
applications for SAP customers. Prior to joining SAP, Ashka worked as a software engineer
at Tata Consultancy Services, the largest India-based IT services company. Ashka holds a
master’s degree in software engineering with a focus on enterprise software technologies
from San Jose State University, graduating with highest honors.

Section I

Introduction

2 Introduction

A knowledge map is a topology of patterns that is driven by the principles of software
stability concepts (Fayad 2002a, 2002b; Fayad and Altman 2001). In this section, we will
provide its structure, mantra, and the rationale-driven language use to discover and visu-
alize elemental pieces of knowledge (patterns), how to organize them, and how to relate
them to formulate an accurate solution in contexts, which shares the same core knowledge
(rationale or goals, and capabilities).

Building a knowledge map (Sanchez 2006) for a determined discipline involves myr-
iad skills, knowledge, and steps beyond the identification of the tangible artifacts that are
bound to a specific context of applicability. It also requires a systematic capture and full
understanding of the domain, where our solution would be laid down and expanded. That
includes describing the problem not from its tangible side, but focusing more on its con-
ceptual side, describing underlying affairs with respect to the problem, and describing the
elements required to fulfill them. Section I is made up of two chapters and five sidebars.

Chapter 1 is titled “An Overview of Knowledge Maps,” and it introduces the key con-
cepts and technologies of knowledge maps, such as software stability model, the definitions
of enduring business themes or goals, and the definition of business objects or capabilities.
It also discusses the existing problems with traditional pattern languages and software pat-
terns, enumerates the objectives of knowledge maps approach briefly, defines the software
stability concepts, shows the representation of knowledge maps, and compares the essential
differences between traditional pattern languages and knowledge maps. This chapter con-
cludes with a summary and numerous open research issues. This chapter also provides a
number of review questions, exercises, and projects.

Chapter 2 is titled “Abstraction: Knowledge Maps, Stability, and Patterns,” and it dis-
cusses knowledge maps level of abstraction, charts knowledge maps elements to software
stability concepts, and patterns world; it also illustrates the software stability model steps
like goals, capabilities, and knowledge map.

Sidebar 1.1 is titled “Traditional Pattern Languages,” and it provides a brief introduc-
tion for traditional pattern languages, as a structured method of describing better design
practices within a field of expertise or domain. A pattern language consists of a cascade
or hierarchy of parts, linked together by patterns that solve generic recurring problems
associated with the parts. Each pattern has a definite title and collectively the titles form a
language for design (http://www.designmatrix.com/pl/anatomy.html).

Sidebar 1.2 is titled “Hooks or Extension Points.” Hooks are the important and critical
extension points that are used as a means to extend, augment, activate, modify, replace, and
add new functionality (Fayad, Schmidt, and Johnson 1999; Froehlich et al. 1997), to adapt,
customize, personalize, trace, and/or integrate knowledge by application developers, and
to design and produce brand new applications from the core knowledge or knowledge map
(Shtivastava 2005).

Sidebar 1.3 is titled “Hook Engine.” Hook Engine is a special web-based engine, and
hook facility is an enduring tool that facilitates knowledge map hooks. The engine or tool
maintains a rich repository of the hook templates and existing software patterns defined
specially for the core knowledge of the applications driven from the entire knowledge map.
The engine or tool also supports addition, modification, and deletion of hook templates in
the given repository. Each hook template specifies a list of changes or editions needed for
the core knowledge classes known as business objects.

Sidebar 2.1 is titled “Formal Methods and Formal Languages.” Popular knowl-
edge representation techniques can include various monotonic and nonmonotonic logics

http://www.designmatrix.com

3Introduction

(Barwise 2006), such as description logics (Baader et al. 2003) and default logics (Besnard
1989). Goals can be specified as intentional knowledge in a knowledge base. Capabilities
can be added to provide the extensional definitions. Goals can be reified by automatically
 connecting the intentional goals to the extensional knowledge, by using the deductive
 reasoning capabilities of the underlying logical framework (Boddu et al. 2004). Reifying
goals usually results in ontology.

Sidebar 2.2 is titled “The Definition of Ontology.” Ontology is a specification of a
conceptualization (Chandrasekaran et al. 1999; Gruber 1993, 1995). The word ontology
seems to generate a lot of controversies in discussions about artificial intelligence. It has a
long history and tradition in philosophy, in which it refers to the subject of existence. It is
also often confused with epistemology, which is about knowledge and knowing.

5

1 An Overview of
Knowledge Maps

He who knows not and knows not he knows not: he is a fool—shun him. He who
knows not and knows he knows not: he is simple—teach him. He who knows and
knows not he knows: he is asleep—wake him. He who knows and knows he knows:
he is wise—follow him.

Old Arabian Proverb

1.1 INTRODUCTION: KEY CONCEPTS—SOFTWARE STABLE MODELS,
KNOWLEDGE MAPS, PATTERN LANGUAGE, GOALS, CAPABILITIES
(ENDURING BUSINESS THEMES + BUSINESS OBJECTS)

Right now, a number of factors, for example, overall increase or bulkiness in software
size, complexity, hefty costs incurred in design and development, and an increase in
the need for more insightful and practical techniques, exist that require total software
development time and complexity to be reduced. A number of companies and corporate
firms are now attempting to design and develop their diverse software products and
applications in lesser amount of time and with lower cost, all the while maintaining
and preserving a very high quality in the products designed and created. In fact, in the
2000s, novel and innovative concepts of software patterns emerged before us, as the
magical potions to achieve these underlying goals and thereby creating very high quality
developed software products (Gamma et al. 1995; Schmidt, Fayad, and Johnson 1996).
However, we are yet to realize the potentiality of using these patterns in developing
robust systems.

When the meaningful theory of software patterns emerged some years back, its
proponents foresaw and visualized a huge and unlimited potential for developing and
conveying flexible, practical, useful, and quality software solutions. The main objec-
tive of developing such solutions was to embed and include given software products
with an uncanny ability to adapt to new needs and requirements, with ease and without
any visible or serious side effects (i.e., bugs), via useful software patterns. Software
patterns are successful solutions to recurring software problems within a context
(Coplien 1996; Schmidt, Fayad, and Johnson 1996). Although there have been a num-
ber of successful stories quoted for using software patterns (e.g., analysis and design)
(Buschmann 1996; Fowler 1997), we still do not know how one can weave and hem
several software patterns together to build a stable system of patterns. These systems
of patterns are simply a set of related patterns, insightfully and intelligently woven,
that later communicate a measure of architectural knowledge and styles for a set of
high-level problems in particular contexts. Along with the appearance of software

6 Software Patterns, Knowledge Maps, and Domain Analysis

patterns, the concept of pattern languages (as defined in the Sidebar 1.1) also arose
to attempt to ease the weaving of software patterns and form a system of patterns.
Pattern languages are simply a collection of interrelated patterns (Schmidt, Fayad,
and Johnson 1996). One can combine these patterns in any way and manner to design
and create new environments and ambiences, where practitioners and developers can
solve context-specific problems with few problems. More precisely, the concept of
pattern languages has spilled over into the software engineering domain to describe
prior experiences and the processes that arise from them (patterns) in a simple and
straightforward language, where one can skillfully weave and combine patterns in any
way to solve a particular problem. Yet, this process is still ad hoc in nature and very
casual, and it is not simple and straightforward enough to ease and speed the software
development process up.

This book poses you three main questions. First, how can we classify, develop,
and utilize analysis and design patterns together toward problem resolution? Second,
what are the behind-the-scenes language and scripts that guide the sewing of patterns
together as a whole? Third, how can we overcome and face a range of unique chal-
lenges other than pattern composition problems (patterns traceability) that can hinder
and obstruct the development of a system of patterns? The inability to answer these
subtle questions detrimentally impacts the understanding of how to put patterns in
practice and will therefore make the use of software patterns more complex than it
should.

1.2 THE MOTIVATION

The main motivation for writing this book is to answer the aforementioned questions in a
meaningful manner, and to synthesize and crystallize the foundations for patterns classifi-
cation, composition, traceability, and deployment, with the sole purpose of building stable
systems by use of patterns in a systematic manner. We are able to fulfill this motivation
by providing or suggesting two important ideas. First, we will offer a set of quality factors
that will evaluate the definition, application, and solution accuracy of software patterns.
Second, we will also provide a new and different representation of pattern languages. This
new representation is called knowledge maps, or knowledge core sets that describe a topol-
ogy of software patterns.

The main goal of this book is to define knowledge maps as the groundwork for an insight-
ful classification of the software patterns governing a particular discipline. Knowledge
maps are the enduring mirrors of experience and best practices of what a discipline is. The
most important driving and motivating force of knowledge maps is the innovative approach
of software stability concepts (Fayad 2002a, 2002b; Fayad and Altman 2001; Mahdy and
Fayad 2002). This unique approach allows us to classify software patterns within knowl-
edge maps and according to their application rationale and nature (e.g., analysis, design).

We will also demonstrate how knowledge maps overcome those problems experienced in
traditional pattern languages, by surveying a number of examples within the genre of pat-
tern languages, and later analyzing detected commonalities and drawbacks in these forms,
by maintaining the reference to the instances surveyed. The surveyed pattern languages
will undergo detailed comparisons with knowledge maps by using previously defined qual-
ity factors and parameters.

7An Overview of Knowledge Maps

1.3 THE PROBLEM

Building high-quality systems is not an easy task, nor is it a work carried out in a moment,
especially when several factors can undermine and hinder their success, such as cost, time,
and lack of systematic approaches. The promise of using software patterns in software
development to deal with these aforementioned factors or obstacles has led and made soft-
ware developers to strongly affirm their belief in the power of pattern languages as the sole
means for constructing complex systems in a constrained environment.

Software patterns, along with pattern languages, have attracted software developers for
more than a decade. In fact, they have visualized software patterns and pattern languages as
promising and emerging techniques that can ease and speed up their software development
processes (Appleton 1997; Coplien 1996; Gamma et al. 1995; Schmidt, Fayad, and Johnson
1996). However, developing a set of robust software patterns and pattern languages is yet
to reach the expected level of ease it should have when dealing with determined software
problems, such as pattern composition and stability. Instead, they end up in constructing
models that lack some important and essential qualities that diminish the quality of the
system rather than improve it (Wu, Hamza, and Fayad 2003).

Our calculated and calibrated response to the aforementioned critical issues is the intro-
duction of knowledge maps or stable pattern language as a standard means to classify,
organize, weave, and deploy knowledge core sets or a group of patterns according to their
rationales. These knowledge core sets consist of software patterns that are pertinent and
important to particular domains. To classify these software patterns in accordance with
their rationale and create knowledge maps, we will also use software stability concepts as
the main and leading approach. The succeeding sections of this book will provide detailed
descriptions of this approach.

1.4 THE OBJECTIVES

This research effort also aims to achieve a knowledge synthesis for building systems by
using patterns, that is, creating knowledge maps. We will plan, intend, and project to high-
light and emphasize, through an extensive study, how current approaches that are using
pattern languages to build systems strive in providing a systematic and cost-effective man-
ner to weave patterns together and create immensely complex systems. To confront this
unique problem, we will also propose a new and distinct representation of pattern lan-
guages, called knowledge maps, the realization of which is mainly driven by the software
stability concepts approach.

Throughout the course of this book, we will debate and confront several important
issues and topics related to pattern classification, composition, traceability, deployment, and
development to support our concept of knowledge maps. The main objective of this book is
to provide patterns researchers, framework developers, and application developers a stable
means and mode for answering critical questions or queries, such as how one can weave
together similar and different kinds of patterns, what the relationships between analysis
patterns and design patterns really are, and what those behind-the-curtain guidelines for
sewing these patterns together really are.

The next section will describe the approach that drives the knowledge map realization,
providing the required semantics, knowledge organization, organization, and understanding.

8 Software Patterns, Knowledge Maps, and Domain Analysis

1.5 OVERVIEW OF SOFTWARE STABILITY CONCEPTS

Software stability concepts segregate or classify the classes of any system into three main
layers of understanding (Fayad 2002a, 2002b; Fayad and Altman 2001): the enduring busi-
ness themes (EBTs) layer, the business objects (BOs) layer, and the industrial objects (IOs)
layer. It is possible to assign and tag each class to a particular layer based on its nature and
level of tangibility.

EBTs represent the specification classes within a problem’s understanding, whereas
the nature of EBTs is entirely conceptual, which means that their structure is internally
and externally very stable or durable (Fayad and Altman 2001). BOs are semitangible
artifacts that are internally stable and externally adaptable, via a number of extension
points called hooks, or existing or traditional patterns, such as gang of four patterns
(Gamma et al. 1995). Hooks are extension points used as a means to extend, enhance, or
augment knowledge of BOs by application developers, to produce new applications from
the core knowledge (EBTs + BOs), by activating, modifying, replacing, and/or adding
new functionality to the core knowledge. Hooks also provide other critical services like
adaptability, customization and personalization, integration, and configuration, as dis-
cussed in Sidebars 1.2 and 1.3. They also represent the business rules or process abstrac-
tions that are necessary to carry out a determined EBT—they are, in other words, the
workhorses of the EBTs. The last artifact is the IO. IOs are the context-specific classes
that attach themselves to the core formed by EBTs and BOs. The nature of IOs is entire
tangible, which means that they are both internally and externally unstable. They always
keep changing proportionally with the occurrence of new business requirements (Fayad,
Hamza, and Sanchez 2005).

Software stability concepts also provide practical foundations for domain-neutral core
sets or stable patterns. These domain-neutral core sets are not bound to any application-
specific concerns by any means. Instead, they remain the same and almost constant when-
ever they appear, regardless of the application context. Figure 1.1 represents a concise view
of software stability concepts (Fayad 2002a, 2002b; Fayad and Altman 2001; Hamza and
Fayad 2004, pp. 197–208).

1.6 OVERVIEW OF KNOWLEDGE MAPS

A knowledge map or stable pattern language is a topology of patterns driven by the essential
principles of software stability concepts (Fayad 2002a, 2002b; Fayad and Altman 2001).
It also consists of knowledge core sets or stable patterns that host the pertinent features
and functionality of a particular domain. In addition, one can also utilize it to build other
foundation sets or knowledge maps of other domains.

Building a knowledge map for a determined and set discipline involves usage of numer-
ous skills and knowledge and a number of steps beyond the identification of tangible arti-
facts bound to a specific context of applicability. It also requires systematic capture and full
understanding of the domain where we are planning to deploy and expand the proposed
solution. This also includes describing the problem in detail, not from its tangible side, but
focusing more on its conceptual side, describing the underlying affairs with respect to the
problem, and using the elements required to fulfill them.

The ultimate representation of knowledge maps is driven mainly by the significant mantra
divide and conquer, which is applied throughout the structure of knowledge maps, as shown

9An Overview of Knowledge Maps

in Figure 1.2. For instance, knowledge maps are the products of partitioning a domain into
different levels of granularity, so that we can manage and administer each level with consid-
erable ease. In addition, knowledge maps are stratified into the following five main concerns:

• Analysis concerns (goals)
• Design concerns (capabilities)
• Knowledge concerns (goals and capabilities together)
• Development concerns (development scenarios)
• Deployment concerns (deployment scenarios)

Each one of the knowledge concerns found on a knowledge map is stratified and graded
into three layers of software stability, EBTs, BOs, and IOs, whereas EBTs and BOs together
are called the core knowledge of any domain.

1.7 PATTERN LANGUAGES VERSUS KNOWLEDGE
MAPS: A BRIEF COMPARISON

The novel concept of pattern languages (Appleton 1997; Buschmann 1996; Fincher 1999;
Salingaros 2000) is spilling over into the software engineering field to describe experiences
or best practices of software development, by using a coherent language that can be used for
both talking and describing about a particular problem and creating new environments from
the patterns it conveys. This special language works specifically by connecting a collection

IOs

IOs IOs

IOsIOs

Application
objects/classes

BOs Workhorse

EBTs

Goals

Capability

Core knowledge

IOs

FIGURE 1.1 The software stability concepts approach.

10 Software Patterns, Knowledge Maps, and Domain Analysis

of patterns, as if they were in a neatly narrated story. Each of the patterns in this collection
is an insightful way to handle or solve a set of recurrent problems in a particular context
(Appleton 1997; Fincher 1999; Schmidt, Fayad, and Johnson 1996). As a whole, they also
make visible both the knowledge that is pertinent or relevant to a particular domain and the
solutions for a set of recurrent problems within this particular domain.

1

2

Analysis phase

Deployment

Design phase

Knowledge phase

3
1 2

3

4

4

1

21

2

3 3

4

5
6

7

8

9Development

Capabilities

Goals

Deployment

– Quality factors
– Create bundles (optional)
– Verification and validation

– Identify the hidden goals of a domain
– Describe in detail the found goals
– Verification and validation

– Identify/describe of capabilities/
 workbones
– Identify capabilities of internal ultimate goal
– Connect capabilities to domain’s goals
– Verification and validation

– Connect goals + capabilities
– Goals + capabilities + knowledge concerns
– Scale knowledge concerns
– Infinite knowledge concerns combination
– Verification and validation

Development scenarios
– Specify the context where the core will be used
– Identify IOs
– IOs = context
– Attach the IOs to knowledge concerns via
 extension points (hooks)
– Verification and validation

Remarks:
– Fulfill quality factors such as
 scalability, traceability,
 composition, partitioning, and ROI

FIGURE 1.2 The representation of knowledge maps.

11An Overview of Knowledge Maps

Any existing approaches and pattern language representations, not driven by software
stability concepts, will refer to as traditional approaches and traditional pattern languages,
and the ones driven by software stability concepts will refer to as knowledge maps through
out this book. Throughout the section, we will also try to briefly compare and contrast both
traditional pattern languages and knowledge maps. This study will efficiently determine
the path taken in this book and offer the benefits of using knowledge maps to ease and
speed up the software development process.

The comparison between these two pattern language representations is illustrated in
Table 1.1, a brief description of the generated outcomes.

The next section describes the systematic approach for implementing knowledge maps.

1.8 THE SOLUTION

The following sections provide a brief explanation of the distinct pieces of our proposed
solution. It starts with the detailed description of the methodology to be used for building
knowledge maps. Then, it will proceed with the employed research methodology that will
support the completion of this book.

1.9 KNOWLEDGE MAPS METHODOLOGY OR CONCURRENT
SOFTWARE DEVELOPMENT MODEL

From a software perspective, several requirements of prime importance must be fulfilled
before, during, and after investigating any problem. These important things are as follows:

• Choosing the right approach for understanding the problem, by using a systematic
and precise problem analysis process

TABLE 1.1
Knowledge Maps versus Pattern Languages

Knowledge Maps Pattern Languages

Knowledge maps provide a systematic approach
that ensures focused software solutions

Pattern languages lack indicators/guidelines to
determine within-context software solutions

They classify patterns according to their rationale,
that is, EBTs, BOs, and IOs

They lack indicators that determine the rationale of
their enclosed patterns

They provide full traceability of their enclosed
patterns

Traceability is lost, especially when dealing with
deeper levels of pattern language’s implementation

They provide full generality of their enclosed
patterns

They do not guarantee full generality of their
enclosed patterns

They provide enduring solutions. Maintenance is
minimal

They are hard to maintain and they struggle in
providing enduring solutions

They are quite easy to understand and use, when
dealing with determined software problems.
Everything is based on goals, capabilities, etc.

They are hard to use and understand, when solving a
determined software problem

They distinguish between direct and remote
knowledge

They do not distinguish between associate (direct)
and remote knowledge

12 Software Patterns, Knowledge Maps, and Domain Analysis

• Creating a suitable design process to support analysis outcomes and foresee or visualize
future project changes

• Providing a classification of the distinct building blocks that conform to the analy-
sis and design outcomes, which will then form knowledge and the best practices

• Using validation and verification techniques to evidence your work value and the
integration accuracy of building blocks

• Creating and making development cost and time reduction
• Encouraging a unique welcome-change attitude when the developers are working

with constantly evolving situations

In this book, we will also present a suitable approach to address all the aforementioned
challenges and questions. This special approach consists of the unification of two promising
approaches: the pattern languages approach and the software stability concepts approach
(Fayad 2002a, 2002b; Fayad and Altman 2001; Mahdy and Fayad 2002; Salingaros 2000;
Wu, Hamza, and Fayad 2003). This unified approach relies heavily on a rationale-driven
view to discover and visualize stable knowledge core sets (patterns) within a particular
domain and methods to organize and relate them to formulate an accurate solution for a
myriad of contexts that share the same core knowledge (rationale or goals and capabilities).

From a bird’s-eye perspective, we could suggest that the overall process of creating a
knowledge map involves five main steps, as shown in Figure 1.3: Goals or classification,
capabilities/properties of a particular discipline, knowledge maps formation, development
scenarios, and finally, solution deployment. However, later in the book, we will describe a
detailed process about how to design and formulate knowledge maps in a systematic and
organized manner. For each one of these main steps involved in the creation of knowledge
foundations sets (knowledge map), we will help readers discover a set of distinctive pat-
terns that they can interconnect to form accurate solutions that can satisfy a rationale of the
domain in question.

 1. The first main step, analysis/goals, is concerned with surfacing the implicit goals
hidden within a particular discipline. These goals are the EBTs (Fayad and Altman
2001; Hamza and Fayad 2004, pp. 197–208). This process requires the capture and
full understanding of the context, where one can use solutions. This process also
incorporates describing the goals not from their tangible side, but focusing more
on their conceptual side. This process may imply the necessity and need to delve
or deliberate into the internal structure of the goals, flush out, and obtain any hid-
den insight or knowledge core sets and rules that aid the problem’s resolution. The
outcome is stable analysis patterns (SAPs) (Hamza 2002; Hamza and Fayad 2002).

 2. The second main step, design/capabilities, emphasizes the discovery of the reci-
pes and potions required to fulfill the stated goals of a particular domain. These
recipes are the BOs (Fayad 2002a, 2002b; Fayad and Altman 2001). Without
these recipes or stable patterns, only a vague understanding (almost none) of the
domain’s goals will be achieved. As with goals, the accurate and correct under-
standing of capabilities may require a deep analysis of the elements that build
them. That is, capabilities may contain a second level of abstraction or inter-
nal structure. When such a capacity occurs, we will label them as Pattern-BO.
However, this second level of abstraction is still not made public. Therefore, the
Pattern-BO will be represented as a single unit of interest using only its first level

13An Overview of Knowledge Maps

of abstraction. The outcome of this step is the stable design patterns (SDPs) (Chen,
Hamza, and Fayad 2005, pp. 592–596; Fayad and Kilaru 2005, pp. 108–115).

 3. The third main step is forming the knowledge maps. Intuition and experiences from
practitioners (i.e., analysts and designers) will support the formation of knowledge
maps. First, practitioners must know the environment wherein the problem is hap-
pening or occurring. Second, practitioners must examine the overall goals and
capabilities required to describe that environment (i.e., the solution within the con-
text). Third, after acknowledging the existing environment, goals, and capabilities,
practitioners must then create synergies between these elements and form knowl-
edge concerns or stable architectural patterns that will handle the given problem
of interest. In short, the main objective of this step is to compose knowledge core
sets from goals and capabilities. One can realize this composed knowledge via the
distinct routes/paths taken during the synergy between two or more patterns or one
goal and other capabilities. Each one of the complete routes taken will satisfy a dis-
tinct need in a particular domain. This step produces a number of different stable
architectures that include SAPs and SDPs, and its outcome is the stable architec-
tural patterns (Fayad 2015a, 2015b, 2015c).

Analysis/goals1

2

3

3.1

4.1

4

5

Domain knowledge

– Enduring business themes
– Stable analysis patterns
– Testing and verification and validation

Design/capabilities
– Business objects
– Stable design patterns
– Testing and verification
 and validation

Knowledge maps
– Forming knowledge maps
– Stable architectural patterns
– Testing and verification
 and validation

Deployment
– Quality factors
– Workflow pattern selection
– Testing and verification and
 validation

Development scenarios
– Industrial objects
– �ird party architecture
– COTs
– Testing and verification and
 validation

Extensions
– Hooks
– Add/remove/update
– Activate/deactivate
– Testing and verification and
 validation

Properties
– Partitioning
– Intersection
– Infinite architectures
– Traceability
– Scalability
– ROI

FIGURE 1.3 Methodology of knowledge maps.

14 Software Patterns, Knowledge Maps, and Domain Analysis

 4. The fourth step, development scenarios, provides the essential qualities of stan-
dards to our software solution, such as scalability, traceability, maintainability,
stability, and return on investment, due to the inherent qualities of the inherited
software stability concepts. This particular step is concerned with how the knowl-
edge core sets will be adapted to specific contexts, based upon the utilization
of tangible artifacts or IOs. Such an adaptation is possible with extension points
called hooks that will attach context-specific classes (IOs) to the core. By achiev-
ing this, unprecedented flexibility and ease will arise, enabling businesses and
firms to add, remove, update, and extend functionalities from their systems on a
real-time basis.

 5. The last main step, deployment, deals not only with how a particular solution and
its enclosed knowledge core sets would be deployed in particular domain, but also
with the representation of the artifacts or domain-specific patterns that will aid the
deployment process. This includes EBTs, Pattern-EBTs, BOs, and Pattern-BOs,
and their formed context (IOs) (Hamza and Fayad 2002).

The knowledge maps methodology or concurrent software development method offers
many advantages:

 1. Applications created by using this methodology are quite adaptable and amenable
to ever-changing needs and requirements. This is because the core is quite robust
and stable and is unaffected in any way by the changes or modifications in the
requirements. As a result, the application built by using knowledge maps can be
modified very easily to satisfy the changing business needs.

 2. Applications can also be scaled easily with minimal efforts. Because it is possible
to plug the application-specific IOs to the stable knowledge map core, one can eas-
ily extend and adapt a specified application.

 3. Using a knowledge map, an infinite number of diverse applications can be created
within a fraction of time and with minimum effort. The knowledge map serves as
a building block for the applications. IOs have to be just plugged to the knowledge
map with the help of hooks and existing design patterns.

 4. Because the knowledge map methodology is synonymous with concurrent devel-
opment, all the phases of software life-cycle analysis, design, implementation, and
testing can be carried out simultaneously. This eventually results in our being able
to verify the work at every step, rather than waiting until the testing phase. In addi-
tion, a thorough and complete understanding of the problem is possible. Again,
changes or modifications to the design are possible at any time, as all phases are
carried out concurrently.

1.10 WHY KNOWLEDGE MAPS?

1.10.1 ReseaRch Methodology UndeRtaken

The development and synthesis of this book will be on a systematic and organized manner.
We have already invested considerable time and effort in collecting and organizing
 fundamental information with respect to pattern languages, pattern organization, and col-
lections. This strategy also includes acquiring a number of books that reflect and provide

15An Overview of Knowledge Maps

up-to-date, readily available software patterns/pattern language techniques—usage and
addressed problems, production and deployment processes commonly used in industry—
and current limitations and future trends related to this area of study.

This strategy also includes accessing good online libraries, looking for proceedings of
software patterns conferences, white papers, published research papers, and scientific jour-
nals. Additionally, the trial of currently available commercial software, such as Eclipse and
Rational XDE, which use patterns to support software development, will also be an essen-
tial part of our strategic and knowledge input. In doing so, we will also explore the required
knowledge hidden behind their usage and capabilities currently offered. Such a task is com-
plicated, complex, and Herculean, because most of these commercial and noncommercial
systems never disclose or announce their internal structure or source code.

After collecting and understanding information and details regarding software patterns,
pattern languages, their underlying techniques, and ad hoc classifications, we will introduce
our new approach called knowledge maps. We will describe the structure, semantics, qual-
ity factors, and properties of knowledge maps, including the extremely promising benefits
to software development activities.

After completing these essential steps, we will also proceed with the utilization of the
offered benefits and semantics of knowledge maps, by quoting real-life examples and expe-
riences. These examples will show the benefits of knowledge maps in terms of pattern dis-
covery, organization, classification, development, and deployment.

1.10.2 ReseaRch VeRification and Validation

We will verify and validate our work with the help of two factors: using a set of applicabil-
ity scenarios that imply common software patterns/pattern languages usage and expected
outcomes and results. Nevertheless, we will also provide considerable enhancement in
their organization and visualization, via a software stable model (SSM) (Mahdy and Fayad
2002), which is actually the visual representation of software stability concepts. In addition,
we will validate each information source to see and examine if it accurately addresses what
it is actually disclosing and divulging.

We can consider the determined numbers of scenarios per pattern based on proof of
validity requirements of current patterns: by providing three or more applications or
 scenarios to prove pattern accuracy and correctness. Thus, practitioners will be able to
visualize the underlying rationale and its associated capabilities and perfectly aid and assist
context-specific aspects to rapidly realize and form a suitable solution.

1.10.3 the stRatification of this Book

The book provides the following to its readers:

 1. Knowledge synthesis for building systems using knowledge maps, along with the
knowledge core sets that form its main structure

 2. An initial framework on knowledge maps with some of their significant qualities,
like scalability and adaptability, including a discussion of source code

 3. A representation of knowledge maps to help readers understand the path of execu-
tion for all the stable patterns provided, as well as their objectives and the part of
the knowledge infrastructure they actually represent

16 Software Patterns, Knowledge Maps, and Domain Analysis

 4. Documentation of some of the stable patterns, via the use of a noteworthy docu-
mentation template

 5. Two significant case studies illustrating the actual applicability of the framework
of knowledge maps

 6. Stable patterns implementation heuristics to simplify the software development
process of stable patterns

This book is stratified and segregated as follows. This chapter provides an overview of
the contents of the entire book and sets the stage for its proper development. Chapter
2 examines the methodology for forming knowledge maps in a cost-effective manner.
Chapter 3 explores the term goals and its importance in the formation of knowledge
maps, whereas Chapters 4 and 5 provide a set of complete documentation of two SAPs:
knowledge and discovery. A goal without even a trace of capability is not a goal; there-
fore, in Chapter 6, we will give readers a detailed description on the capabilities of
the element of knowledge maps and their role in building knowledge maps. Chapters
7 through 10 provide a complete documentation of four SDPs: AnyMap, AnyContext,
AnyAgreement, and AnyPartition. Chapter 11 provides additional details and describes
what a knowledge map is and its role in the understanding and mastering of any disci-
pline of interest. Chapter 12 focuses on the formation of development scenarios, espe-
cially in the identification of context-specific classes, and how they are hooked into the
core formed by goals and capabilities. Chapter 13 provides an insight into and summary
about the ways and manner in which knowledge maps are deployed, whereas Chapters 14
and 15 provide detailed descriptions of the two critical case studies. Chapter 16 focuses
on the book’s concluding remarks, where we will provide a summary of what we have
performed throughout the book and what we will do as a future task. This also includes
a description of the book’s contributions.

SUMMARY

This section will represent each of the contributions expected from this book. These contri-
butions will list themselves according to the merit of the problem they address and encoun-
ter. We will also deal with the following aspects.

The main objectives of Chapter 1 were to introduce knowledge maps or the topology
of stable patterns, as the means for developing software systems in a cost-effective man-
ner, to show its perceived superiority over traditional pattern languages and to specify
how the rest of the book will flow. This includes a brief and concise introduction of the
content that will appear in each chapter. The chapter also provides a brief description of
the structure and properties of knowledge maps along with their benefits, challenges, and
constraints.

OPEN RESEARCH ISSUES

There is nothing more difficult to take in hand, more perilous to conduct, or more uncer-
tain in its success, than to take the lead in the introduction of a new order of things
(Machiavelli 1913).

17An Overview of Knowledge Maps

The above-mentioned quote is very true in the context of knowledge maps, as this con-
cept is the newest development in the field of software engineering. Moreover, every new
invention has to undergo the test of passage of time, so knowledge maps will also have to
answer a number of questions before being accepted.

 1. Potential of knowledge maps. Knowledge maps have immense potential to change,
transform, or modify the way in which software development is currently per-
ceived and felt. By using a knowledge map, it is possible to generate stable applica-
tions in double-quick time. However, the concept of knowledge map is still in its
infant stages of development and considerable work needs to be carried out for
knowledge maps to replace the existing traditional methodologies. As a result, one
of the issues that need immediate attention is how to implement knowledge maps
to achieve a stable core. Another open issue is of verifiability. How to be sure that
the knowledge map is stable and satisfies the need at hand? In other words, how to
build knowledge maps that are correct by construction, that is, are stable, and meet
the customer’s requirements? How can we carry out testing of the knowledge map?
Knowledge maps will definitely face some form of competition or even challenge,
because traditional approaches have been in vogue for quite some time.

 2. Concurrent-oriented software development versus existing software development
models. Contrast concurrent-oriented software development with other existing
software development models and methodologies, such as incremental development
model, spiral model, aspect-oriented programming, and iterative process, based on
quantitative criteria, such as time, cost, and number of recurrence (applications),
and qualitative criteria, such as scalability, reusability, flexibility, accuracy, com-
pleteness, applicability, and maintainability.

 3. The utilization of concurrent-oriented software development as dynamic analysis.
Using a knowledge map, an infinite number of diverse applications can be created
within a fraction of time. The knowledge map serves as the main building block
for the applications. One needs to plug the IOs to the knowledge map with the help
of hooks and existing design patterns. Therefore, we can easily generate sophisti-
cated applications very quickly and perform dynamic analysis of each of the gener-
ated applications on top of the same core. This will ultimately lead to comparative
studies and real-time data about dynamic analysis and allow the developers and
users of the applications to give concrete results based on real running systems or
applications.

 4. Goals for requirements formation and true problem understanding. How to use
goals for requirements formation and true problem understanding? Goals that cor-
respond to SAPs and impose an accurate list of requirements which are based
on problem formation contribute to a true problem understanding. The main idea
behind the goals or SAPs is to analyze the overall problem under question, in
terms of its EBTs and the BOs, mainly with the objective of increased stability and
broader reuse. By deeply analyzing the problem in terms of its EBTs and the BOs,
the consequent pattern will form the core knowledge of the problem. The ultimate
goal of this new concept is enduring stability. Accordingly, these stable patterns
could be easily comprehended and reused to model the same underlying problem,
under any given situation and context. Data must be collected in relation to how

18 Software Patterns, Knowledge Maps, and Domain Analysis

accurately the problem is spaced and how much is understood by all the people
involved in software development and management.

 5. Business objects or capabilities—Software design base or ultimate solution space.
By applying stability model concepts to design patterns, we hereby propose the
new concept of SDPs, or BOs. The important idea behind SDPs is to design an
enduring solution to the problem under consideration, in terms of its EBTs and the
BOs, with the main goal of increased stability and broader reuse. By developing
the problem solution in terms of its EBTs and the BOs, the resulting pattern could
easily be reused to solve the same problem under any given context and domain.
Data sets must be collected in relation to how accurate and complete the solution
space is to all the people involved in software development and management.

 6. EBTs + BOs = software architectures or mapping any software architecture
to model-driven architectures. The rapid growth of emerging technology cou-
pled with tightened or constricted software development time and production
cost constraints has imposed and exerted tremendous pressure on and an intense
desire for software enterprises and firms to design and create new and innovative
designs to respond to a rapidly changing business environment. Enterprises must
heavily invest in building stable architectures that are readily adapted in many
different ways to meet the new challenges and risks. These kinds of architectures
are called architectures on demand, as they can be adapted accordingly to meet
the future requirements and changes in the system. The primary focus of this
issue is to show how software stability concepts are used to develop on-demand
architectures. This issue also focuses on three key aspects: (1) EBTs or business
goals and transformations, which we call SAPs; (2) BOs or business process
design, which we call SDPs; and (3) IOs or application objects. Both EBTs and
BOs form a stable core and thus provide architectures on demand for any domain.
We will call these architectures as stable architectural patterns. Data must be
collected in relation to how often and how many architectures on demand can be
generated per knowledge map. EBTs and BOs are stable software patterns, and
a combination of EBTs and BOs forms the core knowledge for a given domain.
The core knowledge for any domain is called a stable architectural pattern
that you can extend and adapt through the application of hooks. The quality of
stable architectural patterns creates competitive advantages through differentia-
tion and productivity. It will also integrate partners in order to increase adaptive
capabilities.

 7. Pitfalls of traditional pattern languages. Software patterns, along with tradi-
tional pattern languages, have attracted software developers for more than a
decade or so. In fact, developers have visualized software patterns and exist-
ing pattern languages as promising techniques that simplify and speed up
their software development process (Appleton 1997; Coplien 1996; Gamma
et al. 1995; Schmidt, Fayad, and Johnson 1996). However, developing a set
of robust software patterns and traditional pattern languages is yet to reach
expected ease—as it should have—when dealing with determined software
problems, such as pattern composition and stability; instead, developers con-
struct models that lack some essential qualities that diminish the quality of
the system rather than improve it (Wu, Hamza, and Fayad 2003).

19An Overview of Knowledge Maps

 Our innovative response to the aforementioned critical issues needs further
advanced research and discussions on the pitfalls of traditional pattern languages;
we provide solutions for each one of these pitfalls.

 8. EBTs + BOs = Unified engine for any domain. This method leads to a very
highly reusable and unified software engine (USE) technology for develop-
ing service and/or production systems, which are called service engines and
 production engines. USEs for any domain are an open research issue and
topic, because building such engines is not an easy exercise, specifically, when
 several conflicting factors can undermine or impede their success, such as cost,
time, and lack of systematic approaches. The main difference between soft-
ware developments (business as usual), application and enterprise frameworks,
and the USEs also needs further research and development in a comprehensive
manner.

REVIEW QUESTIONS

 1. What is a knowledge map?
 2. What is a traditional pattern language?
 3. What are the major differences between knowledge maps and pattern languages?
 4. Knowledge map = stable pattern language. Explain.
 5. Knowledge map methodology is equivalent to concurrent software development

model. Explain.
 6. Into how many types can you classify the classes of a system by using software

stability concept? Name them.
 7. Compare EBTs, BOs, and IOs.
 8. Knowledge map is based on the concept of ________________ .
 9. Is the following statement true or false? Software stability concept results in stable

patterns.
 10. Is the following statement true or false? Core knowledge of any domain is repre-

sented by EBTs and IOs.
 11. Into how many concerns can you stratify knowledge maps? Describe each concern

briefly.
 12. __________________ is the mantra used to create knowledge maps.
 13. What are hooks?
 14. What are the advantages of using hooks?
 15. Match the following:

a. Goals – Development scenarios
b. Capabilities – Knowledge phase
c. IOs – Analysis phase
d. EBTs + BOs – Deployment
e. Quality factors – Design phase

 16. Is the following statement true or false? Traditional pattern languages and tradi-
tional approaches are driven by software stability concepts.

 17. Describe knowledge map methodology in brief.
 18. List the advantages of knowledge map methodology.
 19. What is meant by Patterns–BO?

20 Software Patterns, Knowledge Maps, and Domain Analysis

 20. Specify against each of the traits listed below, whether they belong to knowledge
map or pattern languages:

 a. Lack of systematic approach
 b. Result in classification of patterns according to their rationale
 c. Can be traced
 d. Difficult to maintain
 e. Hard to use
 f. Does not distinguish between direct and remote knowledge
 21. Is the following statement true or false? BOs are usually conceptual.
 22. Is the following statement true or false? IOs are application independent.
 23. Is the following statement true or false? EBTs represent the ultimate goal of the system.
 24. Is the following statement true or false? IOs are stable over a period of time.
 25. Is the following statement true or false? BOs are externally stable and internally

adaptable.
 26. Is the following statement true or false? EBTs are stable.
 27. Is the following statement true or false? BOs represent the capabilities needed to

satisfy the goal of the system.
 28. Is the following statement true or false? BOs are always tangible.
 29. Infinite number of applications can be built by the use of knowledge map. Is this

statement correct? Explain.
 30. Stable analysis pattern is represented by _____________________.
 31. Is the following statement true or false? BOs represent stable architectural patterns.
 32. __________________________ can be formed by using knowledge maps.
 33. Is the following statement true or false? IOs result in third-party architectures.

EXERCISES

 1. Name, list, categorize, and describe all the patterns of the traditional patterns
language of sample requirements D1, titled “Ocean Resources Management
System.” (see Appendix D)

 2. Name, list, categorize, and describe all the patterns of the traditional patterns lan-
guage of sample requirements D2, titled “Dengue Fever Prevention and Outbreak
Management System.” (see Appendix D)

 3. Name, list, categorize, and describe all the patterns of the traditional patterns
 language of sample requirements D3, titled “Organizing Cricket World Cup.” (see
Appendix D)

 4. Name, list, categorize, and describe all the patterns of the traditional patterns lan-
guage of sample requirements D4, titled “Pollution Management.” (see Appendix D)

PROJECTS

 1. Show the relationships between all the categories that are based on domain names
of all of the patterns, within the pattern language of Exercise 1. List all the patterns
per category.

 2. Show the relationships between all the categories that are based on domain names
of all of the patterns, within the pattern language of Exercise 2. List all the patterns
per category.

21An Overview of Knowledge Maps

 3. Show the relationships between all the categories that are based on domain names
of all of the patterns, within the pattern language of Exercise 3. List all the patterns
per category.

 4. Show the relationships between all the categories that are based on domain names
of all of the patterns, within the pattern language of Exercise 4. List all the patterns
per category.

 5. Patterns that appear in the above-mentioned four projects are common patterns. List
all the common patterns, specify the pattern type (analysis, design, process, etc.),
and describe them. Document three of the common patterns using Appendix A and
the pattern documentation template.

SIDEBAR 1.1 Traditional Pattern Languages

According to Wikipedia, the free online encyclopedia (Alexander 1977, 1979):
A pattern language is a structured method of describing better design practices within a field

of expertise or domain.
It is essentially characterized by the following:

 1. Noticing and naming common problems in a field of interest
 2. Describing the key characteristics of effective solutions for meeting some stated goals
 3. Helping a designer migrate from one problem to another in a logical way
 4. Allowing different paths through the design processes

Christopher Alexander, an architect and author, coined the term pattern language. He used it to
refer to common problems of civil and architectural designs, from how cities and towns should be
laid out, to where windows should be placed in a room. The main idea was initially popularized in
his book A Pattern Language (Alexander 1977).

A Pattern Language consists of a cascade or hierarchy of parts, all linked together by patterns
that solve generic recurring problems associated with the parts. Each pattern has a definite title and
collectively the titles form a language for design (Hamza and Fayad 2002). In a pattern language,
 individual patterns are not isolated. The structure of the language is composed of the links from larger
patterns to smaller patterns, together creating a network. Thus, for a single pattern to work completely,
it must not only be followed through by implementing the smaller patterns that complete it, it must, if
possible, be connected to certain larger patterns (Coplien and Schmidt 1995; Khadpe 2005).

REFERENCES

Alexander, C. A Pattern Language: Towns, Buildings, Construction. New York, NY: Oxford University
Press, 1977.

Alexander, C. The Timeless Way of Building. New York, NY: Oxford University Press, 1979.
Coplien, J. O., and D. C. Schmidt (eds.). Pattern Languages of Program Design. Addison-Wesley, 1995.
Hamza, H., and M. E. Fayad. “A Pattern Language for Building Stable Analysis Patterns.” Paper presented at

the 9th Pattern Languages of Programs Conference, Monticello, IL, September 8–12, 2002.
Khadpe, P. “Pattern Language for Data Mining.” Master’s Thesis Report, San Jose State University, San Jose,

CA, May 2005.

SIDEBAR 1.2 Hooks or Extension Points

Hooks are the important and critical extension points that are used as a means to extend, augment,
activate, modify, replace, and add new functionality (Fayad, Schmidt, and Johnson; Froehlich
et al. 1999), to adapt, customize, personalize, trace, and/or integrate knowledge by application

22 Software Patterns, Knowledge Maps, and Domain Analysis

developers, and to design and produce brand new applications from the core knowledge or
 knowledge map (Shtivastava 2005). Systems developed based on the software stable model (SSM)
are highly stable and robust, and they could easily accommodate new needs and requirements.
This is possible as software stability stratifies classes of the system into three layers (Figure 1.4).

EBTs. These contain classes that present the enduring and basic knowledge of the underlying
industry or business domain. These are extremely stable and enduring, as they represent
the goals of the system to be developed (Shtivastava 2005).

BOs. These contain classes that map the EBTs of the system into more concrete objects,
which serve as capabilities required to achieve the goals of the system. These BOs imple-
ment generic functionality, which will be needed by all the applications of the domain
(Shtivastava 2005).

IOs. These contain classes that map the BOs of the system into application-specific
 components. The IOs implement application-specific functionality (Shtivastava 2005).

A pattern designed using SSM system could be further extended, enhanced, or customized to build
multiple applications. If the changes or corrections are directly performed on the BOs, then the core
will no longer remain stable, while the rules of SSM would be intentionally violated. Hooks are used
for this sole purpose. They take the load of modifying the BOs to achieve application-specific behav-
iors through the same core, without actually making any significant changes in the core classes.

The extensions and customizations are specified through hook templates. Hooks interface
between the IOs and BOs (Figure 1.4). They provide a flexible mapping between BOs and IOs. IOs
for different applications could be easily associated with BOs through hooks. Figure 1.4 depicts
the hooks with the three layers of the software stability model.

IOs

IOs

Hooks

Hooks

Hooks

BOs

EBTsIOs Hooks IOs

FIGURE 1.4 Hooks in SSM architecture.

23An Overview of Knowledge Maps

In addition to stable analysis and design patterns, more than a 1000 existing patterns, such as the
Gang of Four, Java design patterns, and Siemens group patterns, are implemented as essential parts
of the hook facility. The hook is described and implemented through several templates: a base and
several specialized templates, such as customization, adaptation, and integration templates. Each
hook description is written and codified in a specific format made up of base template, and as many
as you wish of specialized template and/or existing software patterns. Here, the application developers
will be able at change or tweak the given application at ease and within the shortest possible time
through the application of hook or create a new application (Fayad, Schmidt, and Johnson 1999;
Froehlich et al. 1997). The hook template(s) serve as an enduring guide to the application
 developers by using the knowledge map. The hook template helps and assists in organizing the
available information in a precise and less ambiguous way (Shtivastava 2005).

REFERENCES

Fayad, M. E., D. C. Schmidt, and R. E. Johnson. Building Application Frameworks: Object-Oriented
Foundations of Framework Design. New York, NY: Wiley, 1999.

Froehlich, G., H. J. Hoover, L. Liu, and P. Sorenson. “Hooking into Object-Oriented Application
Frameworks.” Proceedings of the International Conference on Software Engineering, Boston, MA,
May 1997, 491–501.

Shtivastava, P. The Hook Facility, MS Project Report, San Jose State University, San Jose, CA, May 2005.

SIDEBAR 1.3 Hook Engine

Hook engine is a special web-based engine, while hook facility is an enduring tool that facilitates
knowledge map hooks. The engine or tool maintains a rich repository of the hook templates and
existing software patterns, defined specially for the core knowledge of the applications driven
from the entire knowledge map. The engine or tool also supports addition, modification, and
deletion of hook templates in the given repository. Each hook template specifies a list of changes
or editions needed for the core knowledge classes known as BOs. These perceived changes
or modifications are specified by using hook grammar that has specific statements to modify/
replace existing behavior and add new behavior to adapt, change, customize, integrate, trace,
and configure the core BOs. There are essential statements to add new properties and operations,
override, extend, and copy methods, as shown in the base hook template in Figure 1.5.

The tool also understands hook grammar syntax, which uses Enhanced Backus–Naur Form
(EBNF) syntax (Niklaus 1982; Peter 1960; Scowen 1993). It parses each change statement
individually and automates the process of applying the changes specified in the statement.
Additional statements have been integrated into the hook grammar to address the need of keeping
a flexible mapping between BOs and IOs. This enhancement has added more value and additional
 functionalities to the hook concept and increased/enhanced its applicability. By using the engine
or tool and application-specific functionality, one can easily extend and enhance the applications
to the core knowledge and it is possible to develop new applications in no time. The engine or
tool has an intuitive and useful user interface that makes it very easy and straightforward to use.
The tool requires minimal configuration to be put to use. Figure 1.5 shows the details of the base
template of the hook on the right side and many options on the left side of the screen.

Change statements. Figure 1.6 shows the change section of the template in a separate tab.
Creating new hook template. Clicking on Create button brings up an empty form to help

create a new hook template. The Save button should be clicked to save the new template
as shown in Figure 1.7.

Editing existing templates. One can make changes to the template in the repository by
selecting it from the list and clicking on the Edit button. The Save button helps you to
save the ensuing changes as shown in Figure 1.8.

http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F253228.253432

24 Software Patterns, Knowledge Maps, and Domain Analysis

FIGURE 1.6 The change statement screen.

FIGURE 1.5 The hook base template.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b17771-3&iName=master.img-010.jpg&w=336&h=255
http://www.crcnetbase.com/action/showImage?doi=10.1201/b17771-3&iName=master.img-011.jpg&w=335&h=240

25An Overview of Knowledge Maps

FIGURE 1.7 Creating new hook templates.

FIGURE 1.8 Editing existing templates.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b17771-3&iName=master.img-012.jpg&w=335&h=252
http://www.crcnetbase.com/action/showImage?doi=10.1201/b17771-3&iName=master.img-013.jpg&w=335&h=252

26 Software Patterns, Knowledge Maps, and Domain Analysis

Deleting existing hooks. One can delete unused templates from the repository by selecting it
in the list and clicking the Delete button.

Applying changes in hook template. The changes or modifications specified in the change
section of the hook template may be applied by selecting or creating the template
 satisfying the requirement and hitting the Apply Hook button. The text area component
shows the result of execution.

The engine or tool executes each change statement individually and the text area depicts the
results (Figure 1.9).

WHAT ARE THE FEATURES OF THE HOOK?

The hook engine or the hook facility tool has the following useful features:

• The tool supports the creation of hook templates and it allows editing and deletion of
templates.

• A registry maintains the repository of hook templates.
• The changes or transformations in the hook template are written by using hook

 grammar. The tool parses the changes or modifications according to the hook grammar
rules.

• The engine or tool generates code corresponding to the changes specified in the hook
template.

• The engine or tool guides the users through the process of applying the changes.
• The engine or tool asks the users for inputs required to apply the change statements.
• The engine or tool keeps the users well informed through appropriate messages,

while applying these changes.

FIGURE 1.9 Creating new hook templates—execution sequence.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b17771-3&iName=master.img-014.jpg&w=335&h=252

27An Overview of Knowledge Maps

• The engine or tool also allows the users to search the hook.
• The engine or tool has a number of special purpose hooks, such as adaptability,

 customization, traceability, accessibility, personalization, extensibility, integration,
and configuration abilities.

REFERENCES

Niklaus, W. Programming in Modula-2. Berlin, Heidelberg: Springer, 1982.
Peter, N. ed. “Revised Report on the Algorithmic Language ALGOL 60.” Communications of the ACM 3,

no. 5 (1960): 299–314.
Scowen, R. S. Extended BNF—A generic base standard. In Proceedings of the Software Engineering

Standards Symposium, 30 August, 1993.

http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F367236.367262

29

2 Abstraction
Knowledge Maps,
Stability, and Patterns

Abstraction is real, probably more real than nature.

Josef Albers, 2008
New York Times

2.1 INTRODUCTION

Chapter 1 briefly discussed the knowledge, or skills required, to design, format, and create
highly innovative knowledge maps. Important building blocks were described in that chap-
ter, along with an approach that systematically integrates them to develop better and mean-
ingful software products. This chapter provides additional information, details, and tidbits
of useful advice to support and buttress the process of creation of knowledge maps and thus
ease the process of creating diverse software products. In other words, the chapter’s ratio-
nale and scope is to provide a profound exploration of the significant elements that compose
our methodology in the creation of knowledge maps.

The main purpose of this exploration is to uncover the basic rules of the game, those golden
rules software creators must follow and obey, in order to ease and simplify their software
development activities. This set of golden rules is represented by knowledge core sets or
patterns. These core sets are allocated into a knowledge map on the basis of their purpose or
tasks regarding software development, for example, analysis. There are five areas of inter-
est in knowledge maps: analysis concerns, design concerns, knowledge concerns, develop-
ment concerns (application concerns), and deployment concerns. Each one of these concerns
isolates the core sets that are significant to the domain in question and suppresses ones that
are unimportant or too application specific. For instance, analysis concerns deal with the
elicitation and understanding of requirements (the problem space), whereas design concerns
concentrate on recipes for handling defined requirements (the solution space). Knowledge
concerns represent the experience achieved by creating synergies between analysis concerns
and design concerns; they also convey knowledge of architectural or styles. Development
concerns deal with the formation of the contexts to be used in the implementation of knowl-
edge maps. Deployment concerns deal mainly with the quality factors that must be fulfilled
when deploying the knowledge maps, such as performance, scalability, and adaptability.

The intricate process of extracting the core sets pertinent to the domain under discourse
and omitting the unimportant ones is nothing different from the traditional abstraction
process. Abstraction refers to the process of extracting the significant details of an entity,
or group of entities, and suppressing the unimportant ones (Berard n.d.). In knowledge
maps, this abstraction process, along with its enclosed levels and participants (core sets), is

30 Software Patterns, Knowledge Maps, and Domain Analysis

restrained by certain rules or boundaries; this restriction is imposed to help software
 practitioners better understand and use knowledge maps and avoid any misconception or
wrong examination of the core sets pertinent to the domain addressed.

Although creating knowledge maps may seem to involve complex and tedious processes,
as well as an extensive learning curve, actually, it is not so. To systematically describe the
process of creating knowledge maps, along with the set of rules that guides their creation,
we need to describe first their elements, or building blocks, and then proceed with the
actual process of knowledge maps creation.

A knowledge map consists of a series of goals, capabilities, and transient aspects that
are insightfully woven to specify the groundwork for any domain of interest. Goals are the
essential concerns that determine the rationale of a problem of interest. Capabilities are
twofold here: they are defined as the capabilities to achieve the goals, and they encapsu-
late abstraction processes that are internally enduring and externally adaptable, via hooks
(see Sidebars 1.2 and 1.3; Fayad, Hamza, and Sanchez 2005). Transient aspects are those
requirement-centric classes that create the context for goals and capabilities as a whole unit.

Before examining the elements that are pertinent to knowledge maps, we need to specifi-
cally describe the abstraction process that is used to represent and define the elements of
knowledge maps. After that, we will be able to better understand why these elements are
so important and critical for knowledge maps. To help better understanding of the process
of creating and understanding knowledge maps, we will also provide an intuitive visual
representation of knowledge maps in subsequent chapters. This visual representation will
allow us to understand the underlying language that helps the integration of elements in
knowledge maps.

2.2 LEVELS OF ABSTRACTION IN KNOWLEDGE MAPS

Abstraction is a complex and tedious concept that leads users to increased confusion and
antagonism, because it can be used interchangeably, as either a process or an entity. As a pro-
cess, abstraction concentrates on the isolation of the significant aspects from a domain, all the
while overlooking the less important ones. As an entity, abstraction takes a different meaning
altogether: the representation of a significant part of the aspect of interest via a view, a model,
or some sort of focused representation (Berard n.d.). On the one hand, a model is a simplified
construct of a complex entity, which is used to enable understanding of the relevant elements
that form this entity of interest. On the other hand, a view is merely a simplified representa-
tion of a model. In other words, both model and view represent the outcomes of an abstraction
process, as well as representing the different levels of abstraction a problem can take.

Representation of knowledge maps steadfastly relies on the application of certain levels
or degrees of abstraction, which drives the conception of its building blocks. These levels
of abstraction vary from higher levels, where practitioners are involved and aware of one
or more aspects that represent the purpose of the domain of interest, to lower levels, where
users take abstraction in knowledge maps one step further, by investigating the core set
itself as a domain of interest and its representation as a view or model. The application of
these levels of abstraction can go on forever, which has the potential to result in a set of
details that does not have anything to do with the context in which the knowledge map was
created. To prevent the possible occurrence of these irrelevant aspects, we propose that each
of the elements pertinent to the knowledge maps be exploited by using two levels of abstrac-
tion: atomic aspects and nonatomic aspects.

31Abstraction

Atomic aspects are the business-centric classes that define the constructs of the problem
core. They are the same classes used in any of the traditional object-oriented class diagrams
(Hamza and Fayad 2003), but with a significant quantum of business focus embedded in
them. These classes are tagged by using two stereotypes: enduring business theme (EBT)
and business object (BO). Nonatomic aspects are business-centric patterns that present a
second level of abstraction. This second level of abstraction consists of other classes and, in
some rare cases, other patterns as well. The tag names used to represent nonatomic aspects
are Pattern-EBT and Pattern-BO. The next section will provide details about the elements
that these tags represent.

2.3 MAPPING ELEMENTS IN KNOWLEDGE MAPS TO
SOFTWARE STABILITY CONCEPTS AND PATTERNS

Before delving deeper into the underlying thesis of knowledge maps, we need to describe
the tight relationship between the following elements: goals, capabilities, development sce-
narios, deployment, and software stability concepts and patterns. Table 2.1 represents an
overview of this relationship.

In the world of knowledge maps, everything is classified in terms of goals, capabili-
ties, and transient aspects. These aspects, however, are directly mapped into other fields
of study, as in the case of software stability concepts and patterns. In Table 2.1, the goals
of knowledge maps are directly mapped to software stability concepts such as EBTs,
because they represent a domain-independent knowledge that contains enduring con-
tracts or rules under which the concept is applied. Because of the enduring and reusable
quality of goals and their conceptual nature, goals can also be directly mapped into the
domain of patterns as stable analysis patterns. The same direct mapping process occurs
with capabilities, which are mapped to software stability concepts such as BOs, because
they also are enduring and reusable and their rationale is the achievement of goals.
Due to their embedded properties, they also form the basis for pattern representation.

TABLE 2.1
Mapping of Elements in Knowledge Maps
Knowledge Maps Stability Patterns

Goals EBTs Stable analysis patterns
Capabilities to achieve each goal BOs Stable design patterns
Synergy of goals and capabilities EBTs + BOs Knowledge maps and many stable

architectural patterns
Development scenario IOs Process patterns
Deployment EBTs + BOs Stable analysis patterns, stable design

patterns, and stable architectural patterns
Dynamic analysis/the business
language

Stability model/
one-shot software
development

Building systems of patterns

BOs, business objects; EBTs, enduring business themes; IOs, industrial objects.

32 Software Patterns, Knowledge Maps, and Domain Analysis

Therefore, in the world of patterns, these BOs are known as stable design patterns. Goals
and capabilities depend on each other: a goal must have one or more capabilities associ-
ated with it and a capability must have a well-defined goal to fulfill. When we have two
or more goals, along with their combined capabilities, a knowledge map essentially takes
shape. Knowledge maps are directly mapped in software stability concepts as the syn-
ergy between EBTs and BOs. Because knowledge maps consist of goals and capabilities
and their nature is enduring and reusable, the overall outcome of their association in the
world of patterns is stable architectural patterns. Knowledge maps convey architectural
styles that adapt or acclimatize to new requirements or contexts via extension points.
These extension points tell us not only how knowledge maps will be used here but also
what the context of deployment really is (which is possible by means of hooking a set of
transient classes to them). Due to the volatile and changing nature of transient classes,
they are mapped as industrial objects in software stability concepts. In the world of pat-
terns, they are also known as process patterns.

One important point is that regardless of the different names attributed to these concepts,
their characteristics, values, purposes, and behavior remain almost the same throughout
their use. Therefore, these terms will be interchangeably used in the book. The rationale
of this nomenclature is to bridge the existing communication gap between technical and
business people by use of a shared language. This means that a nontechnical manager,
for example, can understand or exercise control over the processes in place relating to a
particular software product the same way a developer can, because both speak the same
language.

In the world of software stability concepts, the enduring quality and reusability of
EBTs and BOs are determined mainly by examining the underlying knowledge, some-
times overlooked or assumed by practitioners, mainly found in business issues and rules.
Thus, EBTs and BOs represent a set of norms and rules on how to understand and solve
a set of recurrent problems that require immediate attention from practitioners. From
a knowledge map’s perspective, goals and capabilities share almost the same vision as
EBTs and BOs. They are all business-centric and within-context aspects that provide a
retrospective of a domain’s rationale. The process of identifying the EBTs and the BOs of
a problem can be explored in detail in Fayad (2002a, 2002b), Fayad and Altman (2001),
and Hamza and Fayad (2003).

The following sections describe one important element of knowledge maps: goals. One’s
understanding of the basic definition of goals is critical for the construction of the knowledge
map of the selected domain, because goals specify the fundamental themes that drive the
understanding of the selected domain. Therefore, practitioners and developers must pay
great attention to them when building their own environments or knowledge maps.

2.4 THE SOFTWARE STABILITY MODEL

The stability model (Fayad 2002b) represents an innovative method of designing,
 creating, and modeling any system, including software systems. It is an extension of
object-oriented software design methodology, but it has its own set of suggested rules,
format guidelines, procedures, and several heuristics to arrive at a more advanced and
complex object- oriented software system. Designing and building high-quality software
systems has been the focus of immense interest among the proponents and designers
of software systems. One of the most desirable quality attributes, yet the most difficult

33Abstraction

to achieve, is stability. A stable basis in software design technology provides us a solid
foundation for building high-quality software systems.

The overall goal is to achieve innovative criteria, such as the following:

• Stability criteria. Objects meeting this criterion will be stable and robust over time
and will not need incorporation of any changes.

• Reusability criteria. The majority of the objects meeting this criterion can be
reused for a huge number of applications.

• Maintainability criteria. Maintainability is an object-oriented valid tool in stabil-
ity model applications, because the objects will rarely need of maintenance and
updates.

• Wide-applicability criteria. Patterns meeting this criterion have wide recurrence
and represent a base block for modeling in any context with an appropriate level of
flexibility, so that the developer can apply the pattern to the desired application. This
also includes generality criteria, where the objects become domain- independent
and can be applicable to any context regardless of the domain, according to which
the context of any pattern should be general enough to form a base for developing
any context in any application.

2.4.1 Goals

From the standpoint of knowledge maps, goals are business-centric themes that provide
an enduring aspects of a domain’s rationale. They also represent the essential themes of
any domain, themes that are free of irrelevant or insignificant details not pertinent to the
domain under consideration. For example, the concept of friendship is a universal theme
applicable across different cultures and beliefs. Basically, it is not bound to any one of
the possible contexts of applicability, because its meaning is pervasive and universal.

Generally speaking, goals are difficult to discover, because they are basically implicit
themes that are hidden within the complexity and lack of understanding of the problem of
interest. For example, imagine being involved in a project that requires the development of
a scalable biometric system for a top-security company. As a developer, you will automati-
cally suggest certain tangible objects that you think will represent the correct solution for
the desired system. These tangible objects may be the following: Suspect, SystemOperator,
FacialScanning, FaceImage, Fingerprints, RetinalPattern, IrisPattern, DNASequence,
SuspectDetection, CameraSensor, FacialShape, and Database. These tangible objects are
specific to a particular context; therefore, they cannot be the main focus of your solution,
since they will change in the short or long term, because of the introduction of new tech-
nologies and subsequent changes in needs and requirements. Thus, even if you include
them, any investment in software product containing these tangible objects will be lost.

In order to overcome these unique problems, we need to start thinking in terms of
goals, because it is their pervasive nature that will help software products survive con-
stant changes or modifications in requirements or needs. Following the above example,
we will try to tackle the same problem, but focus on the main goals of the problem. Let us
first define the area of interest, that is, biometrics. Biometrics is a science that measures
the physical or behavioral features of an entity. This definition in conjunction with the
question what is biometrics for will assist us in the process of defining one of biometrics
main goals. This first goal will be branding (Sanchez 2005). Branding is a construct that

34 Software Patterns, Knowledge Maps, and Domain Analysis

readily creates a close association between an entity and its brands, by forming a unique
 identity that differentiates this entity from its peers (Sanchez 2005). This branding’s strange
 behavioral characteristics strongly complement the use of biometrics. Therefore, if you
want to solve the existing project successfully, you must try to address the branding goal
in your solution. Branding is a conceptual model or solution and consists of the following
elements: Branding type; AnyEntity, as the handler for any type of entities; AnyBrand, to
deal with any type of brand; AnyMechanism, to control all possible mechanisms involved
in branding; AnyIdentity, to represent the sum of all essential qualities that will be used by
a brand; and AnyParty, which can be the branding practitioner and the spectator.

In summary, a goal mainly answers the question, What is the concept used for? However,
a goal does not indicate how the concept can perform this operation; this task is handled
by the capabilities of the concept. Goals and capabilities depend on each other and provide
the foundation for an unimaginable set of architectures. Therefore, before getting into the
subjects of how goals are associated with capabilities, we need to define exactly what capa-
bilities are in a real sense.

2.4.2 Capabilities

A goal without a capability would not be useful or worthwhile. We will use these rules
during the creation of knowledge maps. Capabilities are the business-centric workhorses
that support the realization or fulfillment of a goal. Like goals, capabilities are enduring
artifacts, but with a minor difference: they are externally adaptable, via hooks (Fayad,
Hamza, and Sanchez 2005). Their adaptable nature can be determined only by examining
the relationships between the underlying business and direct application and by applying
the right hooking code. First, these relationships can be inheritance, aggregation, or asso-
ciations. Second, the hooking code is solely responsible for weaving business and industry
together, rather than focusing on the generalization–specialization principle. An important
point here is that BOs are not directly adapted by the industry (transient aspects); in fact,
they are not. Rather, hooks create an environment, where capabilities are able to attach any
transient aspect without changing the internal structure of the capabilities and without a bit
of chance of a collapse.

Capabilities are less difficult to find compared to the task of determining the underlying
goals of a domain, because capabilities tend to represent any knowledge skill, process, or
ability required for the execution of a specified course of action or work flow. Answering a
few simple questions helps in identifying capabilities. For instance, how can we approach
the underlying goal? What do we need to fulfill it? Who is it that is going to use it? As an
example, imagine that the goal of interest is sampling (Sanchez, Lai, and Fayad 2003). By
asking the above important questions, we will arrive at the following results: How can we
approach the underlying goal? SamplingEntity, SamplingType, Applicability. What do we
need to fulfill it? AnyMechanism, AnyCriteria, AnyMedia. Who is it that is going to use
it? AnyParty.

In the methodology of knowledge maps, capabilities are adaptive concerns that ensure a
reduced cycle time for coping with a vast number of transient requirements and handling of
other goals and capabilities. This feature enables both on-demand adaptations and flexibil-
ity to transient aspects and on-demand scalability of the environment to expand the abili-
ties needed to achieve a goal. The above behavior of capabilities is at the end introduced as
faster return of investment, while still maintaining a high-quality solution.

35Abstraction

In essence, then, the domain capabilities are important aspects that attempt to encapsu-
late the business processes and categories of a business-centric theme or goal. When these
capabilities are directly associated and linked with their goals, they form a synergetic force
that would represent the groundwork for the understanding of any domain.

2.4.3 KnowledGe Maps: ForMation and stable arChiteCtural patterns

In Chapter 1, we provided a visual representation of knowledge maps to give an idea of
how a knowledge map is structured. From the point of view of a positioning level, that rep-
resentation would be just enough; however, from the point of view of a research level—the
main objective of this work—such a representation is not simply enough. Therefore, we
will provide a more technical representation of knowledge maps. Figure 2.1 shows such a
representation.

As we can observe here, knowledge maps reach far beyond an organized visual represen-
tation. Underneath their images and symbols lie a set of well-elaborated pieces of code (i.e.,
Java code) that determines how goals, capabilities, development scenarios, and so on are
developed in terms of Java classes. In Chapter 10, we will go through in a detailed manner
how these building blocks are implemented in Java. However, for now, an important thing
to remember is that for academic purposes, we have used Java as the target programming
language, because it is a fully object-oriented programming language. Software practitio-
ners, however, can also use other programming languages, such as C#, VB.NET, C++, and
AspectJ, if they so desire.

The creation of knowledge maps requires considerable advanced skills and knowledge
and steps beyond the identification of tangible aspects that are bound to specific contexts
of applicability. It also requires a systematic capture and full understanding of the domain
in which it resides. This includes describing the domain not regarding its tangible side but
regarding its conceptual side as well as describing its underlying affairs or essentials and
the elements required to fulfill these underlying affairs.

Knowledge maps

Goals (EBTs/specification classes)
Examples: synchronization, caching, security, recording

Capabilities (BOs/business classes)
Examples: AnyLog, AnyParty, AnyService, AnyMedia, StorageSchema

Knowledge concerns
Examples: Stable architecture, MVM, stable renting system

Hook facility
Examples: activate/deactivate/replace/

remove/add

Development scenarios
Examples: DNA Sequence, OracleDB,

Computer, RetinaScanning,
ClusterSampling

Deployment (quality factors)
Examples: Traceability, Performance, Automation, Stability, Recording

FIGURE 2.1 The knowledge maps representation.

36 Software Patterns, Knowledge Maps, and Domain Analysis

The process consists of seven important steps:

 1. Domain knowledge partitioning. This is an interactive process, where we will
decompose the domain or domain into distinct levels of abstraction. By doing this,
we can deal with domain knowledge with ease.

 2. Single domain focus. This step concentrates on selecting a subdomain (a product of
the domain partitioning) of interest at a certain time (this subdomain will be repre-
sented as a knowledge map). Then, we will extract the goals that drive the rationale
of this subdomain. This step will be executed with all the subdomains generated
after the partitioning of the main domain.

 3. Place goals. This step focuses especially on placing the extracted goals into the
goals section of the knowledge map (i.e., three to five goals per knowledge map).

 4. Identify capabilities associated with goals. The main focus of this step is to iden-
tify, filter, and evaluate the potential capabilities that will fulfill the goals that were
identified in our knowledge map.

 5. Connect capabilities to their goals. The sole purpose of this step is to specify how
the domain’s rationale will be fulfilled once and for all.

 6. Branch out to other knowledge maps. This step is twofold:
 a. Because the knowledge maps of partitioned subdomains may have overlapping

capabilities, we may connect two knowledge maps that were once part of the
same domain, before they had been partitioned.

 b. One domain’s partitioned subdomain can be associated with another domain’s
subdomain (remote knowledge). This remote knowledge serves as both a usage
indicator of our current domain knowledge and a position indicator of the sub-
domain that we are dealing with.

 7. Formation of knowledge maps. In this step, we establish a set of knowledge maps
that will realize the rationale of particular domains. The number of knowledge maps
will depend upon how deeply we can explore or partition our domain of interest.

The results of these steps will be a set of interrelated goals and capabilities that serve a
particular purpose. Figure 2.2 shows this process.

The next section will describe the development scenarios of knowledge maps and how
they are attached to the core formed by goals and capabilities.

2.4.4 developMent sCenarios

Development scenarios are determined by examining or inspecting how capabilities cope
with determined contexts, full of transient or industry details, by using extension points or
some sort of hooking code. Contexts tend to be very volatile, unstable, and fickle, because
they are driven by current business and cultural responses, not future ones. This reality
makes them unstable and replaceable.

Reference the example where we needed to develop an efficient biometric system.
Developers generally tend to overlook or ignore the sometimes off-content essence of the
problem and proceed with details of the problem with which they are quite familiar. This
prompt response ended up with certain objects that are internally and externally unstable:
FaceScanning, FaceImage, FacialShape, Database, Suspect, Operator, and so on. From the
standpoint of knowledge maps, these unstable aspects are known as industrial objects.

37Abstraction

The intricate process of finding these classes is common and straightforward. One
 special way is to follow traditional methods such as Abbot’s approach (Abbot 1983,
pp. 882–894) or other methods, where the target is the finding of verbs as candidate classes.
Another preferable way is to first examine the capabilities and directly map them to the
physical world (i.e., develop ontologies), then apply the just-mentioned software engineer-
ing methods, and find the objects that complement the mapped one from the capabilities.

This process may not sound earth shattering, but it is quite effective, especially when
dealing with a vast number of problems, each different in nature and composition, and a
reduced notion of the context under discourse exists. The effectiveness of this process lies
in the utilization of these transient aspects, via hooks, to complement the performance of

Process can continue until the analyst/
designer feels that he/she has covered all
possibilities

Domain knowledge partitioning

Knowledge maps formation

N knowledge maps

Interaction/union with remote knowledge maps

Branch out to other knowledge maps

– Connect capabilities to their goals
 (synergy between goals and capabilities)

Connect capabilities to their goals

Identify goals’ capabilities

– Place goals in the goals category
– Associate goals (goals and subgoals)

Place goals
(within knowledge map)

Specific perspective

Single domain focus

Single domain goals

– Identify goals: G1, G2, G3, etc.
– Filter goals
– Evaluate goals (verification and
 validation)

Focused capabilities

– Identify capabilities: C1, C2, C3, C4, etc.
– Filter capabilities
– Evaluate capabilities (verification and
 validation)

Fulfill domain’s rationale

– KM1, KM2, KM3, . . . KMn
– Find/place quality factors within KM
 (G6, G7, G8, etc.)
– Next: Generate N Soft. Arch.
 Find/attach IOs
 Shuffle goals/capabilities
 Create new knowledge

N partitions

– By knowledge usage applications
– By knowledge composition/decomposition
– As a domain’s foundation
– Intersection via goals: G1, G2, G3, etc.
– Intersection via capabilities
– Unions of goals and/or capabilities

1 2

3

4

5

6

7

Domain knowledge

Remote knowledge

FIGURE 2.2 The formation of knowledge maps.

38 Software Patterns, Knowledge Maps, and Domain Analysis

certain capabilities without changing the internal structure of these capabilities. Figure 2.3
illustrates the aforementioned process.

Figure 2.3 details the transitioning between goals and capabilities to the physical world.
Remember that adaptation to new contexts is done at the hook level and not at the capability
level. This allows us to change the transient aspects at will, without posing threats to the
capabilities integrity and enduring work flow.

The next section describes the last element in knowledge maps: deployment and verifica-
tion and validation concerns.

2.4.5 deployMent and veriFiCation and validation

Deployment and verification and validation focus mainly on the definition of robust knowl-
edge maps, by using a set of quality factors pertinent to the domain of interest. Providing
a definition of these robust knowledge maps is a special and unique challenge, especially
when dealing with domains with unique characteristics and behavior and a lack of complete
and systematic processes to support their creation.

The deployment and utilization of knowledge maps is intended to serve as a mirror of
the collaborative experience gained over the definition of goals and capabilities. This col-
laborative experience is used to define the quality factors governing the deployment of
knowledge maps.

These quality factors are identified and detected by following the same process that is used
to identify various goals. In fact, quality factors are also the goals of a domain, with a central
focus on how to use this domain (and how it should not be used) in larger or more specific
domains. These quality factors usually represent nonfunctional requirements, such as reliabil-
ity, performance, scalability, traceability, and usability. However, the definition of these quality

Infinite combinations:

Goals

Capabilities

G

G

G

G

G

C

C

C

H

C
C

C

C

HH
H

T

H

H

T T

Transient
aspects

T
T T

T

H H

Hooks: Allow capabilities to adapt to new
contexts without changing the internal
structure of capabilities. �ey provide
hooking code.

- Goals + capabilities
- Capabilities + capabilities

Goals + capabilities = Knowledge concerns
Knowledge concerns = Stable architecture patterns

FIGURE 2.3 The adaptation of capabilities via hooks.

39Abstraction

factors is highly dependent upon the domain or subject of interest. Due to the reusable and
domain-independent nature of goals and quality factors, some cases may already exist wherein
a few of the quality factors of one domain appear in another. But this is not always the case.

Clearly, to make knowledge easily accessible, complete, and accurate, we must explain or
note how the context is set and what the purpose of its use is. One unique and special way to
represent this usage notion is to identify quality factors and indicate which capabilities are
required to complete them (this also includes the attachment of a set of industrial objects).
Along with the synergy between goals and capabilities, quality factors and capabilities also
provide the basis for the generation of an unimaginable number of software architectures.
This particular behavior is noted in Figure 2.3. In the end, we would recommend applying
the same heuristics and assessment indicators used for goals identification and verification and
validation. As a result, we emerge here with a set of enduring software architectures that
comply with identified sets of quality factors of a domain of interest, along with the evalua-
tion and assessment methods that will guide its examination and validation process.

In general, the rationale of providing a deployment concern in the knowledge maps guar-
antees and ascertains the proper forming and usage of core sets and the enclosed patterns
pertinent to the domain of interest. In Chapters 9 through 13, we will expand and elaborate
upon the idea of knowledge maps, along with their concerns.

SUMMARY

This chapter described in detail the structure of knowledge maps and the distinct concerns
it develops. These concerns are analysis, design, knowledge, development or application,
and deployment. We implemented these objectives by outlining the essence of a knowledge
map in proper order.

OPEN RESEARCH ISSUES

The following are some of the open research issues that need to be examined and require
future work and experimentation:

 1. Using or employing knowledge maps to develop suitable knowledge representation
schemes for storing nonmonotonic knowledge or skills that allow computationally
efficient manipulation (see Sidebar 2.1).

 2. Using knowledge maps to generate core knowledge to be utilized in aspect-oriented
architectures and programming. Here, aspect-oriented programming is a program-
ming paradigm, and aspect-oriented software development is used to aid and assist
programmers in the separation of concerns, specifically cross-cutting concerns, as an
advance in modularization.

 3. Identifying a broader base for software reuse through knowledge maps and avoid-
ing having to reinvent the wheel all the time. We believe that knowledge maps
provide high levels of reuse in software development: analysis, design, documenta-
tion templates of architectural patterns, code, test procedures, test cases, manual
reports, and so on. We also believe that the success of any type of software system
or application largely depends on whether its capability may be reused in different
collaborative scenarios in broad application areas, without requiring significant
software redevelopment efforts or any overhead involvement.

40 Software Patterns, Knowledge Maps, and Domain Analysis

 4. Using the stability model as a way for knowledge elicitation is a process of
 obtaining knowledge from any source, for example, human and literature sources.
This can involve the use of reading, researching, interviews, observation, and pro-
tocol analysis.

 5. Utilize the concurrent software development model or knowledge map method-
ology as a way for developing ontologies of any application or domain, where
“ontology is a specification of a conceptualization” (Gruber 1992, 1993; see
Sidebar 2.2).

REVIEW QUESTIONS

 1. List the different concerns of interest in knowledge maps.
 2. What do the following topics deal with?
 a. Analysis concern
 b. Design concern
 c. Knowledge concern
 d. Development concern
 e. Deployment concern
 3. Is creating knowledge map an abstraction process? Explain.
 4. What aspects make up a knowledge map?
 5. Is the following statement true or false? Goals determine the rationale of the prob-

lem domain.
 6. What are the two important aspects of BOs (capabilities)?
 7. What is meant by transient aspects of a knowledge map?
 8. Explain how abstraction can be used, as either a process or an entity depending on

the context under consideration.
 9. What strategy is used in the knowledge map methodology to prevent occurrences

of irrelevant aspects?
 10. What is meant by atomic aspect of an element pertinent to a knowledge map?
 11. Define the nonatomic aspect in the context of knowledge maps.
 12. What stereotypes are used to tag atomic classes?
 13. Nonatomic aspects can be represented by using _______ tag names.
 14. Is the following statement true or false? Capability might not have a goal to

fulfill.
 15. What aspects of knowledge maps are mapped into the software stability concept?
 16. Provide a mapping of knowledge maps with the software patterns.
 17. Explain the term goal in the context of knowledge maps.
 18. Is loyalty a goal? Explain: why or why not?
 19. Is the following statement true or false? Goal provides answer to the question,

What is the concept for?
 20. What is role of the capabilities of a concept?
 21. Goals and capabilities have a symbiotic relation. Explain how?
 22. Explain the term capability in the context of knowledge maps.
 23. Finding capabilities for a concept is easier than finding the goals. Is it true?

Justify.
 24. How can capabilities be identified? Explain by giving an example.
 25. Why do capabilities result in higher returns of investment?

41Abstraction

 26. What are the goals and capabilities of the following?
 a. Marriage
 b. Doing a project
 c. A stamp collection process
 d. A banking system
 27. Sketch the knowledge map representation and describe it in brief.
 28. List the steps that must be carried out for creating a knowledge map. Explain each step.
 29. How can development scenarios be identified?
 30. List the ways of finding industrial objects.
 31. Can the transient aspect of knowledge maps be changed at will? If so, give reasons

to support your answer.
 32. What do you mean by quality factors? How are they identified?
 33. Is the following statement true or false? Quality factors are also goals of a domain, but

with a central focus on how to use this domain in large or more specific domains.
 34. What is nonmonotonic knowledge?
 35. What is aspect-oriented programming? Give an example.
 36. What is ontology?
 37. What are the differences and similarities between knowledge maps and aspect-

oriented programming?
 38. What are the differences and similarities between knowledge maps and ontology?

EXERCISES

 1. Name three ultimate goals (EBTs) of sample requirements D1, which is titled
“Ocean Resources Management System.”

 2. Name three ultimate goals (EBTs) of sample requirements D2, which is titled
“Dengue Fever Prevention and Outbreak Management System.”

 3. Name all the capabilities (BOs) of sample requirements D1, which is titled “Ocean
Resources Management System.”

 4. Name all the capabilities (BOs) of sample requirements D2, which is titled “Dengue
Fever Prevention and Outbreak Management System.”

PROJECTS

 1. Use the abstracted EBTs and BOs from your responses to problem statement E1,
which is titled “Ocean Resources Management System” to form a knowledge map.

 2. Use the abstracted EBTs and BOs from your responses to problem statement E2,
which is titled “Dengue Fever Prevention and Outbreak Management System” to
form a knowledge map.

SIDEBAR 2.1 Formal Methods and Formal Languages (Supratik Mukhopadhyay)

In the past, formal abstraction-refinement techniques (Morgan 1994) have traditionally
been used to support model/specification-driven development of software. Stepwise refine-
ment techniques (Morgan 1994) map an abstract model of the system to concrete software
through a set of small refinement steps. In the model-driven architecture framework, a
 platform- independent model of the system is effectively mapped to a platform-specific model
through model transformations.

42 Software Patterns, Knowledge Maps, and Domain Analysis

In knowledge-based software engineering, knowledge representation techniques are used for
 representing domain knowledge. Popular knowledge representation techniques include various
monotonic and nonmonotonic logics (Barwise 2006), such as description logics (Baader et al.
2003) and default logics (Besnard 1989). Goals may be specified as intentional knowledge within
a knowledge base. Capabilities can be added to provide extensional definitions. Goals may be
reified by automatically connecting the intentional goals to the extensional knowledge by using
the deductive reasoning capabilities of the underlying logical framework (Boddu et al. 2004).
Reifying goals results in ontology. Consider the following (simplified) requirement from the
Bay Area Rapid Transit project (van Lamsweerde 2001): “if a train is on a track, then its speed
should be less than the specified speed on the track.” A first-order discourse corresponding to this
 requirement (Boddu et al. 2004) is given below (the discourse can be created from the natural
language requirement automatically).

EX X1
EX X2
end referent
isa (X1, train)
isa (X2, track)
ison (X1, X2)
end discourse
= >
EX X3
EX X4
EX X5
end referent
isa (X3, speed)
of (X1, X3)
isa (X4, speed)
of (X4, X2)
isa(X4, specified)
shouldbelessthan (X3, X4)
end discourse
end discourse

This is a discourse of the form D1 ⇒ D2, where D1 and D2 are discourse representation structures.
Notice that the atomic formula shouldbelessthan (X3, X4) is undefined in the require-
ment, as well as the discourse representation structure. Such undefined atomic formulas need to
be interpreted in the current context. A knowledge map system should first search the knowledge
base for a definition of the atomic formula. If a definition is found, it should consult the user about
whether to interpret the atomic formula with a definition from the knowledge base. (It presents the
user with all the definitions of the atomic formula found in the knowledge base if there are more
than one.) If either no definition is found in the knowledge base or the user does not agree with
definitions in the knowledge base, the user will be asked to specify what it means by should be less
than in the sentence—“If a train is on a track, then its speed should be less than the specified speed
of the track.” The user might specify “X should be less than Y if X < Y.” This input will be used
to interpret the atomic formula _ shouldbelessthan (X3, X4) as shouldbelessthan
(X3, X4) ← (X3 < X4) _ . (The user might be less precise in specifying the meaning of
should be less than; in this case, more refinement is needed and the user will be prompted to refine
his or her specification.) Thus, for the sentence “Managers can access the database,” the user will
be asked the meaning of the word managers. If the user specifies “Tom and Jim are managers,” the
interpretation for isa(X, Managers)_ will be isa(X, Managers) ← (X = Tom or X = Jim).

43Abstraction

We can use a closed world assumption to interpret the atomic formulas. Hence, lack of extra
information would mean that in a closed world isa(X, Managers) = (X = Tom or X = Jim) _ and.
The definitions of _shouldbelessthan (X3, X4)_ and _ isa (X, Managers) are then stored in the
knowledge base along with their English interpretations “X should be less than Y if _X < Y” and
“Tom and Jim are managers,” respectively, for use in future sessions. Thus, a refinement of the
requirements goals results in a model-theoretic interpretation of the atomic formulas.

REFERENCES

Baader, F., D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider. The Description Logic
Handbook: Theory, Implementation, and Applications. Cambridge, UK: Cambridge University Press,
2003.

Barwise, J. ed. Handbook of Mathematical Logic. North Holland, the Netherlands: Elsevier, 2006.
Besnard, P. An Introduction to Default Logic. Berlin; Heidelberg, Germany: Springer, 1989.
Boddu, R., L. Guo, S. Mukhopadhyay, and B. Cukic. “RETNA: From Requirements to Testing in a Natural Way.”

Paper presented at the IEEE International Conference on Requirements Engineering, Kyoto, Japan, 2004.
Morgan, C. Programming from Specifications. 2nd edn. New Jersey, NJ: Prentice Hall, 1994.
van Lamsweerde, A. “Goal Oriented Requirements Engineering: A Guided Tour.” Paper presented at the

IEEE International Conference on Requirements Engineering, Toronto, ON, Canada, 2001.

SIDEBAR 2.2 The Definition of Ontology

Ontology is a specification of a conceptualization (Gruber 1993, 2009). The word ontology seems
to generate a lot of controversies in discussions about artificial intelligence. It has a long history
and tradition in philosophy, in which it refers to the subject of existence. It is also often confused
with epistemology, which refers to knowledge and knowing.

Ontology (Gruber 2009) is defined as an “explicit specification of a conceptualization,”
which is, in turn, “the objects, concepts, and other entities that are presumed to exist in some
area of interest and the relationships that hold among them.” While the terms specification
and conceptualization have caused much debate, the essential points of this definition of
ontology are

• An ontology defines (specifies) the concepts, relationships, and other distinctions that are
relevant for modeling a domain.

• The specification takes the form of the definitions of representational vocabulary
(classes, relations, etc.), which provide meanings for the vocabulary and formal
 constraints on its coherent use.

This definition does not distinguish between tangible and conceptual objects and all the common
components of the any giving ontology are domain dependent.

In both computer science and information science, ontology is a formal representation of a
set of concepts within a domain and the relationships between those concepts. It is used to reason
about the properties of that domain and may be used to define the domain.

Ontologies are used in artificial intelligence, the semantic web, software engineering,
 biomedical informatics, library science, and information architecture, as a form of knowledge
representation about the world or some part of it. Common components of ontologies as shown in
(Gruber 1995) include the following:

• Individuals. Instances or objects (the basic or ground-level objects)
• Classes. Sets, collections, concepts, or types of objects
• Attributes. Properties, features, characteristics, or parameters that objects (and classes)

can have

http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-3-662-05689-9

44 Software Patterns, Knowledge Maps, and Domain Analysis

• Relations. Ways that classes and objects can be related to one another
• Function terms. Complex structures formed from certain relations that can be used in

place of an individual term in a statement
• Restrictions. Formally stated descriptions of what must be true in order for some

 assertion to be accepted as input
• Rules. Statements in the form of an if-then (antecedent-consequent) sentence that

describe the logical inferences that can be drawn from an assertion in a particular
form

• Axioms. Assertions (including rules) in a logical form that together comprise the
 overall theory that the ontology describes in its domain of application. This definition
 differs from that of axioms in generative grammar and formal logic. In these domains,
 axioms include only statements asserted as a priori knowledge. As used here, axioms
also include the theory derived from axiomatic statements.

• Events. The changing of attributes or relations

Ontologies are commonly encoded using ontology languages. Ontologies resemble or look
like faceted taxonomies, but use richer semantic relationships among terms and attributes,
as well as very strict rules about how to specify terms and relationships. Because ontology
does more than just control vocabulary, they are thought of as knowledge representation.
An oft-quoted definition of ontology follows: “the specification of one’s conceptualization of
a knowledge domain” (see http://www.ksl. stanford.edu/people/dlm/papers/ontologies-come-
of-age-mit-press-(with-citation).htm). An example of concepts and relationships in ontology is
shown in Figure 2.4.

Public Parks

Central Park

Maintained by

Located inThe United States

New York

Conservancy

Parks
Department

FIGURE 2.4 An example of concepts and relationships in ontology.

http://www.ksl.stanford.edu
http://www.ksl.stanford.edu

45Abstraction

Ontologies, because they are machine readable, allow applications to be standardized, while
domain-specific information can be customized over time. The goal of Ontologies is to move the
complexity of the system into how the information is organized, rather than in the application that
processes that information.

REFERENCES

Gruber, T. R. “A Translation Approach to Portable Ontologies.” Knowledge Acquisition 5, no. 2 (1993):
199–220.

Gruber, T. R. Toward principles for the design of ontologies used for knowledge sharing. International
Journal of Human-Computer Studies, Vol. 43, Issues 4–5, November 1995, pp. 907–928.

Gruber, T. R. “Ontology.” in the Encyclopedia of Database Systems, L. Liu and M. T. Özsu, eds.,
 Springer-Verlag, 2009.

http://www.crcnetbase.com/action/showLinks?crossref=10.1006%2Fknac.1993.1008

Section II

Goals of the Knowledge Maps

48 Goals of the Knowledge Maps

Goals always represent what a concept is for, but not how a concept actually does it
 (capabilities). They also convey the enduring business rules under which the capabilities
of a concept must function and act. Goals are important and critical pieces of formation of
the knowledge maps.

Section II discusses goals or/and enduring business themes, the origin of goals, several
perspectives of goals that are related to people, business, and projects; describes guide-
lines for ultimate goals, the impact of goals on problem understanding; and documents two
major goals of the knowledge maps as stable analysis patterns: discovery and knowledge.
Section II contains three chapters and six sidebars.

Chapter 3 is titled “The Goals: Significance and Identification,” and it defines goals and
their origin, discusses the goal significance, shows how to deal with goals: extraction and
assessment, briefly lists goals of the knowledge maps, and shows short pattern documenta-
tion templates for a few goals. This chapter concludes with a brief summary and numerous
open research issues. This chapter also provides review questions, exercises, and some
projects.

Chapter 4 is titled “Discovery Stable Analysis Patterns,” and it discusses, models, and
documents this pattern by using Fayad’s stable pattern documentation template as shown in
Appendix A. This chapter concludes with a summary and many open research issues. This
chapter provides numerous review questions, exercises, and some projects.

Chapter 5 is titled “Knowledge Stable Analysis Pattern,” and it repeats with the same
headers as shown in Chapter 4.

Sidebar 3.1 is titled “Goal-Oriented Requirements Engineering,” and it views any system
as a collection of active components (agents). Agents may restrict their behavior to ensure
the constraints that they are assigned (Lapouchnian 2005). In GORE, agents are assigned
responsibility for achieving goals (Lapouchnian 2005). A requirement is a goal whose
achievement is the responsibility of a single software agent (Lapouchnian 2005).

Sidebar 3.2 is titled “Goal Programming,” which is a fanciful or exotic nomenclature for
a very simple and straightforward concept: the thin fine line between stated objectives and
listed constraints is never completely crystallized.

Sidebar 3.3 is titled “Goal-Oriented Development,” which involves traversing through a
goal tree, an And–Or tree, whose root is associated with the system-wide goals.

Sidebar 4.1 is titled “Knowledge Discovery,” and it derives special knowledge from the
available set of input data.

Sidebar 4.2 is titled “Business Rules,” and it discusses the business rules as well-defined
rules through a set or collection of well-calibrated processes to achieve certain goal(s).

Sidebar 5.1 is titled “Knowledge Definition,” and it defines in simple words what exactly
knowledge is?

49

The Goals
Significance and Identification

Setting goals is the first step in turning the invisible into the visible.

Anthony Robbins

Goals always represent what a concept is for but not how the concept is applied to achieve
those goals (capabilities). They also convey the enduring business rules under which the
capabilities of a concept must function and act. Goals are important and critical pieces
for the formation of knowledge maps. They are important and mandatory, because they
encapsulate a discipline’s rationale and retrospective. This rationale and retrospective anal-
ysis will embed the appropriate axioms or rules under which a knowledge map will be
exploited. By discovering these goals, we can have a more precise idea of what problem
domains and their nature really is and the elements that are necessary to solve it.

3.1 INTRODUCTION

The main use of goals to wrap up the outcomes of the analysis phase is not entirely new or
fresh. Goals were originally suggested and recommended in Anton (1996), Anton and Potts
(1998), and van Lamsweerde (2001). However, in Anton (1996), Anton and Potts (1998),
and van Lamsweerde (2001), goals were simply defined as the functions (activities) and
constraints bound to an organizational process. In other words, these goals will change
proportionally to any change or modification in the processes of an organization. Usually,
the number of functions or activities can be quite large in an organization, especially if the
documentation of the organizational processes is analyzed or explored in a cautious manner
(Anton 1996; Anton and Potts 1998). Consequently, this number can be overwhelming for
the stakeholders and the technical staff of an organization to handle and manage.

In this book, we will share a different view and perspective of what goals really are. In
this view, goals are simply the enduring themes that justify why a software solution, area of
study, and so forth is needed in a determined environment (e.g., organization and software
project). They are neither functions nor constraints bound to organizational processes, as
suggested in Anton (1996) and Anton and Potts (1998).

Indications or suggestions of goals usually become obvious in meetings and situations,
where there is some sort of negotiation between one or two parties, for example, require-
ments elicitation meeting. In this instance, you have a group of software analysts, designers,
architects, and maybe some developers who are trying to learn and understand what the
needs, scopes, and trade-offs of a subject or project really are. For example, an individual
(project manager) tries to convince another individual (customer) to accept a particular soft-
ware product. If the project manager can satisfy or meet the needs and requirements of a
customer, there is a certainty that the customer will accept the software product. Otherwise,

3

50 Software Patterns, Knowledge Maps, and Domain Analysis

the customer will just walk away, even when the product is cheaper. This is because there
is no need for using that product if it is not going to satisfy the customer.

Another example of when goals become obvious and noticeable is a situation when
developers deal with businesspeople and/or stakeholders. Entrepreneurs always tend to
think about a problem in terms of principles, things that describe what the problem is.
Developers, however, tend to think in terms of concrete elements that can be adapted and
used to satisfy a determined process. Principles, by nature, are more enduring and stable
than processes. For instance, let us use branding as the subject of discourse. Branding is
an enduring principle that has been part of our daily lives throughout time. The earliest
known shepherds effectively branded their cattle to identify, detect, and differentiate them
from other shepherds cattle, by using a set of machinery, such as iron brands and paint
tars. Today, branding is specially used in other fields such as marketing, human computer
interaction (HCI), and biometrics. The process to achieve branding is totally different and
separate in each field, but the principle of what branding is for remains exactly the same;
for example, it allows us to identify an entity and to differentiate among the entities peers.

It is important to remember that any type of business or activity is driven forward
mainly by enduring principles that determine its function and success. Unfortunately,
many companies overlook these principles and depend solely on available machinery or
industry, to temporarily extend their businesses lives or overhaul these activities (patching
your business or activity). Software development process is a good practical example of
such behavior. This unique behavior can be turned into an expensive viscous cycle that
will never end. In fact, it will constantly incur additional cost, time, and effort every time
and whenever new patches come along. These issues show and demonstrate how important
it is to focus on those aspects that are likely to endure in any business than just focusing
on patching existing deficiencies with new machinery proportionally to the appearance of
new requirements.

The terms principles, essential themes, or enduring themes of the subject will be inter-
changeably used to represent goals. In the rest of the chapter, we will illustrate why goals
are important and critical elements of a problem space, and what the processes of iden-
tifying them are. Later in the chapter, we will also introduce the essential themes driv-
ing the realization and understanding of knowledge maps. These essential themes will be
described using a short-pattern documentation template. Two complete pattern documenta-
tion templates are provided in Appendix A.

3.2 SIGNIFICANCE OF GOALS

Goals have always been the essential part of object-oriented analysis or problem space; how-
ever, their use and deployment was always implicit and, in several cases, totally ignored by
software practitioners (van Lamsweerde 2001). For instance, software practitioners put more
effort and energy into trying to solve a problem than trying to learn and understand it first.
Therefore, requirements and needs were never synchronized with the machinery or elements
used to fulfill them. Consequently, businesses all over the world experienced great losses due
to software systems that was not completed on time and software developed wrongly. The
use of goals to overcome the aforementioned problems is starting to be recognized (Anton
1996; Anton and Potts 1998) now, especially during the requirements acquisition phase.
Software practitioners are beginning to think in terms of why do we need this subject (sys-
tem) or what are the objectives that we are planning to achieve with this subject.

51The Goals

The most important and critical problem with the above approach is that practitioners
have a peculiar tendency to think in terms of the application’s elements that are most likely
to change and transform over time, due to the emergence of new problems or new business
requirements (Fayad, Hamza, and Sanchez 2005). The approach being introduced in this
chapter concentrates mainly on those goals that will remain the same over time. These
goals will overcome application changes, new business requirements, and so on, because
they are always created at a knowledge level and not at an application level.

Alex van Lamsweerde (2001) provides a set of reasons and causes as to why the defini-
tion of goals is so important and critical to the requirements elicitation process. Some of
these reasons are also applicable to the approach that is being introduced here. The special
ones that apply to our approach are products of certain properties of goals that have deter-
mined the value of a subject matter’s rationale. (We have included some of our reasons
too.) Following are these important properties (Hamza and Fayad 2003) (Some properties
were omitted, because they merely apply to a model that consists of goal and capabilities.):

• Stable. A goal must represent a stable and conceptual structure that determines a
subject matter’s rationale.

• Natural. It is important to present, in a cohesive and natural manner, no less impor-
tant, language to assure its reusability elsewhere.

• Domain-independent. A goal must represent a conceptual structure that appears in
multiple domains of applications.

• Single enduring business theme (EBT). A goal must represent a single EBT. This
means that we are focusing on one problem at a time.

These properties were described to help practitioners understand in detail numerous rea-
sons as to why goals are so critically important. These reasons are as follows:

 1. The definition of a goal implies adequate requirements, specification, and com-
pleteness. A requirement specification was said to be complete if a determined goal
was achieved.

 2. Goals are the subject’s rationale retrospective that provides the high- and low-level
essentials or principles that the management and technical personnel can easily
understand and apply.

 3. Goals facilitate a natural mechanism to allow management and technical groups to
be on the same page with respect to the design objective of the subject (system).

 4. The process of definition of a goal is a focused process—irrelevant details are
always avoided.

 5. Goals are enduring themes that are not bound to volatile information. Their endur-
ing nature is determined by specially focusing on aspects that will remain stable
over time (knowledge) and not on aspects that are application specific.

 6. A proper identification of goals will drive the discovery of their capabilities. In
other words, once we have successfully found (and evaluated) a determined and set
goal, we will be able to determine its capabilities.

 7. A goals identification process facilitates great team dynamics and vibrancy. Because
goals are described in a simple, straightforward, and natural language, they are clearly
understood by managers and technical staff. Therefore, managers can actively partici-
pate in identification of goals, which is the area with which they are most familiar.

52 Software Patterns, Knowledge Maps, and Domain Analysis

3.2.1 An ExAmplE: A SimplE E-CommErCE AppliCAtion

To illustrate the importance of using goals to understand the purpose of a subject’s existence,
we will discuss a simple e-commerce example. This example will convey why the goals are
so much needed.

Let us now imagine that a business firm is requesting JustACompany to develop the
firm’s new e-commerce application. Without any hesitation or doubt, JustACompany
accepts the project and it gets ready for its development. Now, JustACompany’s soft-
ware development team proceeds with the requirements elicitation process. During this
process, the team reviews the problem statement. Then, it looks out for the candidate
objects of the problem by using traditional software engineering approaches (Abbot 1983,
pp. 882–894; Fayad, Hamza, and Sanchez 2005). A typical result of this process will con-
sist of objects such as Customer, ShoppingCart, CreditCard, Database, Catalog, Order,
and Product. These objects are usually extracted from a problem statement that was given
to JustACompany. The model is illustrated in Figure 3.1.

Consider the above illustrated e-commerce example as a specific business case. We
have a simple model that has the tendency to be redone or recast every time new require-
ments appear on the loop. Proportional to the occurrence of new business requirements,

Customer
navigates

Catalog

Product

retrieves products
DataBase

ShoppingCart

Order
validates

CreditCard

1..*

1..*

1..*

1..*

pr
ov

id
es

st
or

e i
nf

or
m

at
io

n

ex
hi

bi
t i

ns
ta

nc
es

 o
f

sp
aw

n

FIGURE 3.1 A simple e-commerce application.

53The Goals

this e-commerce solution will be susceptible to drastic and sudden changes and
 adaptations of the elements that form it (Fayad, Hamza, and Sanchez 2005). These dras-
tic changes or transformations may also jeopardize the life of the e-commerce appli-
cation from a business perspective, because businesses are usually reluctant to keep
financing a project that produces more recurring costs than benefits. Therefore, our
e-commerce application has two possible ends: abandonment or reengineering. Neither
one of those states is positive and beneficial for the business. In fact, no pleasing effects
will arise unless if we focus on the company’s business themes likely to endure through-
out its life. So, JustACompany will ask these questions: What are those enduring themes
of e-commerce? Is there a way to capitalize on the declared e-commerce’s enduring
principles and trace them over the success of the business? How and in what way, can we
find these enduring themes? To answer such questions, we need to describe the enduring
business’s identification process.

These critical and important questions will facilitate a complete understanding of the
e-commerce subject’s problem space. For instance, we will be able to characterize and
acknowledge the e-commerce subject’s scope, nature, and its core elements. Those core ele-
ments are essential outcomes, purely conceptual, for which we are actually looking. They
are the single themes of interest; they are the true what of the e-commerce subject. The
following section will describe the process for identifying the goals of a subject matter or
discipline. Our case argued here would be the identification of the goals of an e-commerce
application.

3.3 DEALING WITH GOALS: EXTRACTION AND ASSESSMENT

Focusing mainly on goals during the analysis phase is very important and vital for under-
standing the problem space of any subject matter. Instead of focusing on aspects that
come and go proportionally with the appearance of new requirements and technology,
we focus here on elements that we know will remain enduring or stable over time. Within
the realm or domain of knowledge maps, these goals are classified into three categories:
personal goals, business goals, and project goals. The determination of a goal’s category
is finalized by examining the nature and target context of the subject matter. This clas-
sification will set the boundaries or perimeters for the identification and assessment of
future goals.

Goals are the special domains where businesses, projects, and persons (hosts) meet when
trying to understand a particular subject of interest. Goal achievement resides within the
harmony or equilibrium between these goal’s hosts. This harmony is recognized by the
relationships and levels of organization among each one of the concerns that form these
host’s rationale. These concerns may include businesses, projects, and persons own values,
desires, and constraints, such as mission, vision, needs, meaning, return on investment
(ROI), trade-offs, current state, and future destination. Each one of these concerns can
be addressed or discussed in isolation; however, the relationship among them defines the
overall flow or guidance for how these hosts are handled, and how they complement their
high- and/or low-level neighbors (e.g., business and persons).

Business goals are, in fact, the mission constructs of any business entities. They define
the path that any business has to follow if it wants to succeed in a corporate sense. This
path consists of high-level abstractions that will drive a business performance and focus
on a determined society (e.g., a market-driven society). However, because we are dealing

54 Software Patterns, Knowledge Maps, and Domain Analysis

with high-level abstractions, it is common that these concerns are built from other fine-
grained (level of detail) concerns. For example, the fulfillment of business goals depends
on realization of project goals, the project goals depend on achievement of personal
goals, and so on.

Project goals are need-driven concerns formulated to reach a future deliverable for a set
of customers (internal or external). They always reside in the satisfaction of determined
needs, such as project completion, availability, solution scope, and time to market, which
are transformed into products (e.g., software applications and services). Project goals are
just “the compass guiding the direction of your project” (National Leadership Grants
[NLG] Project Planning: A Tutorial; Woodley 2008). The fulfillment of project goals will
lead us closer to achieving overall business goals. For example, let us imagine that two of
your business’s goals are to ensure your products acceptance by possible customers and to
achieve a greater ROI. In order to fulfill these particular goals or needs, we have to ensure
customer satisfaction, customer support in case they have concerns or questions regarding
your product, and efficiency and efficacy for how to sell and deliver your products to these
customers. After acknowledging these project goals, we would have a better idea or notion
of type of infrastructure needed, prerequisites required to implement it, and information
about the solution scope. This may ultimately result in the definition of a set of products
that will eventually achieve these goals. A customer relationship management system may
be required, for example. Here is where the responsibility of technical and business staff
comes into place to formulate and implement the infrastructure. Infrastructure is a set of
products or services required to assure the completion of business goals.

Dealing and acquainting with personal goals is a little bit different from dealing with
business and project goals. This raises a sensitive question—why? Here, we are directly
dealing with the goals of each one of the individuals participating in the company or proj-
ect of interest. In fact, they are the most delicate or sensitive goals that we have to address
and imply during a project’s lifecycle, because they implicitly determine the success of
accomplishing the project goals. Here is where you, as team leader or manager, try to
bring or import each individual on the same boat or journey, while still ensuring each
individual’s goals are achieved in an efficient manner. These goals include incentives or
rewards that will motivate, cajole, and urge individuals in multicultural environments to
possess a proud feeling of being a key element in the team and will promote efficient col-
laboration and support among all team members. The management staff and team leaders
must discern the required steps to set the right type of environment where these goals
will be addressed in detail and then give them enough attention and care to engage these
 individuals (e.g., technical staff).

Within a business environment, each one of the goals categories can be addressed in
isolation. However, the harmonized relationship between them will determine the success
or failure of any business. Throughout the course of this chapter, we will concentrate com-
pletely and specifically on project goals, especially the ones related to project develop-
ment (e.g., products and services). However, we will certainly acknowledge and note the
importance of personal and business goals in the achievement of project goals. Failing to
acknowledge the critical importance of personal and business goals during exploration of
project goals will certainly affect their accuracy and achievement. Hence, one should never
ignore these goals during the process of definition of project goals.

In a nutshell, extracting all underlying goals from a discipline or subject matter is a
challenging and strenuous task for both novice and experienced software/business/project

55The Goals

practitioners. The software stability concept approach (Fayad 2002a, 2002b; Fayad and
Altman 2001) shows greater and immense promise for the extraction of goals of a disci-
pline. In spite of a detailed process highlighted here, mastering its basic principles requires
a lot of practice and skills, because of a common tendency to think in terms of application’s
objects rather than knowledge’s objects. The next section describes the process of extract-
ing goals in a cohesive and a seamless way, so that practitioners can learn, define, compre-
hend, and understand it quite easily.

3.4 EXTRACTING THE GOALS OF A DISCIPLINE: THE PROCESS

Through a set of straightforward questions and enquiries, we will also illustrate and
 demonstrate how you can extract, assess, and filter main goals of a discipline. The high-
level process for extracting these goals is illustrated in Figure 3.2. Please note that you can
perform this process in parallel with the capabilities identification process.

Using the e-commerce example cited before in the chapter, we will now illustrate how the
e-commerce project’s goals and ambitions are extracted, filtered, and evaluated. One of the
important questions that JustACompany asked when they were facing a potential collapse

Note 1: Practitioners must
delve into a complete
exploration of the subject

1

2 6

3

8

6.2

11

10

5

7

4

4.1

Note 3: Quality factors
(EBTs) are also identified

Note 2: Since the purpose of
this process is identification
of goals, practitioners must
overlook the statements that
mention capabilities identification

Note 4: Practitioners
must carefully filter
the identified goals
(EBTs) and capabilities
(BOs)

Note 7: Goals (EBTs) are
placed in the concern type
named goals and
capabilities (BOs) in the
concern type named
capabilities

Create the knowledge map

Model each goal (EBT) using
software stability concepts

Model each capability (BO)
using software stability

concepts

Evaluate each identified goal
(EBT) against EBT’s

properties

Filter identified goals (EBTs)
and capabilities (BOs)

Identify goals (EBTs) and
capabilities (BOs)

Apply software stability
concepts

Select the subject of interest
{Problem}

Evaluate each identified
capability (BO) against BO’s

properties

Note 6: �is is another way
to deal with capabilities.
A capability with no goal;
we must find the goal
and the other capabilities
that support its goal

Note 5: �is is one way
to deal with capabilities.
We know the goal, but
we do not know its
capabilities

FIGURE 3.2 The high-level process for identifying goals.

56 Software Patterns, Knowledge Maps, and Domain Analysis

or abandonment of their product was—what are those enduring themes of e-commerce?
The answer to this question is found by following this simple process:

 1. Selecting subject of interest. This step is designated to help guide software prac-
titioners to examine and probe the subject of interest. Irrelevant details, such
as application details, must be ignored totally during this subject’s exploration.
Practitioners must focus only on the aspects that define the core knowledge of
e-commerce. We would support this step by asking the following questions:

 a. What is the subject or problem? The subject is e-commerce.
 b. Are you aware of scenarios or situations, where the subject (e-commerce)

appears? This will help us narrow down the scope of the subject being explored.
In other words, we have a focused problem.

 2. Applying the software stability concepts approach. This step follows the heuris-
tics provided in Fayad (2002a, 2002b), Fayad and Altman (2001), and Hamza and
Fayad (2002) to identify and detect the initial list of goals of a discipline. This step
also uses the following questions to get this initial list.

 a. What is the subject/problem (e-commerce)? What are the reasons for this sub-
ject matter/concept to exist?

 b. What does the subject (e-commerce) do? (See Chapter 4.)
 3. Identifying goals and capabilities. This step’s outcome will be a conglomeration of

potential goals, such as ROI, product navigation, product selection, trading, order
handling, customer service, convenience, and security.

 a. These goals are potentially useful, because they surfaced or appeared by solely
examining what we know or what we have found about the subject in current
literature.

 b. In addition, some of them may be still referencing the subject matter from an
industrial objects perspective.

 4. Filtering identified goals and capabilities. This step concentrates mainly on filter-
ing the list of potential goals we just identified in the previous step. By filtering
down these goals, we are getting and inching closer to the stage, where we may
say that we have the right set of goals of the discipline. This step is driven by the
following questions:

 a. Does the goal depend on adjacent goals to exist? If yes, the goals must be
removed. Is the goal part of a wish list of a stakeholder(s)? If yes, the goals
must be eradicated. By a wish list, we mean the list of goals that you may like
to achieve or have at certain point of time.

 b. The resulting list of goals will be smaller than the initial list. The new list will
be trading, order handling, convenience, and security.

4.1. Evaluating each identified goal (EBT) by using the EBTs’ properties. This step
is driven by the following questions and heuristics from Cline and Girou (2000),
Fayad (2002a, 2002b), Fayad and Altman (2001), and Hamza and Fayad (2002):

 a. Can we replace or exchange any of the remaining goals with another goal? If
yes, the affected goal must be removed.

 b. Is the goal internally and externally enduring and stable? In other words, does
the goal reflect the essence of the subject matter’s existence? If no, the goal
must be removed.

57The Goals

 c. Does the goal have a direct physical representation? If yes, the goal must be
removed.

 d. The final list will consist of three goals: trading, convenience, and security.
 e. These goals will determine what e-commerce is. The resulting list will also

answer the middle question of JustACompany: is there a way to capitalize on
the declared e-commerce’s enduring principles and trace them over the success
of the business?

4.2. Evaluating each identified capability (business object [BO]) against the proper-
ties of BOs. See Chapter 4 for more details.

The rest of the steps 5 through 11 shown in Figure 3.2 are addressed in Chapters 4 through 6,
respectively. Regarding the question “Is there an efficient way to capitalize on the declared
e-commerce’s enduring principles and trace them all over the success of a business?” the
answer is yes, there is a way! This way is twofold: the definition of the goals capabilities,
and establishing a synergy between the goals and their capabilities without losing generality.
This means that this unique synergy will provide the foundations for the development of a
set of applications on an on-demand basis. This will also answer the aforementioned ques-
tion. The critical process for identifying these capabilities will be explained in Chapter 4.

3.4.1 DEAling with SubgoAlS

Similar to goals, subgoals are those enduring principles that determine the very rationale
and nature of a discipline or domain. They are also represented as EBTs. However, their
existence and satisfaction are not as required and mandatory as the ones of the main goals
are. Subgoals can be considered as the extras you may wish to have or satisfy within a given
determined event or situation. Therefore, bringing subgoals or the extras as part of the essen-
tial elements of a discipline may bring you more problems than actual benefits. First, you are
extending and redefining the context or boundary of your study. This extended context will
certainly contain additional axioms or constraints and events that may, in some cases, con-
taminate the direction of your subject study and the overall rationale of that particular sub-
ject. Second, the inclusion of subgoals implies the consideration of certain trade-offs that the
designing team (or any software practitioner) must consider and accept, when a particular
need or requirement appears. For example, do you think your goals were achieved without
satisfying your subgoals? Please think about this question in a critical manner.

Let us use the concept of marriage as a goal that contains or implies a set of extras or
subgoals, such as love, friendship, companionship, and harmony. If we ask the question
“can marriage exist with the satisfaction of any of its subgoals?” honestly, we know that the
answer is yes, marriage can exist per se without the satisfaction of any of its subgoals. This
does not mean, however, that it is wrong to satisfy marriage’s extras or subgoals. What we
are trying to say here is that unless you really need the existence of a subgoal to clarify or
focus the purpose of your study, you should not deal with subgoals or include them in your
subject’s rationale study.

The next section covers the main goals of the knowledge maps. Because we have cov-
ered the subject of what goals are and how they can be identified, readers will be able to
understand the goals of the knowledge maps and get an accurate picture of what they are
and how they were identified.

58 Software Patterns, Knowledge Maps, and Domain Analysis

3.5 GOALS OF KNOWLEDGE MAPS

This section covers in detail the goals of knowledge maps. They are illustrated as the stable
analysis patterns (see Chapter 2). Seven goals drive the function and rationale of knowledge
maps. Table 3.1 summarizes these goals.

3.5.1 goAl 1: lEArning

• Name. Learning stable analysis pattern (Fayad and Telu 2005).
• Context. Learning stable patterns can be applied to various patterns in various

day-to-day fields or applications. For example, in a formal learning experience, a
student has a set of syllabus from which he or she is taught and then tested later
on. In the workplace, people often learn through previous experiences. Generally,
a person with a graduate degree and five years of experience in a particular field
is more knowledgeable about that field than a student who has just graduated in
the same field because, while working in the field, the experienced individual has
learned enough through the process of encountering and conquering challenges
presented in the workplace.

 We can easily see a sense of learning occurring here as a routine activity in
nonhumans too. Birds always learn by observation and experience. A baby bird
starts learning by watching its mother or father fly and trying to fly small distances
by hopping from one tree to another. As it grows, the bird begins fly better until it
masters the talent.

• Problem. How to create a conceptual model for the learning concept that is general
enough to be applicable to any domain, which incidentally includes users’ require-
ments that will apply to all possible users of learning applications.

TABLE 3.1
Goals of Knowledge Maps

Goal Description Provided?

Learning In this domain, learning is the cognitive process of acquiring skills or knowledge
about a specific discipline.

Yes

Discovery It is defined as the process or act of discovering something or somebody
unexpectedly or after research.

Yes

Knowledge In this domain, it portrays the distinct aspects (goals and capabilities) of the
knowledge maps.

Yes

Abstraction A view of a problem that extracts the essential information relevant to a
particular purpose and it ignores the remainder of the information.

No

Visualization In this domain, it visualizes the existence of certain goals, capabilities, and
transient aspects in the knowledge maps, as well as their relationship with each
other.

No

Synthesis It is the ability to create new knowledge out of pertinent aspects of a
particular domain. This includes the association of direct knowledge and
remote knowledge.

No

Leveraging This refers to the reuse of source and/or target patterns from one set of core sets
in remote knowledge maps and/or domain-specific applications.

No

59The Goals

• Solution and participants.
• Solution. See Figure 3.3.
• Participants

 − Classes
 − Learning. It represents the learning of any party. This class consists of

behaviors and attributes that control the learning process.

–AnyStudy
–AnyExperience
–AnyTeaching
–AnyResearch
–AnyObservation

–Acquiring skill
–Change in behavior brought
 about by experience
–Increase in the amount of
 response rules in memory

results
fro

m
fo

r
m

od
ifi

es
/a

dj
us

ts

<<P-BO>>
AnySource

throughout

achieves

achieves

{OR} {OR}

<<P-BO>> AnyActor

<<P-BO>>
AnyParty

1..*

1..*

1..*

1..*

1..*

1..*

1..*
1..*

1..*

gains

gains

<<EBT>> Learning
<<P-BO>>

AnyMechanism

<<P-BO>>
AnySubject

<<P-BO>>
AnySkill

FIGURE 3.3 The learning stable analysis pattern (culled from Fayad’s pattern archive).

60 Software Patterns, Knowledge Maps, and Domain Analysis

 − Patterns
 − AnyActor. It represents any actor, who gains any kind of skill or achieves

learning through various means.
 − AnySkill. It represents the skill that is gained by the actor, by adopting

the learning process.
 − AnyLearningProcess. This is the methodology an actor adopts to gather

a special skill. This can be experience, trial and error, formal education,
or just watching.

 − AnySubject. It represents the subject or the topic of learning.
 − AnySource. It represents the source from which this learning process

takes place. This can be a book, the Internet, a paper, or a journal. This
is optional. In some cases, such as group discussion, this might not actu-
ally exist, unless the group discussion is about a book or a journal.

3.5.2 goAl 2: DiSCovEry

• Name. Discovery stable analysis pattern (Khadpe 2005).
• Context. This pattern can be used in several applications and scenarios, where a

discovery concept is used in the system. It can be used for the discovery of facts,
patterns of any artifacts or discovery of anything in a multitude of domains.

• Problem. Discovery is an enduring concept, whose application can range from the
discovery of the universe to the discovery of a mathematical formula, to the discov-
ery of patterns in data. It asks how to make the discovery analysis pattern general
enough to be applicable to any domain?

• Solution and participants
• Solution. See Figure 3.4.
• Participants

 − Classes
 − Discovery. It describes the discovery process.

 − Patterns
 − AnyDiscoveryType. It represents the different types of discoveries in

different application areas or domains.
 − AnyDiscoveryMechanism. It represents the BO, which deals with differ-

ent kinds of discovery mechanisms.
 − AnyDiscovery. It represents the BO, which represents the desired

discovery.
 − AnyActor. It represents a person or a group of people who interact or a

scientific group responsible for the discovery process.
 − AnyEvidence. It represents the proof of the discovery.

3.5.3 goAl 3: KnowlEDgE

• Name. Knowledge stable analysis pattern (Fayad and Telu 2005).
• Context. Knowledge can be gained through experience or conducting studies. It

represents a collection of facts, rules, tips, or lessons learned with respect to any-
thing that must be synthesized to create knowledge. This pattern will be used to
represent knowledge synthesis and acquisition.

61The Goals

• Problem. How do we build an effective model that encloses the common core
knowledge of knowledge?

• Solution and participants
• Solution. See Figure 3.5.
• Participants

 − Classes
 − Knowledge. It describes the synthesized knowledge.

 − Patterns
 − AnySkill. It represents different types of abilities that an actor can gain

via any mechanism.
 − AnyMechanism. It represents the BO, which deals with different kinds

of discovery mechanisms.
 − AnySubject. It represents the class, where all facts and other information

pertinent to a domain are located for future reference.

EBTs

can be of

done through done by

1..*

m
ee

ts
 th

e c
rit

er
ia

le
ad

s t
o

1..*

indicates

1..*

1..*

qualifies

<<P-BO>>
Any Actor

Many possibilities
such as star
discovery,
innovations, and
some kind of
discovery

AnyExamination
AnyExperiment
AnyObservation
AnyKnowledge
AnyResearch
AnyAccident

de
te

rm
in

es

BOs

<<P-BO>>
AnyMechanism

<<EBT>>
Discovery

<<P-BO>>
AnyType

<<P-BO>>
AnyEvidence

<<P-BO>>
AnyDiscovery

FIGURE 3.4 The discovery stable analysis pattern (culled from Fayad’s patterns archive).

62 Software Patterns, Knowledge Maps, and Domain Analysis

 − AnyDomain. It represents the environment that will be explored in
search of rules, constraints, and knowledge pertinently related to one
or more subjects.

 − AnyActor. It represents a person or a group of people who is/are or will
be gaining knowledge.

3.6 SUBGOALS

3.6.1 uSE An AnAlogy: mArriAgE or FriEnDShip

A good and feasible way to describe subgoals is through forwarding a number of meaning-
ful analogies. Having written that, we will use the concept of friendship throughout this
section to explain what subgoals are in the context of knowledge maps. Subgoals can be
seen as the wish list elements that come along with the utilization of a determined goal. In
other words, imagine the goal friendship. You will always expect from the word friendship
several other aspects to be achieved along with it, such as trust, companionship, assistance,
forgiveness, and love. As we discussed before, subgoals are the wish list elements of a
determined goal. It does not mean that by achieving friendship we are guaranteeing the

1..*
1..*

1..*

1..*

1..*

<<P-BO>>
AnyDomain

<<P-BO>>
AnySubject

fo
r

<<P-BO>>
AnyMechanism

<<P-BO>>
AnyParty

1..* 1..* 1..*gains
<<P-BO>>

AnySkill

kn
ow

s o
r u

nd
er

st
an

ds

m
od

ifi
es

/a
dj

us
ts

Experience
Experimentation
Research
...
etc.

<<EBT>>
Knowledge

FIGURE 3.5 The knowledge stable analysis pattern (culled from Fayad’s patterns archive).

63The Goals

achievement of other aspects associated with it. We can have friendship without any or
all of the aspects involved in the process. Because of this, you must be very careful when
including subgoals as part of any solution formed by specific goals, because they accom-
pany different rules, axioms, and/or problems that would undermine your original solution.

The inclusion of subgoals to your original solutions has its advantages and disadvantages.
Some of the advantages are as follows:

 1. It will allow the representation of alternative ways of satisfying a particular goal.
 2. It will also represent successful connections or trajectories toward the achievement

of goals.
 3. It will increment the criteria that feed available verification and validation methods.

Some of the disadvantages are as follows:

 1. It will increase the level of complexity and difficulty of a solution, because there
are no reasonable limits to the number of alternatives to satisfy a particular goal.

 2. It will also increase the number of rules and conditions, which influence the accu-
racy of solution derived that come along with the inclusion of more subgoals.

As you can read, the use of subgoals can bring a lot benefits to your proposed set of
 solutions. However, if their use is not properly addressed during the design of your solution,
they might result in additional problems than presumed benefits. Having written that, we
always favor and prefer nonuse of subgoals as part of your solution.

SUMMARY

The main objective and goal of this chapter was to provide a set of heuristics to ease the
process of identifying and assessing the goals of a discipline. The second objective was to
state and define the basic understanding of what a goal really is and why we need goals in
the analysis phase of any problem. The third objective was to provide some of the goals that
drive the formation of knowledge maps. These goals were provided by using a short-pattern
documentation template. We have implemented these objectives by using the software sta-
bility concept as the main approach for identifying goals. By using this unique approach,
we also provided the behind-the-scenes knowledge about goals usage, and in what manner
they make a fundamental part of a complete analysis of the problem or subject of interest.

We have included a very short template for documenting stable analysis patterns for the sake
of simplicity. By doing so, the reader will cover the provided goals description in a short time.

OPEN RESEARCH ISSUES

The following are some of the open research issues that need to be examined and require
future work and experimentation:

 1. Using stability model as a method for goal elicitation. It is a process of obtaining
goals from any source, such as human and literature sources. This can involve the
use of reading, researching, interviews, observation, and protocol analysis.

 2. Utilize the concurrent software development model or knowledge map methodol-
ogy as an effective way for requirements engineering of any application or domain,
instead of using goal-oriented requirements engineering approaches, such as NFR
Frameworks, KAOS, and GBRAM (see Sidebar 3.1).

64 Software Patterns, Knowledge Maps, and Domain Analysis

REVIEW QUESTIONS

 1. What is a goal?
 2. What are the types of goals?
 3. Which type is concerning software development?
 4. Which ones of the following concepts are goals and why?
 a. Project
 b. Account
 c. Ownership
 d. Agreement
 e. Range
 f. Measurement
 g. Evaluation
 h. Performance
 i. Trust
 j. Love
 k. Anger
 l. Revenge
 m. Pleasure
 n. Acknowledgment
 o. Acceptance
 p. Warning
 q. System
 r. Entity
 s. Log
 5. Describe what goals are from two different perspectives—traditional and stability.
 6. What other terms are used interchangeably with the term goal in the book?
 7. List the properties of goals that can be applied to the model.
 8. State why goals are so important.
 9. Goals are classified into _____________, ____________, and ____________.
 10. Describe what business goals are.
 11. Define project goals.
 12. “Personal goals are the most delicate of all the goals that one needs to address dur-

ing the projects lifecycle.” Justify this statement.
 13. Is the following statement true or false? Goal extraction can be carried out in paral-

lel with the capabilities identification process.
 14. Enlist the steps carried out for identifying goals.
 15. What are subgoals? How are they different from goals?
 16. “Adding subgoals makes the problem more complex.” Do you agree with this state-

ment? Support your stance with appropriate arguments.
 17. Summarize the goals that drive the knowledge map’s rationale.
 18. ___________________ is the wish list elements of a determined goal.
 19. What are the pros and cons of using subgoals to a solution?
 20. What the following terms stands for:
 a. NFR
 b. GORE

65The Goals

 c. KAOS
 d. GBRAM
 21. Define GORE.
 22. Name the GORE approaches.
 23. What are the benefits of using GORE?
 24. What are the differences between GORE and software stability model as a way for

de-engineering requirements?

EXERCISES

 1. Model or create a class diagram of each of the goals of the following concepts (not
all goals) by using software stability model, resulting stable analysis pattern for
EBT, and stable design pattern for BO.

 a. No documentation
 b. No meta models
 c. No implementations
 For each goal do the following:
 i. Create three scenarios (usage) for each of the following concepts.
 ii. Extract common properties.
 iii. Create the pattern based on software stability/concurrent-oriented software

development model in Chapter 1.
 A. Activity
 B. Diagram
 C. Decision
 D. Action
 E. Friendship
 F. Health
 G. Condition
 H. Employment
 I. Swimlane
 J. Object
 K. Acting
 L. Negotiation
 M. Trade
 N. Event
 O. Transition
 P. Trust
 Q. Workflow
 R. Splitting
 S. Merging
 T. StartingPoint
 U. EndingPoint
 V. Concurrency
 W. Constraint
 X. Synchronization

66 Software Patterns, Knowledge Maps, and Domain Analysis

 Y. Recording
 Z. Traceability
 2. Each movie has one or more specific and ultimate themes (goals). Name the

 ultimate goal(s) of the following classic movies:
 a. Lagaan
 b. The Lord of the Rings trilogy (2001–2003)
 c. Titanic (1997)
 d. Toy Story (1995)
 e. The Silence of the Lambs (1991)
 f. Crumb (1995)
 g. The Lion King (1994)
 h. Shrek (2001)
 i. The Breakfast Club (1985)
 j. Speed (1994)
 k. Scarface (1983)
 l. Fatal Attraction (1987)
 m. Ghostbusters (1984)
 n. Dirty Dancing (1987)
 o. Back to the Future (1985)
 3. Each book has one or more specific and ultimate themes (goals). Name the ultimate

goal(s) of the following classic books:
 a. The Road, Cormack McCarthy (2006)
 b. Harry Potter and the Goblet of Fire, J.K. Rowling (2000)
 c. Beloved, Toni Morrison (1987)
 d. The Liars’ Club, Mary Karr (1995)
 e. American Pastoral, Philip Roth (1997)
 f. Mystic River, Dennis Lehane (2001)
 g. Cold Mountain, Charles Frazier (1997)
 h. Watchmen, Alan Moore and Dave Gibbons (1986–1987)
 i. Black Water, Joyce Carol Oates (1992)
 4. Each TV show has one or more specific and ultimate themes (goals). Name the

ultimate goal(s) of the following classic TV shows:
 a. The Simpsons, Fox (1989–present)
 b. The Sopranos, HBO (1999–2007)
 c. Seinfeld, NBC (1989–98)
 e. The X-Files, Fox (1993–2002)
 f. Sex and the City, HBO (1998–2004)
 g. Survivor, CBS (2000–present)
 h. The Cosby Show, NBC (1984–92)
 i. Friends, NBC (1994–2004)
 j. The Oprah Winfrey Show, Syndicated (1986–present)
 k. American Idol, Fox (2002–present)
 l. Beverly Hills, 90210, Fox (1990–2000)
 m. Star Trek: The Next Generation, Syndicated (1987–94)
 n. Miami Vice, NBC (1984–89)
 o. L.A. Law, NBC (1986–94)
 p. Moonlighting, ABC (1985–89)

67The Goals

 q. Planet Earth, Discovery Channel (2007)
 r. The Golden Girls, NBC (1985–92)
 s. Prime Suspect, ITV (1991–2006)

PROJECTS

 1. Identify and model two to four ultimate goals and connect them together for the
following domains:

 a. Manufacturing
 b. Modeling
 c. Requirement analysis
 d. Customer relationship management
 e. Database
 f. Project
 g. Kitchen
 2. Identify and model the class diagrams using two to three ultimate goals for each of

the sample requirements in Appendix D.

SIDEBAR 3.1 Goal-Oriented Requirements Engineering

Goal-oriented requirements engineering (GORE) regards any system as a collection of active
components (agents). Agents may restrict their behavior to ensure the constraints that they are
assigned (Lapouchnian 2005). In GORE, agents are assigned responsibilities for achieving
goals (Lapouchnian 2005). A requirement is a goal, whose achievement is the responsibility of
a single software agent (Lapouchnian 2005). Agent-based reasoning is central to requirements
 engineering, because the assignment of responsibilities for goals and constraints among agents in
the software-to-be and in the environment is the main outcome of the RE process (van Lamsweerde
2000). There are a number of important benefits associated with explicit modeling, refinement, and
analysis of goals (mostly adapted from van Lamsweerde, 2001) such as the following:

• Goals provide a precise criterion for sufficient completeness of a requirement
specification.

• Goals provide a precise criterion for requirements pertinence. A requirement is pertinent
with respect to a set of goals in the domain, if its specification is used in the proof of at
least one goal at Yue (1987).

• A goal refinement tree provides traceability links from high-level strategic objectives to
low-level technical requirements (Lapouchnian 2005).

• Goal modeling provides a natural mechanism for structuring complex requirements
documents (van Lamsweerde 2001).

• Goals can be used to provide the basis for the detection and management of conflicts
among requirements (Robinson 1989; van Lamsweerde 1996).

• A single goal model can capture variability in the problem domain using alternative goal
refinements and alternative assignment of responsibilities.

• Quantitative and qualitative analysis of these alternatives is possible (Lapouchnian 2005).
• Goal models provide an excellent way to communicate requirements to customers.
• Goal refinements offer the right level of abstraction to involve decision makers for

validating choices being made among alternatives and for suggesting other alternatives
(Lapouchnian 2005).

68 Software Patterns, Knowledge Maps, and Domain Analysis

The main approaches of GORE are as follows:

• The NFR framework (nonfunctional requirements). NFR framework provides a
 process-oriented approach for dealing with nonfunctional requirements (Chung
et al. 2000; Mylopoulos, Chung, and Nixon 1992).

• i*/Tropos. i* (Yu 1997) is an agent-oriented modeling framework that can be used
for requirements engineering, business process reengineering, organizational impact
analysis, and software process modeling. The i* modeling framework is the basis for
Tropos, a requirements-driven agent-oriented development methodology (Castro, Kolp,
and Mylopoulos 2000). The Tropos methodology guides the development of agent-based
systems from the early requirements analysis through architectural design and detailed
design to the implementation. Tropos uses the i* modeling framework to represent and
reason about requirements and system configuration choices. Tropos has an associated
formal specification language called Formal Tropos (Fuxman et al. 2001) for adding
constraints, invariants, pre- and post-conditions capturing more of the subject domain’s
semantics to the graphical models in the i* notation. These models can be validated by
model checking.

• KAOS (Knowledge Acquisition in autOmated Specification) (Dardenne, van Lamsweerde,
and Fickas 1993) or keep all objects satisfied (van Lamsweerde and Letier 2003). A KAOS
specification is a collection of the following core models:
• Goal model is where goals are represented and assigned to agents.
• Object model is a UML model that can be derived from formal specifications of

goals because it refers to objects or their properties.
• Operation model defines various services to be provided by software agents.

• GBRAM (goal-based requirements analysis method). The emphasis of GBRAM
(Anton 1996, 1997) is on the initial identification and abstraction of goals from various
sources of information. It assumes that no goals have been documented or elicited
from stakeholders and thus can use existing diagrams, textual statements, interview
transcripts, and so on. GBRAM involves the following activities: goal analysis and goal
refinement.

REFERENCES

Anton, A. “Goal-Based Requirements Analysis.” Paper presented at the Proceedings of Second IEEE
International Conference on Requirements Engineering, Colorado Springs, CO, April 1996.

Anton, A. “Goal Identification and Refinement in the Specification of Software-Based Information Systems.”
PhD Thesis, Georgia Institute of Technology, Atlanta, GA, 1997.

Castro, J., M. Kolp, and J. Mylopoulos. “Towards Requirements-Driven Information Systems Engineering:
The Tropos Project.” Information Systems 27, no. 6 (2000): 365–89.

Chung, L., B. Nixon, E. Yu, and J. Mylopoulos. Non-Functional Requirements in Software Engineering.
Kluwer Academic Publishing, 2000.

Dardenne, A., A. van Lamsweerde, and S. Fickas. “Goal-Directed Requirements Acquisition.” Science of
Computer Programming 20, nos. 1/2 (1993): 3–50.

Fuxman, A., M. Pistore, J. Mylopoulos, and P. Traverso. “Model Checking Early Requirements Specifications
in Tropos.” Paper presented at the Proceedings of 5th International Symposium on Requirements
Engineering, Toronto, Canada, August 2001.

Lapouchnian, A. “Goal-Oriented Requirements Engineering: An Overview of the Current Research
Department of Computer Science.” University of Toronto, White Paper, June 28, 2005.

Mylopoulos, J., L. Chung, and B. Nixon. “Representing and Using Non-Functional Requirements:
A Process-Oriented Approach.” IEEE Transactions on Software Engineering, Special Issue on
Knowledge Representation and Reasoning in Software Development 18, no. 6 (1992): 483–97.

http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FICRE.1996.491438
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FICRE.1996.491438
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2FS0306-4379%2802%2900012-1
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-1-4615-5269-7

69The Goals

Robinson, W. “Integrating Multiple Specifications Using Domain Goals.” Paper presented at the Proceedings
of 5th International Workshop on Software Specification and Design, Pittsburgh, PA, May 1989.

van Lamsweerde A. “Divergent Views in Goal-Driven Requirements Engineering.” Paper presented at the
Proceedings of Workshop on Viewpoints in Software Development, San Francisco, CA, October 1996.

van Lamsweerde, A. “Requirements Engineering in the Year 00: A Research Perspective.” Paper presented at
the 22nd International Conference on Software Engineering (ICSE’2000), Limerick, Ireland, June 2000.

van Lamsweerde, A. “Goal-Oriented Requirements Engineering: A Guided Tour.” Paper presented at the
Proceedings of 5th IEEE International Symposium on Requirements Engineering, Toronto, Canada,
August 2001.

van Lamsweerde, A., and E. Letier. “From Object Orientation to Goal Orientation: A Paradigm Shift for
Requirements Engineering.” Paper presented at the Proceeding of Radical Innovations of Software
and Systems Engineering, Post-Workshop Proceedings of the Monterey’02 Workshop, Venice, Italy,
Springer-Verlag, LNCS 2003.

Yu, E. “Towards Modeling and Reasoning Support for Early-Phase Requirements Engineering.” Paper
 presented at the Proceedings of 3rd International Symposium on Requirements Engineering,
Washington, DC, January 1997.

Yue, K. “What Does It Mean to Say that a Specification is Complete?” Paper presented at the Proceedings of
Fourth International Workshop on Software Specification and Design, Monterey, CA, 1987.

SIDEBAR 3.2 Goal Programming

According to Johnson and Trick (1996), goal programming is a fanciful or exotic nomenclature for
a very simple and straightforward concept: the thin fine line between stated objectives and listed
constraints is never completely crystallized. One needs to synthesize this slender difference to
arrive at a proper goal programming. Specially, when a number of objectives surround the problem,
it is usually a feasible idea to consider some or all of them as real constraints instead of stated
objectives.

Goal programming is thus very simple, basic, and flexible: change, alter, modify, or bring some
objectives into feasible constraints, by adding or introducing slack, extra, and/or surplus number
of variables to represent a departure from a goal. Charnes, Cooper, and Ferguson (1955) first used
goal programming in 1955, although the actual name first appeared in a 1961 treatise by Charnes
and Cooper (1961). Seminal works by Lee (1972), Ignizio (1976), Ignizio and Cavalier (1994),
and Romero (1991) are also followed by research personnel world over. The first real engineering
application of goal programming, due to Ignizio in 1962, was the design and placement of the
antennas employed on the second stage of the Saturn V. This was employed to launch the Apollo
space capsule that landed the first men on the moon.

REFERENCES

Charnes, A., and W. W. Cooper. Management Models and Industrial Applications of Linear Programming.
New York, NY: Wiley, 1961.

Charnes, A., W. W. Cooper, and R. Ferguson. “Optimal Estimation of Executive Compensation by Linear
Programming.” Management Science, 1 (1955): 138–51.

Ignizio, J. P. Goal Programming and Extensions. Lexington, MA: Lexington Books, 1976.
Ignizio, J. P., and Cavalier, T. M. Linear Programming. Upper Saddle River, NJ: Prentice Hall International

Series in Industrial and Systems Engineering, 1994.
Johnson, D. S., and Trick, M. A. Cliques, coloring, and satisfiability: Second DIMACS implementation

challenge, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, American
Mathematical Society 26, 1996.

Lee, S. M. Goal Programming for Decision Analysis. Philadelphia, PA: Auerbach, 1972.
Romero, C. Handbook of Critical Issues in Goal Programming. Oxford: Pergamon Press, 1991.

http://www.crcnetbase.com/action/showLinks?crossref=10.1287%2Fmnsc.1.2.138
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FISRE.1997.566873

70 Software Patterns, Knowledge Maps, and Domain Analysis

SIDEBAR 3.3 Goal-Oriented Development (Supratik Mukhopadhyay)

The notion or idea of goals was originally derived from the artificial intelligence literature
(Russell and Norvig 2004). In a goal-oriented development method, goals are stated as intentional
specifications that later, during the software development process, are reified by getting
 associated with extensional specification (c.f. remote knowledge) (van Lamsweerde 2001). In a
 multi stakeholder software development environment, each agent states its goals that might be
competing or contradicting. It is the duty of the requirements engineering process to weed out
these contradictions. A goal-oriented methodology can be used to reduce the complexity of the
software development process. In software stability model, goals are simply the enduring themes
(Fayad 2002a, 2002b) that justify why a software solution, area of study, and so on is needed in a
 determined environment (e.g., organization and software project).

Goals can be used to identify a number of aspects in a software project. (The goal of
 consistency is a correctness aspect of a bank transaction system.) They can be stated (in natural
language or formally) or can be discovered and abstracted out, during the requirements analysis
phase, manually or through a semiautomated specification mining process. Formalisms for stating
goals in a formal manner are usually some versions of temporal and modal logics (Blackburn, de
Rijke, and Venema 2002). Goals can refer to either system-wide objectives (e.g., high throughput)
or low-level aims describing the requirements of a particular module. They can arise from both
functional and nonfunctional requirements of a system (e.g., real-time constraints). A goal can be
refined to one or more subgoals.

A goal-oriented software project involves traversing through a goal tree, an And-Or tree, whose
root is associated with the system-wide goals. The goal corresponding to each node is refined
by simpler subgoals corresponding to the children of the node. Refining a goal should take into
account constraints imposed on it by other goals. The leaves of the tree correspond to atomic
goals that can be implemented as services in such a way that the top-level goals are satisfied. Each
level of the tree corresponds to complex services and meeting goals associated with the nodes
of that level those are built by combining services corresponding to the nodes at the next level.
Goals can aid and assist in verification and validation. They can either serve as specifications in a
formal verification process or test cases can be derived out of them (von Mayrhauser, Scheetz, and
Dahlman 1999).

A goal-oriented software development methodology easily integrates with other existing
 methodologies and software architectures. For example, the system model can describe the
goals in a model-driven development environment. A service-oriented architecture (Singh and
Huhns 2005) can be viewed as a goal-oriented framework, where the existing services are the
leaves of a goal tree and services that are more complex are successively built by composing
simpler services. A goal-oriented methodology fits well into an agent-based software devel-
opment project (Cheong and Winikoff 2005). An agent-oriented architecture is essentially a
goal-oriented one where each agent implements a system goal. Interactions between agents can
also be formulated as goals and can be described either through interaction diagrams or through
temporal logic constraints. Goal-oriented development can be integrated into object-oriented
development methodology through the process of refinement of subgoals for nonfunctional
requirements, goals for functional requirements, and conflict analysis (Mylopoulos, Chung,
and Yu 1999).

Classical goal-oriented software development assumes that requirements are available a priori
and are frozen at the initial stage of the project. Hence, intentional specification about goals can
be expressed through monotonic predicates. This creates problems in real-life software projects
where requirements, and hence goals, continually change during the lifecycle of the project. For
projects with dynamically changing requirements, goals can be described and refined formally
using nonmonotonic knowledge representation schemes (Makinson 2005).

71The Goals

REFERENCES

Blackburn, P., M. de Rijke, and Y. Venema. A Course in Modal Logic. Cambridge, UK: Cambridge University
Press, 2002.

Cheong, C., and M. Winikoff. “Hermes: A Methodology for Goal-Oriented Agent Interactions.” Paper
 presented at the Proceedings of Fourth International Joint Conference on AAMAS, Utrecht, the
Netherlands, 2005.

Fayad, M. E. “Accomplishing Software Stability.” Communications of the ACM 45, no. 1 (2002a): 111–15.
Fayad, M. E. “How to Deal with Software Stability.” Communications of the ACM 45, no. 4 (2002b): 109–12.
Makinson, D. Bridges from Classical to Nonmonotonic Logic. Vol. 5. Texts in Computing Series, London:

College Publications, 2005.
Mylopoulos, J., L. Chung, and E. Yu. “From Object-Oriented to Goal Oriented Requirements Analysis.”

Communications of the ACM 42, no. 1 (1999): 31–37.
Russell, S., and P. Norvig. Artificial Intelligence: A Modern Approach. Upper Saddle River, NJ: Prentice Hall,

2004.
Singh, M. P., and Huhns, M. N. Service-Oriented Computing: Semantics, Processes, Agents. New York, NY:

Wiley, 2005.
van Lamsweerde, A. “Goal-Oriented Requirements Engineering: A Guided Tour.” Paper presented at the

Proceedings of 5th IEEE International Symposium on Requirements Engineering, Toronto, Ontario,
Canada, August 2001.

von Mayrhauser, A., M. Scheetz, and E. Dahlman. “Generating Goal-Oriented Test Cases.” Paper presented
at the Proceedings of the 23rd Annual International Computer Software and Applications Conference,
October 27–29, Phoenix, AZ, 1999.

http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F291469.293165
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F502269.502308
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F505248.505278

73

4 Discovery Stable
Analysis Pattern

All truths are easy to understand once they are discovered; the point is to discover
them.

David Whitehouse
Renaissance Genius: Galileo Galilei & His Legacy to Modern Science, 2009

Discovery is defined as the act of finding or discovering something. It could be a disease,
a drug or hidden patterns, and so on. It can be applied in areas as diverse as data min-
ing, space exploration, forensics investigation, and humans’ growth and development. For
example, in data mining, we are dealing with the discovery of hidden patterns and knowl-
edge from the widely available set of data. In space exploration, we are dealing with the
discovery or anything that leads humans to have a better understanding of what is beyond
our planet. In forensics investigation, the goal is to present a set of findings to a judge,
jury, or opposition to help defend or blame a suspect. In human’s growth and development,
discovery is seen, when children start discovering and understanding the environment that
surrounds them. Every single piece of the environment, such as events, noises, and other
humans, is a new discovery for them. As you could see, there is nothing different in the
way discovery is handled in any of those areas of application. In fact, discovery is the same
in all of them. Therefore, the reason for the analysis of this concept, with the sole purpose
of extracting its core knowledge, is a worthwhile reason, especially if you are planning to
reuse it in numerous applications, while still maintaining a cost-effective nature.

4.1 INTRODUCTION

Discovery is the elaborate process of finding information or inventing something. This
information can range from associations, trends, hidden patterns, or any meaningful knowl-
edge. Discovery in the data mining scenario, for example, is called as knowledge discovery,
which is the process of finding meaningful patterns in a set of data that explain past events
in such a way that one can use the patterns to help predict future events (see Herbert 1970).

Discovery is a stable analysis pattern as well. Analysis patterns are conceptual models
that model the core knowledge of the problem (Fayad and Wu 2002; Hamza and Fayad
2002, 2006). Stable analysis pattern is one of the building blocks of constructing a stable
pattern language, which we call a knowledge map. A nonformal language is composed of
stable analysis and stable design patterns. The knowledge map and the software stability
model (SSM) go hand in hand, and in tandem, to develop stable architectures and stable
frameworks. Stable architectures are simply a collection of two or more stable analysis
 patterns and numerous stable design patterns (usually between 4 and 5). Stable frameworks
can be seen as the skeleton upon which stable architectures, as well as the application- specific
aspects (industrial objects [IOs]), are integrated for a given software solution. SSM is a

74 Software Patterns, Knowledge Maps, and Domain Analysis

uniquely layered approach for developing software systems (Fayad and Wu 2002; Hamza
and Fayad 2002, 2006). The layers of SSM comprise of enduring business themes (EBTs)
which are the classes that present the enduring and core concepts of the underlying industry
or business. In this case, discovery is an EBT, as it deals with the core knowledge of the
system. The second layer, business object (BO), is similar to the design patterns of stable
pattern language. BOs are the workhorses that map the EBT to concrete objects. The notion
about EBTs and BOs will be more comprehensible in the next few sections.

Currently, there are a number of existing discovery patterns (see Mobasher 1996; Sain
and Tamrakar 2012); however, the solutions they portray/ portrayed are quite different when
compared to our solutions. The existing patterns usually concentrate on one particular
algorithm or technique at a time, such as data mining, psychology, information theory, or
algorithms used for finding maximal forward references and large reference sequences.
Focusing on one technique at a time, as well as on the constraints that stem from this tech-
nique, makes these patterns rigid and stiff, and hard to reuse, especially when each solution
handles discovery in a unique way. Our solution, however, originates from ultimate stability
in mind. We intend it to represent the core knowledge of discovery, regardless of its context
of applicability. In other words, we will build our patterns in terms of conceptual aspects
rather than detail-specific ones, which are highly coupled to volatile requirements. The rest
of the chapter introduces the novel discovery analysis pattern.

4.2 DISCOVERY STABLE ANALYSIS PATTERN

4.2.1 Pattern name: Discovery stable analysis Pattern

The term discovery represents an act of finding or discovering something. It may be a
productive insight causing a breakthrough in some domains or a compulsory revelation
of facts. Discovery is an interesting, elementary, and complex concept. It is an interesting
concept that has always been part of human activities or events like life evolution, science
creation and management (i.e., math and physics), and human growth. The basic fact that
we are constantly exposed to its intricacies makes it elementary to our sensorial system.
However, as elementary as it appears to our senses, it is a very complex concept, especially
when we want to analyze and extract its core knowledge. The proof of this is the fact that
each discovery solution (see Mobasher 1996; Sain and Tamrakar 2012) is unique and has
few elements that overlap each other. Discovery is an enduring aspect and is always concep-
tual; discovery stable patterns always encapsulate the discovery process.

4.2.2 Known as

Discovery, also called innovation or invention, has different meanings in different
 scenarios (see Herbert 1970); discovery in the data mining scenario is knowledge dis-
covery, but discovery of the number 0 by Aryabhatta is an invention. In other words, the
connotation of this concept will depend on the area where it is applied and whether the
evidence or factual event has already existed by its own means (i.e., nature, life evolu-
tion). Regardless of the suggested meaning, the structure of this concept will remain
the same.

Sometimes, breakthrough is used interchangeably with discovery depending on the
context of usage. A discovery is called a breakthrough only when the finding/learning so

75Discovery Stable Analysis Pattern

achieved paves way for future success by removing the barrier to progress. However, not all
discoveries result in significant advancements. Thus, there is a subtle difference between
discovery and breakthrough, and hence, you cannot use the core knowledge of discovery as
you do it from a breakthrough pattern.

Discovery is the act of observing, reasoning, and analyzing aspects that are unknown to
humans. Discovery may use preexisting knowledge or fact, but it still has certain amount
of creativity associated with it. Creativity is the ability to present new or existing ideas and
one’s imagination in a very concise way, so that everybody can assimilate or absorb it very
easily. However, discovery requires much more than just creativity; it needs knowledge
and power to think beyond the obvious and to discover things that are yet unknown. This
means creativity is an essential ingredient for discovery, and discovery may be incomplete
without creativity. Nevertheless, you cannot replace discovery with creativity to represent
the same idea.

Sometimes, the usage of word discovery is mixed up with the usage of revelation.
Revelation is the act of uncovering information about a certain entity. Discovery definitely
involves disclosing the findings from a particular discovery. However, this act of disclosing
is not as important during a discovery as is the actual discovery. Revelation is just a small
part during discovery, so that everyone is aware of the finding. Thus, it does not make any
sense to reuse the core knowledge of discovery for representing revelation.

4.2.3 context

One can apply the principles of discovery in areas as diverse as data mining, space explora-
tion, forensics investigation, and humans’ growth and development. For example, in data
mining, we are dealing with the discovery of hidden patterns and knowledge from the data
that are available widely. In space exploration, we are dealing with the discovery or any-
thing that leads humans to a better understanding of what is beyond our planet. In forensics
investigation, the goal is to present a set of findings to a judge, a jury, or an opposition to
help defend or blame a suspect. In human growth and development, discovery is seen when
children start discovering and understanding the environment that surrounds them. Every
single piece of the environment, such as events, noises, and other humans, is a new discov-
ery for them. As you could see, there is nothing different in the way discovery is handled
in any of those areas of application. In fact, the concept of discovery is the same in all of
them. Therefore, the reason for the analysis of this concept is extracting its core knowledge;
it is a worthwhile reason, especially if you are planning to reuse it in numerous applications,
while still maintaining a cost-effective nature.

4.2.4 Problem

Discovery is an enduring concept, whose application can range from the discovery of the
universe to the discovery of a mathematical formula, to the discovery of patterns in data.
However, current solutions strive in providing a stable solution that is applicable at any
time, when there is a necessity for discovery, such as the discovery of an event or thing.
The struggle, the effort, cost, and time spent to handle forthcoming adaptations (product
of changes in requirements) will increase at exorbitant and astronomical levels, which are
not accepted or handled by any company. Hence, how can we model a stable pattern that is
easily adaptable to any kind of discovery application?

76 Software Patterns, Knowledge Maps, and Domain Analysis

The aforementioned problem becomes more acute and serious when the problem’s
abstractions or the core knowledge of existing solutions depend on application-specific or
low-level details, rather than the opposite, where low-level details depend on abstractions.
So, how can we guarantee a solution that represents the core knowledge of discovery with-
out being specific or without following one particular discovery process style? For example,
some discoveries are made successful by experimentations, while others happen by sheer
accident; some discoveries are made by observations. Discovery requirements include the
following.

4.2.4.1 Functional Requirements
Involvement and ownership. The person or the investigator, who indulges in the act of

discovery, has to be dedicated and devoted to the assigned task. Discovery is per-
formed by observing and identifying things that a common person cannot. Thus,
discovery is a process that demands countless hours of active involvement, and
years of perseverance and belief in what one is investigating, where AnyParty has
exclusive rights and control over their discovery. AnyParty (owner) can gain, trans-
fer, and lose their ownership of their discovery in a number of ways, such as selling
it for money or giving it away for AnyReason. Ownership of discovery is self-
propagating in that when AnyParty owns a discovery, any other additional goods
produced using those discoveries will also be owned by the parties. Ownership
implies responsibility for actions regarding the property of the discovery. A legal
shield is said to exist if the discovery’s properties legal liabilities are not redistrib-
uted among the discovery’s owners. Ownership allows for parties sharing gains
and use of their discovery. Ownership also includes the intellectual property (IP),
which refers to a legal entitlement, which sometimes pegs to the expressed form
of a discovery. This legal entitlement generally enables its holder (AnyParty) to
exercise exclusive rights of use in relation to the discovery of the IP. IP laws are
designed to protect different forms of discovery, they include copyright, patent,
trademark, trade secret, and so on.

Ownership/party types. The ownership or AnyParty type classifies all the legal
 parties: individuals, organizations, countries, political parties, and/or a combina-
tion of some or all of them.

Source/root. It names the initiators of the idea or provides an accurate reference of
who contributed to the idea over the years.

Discovery mechanisms. It describes all the techniques and approaches used to lead
to discovery.

Characteristics/properties. Characteristics are feature-prominent attributes or aspect
of the discovery. List and utilize all the distinctive properties of the discovery, such
as aspects, attributes, services, test cases, and outstanding features.

Domains or fields of knowledge. The discovery belongs to a domain knowledge,
which has its own context, terms, laws, rules, and vocabulary, but utilized in many
different domains.

Proof. We live in an era that boasts a number of discoveries and inventions. However,
each one of these discoveries needs a sufficient amount of proof or evidence to
prove that a particular discovery is indeed a new discovery. Because there is an
immense need for proof, most of us think that it is a simple affair. Obviously, the
path or road to proof is neither easy and simple nor always straightforward. Under

77Discovery Stable Analysis Pattern

normal circumstances, one will need to take a long journey before reaching a valid
or right conclusion.

Assessments lead to indicators or evidences. A discovery is never proved or ascer-
tained, unless one can measure or assess it, and there are sufficient quantities of
indicators or evidences to prove that the discoverer has actually made the act of dis-
covery. Indicators or evidences could be those buttressing points or tools that can
vouch for the act of discovery. Verified and validated metrics/results will need to
be made available as formidable evidence of discovery. Failure to do so may result
in unrecognized discovery. Thus, providing evidence as a proof for discovery is the
most important requirement for any discovery.

Classification. Once an act of discovery has been made, we need to associate each
set of proof to one class or a set of predefined classes based on the values of some
definite attributes. A discovery that is of no use at all is useless because it does
not catch the attention of people, nor does any institution recognize it. Thus, the
overall goal is to discover knowledge that is not only useful and beneficial but also
interesting to the users.

Impacts. Notable discoveries of the past have had a deep impact on all aspects
of human lives, be they personal or professional. For example, the discovery
of penicillin served as a cure for various infective diseases and benefited thou-
sands of people. Similarly, accidental discoveries of fire and wheel permanently
changed the way people lived. However, because man always craves for more and
more knowledge discoveries—accidental or planned—discoveries keep happen-
ing every now and then. Thus, discovery is a continuous and ongoing challenge
for all of us; its innumerable impacts affect our daily lives with a pronounced
effect (from extremely positive to truly negative). Some effects can be far reach-
ing and deep, whereas others may exert a very small impact. However, it is a
certainty that those who master the art of discovery will eventually win the race.
For the winner, the impact could be monumental, like winning a Nobel prize for
the invention or the intangible satisfaction of helping millions of people with the
discovery.

Identification. Recently, there has been a large quantum of information and details
obtained, indexed, and deposited in various databases and data banks. Identifying,
detecting, and interpreting interesting and significant patterns from this rich repos-
itory of information has become an essential part in directing advanced software
and documentation research. Identifying discovery tools and techniques seems to
be the biggest problem and a perennial bottleneck.

Recording. Discovery is worthless or useless without proper and meaningful record-
ing, but people just record what they see, by using their perception. What they
usually see in front of them is always decided by what they consider or think to be
significant or prominent. Bias is a sure certainty, but one can reduce or eliminate
it by researching and probing all concepts and ideas in a proper manner. Thus, a
proper recording that results in the essence of the discovery is an important require-
ment for successful discovery.

Releasing. Announcing or promoting a discovery is a thing of uncertainty and inse-
curity. It is often very difficult and tedious to advertise a particular incident of
discovery, as without proper investigation and assertion, the validity of discovery
may be a big question.

78 Software Patterns, Knowledge Maps, and Domain Analysis

4.2.4.2 Nonfunctional Requirements
Accuracy. It is the state of being accurate and the discovery conforms to known rules

and facts or recognized standards. In the domains of applied and pure science,
engineering, industry, and statistics, the term accuracy is defined as the degree
and extent of closeness of a measured, estimated, or calculated quantity to its
actual, real (true) value. Accuracy is closely related to the degree of precision, also
called the factors of reproducibility or repeatability, the extent to which further or
advanced measurements or calculations show or repeat the same or similar results.
The term accuracy is also defined as the degree to which a given quantity is correct
and free from error (see Taylor 1999; Broderson et al. 2010).

Advantageous. It is the quality of the discovery being encouraging or promising of
a successful outcome. The quality of a discovery is said to be advantageous when
people find the discovery very beneficial and useful in their daily life. A discovery
is also highly advantageous when it provides a number of benefits and advantages
that could eventually help humankind. The word advantageous means furnishing
convenience or opportunity, favorable, profitable, useful, beneficial, an advanta-
geous position; an advantageous discovery.

Advancement. The discovery represents an advancement of an entity and brings
improvement or enhancement of an existing entity. A particular discovery will
also help the advancement of further development of a given domain of expertise.
Advancement: an act of moving forward, development; progress: the advancement
of knowledge. The act of advancing, or the state of being advanced; progression;
improvement; furtherance; promotion to a higher place or dignity; as, the advance-
ment of learning.

Reliability. It is the quality of being dependable or reliable. It is closely connected
with the quality of discovery. In its general explanation, reliability is the factor of
consistency or repeatability of discovery parameters. Reliability is also the consis-
tency of a set of quality factors used to check the veracity of the announcement of
a particular discovery.

Usability. Discovery is easy to use and/or to be utilized. A discovery made or
announced should be easily available for daily use. A discovery is said to be usable
when its use becomes flexible and practical. Usability is also used to denote the
ease with which people can employ a particular discovery in order to achieve a
particular goal or objective (Norman 2002).

4.2.5 challenges anD constraints

Knowledge discovery systems (Sidebar 4.1) always face a number of difficult challenges
and constraints. In fact, constraints can challenge good pattern designs. Current stable
analysis discovery systems are armed with many techniques and processes that can be
potentially applied to find solutions to a new problem. However, this system may face a
challenge or constraint of selecting or choosing the most appropriate and practically fea-
sible technique(s) for a problem that is pending at hand. This is due to the real domain area
that is difficult to perform a deep comparison of all practically applicable techniques.

Because of the generic nature of discovery, one may need to exercise enough caution and
care to handle stability patterns. Another important thing that a software developer must

79Discovery Stable Analysis Pattern

focus on is the number of types of discoveries that tend to pose innumerable difficulties and
obstacles, especially in devising a practically feasible mechanism.

4.2.5.1 Challenges
Current knowledge discovery systems (Sidebar 4.1) are equipped with a number of tech-
niques that have the ability to relate to a new problem. Nevertheless, an existing system may
face a unique task of selecting the most appropriate technique or method, because it is so
difficult to make a comparative study of all applicable techniques.

• The discovery pattern plans to model discovery performed in numerous domains
or fields that need some sort of discovery process. However, the very defini-
tion of discovery needs to be constrained for this pattern, that is, informational
perspective.

• Discovery is a generic concept—it can mean any breakthrough by serendipity or a
product of persistent research and innovation. These flavors of discovery need to be
handled carefully by the stable pattern.

• Discovery has various forms in different domains; for example, discovery of water
on Mars is conducted by observation and research and not by experimentations. All
these different aspects need to be taken care of while building the model.

• Different parties like a scientist, a child, or a lawyer may handle discovery.
Therefore, this pattern must be able to capture all the different roles that a party
can take.

• There are different mechanisms used to perform a discovery, such as experimenta-
tion, observation, and research. Therefore, this pattern must be able to encapsulate
the canonical knowledge and semantics shared among all the different mecha-
nisms for discovery.

• Regardless of the mechanism selected to perform discovery, there must be any
type of evidence available that leads to the ultimate proof of the discovery—the
feeder of information. The pattern, then, must be able to cope with different
types of evidence that will induce a proof for the discovery by any type of
mechanism.

4.2.5.2 Constraints
• Discovery has one type or more than one types. Some discovery types go hand in

hand with other discovery types to discover a number of artifacts.
• Depending on the type of discovery, there could be one or more discovery mecha-

nisms to handle this aspect. For example, discovery of a medicine requires obser-
vation, experimentation, research, and so on.

• An individual or a group of individuals conducts a discovery process. For exam-
ple, scientists collaborate with doctors, analysts, and researchers to arrive at a
solution.

• An individual or a group of individuals may define a special set of criteria for their
aim of discovery that influence the discovery mechanisms.

• One or more than one discovery mechanisms may require zero or more than zero
things, events throughout zero, or more than zero media to produce a specific discovery.

80 Software Patterns, Knowledge Maps, and Domain Analysis

• The discovery mechanism leads to one piece of evidence or more. Therefore, in
order to use this pattern, we have to acknowledge any type of evidence that will
lead us to the actual discovery.

• Any evidence supports the actual existence of a thing and event that is to be
discovered.

• Evidences qualify the actual discovery or discoveries made during the evaluation
of them.

• Because discovery is a crosscutting concern, there must be one sole instance of this
concept shared across the entire patterns reminding classes.

• There must be a selection of a particular process before the usage of the discovery
aspect.

4.2.6 solution

The solution to the above problem is demonstrated in the form of a model, followed by the
participants. See Figure 4.1.

• Pattern structure
• Classes

 − Discovery. It describes the discovery process. It is the EBT. It must follow certain
rules and regulations, so that no laws are violated while making a discovery. For
example, patents must be taken into consideration when claiming discovery.

Discovery has many flavors and it comes in many forms and domains. In the domain
of legal studies, the act discovery is an essential process of pretrial litigation proceed-
ings, when both sides demand correct and fitting information, details, legal papers,
and documents from each other, in a well-calibrated attempt to discover and seek out
legally correct and admissible facts. In a general sense, a number of legal devises and
tools make the part of judicial proceedings to discover something, such as deposi-
tions, witnesses, arguments, hearings, requests for admissions and document produc-
tion (http://www.lectlaw.com/def/d058.htm).

Within the realm of the software development process, the act of discovery refers to seek-
ing out bugs and errors, during the developmental or maintenance phase. For discovering
errors, the developer needs to search and find out through the heaps of source code by run-
ning simultaneous and multiple tests. Discovery can mean a geological discovery, medical
discovery, or data mining discovery. Depending on the type of discovery, there could be
one or many discovery mechanisms.

These mechanisms could be examinations, experimentations, observations, analysis,
research, and so forth. An individual or a group of individuals, or a company, conducts the
discovery process. Every discovery requires the evidence to prove itself. The discovery mech-
anism implemented later leads to the body of evidence that finally asserts or proves the dis-
covery or discoveries. This discovery should meet the criteria for which it was discovered
and needs to be qualified to be a valid discovery. Irrespective of the domain in which discovery
is carried out, it is always difficult to carry out the process and is a time-consuming and labo-
rious process. The immense difficulty associated with discovery is because the information/
knowledge sought by the discoverer is not available in an easily understandable form.

http://www.lectlaw.com

81Discovery Stable Analysis Pattern

The participants of discovery pattern are classified into two categories as follows:

• Patterns
• AnyParty. It represents a person or a group of people or an organization

or a group of scientists responsible for the discovery process. AnyParty is
involved in the whole process of discovery from the very beginning, and
thus AnyParty is solely responsible for any impact the discovery may have.
AnyParty stable design pattern is a very common pattern and it is provided
in [x, y].

• AnyActor. This class represents any individual, hardware, software, or crea-
tures that utilize or discover the different forms of the discovery. The AnyActor
stable design pattern is a very common pattern and it is provided in [x, y].

• AnyCriteria. It represents the criteria specified by AnyActor or AnyParty.
AnyCriteria influences AnyMechanism followed to verify the trustworthiness
of AnyActor or AnyParty. AnyCriteria stable design pattern is a very common
pattern and it is provided in [x, y].

EBTs

works on

{OR}

works on

involves

le
ad

s t
o

BOs

1..*

1..*

1..*

1..*

1..*

1..*
1..*

1..*

0..*

0..*

1..*

0..*

de
te

rm
in

es
1..*

defines

defines

influences

<<P-BO>>
AnyParty <<P-BO>>

AnyCriteria

<<P-BO>>
AnyActor

<<P-BO>>
AnyEntity

<<P-BO>>
AnyMechanism <<P-BO>>

AnyEvidence

<<P-BO>>
AnyDiscovery

leads to

indicates

within

<<EBT>>
Discovery

<<P-BO>>
AnyType

Many possibilities
such as star
discovery,
innovations, and
some kind of discovery

has

AnyExamination
AnyExperiment
AnyObservation
AnyKnowledge
AnyResearch
AnyAccident <<P-BO>>

AnyEvent

<<P-BO>>
AnyMedia

on

on

1..*

1..*

de
te

rm
in

es

FIGURE 4.1 Discovery stable analysis pattern.

82 Software Patterns, Knowledge Maps, and Domain Analysis

• AnyMechanism. It represents the BO, which deals with different kinds of dis-
covery mechanisms. Some discovery mechanisms used to make discovery can
be examination, experimentation, observation, knowledge, research, accident,
and investigation. The AnyMechanism stable design pattern is a very common
pattern and it is provided in [x, y].

• AnyType. It represents the different types of discoveries in different applica-
tion areas or domains. For example, discovery of life on Mars or discovery of
medicines for curing cancer could be different discoveries. The AnyType stable
design pattern is a very common pattern and it is provided in [x, y].

• AnyEntity. It represents an entity used by AnyMechanism for generating
AnyDiscovery. Every entity has certain properties and characteristics that can
be quantified and verified against any criteria. The AnyEntity stable design pat-
tern is a very common pattern and it is provided in [x, y].

• AnyEvent. It is something that takes place or an occurrence. The AnyEvent
stable design pattern is a very common pattern and it is provided in [x, y].

• AnyMedia. It represents the media through which the discovery will
take place. For instance, one can discover certain patterns on the Internet.
Others may discover patterns in email messages, by using text mining. The
AnyMedia stable design pattern is a very common pattern and it is provided
in [x, y].

• AnyEvidence. It represents the proof of the discovery. AnyParty may provide
evidence in terms of compiled research results or actual test results or the evi-
dence may be photographs. Evidence must be concrete, tangible, and verifiable
in order for the discovery to be meaningful. The AnyEvidence stable design
pattern is a very common pattern and it is provided in [x, y].

• AnyDiscovery. It represents the BO, which represents the desired discovery.
It is the actual discovery that is being made or carried out. The AnyDiscovery
stable design pattern is a very common pattern and it is provided in [x, y].

• Class Diagram Description. The class diagram provides visual illustration of all the
classes in the model, along with their relationships with other classes. Description
of the class diagram is as follows:
• AnyParty and/or AnyActor use the discovery process for achieving

AnyDiscovery (BO) by defining a zero or more than zero set of AnyCriteria
(BO) that influence the selected AnyMechanism (BO).

• Discovery is the EBT of this model. Discovery (EBT) must have one or more
than one AnyType (BO).

• AnyType (BO) represents all the domains in which one can carry out the dis-
covery (EBT). AnyType (BO) can be represented as discovery of a star or some
other innovations like finding another planet that has life.

• AnyType (BO) plays an important role in determining a zero or more than zero
set of AnyEntity (BO).

• Devising AnyMechanism (BO) specific to the discovery in context involves
discovery (EBT) too.

• AnyCriteria influences this AnyMechanism (BO), which is defined by AnyParty
(BO) or AnyActor after thorough analysis. Depending on the domain of discov-
ery, AnyMechanism (BO) varies and can range from simple examination to
full-fledged experimentation.

83Discovery Stable Analysis Pattern

• AnyMechanism (BO) must lead to creation of AnyEvidence (BO), because
without demonstrable and confirmable evidence discovery cannot be complete.

• The presence of AnyEvidence (BO) indicates that AnyDiscovery (BO) qualifies
for being called discovery (EBT), as it now meets the criteria.

• AnyDiscovery may utilize zero or more of AnyEntity, within zero or more of
AnyEvent on AnyMedia.

4.2.6.1 CRC Cards

Discovery (Discovery) (EBT)

Responsibility Collaboration

Client Server

Discovering AnyType implement (), qualifyAnyDiscovery()
AnyMechanism discover(), selectType(),

satisfyConditions()
AnyDiscovery provideAdvancement(), innovate(),

limits(), requires(), applyTo(), qualify()
Attributes: properties, conditions, qualityGuides, importance, fieldOfDiscovery, applications, requirements,
states, limitations

AnyActor(AnyActor) (Pattern-BO)

Responsibility Collaboration

Client Server

To perform Discovery agree(), disagree(), participate(),
group(),

AnyCriteria interact(), associate(), organize(),
join(), discover(), monitor(),
switchRole(), request(), explore(),
playRole(), conduct(), carryout(),
analyze(), find out(), initiate(),

Attributes: id, name, type, role, member, affair, activity, category

AnyParty(AnyParty) (Pattern-BO)

Responsibility Collaboration

Client Server

To perform Discovery,
AnyCriteria

participate(), playRole(), interact(),
leave(), group(), associate(), organize(),
request(), setCriteria(), switchRole(),
partake(), join(), monitor(), explore(),
receive(), collectData(), integrate(),
agree(), disagree()

Attributes: id, partyName, type, role, member, affair, activity, partiesInvolved, id, activity, category
(or orientation), purpose

84 Software Patterns, Knowledge Maps, and Domain Analysis

AnyCriteria (AnyCriteria) (Pattern-BO)

Responsibility Collaboration

Client Server

Present a set of requirements and
constraints

AnyParty
AnyActor
AnyMechanism

define(), verify(), apply(), priority(),
parse(), exhibit()

Attributes: id, name, condition, property, priority

AnyMechanism (AnyMechanism) (Pattern-BO)

Responsibility Collaboration

Client Server

To implement Discovery
AnyCriteria
AnyEvidence

execute(), provideEvidence(), status(),
performActions(), activate(),
deactivate(),

attach(), detached(), pause(), return()
Attributes: context, id, name, status, application, components, description

AnyType (AnyType) (Pattern-BO)

Responsibility Collaboration

Client Server

To classify the types of discoveries Discovery
AnyEntity

determine(), change(), operateOn(),
pass(), resume(), label(), classify(),
attached(), nameAttributes(), specify()

Attributes: id, name, properties, interfaceList, methodList, clientList

AnyEntity (AnyEntity) (Pattern-BO)

Responsibility Collaboration

Client Server

To be utilized in or as an evidence AnyType
AnyEntity
AnyMechanism
AnyEvent

performfunction(), status(), type(),
update(), new(), relatedTo()

Attributes: id, entityName, entityType, status, position, states, type

85Discovery Stable Analysis Pattern

AnyEvent (AnyEvent) (Pattern-BO)

Responsibility Collaboration

Client Server

To facilitate AnyEntity
AnyMedia

takeplace(), to be reported(),
startDate(), duration(), setActivity(),
organize(), facilitate()

Attributes: id, eventName, eventType, status, states, type, size, duration, startingDate, startingTime,
endingDate, endingTime, location, commonality, activities

AnyMedia (AnyMedia) (Pattern-BO)

Responsibility Collaboration

Client Server

Place to store, perform, and reside AnyEvent
AnyDiscovery

connect(), broadcast(), capture(),
store(), display(), access(), select(),
remove(), navigate(), secure(),
defineProperties(), identify()

Attributes: id, mediaName, mediaType, capability, entry, securityLevel, status, sector, security

AnyEvidence (AnyEvidence) (Pattern-BO)

Responsibility Collaboration

Client Server

To provide proof AnyDiscovery provide(), lookFor(), indicate(),
present(),

AnyMechanism pointsTo(), consistsOf(), prioritize(),
interpret(), validate()

Attributes: id, name, number, description, type, status, conditions, limitations, upperLimit, lowerLimit,
importanceFlag, attributes, relationships, impacts, context, components

AnyDiscovery (AnyDiscovery) (Pattern-BO)

Responsibility Collaboration

Client Server

Store information about itself Discovery type(), new(), generate(), gain(), loses()
AnyEvidence performActions(), impact(), value(),

meetCriteria()
Attributes: id, name, type, status, value, states, impacts, conditions, numberOfApplications, ownedBy,
ingredients, properties

86 Software Patterns, Knowledge Maps, and Domain Analysis

4.2.7 consequences

The pattern supports the motivation behind its modeling.

• The pattern supports different types of discoveries in different application areas.
This means that one can use the described discovery patterns as an essential frame-
work for building any type of discovery. For example, one can use this pattern
to represent discovery of computers, as well as discovery of new planet, by just
attaching the discovery-specific IOs. Thus, diverse discoveries in varied domains
can be modeled using the depicted discovery pattern.

• This pattern is a proper level of abstraction, which tries to cover only the shareable
characteristics and behavior of all the elements it portrays. This is because the pat-
tern is designed by extracting common characteristics of the process of discovery.
The pattern is extremely stable because of the existence of core components—EBT
and BO form the basis of patterns.

• Because the pattern is abstract when used in a specific application, its scope must
be constrained in accordance with a category of employment, that is, child devel-
opment and growth. However, the pattern itself offers a way to constraint its scope
with AnyDiscoveryMechanism pattern. By restricting the number of mechanisms
used in the pattern, one can easily control and manage its scope.

• This pattern always supports the motive behind its modeling. It depicts a generic
pattern, which can be utilized in applications across diverse domains. This general-
ized usage is possible, because the pattern has a stable core consisting of BOs and
EBT, which results in reusability.

• To use this pattern in accordance with a specific discovery, its scope must be signifi-
cantly narrowed down. For instance, is the discovery process involved in data mining,
or is the discovery involved in child development and growth? The discovery pattern
will be constrained to the selected category where it will exist. However, this is not a
limitation, because for the new discovery its type and mechanism can be easily added.

Given above points, one can conclude that the discovery design pattern is scalable and can
be used in a number of scenarios, without requiring any change in the base framework. Only
the scenario-specific objects need to be wired with the base discovery patterns framework, in
order to fit this design pattern in the scenario. This is possible because the discovery pattern
is derived by keeping stability in mind and this is the good thing about discovery design pat-
tern. However, the discovery pattern will require integration of verification systems to verify
the correctness of the discovery. Many people will think this as a negative feature about the
discovery pattern, as the pattern looks incomplete. However, this is not true, because pat-
terns can never exist alone and they should be used in conjunction with other components.

4.2.8 aPPlicability

4.2.8.1 Case Study 1: Discovery of a New Vitamin K
This case study demonstrates the applicability of the discovery pattern in the discovery of
vitamin K. Vitamin K discovery is a part of AnyDiscovery type. The different discovery
mechanisms determined are experiments, investigation, and research.

The scientists involved in this discovery process are responsible for initiating the dis-
covery process and conducting the research, investigation, and experiments (see Figure 4.2).

87
D

isco
very Stab

le A
n

alysis Pattern

<<EBT>> <<BO>>

1...*
AnyActor

Discovery

involves

works on

has
1...*

0...*

0...*

0...*

AnyType

AnyEntity

AnyEvent

requires
leads to

AnyMechanism
1...*

determines

defines
0...*

influences

AnyCriteria

AnyEvidence

indicates

on

AnyDiscovery

1...*

0...*

-

1...*

within
on 1...*

1...*

AnyMedia

Medical specifies

required for

Recommended-
Dietary-

Allowance (RDA)

ResearchPaper

consists of

required for

Cereal

GreenLeafy-
Vegetable

VitaminK

Hempseed-
Composition

Hemorrhage

relates to

reduces risk of

BloodClot

ExperimentalStudy

carries out involves

Scientist

uses subject as

Chicken

fed as per

feeds on

writes

performs

Coagulation

inhibits

consists of
about

<<IO>>

By feeding
chicken a

cholestrol-
depleted diet

determines

– Examination
– Experiment
– Observation
– Research
– Accident

FIGURE 4.2 Class diagram for case study 1.

88 Software Patterns, Knowledge Maps, and Domain Analysis

A scientist inherits information from the super class AnyActor. The results of these mecha-
nisms act as evidence and vitamin K is a part of AnyDiscovery.

Use Case Title: Discovery of Vitamin K

Actors Roles

AnyActor 1. Scientist
 2. Chicken

Class Name Type Attributes Operations

Discovery EBT 1. discoveryType 1. followsMechanism()
 2. discoveryMechanism 2. finds()
 3. discoveryCriteria
 4. discoveryMedia

AnyCriteria BO 1. criteriaName 1. decidesMechanism()
 2. levelOfStandard

AnyActor BO 1. actorType 1. performsTask()
 2. actorCategory

AnyMechanism BO 1. mechanismName 1. leadsToEvidence()
 2. mechanismDescription 2. dependsOnCriteria()
 3. mechanismProcedure

AnyType BO 1. typeName 1. determines()
 2. typeDescription 2. categorizes()
 3. properties

AnyEntity BO 1. entityName 1. relatesToEvent()
 2. entityCategory 2. takesPart()
 3. entityDescription

AnyEvent BO 1. frequencyOfOccurence 1. executes()
 2. eventLocation 2. involvesEntity()
 3. eventDescription

AnyConsequence BO 1. consequenceFactor 1. occurs()
 2. consequenceImpact
 3. consequenceDescription

AnyMedia BO 1. mediaType 1. servesAsMedium()
 2. mediaDescription
 3. mediaName
 4. mediaPurpose

AnyDiscovery BO 1. discoveryType 1. supportedByEvidence()
 2. evidence 2. happens()
 3. discoveryDescription
 4. discoveryConsequence

Chicken IO 1. breed 1. lives()
 2. birthDate 2. servesAsSubject()

Scientist IO 1. name 1. discovers()
 2. workHrs 2. writes()
 3. skills 3. performs()
 4. knowledge

(Continued)

89Discovery Stable Analysis Pattern

Class Name Type Attributes Operations

ExperimentalStudy IO 1. type 1. involves()
 2. domain 2. proves()
 3. subject
 4. performer

Coagulation IO 1. type 1. relatesToBloodClot()
 2. reason

Hemorrhage IO 1. type 1. servesAsEvidence()
 2. affectedArea
 3. cause

BoodClot IO 1. intensity 1. reducesRisk()
 2. affectedOrgan 2. prevents()

Hempseed
Compostion

IO 1. type 1. providesNutrition()
 2. breed 2. consistsVitaminK()
 3. ingredients

VitaminK IO 1. type 1. maintainsHealth()
 2. composition 2. preventsHemorrhage()
 3. typeOfBonds

ResearchPaper IO 1. domain 1. tellsAboutDiscovery()
 2. author
 3. topic
 4. title

Cereals IO 1. type 1. servesAsFood()
 2. nutrientContent 2. providesVitaminK()

Green Leafy
Vegetable

IO 1. type 1. providesVitaminK()
 2. breed
 3. vitaminType

Medical IO 1. type 1. specifiesRDA()
Recommended
Dietary Allowance

IO 1. nutritionLevel 1. aidsInDiscovery()
 2. quantity 2. definesNutritionNeed()

Use Case Description

 1. Discovery involves AnyMechanism, and ExperimentalStudy provides a mecha-
nism for discovery.

 What kind of mechanism is needed for discovery? How is appropriateness of
mechanism assured? How experimental study provides a mechanism? What kind
of experimental study?

 2. ExperimentalStudy involves Coagulation that relates to BloodClot, and BloodClot
reduces risk of Hemorrhage that forms a part of AnyEvidence.

 How blood clot reduces risk of hemorrhage? What forms evidence? What kind of
evidence?

 3. HempseedComposition consists of VitaminK, inhibits coagulation, and forms
AnyEvidence.

 What is Vitamin K? How coagulation is inhibited?
 4. AnyEvidence indicates AnyDiscovery and discovery is done on AnyMedia.
 What kind of media? How evidence indicates discovery?
 5. AnyEvent occurs on AnyMedia that comprises of AnyEntity.

90 Software Patterns, Knowledge Maps, and Domain Analysis

 6. AnyType determines AnyEntity.
 What are types of entity?
 7. Medical specifies RecommendedDietaryAllowance (RDA) that is required for

GreenLeafyVegetables and Cereals.
 How Medical specifies RDA? What is the purpose of RDA? Who defines medical?
 8. Cereals and GreenLeafyVegetables consist of VitaminK, which is AnyDiscovery.
 What is the proof that cereals and green vegetables consists of Vitamin K?
 9. Scientist uses Chicken as subject for ExperimentalStudy.
 Why scientist uses chicken? What kind of experimental study?
 10. Chicken feeds as per RDA.
 11. Chicken and Scientist forms AnyActor, who determines AnyMechanism.
 What kind of mechanism? Why actor determines mechanism? What is the purpose?
 12. AnyActor defines AnyCriteria, which influences AnyMechanism.
 How criteria influence mechanism? What criteria actor defines? On what basis?
 13. AnyMechanism requires AnyEntity and leads to AnyEvidence.
 How mechanism leads to evidence?
 14. AnyActor works on Discovery that has AnyType.
 What are the types of discovery? How the actor starts for discovery?

4.2.9 relateD Patterns anD measurability

4.2.9.1 Related Pattern
The discovery process exhibits different forms under different applications and under dif-
ferent domains. Although these different types of discovery mechanisms are implemented
in tools, discovery as a pattern does not exist per se. The discovery process exists as a part
of different tools. Some tools implement pattern discovery process, some tools implement
association rules, while others implement other mechanism (see http://maya.cs.depaul.
edu/~mobasher/webminer/survey/node7.html). These tools are domain specific and deal
with one particular algorithm or discovery mechanism, but the solution we have provided
is generic in nature, which can be adaptable in any domain and any application. Thus, the
existing tools in the market can be used only for a specific purpose and use. The tool will
fail when you try to use it in another context. However, the tools created on top of the stable
discovery pattern depicted here can be used for as many domains as needed. In short, the
single tool can serve as a key to all the available tools in the market for discovery. Based on
this definition, the following metamodel can be modeled for the discovery problem.

In law, discovery is the pretrial phase in a lawsuit, in which each party through the law of
civil procedure can request documents and other evidence from other parties or can compel
the production of evidence by using a subpoena or through other discovery devices, such as
requests for production of documents and depositions. In other words, discovery includes
interrogatories, motions or requests for production of documents, requests for admissions,
and depositions.

Traditional Model (Business as Usual) versus Stable Model (Pattern)

• The basis of the traditional model is entirely IOs, which are physical objects
and are unstable. However, the stable model is based on three different concepts—
EBT, BO, and IO. The EBTs represent elements those remain stable internally and

http://maya.cs.depaul.edu
http://maya.cs.depaul.edu

91Discovery Stable Analysis Pattern

externally overtime. The BOs are objects that are internally stable but externally
adaptable; IOs are replaceable, are unstable, and are application classes/objects.

• The traditional model is hard to reuse, when requirements change. Any changes in
the requirements might cause a complete reengineering of the project. The stable
model is highly flexible and is reusable in wide domains and applications.

• The traditional model requires high maintenance cost in terms of time, labor, and
money. The system built by using the traditional model cannot be extended or
adapted. The stable model is easily maintainable and extendable.

To summarize, the features of stability model like stability, scalability, understandability, reus-
ability, maintainability, and simplicity make it far better as compared to the traditional model.

4.2.9.2 Measurability
• Quantitative Measure

• Quantitative metrics refer to the quantity aspect of EBTs, BOs, and IOs. The more
the number of classes, the more it will result in lines of code while developing
the system. In addition, as lines of code increase, error propagation rate will also
increase and it will be difficult to maintain accuracy in the pattern development.

• The quantitative aspect shows that EBTs, BOs, and IOs should be selected in
such a way that it should cover all the necessary patterns required in modeling,
and yet it should be developed in a manageable number of lines of code, which
will result in lesser error propagation. The second aspect of quantitative metrics
is when compared to a traditional model the stability model has less number of
classes with the focus on explicit as well as implicit factors.

• Traditional models are specific to an application as they are based on classes
specific to one application only. A stable model is generic, and it can be extended
to develop any application by just hooking the application-specific IOs to the
stable pattern. This makes the stable model highly flexible. Also in the stable
model, as the base pattern is known well in advance, determining and develop-
ing estimations or measurement metrics is far easier and less time consuming,
as compared to that observed in the traditional model.

• Qualitative Measure
• A stable model being very generic can be reused to apply to any application,

whereas the traditional model is built on application-specific tangible objects
and thus cannot be reused. Reusing traditional model requires a lot of reen-
gineering, effort, time, and cost. This makes the stable model more scalable
and flexible. Moreover, it is easy to maintain the stable model as compared to
traditional model, because it is flexible and easily adaptable.

• For software requirement specificity, we can formulate one formula; to create
it, we just need to define a few terms. We can use Q1 for specificity of require-
ments. By specificity of requirements, we mean lack of ambiguity. The second
value is completeness. By completeness, we mean how well they cover all the
functions of classes to be implemented. We refer to it as Q2. So, now to deter-
mine specificity for requirements, we will use following formula:

 Q1 Nui
nr

=

92 Software Patterns, Knowledge Maps, and Domain Analysis

where:
Q1 is specificity of requirements
Nui is number of common requirements identified
nr is total number of requirements

 nr nf nnf= +

where:
nf is number of functional requirements
nnf is number of nonfunctional requirements

Thus, the lower the value of requirement specificity, the greater will be the ambiguity.
Therefore, the value of requirement specificity should always be optimal.

4.2.10 moDeling issues, criteria, anD constraints

4.2.10.1 Modeling Heuristics

4.2.10.1.1 General Enough to Be Reused in Different Applications
The stable design pattern so developed can be applied to a wide range of applications. The
pattern has been developed keeping generality in mind. Discovery has different meanings
under different contexts. BOs defined for the pattern are general enough, such that they can
be hooked to IOs of any application, and the pattern is capable enough to derive the spe-
cific functionality of the application. This part has been well explained in our discussion of
applicability, where discovery is used to define legal discovery. Similarly, we can use the
same pattern to develop a model for drug discovery.

4.2.11 Design anD imPlementation issues

For a design pattern to be useful and applicable across many different problem domains, it
must represent an EBT, which defines the core value of the pattern and which can withstand
changes over time. For the discovery pattern, the EBT is identified to be that of discovery.
Discovery is the enduring concept of observing, finding, and noting things that are not
known to anyone before. This enduring concept must maintain its characteristics in dif-
ferent applications. While analyzing the mapping concept, we could identify a set of BOs
that form the basis of the discovery pattern. These BOs are also very stable and extendable
into different IOs depending on the type of application. Therefore, discovery is the process
of making AnyDiscovery by AnyParty. How any discovery is made is encapsulated by
AnyDiscovery and AnyMechanism and can be influenced by AnyEvidence. All these BOs
are stable and generic enough, because they will not change when the discovery is applied
in various contexts or over time.

To apply the discovery pattern to a particular application, we also look for IOs that are
extensible from the BOs and are tangible objects that reflect the true problem domain. IOs
generally are not stable and you may need to modify them over time. Because the BO layer
remains stable and the EBT lasts over time, any possible changes are restricted to the IO
layer only.

Stability model is based on EBTs, BOs, and IOs. The EBTs used are general so that they
can be applied in various domains. But there are a few implementation issues that we must
tackle and manage. They are as follows.

93Discovery Stable Analysis Pattern

4.2.11.1 Delegation versus Inheritance
Figure 4.3 shows the model implemented with inheritance.

The model shown in Figure 4.3 is static and fixed. Country and WHO are the subclasses,
and they inherit attribute, operations, and methods from AnyParty. If any change occurs in
AnyParty, then it will reflect in all the subclasses, even when that change is not needed for
all subclasses concerned here. In other words, superclass will not hide any methods from
its subclasses.

4.2.11.2 Model Implemented with Delegation
The model in Figure 4.4 shows the use of delegation instead of inheritance. How it affects
the modeling pattern is an interesting feature. Delegation provides dynamism, that is, run-
time flexibility, which is one of its distinct features. The rest of the characteristics are
similar to inheritance as it also provides a reuse technique. Dynamic coupling between
superclass and subclass is the key feature.

In this case, the same submodel is implemented by using delegation instead of inheri-
tance. Now, even if superclass adds some changes, it will not reflect in all subclasses because
of delegation, as it provides dynamic run-time linking by invoking a call from one object
in superclass to the object in the subclass concerned. Now, if some additional rules need to

AnyParty

Country World Health Organization

FIGURE 4.3 Inheritance.

AnyParty

Country World Health Organization

1

1..*

1

FIGURE 4.4 Delegation.

94 Software Patterns, Knowledge Maps, and Domain Analysis

be implemented for WHO guidelines, then all we need to do is create a separate method for
WHO rules and then pass the object to the WHO subclass. So, in this case that particular
change will not be seen in the Country subclass. In other words, a superclass can hide its
methods from subclasses.

The code for the delegation example taken is as below

public class anyparty{
 public void publichealth(system.out.println('public health

issue'));
 public void population(system.out.println('number of people

in the country'));
}
public class who
{
 anyparty a = new anyparty();
 public void publichealth(a.publichealth());
}
public class country
{
 anyparty b = new anyparty();
 public void population(b.population());
}

The above code shows how the class WHO creates an object and delegates the class
AnyParty by using that object to invoke the method in class AnyParty. Thus, it will use the
relevant methods from class AnyParty for its own class. In this way, class AnyParty can
hide its methods from other classes that do not require those methods.

4.2.12 testability

If the discovery analysis pattern can be used as it is in its original form, without chang-
ing the core design and by only plugging IOs for infinite number of applications, then
the discovery pattern can be said to be testable. In Section 4.2.8, two widely different
applications are illustrated, and they do not require changing the core design of the
pattern. Using the scenarios listed in this paper, many such scenarios can be deduced
and proved to say that the discovery pattern is indeed testable. Another alternative to
test the discovery pattern is to come up with such cases where discovery is being used/
can be used but the given discovery pattern solution does not model the given problem.

In general, patterns designed by using the stability model are more easily testable
when compared to the traditional model. This is because the EBTs and BOs rarely
change and they can be applied to other applications without any major changes. In
this project, the discovery stability pattern is tested by applying the pattern to many
different applications without introducing any changes to the core pattern. This is
achieved by plugging in the necessary IOs to the core discovery pattern. In the same
way, other application’s IOs from any context can be plugged to BOs. The above
pattern so developed will be considered testable only when it can be applied to any
scenario/application.

95Discovery Stable Analysis Pattern

4.2.13 Formalization using object constraint language, z++
or object z, anD/or extenDeD bacKus–naur Form

We can describe the discovery pattern in a many-sorted first-order language (Yang, Chin, and
Chung 1992). A many-sorted first-order language consists of a set of sorts or types. Each
sort is associated with a universe and a set of relation and function symbols whose defini-
tion would come from the domain. In addition, each sort can have a one or more subsorts.
The universe of a sort is the union of the universes of its subsorts. We use an XML-based
schema for describing a discovery pattern. The XML description can be used for generat-
ing code in a language such as C++ or C#. We can briefly describe the syntax for discovery
patterns below. Because the full description of the schema is space consuming and reduces
readability aspects, we are providing only a part of the schema. The remaining portions of
the schema can be developed along similar lines.

<pattern>
 <title>
 "discovery"
 </title>
 < sort>
 <title>
 "Discovery"
 </title>
 <sort>
 <title>
 "discoveryType"
 </title>
 <sort>
 <title>
 "name"
 </title>
 <type>
 String
 </type>
 <universe>
 {life on Mars, drug, ...}
 </universe>
 </sort>
 <sort>
 <title>
 "type"
 </title>
 <type>
 String
 </type>
 <universe>
 {Space, Medicine,...}
 </universe>
 </sort>
 <sort>
 <title>

96 Software Patterns, Knowledge Maps, and Domain Analysis

 "description"
 </title>
 <type>
 String
 </type>
 <universe>
 {...}
 </universe>
 </sort>
 <sort>
 <title>
 "list of mechanisms"
 </title>
 <type>
 Power: DiscoveryMechanism
 </type>

</sort>
<function>
<title>
"determine mechanism"
</title>
<type>
Constant: DiscoveryMechanism
</type>
</function>
<function>
<title>
"addDiscoveryType"
</title>
<type>
 name?→type?→DiscoveryType→DiscoveryType
</type>
<description>
addDiscoveryType: DiscoveryType' = DiscoveryType ∪ {name?, type?}
</description>
</function>
<function>
<title>
"removeDiscoveryType"
</title>
<type>
 name?→type?→DiscoveryType→DiscoveryType
</type>
<description>
<pre>
{name?,type?} ε DiscoveryType
</pre>
<body>
addDiscoveryType: DiscoveryType = DiscoveryType' ∪ {name?, type?}
</body>

97Discovery Stable Analysis Pattern

</description>
</function>
</sort>

...

</pattern>

4.2.14 business issues

4.2.14.1 Business Rules
One can easily find business rules (Sidebar 4.2) in both application development and
 business management life cycles. Application architects, analysts, and developers base
the majority of their work on basic business rules and constraints. Business rules are an
 excellent tool for automated processes with multiple decision points. Connecting business
rules to business processes creates a direct correlation between company policy and
 business operations. Although such processes do not change very often, business rules
keep changing continuously, as managers adjust to internal and external market environ-
ments. Business rules differ in complexity. In some instances, a business rule can be very
simple, described maybe in one sentence. To make the rules most efficient, each rule
should be independent of procedures and work flows (Perry and Kaminski 2008).

Mapping business rules to discovery and finding an instance of discovery with strong
evidence ensure the stability of this concept in all areas where discovery is utilized.

The class diagram provides visual illustration of all the classes in the model along with
their relationships with other classes. Description of the business rules based on discovery
pattern’s class diagram is shown below.

• AnyParty and/or AnyActor uses the discovery process for achieving AnyDiscovery
(BO) by defining a zero or more than zero set of AnyCriteria (BO) that influence
the selected AnyMechanism (BO).
• AnyParty. This refers to any legal user involved with AnyDiscovery, such as sci-

entists, discoverers, assistants of discoverers, any user of the discovery, and so on.
• AnyMechanism or discovery process. Any techniques used to make a specific

or particular discovery, such as experimentation and observation.
• AnyCriteria. Any legal user’s defined criteria (requirements, constraints, etc.)

over what the pattern has.
• AnyDiscovery. Any specific and particular discovery, such as vitamin K dis-

covery, phone discovery, and a particular drug discovery.
• Discovery is the EBT of this model. Discovery (EBT) must have one or more than

one AnyType (BO).
• AnyType. Specifies the type of discovery based on domain, such as medical, social,

drug, engineering, life, and planetary, or based on criticality, such as major or minor.
• AnyType (BO) represents all the domains in which one can carry out the discovery

(EBT). AnyType (BO) can be represented as the discovery of a star or some other
innovations like finding another planet that has life.

• AnyType (BO) plays an important role in determining the name and the numbers
of AnyEntity (BO).

98 Software Patterns, Knowledge Maps, and Domain Analysis

• AnyEntity. AnyEntity used as part or required for the discovery
• Devising AnyMechanism (BO) specific to the discovery in context involves discov-

ery (EBT) too.
• AnyCriteria influences this AnyMechanism (BO), which is defined by AnyParty

(BO) or AnyActor after thorough analysis. Depending on the domain of discov-
ery, AnyMechanism (BO) varies and can range from simple examination to full-
fledged experimentation.

• AnyMechanism (BO) must lead to creation of AnyEvidence (BO), because without
demonstrable and confirmable evidence discovery cannot be complete.
• AnyEvidence. This refers to patentable information about a particular discov-

ery, such as data and process.
• The presence of AnyEvidence (BO) indicates that AnyDiscovery (BO) qualifies for

being called discovery (EBT) as it now meets the criteria.
• AnyDiscovery may utilize zero or more of AnyEntity within zero or more of

AnyEvent on AnyMedia.
• AnyEvent. This discusses the events of a particular discovery
• AnyMedia. This describes the media used in a particular discovery, such as

computers, lands, nature, air, labs, and the Internet

4.2.14.2 Business Integration
The stability model extracts the core concepts involved in the problem. This makes it easier
to extend it to fit the needs of any application. The BOs act as the extension points, where
the IOs for the particular application can be hooked to make a final product. Hence, it is
much easier to integrate the pattern in any business model.

4.2.14.3 Business Enduring Themes
Discovery represents the goal of the business. It answers the question, What is the main and
unique goal of the pattern? The system is used to model the concept of discovery.

This pattern can be used in any domain that involves the concept of discovery. The
pattern models the concept of discovery in a stable way, so that it can be used in many
applications.

4.2.15 Known usages

The discovery pattern can be used to create the following tools:

 1. Unified data mining engine (UDME). This tool is used to discover various trends
from vast amounts of data. UDME is a generalized tool that is usable on any kind
of database, as well as on any type of data. It is built by using the knowledge map
and discovery is one of the patterns in the knowledge map.

 2. Unified performance evaluation engine (UPEE). This is again a generalized tool
that is usable to evaluate the performance of any entity. It again uses discovery
stable patterns in its knowledge map.

 3. Electronic discovery (e-discovery). This tool represents a discovery process that
uses any form of e-content such as email messages, instant messages, files, data-
bases, and other electronic content that may be stored on a variety of platforms. It
is becoming much more important in the context of civil litigation—for example,

99Discovery Stable Analysis Pattern

roughly three out of four discovery orders today require an email message to be
produced as part of the discovery process.

 4. Web services dynamic discovery (WS-Discovery) Version 1.1, retrieved January 6,
2012. WS-Discovery is a technical specification defining a multicast discovery
 protocol to locate services on a local network. BEA Systems, Canon, Intel,
Microsoft, and WebMethods developed WS-Discovery. As the name suggests, the
actual communication between nodes is done using web services standards, nota-
bly SOAP. Various components in Microsoft’s Windows Vista operating system,
such as the “People Near Me” contact location system, use WS-Discovery.

4.2.16 tiPs anD heuristics

• Describing patterns is a hard task and it requires careful and calibrated work.
• The metamodel is very different compared to a stable model, and it is a traditional

model.
• Pattern design must be generic, so that it can be applied to applications spread

across various domains.
• EBT must represent the goal of the pattern.
• Intuition and experience are required in order to find the correct EBT for the

pattern.
• BOs provide capabilities to achieve the goal of the pattern. Identification of BO

requires spending some time in thinking and coming up with correct BOs.
• BOs provide hooks to which specific IOs can be plugged and for getting var-

ied applications in diverse domains. This reduces the cost by encouraging
reusability.

SUMMARY

The discovery stable analysis pattern demonstrates or exhibits the entire discovery
 process in a concise, lucid, and clear manner. The domain can be scientific, geological,
engineering, medical, or any other. Similarly, one can use the patterns to implement
different discovery mechanisms. The discovery analysis pattern is developed by using
software stability paradigm and stable pattern language concepts. These paradigms also
help us to develop a pattern that is reusable and stable in nature.

This discovery model can be used for different domains, and IOs can be extended
according to the application. The model represents the core knowledge of the pattern in
different applications and is presented as EBTs and BOs. The model is explained with
three special and specific applications that perform well based on this model.

The correct identification of EBTs and BOs is the most challenging and tedious task,
and it requires previous experience and skills. After identifying EBTs and BOs correctly,
your next critical challenge is to determine the relationship between EBTs and BOs, so
that the discovery pattern can hold true in any context of usage for discovering. Once you
perform this task, depending on the nature of the application, the IOs are attached to the
hooks provided by BOs. Thus, using the discovery pattern as a basis, an infinite number of
applications can be built by just plugging in the application-specific IOs to the pattern. This
results in reduced cost and effort and a stable solution. Hence, the discovery design pattern
is very useful.

100 Software Patterns, Knowledge Maps, and Domain Analysis

OPEN RESEARCH ISSUES

The following are some of the open research issues that need to be examined and require
future work and experimentation.

 1. Software stability and knowledge maps. Software stability and knowledge maps
lead to many knowledge discoveries, which include the generation of problem
space patterns (analysis) and ultimate solution patterns (design), redefine knowl-
edge, and discover many possibilities of architectural patterns that are generated
from the knowledge map of any domain and used as foundation bases of millions
of applications. Software stability and knowledge maps allow the development of
meaningful patterns. Developing meaningful patterns is a thing of art and a system
of perfect skills; improving the overall quality of patterns is never easy and quick;
more often, developers take an inordinately long time to design perfect and mean-
ingful patterns. To develop meaningful and robust patterns, a developer may need
to design them in a phased manner. The most important and critical of all these
phases is the diagnostic phase, using which one can understand and comprehend
the main problems that come in the way of development of today’s patterns. Once
a pattern developer identifies and notes all the bottlenecks, it becomes very easy
to explore the causes of pattern immaturity and their subsequent usability. In addi-
tion, software stability and knowledge maps provide simple and clear guidelines
for choosing the appropriate patterns from a large inventory of alternatives and
 distinguishing clearly between analyses, design, and architectural patterns.

 2. e-discovery. Utilizing the concurrent software development model or knowledge
map methodology is a way for developing an e-discovery engine. Building this
engine by using traditional development approaches is not an easy exercise, specifi-
cally when several factors can undermine their quality success, such as cost, time,
and lack of systematic approaches.

 3. Unified programmable dynamic discovery engine (UPDDE). Utilizing the concur-
rent software development model or knowledge map methodology is a way for
developing UPDDE. The engine mainly focuses on several patterns: dynamism,
discovery, adaptability, extensibility, customizability, and so on. The proposed
solution attempts to extract out the commonality from all the domains and repre-
sent it in such a way that it is applicable to a wide range of domains without trivial-
izing or generalizing the concepts. The engine is a stable structural pattern, and it
provides a generic engine that can be applied and/or extensible to any application
by plugging application-specific features.

 4. Discovery informatics. Utilizing the concurrent software development model
or knowledge map methodology is a way for developing a unified discovery
 informatics enterprise framework that facilitates the drug discovery process at
any enterprise level. The unified framework includes chemical structure handling
(e.g., editing, database storage, and database searching), biological data han-
dling (e.g., database storage, searching, and data reduction), structure–activity
relationship handling, e-discovery, dynamic discovery, e-scientific, and chemi-
cal inventory management. The unified framework is very generic and can be
applied in or easily extended to cheminformatics, bioinformatics, chemoinfor-
matics, medicinal chemistry, computational chemistry, drug discovery innovation,

101Discovery Stable Analysis Pattern

structure-based drug design, screening, docking, structural biology, predictive
toxicology, predictive ADME, chemogenomics, molecular modeling pharmaceu-
tical, and so on.

REVIEW QUESTIONS

 1. What do you mean by the term discovery? Can you use the term discovery in any
other context than what you thought of?

 2. Find out all such terms that mean exactly same as discovery and can be used
interchangeably.

 3. Examine the functional requirements of discovery pattern—Are there any missing
requirements? Discuss them.

 4. Examine the nonfunctional requirements of discovery pattern—Are there any
missing requirements? Discuss them.

 5. Examine the challenges and add two more challenges to the existing list.
 6. Examine the constraints and add five more constraints to the existing list.
 7. What are the capabilities to achieve discovery? Describe each of them.
 8. What is the trade-off of using this pattern?
 9. Present the sequence diagram for applicability of the discovery stable analysis pat-

tern in the drug discovery domain.
 10. What are the possible design issues for the discovery EBT when linked to the

design phase?
 11. What do you think are the implementation issues for the AnyEvidence BO when

used in the discovery stable analysis pattern?
 12. What do you think are the implementation issues for the AnyMedia BO when used

in the discovery stable analysis pattern?
 13. List a couple of advantages of using the stable analysis pattern for discovery.
 14. List two scenarios that will not be covered by the discovery analysis pattern.
 15. Describe how the developed discovery analysis pattern would be stable over time.
 16. List some of the lessons learnt from the use of the stable analysis pattern for

discovery.
 17. List some of the testing patterns that can be applied for testing the discovery stable

analysis pattern.
 18. List three test cases to test the class members of the discovery pattern.
 19. List some of the related design patterns used in formulating the discovery stable

analysis pattern.
 20. Briefly explain how the discovery stable analysis pattern supports its objectives.
 21. Assess two different quantitative measures on the discovery traditional model and

discovery stable analysis patterns, and explain the differences between each of the
measures.

 22. Examine the CRC cards and add two new operations if possible to the EBTs and BOs.
 23. Try to create a use case and interaction diagram for each of the scenarios you

thought of in the above question.
 24. Name two more qualitative metrics and utilize them to measure discovery pattern.
 25. Compare the traditional model and stable pattern of discovery using the following

adequacies:

102 Software Patterns, Knowledge Maps, and Domain Analysis

 a. Descriptive adequacy.
 It refers to the ability to visualize objects in the models. Every defined object

should be browsable, allowing the user to view the structure of an object and
its state at a particular point in time. This requires skill of understanding and
extracting metadata about objects that will be used to build a visual model of
objects and their configurations. This visual model is domain dependent, that
is, based on domain data and objects’ metadata. Descriptive adequacy requires
that all of the knowledge representation be visual as follows:

 i. Visual models are structured to reflect natural structure of objects and their
configurations.

 ii. All the visual knowledge (data and operations) in the visual model is localized.
 iii. Relationships among objects in the visual model are well defined.
 iv. Interactions among objects in the visual model are limited and concise.
 v. The visual model must transcend objects and instead highlight crosscutting

aspects.
 b. Understanding adequacy.
 It relates to be easy to understand.
 c. Simplicity adequacy.
 It relates to how simple your models will be.
 d. Extensibility adequacy.
 It relates to the degree of extensibility, adaptability, customizability, and con-

figurability of your models.
 26. Compare the traditional model and stable pattern of discovery by using the fol-

lowing modeling essentials (Fayad and Laitinen 1998) as comparative criteria:
 a. Simple. This property covers those attributes of the object-oriented model that

present modeling aspects of the problem domain in the most understandable
manner.

 b. Complete (most likely to be correct). This property determines if the object-
oriented model provides internal consistency and completeness of the mod-
el’s artifacts. The model must be able to convey the essential concepts of its
properties.

 c. Stable to technological change. The model should be stable enough to techno-
logical changes and it cannot require any changes with a change of technology,
such as change of the media or the mechanisms.

 d. Testable. To be testable, the model must be specific, unambiguous, and quan-
titative wherever possible, such as we can run an infinite number of scenarios
with the context of the pattern.

 e. Easy to understand. In addition to the familiarity of the modeling notations,
the notational aspects, design constraints, and analysis and design rules of the
model should be simple and easy to understand by the customers, users, and
domain experts.

 f. Visual or graphical. A picture is worth a thousand words. As a user, you can
visualize and describe the model. The graphical model is essential for visual-
ization and simulation.

 27. Discuss the benefits of using the discovery analysis pattern to generate busi-
ness rule.

103Discovery Stable Analysis Pattern

 28. Give some examples of applications, where discovery pattern are currently used.
 29. What are the lessons learnt by you from studying the discovery pattern.

EXERCISES

 1. Think of a few scenarios where discovery pattern is applicable and come up with
corresponding class diagram, use case, and sequence diagram as shown in the solu-
tion and applicability sections for each of the scenarios.

 2. Draw a sequence diagram of the case study to discover vitamin K use (case
study 1).

 3. Research and development. New product design and development is more than
often a crucial factor in the survival of a company. In an industry that is fast
changing, firms must continually revise their design and range of products.
This is necessary due to continuous technology change and development as
well as other competitors and the changing preference of customers. A sys-
tem driven by marketing is one that puts the customer needs first and only
produces goods that are known to sell. Market research is carried out, which
establishes what is needed. If the development is technology driven, then it is
a matter of selling what it is possible to make. The product range is developed
so that production processes are as efficient as possible and the products are
technically superior, hence possessing a natural advantage in the market place
(Ortega-Argiles et al. 2011).

 Utilize the discovery pattern as an application of a research and development:
 a. Draw a class diagram based on the discovery pattern to show the application of

research and development.
 b. Document a detailed and significant use case as shown in case study 1.
 c. Create a sequence diagram of the created use case of b.
 4. Planetary research. Planetary systems are generally believed to form as part

of the same process that results in star formation. Some early theories involved
another star passing extremely close to the Sun, drawing material out from it
which then coalesced to form the planets. However, the probability of such
a near collision is now known to be far too low to make this a viable model.
Accepted theories today argue that a protoplanetary disk forms by gravitational
collapse of a molecular cloud and then evolves into a planetary system by col-
lisions and gravitational capture (see Darling 2004).

 Some planetary systems may form differently, however. Planets orbiting
 pulsars—stars which emit periodic bursts of electromagnetic radiation—have been
discovered by the slight variations they cause in the timing of these bursts. Pulsars
are formed in violent supernova explosions, and a normal planetary system could
not possibly survive such a blast—planets would either evaporate or be pushed off
of their orbits by the masses of gas from the exploding star, or the sudden loss of
most of the mass of the central star would see them escape the gravitational hold of
the star. One theory is that existing stellar companions were almost entirely evap-
orated by the supernova blast, leaving behind planet-sized bodies. Alternatively,
planets may somehow form in the accretion disk surrounding pulsars (see Darling
2007; Podsiadlowski 1993).

104 Software Patterns, Knowledge Maps, and Domain Analysis

 a. Planetary systems, formation of, David Darling, entry in The Internet
Encyclopedia of Science, accessed online September 23, 2007.

 b. Planet formation scenarios (Podsiadlowski 1993)
 Utilize the discovery pattern as an application of a planetary research and
 i. Draw a class diagram based on the discovery pattern to show the applica-

tion of planetary research.
 ii. Document a detailed and significant use case as shown in case study 1.
 iii. Create a sequence diagram of the created use case of ii.
 5. Drug discovery (Paul et al. 2010; Warren 2011). In medicine, biotechnology, and

pharmacology, drug discovery is the process by which drugs are discovered and/or
designed. In the past, most drugs have been discovered either by identifying the active
ingredient from traditional remedies or by serendipitous discovery. A new approach
has been to understand how disease and infection are controlled at the molecular and
physiological level and to target specific entities based on this knowledge.

 The process of drug discovery involves the identification of candidates, syn-
thesis, characterization, screening, and assays for therapeutic efficacy. Once a
compound has shown its value in these tests, it will begin the process of drug
development prior to clinical trials.

 Utilize the discovery pattern as an application of drug discovery and
 a. Draw a class diagram based on the discovery pattern to show the application of

drug discovery.
 b. Document a detailed and significant use case as shown in case study 1.
 c. Create a sequence diagram of the created use case of b.
 6. Biomarker discovery (Jacobs et al. 2005). Biomarker discovery is the process by

which biomarkers are discovered. It is a medical term.
 Many commonly used blood tests in medicine are biomarkers. The way that

these tests have been found can be seen as biomarker discovery. However, their
identification has mostly been a one-at-a-time approach. Many of these well-known
tests have been identified based on clear biological insight, from physiology or bio-
chemistry. This means that only a few markers at a time have been considered. One
example of this way of biomarker discovery is the use of injections of insulin for
measuring kidney function. From this, one discovered a naturally occurring mol-
ecule, creatinine, that enabled the same measurements to be made easily without
injections. This can be seen as a serial process.

 The recent interest in biomarker discovery is because new molecular biologic
techniques promise to find relevant markers rapidly, without detailed insight into
mechanisms of disease. By screening many possible biomolecules at a time, a par-
allel approach can be tried. Genomics and proteomics are some technologies that
are used in this process. Significant technical difficulties remain.

 There is considerable interest in biomarker discovery from the pharmaceutical
industry. Blood test or other biomarkers could serve as intermediate markers of
disease in clinical trials and also be possible drug targets.

 Utilize the discovery pattern as an application of biomarker discovery and
 a. Draw a class diagram based on the discovery pattern to show the application of

biomarker discovery.
 b. Document a detailed and significant use case as shown in case study 1.
 c. Create a sequence diagram of the created use case of b.

105Discovery Stable Analysis Pattern

PROJECTS

Develop the following systems using the discovery analysis pattern:

 1. Discovery informatics. It is the field of computing that facilitates the drug dis-
covery process at the enterprise level. Typical software tools in this space include
chemical structure handling (e.g., editing, database storage, and database search-
ing), biological data handling (e.g., database storage, searching, and data reduc-
tion), structure– activity relationship handling, electronic scientific notebooks, and
chemical inventory management.

 2. Discovery science (Chen et al. 2005). Also known as discovery-based science is a
scientific methodology that emphasizes analysis of large volumes of experimental
data, with the goal of finding new patterns or correlations, leading to hypothesis
formation and other scientific methodologies.

 Discovery-based methodologies are often viewed in contrast to traditional sci-
entific practice, where hypotheses are formed before close examination of experi-
mental data. However, from a philosophical perspective where all or most of the
observable low-hanging fruit has already been plucked, examining the phenom-
enological world more closely than using the senses alone (even augmented senses,
e.g., via microscopes, telescopes, and bifocals) opens a new source of knowledge
for hypothesis formation.

 Data mining is the most common tool used in discovery science and is applied to
data from diverse fields of study such as DNA analysis, climate modeling, nuclear
reaction modeling, and others. The use of data mining in discovery science fol-
lows a general trend of increasing use of computers and computational theory in
all fields of science. Further following this trend, the cutting edge of data mining
employs specialized machine learning algorithms for automated hypothesis form-
ing and automated theorem proving.

 3. E-discovery (Adam and Lender 2011; Various 2009). It refers to discovery in
civil litigation that deals with information in electronic format also referred to
as electronically stored information (ESI). In this context, electronic form is
the representation of information as binary numbers. Electronic information is
different from paper information, because of its intangible form, volume, tran-
sience, and persistence. In addition, electronic information is usually accompa-
nied by metadata, which is never present in paper information unless manually
coded (see below). Metadata is the data about the data, or the information that
is kept about the electronic files, that is, who the author was, when the file was
created, and so on. It is descriptive information that cannot be changed unless
spoliation occurs. E-discovery poses new challenges and opportunities for attor-
neys, their clients, technical advisors, and the courts, as electronic information
is collected, reviewed, and produced.

 Examples of the types of data included in e-discovery are e-mail, instant mes-
saging chats, documents (such as MS Office or OpenOffice files), accounting
databases, CAD/CAM files, websites, and any other ESI which could be relevant
evidence in a lawsuit. Also included in e-discovery is the rawdata which forensic
investigators can review for hidden evidence. The original file format is known
as the native format. Litigators may review material from e-discovery in one of

106 Software Patterns, Knowledge Maps, and Domain Analysis

several formats: printed paper, native file, or TIFF images. If the native file, for
example, a Microsoft Word document, contains 10 pages, then an e-discovery
vendor will convert it into 10 TIFF images for use in a discovery review database.
Documents that are produced are numbered using Bates numbering. Individuals
working in the field of e-discovery commonly refer to the field as litigation
support.

 4. Legal discovery (Kyckelhahn and cohen 2008). In law, discovery is the pretrial
phase in a lawsuit, in which each party through the law of civil procedure can
request documents and other evidence from other parties or can compel the
production of evidence by using a subpoena or through other discovery devices,
such as requests for production of documents and depositions.

 a. Name two to three ultimate goals of each of the above discoveries.
 b. List all the functional requirements and nonfunctional requirements of each of

the ultimate goals.
 c. List five challenges for the two or three ultimate goals combined for each area.
 d. Name 10 different applications for each of the goals.
 e. Name five different applications for the two or three ultimate goals combined.

SIDEBAR 4.1 Knowledge Discovery

Knowledge discovery is a unique and special concept in the realm of computer science that
explains the process of automatically or mechanically searching or seeking large streams of data,
for set and convenient patterns that can be considered as pertinent and essential set of knowl-
edge about the data in question. It is about deriving special knowledge from the available set of
input data. This complex but defining topic can be classified according to the type of data being
searched and in what form or type is the result of the data search tabulated. The most famous
area of knowledge discovery is the data mining, which is also known as knowledge discovery in
 databases (Bozdogan 2004).

REFERENCE

Bozdogan. H., (ed.). Statistical Data Mining, and Knowledge Discovery, Boca Raton, FL: CRC Press LLC,
2004.

SIDEBAR 4.2 Business Rules

Business architecture, in its simplest explanation, can be viewed as a set of resources that
interact under well-defined rules through a set or collection of well-calibrated processes to
achieve certain goal(s). These rules are known as business rules. This simple view of business
architecture does not indeed clarify what business rules are. In fact, there exists no formal or
standard definition for business rules; nonetheless, several definitions have evolved over the
last decade. In the following paragraphs, we give some of such definitions. A business rule can
be defined as

• Units of business knowledge (Odell 1998).
• A statement that defines or constrains certain aspects of a business (Halle 2001).
• Declarations of policies or conditions that must be satisfied (OMG 1992).

107Discovery Stable Analysis Pattern

It is a statement that defines or constrains some aspect of the business. It is intended to assert
 business structure or to control or influence the behavior of the business (Morgan 2002). We will
use this definition of business rules throughout this book.

• Business rules are abstractions of the policies and practices of a business organiza-
tion. The business rules approach is a development methodology, where rules are in a
form that is used by but does not have to be embedded in business process management
systems.

• The business rules approach formalizes an enterprise’s critical business rules in a
 language that managers and technologists understand. Business rules create an
 unambiguous statement of what a business does with information to decide a proposition.
The formal specification becomes information for process and rules engines to run.

Ronald Ross (2003) describes several basic principles of what he calls the business rule approach.
He believes that rules should

• Be written and made explicit.
• Be expressed in plain language.
• Exist independent of procedures and work flows (e.g., multiple models).
• Build on facts, and facts should build on concepts as represented by terms

(e.g., glossaries).
• Guide or influence behavior in desired ways.
• Be motivated by identifiable and important business factors.
• Be accessible to authorized parties (e.g., collective ownership).
• Be single sourced.
• Be specified directly by those people, who have relevant knowledge (e.g., active

 stakeholder participation).
• Be managed.

REFERENCES

Halle, B. V. Business Rules Applied: Building Better Systems Using the Business Rules Approach. New York,
NY: Wiley, 2001.

Morgan, T. Business Rules and Information Systems. Boston, MA: Addison-Wesley Publishing, 2002.
Odell, J. Advanced Object-Oriented Analysis and Design Using UML. New York, NY: SIGs Books, 1998.
OMG. Analysis and Design Reference Model. Framingham, MA: OMG, 1992.
Ross, R. G. Principles of Business Rule Approach. Reading, MA: Addison-Wesley Publishing, 2003.

109

The Knowledge Stable
Analysis Pattern

When you stop learning you might as well be dead (Power 2004), for it is like starving
the brain. Knowledge is the food of the mind; and without knowledge the mind must
languish (Sanford 1846). Knowledge is the seed that is planted and will develop into
a beautiful blossoming tree also known as that idea. When the brain is fed it grows
and when it grows it become more peaceful, confident, and comfortable with its
surroundings.

A seed is planted and it eventually grows into maturity to produce a beautiful flower. That
is the actual story of our mind. A mind is fed manure called knowledge, and in return, it
grows, nurtures itself, and prospers by forming a number of ideas, plans, and concepts.
From those ideas and concepts, the world grows, adapts, and eventually becomes a better
place to live, for with knowledge comes inner peace and contentment.

Without the right kind of knowledge, we are just little more than an empty shell that
breathes. In essence, knowledge is the basic foundation, upon which we as humans grow
and enrich our lives. Without knowledge, there is always a fear of the unknown, and when
there is fear or scare, there will be a lack of trust, and when there is a lack of trust, there is
a greater risk for conflict. Knowledge can set you free. In fact, it can set the whole world
free. For, when we have knowledge, we can easily nourish our mind, body, and soul for
knowledge definition, refer to Sidebar 5.1.

5.1 INTRODUCTION

One can think of knowledge as the mirror of experience that is gained by practice and/or study
of a particular discipline. Once this knowledge is acquired by some individuals, it can be
used by them to avoid experienced pitfalls and sloppy actions those were experienced in
the past. Additionally, it will also allow them to either create new environments/ambience
 or streamline previously addressed/tackled ones, based on the acquired knowledge. So,
the question now is how one can represent such knowledge in a straightforward and
coherent manner, so that individuals can use it repeatedly to solve recurrent problems.

Knowledge is the root of the human mind, body, and spirit, for without it, we are noth-
ing but an empty shell. Without knowledge, we fear and when we fear, eventually evil
will become us. Knowledge is power, said Francis Bacon, for from knowledge, we grow
and prosper and eventually blossom into more compassionate and complete human beings.
Knowledge is what we know now. It is not about what is right or wrong, true or false, and
good or evil. It is what we have been exposed to, and thus what becomes our knowledge,
our reality, and eventually the center of our universe. No two people will or can share iden-
tical knowledge, because no two people can ever share identical life experiences, which
create knowledge, although we will all share common knowledge.

5

110 Software Patterns, Knowledge Maps, and Domain Analysis

Software development must attempt to take all those variations that make up the human
mind and streamline a product, so that it becomes a product based on common knowledge.
For example, we would all agree that to enter some data, we must type something. That is
common knowledge.

In order for software development to be both successful and profitable, a less complex
methodology must be developed that focuses on common knowledge. From that common
knowledge or application, each user would build and fine-tune a product that was specific
and special to their needs.

When a software application package is built upon common knowledge, we would reduce
the costs significantly, because you are no longer attempting to develop a software applica-
tion that is different for hundreds of thousands of users. Not only is software development
extremely expensive, it is also extremely labor intensive, and spending too much time trying
to please the world might result in an inferior and untimely product that is most likely to hit
the market well past its target release date.

Instead of focusing more on knowledge and implicitly common knowledge, which is
shared knowledge, we will not be continuing to reinvent what has already been invented;
instead, we can focus on a common platform that can be expanded on. As a result, a build
can occur in a fraction of the time; because of the flexibility of the product, we target a
much larger audience.

5.2 PATTERN DOCUMENTATION

5.2.1 Pattern name: Knowledge Stable analySiS Pattern

The name should be right and appropriate, for knowledge creates stability and with stability
comes the power for analysis and subsequently the creation of reoccurring patterns. Thus,
this is an excellent choice of title. The name is appropriate and fitting to the analysis that
follows in the evaluation of the problem of how knowledge can be stabilized, so that the
wheel is not reinvented every other time.

5.2.2 Known aS

Many times, acquisition of knowledge is interpreted as gaining information, and hence,
information is used many times in the context of knowledge. Although gaining informa-
tion about any entity is certainly a part of acquiring knowledge, that information must be
investigated, analyzed, assimilated, disseminated, and properly used. Thus, knowledge is
much more than just acquiring information, and thus, the term information cannot be used
in place of knowledge to represent certain context.

Another issue that is often misinterpreted to mean knowledge is education. People
always think that they can gain knowledge through education. This is totally inaccurate
and wrong, as education is just one of the means of gaining knowledge. In order to acquire
knowledge, one needs to have a keen and intense interest in learning and understanding
things. Reading, education, learning, analyzing, thinking, and so on are just a number of
means to gain knowledge. Thus, education cannot be used interchangeably with knowledge.

However, cognition can be used interchangeably with knowledge. This is because both
knowledge and cognition represent the psychological result of perception, learning, and reason-
ing. Thus, the stable knowledge pattern can be used as a solution pattern for cognition too.

111The Knowledge Stable Analysis Pattern

5.2.3 Context

Knowledge can be gained through experience or study. It represents a collection of facts,
rules, tips, or lessons learned with respect to anything that must be synthesized to create
knowledge. Sometimes, it might not be possible to obtain complete knowledge about a sub-
ject, and it results in partial knowledge. As a result, this partial knowledge needs to be used
to solve a problem. The knowledge pattern will be used to represent knowledge synthesis
and acquisition.

For example, in autonomic computing, knowledge is a collection of information acquired
through examinations of log files, as well as other types of files, located in local or remote
repositories (i.e., servers/PCs in local networks or in wide area networks). Another example
of knowledge application is encountered in customer relationship management (CRM) sys-
tems. In CRMs, knowledge is collected to learn and understand customers’ buying behav-
ior, so that they can offer better services and increase their sales. Knowledge is obtained
by means of recording the customers’ navigational behavior (clicks) during their shopping
session. Knowledge may also be represented in the form of symbols or write-ups or just
passed on by word of mouth. Thus in this age, storing and dissemination knowledge is
essential to gain competitive edge. As a result, knowledge management is important and
critical for any organization.

5.2.4 Problem

There is a general tendency to think of knowledge as individual facts, or relevant and spe-
cific information that your system collects or requires. This perception makes implementa-
tion or application of knowledge different every time it is used, because each system may
handle a different subject and with a set of different information and constrains. Why do we
need to reinvent the wheel every time we are dealing with a new type of knowledge? This is
a significant problem that we must overcome and tackle. Therefore, we need to answer the
question: how do we encapsulate the main component of knowledge as an aspect, regard-
less of its context of applicability and prevent from reinventing the wheel?

For example, a software system solution may be required to use both topic maps from
artificial intelligence and implement them in an autonomic software solution. In this
case, both topic maps and autonomic computing might view knowledge from different
angles and structures. So, their integration may be tricky and tedious, especially when
dealing with different representations of knowledge. Hence, the question is restructured
in the following way—how can one abstract knowledge characteristics and behavior that
are common by different knowledge representations and later generate a single repre-
sentation of knowledge that can even knowledge acquisition among different software
solutions?

5.2.4.1 Functional Requirements
 1. Domain specificity. What is knowledge of the specific domain or any domain? How

is knowledge acquired within the specific domain or any domain and hence, its
subjects? What is the knowledge of a specific subject or any subject within any
domain? Where the knowledge of any domain obtains one or more subjects matters?
Knowledge is defined in the Oxford English Dictionary (2011) as (1) expertise and
skills acquired by a person through experi ence or education, the theoretical or

112 Software Patterns, Knowledge Maps, and Domain Analysis

practical understanding of a subject; (2) what is known in a particular field or in
total, facts and information; or (3) awareness or familiarity gained by experience of
a fact or situation.

 2. Criteria. Criteria consist of the characteristics of the knowledge and the
 constraints that are imposed on knowledge, the characteristics, constraints of
the knowledge, within AnyDomain. There are specific criteria imposed on the
knowledge of AnyDomain and these criteria influence the means for achieving
knowledge and lead to change in state. Thus, the pattern should be able to accom-
modate all these changes with the change in AnyCriteria.

 3. Context. The broad applicability of the produced or AnySubject defined
knowledge.

 4. Type. Knowledge can be classified based on different factors, such as definition,
field or domain, description, or production of knowledge. Usually, AnySubject
knowledge has one or more types that are used to describe knowledge, such as
meta-knowledge and procedural knowledge. Knowledge can also be classified
based on its production, such as actual knowledge, constructive knowledge, or/and
imputed knowledge.

 5. Structure. Structure describes the knowledge structure.
 6. Knowledge. Knowledge treated as a model has one or more views of it. Knowledge

also has a scope.
 7. Mechanisms such as knowledge acquisition. Knowledge acquisition involves com-

plex cognitive processes: perception, learning, communication, association, and
reasoning. The term knowledge is also used to mean the confident understanding
of a subject with the ability to use it for a specific purpose if appropriate.

 8. Knowledge handlers. Who possesses the knowledge? AnyActor, such as individual,
hardware, software, and/or creatures, and AnyParty, such as individuals, organiza-
tions, countries, political parties, and/or a combination of some or all of them as
the holder, the user, and/or the creator of knowledge. What does AnyParty know?
How do we know what we know?

 9. AnyEntity.
 a. The knowledge of AnyEntity is gained through logs, which are stored on

AnyMedia, which helps us to access AnyEntity. So, the spectrum of AnyEntity
should be well understood and well covered.

 b. Knowledge about entities should be available after the criteria hold true. If the
criteria fail, knowledge should be restructured.

 c. AnyEntity makes use of AnyMedia. So, the mapping between AnyEntity and
AnyMedia should be clear.

 d. The knowledge of AnyEntity should be general enough to make it fit into any
application.

 10. Media.
 a. Media that are used to store and gain access of knowledge, which should be

well identified.
 b. Media can be of different types and usage of each may vary.
 11. Logs.
 a. Logs, such as files, disks, tapes, papers, temples, tomb walls, and/or papyrus,

are used to store and gain access to knowledge, which should be well identified.
 b. Logs can be of different types and usage of each may vary.

113The Knowledge Stable Analysis Pattern

5.2.4.2 Nonfunctional Requirements
 1. Completeness. The pattern should be complete in the sense that it should be able

to present all the meanings of knowledge and the areas where it can be applied.
This means that the pattern is applicable to many areas and has different meanings
everywhere. So, the pattern should possess the quality of inferring correct mean-
ing in different contexts and should define the state, rules, assessment, and type
according to the context in which it is applied.

 2. Accuracy. It is the state of being accurate, and the knowledge conforms to known
rules and facts or recognized standards. In the domains of applied and pure sci-
ence, engineering, industry, and statistics, the term accuracy is defined as the
degree and extent of closeness of a measured, estimated, or calculated quantity to
its actual, real (true) value. Accuracy is closely related to the degree of precision,
also called the factors of reproducibility or repeatability, the extent to which fur-
ther or advanced measurements or calculations show or repeat the same or similar
results. The term accuracy is also defined as the degree to which a given quantity
is correct and free from error (Wolfram 2002).

 3. Comprehension. It is a measurement of the understanding of knowledge and the
totality of knowledge, that is, properties or qualities that knowledge possesses.
Other nonfunctional requirements of knowledge are manageability, produceability,
and awareness.

5.2.5 ChallengeS and ConStraintS

• Challenges
• Challenges encapsulate the default structure and behavior that will be shared

among different knowledge implementations.
• They allow canonical handling for a different set of subjects that may be

selected during knowledge acquisition.
• They robustly cope with a set of distinct actors per application on an on-demand

basis.
• They synchronize the provided skills of the actors with the capabilities pro-

vided by different mechanisms during knowledge acquisition.
• Actors must take respective actions according their abilities in varied and

uncertain situations.
• Constraints.

• The domain of interest must be selected before any other aspect or subject
selection.

• Subject’s definition must wrap, surround, and delegate the default and public
capabilities of the mechanism aspect.

• Before utilizing a specific actor, their skills must be assessed with respect to
the selected subject.

• The knowledge acquisition process is a synchronized and well-tuned process.
• There must be at least one actor understanding this knowledge.
• Knowledge can be shared or it can belong to multiple domains.
• A single domain can contain at least one subject of interest. A subject can be

either atomic (does not contain subsubjects) or composed (contains at least one
subsubject).

114 Software Patterns, Knowledge Maps, and Domain Analysis

• Knowledge involves a set of mechanism. At least one mechanism needs to be
associated with a subject of interest.

• This mechanism streamlines one or more skills of a determined actor.

5.2.6 Solution: Pattern StruCture and PartiCiPantS

The solution is divided into the pattern’s structure and its participants.

5.2.6.1 Structure
The structure of this pattern is illustrated by a class diagram.

As seen in Figure 5.1, the knowledge stable analysis pattern requires a determined
domain, as the main input for perception, reasoning, and learning. This main input will be
broken down into a list of subjects relevant to the main input. These subjects were filtered
and reported by the utilization of different mechanisms bound to specific skills of a par-
ticular actor. This will result in an understanding of interrelated facts or subjects belonging
to a specific domain.

1..* 1..* 1..*gains

<<P-BO>>
AnyDomain

<<P-BO>>
AnySubject

1..*

1..*

<<P-BO>>
AnyMechanism

<<P-BO>>
AnySkill

<<P-BO>>
AnyParty

kn
ow

s o
r u

nd
er

st
an

ds

fo
r

m
od

ifi
es

/a
dj

us
ts

Experience
Experimentation
Research
. . .
etc.

1..*

1..*

1..*

<<EBT>>
Knowledge

FIGURE 5.1 The structure of the knowledge stable analysis pattern. Some scenarios may require
other business objects within knowledge pattern, such as AnyParty, AnyCriteria, AnyType,
AnyStructure, AnyEntity, AnyEvent, AnyLog, and AnyMedia.

115The Knowledge Stable Analysis Pattern

5.2.6.2 Participants
The pattern’s participants are classified into two types: classes and patterns. Classes are
individual object constructs that appear in any traditional class diagram. Patterns encapsu-
late a collection of classes and the associations that stem from these classes.

• Classes
• Knowledge. It encapsulates the shared behavior and properties between a set of

different types of knowledge.
• Patterns

• AnyDomain. It represents the container of a set of distinct and interre-
lated subjects that have a significant role in a domain’s understanding and
abstraction.

• AnyMechanism. It encapsulates the canonical (shared) behavior and proper-
ties that occur in different types of mechanisms, regardless of their context of
applicability.

• AnyCriteria. It represents the requirements and constraints that should hold
true in order to access knowledge of some entity or for generating knowledge.

• AnyActor. It represents the set of users or stakeholders, with certain skills, that
acquire or understand knowledge.

• AnyParty. It represents a party, an organization, governmental organization, or
a country. They may request certain knowledge or generate knowledge about
some entity.

• AnyStucture. It states the knowledge format or layout and/or the knowledge
structure.

• AnyType. It represents different types of knowledge, when applied to different
contexts.

• AnyEntity. It represents the entity that has knowledge. The entity defines the
media through which it can be found.

• AnyMedia. It represents the media through which the knowledge of an entity
exists or stored. It is possible to have multiple mediums to store knowledge.

• AnyLog. It represents the log, such as record, file, stone, tape, and disk, where
the knowledge is stored.

5.2.6.3 CRC Cards

Knowledge (Knowledge) EBT

Responsibility Collaboration

Client Server

Represents any type of knowledge that your system
requires or collects

 1. AnyParty, {OR} 1. acquire()
 2. AnyActor 2. convey()
 3. AnyMechanism 3. peek()
 4. AnyType 4. assess()

 5. relatedTo()
Attributes: knowledgeId, KnowledgeArea, KnowledgeProperties, createdBy, context, knowledgeConstraints,
knowledgeType

116 Software Patterns, Knowledge Maps, and Domain Analysis

AnyParty (AnyParty) BO

Responsibility Collaboration

Client Server

To use or generate knowledge 1. Knowledge 1. declaresCriteria()
 2. AnyCriteria 2. assesses()

 3. possesses()
 4. defines()
 5. operates()
 6. generates()

Attributes: name, designation, skills, workHrs, location, popularity, noOfMembers, fieldOfOperation

AnyActor (AnyActor) BO

Responsibility Collaboration

Client Server

To use or generate knowledge 1. Knowledge 1. performs()
 2. AnyCriteria 2. succeeds()

 3. accomplishes()
 4. doesTask()
 5. implementsRules()
 6. achieves()
 7. prospers()

Attributes: name, birthdate, designation, skills, qualification, address, status, workingLocation,
workingHours

AnyType (AnyType) BO

Responsibility Collaboration

Client Server

To name the type of knowledge 1. Knowledge 1. categorizes()
 2. AnyDomain 2. classifies()

 3. describes()
 4. sorts()
 5. seperates()
 6. makesClass()
 7. organizes()

Attributes: name, status, number, basis, ruleForClassification, parameterUsed, factor,
inspirationForClassification

117The Knowledge Stable Analysis Pattern

AnyDomain (AnyDomain) BO

Responsibility Collaboration

Client Server

To specify domain where knowledge is required 1. AnyType 1. enforces()
 2. AnyEntity 2. functions()

 3. contributes()
 4. comprises()
 5. involves()

Attributes: name, type, history, arena, subject, value, peopleInvolved, knowledge

AnyEntity (AnyEntity) BO

Responsibility Collaboration

Client Server

To specify entity where knowledge is required 2. AnyMedia 1. exists()
 2. maintains()
 3. states()
 4. demands()
 5. hasValue()
 6. needs()
 7. represents()
 8. symbolizes()

Attributes: name, location, type, quintessence, value, history, built, status

AnyCriteria (AnyCriteria) BO

Responsibility Collaboration

Client Server

To specify user-defined requirements and constraints for
knowledge

 1. AnyParty 1. influences()
 2. AnyActor 2. imposes()
 3. AnyMechanism 3. specifiesStandard()

 4. restricts()
 5. confines()
 6. constraints()

Attributes: typeOfCriteria, stateOfCriteria, specifiedBy, numberOfCriteria, effectOfCriteria, purpose, description

118 Software Patterns, Knowledge Maps, and Domain Analysis

AnyMechanism (AnyMechanism) BO

Responsibility Collaboration

Client Server

To incorporate means/methods for knowledge 1. AnyCriteria 1. presentKnowledge()
 2. Knowledge 2. generateKnowledge()
 3. AnyStructure 3. classifyKnowledge()

 4. findKnowledge()
 5. sortKnowledge()

Attributes: nameOfMechanism, criteriaForMechanism, wayOfFunction, usedBy, numberOfMechanism,
mechanismDescription, status, application, components, context

AnyStructure (AnyStructure) BO

Responsibility Collaboration

Client Server

To specify the knowledge structure 1. AnyMechanism 1. formatKnowledge()
 2. AnyLog 2. stateModel()

 3. describeKnowledge()
 4. relateKnowledge()
 5. IllustrateKnowledge()

Attributes: structureId, structureName, parameterUsed, notationName, modelName, aspectName

AnyMedia (AnyMedia) BO

Responsibility Collaboration

Client Server

To provide media for storage and illustration 1. AnyEntity 1. store()
 2. AnyLog 2. formsMedia()

 3. used()
 4. connect()
 5. helpsToAccess()
 6. capture()
 7. access()
 8. navigate()
 9. format()

Attributes: usedFor, usedBy, purposeFor, mediaName, mediaType, capability, entry, securityLevel, status,
sector

119The Knowledge Stable Analysis Pattern

AnyLog (AnyLog) BO

Responsibility Collaboration

Client Server

To record and edit knowledge 3. AnyStructure 1. record()
 4. AnyMedia 2. format()

 3. open()
 4. close()
 5. edit()
 6. modify()
 7. cut()
 8. past()
 9. add()
 10. delete()

Attributes: logId, logName, usedFor, usedBy, purposeFor, logType, capability, entry, securityLevel, status,
logSpecifications

AnyDomain (Domain) (BO)

Responsibility Collaboration

Client Server

Serves as the bridge between knowledge
acquisition and subject understanding

AnyType, AnyEntity define(), explore(), localize(),
scale(), constrain(), disclose()

Attributes: domainId, domainName, subDomains, domainProperties, domainConstraints

AnyMechanism (Mechanism) (BO)

Responsibility Collaboration

Client Server

Adjust the available processing or
ability per actor’s skill

Knowledge, AnyCriteria,
AnyStructure

bind(), invokes(), cancel(),
adjust(), report()

Attributes: mechanismId, mechanismName, mechanismType, mechanismList, mechanismProperties,
mechanismParameters

AnySkill (Skill) (Type: BO)

Responsibility Collaboration

Client Server

Represents the abilities an actor can take per
the synthesis of new knowledge

AnyMechanism
AnyActor

isAble(), obtain(), perform(),
indicate(), denoteHost()

Attributes: mechanism, List; actor, AnyActor

120 Software Patterns, Knowledge Maps, and Domain Analysis

AnyActor (Actor) (Type: BO)

Responsibility Collaboration

Client Server

Represents the actors acquiring knowledge
matching a subject of interest

Knowledge
AnySkill

act(), demonstrate(),
understand(), gain()

Attributes: skills, List; knowledge, Knowledge

Knowledge acquisition will initiate when a determined actor localizes and explores a
domain of particular interest. Then, the actor will break down the domain into a list of
subjects to ease the actor’s understanding toward the domain of interest. This breaking will
be carried out by using certain well-defined mechanisms. The actor will then process the
explored subjects and gain important skills, which are the implementation of the gained
knowledge toward the actor’s benefits.

5.2.7 aPPliCability with illuStrated examPleS

The following two scenarios provide two possible uses for this pattern. For the sake of sim-
plicity, we did not include the complete pattern’s model.

5.2.7.1 Scenario 1—Autonomic Computing Context
Briefly, autonomic computing relies on the idea of the creation of self-governing that can
adapt and manage themselves in accordance with stakeholders’ interest (i.e., automatic sys-
tem installation, etc.). Self-governing systems will use gained knowledge acquired from
detecting and analyzing log files, system configuration, and so on to detect and solve local
problems related to bugs or logical errors. Using the gained knowledge about these possible
failures, the self-governing system will look into a specific repository for the right patches
(if available) and fix the problems.

5.2.7.1.1 Class Diagram
The autonomic computing application, Figure 5.2, will consist of an agent that will be
responsible to determine by experience and context which task to perform during its instal-
lation and deployment in a determined environment. This agent will analyze the context,
where it is trying to be installed, via the checking of logs files. This information will be
filtered and stored in a database for posterior use during its deployment. If a problem arises,
this information will be retrieved, so that the agent will know what to do to guarantee a
successful deployment and installation.

5.2.7.1.2 Use Case

Use Case Title: Use Autonomic Computing

Actors Roles

AnyActor Agent

121The Knowledge Stable Analysis Pattern

Classes Type Attributes Operations

Knowledge EBT id presentFact()
area

AnyActor BO id learn()
actorName participate()
type
role

AnyDomain BO id storeKnowledge()
name
type

AnyType BO id report()
type
domainName

AnyMechanism BO name provideAutonomicComputing()
type
interface

AnyCriteria BO name adjustMechanism()
type
value

AnyEntity BO entityId exist()
entityType
entityName

AnyMedia BO mediaId store()
mediaName
mediaType
interface

AnyStructure BO structureId layoutKnowledge()
structureType
structureName

Agent IO name retrieveData()
type gainSkill()

understandKnowledge()
Deployment IO
Database IO type storeData()

size
SolutionSearch IO criteria searchForSolution()

mechanismType
InfoManagement IO dataType manageData()

mechanismType
Activity IO
ActivityProduct IO
Installation IO
ActivityFactory IO

BO, business object; EBT, enduring business theme; IO, industrial object.

122
So

ftw
are Pattern

s, K
n

o
w

led
ge M

ap
s, an

d
 D

o
m

ain
 A

n
alysis

EBTs

1..*
domain domains

<<P-BO>>
AnySubject

<<P-BO>>
AnySubject

<<P-BO>>
AnyActor

<<P-BO>>
AnyMechanism

domain

domain

subject
1..*

1..*
1..*subjects

mechanism

kn
ow

le
dg

e
kn

ow
le

dg
e

subject

understand
actor

1..*

gains

adjust

1..*

1..*

<<P-BO>>
AnySkill

<<IO>>
RecoveryHandler

<<IO>>
Agent

<<IO>>
ActivityFactory

<<IO>>
SolutionSearch

<<IO>>
Installation

<<IO>>
ActivityProduct

<<IO>>
Activity

<<IO>>
Deployment

<<IO>>
Database

<<creates>>

<<creates>>

<<creates>>

stores

skill

skill

mechanism

ac
to

r
subject reports

1..*

BOs IOs

<<IO>>
InfoManagement

<<EBT>>
Knowledge

FIGURE 5.2 The autonomic computing context scenario.

123The Knowledge Stable Analysis Pattern

Use Case Description

 1. AnyActor (Agent) understands knowledge (enduring business theme [EBT]) of
AnyDomain (Deployment) by detecting and analyzing log files, system configuration,
and so on. What are the other techniques available to AnyActor (Agent) for understand-
ing knowledge (EBT) of AnyDomain?

 2. AnyDomain (business object [BO]) under consideration can again be a part of another
AnyDomain (BO). What happens if AnyDomain (BO) is a part of Any Domain (BO)?

 3. AnyActor (Agent) gains AnySkill (RecoveryHandler) through understanding of
knowledge (EBT). How does AnyActor (Agent) gain AnySkill (RecoveryHandler)?

 4. This AnySkill (RecoveryHandler) adjusts AnyMechanism (BO). How is Any-
Mechanism (BO) adjusted through AnySkill (RecoveryHandler)?

 5. AnySubject (BO), which is a part of AnyDomain (Deployment), reports the use of
AnyMechanism (BO) too. In what way AnyDomain (Deployment) reports the use
of AnyMechanism (BO)?

 6. AnyActor (Agent) uses AnyMechanism (SolutionSearch) to give the desired results.
How is AnyMechanism (SolutionSearch) used by AnyActor (Agent)?

 7. In addition, AnyMechanism (InfoManagement) is also available for storing the
 filtered data in a database for posterior use during deployment (industrial object [IO]).
If a problem arises, this information will be retrieved, so that the AnyActor (Agent)
will know what to do to guarantee a successful deployment and installation. What
is the structure and type of database? Who stores data in database and how? How
does AnyActor (Agent) retrieve the information upon failure?

5.2.7.1.3 Sequence Diagram
The flow diagram in Figure 5.3 represents the flow of messages, when AnyActor (Agent)
understands knowledge (EBT) of AnyDomain (Deployment) under consideration by use of
various strategies. By understanding the knowledge (EBT), AnyActor (Agent) gains AnySkill
(RecoveryHandler). This AnySkill (RecoveryHandler) is used to adjust AnyMechanism
(SolutionSearch). AnyMechanism (SolutionSearch) is reported by AnySubject (BO). This
AnySubject (BO) is a part of AnyDomain (BO) and is made available to AnyActor (Agent).
AnyActor (Agent) also uses AnyMechanism (InfoManagement), which stores the data
for later retrieval in database (BO). Data in the database (BO) are retrieved by AnyActor
(Agent) when needed.

5.2.7.2 Scenario 2—CRM System
In B2B, C2B, or any other systems within the e-commerce’s realm, the acquisition of custom-
ers’ knowledge is the cornerstone, especially understanding these customers including their
needs, aims, and wants. Therefore, we need a system that facilitates the proper understand-
ing of the customers’ knowledge and allows businesses to align their processes, products,
and services to build good customer relationships and increase the benefits of the businesses.

5.2.7.2.1 Class Diagram
The CRM application (Figure 5.4) will consist of an efficient catalog subsystem that will
be responsible to analyze customer data in order to analyze customer behavior. The product
search and purchase activity of the customers is tracked. These data mined for the custom-
ers will be stored in the database, via a customer mining application. Using these data, the
subsystem will collect and predict the behavior of the customers.

124 Software Patterns, Knowledge Maps, and Domain Analysis

5.2.7.2.2 Use Case

Use Case Title: Maintaining Customer Relationship

Actors Roles

AnyActor Catalog subsystem

Classes Type Attributes Operations

Knowledge EBT id presentFact()
area

AnyActor BO id learn()
actorName participate()
type
role

(Continued)

<<EBT>>:
Knowledge

1: gathers()

2: of()

4: gains()

5: adjust()

8: availableTo()

7: isPartOf()

9: uses()

11: retrievedBy()

10: storesIn()

6: isReportedBy()

3: helps()

<<BO>>:
AnyActor
(Agent)

<<IO>>:
AnySkill

(RecoveryHandler)

<<BO>>:
AnyDomain

(Deployment)

<<BO>>:
AnySubject

<<BO>>:
AnyMechanism
(SolutionSearch)

<<BO>>:
AnyMechanism

(InfoManagement)

<<IO>>:
Database

FIGURE 5.3 Sequence diagram for autonomic computing.

125The Knowledge Stable Analysis Pattern

Classes Type Attributes Operations

AnyDomain BO id storeKnowledge()
name
type

AnySubject BO id report()
type
domainName

AnyMechanism BO name provideAutonomicComputing()
type
interface

AnySkill BO name adjustMechanism()
type
value

CatalogSubsystem IO name retrieveData()
type understandCustomerBehavior()

Purchase IO
Database IO type storeData()

size
ProductSearch IO criteria searchForProduct()

mechanismType
BehaviorCollection IO dataType collectCustomerbehavior()

mechanismType
BehaviorPrediction IO predictCustomerBehavior()
CustomerMining IO analyzeData()

inferTrends()

Use Case Description

 1. AnyActor (CatalogSubsystem) understands knowledge (EBT) of AnyDomain
(CustomerMining) by detecting and analyzing customer-related data. What are
the other techniques available to AnyActor (CatalogSubsystem) for understanding
knowledge (EBT) of AnyDomain?

 2. AnyDomain (BO) under consideration can again be a part of another AnyDomain
(BO). What happens, if AnyDomain (BO) is a part of AnyDomain (BO)?

 3. AnyActor (CatalogSubsystem) gains AnySkill (OrganizationHandler) through
understanding of knowledge (EBT). How does AnyActor (CatalogSubsystem) gain
AnySkill (OrganizationHandler)?

 4. This AnySkill (OrganizationHandler) adjusts AnyMechanism (BO). How is
AnyMechanism (BO) adjusted through AnySkill (OrganizationHandler)?

 5. AnySubject (BO), which is part of AnyDomain (CustomerMining), reports the use
of AnyMechanism (BO) too. In what way AnyDomain (CustomerMining) reports
the use of AnyMechanism (BO)?

 6. AnyActor (CatalogSubsystem) uses AnyMechanism (BehaviorCollection and Behavior -
Prediction) to give the desired results. How is AnyMechanism (BehaviorCollection
and BehaviorPrediction) used by AnyActor (CatalogSubsystem)?

 7. In addition AnySubject (BehaviorProduct) is also available for storing the filtered data
in a database for posterior use during CustomerMining (IO). If a problem arises, this

126
So

ftw
are Pattern

s, K
n

o
w

led
ge M

ap
s, an

d
 D

o
m

ain
 A

n
alysis

EBTs BOs

domain

domain

kn
ow

le
dg

e
kn

ow
le

dg
e

domain

<<EBT>>
Knowledge

understand

<<P-BO>>
AnySubject

<<P-BO>>
AnyMechanism

subject

actor

gains skill
1..*

1..*

adjust

subject
subjects

ac
to

r

<<P-BO>>
AnyActor

<<P-BO>>
AnySkill

<<IO>>
OrganizationHandler

<<IO>>
BehaviorFactory

<<creates>>

<<IO>>
BehaviorCollection

<<IO>>
Purchase

<<IO>>
ProductSearch <<IO>>

CatalogSubsystem

<<IO>>
Database

<<IO>>
CustomerMining

<<IO>>
BehaviorProduct

mechanism

mechanism

skill

1..*

1..*

subject reports

1..*
0..*
domains

<<P-BO>>
AnyDomain

IOs

<<IO>>
BehaviorProtection

FIGURE 5.4 The CRM system scenario.

127The Knowledge Stable Analysis Pattern

information will be retrieved, so that the AnyActor (CatalogSubsystem) will know
what to do to guarantee a successful knowledge of the customer’s behavior. What is
the structure and type of a database? Who stores data in a database and how? How
does AnyActor (CatalogSubsystem) retrieve the information upon failure?

5.2.8 related PatternS and meaSurability

Knowledge for stability pattern is generalized enough to allow its applicability in
diverse application domains. This pattern includes EBTs and BOs as objects, so its
applicability in other related domains only requires attachment of IOs on peripheral
boundaries. Even this pattern is complex in design and requires deeper analysis to
identify key EBTs and BOs, but it greatly enhances pattern reusage and effectiveness
to find solution.

Traditional model is based on IOs. IOs are the physical objects and are unstable. The
traditional model caters to the current requirements. The traditional model is hard to reuse if
the requirements change. Any changes in the requirements cause complete reengineering of
project. Thus, the traditional model involves high maintenance cost in terms of time, labor,
and money. The system built by using the traditional model cannot be extended or adapted.

Knowledge traditional model is based on IOs, which are nonenduring and nonadapt-
able objects. Change in single IO may initiate a cascade of changes throughout other IOs, thus
 mak ing it highly unstable. So, this model cannot remain stable for longer time span, whereas
knowledge stable pattern is based on enduring concepts, that is, EBTs and BOs, which are
adaptable and durable. This confirms its applicability forever.

Applicability of traditional model is limited to a particular domain area. In case of knowl-
edge traditional model, it is tied to knowledge related to area, such as engineering, science,
and so on. On the other side, a stable model on knowledge is applicable to a number of
domain areas having core themes in common. Hooks can be easily used to extend and reuse
this stabilized model.

The identification of objects involved in the traditional model just requires brief knowl-
edge and documented data about specific domain. These objects can be easily found in
problem statement. But, in stable model, one requires deeper study, experience in domain,
and intuition to come up with useful set of EBTs and BOs.

5.2.8.1 Measurability

5.2.8.1.1 Quantitative Measurability
• Number of Behaviors

• The number of behaviors in the traditional model is far more when compared to
the stability model. All the classes have to be changed in a traditional model for
each application, where as the stability pattern designed here will have the same
EBTs and BOs. For any application, we only have to choose the IOs accord-
ingly, which will obviously result in less number of classes and with no rework.

5.2.8.1.2 Qualitative Measurability
• Knowledge Imparted

• A traditional model requires the knowledge of a specific domain; thus, the
knowledge imparted by the traditional model is limited, whereas the stability

128 Software Patterns, Knowledge Maps, and Domain Analysis

model, which covers the whole domain, requires a considerable amount of
knowledge to understand.

• Usability
• Because the stability model is modeled by using the ultimate goal, it is usable for

all kinds of similar problems or applications, whereas a traditional model defeats
the purpose of usability, because it is only used for the application it is designed for.

5.2.9 Known uSageS

The knowledge analysis pattern can be applied in any industry, where prior knowledge is
useful. Some of the industries where it is most effective are listed as follows:

• Manufacturing
• Retail industry
• Media and marketing
• Software industry

Listed below are some of the applications where knowledge is being currently used.
However, the need for knowledge is different in each case and so is the mechanism used to
achieve knowledge, but the core concept remains the same.

 1. E-learning tools that obtain the knowledge level of the user and then provide them
accordingly with the learning aids.

 2. Amazon, where the system gains knowledge of the user’s preferences from the
items that he or she buys and provide recommendations of items that are of interest.

SUMMARY

One can quickly understand that for the software industry to remain vital and healthy, spe-
cific methodology changes or modifications must occur that might result in reduced devel-
opmental cost. Currently, these developmental costs continue to skyrocket out of control,
thereby threatening the very existence of the industry.

The most important change that must occur is for software to be built on a common
knowledge platform that is shared by all and then to allow the user flexibility to expand the
software according to their own needs and requirements. Only then, will software develop-
ment become a profitable venture.

In this chapter, we saw how the CRM system collected information and how it could help
distinguish their buyers’ buying habits. The pattern allows for better targeting of the con-
sumer and thus the ability to identify areas that can be improved to attract that buyer and
to increase the amount of purchases. The end result means a decrease in expenses incurred
for wasted marketing and adverting dollars and an increase in sales and profits because of
better targeting.

In conclusion, the knowledge pattern is a powerful and efficient tool that will represent
both synthesis and acquisition of collecting information, by allowing for the collection
of information in a variety of files, which can then be examined and used for decision-
making processes, thus allowing for a much better targeting of one’s market and reducing

129The Knowledge Stable Analysis Pattern

expenditures significantly and increasing profit margins. There are few companies that
would not jump at the chance for increased revenues and the knowledge pattern is able to
meet that demand at a reasonable cost to the company.

OPEN RESEARCH ISSUES

No formal process or tools for testing are available for testing knowledge pattern use for
making an infinite number of applications. Thus, one needs to come up with formal docu-
ments and tools for testing the same.

REVIEW QUESTIONS

 1. What do you mean by the term knowledge? Can the term knowledge be used in any
other context other than what you thought of?

 2. Find out all such terms that mean exactly the same as knowledge and can be used
interchangeably?

 3. What are the capabilities to achieve knowledge? Describe each of them.
 4. Draw and describe the class diagram for stable knowledge pattern?
 5. Come up with two scenarios other than those given in this chapter, where knowl-

edge can be used. Try to fit these scenarios with the knowledge pattern.
 6. Try to create a use case and interaction diagram for each of the scenarios you

thought of in the above question.
 7. List differences between the knowledge pattern described here and the traditional

knowledge pattern.
 8. List some design and implementation issues faced when implementing knowledge

pattern. Explain each issue.
 9. Give some applications where the knowledge pattern is being used.
 10. What are the lessons learnt by you by studying the knowledge pattern.
 11. Define the knowledge stable analysis pattern.
 12. Is the following statement true or false? The knowledge stable analysis pattern can

be applied and extended to any domain.
 13. List some of the domains where the knowledge analysis pattern can be applied.
 14. List any four new applications of the knowledge stable analysis pattern.
 15. List three challenges in formulating the knowledge analysis pattern.
 16. List 10 different constraints in the knowledge analysis pattern.
 17. What are the classes and patterns involved in defining the stable pattern for knowledge?
 18. Illustrate using a class diagram of knowledge patterns of each of the new applica-

tions of question 14.
 19. Illustrate with a class diagram how AnyParty or AnyActor BO has a second abstrac-

tion level.
 20. Document the CRC card for the knowledge EBT.
 21. Is the knowledge pattern incomplete without the use of other patterns? Explain briefly.
 22. What is the trade-off of using this pattern?
 23. Present the sequence diagram for applicability of the knowledge stable analysis

pattern in the e-commerce domain.
 24. What are the possible design issues for the knowledge EBT, when linked to the

design phase?

130 Software Patterns, Knowledge Maps, and Domain Analysis

 25. What do you think are the implementation issues for the AnySkill BO when used
in the knowledge stable analysis pattern?

 26. List a couple of advantages of using the stable analysis pattern for knowledge.
 27. List two scenarios that will not be covered by the knowledge analysis pattern.
 28. Describe how the developed knowledge analysis pattern would be stable over

time.
 29. List some of the lessons learnt from the use of the stable analysis pattern for

knowledge.
 30. List some of the testing patterns that can be applied for testing the knowledge

stable analysis pattern.
 31. List three test cases to test the class members of the knowledge pattern.
 32. List some of the related design patterns used in formulating the knowledge stable

pattern.
 33. Briefly explain how the knowledge stable analysis pattern supports its objectives.
 34. Assess two different quantitative measures on the knowledge traditional model and

knowledge stable analysis patterns and explain the differences between each of the
measures.

EXERCISE

Think of a few scenarios where knowledge pattern is applicable and come up with cor-
responding class diagram, use case, and sequence diagram, as shown in the solution and
applicability sections for each of the scenarios.

PROJECTS

 1. Knowledge retrieval (Martin and Eklund 2000; Yao et al. 2007). It is a field of
study that seeks to return information in a structured form, consistent with human
cognitive processes as opposed to simple lists of data items. It draws on a range of
fields including epistemology (theory of knowledge), cognitive psychology, cogni-
tive neuroscience, logic and inference, machine learning and knowledge discovery,
linguistics, information technology, and so on.

 2. The knowledge economy (Powell and Snellman 2004). It is a term that refers either
to an economy of knowledge focused on the production and management of knowl-
edge in the frame of economic constraints or to a knowledge-based economy. In
the second meaning, more frequently used, it refers to the use of knowledge tech-
nologies (such as knowledge engineering and knowledge management) to produce
economic benefits. The phrase was popularized, if not invented, by Peter Drucker
(1969), as the title of Chapter 12 in his book The Age of Discontinuity.

 3. Knowledge acquisition (Potter 2014). It is the transformation of knowledge from
the forms in which it exists into forms that can be used in a knowledge-based
system.

 4. Knowledge ecosystem (Bahrami and Evans 2005). As an extension of knowl-
edge management ideas, a knowledge ecosystem fosters the dynamic evolu-
tion of knowledge interactions between entities. This bottom-up approach seeks
to provide a more resilient approach. Within certain contexts (e.g., turbulent

131The Knowledge Stable Analysis Pattern

environments), a top-down knowledge management is viewed as indeterminate;
hence, the intention of creating a knowledge ecosystem to improve decision
 making and innovation through improved evolutionary networks of collaboration.

 a. Name two to three ultimate goals of each of the above knowledge areas.
 b. List all the functional requirements and nonfunctional requirements of each of

the ultimate goals.
 c. List five challenges for the two or three ultimate goals combined for each area.
 d. Name 10 different applications for each of the goals.
 e. Name five different applications for the two or three ultimate goals combined.

SIDEBAR 5.1 Knowledge Definition

Knowledge is what I know.
Information is what we know.

In the world of philosophy, knowing and understanding that something is a likely scenario
assumes that what is known is always true and 100% correct. Is it possible to announce that
 someone really knows something but it is not exactly true and correct? It is almost impossible
to say or ascertain that something is true unless we are successful in demonstrating that that
 something is also true and correct (Foskett 1982).

So, what exactly is knowledge? Is it possible to define or explain it in very simple and easy to
understand terms?

According to Merriam Webster’s online dictionary, knowledge is defined as

 1. The fact or condition of knowing something with familiarity gained through experience
or association.

 2. Acquaintance with or understanding of a science, art, or technique; the fact or condition
of being aware of something.

 3. The range of one’s information or understanding (e.g., answered to the best of my
 knowledge); the circumstance or condition of apprehending truth or fact through
 reasoning.

The definition of knowledge is a matter of intensive and ongoing debate among philosophers in
the field of epistemology. The classical definition, described but not ultimately endorsed by Plato,
has it that in order for there to be knowledge, at least three criteria must be fulfilled: to count as
knowledge, a statement must be justified, should be truthful, and should be believed.

REFERENCE

Foskett, A. C. The Subject Approach to Information. Hamden, CT: Linnet Books/The Shoe String Press, Inc.,
p. 1, 1982.

Section III

Knowledge Map Capabilities

134 Knowledge Map Capabilities

Simply speaking, capabilities are entities that form the heart and soul of a business.
Without appropriate capabilities, it may be very tedious for an organization to conduct
day-to-day business operations. Capabilities also form the essential components of busi-
ness process to ensure maximized productivity, stability, durability, and steadfastness of
business functions. In essence, capabilities may mean many things to people and in dif-
ferent industries.

Capabilities also complement the goals of a given concept by guiding themselves
 systematically toward their goal achievement. In fact, they are the enduring busi-
ness workhorses of the goals. Their behavior is driven forward by a set of enduring
 business rules, which are encapsulated by a number of goals. Each capability has an
ultimate goal responsible for constraining the capabilities’ internal behavior toward a
nondeterministic outcome without causing strugglers. The main idea of embedding the
capability’s ultimate goal within the capability’s workflow is to ensure and ascertain a
business-centric behavior that is usually coherent with the rationale or goals of interest.

Section III discusses capabilities or/and business objects and documents two major
 capabilities of the knowledge maps as stable design patterns: AnyMap and AnyContext.
Section III also contains three chapters and six sidebars.

Chapter 6 is titled “Capabilities: The Heart of Business,” and it defines capabilities or
business objects and the origin of business objects, discusses the workflows, shows how
to deal with capabilities: identification and assessment, the essential properties of busi-
ness objects, and briefly discusses the capabilities of the knowledge maps. This chapter
concludes with a brief summary and open research issues for the future. This chapter also
provides a series of review questions, exercises, and projects.

Chapter 7 is titled “AnyMap Stable Design Pattern,” and it discusses, models, and docu-
ments this pattern by using Fayad’s stable pattern documentation template as shown in
Appendix A. The chapter also includes three different and distinguishable AnyMap pat-
terns that focus on three different goals: navigation, visualization, and recording. This
chapter concludes with a brief summary and numerous open research issues. This chapter
also provides review questions, exercises, and projects.

Chapter 8 is titled “AnyContext Stable Design Pattern,” and it discusses, models, and
documents this pattern by using Fayad’s stable pattern documentation template as shown in
Appendix A. This chapter concludes with a brief summary and many open research issues.
This chapter also provides review questions, exercises, and projects.

Sidebar 6.1 is titled “Business Objects,” and it provides different definitions of business
objects.

Sidebar 6.2 is titled “Learning about Capability,” and it provides different definitions of
capability.

Sidebar 6.3 is titled “Work Flow,” where the workflow is defined, and it shows how dif-
ferent activities coordinate within the workflow.

Sidebar 7.1 is titled “Genetic or Linkage Map,” where a definition has been provided.
Sidebar 7.2 is titled “Site Map,” where a definition has been provided.
Sidebar 7.3 is titled “Topographic Map,” where a definition has been provided.

135

Capabilities
The Heart of Business

Capabilities are the true understanding of the solution space.

M. E. Fayad
2015

6.1 INTRODUCTION

Capabilities are those entities that form the heart and soul of a business. Without proper
capabilities, it may be very tedious for an organization to conduct day-to-day business
operations. Capabilities also form the essential components of a business process, to ensure
maximized productivity, stability, durability, and steadfastness of business functions. In
essence, capabilities mean many things to people in different industries. For business, capa-
bility means abilities that are acquired and are applied at their workplaces. It may include a
series of knowledge pools and skill sets required to run, manage, and administer numerous
business processes. In some domains, capabilities may also include wisdom and knowledge
acquired because of years of experience; more often, a person is said to be capable when
he or she has the required abilities to perform certain things or actions. Capabilities are
always enduring and persisting in their nature; once you acquire capabilities in a given
domain, it is almost certain that you will be capable to excel in that domain for life.

Capabilities in software architecture and development system may encompass several
things like required knowledge and skills, prior experience in the industry, and expertise
required to run several functions. A piece of software system is said to be capable when it
has the ability to remain stable for a long time, acquire the intrinsic ability to resist frequent
architectural changes or modification, and finally display an ability to perform a series of
functions with different variables.

It is possible to acquire capability by developing the capabilities of software systems by
specializing in a given domain, or by repeating the same thing in different contexts, or even
by developing them in a larger domain with more variables, or in a new domain, or in a
totally different domain (Sidebar 6.2).

6.1.1 The hearT of The Business

Capabilities or business objects (BOs) (Sidebar 6.1) are the heart and soul of business
operations. They always implement a number of entities that realize an assured and defi-
nite business concept (Patel, Sutherland, and Miller 1998). Such a responsibility allows
them to specify, execute, and track internal norms or comply with a series of logical steps
across a wide spectrum of environments. Like goals, they are the intrinsic parts of the
knowledge maps. Their main responsibility, within the knowledge maps’ standpoint of

6

136 Software Patterns, Knowledge Maps, and Domain Analysis

view and perspective, is to interpret goal definition, to encapsulate the processing points
where this goal is achieved, and to interact with work flow participants. Additionally,
capabilities have a major effect on business processing (Lawrence 1997). They are able
to execute the logical steps pertinent to their work flow in parallel, thereby reducing
substantially the cycle time necessary to handle a particular goal. Thus, for example,
a common task that requires 10 logical steps can have 5 of its logical steps executed in
parallel (Lawrence 1997). Likewise, capabilities also support or enable the execution of
their logical steps manually or in sequence.

Capabilities, like BOs, represent complete work flows that are responsible for specifying
and managing a stable set of processing tasks. To handle these tasks, the work flows of
capabilities are expressed as sets of smaller chunks of functionality that are easier to under-
stand than high-level complex processing tasks (James, Hawick, and Coddington 2000). In
essence, one can design capabilities with a high cohesion of their individual instructions.
The basic definition of these instructions is completed by means of a systematic process that
involves focused role assignation, their respective responsibilities, the services that cope with
these responsibilities, and their work flow collaborators (Fayad, Sanchez, and Hamza 2004).

Capabilities (Sidebar 6.2, Fayad 2002a, 2002b) also complement the goals of a given con-
cept by guiding themselves systematically toward their goal achievement. In fact, they are
the enduring business workhorses of the goals. These capabilities or workhorses behavior
is driven forward by a set of enduring business rules, which are encapsulated by a number
of goals. Each capability has an ultimate goal responsible for constraining the capability’s
internal behavior toward a nondeterministic outcome without causing struggles. The main
idea of literally embedding the capability’s ultimate goal within the capability’s work flow
is to ensure and ascertain a business-centric behavior that is usually consistent with the
rationale or goals of interest. This idea neatly corroborates and supports two things: a capa-
bility without a goal is not a capability at all, and capabilities are recursively related to the
goals without losing generality. Together, they form the basis for the generation of many
applications across the spectrum of interest, such as transactions and services in service-
oriented architectures (Fayad and Kilaru 2005).

Similar to goals, capabilities are the enduring artifacts, but with a minor difference:
they are externally adaptable, via extension points or hooks (Fayad, Sanchez, and Hamza
2005). Their adaptable natures can be determined by examining the relationships between
the underlying business, and their direct application, and the application of the right hook-
ing code. These relationships can be inheritance, aggregation, and associations. Rather
than focusing on the generalization and specification problems, the hooking code is mainly
responsible for weaving business and the actual application together on a real-time basis.
An important point here is that BOs (Sidebar 6.1) are not directly adapted by the industrial
objects (IOs); in fact, they are not. Rather, hooks create an environment where capabilities
are able to attach to any IO without changing the capabilities internal structure and without
a bit of chance of a collapse.

Further sections in the book introduce how capabilities form part of the work flow meta-
phor specification and how they consolidate a complete goal processing. Concretely speak-
ing, they make sure you are properly achieving the goal that you discovered during the
analysis phase in a complete and accurate manner. That is, they represent how the goal defi-
nition should happen, rather than focusing on what needs to be performed, that is, the solu-
tion space. The following section represents such a work flow metaphor and what its role is
in a definition of the capabilities and their abilities facing a set of undetermined contexts.

137Capabilities

6.1.2 Work floW MeTaphor—Workhorses

Metaphors are useful and beneficial for introducing a new idea or concept to a particular
cast (Odell 1998). Their application to BOs is quite common, especially for specifying and
 managing their work flows (Fayad, Hamu, and Brugali 2000). In the capabilities domain,
these work flows or business processes are well defined with a stable nature in mind.
Nonetheless, they provide the right type of facilities to cope with determined contexts
of applicability. Using work flows, as a metaphor, is always interesting and compelling,
because it allows us to capture and understand those essential high-level sequences of activ-
ities required to fulfill system behavior. In fact, they dramatically allow complex business
processing to be streamlined among work flow participants in determined environments
(Fayad, Hamu, and Brugali 2000) and ease their execution and management.

Work flow metaphors have a strong effect on business process definition and under-
standing. They provide the capabilities for constructing enduring business processes. They
also ensure that each of the activities they enclose and divulge is an essential activity,
a complete one, of the target environment or subject matter. The interactions of the
 activities, internal and external, cover detailed (enduring) and dynamic (nested) process-
ing according to the target environment’s conditions and opportunities. To assure proper
execution and management of these activities, BOs or capabilities must contain the right
type of services. Using the divine mantra divide and conquer as the starting point, we
could write and postulate that a proper and focused definition of a capability’s services
depends on how you distribute the load of each service to achieve the capability’s respon-
sibility, hence providing a proper work flow execution.

One can express the work flows of capabilities as a set of smaller chunks of function-
alities that are easier to understand than those high-level complex processing tasks. This
functionality is one to one and is mapped with the services the capability provides. How to
define these services will determine how accurate the work flow is and how one perceives
the enduring quality along the entire work flow. We will not cover, in this section, the iden-
tification of the services of capabilities work flows. However, we will describe the process
to identify these capabilities. The next section describes such a process.

6.1.3 Dealing WiTh CapaBiliTies: iDenTifiCaTion anD assessMenT

Capabilities are adaptive concerns that represent the solution space of a problem of interest.
They embody knowledge skills, processes, and abilities associated with the execution of a
specified course of actions or actions work flow. Due to their extreme adaptive nature, they
also ensure a reduced cycle time for coping with a vast number of transient requirements
and handling other goals and capabilities in a determined topology of patterns. This pecu-
liarity of capabilities allows both demand adaptation and flexibility against IOs or transient
aspects, and on-demand scalability of the environment to expand the abilities needed to
achieve a goal. The above behavior of capabilities is, in the end, translated as a faster return
of investment (ROI), while still maintaining a high-quality solution. This means that a
customer could manage his or her products basic functionality (e.g., add, remove, override,
and extend), when facing new requirements without the necessity of reinventing the wheel.

A tendency or trend exists with developers to be more familiar or accustomed with
capabilities than with goals. One reason here is that they are usually exposed to capa-
bilities on a daily and consistent basis. However, this familiarity with capabilities does

138 Software Patterns, Knowledge Maps, and Domain Analysis

not mean that capabilities are obvious to extract whatsoever; in fact, their extraction is
a challenging activity due to different reasons. For instance, following are the common
 difficulties experienced when trying to extract capabilities:

 1. Software practitioners do not know or understand if they have discovered a capa-
bility or a goal due to the conceptual nature of both. For example, one can see a
collection as both a goal and a capability. There is a fuzzy line between the identi-
fication of goals and capabilities.

 2. Software practitioners have quite a bit of difficulty knowing and understanding,
whether they have discovered the right capabilities for a determined goal. For
example, what are the capabilities of branding? By reading a problem statement,
practitioners will consider position, advertisement, promotion, market, product,
brand, and so on. However, they should be looking for the right ones: AnyEntity,
AnyBrand, AnyMechanism, AnyParty, and AnyIdentity (Sanchez 2005).

 3. Software practitioners may misunderstand the real nature of capabilities. Instead
of thinking in terms of the enduring principles that drive their business, they
always start thinking in terms of an application’s artifacts. From the previous
example, we have the following application-centric artifacts, which are part of
the marketing field: product, market, promotion, and so on What if we used and
employed branding for identifying humans in the United States. It is obvious that
we have a different set of application, where we will not have the objects: promo-
tion, market, product, and so on.

 4. Belaboring the rareness of a one-to-one mapping between goals and capabilities
(Hamza and Fayad 2002), a goal can be mapped into several capabilities. This
increases the complexity of extracting the right capabilities.

 5. There are also cases or instances, when candidate capabilities are off content and
are thus recursively related to other capabilities and not to goals. This is understood
by delving into the capability’s context of applicability.

Hamza and Fayad (2002) described a process for extracting capabilities or BOs that sup-
port a determined goal of interest. This process implicitly conveys the idea that capabilities
must be focused with the sole purpose of avoiding practitioners to be bogged down with
many irrelevant details (e.g., application-specific details). An important remark here is that
this process was addressed from a point where we already knew and understood the goal of
the subject but that goal did not have capabilities in reality. In this chapter, we focus espe-
cially on how does the subject do it, by describing two ways for dealing with capabilities:
first, when we have a goal with no capabilities, and second, when we have one capability
with no goal at all. One needs to evaluate the capabilities and filter down then by using a set
of heuristics, provided in the form of questions.

Before providing the capabilities identification process, we have to step back or retract
and understand that two perspectives will drive this process’ success. First is that we will
have, in most of the cases, a goal with no capabilities. In this case, our important job is
to identify those capabilities and the relationships that stem from them and provide that
expected and cherished harmony between those capabilities and their goals. The second is
that each capability has a second level of abstraction or level of granularity, where it may
or may not have a set of collaborators or other capabilities interacting with it to satisfy an
internal goal. In this case, our immediate task will be to identify the internal goal and the

139Capabilities

set of collaborators (capabilities) that will aid in the definition of the capability’s second
level of abstraction. You can use the process described in Chapter 3 to identify this goal,
but now the subject explored will be the selected capability. Other sections of this book will
cover the processes of both perspectives.

6.1.3.1 The Impact of BO on Creating Multiple Applications: Generality
BOs, along with goals, serve as an essential framework for building important applications.
Because BOs represent the capabilities to achieve goal, they do not always depend on any
application in particular. BOs abstract the actual application-specific IOs. Thus, if we have
corrected BOs at our disposal, infinite number of applications can be built on top of them
easily by just attaching specific IOs.

6.1.3.2 BO = Stable Design Patterns
BOs provide high-level and accomplished designs to which one can plug application-spe-
cific IOs. Because BOs are abstract and generalized, we need to arrive here with them,
before implementing the actual application; hence, they represent stable design patterns.

6.1.3.3 Essential Properties of BO
A complete description of the BOs essential properties can be found in Fayad (2008):

• Timeless notion patterns
• Working horse of the system patterns
• Adaptability patterns
• True presentation of the solution space patterns
• Management work flow metaphor patterns
• Domain-independent patterns

6.1.4 a goal WiTh no CapaBiliTy

Even though the identification of capabilities seems to be a little bit less complicated and
complex than the identification of goals, their inherent processes require the same amount
and care as do those for the identification of goals. Therefore, we will provide in this section
a set of questions and heuristics that will guide you throughout the entire identification
process. By following these questions, the success of this identification process in terms of
finding the right capabilities will be more tangible. The process of identifying the capabili-
ties of a goal is described herein.

 1. Set the context, where all candidate capabilities will need extraction. We determine
the context by asking, “What is the subject of interest?”

 2. Identify the goal(s) of interest by asking, What is the subject for?
 3. Determine a focused problem or subject understanding by asking, Can we divide

this subject into smaller chunks of understanding? To support this step, we use the
following questions:

 a. How can we approach the underlying goal?
 b. What do we need to fulfill this goal?

140 Software Patterns, Knowledge Maps, and Domain Analysis

 c. What are we looking for with this goal in the determined subject of interest?
 d. Who is going to use the goal?
 4. Filter the entire list of found capabilities.
 a. Does the outcome apply to the goal itself, or is it just part of a wish list

of the stakeholder? If it is part of a wish list, this is not a good candidate
capability.

 b. Can the subject matter exist without this capability? However, is the capability
redundant or nonexistent within the subject of interest? If yes, this is not a good
candidate capability.

 c. Does the outcome have a physical representation in application-specific
 environments? If not, this is not a good candidate capability.

 5. Use the prefix Any as a generality indicator for both atomic and capabilities. We
will use the stereotype BO for atomic capabilities, and Pattern-BO for nonatomic
capabilities. There is an exception for this naming rule. Capabilities that repre-
sent types of a unit or element will follow a determined naming convention: the
UnitName + Type keyword. For example, you can rename types of resources as
ResourceType.

 6. Evaluate the list of candidate capabilities to assure their accuracy and relevance to
the goal of interest. We can use the following questions to support this step:

 a. What is the relationship between the capability and the target goal? Is it purely
obscure or confusing? Alternatively, is it clear? If it is clear, this may be a good
candidate capability.

 b. Is the capability’s execution and management bound to external conditions
and abilities related to a specific context? If yes, this is not a good candidate
capability.

 c. Does the capability comply with the so-called stateless class definition? If yes,
this is not a good candidate capability. A good example of this is Chotin.

 7. Model the found capabilities and goals using UML notation.

The next section will mainly concentrate on the second perspective for dealing with capa-
bilities. This specific and fixed way concentrates on providing the right abstraction level
for each one of the extracted capabilities. That is, we must delve into the second level of
abstraction of certain capabilities and define their ultimate goals and the set of capabilities
that support their ultimate goal.

6.1.5 a CapaBiliTy WiTh no goal

Once you have identified all the capabilities of a determined goal, your need to take each
capability in isolation for immediate perusal or follow-up. During this perusal, we will
identify the ultimate goal of the isolated capability. In addition to this, we will also iden-
tify, if they exist, the rest of the capabilities that complement the isolated capability’s
ultimate goal.

Capabilities have their own internal goal to fulfill. The fulfillment of this goal depends
on how well software practitioners have examined the isolated capability’s structure in
search of the pieces that synthesize and realize, as a whole, the rationale of this capability
in question.

141Capabilities

To simplify this examination process, we can provide a set of questions and heuristics
that will guide software practitioners throughout the entire examination process. This
examination process is described herein.

 1. What is the subject of interest? In this case, the selected capability is the subject of
interest.

 2. What is the subject matter? The process described in Section 3.4 can help one come
up with the right goal.

 3. What are the core elements of the subject matter? This question is addressed by
means of the following steps:

 a. Specify a set of scenarios, where the subject matter is present.
 b. Describe each of the scenarios by identifying the pertinent business issues or

rules that drive the subject matter’s realization.
 c. Make sure that each of the scenarios is described from a domain-independent

perspective. Table 6.1 depicts what we mean and understand by the word
 scenarios and the business rules that were extracted from them. The number of
scenarios can be almost infinite.

 d. Abstract the business rules or issues shared by all the scenarios
 e. Identify the formal axioms that constrain business rules’ application across

several scenarios.
 f. Does each one of the capabilities have a physical representation? If yes, these

are tentative core elements of the subject matter.
 g. Discuss the results with the technical cast and look for consensus of the core

elements of the subject.
 h. Continue with this process, until you have covered all the capabilities exploration.

In order to support the previous process, we will provide an example (in the next section),
where we put in action and work all the questions and heuristics previously described.

6.1.6 iDenTifiCaTion proCess of CapaBiliTies: an exaMple

Let us select a possible goal that is easy to explore in detail, so that we can start finding its
capabilities. We will walk through the steps of the process with the CRC cards example
described in Fayad, Sanchez, and Hamza (2004). The following illustrates the application
of heuristics and the questions for extracting the capabilities of a goal:

 1. We will determine the context by asking, What is the subject of interest? In this
case, it will be CRC cards.

 2. What are CRC cards’ goals? One of CRC cards’ goals is brainstorming.

TABLE 6.1
Scenario Format

Scenario 1: Scenario Name

Definition Business Rules

Concept of interest definition List of business rules of the concept

142 Software Patterns, Knowledge Maps, and Domain Analysis

 3. Can we divide the brainstorming concept into smaller chunks of understanding?
Yes, we can. See below.

 a. How can we approach the brainstorming concept? The result: location where a
participant will brainstorm, rules for doing brainstorming, time for brainstorming,
brainstorming media, and so on.

 b. What do we need to fulfill this brainstorming goal? We need motivation or
interest for doing brainstorming, processes for doing brainstorming, forms of
brainstorming, the target context where brainstorming is applied, the specific
topic of interest, engagement among participants, and so on.

 c. What are we looking for with the brainstorming goal in the CRC cards context?
To complete a brainstorming session, to explore a context, and to produce a list
of new ideas or candidate classes represented by CRC cards, ideas assessment,
and so on.

 d. Who is going to perform brainstorming in the CRC cards context? The results
are facilitators, analysts, designers, scribes, and so on.

 4. We will also filter all the identified capabilities with the sole purpose of avoiding
being constrained with irrelevant details associated with the application side of
brainstorming.

 a. Does the outcome (found capabilities) apply to the brainstorming goal itself, or
is it just part of a wish list of the stakeholder? The result: new ideas and idea
assessment will be removed.

 b. Can the CRC cards approach exist without some of the found capabilities?
Alternatively, are some capabilities redundant within the CRC cards approach?
The result: the capabilities, such as time for brainstorming, rules for brain-
storming, location where brainstorming is carried out, and the brainstorming
session, will be removed.

 c. Does the outcome (found capabilities) have a physical representation? The
result: this capability is removed: motivation or interest.

 5. Use the aforementioned naming conventions with the left capabilities. The result:
AnyMedia, AnyForm, AnyContext, AnyEngagement, AnyParty, AnyTopic, and
AnyMechanism.

 6. Evaluate this list of capabilities.
 a. What is the relationship between each one of the capabilities and the brain-

storming goal? The result: AnyTopic capability will be removed, because its
association with the goal is too vague and almost redundant. AnyContext is
already covering the AnyTopic role.

 b. Is each one of the capabilities’ execution and management bound to external
conditions and abilities related to a specific context? The result: none of the
current capabilities is bound to external conditions. Therefore, they will not be
removed.

 c. Does each one of the capabilities comply with the so-called stateless class
 definition? The result: none of the current capabilities is stateless classes.

 7. The final list of capabilities: AnyMedia, AnyForm, AnyContext, AnyEngagement,
AnyParty, and AnyMechanism.

The second phase is to pick, select, choose, and explore only one capability at a time. We
do this with the sole purpose of finding each capability’s internal goal, along with other

143Capabilities

capabilities that may complement the picked capability’s internal goal. To support this
 process, we will use the AnyMechanism capability as the subject to be explored.

 1. What is the subject of interest? In this case, it is the AnyMechanism capability.
 2. What is AnyMechanism used for? The process described in Chapter 3 is used to

come up with the right goal. After following this process, we will come up with the
following goal: computing.

 3. What are the core elements of AnyMechanism? This question involves the
following:

 a. Specify a set of scenarios, where AnyMechanism is present. We can use the
scenario format illustrated in Table 6.1.

 b. Describe the business rules of the AnyMechanism capability. Table 6.2 shows
the result.

 c. For example, take the business rules or issues shared by all the scenarios. For
the sake of simplicity, we did not include all the business rules that we used
to extract the atomic structure of AnyMechanism. Based on the scenarios, we
found the following capabilities: AnyAlgorithm, AnySequence, AnyPeriod,
AnySignature, AnyType, AnyClass, and AnyMedia.

 d. Define the pertinent axioms of the AnyMechanism capability. For example, in
order to run the sequence of steps, a period must be defined and described. The
aggregation mechanism into the sequence must be ordered.

 4. The final list of capabilities, along with the AnyMechanism goal, is computing
(goal), AnyMechanism, AnyAlgorithm, AnySequence, AnyPeriod, AnySignature,
AnyType, AnyClass, and AnyMedia.

The complete model of AnyMechanism can be seen in section on the capabilities of
 knowledge maps.

TABLE 6.2
AnyMechanism’s Scenarios

Definition Business Rules

Scenario 1: Chemical Reactions
An atomic process that occurs during a
chemical reaction

A systematic sequence of steps or reactions that influences
a chemical change

A process occurs in natural phenomena

Represents the implementation of an algorithm

Scenario 2: Earth’s Sunlight Process
A process that has occurred on earth
due to a chain of causes

A process on the earth that occurs according to a determined
period

Certain parameters determine when the light will be perceived
on earth

A process that consists of other processes, such as Earth orbit,
Sun, and nuclear reactions

144 Software Patterns, Knowledge Maps, and Domain Analysis

6.2 CAPABILITIES OF KNOWLEDGE MAPS

This section covers the capabilities of knowledge maps. They are illustrated as stable design
patterns (see Chapter 2 for reference). Nine capabilities drive the formation of the knowledge
map. Table 6.3 summarizes these capabilities.

6.2.1 CapaBiliTy 1

• Name. AnyMechanism stable design pattern
• Context. The pattern is trying to capture the essentials or the core knowledge of

any mechanism concept whenever it appears.
• Problem. How to model the core abstractions of a concept that spans multiple

application domains.
• Solution and participants

• Solution (Figure 6.1)
• Participants

 − Classes
 − AnyMechanism. It represents or signifies the process or logical steps to

perform a determined activity.
 − Patterns

 − AnyMedia. It identifies and defines the media upon which the mech-
anism will be executed. It also represents the media, by which the
sequence of logical steps will be executed.

TABLE 6.3
Capabilities of Knowledge Maps

Capability Description Provided?

AnyMechanism AnyMechanism represents the process or logical steps to perform a
determined activity

Yes

AnyView It is the view of a model that extracts the essential information relevant
to a particular purpose and ignores the remainder of the information

Yes

AnyModel It visualizes the relevant details of a subject or discipline, while
ignoring the irrelevant details

Yes

AnyLevel It represents the level of abstraction that a concern or concept can be
represented

No

AnyContent This deals with the sum or range of what (patterns) has been
perceived, discovered, or learned in a particular discipline

Yes

AnyContext This defines what elements are/are not part of the problem under
discussion

No

AnyArchitecture This refers to the integration of two or more patterns. Architecture
should contain more than one EBT or goala

No

AnyPattern This is the best solution for a set of recurring problems or events No
ExtensionPoint They represent “the slots, knobs, and dials that must adjust in order

to adapt the framework to your context”a

No

Source: aFayad, M.E. Stable Design Patterns for Software and Systems. Boca Raton, FL: Auerbach
Publications, 2015.

145Capabilities

 − AnyClass. It classifies the common properties and behavior for a set of
specific kinds of objects.

 − AnyType. It tags the interfaces that form the mechanisms. The provided
signatures of a set of services classify it.

 − AnySequence. It represents the logical order in which a set of instruc-
tions is executed in a determined period.

 − AnyPeriod. It indicates the amount of time duration required by the
sequence of steps to be executed in accordance with certain algorithm.

 − AnyAlgorithm. It indicates a set of systematic rules that produce a deter-
mined outcome or solution.

 − AnySignature. It represents the specification of an instruction that is
part of a mechanism.

6.2.2 CapaBiliTy 2

• Name. AnyView stable design pattern (Fayad, Islam, and Hamza 2003)
• Context. It represents the core knowledge for the situations in which a view may occur.
• Problem. How can we model the core knowledge of a concept that spans multiple

application domains?

<<P-BO>>
AnyType

<<P-BO>>
AnyClass

<<P-BO>>
AnySequence

<<P-BO>>
AnyDuration

1 requires

runs on

runs on

takes

represented by<<P-EBT>>
Computation

triggers 1..*

1..**

*

0..*

1..*

1..*

<<P-BO>>
AnyMedia

belongs to

<<BO>>
AnyMechanism

<<P-BO>>
AnySignature

<<P-BO>>
AnyAlgorithm

FIGURE 6.1 The AnyMechanism stable design pattern.

146 Software Patterns, Knowledge Maps, and Domain Analysis

• Solution and participants
• Solution (Figure 6.2)
• Participants

 − Classes
 − AnyView. It represents the view of a collection of data (the model).
 − Viewing. It describes the viewing process and rules.

 − Patterns
 − AnyParty. This represents the viewer. This viewer perceived the mapped

view of a requested model.
 − AnyMedia. It identifies and defines the media upon which the views

are mapped and transmitted. It also represents the media by which the
views are to be displayed.

 − AnyCriteria. It describes the properties that govern specific kinds of views.
 − AnyEntity. It describes the entity where models and views are produced.
 − AnyModel. It describes the model of any entity.

6.2.3 CapaBiliTy 3

• Name. AnyModel stable design pattern (Fayad, Islam, and Hamza 2003)
• Context. A model is a significant representation of a subject. The model concept

spans and stretches across multiple application domains.
• Problem. How can we capture the reusable essentials or the core knowledge of a

model?

<<P-BO>>
AnyParty

<<P-EBT>>
Viewing

<<P-BO>>
AnyMechanism

<<BO>>
AnyView

<<P-BO>>
AnyModel

<<P-BO>>
AnyEntity

<<P-BO>>
AnyMedia resides onwithin 1..*

enforced by views 1..*

of

maps to

1..* 1..*
1..*

1..*

views 1..* 1..*

1..*

imposes

based on

<<P-BO>>
AnyCriteria

FIGURE 6.2 The AnyView stable design pattern. (From Fayad, M. E. Software System
Engineering, Lecture Notes, Computer Engineering Department, College of Engineering, San Jose
State University, San Jose, CA, 2002–2014.)

147Capabilities

• Solution and participants
• Solution (Figure 6.3)
• Participants

 − Classes
 − AnyModel. It describes the model of a determined application (e.g.,

plane manufacturing and game development). In other words, a model
is a representation of data within a specific application.

 − Patterns
 − Modeling. It defines the modeling process.
 − AnyParty. It represents the modeler. The modeler is responsible for

building the data models in an appropriate abstract level.
 − AnyMedia. It identifies and defines the media upon which the models are

built or exchanged.
 − AnyCriteria. It describes the properties that govern specific kinds of

models.

6.2.4 CapaBiliTy 4

• Name. AnyContent stable design pattern
• Context. From an informational perspective view, content is a special concept that

represents any type of information in a digital context, such as web pages’ content
and files’ content.

• Problem. How can we capture the core knowledge of any content focusing on the
information category?

• Solution and participants

<<P-BO>>
AnyParty

<<P-EBT>>
Modeling

<<P-BO>>
AnyMechanism

<<BO>>
AnyModel

<<P-BO>>
AnyEntity

<<P-BO>>
AnyMedia resides ondisseminates 1..*

enforced by produces

of

1..* 1..*
1..*

1..*

views 1..*

1

1..*

1..*

imposes

based on

<<P-BO>>
AnyCriteria

FIGURE 6.3 The AnyModel stable design pattern. (From Fayad, M. E. Software System
Engineering, Lecture Notes, Computer Engineering Department, College of Engineering, San Jose
State University, San Jose, CA, 2002−2014.)

148 Software Patterns, Knowledge Maps, and Domain Analysis

• Solution (Figure 6.4)
• Participants

 − Classes
 − AnyContent. It describes the type of information in a digital context.

 − Patterns
 − AnyActor. The actor who successfully generates the content
 − AnyMedia. It identifies/defines the media upon which the contents are

generated and exchanged.
 − AnyForm. It identifies/defines the different types of content in that digi-

tal context, such as text, images, audio, and symbols.
 − Knowledge. It represents the gained experience that will be used as the

basis for the actor to generate content.

SUMMARY

By applying the software stability concepts approach to the definition of capabilities,
we have concluded that capabilities are the true BOs that allow software practitioners to
achieve determined goals in a systematic manner. They will always comprise a focused
logical processing or work flow consistent with a set of enduring business rules. The fol-
lowing summarizes the information covered in this chapter:

 1. Capabilities are knowledge-centric BOs with an ultimate goal in mind and view.
A capability without a goal means a capability with an obscure purpose in a deter-
mined system.

 2. Capabilities are internally stable and externally adaptable. This means that devel-
opment of capabilities involves both the internal norms and compliance-logical
steps forming the capabilities work flow and the comprising of hooking code that
enables capabilities to adapt to external application-specific environments.

<<EBT>>
Knowledge

possess

1..*
–views

–views

<<P-BO>>
AnyActor

<<BO>>
AnyContent

1..* 1..*

–form

<<P-BO>>
AnyMedia

–form

–forms
–content

resides on

1..* –media

<<P-BO>>
AnyMedia

FIGURE 6.4 The AnyContent stable design pattern (From Fayad, M. E. Software System
Engineering, Lecture Notes, Computer Engineering Department, College of Engineering, San Jose
State University, San Jose, CA, 2002−2014.)

149Capabilities

 3. Capabilities collaborate with other capabilities, working together to achieve a
 common goal, which is the extension and adaptation of their periphery (behavior
and structure) to maximize their goal’s success. We usually focus on the imple-
mentation of gluing or gelling points, where the capabilities can associate other
capabilities, rather than focusing on the capabilities per se.

 4. Capabilities’ work flow interoperability is defined with a role in mind, which
enables the responsibility of each of the capabilities involved in the goal’s resolu-
tion. Being aware of the responsibility of each capability will enable a designer to
create the right abilities or services of a particular capability.

 5. Dynamic change in capabilities’ abilities is allowed. Capabilities are embedded
with the ability to dynamically change their abilities through extension points that
are responsible to add, remove, update, override, and extend functionality on a real-
time basis.

In summary, the capabilities of a discipline are important and critical aspects attempting
to encapsulate or encompass the business processes and categories of a business-centric
theme or goal. When they are directly associated with their goals, they form a synergetic
force indented to represent the groundwork of any discipline’s understanding: the knowl-
edge maps.

OPEN RESEARCH ISSUES

Capabilities are conceptual concepts, and hence, finding or detecting them requires thor-
ough knowledge and acquiring skills of the domain for which capabilities need to be found.
In addition, the goal(s) must be known and identified, before hand, in order to find the
correct BOs. Thus, finding correct capabilities comes naturally only through intense and
regular practice.

REVIEW QUESTIONS

 1. Discuss the following statement: capabilities/BOs are heart of business.
 2. What is the responsibility of capabilities from the standpoint of knowledge maps?
 3. Justify: capabilities have a major effect on business processing.
 4. Explain how BOs represent complete work flow for specifying and managing a

stable set of processing tasks.
 5. What drives the capabilities behavior?
 6. What is the main difference between capabilities and goals?
 7. What are the two main ideas corroborated by business-centric behavior of

capabilities?
 8. Is the following statement true or false? BOs are directly adapted by the IOs.
 9. ___________ create an environment, where capabilities are able to attach to any

IO without changing the capabilities’ internal structure.
 10. What is the main function of hooks?
 11. What mechanism is used to attach industrial-specific IOs to BOs?
 12. Is the work flow metaphor of workhorses apt for capabilities? Explain.
 13. Which behavior of capabilities can be translated into faster ROI with high-quality

solution?

150 Software Patterns, Knowledge Maps, and Domain Analysis

 14. List all the difficulties experienced by software practitioners, when extracting
capabilities for a domain.

 15. What are the two scenarios under which a software practitioner needs to deal with
capability? Explain each one of them.

 16. What is the impact of BOs on creating multiple applications?
 17. Explain how BOs represent stable design patterns.
 18. Enlist essential properties of BOs and explain each one of them briefly.
 19. What steps need to be followed for identifying capabilities given a goal?
 20. What steps need to be followed for identifying capabilities given a capability with

no goal?
 21. Compare and contrast the process of extracting capabilities, when goal is given to

the process of extracting capabilities, when one capability and no goal are given.
 22. Explain all the capabilities of the knowledge map using the standard template given

in Section 6.2 as shown in Table 6.3.
 23. A capability without a goal means a capability with an obscure purpose in a deter-

mined system. Explain.
 24. Is the following statement true or false? Capabilities collaborate with other

 capabilities toward a common goal.
 25. Is the following statement true or false? Dynamic change of capabilities’ abilities is

not allowed.
 26. Why is capabilities’ work flow interoperability definition defined with a role in

mind?
 27. What are the differences and similarities between traditional BOs and knowledge

map’s BOs?

EXERCISES

 1. Find out if following are goals or capabilities
 a. Personalization
 b. Dynamism
 c. Secrecy
 d. Collection
 e. Storage
 f. Perfection
 g. Entity
 2. Find the rest of the capabilities of the following concepts:
 a. AnyProject
 b. AnyRevenge
 c. AnyClaim
 d. AnyOption
 e. AnyPresentation
 f. AnyAlarm
 g. AnyEvent
 h. AnyTask
 i. AnyHabit
 j. AnyCrime

151Capabilities

 3. Name the BOs or capabilities of the ultimate goal(s) of the following classic movies:
 a. Lagaan
 b. The Lord of the Rings trilogy (2001–03)
 c. Titanic (1997)
 d. Toy Story (1995)
 e. The Silence of the Lambs (1991)
 f. Crumb (1995)
 g. The Lion King (1994)
 h. Shrek (2001)
 i. The Breakfast Club (1985)
 j. Speed (1994)
 k. Scarface (1983)
 l. Fatal Attraction (1987)
 m. Ghostbusters (1984)
 n. Dirty Dancing (1987)
 o. Back to the Future (1985)
 4. Name the BOs or capabilities of the ultimate goal(s) of the following classic

books:
 a. The Road, Cormac McCarthy (2006)
 b. Harry Potter and the Goblet of Fire, J. K. Rowling (2000)
 c. Beloved, Toni Morrison (1987)
 d. The Liars’ Club, Mary Karr (1995)
 e. American Pastoral, Philip Roth (1997)
 f. Mystic River, Dennis Lehane (2001)
 g. Cold Mountain, Charles Frazier (1997)
 h. Watchmen, Alan Moore and Dave Gibbons (1986–1987)
 i. Black Water, Joyce Carol Oates (1992)
 5. Name the BOs or capabilities of the ultimate goal(s) of the following classic TV

shows:
 a. The Simpsons, Fox (1989–present)
 b. The Sopranos, HBO (1999–2007)
 c. Seinfeld, NBC (1989–1998)
 d. The X-Files, Fox (1993–2002)
 e. Sex and the City, HBO (1998–2004)
 f. Survivor, CBS (2000–present)
 g. The Cosby Show, NBC (1984–1992)
 h. Friends, NBC (1994–2004)
 i. The Oprah Winfrey Show, Syndicated (1986–present)
 j. American Idol, Fox (2002–present)
 k. Beverly Hills, 90210, Fox (1990–2000)
 l. Star Trek: The Next Generation, Syndicated (1987–1994)
 m. Miami Vice, NBC (1984–1989)
 n. L. A. Law, NBC (1986–1994)
 o. Moonlighting, ABC (1985–1989)
 p. Planet Earth, Discovery Channel (2007)
 q. The Golden Girls, NBC (1985–1992)
 r. Prime Suspect, ITV (1991–2006)

152 Software Patterns, Knowledge Maps, and Domain Analysis

PROJECTS

 1. Form a group and discuss other ways to find capabilities.
 2. Identify and model two to four ultimate goals, their capabilities, and connect them

together for the following domains.
 a. Manufacturing
 b. Modeling
 c. Requirement analysis
 d. Customer relationship management
 e. Database
 f. Project
 g. Kitchen
 Identify the common capabilities in each of the models.
 3. Identify and model the class diagrams by using 2–3 ultimate goals and their capa-

bilities for each of the problem statements in Appendix D. Identify the common
capabilities in each of the models.

SIDEBAR 6.1 Business Objects

The traditional definition of a business object is that they are objects in an object-oriented
 computer program that represent the entities in the business domain that the program is
designed to support. For example, an order entry program might have a BO to represent each
order, line item, and invoice. BOs are sometimes called domain objects; a domain model
represents the set of domain objects and the relationships between them. BOs often encapsu-
late all of the data and business behavior associated with the entity that it represents. They do
not necessarily need to represent objects in an actual business, though they often do. They can
represent any object related to the domain for which a developer is creating business logic. The
term is used to distinguish between the objects a developer is creating or using related to the
domain, and all the other types of object he or she may be working with, such as user interface
widgets and database objects such as tables or rows.

Technically, BOs encapsulate traditional lower-level objects that implement a business process
(i.e., they are a collection of lower-level objects that behave as single, reusable units). User inter-
faces can be thought of as views of large-grained BOs. Databases maintain a record of the state of
BOs as they change over time (Sutherland 1997).

A BO is an object that is modeled after a business concept, such as a person, place,
event, or process. BOs represent real-world things such as employees, products, invoices,
or payments. To remain competitive, modern day enterprises need information systems that serve
and adapt to their complex needs. Applications designed from the ground upward (not hacked)
by using the BO model are better suited to meet the requirements of rapidly evolving businesses
Sutherland (1997).

Our definition of BO is completely different from all of the above. Our BOs are capabilities
that are used to achieve the business goals, which we call them, enduring business themes (EBTs)
(Fayad 2002a, 2002b, 2015; check Chapter 6 for more information).

REFERENCES

Fayad, M. E. “Accomplishing Software Stability.” Communications of the ACM 45, no. 1 (2002a):
111–115.

Fayad, M. E. “How to Deal with Software Stability.” Communications of the ACM 45, no. 4 (2002b):
109–112.

http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F502269.502308
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F505248.505278

153Capabilities

Fayad, M. E. Stable Design Patterns for Software and Systems. Boca Raton, FL: Auerbach Publications,
2015.

Sutherland, J. “Business objects in corporate information systems.” ACM Computing Survey 27, no. 2 (1995):
274–276.

Sutherland, J. “The Object Technology Architecture: Business Objects for Corporate Information Systems.”
In Business Object Design and Implementation, Sutherland, J. V., D. Patel, C. Casanave, J. Miller, and
G. Hollowell. eds. Springer, 1997.

Sutherland, J. “Business Object and Component Architectures: Enterprise Application Integration Encounters
Complex Adaptive Systems” (invited paper). IEEE Hawaii International Conference on Software
Systems, 2001.

SIDEBAR 6.2 Learning about Capability

The basic term of capability was coined first by Dennis and Van Horn (Dennis and Van Horn
1966). According to them, the basic idea of capability is just like a token that can designate an
object and give the program an authority to carry out a specific and unique set of actions on the
given object. The token in this context is the capability.

A capability is very similar to the keys on your key ring, such as a car key or house key, or
password. It is just like the password to be used to log into your computer system. Just consider
this simple example: the password that you use can open only your computer and it is specific to
your machine. Anyone who has your password can open your computer without any problems.
It means that your password does not know or identify who is holding the password, be it you or
anyone else.

Computer login passwords can come in several variations. One common type of password is
the computer boot password, which starts or boots your computer, whereas the other one is the
data encryption password that can help you open your sensitive files and folders. Though both
passwords perform the same action, which is opening up something, the actions performed are
entirely different.

Thus, two capabilities can tag or designate the same type of object, but they will always
authorize different set of actions! This is similar to capability-based security, which is a
concept in the design of secure computing systems. A capability (known in some systems as a
key) is a communicable token of authority. It refers to a value that references an object, along
with an associated set of access rights (Levy 1984, Miller et al. 2003).

In summary, one can delegate capabilities that mean that you can hand over the capability
to anyone that you rely and trust. One can copy a set of capabilities, whereas the other can
hand over the capability only after the clause of trust is acknowledged and obeyed. However,
one can even change the nature of the capabilities by rescinding them, if the situation compels
you to do so.

Our definition of capability is different from all of the other definitions: Dennis and
Van Horn (1966); http://www.erosos.org/essays/capintro.html. Capabilities are equal and
 identical to BOs that are used to achieve the business goals, which we call them EBTs (Fayad
2002a, 2002b). Capabilities are adaptive concerns that represent the solution space of a prob-
lem of interest. They embody knowledge skills, processes, and abilities associated with the
 execution of a specified course of actions or actions work flow (check Chapter 6 for more
information).

REFERENCES

Dennis, J. B., and E. C. Van Horn. “Programming Semantics for Multiprogrammed Computations.”
Communications of the ACM 9, no. 3 (1966): 143–55.

Fayad, M. E. “Accomplishing Software Stability.” Communications of the ACM 45, no. 1 (2002a): 111–15.

http://www.erosos.org
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-1-4471-0947-1_3
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F365230.365252
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F502269.502308
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F210376.210394

154 Software Patterns, Knowledge Maps, and Domain Analysis

Fayad, M. E. “How to Deal with Software Stability.” Communications of the ACM 45, no. 4 (2002b): 109–12.
http://www.eros-os.org/essays/capintro.html.
Levy, H. M., Capability-Based Computer Systems, Digital Equipment Corporation 1984.
Mark S. M., Ka-Ping Yee, and J. Shapiro. Capability Myths Demolished, Technical Report SRL2003-02,

Systems Research Laboratory, Johns Hopkins University, 2003.

SIDEBAR 6.3 Work Flow

Work flow is a depiction of a sequence of many operations, declared as works of a person, the
work of a simple or complex mechanism, work of a group of persons (Fischer 2007), and work
of an organization of staff, or machines. It may be seen as any abstraction of real work, segre-
gated in work share, work split, or whatever the types of ordering. For control purposes, work
flow may be a detailed view on real work under a chosen or selected aspect (Fischer 2005), thus
serving as a virtual representation of actual work.

A work flow is a reliable, trusted, repeatable, and consistent pattern of activities empowered
by a systematic and orderly organization of a number of resources, well-defined and specific roles
and mass, energy and information flows, into a complete and wholesome work process that can be
efficiently documented and learned. Work flows are designed to achieve specific processing inten-
tions of some sort, such as physical transformation, service provision, or information processing
(Jackson and Twaddle 1997; Sharp and McDermott 2009).

Better work flow will provide a number of benefits and advantages like improved
 business process efficiency, enhanced business process control, improved consumer
 service, flexibility and simplicity, and an overall improvement in business processes.
The term is widely used in computer programming and designing to seek, develop,
 capture, and streamline man-to-machine communication. Work flow software scripts try
to provide end users with a flexibility to create and design or describe complex processing
of data in an easier way to understand visual form, much like flow charts, but without the
need to understand computers or programming (Jackson and Twaddle 1997; Sharp and
McDermott 2009).

Work flows as indicated at Zhu 2010, like traditional programs, allow you to coordinate the
work. In addition, they can be defined as follows:

• Work flows can handle and manage long running work schedules by persisting on a
 durable store, such as a database, when idle, and loading again once there is a pending
work.

• An instance of a work flow can be modified dynamically, while running the event that
new conditions require the work flow to behave differently than it did when it was
created.

• Work flows are a declarative way of writing programs by linking together predefined
activities, rather than an imperative programming model of writing lines of code.

• They allow you to declare business rules that are separated from your code, thus making
it easier for you to modify them in the future.

• They support different styles of systems with sequential and state machine work flows.

Work flows will also lead to EBTs (Fayad, Hamu, and Brugali 2000), which are the keys for
 developing stable object-oriented systems. One should manage and maintain the work flow
to streamline the complex interactions between objects found in large-scale object-oriented
applications.

Proponents of stable architectures, component-based, and pattern-oriented systems go so
far as to suggest that work flow mechanisms should eliminate the need for most application
 programming in the workplace (Fayad, Hamu, and Brugali 2000).

http://www.eros-os.org
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F505248.505278

155Capabilities

REFERENCES

Fayad, M. E., D. S. Hamu, and D. Brugali. “Enterprise Frameworks Characteristics, Criteria, and
Challenges.” Communications of the ACM 43, no. 10 (2000): 39–46.

Fischer, L. Workflow Handbook 2005. Future Strategies Inc, 2005.
Fischer, L., ed. BPM and Workflow Handbook. Lighthouse point, FL: Future Strategies Inc, 2007.
Jackson, M., and Twaddle, G. Business Process Implementation: Building Workflow Systems, Addison-

Wesley, ACM Press, July 1997.
Sharp, A., and McDermott, P. Workflow Modeling, Artech House Publishers, 2009.
Zhu, A. Microsoft Windows Workflow Foundation 4.0 Cookbook, Packt Publishing, September 24, 2010.

http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F352183.352200

157

AnyMap Stable Design Pattern

We believe in map because in our view, it’s what the customer needs and wants: To
have access anywhere, through any kind of technology.

Jean-Marie Messier
Neligan 2006

The word map ordinarily means pictorial representation of some geographical area, but
this word is not limited only to represent some geographical areas. It has wide applicability
in many fields, like genetic maps that are used by biologists to analyze the genetic structure
of humans in order to cure genetic diseases, nonspatial maps like Gantt charts that are
used to display logical relationship among items, and spatial, but nongeographical, maps
like star maps that are used by astronomers to present night sky and to locate astronomical
objects like stars, galaxies, and constellations. In other words, a map can be defined as sym-
bolic depiction highlighting relationships between elements of that space such as objects,
regions, and themes. Some maps are static 2D representations, whereas others are dynamic
3D representations. Moreover, it is not necessary to always have a scale or context for a map
like brain maps and genetic maps.

The main objective of this paper is to come up with a generic model of AnyMap, which
can be used in any field. As a map has wide applicability, it can change its definition under
different contexts; hence, it becomes necessary to define a generic pattern of AnyMap, which
could fit all the applications. In order to achieve this goal, the concepts of software stability
model (SSM) (Fayad and Altman 2001) will be applied and the pattern so developed will
have no influence of application-specific knowledge. Rather, the pattern can be reused for
different applications by just hooking the application-specific concrete objects to the pattern

7.1 INTRODUCTION

A map is a symbolic or graphical representation of any real or imaginary objects, regions,
or themes in a particular space. They can be 2D or 3D, static or dynamic, logical or spa-
tial, and geographical or nongeographical. The AnyMap pattern introduces this concept of
map in a very simple and general manner by using the concept of SSM. This chapter also
develops a stable design pattern of the same and discusses the applicability of the pattern in
wide applications from different domains. The usage and utilization of map may vary from
very simple to very complex, and it may also rely on the usage in many domains for many
different purposes. Below are some examples of usage of map and some of its purposes:

General reference. Whenever we need to find some place and we do not know where
to look, then we should start with an atlas with an index. There are many sources
of maps that can be consulted for general reference, including maps posted in pub-
lic places. With access to the web and a good search engine, we now have another
source of maps to find out where places are in our world.

7

158 Software Patterns, Knowledge Maps, and Domain Analysis

Navigation, control, and route planning. Whether we move on land, at sea, or in the
air, we rely heavily on maps to plan our routes and to maintain our path. We also
have hiking and biking maps, maps for crawling through caves or orienteering
through woods, highway and off-road maps, as well as nautical and aeronautical
charts. In addition, there are maps to display rapids in white water and fishing
structure in lakes. We can use these maps to plan our routes and then to navigate,
when we are on the move.

Communication, persuasion, and propaganda. Many maps are designed and pro-
duced to convey a particular image or communicate a particular idea. Because
map data must be classified and represented by symbols, in almost all cases the
image cannot be very general. Maps that appear in newspapers, accompanying
an article, or on TV with a report aid in telling the story. Very often, those maps
are not neutral in terms of the message conveyed. Under this category, we might
include maps that are used to route traffic in specific directions; maps are employed
to get people to register to vote, whereas a number of persons select map projec-
tions to convey a specific image; this is particularly true of the Peters projection,
which advances the argument that it is time for a new image of the world. And
the Australian maps that show the South Pole at the top of the map belong here.

Planning. Because where is important, we would use maps to determine where
we want to do what. We also turn to maps to determine where a communica-
tions tower should be located in terms of reception, visual impact, and zoning
and land use restrictions. Urban and regional planning rely heavily on maps for
the location of schools and public facilities, for the development of highway,
sewer, and water networks, and for the orderly organization of space through
zoning and other techniques. We also try to identify areas subject to potential
hazards and develop plans for areas containing problems, evacuating those in
danger and providing services. Military operations rely heavily on maps for the
deployment of troops, for the assessment of enemy positions, and for targeting
weapons.

Jurisdiction, ownership, and assessment. Maps are used as legal documents showing
the ownership of land and boundaries. Cadastral mapping is that area dealing with
the legal systems showing who has rights to property. Land that is subdivided is
plotted and is recorded on the maps. Taxes are based on property ownership and
assessors rely heavily on maps. In more traditional societies where boundaries have
been understood but not documented, efforts are now being made to create maps
showing agreed-upon boundaries. These maps are permitting indigenous societies
to retain rights to their land against outside forces wanting access to resources.

Understanding spatial relationships. Many maps are made in the process of trying
to understand how phenomena are distributed spatially. In some cases, the subject
of investigation may be a single variable, and in other cases, a number of variables
may be examined in relationship to each other and to other nonspatial variables.
The classic example of this is the work of Dr. John Snow in creating the map of the
incidence of cholera in London and finding that the patterns led to a public water
pump. The development of the concept of plate tectonics was based on a great
amount of mapping and map analysis around the world. Police and public officials
map data to see if there are patterns in the behavior of crime.

159AnyMap Stable Design Pattern

Forecasting and warning. The weathercaster on television is but one component of
the use of maps to predict the future of events that play out over the earth’s surface
and that have the potential for significant damage to systems important to humans.
Such forecasting and the dissemination of warnings is done at many scales, rang-
ing from quite localized flash flooding, wildfires, and tornado touchdowns to larger
features like hurricane landfalls, severe storms, volcanic eruptions, insect infesta-
tions, tsunamis, and sea level rise and high tides. Maps are an important part of the
prediction processes and are equally important in forewarning potential victims.

Map compilation/mapping. The making of a map in almost all cases requires the
use of maps. Map production is an iterative process, and in that process, a number
of maps may be made as we converge on an appropriate design. In many cases,
we consult other maps for such things as checking geographic names, confirming
boundary changes, or examining land use and topography to better place dots on a
map portraying the distribution of dairy cattle in a region.

Decoration, collection, and investment. Maps are collected, sold, and displayed sim-
ply because they are maps and many people like the appearance of a map. Historic
maps take on value based on their rarity, quality, and area of interest. It is common
to see historic map images employed as decoration on clothing, walls, games, and
puzzles. And there is the occasional use of map images in advertisements, perhaps
as a background.

Storage of information. The topographic maps that are produced by most countries
are good examples of this type of map use. These maps are produced to provide a
standardized inventory of features that are deemed to be important, for example,
boundaries, hydrography, topography, and place names. These types of maps are
produced in series, and all maps in the series should be at the same scale and have
consistent forms of data capture and representation. The maps are fixed in time,
and therefore, the information on the map can be correct only at the time the map
was compiled, but much of the information on these types of maps changes slowly,
so that maps that are 50 years old may still be useful for the examination of such
things as topography and hydrography (see Sidebar 7.3).

Research and analysis. Researchers and biologists use variety of biological maps like
genetic map, family tree map, linkage map (see Sidebar 7.1), and chromosomal map
for their research and prediction of human traits. The analysis through these maps
helps in understanding and developing a cure for a number of genetic diseases.
Through these maps only medical practitioners are able to determine diseases at
an early stage and cure them.

Geographical information systems. Maps used in these systems are basically called
electronic maps or emaps. These maps are used by cartographers at the data gath-
ering survey level. The functionality of these maps has been greatly advanced by
new technologies, which simplified the superimposition of spatially located vari-
ables onto already existing geographical maps. The superimposition allows local
information like rainfall level and wildlife distribution to be integrated onto the
same map, which allows more efficient analysis and better decision making. Such
superimposition of data on a map led researchers to discover the cause of cholera.
Today, these superimposed maps are used by agencies of human kind, wildlife
conservatives, and militaries for their work.

160 Software Patterns, Knowledge Maps, and Domain Analysis

Some of the negative impacts of maps are as follows:

 1. The ability to use a map depends on the nature of a map. The map should be
 readable, symbols should be distinguishable and properly defined, and the user
should be able to comprehend images.

 2. Developing a map takes a lot of time and resources. There are several factors that
determine the usefulness of a map. Hence, it becomes necessary to identify all
these factors before hand, because if any one factor is ignored, the whole purpose
of developing the map is defeated.

 3. One aspect of standards and map usability is the scale of the map, but different
countries use different scales while developing it. This creates challenge to the user
to convert these scales according to their needs and may result in inaccurate results.

 4. On a geographical map, all the spatial information like rivers, lakes, and mountains
needs to be labeled properly. Over centuries, cartographers have developed the
art of placing names on even the densest of maps. This name placement can get
mathematically very complex, as the number of labels and map density increases.
Therefore, text placement is time consuming and labor intensive.

 5. All maps are not accurate. Even the most accurate maps sacrifice a certain amount
of accuracy in scale in order to deliver a greater visual usefulness to its users.

For people who practice topic maps, there are always more than one ways of reaching the
goal post. The basic structure of topic maps is quite amenable and flexible to such an extent
that two different topic map designers faced with the same kind of problem will end up in
creating a multitude of different solutions! In fact, there will be a conflicting set of solu-
tions with no single correct patterns among them. If you are developing formal patterns
for a given topic map design, you will benefit in almost the same manner as a discerning
programmer would benefit from creating design patterns.

7.2 PATTERN DOCUMENTATION

7.2.1 Pattern name: anymaP Stable DeSign Pattern

The basic idea behind choosing the term AnyMap is to give this pattern a general form.
Generality is the driving force for choosing the term AnyMap, as this term applies to all
fields with its different types and takes different values yet leads to same meaning. This
generality will lead to a stable design pattern for AnyMap by using it as a capability to
accomplish mapping as an enduring business theme (EBT) in a variety of applications.

7.2.2 Known aS

In general terms, a map is a symbolic or graphical representation of relationships among
real or imaginary objects in a particular space. The essential concept of a map can also be
compared to the concept of transformation, relationship, metaphor, and binding. It is used
to make logical connections between two entities.

Usually, a map is considered to be a geographical map representing some piece of land
or water. Nowdays, the definition of map has expanded to a great extent. The map can be
geographical or nongeographical, spatial or nonspatial, and 2D or 3D. Earlier, there used to

161AnyMap Stable Design Pattern

be only static maps, but now due to advancement of technology, dynamic maps can also be
built that can interact with users, for example, emaps.

In the domians of physics and mathematics, a map is any mathematical transformation that
is applied over and over again in a neat sequence. Sometimes, the term function is used instead
of map. In medical sciences, the graphical chart used to represent relationship among different
components of DNA and chromosomes is also called map-like genetic map or linkage map
(see Sidebar 7.1).

Many times, a chart is confused to mean a map. This is quite incorrect, as a chart is
a subset of map. Charts are used to represent large amounts of information in tabular,
graphical, or function form, so that interpretation is very easy and lucid. For example, Gantt
charts are used for projecting or estimating the time needed to complete some work and
also to track the progress of the project.

A cartogram, however, is a subset of map in which area is substituted by another mapping
variable. Cartogram maps have become very useful these days, as these maps represent all the
related information. Though building of such maps is very complex, with the help of technical
tools and softwares these maps can be easily created, and they can also be made to interact
with the user, like Google maps, which can be zoomed in and out according to the need.

Other similar terms are contour, plot, and so on.

7.2.3 Context

A map is a common tool used for many purposes. Any form of representation of data of one
kind by another kind can be thought of as a map.

Geographical map. The most common usage of a map is the geographical map, which
graphically represents 3D spatial relationship on a 2D surface and is drawn to
scale. It can be used to pinpoint location of a place, a city, or a country or to
describe certain features of the earth.

Topographical map. It depicts the contour and elevation of mountains and the depth
of oceans on earth, and a geological map, which illustrates geological features of
the earth, falls into this category of mapping (see Sidebar 7.3).

Mathematical usage. Another use of a map is commonly found in mathematics and
many science disciplines. It has to do with transforming elements in one domain
into elements of another domain and is synonymous with the term function.

In the field of computers. In computer applications, data mapping and memory map-
ping are common examples of maps. A site map is widely used in web-based appli-
cations, as it provides graphical representation of the various pages and hyperlinks
between the pages. It basically gives the layout of the whole site (see Sidebar 7.2).

Biological research. In genetic research, scientists employ the technique of gene mapping
to study genetic diseases like genetic maps, linkage maps, and chromosomal maps.

Nongeographical spatial maps. These maps basically represent the sky and are used
by astronomers for their study and research, like star maps, maps of planets other
than earth, moon map, and solar system maps.

Nonspatial maps. The diagrams or charts that depict the logical relationship among
entities also fall under the category of map, like a Gantt chart. Some topological
maps, where distance is not important and only the connectivity is significant, also
fall under the category of nonspatial maps.

162 Software Patterns, Knowledge Maps, and Domain Analysis

Astronautical maps/charts. These maps are designed to assist in navigation of aircrafts,
just like a simple road map for a driver. These maps are used by pilots to determine
their position, safe altitude, way to destination, and alternative landing areas in
case of emergency.

Floor plan. It is a kind of map used by architects for designing a building structure
and its interiors. It is basically a blue print of how the building or the complex will
look like from outside and from inside.

Above listed are few contexts of AnyMap. The number of domains and applications, where
maps can be used are so vast and widespread; hence, discussing all the contexts in which
maps can be used is beyond the scope of this chapter.

The geograpical maps can depict roads, public transports, boundaries of country, state,
city, and a particular area and are thus classified as road maps, bus maps, train maps, and
so on. All these maps are depicted using the actual area structures. Topographic maps, on
the one hand, represent the vast areas of land with the help of contour lines. Image maps,
on the other hand, link various parts of images together, so that the user can click on the
smaller parts to get further information regarding them.

7.2.4 Problem

The AnyMap design pattern represents the concept of mapping (logically connecting) data
in one domain to data in another domain. The source and target data domains of a map can
be any domain and could be very different. However, in general, a map is always used for
a particular (well-defined) purpose and it determines what the source and target data look
like. Therefore, it makes sense to model a generic design pattern that can be used for differ-
ent purposes involving various types of data domains.

Trying to define a generic model for any kind of map is not that easy. The main dif-
ficulty in coming up with such a generic design pattern lies in the fact that the usage of
a map and that data used can be quite different. For example, a topographical map that
contains contours of mountains and depth of oceans is used for geographical expedition of
the earth, whereas a gene map that links genes to specific locations on chromosones is used
in researches of genetic diseases. Again, maps generally cannot depict the exact distance
due to the large areas they need to depict on the media and hence are drawn according to
a specific scale. Small scale results in depiction of finer details. For example, a world map
needs a bigger scale than a road map for a city, say San Jose. This consideration of scale is
an important aspect in modeling correct patterns. Nowadays, maps are available on various
types of media like papers, smart phones, electronic screens (digital), and projections.

Fortunately, by using the SSM to focus on the enduring aspects of the problem, we arrive
at a solution for the problem and provide a generic model of AnyMap for any application
domain (purpose).

7.2.4.1 Functional Requirements
Functional requirements can be classified as internal requirements and external requirements.

7.2.4.1.1 AnyMap (Visualization) Functional Requirements
7.2.4.1.1.1 Internal Requirements As the name suggests, these requirements are inter-
nal to the pattern which means these are the requirements for the proper working of EBT/
goal of the pattern and are not visible to the application. These requirements are tightly

163AnyMap Stable Design Pattern

intervened to the system and changes, if the method used for visualizing the map changes.
Some of them are as follows:

 1. Method employed for visualizing a map. There are various methods through which
a map can be visualized, but any method used for creating a map should produce
the same result. Thus, all the rules that need to be followed like the signs to be used
and the boundary conditions should be defined clearly beforehand and they should
be followed by any method used in visualization.

 2. Evidence used to record map. Depending on the type of map, an appropriate media
should be used to store the map. Evidence indicates the existence of map later on,
and hence, it is a very important step. Moreover, the format in which a map is stored
should also be carefully selected, so that the reader can understand the map easily.

 3. Symbol dictionary. Usually, on a map, one or many symbols can be used to depict
various things. Hence, a standard rule should be followed while selecting symbols
during visualization. This will give uniformity to the map, and moreover, it will
make the map easier to read. Moreover, a map legend should be created listing all
the symbols and their meanings.

 4. Boundary condition. The boundary of entity or region for which a map is being
developed should be kept in mind.

7.2.4.1.1.2 External Requirements
This section highlights the visualize part of the AnyMap stable design pattern as shown in
Figure 7.1.

 1. Visualization. It means analyzing the available data given in any format and creat-
ing or plotting any kind of map, be it, say, a geographical map or a chart, from it
(Figure 7.1). With the invention of new tools and technology, several tools are pres-
ent nowadays that aid in the creation of maps. Creating maps also includes labeling,
texting, and defining proper scale and symbols and images to depict a variety of
things. Hence, map creation is not a single step; instead, it is labor intensive and
complex and involves multitude of actions and decisions.

 2. Parties/actors. AnyActor and AnyParty may request or may generate a visualized
form for any entity and/or any region. In the request scenario and in provision sce-
nario, the mechanisms involved may be different and this must be well anticipated
and dealt with properly to avoid ambiguity. AnyActor/AnyParty must go through
proper mechanisms to request or generate visual form such as any map.

 3. Visualization mechanisms. Mechanisms should be well defined and implemented
to visualize any entity or region. AnyActor/AnyParty must follow the proper,
 incorporated mechanisms to visualize AnyEntity or AnyRegion. Mechanisms
should check AnyCriteria that are required to visualize any entity or any region.
AnyCriteria, in turn, validates the selection of the right visualization mechanism to
those who holds the criteria true.

 4. Data. They can be present in any form, but it should represent either some enti-
ties or some regions. Data should be complete and well defined and must have the
capability to refer to map/s.

 5. Entity. Entity should be distinct and should have separate existence. It should not
be abstract or imaginary. More than one entity can be present in AnyData, but all
these entities should be linked and not even one should lie apart.

164 Software Patterns, Knowledge Maps, and Domain Analysis

 6. Region. It should have well-defined boundaries and must represent some geograph-
ical area. All the characteristics of the region should be explained properly be it
physical, human, or functional.

 7. Criteria. They are set by party while mapping in order to set some standards, like
usage of blue color to depict water in all geographical map. These criteria define
each and every minute details about how symbols, signs, and images will be used
and also define a particular format for labeling. This is necessary in order to achieve
uniformity throughout the map and also to avoid confusion among readers.

 8. Type. Maps are of different types, like geographical maps, linkage maps, and
charts, and each type of map has a different purpose. The purpose for which a map
is visualized should be kept in mind while visualizing, and the symbols and images
used should be in accordance with the purpose.

 9. Legend. It represents important information on a map, like important buildings, for
example, the parliament building; oceans; and structures of common compounds,
for example, benzene. Some information are showed as legend and are known to
everyone. Hence, these information should be marked properly on a map.

 10. Symbol. Every map represents information in the form of symbols. These can be
some image or keyword, lines, colors, and so forth. The symbols used in a map
should be defined properly, so as to avoid any confusion among readers.

 11. Evidence. Every map has some real existence and some documents or evidences to
support its existence. All the evidences of a map should be documented properly
and they should also clearly define the purpose of a map.

EBT

requests/generates 1..*

1..*

{and/or}

{and/or}

of

through
/useOf <<P-BO>>

AnyMechanism

<<P-EBT>>
Visualization

<<P-BO>>
AnyData

<<P-BO>>
AnyEntity

<<BO>>
AnyMap

<<P-BO>>
AnyEvidence

<<P-BO>>
AnySymbol

<<P-BO>>
AnyMedia

<<P-BO>>
AnyCriteria

{and/or}

BO

on

basedOn

specifies

specifies

indicates

1..*

0..*

0..*

1..*

<<P-BO>>
AnyRegion

<<P-BO>>
AnyType

<<P-BO>>
AnyLegend

producesuses

1..*

of

1..*

1..*

1..*

0..1

includes

1..* 1..*

0..*

<<P-BO>>
AnyParty

requests
/generates

<<P-BO>>
AnyActor

FIGURE 7.1 AnyMap (visualization) stable design pattern class diagram.

165AnyMap Stable Design Pattern

 12. Media. Media that are used to visualize maps should be well identified and docu mented.
They can be of different types and usage of each may vary. Media used to present
 evidences of a map should be appropriate and in accordance with the type of evidence.

 13. Colors/shades/lines. Different degrees of colors and/or shades are used to distin-
guish among different properties or area of focuses within the visual form (any map).
Different types of lines are used to show different indications, such as focus areas,
concentration, and distribution. Colors/shades/lines are considered different entities.

7.2.4.1.2 AnyMap (Navigation) Functional Requirements
7.2.4.1.2.1 Internal Requirements
 1. Type of map. How navigation is done depends on the type of map at hand; to

analyze genetic map, one should have knowledge of DNA sequence and chromo-
some crossover, but to analyze a road map a party or an actor does not require any
 specialized knowledge.

 2. Symbol interpretation. All the symbols and the interpretation rule associated with
them should be studied carefully, so as not to make any mistake while navigating a map.

 3. Skills to operate media. A party or an actor navigating the map should know how to
operate the media on which a map is stored. These days, with the advancement of
technology, various software applications are used to store different kinds of maps.

7.2.4.1.2.2 External Requirements
 1. Navigation. It refers to analysis of a map (Figure 7.2) in order to extract informa-

tion from it. For analyzing, all the symbols, labels, and legends of the map should
be studied carefully and all the interpretation rules should be followed. The evi-
dence in support of the map should also be considered.

 2. Parties/actors. AnyParty or AnyActor may request navigation of AnyMap in order
to study AnyEntity or AnyRegion. AnyParty or AnyActor must make use of the
evidence available in support of AnyMap and must interpret AnySymbol and Any-
Legend correctly. AnyParty or AnyActor must also know how to operate the media
on which evidence of AnyMap is present.

 3. Evidence. Every map has some real existence and documents or evidences to sup-
port its existence. All the available evidences of a map should be carefully studied
to determine the purpose of the map.

 4. Media. Media on which evidence of the map should be present should be operated
properly, so as to not to destroy the evidence. AnyActor or AnyParty navigating the
map should posses the skills to operate the media.

 5. Region. AnyParty or AnyActor navigating the map should define all the boundaries
and characteristics of the region. All the symbols, images, legend, and labels of that
region should be analyzed properly.

 6. Type. Maps are of different types like geographical maps, linkage maps, and charts,
and each type of map has a different purpose. The purpose for which a map is navi-
gated should be kept in mind while navigating, and the symbols and images used
should be in accordance with the purpose.

 7. Legend. It is like a dictionary of symbols of a map. A map legend should be used
whenever required to avoid confusion while determining the meaning of the symbols.

 8. Symbol. They form an important part of the map. Hence, while navigating, all the
symbols and their meanings should be interpreted correctly. Some symbols are

166 Software Patterns, Knowledge Maps, and Domain Analysis

very common, but nothing should be taken as granted. Every symbol should be
looked up for its meaning. It might happen that the map creator might have created
his or her own set of symbols.

 9. Entity. While navigating, all the entities and their relationships should be analyzed
properly. Depending on the purpose, the entities can change their meaning. Hence,
the purpose of the navigating map should be clearly understood beforehand.

 10. Colors/shades. Different degrees of colors and/or shades are used to distinguish
among different properties or area of focuses within the visual form (any map).
Different types of lines are used to show different indications, such as focus areas,
concentration, and distribution. Colors/shades/lines are considered different entities.

7.2.4.1.3 AnyMap (Recording) Functional Requirements
7.2.4.1.3.1 Internal Requirements
 1. Suitable media. One of the most important requirements is selecting suitable

media for recording based on the type of map and target party/actor who will be
using the map.

 2. Recording method. The method of recording is also critical, as the accuracy of the
map depends entirely on it.

 3. Dependency on map data and type. The type of map being recorded also influences
the mechanism used for recording, skills needed by party, and even the media
 selection on which the map resides. All the rules and symbols defined during
recording lay heavily on the map type.

EBT

requests

requests

1..* <<P-BO>>
AnyActor

<<P-BO>>
AnyParty

<<P-EBT>>
Navigation

of

1..*

1..*

1..*

1..*

0..*

1..*

1..*

1..*

of

through

{and/or}

{and/or} {and/or}

has

of

<<P-BO>>
AnyEntity

<<P-BO>>
AnyType

<<P-BO>>
AnyLegend

<<P-BO>>
AnySymbol

<<BO>>
AnyMap

leadTo

<<P-BO>>
AnyRegion

determines

determines

<<P-BO>>
AnyEvidence

indicates

on

<<P-BO>>
AnyMediautilizes

utilizes
1..*

1..*

1..*

1..*
{and/or}

1..*

BO

FIGURE 7.2 AnyMap (navigation) stable design pattern class diagram.

167AnyMap Stable Design Pattern

7.2.4.1.3.2 External Requirements
 1. Recording. It refers to recording a map (Figure 7.3), so that it can be made available

to any user at later time. The appropriate method and media for recording should
be chosen carefully depending on the type of map. The intended users of the map
should also be kept in mind.

 2. Parties/actors. AnyParty or AnyActor may request recording of AnyMap in order
to preserve the evidence of existence of that map. AnyParty or AnyActor must con-
sider the type of map being recorded before selecting the type of media.

 3. Criteria. Depending on the type and amount of data to be recorded, AnyParty/
AnyActor should define the criteria for recording. The criteria impose restriction on
recording; hence, all the rules should be defined properly and clearly and beforehand.

 4. Data. They can be present in any form, but it should represent either some entity or
a region. They should be complete and well defined and must have the capability to
refer to map/s, as they affect the method selected for recording.

 5. Evidence. Every map has some real existence and some documents or evidence to
support its existence. All the evidence of a map should be documented properly
and they should also clearly define the purpose of a map.

 6. Entity. They should be distinct and should have a separate existence. It should not
be abstract or imaginary. More than one entity can be present in AnyData, but all
these entities should be linked and not even one should lie apart.

 7. Region. They should have well-defined boundaries and must represent some geo-
graphical area. All the characteristics of the region should be explained properly,
be it physical, human, or functional.

EBT

requests

requests

{and/or}

<<P-EBT>>
Recording

through
/usedOf

<<P-BO>>
AnyActor

<<P-BO>>
AnyParty

<<P-BO>>
AnyMechanism <<P-BO>>

AnyEvidence

<<BO>>
AnyMap

<<P-BO>>
AnyEntity

<<P-BO>>
AnyRegion

<<P-BO>>
AnyType

<<P-BO>>
AnyLegend

<<P-BO>>
AnySymbol

0..*
1..*includes

<<P-BO>>
AnyLog

produces

indicates

specifies
{and/or}

influences

<<P-BO>>
AnyCriteria

<<P-BO>>
AnyData

<<P-BO>>
AnyMedia

basedOn0..*

0..*
1..*

1..*

1..*

1..*

0..*

on

on

specifies
1..*

1..*

1..*

1..*

1..*

1..*

{and/or}

of

of of

1..*

BO

FIGURE 7.3 AnyMap (recording) stable design pattern class diagram.

168 Software Patterns, Knowledge Maps, and Domain Analysis

 8. Symbol. Every map represents information in the form of symbols. These can be
some image or keyword, lines, colors, and so forth. The symbols used in a map
should be defined properly, so as to avoid any confusion among readers.

 9. Legend. It represents important information on a map like important buildings,
for example, parliament building; oceans; and structures of common compounds,
for example, benzene. Some information are showed as legend and are known to
everyone. Hence, these information should be marked properly on a map.

 10. Media. Media that are used to record maps should be well identified and documented.
They can be of different types and the usage of each may vary. Media used to present
evidences of a map should be appropriate and in accordance with the type of map.

 11. Mechanism. They should be well defined and implemented to record the map.
AnyActor/AnyParty must follow the proper, incorporated mechanisms to record
the map. Mechanisms selected should be appropriate and in accordance with the
media used to record the map.

 12. Log. It represents the format in which map is stored on media. AnyParty should
have the knowledge of different formats/logs used for different media.

7.2.4.2 Nonfunctional Requirements
 1. Modeling essentials.
 a. Simplicity. In maps, the technique of simplicity is used to achieve the effect

of singling out an item or items from their surrounding. Simplicity is one of
the underlying map-plotting techniques; a cluttered map distracts the eye and
takes away attention from the subject. A simple map can be achieved by get-
ting closer to the subject, which is also one of the main rules of map making.
Simplicity is one of the main components of most good maps. The simpler
the map, the easier it is for the viewer to comprehend the subject and appreci-
ate it. Cluttered images and backgrounds are less visually pleasing and more
likely to cause the subject and lesser objects to confuse each other visually.

 b. Completeness. It refers to the presence of all constituent parts with each part
fully illustrated. In general, a map is complete if nothing needs to be added to
it. It forms an important factor while mapping, and each and every word of the
requirement document should be studied carefully.

 c. Easy to understand or understandability. It refers to clarity of purpose. This
goes further than just a statement of purpose; all of the parts must be clearly
illustrated so that it is easily understandable. This is obviously subjective in
that the user context must be taken into account: for instance, if the map is to
be used by map designer, it is not required to be understandable to the layman.
This also includes proper laying of all the interpretation rules and definitions of
all signs and symbols used on the map.

 d. Stability. If a map is complete, simple, easy to understand, it is most likely to be
stable. The map once created should be able to expand and adapt to changing
requirements, such that if later on some new features need to be added to the
map, then the developer does not have to start from the scratch. Instead, he can
use the already existing map and add on the things without any difficulty.

 e. Testability. It refers to the disposition to support acceptance criteria and evalu-
ation of performance. Such a characteristic must be built in during the design
phase if the map is to be easily testable; a complex design leads to poor testability.

169AnyMap Stable Design Pattern

 f. Visualization. Maps are visible graphical tools. A picture is worth a 1000
words. This requirement directly relates to understandability and simplicity
requirement of the map. The reader of the map should be able to comprehend
the things depicted on the map without any external help.

 2. Consistency. It refers to uniformity in notation, symbology, appearance, and ter-
minology within itself. While designing the map, some standards need to be set
in advance so as to avoid confusion during implementation phase. Also, if stan-
dards are followed properly, the reader will be able to read the map without any
difficulty.

 3. Documentable. It refers to the capability of being supported by documentary
 evidence. This is necessary to prove the usefulness of the map.

 4. Portability. It refers to the ability to be run well and easily on multiple media of a
variety of configurations. With the invention of new tools and technology, a num-
ber of tools are used while mapping. Hence, it becomes necessary for the developer
to ensure that the developed map runs on a number of configurations, for example,
Google Maps and Yahoo! Maps.

 5. Structuredness. It refers to the organization of constituent parts in a definite pattern.

7.2.5 ChallengeS anD ConStraintS

7.2.5.1 Challenges
• The AnyMap design pattern must not impose any restriction on the kind of data

involved in the mapping. In other words, it should not need check on the type of
data involved in the mapping. For example, the AnyMap design pattern should apply
to geographical data in the same way as it would with computer data or gene data.

• Every map has a purpose and this purpose varies in different applications. While
the AnyMap design pattern must generate a map that serves the designated pur-
pose, it must not be dependent on the nature of the purpose.

• The AnyMap design pattern must be usable by different kinds of party. For
instance, a person can use a road map for traveling from one place to another, an
organization can use a concept map to describe its product marketing strategy, and
a software application can use a hash map to store data related by hashed keys.

• Map problems span a fairly wide range of applications and domains, which makes
the task of capturing the core concept of a map problem more challenging than it
might appear to be.

• Even after extracting the common feature of different types of maps, the difficulty
still resides in how these common features can be abstracted in such a way that
makes them still valid for all the wide applications where usage of the map exists.

• Maintaining a high level of accuracy in maps is a major challenge.
• Maintaining the simplicity of the map also poses a big challenge. For example,

emaps present a number of things at a time, and sometimes, it becomes difficult for
the user to comprehend information from the map.

• Deciding on the standards for a map is also difficult. The way maps are labeled and
the text language used varies from country to country, and the set of colors used
vary by producers, though, the overall image will be fairly simple.

• The conditions and the environment in which a map is used also affect the reader.
Developing general model of AnyMap keeping user’s environment in mind is not easy.

170 Software Patterns, Knowledge Maps, and Domain Analysis

• With advanced technology, there are various mechanisms through which a map
can be visualized. Selecting appropriate mechanism for the type of map to be visu-
alized is not an easy task.

• Selecting an appropriate method for recording depending on the data to be
recorded and the type of map is quite challenging.

• While recording, the symbols and legends used to represent a variety of things on
the map should be appropriate.

7.2.5.2 Constraints

7.2.5.2.1 Navigation
• Navigation of any map can be requested by or provided to one or more parties or/

and actors.
• Navigation takes place through one or more maps.
• Different maps have different features and some of these features may not apply to

other types of maps.
• AnyMechanisms are based on none to more user-defined criteria.
• AnyMap indicates one or more piece of evidence.
• AnyMap and its pieces of evidence are stored and represented on one or more media.
• Navigation can be done for any region and/or any entity that is determined by the

type of the requested map.
• The type of the map leads to zero or more legends on the map.
• The type of the map leads to zero or more symbols that exist on the map, which

indicates many different things, such as direction and distribution.
• All the symbols defined by the user should be present in at least one legend, so as

to avoid confusion while navigation.

7.2.5.2.2 Visualization
• The AnyMap design pattern requires that the user of the map supply the source

data, although the pattern does not dictate the format of the source data.
• The format of the source and target (mapped) data is defined by the

AnyMappingMechanism, which is unique for each application.
• The AnyMap design pattern does not address how the target (mapped) data are to

be interpreted in order to achieve the designated purpose of the map. The interpre-
tation of the mapped data, however, can be aided by AnyInterpretationRule, which
is generated as an optional part of the outcome of mapping.

• The AnyMap design pattern is not responsible for scaling or filtering the source
data prior to the mapping, but provides a hook for the user to do so via the Any
Criteria BO, which represents any additional user requirements.

• Different maps have different features and some of these features may not apply to
other types of maps.

• Navigation takes place through one or more maps.
• Navigation of any map can be requested by or provided to one or more parties

 or/and actors.
• AnyActor can also request for accessibility and/or can define criteria.
• AnyParty/AnyActor can also request for the navigation of any map based on addi-

tional user-defined zero or more criteria.
• AnyParty has to follow one or more mechanisms to gain authorized accessibility.

171AnyMap Stable Design Pattern

• AnyParty/AnyActor can define none to many criteria for the mechanisms to check
for to validate accessibility

• AnyParty has to follow one or more mechanisms to gain authorized accessibility.
• AnyParty/AnyActor can define none to many criteria for the mechanisms to check

for to validate accessibility
• AnyMechanisms are based on none to many user-defined criteria.
• Accessibility may be granted or denied to AnyActor/AnyParty, depending upon the

mechanism and its criteria.
• AnyMechanism involves at least one or many media types to gain accessibility.
• AnyMedia helps to access one or many entities required for accessibility.
• AnyEntity can take one or many mappings with industrial object (IO) related to the

application.
• Accessibility can utilize one or many mechanisms to carry out the task given by

the user.
• One or more criteria are needed for validation in order to gain accessibility.

7.2.5.2.3 Recording
• AnyParty/AnyActor should clearly define none or some criteria for recording data

into AnyMap.
• AnyCriteria defined by AnyParty/AnyActor should be based on one or more

AnyData made available for recording.
• AnyMechanism used for recording should be decided on the basis of one or more

AnyData available.
• Recording can be done through one or more AnyMechanism.
• AnyMechanism is capable of producing one or more AnyMap.
• AnyMap can be presented on one or more AnyEvidence.
• AnyMap is stored in one or more AnyLog.
• AnyLog can reside on one or more AnyMedia.
• AnyLegend can be indicated by one or more AnySymbol.
• AnyMap consists of none or any number of AnySymbol and AnyLegend.

7.2.6 Solution StruCture anD PartiCiPantS

7.2.6.1 Structures
Figure 7.1 illustrates AnyMap (virtualization) stable design pattern class diagram.
Figure 7.2 shows AnyMap (navigation) stable design pattern class diagram. Figure 7.3
represents AnyMap (recording) stable design pattern class diagram.

7.2.6.2 Participants
• Classes

• AnyMap. This class represents the map that holds the mapped data and optional
rules for interpreting the mapped data.

• Patterns
• Visualization. This class represents the goal or EBT of the pattern. AnyMap is

visualized by AnyActor or AnyParty on the basis of AnyData available.
• Navigation. This pattern represents the EBT or the goal of AnyMap that repre-

sents the purpose served by the map used by a user.

172 Software Patterns, Knowledge Maps, and Domain Analysis

• Recording. This class represents the EBT or goal of AnyMap that represents
how a map is recorded.

• AnyParty. This class represents a group of users, who uses the AnyMap to
achieve an AnyPurpose.

• AnyActor. This class represents a single user, who can visualize as well as use
AnyMap.

• AnyData. This class represents the data provided by the user in order to gener-
ate AnyMap. This class represents the data in the map translated or mapped
from the source data provided by the user. It is part of AnyMap.

• AnyType. This class represents the type of map being visualized or navigated
or recorded by its users, for example, geographical map, biological map, and
chart.

• AnyMedia. This class represents the media on which the map is present.
• AnyMechanism. This class represents the method specified by the user in order

to generate a map. There are several methods and techniques through which a
map can be produced and recorded.

• AnyCriteria. This class represents optional mapping criteria entered by user to
refine quality and scope of a map.

• AnyEntity. This class represents the real object, which is visualized and a map
is produced.

• AnyRegion. This class represents any geographical area for which a map is
generated.

• AnyEvidence. This class represents the documents that support the existence
and purpose of a map.

• AnyLegend. This class represents the dictionary of symbols used while produc-
ing a map. It contains the complete list of symbols and their definition.

• AnySymbol. This class represents the keywords used on a map to depict various
things like notations, lines, colors, and shapes.

• AnyLog. This class represents the format in which a map is stored on
AnyMedia.

7.2.6.3 CRC Cards

Navigation (Navigation) (P-EBT)

Responsibility Collaboration

Client Server

To allow navigation of a map AnyParty navigates()
AnyActor voyage()
AnyMap uses()
AnyEntity travels()
AnyRegion analyze()

explores()
determines()

Attributes: route, distance, area, entity, scale, position, range, toolsUsed

173AnyMap Stable Design Pattern

Visualization (Visualization) (P-EBT)

Responsibility Collaboration

Client Server

To facilitate generation of a map AnyParty produces()
AnyActor generates()
AnyMechanism visualizes()
AnyData transforms()

converts()
creates()

Attributes: sourceData, generatedMap, typeOfMap, dataFormat, symbolsUsed, interpretationRules,
mechanismUsed, criteriaFollowed

Recording (Recording) (P-EBT)

Responsibility Collaboration

Client Server

To store/record map AnyParty records()
AnyActor stores()
AnyMechanism saves()

logs()
uses()
documents()
preserves()

Attributes: sourceData, mediaUsed, typeOfData, dataFormat, methodInvolved, rulesFollowed, skillsNeeded

AnyParty (AnyParty) (P-BO)

Responsibility Collaboration

Client Server

To request or generate a visual
form, such as any map. Also, requests
the navigation of any map

Navigation requests(), provides(),
uses(), defines(), playRole(),
group(),

AnyEvidence setCriteria(), monitor(),
switchRole(), agree(),
generate(), navigates(),
utilizes(), requires(),

Or
Visualization
AnyCriteria
Or
Recording
AnyCriteria

Attributes: partyName, type, members, location, areaOfExpertise, workHours, accessFor, activity

174 Software Patterns, Knowledge Maps, and Domain Analysis

AnyActor (AnyActor) (P-BO)

Responsibility Collaboration

Client Server

To request or generate a visual form, such as any
map. Also, requests the navigation of any map

Navigation gainsAccess(), uses(), defines(),
navigate()

AnyEvidence participate(), interact(), organize(),
request(), explore(), utilizes(),
requests()

Or
Visualization
AnyCriteria
Or
Recording
AnyCriteria

Attributes: name, rank, typeOfAuthority, accessFor, members, category

AnyMechanism (AnyMechanism) (P-BO)

Responsibility Collaboration

Client Server

To incorporate means/methods for
generating a visual form

Visualization used(), hasBase(), makesUseOf(),
AnyCriteria execute(), activate(), pause(), attach(),
AnyData status(), generate(),
AnyMap utilizes(), archives(), classifies()
Or
Recording
AnyData
AnyMap

Attributes: isStated, isValid, methodUsed, skillsRequired, rulesFollowed, accuracy, toolsUsed, output,
intermediateState

AnyMap (AnyMap) (BO)

Responsibility Collaboration

Client Server

To represent data in a visual form Navigation returnMap(), illustrate()
AnyEvidence focusOn(), includeSymbols(),

mayIncludeLegend(), showEvidences(),
hasType(), aidsNavigation(),

(Continued)

175AnyMap Stable Design Pattern

AnyMap (AnyMap) (BO)

Responsibility Collaboration

Client Server

AnyType consistsOf()

AnySymbol or
AnyLegend
AnySymbol
AnyType
AnyMechanism
AnyEvidence or
AnyMechanism
AnyEntity, AnyRegion,
AnyEvidence, AnyLog,
AnySymbol, AnyLegend

Attributes: mapName, size, relatedTo, focusOn, evidences, meetCriteria, scale, colorsUsed, shadeUsed,
type, purpose

AnyData (AnyData) (P-BO)

Responsibility Collaboration

Client Server

To provide source data of a map AnyEntity, AnyRegion, AnyMechanism,
Visualization

returnData()

Or returnType()
AnyMechanism returnLegalRange()
AnyCriteria belongsTo()

formCollection()
represents()
hasValue()

Attribute: type, isReliableData, dataSource, id, name, property, model, application, format, belongTo,
domain, context

AnyEntity (AnyEntity) (P-BO)

Responsibility Collaboration

Client Server

To define entities that can be accessed Navigation utilizes(), defines(), type(), update(),
AnyType new(), performFunction(), status(),

determines()
Or
AnyData (in Visualization)
Or
AnyMap (Recording)

Attributes: nameOfEntity, typeOfEntity, useOf, usedFor, descriptionOfEntity, status, position, states

176 Software Patterns, Knowledge Maps, and Domain Analysis

AnyRegion (AnyRegion) (P-BO)

Responsibility Collaboration

Client Server

Represents the form of data
to be visualized

Navigation exists(), represents(), hasBoundary(),
determineMapType(), actAsData()

AnyType or
AnyData or
AnyMap

Attributes: location, boundary, physicalCharacteristic, functionalCharacteristic, name, type, size, area

AnyType (AnyType) (P-BO)

Responsibility Collaboration

Client Server

Defines the type of map in question AnyEntity, AnyRegion, AnyMap,
AnyLegend (Navigation) or

classifies(), categorizes(),
distinguishes(), sorts(),
makesClass(), organizes(),
separates()

AnyMap(Visualization) or
AnyParty, AnyMechanism
(Recording)

Attributes: name, status, number, basis, ruleForClassification, parameterUsed, factor,
inspirationForClassification

AnyCriteria (AnyCriteria) (P-BO)

Responsibility Collaboration

Client Server

To define visualization criteria
for the map

AnyParty validates(), (TRUE, only when validation
passes), providesBase(), verify(), apply(),
prioritize(), exhibit(), imposes(), limits(),
influences(), standardizes()

AnyActor
AnyMechanism
Or
AnyData
AnyParty
AnyActor

Attributes: nameOfCriteria, numberOf, checkedBy, implementedBy, leadsTo, condition, property, priority

177AnyMap Stable Design Pattern

AnyEvidence (AnyEvidence) (P-BO)

Responsibility Collaboration

Client Server

To support map presence
and purpose

AnyParty, AnyActor, AnyMap,
AnyMedia (Navigation) or

supports(), provesExistence(), documents(),
showsValidity(), definesPurpose(), indicates()

AnyMedia, AnyMap
(Visualization)

Or AnyMap(Recording)
Attribute: evidenceId, name, type, status, validity, approvedBy, format, purpose

AnyMedia (AnyMedia) (P-BO)

Responsibility Collaboration

Client Server

The technique through which
evidence of a map is stored

AnyEvidence (Visualization)
or AnyLog (Recording)

stores(), displays(), actAsMedium(),
works(), executes(), operates(),
showsEvidence()

Attribute: mediaId, type, name, technologyUsed, rulesToOperate, skillsNeeded

AnyLegend (AnyLegend) (P-BO)

Responsibility Collaboration

Client Server

To define symbols used on a map AnyType, AnySymbol (Navigation) or defines(), explains(), lists(),
identifies(), compiles(),
clarifies(), discloses()

AnySymbol, AnyMap (Visualization) or
AnyMap, AnySymbol (Recording)

Attribute: name, languageUsed, format, numberOfSymbols, id, type, length, symbolsDefined

AnySymbol (AnySymbol) (P-BO)

Responsibility Collaboration

Client Server

To represent real objects on a map AnyLegend, AnyMap or AnyMap,
AnyLegend (Recording)

represents(), shortens(),
indicates(), marks(), simplifies()

Attributes: id, name, type, format, colorUsed, value, importance

178 Software Patterns, Knowledge Maps, and Domain Analysis

7.2.7 ConSequenCeS

The AnyMap design pattern satisfies its objective and provides a base pattern that is adaptable
to applications in different domains.

Understandability. The AnyMap design pattern presents the enduring concept of
mapping in an easily understandable fashion. It accomplishes this through the
Mapping EBT, and by using a basic AnyMappingMechansim, it produces AnyMap
based on a user-supplied AnyMapType.

Adaptability. The AnyMap design pattern is generic enough to be applicable in mul-
tiple domains that require mapping. This is illustrated through the use of a generic
AnyMappingMechansim controlled by AnyMapType. It can be further infered
from the two examples given under the applicability section.

Stability. The concept of mapping is described in generic terms, without using any
domain-specific IOs. Applications in different domains can use this concept
by substituting IOs (industrial objects) specific to the application. Examples of
domain-specific IOs may be different mapping mechansims, different mapping
criteria, and different data type involved in the mapping.

Extensibility. The pattern can be extended by plugging in the application-specific
context classes such as instances of AnyParty, AnyMappingMechanism, and
AnyInterpretationRule. Thus, the system provides a high level of extensibility to
suit applications in various domains.

The good thing with the AnyMap design pattern is that AnyParty can specify the criteria
and get the map according to their liking. But the bad thing is that AnyParty is responsible
to interpret the mapped data. This can be a big problem, because AnyParty can have differ-
ent interpetations of the map depending on their understanding.

7.2.8 aPPliCability with illuStrateD examPleS

7.2.8.1 Case Study 1: Navigation—Google Road Map for Planning Driving Routes
Google road maps are widely used for navigation. They are used in day-to-day life
for traveling from one place to another, for finding a particular address, for searching
near well-known buildings and intersections, and so on. This application serves as an
example, where the generic model of navigation developed above for AnyMap is used
for finding shortest route from one point to another. The traveler can easily interpret
the routing directions using the map legend available along with google map. Besides
showing the route, the map shows the distance between the two points and how much
will be needed to cover the distance with various options of traveling like by car and by
public transport.

Use Case: Navigate through Google Road Map

Actors Roles

AnyParty Traveler

179AnyMap Stable Design Pattern

Classes Type Attributes Operations

Navigation EBT route explores()
distance navigates()
scale
entity

AnyParty BO Name requests()
workHour navigates()
activity utilizes()
member

AnyMap BO name hasType()
purpose aidsNavigation()
evidence
scale

AnyEvidence BO Id indicates()
name documents()
type provesExistence()
status

AnyMedia BO name showsEvidence()
type displays()
Id
technologyUsed

AnyType BO status leadsTo()
number classifies()
basis
factor

AnySymbol BO name represents()
type
format
value

AnyLegend BO name definesSymbol()
type
languageUsed
format

AnyRegion BO location determines()
boundary
Area
Size

AnyEntity BO name determines()
Use
description
position

GoogleEarth IO technologyUsed displaysMap()
version
systemRequirement

Traveler IO name navigates()
Id specifies()
status

(Continued)

180 Software Patterns, Knowledge Maps, and Domain Analysis

Classes Type Attributes Operations

qualification
GoogleMapService IO parameter accepts()

algorithmUsed generates()
selects()

GoogleMap IO Line showsRoute()
symbol directs()
color

Address IO location providesLocation()
Area
country

MapLegend IO symbol defines()
format
language

ShortestRoute IO distance actsAsOutput()
Area showsDirection()
path

Use Case Description

 1. Navigation is requested by AnyParty for exploration and Traveler who wants to
navigate the map for driving direction inherits from AnyParty.

 How to do navigation? What type of map is used by traveler? How the map will
show driving direction?

 2. Traveler specifies address for direction on a map.
 How does Traveler specifies address? What is the format of address? Is the

 format of address fixed?
 3. GoogleMapService accepts address and then generates GoogleMap showing the

route.
 How the address acts as input for GoogleMapService? How GoogleMap is

 generated? What is the technology used?
 4. The ShortestRoute selected by GoogleMapService acts as output for Traveler.

 Which algorithm is used by MapService to select shortest path? How does the
algorithm work?

 5. AnyParty utilizes AnyEvidence and AnyEvidence is present on AnyMedia like
GoogleEarth.

 How the evidence is utilized? What is the purpose of evidence? What kind of
media is used?

 6. AnyEvidence indicates AnyMap, which has many AnyType.
 How the map is classified into various types? How evidence indicates map?

 7. AnyType leads to AnyLegend and AnyLegend defines a list of AnySymbol, which
represents various things on a map.

 How are type of map and legend related to each other? What is the format of
legend? How are symbols defined by legend?

 8. AnyMap aids in navigation.

181AnyMap Stable Design Pattern

 How does map helps in navigation? Who does navigation? What are the
 techniques used?

 9. Navigation is done for AnyRegion or AnyEntity and they both determine AnyType.
 What is the definiton of entity? How region and entity decide the type of map?

 10. AnyEvidence proves existence of AnyMap and documents it.
 What is the format of the document? How is the existence and purpose of a map

proved?

Aternatives:

 1. The address specified by traveler is not correct.
 2. GoogleMapService also shows alternative routes which are not the shortest ones.

Class Diagram—A class diagram is shown in Figure 7.4.
Class Diagram Description

 1. Navigation is requested by AnyActor or AnyParty.
 2. Traveler inherits from AnyParty.
 3. Traveler specifies address, which is a part of AnyRegion.
 4. Address is accepted by GoogleMapService and it generates GoogleMap.

EBT

requests

<<P-EBT>>
Navigation

<<BO>>
AnyMap

<<P-BO>>
AnyType

determines

of 1..*

1..* 1..*

of

has

<<P-BO>>
AnyRegion

<<P-BO>>
AnyLegend

leadTo

<<P-BO>>
AnySymbol

<<P-BO>>
AnyParty

<<P-BO>>
AnyMedia

utilizes
<<P-BO>>

AnyEvidence
1..*

1..*

1..*

1..*

1..*

on

1..*

1..*

1..*

0..1

through

indicates

BO IO
specifies

<<IO>>
Traveler outputFor

selects

<<IO>>
ShortestRoute

<<IO>>
GoogleEarth

<<IO>>
GoogleMap <<IO>>

GoogleMapService

<<IO>>
Address

<<IO>>
MapLegend

generates

accepts

FIGURE 7.4 Class diagram for navigation through Google Road Map.

182 Software Patterns, Knowledge Maps, and Domain Analysis

 5. GoogleMapService selects ShortestRoute that acts as output for traveler.
 6. AnyParty utilizes AnyEvidence on AnyMedia.
 7. GoogleEarth inherits from AnyMedia.
 8. AnyEvidence indicates AnyMap, which has many AnyType.
 9. GoogleMap inherits from AnyMap and is on GoogleEarth.
 10. AnySymbol is a part of AnyMap.
 11. AnyType leads to AnyLegend, which consists of AnySymbol.
 12. MapLegend inherits from AnyLegend and is a part of GoogleMap.
 13. Navigation is done through AnyMap.
 14. Navigation is of either AnyEntity or AnyRegion and they both determine AnyType.

Sequence Diagram—A sequence diagram is shown in Figure 7.5.
Sequence Diagram Description

 1. Navigation is requested by AnyParty(Traveler).
 2. AnyParty(Traveler) specifies AnyRegion(Address).
 3. AnyRegion(Address) is accepted by GoogleMapService.
 4. GoogleMapService selects ShortestRoute.
 5. ShortestRoute acts as an output for AnyParty(Traveler).
 6. AnyParty utilizes AnyEvidence.
 7. AnyEvidence indicates AnyMap.
 8. AnyMap has AnyType.
 9. AnyType leads to AnyLegend(MapLegend).
 10. AnyLegend(MapLegend) is a part of AnyMap(GoogleMap).
 11. AnyMap helps in navigation.

7.2.8.2 Case Study 2: Mathematical Mapping
Consider the problem where a person uses a certain mathematical function for the pur-
pose of computation. For each value X in the domain of function F, a value in the range
represented by F(X) is the expected mapping. In this case, AnyParty will be extended
with one IO that will represent the mathematician. For each computation, the mathemati-
can will provide a value in the domain of the function and the function will return a
value of the range of the function. In some cases, a boundary condition may need to be
applied to the function. Such a boundary condition is implemented as an extended object
of AnyCriteria.

Use Case: Map Mathematical Data

Actors Roles

AnyParty Mathematician

183
A

n
yM

ap
 Stab

le D
esign

 Pattern

<<EBT>>

Navigation

requested by

specifies

utilizes

through

indicates

parts of

leads to

has

output to

accepted by

specifies

AnyParty AnyRegion
(Address) AnyEvidence AnyMap

(GoogleMap)

<<BO>>

AnyType AnyLegend
(MapLegend)

GoogleMap-
Service

<<IO>>

ShortestRoute

FIGURE 7.5 Sequence diagram for navigation through Google Road Map.

184 Software Patterns, Knowledge Maps, and Domain Analysis

Classes Type Attributes Operations

Visualization EBT sourceData visualizes()
generatedMap produces()
mapType

AnyParty BO Name requests()
workHour specifies()
activity defines()
member

AnyCriteria BO name limits()
implemented influences()
condition

AnyMap BO name hasType()
purpose consistsOf()
evidence
scale

AnyEvidence BO id indicates()
name documents()
type

status
AnyMedia BO name showsEvidence()

type displays()
id
technologyUsed

AnyMechanism BO methodUsed uses()
accuracy generates()
output

AnySymbol BO name represents()
type
format
value

AnyLegend BO name definesSymbol()
type
languageUsed
format

AnyEntity BO name exists()
use
description

AnyType BO status classifies()
number categorizes()
basis
factor

Thesis IO name provesExistence()
topic recordsResearch()
researchArea

Mathematician IO name requests()
id defines()
researchArea

(Continued)

185AnyMap Stable Design Pattern

Classes Type Attributes Operations

MathematicalFormula IO parameter
range

devises()

MathematicalMap IO purpose typeOf()
function presents()
entity

BoundaryCondition IO range limits()
entryValue impacts()
exitValue

Function IO expression isMap()
boundaryValue containsElement()
limit

Relation IO element inheritsFromEntity()
value relates()
mapping

DomainElement IO numberOfElement partOfFunction()
typeOfElement
value

CodomainElement IO numberOfElement partOfFunction()
typeOfElement
value

Use Case Description

 1. Visualization is requested by AnyParty and Mathematician inherits from AnyParty,
who is researching and wants to develop a new mathematical function.

 What is visualization? What kind of research mathematician is doing? What is
the area of research? What knowledge is required for developing a function?

 2. Mathematician first needs to define the AnyCriteria(BoundaryCondition) for the
function.

 How to set BoundaryCondition? What is its purpose? How will it help in devel-
oping function?

 3. AnyCriteria(BoundaryCondition) defined by Mathematician limits AnyMechanism
(MathematicalFormula), which is used in devising AnyMap(Function).

 On what basis boundary condition is set? How mechanism for developing map/
function is restricted? What is the mechanism used in developing function?

 4. AnyMap(Function) is documented on AnyEvidence and this evidence can be pres-
ent on AnyMedia(Thesis).

 What is the purpose of documentation? What type of media is used for storing
function? Who prepares thesis? Thesis is approved by whom?

 5. Thesis is prepared by Mathematician as a proof of their research.
 What is the format of thesis?

 6. AnyParty specifies AnyCriteria and AnyCriteria influences AnyMechanism.
 What type of criteria is specified by party? How does criteria infleunces

mechanism?

186 Software Patterns, Knowledge Maps, and Domain Analysis

 7. AnyMechanism makes use of AnyData which is of the type AnyEntity.
 What kind of entity is used in visualization? What should be the format of input

data?
 8. Relation inherits from AnyEntity and it relates DomainElement and

CodomainElement, which are a part of Function.
 What are domain element and codomain element? How are they related? How

does function represents them? What are their values?
 9. AnyMap has many AnyType and one such type is MathematicalMap, which is used

in the field of mathematics to represent any function or graph.
 How many types of map can exist? Can any function be represented as map?

What other types of map are used in the field of mathematics?
 10. AnyMap consists of AnySymbol and AnyLegend. AnyLegend acts like a diction-

ary of symbols and symbols are used to represent shorthand notations used on map.
 What are the uses of AnySymbol and AnyLegend? What is the format of

AnyLegend? How many symbols are used on a map?
 11. AnyMap is generated by AnyMechanism and that mechanism aids in visualization.

 What mechanism is used? What are the steps in mechanism? How is visualiza-
tion done through this mechanism?

 12. AnyData acts as input in visualization and through these data AnyMap is generated.
 What is the input to visualization? How is map generated through these data?

Alternatives:

 1. AnyMechanism(MathematicalFormula) is faulty and thus AnyMap(Function) so
returned is inaccurate.

 2. AnyParty(Mathematician) might miss some AnyCriteria(BoundaryCondition)
when specifying them.

Class Diagram—A class diagram is shown in Figure 7.6.
Class Diagram Description

 1. Visualization is requested by AnyParty(Mathematician).
 2. Mathematician defines AnyCriteria(BoundaryCondition).
 3. AnyCriteria(BoundaryCondition) limits AnyMechanism(MathematicalFormula).
 4. AnyMechanism(MathematicalFormula) implements AnyMap(Function).
 5. AnyMap is indicated by AnyEvidence.
 6. AnyEvidence on AnyMedia(Thesis).
 7. AnyMedia(Thesis) is prepared by AnyParty(Mathematician).
 8. AnyParty specifies AnyCriteria.
 9. AnyCriteria influences AnyMechanism.
 10. AnyMechanism uses AnyData.
 11. AnyEntity(Relation) inherits from AnyData.
 12. AnyEntity(Relation) relates DomainElement and CodomainElement.
 13. DomainElement and CodomainElement are a part of AnyMap(Function).
 14. AnyMap has AnyType and MathematicalMap is a type of AnyMap.
 15. Function is a part of MathematicalMap.
 16. AnyMap consists of AnySymbol and AnyLegend and AnyLegend includes

AnySymbol.

187
A

n
yM

ap
 Stab

le D
esign

 Pattern

Visualization

AnyParty

AnyMechanism

AnyData

AnyEntity

AnyCriteria

AnyMedia

AnyEvidence

AnyMap AnySymbol

AnyType AnyLegend

Requests
/generates

through

of

specifies

basedOn

uses produces

on

indicates

includes

of

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

0..*

0..*

0..1

<<EBT>> <<BO>>

Mathematician

Boundary-
Condition

Mathematical-
Formula

�esis

Function

MathematicalMap DomainElement

Codomain-
Element

prepares

defines

limits

implements

relates

relates

1..*

1..*

1..*

1..*

<<IO>>

Relation

FIGURE 7.6 Class diagram for mathematical mapping.

188 Software Patterns, Knowledge Maps, and Domain Analysis

 17. AnyMap is produced by AnyMechanism.
 18. AnyMechanism aids in visualization.
 19. Visualization is of AnyData and AnyEntity inherits from AnyData.

Sequence Diagram—A sequence diagram is shown in Figure 7.7.
Sequence Diagram Description

 1. Visualization is requested by AnyParty(Mathematician).
 2. Mathematician defines AnyCriteria(BoundaryCondition).
 3. AnyCriteria(BoundaryCondition) limits AnyMechanism(MathematicalFormula).
 4. AnyMechanism(MathematicalFormula) implements AnyMap(Function).
 5. AnyMap is indicated by AnyEvidence.
 6. AnyEvidence on AnyMedia(Thesis).
 7. AnyMedia(Thesis) is prepared by AnyParty(Mathematician).
 8. AnyParty specifies AnyCriteria.
 9. AnyCriteria influences AnyMechanism.
 10. AnyMechanism uses AnyData/AnyEntity(Relation).
 11. AnyEntity(Relation) relates DomainElement.
 12. DomainElement is a part of AnyMap(Function).
 13. AnyMap is produced by AnyMechanism.
 14. AnyMechanism aids in visualization.

7.2.9 relateD PatternS anD meaSurability

7.2.9.1 Traditional Model versus SSM
• A traditional model, as shown in Figure 7.8, is based on tangible objects, that is,

IOs, which are physical objects and are unstable. However, a stable model relies
on three concepts—EBT, BO, and IO, which are nontangible. These nontangible
objects make the stability model very stable. The EBTs represent elements that
remain stable internally and externally. The BOs are objects that are internally
adaptable, but externally stable, whereas IOs are the external interfaces of the
system.

• In traditional modeling, because we only design as much as is needed for a specific
application in question and do not think of its applicability in other domain, the
application that results is very specific to the application problem in question. In
stability modeling, we use general enduring concepts, and hence, the resulting pat-
tern can be used for building numerous applications. In short, the resulting pattern
can serve as a building block for diverse application domains.

• The cost and maintenance of the traditional model is very labor intensive, costly,
and time consuming, because of its unstable nature. However, the stable model takes
very less time to develop and it is very easy and less labor intensive to maintain.

• The traditional model is neither adaptable to the changing need of the requirement
nor extendable, whereas the stable model can be used in a wide variety of applica-
tions, by just hooking the application IOs to the general pattern.

• Challenges and constraints of an application are easier to determine in the stable
model as compared to the traditional model and all the challenges and constraints
defined in the stable model are applicable for all applications in any domain.

189
A

n
yM

ap
 Stab

le D
esign

 Pattern

Visualization AnyParty AnyCriteria AnyEvidence AnyMedia AnyMap AnyType Any-
Mechanism AnyEntity Domain-

Element

requested by

defines

limits

implements

indicated by

on

prepared by

specifies

influences

uses

relates

part of

produced by

through

FIGURE 7.7 Sequence diagram for mathematical mapping.

190 Software Patterns, Knowledge Maps, and Domain Analysis

• The interdependency among the classes in the traditional model is very high such
that a small change in one class disturbs the whole model. But this is not the case
in the stable model.

• The number of classes in the traditional model is more to represent any application
and they are very application specific, but in the stable model the number of classes
is limited, which makes the stable model easier to understand and implement.

• It is very difficult to define multiplicity of relationship in the traditional model,
whereas in the stable model, the multiplicity constraint is more obvious and easy
to determine.

7.2.9.2 Measurability

7.2.9.2.1 Quantitative Measure
Factors on which quantitative measures can be applied are as follows:

 1. Quantity aspect of EBTs, BOs, and IOs. The more the number of patterns, the
more the lines of code that will result, while developing the system. In addition, as
lines of code increase, error propagation rate will also increase and it will be dif-
ficult to maintain accuracy in pattern development. Quantitative aspects show that
EBTs, BOs, and IOs should be selected in such a way that they should cover all the
necessary patterns required in modeling, and yet they should be developed using a
manageable number of lines of code, which will result in lesser error propagation.

 2. Number of classes. The second aspect of quantitative metrics is that the stability
model has lesser number of classes with focus on explicit as well as implicit factors,
as compared to the traditional model. The stability model relies on the concept of
EBTs, BOs, and pluggable IOs. As a result, the base pattern remains stable and has
the capability of representing a large number of applications by just hooking the

Person

Driver

Address

MapService

GoogleWebsite

GoogleMap

ShortestRoute

Algorithm

Legend

Symbol

uses

accesses

studies

specifies

accepts

uses

finds

shows

displays
explains

1..*

1..*

1..*

1..*

FIGURE 7.8 Traditional model of a map.

191AnyMap Stable Design Pattern

appropriate IOs with the base pattern. This reduces the number of classes required
to represent an application by a drastic amount.

 3. Cost estimation. Determining and developing estimation or measurement metrics
is far easier and less time consuming as compared to that in the traditional model,
because we know the base pattern of a stable model well in advance.

 4. Coupling among classes. Coupling represents how tightly the classes bind together
and depend on each other. In the traditional model, coupling among classes is very
high. As a result, even a small change or modification to any class in the traditional
model ripples through and affects the entire model, whereas in a stability model,
change in one class does not affect the whole model and remains restricted to that
particular BO.

 5. Constraints. They represent the multiplicity of the class and are very easy to define
in the stability model as compared to the traditional model.

7.2.9.2.2 Qualitative Measure
Qualitative measure of a pattern relates to usability, stability, scalability, and maintainabil-
ity of the pattern. If you can use pattern for a number of applications without any significant
changes in the system, then the pattern will have a number of qualitative qualities. Moreover,
the pattern should be reusable in a wide variety of application. Besides these features, the
maintenance cost of the pattern should also be very low. Stable model approach to develop
patterns supports all these features, whereas traditional model does not. Patterns developed
by using traditional model are quite specific to many applications and thus cannot be used
repeatedly. Moreover, they are meant for only one specific application. For a new applica-
tion with the same base, an entirely new pattern has to be developed which incurs a lot of
cost and resources. However, stability model is opposite to the traditional model. One single
pattern only supports a variety of different application with the same goal.

7.2.10 moDeling iSSueS, Criteria, anD ConStraintS

7.2.10.1 Abstraction
In stable model, classes are classified into three layers: EBT, BO, and IO. EBT represents the
goal of the pattern (the basic or core of the pattern and its purpose). BOs are tangible objects,
but externally stable, and they can adapt to any applications. This BO layer encapsulates the
pattern behavior from the application and thus, results in reusability of the pattern in wide
range of applications. The third layer is IO and is specific to the application, which actually
represents the application and is hooked to the second layer of BO. Thus, the core of the pattern
lies in EBT and BO, and thus, it becomes necessary to discuss at length on the selection of
EBT and BO, so that the pattern can fit to any application in any domain without major changes.

Map cannot be the ultimate goal of the pattern. Hence, in this pattern, map is taken as
BO and AnyMap design pattern is developed.

The next step is to find the ultimate goal or EBT for this design pattern. There can be a num-
ber of goals associated with map like mapping, navigating, recording, and analyzing. After
much discussion, we came with three goals of map—navigation, recording, and visualization.
Visualization means to form a visual picture of something. Mapping is not an appropriate
EBT here, as map also relates to graphs, charts, and functions besides geographical maps. The
other goal was taken as navigating, which means studying or analyzing the map. Recording

192 Software Patterns, Knowledge Maps, and Domain Analysis

was also taken as one of the EBT, because without recording a map the other two goals are
useless. We could not find one goal which can fit these three goals of map, so we decided on
taking three EBTs instead of one in order to cover every aspect of map application.

Next would be the selection of BO for both the EBTs.

• Visualization
• AnyActor is not the only one generating the map, as a group of people might

work together to create a map like mathematical map and biological map.
Hence, AnyParty was also chosen.

• AnyActor/AnyParty, depending on the type of map they are developing, defines
the rules or criteria of map interpretation, which also sets the rules for stan-
dardizing the map symbol. Another BO that becomes important for this pattern
is AnyCriteria.

• Now, the next class or BO to think is AnyMechanism or AnyMethod through
which measurement is performed.

• AnyData in this pattern represents something that needs to be mapped. It can
be any location or any real object. To represent a location, AnyRegion BO is
used and the object is represented by AnyEntity.

• Depending on whether map is being developed for AnyRegion or AnyEntity,
the type of map is selected. Hence, AnyType is also taken as one BO.

• There should be something to document the map and should prove its exis-
tence. Hence, AnyEvidence and AnyMedia are also taken as BOs.

• Navigation
• Again, navigation can be done by either a single person or a group of people

who can study the map. Thus, AnyActor and AnyParty both are considered.
• Navigation can be done with any type of map and can be done for anything.

Hence, AnyType, AnyRegion, and AnyEntity are taken as BOs.
• AnyActor/AnyParty navigating should have map on something. So,

AnyEvidence is taken as BO that displays map and shows its existence.
Moreover, the map evidence will be present on some media; hence, AnyMedia
is also selected as one of the BO.

• Recording
• Recording can be done by anybody. Hence, both AnyActor and AnyParty were

chosen as BOs of the pattern.
• Some rules have to be followed while recording. Hence, AnyParty or AnyActor

should be defined before starting the process. As a consequence, AnyCriteria
was also chosen.

• AnyCriteria is based on the type of data and the amount of data to be recorded.
So, AnyData was also considered.

• Recording has to be done on some media. Thus, AnyMedia forms an important
part of the pattern.

• Different media uses different formats for storage. To represent these formats,
AnyLog BO was taken.

• There has to be some properly defined method via which AnyMap can be stored
on AnyMedia. Thus, AnyMechanism was also chosen as one of the BOs.

• AnyEvidence was also taken as it presents a proof for the existence of AnyMap.

193AnyMap Stable Design Pattern

• AnyLegend and AnySymbol also form a part of the pattern as AnyMap uses
them to symbolize various things.

• AnyMap is of AnyRegion or AnyLegend. Hence, they also form a part of the
pattern.

• In the end, using all these BOs, a pattern was developed, and this pattern was
complete by itself and was able to support all the applications from any domain.

7.2.11 DeSign anD imPlementation iSSueS

In the design phase, the BOs and EBTs so decided are taken and a pattern is formulated by
using them. This phase involves the tedious task of deciding on the attributes and operations
for each EBT and BO. Once the attributes and operations are finalized, the constraints associ-
ated with each one of them are listed in order. Then, the relationship among BOs and EBTs
is defined and a stable pattern is designed. The challenges and constraints associated with the
pattern as a whole are also taken into consideration. After the design phase is over, the next
phase is implementation phase. In this phase, the pattern is applied to any desired application.
For this, the IOs are first defined based on the context of the application and then hooks are
created between pattern and IOs of the application. Thus, in implementation phase, the pat-
tern is developed for the application by simply hooking the IOs of the application to the BOs
of the pattern. One way of developing the hooks is via interface (see Figure 7.9).

Visualization

Navigation

Recording

AnyParty/
AnyActor

AnyCriteria

AnyMap

AnySymbol

AnyLegend

AnyData

AnyEvidence

AnyMedia

AnyType

IO

IO

IO

IO

IO

Designation, workHours,
location, skill, validity,

status, leadTo, condition,
priority, validity,

parameterUsed, factor,
characteristics, area,
location, description,

position, format,
domain, context

Generate()
Vizualizes()
consistsOf()

Limits()
Influences()

Determines()
Works()

Classifies()
provesExistence()

Documents()

FIGURE 7.9 Hooking BOs to IOs.

194 Software Patterns, Knowledge Maps, and Domain Analysis

Interface is a function that would list all operations of BOs in a combination required
to connect BOs to IOs. Thus, BOs will connect to IOs via interface. It will also increase
functionality. All the links, which are used to connect to IOs, will be included in
interface.

7.2.12 Formalization

Formalization in XML (AnyMap [Recording]):

<pattern>
<title>
"recording"
</title>
 <sort>
 <title>
 "Recording"
 </title>
 <sort>
 <title>
 "Recording"
 </title>
 <sort>
 <title>
 "name"
 </title>
 <type>
 String
 </type>
 <universe>
 {…}
 </universe>
 </sort>
 <sort>
 <title>
 "type"
 </title>
 <type>
 String
 </type>
 <universe>
 {…}
 </universe>
 </sort>
 <sort>
 <title>
 "description"
 </title>
 <type>
 String
 </type>
 <universe>

195AnyMap Stable Design Pattern

 {…}
 </universe>
 </sort>
 <function>
 <title>
 "allowReusability"
 </title>
 <type>
 Constant: allowReusability
 </type>
 </function>
 <function>
 <title>
 "providePerseverance"
 </title>
 <type>
 Constant: providePerseverance
 </type>
 </function>
 <function>
 <title>
 "definePurpose"
 </title>
 <type>
 Constant: definePurpose
 </type>
 </function>
 </sort>
 <sort>
 <title>
 "AnyParty"
 </title>
 <sort>
 <title>
 "name"
 </title>
 <type>
 String
 </type>
 <universe>
 {…}
 </universe>
 </sort>
 <sort>
 <title>
 "type"
 </title>
 <type>
 String
 </type>
 </sort>

196 Software Patterns, Knowledge Maps, and Domain Analysis

 <sort>
 <title>
 "description"
 </title>
 <type>
 String
 </type>
 <universe>
 {…}
 </universe>
 </sort>
 <function>
 <title>
 "accessData"
 </title>
 <type>
 Constant : accessData
 </type>
 </function>
 <function>
 <title>
 "performRecording"
 </title>
 <type>
 Constant : performRecording
 </type>
 </function>
 <function>
 <title>
 "useMedia"
 </title>
 <type>
 Constant : useMedia
 </type>
 </function>
 </sort>
 <sort>
 <title>
 "AnyType"
 </title>
 <sort>
 <title>
 "name"
 </title>
 <type>
 String
 </type>
 <universe>
 { …}
 </universe>
 </sort>

197AnyMap Stable Design Pattern

 <sort>
 <title>
 "type"
 </title>
 <type>
 String
 </type>
 </sort>
 <sort>
 <title>
 "description"
 </title>
 <type>
 String
 </type>
 <universe>
 {…}
 </universe>
 </sort>
 <function>
 <title>
 "classifies"
 </title>
 <type>
 Constant : classifies
 </type>
 </function>
 <function>
 <title>
 "organize"
 </title>
 <type>
 Constant : organize
 </type>
 </function>
 <function>
 <title>
 "stateStandard"
 </title>
 <type>
 Constant : stateStandard
 </type>
 </function>
 </sort>
 <sort>
 <title>
 "AnyMechanism"
 </title>
 <sort>
 <title>
 "name"

198 Software Patterns, Knowledge Maps, and Domain Analysis

 </title>
 <type>
 String
 </type>
 <universe>
 {…}
 </universe>
 </sort>
 <sort>
 <title>
 "type"
 </title>
 <type>
 String
 </type>
 <universe>
 {…}
 </universe>
 </sort>
 <sort>
 <title>
 "description"
 </title>
 <type>
 String
 </type>
 <universe>
 {…}
 </universe>
 </sort>
 <function>
 <title>
 "specifyOperation"
 </title>
 <type>
 Constant : specifyOperation
 </type>
 </function>
 <function>
 <title>
 "records"
 </title>
 <type>
 Constant : records
 </type>
 </function>
 <function>
 <title>
 "utilizeMedia"
 </title>
 <type>

199AnyMap Stable Design Pattern

 Constant : utilizeMedia
 </type>
 </function>
 </sort>
 <sort>
 <title>
 "AnyEntity"
 </title>
 <sort>
 <title>
 "name"
 </title>
 <type>
 String
 </type>
 <universe>
 { …}
 </universe>
 </sort>
 <sort>
 <title>
 "type"
 </title>
 <type>
 String
 </type>
 <universe>
 {…}
 </universe>
 </sort>
 <sort>
 <title>
 "description"
 </title>
 <type>
 String
 </type>
 <universe>
 {…}
 </universe>
 </sort>
 <function>
 <title>
 "distinguishEntity"
 </title>
 <type>
 Constant : distinguishEntity
 </type>
 </function>
 <function>
 <title>

200 Software Patterns, Knowledge Maps, and Domain Analysis

 "occupySpace"
 </title>
 <type>
 Constant : occupySpace
 </type>
 </function>
 <function>
 <title>
 "specifyEntity"
 </title>
 <type>
 Constant : specifyEntity
 </type>
 </function>
 </sort>
 </sort>
 <sort>
 <title>
 "AnyLog"
 </title>
 <sort>
 <title>
 "name"
 </title>
 <type>
 String
 </type>
 <universe>
 { …}
 </universe>
 </sort>
 <sort>
 <title>
 "type"
 </title>
 <type>
 String
 </type>
 <universe>
 {…}
 </universe>
 </sort>
 <sort>
 <title>
 "description"
 </title>
 <type>
 String
 </type>
 <universe>
 {…}

201AnyMap Stable Design Pattern

 </universe>
 </sort>
 <function>
 <title>
 "residesOn"
 </title>
 <type>
 Constant : residesOn
 </type>
 </function>
 <function>
 <title>
 "givesSpace"
 </title>
 <type>
 Constant : givesSpace
 </type>
 </function>
 <function>
 <title>
 "showCapacity"
 </title>
 <type>
 Constant : showCapacity
 </type>
 </function>
 </sort>
 </sort>
 <sort>
 <title>
 "AnyMedia"
 </title>
 <sort>
 <title>
 "name"
 </title>
 <type>
 String
 </type>
 <universe>
 { …}
 </universe>
 </sort>
 <sort>
 <title>
 "type"
 </title>
 <type>
 String
 </type>
 <universe>

202 Software Patterns, Knowledge Maps, and Domain Analysis

 {…}
 </universe>
 </sort>
 <sort>
 <title>
 "description"
 </title>
 <type>
 String
 </type>
 <universe>
 {…}
 </universe>
 </sort>
 <function>
 <title>
 "create"
 </title>
 <type>
 Constant : create
 </type>
 </function>
 <function>
 <title>
 "open"
 </title>
 <type>
 Constant : open
 </type>
 </function>
 <function>
 <title>
 "save"
 </title>
 <type>
 Constant : save
 </type>
 </function>
 </sort>
 </sort>
</pattern>

7.2.13 teStability

If AnyMap design pattern can be used, as it is without changing the core design and by
only plugging IOs for infinite number of applications, then AnyMap pattern can be said
to be testable. In applicability section, two widely different applications are illustrated
and they do not require changing the core design of the pattern. Using the scenarios listed
in this chapter, many such scenarios can be deduced and proved that AnyMap pattern is
indeed testable.

203AnyMap Stable Design Pattern

The above-presented recording pattern is generally applicable to all the domains, and it
is designed in such a way that it should be applicable in any type of scenario. If the designed
pattern can be applied to all the application, then it is said to be testable. If the derived
model is applied with hooking some IOs to related BOs pertaining to that particular sce-
nario, then the pattern is called stable.

There are certain conditions that must be satisfied in order to accomplish successful
recording. If these requirements and conditions are not maintained, then recording pat-
tern may fail in end. One of the most basic requirements is to choose proper recording
medium depending upon what entity to be recorded. Second is proper security measures
should be taken care to prevent the loss of recorded media in case of any natural disas-
ter, theft, and other intrusion-related malicious activities. For example, if a company
is recording all the details of their employees in a computer database and then to any
other digital media like CD and DVD. In that case, if the system crashes due to virus or
disturbance while recording, the company may lose the data, and here in this case, the
recording pattern will fail.

Some scenarios in which the above patterns will not give correct result and will fail are
as follows:

 1. Visualization. This pattern fails when the criterion defined by party or actor is not
properly followed while implementing mechanism to generate a map. This mistake
can mess up with the various symbols used for notation purposes and it might hap-
pen to symbols mean that the same or two different things on a map are denoted by
a single symbol.

 2. Navigation. While navigating, the party or actor analyzing the map should care-
fully read all the interpretation rules and purpose of the map properly. Moreover,
the person should also make proper use of legend as any negligence while deci-
phering the map can lead to inappropriate results.

 3. Recording. Recording of a map can go wrong when AnyParty/AnyActor does not
follow proper mechanism and all the rules laid down for the media chosen.

7.2.14 buSineSS iSSueS

This section covers business rules, their structural elements, and properties:

• A map can be used by individual, group, organization, software, or a concept.
• A map connects one kind of data to another kind of data.
• Data mapped from or to can be of any form. It can be information, physical objects,

or intangible concepts.
• The mechanism employed to perform the visualization can be any method.
• There should be some data ready for visualization.
• Data used for visualization should have real existence and should not be

imaginary.
• All the rules influencing the mechanism used in visualization should be defined

properly.
• The symbols used in map should be defined in legend properly.
• Any exceptions with the mechanism involved in visualization should be laid down

clearly beforehand.

204 Software Patterns, Knowledge Maps, and Domain Analysis

• The map so created should be documented properly using the appropriate media.
• While navigating, all the symbols should be deciphered correctly.
• The choice of media for recording should be done keeping the type of map and

intended users in mind.
• The format in which map is stored should be in accordance with the media type.
• The mechanism used for recording a map should be chosen according to the type

of the map.

Business rules control and manage the behavior of the system. They impose constraints on
the system and tell the system what it should do. Business rules are atomic in nature and
thus they cannot be broken down into smaller pieces without causing a loss of information.
They must be defined prior to defining requirements of the system.

Elements of business rules are as follows.

 1. Business Items
 This element corresponds to different classes forming the pattern. Stable pattern

consists of classes at various levels: EBT, BO, IO, and they have different functions
and responsibilities at each level. Some of the business rules defined for business
items are as follows:
• Each class should be capable of at least one function.
• Classes should be able to work independently.
• IO classes should interact with BO classes only.
• EBT classes should interact with BO classes.
• Classes should be able to reflect the specificity of application.
• EBT class should represent the ultimate goal of the pattern.
• BO classes when combined should be able to represent a pattern depicting the

meaning of EBT/s involved.
 2. Properties

 Properties in business language corresponds to attributes and operations of classes
in stable language. Business rules related to properties are as follows:
• The operations defined for the class should be unique and generic, such that

they can be used to represent any application.
• The class should be able to carry out the responsibility assigned to it.
• The attributes of the class must cover all the distinct aspects of the class.
• The operations defined for the class should be such that the class is able to per-

form them independently, as well as in cooperation with other classes.
 3. Relationships

 It presents the interdependency among classes and in what manner one class relates
to the other class. Business rules defined at this level are as follows:
• One relation can connect only two classes.
• Every class should relate to another class through some relation. No classes in

a pattern can standalone.
• Relation can be simple relation connecting two classes, that is, association, or it

can be a kind of or a part of relation.
• Every associative relation has some multiplicity. The default is one to one.
• Every association relation has some name that represents the type of connec-

tion between the two classes.

205AnyMap Stable Design Pattern

 4. Facts
 These represent business or common terms that can occur in the form of EBT or

BO. Some of them are as follows:
 1. Navigation. It is the process of reading, analyzing, and controlling.
 2. Visualization. It is the process of forming visual pictures.
 3. Recording. It is the process of documenting.
 4. Legend. It is the dictionary of symbols used on map.
 5. Boundary. This term represents any geographical boundary or functional

boundary.
 6. Notation. It represents symbols like color, lines, and images used on map.
 5. Constraints

 These represent the restrictions imposed on pattern. Some of the constraints are as
follows:

 1. One or more criteria can influence AnyMechanism.
 2. AnyMap should be represented on AnyEvidence.
 3. Visualization/navigation can be done by one or many actor/party.
 4. AnyMap should have at least one AnyType.
 5. AnyMap can be of AnyEntity/AnyRegion.
 6. Visualization can be done through one or more AnyMechanism.

Based on the above elements, some generic business rules for the pattern are given as
follows:

 1. AnyData used for visualization can be AnyEntity or AnyRegion.
 2. AnyRegion used for visualization should have well-defined boundary.
 3. AnyEntity should have real existence and should not be imaginary.
 4. AnyParty/AnyActor involved in visualization should define all the criteria properly.
 5. AnyMechanism used in visualization should follow AnyCriteria defined.
 6. AnyMap should be indicated on AnyEvidence to prove its existence.
 7. While navigating, AnyParty/AnyActor should use AnyLegend properly to under-

stand AnySymbol.
 8. AnyType of AnyMap decides whether map is for AnyRegion or AnyEntity.
 9. AnyMap should be available for navigation.
 10. AnyCriteria should be validated for visualization.
 11. AnyMap is stored on AnyMedia in the form of AnyLog.
 12. AnyParty/AnyActor requires AnyData of map to decide AnyMechanism and

AnyMedia for recording.
 13. Quality of AnyLog depends on the capabilities of AnyMechanism.
 14. AnyLog is a faithful reproduction of AnyType.
 15. All recording mechanisms should be defined.

7.2.15 Known uSage

The AnyMap pattern can be used in many applications in our daily life. Road maps are the
most common form of AnyMap pattern. But almost every application that tries to relate one
set of things with another set of things can use the AnyMap pattern. The dictionary that we
use often to look up the meaning of a word is a form of map. The directory in a shopping

206 Software Patterns, Knowledge Maps, and Domain Analysis

mall is another form of map. These are the more physical or tangible kind of AnyMap pat-
terns. At the more abstract level, the functions used by mathematicians and physicals are
applications of AnyMap. Computer applications find many usage of this pattern in data
mapping, internet domain name servers, and site mapping. The possibilities are many and
endless. With global positioning system (GPS) installed in cars, personal digital assistants
(PDAs), and mobile phones being in vogue, AnyMap design pattern provides ample usage
for easy implementation. Satellite maps are used by military to get an idea of enemy’s ter-
rain and positions. Site maps are useful to first-time users to access required information
correctly (see Sidebar 7.2).

Number of scenarios where this pattern can be used are as follows:

• This pattern can be used as geographical map, for teaching in the class, for finding
routes, and for pinpointing any location, in GPS.

• This pattern can be used as biological map, to make a map of chromosomal cross-
over like in genetic map and linkage map (see Sidebar 7.1).

• Every function is a type of map. Hence, this pattern can also be used for represent-
ing any mathematical function.

• This pattern can also be used by astronauts for their research, as they can use this
pattern to develop a map of constellations, galaxies, and stars.

• Through this pattern, site maps can be developed which aid in developing
websites.

7.2.16 tiPS anD heuriStiCS

 1. In designing the AnyMap pattern, we try to not just look at the most obvious map
pattern. We attempt to research and try to exhaust all possible forms of a map and
can try to extract commonalities among all the maps that we could find, so that our
pattern will be as generic and extensible as possible.

 2. We first tried to identify the EBT of the pattern, which serve to anchor our design
goals.

 3. In looking for the BOs that provide capabilities for the identified EBT, we will
select objects/concepts that are more stable, which cannot change easily over
time.

 4. We would also make sure that our pattern can be used by any party, human, or
nonhuman (i.e., software) alike and the pattern can be scaled to different types of
data involved.

 5. EBT must represent the goal of the pattern.
 6. Intuition and experience is required in order to find correct EBT for the pattern.
 7. BOs provide capabilities to achieve the goal of the pattern. Identification of BO

requires spending some time in thinking and coming up with correct BOs.
 8. BOs provide hooks to which specific IOs can be plugged and getting varied appli-

cations in diverse domains. This reduces the cost by encouraging reusability.
 9. Designing class diagram using EBTs and BOs serves as the basis for coming up

with correct sequence diagram. Drawing sequence diagram using class diagram is
much easier and accurate.

 10. Writing a clear and thorough description for class diagram and sequence diagram
helps in understanding the concept behind the specific design pattern.

207AnyMap Stable Design Pattern

 11. Describing patterns is a hard job and requires careful and calibrated work.
 12. Metamodel is totally different than stable model and it is a traditional model.
 13. Pattern design must be generic, so that it can be applied to applications spread

across various domains.

SUMMARY

AnyMap is modeled by using the SSM by identifying the corresponding EBTs and BOs.
This model can be used for different domains and IOs can be extended according to the
application. The model represents the core knowledge of the pattern in different applica-
tions and is presented as EBTs and BOs. The model is explained with two specific applica-
tions that perform well based on this model.

Though building a stable design pattern for AnyMap that can be reused and reapplied
across diverse domain is always difficult and requires thorough understanding of the prob-
lem, it is worth the effort and time. Modeling AnyMap pattern by using SSM can result in
reusable, extensible, and stable pattern.

The correct identification of EBTs and BOs for AnyMap is the most challenging
task and requires some prior experience. Once EBTs and BOs are correctly identified,
next main challenge is to determine the relationship between EBTs and BOs, so that
AnyMap pattern can hold true in any context of usage for data. Once this is done, depend-
ing on the application, the IOs are attached to the hooks so provided by the BOs. Thus,
using AnyMap pattern as a basis, infinite number of applications can be built by just plug-
ging in the application-specific IOs to the pattern. This results in reduced cost, effort, and
stable solution. Hence, AnyMap design pattern is very useful.

OPEN RESEARCH ISSUES

How to test the AnyMap design pattern effectively is one of the open issues that are left to
the user to probe further. Some pointers have been provided under the testability section,
but they need further research.

One open issue is to come up with one ultimate goal for AnyMap design pattern, which
will contain goals like visualization, navigation, and recording.

List all the possible pitfalls of this pattern.

REVIEW QUESTIONS

 1. Explain what do you mean by the term map?
 2. What is the usage of the AnyMap stable design pattern?
 3. Can the term map be used in any other context than what you thought of?
 4. Can AnyMap design pattern be used interchangeably with AnyChart design pattern?

Explain your answer.
 5. Which pattern can AnyMap be used interchangeably? Justify.
 6. What problem does the AnyMap design pattern solve?
 7. In what context is the AnyMap design pattern (Recording) being applied?
 8. In what context is the AnyMap design pattern (Navigation) being applied?
 9. In what context is the AnyMap design pattern (Visualization) being applied?
 10. Name a few scenarios for the application of AnyMap design pattern (Recording).

208 Software Patterns, Knowledge Maps, and Domain Analysis

 11. Name a few scenarios for the application of AnyMap design pattern (Navigation).
 12. Name a few scenarios for the application of AnyMap design pattern (Visualization).
 13. What are the challenges faced in implementing the AnyMap design pattern

(Recording)?
 14. What are the challenges faced in implementing the AnyMap design pattern

(Navigation)?
 15. What are the challenges faced in implementing the AnyMap design pattern

(Visualization)?
 16. What are the constraints faced in implementing the AnyMap design pattern

(Recording)?
 17. What are the constraints faced in implementing the AnyMap design pattern

(Navigation)?
 18. What are the constraints faced in implementing the AnyMap design pattern

(Visualization)?
 19. Discuss briefly the functional requirements of AnyMap design pattern (Recording).
 20. Discuss briefly the nonfunctional requirements of AnyMap design pattern

(Recording).
 21. Discuss briefly the functional requirements of AnyMap design pattern (Navigation).
 22. Discuss briefly the nonfunctional requirements of AnyMap design pattern

(Navigation).
 23. Discuss briefly the functional requirements of AnyMap design pattern

(Visualization).
 24. Discuss briefly the nonfunctional requirements of AnyMap design pattern

(Visualization).
 25. Explain AnyMap pattern model (Recording) with the help of class diagram and

CRC cards.
 26. Explain AnyMap pattern model (Navigation) with the help of class diagram and

CRC cards.
 27. Explain AnyMap pattern model (Visualization) with the help of class diagram and

CRC cards.
 28. What are the design and implementation issues for the given AnyMap design pat-

tern (Recording)?
 29. What are the design and implementation issues for the given AnyMap design pat-

tern (Navigation)?
 30. What are the design and implementation issues for the given AnyMap design pat-

tern (Visualization)?
 31. Provide some patterns related to the AnyMap design pattern (Recording).
 32. Provide some patterns related to the AnyMap design pattern (Navigation).
 33. Provide some patterns related to the AnyMap design pattern (Visualization).
 34. Explain usage of AnyMap design pattern (Recording) with two examples other

than the ones provided in this chapter.
 35. Explain usage of AnyMap design pattern (Navigation) with two examples other

than the ones provided in this chapter.
 36. Explain usage of AnyMap design pattern (Visualization) with two examples other

than the ones provided in this chapter.
 37. How does traditional model differ from the stability model? Explain using the

AnyMap design pattern model (Recording).

209AnyMap Stable Design Pattern

 38. How does traditional model differ from the stability model? Explain using the
AnyMap design pattern model (Navigation).

 39. How does traditional model differ from the stability model? Explain using the
AnyMap design pattern model (Visualization).

 40. Enlist some of the business issues encountered for the AnyMap design pattern
(Recording).

 41. Explain procedure for testing the AnyMap design pattern.
 42. Discuss some of the real-time usages of AnyMap design pattern (Recording).
 43. Discuss some of the real-time usages of AnyMap design pattern (Navigation).
 44. Discuss some of the real-time usages of AnyMap design pattern (Visualization).
 45. What are the lessons learned by you from this pattern.
 46. List some of the domains in which AnyMap design pattern (Recording) can be

applied.
 47. List some of the domains in which AnyMap design pattern (Navigation) can be

applied.
 48. List some of the domains in which AnyMap design pattern (Visualization) can be

applied.
 49. What is the trade-off of using this pattern?
 50. List some advantages of using AnyMap design pattern (Recording) in real

applications.
 51. List some advantages of using AnyMap design pattern (Navigation) in real

applications.
 52. List some advantages of using AnyMap design pattern (Visualization) in real

applications.
 53. Can you think of any scenarios where AnyMap design pattern will fail? Explain

each scenario briefly.
 54. Describe how the developed AnyMap design pattern would be stable over time.
 55. List some of the testing patterns that can be used to test AnyMap design pattern.
 56. Can you think of any other goal which is not covered by AnyMap design pattern?
 57. Briefly explain how AnyMap design pattern (Recording) supports its objective.
 58. Briefly explain how AnyMap design pattern (Navigation) supports its objective.
 59. Briefly explain how AnyMap design pattern (Visualization) supports its objective.
 60. Examine the functional requirements of all the patterns involved—Are there any

missing requirements? Discuss them.
 61. Examine the nonfunctional requirements of AnyMap design pattern—Are there

any missing requirements? Discuss them.
 62. Try to list few more business rules for the pattern.
 63. Try to develop test cases for the application developed in 29 above.

EXERCISES

 1. Think of few scenarios, where AnyMap stable design pattern (Recording) is
 applicable and come up with corresponding class diagram, use case, and sequence
diagram as shown in the solution and applicability sections for each of the
scenarios.

 2. Think of few scenarios, where AnyMap stable design pattern (Navigation)
is applicable and come up with corresponding class diagram, use case, and

210 Software Patterns, Knowledge Maps, and Domain Analysis

sequence diagram as shown in the solution and applicability sections for each of
the scenarios.

 3. Think of few scenarios, where AnyMap stable design pattern (Visualization) is
applicable and come up with corresponding class diagram, use case, and sequence
diagram as shown in the solution and applicability sections for each of the
scenarios.

reSearCh anD DeveloPment

New product design and development is more than often a crucial factor in the survival
of a company. In an industry that is fast changing, firms must continually revise their
design and range of products. This is necessary due to continuous technology change and
development, as well as other competitors and the changing preference of customers. A
system driven by marketing is one that puts the customer needs first and only produces
goods that are known to sell. Market research is carried out, which establishes what is
needed. If the development is technology driven, then it is a matter of selling what it is
possible to make. The product range is developed, so that production processes are as
efficient as possible and the products are technically superior, hence possessing a natu-
ral advantage in the market place (Wong and Tong 2012; Koen et al. 2007).

Utilize the AnyMap pattern as an application of a research and development:

 a. Draw a class diagram based on the AnyMap pattern to show the application of
research and development.

 b. Document a detailed and significant use case as shown in case study 1.
 c. Create a sequence diagram of the created use case of b.

inDexing anD DiCtionary SearCh

Nowadays, dictionary forms an important part of life. Dictionary not only means word dic-
tionary, it exists in various forms like encyclopedia, atlas, thesaurus, and WordNet. Every
domain requires dictionary, and hence, the format of dictionary also varies according to
the domain and its application. According to Nielsen 2008a, a dictionary may be regarded
as a lexicographical product that is characterized by three significant features: (1) it has
been prepared for one or more functions; (2) it contains data that have been selected for the
purpose of fulfilling those functions; and (3) its lexicographic structures link and establish
relationships between the data so that they can meet the needs of users and fulfill the func-
tions of the dictionary. In real sense, a dictionary is another term for map. Instead of show-
ing all the information is a tree format or visual presentation, the things are listed out and
indexed (Büttcher et al. 2010; Spink et al. 2001).

Utilize the AnyMap pattern as an application of indexing and dictionary search:

 a. Draw a class diagram based on the AnyMap pattern to show the application of
dictionary search.

 b. Document a detailed and significant use case as shown in case study 1.
 c. Create a sequence diagram of the created use case of b.

211AnyMap Stable Design Pattern

Site maP DeveloPment

A site map is a graphically vivid representation or display of the site plan or the architecture
of a given website (see Sidebar 7.2). It could be a simple document used as a sophisticated
planning tool for website design and construction. It could also be a simple web page
 providing a comprehensive list of all the pages in a given website, well organized in a hier-
archical pattern. Site maps can help a site visitors by saving the time needed to navigate to a
particular web page. Site maps help web masters to optimize the web pages by using a search
engine optimization technology (Morville and Rosenfeld 2006; Brandman et al. 2000).

Utilize the AnyMap pattern as an application of site map development:

 a. Draw a class diagram based on the AnyMap pattern to show the application of
development of site map.

 b. Document a detailed and significant use case as shown in case study 1.
 c. Create a sequence diagram of the created use case of b.

PROJECTS

 1. Topographic map (Harvey 1980; Kraak and Ormeling 1996). A topographic map
is a type of map characterized by large-scale detail and quantitative representation
of relief, usually using contour lines in modern mapping, but historically using a
variety of methods. Traditional definitions require a topographic map to show both
natural and man-made features (see Sidebar 7.3).

 2. Thematic map (Slocum et al. 2009). A thematic map displays spatial pattern of a
theme or series of attributes. Thematic maps emphasize spatial variation of one or
a small number of geographic distributions. These distributions may be physical
phenomena, such as climate, or human characteristics, such as population density
and health issues. These types of maps are sometimes referred to as graphic essays
that portray spatial variations and interrelationships of geographical distributions.
Location, of course, is also important to provide a reference base of where selected
phenomena are occurring. Petchenik (1979) described the difference as in place,
about space. Although general reference maps show where something is in space,
thematic maps tell a story about that place.

 3. Geologic map. A geologic map or geological map is a special-purpose map made
to show geological features.

 4. Dymaxion map (Fuller 1943). The Dymaxion map or Fuller map is a projection of a
world map onto the surface of a polyhedron, which can then be unfolded to a net in
many different ways and flattened to form a 2D map that retains most of the relative
proportional integrity of the globe map.

 5. Mercator projection (Monmonier 2004). The Mercator projection is a cylindrical
map projection presented by the Flemish geographer and cartographer Gerardus
Mercator, in 1569. It became the standard map projection for nautical purposes,
because of its ability to represent lines of constant course, known as rhumb lines or
loxodromes, as straight segments. Although the linear scale is constant in all direc-
tions around any point, thus preserving the angles and the shapes of small objects
(which makes the projection conformal), the Mercator projection distorts the size

212 Software Patterns, Knowledge Maps, and Domain Analysis

and shape of large objects, as the scale increases from the equator to the poles,
where it becomes infinite.

 6. Linkage Map. A linkage map (Griffiths et al. 1993) is a genetic map of a species
or experimental population that shows the position of its genes or gene markers
relative to each other in terms of recombination frequency, rather than as physical
distance along each chromosome. Every living organism has countless number
of genes in them which control a number of traits like skin color, eye color, and
blood type, and these genes are present all over the chromosomes. A chromosome
is an organized structure of protein and DNA that forms an essential part of all
the living cells.

 a. Name two to three ultimate goals of each of the above maps.
 b. List all the functional requirements and nonfunctional requirements of each of

the ultimate goals.
 c. List 10 challenges for the two or three ultimate goals combined for each area.
 d. Name 10 different applications for each of the goals
 e. Name five different applications for the two or three ultimate goals combined.
 f. Select a significant use case per application and describe each one of them with

test cases.
 g. Map each of the use cases in point f into a sequence diagram.

SIDEBAR 7.1 Genetic or Linkage Map

Genetic mapping (also popularly known as linkage mapping) is an exciting topic of considerable
scholarly interest. It is unique and special in its approach, and it provides a researcher a series of
new and revealing set of information and details on genetic disposition of man. One example of
genetic mapping is the precious clue that tells more about chromosomes, and the one that contains
the gene, and the exact location where it lies within the chromosome. Genetic or linkage maps
are quite beneficial in finding out those single genes responsible for rare genetic disorders and
diseases. Genetic maps are quite handy in providing invaluable clues on the nature of diseases and
their properties. A genetic map is not a physical map or gene map (Griffiths et al. 1993), that is,
the descriptive representation of the structure of a single gene.

REFERENCE

Griffiths, A. J. F., J. H. Miller, D. T. Suzuki, R. C. Lewontin, and W. M. Gelbart. Chapter 5. An Introduction
to Genetic Analysis, 5th Edition, 1993.

SIDEBAR 7.2 Site Map

A site map (Morville and Rosenfeld 2006) is a graphically vivid representation or display
of the site plan or the architecture of a given website. It could be a simple document used as a
 sophisticated planning tool for website design and construction. It could also be a simple web
page providing a comprehensive list of all pages in a given website, and all these pages are well
organized in a hierarchical pattern. Site maps can help a site visitors by saving the time needed to
navigate to a particular web page. Site maps help web masters to optimize the web pages by using
a search engine optimization technology.

REFERENCE

Morville, P. and Rosenfeld, L. Information Architecture for the World Wide Web: Designing Large-scale Web
Sites. O’Reilly & Associates, Inc. Sebastopol, CA, 3rd edition, December 2006.

213AnyMap Stable Design Pattern

SIDEBAR 7.3 Topographic Map

A topographical or contour map (Courant, Robbins, and Stewart 1996; Harvey 1980; Kraak
and Ormeling 1996) is a special map that provides voluminous details and quantitative facts
of land relief, by usually using contour lines in modern mapping, but historically using a
variety of methods. In modern mapping, researchers used a contour line pattern to create a
topographical map. Classical definition for topographical map means a detailed and accurate
graphic representation of cultural and natural features on the ground (The Centre for Topographic
Information). The study or discipline of topography, while interested in relief, is actually a much
broader field, which takes into account all natural and fabricated features of terrain (Kraak and
Ormeling 1996).

A contour map or topographic map is a map illustrated with contour lines, for example,
a topographic map, which thus, shows valleys and hills and the steepness of slopes (Tracy 1907).
The contour interval of a contour map is the difference in elevation between successive contour
lines (Tracy 1907). A contour line (also levelset, isopleth, isoline, isogram, or isarithm) of a
 function of two variables is a curve along which the function has a constant value (Courant,
Robbins, and Stewart 1996). In cartography, a contour line (often just called a contour) joins
points of equal elevation (height) above a given level, such as mean sea level (Courant, Robbins,
and Stewart 1996).

REFERENCES

Courant, R., H. Robbins, and I. Stewart. What Is Mathematics? An Elementary Approach to Ideas and
Methods. New York, NY: Oxford University Press, p. 344, 1996.

Harvey, P. D. A. The History of Topographical Maps: Symbols, Pictures and Surveys, Thames and Hudson,
1980.

Kraak, M.-J., and F. Ormeling. Cartography: Visualization of Spatial Data. London, UK: Longman, p. 44,
1996.

Tracy, J. C. Plane Surveying: A Text-Book and Pocket Manual. New York, NY: Wiley, p. 337, 1907.

215

8 AnyContext Stable
Design Pattern

Language is not merely a set of unrelated sounds, clauses, rules, and meanings; it is a
total coherent system of these integrating with each other, and with behavior, context,
universe of discourse, and observer perspective.

Kenneth L. Pike

Context is a topic of immense interest in different fields and domains, such as computer
science, knowledge engineering, and software engineering. It is a topic that would need an
entire book; however, that is not our goal in this context. The goal is, instead, the simplest
form of understanding, for example, stable software patterns, and determining why it is so
important and critical in the development of a knowledge map.

For example, assume we have you with your friends religiously watching a football
match. This is giving a weird and confusing look to a friend just because he or she made a
simple comment on space shuttles, and how NASA started collecting relevant information
on Mars, during a football game! If so, you are not alone. Knowing the context in which
you are directing your comments will determine whether these comments will be accepted,
understood, or even cherished.

Imagine that you are in a very important requirement-review meeting with a very
 important customer. You and your team are trying to arrive at a consensus on the require
ments for the customer’s new web-based biometric system. In this instance, it is possible
that you would be wasting your and other people’s time, and even losing the customer in
the process. During the analysis of the requirements you may start talking about the cus
tomer’s requirements and your hiking experiences in North Dakota. The latter will simply
be out of context here, because of the fact that the hiking topic is irrelevant to the web-based
 biometric system.

However, if the customer’s new project relates to the development of new all-terrain
hiking shoes, then the idea of bringing up your hiking experiences in North Dakota in the
meeting may form an excellent input, especially, because you would be providing input as
a customer and an analyst.

Can context awareness be the important key to unlimited success? Context as a logical
fence that will help you to determine what belongs inside the fence and what does not. The
remainder of this chapter will navigate you through this concept’s process and how it would
be represented as a stable software pattern.

8.1 INTRODUCTION

The word context is a very common jargon that is used in different fields, for example,
computer science, software engineering, and linguistics. According to Dey (2001), this
word means “any information that can be used to characterize the situation of an entity.

216 Software Patterns, Knowledge Maps, and Domain Analysis

An entity is a person, place, or object that is considered relevant to the interaction between
the user and an application, including both the user and the application.” Metaphorically
speaking, this definition alludes to a logical fence that encloses relevant information about
the domain in question and ignores irrelevant ones.

The impact of having an in-context problem perusal in specific areas of software engi
neering, for example, software modeling, software development, and software manage
ment, is explicitly exhibited in the quality, cost, life span, and level of maintenance of a final
software product. The less accurate the software requirements being modeled, the harder
it will be to achieve a high-quality solution, the higher the chances to be canceled, and the
more the efforts needed to arrive at the solution.

In fact, having an in-context problem perusal will benefit software practitioners
(e.g., analysts, architects, developers, and testers), because it will give them a mental
construct that will guide them toward the development of a cost-effective and high-
quality software product. In addition to this, it will also reduce the clash of ideas and
opinions among software practitioners, because everybody has the same frame of refer
ence of the problem under discourse. However, the means to accomplish an in-context
problem perusal has not been fully realized until now. For this sole reason, we will
carry out an exhaustive study on the concept of context, with the sole purpose of cen
tralizing a common understanding of its structure and importance via stable software
patterns.

8.2 PATTERN DOCUMENTATION

8.2.1 Pattern name: anyContext Stable DeSign Pattern

Context is essential in communicating correct information. The objective of being in con
text is to deliver relevant information to stakeholders based on the environment and current
interactions. It helps us in passing the message across the board in a clever and effective
manner. The objective of a pattern is to generalize the idea of context so that one can use it
as a base for initiating future interactions.

The AnyContext design pattern abstracts encapsulation of any entity based on certain
conditions and thereby achieves a general pattern that is usable across any type of appli
cation. This pattern is required to model the core knowledge of context without tying the
pattern on a specific application or domain; hence, developers are choosing the name
AnyContext.

8.2.2 Known aS

Developers misunderstand and misconceive context to be the same as domain, back
ground, or situation. Although context is the set of circumstances or facts that surround
a particular event, occurrence, background, and situation refer to locality, and hence,
it is not possible to use it in place of context. Similarly, a domain refers to a field of action,
thought, and influence. Thus, you cannot use it in line with the context. Superficially, only
circumstance comes close to the meaning of context. However, you cannot use circum-
stance interchangeably with context, as both have different connotations.

217AnyContext Stable Design Pattern

8.2.3 Context

Context is a term that is widely used in various fields, such as computer science, linguistics,
and negotiations. The term is used regardless of its area of application and is the main goal
of context to enclose any type of relevant information that is possible to use by character
izing any type of entity such as a person, system, and class, based on varied conditions
or circumstances. Consider for instance a canonical example of context that is found in
programming languages, such as the scopes of the methods represented by curly brackets
(i.e., methodName() {….}).

Everything within these curly brackets defines a context. It defines the variables,
statement, or operations. The curly brackets encapsulate information that belongs to the
method itself. You can find another instance of context in clearance systems. In clearance
systems, a person is assigned a number that determines access to the boundary of deter
mined information. Another example is medical expert systems, where knowledge from
a domain expert that was stored and processed in a database will be used to identify the
context of the system.

8.2.4 Problem

The realization of context as a reusable asset for different solutions is a complex and
mostly a vague idea. This activity can lead to misinterpretations, constant debates, and
recurrent cost/effort/time while addressing it. In this instance, context is usually addressed
in different ways that can share a minimal aspect of it or nothing. There are a number of
characteristics and behavior for the implementation. For instance, on the one side, we have
the encapsulated context pattern by Allan Kelly, and on the other side, we have the context
object pattern by Arvind Krishna and Michael Style. Both patterns implementations are
different in structure and their implementation mode. They both refer to a concept, though
in different ways, which is the same regardless of an area of application. The main reason
for this is a poor and incomplete analysis of what the structure of a context is, and in the
end, when requirements change. They will be totally different as in their structure and
behavior. So, how can we capture and share an enduring structure and behavior of a con
text that could span several applications, if its structure and behavior remain the same? In
this case, the requirements must satisfy the following aspects:

 1. Wide recurrence. AnyContext is required in all systems that belong to any domains
(banking, web applications, medicine, engineering, etc.).

 2. Unlimited scope. Existing context patterns are limited to certain contexts.
Con se q uently, it is fairly hard to adapt these patterns to handle context in all
domains.

 3. Generality. The AnyContext pattern should be general enough to form a base for
developing any context in any application.

 4. Wide applicability. A pattern that represents a base for modeling any context should
have an appropriate and correct level of flexibility, so that the developer can apply
the pattern to the desired application.

 5. Specificity. Utilizing the AnyContext pattern must show, at the same time, the speci
ficity to the domain. This point seems to contradict point 4, which it does not. What

218 Software Patterns, Knowledge Maps, and Domain Analysis

we are saying that any context is used to represent a wide applicability to any domain,
and shows specificity of a particular domain and its applications as well.

8.2.5 ChallengeS anD ConStraintS

8.2.5.1 Challenges
• To provide a generic definition of context based on business and software perspec

tives as a whole unit.
• To provide the means and methods for a proper encapsulation of any entity’s rel

evant information.
• To cope with different types of conditions or circumstances that may qualify an

entity in a systematic manner.
• To allow a context to include the definition of any type of actor, rather than relying

of specific actors’ roles.
• To decouple the definition of any type of entity from its actual implementation in

specific environments.
• To come up with the right abstractions that identify what a context is, how it is

structured, and how it will behave.

8.2.5.2 Constraints
• AnyActor must understand the conditions or circumstances that qualify the entity

of interest, before determining this entity’s context of application.
• AnyContext’s definition must wrap its rationale (encapsulation) within its structure,

so that it could take advantage of the rationale’s functionality, without the necessity
of exposing its rationale to the outside world.

• The circumstance or conditions that may qualify an entity must serve as significant
inputs in the encapsulation activity.

• One or many contexts share the same unique goal, which is encapsulation.
• One or many contexts must be determined by an actor.
• A context can hold at least one condition that drives the encapsulation of

information.
• The conditions that are aggregated in a context are established by at least one actor.
• One or many conditions qualify one entity of interest.
• Entities can be composed by one or many entities.

8.2.6 Solution: Pattern StruCture anD PartiCiPantS

The solution is divided into pattern’s structure and participants.

• Pattern structure
The structure of this pattern is provided using a class diagram.

• Participants
 The participants of the pattern are classified into two types: classes and pat-

terns. Classes are individual objects that construct something that appears in any

219AnyContext Stable Design Pattern

traditional class diagram. Patterns encapsulate a collection of classes and the asso
ciations that stem from these classes.
• Classes

 − AnyContext. It represents the enclosed scope of the relevant information
about any type of entity.

• Patterns
 − AnyActor. It represents the actor that determines the context based on cer

tain circumstances or conditions.
 − AnyEntity. It identifies the entity to be qualified and represented within

context.
 − AnyCondition. It represents the varied and certain/uncertain events, situa

tions, or conditions qualifying a particular entity.
 − Encapsulation. It represents the localization of any relevant information

about any type of entity.

As shown in Figure 8.1, the class diagram consists of five classes that embody the
canonical structure and behavior of the concept context. The Encapsulation class
 represents the ultimate goal of the AnyContext class. Any activity related to the enclos
ing of any entity in a determined context will be addressed by the Encapsulation class.
The class responsible for providing stimuli to the AnyContext class to enclose entities
is the class AnyActor. The AnyCondition class is responsible for qualifying entities in
a selected context (AnyContext).

<<P-EBT>>
Encapsulation

<<P-BO>>
AnyEntity

<from Logical View>

<<P-BO>>
AnyActor

1..*

1..*
1..*

1..*
1..*

1..*

1
1..*

1..*

qualifiesencloses

ch
ar

ac
te

riz
es

entities

entity

entity

entities

encapsulation

de
te

rm
in

es

context

actor

ac
to

r

condition

establishes

encapsulation

comical comical condition<<BO>>
AnyContext

<<P-BO>>
AnyCriteria

FIGURE 8.1 The structure of the AnyContext stable design pattern.

220 Software Patterns, Knowledge Maps, and Domain Analysis

8.2.6.1 CRC Cards

AnyContext (Context) (Type: BO)

Responsibility Collaboration

Client Server

Represents the canonical structure and
behavior of the context concept

Encapsulation
AnyActor
AnyCondition
AnyEntity

determines(), characterize(),
accomplish(), enlist(),
release(), lookupConditions()

Attributes: container: Map, goal: Encapsulation, conditions: List, domain: String, actor: AnyActor

Encapsulation (Encapsulation) (Type: EBT)

Responsibility Collaboration

Client Server

Localizes the relevant information
of a set of enclosed entities

AnyContext
AnyEntity

Init(), encapsulates(), disperse(),
retrieve(), isProtected()

Attributes: contextTracker: Map, entities: List, isProtected: Boolean

AnyEntity (Entity) (Type: BO)

Responsibility Collaboration

Client Server

Represents the distinct types of entities that can be
characterized by a determined context

Encapsulation
AnyContext
AnyCondition
AnyEntity

add()
remove()
peek()
presents()
define()
acknowledge()
belongs()

Attributes: entity: AnyEntity, entities: List, conditions: List, context: AnyContext

AnyCondition (Condition) (Type: BO)

Responsibility Collaboration

Client Server

Declares the set of circumstances
that helps the characterization of a set of entities

AnyContext
AnyEntity
AnyActor

qualify()
apply()
evidence()
validates()

Attributes: entity: AnyEntity, characteristic: int, behavior: int, minQualifier: int, maxQualifier: int,
basicQualifier: String[], modifier: int

221AnyContext Stable Design Pattern

AnyActor (Actor) (Type: BO)

Responsibility Collaboration

Client Server

Captures the distinct roles of an actor dealing
with a context

AnyCondition
AnyContext

acts()
starts()
stops()
acknowledges()
establishes()
disregards()
specify()
draw()
becomes()
register()
unregister()

Attributes: roles: Map, contexts: List, listeners: List, activityLog: List

8.2.6.2 Consequences
• Because contexts are ruled by a different set of conditions, determined by differ

ent sorts of actors and entities, and deployed over different environments, we need
to use different sets of new patterns to turn a pattern more application specific.
Examples of these patterns are the AnyLog stable design pattern, in the case, for
example, we need to record the activities of an actor. Another example is found in
data mining, component testing, and so on. In this case, we need to integrate the
AnyMedia stable design pattern into the current solution.

• The AnyContext design pattern is generic enough to serve as a building block
for applications in diverse domains. Using the AnyContext design pattern for
AnyEntity will require that the conditions are corrected, evaluated, and ana
lyzed. In addition, AnyActor must have enough flexibility to allow us to choose
the right conditions. However, this does not mean that the pattern is incomplete,
as this is the nature of patterns—they need to be used with other components.

• The good thing with the AnyContext design pattern is that the pattern has been
derived with stability alone in mind. It has captured the enduring knowledge of the
business and its capabilities and will stand the test of time. But the disadvantage with
it is that it might result in incorrect results when the entity is used out of context.

• The AnyContext pattern has the following benefits:
• Flexibility. A very good thing about the AnyContext pattern is that it is very

flexible, per the conditions stated by AnyActor. As the conditions change, the
context of the entity can be easily altered.

• Reusability. The AnyContext pattern is a very stable pattern. It can be reused in
many different scenarios spread across many different fields.

8.2.6.3 Applicability with Illustrated Examples
The following two scenarios provide two possible uses for this pattern. For the sake of sim
plicity, we did not include the complete pattern’s model.

222 Software Patterns, Knowledge Maps, and Domain Analysis

8.2.6.3.1 Case Study 1: Context Sensitivity Customization
in Component-Based Systems

The main idea is to create a system that will ensure proper context sensitivity customization
of component-based applications. This customization will be realized by the systematic
propagation of calling and deployment contexts, along with the provided contextual proper
ties, within the component-based systems (CBS).

Class Diagram (see Figure 8.2)

Use Case Id: 1.0
Use Case Title: Customize of Context Sensitivity in CBS Scenario

Actors Roles

AnyActor MiddlewareApp

Classes Type Attributes Operations

Encapsulation EBT contextTracker: Map encapsulate()
AnyActor BO name

role
acknowledges()
establishes()
disregards()

AnyEntity BO entities:List
conditions: List

peek()
presents()
acknowledge()

AnyContext BO container: Map
goal: Encapsulation
conditions: List
domain: String
actor: AnyActor

characterize()
accomplish()

AnyCondition BO entity:AnyEntity, basicQualifier:String[],
modifier: int

qualify()
apply()
evidence()

Component IO id
description

define()

MiddlewareApp IO type
identificationNo

acknowledge()

Collaboration IO characteristic
qualifier

validate()

EnvironmentScope IO boundary specifyCondition()

Use Case Description

 1. AnyActor (MiddlewareApp) determines AnyContext (EnvironmentScope). How
does AnyParty (MiddlewareApp) determine AnyContext (EnvironmentScope)?

 2. This AnyContext (EnvironmentScope) is used to characterize AnyEntity (Com
po nent). On what basis is AnyEntity (Component) characterized by AnyContext
(Environ mentScope)?

 3. AnyEntity (Component) must qualify AnyCondition (Collaboration). How is Any
Condition (collaboration) qualified by AnyEntity (Component)?

223
A

n
yC

o
n

text Stab
le D

esign
 Pattern

1..*

1..*

1..*

1..*

1..*

1..*

qualifies
encloses

ch
ar

ac
te

riz
es

entities

entity

entity

entities

encapsulation
de

te
rm

in
escontext

actor

ac
to

r

condition

establishes

encapsulation

comical comical condition

<<IO>>
Component

<<IO>>
MiddlewareApp

<<IO>>
Collaboration

<<IO>>
EnvironmentScope

<<IO>>
Interceptor

EBTs BOs IOs

<<P-EBT>>
Encapsulation

<<BO>>
AnyContext

<<P-BO>>
AnyActor

<<P-BO>>
AnyEntity

<from Logical View>

1..*

<<P-BO>>
AnyCriteria

<<IO>>
InterfaceVisibility

<<IO>>
ComponentProperty

FIGURE 8.2 The context sensitivity customization in CBS scenario.

224 Software Patterns, Knowledge Maps, and Domain Analysis

 4. In addition AnyActor (MiddlewareApp) must establish the AnyCondition (Colla
boration) so established previously. How is the synchronization between two cases
of establishing AnyCondition (Collaboration)?

 5. Thus in this way AnyEntity (Component) establishes encapsulation (EBT) of AnyCon
text (EnvironmentScope). Is this establishment of encapsulation reliable and useful?

Alternatives:

 1. AnyContext (EnvironmentScope) determined by AnyActor (MiddlewareApp) is
out of context.

8.2.6.3.2 Case Study 2: Context-based Storage System in Mobile Environments
The proposed systems will facilitate the access and management to stored information
from users across mobile environments based on the users involved situation or state. For
example, the system will facilitate relevant information to the user according to the users’
rights or permissions with respect to accessing information, the environments from where
the user is accessing the information, the available bandwidth, and so on.

Class Diagram (see Figure 8.3)

Use Case Id: 1.0
Use Case Title: Customize of Context Sensitivity in CBS Scenario

Actors Roles

AnyActor Browser

Classes Type Attributes Operations

Encapsulation EBT contextTracker: Map encapsulate()
AnyActor BO name

role
acknowledges()
establishes()
disregards()

AnyEntity BO entities:List
conditions: List

peek()
presents()
acknowledge()

AnyContext BO container: Map
goal: Encapsulation
conditions: List
domain: String
actor: AnyActor

characterize()
accomplish()

AnyCondition BO entity: AnyEntity, basicQualifier:String[],
modifier: int

qualify()
apply()
evidence()

Document IO id
description

define()

Browser IO type identification
capability

renderContent()

AbstractCondition IO characteristic qualifier validate()
SecureAccess IO security provideSecureEnvironment()

225
A

n
yC

o
n

text Stab
le D

esign
 Pattern

EBTs

entities

encloses

encapsulation

<<P-EBT>>
Encapsulation

<<P-BO>>
AnyEntity

<from Logical View>
entities

entity

entity

BOs IOs

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

encapsulation

context

comicalcomical condition

condition

<<IO>>
FileManager

<<IO>>
Database

<<IO>>
ImpCondition

<<IO>>
ClearanceCondition

<<IO>>
LevelOfAccess

<<IO>>
Location

<<IO>>
Browser

<<IO>>
SecureAccess

qualifies

<<P-BO>>
AnyActor

<<BO>>
AnyContext <<P-BO>>

AnyCriteria

actor

establishesac
to

r

de
te

rm
in

es
ch

ar
ac

te
riz

es

<<IO>>
Document

<<IO>>
AbstractCondition

FIGURE 8.3 The context-based storage system scenario.

226 Software Patterns, Knowledge Maps, and Domain Analysis

Use Case Description

 1. AnyActor (Browser) determines AnyContext (SecureAccess). How does AnyParty
(Browser) determine AnyContext (SecureAccess)?

 2. This AnyContext (SecureAccess) is used to characterize AnyEntity (Document). On
what basis is AnyEntity (Document) characterized by AnyContext (SecureAccess)?

 3. AnyEntity (SecureAccess) must qualify AnyCondition (AbstractCondition). How is
AnyCondition (AbstractCondition) qualified by AnyEntity (SecureAccess)?

 4. In addition, AnyActor (Browser) must establish the AnyCondition (Abstract Condition)
so established previously. How is the synchronization between two cases of estab
lishing AnyCondition (AbstractCondition)?

 5. Thus in this way, AnyEntity (SecureAccess) establishes encapsulation (EBT) of Any
Context (SecureAccess). Is this establishment of encapsulation reliable and useful?

Alternatives:

 1. AnyContext (SecureAccess) determined by AnyActor (Browser) is out of context.

SUMMARY

A pattern is an enduring solution to a problem in context and is modeled based on the
stability model. As a result, the pattern is scalable and reusable over any domain that uses
AnyContext and is stable over time too. The advantages mentioned can be inferred from the
two examples discussed under applicability section. The main problem is group of forces
acting on the system. The definition of problems in context and the constraints on the prob
lem must be realized. There are many challenges to the solution of the problem and therefore
the definition of problem and conditions must be known for design of pattern. The pattern
can be designed by using unified modeling language (UML) modeling tools like use case
diagram, class diagram, and sequence diagram. There are various matrixes that can be used
for the design of patterns such as encapsulation, abstraction, and openness. The implemen
tation of patterns can be carried out by using programming languages like Java, C++, and
PHP hypertext preprocessor (PHP). The testing of the implemented pattern can be done by
conducting various tests.

OPEN RESEARCH ISSUES

The AnyContext design pattern is difficult to understand, as it covers the rather intricate
subject of context. Thus, it is necessary to be clear in what respect the term context is being
analyzed and modeled. Because this explanation is not in the scope of the book, it is left as
an open-ended discussion for readers.

REVIEW QUESTIONS

 1. What do you mean by the term context?
 2. Is context an analysis pattern or design pattern? Explain.
 3. Is the following statement true or false? Explain your answer: Context is business

object.

227AnyContext Stable Design Pattern

 4. Explain the stability model in your own words.
 5. What are the problems with the AnyContext design pattern?
 6. List the constraints and challenges with the AnyContext design pattern?
 7. With what other patterns can the AnyContext pattern be used? Explain.
 8. List some design and implementation issues with regard to AnyContext design

pattern.
 9. Describe the AnyContext design pattern using CRC cards, class diagram, and

sequence diagram.
 10. Choose any two domains where AnyContext can be used and show how the above-

mentioned design pattern fits in. Provide the class diagram, use case, as well as
sequence diagram for each illustration.

 11. How will you test the AnyContext pattern?
 12. Describe some of the business rules of the AnyContext pattern.
 13. Give some known usages of the AnyContext pattern.
 14. What are the tips and heuristics that one must apply to the AnyContext design

pattern?
 15. Give the context where AnyContext pattern can be applied.
 16. State some business issues for the AnyContext pattern.
 17. How does the AnyContext pattern measure against the traditional context pattern?

Explain using the stability and metamodel.
 18. Are the following statements true or false?
 a. AnyContext is a BO in the negotiation analysis pattern.
 b. AnyContext is a BO in the research analysis pattern.
 c. AnyContext is a BO in the modeling analysis pattern.
 d. AnyContext is a BO in the analysis analysis pattern.
 e. AnyContext is a BO in the personalization analysis pattern.
 f. AnyContext is a BO in the dynamism analysis pattern.
 g. AnyContext is a BO in the searching analysis pattern.
 h. AnyContext is a BO in the classification analysis pattern.
 i. AnyContext is a BO in the visualization analysis pattern.
 19. Discuss briefly the functional requirements of AnyContext.

EXERCISES

 1. Name and design a few EBTs where AnyContext will be part of its BOs.
 2. Briefly describe a few scenarios of AnyContext.

PROJECTS

AnyContext stable design pattern is included in many EBTs’ and BOs’ structures. Consider

 1. The following EBTs
 a. Analysis
 b. Selfconfidence
 c. Negativity
 d. Sensitivity
 e. Delegation

228 Software Patterns, Knowledge Maps, and Domain Analysis

 2. The following BOs
 a. Assumption
 b. Brainstorming
 c. Subject
 d. Dialog
 e. Responsibility

Answer the following questions for each of the EBTs and BOs [Hint: Use Appendix A:
Pattern Documentation–Detailed Template]:

 1. List all the functional requirements of each of the concepts
 2. List all the nonfunctional requirements of each of the concepts
 3. List five challenges for each of the concepts
 4. List ten constraints for each of the concepts
 5. Draw a class diagram of each of the concepts
 6. Describe briefly three applications for each of the concepts
 7. For each described application in 6, do the following:
 a. Attach IOs to the drawing class diagram in 5
 b. Provide a significant use case
 c. Map the use case into a sequence diagram

Section IV

Knowledge Maps, Development,
and Deployment

230 Knowledge Maps, Development, and Deployment

Section IV discusses knowledge maps as road maps for building systems of patterns;
 development scenarios of the knowledge maps; and deployment, verification and validation,
and quality factors of the knowledge maps. Section IV also contains three chapters and
seven sidebars.

Chapter 9 is titled “Knowledge Maps: System of Patterns,” and it defines the knowledge
maps representation structures, quality factors, and properties; compares knowledge maps
versus traditional pattern languages; and shows samples of architectural patterns. This
chapter concludes with a summary and open research issues. This chapter also covers some
review questions, exercises, and projects.

Chapter 10 is titled “Development Scenarios: Setting the Stage,” and it discusses the
implementation issues of the knowledge maps, such as type versus class within type-oriented
paradigm, design type specification template, the uses of contracts in design types’ speci-
fication, the hook specification template, and others. The chapter also discusses the aspect-
oriented modeling. This chapter concludes with a summary and open research issues. This
chapter also provides review questions, exercises, and projects.

Chapter 11 is titled “Deployment, Verification and Validation, and Quality Factors,” and
it discusses the conceptual and practical points of views of deployment of knowledge maps,
quality factors, and verification and validation process. This chapter concludes with sum-
mary and open research issues. This chapter also provides review questions, exercises, and
projects.

Sidebar 9.1 is titled “Domain Analysis,” and it provides different definitions of domain
analysis.

Sidebar 9.2 is titled “What is the System of Patterns?” and it provides different defini-
tions of systems of patterns.

Sidebar 9.3 is titled “Knowledge Map of the CRC Cards,” where the template is filled
with a sample of CRC cards knowledge map (Fayad’s knowledge map template as shown
in Appendix B).

Sidebar 9.4 is titled “Knowledge Map of the Software Project Management,” where the
template is filled with a sample of software project management knowledge map (Fayad’s
knowledge map template as shown in Appendix B).

231

9 Knowledge Maps
System of Patterns

A good plan is like a road map: it shows the final destination and usually the best way
to get there.

H. Stanley Judd
1978

Knowledge, in literary terms, is defined as the expertise and skills acquired or gained by a
person by means of prior experience accumulated, by education, or as a result of the theo-
retical, subject-wise, or practical understanding of a particular domain. Knowledge could
also mean acquiring expertise of what is already known in a particular field of study or
understanding the facts about a subject, or gaining awareness or familiarity about a fact or
situation because of previous experience.

The management of available knowledge comprises of a number of practices used or
employed in an institution to identify, detect, create, represent, distribute, and enable adoption
of a number of insights and experiences. These could comprise knowledge, either contained
in individuals or embedded in institutional processes and practices. A knowledge map is an
enduring document or useful feature that can help people to create or set up an elaborate road
map for understanding the available pool of knowledge and its sharing and reuse in many dif-
ferent applications and systems.

9.1 INTRODUCTION

In our belief and understanding, knowledge is the mirror of experience gained or accu-
mulated by practice and/or study of a particular discipline. Once an individual acquires
this knowledge, he or she can use it as a driving force to prevent experienced pitfalls,
bottlenecks, and sloppy processes to reoccur and to create new or streamline previously
addressed environments in the search of cost-effective and reusable solutions. Therefore,
the question now is how we can represent such knowledge in a straightforward and coherent
manner, so that individuals can use it repeatedly to solve recurrent problems.

Existing software patterns and pattern languages emerged as valid answers to the afore-
mentioned question. Developers created them to leverage best practices and lessons learned
in the form of standard solutions and architectural styles to solve a set of recurrent problems
(Schmidt, Fayad, and Johnson 1996). Software patterns are standard and established solu-
tions, whereas pattern languages are architectural styles that encompass a set of interrelated
patterns (Appleton 1997). Let us consider software patterns as a particular recipe for a
complete meal and pattern languages as the cookbook containing a set of useful recipes.

Now that we have provided simple analogies to explain what software patterns and
pattern languages are, we can further explore what their disadvantages or inefficien-
cies are, especially in terms of context capturing, organization, and synthesis. Since

232 Software Patterns, Knowledge Maps, and Domain Analysis

their appearance, about a decade ago, software patterns and pattern languages have been
thought of as a great potential for reducing and improving the software development life
cycle (Buschmann 1996; Coplien 1996; Devedzic 1999; Fernandez 1998; Fowler 1997;
Gamma et al. 1995; Oestereich 1999; Schmidt, Fayad, and Johnson 1996). In fact, they
have been successfully applied to the development of large- and small-scale solutions
(Buschmann 1996; Fernandez 1998; Fowler 1997). However, the completion of a particu-
lar solution is not always a strong indicator of the existence of efficient and systematic
processes. Moreover, even though there have been successful stories of use of software pat-
terns and pattern languages, their applications have not been as coherent or straightforward
as they should be.

Most software patterns and patterns languages are created after an exhaustive software
development practice—sometimes with very good experience and sometimes with extremely
poor practices (Gamma et al. 1995; Laplante and Neill 2006). Throughout these practices,
developers are able to find themselves applying the same fine-grained and often continuously
repeated solutions to solve specific problems. In the end, these fine-grained solutions were
turned into patterns that would solve problems of the same sort. However, when it comes to
the creation of large-scale solutions from weaving a set of individual patterns, practitioners
realize that it is neither an easy nor a systematic task. Consequently, the reduction and ease
of the software development life cycle, via patterns, is still a dream difficult to accomplish.

Knowing that the idea or conception of creating and weaving such solutions still consti-
tutes a distant dream, we are motivated to explore or probe the area and current literature
and come up with an approach that will make this elusive dream come true. This approach
is the knowledge maps approach. This approach facilitates a focused road map for knowl-
edge sharing and knowledge reuse. This road map will guide us throughout the process of
applying and weaving software patterns to build systems. To understand this road map, we
need to describe some of the properties of knowledge maps, such as knowledge partition-
ing and intersection, measurement, reusability, stability, infinite software architecture gen-
eration, return of investment (ROI), remote knowledge, context awareness, and generality.
These properties will be described in the subsequent sections of this chapter.

9.2 REPRESENTATION OF KNOWLEDGE MAPS: STRUCTURE,
QUALITY FACTORS, AND PROPERTIES

Another way to define knowledge maps is as a topology of software patterns. First, they are
a topology of software patterns, because they represent a logical arrangement of patterns
according to the patterns’ rationale, scope, and nature. Second, knowledge maps, as a topol-
ogy, facilitate a flexible and coherent environment, where practitioners can systematically
plan, select, and weave patterns to build systems.

The building of systems is possible by two means. The first one is that part of the cre-
ation of knowledge maps includes the definition of a road map for knowledge representation
and reuse. The definition of this knowledge representation will require an understanding
of what knowledge to represent in a particular discipline (to assure a more generic nature
we prefer using discipline instead of application); how to extract and create this stream of
knowledge; and how to efficiently and effectively represent it. One will also need to under-
stand how to implement its chosen schema; how to adapt the knowledge when facing new
problems; how to analyze the knowledge; and, finally, how to exploit this knowledge to cre-
ate accurate solutions (Cercone and McCalla 1987). The second one is that the knowledge

233Knowledge Maps

maps facilitate a systematic and a straightforward approach to generate, filter, develop, and
deploy the pertinent features of a domain via the software stability concepts approach.

In representing the knowledge maps as the groundwork for any discipline and as the
answer to problems, such as pattern composition and traceability, we must illustrate how
knowledge maps are structured.

9.2.1 Structure of the Knowledge MapS

The structure of knowledge maps consists of five major stages that correspond to the soft-
ware stability models (SSMs) (Mahdy and Fayad 2002). These stages form the representa-
tion scheme that guides knowledge extraction, generation, and synthesis. The knowledge
maps show, by means of use of stable patterns, the overall processes to solve a set of prob-
lems within the discipline in question, such as performance evaluation and software testing.
Knowledge maps will ensure that both managers and the technical staff easily understand
these processes. For example, in online bargain systems, concepts such as negotiation, trad-
ing, and customer satisfaction are well known, by both managers and technical staff. For
this reason, these concepts must be taken into consideration when building these types
of systems. Knowledge maps, then, allow managers and technical staff to use these con-
cepts as part of their bargain systems’ solution. This is possible by exploring the context,
where these activities happened, who is executing them, the media in which they are being
executed, which mechanism will be used to execute them, as well as the expected result.

The stages of knowledge maps emphasize the elements pertinent and relevant to the soft-
ware development life cycle, as well as these elements’ collaboration and interactions in
accordance with customer requirements. Analysis concerns are also achieved by design con-
cerns (capabilities), knowledge concerns (combine analysis and design concerns) forming
stable patterns that lead to development concerns of unlimited applications using indus-
trial objects (IOs), and deployment concerns show the best quality factors of the knowledge
 concerns. The course of this collaboration is shown on a priority basis. It starts from the
element most crucial for the subject matter to exist, and then it proceeds to the ones with
lower priority. Being a low-priority element does not mean that this element is not important
within a patterns’ topology. On the contrary, the level of priority gives you the order of how
each of the elements that form the subject matter’s rationale will be handled or selected, by
either managers or a technical staff member (most likely by the technical staff).

The elements’ collaboration is either permanent or temporary. It is permanent when
these elements, along with their associations, are part of a conceptual solution (e.g., a stable
analysis pattern [SAP]). It is temporary when an already defined conceptual solution needs
to be extended by adding an extra aspect (e.g., goals connected to subgoals or capabilities
connected to other capabilities). This temporary collaboration happens at an analysis pat-
terns level, a design pattern level, or an architectural level.

To ensure consistency on how the knowledge maps are represented, we will incorporate a
set of intuitive symbols, along with their specific notations, that will simply the use and deploy-
ment of the knowledge maps. To comply with UML (Unified Modeling Language) notation,
we will also provide how each symbol is represented using UML standards (Oestereich 1999).

9.2.1.1 The Notation Used in Knowledge Map Structures
The first perspective of the knowledge maps targets a specific segment of professionals—
the nontechnical people (e.g., managers). However, this does not mean that technical people

234 Software Patterns, Knowledge Maps, and Domain Analysis

cannot use it. On the contrary, they can use it to gather an expanded global idea of the
subject of interest.

The main categories of the knowledge maps are represented by 20-sided polygons (ico-
sagon). and consists of (1) analysis concerns or goals, (2) design concerns or capabilities
(the synergy between goals and capabilities), (3) development concerns, and (4) deployment
concerns or quality factors (see Figure 9.1).

The elements in the main categories are represented by hexagons. A gray line drawn
between the element in question and its category represents the nature of these elements.
The nature of these elements is also perceived by how the elements’ names are numbered.
For example, the elements from the goals category have their names numbered 1. Figure 9.2
shows the entire numbering conventions for each one of the elements in the knowledge maps.
Regarding their naming conventions, they follow a camel casing style (e.g., ClassName).

The associations between the pertinent elements (sources) of one category and their sub-
sequent elements of another category (destinations) are denoted by the thickness of the line
according to the subsequent elements nature. For instance, from goals to capabilities, the
association is fine gray line (the same as capability). See Figure 9.3 for more details.

One important fact is that the gray line between each category indicates the transition
between categories. This transition implies the set of heuristics and evaluation indicators
discussed throughout this book, such as the ones used to find goals, capabilities, develop-
ment scenarios, and quality factors.

Have you noticed that in Figure 9.3 there are associations drawn neither from capabilities
to the development scenario elements nor from capabilities to the quality factors? Instead,
all these drawn associations depart from the hexagon representing the SArchPs. This hap-
pens because SArchPs enclose all the goals (at least two), along with their pertinent capa-
bilities, as a whole and independent base that can be reused elsewhere, regardless of the
forthcoming requirements.

9.2.1.2 Knowledge Map Template
The following knowledge map template (see Appendix B) is used throughout this book to
fully document and chronicle knowledge maps. A full knowledge map template consists of
the following sections:

Goals Capabilities Development Deployment

FIGURE 9.1 The main categories of knowledge maps.

Goals

1

Capabilities Stable
architectures

Industrial
objects

Quality
factors

2 3 4 5

FIGURE 9.2 The elements of knowledge map categories.

235Knowledge Maps

 1. Knowledge map name. What is the knowledge map called? The knowledge map
name is a noun or noun phrase and it follows the UML specifications of a class
name. It also can be called stable pattern language. Consider finding out the knowl-
edge map of e-learning as a domain so that the knowledge map name is e-learning
knowledge map, knowledge map of e-learning, e-learning stable patterns language,
or patterns languages of e-learning.

 2. Known as. What are the other names for the knowledge map?
 3. Knowledge map domain/subject/topic description. What is the description of the

domain, subject, or topic?
 4. Enduring business themes (EBTs)/goals. What are the ultimate EBTs or goals of

this knowledge map? Find the ultimate goals of the domain, subject, or topic by
asking the following questions: What is the domain, subject, topic, or concept for?
What problems does this domain, subject, topic, or concept solve? What are the
goals of the domain, subject, topic, and concept?

Measurement

Evaluation

Analysis Compatibility Flexibility

AnyStorage

AnyEntity

AnyMetric

AnyConstraint

Benchmarking

Transmission

Speed

Time

Adaptability

2

1

Goals

Deployment

Development

Capabilities

FIGURE 9.3 The associations between the elements of knowledge map categories.

236 Software Patterns, Knowledge Maps, and Domain Analysis

 5. Business objects (BOs)/properties. What are the properties/BOs of each of the goals
of the knowledge map? What are the BOs that can accomplish each of the ultimate
goals of the knowledge map?

 6. Knowledge map (core knowledge). It maps each of the goals into its BOs.

For samples of knowledge maps, refer to Sidebars 9.3 and 9.4, and Chapter 13.

9.2.1.3 Structure of Knowledge Maps and Its Relationship with UML
The second perspective, UML perspective (Oestereich 1999), of knowledge maps targets
another specific segment of professionals—the technical people (e.g., analysts, designers,
and programmers). Managers, with strong technical skills, can certainly understand this
perspective, so they can guide their crew members throughout the software development
life cycle.

The individual elements that form the structure of the knowledge maps have the follow-
ing meanings within the UML’s realm:

• Goals. They represent the specification classes that deal with the problem space
and emphasize on the rationales and objectives of any given domain. They are rep-
resented as classes, as in any other traditional class diagram. They follow a camel
casing style as their primary naming convention. Classes of this sort are marked
using the two types of stereotypes (see Figure 9.4 for more details):
• <<EBT>> indicates that classes of this sort are atomic EBTs.
• “<<Pattern-EBT>>” or “<<P-EBT>>” indicates that these classes have a sec-

ond level of abstraction that encloses other classes and, in some cases, other
patterns.

• Capabilities. Like goals, capabilities are represented as classes, as in any other
traditional class diagram. They also follow the same naming convention as
goals. Classes of this sort are marked using either the stereotype <<BO>> or
<<Pattern-BO>>, or <<P-BO>>. Their main purpose is to achieve the goals of a
subject matter. See Figure 9.5.

<<EBT>>
Goal

–attribute1
–attribute2
+opName1()()
+opName2()()

<<BO>>
Class One

–attributeName1
–attributeName2
+opName1()()
+opName2()()

<<P-BO>>
Class Two

–name
–name2
+opName()()
+opName2()()

<<P-EBT>>
Goal

–attribute1
–attribute2
+operation1()
+operation2()

<<EBT>>
Goal Two

–attribute1
–attribute2
+operation1()
+operation2()

FIGURE 9.4 The UML representation of goal.

237Knowledge Maps

• <<BO>> indicates that classes of this sort are atomic BOs.
• <<Pattern-BO>> or <<P-BO>> indicates that these classes have a second

level of abstraction.
• Development scenarios. These enclose the specific contexts to where our stable

patterns will be applied. These contexts are represented by a set of classes, along
with their interrelations and constraints. Classes of this sort are marked with the
stereotype <<IO>> to convey their volatile nature (see Chapter 6 for details).
• <<IO>> indicates that these classes are objects that proportionally change

according requirements.
• These classes are attached to the core formed by our stable patterns, by means

of using classes with a determined hooking code (e.g., hooks). Classes of this
sort are marked with the stereotype <<Hook>>.

• <<Hook>> indicates that these classes are extension points of the stable pat-
terns included in the knowledge maps.

• Quality factors. They, within knowledge maps, are considered as the deployment
goals of your subject matter. Therefore, they will follow the same representation
and same stereotype and naming conventions as the main goals of your subject
matter.

• Associations. They, in UML, are represented by lines drawn between one or more
classes. At the end of each association, multiplicities, role names, navigability,
and qualified attributes (if necessary) are indicated. Likewise, they need to have
a name; this name is usually set in italics. Because our purpose is not to give a
full description of associations’ notation, we recommend that the reader access
Oestereich (1999) for more specific details.

• A three-layer representation. The SSMs (Mahdy and Fayad 2002) are the visual
representation of the software stability concepts approach. They facilitate an
explicit separation of concerns of subject matter by clearly dividing it into three
visual layers: EBT layer (goals), BO layer (capabilities), and IO layer (context).
Figure 9.6 shows what we mean by a three-layer representation (Fayad 2002a,
2002b, 2002c; Fayad and Altman 2001; Fayad, Ranganath, and Pinto 2003).

How the knowledge maps are structured and organized depends solely on the compliance
of certain quality factors. Some of these quality factors were extracted from the enterprise

<<BO>>
–name
–name2
+opName()()
+opName2()()

<<P-BO>>
–attributeName1
–attributeName2
+opName1()()
+opName2()()

<<P-EBT>> <<BO>>
Class One

<<P-BO>>
Class Two

–name
–attributeName1
–attributeName2
+opName1()()
+opName2()()

–name2
+opName()()
+opName2()()

–name
–name2
+opName()()
+opName2()()

FIGURE 9.5 The UML representation of capabilities.

238
So

ftw
are Pattern

s, K
n

o
w

led
ge M

ap
s, an

d
 D

o
m

ain
 A

n
alysis

Negotiation

<<P-BO>>
AnyParty

Renting

<<P-BO>>
AnyAgreement

AnyAccount

opens

re
ce

iv
es

EBTs BOs

signs

1..*
LineItem

AnyEntry

AnyLog Receipt

1..*

1..*

has

1..*

has

1..*

opens

1..*

charges

initiates

OrganizationRepresentative

Renter

Car

Payment

IOs

pa
ys

FIGURE 9.6 The three-layer representation of knowledge maps.

239Knowledge Maps

software architectures literature (Fayad, Hamu, and Brugali 2000) and applied to the deploy-
ment of knowledge maps. We will illustrate these quality factors in the following sections.

9.2.1.4 Quality Factors in Knowledge Maps
Knowledge maps can guide individuals to plan, design, and solve a set of recurrent prob-
lems within a given context. What we mean by within context is the ability to focus on the
actual problem, to acknowledge and agree on the set of constraints, pitfalls, trade-offs, and
to obtain tidbits of advice pertinent to the problem, while ignoring irrelevant and useless
details. Such qualities are not conceived out of sheer magic; rather, they are conceived as
the product of compliance with a set of quality factors. These quality factors are as follows:

 1. Stability. Knowledge maps must be defined at a knowledge level by using the two
primary artifacts of the software stability concepts approach: EBT and BO. Due to
the enduring and reusable nature of both artifacts, they allow the knowledge maps
to serve as the base for creating stable solutions capable of facing ever-changing
problems without any struggle (see Figure 9.7) (Fayad 2002a, 2002b; Fayad and
Altman 2001; Fayad, Ranganath, and Pinto 2003; Mahdy and Fayad 2002).

 2. Scalability. This concentrates on the ability of the knowledge maps, along with their
enclosed elements, to adapt to evolving needs and insights without unnecessary
effort (Fayad, Hamza, and Sanchez 2005), by means of either enabling or disabling
 software patterns from and to the knowledge map and extending or reducing the
peripheral of their knowledge maps without any complication or collapse (Fayad,
Hamza, and Sanchez 2005). Figure 9.8 summarizes what we mean by scalability.

 3. Traceability by rationale. This quality concentrates on the ability of the enclosed
patterns or elements of the knowledge maps to be successfully traced back to their
original goal or usage rationale (Hamza 2002; Hamza and Fayad 2003) after their
implementation.

 4. Generative nature. This quality represents both the ability of the knowledge maps
to reproduce and originate complete solutions based upon a set of intertwined pat-
terns and the patterns’ connective rationale. These are the guidelines for selecting
patterns and their interconnection.

 5. Adequacy. Knowledge maps can satisfy the requirements of their intended and
established purposes, along with their consequences (Fayad, Hamu, and Brugali
2000). In other words, the knowledge maps offer a goodness of fit, regardless of the
context of application. This quality extends from the following:

 a. Visualizing and monitoring each of the elements in the knowledge maps

IOs layer
{}

{}

BOs layer

EBTs layer

Kn
ow

le
dg

e b
as

e

FIGURE 9.7 Stratification of the software stability concepts.

240 Software Patterns, Knowledge Maps, and Domain Analysis

 b. Efficient modeling and documentation means
 c. The ability of attaining and representing objective knowledge and the rationale

of what is known
 d. Searching and recognizing capabilities
 6. Verification and validation (V&V) ability. This quality concentrates on providing the

means for verification and validation of selected paths (synergies of goals and capa-
bilities) and decides whether the selected path is the most suitable selection or not.

Depending on the fulfillment of the aforementioned quality factors, the properties of the
knowledge maps will enable the process of building cost-effective systems.

9.2.1.5 Properties of Knowledge Maps
The proper execution of the knowledge maps’ quality factors in conjunction with a proper
knowledge representation (structure of the knowledge maps) will make obvious of more
than 24 properties of the knowledge maps and the benefits that stem or arise from them.
These properties will streamline the process of building systems from patterns. They are
partitioning, intersection, measurement, reusability, infinite software architectures genera-
tion, faster ROI, direct and remote knowledge, context awareness, and generality. The fol-
lowing are some of the properties of knowledge maps:

 1. Partitioning property of the knowledge maps. This property is driven by a common
object-oriented technology’s mantra, divide and conquer. In other words, a particu-
lar domain is partitioned as follows.

 a. First, we break a domain of interest into small sets of understanding or subdo-
mains. Put in this way, instead of dealing with a general domain that contains a

BOs

Architecture1

Architecture2

Horizantal scalability

EBT

EBT 2

BOs

BOs Hooks

FIGURE 9.8 The achievement of the scalability quality.

241Knowledge Maps

dizzy array of information, you can break this domain into fine-grained sets of
understanding, where you will be able to manage them with ease. Figure 9.9 shows
an example of domain partitioning using modeling as the domain of interest.

 b. Second, we allocate each one of the concerns that form a particular domain or
 subdomain based on their nature or purpose in the patterns’ topology: EBT,
BO, or IO. Figure 9.10 shows this particular property of the knowledge maps
(see Chapters 3 and 4).

 2. Intersection property of the knowledge maps. Through the sharing of concerns
determined among two or more patterns’ topologies and their proper partitioning,
we will be able to enhance the associated domain understanding and extension
(e.g., remote and associate knowledge) (see Figure 9.11).

 3. Measurement property of the knowledge maps. The number of goals and capabili-
ties enclosed in a pattern’s topology drives software measurement. It is used as an
indicator for measuring the cost, time, and effort that must be allocated to produce
a particular software outcome. For example, imagine a customer approaches you
and requests your services to develop a collaborative environment solution. He or
she will want to know how long it will take you to develop such a solution, how
many classes will be necessary to complete the solution, how many developers

Partitioning 1 Partitioning 2

Class diagram

Modeling domain

Static modeling

Dynamic modeling

Sequence diagram

Use case diagram

Activity diagram

Object diagram

G1

G2
G3

G1
G2

G1

G2

G2

G3

G1

G1

G2

G3

G1
G2

Package diagram
Goal

FIGURE 9.9 The partitioning of the modeling domain.

242
So

ftw
are Pattern

s, K
n

o
w

led
ge M

ap
s, an

d
 D

o
m

ain
 A

n
alysis

Goals

2

Capabilities

Development

Branding

AnyEntity

AnyMechanism

AnyBrand

AnyParty
Debugger

ColorPalette

Applet

Image

AnyIdentity

GUI

FIGURE 9.10 Separating concerns in the branding concept. (From Sanchez, H. A. “Laying the Foundations for Branding as a Stable Analysis Pattern.”
Paper presented at the 19th European Conference on Object-Oriented Programming, Glasgow, UK, July 25–29, 2005.)

243
K

n
o

w
led

ge M
ap

s

EBTs

–branding

–branding

–branding

–brand
–brand

<<P-BO>>
AnyBrand

–brand
recognizes

–brander

1..*

1..*

1..*

* –party

<<P-BO>>
AnyParty

develop

is performed

<<EBT>>
Branding

1

1..*

1..*

signs

1

1

1

1

–element

involves

<<P-BO>>
AnyEntity

–mechanism

<<P-BO>>
AnyMechanism

<<IO>>
GUI

<<IO>>
Applet

<<IO>>
ItemLoading

<<IO>>
Image

<<IO>>
ColorPalette

<<IO>>
SideLayout

<<IO>>
OUBrand

<<IO>>
Debugger

–image

–colorPalette

–layout

*

*

*
<<P-BO>>
AnyIdentity

–identity
associates

BOs IOs

FIGURE 9.10 (Continued) Separating concerns in the branding concept. (From Sanchez, H. A. “Laying the Foundations for Branding as a Stable
Analysis Pattern.” Paper presented at the 19th European Conference on Object-Oriented Programming, Glasgow, UK, July 25–29, 2005.)

244 Software Patterns, Knowledge Maps, and Domain Analysis

will be required, and how much effort will be required from them to develop such
a solution. These questions will be answered by means of knowing the number of
goals, along with the capabilities of these goals that the solution encloses.

 4. Generality and reusability property of the knowledge maps. This property deals
with the degree to which the enclosed software patterns, or the knowledge map
itself, can be reused elsewhere. This also provides the necessary logistics to create
on-demand stable architectures. Knowledge maps ensure that all their software pat-
terns are at a proper level of abstraction and generality. The proper levels of abstrac-
tion and generality of these patterns will allow us to handle the same problems
regardless of their context of application. By doing so, we will be able to create new
environments or solve problems using reusable solutions; rather than reinventing
the wheel every time, we face new problems of the same sort. Figures 9.12 and 9.13
show this property using the SAP named branding (Sanchez 2005) in two contexts:
biometrics and marketing.

 a. As you can see, the branding SAP is similar for the two contexts, due to the
generic and reusable nature inherited from the software stability concepts
approach (Sanchez 2005). The only thing that changes here is the application
context. These contexts will be attached to the core by using hooks (Fayad,
Hamza, and Sanchez 2005).

 5. Infinite stable software architectures. Due to the exploitation of useful patterns syn-
ergies from available software patterns, we are able to generate a vast number of
stable software architectures. Therefore, we can accelerate software architecture
production and work flow pattern selection, and simultaneously, we can provide an
intuitive process execution to address reusability, scalability, adaptability, and so on.

 6. Faster ROI. Due to the stable and reusable nature of the knowledge maps, software
architectures will be easier and cheaper to construct, with a significant reduction in
cost and innovation, which means a faster ROI.

 7. Context awareness and assessment of the knowledge maps. Domain understanding
and assessment sit side by side in the conceptualization of the knowledge maps. By
using the set of heuristics and questions described in Appendix A and Chapters 1

Marketing knowledge map Stigmatization knowledge map

Goal

Human–
computer

interaction
knowledge map

Capability

Measurement
knowledge map

Biometrics knowledge map

Bran
ding

AnyMetric

FIGURE 9.11 Illustration of Intersection property of the knowledge maps.

245
K

n
o

w
led

ge M
ap

s

<<EBT>>
Branding

<<P-BO>>
AnyMechanism

<<P-BO>>
AnyIdentity

EBTs BOs

signs

<<P-BO>>
AnyBrand

<<P-BO>>
AnyParty

<<IO>>
SuspendedDetection

<<IO>>
RFLP

<<IO>>
AbstractMaterial

<<IO>>
DNASequence

<<IO>>
ImpMaterial

<<IO>>
BiologicalMaterial

IOs

<<P-BO>>
AnyEntity

<<IO>>
Suspect

–layout

*

–image*

–branding
1

–brander

1..*

is performed

–branding1

–brand

1..*

develop

–branding 1

–mechanism1

involves

–element

1..*

–brand1..*

–party*

recognizes

–identity1..*

–brand1

associates

<<IO>>
Saliva

<<IO>>
Hair

FIGURE 9.12 Using branding in biometric systems.

246
So

ftw
are Pattern

s, K
n

o
w

led
ge M

ap
s, an

d
 D

o
m

ain
 A

n
alysis

<<EBT>>
Branding

<<P-BO>>
AnyMechanism

<<P-BO>>
AnyIdentity

EBTs BOs

signs

<<P-BO>>
AnyBrand

<<P-BO>>
AnyParty

<<IO>>
EmotionalAppealing

<<IO>>
Image

<<IO>>
ColorPalette

<<IO>>
ProductDesign

<<IO>>
Tagline

<<IO>>
Shape

<<IO>>
NoidaBrand

IOs

<<P-BO>>
AnyEntity

<<IO>>
Practitioner

–image

*

–colorPalette

*
–branding

1

–brander

1..*

is performed

–branding1

–brand

1..*

develop

–branding 1

–mechanism1

involves

–element

1..*

–brand1..*

–party*
recognizes

–identity1..*

–brand1

associates

<<IO>>
MobilePhone

–shape

–tagline

appliesTo

FIGURE 9.13 Using branding in marketing.

247Knowledge Maps

through 8, software practitioners will ensure that they have identified or collected
the right requirements. The proper collection and identification of these require-
ments will guarantee a unified and accurate pattern topology, spanning all the
building blocks of a particular domain or discipline.

9.3 KNOWLEDGE MAPS VERSUS TRADITIONAL
PATTERN LANGUAGES

This section provides the results of a comparative study between existing pattern lan-
guages and the knowledge maps. The dimensions from where these two structures were
compared are the quality factors of knowledge maps and the properties of both.

After an extensive perusal of traditional pattern languages, we obtained the following
results:

 1. Missing indicators and guidelines for assuring a focused nature or behavior for
the provided patterns of the pattern languages with respect to a selected problem.
There is no method for deciding which patterns to use and add in a particular
pattern language. Therefore, practitioners are infected with a “keep adding what
seems to satisfy my requirements” kind of inaccurate behavior. These actions at the
end will provide more problems than visible benefits for software practitioners. For
example, you may find out that there was indeed a better solution for your problem.
Therefore, you will have to do a lot of refactoring or code maintenance.

 2. No identifiable classification of patterns’ rationale within a pattern language’s
structure. This also includes the lack of pattern languages concerns partitioning,
which undermines the proper distribution of patterns’ responsibilities in a pat-
tern language. This will bring serious problems, like macho class problem (Fayad
2003), where all responsibilities are positioned in one class or high coupling and
low cohesion problems, and so on.

 3. Loss of traceability across all the different stages of software development, espe-
cially when tackling the deeper levels of patterns’ implementation. There is a
traceability problem in the instantiation processes of traditional pattern languages,
which results in instances that cannot be traced back to their original design pat-
terns (Hamza and Fayad 2003). The instances were deduced from the design pat-
tern, but the internal structure of design patterns is invisible in traditional pattern
languages (Manns et al. 2000).

 4. No clear and systematic process to weave patterns together and create software
architectures. This is done on an ad hoc basis; therefore most of the resulted solu-
tions accuracy is questionable and open to serious contamination and ripple effects
(Coplien 1996).

 5. Loss of generality of pattern languages’ patterns, because most of these patterns
tend to be out of context, and usually, their implementation instances are lost within
the pattern language’s implementation (Wu, Hamza, and Fayad 2003). There is no
way to pinpoint the pattern instances once the entire pattern language has been
implemented (Cercone and McCalla 1987; Manns et al. 2000).

 6. There is no distinction between associate and remote knowledge in pattern lan-
guages. This statement leads to the following questions: How can we associate two

248 Software Patterns, Knowledge Maps, and Domain Analysis

or more pattern languages of a similar discipline? How can we intersect one pattern
language with one or more pattern languages from a different (remote) discipline?
The answer to these questions is that with traditional pattern languages, there is
no systematic way to achieve that; usually, this is done on a ad hoc and temporary
basis (Connelly et al. 2001, pp. 39–49).

 7. Pattern languages are built for here and now, not for the future. Most of the pat-
terns that they enclose have been built based on artifacts or components bound to
specific business processes. We know that as business policies, mission, and so
on change, the processes would change too; therefore, pattern languages would
change as a consequence. As a result, there will be additional effort, cost, and time
involved to maintain pattern languages in answer to new businesses’ changes.

 8. Pattern languages do not provide a retrospective of the subject matter’s ratio-
nale. This disadvantage has two effects: First, there is a chance of building the
wrong pattern language, due to its enclosed element design based on a wrong
analysis of subject matter. Second, because the intent of the pattern language in
a particular domain has been obscured by ignoring its original rationale, how
the pattern language deals with the problem they addressed is neither straight-
forward nor easy.

Throughout the previous section, it was made clear that the knowledge maps overcome all
the problems or shortages that traditional pattern languages always experience, especially
when dealing with requirements, solution formulation, pattern composition, architecture
generation, and system creation. The next section will illustrate some sample architectural
patterns generated using the knowledge maps.

9.4 SAMPLES OF SArchPs

We will describe a couple of SArchPs that were generated by using the knowledge
maps. We will also use a short template to document this architectural pattern. In this
template, we will describe the essentials of the architectural patterns, while ignoring
specific details of the solution’s implementation. All the samples were extracted from
previous work on the software stability concepts approach (Fayad, Islam, and Hamza
2003; Yavari and Fayad 2003).

9.4.1 architecture 1

The first SArchP is called model-view-mapping (MVM) (Fayad, Islam, and Hamza 2003)
and is shown in Figure 9.14.

• Name. Stable MVM architectural pattern
• Problem. How to build a high-level architecture model that can provide, for any

application, flexible mapping between any abstract model (which could be either
a passive model, such as text, frames, and diagrams, or an active model or alive
model, which is a model returned by a specific application, such as animating data)
to any abstract views and vice versa.

• Solution and participants
• Solution

249Knowledge Maps

• Participants
 − Classes

 − Applicability. It describes the application and the purpose for which
mapping is needed. For instance, in one application, a simple view that
extracts part of the data from the original model is needed for the sake
of simplicity.

 − Patterns
 − AnyModel. It describes the models within the application. The model is

a representation of the data within the application.
 − AnyView. It represents the view of a collection of data (the model).
 − AnyParty. It represents both the modeler and the viewer. The modeler

is responsible for building the data models in the appropriate abstract
level. The viewer requests the model and the mapped view of that model.

 − AnyMedia. It identifies and defines the media upon which the models
and views are mapped and transmitted. It also represents the media by
which the views are to be displayed (e.g., devices and PCs).

 − Mapping. It defines the mapping rules between the models and their
views. It also determines how this mapping will be performed.

 − Searching. It searches AnyMedia for the requested application, model,
or view.

 − AnyApplication. It represents the application that is requested by
AnyParty.

<<P-BO>>
Any Model

<<P-BO>>
AnyMechanism

<<P-EBT>>
AnyMapping

gets

<<P-EBT>>
Searching

<<P-BO>>
AnyParty

<<P-BO>>
Applicability

1..*

–party

1..*

generates

1..*

–searching
search

requests

<<P-BO>>
AnyMedia<<P-BO>>

AnyApplication

–specific application
uses

1..*

displays

1..*
appears/transmits

1..*

–searching

search

1..*

–party

views

–view

1..*

–mapping

maps

1..* returns

search

{Such as
–Viewing
–Simplicity
–Modeling
–Scalability
–Tractability}

FIGURE 9.14 The stable MVM architectural pattern.

250 Software Patterns, Knowledge Maps, and Domain Analysis

9.4.2 architecture 2

The second SArchP is called magnetic resonance imaging (MRI) architectural pattern
(Yavari and Fayad 2003) and shown in Figure 9.15.

• Name. Stable MRI architectural pattern.
• Problem. The MRI system provides two-dimensional images of soft cells of differ-

ent organs. Each image shows a horizontal picture of a particular height. Any issue
or problem in the organ would be presented in several consecutive pictures. So, the
problem is how to build an accurate, fast, effective, and easy-to-use application for
MRI visual analysis that performs all required processes and saves the results, so they
are always available to be discussed and/or reviewed by the medical professionals.

• Solution and participants
• Solution
• Participants

 − Classes
 − Patterns

 − Recording. This Pattern-EBT indicates the purpose of using a log in a
set of application areas.

 − Interpreting. It provides the means for explaining something, which is
loose or fuzzy or is not obvious.

 − Viewing. It indicates the rules for using a set of distinct views of a spe-
cific subject (e.g., system model).

 − AnyView. It represents the view of a collection of data (a determined
model).

 − AnyParty. It represents both the recorder and the interpreter. The mod-
eler is responsible for building the data models in the appropriate abstract
level. The viewer requests the model and the mapped view of that model.

<<P-BO>>
AnyMedia

<<P-EBT>>
Recording

<<P-EBT>>
Viewing

<<P-BO>>
AnyViewingMechanism

<<P-EBT>>
Interpreting

–recording

–interpreting

sends info

1..*

appears/transmits

–recording–media

1..* utilizes

<<P-BO>>
AnyView

<<P-BO>>
AnyOpinion

<<P-BO>>
AnyInterpretingMechanism

<<P-BO>>
AnyParty

<<P-BO>>
AnyLog

–recording

–view

1..*

stores

–media

1..* –log1..*

shows

–mechanism1..*

–opinion

provides

–mechanism

1..*

–viewinguses

–mechanism1..*

–view1..*

produces

–recording

–party

partakes

–party

*

–interpreting

performs
–interpreting

–party

uses

FIGURE 9.15 The stable MRI architectural pattern.

251Knowledge Maps

 − AnyMedia. It identifies and defines the media, upon which the models
and views are mapped and transmitted. It also represents the media by
which the views are to be displayed (e.g., devices and PCs).

 − AnyLog. It represents the canonical logging process itself.
 − AnyViewingMechanism. It encapsulates the behavior and properties of

mechanisms associated with viewing in one pattern.
 − AnyInterpretingMechanism. It encapsulates the behavior and properties

of mechanisms associated with interpreting in one pattern.
 − AnyOpinion. It represents the beliefs about something that will be

shared among a set of parties.

SUMMARY

Using knowledge maps is a new movement and it provides you a fresh vista and better
opportunities; therefore, a few examples were defined under the principles in software sta-
bility concepts approach and used in our comparative study. The following represents how
knowledge maps have overcome traditional pattern languages problems:

• Systematic capture processes and full understanding of the domain where a tar-
geted solution must exist. This will provide a unified domain knowledge discovery
and understanding approach, spanning all different categories for stable patterns.

• Great reuse and on-demand context adaptation, via an identifiable stable core
and its extension points. IOs or transient aspects are attached to the core according
to the context-specific needs via these extension points. These qualities will greatly
reduce the cost of adaptation or upgrades.

• Full traceability capability across the implementation of knowledge maps. This is
accomplished by describing a two-way mapping relationship between stable design
patterns (SDPs) and their implementation instances. Therefore, traceability, maintain-
ability, and stability become visible base for evaluation of your software architectures.

• Unprecedented flexibility. Knowledge maps provide an unprecedented flexibility
by enabling a business to add or remove functionality from its system and on a real-
time basis. Therefore, a rapid ROI will occur, because software architectures would
become cheaper and they are faster to construct, as well as reuse.

• Software architecture definition. There is rapid software architecture definition
and application through a systematic work flow pattern process and an identifiable
pattern composition process.

OPEN RESEARCH ISSUES

As seen here, knowledge maps are the magical and golden recipes for building stable soft-
ware applications, when we make use of reusable patterns. As this field is still emerging and
in its nascent phase, there are some issues that have not been addressed yet.

 1. Knowledge map tool support. There is a fool-proof methodology available to test
and evaluate the knowledge map, which has been illustrated and highlighted in this
chapter, but there are existing tools to test the created knowledge map. The second
issue is that there are no standard tools that can be used to draw the structure of the

252 Software Patterns, Knowledge Maps, and Domain Analysis

knowledge map. So, this might slow down the process. But we are working on two
different tools:

 a. Knowledge map engine
 b. Hook engine
 2. Software economics. It examines the application of economic factors at all levels

of decision making in the management and development of software. The applica-
tion of software stability impacts all economical aspects of software management
and development. The knowledge map will provide several objectives that can be
reached easily. They are as follows:

 a. A road map for software economics
 b. Empirical views of where money goes
 c. Understanding and controlling software costs and effort
 d. Identifying shortcomings in existing work
 e. Discussion of economic perspectives on software architecture promises
 f. Reviewing state of the art in software economics
 g. Better form of making decisions in managerial and technical aspects of all

activities of software development.
 h. Financial evaluation and strategic analysis of software development based on

knowledge maps and software stability
 The goal of future research is to study and enhance existing evaluation techniques

with knowledge maps in mind and develop new ones to improve the effectiveness
of decision-making processes that impact software economic parameters in soft-
ware development.

 Knowledge maps also provide practical and intuitive views of many software
economics issues, and it would be very useful to focus on software economics
research by answering the following questions that are related to software quality:

 a. How to establish quality assurance of software projects and how much would it
cost?

 b. How can quality data of the knowledge map and measurement of existing soft-
ware projects help in evaluating future software projects?

 c. How do processes of the knowledge maps impact software economics?
 3. Software measurements. Knowledge maps and SSM have many add-value and

embedded qualities, such as stability over time, reusability, usability, scalability,
understanding, customizability, extensibility, adaptability, configurability, integra-
bility, traceability, testability, simplicity, and maintainability. Knowledge maps and
the SSM can revolutionalize software measurements, impact existing metrics, and
introduce new list of metrics: How fast can an application or a number of applica-
tions be produced? How easy to generate an application or a number of applica-
tions? How many architecture can be produced from a knowledge map? How many
applications can be produced per architecture? Knowledge maps also include a
build-in any additional quality and quantity aspects as part of the knowledge maps.

 4. Return on investment (ROI). It is a ratio that is used to measure the performance of
any investment or a number of investments in software developments by dividing the
net profit (gain of investment/cost of investment) by the cost of investment. We also
know that because of the stable and reusable nature of the knowledge maps, software

253Knowledge Maps

architectures will be easier and cheaper to construct, with a significant reduction in
cost and innovation which means a faster and better ROI. We achieved over 76.3%
ROI of early development and 84% ROI of later development. These are very promis-
ing findings and we will track and study the ROI in the future and new developments.

 5. Knowledge classification. Knowledge maps and SSM provide a new and useful
approach for knowledge classification. Knowledge maps and SSM classify knowl-
edge into three categories: (1) EBT or goals or SAP; (2) BOs, capability, or SDPs;
and (3) IOs or application objects. Points (1) and (2) are general knowledge that
can be applied in any domain, and objects in (3) are domain- and application
 knowledge–specific, which is limited to the domain and application knowledge.
It will be very useful to apply the knowledge maps and SSMs classification
approach to as many software developments, and as many nonsoftware develop-
ment projects as possible. This will also prove that the classification approach of
the knowledge maps is more effective and efficient.

 6. Domain engineering, domain analysis, and domain modeling. Domain engineer-
ing is an engineering approach of reusing domain knowledge during the devel-
opment of new software systems. Domain analysis is the process of identifying
domain boundary and scope and discovering commonalities and variability among
the subdomains within the domain, and domain modeling is a process of creating
a reusable model of the domain aspects or domain (see Sidebar 9.1). Both domain
analysis and domain modeling are part of domain engineering. Knowledge maps
and the SSM provide an established approach for domain engineering and produce
more generic and domain-less patterns that can be reused in many different ways
and in many different domains.

REVIEW QUESTIONS

 1. Justify the following statement: Software patterns and patterns languages can be
used to solve recurring problems.

 2. Distinguish between software patterns and patterns language.
 3. Provide an analogy for software patterns and patterns language and describe it.
 4. Explain, why in spite of using patterns to devise application solutions, achieving

short software development life cycles is not possible?
 5. What are the shortcomings of the currently used methodology that makes use of

patterns and patterns language for modeling a software problem?
 6. What can be a solution for achieving shorter software life cycles for software

development?
 7. What is meant by knowledge map?
 8. Why is it correct to say Knowledge maps are a topology of software patterns?
 9. In what two ways can a system be built?
 10. Briefly describe the structure of the knowledge maps.
 11. Match the following column entries:
 a. Concern – Represented by
 b. Analysis – Quality factors

254 Software Patterns, Knowledge Maps, and Domain Analysis

 c. Design – IO
 d. Implementation – Architectural patterns
 e. Deployment – Capabilities
 f. Knowledge – Goals
 12. Explain what is meant by temporary and permanent collaboration of an element

within the context of knowledge map.
 13. The main targets for first perspective (structure notation) of a knowledge map are

___________. However, ____________ can also use it to get a high-level idea of the
domain.

 14. How are main categories of knowledge map represented? Illustrate with a
diagram.

 15. What notation is followed for representing the elements of main categories of
knowledge map? Use a diagram to explain it clearly.

 16. How are the associations between categories and elements depicted? Draw a
diagram.

 17. Why do associations depart from the hexagon represented by SArchPs?
 18. The UML perspective is target at ____________________.
 19. Can managers understand the UML perspective? How will it be useful to them?
 20. What do the following concepts mean within the context of UML?
 a. Goals
 b. Capabilities
 c. Development scenarios
 d. Quality factors
 e. Associations

Use diagrams wherever possible to depict the relationship.
 21. Which two stereotypes are used to depict the classes that represent the goal of the

application? What do they each of them represent?
 22. When is the stereotype <<BO>> used? When is <<Pattern-BO>> or <<P-BO>>

used?
 23. What do stereotypes <<IO>> and <<Hook>> indicate?
 24. What is the three-layer representation approach of knowledge maps?
 25. How can knowledge maps provide within context solutions to recurring problems?

Start with providing your understanding of the term within context.
 26. Describe how each of the above listed quality factors can be achieved by using a

knowledge map.
 27. Enlist knowledge map properties.
 28. Why do you think the following statement is correct?

 The proper implementation of quality factors in conjunction with a prop er
 knowledge representation (structure of the knowledge maps) will make
 obvious the properties of the knowledge maps and the benefits that stem from
them.

 29. Justify. Knowledge map properties will help to streamline the process of building
systems from patterns.

 30. Contrast knowledge with traditional patterns languages and list the advantages of
the knowledge map.

 31. How does the knowledge map answer the shortcomings of patterns language?

255Knowledge Maps

EXERCISES

 1. Read about patterns language and come up with some shortcomings which are not
listed in this chapter.

 2. Form a group of three people and debate on whether the structure notation used for
representing knowledge maps is effective or not.

 3. In a group of two, analyze the given MVM and MRI architectural patterns.

PROJECTS

 1. Using knowledge maps structure’s notation, create a knowledge map for the
following:

 a. Tax calculation
 b. Data search engine
 c. Creating application log
 2. Give a three-layer representation for the above applications.
 3. Using the template given under Section 9.4, document the following architectural

patterns:
 a. Recording
 b. Encapsulation
 c. Data hiding
 e. Abstraction
 f. Reusability
 g. Scalability
 h. Partitioning
 4. Using knowledge maps structure’s notation, create a knowledge map for the follow-

ing film domains: Animation, Live-action, Filmmaking, Film criticism.
 5. Using the knowledge map template, document the knowledge map for each of the

domains in Project 4.
 6. Using knowledge maps structure’s notation, create a knowledge map for the follow-

ing economics domains: Agricultural economics, Bio-economics, Consumer eco -
no mics, Economic systems, Energy economics, Entrepreneurial economics,
Experi mental economics, Information economics, Islamic economics.

 7. Using the knowledge map template, document the knowledge map for each of the
domains in Project 6.

 8. Using knowledge maps structure notation, create a knowledge map for the
 following visual arts domains: calligraphy, connoisseurship, creative arts, draw-
ing, fine arts, painting, photography, sculpture.

 9. Using the knowledge map template, document the knowledge map for each of the
domains in Project 8.

 10. Using knowledge maps structure notation, create a knowledge map for the follow-
ing law domains: criminal law, Islamic law, Jewish law, civil law.

 11. Using the knowledge map template, document the knowledge map for each of the
domains in Project 10.

 12. Using the knowledge maps structure notation, create a knowledge map for the fol-
lowing life sciences domains: biochemistry, bioinformatics, computational biology,
cell biology, genetics, nutrition.

256 Software Patterns, Knowledge Maps, and Domain Analysis

 13. Using the knowledge map template, document the knowledge map of each of the
domains in Project 12.

 14. Using the knowledge maps structure notation, create a knowledge map for the
following applied science domains: artificial intelligence, ceramic engineering,
computing technology, electronics, energy, energy storage, engineering physics,
environmental technology, materials science and engineering, microtechnology,
nanotechnology, nuclear technology, optics, zoography.

 15. Using the knowledge map template, document the knowledge map for each of the
domains in Project 14.

 16. Using the knowledge maps structure notation, create a knowledge map for the follow-
ing information domains: communication, graphics, music technology, speech recogni-
tion, visual technology.

 17. Using the knowledge map template, document the knowledge map for each of the
domains in Project 16.

 18. Using the knowledge maps structure notation, create a knowledge map for the fol-
lowing industrial domains: construction, financial engineering, manufacturing,
machinery, mining, business informatics.

 19. Using the knowledge map template, document the knowledge map for each of the
domains in Project 18.

 20. Using the knowledge maps structure notation, create a knowledge map for the
following military domains: ammunition, bombs, guns, military technology and
equipment, naval engineering.

 21. Using the knowledge map template, document the knowledge map for each of the
domains in Project 20.

 22. Using the knowledge maps structure notation, create a knowledge map for fol-
lowing domestic domains: educational technology, domestic appliances, domestic
technology, food technology.

 23. Using the knowledge map template, document the knowledge map for each of the
domains in Project 22.

 24. Using the knowledge maps structure notation, create a knowledge map for the
 following engineering domains: aerospace, agricultural, architectural, biological,
biochemical, biomedical, ceramic, chemical, civil, computer, construction, cryogenic,
electrical, electronic, environmental, food, industrial, materials, mechanical,
 mechatronics, metallurgical, mining, naval, nuclear, optical, petroleum, software,
structural, systems, textile, tissue, transport.

 25. Using the knowledge map template, document the knowledge map for each of the
domains in Project 24.

 26. Using the knowledge maps structure notation, create a knowledge map for the
following health and safety domains: biomedical engineering, bioinformatics, biotech-
nology, cheminformatics, fireprotection engineering, health technologies, phar ma -
ceuticals, safety engineering, sanitary engineering.

 27. Using the knowledge map template, document the knowledge map for each of the
domain in Project 26.

 28. Using the knowledge maps structure notation, create a knowledge map for the fol-
lowing transportation domains: aerospace, aerospace engineering, marine engi-
neering, motor vehicles, space technology.

257Knowledge Maps

 29. Using the knowledge map template, document the knowledge map for each of the
domain in Project 28.

 30. Form a knowledge map with stability in mind for the problem statement D1 which
is titled “Ocean Resources Management System” (see Appendix D).

 31. Form a knowledge map with stability in mind for the problem statement D2 which
is titled “Dengue Fever Prevention and Outbreak Management System” (see
Appendix D).

 32. Form a knowledge map with stability in mind for the problem statement D3 which
is titled “Organizing Cricket World Cup” (see Appendix D).

 33. Form a knowledge map with stability in mind for the problem statement D4 which
is titled “Pollution Management” (see Appendix D).

 34. Form a knowledge map with stability in mind for the problem statement D5 which
is titled “Natural Disaster Tracking System” (see Appendix D).

 35. Form a knowledge map with stability in mind for the problem statement D6 which
is titled “Global Warming Control System” (see Appendix D).

 36. Form a knowledge map with stability in mind for the problem statement D7 which
is titled “Circus” (see Appendix D).

 37. Form a knowledge map with stability in mind for the problem statement D8 which
is titled “Jurassic Park” (see Appendix D).

SIDEBAR 9.1 Domain Analysis

In the software engineering field, domain analysis is the intricate process of analyzing and
evaluating related software systems in a given domain to seek their common and variable
parts or modules. Experts suggest a number of methods for domain analysis. Each one of
them produces domain models like feature tables, facet tables, facet templates, and generic
 architectures. A generic architecture system explains all available systems in a domain.
It also provides an insight of proposed methodologies for domain analysis (Champeaux et al. 1993;
Hjørland 1995; Arango and Prieto-Diaz 1989).

Domain analysis is “the process of identifying, collecting, organizing, and representing the
relevant information in a domain, based upon the study of existing systems and their development
histories, knowledge captured from domain experts, underlying theory, and emerging technology
within a domain” (Kang et al. 1990).

The products, or artifacts, of a domain analysis are sometimes object-oriented models (represented
with UML) and/or data models (represented with entity-relationship diagrams [ERD]). Software
engineers employ these models as a foundation for the implementation of software architectures
and applications.

REFERENCES

Arango, G. and R. Prieto-Diaz, eds. Domain analysis: Concepts and research directions. In Domain Analysis:
Acquisition of Reusable Information for Software Construction. IEEE Computer Society Press,
May 1989.

de Champeaux, D., D. Lea, and P. Faure. Domain Analysis, chapter 13, Object-Oriented System Development.
Addison Wesley, 1993.

Hjørland, B. and H. Albrechtsen, “Toward a New Horizon in Information Science: Domain-Analysis,”
Journal of the American Society for Information Science vol. 46, no. 6 (1995): 400–425.

Kang, K., S. Cohen, J. Hess, W. Novak, and A. Peterson. “Feature-Oriented Domain Analysis (FODA) Feasibility
Study.” Technical Report. CMU/SEI-90-TR-021, Software Engineering Institute, November 1990.

http://www.crcnetbase.com/action/showLinks?crossref=10.1002%2F%28SICI%291097-4571%28199507%2946%3A6%3C400%3A%3AAID-ASI2%3E3.0.CO%3B2-Y

258 Software Patterns, Knowledge Maps, and Domain Analysis

SIDEBAR 9.2 What is the System of Patterns?

Pattern systems have been the focus of immense interest for the last few years and experts in the
software engineering field have been using them recently, especially in the field of object-oriented
and component-based software areas (see http://www.opengroup.org/architecture/togaf8-doc/
arch/ chap28.htm). Their usage is helping developers to extend the basic principles and concepts
to a number of architectural domains. However, available literature on pattern systems indicates a
 conflict of terminology, as a number of experts like to use the term architecture to relate to software
domains and a number of patterns as architectural patterns. In essence, patterns are useful tools
of subjecting building blocks into beneficial context.

One example for this is describing a reusable solution to indicate a simple and easy to
understand a problem. In fact, building blocks are what you use and employ, whereas patterns
can inform you how you can employ and use them. They also indicate the when, why, and
what parts of the problem at hand. With pattern systems, one can seek to identify various
combinations of architectures and/or solution building blocks to arrive at effective and practical
solutions.

A knowledge map is a system of patterns that includes SAPs + SDPs + SArchPs.

SIDEBAR 9.3 Knowledge Map of the CRC Cards

The knowledge map template consists of 6 sections as following for the knowledge map of the
CRC Cards:

 1. Knowledge map name. Class responsibility and collaborator (CRC) cards
 2. Knowledge map nickname. None
 3. Knowledge map domain/subject/topic description. The CRC cards are index cards that

are utilized for mapping candidates to classes in predefined design scenarios, for example,
use case scenarios. The objective of CRC cards is to facilitate the design process, while
ensuring an active participation of involved designers. This chapter represents the first
attempt toward a CRC card knowledge map or stable pattern language representation, via
stable patterns, as a mean to discover, organize, and utilize CRC cards goals. Each stable
pattern focuses on a distinctive activity and provides a way by which this activity can be
conducted efficiently. The knowledge map or stable pattern language is a continuation of
our early effort in improving the effectiveness of CRC cards and their role in the design
process.

 4. EBTs/goals. Name the EBTs of the CRC cards and provide a short description of each
EBT and organize your answer in Table 9.1.

 5. BOs/properties. Name the BOs of the CRC cards and provide a short description of each
BO and organize your answer in Table 9.2.

 6. Knowledge map (core knowledge). Map each EBT to its BOs of the CRC cards and
 organize your answer in Table 9.3.

SIDEBAR 9.4 Knowledge Map of the Software Project Management

The knowledge map template consists of 6 sections as following for the knowledge map of
 software project management:

 1. Knowledge map name. Software project management (SPM)
 2. Knowledge map nickname. None
 3. Knowledge map domain/subject/topic description. SPM is the art and science of planning

and leading software projects (Stellman and Greene 2005). It is a subdiscipline of project

http://www.opengroup.org
http://www.opengroup.org

259Knowledge Maps

TABLE 9.1
EBTs of CRC Cards

EBTs/Goals Description

Brainstorming A group problem-solving techniques in which members sit around and come up with ideas
and possible solutions to the problem.

Current implementations of the brainstorming process are bound to a specific problem domain.
Engagement We are always concerned about the quality of the involvement between participants

involved in a particular activity, when interacting with each other. The act of sharing in the
activities of a group.

Traceability

Identification

Modeling The actual problems range from the overloaded generation of too many responsibilities per
class to the lack of specific class roles, which defined the position of a class in a
pre-animated scenario in accordance with certain responsibility.

TABLE 9.2
BOs of CRC Cards

BOs/Capabilities Description

AnyClass
AnyRole
AnyResponsibility
AnyCollaboration
AnyService
AnyAttribute
AnyClient
AnyForm
AnyMedia
AnyParty
AnyContext
AnyActivity
AnySkill

TABLE 9.3
Knowledge Map of CRC Cards

EBTs BOs

Brainstorming AnyParty, AnyForm, AnyContext, AnyMedia
Engagement AnyParty, AnyCommitment, AnyDisposition, AnyActivity, AnySkill

260 Software Patterns, Knowledge Maps, and Domain Analysis

management in which software projects are planned, implemented, monitored, and
 controlled (Stellman and Greene 2005; Pankaj 2002; Chemuturi and Cagley 2010).

 4. EBTs/goals. Name the EBTs of the SPM and provide a short description of each EBT and
organize your answer in Table 9.4.

 5. BOs/properties. Name the BOs of the SPM and provide a short description of each BO
and organize your answer in Table 9.5.

 6. Knowledge map (core knowledge). Map each EBT to its BOs of the SPM and organize
your answer in Table 9.6.

TABLE 9.4
EBTs of SPM

EBTs/Goals Description

Allocation The process of parceling out a monetary budget, a technology budget, system
requirements, software requirements, effort, or any other quantity that can be
subdivided and assigned to the elements of a process or a system

Utilization
Need
Management
Analysis
Tracking
Assessment

TABLE 9.5
BOs of SPM

BOs/Capabilities Description

Activity An element of work performed during the course of a project. An activity
normally has an expected duration, an expected cost, and expected resource
requirement. Activities can be subdivided into tasks.

Assumption A condition accepted as true but which cannot be verified at the current time or
which would be too expensive to verify at the current time.

Authority The power to make and implement decisions that must be made to fulfill one’s
responsibilities

Baseline A work product that has satisfied its predetermined acceptance criteria and has
been placed under version control. Baselines provide the basis for future work
during software development and maintenance. Synonymous with baselined
work product

Constraint A limitation imposed by external agents on some or all of the operational domain,
operational requirements, software requirements, project scope, monetary
budget, technology budget, resources, completion date, and platform technology

Contract A statement of understanding between two or more parties. A contract may be
informal or legally binding (i.e., formal). See also Acquirer, Memo of
understanding, and Statement of work

Event Crisis—an event that halts or seriously impedes progress

(Continued)

261Knowledge Maps

REFERENCES

Chemuturi, M., and T. M. Cagley Jr. Software Project Management: Best Practices, Tools and Techniques.
Boca Raton, FL: J.Ross Publishing, 2010.

Pankaj, J. Software Project Management in Practice. Boston, MA: Addison-Wesley, 2002.
Stellman, A., and J. Greene. Applied Software Project Management. Sebastopol, CA: O’Reilly Media, 2005.

TABLE 9.5
(Continued) BOs of SPM

BOs/Capabilities Description

Critical path The process of determining the set of (one or more) longest paths through a
schedule network

Defect A flaw in a work product that renders it incorrect, incomplete, and/or inconsistent.
See also error and failure

Risk
Scope
Resource
Project
Milestone
Task
Party

TABLE 9.6
Knowledge Map of SPM

EBTs BOs

Tracking Party, Actor, Criteria, Mechanism, Data, Entity, Media
Assessment Party, Actor, Criteria, Mechanism, Outcome, Log, Reason, Type, Entity, Media

263

10 Development Scenarios
Setting the Stage

Always design a thing by considering it in its next larger context—a chair in a room,
a room in a house, a house in an environment, an environment in a city plan.

Eliel Saarinen
Bederson and Shneiderman, 2003

10.1 INTRODUCTION

So far, we have learned and understood how we can identify underlying goals of any domain,
the capabilities needed to fulfill or achieve them, and the synergy between them to generate
necessary knowledge maps or stable analysis, design, and architectural patterns. Now, we will
discuss the context or the situation wherein these knowledge maps will be deployed.

Context is an important entity that is useful in providing a precise message to help us
arrive at a valid conclusion. Context is the notable environment, ambience, or scenario
where one can expect something to occur or happen. Our brain employs the concept of
context to administer a large amount of details culled from a number of different scenarios,
like society, work space, family ambience, and community surroundings. By using the
principles of context, one can instantly find out and decipher what type of information is
useful and relevant for a given situation.

People can easily recognize the contexts or situations that they are in, and they would also
know what information is applicable to each of those contexts and later derive or deduce more
precise information from the context. Processing a given context is very much essential to
humans, because a perceived paucity in analyzing the given context may likely to result in
serious health problems-related cognition. Context is also the most important mental technique
for humans.

Before initiating this discussion, we will need to set the stage and define the required con-
cepts for this chapter, so that all of us will have a common understanding of the topic at hand.
We will start with the actual definition of context. After an exhaustive search of context defi-
nitions, we have found one that nearly matches, to some extent, with what we are looking for
when referring to contexts. According to Dey (2001):

Context is any information that can be used to characterize the situation of an entity.
An entity is a person, place, or object that is considered relevant to the interaction
between the user and an application, including the user and the application themselves.

This definition allows software developers to associate a given application with a set of
design scenarios. In fact, it also provides software developers with a mental construct that
defines elements that are/are not part of the problem domain. Think metaphorically about
context as an imaginary fence between relevant information to your problem and informa-
tion that does not have anything to do with it.

264 Software Patterns, Knowledge Maps, and Domain Analysis

From a conceptual point of view, this fence allows us to generate a pervasive core or
base, focused and generic enough, which can host a set of countless fine-grained solutions.
From a practical point of view, this fence allows us to utilize this core, via extension points
or hooks, and specify their new target environment in a cost-effective manner. Likewise,
this fence also allows us to keep on track, as we implement this core, along with its always
changing target environments, thereby keeping us away from getting bogged down with
irrelevant information—neither promising more for the solution nor requiring less.

Now, we have a clear and concise idea of the benefits provided by having a focused inves-
tigation of the core knowledge of a discipline, along with its always changing applications.
We must now proceed with the illustration on how we can implement and adapt this core, as
well as its target environments, in a way we can obtain the expected quality and consistency.

Just for the sake of record, you should know that most of the guidelines and coding stan-
dards that will be illustrated in this chapter are based on the software framework described
in Chapter 8. Moreover, you should also realize that it is also quite important to know that
the foundations for implementing this framework are critical too and they are provided in
this chapter. Therefore, a recursive association exists between Chapters 6 and 8.

From a developmental point of view, the implementation of the selected core formed by
the enduring business themes (EBTs) and business objects (BOs), along with the target envi-
ronment formed by the industrial objects (IOs), requires certain clarifications, especially
with the terms classes and types, hooks specifications, user model specifications, coding,
packaging, and the solution’s encapsulation that form a component. We will provide these
clarifications in the following sections.

10.2 IMPLEMENTATION ISSUES OF THE KNOWLEDGE MAPS

Now, we will debate and discuss several issues related to the structure and behavior imple-
mentation of the knowledge maps (e.g., EBTs, BOs, and IOs implementation). The overall goal
of this section is to create, among software developers, a more accurate idea of the coding
guidelines they will use to implement partial or whole knowledge maps (some snippets will be
provided). For example, we will start with type versus class issue within the type-oriented par-
adigm (TOP) (Fayad and Arun 2003). Then, we will proceed with the impact of using contracts
in the partial or whole development of our knowledge map. Moreover, we will also provide the
specification of hooks in the knowledge maps. Finally, we will describe the use of storytellers,
packages, and components as a whole in the implementation of the knowledge maps.

10.2.1 Type versus Class wiThin TOp

Within TOP, types are names that denote an interface of an individual (object), and classes
are the implementers of the type. In other words, classes encapsulate the implementation of
a type (Fayad and Arun 2003). Software developers often overlook this issue and thus tend
to diminish the potential of types, such as the benefits of decoupling a class’s specification
from its implementation.

The relationship between types and classes is sometimes complex and leads software
developers to confusion and antagonism, especially when a class has the same name as
its type. To avoid this confusion and antagonism, we must step back and retract a bit and
understand, by using examples, what types and classes really are in the context of pattern
topologies and in TOP.

265Development Scenarios

Take one of the capabilities of the knowledge maps: AnyContent stable design pattern
(Fayad 2015). This stable pattern consists of five classes: AnyContent (BO), Knowledge
(EBT), AnyActor (BO), AnyForm (BO), and AnyMedia (BO). Each one encapsulates the
behavior specification of its respective types. At the same time, some of the classes’ behavior
specification can be of more than one type. In other words, one individual (object) may have
one portion of its interface defined by one type and the portion implemented by another type
(Fayad and Arun 2003). Let us now look at the Snippets 10.1 through 10.3 of the AnyMedia
class and the BO type. In this class, we will implement two operations defined by the BO type.

SNIPPET 10.1 BO TYPE SPECIFICATION

//:~begin
public interface BO {
……………//Some code goes here
void collaborates (EBT goal);
void connects (BO collaborator);
Boolean disconnects (BO collaborator);
BO loads (String extension);
void disables (String extension);
………………//Some code goes here
}//:~end

SNIPPET 10.2 ANYMEDIA’S BO TYPE IMPLEMENTATION

//:~begin
public class AnyMedia extends AbstractBO implements BO{
…………….//some code goes here
private Map boRegistry = Collections.synchronizedMap(new
 HashMap());
public void connects(BO collaborator){
if(capability! = null){
 ……//some code goes here
((AbstractBO)collaborator).determine (this, collaborator);
 …..//some code goes here
}
}
………………..//some code goes here
private Map ebtRegistry = Collections.synchronizedMap(new
 HashMap());
public void collaborates(EBT goal){
 …..//some code goes here
 ebt = goal;
 …..//some code goes here
}
…………….//some code goes here
}//:~end

266 Software Patterns, Knowledge Maps, and Domain Analysis

Snippets 10.1 and 10.2 provide us with enough information to make our point straight and
clear about types and classes, along with their relationship. First, within TOP, a class imple-
ments a type. A class can implement more than one type. Types can be associated with
other types. Types are represented as interfaces in Java. More information can be found at
Bloch (2001) and Oestereich (1999).

Within the realm of the knowledge maps, we will provide a template for describing this
relationship, so software developers can have, at hand, the facility to distinguish between
types and classes and make their software analysis and design more efficient and ordered.

10.2.2 Design Type speCifiCaTiOn TemplaTe

To ensure accurate communication among software practitioners (e.g., analysts, designers,
architects, and developers) throughout the software design and development process, we must
facilitate the right means to convey design decisions. These right means are assisted by a list
of rules that have been determined to represent designing outcomes, such as the following:

 1. To ensure that we have at least seven operations per class or type within context
(Fayad and Arun 2003)

 2. To avoid the utilization of get and set methods (Fayad and Arun 2003)
 3. To ensure that classes and types will follow a camel casing naming convention
 4. To ensure that operations or services per class and type are not repeated in other

classes and types

The following example will make the above rules clear. It uses three classes of the AnyContent
stable design pattern (capability). These are AnyMedia (BO), AnyContent (BO), and Knowledge
(EBT) within the design type specification template (see Tables 10.1 through 10.3).

TABLE 10.2
Type Specification 2

BO to BO

BO Name Type Name Interfaces/Services Implementation

AnyMedia BO connects(BO), attaches(IO), collaborates(EBT), etc. AbstractBO
AnyMedia broadcast(), captures(), switch(), etc. AnyMedia

AnyContent BO connects(BO), attaches(IO), etc. AbstractBO
AnyContent add(), remove(), denotes(), scope(), etc. AnyContent

TABLE 10.1
Type Specification 1

EBT to EBT

EBT Name Type Name Interfaces/Services Implementation

Knowledge EBT release(), ignore(), enlist(), etc. AbstractEBT
Knowledge synthesize(), recognize(), related(), etc. Knowledge

267Development Scenarios

10.2.2.1 Design Type Specification Template 1: EBT
The design type specification template 1 is given in Table 10.1.

10.2.2.2 Design Type Specification Template 2: BO
The design type specification template 2 is given in Table 10.2 and the design type specifi-
cation template 3 is given in Table 10.3.

In order to ensure that a type’s behavior is doing what it is expected to do, it is possible to
apply a set of restrictions to the operations’ signatures defined by a type. These restrictions
are commonly known as contracts (Bacvanski and Graff n.d.; Bruegge and Dutoit 2003;
Findler and Felleisen 2000; Lackner, Krall, and Puntigam 2002), an overview of which is
provided in the next section.

10.2.3 The uses Of COnTraCTs in The speCifiCaTiOn Of Design Types

Contracts are the useful means to guide the proper use of objects’ operations. They would
ensure that an object’s operations comply with the semantics defined by the objects’ behav-
ior. Likewise, they also establish a set of restrictions or constraints for each one of the
operations’ signatures defined by a type’s interfaces. Constraints or restrictions of this sort
include the following:

• Preconditions. They represent the conditions that need to be fulfilled prior to the
operation’s execution.

• Postconditions. These conditions must be satisfied after any type of operation has
ended.

• Invariants. They describe the conditions of an object that must be always kept.
• Exceptions. They represent what an object does in exceptional circumstances or

when the aforementioned conditions are violated.

In Java, especially when we are implementing stable patterns, these contracts are written
within the /** **/symbols by using @Pre for preconditions, @Post for postconditions,
and @Invariant for invariants; more details about defining contracts, especially in the
object constraint language, can be accessed at Oestereich (1999) and Bruegge and Dutoit
(2003). Then, they will be realized within a class’s code using a simple contract appli-
cation programming interface (API) facility. Snippet 10.3 shows API contract facility
where AnyMedia class is used to show how contracts are written.

TABLE 10.3
Type Specification 3

BO to IO

BO Name Type Name Interfaces/Services Implementation

AnyMedia AnyMedia broadcast(), captures(), switch(), etc. Cellphone, Internet, Computer, etc.
AnyContent AnyContent add(), remove(), denotes(), scope(), etc. Text, Diagram, Image, AudioFile,

Movie, etc.

268 Software Patterns, Knowledge Maps, and Domain Analysis

SNIPPET 10.3 INCLUDING CONTRACTS IN THE ANYMEDIA CLASS

//:~begin
Import core.vnv.contract.*;
/**
* @Invariant boRegistry.size() > = 0
* @Invariant ebtRegistry.size()> = 0
* @Invariant ultimateGoal ! = null
**/
public class AnyMedia extends AbstractBO implements BO{
…………….//some code goes here
/**
* @Pre capability ! = null
* @Post boRegistry.size() = self@pre.boRegistry.size() +1
**/
public void connectsTo(BO capability){
 ……………//some code goes here
 Assertion.requires (capability! = null);//pre
 …………..//some code goes here
 Assertion.ensures(boRegisty.size()>0)//post
 ……………//some code goes here
}
}//:~end

The next section deals with the description of the hook specification template. Take this
template as the blueprint for defining hooks as well as their implementations.

10.2.4 The hOOk speCifiCaTiOn TemplaTe

The hook specification template consists of nine elements. As a whole, these elements pro-
vide the blueprint for adapting the core knowledge formed by EBTs and BOs to specific
contexts. This template was extracted from the book Building Application Frameworks
(Fayad, Schmidt, and Johnson 1998). Table 10.4 illustrates this template using an example
from the stable pattern that has been used throughout this chapter—the AnyContent stable
design pattern (in specific, we will use the class AnyMedia).

This template will be used to specify how your core knowledge will be seen in con-
texts that are more specific. The next section will provide a description of the core of the
AnyContent stable pattern from a user’s point of view. To do that, we will use user models
or storytellers.

10.2.5 speCifiCaTiOn Of The user mODel Or sTOryTeller

The user model is just an object diagram that tells a story to a stakeholder. It also tells you
what the overall artifacts involved in the software design are and the interactions that stem
from them. These artifacts include model name, class names, attributes and operations
(sometimes), roles, relationships, contracts, and the sequence of events that happens between
the included classes (Fayad, Hamza, and Sanchez 2005). In short, this template is simply

mailto:self@pre.boRegistry.size

269Development Scenarios

a data dictionary of the elements included in your solution. We will use the AnyContent
stable design pattern to illustrate this user model (see Figure 10.1).

The remaining sections deal with the facilities for packaging and composing the sta-
ble architectural patterns. In order to do that, we must provide a brief description of meth-
ods to create packages and processes to turn these packages properly into components.

10.2.5.1 Packages Overview
According to Oestereich (1999, p. 218), “packages are collections of model elements of arbi-
trary types, which are used to structure the entire model into smaller, clearly visible units.”
They represent some sort of a logical and physical boundary for the elements they contain.
This boundary also defines a unique namespace or home for a set of model elements, such
as classes, types, libraries, subsystems, and other packages.

From a modeling perspective, packages are represented as folders. This folder has a
name written inside of it, and sometimes, even stereotypes to clarify its purpose. In case
this folder has other model elements embedded in it, the package name will be written in
its left top as shown in Figure 10.2. Table 10.2 shows as an example of a set of packages.

From a coding perspective, especially in Java, packages representation starts with the
keyword package. Then, this keyword is followed by a list of packages (a hierarchy of pack-
ages). The above packages are programmatically represented in Snippet 10.4.

TABLE 10.4
AnyMediaHook’s Specification

Name. AnyMediaHook
Requirement. A new media is generated based on a selected media type
Type

Level of Support

Type Option Supported Pattern Open ended

Enabling a Feature

Disabling a Feature

Replacing a Feature ✓
Augmenting a Feature

Adding a Feature ✓
Area. AnyMedia
Uses. N/A
Participants. AnyMedia, MobilePhone
Changes
 New subclass MobilePhone of AnyMedia
 MobilePhone.broadcast() extends AnyMedia.broadcast()
 MobilePhone.captures(object) extends AnyMedia.captures(object)
 Repeat as necessary
 New property MobilePhone.signal where
 Reads signal maps from the AnyMedia.object
 Write signal maps into AnyMedia.object
Constraints. All media used in the AnyMediaHook must be derived from AnyMedia
Comments. All the derived media that are using this hook must be related to a specific type of media

270 Software Patterns, Knowledge Maps, and Domain Analysis

SNIPPET 10.4 PACKAGES REPRESENTATION

//:~begin
package net.hsanchez.km.core.*;//or
package net.hsanchez.km.core.hf.*;//or
package net.hsanchez.km.patterns;//or
package net.hsanchez.km.vnv.*;//and so on

………//import statements and comments go here
public class …………{
…………….//some code goes here
}//:~end

AnyContent requirements

AnyContent design pattern

<<Pattern BO>>
AnyActor

<<Pattern EBT>>
Knowledge

<<Pattern BO>>
AnyContent

<<Pattern BO>>
AnyForm

<<Pattern BO>>
AnyMedia

Text, diagrams, images,
audio files, symbols,
collections, etc.

–actor

possess 1..*

–actor
generates
–content

1

1..*–knowledge

realizes

–content

1

1
1

–content 1
resides on

–media 1..*

–form

1..* –form

–form
1

1..*

Term Description

AnyActor The user initiated the generation of determined content

Knowledge

AnyContent
This content includes text, diagrams, movies, images, and audio files

This class encapsulates the implementation of behavior and properties defined by the type AnyContent and BO

Knowledge Knowledge is placed explicitly in the generated content

AnyContent During the generation of a content, the form of content will be automatically selected

AnyForm The generated content encloses a set of different form of content that will make the knowledge provided more visible and accessible

AnyMedia This class is where content will reside on. During the generation of a content, this media will be automatically selected by the actor

The user has gained enough knowledge to be able to generate content

FIGURE 10.1 The AnyContent stable design pattern’s user model.

271Development Scenarios

One can perceive knowledge maps as the large system that contains a set of building
blocks. In order to manage all these building blocks properly, you may need to group and
organize each of them within its own boundaries. Likewise, some of them can be in the
middle of overlapping boundaries. You may also access more information about packages
at Oestereich (1999) and Bruegge and Dutoit (2003).

10.2.6 COmpOnenTs

Components are not that different from packages. For instance, they both realize some kind
of boundary (Oestereich 1999) for a set of elements. They also define the means for struc-
turing and grouping this set of elements as a unit (Oestereich 1999). The main difference
between packages and components is that components are executable and interchangeable
software units (Oestereich 1999) with well-defined external interfaces.

There are several platforms for components, such as Enterprise JavaBeans (EJB) and
CORBA. The option for selecting a specific component environment will be left to the soft-
ware developer’s desire. From a more basic perspective, in the case discussed throughout
this book, we will simply compose stable patterns, as well as stable software architectures,
by using the EJB (Enterprise JavaBeans Technology) (Monson-Haefel 2000) and Java
Archive (JAR) (Files, Packaging Programs in JAR). The JAR files will allow us to bundle
our knowledge maps, individual stable patterns and their respective specific contexts, and
stable software architectures, as a single executable file. More information about imple-
menting EJB and JARs together are at Monson-Haefel (2000). For the purpose of simplic-
ity, here we would provide only its unified modeling language (UML) representation. We
will also provide a picture to clarify or provide the pertinent representation of components
in UML (see Figure 10.3).

The combination of all the elements described in this chapter will allow us to implement
robust, within-context, and reliable knowledge maps (partial or whole).

hsanchez

core

hf

vnv

patterns

km

FIGURE 10.2 The packages representation and their relationships in knowledge maps.

272 Software Patterns, Knowledge Maps, and Domain Analysis

10.3 ASPECT-ORIENTED MODELING

 Softwarestabilitymodeling Aspect-orientedmodeling=

Software stability modeling and aspect-oriented programming (AOP) are both emerging
 paradigms in the software development field. Software stability concepts are based on
identifying the core goals of a system and creating a layered model (of EBTs and BOs).
The IOs come at the periphery of the model and are application specific. These are like
leaves in the model and can be replaced for different application, but the core goal and
the means to achieve the goals (represented by the EBTs and BOs) change very little and
hence the model is a stable one. Aspect-oriented design aims at identifying functionality
that is desired by many classes—referred to as a crosscutting concern and modularizing
it as an aspect. Aspects help in increasing the maintainability and hence stability of the
system. This means the purpose of the two approaches is similar, but they lead to the same
goal differently. We have tried to understand the similarity and differences between the
two paradigms in this chapter.

The main goal today, in the development of complex systems, is to achieve software
extensibility, reusability, and adaptability. These goals must be explicitly engineered
into the software without regard to the software technology applied (Fayad and Cline
1996). This will make the system more stable. The advantage of incorporating stability is
that the models become easily extensible to add other features and adaptable to different
scenarios without requiring to change the basic model of the system. This is not, how-
ever, a straightforward task due to certain aspects that are part of the problem analysis
representing the core knowledge of the problem domain and are not explicitly stated in
the problem statement.

New approaches are emerging looking for the ability to discover the core knowledge of
the problem domain in software development projects. Their main benefits are a shorter
time to market and the easy adaptation of systems to the continual evolution of new tech-
nological and client requirements.

In this chapter, we will focus on two of the most novel software technologies:
 software stability model (SSM) (Fayad 2002a, 2002b; Fayad and Altman 2001; Fayad

stability
core

hf

IO

BO

EBT

Extension
point

FIGURE 10.3 Representation of the components in UML.

273Development Scenarios

and Wu 2002) and AOP (Constantinides, Elrad, and Fayad 2002), which analyze the
 relationship between both technologies and the differences and similarities between
the aspects in AOP and EBTs and BOs in the SSM.

These technologies model the system in different structural ways, but share the same moti-
vation, that is, making the components in the final system more stable. SSMs try to model the
core of a system based on those concepts, named EBTs and BOs, which are stable over time.
The AOP approaches separate different entities based on concerns, named aspects, that are
spread along other components in the system and can change or evolve independently from
them. This separation of concerns increases necessarily the stability of the system because it
rises as first-order entities, properties that otherwise are implementation details.

In the SSM architecture (Figure 10.4a), the components are stratified in three layers
according to the level of stability provided as shown in Figure 10.5. The EBTs layer repre-
sents all the concepts that remain stable both internally and externally over time. The BOs
layer contains those concepts that are externally stable, but internally adjustable or adapt-
able. The IOs layer is formed by those entities that are not stable at all.

There are several possible aspect-oriented architectures (AOA) because the aspect–
component relationship is bidirectional (Figure 10.4b). We can state for each component
which aspects will be applied and also for each aspect which components are affected
by that aspect. In addition, in the AOA, we must take into account two new dimensions,
the time and the order of application. Considering these dimensions, an AOA might
show for each component and execution time which aspects must be applied and the
order of application (Figure 10.4c). Both the number of aspects and the order of applica-
tion could change over time.

10.3.1 aspeCTs as COre Design feaTures in a sysTem

Aspects are often goals or a matter of interest in a system. These goals could be at the top-
most level representing the core concerns of the system as a whole. These are the functional
goals of the system. The goals could be of system levels that are essential for the system to
achieve its core goals. In an e-commerce example of an online store, the key goals are that
of security and the presentation of information for convenience. The system level concerns
would be that of the synchronization, failure handling, and so on. If one were to model the

IOs
BOs

ETs

(a)

Components
(c)

Order

Time

C

t

O1

O2

O3

A1

A4

(b)

C1

A1 A2

A2, A3

A3

C2 C3

FIGURE 10.4 (a) SSM architecture, (b) AO architecture, and (c) aspect-oriented component: the
execution time and order of the application or time and order of application.

274 Software Patterns, Knowledge Maps, and Domain Analysis

same example by using SSM concepts, one would recognize the core goals of the system,
which would be modeled as EBTs and the system level concerns as BOs. In effect, it shows
that the aspects of a system will be the EBTs and BOs put together from an SSM model.
The properties modeled as aspects in AOP are part of the core design of a system in the
same way than EBTs and BOs are in the SSM. Both paradigms model as first-order entity
concepts that are implicitly present in the system due to either the domain application or
the computational model.

An example of the stability model for e-commerce is shown in Figure 10.6. We could
recognize the classes trading, convenience, and security as the EBTs, because they form
the core goals in this example. EBTs are conceptual, and hence, we need the more concrete
BOs to achieve these goals. For example, the EBT of security is achieved through an autho-
rization class that encapsulates and has the authorization procedure methods. Then at the
periphery, we have two IOs that are application specific. From the above model, it is easy
to see that security (which is in the innermost layer of EBTs) has an effect on the classes
(Authorization, CreditCard) in the layers above it. So, security has an effect on one or more
classes and hence can be modeled as an aspect. The modeling using the software stability
concepts helped us recognize that security was a concern and needed representation, which
was not the case in the traditional model. Moreover, the authorization class cleanly encap-
sulates the needed procedure for security in the example.

10.3.2 DifferenCe beTween The aspeCT-OrienTeD Design apprOaCh anD ssm

In more traditional software modeling, the approach is not centered on recognizing the
goals of the system that will not change over time and creating a model with these core
concepts as the foundation. This is what the SSM enforces to increase stability in software.
AOP, however, focuses on identifying the properties or functions that will affect one or
more classes and how they will. These features, being of a crosscutting nature affecting
various aspects, will decrease maintainability and therefore stability. An AOP approach

EBTs IOsBOs

FIGURE 10.5 Software stability model template.

275
D

evelo
p

m
en

t Scen
ario

s

<<EBT>>
Trading

type
terms

exchange()

<<EBT>>
Convience

gain
timeSpent

effortGainAnalysis()
lessenEffort()

<<EBT>>
Security

method

chooseMethodOfSecurity()

<<BO>>
Product

specialty
brand
addToInventory()
deleteFromInventory()
specifyCapability()

<<BO>>
AnyActor

requirement

makePayment()
acceptGoods()

<<BO>>
AnyMedia

type
property
defineMediaProperty()
identifyMedia()
defineCapability()

<<BO>>
Authorization

type

checkForValidity()
verifyNumber()
throwError()

<<IO>>
CreditCard

ownerName
Number
expiryDate

charge()

<<IO>>
ElectronicShoppingCart

totalAmount
numberOfItems
placeOrder()
cancelOrder()

<<IO>>
Customer

name
billingAddress
shippingAddress
viewItem()
selectItem()

<<IO>>
ItemToBuy

price
quantity
addItem()
removeItem()

for

participates in

provided by

achieved
through

ensured by

of

IOBOEBT

FIGURE 10.6 Stability model for e-commerce example.

276 Software Patterns, Knowledge Maps, and Domain Analysis

involves modularizing these crosscutting concerns into an abstraction called an aspect.
The aspects can be independently maintained, so that changes can be incorporated easily
and in one place without involving the re-implementation of the other classes it affects.

Though the approaches of AOP and SSM are different, we want to highlight here that the
SSM comes up with the same aspects as an AOP. All the aspects in an AOP can be modeled
as BOs or EBTs in the SSM.

10.3.3 iDenTifiCaTiOn Of wheTher aspeCTs will be all
The ebTs anD all The bOs in a sysTem

Analyzing the other direction in the relationship among aspects and EBTs or BOs,
we were convinced that all EBTs and BOs in the SSM are aspects. However, it is not
easy to perceive all core concepts in an SSM as aspects. Using the example of a col-
laborative environment (CE), we will try to show the difficulty in understanding this
relationship. A CE is a common shared environment that supports collaborative work
and social interaction.

First, EBTs and BOs are concepts that are part or complement the functionality of a sys-
tem, but have entity by their own and this is exactly the definition of aspects. Figure 10.7a
shows partially a CE interface to (1) initiate a session to collaborate with other users, (2)
show the awareness list to know who is connected and their state, (3) add new friends to the
awareness list, and (4) initiate a communication with selected users. This interface hides
some concepts present across the components in CE systems as collaboration, integra-
tion, synchronization, distribution, and awareness. By applying the SSM, we can clearly
consider these concepts EBTs and BOs applied to an IO room (Figure 10.7b). The room
component is where communication and collaboration among users is performed. Looking
into them from an AOP perspective, these concepts can be seen as aspects composed with
the room component to complete its functionality. This led us to affirm that all the EBTs
and BOs can be modeled as aspects.

Second, tangible elements that should be modeled as IOs in the SSM are sometimes
modeled as BOs. This decision might be taken because of a misunderstanding of the prob-
lem statement, but not always. System analyzers might include as part of the core design
relevant elements of the problem domain they think are essential to model the system cor-
rectly, though they are tangible concepts and are easier to understand as IOs. For instance,
in Figure 10.7c, a new analyzer considers the necessity to include place as a BO, whereas

CE
+addNewFriend()
+initiateCommunication()
+initiateSession()
+showAwarenessList()

(a)

<<EBT>>
Synchronization

<<EBT>>
Distribution

<<IO>>
Room

<<BO>>
Awareness

<<EBT>>
Collaboration

<<EBT>>
Integration

(b)

<<BO>><<BO>>
AwarenessPlace

<<IO>>
Room

<<EBT>>
Distribution

<<EBT>>
Synchronization

<<EBT>>
Collaboration

<<EBT>>
Integration

(c)

FIGURE 10.7 CE models (illustration). (a) Collaborative environment (CE) partial interface,
(b) EBTs and BOs are apsects, and (c) EBTs layer → BOs layer → IOs (right order).

277Development Scenarios

the one in Figure 10.7b shows that the concept of integration was enough to represent the
users’ accessibility to all the resources in the environment. Though both models are cor-
rect, it is difficult to see place as an aspect, because unconsciously we imagine a real-world
place. However, the concept of place is broadly used in the researching of CEs to express
integration. In this context both integration and place are stable concepts and should be
aspects in AOP.

10.3.4 unDersTanDing wheTher aspeCTs in aOp will represenT
eiTher ebTs Or bOs Of ssm in a sysTem

All the aspects in an AOP approach are EBTs or BOs in the SSM. We also think that most
of them will be BOs and only a few will be represented as EBTs. Further, we believe so,
because though aspects represent concepts stable over time that you cannot take away from
the system, internally they will be able to evolve or manifest in different ways. One may
think that EBTs do not fit well with the definition of aspect given in this column, where we
said “aspects can change or evolve independently of the components they affect.” But they
do, because EBTs are really representing aspect frameworks (AFs), each one covering a set
of related aspects (or BOs) that are then applied to components (or IOs). In Figure 10.8, the
communication language, communication media, and transport protocol BOs represent
the mechanisms through which distribution is implemented in the system. So, these will be
the aspects applied to the components or IOs in the system, whereas the distribution EBT
is an AF that encloses all these concepts.

10.3.5 COmparisOn beTween exTraCTiOn Of aspeCTs
in aOp, ebTs, anD bOs in ssm

We think that the same reasoning is not followed, when we apply AOP or SSM. When a
system is engineered by using SSM, the developer will have in mind the goal of stability
and will look for those concerns (EBTs and BOs) that are immutable over time determining

<<EBT>>
Distribution

<<BO>>
Communication

media

<<BO>>
Communication

language
 <<BO>>

Transport protocol

<<IO>>
Chart Tool

<<IO>>
Conference

<<IO>>
Whiteboard

Aspects or BOs

AF or EBT

Components or IOs

FIGURE 10.8 AOP and SSM entities relationship (illustration).

278 Software Patterns, Knowledge Maps, and Domain Analysis

the core system. In AOP, the main goal is separation of concerns, and the developer is worried
about the identification of those concerns that are present across multiple components
in the system, decoupling them in different entities. This means that achieving stability
is not the primary goal in the extraction of aspects. What we want to emphasize here
is that despite of the difference in reasoning, both paradigms share the requirements of a
deep knowledge in the application domain and a change of thinking process—in the sys-
tem analysis process. These requirements will constitute the main difference with many
traditional paradigms.

Following the above discussion, AOP and SSM should come up with the same core
concepts. However, both models could not be completely equivalent, because the reasoning
process is different and so might be the final design of the system. In order to take advan-
tage of both stability and separation of concerns, we will consider the application of both
techniques in different stage of the software life cycle. First, the SSM should be applied
in the analysis and design phases, by analyzing the problem statement and defining the
EBTs and BOs that constitute the core design of the system and those IOs that are in the
periphery. Then, AOP should be applied during the implementation phase. All EBTs and
BOs in the design will be implemented as aspects that will be composed with the rest of the
components in the system. The main advantage of this combination is that by following this
process, we are explicitly engineering stability in the whole system.

10.3.6 mODeling ebTs anD bOs as aspeCTs

SSM concepts are centered on the goals of the system. Once the goals of the system to
be modeled are identified, they are put at the center of the model as EBTs; the means to
achieve these goals are represented by the BOs that form the next layer. Then IOs would
arrive, which are application specific and are at the periphery of the model. One can clearly
see that EBTs functionality cuts across the BOs and IOs associated with it in the next two
layers. Therefore, the EBTs and BOs can be modeled as aspects. Adopting this kind of
approach can have many advantages. Any changes that have to be made to the EBTs func-
tionality due to an earlier flaw in modeling can have a rippling effect on the classes in the
layers above it. Instead, if the EBT is modeled as an aspect, it will not be scattered in the
classes associated with it. Enhancements can be made to it in a single place without affect-
ing other classes and all the changes can be made in a single place. All this will make the
EBTs and BOs more maintainable.

SUMMARY

The objectives of this chapter are twofold. First, we provided the coding recipes for
 implementing partial or whole knowledge maps. Second, we provided their visual rep-
resentation according to UML standards. We also implemented these objectives by pro-
viding a set of specification templates, some snippets, and proper examples. Chapter 8
provides additional information. Third, the SSM concepts and aspect-oriented approach
work toward the same goal of stability in a system. The advantages of both these
approaches can be exploited by employing the SSM concepts in designing systems and
by using the AOP concepts in the implementation phase. The SSM concepts can also be
very useful with aspect-oriented design, where creating a stable model will make aspects

279Development Scenarios

in the system evident at an early stage. In all, both the paradigms can work to the advan-
tage to one another.

OPEN RESEARCH ISSUES

Because implementation of stable design patterns and hence knowledge map is carried out
using Java, which is a robust object-oriented language, knowledge maps inherit this robust-
ness, if designed and implemented correctly. Only some guidelines of package creation and
creation and implementation of interfaces must be taken care of.

REVIEW QUESTIONS

 1. What do you understand by the terms context and entity?
 2. Why is it necessary to define a context when investigating the core knowledge of a

discipline?
 3. Explain in your own words the relation between type and class in type-oriented

paradigm.
 4. Is the following statement true or false? A class must implement one unique type.
 5. Enlist rules that one needs to follow during designing, so that right design decisions

are conveyed.
 6. Explain what are contracts and why are they used?
 7. What are some commonly used contracts in the realm of designing types to ensure

proper use of object’s operations?
 8. How do you specify contracts while implementing patterns?
 9. One can use ________________ template to specify how core knowledge can be

applied in specific contexts.
 10. Explain user model.
 11. Is the following statement true or false? Storytellers’ specification is a data diction-

ary of the elements.
 12. What are packages? Why do you need them for knowledge map?
 13. How are packages represented in knowledge maps.
 14. What is meant by component? How are they different from packages?
 15. How are knowledge map bundled together. Explain.
 16. Describe and depict representation of a component using UML.

EXERCISES

 1. Research type-oriented paradigm and find its usage in knowledge map.
 2. Explore use of contracts in object constraint language.
 3. Using hook template, create blueprint for the following:
 a. AnyContent
 b. AnyHook
 c. AnyPartition
 d. AnyEntity
 e. AnyCollection
 4. Create user model for the above scenarios.

280 Software Patterns, Knowledge Maps, and Domain Analysis

PROJECTS

 1. Create a knowledge map for collaborative virtual environment (CVE) and come up
with the following:

 a. The traditional model of CVE
 b. The stability model that includes the (EBTs + BOs) of CVE
 c. Describe briefly three different scenarios of the stable model of CVE.
 d. Discuss briefly the functional requirements of the stable model of CVE.
 e. Discuss briefly the nonfunctional requirements of the stable model of CVE.
 f. Discuss briefly 12 of the challenges of implementing the stable model of CVE.
 g. List 25 constraints of the stable model of CVE.
 h. Create CRC cards for all the EBTs and BOs of the stable model of CVE. (Make

sure to come up with unique responsibility per class, list the collaborators,
five services provided by the CRC class, and seven of its attributes.)

 i. Create two case studies, one of them is the CVE of the stable model, and include
a significant use case, class diagram that include the IOs, and a sequence
 diagram per case study.

281

11 Deployment, Verification and
Validation, and Quality Factors

Quality is not an act, it is a habit.

Aristotle

Deployment, verification, and validation are the intricate processes of guaranteeing that
 software being developed or modified will satisfy almost all functional and other sundry
needs and requirements (which is called validation), and ascertain that each and every step in
the ensuing process of designing the software product provides the right and correct type of
products in the end (which is called verification). The proponents of the software design and
development process use the term V&V (verification and validation) just to refer to all those
critical activities that focus at making sure that the software products designed will act and
behave in the way required.

V&V aims at a systematic and calculated technical evaluation of software products
involved in the development and maintenance processes. At the end of these exhaustive
processes, designers will review and test all the developmental processes just to make
sure that all the requirements and needs are complete, exhaustive, and completely testable.
Testing is a process of operating a software product under real or simulated conditions and
inputs to prove or demonstrate that the manufactured product completely satisfies all the
requirements and needs (Eushiuan 2008; Tsai et al. 1999).

11.1 INTRODUCTION

Deployment and V&V focus specially on the definition of robust pattern topologies (knowl-
edge maps), by means of using a set of quality factors that are pertinent to the discipline
of interest and concern. Creating a definition of these robust patterns topologies is a big
challenge, especially when dealing with disciplines with such unique characteristics and
behavior, and with a lack of a complete and systematic process to support their creation.

Chapters 3 through 6 of this book described various methods and means for identifying,
defining, and evaluating the functional requirements of the subject that has been deter-
mined, such as knowledge maps. Chapter 7 discussed a different set of systems require-
ments, which is the commonly called -ilities (Larman) of the system—the nonfunctional
requirements. These nonfunctional requirements are the systems operational constraints
that are not related to a system’s functional specification (Bruegge and Dutoit 2003).
Within the realm or domain of knowledge maps, these nonfunctional requirements will
indicate the deployment expectations of knowledge maps. Take the deployment or deploy-
ment stage as the effective retrospective of the sharing and execution abilities of the knowl-
edge maps. This retrospective deals with the formulation of a set of goals or quality factors

282 Software Patterns, Knowledge Maps, and Domain Analysis

that will drive a robust deployment of a created patterns’ topology, as well as the building
blocks within it.

Similar to a discipline, quality factors are embodied and represented as goals, but with a
central focus on the intended use of the discipline in question. By using knowledge maps as
this discipline, we may encounter a number of quality factors, such as reliability, scalability,
traceability, extensibility, usability, and others, none ending with -ility, such as performance
and accuracy. The selection of these quality factors will be determined by examining the
knowledge maps as a well-defined and operational unit.

The process for identifying, filtering, and evaluating these quality factors is the same as the
one that was described in Chapter 3. The only thing that software practitioners need to pay close
attention to is the fact that the subject of interest will be a knowledge map, and not its internal
structure, such as rationale. This process can be assisted by means of using heuristics, evalua-
tion/filtering questions, and V&V processes that were used to assess and evaluate the underlying
goals of a discipline. We will go further with the V&V processes throughout this chapter.

11.2 DEPLOYMENT OF KNOWLEDGE MAPS

The deployment stage of the knowledge map represents the set of interrelated activities (e.g.,
release, installation, and acceptance) that will make knowledge maps available and ready
to use. These interrelated activities represent, as a whole, a systematic process that can be
executed and customized according to a determined set of requirements (e.g., expected
response time and throughput) that are defined by stakeholders. To understand this stage,
we must tackle and approach it from both a conceptual and practical point of view. The
conceptual point of view will give us a clear notion of what terms and semantics are used
to understand and realize what deployment of the knowledge maps is or consists of. The
practical point of view will give us the proof of the concept and benefits of deployment of
the knowledge maps. Together, they will allow us to have the same frame of reference in
terms of how to deploy a knowledge map.

11.2.1 The ConCepTual poinT of View of DeploymenT

Let us begin by defining the requirements that drive the usage of the knowledge maps. These
requirements are known as nonfunctional requirements (Bruegge and Dutoit 2003; Jacobsen,
Kristensen, and Nowack 1999; Malan and Bredemeyer 2001). They consist of a set of quality
factors and constraints related to the operation of the knowledge maps. Quality factors, for
example, are the essential properties that stakeholders will care about while using the knowl-
edge maps. In other words, they are the factors that will drive stakeholders satisfaction and
contentment when using the knowledge maps. Constraints are the nonnegotiable restrictions
imposed on the use of the knowledge maps. Some examples of qualities and restrictions
include an intuitive graphical user interface’s navigational style as a quality and a prohibited
transformation of the knowledge maps to text files as a restriction. This quality and constraint
will determine the overall scope of the usage of the knowledge maps. Therefore, the proper
awareness of qualities and restrictions will guide us to properly use the knowledge maps.

For the knowledge maps, especially because they can be associated with other adjacent
maps (within a determined discipline) and with remote maps of a different discipline, their
deployment stage involves a proper coordination of a set of determined quality factors.
These qualities will change according to each discipline of interest; however, some may

283Deployment, Verification and Validation, and Quality Factors

commonly appear in all of them. These qualities were already described in Chapter 5.
Table 11.1 summarizes them.

11.2.2 The praCTiCal poinT of View of DeploymenT

It is well known that nonfunctional requirements have the tendency to be conceptualized
by using loose or fuzzy terms that lead to different types of interpretations (Malan and
Bredemeyer). Accordingly, they provide little tidbits or snippets of advice or guidance to
software engineers, especially when making tough trade-off decisions or when meeting
functional goals (Malan and Bredemeyer). The deployment stage of the knowledge maps
seeks to alleviate, from a practical point of view, this shortage by providing the necessary
mechanisms to guide the identification and implementation of nonfunctional requirements.
This practical view represents a combination of best practices, expectations, actual quali-
ties, and promises of what knowledge maps can possibly do, such as the qualities that were
described in Table 11.1, and the properties of the knowledge maps as described in Chapter 5.
These elements are then encapsulated in the form of stable software patterns, which are a
retrospective of best practices and lessons learned in software development.

The encapsulation and use of these qualities as stable software patterns is considered as the
proof of the conceptual view of the deployment of the knowledge maps. Clearly, in order to
make deployment activities accessible, complete, and accurate, we must explain or note how
the context of the knowledge maps is set, and what the purpose of its use is. One way to repre-
sent this notion or perception is to represent these activities as quality factors (see Table 11.1).
Then, we can proceed with the indication of their proper capabilities, so that there will be a
clear idea of what exactly is required to use the knowledge maps. We may assist this process
by attaching a set of IOs that will streamline the functionality of their capabilities.

TABLE 11.1
Goals of Deployment of the Knowledge Maps

Quality Factors Description

Traceability This quality deals with the ability of knowledge maps to be traced back to
their original goals after their implementation

Stability This quality deals with the ability of knowledge maps to handle future
requirements and changes

Generality This quality refers to the ability of knowledge maps to be reused
elsewhere and create partial or complete solutions via patterns

Adequacy This quality is the ability of knowledge maps to satisfy the intended and
established requirements, along with their consequencesa

Scalability This concentrates on the ability of knowledge maps, along with their enclose
elements, to adapt to evolving needs and insights without unnecessary effortb

Verification and validation This concentrates on the ability of knowledge maps to be self-verified and
validated according to their context of application

Sources: a Fayad, M. E. et al. “Enterprise Frameworks Characteristics, Criteria, and Challenges.”
Communications of the ACM 43, no. 10 (2000): 39–46. b Fayad, M. E. et al. “Towards Scalable and
Adaptable Software Architectures.” Paper presented at the IEEE International Conference on
Information Reuse and Integration, Las Vegas, NV, 2005.

284 Software Patterns, Knowledge Maps, and Domain Analysis

As along with goals and capabilities, quality factors and their respective capabilities
can form insightful synergies. These synergies provide the basis for the generation of an
unimaginable number of stable software architectures (see Chapter 5), which in our case,
are translated as the realization of specific qualities that stakeholders are after when using a
knowledge map, such as faster return on investment, assembling, and usability. Table 11.2
complements the aforementioned deployment goals, as illustrated in Table 11.1, and pro-
vides more practical (stakeholder-oriented) qualities. Again, the existence of these qualities
is bound to each discipline of interest. In other words, these qualities may change from
discipline to discipline.

The next section will provide a description of additional quality factors that will stream-
line the deployment of the knowledge maps.

11.3 THE QUALITY FACTORS OF DEPLOYMENT

Chapter 5 and Table 11.1 provide a set of canonical quality factors by driving the internal
structure and behavior organization/management of the knowledge maps. In Table 11.2,
via stable software patterns, we also described an additional set of quality factors dealing
with the operational process of the knowledge maps as a well-defined and self-contained
software unit. (Some software patterns may repeat from Chapters 4, 5, 7, and 8.) We also
specified that these quality factors may change or can be modified based on the domain
knowledge of the subject being explored, as is the case of the knowledge maps as the

TABLE 11.2
Common Stakeholders Quality Factors

Quality
Factor Description Potential Capabilities

Pattern
Provided?

Reliability This deals with quality or consistency of
knowledge maps services

AnyService, AnyMetric,
AnyMechanism, etc.

No

Assembling This quality deals with the ability of
knowledge maps to allow systems to be
assembled from different parts/components
(each component may enclose one or many
software patterns)

AnyEntity, AnyMechanism,
AnySequence, etc.

No

Portability This quality refers to the ability of
knowledge maps to be used in different
environments to that, for which it was
originally created (portability)

AnyEnvironment,
AnyMedia, AnyUnit,
AnyMechanism, etc.

No

ROI This quality reduces the software
development lifecycle and meet time to
market with less cost, time, and effort
involved

AnyLifecycle,
AnyMechanism,
AnyMetric, etc.

No

Usability This denotes how easy it will be for any
software practitioner to use knowledge
maps to generate software solutions
(nonfunctional requirements)

AnyMechanism,
AnyContext,
AnyActor, etc.

No

ROI, return on investment.

285Deployment, Verification and Validation, and Quality Factors

subject of interest. For example, in the domain of class responsibility and collaboration
(CRC) cards, these quality factors are Blueprint, Groupware, Adaptability, and Book-
keeping. (Fayad and Cline 1996; Fayad, Sanchez, and Hamza 2004), or in the domain of
performance evaluation, such as compatibility, flexibility, and pattern relatedness (Fayad
and Pradeep 2004). Now, we need to be aware of certain activities that are more oriented
to the target environment where the knowledge maps will be deployed.

The proper implementation of the quality factors illustrated in Tables 11.1 and 11.2 is not
the entire piece of the puzzle with respect to the deployment of knowledge maps. We may
also need to be aware of certain activities that deal more with the target environment where
knowledge maps will be deployed. These activities are part of the software development
life cycle, and they usually include software, knowledge maps in our case, configuration,
installation, releasing, and so on (Bruegge and Dutoit 2003). Table 11.3 will provide these
environment-oriented quality factors.

11.4 DEPLOYMENT—V&V PROCESS

In order to make a knowledge map’s solution valid, complete, accessible, operational, and,
most importantly, focus on the discipline or subject’s specification, we must use a proper
V&V process during the entire realization of the knowledge maps—from goals identifica-
tion to actual deployment.

In V&V, a definition of verification and validation concepts is provided. In this definition,
the target subject is software/system. To assure that we all are on the same page, let us use
or imagine that the term knowledge maps replace the term software/system. The following
are the definitions of V&V:

TABLE 11.3
Quality Factors of a Common Target Environment

Deployment Activity Description Pattern Provided

Configuration This process prepares knowledge maps for
their new target environments. It can be
considered the preparation work that developers
must perform before installation or release

No

Installation This process is defined the same way as if we
were talking about any type of software. It is the
initial physical deployment into a determined
customer’s site. It requires prior configuration

No

Releasing According to nonfunctional requirements and
V&V, releasing activity is the interface between
development and deployment processes

No

Activation According to nonfunctional requirements and
V&V, activation is the activity starting the
knowledge maps or a knowledge maps’
tool as an executable unit

No

Acceptance This is the quality that deals with the formal
process of accepting a new developed
knowledge map or a deliverable one

No

286 Software Patterns, Knowledge Maps, and Domain Analysis

Verification is the process of determining if a system meets the conditions set forth
at the beginning, or during previous activities of the software development lifecycle,
correctly. These conditions are set forth in software requirements, which are usually
formally documented.

Validation is the process of evaluating the system to determine whether it satisfies
the specified requirements and meets customer needs.

V&V processes are of prime importance and critical significance during the formulation
of knowledge maps, especially because they determine that knowledge maps are actually
portraying an accurate and focused solution. In terms of the quality of knowledge maps, V&V
processes are not the entire recipe to achieve that objective. In fact, to assure the quality of the
knowledge maps, we use V&V processes in combination with other tools found in software
engineering, such as configuration management, planning (V&V), good analysis, and good
design.

From a practical point of view, V&V processes of knowledge maps can be perceived as
follows.

Verification processes in knowledge maps usually include the following methods:

 1. Documentation reviews of the knowledge map (after documenting each one of the
generated elements in the knowledge maps)

 2. Inspection of the knowledge maps (evaluation of the past knowledge maps’
conformance)

 3. Auditing of the knowledge maps, as well as stable patterns (evaluation of the cur-
rent and future knowledge maps’ conformance)

 4. Validation of records (in the design scenarios)
 5. Simulations of the knowledge map (especially in prototyping and final release of

the knowledge maps)
 6. Demonstration measurement of the knowledge maps

Validation processes in knowledge maps usually include the following methods:

 1. Test case generation (created after the formulation of each of the elements in a
knowledge map) of the knowledge maps (including each individual pattern)

 2. Test suites generation of the knowledge maps (the collection of all test cases gener-
ated in the knowledge maps)

 3. Scenario testing of the knowledge maps

To show a typical testing cycle that can be used in knowledge maps (to support the above
methods), we would provide the following list:

 1. Goals identification phase. Testing should start in this phase with the purpose of
guaranteeing an accurate solution.

 2. Capabilities identification phase. The capabilities found are evaluated, so that
designers and developers have some sort of accurate interface or same frame of
reference between design and implementation.

 3. Test planning. The formulation or selection of the testing strategy and approach to
evaluate the development scenarios of the knowledge maps.

287Deployment, Verification and Validation, and Quality Factors

 4. Test development. The proper generation of test cases, test suites, test scripts, and
scenario testing.

 5. Test execution. Developers run all the testing elements that are already defined.
 6. Test reporting. Based on the previous execution of tests, developers record each one

of the generated results, so that they can create metrics and final reporting the total
effort spent during testing, and if they consider that knowledge maps are ready for
deployment.

 7. Continue steps 5 and 6 until necessary.

More work has to be done to make the V&V process automatic throughout the conceptual-
ization, development, and deployment of the knowledge maps. This is part of what we call
dynamic analysis. This activity will be part of our future work.

SUMMARY

In general, the rationale of providing a deployment concern in the knowledge maps is to
guarantee and ascertain a proper forming of core sets, along with the enclosed patterns
that are pertinent to the discipline of interest. In short, this stage implies guaranteeing
quality and authority of the knowledge maps with respect to the mastering of a particular
discipline.

In this chapter, we also highlighted the respective notions of what the knowledge maps
deployment’s activities are. The actual documentation process, as a pattern of these activi-
ties will be a part of our future work.

OPEN RESEARCH ISSUES

The deployment and V&V methods described for knowledge map are still in their evo-
lutionary phases and so there are many gaps. It is still not used in mainstream develop-
ment, and hence, no automated V&V tools are available. However, by using the concept
of stability, such tools can be developed and will have a great potential.

REVIEW QUESTIONS

 1. What do you mean by deployment in the context of software application?
 2. What is the difference between verification and validation? Are they related?
 3. What does deployment and V&V focus on? Why is it challenging to define for

knowledge map.
 4. Describe deployment in the context of knowledge map.
 5. What are the goals for deployment of the knowledge map? Describe each of

them.
 6. Explain the conceptual point of view of deploying knowledge map.
 7. What do you mean by nonfunctional requirements? What do these requirements

encompass?
 8. Describe the practical point of view of deployment of knowledge map.
 9. List the common stakeholder’s quality factors. Describe each of them briefly.
 10. What are the quality factors of a general target environment? Describe each of

them briefly.

288 Software Patterns, Knowledge Maps, and Domain Analysis

 11. What are the methods typically employed in the verification process of knowledge
maps?

 12. Describe briefly the methods employed in the validation process of knowledge maps.
 13. Describe the typical testing cycle used in knowledge maps.
 14. What is meant by dynamic analysis?

EXERCISES

 1. Discuss the differences and similarities between traditional deployment and knowl-
edge map deployment process.

 2. Discuss how the V&V process differs in the traditional software development cycle
and knowledge map.

 3. Discuss the role of stakeholders in the domain of quality factors.

PROJECTS

 1. Create a knowledge map for verification and validation (V&V) and come up with
 a. The traditional model of V&V.
 b. The stability model that includes the (EBTs + BOs) of V&V.
 2. Describe briefly three different scenarios of the stable model of V&V.
 3. Discuss briefly the functional requirements of the stable model of V&V.
 4. Discuss briefly the nonfunctional requirements of the stable model of V&V.
 5. Discuss briefly 12 of the challenges of implementing the stable model of V&V.
 6. List 25 constraints of the stable model of V&V.
 7. Create the CRC cards for all the EBTs and BOs of the stable model of V&V. (Make

sure to come up with unique responsibility per class, list the collaborators, five
services provided by the CRC class, and seven of its attributes.)

 8. Create two case studies, one of them in the V&V of the stable model, and include a
significant use case, a class diagram that include the IOs, and a sequence diagram
per case study.

Section V

Case Studies of the Knowledge Maps

290 Case Studies of the Knowledge Maps

The significant goal of the knowledge maps is driven by the special motto divide and con-
quer, and this principle is applied here throughout the structure of knowledge map. The
knowledge maps are basically a system of dividing a domain into a number of different
levels of fineness to enable easy management of domains. A knowledge map engine is the
architecture of different patterns driven forward by the software stability concepts approach
as espoused by Fayad (2002a, 2002b) and Fayad and Altman (2001).

Section V discusses knowledge map engine: initial work that consists of a number of
 interfaces, implementations, heuristics, and a hooking facility for context adaptation.
The interfaces are the types that the knowledge map engine supports. These are enduring
 business theme; business object; industrial object; ExtensionPoints and existing software
patterns, such as Gang of Four patterns (Gamma et al. 1995); Siemens group (Buschmann
1996); and others, and case study about knowledge map or stable pattern language for CRC
cards and future work and conclusions. Section V contains three chapters.

Chapter 12, titled “Knowledge Map Engine: Initial Work,” defines engines-supported
interfaces and interface implementations, types, structures, engine construction heuristics,
and the knowledge map engine’s hooking facility. This chapter concludes with a brief sum-
mary and open research issues. This chapter also provides review questions, exercises, and
projects.

Chapter 13 is titled “CRC Cards Knowledge Map,” and it discusses the case study of
a knowledge map for CRC cards that includes what makes an effective CRC cards; CRC
cards knowledge classification, which includes its goals and capabilities; detailed approach
toward a knowledge map for CRC cards; and the actual knowledge map for CRC card
that includes a family of stable analysis and design patterns. This chapter concludes with
a summary and some open research issues. This chapter also provides review questions,
exercises, and projects.

Chapter 14 is titled “Future Work and Conclusions,” and it discusses in brief any future
work that can be carried out. This chapter concludes with a summary and also provides
review questions and exercises.

291

Knowledge Map Engine
Initial Work

Real genius of moral insight is a motor which will start any engine.

Edmund Wilson

Knowledge map is a tangible and typical representation of the underlying concepts and
relationships of a given set of knowledge. The catalog of knowledge is an efficient naviga-
tional or steering aid that assists a user to detect and seek the most desired concept or idea
and then retrieve or cull out correct and relevant knowledge sources.

The significant goal of knowledge maps is driven by the special motto divide and
conquer, which is applied here throughout the structure of knowledge maps. Knowledge
maps are basically a system of dividing a domain into a number of different levels of
fineness to enable easy management of domains. A knowledge map engine is the archi-
tecture of different patterns that are driven forward by the software stability concepts
approach as espoused by Fayad (2002a, 2002b) and Fayad and Altman (2001) (http://
www.kmglobe.com).

12.1 INTRODUCTION

The knowledge map engine specifically consists of a number of interfaces, implemen-
tations, heuristics, and a hooking facility for contextual adaptation. The interfaces are
the types that the knowledge map engine supports. These are enduring business theme
(EBT), business object (BO), industrial object (IO), ExtensionPoints, and existing soft-
ware patterns, such as gang of four (GoF) patterns (Gamma et al. 1995), Siemens group
(Buschmann 1996), and others. The implementations here are the classes that provide a
concrete version of these types. Heuristics are the Java coding best practices that will be
used to write effective Java codes, such as “prefer interfaces to declare types, avoid prefer
static class members over private class members, provide a skeleton implementations of
types using abstract classes, etc.” (Bloch 2001). The hooking facility is a set of classes
that allow us to adapt specific BOs to any application contexts by means of associating
any type of IO with the BO.

12.2 INTERFACES SUPPORTED BY THE KNOWLEDGE MAP ENGINE

The main interfaces of this engine are EBT, BO, IO, and ExtensionPoint including
 existing software patterns, such as GoF design patterns. There are other interfaces, such as
Analysis, Design, and Verifiable, which are used more with the engine’s implementations
and deployments. For this sole reason, we will not describe and explain them in this section.
Figure 12.1 provides a model that represents these main interfaces.

12

http://www.kmglobe.com).
http://www.kmglobe.com).

292 Software Patterns, Knowledge Maps, and Domain Analysis

We must get familiar and acquainted with these types, because they are the core of the
implementation of goals, capabilities, development scenarios (as well as their adaptation to
new contexts), and deployment goals of the knowledge maps.

Each one of the types forming the core of this engine, in isolation, is very important
and critical to the user; however, it is the synergy or harmony between them that makes
the knowledge maps distinct from other approaches (see Chapters 2 through 6). The type
EBT is the what of the system. It realizes the analysis concerns of a perused problem. This
type is associated with a list of classes implementing the type BO, which is the type that
represents the how of the system. Each BO can be associated with several EBTs; however,
there is only one EBT that represents the ultimate goal of the BO. The type IO is a more
tangible version of the type BO*; it represents the concrete application of the BOs. IOs are
associated with the BOs by using associations, aggregations or compositions, and inheri-
tance. These forms of association generation are handled by the ExtensionPoint type. The
ExtensionPoint type is the one responsible for externally adapting a BO to a set of always-
changing requirements (IOs) or application contexts at an on-demand basis. Examples of
extension points are hooks and hot spots.

12.3 IMPLEMENTATIONS OF THE INTERFACES

In the previous section, we provided the interfaces that form the core of the knowledge
map engine. Now, we will explain the basic implementations of these interfaces—abstract
implementations. This technique is the skeleton implementation and it is described in
Bloch (2001). In summary, this technique allows us to implement a default behavior for the
supported types and provide the choice, for future specializations, to override the provided
behavior. Figure 12.2 displays implementations of the interfaces.

The utilization or use of these default implementations, also known as skeleton imple-
mentations (Bloch 2001), allows us to change and transform the implemented behavior from

* This is not the generalization–specialization problem; see Chapters 4 and 6 for more information.

<<Interface>>
EBT

(from core)

<<Interface>>
BO

(from core)

<<Interface>>
ExtensionPoint

(from core)

<<Interface>>
IO

(from core)

host

FIGURE 12.1 The engines’ interfaces or types.

293Knowledge Map Engine

the interfaces without affecting the rest of classes that are implementing a specific type and
extending the skeleton implementation. Figure 12.3 shows a good example, where we show
three elements of knowledge maps: goal, capability, and hook. We will also show how they
implement, inherit, or aggregate the behavior of the EBT, BO, and ExtensionPoint types with
a purpose of granting some sort of default functionality that will be used throughout the
engine.

Table 12.1 shows a summary of the skeleton implementations of this engine’s interfaces,
as well as their concrete implementation.

Besides the implementation of this engine’s main interfaces, a set of supporting classes
complement the responsibilities of the main interfaces. These supporting classes, in
 partnership with the main interfaces and implementation, provide immense benefits to the
utilization of the engine like, the following:

• The on-demand adaptation of BOs via hooks
• The loading of classes (IOs) not necessarily located in the same classpath as the

application being developed
• Pre- and post-conditions and invariants assessment by using a design by contract

facility

These classes are illustrated in the complete engine’s class diagram (see Figure 12.4).

<<Interface>>
BO

(from core)

<<Interface>>
IO

(from core)

AbstractBO
(from core)

<<Interface>>
Design

(from artifacts)

<<Interface>>
EBT

(from core)

host

AbstractEBT
(from core)

<<Interface>>
ExtensionPoint

(from core)

<<Interface>>
Hook

(from core)

AbstractExtensionPoint
(from core)

<<Interface>>
Analysis

(from core)

FIGURE 12.2 The engines’ interfaces implementations.

294 Software Patterns, Knowledge Maps, and Domain Analysis

12.4 STRUCTURES OF TYPES

Each one of the types mentioned here, as well as their skeleton implementations, defines a
set of methods that realize their behavior or actions. Some of the methods that implement
such behavior are given in Tables 12.2 through 12.6. For the sake of simplicity, we will
provide only a summary of the methods of the main types. The rest of the methods, as well
as the implementations’ methods, are provided in Appendix B.

<<Interface>>
BO

(from core)

<<Interface>>
IO

(from core)

AbstractBO
(from core)

<<Interface>>
Design

(from artifacts)

<<Interface>>
EBT

(from core)

host

AbstractEBT
(from core)

<<Interface>>
ExtensionPoint

(from core)

<<Interface>>
Hook

(from core)

AbstractExtension-
Point (from core)

Capability
(from artifacts)

Goal
(from artifacts)

<<Interface>>
Analysis

(from core)

FIGURE 12.3 The engines’ additional interfaces implementation.

TABLE 12.1
Summary of Interfaces Implementations

Types or Interfaces Subtype Skeleton Implementation Concrete Implementation

EBT Analysis AbstractEBT Goal
BO Design AbstractBO Capability
IO n/a n/a As many as necessary
ExtensionPoint Hook AbstractExtensionPoint As many as required

295
K

n
o

w
led

ge M
ap

 En
gin

e

<<Interface>>
BO

(from core)

<<Interface>>
IO

(from core)

AbstractBO
(from core)

<<Interface>>
Design

(from artifacts)

<<Interface>>
EBT

(from core)

host

AbstractEBT
(from core)

<<Interface>>
ExtensionPoint

(from core)

<<Interface>>
Hook

(from core)

AbstractExtensionPoint
(from core)

Capability
(from artifacts)

Goal
(from artifacts)

<<Interface>>
Analysis

(from core)

HookingFacility
(from hf)

HookingStrategy
(from hf)

UQueue
(from utils)

<<Interface>>
Variable

(from vnv)

Assertion
(from vnv)

ContractException
(from vnv)

InvariantException
(from vnv)

PreconditionException
(from vnv)

PostconditionException
(from vnv)

HookingException
(from hf)

UReflection
(from utils)

SubClassStrategy
(from hf)

AggregationStrategy
(from hf)

UClassLoader
(from utils)

ConstructStrategy
(from hf)

AssociationStrategy
(from hf)

assertion

#$hookingCode

–$instance

–$INVARIANT

–$PRECONDITION

–$POSTCONDITION

FIGURE 12.4 The engines complete class diagram.

296 Software Patterns, Knowledge Maps, and Domain Analysis

TABLE 12.2
Structure of EBTs

EBT

Method Version Description

introduces(): String 1.0 Gives a name to an EBT
releases(BO): boolean 1.0 Removes a BO from an EBT’s structure
enlist(BO) 1.0 Add BOs to an EBT
divides(EBT) 1.0 Divides an EBT into a set of EBTs or subgoals
ignores(EBT): boolean 1.0 Ignores a subgoal from the set of the EBT’s subgoal registry
…. …. …..

TABLE 12.3
Structure of BOs

BO

Method Version Description

collaborates(EBT) 1.0 The BO is associated with an EBT
connects(BO) 1.0 A BO is connected to another BO
loads(String): BO 1.0 Loads an ExtensionPoint
disables(String) 1.0 Disables an ExtensionPoint
…. …. …..

TABLE 12.4
ExtensionPoint’s Structure

ExtensionPoint

Method Version Description

describes(): String 1.0 Gives the name of the ExtensionPoint
binds(BO) 1.0 Binds the ExtensionPoint to a BO
enables() 1.0 Enables an ExtensionPoint
disables() 1.0 Disables an ExtensionPoint
add(IO) 1.0 Adds new IOs to the ExtensionPoint
…. …. …..

TABLE 12.5
Structure of IOs

IO

IO represents a tag that the engine will use to recognize transient aspects or application-specific objects

297Knowledge Map Engine

12.5 CONSTRUCTION HEURISTICS OF ENGINES

The implementation of this engine was supported by a set of heuristics derived from best
practices in Java development (Bloch 2001; Forman and Forman 2004; Simmons 2004;
Stelting and Maassen 2001), as well as our prior Java programming experience. For sim-
plicity, we have included some of the heuristics that we used in the implementation of this
engine. This list is as follows:

 1. The implementation of the types interfaces is unsynchronized to streamline the
engine’s performance. However, some actions in the types skeleton implementa-
tion are synchronized, such as the methods that deal with the singleton coding
pattern.

 2. Some types interfaces are driven by the concept of optional methods, so that if a
type’s implementation does not support a particular action, it will have to throw an
UnsupportedOperationException.

 3. Use interfaces to define types and classes to implement these types
 4. Try to use static member classes over the nonstatic ones. In other words, if you are

creating an inner class, always try to create it as a static class. This will allow mem-
bers of the same sort (classes containing the inner class) to share the functionality
provided by this static member class.

 5. Favor protected constructors over private, when creating singletons. This will allow
you to extend a class and prevent its instantiation from classes of a different sort.
This is a good idea for creating extendable singletons.

 6. When implementing methods, do not try to control the checking of parameters
validity, within your method implementation. Instead, try use exceptions to check
parameters validity, such as IllegalArgumentException and NullPointerException.

 7. Disable assertions in production code; otherwise, it will degrade the performance
of your developed application.

 8. Always ensure that you are using Java’s Reflection Application Program Interface
(API) with extreme care. Even though there are so many benefits of using Java’s
Reflection API, such as the ability to ignore the source code of components and
simply extract their interfaces, uncontrolled use of Java’s Reflection API might
actually degrade the performance of your developed solution.

TABLE 12.6
Classes of the Hooking Facility

Hooking Facility’s Elements

Class Version Description

HookingFacility 1.0 Controls all calls to the HookingStrategy class
HookingStrategy 1.0 Represents the parent of all the hooking strategies
ConstructStrategy 1.0 Constructs IO classes
SubClassStrategy 1.0 Creates SubClasses of a selected BO
AssociationStrategy 1.0 Creates associations between IOs and a selected BO
AggregationStrategy 1.0 Creates aggregations between IOs and a selected BO

298 Software Patterns, Knowledge Maps, and Domain Analysis

12.6 THE HOOKING FACILITY OF THE KNOWLEDGE MAP ENGINE

Once we have obtained a fair idea of the types that are supported by this engine, along
with their skeleton implementations and internal structure, we need to look now at how our
engine allows both the external adaptation of BOs to ever-changing requirements and the
loading of these adaptations into our solution, so that we are able to use them.

To understand how the BOs are externally adapted to new contexts, we may also need
to take a closer look at the classes that realize the distinct hooking strategies in our engine.
These classes are Hook (ExtensionPoint’s subtype), HookStrategy, SubClassStrategy,
ConstructStrategy, AssociationStrategy, and AggregationStrategy. Table 12.4 provides
a description of the tasks performed by these classes.

An overview of the entire process to adapt externally, the BO of interest, by using the
hooking facility as provided in Figure 12.5.

As one can note from Figure 12.5, the hook is attached to the BO of interest. If the user
of the BO decides to adapt this BO to new contexts, he or she has three hook options to
choose from—extend the BO to help specialize the BO’s functionality, associate any IO to
the BO of interest, and aggregate any IO to the BO of interest. The ConstructStrategy class
is used only to create dummy classes (IOs without implementation) to be later implemented
by a developer.

To adapt the BO to a new context, via the first option, the user needs to pass as input
the BO to be adapted and the output name of the new class. Then, the hook selects that
right type of strategy to create the BO’s external adaptation. After that, the hooking facil-
ity will take this BO and extract implement the BO’s constructors, fields, and the function

Hook
strategy

Specific strategies

New hook

From IO’s
instance

Class

From BO’s
instance

BO’s external
adaptation

Class

Hook

FIGURE 12.5 The hooking facility’s process overview.

299Knowledge Map Engine

members using reflection. This is possible by using the Reflection API. In other words,
instead of focusing on implementation details (source code) of the BO, we will focus on
its available fields and methods signatures. Snippets 12.1 through 12.6 show the hooking
method responsible for creating the BO’s identity subclass.

The use of the UClassLoader.search(….) method allow us to dynamically load constantly
modified classes into memory, that is, it loads and compiles the BO’s hooks modified previ-
ously by the hooking facility, so that one can return them to the BO of interest. Snippet 12.2
shows a snippet of the URLClassLoader.

In the second option, the user provides as inputs the BO of interest, the IO to be associ-
ated with the BO, the association’s multiplicity, and the name of the hook that needs gen-
eration. The process is quite similar to the previous option. The only difference now is that
the hooking facility will also extract the fields and methods of the IO to be selected. Then,
it will implement the respective methods that create an association between the IO and the
resulting hook. Snippet 12.3 displays partial implementation of the method that uses the
AssociationStrategy.

SNIPPET 12.1 CREATING A BO’s SUBCLASS

public void adapt(BO cls, String output) {
Class newBO = UClassLoader.search ("net.hsanchez.km.repository."
 + output) ;
 setFirstInputObject (cls.getClass ()) ;
 setOutputClassName (output) ;
 setPackageName ("net.hsanchez.km.repository");
 Class nBO = new SubClassStrategy().createClass
 (this);
 if(nBO = = null)
 throw new HookingException("Unable to adapt the
 given BO..");
 }

SNIPPET 12.2 DYNAMICALLY LOADING
CLASSES AND/OR MODIFIED CLASSES

…..
 //why? because we can modify the class and reload it again
 //without restarting the application
 ClassLoader cl = new URLClassLoader(urls);
 cls = cl.loadClass(name);
……

300 Software Patterns, Knowledge Maps, and Domain Analysis

SNIPPET 12.3 ASSOCIATING IOs AND BOs

….
 this.setPackageName ("net.hsanchez.km.repository");
 this.setMultiplicity (multiplicity);
 Class nBO = new AssociationStrategy().createClass(this);
 if (nBO ! = null) {
 hook = (BO)instantiates (nBO);
 }
….

SNIPPET 12.4 AGGREGATING AN IO TO A BO

….
 this.setPackageName ("repository");
 this.setMultiplicity (multiplicity);
 Class nBO = new AggregationStrategy().createClass(this);
 if (nBO ! = null) {
 hook = (BO)instantiates (nBO);
 }
….

The third option is similar to the previous option. The only difference is that it uses
the AggregationStrategy. Snippet 12.4 shows partial implementation of the hook’s method
 calling the AggregationStrategy.

The following section provides an example using the AnyLog BO and the Receipt IO.
The goal here is to create an association between these two classes. Snippets 12.5 and 12.6
provide the input code and the resulted Java file.

12.6.1 An ExAmplE: CrEAting AssoCiAtions bEtwEEn bos And ios

The following snippets illustrate how BOs and IOs will be associated by using the hooking
facility. For the sake of simplicity, we are providing a rudimentary example.

SNIPPET 12.5 THE INPUT CODE

…..
 Hook hey = new Hook();
 AnyLog log = new AnyLog();
 Receipt receipt = new Receipt();
 hey.associate(log, receipt, "AnyLog");//the hooking
 facility will
 //add the postfix Hook to the output file’s name
…..

301Knowledge Map Engine

SNIPPET 12.6 THE RESULTING HOOK

……
public class AnyLogHook
extends AnyLog
implements Hook{

//= = = = = = = = = = = = = F I E L D S = = = = = = = = = =

private Receipt _receipt;

//= = = = = = = = = = = C O N S T R U C T O R S = = = = = = =
public AnyLogHook()

{

super();
_receipt = new Receipt();

}

//= = = = = = = = = = = = = M E T H O D S = = = = = = = = =

public Receipt getReceipt(){
 return _chair;

}

public void setReceipt(final Receipt ipCls) {
if(ipCls = = null)
 throw new IllegalArgumentException("Argument must not be
 null.");
_receipt = ipCls;

}

//= = = = = = = = = = N E S T E D C L A S S E S = = = = = =

}

……

One can use the generated file (a hook) within the AnyLog (BO) of interest to streamline
its functionality, by using any functionality from the Receipt (IO).

SUMMARY

The main objectives of this chapter were to provide a concise view of the knowledge maps’
engine and to show with examples the hooking facility structure. This first version of this
engine attempts to facilitate a platform for developing the concerns (stable patterns) of
the knowledge maps in a systematic manner. The main benefits of having a built-in hook-
ing facility for the BOs to use are numerous. For instance, developers will reduce their
efforts in adapting their software to new contexts; they will simply use and adapt the hook-
ing facility and employ their BOs the way they wanted by means of extensions, associa-
tions, and aggregations of hooking strategies. Another benefit is that one of faster return on
investment; developers will be able to accelerate their coding deliverables in lesser time.

302 Software Patterns, Knowledge Maps, and Domain Analysis

OPEN RESEARCH ISSUES

The first prototype for the hook engine by providing easy hooking of IOs to BOs has already
been developed based solely on stability model. The second version of this hook engine is cur-
rently being developed. This engine would be useful for novice users, as well as advanced devel-
opers to hook their IOs to the core knowledge map. The second version also includes more than
1000 existing software patterns, such as the GoF (Gamma et al. 1995) and Seimens Group pat-
terns (Buschmann 1996). The second version of the hook would have many capabilities, such as
extend, adapt, customize, configure, modify, and change any existing systems (see Sidebar 1.2).

REVIEW QUESTIONS

 1. Describe the model that represents the knowledge map engine’s interface.
 2. Describe the technique skeleton implementation.
 3. Describe the knowledge map engine’s interfaces implementation.
 4. Give the subtype, skeleton implementation, and concrete implementation for the

following interfaces:
 a. EBT
 b. BO
 c. IO
 d. ExtensionPoint
 5. What is the role of supporting classes in knowledge map engine?
 6. Draw a class diagram for the knowledge map engine and describe it.
 7. Provide a list of methods that implement the behavior of each of the types.
 8. What do you mean by heuristics? State the heuristics for knowledge map engine.
 9. BOs are externally adaptable to new contexts. Do you agree with this statement? Explain.
 10. Name the classes that are used to realize distinct hooking strategies in the knowl-

edge map engine.
 11. Describe the responsibilities of each of the classes that provide hooking strategies

for the knowledge map engine.
 12. What options are available to the user to extend BOs?
 13. Explain with the help of diagram the process to adapt BO externally.
 14. Explain how to extend BOs by creating subclass of BO.
 15. Explain how to extend BOs by associating IOs with BO.
 16. Explain how to extend BOs by aggregating IOs with BO.

EXERCISES

 1. Come up with an exhaustive list of EBT, BO, and ExtensionPoint’s structure.
 2. Create hooks for each of the following using any of the three methods described in

this chapter for extending BOs:
 a. AnyActor and musician
 b. AnyCollection and stamp collection
 c. AnyEntity and laptop
 d. AnySkill and communication
 e. AnyPresentation and charts

PROJECTS

 1. Design an engine that can generate hooks automatically for an application.

303

13 CRC Cards Knowledge Map

Quality is everyone’s responsibility.

W. Edwards Deming

The class responsibility collaborator (CRC) cards are index cards that are utilized for
 mapping candidates classes in predefined design scenarios, for example, use case scenarios.
The objective of CRC cards is to facilitate the design process, while insuring an active par-
ticipation of involved designers. This chapter represents the first attempt toward a CRC card
knowledge map or stable pattern language representation, via stable patterns, as a mean to
discover, organize, and utilize CRC cards endured knowledge. Each stable pattern focuses
on a distinctive activity and provides a way by which this activity can be conducted effi-
ciently. The knowledge map or stable pattern language is a continuation of our early effort
in improving the effectiveness of CRC cards and their role in the design process.

13.1 INTRODUCTION

The notion of CRC cards was first introduced in 1989 at the annual Object-Oriented Pro gram-
ming, Systems, Languages, and Applications conference. The acronym CRC stands for class,
responsibilities, and collaboration, and, while they are not formally used in Unified Modeling
Language, they can offer valuable insights during the early stages of development (Pressman
2001). They are primarily used as a brainstorming technique to rapidly and thoroughly
explore design alternatives by identifying the classes and their associations within a system.

CRC cards are index cards utilized for mapping candidates classes in predefined design
scenarios, for example, use case scenarios. They provide a simple alternative for a col-
laborative design environment, where analysts, designers, and developers try to simulate
the system behavior, that is, role-play-driven approach. This process ends up with a set of
collaborative classes represented by index cards, along with their roles, which are played
by the members of the development team in a pre-animated design scenario (Biddle et al.
2009). Figure 13.1 shows the original CRC cards and illustrates in light gray color, current
changes incurred over its original format.

Aside from its original purpose that was to teach programmers the object-oriented para-
digm (OOP), CRC cards have been redefined to become valuable beyond the educational
purpose. For their simplicity and flexible form, this tool can be applied to different domains’
purposes, such as teaching OOP, a mean for not only documenting and identifying relevant
classes of a system, serving as a methodology or as a front-end for other design methods,
but also solving modeling problems, and engaging the entire development team through
effective brainstorming sessions.

Some of those applications of CRC cards, as such, specify the underlying goals and expec-
tations of CRC cards’ use. The processes of accomplishing these goals, especially in software
development, throughout iterative sessions are done at ad hoc, not precisely knowing when,
how, and where to apply them to successfully accomplish the expected goals. This limitation

304 Software Patterns, Knowledge Maps, and Domain Analysis

calls software practitioners for a set of suitable guidelines and stable knowledge to answer
those former inquiries. This chapter illustrates the first stable pattern language for CRC
cards and communicate this stable knowledge and suitable guidelines called knowledge map
for CRC cards. This stable pattern language will enhance the way we commonly see and use
CRC cards, turning it from simple index cards to a valuable knowledge repository. Our idea of
this chapter is not to provide a specific approach on how to define and deploy a CRC card, but
to provide a straightforward conceptualization and understanding of the CRC card’s domain
knowledge and fundamental processes to deploy one. To do this, we relied on the formed
synergy of two methodologies: the software stability concepts paradigm (Fayad and Hamza
2003) and its subelements, stable analysis and design patterns (Fayad and Hamza 2003)
and pattern language methodology (Fayad, Sanchez, and Goverdhan 2005). The reader, in
this case, would truly visualize the distinct elements that composed the CRC card’s domain
knowledge and how they relate with each other to cope with a determined area of application.

The rest of the chapter is organized as follows. Section 13.2 provides an overview of
the essential characteristics of effective CRC cards. Section 13.3 focuses on a bird’s-eye
description of the CRC card’s implicit goals and capabilities. Section 13.4 discusses the
rationale of the pattern language for CRC cards and the set of stable patterns involved in
the CRC card usage. Section 13.5 provides the detailed description of CRC cards pattern
language. Section 13.6 concludes this chapter.

13.2 WHAT MAKES EFFECTIVE CRC CARDS

CRC cards, regardless of which format is used (Halbleib 1999; Beck and Cunningham 1989),
embody a particular set of characteristics that transcend across any context of applicability.
Each of these characteristics possesses essential semantics that must be taken into consid-
eration when applying CRC cards across domains. The focusing on those semantics, along
with the utilization of CRC card quality factors, would be key factors in improving CRC card
utilization within software development life cycle.

Regardless of structure’s simplification, current CRC cards follow the original struc-
ture and share same basic elements (i.e., class name, responsibility, and collaborators).

Class Name

SuperClass A: Class A

Super Class B: Class B

Attributes: Attribute X

Responsibilities Collaborations

Responsibilities 1
Responsibilities 2
Responsibilities 3

Class 1
Class 2
Class 3

Component Name: Name X

Comments

Optional

Optional

Front side

Back side

FIGURE 13.1 Original CRC card and current changes in its structure.

305CRC Cards Knowledge Map

Nevertheless, it may include more elements, if necessary (Halbleib 1999; Beck and
Cunningham 1989). In the long run, these current structures might not always attain the
essential aspects needed in future development stages (i.e., building system class diagrams).
Therefore, for CRC cards to aid system development, main essential quality factors need
to be satisfied. The fulfillment of these quality factors will have a high impact on the CRC
card’s characteristics realization. These quality factors are provided herein:

 1. High level of understandability. Illustrate its sections in an orderly and specific
manner, showing an efficient distribution of its elements.

 2. Accurate identification of class elements. Assure proper identification of artifact/
class and its elements. This will prevent any confusion during class assignation.

 3. Well-defined role. Include a well-defined role, within context, for the artifact/class
being developed. This role has to strongly reference the artifact’s assigned respon-
sibility. Each class may have multiple roles according to a specific simulated design
scenario (Humans, for example).

 4. One cohesive responsibility per class. Assign a unique, cohesive responsibility,
within context, to each class. This responsibility must match the class’s defined
role. Avoiding overlapping/redundant responsibilities will prevent complex class
interactions, when applying them in design scenarios.

 5. Self-descriptive services. Provide a descriptive, straightforward definition of the
services per class. These services will sustain a strong correlation with the class’s
responsibility. Otherwise, it would be difficult to know which services to invoke to
fulfill an artifact’s specific job.

 6. Explicit notion of the external collaborators. Identify the class’s collaborators.

A class needs to know which artifacts/classes are its collaborators for the achievement of
responsibilities.

Based on the effective CRC card format, described in Fayad et al. (2003), we provide
Table 13.1 listing a summary of CRC cards relevant characteristics.

13.3 CRC CARDS KNOWLEDGE CLASSIFICATION

Our primary focus is on the higher level patterns that conform to the underlying goals
found in CRC card utilization: Patterns that help us to develop more understanding of CRC
cards and their effective utilization.

It is worthwhile to mention that with the product of the association of higher level pat-
terns (goals) and semitangible patterns (capabilities), we will be able to foresee a generic
skeleton for myriad of development scenarios of CRC cards. Figure 13.2 illustrates a gen-
eral view of the CRC card knowledge stratification in relation to its goals and capabilities.
However, the domain knowledge from which CRC cards are made up may be enormous;
therefore, for simplicity purpose we include few of them.

In the following section, we would provide a more specific view of the distinct elements
involved in the CRC card domain knowledge, by the means of using and describing a map
representation. This map representation focuses on the realization of the dissimilar arti-
facts, quality factors, and how they are associated with each other within the CRC cards
domain boundary. It is worthwhile to mention that each element or artifact represented in
this map would come to represent a stable pattern.

306 Software Patterns, Knowledge Maps, and Domain Analysis

A
ny

Cl
as

s

A
ny

Ro
le

Re
sp

on
sib

ili
ty

D
ep

en
de

nc
y

Cl
ie

nt
s

Co
lla

bo
ra

tio
ns

Se
rv

ic
es

Fo
rm

al

Id
en

tifi
ca

tio
n

D
oc

um
en

ta
tio

n

M
od

el
in

g

En
ga

ge
m

en
t

Tr
ac

ea
bi

lit
y

Br
ai

ns
to

rm
in

g

Pa
rt

ic
ip

at
io

n

CRC cards knowledge

Responsibilities/
properties

Goals or
classification

FIGURE 13.2 CRC card knowledge classification.

TABLE 13.1
Explicit Characteristics of CRC Cards and Solutions

Characteristic Solution

Portable No computers are required, they can be used anywhere, from the tranquility of your home
to a very important meeting.

Reviewable You can go back and review these index cards anytime after a long period of time
without being concern of information deterioration.

Simple It possesses a simple structure and is easy to read, learn, and understand by any person
without a previous experience on CRC cards.

Multipurpose Due to its simplicity and its portability, CRC cards may be utilized in different application
domains, for example, education, software analysis, and design, as a teaching technique.

Accessable The set of CRC index cards are highly available during the sharing decision process done by
analysts, designers, and developers in the early stages of the software development phase.

Implementable From the CRC card blueprint to its implementation, there is a short path to follow. Due to
well-defined classes within the self-described structure of CRC cards, developers are able
to implement these cards (classes) with ease.

Traceable These cards can be traced throughout the entire specification of animated scenarios by the
explicit exhibition of the classes and their different roles and behavior to which it
represents.

Mapping ability These index cards represent an exact match and definition of a class, and its elements, in a
particular design scenario.

Reusable After a project is completed, this does not mean that we cannot use our already defined
index cards in another project. The classes were defined with a stable and reusable core in
mind; therefore, they may be utilized within several applications that share the same
domain knowledge. Think about this as a piece of knowledge that may be shared in other
contexts of applicability that possesses similar rationale and capabilities, and hence, the
effort in coming up with a stable system design would be reduced, and quality enhanced.

307CRC Cards Knowledge Map

13.4 TOWARD A KNOWLEDGE MAP FOR CRC CARDS

CRC cards’ goals and capabilities embody a set of related stable patterns that build CRC
cards rationale and usage over a myriad of application contexts. When related stable
patterns are interlaced together, they form a family of patterns that will cover multiple
domains; this family of patterns is called pattern language.

The objective of the overall pattern language is to cover the essential aspects related to the
process of conceiving, understanding, writing, and utilizing CRC cards. Concretely speaking,
this pattern language will come to surface the behind-the-scenes endured knowledge of CRC
cards. The process of defining Fayad’s CRC cards endured knowledge involves four main
steps, which can be perceived as the basis for our pattern categorization: (1) goals or classifi-
cation, (2) capabilities/properties of CRC cards, (3) development or scenario development of
CRC cards, and finally (4) deployment of CRC cards across multiple domains. The outcome
of these main steps will be a set of interrelated patterns that interact together to serve a
particular purpose, within CRC cards usage and rationale. As a whole, this pattern language
will embody the core insights as a set of stable patterns and their interactions among them.

If we delve into the pattern language definition that is presented in Coplien and Schmidt
(1995), our stable pattern language for CRC cards is far from being just a decision tree of
patterns. On the contrary, it is a network of patterns (not hierarchy of patterns), where each
generated interaction among its set of patterns come to represent a distinctive route or path
serving a particular purpose or goal. Therefore, the number of distinctive routes that can be
orderly navigated to satisfy distinctive purposes can be a very large number.

Before getting started with the family of patterns, let us go through the number of pat-
terns that would be presented in this chapter, along with the ones that will be included in
future versions. Also, let us mention the undertaken methodology and how patterns will
be allocated accordingly to their target purpose via a knowledge map. Currently, our pat-
tern language for CRC cards proposes 22 patterns covering CRC cards’ domain knowledge;
however, only four patterns are documented in this chapter. More patterns will be added or
documented in the future version of this chapter. Additionally, as stated above, these patterns
would be discovered and organized by means of applying the aforementioned four main
steps, each one of them addressing a particular objective within the definition of our CRC
cards language.

13.4.1 Goals or ClassifiCation

This step is concerned with surfacing the implicit goals hidden within the CRC cards core
knowledge. This process requires the capture and full understanding of the context where
our solution would be laid down. That includes describing the goals not from its tangible
side, but focusing more on its conceptual side. In Fayad, Sanchez, and Goverdhan 2005, they
are named enduring business themes (EBTs). Examples of the resulted patterns represented
within this main step are documentation, identification, and brainstorming goals.

13.4.2 Capabilities or properties

The second step concentrates on the discovery of those recipes that are required to fulfill
the stated goals and purposes of the CRC cards. Without those concepts or stable pat-
terns, there will do a vague understand (almost none) on how these goals will be achieved.

308 Software Patterns, Knowledge Maps, and Domain Analysis

These stable patterns are known in Fayad, Sanchez, and Goverdhan 2005 as business objects
(BOs). For instance, within our language for CRC cards, we have AnyClass, Any Role,
Responsibility, Services, and so on.

13.4.3 Development sCenarios

The third step relates to the following: (1) the myriad of development scenarios, where
the CRC cards can be involved. These development scenarios are realized through the
distinct routes or paths taken due to the interactions among the involved patterns (EBTs
associated with BOs). The product of this association is known in Fayad, Sanchez, and
Goverdhan 2005 as architectural patterns. Each one of the complete routes taken will rep-
resent a distinct application domain or context where the CRC cards would be used. For
instance, teaching scenario and groupware and (2) how the CRC cards language would be
implemented across dissimilar domains, based upon the utilization of tangible artifacts that
would confirm the domain-specific patterns. These patterns are known in Fayad, Sanchez,
and Goverdhan 2005 as industrial objects (IOs). An example of these patterns would be
bookkeeping.

13.4.4 Deployment

The last step, as its name states, deals not only with how the CRC cards knowledge would
be deployed across different application domains, but also with the representation of the
artifacts or patterns that will aid the actual deployment process. For instance, we have the
blueprint pattern.

The rationale of discovering and stratifying our pattern language, by means of using a
systematic approach, which involves four main steps and ends up with four categories, is to
facilitate the findings, execution order, and description of the stable patterns embodying the
concepts or building blocks of the CRC cards domain.

Figure 13.3 depicts the overall pattern language structure. In the given figure, the four
important steps are presented in light gray boxes with circle inside. The light gray boxes
represent the generic aspects/recipes or stable patterns that are related to those steps. For
instance, the first step relates to the analysis of the domain that is looking for hidden goals
weaving the domain under discussion. Each aspect is then interconnected with other set of
patterns through the CRC card pattern language.

In summary, the routes taken, when defining a new architecture would provide us the
established road map to fulfill particular goals expected from the CRC cards. The outcome
of these interconnections represents self-supported aspects of the generated framework that
will define the order of employing CRC cards in dissimilar domains.

13.4.5 family of patterns—birD’s-eye view

The proposed family of patterns, as stated above, contains nearly 22 patterns. These pat-
terns as a whole describe the basis for defining, understanding, deploying, and embodying
a stable knowledge of the CRC card across domains. Table 13.2 references in a concise way
the artifacts included in this patterns language. For simplicity purpose, only the patterns
provided in this chapter would be described. Future versions of this chapter will include
more related patterns to the CRC cards domain knowledge and these patterns’ description.

309CRC Cards Knowledge Map

13.5 KNOWLEDGE MAP FOR CRC CARDS

A pattern language is not a formal language, rather a family of interrelated patterns orga-
nized in such a way that it facilitates a vocabulary that guides their application when solv-
ing standard problems (Schmidt, Fayad, and Johnson 1996). In our case, it would be a
pattern language for communicating the underlying knowledge of CRC cards’ conception,
understanding, and application.

In this section, we will also describe only those patterns that are marked as filled or a
solid circle in the knowledge map shown in Figure 13.3. The rest of the patterns would be
described in the future versions of this chapter.

13.5.1 the main step in the ClassifiCation

This step relates to surfacing the implicit goals hidden within the CRC cards’ core knowl-
edge. These goals form the basis for stable analysis patterns representation.

Patterns provided in this chapter
Taken routes
Starting point

Brainstorming Traceability

Modeling Engagement

Documentation Identification

AnyClass

Responsibility

AnyRole
Properties

Dependency

Clients

Services
Collaboration

Format

Teaching

Front end to
methodologies GroupWare

Bookkeeping

Blueprint

Deployment

Grouping/
regrouping

Adaptable

Classification

Development

FIGURE 13.3 A pattern language for CRC cards—achieving the modeling goal scenario.

310 Software Patterns, Knowledge Maps, and Domain Analysis

In this chapter, we present three stable analysis patterns: brainstorming, modeling, and
engagement stable analysis patterns.

13.5.2 pattern 1—brainstorminG stable analysis pattern

Brainstorming is an informal way of generating ideas or solutions to write about, or points
to generate a particular solution based on some engaging activities.

TABLE 13.2
Summary of the Pattern Language of the CRC Cards

Category Pattern Problem Solution

Goals or
classification

Documentation
Brainstorming Current implementations of the

brainstorming process are bound to a
specific problem domain.

Brainstorming
stable analysis
pattern

Engagement We are always concerned about the quality
of the involvement between participants
involved in a particular activity, when
interacting with each other.

Engagement stable
analysis pattern

Traceability
Identification
Modeling The actual problems range from the

overloaded generation of too many
responsibilities per class, to the lack of
specific class roles, which defined the
position of a class in a preanimated
scenario in accordance with certain
responsibility.

Modeling stable
analysis pattern

Participation
Capabilities
properties

Any Class
Any Role
Responsibility
Dependency
Clients
Collaboration
Service
Format Current CRC cards lack some essential

qualities that might affect the effectiveness
of the developed system that uses them.

Effective format
pattern

Development Teaching
Front-end to
methodologies

Groupware
Bookkeeping

Deployment Blueprint
Adaptable
Grouping/regrouping

311CRC Cards Knowledge Map

13.5.2.1 Context
Brainstorming is an informal way of generating ideas or solutions to write about, or points
to generate a particular solution. It can be done at any time during the writing process or
during certain interactions in particular meetings. In the case of CRC cards, brainstorm-
ing process is intended to generate ideas with respect to the simulation of system behavior.
Such process encloses several benefits, such as the treatment of several argument issues, the
achievement of agreement, engaging a particular group of people in the process of identify-
ing candidate classes, their responsibility, and collaborations according a distinctive con-
text or predefined scenarios through the utilization of heterogeneous media. This technique
is open to a freestyle generation of ideas and is not a technique for idea evaluation. For
instance, in a CRC card session, the modeling team, aided by the use of index cards, will try
to identify and understand the requirements for the application they are building. However,
because there is no idea-evaluation technique, the application of this technique brings to
surface some trade-offs, such as a high uncertainty whether the generated idea is correct or
not. Nevertheless, it sure helps practitioners to explore a vast set of possible solutions that
may reflect the correct system behavior.

13.5.2.2 Problem
Brainstorming process can be done at any time, individually or collectively; it can target
one particular subject or multiple ones; it can be limited to one particular context or con-
texts; it can be done synchronously and asynchronously. Currently, brainstorming solutions
are limited to cope with one context at a time, not allowing certain grade of flexibility to
allow practitioners expand their target context scope(s) of determined problem of discourse.
Additionally, current brainstorming solutions strive, when practitioners deal with several
problem domains at the same time, especially when switching from different contexts back
and forth, in a random order, and trying to keep certain topic’s discussion state, where it
was previously left by practitioners. Therefore, current brainstorming solutions are unsuit-
able for and across problem domain application.

In the case of CRC cards use and understanding, brainstorming process seems to be
bound to the ability of a moderator to engage practitioners in collaborative environment and
the willingness of practitioners to truly be part of the session. For such a case, the process of
engaging practitioners is detached from the brainstorming process itself. Bringing as a con-
sequence, a poor running session, where the session-generated results would have higher
degree of failure due to the fragile link of attention experienced between the practitioners
running the brainstorming process with respect to a topic of discourse.

13.5.2.3 Solution
The following model will represent the proposed solution of the brainstorming analysis pat-
tern, using the software stability concepts approach (see Figure 13.4).

Participants.
The participants of the brainstorming analysis pattern are as follows:

Classes
Brainstorming. Represents the brainstorming process itself. This class contains the

characteristics and behavior that initialize the brainstorming process.
Engagement. See engagement analysis pattern.

312 Software Patterns, Knowledge Maps, and Domain Analysis

Patterns
AnyMedia. Represents the media through which the brainstorming process will

take place. For instance, one can brainstorm the candidate classes of the system
being developed through the utilization of CRC cards and use case scenarios,
by utilizing the role-play brainstorming process. Others might use simply the
CRC cards, in a model, to represent all the candidate classes and then brain-
storm how these classes interact with each other in a high-level representation
of the system.

AnyParty. Represents the brainstorming inducers or practitioners. It models all the
parties that are involved in the brainstorming process, including the facilitator,
who is the person that rules the entire brainstorming process. Party can be a
person, organization, or a group with specific orientation and organization.

AnyForm. Represents the forms and how the brainstorming process can be per-
formed. It models all the forms that may be employed when carrying out a
brainstorming process.

 Form can be a CRC card modeling, a role-playing and use case form, or
writing brainstorming form (Durfee 1998).

AnyContext. Represents the brainstorming topics, problem, or subjects to be brain-
stormed with. It models all the contexts that may be covered to generate possible
solutions by using a brainstorming process. It includes the scope or boundaries
of the context and the specific points to be discussed. AnyContext can be class
identification step, responsibility identification, or just writing an action novel
for a local magazine.

<<EBT>>
Brainstroming

<<EBT>>
Engagement

<<BO_Pattern>>
AnyParty

<<BO_Pattern>>
AnyContext

<<BO_Pattern>>
AnyMedia

EBTs BOs

is started by

1

1

1

1

1..*

1..*

1..*
1

1..*

1..*

takes

covers

is performed through

is facilitated

encloses

1..*

FIGURE 13.4 Brainstorming analysis pattern—stable object model.

313CRC Cards Knowledge Map

13.5.2.4 Example
In order to illustrate the use of the brainstorming pattern in different application areas,
one example is presented: CRC cards are one of the methods, where brainstorming is
present, by interacting in a role-playing and use case scenarios to discover, with users,
the real-world objects that make up a system.

They are meant to assist in mapping the collaborations among classes. Because the pur-
pose of this example is to demonstrate the usage of the proposed pattern, and for simplicity,
this example does not present the complete model for the problem. Instead, they focus on
the part that involves the brainstorming process.

13.5.2.4.1 Example 1: Role-Playing and Use Case Scenario Brainstorming
Role-playing and use case scenario brainstorming process requires a list of predefined
 scenarios, a group of CRC cards, and the practitioners of the brainstorming session
(analyst, designers, developers), including the leader or facilitator of the session. However,
it is almost impossible to make all the practitioners participate openly in those types of
sessions, because they are afraid to give a bad idea or opinion. Here is where the facilitator
has to come to shine, he needs to bring all the practitioners into a complete engagement
by distributing the CRC cards to the team members, so that team members play one of the
classes (preferably not so that possible collaborating classes are assigned to the same indi-
vidual). This example models a simple solution to interact in an interesting brainstorming
process called role-playing and use case scenario and generates certain points or ideas that
refer to the possible candidate classes, their responsibility, and collaborations at a specific
scenario. Figure 13.5 shows the stability model of the brainstorming used in role-playing
and use case scenario. Classes that are not in the original brainstorming pattern are colored
in gray.

13.5.3 pattern 2—enGaGement stable analysis pattern

Engagement represents the process for candidates (participant) to meaningfully involve
in a particular activity(s), through interaction with others and worthwhile activities. Such
engagement could be accomplished without the use of technology; however, technology
may facilitate engagement in ways, which are difficult to achieve otherwise (Kearsley and
Shneiderman 1998).

13.5.3.1 Context
By engagement process, we meant the sense of concern with and curiosity about a particu-
lar activity, in which all participants are immersed in an iterative environment, based on
their level of commitment and disposition regarding a particular set of tasks.

Engagement concern is based upon the idea of creating a collaborative environment for
its participants, where the act of sharing activities and knowledge is increased.

The context may be summarized based on the following elements:

 1. Collaborative teams or participants
 2. Participants’ proficiency in certain skills
 3. Strong commitment toward the activity to be performed
 4. Be truly involved in particular activity
 5. Activities within scope

314 Software Patterns, Knowledge Maps, and Domain Analysis

13.5.3.2 Problem
We are always concerned about the quality of the involvement between participants who
are involved in a particular activity, when interacting with each other. Those concerns
become more noticeable from time to time. This is especially so, when we are trying to
engage participants with different level of proficiency toward a particular task. A number of
barriers interfere with such an effort. Many involve a lack of commitment or interest from
participants. These, in turn, may delay or halt the completion of the assigned set of tasks.
Other obstacles relate to the process of defining the context boundaries of these activities.
Therefore, accomplishing engagements may be hindered, when proficiency on particular
skills and activity’s context are not in consensus (not related).

13.5.3.3 Solution
Figure 13.6 represents an abstract representation of the solution that deals with the engage-
ment concept.

13.5.3.4 Example: Conceptual Map Creation
In order to illustrate the use of the engagement pattern in different application areas, one
example is presented: the creation of a conceptual map (Armitage and Cameron 2006).
Because the purpose of this example is to demonstrate the use of a proposed pattern, and
for simplicity, this example does not present the complete model for the problem. Instead,
they focus on the part that involves the engagement process as shown in Figure 13.7.

<<EBT>>
Brainstroming

<<EBT>>
Engagement

<<BO_Pattern>>
AnyParty

<<BO>>
AnyForm

<<BO_Pattern>>
AnyContext

<<BO_Pattern>>
AnyMedia

Facilitator Practitioner

RolePlaying

Class-
Identification

CRCCard

is started by

1 1

1
1

takes

covers
1..*

is performed
through

1..*

1
is facilitated

1..*

1..*
encloses

1

BOs IOsEBTs

1..*

FIGURE 13.5 Brainstorming analysis pattern—stable object model applicability.

315CRC Cards Knowledge Map

13.5.3.4.1 Example 1: Creating a Conceptual Map to Predict
a Constructive Engagement

The creation of a conceptual map (Armitage) should involve reshaping, adding personal
links, keywords, and conceptual areas. Note that these activities are considered, when
undertaken by a single user. Therefore, a user must be familiar with the semantics of cre-
ating conceptual maps. Only activities associated with the use of the navigation aid are
considered, rather than activities associated with other aspects of the hypermedia content.

13.5.4 pattern 3—CrC CarD moDelinG stable analysis pattern

The main intent is to represent a collection of index cards and their interconnection with
each other, to provide a big picture of the system functionality.

13.5.4.1 Context
A CRC card model is a low-tech method that implies a collection of index cards arranged
in a client/server order to visualize how the system, being developed, will function. We also
mean by client/server order as bringing interlocked classes or classes collaborating with
each other closer in the model (having one or more server classes with their clients). This
session is an interactive process, which brings together analysts, designers, developers, and/
or any other professional that accedes to participate in this pre-animated exploration of the

<<EBT>>
Engagement

<<BO_Pattern>>
AnyParty

<<BO_Pattern>>
AnyCommitment

<<BO>>
Disposition

<<BO>>
AnyActivity

<<BO>>
AnySkill

<<BO_Pattern>>
AnyContext

is led to

possesses

is specified by

involves

are enclosed in

is led by

requires

focus

1

1

11

1

1

1

1

1

1..*

1..*

1..*

1..*

1..*

1..*

1..*

BOsEBTs

FIGURE 13.6 Engagement analysis pattern—stable object model.

316 Software Patterns, Knowledge Maps, and Domain Analysis

understanding and identification of the business requirements. As a low-tech, simple, yet
powerful method for object-oriented analysis, this technique provides us great opportunities
for a better understanding of the system throughout its entire development cycle through a
responsibility-driven analysis.

Usually, this CRC card model is created by a group of domain experts, who are led by the
CRC card session moderator or also known as facilitator (Ambler 1998). This moderator is
in charge of organizing and performing the CRC card session, providing clear information
and background to the participants about the CRC card techniques and how it should be
performed. This moderator is usually assisted by one or two scribes who are in charge or
recording the logical perspective on how to fulfill the business requirements product of a
constant analysis of the pre-animated scenarios executed in the CRC card session.

13.5.4.2 Problem
During the execution of the CRC modeling session, domain experts initiate a looping
process in which, based on brainstorming and several other methodical processes (Fayad
et al.), all the candidate classes, their responsibilities, and collaborations are identified, and
then, start filling their respective index cards, creating use case scenarios, and arranging
these index card on certain table. However, current CRC card formats are bound to enclose
limited information about the classes being defined. These actual problems range from the

EBTs IOs

<<EBT>>
Engagement

<<BO_Pattern>>
AnyParty

<<BO_Pattern>>
AnyCommitment

<<BO>>
Disposition

<<BO>>
AnyActivity

<<BO>>
AnySkill

<<BO_Pattern>>
AnyContext

User

Hyper
MediaSkill

Confidence

NavigationAid

Browser

Key-
WordGeneration

Reshaping

is led to

is
specified

by

involves

possesses

is led by

requires

focus
are

enclosed
in

make use of

1

1
1

1

1

1

1..*

1..*

1..*

1..*

1..*

1

1

1

1

BOs

LinkManagement

FIGURE 13.7 Stable conceptual map creation.

317CRC Cards Knowledge Map

overloaded generation of too many responsibilities per class to the lack of specific class
roles, which defined the position of a class in a pre-animated scenario in accordance with
certain responsibility (Fayad et al.). These inconsistencies found on current CRC cards for-
mats will restrain the fluency with which the execution of the CRC modeling session will
be held, because of the increment in the number of the times a process will be carried out
to assure an accurate definition of a class or an accurate match to the business requirements.
Our problem consists of many major issues: the first one is how to express the process of
running the CRC modeling technique by using the quality factors (see Section 13.2) already
built in the proposed CRC card format to better understand the business requirements,
and the second one is how to accurately identify the artifacts that would be modeled that
include accurately defining the artifacts’ enclosed elements. So in the end, practitioners
would feel confident about the experience of understanding the system behavior that is
being simulated during a pre-animated session.

13.5.4.3 Forces
• Before starting a CRC card session, the practitioners must have a clear understand-

ing on how to perform this session. Usually, this is done by the facilitator, prior to
the beginning of the session. Therefore, some sort of workflow may be useful for
practitioners to enhance their understanding of the process.

• How to verify the identified artifacts or candidate classes, along with their enclosed
elements, are accurate and later express the expected behavior from the system
being simulated when being modeled as whole.

• How to include the CRC card quality factors into this workflow? Common work-
flow for CRC card session might lack this element. Therefore, based on the pro-
posed CRC card format (Fayad et al.), those quality factors must be added to the
defined process when running a CRC card session.

13.5.4.4 Solution
For CRC card modeling, there are six steps that need to be followed (Ambler 1998), which
are as follows:

 1. Put together the CRC modeling team
 2. Organize the modeling room
 3. Do some brainstorming
 4. Explain the CRC modeling technique
 5. Iteratively perform the steps of CRC card modeling
 6. Perform use case scenario testing

Throughout the process, these steps should be constantly supervised by the CRC card mod-
erator to make sure that the session is efficiently performed. In some cases, this moderator
would allow the entrance of certain observers to the session. Typically, this clearance is for
training purposes. These observers, however, cannot actively participate in the CRC card
session.

At the time of identifying candidate classes, their responsibilities, and their collaborators,
and then turn them into a CRC card, we will make use of a new look at the CRC card format
that is described in Fayad et al. and the methodical process to fill it. This new format has a
lot more to offer than the currently used formats (Ambler 2001; Maciaszek 2001; Pressman

318 Software Patterns, Knowledge Maps, and Domain Analysis

2001), due to the avoidance of all the problems described in Section 13.5.2, and provides a
clear blueprint of their respective candidate classes.

The following process flow, shown in Figure 13.8, aims to represent the appropriate steps
to model candidate classes, previously identified using some brainstorming and methodical
process (Fayad et al.), embodied as CRC cards, to see if they match the business require-
ments of the entire system. This new process flow is an adaptation of the process flow
described in Ambler, but solely focusing on the new CRC card format proposed in Fayad
et al., avoiding, for example, the inclusion of many responsibilities per class and the appear-
ance of distinctive role per class. For more information about this new CRC card format,
please refer to Fayad et al.

It is important to note that the success of this modeling process relies on how good and
accurate your model mirrors the problem domain from where your application is being
developed.

Generate use case
Use case

within
context?

Determines which class should be
handling the responsibility

Do we
have this

class?

Do we
have a
role?

Create class

Assign a role

Does this
responsibility

exist?

Add responsibility

Describe processing logic and
determine appropriate services to

achieve responsibility

Does this
responsibility

match with the
existing role?

Need
collaboration?

All services
identified?

Have we
covered all use

cases?

(NO)

(NO)

(NO)

(NO)

(NO)

(NO)

(NO)

(YES)

(YES)

(YES)

(YES)

(YES)

(YES)

(YES)

(YES)

(NO)

FIGURE 13.8 CRC modeling process.

319CRC Cards Knowledge Map

13.5.5 the main step in the Capability

This step emphasizes the discovery on those recipes that are required to fulfill the stated
goals and purposes of the CRC cards. These recipes are embodied as stable design patterns.
In this chapter, we will present only one stable design pattern: effective CRC card format
pattern.

13.5.6 pattern 4—effeCtive CrC CarD format pattern

13.5.6.1 Context
The CRC cards technique can be used in either practical software development or in object-
oriented (OO) education. In short, it embodies a higher grade of reusability, proportional
to the number of problems it modes. For instance, in development, CRC cards can offer
valuable insights during the early stages of development. Another benefit of CRC cards is in
teaching object concepts in programming language courses. Several reported case studies
have demonstrated the effectiveness of CRC card as a tool for introducing OO program-
ming concepts and for improving the understanding of objects/classes (Börstler 2002).

13.5.6.2 Problem
Current CRC cards lack some essential qualities that might affect the effectiveness of the
developed system that uses them. The main problems in current CRC cards can be sum-
marized in the following points:

 1. Possibility of low cohesion and high coupling. Because there are no limitations
on the number of responsibilities allowed for a given class, it is possible to over-
load a class with too many responsibilities eventually resulting in low cohesion
within the model. A cohesive class should ideally have just one responsibility
(Fayad 2000–2003; Fayad et al.). Excessive responsibilities could also lead to a
large number of collaborators required to support them.

 Too much collaboration between classes will also produce high coupling and
they needlessly increase the complexity of the system. In software design, we strive
for just the opposite—high cohesion and the lowest possible coupling.

 2. Macho classes. Multiple responsibilities can also result in the creation of
macho classes. Macho classes will instantiate an object that performs most
of the work, leaving all minor operations to a set of essentially useless classes
(Fayad 2000–2003). Ideally, the system intelligence should be distributed as
evenly as possible across the application and the work shared uniformly. When
all of the intelligence is concentrated in one or two classes, it also increases the
difficulty of making changes.

 3. Exclusion of services. Another problem with these CRC cards is the exclusion of
the services provided by the class (Fayad, Hamza, and Sanchez 2003; Fayad et al.).
By including the services on the CRC card, the classes can be checked for duplicate
functionality (Fayad 2000–2003). By identifying duplicate functionality, it may be
possible to combine or consolidate classes that perform similar functions. In addi-
tion, because the responsibility of a class is merely a summary of its operations,
explicitly providing the services performed by a class may help verify that the
responsibility is properly defined.

320 Software Patterns, Knowledge Maps, and Domain Analysis

 4. No clear role is defined. The absence of a class role may lead to assigning wrong,
useless, or even missing responsibilities. Although the role seems fairly insignifi-
cant, it serves a very important purpose. If a class performs more than one role, it is
 possible that a generalization exists, where each role is actually a subclass of some
superclass (Fayad 2000–2003). Humans provide a good example of performing mul-
tiple roles; a woman could be a mother, a wife, a daughter, and so on. By defining the
role, generalizations and specializations can be explored early in the process.

 5. Difficulty in defining responsibilities. Coming up with class responsibilities can be
a difficult task, especially with the absence of a clearly defined role (Fayad et al.).
It is easy to get off track and assign responsibilities that are either ambiguous or
irrelevant. It is not until the developer begins to actually map the CRC cards to
 various use case scenarios or the class diagram that these extraneous responsibilities
are realized.

 6. Difficulty in mapping. Multiple responsibilities can make it difficult to map the
classes identified by the CRC cards to the actual class diagram and use case sce-
narios. When numerous responsibilities are assigned to one class, the interactions
can become complex (Fayad 2000–2003; Fayad et al.). This complexity carries
over when the CRC cards are used to map use cases. The use cases are provided to
determine if the class model provides the necessary functionally to support all pos-
sible scenarios. Because the responsibilities of a class are actually a summary of its
functionality, mapping can be greatly complicated, when the class’s operations are
tied to multiple responsibilities.

13.5.6.3 Forces
For CRC cards to enhance the development of systems, main essential quality factors should
be satisfied (Fayad et al.). Yet, satisfying these qualities is not too easy. The following sum-
marizes the main points that show writing an effective CRC card is not straightforward:

• A major advantage of the CRC cards tool resides in its simplicity to understand.
Current CRC cards consist of three elements: name of the class, its responsi-
bilities, and its collaborations. However, such simplicity may not convey all
the required information needed in the following steps in the development. For
example, collaboration section in current CRC cards does not provide any infor-
mation about the kind and type of collaboration. In other words, the card does
not specify the services that its class offers to the other classes that collaborate
with it. Such information is important in developing the class diagram and in
verifying its accuracy. However, having too much information in a CRC card
might preclude them from being widely applied. They might become difficult to
understand or to use. This may scarify the simplicity of the technique. Therefore,
compromising between completeness and simplicity should be considered while
writing CRC cards.

• It is important to understand the role of each class in the system in order to iden-
tify its responsibilities (Fayad 2000–2003). A class within the system might have
several roles; however, current CRC cards do not provide a way to differentiate
between the different roles of the same class. How can we handle multiple roles for
the same class in a simple way?

321CRC Cards Knowledge Map

• Defining the class responsibility is crucial for developing an accurate class diagram
and latter an effective system. A class might have several responsibilities within
the system; however, identifying all these responsibilities in one CRC card might
create great confusion for the developers (Fayad et al.). This is because different
responsibilities for a class can result in different collaborations between this class
and other classes in the system. By listing all the responsibilities and collabora-
tions of a class in one CRC card, it becomes confusing to match a responsibility of
a class to another collaborating class in the system. This complicates the deriving
of the system class diagram from the written CRC cards.

13.5.6.4 Solution
In this section, we present an enhanced representation for CRC cards as a solution to some
of the problems in the current CRC cards. The new version will include a clear role for
each class, which will aid in the discovery of superclasses and their respective subclasses.
This class role will also be useful, when defining the class responsibility. Each class will
be allowed to have only one unique responsibility. If more than one responsibility is identi-
fied, additional classes should be formed. Limiting responsibilities will help prevent low
cohesion and high coupling as well as reduce the possibility of macho classes. Finally, the
revised CRC card will also include the services offered by each class. This will help verify
the validity of the class responsibility, as well as ensure that overlapping functionality is
avoided. The proposed CRC card format is shown in Table 13.3.

Creating CRC cards with the proposed format requires three main steps (see Figure 13.9)
given as follows:

 1. Class identification
 2. Assigning roles and responsibilities
 3. Discovering collaborators

Each step is concerned with filling one element of the proposed CRC card at a time. In sum-
mary, relevant classes of the system will be identified. Then, proper roles would be assigned
to them based on a number of responsibilities that are found in particular design scenarios.
Collaborators or clients of each class would be discovered to account for the certain inabili-
ties of some classes to fulfill its assigned responsibility (Pressman 2001). This process will
be aided by the explicit declaration of the external services offered by each relevant class.

13.5.6.5 Example
In this section, we will show an example of applying the effective CRC card on a simple
problem.

TABLE 13.3
Proposed CRC Card Format

Class (Role)

Responsibility Collaboration

Client Server

322 Software Patterns, Knowledge Maps, and Domain Analysis

Re
sp

on
sib

ili
ty

Co
lla

bo
ra

tio
n

Cl
ie

nt
Se

rv
er

Cl
as

s(
Ro

le
)

1
Cl

as
s i

de
nt

ifi
ca

tio
n

2
As

sig
n

ro
les

/r
es

po
ns

ib
ili

tie
s

3
D

isc
ov

er
in

g
co

lla
bo

ra
tio

n

Pr
ob

le
m

 st
at

em
en

t
St

ep
s

Pr
op

os
ed

 C
RC

 ca
rd

Kn
ow

le
dg

e o
f

pr
ob

le
m

 d
om

ai
n

FI
G

U
R

E
13

.9

A
pp

ly
in

g
th

e
pr

op
os

ed
 C

R
C

 c
ar

d.

323CRC Cards Knowledge Map

13.5.6.5.1 Requirements
The services that are linked with the word Genealogy have been growing tremendously
across the Internet landscape. This idea has been touched by several online businesses,
such as Ancestry.com and MSN, but it is still in its infancy. We would like to propose a
simple family tree design. This system will offer a central storage device, where all the
information of current members will be stored. Each member will have full control of his/
her information portrayed in the system.

The system will provide consistent updating, searching, and tracking mechanisms to
facilitate an easy interaction between the system and the members throughout the entire
family tree. An efficient user-friendly navigation mechanism will be presented as well. This
will guarantee full access to all the features of the system. Members of the system will be
able to share this experience by inviting new users to either start up their own family tree
or enroll in a member’s family tree. The latter would happen in the case that these poten-
tial members are relatives of an already enrolled member. Regarding guests of the system,
there will be a section exclusively for them, allowing them to visit current family trees with
certain limitations. They can also create their own family tree if they desire.

Step 1: Identifying classes
 The class identification process does not vary in both approaches. Both approaches

use similar techniques (Maciaszek 2001; Pressman 2001) along with the overall
knowledge on the subject from analysts and designers. Similar naming conventions
are applied, except they vary, when dealing with compound nouns. Compound
nouns are treated as one word, and no spaces are allowed between these two words.
This is sometimes called camel casing. For method declarations, the accepted
notation is just as it is for classes except that the first letter is in lowercase. The fol-
lowing is an example of a possible class in the presented problem (Table 13.4).

Step 2: Assigning roles and responsibilities
 The proposed CRC card format offers much more to the process of discovering

responsibilities than the current one. The presence of a well-defined role makes
things easier for the analyst, because each role is tightly bound to a unique respon-
sibility (Fayad 2000–2014; Fayad et al. 2003). Therefore, the analyst can map the
distinct responsibilities per class based on particular scenarios. Other techniques
may be used to assist this process (Pressman 2001).

 A class that contains multiple responsibilities will be partitioned into several
classes (Fayad et al. 2003). No naming rules are required in this step. However,
for understanding purpose, analysts need to define clear and cohesive respon-
sibilities. Table 13.5 is an example of assigning one unique responsibility and
a role.

TABLE 13.4
A Class Representation Using CRC Card

FamilyTree (Role)

Responsibility Collaboration

Client Server

324 Software Patterns, Knowledge Maps, and Domain Analysis

Step 3: Discovering collaborators
 The goal of this step is the definition of a set of methods that will help achieve

a responsibility. The most common techniques used for services identification
is the application of a grammatical parse over the problem statement, looking
for verbs and/or verb phrases (Fayad 2000–2003; Pressman 2001). These verbs
or verb phrases usually correspond to the methods used to fulfill certain func-
tionality or unique responsibility of a particular class. They will be explicitly
nested on the right compartment of the collaboration section of the proposed
CRC card. This compartment is named server. They obey certain naming rules
to assure a proper definition. The identifying classes section refers to these nam-
ing rules.

 The inclusion of these services in the proposed CRC card will enhance the abil-
ity for responsibility identification, making it a very straightforward process. Along
with this inclusion of services, several classes that communicate with one particular
class will be placed on the left compartment of the collaboration section. This section
is called clients because they collaborate with a particular class by requesting ser-
vices from it. These requests are performed based on a message-wise action. These
classes (clients) are usually identified at the moment of establishing an interaction
between classes and its surroundings in a particular design scenario (e.g., use case
scenario) (Fayad 2000–2003). This step is not just a common step. Having exhibited
two more sections of this CRC card, we have granted the accomplishment of several
quality factors at the same time (e.g., self-descriptive services and explicit notion of
collaborators) (Fayad et al.). This result will also increase the level of understand-
ability for analysts and designers toward the proposed CRC card structure.

 Coming up with classes (clients) is a repeatable process done by analysts/
developers, and it will be completed only when the analysts/designers feel that
they have covered all the distinct design scenarios. The following Table 13.6 is an
example of filling out the collaboration section of the proposed CRC card.

TABLE 13.5
Assigning a Role and Unique Responsibility

FamilyTree (Role)

Responsibility Collaboration

Illustrate the bond of a group of People Client Server

TABLE 13.6
Collaborators and Services Identification

FamilyTree (Role)

Responsibility Collaboration

To show relationships between people Client Server

Member
Family

initiateTree() connectFamily()
joinToTree() search()

325CRC Cards Knowledge Map

SUMMARY

Our objectives for defining this knowledge map or stable pattern language for CRC cards
were concentrated in the offering of a suitable language for writing and applying CRC cards
across domains. This language definition was aided by the addressing of CRC card’s domain
knowledge and their fundamental deployment processes from a conceptual and purpose-
driven perspective. This conceptualization and understanding was laid out through four
main steps of stratification and a set of stable patterns. The rationale of this stratification
was to facilitate the findings, execution order, and description of the stable patterns embody-
ing the concepts or building blocks of the CRC cards domain. The resulted work was pos-
sible due to the synergy of two methodologies: the software stability concepts paradigm
(Fayad and Hamza 2003) and its subelements: stable analysis and design patterns (Fayad and
Hamza 2003) and pattern language methodology (Fayad, Sanchez, and Goverdhan 2005).
Patterns left without a description would be addressed in the future versions of the chapter.

OPEN RESEARCH ISSUES

Develop a unified Software Engine for CRC Cards to automate and fulfill the purposes and
quality factors of the CRC Cards.

REVIEW QUESTIONS

 1. T or F _________ CRC card stands for class responsibility and contracts.
 2. T or F _________ CRC card is a dynamic model.
 3. T or F _________ Fayad’s CRC card stands for class responsibility and collaborations.
 4. T or F _________ Fayad’s CRC cards are utilized for mapping candidates classes

in predefined design scenarios, for example, use case scenarios.
 5. T or F _________ The objective of CRC cards is to facilitate the design process

while insuring an active participation of involved designers.
 6. T or F _________ Fayad’s knowledge map is called stable patterns language.
 7. T or F _________ Fayad’s CRC cards representation, via stable patterns as a mean

to discover, organize, and utilize CRC cards endured knowledge.
 8. T or F _________ CRC cards are primarily used as a brainstorming technique to

rapidly and thoroughly explore design alternatives by identifying the classes and
their associations within a system.

 9. T or F _________ CRC cards provide a simple alternative for a collaborative
design environment, where analysts, designers, and developers try to simulate the
system behavior, that is, role-play-driven approach.

 10. T or F _________ Fayad’s CRC cards knowledge map turns the CRC cards (index
card) to a valuable knowledge repository.

 11. What are the differences between Fayad’s CRC cards and existing CRC cards
(Biddle, Noble, and Tempero 2009)?

 12. T or F _________ Fayad’s CRC cards include a well-defined role.
 13. T or F _________ Fayad’s CRC cards provide a unique, cohesive responsibility,

within context, to each class.
 14. List the Fayad’s CRC cards’ quality factors and justify each one of these quality

factors.

326 Software Patterns, Knowledge Maps, and Domain Analysis

 15. List and examine Fayad’s CRC cards explicit characteristics and solutions.
 16. Name the Fayad’s CRC cards goals and describe each goal briefly.
 17. Name the Fayad’s CRC cards capabilities and describe each capability briefly.
 18. Discuss the context of Fayad’s CRC cards.
 19. Name and describe briefly three different scenarios for utilizing Fayad’s CRC

cards.
 20. Discuss briefly the process of defining Fayad’s CRC cards knowledge map.
 21. T or F_________ Brainstorming is a BO.
 22. Explain what do you mean by the term brainstorming?
 23. What is the usage of the brainstorming pattern?
 24. Can the term brainstorming be used in any other context than what you thought of?
 25. Can brainstorming pattern be used interchangeably with AnyDebate pattern?

Explain your answer.
 26. Can brainstorming pattern be used interchangeably with AnyDiscussion pattern?

Explain your answer.
 27. What problem does the brainstorming pattern solve?
 28. In what context is the brainstorming pattern being applied?
 29. Name a few scenarios for the application of brainstorming pattern.
 30. What are the challenges faced in implementing the brainstorming pattern?
 31. What are the constraints faced in implementing the brainstorming pattern?
 32. Discuss briefly the functional requirements of brainstorming pattern.
 33. Discuss briefly the nonfunctional requirements of brainstorming pattern.
 34. Explain brainstorming pattern model with the help of class diagram and CRC

cards.
 35. What are the design and implementation issues for the given brainstorming

pattern?
 36. Provide some patterns related to the brainstorming pattern.
 37. Explain usage of brainstorming pattern with two examples other than the ones

provided in this chapter.
 38. How does traditional model differ from the stability model? Explain using the

brainstorming pattern model.
 39. Enlist some of the business issues encountered for the brainstorming pattern.
 40. Explain procedure for testing the brainstorming pattern.
 41. Discuss some of the real-time usages of brainstorming pattern.
 42. What are the lessons learned by you from the brainstorming pattern.
 43. List some of the domains in which brainstorming pattern can be applied.
 44. What is the trade-off of using the brainstorming pattern?
 45. List some advantages of using brainstorming pattern in real applications.
 46. Can you think of any scenarios where brainstorming pattern will fail? Explain

each scenario briefly.
 47. Describe how the developed brainstorming pattern would be stable over time.
 48. Briefly explain how brainstorming pattern supports its objective.
 49. Try to list few more business rules for the brainstorming pattern.
 50. T or F _________ Engagement is a BO.
 51. Repeat questions 23–49 for engagement pattern.
 52. T or F _________ Modeling is a BO.
 53. Repeat questions 23–49 for modeling pattern.

327CRC Cards Knowledge Map

EXERCISES

 1. Find a glossary or two of each one of the following domains/subjects/topics.
 2. Use the knowledge map template and the glossary of each of the domains below to
 a. Identify and document all the EBTs/goals of your domain/subject/topic (Section II)
 b. Identify and document all the BOs/capabilities of your domain/subject/topic

(Section III)
 c. Map each EBT (from Section I) to its BOs (from Section III) in your domain/

subject/topic (Section IV)
 3. Two or three of the following subdomains of visual arts:
 a. Art history
 b. Calligraphy
 c. Connoisseurship
 d. Creativearts
 e. Drawing (outline)
 f. Finearts
 g. Painting (outline)
 h. Filmmaking
 i. Photography (outline)
 j. Mixed media
 k. Printmaking
 l. Studio art
 m. Sculpture (outline)
 n. Art conservation
 4. Two or three of the following subdomains of economics:
 a. Agricultural economics
 b. Behavioral economics
 c. Bioeconomics
 d. Complexity economics
 e. Computational economics
 f. Consumer economics
 g. Development economics
 h. Ecological economics
 i. Econometrics
 j. Economic geography
 k. Economic history
 l. Economic sociology
 m. Economic systems
 n. Energy economics
 o. Entrepreneurial economics
 p. Environmental economics
 q. Evolutionary economics
 r. Experimental economics
 s. Feminist economics
 t. Financial economics
 u. Financial econometrics
 v. Game theory

328 Software Patterns, Knowledge Maps, and Domain Analysis

 w. Green economics
 x. Growth economics
 y. Human development theory
 z. Industrial organization
 aa. Information economics
 ab. Institutional economics
 ac. International economics
 ad. Islamic economics
 ae. Labor economics
 af. Law and economics
 ag. Macroeconomics
 ah. Managerial economics
 ai. Mathematical economics
 aj. Microeconomics
 ak. Monetary economics
 al. Neuroeconomics
 am. Political economy
 an. Public finance
 ao. Public economics
 ap. Real estate economics
 aq. Resource economics
 ar. Social choice theory
 as. Socialist economics
 at. Socioeconomics
 au. Transport economics
 av. Welfare economics
 5. Two or three of the following subdomains of political sciences:
 a. American politics
 b. Canadian politics
 c. Civics
 d. Comparative politics
 e. Geopolitics (Political geography)
 f. International relations
 g. International organizations
 h. Nationalism studies
 i. Peace and conflict studies
 j. Policy studies
 k. Political behavior
 l. Political culture
 m. Political economy
 n. Political history
 o. Political philosophy
 p. Psephology
 q. Public administration
 i. Nonprofit administration
 ii. Nongovernmental organization (NGO) administration

329CRC Cards Knowledge Map

 r. Public policy
 s. Social choice theory
 6. Two or three of the following subdomains of engineering:
 a. Aerospace engineering
 b. Agricultural engineering
 i. Food engineering
 c. Architectural engineering
 d. Bioengineering
 i. Biomechanical engineering
 ii. Biomedical engineering
 e. Chemical engineering
 f. Civil engineering
 i. Geotechnical engineering
 ii. Engineering Geology
 iii. Earthquake engineering
 iv. Highway engineering
 v. Transportation engineering
 g. Computer engineering (outline)
 h. Control systems engineering
 i. Ecological engineering
 j. Electrical engineering (outline)
 k. Electronic engineering
 l. Instrumentation engineering
 m. Engineering physics
 n. Environmental engineering
 o. Industrial engineering
 p. Materials engineering
 i. Ceramic engineering
 ii. Metallurgical engineering
 iii. Polymer engineering
 q. Mechanical engineering
 i. Manufacturing engineering
 r. Mining engineering
 s. Nanoengineering
 t. Nuclear engineering
 u. Ocean engineering
 i. Marine engineering
 ii. Naval architecture
 v. Optical engineering
 w. Quality assurance engineering
 x. Petroleum engineering
 y. Safety engineering
 z. Software engineering (outline)
 aa. Structural engineering
 ab. Systems engineering
 ac. Telecommunications engineering

330 Software Patterns, Knowledge Maps, and Domain Analysis

 ad. Vehicle engineering
 i. Automotive engineering
 7. Two or three of the following subdomains of law:
 a. Canon law
 b. Comparative law
 c. Constitutional law
 d. Competition law
 e. Criminal law
 i. Criminal procedure
 ii. Criminal justice (outline)
 A. Police science
 B. Forensic science (outline)
 f. Islamic law
 g. Jewish law
 h. Jurisprudence (Philosophy of Law)
 i. Civil law
 i. Admiralty law
 ii. Animal law/Animal rights
 iii. Corporations
 iv. Civil procedure
 v. Contract law
 vi. Environmental law
 vii. International law
 viii. Labor law
 ix. Paralegal studies
 x. Property law
 j. Tax law
 k. Tort law
 8. Two or three of the following subdomains of space sciences:
 a. Astrobiology
 b. Astronomy (outline)
 i. Observational astronomy
 A. Radio astronomy
 B. Microwave astronomy
 C. Infrared astronomy
 D. Optical astronomy
 E. UV astronomy
 F. X-ray astronomy
 G. Gamma ray astronomy
 c. Astrophysics
 i. Gravitational astronomy
 A. Black holes
 ii. Interstellar medium
 iii. Numerical simulations in
 A. Astrophysical plasma
 B. Galaxy formation and evolution

331CRC Cards Knowledge Map

 C. High-energy astrophysics
 D. Hydrodynamics
 E. Magnetohydrodynamics
 F. Star formation
 iv. Physical cosmology
 v. Stellar astrophysics
 A. Helioseismology
 B. Stellar evolution
 C. Stellar nucleosynthesis
 d. Planetary science (alternatively, a part of earth science)
 9. Two or three of the following subdomains of life sciences:
 a. Biochemistry (outline)
 b. Bioinformatics
 c. Biotechnology (outline)
 d. Biology (outline)
 i. Aerobiology
 ii. Anatomy
 A. Comparative anatomy
 B. Human anatomy (outline)
 iii. Botany (outline)
 A. Ethnobotany
 B. Phycology
 iv. Cell biology (outline)
 v. Chronobiology
 vi. Computational biology
 vii. Cryobiology
 viii. Developmental biology
 A. Embryology
 B. Teratology
 ix. Ecology (outline)
 A. Agroecology
 B. Ethnoecology
 C. Human ecology
 D. Landscape ecology
 x. Genetics (outline)
 A. Behavioral genetics
 B. Molecular genetics
 C. Population genetics
 xi. Endocrinology
 xii. Evolutionary biology
 xiii. Human biology
 xiv. Immunology
 xv. Marine biology
 xvi. Mathematical biology
 xvii. Microbiology
 xviii. Molecular biology

332 Software Patterns, Knowledge Maps, and Domain Analysis

 xix. Nutrition (outline)
 xx. Neuroscience (outline)
 A. Behavioral neuroscience
 xxi. Paleobiology
 A. Paleontology
 xxii. Systems biology
 xxiii. Virology
 A. Molecular virology
 xxiv. Xenobiology
 xxv. Zoology (outline)
 A. Animal communications
 B. Arachnology
 C. Carcinology
 D. Entomology
 E. Ethnozoology
 F. Ethology
 G. Herpetology
 H. Ichthyology
 I. Oology
 J. Ornithology
 K. Primatology
 L. Zootomy
 e. Biophysics (outline)
 f. Limnology
 g. Linnaean taxonomy
 h. Mycology
 i. Parasitology
 j. Pathology
 k. Physiology
 i. Human physiology
 A. Exercise physiology
 B. Systematics (Taxonomy)
 10. Two or three of the following subdomains of business:
 a. Accounting scholarship
 b. Business administration
 c. Business analysis
 d. Business ethics
 e. Business Law
 f. e-Business
 g. Entrepreneurship
 h. Finance (outline)
 i. Industrial and labor relations
 i. Collective bargaining
 ii. Human resources
 iii. Organizational studies
 iv. Labor economics
 v. Labor history

333CRC Cards Knowledge Map

 j. Information systems (Business informatics)
 i. Management information systems
 ii. Health informatics
 k. Information technology (outline)
 l. International trade
 m. Marketing (outline)
 n. Purchasing
 o. Risk management and insurance
 p. Systems science
 11. Two or three of the following subdomains of psychology:
 a. Abnormal psychology
 b. Applied psychology
 c. Biological psychology
 d. Clinical psychology
 e. Cognitive psychology
 f. Community psychology
 g. Comparative psychology
 h. Conservation psychology
 i. Consumer psychology
 j. Counseling psychology
 k. Cultural psychology
 l. Differential psychology
 m. Developmental psychology
 n. Educational psychology
 o. Environmental psychology
 p. Evolutionary psychology
 q. Experimental psychology
 r. Forensic psychology
 s. Health psychology
 t. Legal psychology
 u. Media psychology
 v. Medical psychology
 w. Military psychology
 x. Neuropsychology
 y. Occupational health psychology
 z. Organizational psychology
 aa. Parapsychology (outline)
 ab. Personality psychology
 ac. Political psychology
 ad. Positive psychology
 ae. Psychometrics
 af. Psychology of religion
 ag. Psychophysics
 ah. Quantitative psychology
 ai. School psychology
 aj. Social psychology
 ak. Sport psychology

334 Software Patterns, Knowledge Maps, and Domain Analysis

 12. Two or three of the following subdomains of chemistry:
 a. Agrochemistry
 b. Analytical chemistry
 c. Astrochemistry
 d. Atmospheric chemistry
 e. Biochemistry (outline)
 f. Chemical engineering
 g. Chemical biology
 h. Cheminformatics
 i. Computational chemistry
 j. Cosmochemistry
 k. Electrochemistry
 l. Environmental chemistry
 m. Femtochemistry
 n. Flavor
 o. Flow chemistry
 p. Geochemistry
 q. Green chemistry
 r. Histochemistry
 s. Hydrogenation
 t. Immunochemistry
 u. Inorganic chemistry
 v. Marine chemistry
 w. Materials science
 x. Mathematical chemistry
 y. Mechanochemistry
 z. Medicinal chemistry
 aa. Molecular biology
 ab. Molecular mechanics
 ac. Nanotechnology
 ad. Natural product chemistry
 ae. Neurochemistry
 af. Oenology
 ag. Organic chemistry (outline)
 ah. Organometallic chemistry
 ai. Petrochemistry
 aj. Pharmacology
 ak. Photochemistry
 al. Physical chemistry
 am. Physical organic chemistry
 an. Phytochemistry
 ao. Polymer chemistry
 ap. Quantum chemistry
 aq. Radiochemistry
 ar. Solid-state chemistry
 as. Sonochemistry
 at. Supramolecular chemistry

335CRC Cards Knowledge Map

 au. Surface chemistry
 av. Synthetic chemistry
 aw. Theoretical chemistry
 ax. Thermochemistry
 13. Two or three of the following subdomains of earth sciences:
 a. Edaphology
 b. Environmental science
 c. Environmental chemistry
 d. Gemology
 e. Geodesy
 f. Geography (outline)
 g. Geology (outline)
 h. Geochemistry
 i. Geomorphology
 j. Geophysics (outline)
 k. Glaciology
 l. Hydrogeology
 m. Hydrology (outline)
 n. Meteorology (outline)
 o. Mineralogy
 p. Oceanography (outline)
 q. Pedology
 r. Paleontology
 i. Paleobiology
 s. Planetary science (alternatively, a part of space science)
 t. Sedimentology
 u. Soil science
 v. Speleology
 w. Tectonics

PROJECTS

 1. Create a knowledge map for each of the sample requirements of Appendix D. [Hint:
3 ultimate EBT each and approx. 12–20 BOs.]

 2. Draw a class diagram for each of the generated Knowledge Map.
 3. Generate a CRC card and as discussed in Section 13.5.6 (Pattern 4—Effective

CRC Card Format Pattern) and as shown in Tables 13.3 through 13.6 for each of the
EBTs and BOs of each of the knowledge map.

 4. Use the generated CRC cards to generate 5–7 significant scenarios from different
domain for each of the generated CRC cards in 3.

337

14 Future Work and Conclusions

Change is the law of life. And those who look only to the past or present are certain
to miss the future.

John F. Kennedy
Zimbardo and Boyd 2008

The work accomplished through this book fulfills numerous requirements that were enu-
merated during the beginning of this venture. We had enlisted and planned to answer the
following three main questions:

 1. How do we classify, develop, and utilize analysis and design patterns together
toward solving a problem resolution?

 2. What is the behind-the-scene language that guides the process of sewing or gelling
of patterns as a whole?

 3. How can we overcome challenges other than pattern composition problems (patterns
traceability) that can hinder and impede the development of a system of patterns?

Throughout this book, we have provided a number of answers and some practical sugges-
tions to follow a clear-cut process that arises from these answers. The major backbone to
answer these questions was the integration of two approaches: software stability concepts
and the pattern languages (Coplien and Schmidt 1995; Fayad 2002a, 2002b; Fayad and
Altman 2001; Schmidt, Fayad, and Johnson 1996).

While conducting detailed research on this topic, we could analyze how numerous
 drawbacks and shortages of current software approaches that deal with software patterns
especially in software patterns’ composition, traceability, generality, and so on hindered the
quality of built systems in one way or another (e.g., design trade-offs, loss of generality). In
order to overcome these drawbacks and shortages, we have also provided a standard way
for conceiving, building, and deploying systems by using a topology of software patterns.
This topology is known as knowledge maps. The knowledge map will serve as the road
map or supporting technique to guide software practitioners to delve into the rationale,
business rules, and context of application of a set of problem domains and come up with a
high-quality software system.

Throughout this book, we were constantly writing and highlighting that the essence of
knowledge maps is twofold: a clear methodology and a precise visual representation. For
the methodology approach, we have provided a set of guidelines, heuristics, and quality fac-
tors that will ease the process of creating knowledge maps, along with the realization and
documentation of building blocks. However, for visual representation, we have provided the
visual gadgets or symbols that convey how the knowledge maps and their enclosed elements
look like, and in what manner they interact with other enclosed elements or other knowl-
edge maps. In conjunction, both methodology and visual representation serve as the road
maps for building systems from software patterns in a cost-effective manner. In addition to

338 Software Patterns, Knowledge Maps, and Domain Analysis

this, this road map will also allow the creation of synergies between managers and techni-
cal staff, especially when creating systems in terms of goals and capabilities. As a result,
these synergies will provide the ways and means for reducing existing communication gaps
between the managerial and technical staff.

While using knowledge maps, we can expect great team dynamics between managers and
technical staff. They will be able to create an environment where the initial clashing of ideas
that might occur because of own beliefs and experience is immediately detected and recog-
nized for immediate action and finding suitable solutions. This environment will also allow
managers and technical staff to focus on the merit of the problem and not on irrelevant trifles
and details, like implementation details. At the same time, it will also create a common lan-
guage for communicating ideas between manager and the technical staff. As a result, the pro-
cess for creating software solutions will become immensely thrilling and interesting, because
the solutions will be able to broaden the scope and horizon of discussions. Furthermore, as
some of the knowledge maps’ architectural processes are based on a trial and error approach,
managers and technical staff might lose their apprehension in synthesizing ideas, because it
becomes clear that no idea is bad, but it is only part of the process of getting it right.

We are currently working on the proof of concept of knowledge maps by developing
a knowledge maps framework, where the completion of the knowledge maps framework
fulfills what we are aiming in terms of knowledge maps provisioning and usage. The next
section will describe more about the future work and goals related to knowledge maps that
we would try to achieve and accomplish.

14.1 FUTURE WORK

Implementing knowledge maps as a tool for creating cost-effective software solutions will
not only enhance the levels of communication and interaction among different software
teams (e.g., managers and programmers), but also make the process of creating software
enjoyable, exciting, and extremely interesting. These useful benefits, however, not only
apply to the software realm; it has also opened doors to other areas of research and develop-
ment, such as education and management. Therefore, the following list will only represent
an initial draft of the work that will be carried out to enhance the usage of knowledge maps.

 1. IDE for knowledge maps management. Several projects can assist in streamlining
the utilization of the knowledge maps in software development, like the development
of an integrated development environment (IDE) for knowledge maps manage-
ment, the standardization and formalization of the process of building knowledge
maps or topology of patterns, the development of facilities to automate the pro-
cess of testing remote knowledge (remote knowledge maps), and the generation
of software architectures. The completion and combination of these projects will
provide us additional tools to create cost-effective and robust software systems.
The additional tools might include the automation of dynamic analysis of software
products to achieve a reduction in the software development life cycle, automation
of intuitive verification and validation techniques to assure software quality, and
the automation of the process of integrating numerous knowledge maps.

 2. Proper utilization of existing technologies. To create a complete IDE for knowl-
edge maps management, additional technologies such as Resource Description
Framework, JDOM, and XML schema could be added or supplemented to our

339Future Work and Conclusions

current work. The addition of these technologies will also streamline knowledge
map’s framework. These technologies can be used, for example, to make knowl-
edge maps portable, reusable, and representative to the information they conveyed
regardless of the environment of deployment.

 3. Standardize and formalize knowledge maps building process. Another possible
project would be the standardization and formalization of the process of build-
ing knowledge maps by using formal languages, such as Object Z and Z++
(Object-Z; Z++ Language Syntax Chart). The utilization of formal languages
will empower knowledge maps processes with validity, integrity, efficiency, and
authority to be properly used by different software practitioners (with different
levels of expertise).

 4. Automation of remote knowledge’s testing and software architectures genera-
tion. To automate the testing of remote knowledge and the generation of software
architectures, many more dynamic methods for information gathering and pat-
tern identification/definition, intuitive verification and validation techniques, and
interaction with backend databases could be integrated in our knowledge map’s
overall framework. The practical utilization of these methods will empower the
process of building knowledge maps with a dynamic analysis, integration with
other knowledge maps, software development life-cycle reduction, and a faster
return of investment (ROI).

SUMMARY

The work report that we have presented in this book would bring significant contributions
to the domain of software engineering, especially in the domain of software patterns. These
contributions range from software pattern identification, evaluation, and definition heuris-
tics, knowledge maps formation, evaluation, management, and deployment processes to the
initial framework that will assist the development of software by using the software stabil-
ity concepts approach (Fayad 2002a, 2000b; Fayad and Altman 2001).

The other main aspects of this work were related to our personal contributions to knowl-
edge map users and some of them were suggesting an initial framework for developing
knowledge maps, especially the part that deals with the implementation and testing of
enduring business theme, business objects, industrial objects, and hooks and providing a set
of stable analysis and design patterns that creates the core of the knowledge maps approach.
The documentations of these patterns, as well as the source code of this framework, are
also included in this book

In general, the main benefit of using our approach is to bring to the software practitio-
ners the ways and means for answering three important questions: How can we classify,
develop, and utilize analysis and design patterns together toward problem resolution? What
is the behind-the-scenes language that guides the sewing of patterns as a whole? How can
we overcome different challenges, other than patterns composition problems (e.g., patterns
traceability), that can hinder the development of a system of patterns? The backbone to
answering these questions and later creating knowledge maps was introducing a subtle
combination of traditional pattern languages techniques and the software stability concepts
approach. This delicate combination that gives birth to the creation of knowledge maps not
only provides an answer to the aforementioned questions, but also validates and verifies
each one of the elements that will be generated from it.

340 Software Patterns, Knowledge Maps, and Domain Analysis

Toward forming a future perspective, we are also planning to develop and enhance the
knowledge maps approach’s building blocks, by means of implementing tools that will ease
the process of building, evaluating, and deploying stable software patterns.

REVIEW QUESTIONS

 1. What are the advantages of using knowledge maps?
 2. Knowledge maps foster team dynamics between managers and the technical staff.

Explain.
 3. Provide ways of enhancing knowledge map’s usage.

EXERCISES

 1. Research ways of enhancing knowledge maps’ usage (other than pointers given in
this chapter).

 2. Research existing applications and discuss problems with them. Explain whether
those problems can be fixed by using knowledge maps.

PROJECTS

Consider the following patterns:

 1. Discovery Stable Analysis Pattern
 2. Knowledge Stable Analysis Pattern
 3. AnyMap Stable Design Pattern
 4. AnyContext Stable Design Pattern

and answer the questions below:

 1. Describe and document the business rules, and how you can extend them for two
of scenarios of each pattern.

 2. Define the business rules, business policies, business facts, in relation to each of the
pattern.

 3. Illustrate the business rules that derived from each of the pattern.

341

Appendix A
Pattern Documentation Templates

A.1 PATTERN DOCUMENTATION—DETAILED TEMPLATE (PREFERRED)

• Name. Presents the name of the presented pattern.
• Provide short definition of the term (Name).
• Compare the name of the patterns with other selective name and conclude with

the right selection of the name.
• Why did you choose that specific name?
• Justify the name (such as why use Any… as a prefix for business object [BO] only).

• Known as. Lists all the terms that are similar to the name of the pattern. Two pos-
sible sources that one can use to fill this section are as follows: (1) similar patterns
that are proposed in the literature and (2) other names that you may find relative to
the developed pattern. In some cases, several names might make sense, so you can
keep a list of few of these names under this section.

• Discuss the following cases briefly.
• Names match the pattern name: Just list similar names and why?
• Names match with doubts: List them, describe, and indicate doubts, and why?
• Names do not match, but people think they match the pattern name: List them,

describe, and show why they do not match.
• Context. Gives possible scenarios for the situations, in which the pattern may recur.

It is important in this section that you motivate the problem you solve in an attrac-
tive way. For example, if I were writing a pattern about trust, I would flush the trust
in the context of e-commerce. Keep this section short, yet exciting. (This section
somewhat serves as an introduction in conventional paper.)
• Describe the boundaries.
• List basic scenario—Context.
• Show by good examples, where the pattern can be applied.
• For example, account… would have ownership and handler context, can be

applied to banking Internet providers, private clubs, and so on.
• Problem. Presents the problem the pattern concentrating on. This is one of the

hardest parts in the pattern writing. Do not try to write it quite well in the first
iteration, and most probably, you will not be able to! The problem should focus on
the core purpose of the pattern and should be able to answer the question: In what
situation, I may benefit from your pattern? Try and keep this section as short as
possible; otherwise, the reader may get confused.

342 Appendix A

• Length: 1/4 to 1/3 Pgs.
 − Has to be about a specific problems and descriptions = actual requirements

of the pattern (functional and nonfunctional requirements of the pattern
described in the template).

 − It must be within the domain. There are two basic domain analyses/design
and own fields of existence.

 − Discuss all the elements of the goal of the pattern.
 − You may create a list of the subgoals for requirements of the pattern.

• Challenges and constraints. Illustrates the challenges and the constraints
that the pattern needs to resolve. You may create two subsections: (1) chal-
lenges and (2) constraints. In particular, in this section, you try to say that this
is not a trivial problem and that trivial solution may not work. Be clear and
brief. One major mistake in writing this section is that you mix the problem
statement with the forces themselves. After writing this section, try to read the
problem statement again and make sure that they are not the same! It always
happens!
• Describe some of the challenges that must be overcome by the pattern.
• Describe the constraints related to the pattern, such as multiplicities, limits,

and range.
• Make sure to list the challenges and constraints as bullets.

• Solution.
• Pattern structure and participants. Gives the class diagram of the pattern

(enduring business theme [EBT] or BO). It also introduces briefly each class
and its role. Associations, aggregations, dependencies, and specializations
should be included in the class diagram. Association classes, constraints,
interfaces, tagged values, and notes must be included in the class diagram and
also include the hooks (show each of the BOs connections to industrial objects
[IOs]). A full description of the class diagram should be included with the
final submission.

• CRC cards. Summarizes the responsibility and collaboration of each partici-
pant (class). Each participant should have only one well-defined responsibil-
ity in its CRC card. Participants with more than one responsibility should be
 presented with more than one CRC card, when each CRC card will handle one
of these responsibilities. Refer to Appendix B—CRC card layout.

• Behavior model (whenever is possible). If the abstraction of the pattern pre-
vents you from writing an appropriate behavior model, then you can flush the
dynamics of the pattern later on within the example section.

 − Description
 − Describe the constraints related to the pattern such as multiplicities,

limits, and range.
 − Describe some of the challenges that must be overcome by the pattern.
 − Note. Not all IO and BO may have inheritance.

 − Detail Models
 − Describe the model, role story, such as scenarios, and how they play

together.

343Appendix A

 − Participants
 − Each name, and its short description, and how it behaves within the

model, such as classes and patterns in the patterns.
 − CRC Cards

• Consequences. How does the pattern (EBT or BO) support its objectives or
goals? What is the trade-off and results of using the pattern? It is also impor-
tant to highlight the things that the pattern does not cover and reason about
why you choose to exclude them. Another point that I found useful in this
 section is to highlight other components that may arise from using the proposed
 patterns. For example, in AnyAccount pattern, we can say that using this pat-
tern for banking systems will require the integration of entries and logs to keep
track of the accounts. However, this does not mean that the pattern is incom-
plete, but this is the nature of patterns anyway, they need to be used with other
components.
• List and briefly describe the good (the benefits) of this pattern.
• List and briefly describe the bad (side effects) of the pattern with suggested

solutions.
• Applicability with illustrated examples. Provides two clear and detailed case stud-

ies for applying the pattern in different contexts. The following subelements repre-
sent the required details in one case.
• Case studies. Shows the scenario of two cases studied from different

contexts.
• Class diagram. Presents the EBTs, BOs, and IOs.
• Use case template. Gives detailed description for a complete use case. It includes

test cases for the EBT and all the BOs—Abstraction of actors; roles; classes;
class types, such as EBT, BOs, and IOs; attributes; and operations. Refer to
Appendix B—Use case template.

• Behavior diagram. Maps the above use case into a sequence diagram.
 − Show two to three distinct scenarios.
 − Description of the problem statement of the particular problem.
 − Describe the model—Class diagram.
 − Use case description with test cases (do not need to do use case diagrams).
 − Sequence diagram/use case.

• Related patterns and measurability. Shows other patterns that usually interact
with the described pattern and those who are included within the described
pattern. Related patterns can be classified as related analysis or/and related
design patterns. Related patterns usually share common forces and rationale.
In addition, it is possible that you might give some insights of other patterns
that can or need be used with the proposed patterns; for example, in the case of
AnyAccount pattern, we might point out to the AnyEntry pattern as a comple-
mentary pattern. There are rooms for contrasting and comparing the existing
patterns with the documented pattern. This section also provides a few metrics
for measuring several things related to the pattern structure, such as complexity
and size, cyclomatic complexity, lack of cohesion, and coupling between object
classes.

344 Appendix A

• This section is divided into two parts:
• Related pattern. Two approaches:

 − Search for an existing traditional pattern on the same topic. Compare with
traditional existing pattern models with reference to ours.

 − If existing patterns do not exist, select a single definition of the name of our
pattern, develop a traditional model class diagram, and describe it briefly.

• Measurability.
 − Measurability compares our pattern to other models on the number of

behaviors and number of classes. Justification of why the numbers of behav-
ior or classes are so high or low.

 − You may compare and comment on other quality factors, such as reuse,
extensibility, integration, scalability, and applicability.

 − Two approaches: Compare the traditional with stability models in two of the
following approaches:

 − Quantitative measurability.
 Number of behaviors or operations per class
 Number of attributes per class
 Number of associations
 Number of inheritance
 Number of aggregations
 Number of interactions per class
 Number of EBTs versus number of requirements classes in tradi-

tional model
 Number of classes
 Documentation—Number of pages
 Number of IOs
 Number of applications
 Estimation metrics
 Measurement metrics

 − Qualitative measurability.
 Scalability
 Maintainability
 Documentation
 Expressiveness
 Adaptability
 Configurability
 Reuse
 Extensibility
 Arrangement and rearrangement

• Modeling issues, criteria, and constraints. There are a number of modeling issues,
criteria, and constraints that you need to address, in such a way as to explain them,
and make sure that the model satisfies all the modeling criteria and constraints.

• Modeling Issues Are as Follows:
• Abstraction. Describe the abstraction process of this pattern, list, and discuss

briefly the abstractions within this pattern.
 − Show the abstractions that are required for the patterns (EBT, BOs, and IOs).
 − Elaborate on the abstraction of why EBTs and BOs are selected?

345Appendix A

 − Show examples of unselected EBTs, and why?
 − Show examples of unselected BOs, and why?

• Static models. Illustrate and describe one or two of the static models of this
 pattern and list and discuss briefly the complete story of the pattern models
using actual objects.

 − Determine the sample model that you are planning to use: CRC cards, class
diagram, component diagram, and so on—Show the model.

 − Tell a complete story of the pattern models using objects.
 − Repeat a complete story with other objects.

• Dynamic models. Illustrate and describe one or two dynamic models of this
pattern and list and discuss briefly the behavior of the pattern through the
selected dynamic models.

 − Determine the sample model that you are planning to use: Interaction dia-
gram or state transition diagram—Show the model.

• Modeling essentials. Examine the pattern using the modeling essentials and list
and discuss briefly the outcome of this examination.

 − List or reference to the model essentials, and use them as criteria to exam-
ine the pattern.

 − Elaborate on how to examine the model of the pattern by using the model
essential criteria.

 − Briefly describe the outcome.
• Concurrent development. Show the role of the concurrent development of

developing this pattern.
 − Describe and show with illustration the concurrent development of this pattern.

• Modeling heuristics. Examine the pattern by using the modeling heuristics and
list and discuss briefly the outcome of this examination.

 − List or reference to the modeling heuristic, and use them as criteria to
examine the pattern.

 − Elaborate on how to examine the model of the pattern using the modeling
heuristics.

 − Briefly describe the outcome.
 − Modeling heuristics

 − No dangling
 − No star
 − No tree
 − No sequence
 − General enough to be reused in different applications

• Design and implementation issues. For each EBT, discuss and elaborate on the
important issues required for linking the analysis phase to the design phase, and
for each BO, discuss the important issues required for linking the design phase to
the implementation phase, for example, hooks. Describe the design issues (EBT),
for example, hooking issues. Alternatively, discuss the implementation issues (BO),
for example, why using relationship rather than inheritance, hooking, and hot spots
problems. Show segments of code here.
• Here Is a List of Analysis Issues

 − Divide and conquer
 − Understanding

346 Appendix A

 − Simplicity
 − One unique base that is suitable to many applications
 − Goals
 − Fitting with business modeling
 − Requirement specification models
 − Packaging
 − Components
 − Type (TOP) (A)
 − Actors/roles
 − Responsibility and collaborations
 − Generic and reusable models

• Design Issues (EBT)
 − For example, hooking issues.
 − Implementation issues (BO)
 − For example, why using aggregation or delegation rather than inheritance.
 − For example, hooking and hot spots problems.
 − Can show code here.

• Here Is a Sample List of Design and Implementation Issues
 − Framework models (D)
 − Classes (TOP) (D)
 − Collaborations (D)
 − Refinement (D)
 − Generic and reusable designs (D)
 − Precision (I)
 − Hooks (I)
 − Pluggable parts (I)
 − Navigation (I)
 − Object identity (I)
 − Object state (I)
 − Associations/aggregations (I)
 − Collections (I)
 − Static invariants (I)
 − Boolean operators (I)
 − Collection operators (I)
 − Dictionary (D) (I)
 − Behavior models (D) (I)
 − Pre–Post-conditions specify actions (I)
 − Joint actions (use cases) (D)
 − Localized actions (I)
 − Action parameters (I)
 − Actions and effects (I)
 − Concurrent actions (I)
 − Collaborations (I)
 − Interaction diagrams (D)
 − Sequence diagrams with actions (D) (I)
 − Pattern 1: Continuity
 − Pattern 2: Performance

347Appendix A

 − Pattern 3: Reuse
 − Pattern 4: Flexibility
 − Pattern 5: Orthogonal abstractions
 − Pattern 6: Refinement
 − Pattern 7: Deliverables
 − Pattern 8: Recursive refinement
 − Package (D) (I)

• Here Is a List of Java Patterns
 − Fundamental design patterns

 − Delegation (when not to use inheritance)
 − Proxy

 − Creational patterns
 − Abstract factory
 − Builder
 − Factory method
 − Object pool
 − Prototype
 − Singleton

 − Partitioning patterns
 − Composite
 − Filter
 − Layered initialization

 − Structural patterns
 − Adaptor
 − Bridge
 − Cache management
 − Decorator
 − Dynamic linkage
 − Façade
 − Flyweight
 − Iterator
 − Virtual proxy

 − Behavioral patterns
 − Chain of responsibility
 − Command
 − Little language/interpreter
 − Mediator
 − Null object
 − Observer
 − Snapshot
 − State
 − Strategy
 − Template method
 − Visitor

• Testability. Describes the test cases, test scenarios, testing patterns, and so on. (This
is a very important point, but sometimes it is very hard to write for an isolated
 pattern, I am not sure what is the best way to write this part!) You can use three ways

348 Appendix A

to document testability: (1) test procedures and test cases within classes members
of the patterns; (2) propose testing patterns that are useful for this pattern and other
existing patterns; and (3) check, if the pattern fit with as many scenarios as possible,
without changing the core design.
• Mention to people to try to find scenarios within the context that cannot work

with this pattern.
• Show how you can test the requirements and the design artifacts within use cases.
• Can also use exhaustive testing of behaviors (may require more pages) by using

testing patterns.
• Formalization using Z++, object Z, or object-constraints language (OCL)

(optional). Describes the pattern structure by using the formal language (Z++ or
Object Z), BNF, EBNF, and/or XML.

• Business issues. Cover one or more of the following issues.
• Business rules. Describe and document the business rules, and how you can

extend them in the context and scenarios that are listed.
 − Define the business rules, business policies, business facts, in relation to the

pattern.
 − Illustrate the business rules that are derived from the pattern.

• Check the following links:
 − http://en.wikipedia.org/wiki/Business_rules
 − http://www.businessrulesgroup.org/bra.shtml
 − http://www.businessrulesgroup.org/first_paper/br01c0.htm—pdf format file
 − http://www.businessrulesgroup.org/brmanifesto.htm

• Define the business rules in relation to the pattern.
• Illustrate the business rules that are derived from the pattern.

• Business models: Issues
• Business model design and innovation
• Business model samples (http://en.wikipedia.org/wiki/Business_model):

 − Subscription business model
 − Razor and blades business model (bait and hook)
 − Pyramid scheme business model
 − Multilevel marketing business model
 − Network effects business model
 − Monopolistic business model
 − Cutting out the middleman model
 − Auction business model
 − Online auction business model
 − Bricks and clicks business model
 − Loyalty business models
 − Collective business models
 − Industrialization of services business model
 − Servitization of products business model
 − Low-cost carrier business model
 − Online content business model
 − Premium business model
 − Direct sales model

http://en.wikipedia.org
http://www.businessrulesgroup.org
http://www.businessrulesgroup.org
http://www.businessrulesgroup.org
http://en.wikipedia.org

349Appendix A

 − Professional open-source model
 − Various distribution business models
 − Describe the pattern. If it is part of or it is a business model.
 − Describe the direct impacts of the pattern on the business model.
 − Describe the indirect impacts of the pattern on the business model.

• Describe the same for the following business issues:
 − Business standards

 − Vertical standards versus horizontal standards
 − Business integration

 − Data integration
 − People integration
 − Tools integration

 − Business processes or workflow. Here are some of the business processes
issues. Business process management (BPM) is a systematic approach to
improving those processes, which are given as follows:

 − Business process modeling and design
 − Business process improvement
 − Continuous business process improvement
 − Business process categories: Management processes, operational pro-

cesses, and supporting processes
 − Business process ROI
 − Business process rules
 − Business process mapping

 − e-Business
 − e-Commerce
 − e-Business models (http://en.wikipedia.org/wiki/E-Business)

 e-shops
 e-commerce
 e-procurement
 e-malls
 e-auctions
 Virtual communities
 Collaboration platforms
 Third-party market places
 Value-chain integrators
 Value-chain service providers
 Information brokerage
 Telecommunication

 − e-business categories (http://en.wikipedia.org/wiki/E-Business)
 Business-to-business (B2B)
 Business-to-consumer (B2C)
 Business-to-employee (B2E)
 Business-to-government (B2G)
 Government-to-business (G2B)
 Government-to-government (G2G)
 Government-to-citizen (G2C)

http://en.wikipedia.org
http://en.wikipedia.org

350 Appendix A

 Consumer-to-consumer (C2C)
 Consumer-to-business (C2B)

 − Web applications
 − Business patterns

 − Business modeling with UML
 − Business knowledge map

 − Business strategies
 − Business strategy modeling
 − Business strategy frameworks
 − Strategic management
 − Strategic analysis
 − Strategy implementation
 − Strategy global business

 − Business performance management (BPM)
 − Methodologies
 − BPM framework
 − BPM knowledge map
 − Assessment and indication

 − Business transformation
 − EBTs
 − Security and Privacy

• Known usage. Give examples of the use of the pattern within existing systems
or examples of known applications that may benefit from the proposed pattern.
Mention some projects that used it.

• Tips and heuristics. List and briefly describe all the lessons learned, tips, and heuristics
from the utilization of this pattern, if any.
• What did you discover?
• Why did you included or excluded different classes?
• Are there any tips on usage such as scaling, adaptability, flexibility?

A.2 PATTERN DOCUMENTATION—SHORT TEMPLATE

This template consists of five fields:

• Name. Presents the name of the presented pattern.
• Context. Gives possible scenarios for the situations, in which the pattern may recur.
• Problem. Presents the problem the pattern concentrating on.
• Solution and participants. This section is the same as what is given in the full tem-

plate, expect that we do not need to have two class diagrams. Usually, it is sufficient
to present the simple version of the stable object model.

351

Appendix B
Other Templates

B.1 FAYAD’S CLASS RESPONSIBILITY AND
COLLABORATION CARD LAYOUT

Class/Pattern Name (Class/Pattern Role) (Class Type)

Responsibility Collaboration

Clients Server

A single responsibility for this class/pattern
should be listed here briefly.

A list of all the classes/patterns
that have a relationship with
the named class/pattern.

A list of all the servers that
named class/pattern
provides.Unique

Within context Two or more clients 5–12 operations (services)

Attributes: Class/pattern seven or more attributes

Source: Fayad, M. E., H. S. Hamza, and H. A. Sanchez. “A Pattern for an Effective Class Responsibility
Collaborator (CRC) Cards.” Paper presented at the 2003 IEEE International Conference on Information
Reuse and Integration, Las Vegas, NV, October 2003.

B.2 FAYAD’S USE CASE TEMPLATE

Use Case Id Insert a number of the use case in the sequence.
Use Case Title Insert a use case name that starts with a verb.
AnyActor and/or Any/Party Roles
List AnyActor’s or AnyParty’s Typea Insert corresponding roles.

• AnyActor has four different types. Human, hardware, software, and creatures such
as animals, trees, and animated characters.

• AnyParty has four types as well. Human, organizations, countries, and political
parties.

Class Name Typea Attributes Operations

352 Appendix B

• Each class is classified as an EBT, BO, or IO.

Use Case Description

Describes the first step in the scenario.
Describes the second step in the scenario.
Describes likewise subsequent steps in the scenario.

• The use case should be at least five or more steps, and it should be
written with stability in mind, with test cases of EBT and BO names,
attributes, and operations only.

• Use case description must be numbered.
• Each use case may contain 6–12+ steps.

Alternatives
(As an example) Insert an alternative scenario for step 2 in the original
sequence.

Repeat the alternative, as many time as required, for any of the use case steps

Source: Fayad, M. E., D. Naney, and A. D. Pace. “Should Novice System
Developers Use Use Cases to Develop Core Requirements?” White
Paper at University of Nebraska, Lincoln, October 2000.

BO, business object; EBT, enduring business theme; IO, industrial object.

B.3 FAYAD’S STABLE ANALYSIS/DESIGN/ ARCHITECTURAL
PATTERNS (LAYOUT)

B.3.1 StaBle analySiS Pattern or StaBle DeSign Pattern
layout (1 eBt anD 2–14 BoS)

EBT BOs

353Appendix B

B.3.2 StaBle architectural PatternS layout
(2–5 eBtS Where 3 iS the MoSt coMMon)

EBTs BOs

EBT1

EBT2

…….

Sources: Fayad, M. E., and S. Wu. “Merging Multiple Conventional Models
in One Stable Model.” Communications of the ACM, 45, No. 9
(2002): 102–106. Hamza, H., and M. E. Fayad. “A Pattern Language
for Building Stable Analysis Patterns.” In the Proceedings of 9th
Conference on Pattern Languages of Programs 2002 (PLoP02),
Monticello, IL, September 2002.

B.4 FAYAD’S STABLE ANALYSIS/DESIGN PATTERN
APPLICATIONS LAYOUT [HAMZA AND FAYAD 2002]

B.4.1 StaBle analySiS Pattern or StaBle DeSign Pattern aPPlicationS layout

EBT BOs IOs

354 Appendix B

B.4.2 StaBle architectural Pattern aPPlicationS layout

EBTs BOs IOs

EBT1

EBT2

…….

Source: Hamza, H., and M. E. Fayad. “A Pattern Language for Building Stable
Analysis Patterns.” In the proceedings of 9th Conference on Pattern

Languages of Programs 2002 (PLoP02), Monticello, IL, September 2002.

B.5 FAYAD’S KNOWLEDGE MAP TEMPLATE

Knowledge Map of Domain/Subject/Topic

 1. Knowledge Map Name.
 2. Knowledge Map Nickname.
 3. Knowledge Map Domain/Subject/Topic Description.
 4. EBTs/Goals. Name the EBTs of the Domain/Subject/Topic and provide a short

description of each EBT and organize your answer in Table B.1.

TABLE B.2
BOs of Domain/Subject/Topic

BOs/Capabilities Description

TABLE B.1
EBTs of Domain/Subject/Topic

EBTs/Goals Description

355Appendix B

 5. BOs/Capabilities. Name the BOs of the Domain/Subject/Topic and provide a short
description of each BO and organize your answer in Table B.2.

 6. Knowledge Map (Core Knowledge*). Map each EBT to its BOs of the Domain/
Subject/Topic and organize your answer in Table B.3.

 Source: Sanchez, H. A. Building Systems Using Patterns: Creating Knowledge
Maps. Masters Thesis. San Jose State University, San Jose, CA, May 2006.

* Core knowledge of a domain/subject/topic = EBTs and BOs of a domain/subject/topic.

TABLE B.3
Knowledge Map of Domain/Subject/Topic

EBTs BOs

357

Appendix C
Stable Patterns Catalog

C.1 STABLE ANALYSIS PATTERNS

SAP Name Pattern Description Chapter No.

Discovery Discovery is defined as the act of finding or discovering something. It could be a
disease, a drug, or hidden patterns. For example, the main goal in data mining is to
discover hidden patterns and knowledge from the data, which is available widely.
The purpose is to model a discovery pattern that can be used in any application.
Discovery of hidden patterns, trends, associations, anomalies, and statistically
significant structures and events in data has a great impact on the formulation of
strategies that can be employed to get better insights about the market and increase
productivity.

4

Knowledge Knowledge can be gained through experience or studies. It represents a collection
of facts, rules, tips, or lessons learned with respect to anything that must be
synthesized to create knowledge. Sometimes, it might not be possible to obtain
complete knowledge about a subject and it results in partial knowledge. As a
result, this partial knowledge needs to be used to solve a problem. The knowledge
pattern will be used to represent knowledge synthesis and acquisition.

5

SAP, stable analysis pattern.

C.2 STABLE DESIGN PATTERNS

SDP Name Pattern Description Chapter No.

AnyMap A map is a very commonly recurring concept that we encounter in our
everyday life. Almost everything we do involves a map in one way or another.

7

AnyContext Context is essential in communicating the correct information. The objective of
being in context is to deliver the relevant information to the stakeholders
based on the environment and current interactions. It helps in passing the
message across the board in a clever and effective manner. The objective of
pattern is to generalize the idea of context, so that one can use it as a basis for
initiating interactions.

8

SDP, stable design pattern.

359

Appendix D
Sample Requirements

D.1 OCEAN RESOURCES MANAGEMENT SYSTEM

D.1.1 IntroDuctIon

To improve, retain, enhance, and sustain the ecological, cultural, economic, and social
benefits, which we derive from ocean resources. The opportunity to enjoy ocean’s plenti-
ful bounty is very essential to our health and well-being. However, there is an insufficient
planning associated between the government and nonprofit organizations, who are working
tirelessly in this aspect. If we want our future generations to play and make merry in oceans
and enjoy the comforts of healthy ocean life, we would have to change and transform our
current practices, laws, regulations, and community–government interactions. It is neces-
sary to alter the ways and mode in which we handle the ocean resources; otherwise, they
would become extinct one day, and our future generation would be cursing us for all pos-
sible unlikely scenarios. Hence, it is necessary to implement a system that collaborates the
activities of government organization, nonprofit sectors, and various other communities in
preserving the ocean resources and helps in its better administration and management. It
makes sense to completely remove the sector-based approaches that are currently associ-
ated in handling or managing ocean resources. At present, the management efforts are
extremely fragmented with a number of gaps and overlaps in implementation, just because
of this inefficient approach.

Seamless integration of efforts by the government and nonprofit organizations working
toward preserving ocean resources.

Ocean zoning is a concept considered as a means to guide human uses of the ocean,
to optimize utilization of marine resources, and to provide protection of marine
ecosystems.

D.1.2 DescrIptIon of DomaIn

The main domain of the system is Natural Resources Conservation. This is a very vast
field, wherein all the small blocks of the society are trying to contribute their parts. As
everything is sector based, the thing that is happening has no mutual coordination and
integration among the various communities that are working together. Due to this lack
of this perceived integration, we generally waste a large amount of resources on a num-
ber of unwanted and wasteful purposes. Replenishment of natural resources is actually
a big challenge and ocean resources are no exceptions. Hence, how do we conserve our
available ocean resources, how to best utilize them, so that it helps the country finan-
cially, and how best to maintain them, so that they are in perfect synchronization with
the environment and we enjoy its soothing nature in future, are the key milestones to be

360 Appendix D

considered here while developing this system. Thus, this forms the basis of domain of
the system.

Soil erosion, waste management, and ocean ecosystem protection are some of the few
domains to be considered, while designing this system. Working with integrity and coordi-
nation forms the foundation of domains to be included in the system.

D.1.3 Block DIagram

Ocean resource management system, as shown in Figure D.1, has various departments and
sectors in it, and the detailed requirements of each department have been mentioned as
under. All the different departments intercommunicate with each other, and they have to
coordinate with each other, in order to achieve the final goal.

D.1.4 DescrIptIon of the program that Is WanteD

The system should be able to satisfy the following high-level goals/functions:

 1. Integrate relationship between land and sea.
 a. Water quality monitoring.
 b. Protection of beaches and coastal communities from shoreline erosion and

other natural hazards.
 c. Maintenance and appropriate use of environmental infrastructure.

Government Nonprofit
organization

Ocean Resource Management
System

Waste
management

Environment
management

Marine minerals
management

FIGURE D.1 Ocean resource management system block diagram.

361Appendix D

 2. Preserving the ocean heritage.
 a. Improve the quality of the ocean resources for traditional, commercial, and

recreational purposes.
 b. Enhance public access and appropriate coastal-dependent uses of shoreline.
 c. Promote appropriate and responsible ocean recreation for tourists and residents.
 d. Encourage ocean science and technology, with safeguards for ocean resource

protection.
 3. Promoting collaboration.
 a. Permit integrated and place-based approaches to the management of the ocean

resources.
 b. Institutionalize integrated ocean resources management.

D.1.5 DetaIleD requIrements

The detailed requirements consist of two different types of requirements: (1) functional
requirements and (2) nonfunctional requirements.

D.1.5.1 Functional Requirements
 1. Reduce soil erosion emanating from upland forest ecosystems and conversation

lands.
 a. Uprooting of plants, loss of native forest species, weeds, and other manmade

factors are mainly responsible for soil erosion that ends up in streams, and
eventually to ocean waters. The system needs to address this issue.

 2. Reduce pollutant loads from residential, agricultural, and commercial land uses in
priority watersheds.

 a. Construction activities expose soil, which are washable into streams that lead to
ocean water contamination, because of improper sediment control.

 b. Agricultural activities near the beaches involve the use of pesticides and insec-
ticides that can enter the ocean water and make it hazardous for human beings.

 3. Implementation of comprehensive and integrated shoreline policy.
 a. This should address the impacts of chronic and episodic coastal hazards.
 b. Site-specific management techniques should be developed for the beaches, which

allow the natural erosion to occur with minimum impact on the ocean resources.
 4. Encourage appropriate coastal-dependent development that reduces a number of

risks from coastal erosion and other hazards in priority coastal areas.
 a. Coastal hazard assessment should be carried out, in order to incorporate future uncer-

tainties and imponderables, like faster rates of erosion and high level of flooding.
 5. Inspect and maintain sewer collection systems, including the detection of leaks.
 a. Upgrade and maintain the sewage system to minimize impact during flood

conditions.
 6. Reduce illegal stormwater discharges to the wastewater system.
 a. Conduct public education campaign explaining the impacts of illegal stormwater

discharges.
 b. Develop new rules and regulations establishing penalties for noncompliance.
 7. Minimize the introduction and spread of marine alien and invasive species.
 a. Develop risk-based approach to identify species and areas with highest poten-

tial for economic damage.

362 Appendix D

 8. Establish wastewater-discharge restricted zones and conditions for commercial
vessels plying in archipelagic waters.

 a. Enforce laws on wastewater discharge, with a close monitoring and enforce-
ment plan.

 9. Provide appropriate waste management infrastructure and facilities to support
commercial and recreational marine facilities.

 a. Provide temporary pump-out facilities.
 b. Provide adequate solid waste management activities.
 c. Increase frequency of inspection of marine sanitation devices.
 10. Strengthen and expand marine protected area management.
 a. Develop place-based marine protected area plans for priority areas.
 b. Identify limits of acceptable change.
 11. Develop ecosystem-based approaches for nearshore fisheries management practices.
 a. Identify, protect, and restore fish habitat for nearshore fish stocks.
 12. Establish and institutionalize new approaches for restoring, operating, and preserv-

ing ancient coastal fishponds and salt ponds.
 a. Provide support and incentives to the communities and individuals to facilitate

restoration process.
 13. Improve enforcement capacity and voluntary compliance with existing rules and

regulations for ocean resource protection.
 a. Conduct education/research campaigns, community-based partnerships to

judge ocean resource management issues.
 14. Enhance the conservation of marine protected species, unique habitats, and bio-

logical diversity.
 a. Develop educational materials that are responsible for providing awareness to

the people and support the efforts to improve the marine water quality.
 15. Enhance and restore existing public shoreline areas and scenic vistas.
 a. Develop enhancement and restoration plans for the purpose stated above.
 b. Develop interagency agreements.
 c. Provide funding.
 16. Establish new shorelines area for public and appropriate coastal dependent uses.
 a. Establish criteria for identifying priority coastal areas for public acquisition.
 17. Develop community-based frameworks and practices for identifying and mitigat-

ing ocean recreational use conflicts.
 a. Work with existing/new advisory groups to develop tool for resource protection

and conflict management.
 18. Promote responsible and sustainable ocean-based tourism.
 a. Establish performance standards to ensure responsible commercial ocean-

based tourism.
 19. Promote alternative ocean energy sources.
 a. Conduct the analysis of the impact of nonocean energy resources on ocean.
 20. Plan and develop sustainable commercial aquaculture in coastal areas and ocean water.
 a. Establish a database to locate coastal and ocean aquaculture projects in envi-

ronmentally suitable sites.
 21. Expand ocean science and technology.
 a. Facilitate appropriate research and innovation in marine technologies.

363Appendix D

 22. Develop standardized tools for ocean resource management.
 a. Investigate how limit of Acceptable change, can be used in resource management.
 23. Develop legislative and administrative proposals to improve management of ocean

resources.
 24. Build the required capacity for community participation for preserving the ocean

resources.
 25. Monitor and evaluate ocean resource management plan implementation.
 a. Establish multisector Ocean Resource Management Plan and monitoring

group.
 b. Establish public advisory group, in order to help the above group for assessment.

D.1.5.2 Nonfunctional Requirements
 1. Lifetime.
 a. When is the present project supposed to be completed?
 b. After how many years should the project be reviewed again for any changes?
 2. Cost.
 a. What is the estimated cost behind the project?
 3. Reconfigurable.
 a. Can the project change as environmental/human requirement changes?
 4. Scalability.
 a. Can we add a new functionality to project without disturbing its original

implementation?
 5. Robustness.
 a. Is the project versatile enough to provide support for all the beaches in the

country?

D.1.6 use case anD user context

The following section provides the names, brief descriptions, and the actors’ names and
their corresponding roles’ names of 10 different use cases.

D.1.6.1 Use Case 1
Use Case Name. Improve coastal water quality.
Use Case Description. For improving the coastal water quality, different departments

of this system must concentrate on reducing land-based sources of pollution and
restoring natural habitats.

Actors. Tourists, Fishermen, Exporters/Importers, Residents, Sea life

D.1.6.2 Use Case 2
Use Case Name. Protecting ocean resources from coastal hazards.
Use Case Description. Develop a comprehensive and integrated shoreline policy and

guideline for the coastal hazards, which addresses the impacts of chronic and epi-
sodic coastal dangers. Also, develop shoreline management plan with specific mea-
sure of erosion and other coastal areas.

Actors. Residents, researchers, ecosystem protector, sea life

364 Appendix D

D.1.6.3 Use Case 3
Use Case Name. Maintain environmental infrastructure.
Use Case Description. Maintain sewer collection systems by including the detection of

leaks, which also reduce illegal stormwater discharges to the wastewater system. Also,
improve and ensure maintenance and appropriate use of environmental infrastructure.

Actors. Ecosystem protectors, residents, researches, tourists, sea life

D.1.6.4 Use Case 4
Use Case Name. Reduce marine sources of pollution.
Use Case Description. Establish wastewater discharge restricted zones and conditions

for commercial vessels plying in archipelagic waters. Also, provide appropriate waste
management infrastructures to support commercial and recreational marine facilities.

Actors. Fishermen, residents, tourists, exporters/importers, sea life

D.1.6.5 Use Case 5
Use Case Name. Improve health of coastal and ocean resources.
Use Case Description. Develop ecosystem-based approaches for fisheries manage-

ment and also establish and institutionalize approaches for restoring, operating,
and preserving ancient coastal fishponds and salt ponds. Enhance the conservation
of marine protected species, unique habitats, and biological diversity.

Actors. Resident, ecosystem protectors, exporters/importers, sea life

D.1.6.6 Use Case 6
Use Case Name. Enhancing public access.
Use Case Description. Enhance and restore existing public shoreline areas and sce-

nic vistas. Also, establish new shoreline areas for public and appropriate coastal-
dependent uses.

Actors. Residents, tourists, sea life

D.1.6.7 Use Case 7
Use Case Name. Preserve ocean resources.
Use Case Description. Encourage cutting edge and appropriate ocean science and

technology measures with safeguards for ocean resource protection.
Actors. Researchers, fishermen, residents, ecosystem protectors, sea life

D.1.6.8 Use Case 8
Use Case Name. Manage ocean resources.
Use Case Description. Apply integrated and place-based approaches to the manage-

ment of ocean resources. Develop standardized tools and build additional capacity
for community participation in ocean resources management.

Actors. Fishermen, exporters/importers, sea life

D.1.6.9 Use Case 9
Use Case Name. Integrate the beaches and surrounding area.
Use Case Description. Maintain the beaches for the tourism and provide the different

kinds of facilities for the tourists.
Actors. Tourists, residents, sea life

365Appendix D

D.1.6.10 Use Case 10
Use Case Name. Create awareness.
Use Case Description. Local residents need to be educated, so that they understand

and comprehend the importance of ocean resources. Slideshows, seminars, and work-
shops must be organized by the native education and research centers and nonprofit
organizations, to help people realize the essentials of ocean resources.

Actors. Residents, fishermen, researchers, tourists, sea life

sources

http://coastalmanagement.noaa.gov/.
Johannes, R. E. and Hickey, F. R.; UNESCO (2004). Evolution of village-based marine resource

management in Vanuatu between l993 and 2001, Paris, France: UNESCO.
Vierros, M., Tawake, A., Hickey, F., Tiraa, A., and Noa, R. (2010). Traditional Marine

Management Areas of the Pacific in the Context of National and International Law and
Policy. Darwin, Australia: United Nations University–Traditional Knowledge Initiative.
UNU-IAS, 2010.

D.2 DENGUE FEVER PREVENTION AND OUTBREAK
MANAGEMENT SYSTEM

D.2.1 IntroDuctIon

Dengue fever is a serious mosquito-borne viral disease. It spreads very quickly and
can be fatal; its fatality rate is approximately 5% in most of the countries around the
world. It has not been possible to eradicate this fever completely forever. Vaccines are
in the process of development for this epidemic. Efficacy trials in human volunteers
are still not completed. An effective vaccine may not be available to the public for the
next 5–10 years.

Our project focuses specially on finding measures to suppress the spread of this disease
and promote the development of vaccines for the disease. The dengue prevention and out-
break management system will help assist authorities to prevent a dengue epidemic and
guide health authorities, in case of an outbreak of this deadly disease.

D.2.2 DescrIptIon of DomaIn

First outbreak of dengue fever occurred between 1779 and 1780 in the regions of Africa,
Asia, and North America. Dengue fever, which was very typical in tropical and subtropical
continents, has now spread over the entire globe soon after World War II.

Dengue is an infectious disease, characterized by frequent bouts of severe pain in the
eyes, head, and extremities, later accompanied by catarrhal symptoms. This disease occurs
because of a mosquito bite. One of these four closely related virus stereotypes (DEN-1,
DEN-2, DEN-3, and DEN-4) causes dengue and dengue hemorrhagic fever (DHF).
Infections with one of these viruses build immunity for only that stereotype.

The Dengue Prevention and Outbreak Management System focuses on controlling the
epidemic at the slightest appearance of epidemic signs. This project also aims at finding
out the main reasons behind the dramatic and lightening spread of dengue. Because no

http://coastalmanagement.noaa.gov

366 Appendix D

vaccines are available yet, one can prevent the spread of dengue only by increasing aware-
ness among people and educating them about the symptoms of dengue and possible pre-
ventive measures. During an outbreak, officials can work closely with citizens to prevent
breeding of mosquitoes and isolate patients, and the scientists can study different viruses
found in the patient’s body. They can also prepare better medications for cure.

D.2.3 DescrIptIon of the program that Is requIreD

This system must comprise of a hand of assistance from the local government for support-
ing the health infrastructure, health authorities, and a management team to overlook and
monitor operations of this system.

Dengue Prevention and Outbreak Management System can be classified into two parts—
one being measures that are taken to control the epidemic from spreading further and the
other being measures taken to prevent an outbreak.

D.2.4 DetaIleD requIrements

The system must fulfill the following requirements:

Functions for controlling the epidemic
<R10> Medical facilities should monitor number of cases of dengue per unit of

area.
Medical facilities can determine and assess about the outbreak of dengue. They

can monitor dengue patients arriving for treatment and later group them by
their location and addresses.

<R20> Notify local government.
Medical facilities must notify local government about an outbreak and about pos-

sible reasons for the same. Local government broadcasts the occurrence of out-
break to the public.

<R30> Set up facilities to treat patients.
The system should set up facilities far from urban areas to quarantine, isolate,

house patients affected, and treat them.
<R40> Management of funds.
The system must be able to manage an easy flow of funds to manage and cater this

facility.
Funds for providing medical needs to patients
Funds for running the facility
Funds for sanitizing affected areas

<R50> Suppress the spread of epidemic by effectively controlling the spread of
mosquitoes and their breeding activities.

<R60> Medical facilities must work closely with scientists.
In the worst-case scenarios, medicines may not prove as effective as they should.

Medical facilities must work with scientists to create new treatment to save lives.
<R70> Additional treatment.
In case of ineffective treatments, local government can coordinate control efforts

among medical facilities, local and outside scientific communities, and other
authorities, for a quick and effective treatment.

367Appendix D

<R80> Medical facilities must also work with local government to create new
treatment measures.

<R90> Medical facilities can update necessary preventive care information shared
by local government with public.

Functions for preventing the epidemic
<R100> Identify problems.
The system must make a sincere attempt to understand the problems behind the

emergence of this disease.
<R110> Create awareness.
Educate public about the causes and symptoms for dengue.
<R120> Promote development of vaccines.
Vaccines are under development for dengue; the system can help this process by

initiating volunteers for human trials.
Encourage and provide facilities and amenities for research regarding these vaccines.
<R130> Information related to both preventive and control measures are main-

tained in an efficient database.

D.2.5 use cases anD user context

The users of this system will comprise of government officials, doctors, scientists, patients,
and other citizens. The main purpose of this system is to collect and provide information
for better management of dengue prevention and its outbreak to save lives.

 1. Horizon-UC1. Nondengue patient seeking diagnosis.
 a. Description. A citizen has a fever. He/she registers with City Hospital for diag-

nosis. He/she is diagnosed as a nondengue patient and given medication for
other diseases.

 b. Actors/Roles. Citizen, City Hospital primary physician
 2. Horizon-UC2. Dengue patient seeking diagnosis.
 a. Description. A citizen has a fever. He/she registers with City Hospital for diag-

nosis. He/she is diagnosed as having dengue fever. He/she is put on dengue
treatment and monitored very closely.

 b. Actors/Roles. Citizen, City Hospital primary physician
 3. Horizon-UC3. Dengue patient recovers.
 a. Description. After N number of days, the condition of the dengue patient is

found to recover and improve. Further testing concludes that he/she is cured
completely and now can go home. He/she will not cause any danger to his/her
community.

 b. Actors/Roles. Dengue patient, City Hospital physician
 4. Horizon-UC4. Treatment not effective.
 a. Description. After N number of days, the condition of the dengue patient is still

worsening. City Hospital doctors feel that the patient is not responding well
to the treatment. City Hospital specialist is then consulted. He/she concludes
that this may be because of a new variant of virus. Medical scientist collects
samples and starts working on a new treatment.

 b. Actors/Roles. Dengue patient, City Hospital physician, City Hospital specialist,
Local medical scientist

368 Appendix D

 5. Horizon-UC5. New treatment is successful.
 a. Description. After N number of days, the condition of the dengue patient is still

worsening. City Hospital consults with a local Medical Scientist. He/she creates
a new treatment. Patient is cured and goes home.

 b. Actors/Roles. Dengue patient, City Hospital physician, City Hospital specialist,
Local medical scientist

 6. Horizon-UC6. New treatment fails.
 a. Description. After N number of days, the condition of dengue patient is still

worsening. City Hospital consults with a local Medical Scientist. He/she creates
a new treatment. However, it is not effective and the patient later dies.

 b. Actors/Roles. Dengue patient, City Hospital physician, City Hospital specialist,
Local medical scientist

 7. Horizon-UC7. Many dengue patients a day and normal case.
 a. Description. City Hospital provides services to citizens from different areas. It

receives approximately the same number of dengue patients every day. This is
considered as a normal condition.

 b. Actors/Roles. Dengue patients, City Hospital physicians
 8. Horizon-UC8. Above-average number of patients and advisory issued.
 a. Description. City Hospital provides services to citizens from different areas.

It is observed that more than average numbers of dengue patients are arriving
from different regions of the city. City Hospital now notifies local government
authorities about this sudden rise in the number of patients. Local government
issues advisory to its citizens, reminding them about precautionary measures.
Employees are sent to those regions to find any obvious reasons, such as stand-
ing water and unhygienic areas. Clean up ponds and still water bodies.

 b. Actors/Roles. Dengue patients, City Hospital physicians, Local government,
and Citizens

 9. Horizon-UC9. Above-average number of patients from an area, advisory issued,
and cleanup actions are undertaken.

 a. Description. City Hospital provides services to citizens from different areas. It is
observed that more than average number of dengue patients are arriving from spe-
cific areas of the city. The number is very high per given region. City Hospital now
notifies local government authorities about possible outbreak in these regions. Local
government issues an advisory to its citizens, reminding them about precautionary
measures. Employees are then sent to those regions to find any visible reasons such
as standing water and unhygienic areas. Clean up ponds and still water bodies.

 b. Actors/Roles. Dengue patients, City Hospital physicians, Local government,
Citizens

 10. Horizon-UC10. Above-average number of patients from many areas of the city and
outbreak declared.

 a. Description. City Hospital provides services to citizens from different areas.
It is observed that more than average numbers of dengue patients are arriving
from many areas of the city. The number is very high per given region. City
Hospital now notifies local government authorities about possible outbreak in
these regions. Local government declares an outbreak. Outbreak control action
plan is executed and carried out.

 b. Actors/Roles. Dengue patients, City Hospital physicians, Local government, Citizens

369Appendix D

 11. Horizon-UC11. Outbreak declared. Treatment is effective. Situation is under control.
 a. Description. Government declares an outbreak condition. Many dengue

patients are being treated at City Hospital. Treatment is proving effective and
the patient’s condition is improving. Situation is under perfect control.

 b. Actors/Roles. Dengue patients, City Hospital physicians, Local government,
Citizens

 12. Horizon-UC12. Outbreak declared. Treatment is not effective. Situation is not
under control.

 a. Description. Government declares an outbreak condition. Many dengue patients
are being treated at City Hospital. Treatment is not proving effective and
patient’s condition is still worsening. Many patients are dying. External scien-
tific help is sought. Federal government, other local governments, and scientist
community are consulted for new treatment immediately.

 b. Actors/Roles. Dengue patients, City Hospital physicians, Local government,
Other governments, Scientist community

 13. Horizon-UC13. Outbreak declared. Many patients are dying. Biohazardous
condition.

 a. Description. Government declares an outbreak condition. Many dengue
patients are still dying. Government isolates patients from other citizens. Dead
bodies are disposed of with great care and concern.

 b. Actors/Roles. Dengue patients, City Hospital physicians, Dead patients
 14. Horizon-UC14. Outbreak declared. New treatment is proving effective. Situation is

coming under control.
 a. Description. Government declares an outbreak condition. Many dengue patients

are being treated at City Hospital. Treatment is not proving effective and patient’s
condition is still worsening. Many patients are dying. External scientific help is
sought. Federal government, other local governments, and scientist community
are consulted for new treatment immediately. New treatment is available and is
proving quite effective.

 b. Actors/Roles. Dengue patients, City Hospital physicians, Local government,
Other governments, Scientist community

 15. Horizon-UC15. Local government arranges awareness camp.
 a. Description. Local government with the help from City Hospital arranges aware-

ness camps in the city to educate citizens about dengue and preventive measures.
 b. Actors/Roles. Citizens, Local government, City Hospital
 16. Horizon-UC16. Local government broadcasts updates in preventive measures.
 a. Description. Scientists find new preventive measures and notify the local gov-

ernment. Government broadcasts these new measures to its citizens.
 b. Actors/Roles. Citizens, Local government, Scientists

sources

Halstead, S. B. (2008). Dengue. London: Imperial College Press. pp. 180, 429.
Wiwanitkit, V. (2010). “Unusual mode of transmission of dengue.” Journal of Infection in Developing

Countries 4 (1): 51–4.
Wiwanitkit, V. (2010). “Dengue fever: Diagnosis and treatment.” Expert Review of Anti-Infective

Therapy 8 (7): 841–5.

http://www.crcnetbase.com/action/showLinks?crossref=10.3855%2Fjidc.145
http://www.crcnetbase.com/action/showLinks?crossref=10.3855%2Fjidc.145
http://www.crcnetbase.com/action/showLinks?crossref=10.1586%2Feri.10.53
http://www.crcnetbase.com/action/showLinks?crossref=10.1586%2Feri.10.53

370 Appendix D

D.3 ORGANIZING CRICKET WORLD CUP

Cricket is a very popular game in many parts of the world. Every year, a number of tourna-
ments are organized among different teams, and at different locations around the world. ICC
Cricket World Cup is the universal form of championship in one-day cricket, and it is held once
every four years. All test playing teams and qualifying teams compete against one another to
acquire global superiority in cricket. Apart from entertainment, this event also serves to foster
and enhance goodwill and better relationship among the teams, brings huge economical ben-
efits to the nation where it is being held, and generates huge revenue for the organizers. The
main purpose of this project is to depict the activities involved in organizing a world cup.

D.3.1 DomaIn DescrIptIon

The cricket world cup is scheduled once every four years, but the preparations start well in
advance. The International Cricket Council (ICC), which foresees all of the global activities
in cricket, selects a country to host this tournament, after taking the political and economical
issues into consideration. Normally, the president of a country or a very famous dignitary
officially declares open the event. This tournament lasts for about two months, during which
various teams from all over the world participate and play in it. Event organizers assign vari-
ous teams to take care of the venues, player security, media interaction, and so on. Millions
of viewers all over the world enjoy watching these games. Once the final match is played,
there will be a winning team, which gets to keep the world cup for the next four years.
Figure D.2 shows a cricket stadium. Figure D.3 shows the media coverage and scoreboard.

D.3.2 DescrIptIon of the program that Is WanteD

Organization of world cup cricket tournament includes the following functions and
requirements:

• Deciding on the country with proper geographic locations, in which the game will
be played.

• Getting the sponsors, who will provide the funding to organize various activities.

FIGURE D.2 Cricket stadium.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b17771-24&iName=master.img-000.jpg&w=287&h=151

371Appendix D

• Selecting the media, who will promote this tournament.
• Constructing and updating of stadium and pavilions.
• Inviting qualified teams and arrange for their trips, food, and accommodation.
• Establishing various security systems and monitoring them during the game play.
• Using the new technology systems like advanced software, which will be useful for

showing various statistical data on screen and scoreboard and for some other visual
analysis and recording.

• Building the media hype around the world cup, by using media and by selling tick-
ets online to attract people.

• Arranging for a grand opening ceremony and closing presentation in one of the
main stadium.

• Arranging warm-up matches between various international teams.
• Making a whole game plan (fixtures and results).
• Deciding about various rules and regulations for the entire event and for every

action and situation.
• Managing the various computing systems that count the score during the games

and show player’s statistics, his records, and other details and team ranking.
• Arranging for the movement of players and equipment by hiring Event Tour and

Travel Partner.

D.3.3 DetaIleD requIrements

ICC schedules the World Cup Cricket match every four years. ICC will always decide
that in which country the tournament will be held. To award this event, ICC will take into
account various deciding criteria like economy of the country and availability of stadium
and hotels. The hosting country must also meet all eligibility conditions like minimum
financial requirements. The country that likes to host the tournament must ensure that it
has a group of corporate sponsor/s. Hosting a world cup tournament is a big challenge and a
difficult task, as the host country needs to meet many difficult conditions and requirements.

FIGURE D.3 Media coverage and scorecard.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b17771-24&iName=master.img-001.jpg&w=215&h=182

372 Appendix D

Besides the issue of economy, many other things are a matter of big concern like the
security aspects to ensure players and official safety. Before awarding the contract, infor-
mation about stadium, geographical locality, and tourism is also seriously considered.
After confirming the country and the tournament sponsors, it is important that ICC will
choose a good event manager/organizer, who can conduct a good and satisfying tour for
everyone.

Event organization group will create game plans and hosting schedules and manage all
other aspects of the tournament. The game plan will include drawing a board containing
four or five groups, each of them consisting of four cricket-playing countries. After draws
are entered, there will be group matches to eliminate failing teams and select winning
teams. By the end of group playing sessions, all the emerging countries will be asked to
play for quarter-, semi-, and final matches. The event organizer will thus conduct the tour-
ney very successfully.

It is also important to choose different media like television, news, websites, and adver-
tising companies to create a favorable opinion of the world cup tournaments and to attract
international tourists. Each participating country will choose its own team and members,
coach, and medical personnel. The country that hosts the tournament must decide on the
stadium on which the games will be played, and the main condition to choose a particular
stadium is the availability of enough hotel rooms, transportation, and tourism spots.

A hospitality group, who provides accommodation, food, entertainment, and transpor-
tation facilities, treats all playing countries with good hospitality. Stadium manager will
be assigned to take care of the construction aspects of stadium and the estimated capacity
crowd that attends to watch the game. He or she will take care of all aspects and activities
that are connected with the management of stadium. It may include arranging for TV tele-
casting of the event, audience services, arranging for computers, and a full-pledged media
center.

A pitch curator is appointed to prepare pitches on which the cricket will be played; he or
she will also make sure that the turf and the stadium areas are kept clean and managed well.
A manager will also be appointed and assigned the duty of arranging seats for dignitaries,
VIP’s, and manage refreshment facilities.

Stadium manager will also import new gadgets, tools, instruments, and software that will
be used in security and to broadcast the live game show. They must have high- resolution
cameras and video editing teams, to provide a good-quality viewing on the TV. These soft-
ware systems must also enable the third umpire to take proper and unbiased decisions. The
software system must also be able to maintain and show a series of statistical records of the
game and the team, whereas the scorecard for a given game should also be maintained by
the software itself. As the event is of an important and critical nature, all software systems
that manage the show must be perfect, authentic, and completely stable.

Security and safety of players, teams, dignitaries, and the stadium is also very impor-
tant, and care must be taken to ensure their safety throughout the tenure of the tourna-
ment. Both the government and stadium manager will involve in the security-related issues.
Governmental security agencies will take care of the security of team members and the
dignitaries, when they arrive at the stadium, and while they are in the country, maintain law
and order if something bad happens in the city where the game is played.

Organizers also choose one group for evaluating experiences, rules and regulation of
the game, and to make new rules and legislations for the present tournament. Umpires,
referees, and other key members will also be selected by the ICC to participate and manage

373Appendix D

the tournament. ICC will also look after the ranking of teams and in maintaining the
 player’s ethics and integrity clauses. However, tournament organizers and event sponsors
will ensure that all teams, winners, losers, and semifinalists get their share of prize money.
Once the tournament is finished, they will also organize a grand closing ceremony to sign
off the event.

D.3.4 use cases anD user context

The following section provides the names, brief descriptions, and the actors’ names and
their corresponding roles’ names of 10 different use cases.

D.3.4.1 Use Case 1
Use Case Name. Selects the location (country).
Description

Selecting the location (country) is the first step of World Cup Cricket.
Selection is made according to the current economy, tourism, and political issues

of the country.
ICC makes some tender and the country should meet the all financial requirements

according to the tender.
Actors/Roles. ICC (International Cricket Control), cricket board of selected country

D.3.4.2 Use Case 2
Use Case Name. Select sponsors.
Description

Sponsors are the main part for the successful events. There will be many sponsors.
The sponsors will give the financial support during the whole event.
The event organizers will select sponsors by studying the history and their relation-

ship with the hosts, such as credits, rules, and service.
Actors/Roles. Event organizers, sponsors

D.3.4.3 Use Case 3
Use Case Name. Schedule games (fixtures).
Description

Only qualified top 16 teams are selected for the game.
Those teams are divided into four groups.
The team will play each other in round-robin format progressively, and finally,

four best teams will advance to the semifinal and the winners of that will then
compete in the final.

The date and the stadium will be selected for each game, by taking into account
factors like weather and stadium condition.

The umpires (referees) will also be selected by the ICC for each game.
Actors/Roles. ICC, event organizers

D.3.4.4 Use Case 4
Use Case Name. Promote events.
Description

Promote the events to attract the viewers.

374 Appendix D

Promoters show advertisement for world cup through various electronic media like
TV and Internet.

Sponsors will also promote the event through their advertisements.
They will promote the event until the final game to keep the interest alive.

Actors/Roles. Promoters, sponsors, media

D.3.4.5 Use Case 5
Use Case Name. Evaluate, construct, and upgrade the stadiums.
Description

Event organizer will evaluate all the stadiums and their conditions and then make
some suggestion to stadium manager to improve and renovate.

Stadium manager will implement the changes as suggested by the organizer.
The changes can be in increasing the capacity of the stadium, improving the ground

condition, infrastructure, and so on.
Actors/Roles. Stadium manager, event organizer

D.3.4.6 Use Case 6
Use Case Name. Set up the security.
Description

Stadium manager and special security squad will handle security set up during and
before the game.

During the stadium renovation, security squad sets up special security cameras in
all over the stadiums.

There will be a special security arrangement in players and VIP section.
During the game, the squad will also take care of the crowd to prevent any misdemeanors.

Actors/Roles. Stadium manager, security squad, security tools and software

D.3.4.7 Use Case 7
Use Case Name. Host the teams.
Description

Invited team should be provided good accommodation and food.
All kind of travel and transportation should be handled.
Taking care of the all team member’s security during their staying and traveling.
Extra entertainment like tour and cultural festival should be managed.

Actors/Roles. Hosting team, team members, security squad

D.3.4.8 Use Case 8
Use Case Name. Telecast the game.
Description

Event organizer will select the channels, which will broadcast the game in different
countries.

In addition, it will be broadcasted by other media like radio, cell phone, and through
Internet.

Good commentators, high-resolution cameras, and sound arrangement should be
used by the telecasting team.

There should be well-organized arrangement for live video editing.

375Appendix D

Actors/Roles. Telecasting team, commentators, video editing teams, camera team,
media, audience

D.3.4.9 Use Case 9
Use Case Name. Sell the tickets.
Description

There will be different categories of tickets depending upon stadiums and seats.
Tickets can be bought through Internet, phone or personally, or some agencies that

are assigned by world cup organizers.
Media is used to let people know about ticket availability.
Tickets are categorized into different types like general, family, and VIP, and each

ticket consists of seat number, gate number, and person number.
Actors/Roles. Stadium manager, media, internet, audience

D.3.4.10 Use Case 10
Use case Name. Provide software support and update centralized data.
Description

Update the scoreboard during the game.
Track the records of each team and player and show their records on screen, when

they achieve some significant milestones.
Update the records in centralized database after each game.
Some statistical software like wagon is used for showing statistic information of

team and players, through graphs and charts.
Some special software like Hawkeye is used for tracking the ball direction and path

to make clear decision.
Actors/Roles. Software team, software and hardware applications

D.3.4.11 Use Case 11
Use Case Name. Maintain the rules and regulations.
Description

ICC makes some decision whether to add new rules and regulation to ICC rule
book.

These rules and regulations are for everyone, who is going to be the part of the
event, such as players, event managers, and stadium managers.

Umpires should follow and execute all the regulation mentioned in the ICC
rulebook.

New technologies as Hawkeye and Ultra slow motion should be used to make per-
fect decision.

In case of any critical situation, when the whole match cannot be completed or
match abandoned, the ultimate decision should be made by both umpires and
ICC representatives.

Actors/Roles. ICC, umpires (referees)

D.3.4.12 Use Case 12
Use Case Name. Ceremonies held during the world cup.
Description

376 Appendix D

There should be a grand ceremony to attract and create passion for the game.
VIP dignitaries like the president, prime minister, and ICC representative of the

host country participates in opening ceremony.
At the end of each game, award should be given to the outstanding performance.
At the end of the world cup cricket final, the awards like Man of the Series and Best

Team would be presented.
Actors/Roles. ICC, event organizers, dignitaries, sponsors, stadium manager, audience,

players

sources

Browning, M. A Complete History of World Cup Cricket 1975-1999. East Roseville,
N.S.W.; London: Simon & Schuster, 2000.

http://cricketworldcup.indya.com/.

D.4 POLLUTION MANAGEMENT

Today, the most pressing and critical issue that is engulfing our world is the growing envi-
ronmental degradation and pollution. Due to inconsiderate activities and by uncontrolled
exploitation of nature by humans on the pretext of industrialization, modernization, and
urban ization, considerable environmental imbalance has resulted in the creation of unusual
climatic conditions, extinction of land and marine species, and an imbalance in the eco-
systems. We are facing real-time environmental crises. The need of the hour is to spread
awareness about the environmental issues and formulate workable policies and solutions
to control pollution.

Pollution management also helps us to study about the different agents and effects of
the pollutants on the environment. The system helps to spread the awareness and actions,
which has to be taken in order to reduce the alarming rate of pollution.

D.4.1 DescrIptIon of DomaIn

Since the dawn of our civilization, we as humans have tried to alter the basic structure of
the planet Earth, so that we can achieve all the material comforts. This indiscriminate use
without wisdom has led us to the point, where we will need to start thinking of reversing
the effects of our past; else, our future generation would be definitely doomed. We have
successfully ransacked the planet in devious ways to get burning fuels and raw materials,
which have been the cause of extinction of an unthinkable amount of plants and animals,
and have multiplied our population to that of a plague.

Air and water pollution are the major contributors to the ever-growing environmental
degradation. Around 80% of the pollution observed in seas and oceans is the direct result of
land-based activities. Toxic air pollution damages our natural environment and jeopardizes
public health. Once released into the air, toxins build up in the environment and work their
way up the food chain, eventually ending up in the food that we eat. Eating contaminated
food and breathing contaminated air can cause cancer, birth defects, and other serious health
problems. The lifestyle choices that we make, the products that we use, and the efforts that
we undertake to save our ecosystem greatly affect the quality of our environment.

http://cricketworldcup.indya.com

377Appendix D

D.4.2 Block DIagram

Despite all of the damage that we have caused, most of it is quite reversible. We can restore
habitats, clean rivers, replenish the topsoil, and replant forests. However, these activities do
not relieve the worst symptoms of the already occurred damage. We still have to fix the
main source of these problems.

To protect the environment from the adverse effects of pollution, nations worldwide
have enacted a number of legislations to regulate various types of pollutions, as well as to
mitigate the adverse effects of uncontrolled pollution. Nevertheless, there is a long way
ahead and we need to put in dedicated and concerted efforts, before we can make our planet
a safe place to live once again.

D.4.3 DescrIptIon of the program that Is WanteD

The pollution management is to be built and managed mainly to control and reduce the
pollution. This system also gives a real-life feel of what is actually happening at a smaller
scale.

It achieves this objective in the following way:

• The pollution management maintains the list of various types of pollutions that are
affecting the environment and their adverse effects on human health, as well as
nature, animals, and birds.

• Data from research studies are used to assess the risk of the various pollutants and
depict it graphically. Based on the risk models available, it is able to predict the
severity of the health hazards for the various pollutants.

• The system also maintains the data and information collected from various govern-
mental and nongovernmental agencies to keep track on the incidents of pollution
and efforts expended in keeping pollution under real check.

• The system helps toward creating awareness by educating people.

D.4.4 DetaIleD requIrements

The detailed requirements consist of two different types of requirements: (1) functional
requirements and (2) nonfunctional requirements.

D.4.4.1 Functional Requirements
 1. Study different types of pollutions that are contaminating our planet Earth.
 The chief pollutants in the air are carbon dioxide, nitrogen dioxide, and hydro-

carbons. By inhaling such an unhealthy air, the health of human and animal gets
affected. Water is contaminated from variety of sources like discharge of industrial
waste, sewer, and oil spills.

 2. Understand the effect of pollutants.
 Air pollution results in ozone layer depletion, global warming, and acid rain. The

contaminated drinking water poses serious health problems in the form of dysen-
tery, typhoid, cholera, and diarrhea. Oil spills and leaks have created very serious
adverse effects on the marine life.

 3. Control and monitor damages caused by pollution.

378 Appendix D

 By studying and understanding the damages caused by pollution, we can come up
with many ways to mitigate them.

 4. Devise ways to reduce pollution.
 Analyzing data collected from research to come up with solutions to reduce pollu-

tion. Using recyclables, disposables, renewable sources of energy over fossil fuels,
conserving energy by use of other modes of transport and fuel-efficient vehicles are
some ways to reduce pollution.

 5. Spread awareness.
 Awareness can be created among public, through community education, road shows,

advertisement, volunteers, and schools.
 6. Reach out to organizations.
 Develop relations with both governmental and nongovernmental organizations to

provide funds for research activities and creating awareness.

D.4.4.2 Nonfunctional Requirements
 1. Data requirement. Data collected must be correct, authentic, and verifiable.

They must be in the form that is easily readable by the system and can be
analyzed.

 2. Scalability. Pollution management must be able to interact with other systems.
 3. Ease of use. The system should also be easy and simple to use by anybody, who

is interested in contributing toward controlling of pollution. It should be such that
even a nonprofessional can use the system to see what the system does.

D.4.5 use cases anD user context

The following section provides the names, brief descriptions, and the actors’ names and
their corresponding roles’ names of 10 different use cases.

D.4.5.1 Use Case 1
Use Case Name. Contaminate water.
Brief Description. Clean water is an essential ingredient for the well-being of all liv-

ing things. Factories dump chemical by-products into the water without treating
them. Another culprit is the sewage treatment plant, which spews human wastes
into the water bodies. Polluted water is responsible for various waterborne diseases
like cholera and dysentery. It also affects the birds, animals, and other aquatic ani-
mals and disrupts their life cycle.

Users. Person (polluter, company policy maker, industrialist), creature (animal, bird)

D.4.5.2 Use Case 2
Use Case Name. Degrade soil.
Brief Description. Soil pollution occurs due to introduction of harmful substances,

pesticides, and chemicals into the soil, which adversely degrades the quality of
soil. This, in turn, affects the normal process of soil reuse and adversely affects the
health of humans, animals, birds, and other living organisms.

Users. Person (farmer), creature (animal, bird, pathogen, earthworm)

379Appendix D

D.4.5.3 Use Case 3
Use Case Name. Identify the effects of noise pollution.
Brief Description. Noise pollution results in hearing loss, cardiovascular impacts,

high blood pressure, and psychological effects in human beings. High noise levels
may also interfere with the natural cycles of animals, including feeding behavior,
breeding rituals, and migration paths. The most significant impact of noise to ani-
mal life is the systematic reduction of usable habitat.

Users. Person (polluter, company policy maker, industrialist), creature (animal, bird),
manufacturer (aircraft manufacturer, motor vehicle manufacturer)

D.4.5.4 Use Case 4
Use Case Name. Identify and manage adverse effects of air pollution on humans.
Brief Description. Air pollution of any sort can cause numerous ill effects, which

can have either acute or chronic effects on health of humans. Initiate a study to
identify these adverse effects on health and then find solutions to reduce and pre-
vent them.

Users. Person (volunteer, researcher, scientist, environmentalist)

D.4.5.5 Use Case 5
Use Case Name. Research the factors causing pollution.
Brief Description. Environmental Protection Agency (EPA) carries out studies to

identify factors that are causing pollution. People are subjected to health hazards
in the form of contaminated drinking water, polluted air, and urban stress fac-
tor, such as noise. Government organizations and private companies fund these
research activities.

Users. Person (concerned individual, researcher, scientist, environmentalist)

D.4.5.6 Use Case 6
Use Case Name. Predict the severity of health hazards.
Brief Description. The risk assessors collect data, analyze, and synthesize scientific

data to produce hazard identification and exposure assessment portion of the risk
assessment. This group includes scientists and statistician. The risk managers inte-
grate the risk assessment to predict the severity. External experts and the public
contribute to the development of site-specific risk assessments.

Users. Risk assessor (scientist, statistician), decision maker (risk manager), person
(expert, concerned individual)

D.4.5.7 Use Case 7
Use Case Name. Minimize fossil fuels usage to control pollution.
Brief Description. Make use of renewable sources of energy like solar energy,

wind energy, geothermal energy, water energy, and biofuel in homes and facto-
ries in order to conserve fossil fuels. Use of fuel-efficient vehicles like hybrid
cars would also help in reducing pollution. Considering mass-transit, use of
carpools, riding bicycles, or walking too can help in keeping pollution under
control.

Users. Person (consumer, buyer, commuter)

380 Appendix D

D.4.5.8 Use Case 8
Use Case Name. Plant trees.
Brief Description. Trees are carbon sinks and help reduce the carbon dioxide in the

atmosphere by converting them into oxygen during the process of photosynthesis.
Trees can be planted by individuals or by organizations to reverse the effects of
deforestation.

Users. Person (volunteer, concerned individual)

D.4.5.9 Use Case 9
Use Case Name. Use of recyclables.
Brief Description. Recycling is the reprocessing of materials into new products. It

is an easy way to save energy and conserve resources. Whenever possible, make
use of items packaged in recyclable materials or in those that can be recycled.
Recycling of plastic bottles, paper, and cans would help to conserve energy and it
is environment friendly too.

Users. Person (consumer), manufacturer (recyclable packaging manufacturer)

D.4.5.10 Use Case 10
Use Case Name. Regulate use of plastic bags.
Brief Description. One of the biggest contributors to soil contamination is plastic bags

that are predominantly offered at retail shops. By offering some sales tax break to con-
sumers, who are not using plastic bags, will reduce the use of plastic bags significantly.

Users. Person (consumer, distributor), manufacturer (plastic bag manufacturer)

D.4.5.11 Use Case 11
Use Case Name. Avoid disposables.
Brief Description. Disposable products like cups, plates, and plastic wrap ends up

in litter, which wash into storm drains clogging the streams and create flooding
problems. So, one must make use of the reusable alternatives that are cheaper to
disposable products.

Users. Person (consumer), manufacturer (reusable products manufacturer)

D.4.5.12 Use Case 12
Use Case Name. Create Awareness through education.
Brief Description. The objective is to educate people to prevent the worsening of

environment due to air, solid, and water pollutants through anti-litter campaigns,
usage of renewable energy for healthy living, and recycling of inorganic materials.

Users. Person (concerned individual, resident, environmentalist, media)

D.4.5.13 Use Case 13
Use Case Name. Enact laws.
Brief Description. Laws and regulations are the major tools in protecting the environ-

ment. The concerned individuals write to their congressional representatives, who
vote on the pollution control, fix budgets for enforcements of safety regulations
and the preservation of forests and wildlife. To put these laws into effect, congress
authorizes certain government agencies to create and enforce regulations.

Users. Person (concerned individual, senator, regulator)

381Appendix D

D.4.5.14 Use Case 14
Use Case Name. Reuse.
Brief Description. The items that students discard at the end of the school year are collected

in volunteer run events. Student volunteers print flyers to promote the event. The donors
place the items in collection boxes. This is later sold and the profits are given to charity.

Users. Person (volunteer, donor, buyer)

D.4.5.15 Use Case 15
Use Case Name. Refurbish.
Brief Description. Volunteers salvage used computers by repairing, upgrading, and

later donating them to nonprofit organizations, schools, low-income families, and
people with disabilities. The volunteers work with the recipient organizations to
set up the equipment.

Users. Person (volunteer, donor, recipient)

D.4.6 Interfaces

Following is the list of interfaces required for pollution management:

 1. EPA. A government organization works to protect human health and the
environment.

 2. Environmental management system. A set of processes and practices that enable
an organization that can reduce environmental impacts and help increase operating
efficiency.

sources

Hales, D. (2012). “An Invitation to Health.” 15th Edn., Stamford, CT: Cengage Learning, January.
Hill, M. K. (2010). Understanding Environmental Pollution, 3rd Edn. Cambridge, UK: Cambridge

University Press, May 24.
“Spill in China Underlines Environmental Concerns,” The New York Times, March 2, 2013.

D.5 NATURAL DISASTER TRACKING SYSTEM

D.5.1 goals/purposes

• To build a successful tracking system that tracks natural disasters with a fair degree
of accuracy and precision.

• To minimize the loss of life in the event of natural disasters.
• To minimize the costs that are associated with natural disasters, by involving dif-

ferent agencies.

D.5.2 motIvatIons

It is a well-known fact that natural disasters can strike all countries, both developed and
developing. They may become the essential reasons for causing massive destruction, creat-
ing human sufferings, and producing harmful impacts on national economies. Due to the
different climatic conditions that are present in different parts of the globe, various types

http://www.crcnetbase.com/action/showLinks?crossref=10.1017%2FCBO9780511840654

382 Appendix D

of natural disasters like floods, droughts, earthquakes, cyclones, landslides, and volcanoes
strike according to the susceptibility of the given area.

D.5.3 BrIef DescrIptIon

A natural disaster tracking system (NDTS), as shown in Figure D.4, aids scientists, media,
government agencies, and the general public to be more aware and prepared to face the dif-
ficulties of catastrophic events.

D.5.4 challenges

• To gather all the necessary data and to interpret them in real time.
• To accurately estimate time and place of natural disasters.
• To communicate critical information with external entities.

D.5.5 accomplIshments

• Reduce loss of life.
• Better evacuation plans.
• Better informed populace.

Database

Insert data

National disaster tracking system
Internal

subsystem

Real-time
monitoring

Aerial remote
sensing

Data
management

External
subsystem

Information
analysis

Federal government

Financial
institute TV Radio Newspaper

General
public

Media

Information
storage

Scientist

Information
backup

Update data Delete data Backup data

FIGURE D.4 Nature disaster tracking system’s block diagram.

383Appendix D

D.5.6 project results

• Successfully track all natural disasters.
• Successfully involve all external entities by including scientists, media, govern-

ment agencies, and the public.

D.5.7 DescrIptIon of the DomaIn

Some of them have been explained below diagrammatically:
A volcano is mainly an opening (or rupture) in the earth’s surface or crust, which allows hot,

molten rock, ash, and gases to escape from deep below the surface. Volcanic activity involving
the extrusion of rock tends to form mountains or features like mountains over a period.

Hurricane, tropical cyclone, and typhoon are different names for the same phenome-
non, that is, a cyclonic storm system that forms over the oceans. It is caused by evaporated
water that comes off the ocean and becomes a storm, see Figure D.5.

D.5.8 Block DIagram

The block diagram (see Figure D.4) shows an overview of an NDTS and its mode of
 interaction with the outside entities, when a large natural disaster occurs. On the top level,
the NDTS communicates with an external database system, which is in charge of storing,
deleting, and updating sensitive information that are obtained from the NDTS. The NDTS
is further divided into internal and external subsystems. The internal subsystem is in charge

FIGURE D.5 Hurricane.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b17771-24&iName=master.img-025.jpg&w=215&h=280

384 Appendix D

of the core activities of the NDTS, such as data management, local data backup, aerial
remote sensing, and real-time monitoring. The external subsystem is in charge of informa-
tion/data analysis and information storage that are obtained from the internal subsystem.
On the lower level of the diagram, there is real-time information exchange with the govern-
ment and federal agencies, and the media to inform the public, should the possibility of a
disaster becomes eminent.

D.5.9 use cases anD user context

D.5.9.1 Use Case: Gather Satellite Information
ID. UC 01.
Brief Description

Communication is established with the satellite.
Images and data are gathered by the satellite, as per request.
Images are transferred to NDTS.
System stores the updated information.
NDTS process the information received by the satellite.

Actors. Scientists, NDTS, satellite

D.5.9.2 Use Case: Communicate with Media
ID. UC 02.
Brief Description

Effective communication with the local and national television and radio.
Verification by NDTS.
Communication with newsgroups.
Newsgroups inform general public.

Actors. Newsgroups, NDTS, external tracking system, government agencies

D.5.9.3 Use Case: Manage and Model Data
ID. UC 03.
Brief Description

Provides detailed information about the solar winds, sea magnitude level, and
global climate.

Saving and loading of updated information.
Predictions based on data processing.
Updating status of information like forecasts.
Raw information sent to and received by external tracking system.

Actors. Database administrator, scientists, external tracking system

D.5.9.4 Use Case: Backup and Transfer Information
ID. UC 04.
Brief Description

Backup critical information and electronically transfer it to other locations in the
country, with a low risk of an impact.

385Appendix D

Validation of data.
Database administrator archives the data. Data transferred electronically in case of

a possible urgent situation.
Validation of backed up data.

Actors. Database administrator, External tracking system

D.5.9.5 Use Case: Monitor in Real Time
ID. UC 05.
Brief Description

Monitoring the planet for its changes on a real-time basis to ensure that during
unpredicted event, critical information is always available.

Acquire all information from latest point of interests.
Update and store all new information and details.
Generate new models on the basis of the newly gathered information.
Update front-ends.

Actors. Scientists, NDTS, external tracking system, NDTS employees

D.5.9.6 Use Case: Gather Remote Aerial Sensor Data
ID. UC 06.
Brief Description

Allow us to gather data much faster than ground-based observation. It will help
in obtaining photographs from sensors, in order to predict the early set in of a
disaster.

Request information from aerial transmitters.
Information along with images sent to NDTS.
Processed information verified and stored.

Actors. Scientists, NDTS, external tracking system

D.5.9.7 Use Case: Correlate Information
ID. UC 07.
Brief Description

Correlation of information to obtain better and enhanced data and communicating
this information with external systems.

Save the updated information.
Correlate the information to external systems to allow constant updates.
Validation of correlated information by external systems.

Actors. Scientists, newsgroups, government agencies

D.5.9.8 Use Case: Allocate and Manage Resources
ID. UC 08.
Brief Description

Properly allocate resources and investments to acquire maximum system throughput.
Allocation of resources.
Depending upon the allocated resources, system performance is maximized.

Actors. System administrator, NDTS, government agencies

386 Appendix D

D.5.9.9 Use Case: Track Natural Disasters
ID. UC 09.
Brief Description

Provides public awareness to decrease the damage repair cost in a radical manner.
Tracking the occurrence of a natural disaster.
Analyzing and predicting the data.
Examining the predictions to track disasters.

Actors. Natural disasters, external tracking system

D.5.10 DetaIleD requIrements

The detailed requirements consist of two different types of requirements: (1) functional
requirements and (2) nonfunctional requirements.

D.5.10.1 Nonfunctional Requirements
In the United States, the direct cost of carrying out natural damage repair is over 20 billion
dollars per year. One of the main reasons for such an enormous expense is the perceived
inability to correlate and communicate the information or details that are gathered from
the research and forecasting system to the public, federal government, and emergency ser-
vices. As a result, more harm is done, even though the severity of natural disasters has not
increased dramatically for over a decade.

Because it has become extremely necessary to increase public awareness, our novel
proposal for implementing a natural disaster system would not only decrease the damage
repair cost in a dramatic manner, but also reduce the total number of causalities by at least
10%–20%. Our system would also be able to help decision makers to allocate resources and
investments to acquire maximum system throughput and results.

D.5.10.2 Functional Requirements
The NDTS has to have the following criteria:

 1. In the event of an upcoming natural disaster, the system shall be able to com-
municate effectively with the local and national television and radio media. This
is particularly very useful and beneficial because local and national media could
effectively communicate the upcoming incidence of danger to the public, so that
further actions such as evacuation plan could be easily accommodated.

 2. The NDTS shall also incorporate the satellite orbiting system. The satellite orbiting
system provides scientists and researchers with useful information, statistics, and
images that could precisely foretell an upcoming natural disaster with extremely
precise probability.

 3. The NDTS shall also incorporate the hydrologic prediction system (HPS). The
HPS is a real-time data management and modeling system that provides detailed
information about the solar winds, sea magnitude level, and global climate.

 4. In the event of an emergency, the NDTS shall also be able to back up critical infor-
mation and electronically transfer it to other locations in the country with low risk
of an impact.

 5. Our system would be more sophisticated and multidisciplinary in providing analysis
of disasters, before their occurrence compared to other existing tracking systems.

387Appendix D

 6. The capacity of our system also extends to monitoring the planet for its changes on
a real-time basis, to ensure that during unpredicted events, all the critical informa-
tion required is available, when it is most needed.

 7. Our system will also have the capability of remote sensing, which will allow us to
gather data much faster than ground-based observation. Aerial remote sensing will
also help in obtaining photographs from sensors, in order to predict the early set in
of a disaster.

D.5.11 Interface

The NDTS is required to interface with various devices and sensors that are used in the
field to gather necessary data. This interface is very critical to help predict and locate natu-
ral disasters; therefore, it needs to be reliable, useful, and performance oriented.

The NDTS is also required to interface with the media, scientists, and general users. It
is therefore critical to have an easy-to-use interface, which brings the interpreted, but also
raw data to them. A web-enabled interface would be able to reach all these users and would
therefore be needed.

The NDTS also needs to communicate with other tracking systems, and again a web
interface seems to be the most logical solution. It is critical to be connected and sharing
information.

sources

Davis, L. (2008). “Natural Disasters.” New York, NY: Infobase Publishing, 2008.
Knabb, R. D.; Rhome, J. R.; Brown, D. P. (2012). National Hurricane Center (December 20, 2005)

(PDF). Hurricane Katrina: August 23–30, 2005 (Tropical Cyclone Report). United States
National Oceanic and Atmospheric Administration’s National Weather Service. Retrieved
December 10.

Lockwood, J. P.; Hazlett, R. W. (2010). Volcanoes: Global Perspectives. 2010, p. 552.
Miles, M. G.; Grainger, R. G.; Highwood, E. J. (2004). “The significance of volcanic eruption

strength and frequency for climate.” Quarterly Journal of the Royal Meteorological Society
130: 2361–2376.

NSTA Press (2007). “Earthquakes, Volcanoes, and Tsunamis.” Resources for Environmental
Literacy. Retrieved April 22, 2014.

Sheikh, P. A. (October 18, 2005). “The Impact of Hurricane Katrina on Biological Resources.”
Congressional Research Service. Archived from the original on June 24, 2008. Retrieved
April 14, 2010.

D.6 GLOBAL WARMING CONTROL SYSTEM

The global warming control system (GWCS) (see Figure D.6) represents the intensive
effects of global warming on the world climatic system and those control measures that are
necessary to reduce global warming, along with possible ways to deal with all predicted
consequences. Indeed, the manifestations of global warming have significantly intensi-
fied over the past few years, most evident in globally documented changes or shifts in
weather patterns, leading to drought in some areas and typhoons of immense magnitude
in other places. Of late, an increasing number of scientists have voiced out their opinions,
that left unchecked or unattended, the ill effects of global warming could potentially be

http://www.crcnetbase.com/action/showLinks?crossref=10.1256%2Fqj.03.60

388 Appendix D

catastrophically disastrous. Therefore, the relevance of studying the factors that are affect-
ing global warming could not perhaps be overstated.

The study of global warming and its damages shows the increased frequency/intensity of
extremely fickle weather situations like floods, droughts, heat waves, hurricanes, and torna-
dos. Other consequences also include higher or lower agricultural yields, increased glacial
retreat, reduced summer stream flows, species extinctions, and increases in the ranges of
disease vectors. Simply studying the effects, however, should not preclude the analysis
of the causes that have given rise to the global warming issue. More importantly, taking
both cause and effect into consideration would allow all concerned parties to propose a set
of appropriate preventive measures to mitigate the escalation of global warming to even
more alarming levels. Moreover, making a concerted effort to educate and involve the citi-
zenry in every country in the world, about the causes and effects of global warming, may
spur and initiate them to make their own contributions, such as buying hybrid vehicles or
patronizing environmentally friendly energy resources. In addressing the important global
warming issue, every contribution really counts, no matter how seemingly small in scale.

In fact, many organizations and institutions are operating all over the world, which are all
focused on studying the factors that are contributing to global warming and subsequently
controlling its effects. For example, government officials have proposed a number of laws

Research on global
warming

Manage funds for
research efforts

Factors contributing
to global warming

Consequences of global
warming

Precautionary
measures against
effects of global

warming

Implement statuses
for minimizing

effects

Raise public
awareness on
precautionary

measures

FIGURE D.6 Block diagram on overall coverage of the global warming control system.

389Appendix D

that will require certain industries to control their greenhouse gas emissions to an interna-
tionally acceptable level. Nonprofit environmental organizations have also been launching
information campaigns in various areas around the world, through different media, in an
attempt to increase local public awareness on the possible preventive measures that may be
taken at present.

GWCS is an attempt to illustrate the process, whereby different persons, organizations,
and institutions attempt and try to understand the factors and parameters that are necessary
to reduce or reverse the effects of global warming. Necessary precautions or measures,
dealing with the avoidance of the predicted dire or serious consequences of global warm-
ing, are also taken into consideration.

D.6.1 DescrIptIon of the DomaIn

Global warming is the pronounced increase in the average temperature of the earth’s atmo-
sphere and oceans. The human factors that affect global warming may include the increased
amount of carbon dioxide (CO2) and green house noxious gases released from burning of
fuels, the generation of industrial wastes, and the carbon emission of home appliances.
Researchers have predicted that the temperature may increase between 2.5°F and 10.5°F
in the next 10 years or so. By itself, temperature increase is not entirely alarming; however,
taking into consideration the disruption on weather patterns, this abnormal temperature
increase may cause around the world many disastrous consequences, should the effects of
global warming be allowed to escalate unmitigated.

Reaching a common consensus on several approaches of dealing with the realities of
the global warming issues is an important step in reducing the factors contributing to the
rapid escalation of global warming effects. To control global warming, concerned individu-
als from various institutions and organizations like government officials and volunteers
from nonprofit organizations should understand various factors that lead to global warm-
ing. Later, they should propose precautionary measures that are necessary to control the
bad effects of global warming in order to minimize its dangerous consequences, as well
as promote awareness among the public, on the contributions ordinary citizens can make
regarding this issue. All concerned persons across the globe must make a concerted effort
to participate in activities, like patronizing more environmentally friendly products.

Further research efforts that build on existing studies about the factors contributing to
global warming should also be undertaken regarding this critical issue. Although much has
been uncovered in recent years about the factors contributing to global warming, as well its
projected effects in the near future, a lot still needs to be done to bring a greater sense of clar-
ity on the pending issue. To this end, defining a comprehensive and cohesive model to encom-
pass the various factors that are related to global warming is thought to be a crucial step in
bringing into clear focus what has already been done and the many tasks that still lie ahead.

D.6.2 DescrIptIon of the program that Is requIreD

Here we hope to develop the following subsystems within the GWCS:

• The GWCS brings together the organizations and institutions that are dealing with
both studying the factors and parameters affecting global warming and controlling
its effects. The system must contain many provisions to enlist new organizations

390 Appendix D

with the same level of thrust and enthusiasm, whenever and wherever possible.
Collectively, these organizations work together to create greater awareness within
the society, regarding the effects of global warming, support ongoing research
efforts in relation to global warning causes and effects, and also encourage the
introduction of preventive measures aimed at reducing the effects of global warm-
ing, wherever appropriate.

• The GWCS also maintains a solid knowledge base of various human and non-
human factors that are uncovered during the research processes, which also ulti-
mately contribute to the escalation of the effects of global warming, such that this
escalation is never left unchecked.

• These organizations and institutions collaborate in finding means and methodol-
ogies for controlling the human factors that are known to cause global warming.

• Further, the GWCS also consolidates the results from various, past research stud-
ies to identify the possible hidden, invisible factors that potentially lie unnoticed,
which may result to disastrous effects later on.

• The GWCS also deals with predicting the consequences of global warming and the
actions that need to be undertaken, should critical conditions arise because of the
escalation of global warming.

• The GWCS also deals with collecting and managing funds from various organi-
zations and institutions for disbursement to the appropriate researchers for their
global warming related areas of study.

• The GWCS catalogs the laws and provisions proposed and approved by govern-
ment officials, aimed at curtailing the greenhouse emissions both in the commer-
cial and household arenas.

• The GWCS is also involved with the various awareness campaigns that are
launched by volunteers from environmental organizations, to contribute to edu-
cating the public on the factors, effects, and preventive measures related to
global warming.

D.6.3 DetaIleD requIrements

The detailed requirements consist of two different types of requirements: (1) functional
requirements and (2) nonfunctional requirements.

D.6.3.1 Functional Requirements
This section discusses the functional requirements of each of the subsystems requirements
of GWCS.

• Consolidate organizations and institutions working to reduce global warming.
The GWCS maintains a comprehensive list of various voluntary and government
organizations that are working together to reduce the effects of global warming.
Any new organization with similar goals and objects may be included at any
time.

• Finance management. The GWCS is also responsible for managing funds sourced
from various organizations and institutions. Funds may be disbursed for research
efforts that are related to global warming causes, along with finding ways to control
global warming.

391Appendix D

• Study factors affecting global warming. The researcher provides various
human and nonhuman factors that affect global warming. This also involves
disseminating new findings and advanced research into previously uncovered
factors.

• Monitor damages caused by global warming. The various adverse effects of
global warming such as extinction of species, new global warming-related dis-
eases found, disasters induced by climate change, and other factors are efficiently
and properly documented. The system also monitors the ozone layer, which is
always checked to determine the nature of global warming and the latest extent
of its effects.

• Literate people on global warming. The volunteers and other concerned parties
from organizations and institutions involve themselves in making the public
aware of the various factors leading to the escalation of global warming and
the necessary precautionary measures that should be undertaken. In particular,
disaster management in the face of emergencies induced by major changes to the
climate should also be brought into emphasis.

• Provide environmental policies governing global warming. The government offi-
cials, who are also effectively the policy makers, will also participate in the policy-
making by implementing statutes for mitigating the causes of global warming,
such as measures for reducing greenhouse gas emissions. Examples are energy
taxes on usage of appliances emitting green house gases and a CO2 tax. Incentives
such as industry–government agreements on energy efficiency in appliances, and
the reduction on vehicular emissions are some of the other proactive programs that
are being followed in some countries.

D.6.3.2 Nonfunctional Requirements
This section discusses the nonfunctional requirements or the quality factors of GWCS.

• Understandability.
 The basic understanding of global warming and its effects on the world is neces-

sary in order to implement this project
• Data requirements.
 The GWCS also requires information and data regarding the various factors that

are responsible for causing global warming.

D.6.4 use cases

D.6.4.1 Use Case 1
Use Case Name. Consolidate organizations and institutions.
Brief Description. Submit any concerned parties within an environmental organiza-

tion or institution, in both the private and public sectors, for inclusion into the
GWCS. These organizations and institutions are thus provided a common avenue
or platform to share and access information regarding global warming.

Users. Person (environmental organization volunteer, government official, media
reporter)

392 Appendix D

D.6.4.2 Use Case 2
Use Case Name. Allocate funds for research.
Brief Description. The GWCS manages funds collected from various organizations

and institutions and disburses the funds to the endorsed research study being con-
ducted that is related to global warming.

Users. Person (treasurer, researcher)

D.6.4.3 Use Case 3
Use Case Name. Inspect factors affecting global warming.
Brief Description. Conducts a research study to identify the human and nonhuman

factors that are affecting global warming in order to discover the possible conse-
quences arising from these factors. Furthermore, based on the factors identified,
prepare future recommendations and suggestions for managing the effects result-
ing from the factors uncovered.

Users. Person (scientist, engineer, technical writer)

D.6.4.4 Use Case 4
Use Case Name. Manage environmental consequences.
Brief Description. Regularly monitor the effects that arise from the prevalence of

the different factors that contribute to the global warming. Activities may involve
tracking potential climate changes, ozone layer depletion, reduction in the polar ice
caps, and so on in order to mitigate the potential damages.

Users. Person (scientist, engineer, meteorologist)

D.6.4.5 Use Case 5
Use Case Name. Maintain statutes governing global warming factors.
Brief Description. Propose laws and policies for mitigating the prevalence of factors

affecting global warming. This may cover cases such as regulating green house
gas emissions by certain industries and introducing incentives for manufacturing
and purchasing energy-efficient appliances and vehicles. Compliance with these
laws and policies must constantly be monitored and enforced, and appropriate legal
action should be taken whenever necessary.

Users. Person (government official, law enforcer, manufacturing corporation employee,
shopper)

D.6.4.6 Use Case 6
Use Case Name. Educate the public regarding preventive measures.
Brief Description. To mitigate the growing consequences of the effects of global warm-

ing, governmental and private institutions and volunteer-initiated efforts must focus
on building awareness among local residents. This may be done through dissemi-
nating practical, energy-saving ways and means that they can undertake, in order to
save not only money, but also protecting the environment during the process. Such
ways may include using energy-efficient appliances, recycling, patronizing alterna-
tive energy resources, or contributing to funds for research initiatives concerning
global warming. The media may also contribute through making the information
available by using various means such as radio, television, and the Internet.

393Appendix D

Users. Person (resident, environmental organization volunteer, government official,
media reporter)

D.6.5 Interfaces

• Air pollution system
• Meteorological forecasting system
• EPA

sources

Bello, D. (4 September 2009). “Global Warming Reverses Long-Term Arctic Cooling.” Scientific
American. Retrieved June 8, 2011.

Meehl, G. A. et al. (18 March 2005). “How Much More Global Warming and Sea Level Rise.”
Science 307 (5716): 1769–1772.

Weart, S. (2008). “The Carbon Dioxide Greenhouse Effect.” The Discovery of Global Warming.
American Institute of Physics. Retrieved April 21, 2009.

D.7 CIRCUS

I love to walk in rain because nobody knows I am crying.

These momentous and gripping words, filled with extreme gloom overridden by
 unbridled ecstasy, originated from one of the greatest comedians ever to live, Charlie
Chaplin. There are too many people in this world like him who try to drive away the
gloom with their art and relinquish the life of the common man with happiness, joy, and
enjoyment.

Our project CIRCUS is also inspired from such an abstract art. The objective behind
this project is to model the performances in a circus show (Figure D.7).

“Circus is a place where animal can see humans acting fool.” The idea behind this quote
is circus is a platform where skilled performers like jugglers, acrobats, clowns, and animals
present their skills to entertain the audience.

By the end of this project, one will know what it costs to bring a smile on the face of
hundreds and thousands of people.

D.7.1 DescrIptIon of the DomaIn

Circus, a Latin word derived from the Greek word Kirkos, Circle, and Ring alludes to
a place where a group of performers like acrobats, clowns, trained animals, tight rope
 walkers, jugglers, and other stunt artists demonstrate their skills. Here, horses, ponies, and
elephants are allowed to see men, women, and children acting the fool. It is typically a
circular arena with tiered seating. Most circuses have to move from one place to another,
in which case they usually take place in a huge tent.

Circus is a source of entertainment since ancient Roman civilization, which is considered
to be the era when circus was originated. In early roman circuses, exhilarating performers
fought to the death for freedom; gallant equestrians and chariot races amused the Roman
people. Even in the present day, circuses remain the most perennial form of entertainment.

http://www.crcnetbase.com/action/showLinks?crossref=10.1126%2Fscience.1106663

394 Appendix D

Apart from entertainment being the chief motto, circus is an epitome of art that helps in
boosting and exhibiting different genre of talents.

D.7.2 DescrIptIon of the program that Is WanteD

Our goal is to build a system that is a model of various shows (items called in the circus
jargon) in the circus. The model should illustrate all the activities and interactions that hap-
pen between the performers and the system related to following items:

Juggling item Playing cricket
Block #2

Rope walker item
Block #4

Trapeze item
Block #6

Block #1

Ringmaster item
Block #3

Bear bike riding item
Block #5

FIGURE D.7 Circus block diagram.

395Appendix D

 1. The elephant show
 2. Rope walker show
 3. Trapeze show
 4. Ringmaster show
 5. Bear riding a bike show
 6. Juggler show

D.7.2.1 Detailed Requirements
Following are the requirements to model the different items that are shown in Figure D.7.

• The elephant show. This is an interesting item, which is highly amusing among all
other circus items. A trained elephant is required to play cricket with the clowns.
Elephant should know how to hold a bat with its trunk, and it should also know
how to hit the ball using the bat into the audience. Some clowns are also required
to throw the ball to the elephant. They are also responsible for making foolish ges-
tures to entertain the audience. Clown should recollect the ball from the audience.
A commentator is also required to comment during the item.

• Rope walker show. For this item, an experienced acrobat is required to walk on the
rope tied between distant poles. The acrobat is required to use a stick to balance
himself on the rope. A security net is required to be tied below the rope to avoid
any damage caused to acrobat in case he falls from the rope.

• Trapeze show. For this item, expert trapeze artists are required to swing on the
trapeze. They are required to balance themselves on the trapeze. They should leave
the trapeze while they are on a swing and should perform rolls, somersaults, and
twists in the air and again hold the other trapeze. A security net is required to be
tied below the trapeze to avoid any damage caused to the performers in case they
fall from the trapeze.

• Ringmaster show. For this item, a trained ringmaster and lions are required.
Ringmaster should instruct the lions to climb on the table and make gestures to
amuse the audience. Ringmaster should also control and protect himself from the
lions. Lions are required to jump through the ring of fire.

• Bear riding a bike show. For this item, a trained bear and a bear instructor are
required. The bear should ride a bike according to the instructions of the instructor.
The instructor should hold the rope tied to the bear. The instructor should instruct
the bear in a way that the bear rides the bike in a circular manner.

• Juggler show. For this item, an experienced juggler is required. Juggler needs to
juggle glass bottles, balls, rings, and sticks. He should also balance the bottles on
his head, nose, and chest.

A host for all the items is required, who should comment during performance to create
enthusiasm among the audience. The audience is required to appreciate the performances
and motivate the performers.

D.7.3 use cases anD user context

The following section provides the names, brief descriptions, and the actors’ names and
their corresponding roles’ names of eleven different use cases.

396 Appendix D

D.7.3.1 Use Case 1
Use Case Name. Playing Cricket.
Description

Elephant will hold the bat from its trunk.
Clown will throw the ball to the elephant.
Elephant will hit the ball with the bat into the audience.
Audience will return the ball to the clowns.

Actors/Roles. Creature (elephant), human (clowns, audience)

D.7.3.2 Use Case 2
Use Case Name. Performing rope balancing.
Description

Acrobat will climb on the platform with the help of hanging stairs.
Acrobat will go from one end of the platform to another end on the rope.
Acrobat will wave his hands to the audience.
Acrobat will come down through the hanging stairs.

Actors/Roles. Human (acrobat)

D.7.3.3 Use Case 2.1
Use Case Name. Going from one end of the platform to another end.
Description

Acrobat will pick the stick in his hands.
Acrobat will walk on the rope.
Acrobat will maintain his balance by using the stick.
Acrobat will concentrate on his work and ignore the surrounding noise.

Actors/Roles. Human (acrobat)

D.7.3.4 Use Case 3
Use Case Name. Performing the trapeze show.
Description

Trapeze artists will climb on their respective platforms using hanging stairs.
Trapeze artists will swing on the trapeze to reach other platform.
Trapeze artists will perform the swinging activity several times.
Trapeze artists will jump on the security net to get down and finish the act.

Actors/Roles. Human (trapeze artist)

D.7.3.5 Use Case 3.1
Use Case Name. Swinging from one platform to another.
Description

Trapeze artist will hold the trapeze.
Trapeze artist will start swinging.
Trapeze artist will leave the trapeze, perform rolls, somersaults, and twists in the

air and hold the other trapeze back.
Trapeze artist will again come back to the platform.

Actors/Roles. Human (trapeze artist)

397Appendix D

D.7.3.6 Use Case 4
Use Case Name. Presenting ring master show.
Description

Ringmaster will instruct the lions to come out of the cage.
Lions will come out of the cage.
Ringmaster will control the displeased lions.
Lions will climb on the respective tables.
Lions will make gestures to the audience.
Lions and ringmaster will carry out ring of fire.

Actors/Roles. Human (ringmaster), creatures (lions)

D.7.3.7 Use Case 4.1
Use Case Name. Controlling the displeased lions.
Description

Displeased Lions will attack the ringmaster.
Ringmaster in turn will use hunter to defend himself.
Lions will roar on the ringmaster after beaten up.

Actors/Roles. Human (ringmaster), creatures (lions)

D.7.3.8 Use Case 4.2
Use Case Name. Performing ring of fire.
Description

Ringmaster will instruct the lion to climb on the platform.
Lion will climb on the platform.
Ringmaster will hold the ring of fire.
Ringmaster will direct the lion to jump through the ring of fire.
Lion will jump through the ring of fire.

Actors/Roles. Human (ringmaster), creatures (lions)

D.7.3.9 Use Case 5
Use Case Name. Performing the bike ride item.
Description

Bear instructor will hold the belt tied with the bear.
Bear instructor will instruct the bear to climb on the bike.
Bear will climb on the bike.
Bear will start riding the bike.
Bear instructor will give directions to the bear to ride the bike in circular manner.

Actors/Roles. Human (bear instructor), creature (bear)

D.7.3.10 Use Case 6
Use Case Name. Juggling.
Description

Juggler will pick the items among bottles, sticks, and balls.
Juggler will juggle the item picked.
Juggler will balance the item on his head, nose, or chest.

Actors/Roles. Human (juggler)

398 Appendix D

D.7.3.11 Use Case 7
Use Case Name. Hosting the show.
Description

Host will announce the upcoming item.
Host will comment during the item.
Host will ask audience to applaud on a performance.
Audience will clap on the performance.
Host will thank the performers and audience.

Actors/Roles. Human (host), human (audience)

sources

Speaight, G. (1980). “A History of the Circus,” The Tantivy Press, London.
Stoddart, H. (2000). “Rings of Desire: Circus History and Representation,” Manchester University

Press, Manchester.

D.8 JURASSIC PARK

D.8.1 goals/purposes

To model Jurassic Park by incorporating scenarios with interaction between dinosaur and
human beings.

D.8.2 motIvatIon

• Jurassic Park is a hard-hitting drama of two different worlds coming together: one
that existed almost 65 million years ago, and the other of the present time.

• It resurrects the greatest and most powerful creatures our planet has ever known,
which ruled the world for 165 million years. It extends the limits to human imag-
ination, thereby resulting in extraordinary things happening to ordinary people.
This powerful experience was certainly worth modeling.

D.8.3 DescrIptIon of DomaIn

Jurassic Park was created on Isla Nubar, an island in the Pacific Ocean off the coast of
Costa Rica. It consisted of a research lab for the study and cloning of dinosaurs, the stor-
age of scientific data, the visitor center, and the central control, which monitors all the
activities on the island. The medical center provided care for injured and diseased dino-
saurs. The major part of the island was intended to be a showroom for cloned dinosaurs.
There were a number of enclosures with dinosaurs in separate regions. Programmed
excursion routes were being designed to allow visitors to navigate different regions of
the park.

• Entry to the Jurassic Park (see Figure D.8).
• Attack by the Tyrannosaurus on the children’s car (see Figure D.9).
• Attack on the visiting experts (see Figure D.10).

399Appendix D

D.8.4 jurassIc park Block DIagram

D.8.4.1 Description of the Program That Is Wanted
Our aim is to model most of the significant events that occur in the movie right from the
creation of the dinosaurs, the attempt to harbor a controlled environment, where humans
can see the dinosaurs in human life, and later the failure of the entire system, which leads
to the break out of the dinosaurs, deaths, and injuries of many of the people in the park. We

FIGURE D.8 Entry to the Jurassic Park.

FIGURE D.9 Attack by the Tyrannosaurus on the children’s car.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b17771-24&iName=master.img-034.jpg&w=287&h=214
http://www.crcnetbase.com/action/showImage?doi=10.1201/b17771-24&iName=master.img-035.jpg&w=287&h=214

400 Appendix D

will bring out maximum moments of interaction between the dinosaurs and humans, which
were shown in the movie.

D.8.4.2 Detailed Requirements
Following are the requirements to model the different subsystems that are shown in
Figure D.11.

 1. There was an incident of attack on an InGen employee, while releasing a
Velociraptor, leading to CEO John Hammond being pressured by investors for a
safety inspection (see Figure D.11).

 2. For safety inspection, CEO John Hammond invites paleontologist Alan Grant,
paleobotanist Ellie Sattler, chaos theorist Ian Malcolm, and his investor’s attorney
Donald Gennaro to perform the inspection.

 3. The group studies the different enclosures for different species of dinosaurs pres-
ent in the Park.

 4. The group takes a vehicular tour of the park, along with the two children (CEO
John Hammond’s grand children), namely, Tim and Lex, who just arrive. In the
midst of the tour, there occurs a tropical storm. Most InGen employees leave except
for Hammond, game warden Robert Muldoon, chief engineer Ray Arnold, and
leading computer programmer Dennis Nedry.

 5. Bribed by a rival geneticist, Nedry takes an opportunity to shut down the park’s
security system, so that he can steal dinosaur embryos and deliver them to an aux-
iliary dock. As a result, the Tyrannosaurus breaks through the deactivated electric
fence surrounding its pen, devouring Gennaro, attacking Tim and Lex hiding in
the car, and wounding Malcolm. Nedry crashes his Jeep and, while trying to winch
it, is killed by a Dilophosaurus. The children and Grant only narrowly avoid being
killed and eaten.

 6. While hiking to safety the next morning, they discover hatched eggs, which mean
that the dinosaurs are actually breeding. Grant realizes that the frog DNA is
responsible: some species of frog are known to spontaneously change sex in a
 single-sex environment.

FIGURE D.10 Attack on the visiting experts.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b17771-24&iName=master.img-036.jpg&w=288&h=172

401Appendix D

 7. Arnold tries to hack Nedry’s computer to turn the power back on but fails, so
he does a full system restart, which requires the circuit breakers to be manually
reset from the utility shed. When he does not return, Ellie and Muldoon follow
and discover the raptors have escaped, the shutdown having cut off power to the
electric fences around their pen. Muldoon realizes that they are near and tells
Ellie to go to the utility shed herself and turn the power back on while he tries
to hunt them down. A lurking raptor attacks and kills Muldoon, while Ellie
escapes from another, after discovering Arnold’s remains in the maintenance
shed.

 8. After managing to turn on the power and escaping the raptor, she meets Grant,
and they both go back to Malcolm and Hammond in the emergency bunkers. Lex

Start of tour

Witness of
feeding of

Velociraptor

Witness of
feeding of

Tyrannosaurus
Encounter with

the sick Triceratops

Scattering of the group

Provide the sick Triceratops
with medical aid and drive

back to safety

Return to find the rest of the
team members

Rest of the group continue
the tour

Rescue one of the injured
experts and take him back to

the shelter

Feeding the Brachiosaurus
with leaves while taking

refuge on the tree

Discovery of hatched eggs
Attack by

Tyrannosaurus

Hike back to safety

Attack on children

Escape from the respective attack
the group meets in the shelter

Attack by
Velociraptors

Tyrannosaurus attacks Velociraptors leading
to close escape of the group from the park

FIGURE D.11 The block diagram of the Jurassic Park.

402 Appendix D

and Tim narrowly escape from two of the raptors in the kitchen (locking one in the
freezer), and Lex is finally able to restore the Park’s computer systems in order to
call Hammond to request a helicopter rescue of the survivors. Grant and Ellie hold
off a raptor that was trying to open the door to the computer room, until the power
is restored and the electromagnetic locks begin working.

 9. Help from an unlikely source—a Tyrannosaurus suddenly appears and kills both
raptors, saving Grant, Ellie, Lex, and Tim in the process.

 10. The four then climb into Hammond and Malcolm’s Jeep and leave. Grant says
he will not endorse the park, a choice with which Hammond concurs. As all fly
away in the helicopter, the children fall asleep beside Grant, who contempla-
tively watches the birds flying nearby, the surviving relatives of the dinosaurs
they escaped.

D.8.5 use cases

D.8.5.1 Use Case 1: Attack by Velociraptor, While Releasing
Release into special built enclosure.
Attacks the employee.
Lawsuit from the family of the injured.
Other employees try to rescue the victim.

Actors/Roles. Human (employee), creature (velociraptor)

D.8.5.2 Use Case 2: Tour at the Park
Board the vehicle for tour.
Witness dinosaurs being given prey for their food (Velociraptor).
Encounter a sick Triceratops.
Provide medical aid to the sick dinosaur.
Get stranded due to vehicle failure.

Actors/Roles. Human (experts, children, attorney expert), creature (triceratops, velo-
ciraptor, cow, goat)

D.8.5.3 Use Case 3: Attempt to Steal Dinosaur Embryo
Shuts down park security system.
Steal dinosaur embryos.
Escape from the research lab, drive to auxiliary dock.
Meet with car accident.
Killed by a Dilophosaurus.

Actors/Roles. Human (computer expert [Nedry]), creature (Dilophosaurus)

D.8.5.4 Use Case 4: Attack Due to Park’s Shut Down Security System
Tyrannosaurus break through the park’s deactivated electric fence surrounding its

pen. Tyrannosaurus devour Attorney expert.
Tyrannosaurus smash children’s vehicle.
Tyrannosaurus injures one of the expert.
Children and visiting paleontologist escape from the Tyrannosaurus.

Actors/Roles. Human (experts, children), creature (Tyrannosaurus)

403Appendix D

D.8.5.5 Use Case 5: Visiting Paleontologist and Children Hike to Safety
Children and visiting paleontologist hike to safety.
Children feed a Brachiosaurus a branch of leaves.
Visiting paleontologist discovers hatched egg of dinosaurs.
Children flee from a flock of running dinosaurs.
Children witness a Tyrannosaurus hunting down a flock of dinosaurs.

Actors/Roles. Human (children, visiting paleontologist), creature (Brachiosaurus,
Tyrannosaurus)

D.8.5.6 Use Case 6: Attempt to Restart Computer and Power
Security guard and visiting paleobotonist run to the maintenance shed to restart

system.
Raptor kills security guard.
Visiting paleobotonist follows plumbing lines and finds the control unit.
Visiting paleobotonist turns the power back on.
Raptor attacks visiting paleobotonist.
Visiting paleobotonist escapes to emergency bunkers.

Actors/Roles. Human (children, visiting paleontologist, security guard), creature (Raptor)

D.8.5.7 Use Case 7: Children and Visiting Paleontologist Reach the Shelter
Children and visiting paleontologist encounter the security perimeter fence.
Children encounter a dinosaur approaching them.
Children and visiting paleontologist climb across fence.
Visiting paleobotanist turns on the perimeter fence voltage.
Children run to the shelter.

Actors/Roles. Human (children, visiting paleontologist, security guard), creature (Raptor)

D.8.5.8 Use Case 8: Children Are Attacked by Raptors
Children eat at the tables at the shelter.
Raptors enter the shelter.
Children escape to the kitchen area.
Raptors charge after the children.
Children lock one Raptor in the freezer.
Children escape out of the room.

Actors/Roles. Human (children), creature (Raptor)

D.8.5.9 Use Case 9: Raptors Attack the Control Room
Children, visiting paleontologist, and visiting paleobotanist escape to the computer

room. Raptor attempts to open the door to the room.
Grand and visiting paleobotanist hold of the Raptor.
Visiting paleontologist repairs the computer system and the electromagnetic locks

begin working.
Raptor breaks into the room through the window.
Children, visiting paleontologist, and visiting paleobotanist climb up the ceiling

crawlspace.
Actors/Roles. Human (children, visiting paleontologist, security guard), creature

(Raptor)

404 Appendix D

D.8.5.10 Use Case 10: Escape from the Island
Children, visiting paleontologist, and visiting paleobotanist reach the visitors

center.
Raptors surround children, visiting paleontologist, and visiting paleobotanist.
Tyrannosaurus attacks the Raptors.
Children, visiting paleontologist, and visiting paleobotanist escape out of the

building.
Children, visiting paleontologist, and visiting paleobotanist leave through a jeep.
Children, visiting paleontologist, and visiting paleobotanist fly away in the helicopter.

Actors/Roles. Human (children, visiting paleontologist, security guard), creature
(Raptor)

sources

Corliss, R. (1993). “Behind the Magic of Jurassic Park.” TIME, April 26.
“Jurassic Park.” Box Office Mojo. Retrieved May 6, 2013.
White, J. (2013). “Jurassic Park Joins The Billion Dollar Club.” Empire. August 23.

405

References

SECTION I
Baader, F., D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider. eds. The Description

Logic Handbook: Theory, Implementation, and Applications. Cambridge, UK: Cambridge
University Press, 2003.

Barwise, J. ed. Handbook of Mathematical Logic. North Holland, the Netherlands, Elsevier, 2006.
Besnard, P. An Introduction to Default Logic. Berlin; Heidelberg, Germany: Springer, 1989.
Boddu, R., L. Guo, S. Mukhopadhyay, and B. Cukic. “RETNA: From Requirements to Testing in a

Natural Way.” Paper presented at the IEEE International Conference on Requirements
Engi neering, Kyoto, Japan, September, 2004.

Chandrasekaran, B., and J. R. Josephson, and V. R. Benjamins. What Are Ontologies, and Why Do
We Need Them? IEEE Intelligent Systems, January/February 1999.

Fayad, M. E. “Accomplishing Software Stability.” Communications of the ACM 45, no. 1 (2002a): 111–115.
Fayad, M. E. “How to Deal with Software Stability.” Communications of the ACM 45, no. 4 (2002b):

109–112
Fayad, M. E., and A. Altman. “Introduction to Software Stability.” Communications of the ACM 44,

no. 9 (2001): 95–98.
Fayad, M. E., D. C. Schmidt, and R. E. Johnson. Building Application Frameworks: Object-Oriented

Foundations of Framework Design. New York, NY: Wiley, 1999.
Froehlich, G., H. J. Hoover, L. Liu, and P. Sorenson. “Hooking into Object-Oriented Application

Frameworks.” Proceedings of the International Conference on Software Engineering, Boston,
MA, pp. 491–501, May 1997.

Gruber, T. R. “A Translation Approach to Portable Ontologies.” Knowledge Acquisition 5, no. 2 (1993):
199–220.

Gruber, T. R. “Toward Principles for the Design of Ontologies Used for Knowledge Sharing.”
International Journal of Human-Computer Studies 43, no. 4–5 (1995): 907–928.

Sanchez, H. A. “Building Systems Using Patterns: Creating Knowledge Maps.” Master’s Thesis, San
Jose State University, San Jose, CA, May 2006.

Shtivastava, P. The Hook Facility, MS Project Report, San Jose State University, San Jose, CA, May
2005.

CHAPTER 1
Appleton, B. “Patterns and Software: Essential Concepts and Terminology.” Object Magazine Online

3, no. 5 (1997): 20–25. http://www .cmcrossroads.com/bradapp/docs/patterns-intro.html.
Buschmann, F. Pattern-Oriented Software Architectures: A System of Patterns. New York, NY: Wiley, 1996.
Chen, Y., H. S. Hamza, and M. E. Fayad. “A Framework for Developing Design Models with Analysis

and Design Patterns.” Paper presented at the 2005 IEEE International Conference on Infor
mation Reuse and Integration, Las Vegas, NV, August 15–17, 2005, pp. 592–596.

Coplien, J. Software Patterns. New York, NY: SIGS, 1996.
Fayad, M. E. “Accomplishing Software Stability.” Communications of the ACM 45, no. 1 (2002a):

111–115.
Fayad, M. E. “How to Deal with Software Stability.” Communications of the ACM 45, no. 4 (2002b):

109–112.
Fayad, M. E. Stable Analysis Patterns for Software and Systems, Auerbach Publications, 2015a.
Fayad, M. E. Stable Design Patterns for Software and Systems, Auerbach Publications, 2015b.

http://www.cmcrossroads.com
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F505248.505278
http://www.crcnetbase.com/action/showLinks?crossref=10.1006%2Fknac.1993.1008
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F502269.502308
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F502269.502308
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F383694.383713
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F253228.253432
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-3-662-05689-9
http://www.crcnetbase.com/action/showLinks?crossref=10.1006%2Fijhc.1995.1081
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F505248.505278

406 References

Fayad, M. E. Software Architectures on Demand, Auerbach Publications, 2015c.
Fayad, M. E., and Altman, A. “Introduction to Software Stability.” Communications of the ACM 44,

no. 9 (2001): 95–98.
Fayad, M. E., H. S. Hamza, and H. A. Sanchez. “Towards Scalable and Adaptable Software Archi

tectures.” Paper presented at the IEEE International Conference on Information Reuse and
Integration, Las Vegas, NV, 2005.

Fayad, M. E., and H. Kilaru. “Any Information Hiding: A Stable Design Pattern.” Paper presented at
the 2005 IEEE International Conference on Information Reuse and Integration, Las Vegas, NV,
2005, 108–115.

Fincher, S. “What Is a Pattern Language?” Paper presented at the Chi’99, ACM SIGCHI Conference
on Human Factors in Computing Systems in Pittsburgh, PA, May 15–20, 1999.

Fowler, M. Analysis Patterns. Reading, MA: AddisonWesley Professional, 1997.
Gamma, E., R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-

Oriented Software. 1st edn. Reading, MA: AddisonWesley Professional, 1995.
Hamza, H. “A Foundation for Building Stable Analysis Patterns.” Master’s Thesis Report, University

of Nebraska, Lincoln, NE, 2002.
Hamza, H., and M. E. Fayad. “A Pattern Language for Building Stable Analysis Patterns.” Paper pre

sented at the 9th Pattern Languages of Programs Conference, Monticello, IL, September 2002.
Hamza, H., and M. E. Fayad. “Applying Analysis Patterns through Analogy: Problems and Solutions.”

Journal of Object Technology 3, no. 4 (2004): 197–208.
Mahdy, A., and M. E. Fayad. “A Software Stability Model Pattern.” Paper presented at the

Proceedings of the 9th Conference on Pattern Language of Programs, Allerton Park, Monticello,
IL, September 8–12, 2002.

Niccolò, M. Catholic Encyclopedia. New York, NY: Robert Appleton Company, 1913.
Salingaros, N. A. “The Structure of Pattern Languages.” Architectural Research Quarterly, vol. 4,

Cambridge University Press, pp. 149–161, 2000. http://www.math.utsa.edu/sphere/ salingar/
StructurePattern.html.

Schmidt, D. C., M. E. Fayad, and R. E. Johnson. “Software Patterns.” Communications of the ACM
39, no. 10 (1996): 37–39.

Wu, S., H. Hamza, and M. E. Fayad. “Implementing Pattern Languages Using Stability Concepts.”
Paper presented at ChiliPLoP, Carefree, AZ, March 2003.

CHAPTER 2
Abbot, J. “Program Design by Informal English Descriptions.” Communications of the ACM 26,

no. 11 (1983): 882–94.
Berard, E. V. “Abstraction, Encapsulation, and Information Hiding.” White paper, Berard Software

Engineering, Inc., Baithersburg, MD, 1991.
Fayad, M. E. “Accomplishing Software Stability.” Communications of the ACM 45, no. 1 (2002a):

111–115.
Fayad, M. E. “How to Deal with Software Stability.” Communications of the ACM 45, no. 4 (2002b):

109–112.
Fayad, M. E., and A. Altman. “Introduction to Software Stability.” Communications of the ACM 44,

no. 9 (2001): 95–98.
Fayad, M. E., H. S. Hamza, and H. A. Sanchez. “Towards Scalable and Adaptable Software Archi

tectures.” Paper presented at the IEEE International Conference on Information Reuse and
Integration, Las Vegas, NV, August 15–17, 2005.

Gruber, T. “Ontology.” in Encyclopedia of Database Systems, L. Liu and M. T. Özsu (Eds.),
SpringerVerlag, 2009.

Gruber, T. R. “Toward Principles for the Design of Ontologies Used for Knowledge Sharing.”
International Journal of Human-Computer Studies 43, no. 4–5 (1995): 907–928.

http://www.math.utsa.edu
http://www.math.utsa.edu
http://www.crcnetbase.com/action/showLinks?crossref=10.1006%2Fijhc.1995.1081
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F182.358441
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F502269.502308
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F383694.383713
http://www.crcnetbase.com/action/showLinks?crossref=10.1017%2FS1359135500002591
http://www.crcnetbase.com/action/showLinks?crossref=10.5381%2Fjot.2004.3.4.a11
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F505248.505278
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F236156.236164

407References

Gruber, T. R. “A Translation Approach to Portable Ontologies.” Knowledge Acquisition 5, no. 2 (1993):
199–220.

Hamza, H., and M. E. Fayad. “A Pattern Language for Building Stable Analysis Patterns.” Paper
presented at the 9th Pattern Languages of Programs Conference, Monticello, IL, September
8–12, 2002.

Hamza, H., and M. E. Fayad. “Engineering and Reusing Stable Atomic Knowledge (SAK) Patterns.”
Paper presented at the IEEE International Conference on Information Reuse and Integration,
Las Vegas, NV, October 27–29, 2003.

Josef, A. “Artist and Teacher, Dies.” New York Times. March 26, 1976. p. 33. Retrieved March 21,
2008.

Mahdy, A., and M. E. Fayad. “A Software Stability Model Pattern.” Paper presented at the Proceedings
of the 9th Conference on Pattern Language of Programs, Allerton Park, Monticello, IL,
September 8–12, 2002.

Sanchez, H. A. “Laying the Foundations for Branding as a Stable Analysis Pattern.” Paper presented
at the 19th European Conference on Object-Oriented Programming, 2005.

Sanchez, H. A., B. Lai, and M. E. Fayad. “The Sampling Analysis Pattern.” Paper presented at the
Workshop on Timeless and Stable Architectures, IRI’03 Conference, Las Vegas, NV, October
27–29, 2003.

SECTION II
Lapouchnian, A. “Goal-Oriented Requirements Engineering: An Overview of the Current Research

Department of Computer Science.” White Paper, University of Toronto, Ontario, Canada,
June 28, 2005.

CHAPTER 3
Abbot, J. “Program Design by Informal English Descriptions.” Communications of the ACM 26, no. 11

(1983): 882–94.
Anton, A. I. “Goal-Based Requirements Analysis.” Paper presented at the Proceedings of the IEEE

International Conference on Requirements Engineering, Colorado Springs, CO, April 15–18, 1996.
Anton, A. I., and C. Potts. “The Use of Goals to Surface Requirements for Evolving Systems.” Paper

presented at the 20th International Conference on Software Engineering, Kyoto, Japan, 1998.
Cline, M., and M. Girou. “Enduring Business Themes.” Communications of the ACM 43, no. 5

(2000): 101–6.
Fayad, M. E. “Accomplishing Software Stability.” Communications of the ACM 45, no. 1 (2002a).
Fayad, M. E. “How to Deal with Software Stability.” Communications of the ACM 45, no. 4 (2002b):

109–112.
Fayad, M. E., and A. Altman. “Introduction to Software Stability.” Communications of the ACM 44,

no. 9 (2001): 95–98.
Fayad, M. E., H. S. Hamza, and H. A. Sanchez. “Towards Scalable and Adaptable Software

Architectures.” Paper presented at the IEEE International Conference on Information Reuse
and Integration, Las Vegas, NV, August 15–17, 2005.

Fayad, M. E., and S. Telu. “The Learning Stable Analysis Pattern.” Paper presented at the IEEE Inter
national Conference on Information Reuse and Integration, Las Vegas, NV, August 15–17, 2005.

Hamza, H., and M. E. Fayad. “A Pattern Language for Building Stable Analysis Patterns.” Paper
presented at the 9th Pattern Languages of Programs Conference, Monticello, IL, September
8–12, 2002.

Hamza, H., and M. E. Fayad. “Engineering and Reusing Stable Atomic Knowledge (SAK) Patterns.”
Paper presented at the IEEE International Conference on Information Reuse and Integration,
Las Vegas, NV, October 27–29, 2003.

http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F182.358441
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F502269.502308
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F383694.383713
http://www.crcnetbase.com/action/showLinks?crossref=10.1006%2Fknac.1993.1008
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FICRE.1996.491438
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FICRE.1996.491438
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F332833.332846
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F505248.505278

408 References

Khadpe, P. “Pattern Language for Data Mining.” Master’s Thesis Report, San Jose State University,
San Jose, CA, May 2005.

van Lamsweerde, A. “Goal-Oriented Requirements Engineering: A Guided Tour.” Paper presented
at the Proceedings of the 5th IEEE International Symposium on Requirements Engineering,
Toronto, Ontario, Canada, August 27–31, 2001.

Woodley, M. S., Digital Project Planning & Management Basics, The Library of Congress and the
Association for Library Collections & Technical Services, Washington, DC, April 2008.

CHAPTER 4
Bowen, J. Formal Specification and Documentation using Z: A Case Study Approach. International

Thomson Computer Press, London, 1996.
Brodersen, K. H., C. S. Ong, K. E. Stephan, and J. M. Buhmann. The balanced accuracy and its pos

terior distribution. Proceedings of the 20th International Conference on Pattern Recognition,
pp. 3121–3124, 2010.

Chen, J., G. B. Call, E. Beyer et al. “DiscoveryBased Science Education: Functional Genomic
Dissection in Drosophila, Undergraduate Researchers,” PLoS Biology 3, no. 2 (2005): P207.

Clark, M. A. Getting Set for e-Discovery. EDDix LLC, 2008.
Cohen, A. I. and D. J. Lender. Electronic Discovery: Law and Practice, 2011.
Darling, D. J., The Universal Book of Astronomy from the Andromeda Galaxy to the Zone of

Avoidance, Hoboken, NJ: Wiley, 2004.
Darling, D. J., “Formation of Planetary Systems,” The Internet Encyclopedia of Science, accessed

September 23, 2007.
Davies, J., and J. Woodcock. Using Z: Specification, Refinement, and Proof. Prentice Hall International

Series in Computer Science, London, 1996.
Email Archiving: A Proactive Approach to e-Discovery, Proofpoint, Inc., Sunnyvale, CA, Archive

White paper, July 2008.
Fayad, M. E., and M. Laitinen. Transition to Object-Oriented Software Development. New York,

NY: Wiley, 1998.
Fayad, M. E. Stable Analysis Patterns for Software and Systems, Auerbach Publications, 2015a.
Fayad, M. E. Stable Design Patterns for Software and Systems, Auerbach Publications, 2015b.
Fayad, M. E., and S. Wu. “Merging Multiple Conventional Models into One Stable Model.”

Communications of the ACM 45, no. 9 (2002): 102–106.
Grand, M. Patterns in Java I—A Catalog of Reusable Design Patterns Illustrated with UML. Wiley,

New York, NY, 1998.
The Growing Importance of e-Discovery on Your Business, White paper, Black Diamond,

Washington, DC: Osterman Research, sponsored by Google, June 2008.
Hamza, H., and M. E. Fayad. “A Pattern Language for Building Stable Analysis Patterns.” Paper

presented at the 9th Conference on Pattern Language of Programs, Monticello, IL, September
8–12, 2002.

Hamza, H., and M. E. Fayad. “Stable Analysis Patterns.” Paper presented at the Proceedings of the 4th
ACS/IEEE International Conference on Computer Systems and Applications, Dubai/Sharjah,
UAE, March 8–11, 2006.

Herbert, F., The Worlds of Frank Herbert. London, UK: New English Library, 1970.
Jacky, J. The Way of Z: Practical Programming with Formal Methods. Cambridge University Press,

Cambridge, Angleterre, 1997.
Jacobs, J. M., J. N. Adkins, W. J. Qian, T. Liu, Y. Shen, D. G. Camp, and R. D. Smith. “Utilizing

Human Blood Plasma for Proteomic Biomarker Discovery.” Journal of Proteome Research 4,
no. 4 (2005): 1073–1085.

Kyckelhahn, T. and T. H. Cohen. Civil Rights Complaints in U.S. District Courts, 1990–2006, U.S.
Department of Justice, Office of Justice Programs, NCJ 222989, August 2008.

http://www.crcnetbase.com/action/showLinks?crossref=10.1371%2Fjournal.pbio.0030059
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FICPR.2010.764
http://www.crcnetbase.com/action/showLinks?crossref=10.1021%2Fpr0500657
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F567498.567529

409References

Linoff, G. S., and Berry, M. J. A. Data Mining Techniques for Marketing, Sales, and Customer
Relationship Management, 3rd Edition, Wiley, New York, NY, April 2011.

Mobasher, B., N. Jain, E. Han, and J. Srivastava, “Web mining: Pattern discovery from world wide
web transactions,” Technical Report TR 96050, University of Minnesota, Department of
Computer Science, Minneapolis, MN,1996.

Norman, D. A., The Design of Everyday Things, New York, NY: Basic Books, 2002.
OrtegaArgiles, R., L. Potters, and M. Vivarell. “R&D and productivity: testing sectoral peculiarities

using micro data.” Empirical Economics 41, no. 3 (2011): 817–839.
Paul, S. M., D. S. Mytelka, C. T. Dunwiddie, C. C. Persinger, B. H. Munos, S. R. Lindborg,

and A. L. Schacht. “How to improve R&D productivity: the pharmaceutical industry’s grand
 challenge.” Nature Reviews Drug Discovery 9, no. 3 (2010): 203–14.

Perry, M., and H. Kaminski. “SLA Negotiation System Design Based on Business Rules.” Vol. 2,
Proceedings of the IEEE International Conference on Services Computing, Honolulu, HI,
July 7–11, pp. 609–612, 2008.

Podsiadlowski, P. “Planet Formation Scenarios.” in Planets around Pulsars; Proceedings of the
Conference, J. A. Phillips, J. E. Thorsest, and S. R. Kulkarni, eds. California Institute of Techn
ology, Pasadena, CA. April 30–May 1, 1992, ASP Conference Series, 36, pp. 149–165, 1993.

Sain, N., and S. Tamrakar. “Web Usage Mining & PreFetching Based on Hidden Markov Model &
Fuzzy Clustering.” International Journal of Computer Science and Information Technologies,
vol. 3, no. 4 (2012): 4874–4877.

Spivey, J. M. The Z Notation: A Reference Manual. 2nd edn. Prentice Hall International Series in
Computer Science, 1992.

Symantec Corporation. What Is e-Discovery and Why Should IT Shops Care? White paper, Symantec
Corporation, March 2008, 10pp.

Taylor., J. R. An Introduction to Error Analysis: The Study of Uncertainties in Physical
Measurements. University Science Books, pp. 128–129, 1999.

Various. In E. Casey, ed. Handbook of Digital Forensics and Investigation. Academic Press, 2009,
p. 567.

Warren, J. B. “Drug discovery: Lessons from evolution.” British Journal of Clinical Pharmacology
71 (2011): 497–503.

Yang, J. S. H., Y. H. Chin, and C. G. Chung. “Many-Sorted First-Order Logic Database Language.”
The Computer Journal 35, no. 2 (1992): 129–137.

CHAPTER 5
Bahrami, J. H., and S. Evans. “The Research Laboratory: Silicon Valley’s Knowledge Ecosystem,” in

Super-Flexibility for Knowledge Enterprises. New York, NY: Springer, 2005.
Concise Oxford English Dictionary: Main edition, Oxford Dictionaries, August 2011.
Drucker, P. The Age of Discontinuity: Guidelines to Our Changing Society. New York, NY: Harper

& Row, 1969.
Martin, P., and P. W. Eklund. “Knowledge retrieval and the World Wide Web,” IEEE Intelligent

Systems, 15, no. 3 (2000): 18–25.
Potter, S. “A Survey of Knowledge Acquisition from Natural Language.” Technology Maturity

Assessment. Retrieved July 9, 2014.
Powell, W. W., and K. Snellman. “The Knowledge Economy.” Annual Review of Sociology 30, no. 1

(2004): 199–220.
Power, C. J. “Serving two masters: The student work dilemma.” Microbiology Australia 24, no. 4

(2004).
Sanford, E. H. An Address To a Daughter. Knowledge is the food of the mind; and without knowl

edge the mind must languish. Ann Arbor, MI: The Gem of Science. vol. 1., no. 6., July 31,
1846.

http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2Fs00181-010-0406-3
http://www.crcnetbase.com/action/showLinks?crossref=10.1093%2Fcomjnl%2F35.2.129
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2F5254.846281
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2F5254.846281
http://www.crcnetbase.com/action/showLinks?crossref=10.1146%2Fannurev.soc.29.010202.100037
http://www.crcnetbase.com/action/showLinks?crossref=10.1111%2Fj.1365-2125.2010.03854.x

410 References

Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, 2002.
Yao, Y., Y. Zeng, N. Zhong, and X. Huang. Knowledge Retrieval (KR). In Proceedings of the IEEE/

WIC/ACM International Conference on Web Intelligence, IEEE Computer Society, Silicon
Valley, CA, November 2–5, 729–735, 2007.

CHAPTER 6
Booch, G., J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User Guide. 1st edn.

AddisonWesley Professional, Reading, MA, 1998.
Fayad, M. E. Stable Design Patterns for Software and Systems. Boca Raton, FL: Auerbach

Publications, 2015.
Fayad, M. E. Software System Engineering, Lecture Notes, Required Course at Computer

Engineering Department, College of Engineering, San Jose State University, San Jose, CA,
2002–2014.

Fayad, M. E., and A. Altman. “Introduction to Software Stability.” Communications of the ACM 44,
no. 9 (2001): 95–98.

Fayad, M. E., D. Hamu, and D. Brugali. “Enterprise Frameworks Characteristics, Criteria, and
Challenges.” Communications of the ACM 43, no. 10 (2000): 39–46.

Fayad, M. E., N. Islam, and H. Hamza. “The Stable Model-View-Mapping (MVM) Architectural
Pattern.” Paper presented at the Workshop on Reference Architectures and Patterns for Pervasive
Computing, the 18th ACM Conference on Object-Oriented Programming, Systems, Languages,
and Applications, Anaheim, CA, 2003.

Fayad, M. E., and H. Kilaru. “Any Information Hiding: A Stable Design Pattern.” Paper presented
at the 2005 IEEE International Conference on Information Reuse and Integration, Las Vegas,
NV, 2005, 108–115.

Fayad, M. E., H. Sanchez, and H. Hamza. “A Pattern Language for CRC Cards.” Paper presented at
the 11th Conference on Pattern Language of Programs, Illinois, 2004.

Fayad, M. E., H. Sanchez, and H. Hamza. “Towards Scalable and Adaptable Software Architectures.”
Paper presented at the IEEE International Conference on Information Reuse and Integration,
Las Vegas, NV, 2005.

Hamza, H., and M. E. Fayad. “A Pattern Language for Building Stable Analysis Patterns.” Paper
 presented the 9th Pattern Languages of Programs Conference, Monticello, IL, 2002.

James, H. A., K. A. Hawick, and P. D. Coddington. “An Environment for Workflow Applications
on Wide Area Distributed Systems.” Technical Report DHPC-091, Distributed and High
Performance Computing Group, Department of Computer Science, The University of Adelaide,
Adelaide, Australia, 2000.

Lawrence, P. Workflow Handbook. John Wiley, New York, NY, 1997.
Odell, J. “Designing Agents: Using Life as a Metaphor.” Springer Distributed Computing, July, 51–56,

1998.
Patel, D., J. Sutherland, and J. Miller. Business Object Design and Implementation II. Springer

Verlag, London, 1998.
Sanchez, H. A. “Laying the Foundations for Branding as a Stable Analysis Pattern.” Paper presented at

the 19th European Conference on Object-Oriented Programming, Glasgow, UK, July 25–29, 2005.

CHAPTER 7
Brandman, O., J. Cho, and N. Shivakumar. “Crawlerfriendly web servers.” Proceedings of ACM

SIGMETRICS Performance Evaluation Review 28, no. 2 (2000).
Büttcher, S., C. L. A. Clarke, and G. V. Cormack. Information Retrieval: Implementing and

Evaluating Search Engines. MIT Press, Cambridge, MA, 2010.

http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FWI.2007.4427181
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FWI.2007.4427181
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F383694.383713
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F352183.352200
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-1-4471-1286-0

411References

Fayad, M. E., and A. Altman. “Introduction to Software Stability.” Communications of the ACM 44,
no. 9 (2001): 95–98.

Fuller, R. B. “Dymaxion World.” LIFE 41–55. March 1, 1943.
Griffiths, A. J. F., J. H. Miller, D. T. Suzuki, R. C. Lewontin, and W. M. Gelbart. Chapter 5. An

Introduction to Genetic Analysis, 5th Edition, 1993.
Harvey, P. D. A. The History of Topographical Maps: Symbols, Pictures and Surveys, Thames and

Hudson, 1980
Koen, P., G. Ajamian, R. Burkart et al. “Providing clarity and a common language to the ‘fuzzy front

end’.” Research Technology Management 44, no. 2 (2001): 46–55.
Kraak, M. J., and F. Ormeling, Cartography: Visualization of Spatial Data, London, UK: Longman,

1996.
Monmonier, M. Rhumb Lines and Map Wars: A Social History of the Mercator Projection,

Chicago, IL: The University of Chicago Press, 2004
Morville, P., and L. Rosenfeld, Information Architecture for the World Wide Web: Designing Large

scale Web Sites. O’Reilly & Associates, Inc. Sebastopol, CA, 3rd edition, December 2006.
Neligan, M. “Profile: JeanMarie Messier”. BBC NEWS: Business (BBC), July 2002. http://news

.bbc.co.uk/1/hi/business/2078564.stm. Retrieved 20060314.
Petchenik, B. B. “From Place to Space: The Psychological Achievement in Thematic Mapping.” The

American Cartographer 6, no. 1 (1979): 5–12.
Slocum, T. A., R. B. McMaster, F. C. Kessler, and H. H. Howard Thematic Cartography and

Geovisualization, 3rd ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2009.
Spink, A., D. Wolfram, Major B. J. Jansen, and T. Saracevic. “Searching the web: The public and

their queries.” Journal of the American Society for Information Science and Technology 52,
no. 3 (2001): 226–234.

Wong, S. K. S. and C. Tong. “The influence of market orientation on new product success.” European
Journal of Innovation Management 15, no. 1 (2012): 99–121.

CHAPTER 8
Dey, A. K. “Understanding and Using Context.” Personal and Ubiquitous Computing 5, no. 1

(2001): 4–7.

CHAPTER 9
Appleton, B. “Patterns and Software: Essential Concepts and Terminology.” Object Magazine

Online 3, no. 5 (1997): 20–25.
Buschmann, F. Pattern-Oriented Software Architectures: A System of Patterns. New York, NY:

Wiley, 1996.
Cercone, N., and G. McCalla (eds.). The Knowledge Frontier: Essays in the Representation of

Knowledge. Symbolic Computation/Artificial Intelligence. 1st edn. SpringerVerlag, New York,
NY, 1987.

Connelly, S., J. Burmeister, A. MacDonald, and A. Hussey. “Extending and Evaluating a Pattern
Language for Safety-Critical User Interfaces.” Conferences in Research and Practice in Infor-
mation Technology Series: Sixth Australian Workshop on Safety Critical Systems and Software 3
(2001): 39–49.

Coplien, J. Software Patterns. New York, NY: SIGS, 1996.
Devedzic, V. “Ontologies: Borrowing from Software Patterns.” Intelligence 10, no. 3 (1999):

14–24.
Fayad, M. E. “Accomplishing Software Stability.” Communications of the ACM 45, no. 1 (2002a):

111–115.

http://news.bbc.co.uk
http://news.bbc.co.uk
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F502269.502308
http://www.crcnetbase.com/action/showLinks?crossref=10.7208%2Fchicago%2F9780226534329.001.0001
http://www.crcnetbase.com/action/showLinks?crossref=10.1108%2F14601061211192852
http://www.crcnetbase.com/action/showLinks?crossref=10.1108%2F14601061211192852
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F318964.318968
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2Fs007790170019
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F383694.383713
http://www.crcnetbase.com/action/showLinks?crossref=10.1559%2F152304079784022763
http://www.crcnetbase.com/action/showLinks?crossref=10.1559%2F152304079784022763
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-1-4612-4792-0
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-1-4612-4792-0
http://www.crcnetbase.com/action/showLinks?crossref=10.1002%2F1097-4571%282000%299999%3A9999%3C%3A%3AAID-ASI1591%3E3.0.CO%3B2-R

412 References

Fayad, M. E. “How to Deal with Software Stability.” Communications of the ACM 45, no. 4 (2002b):
109–112.

Fayad, M. E. Software System Engineering, Lecture Notes, Required Course at Computer Engineering
Department, College of Engineering, San Jose State University, San Jose, CA, 2002–2014.

Fayad, M. E., and A. Altman. “Introduction to Software Stability.” Communications of the ACM 44,
no. 9 (2001): 95–98.

Fayad, M. E., D. Hamu, and D. Brugali. “Enterprise Frameworks Characteristics, Criteria, and
Challenges.” Communications of the ACM 43, no. 10 (2000): 39–46.

Fayad, M. E., H. S. Hamza, and H. A. Sanchez. “Towards Scalable and Adaptable Software
Architectures.” Paper presented at the IEEE International Conference on Information Reuse
and Integration, Las Vegas, NV, August 15–17, 2005.

Fayad, M. E., N. Islam, and H. Hamza. “The Stable Model-View-Mapping (MVM) Architectural
Pattern.” Paper present at the Workshop on Reference Architectures and Patterns for Pervasive
Computing, The 18th ACM Conference on Object-Oriented Programming, Systems, Lan
guages, and Applications, Anaheim, CA, November, 2003.

Fayad, M. E., A. Ranganath, and M. Pinto. “Towards Software Stability Engineering.” Paper pre
sented at the Sixth International Conference on the Unified Modeling Language, Workshop
on Stable Analysis Patterns: A True Problem Understanding with UML, Workshop #8, San
Francisco, CA, October 20–24, 2003.

Fayad, M. E., and S. Wu. “Merging Multiple Conventional Models in One Stable Model.” Commu-
nications of the ACM 45, no. 9 (2002c): 102–106.

Fernandez, E. B. “Building Systems using Analysis Patterns.” Paper presented at the Proceedings of
the 3rd International Workshop on Software Architecture, Orlando, FL, November, 1998.

Fowler, M. Analysis Patterns: Reusable Object Models. AddisonWesley, Reading, MA, 1997.
Gamma, E., R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-

Oriented Software, 1st edn. Reading, MA: AddisonWesley Professional, 1995.
Hamza, H. “A Foundation for Building Stable Analysis Patterns.” Master’s Thesis Report, University

of Nebraska, Lincoln, OR, 2002.
Hamza, H., and M. Fayad. “On the Traceability of Analysis Patterns.” Paper presented at the

 Chil iPLoP, Carefree, AZ, March 11–14, 2003.
Judd, H. S. Think Rich. New York, NY: Delacorte Press, January 1978.
Laplante, P. A., and C. J. Neill. Antipatterns: Identification, Refactoring, and Management. CRC

Press, Boca Raton, FL, 2006.
Mahdy, A., and M. E. Fayad. “A Software Stability Model Pattern.” Paper presented at the

Proceedings of the 9th Conference on Pattern Language of Programs, Allerton Park, Monticello,
IL, September 8–12, 2002.

Manns, M. L., and L. Rising. “Introducing Patterns (or any New Idea) into Organizations.” Paper
presented at the Addendum to the 2000 Proceedings of the Conference on Object-Oriented
Programming, Systems, Languages, and Applications, Minneapolis, MN, October 15–19,
2000.

Oestereich, B. Developing Software with UML: Object-Oriented Analysis and Design in Practice.
2nd edn. Boston, MA: The AddisonWesley Object Technology Series, January, 1999.

Sanchez, H. A. “Laying the Foundations for Branding as a Stable Analysis Pattern.” Paper presented
at the 19th European Conference on Object-Oriented Programming, Glasgow, UK, July 25–29,
2005.

Schmidt, D. C., M. Fayad, and R. E. Johnson. “Software Patterns.” Communications of the ACM 39,
no. 10 (1996): 37–39.

Wu, S., H. Hamza, and M. Fayad. “Implementing Pattern Languages Using Stability Concepts.”
Paper presented at the ChiliPLoP, Carefree, AZ, March 11–14, 2003.

Yavari, E., and M. E. Fayad. “A Stable Software Model for MRI Visual Analyzer.” Paper presented
at the 18th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications Poster, Anaheim, CA, October 26–30, 2003.

http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F288408.288418
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F288408.288418
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F236156.236164
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F352183.352200
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F567498.567529
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F567498.567529
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F505248.505278
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F383694.383713

413References

CHAPTER 10
Bederson, B. B., and B. Shneiderman. The Craft of Information Visualization: Readings and

Reflections, San Francisco, CA: Morgan Kaufmann, 2003, p. 120.
Bloch, J. Effective Java: Programming Language Guide. 2nd edn. AddisonWesley, The Java™

Series, 2005.
Bruegge, B., and A. H. Dutoit. Object Oriented Software Engineering: Using UML, Patterns, and

Java. 3rd edn. Prentice Hall, Englewood Cliffs, NJ, September, 2003.
Constantinides, C., T. H. Elrad, and M. E. Fayad. “A Framework Solution to Support Advanced

Separation of Concerns.” Software: Practice and Experience 32 (2002).
Dey, A. K. “Understanding and Using Context.” Personal and Ubiquitous Computing 5, no. 1 (2001):

4–7.
Fayad, M. E. “Accomplishing Software Stability.” Communications of the ACM 45, no. 1 (2002a):

111–115.
Fayad, M. E. “How to Deal with Software Stability.” Communications of the ACM 45, no. 4 (2002b):

109–112.
Fayad, M. E., and A. Altman. “Introduction to Software Stability.” Communications of the ACM 44,

no. 9 (2001): 95–98.
Fayad, M. E., and A. Arun. “Identifying UML Elements That Can Be Used to Model Aspects.” Paper

presented at the UML’03—Workshop on Modeling Aspects Using UML, Workshop #4, San
Francisco, CA, October 20–24, 2003.

Fayad, M. E., and M. P. Cline. “Aspects of Software Adaptability.” Communications of the ACM 39,
no. 10, (1996): 37–39.

Fayad, M. E., H. S. Hamza, and H. A. Sanchez. “Towards Scalable and Adaptable Software Archi
tectures.” Paper presented at the IEEE International Conference on Information Reuse and
Integration, Las Vegas, NV, 2005.

Fayad, M. E., D. C. Schmidt, and R. Johnson. Building Application Frameworks: Object-Oriented
Foun dations of Framework Design. Wiley, New York, NY, 1998.

Fayad, M. E., and S. Wu. “Merging Multiple Conventional Models in One Stable Model.” Commu-
nications of the ACM 45, no. 9 (2002).

Fayad, M. E. Stable Design Patterns for Software and Systems. Boca Raton, FL: Auerbach
Publications, 2015.

Findler, R. B., and M. Felleisen. “Behavioral Interface Contracts for Java.” Technical Report CS
TR00-366, Department of Computer Science, Rice University, Houston, TX, 2000.

Lackner, M., A. Krall, and F. Puntigam. “Supporting Design by Contract in Java.” Journal of Object
Technology (Special Issue: TOOLS USA 2002 Proceedings) 1 no. 3 (2002): 57–76.

Monson-Haefel, R. Enterprise Javabeans. 2nd edn. O’Reilly Media, Sebastopol, CA, 2000.
Oestereich, B. Developing Software with UML: Object-Oriented Analysis and Design in Practice.

2nd edn. Boston, MA: The AddisonWesley Object Technology Series, January, 1999.

CHAPTER 11
Bruegge, B., and A. H. Dutoit. Object-Oriented Software Engineering: Using UML, Patterns, and

Java. 3rd edn. Prentice Hall, Englewood Cliffs, NJ, September, 2003.
Fayad, M. E., and M. Cline. “Aspects of Software Adaptability.” Communications of the ACM 39,

no. 10 (1996): 58–9.
Fayad, M. E., D. Hamu, and D. Brugali. “Enterprise Frameworks Characteristics, Criteria, and

Challenges.” Communications of the ACM 43, no. 10 (2000): 39–46.
Fayad, M. E., H. S. Hamza, and H. A. Sanchez. “Towards Scalable and Adaptable Software

Architectures.” Paper presented at the IEEE International Conference on Information Reuse
and Integration, Las Vegas, NV, 2005.

http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F236156.236170
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F567498.567529
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F567498.567529
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F502269.502308
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F383694.383713
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F236156.236170
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2Fs007790170019
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F352183.352200
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F505248.505278

414 References

Fayad, M. E., and R. S. Pradeep. “A Pattern Language for Performance Evaluation.” Paper presented
at the 4th Latin American Conference on Pattern Languages of Programming, Porto das
Dunas, Ceará, Brazil, August 10–13, 2004.

Fayad, M. E., H. Sanchez, and H. Hamza. “A Pattern Language for CRC Cards.” Paper presented at
the 11th Conference on Pattern Language of Programs, Monticello, IL, 2004.

Jacobsen, E. E., B. B. Kristensen, and P. Nowack. “Characterizing Architecture as Abstractions
over the Software Domain.” Paper presented at the Position Paper for the 1st Working IFIP
Conference on Software Architecture, San Antonio, TX, 1999.

Malan, R., and D. Bredemeyer. “Defining Non-Functional Requirements.” Technical Report at Brede
meyer Consulting. Whitepaper, Bloomington, IN: Bredemeyer Consulting, August, 2001.
http://www.bredemeyer.com.

Tran, E. “Verification/Validation/Certification.” In Koopman, P. Topics in Dependable Embedded
Systems. USA: Carnegie Mellon University, 1999. Retrieved January 1, 2008.

Tsai, W. T., Vishnuvajjala, R., and Zhang, D. Verification and validation of knowledgebased sys
tems. IEEE Transactions on Knowledge and Data Engineering 11, no. 1 (1999): 202–212.

SECTION V
Buschmann, F. Pattern-Oriented Software Architectures: A System of Patterns. New York, NY: Wiley,

1996.
Fayad, M. E. “Accomplishing Software Stability.” Communications of the ACM 45, no. 1 (2002a):

111–115.
Fayad, M. E. “How to Deal with Software Stability.” Communications of the ACM 45, no. 4 (2002b):

109–112.
Fayad, M. E., and A. Altman. “Introduction to Software Stability.” Communications of the ACM 44,

no. 9 (2001): 95–98.
Gamma, E., R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-

Oriented Software. 1st edn. Reading, MA: AddisonWesley Professional, November, 1994.

CHAPTER 12
Bloch, J. Effective Java: Programming Language Guide. 2nd edn. Addison Wesley, The Java™

Series, 2005.
Buschmann, F. Pattern-Oriented Software Architectures: A System of Patterns. New York, NY:

Wiley, 1996.
Forman, I. R., and N. Forman. Java Reflection in Action. Manning Publications, Greenwich, CT,

2004.
Gamma, E., R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-

Oriented Software. 1st edn. Reading, MA: AddisonWesley Professional, 1994.
Simmons, R. Hardcore Java. 1st edn. O’Reilly Media, Sebastopol, CA, 2004.
Stelting, S. A., and O. Maassen. Applied Java Patterns. 1st edn. Prentice Hall, Upper Saddle River,

NJ, January, 2001.

CHAPTER 13
Abbott, A. Chaos of Disciplines. Chicago, IL: University of Chicago Press. 2001.
Ambler, S. W. CRC Modeling: Bridging the Communication Gap between Developers and Users.

An AmbySoft Inc. White Paper, 1998.
Ambler, S. W. The Object Primer: The Application Developer’s Guide to Object Orientation and the

UML, 2nd edn. Cambridge; New York: Cambridge University Press; SIGS Books, May 2001.

http://www.bredemeyer.com.
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2F69.755629
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F502269.502308
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F383694.383713
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F505248.505278
http://www.crcnetbase.com/action/showLinks?crossref=10.7208%2Fchicago%2F9780226001050.001.0001

415References

Armitage, H. M. and S. Cameron. Using Strategy Maps to Drive Performance. The Society of
Management Accountants of Canada, the American Institute of Certified Public Accountants,
and The Chartered Institute of Management Accountants, Canada, 2006.

Armitage, U. “Can Navigation Aids Support Constructive Engagement with Hypermedia?” EC1V
OHB, Centre for HCI Design, City University, Northampton Square, London.

Beck, K., and W. Cunningham. “A Laboratory for Teaching Object-Oriented Thinking.” Paper
 presented at the OOPSLA’89, Conference Proceedings, New Orleans, LA, October 1–6,
1989.

Biddle, R., J. Noble, and E. Tempero. “Role-Play and Use Case Cards for Requirements Review.”
Paper presented at the Proceedings of the 20th Australian Conference on Information
System, Melbourne, Australia, December, 2009.

Börstler, J., T. Johansson, and M. Nordström. “Teaching OO Concepts—A Case Study Using
CRC-CARDS and BLUEJ.” Paper presented at the 32nd ASEE/IEEE Frontiers in Education
Conference, Boston, MA, November 6–9, 2002.

Coplien, J. O., and D. C. Schmidt (eds.). Pattern Languages of Program Design. AddisonWesley,
1995.

Deming, W. E., The New Economics for Industry, Government, and Education. Boston, MA: MIT
Press, p. 132, 1993.

Fayad, M. E. Stable Design Patterns for Software and Systems. Auerbach Publications, 2015.
Fayad, M. E. Software System Engineering, Lecture Notes, Computer Engineering Department,

San Jose State University, San Jose, CA, 2002–2014.
Fayad, M. E., and H. Hamza. “Software Stability Background.” Whitepaper at San Jose State

University, San Jose, CA, 2003.
Fayad, M. E., H. S. Hamza, and H. A. Sanchez. “A Pattern for an Effective Class Responsibility

Collaborator (CRC) Cards.” Paper presented at the 2003 IEEE International Conference on
Information Reuse and Integration, Las Vegas, NV, October 2003.

Fayad, M. E., H. A. Sanchez, and R. Goverdhan. “A Goal-Driven Software Development Life Cycle.”
Whitepaper at San Jose State University, San Jose, CA, 2005.

Fayad, M. E., V. Stanton, H. Sanchez, and H. Hamza. “A Closer Look at Class Responsibility Collab
orator (CRC) Cards.” Technical Report, Computer Engineering Department, San Jose State
University, San Jose, CA, 2003.

Halbleib, H. “Software Design Using CRC Cards.” Real Time Magazine 991, 1999: 28–32.
Hamza, H., and M. E. Fayad. “A Pattern Language for Building Stable Analysis Patterns.” Paper pre

sented at the 9th Pattern Languages of Programs Conference, Monticello, IL, September 8–12,
2002.

Kearsley, G., and B. Shneiderman. “Engagement Theory: A Framework for Technology-Based
Teach ing and Learning.” Educational Technology 38, no. 5 (1998): 20–23.

Maciaszek, L. A. Requirements Analysis and System Design—Developing Information System with
UML. AddisonWesley Professional, Boston, MA, 2001.

Oleson, A. and J. Voss, eds. The Organization of Knowledge in Modern America, 1860–1920.
Baltimore, MD: The Johns Hopkins University Press, pp. 285–312, 1979.

Oxford English Dictionary, 2nd ed. Oxford: Clarendon Press, 1989.
Pressman, R. S. Software Engineering—A Practitioner’s Approach. McGrawHill Publishing

Company, New York, NY, 2001.
Schmidt, D. C., M. E. Fayad, and R. E. Johnson. “Software Patterns.” Communications of the ACM

39, no. 10 (1995): 65–74.

CHAPTER 14
Coplien, J. O., and D. C. Schmidt. eds. Pattern Languages of Program Design. AddisonWesley

Professional, 1995.

http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F74877.74879
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F226239.226255

416 References

Fayad, M. E. “Accomplishing Software Stability.” Communications of the ACM 45, no. 1 (2002a):
111–115.

Fayad, M. E. “How to Deal with Software Stability.” Communications of the ACM 45, no. 4 (2002b):
109–112.

Fayad, M. E., and A. Altman. “Introduction to Software Stability.” Communications of the ACM 44,
no. 9 (2001): 95–98.

Schmidt, D. C., M. E. Fayad, and R. E. Johnson. “Software Patterns.” Communications of the ACM
39, no. 10 (1996): 37–39.

Zimbardo, P., and J. Boyd. The Time Paradox – The New Psychology of Time That Will Change
Your Life. New York, NY: Free Press. 2008, p. 135.

APPENDIX B
Fayad, M. E. “How to Deal with Software Stability.” Communications of the ACM 45, no.4 (2002):

109–112.
Fayad, M. E. Software System Engineering, Lecture Notes, Required Course at Computer

Engineering Department, College of Engineering, San Jose State University, San Jose, CA,
2002–2014.

Fayad, M. E., H. S. Hamza, and H. A. Sanchez. “A Pattern for an Effective Class Responsibility
Collaborator (CRC) Cards.” Paper presented at the 2003 IEEE International Conference on
Information Reuse and Integration, Las Vegas, NV, October 2003.

Fayad, M. E., and S. Wu. “Merging Multiple Conventional Models in One Stable Model.” Commu-
nications of the ACM 45, no. 9 (2002): 102–106.

Hamza, H., and M. E. Fayad. “A Pattern Language for Building Stable Analysis Patterns.” Paper
presented at the Proceedings of the 9th Conference on Pattern Languages of Programs 2002,
Monticello, IL, September 2002.

Sanchez, H. A. Building Systems Using Patterns: Creating Knowledge Maps. Masters Thesis. San
Jose State University, San Jose, CA, May 2006.

http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F236156.236164
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F505248.505278
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F502269.502308
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F383694.383713
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F567498.567529
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F567498.567529
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F505248.505278

417

Index

Note: Locators followed by “f ” and “t” denote figures and tables in the text

A

Abstraction, 29
levels in knowledge maps, 30–31
open research issues, 39–40
refinement techniques, 41–43

Accuracy, 78, 113
AnyContent stable design pattern, 148–149, 149f,

270f, 312
challenges, 218
constraints, 218
context, 217
CRC cards, 220–221
open research issues, 226
problem, 217–218
solution

applicability examples, 222–226
consequences, 221
participants, 218–219
pattern structure, 218

structure, 219f
AnyMap stable design pattern

applicability examples, 178–188
business issues, 203–205
challenges, 169–170
consequences, 178
constraints

navigation, 170
recording, 171
visualization, 170–171

context, 161–162
CRC cards, 172–177
design and implementation issues, 193–194
external functional requirements

navigation, 165–166
recording, 167–168
visualization, 163–165

formalization in XML, 194–202
internal functional requirements

navigation, 165
recording, 166
visualization, 162–163

map usage and negative impacts, 157–160
measurability

qualitative measure, 191
quantitative measure, 190–191

modeling issues, 191–193
navigation, 165, 166f, 172
open research issues, 207
problem

functional requirements, 162–168
nonfunctional requirements, 168–169

recording, 166, 167f, 173
related patterns, 188–190
site map development, 211
solution

participants, 171–172
structures, 171

testability, 202–203
tips, 206–207
usages, 205–206
visualization, 162–163, 173

AnyMechanism stable design pattern, 143f,
144–145, 145f

AnyMedia, 312
BO type implementation, 265
contracts, 268

AnyModel stable design pattern, 146–147, 147f
AnyParty, 312
AnyView stable design pattern, 145–146, 146f
Application programming interface (API), 267
Architectural pattern

stable MRI, 250–251
stable MVM, 248–249

Architectures on demand, 18
Aspect framework (AF), 277
Aspect-oriented architectures (AOA), 273, 273f
Aspect-oriented programming (AOP), 272

comparison between extraction of aspects,
277–278

core design features in system, 273–274
modeling EBTs and BOs, 274–276
represent either EBTs or BOs in SSM, 277
and SSM, difference, 274–276, 277f

Autonomic computing context, 122f
class diagram, 120
sequence diagram, 123, 124f
use case, 120–123

418 Index

B

Brainstorming stable analysis pattern
context, 311
example, 313
problem, 311
solution, 311–312
stable object model, 312f, 314f

Business issues
business rules, 97–98
enduring themes, 98
integration, 98

Business objects (BOs), 8, 22, 31, 135, 152
AnyLog, 300
CRC cards, 259t
domain objects, 152
EBTs and, 181
essential properties, 139
example, 300–301
heart of business, 135–136
hooks to IO, 193f
of SPM, 260t–261t
stable design patterns, 139
structure, 296t
subclass creating, 299
type specification, 265

Business rules, 97–98, 106–107
elements, 204–205
pattern, 205

C

Camel casing, 234, 236, 323
Capabilities

dealing with, 137–139
heart of business, 135–136
identification process, 139–143
knowledge maps, 144t

AnyContent, 147–148
AnyMechanism, 144–145
AnyModel, 146–147
AnyView, 145–146

learning, 153
with no goal, 140–141
open research issues, 149
scenario format, 141t
UML representation, 237f

Class responsibility and collaboration (CRC) cards,
258, 285

characteristics, 306t
class representation, 323f
collaboration section, 324f
effective, 304–305
Fayad’s layout, 351

knowledge classification, 305–306, 306f
modeling stable analysis pattern

context, 315–316
forces, 317
problem, 316–317
solution, 317–318, 318f

pattern language, 309f, 310t
proposed, 321, 322f
structure, 304f

Collaborative environment (CE), 276, 276f
Component-based systems (CBS), 222
Conceptual map creation, 314–315, 316f
Concurrent software development method, 11–14
Context-based storage system (case study)

class diagram, 225f
use case, 224–226

Context sensitivity customization (case study)
class diagram, 223f
use case, 222–224

Contour map, 213
Contracts, 267
Core knowledge, 9
CRC card modeling stable analysis pattern

context, 315–316
forces, 317
problem, 316–317
solution, 317–318

CRM (Customer relationship management),
111, 126f

class diagram, 123–124
use case, 120–123

D

Delegation, 93f
inheritance, 93, 93f
model implemented, 93–94

Deployment
goals, 283t
knowledge map, 282–284
open research issues, 287
quality factors, 284–285
V&V process, 285–287

Discovery
definition, 73
stable analysis pattern, 73–107

Discovery stable analysis pattern, 81f
applicability

class diagram, 87f
use case, 88–90
vitamin K discovery (case study), 86–90

business issues
business rules, 97–98
enduring themes, 98

419Index

integration, 98
challenges, 79
consequences, 86
constraints, 79–80
context, 75
design and implementation issues, 92–94
formalization using, 95–97
measurability, 91–92
modeling heuristics, 92
open research issues, 100–101
problem

functional requirements, 76–77
nonfunctional requirements, 78

related pattern, 90–91
solution

class diagram, 82–83
CRC card, 83–85
patterns, 81–82

testability, 94
tips, 99
traditional model versus stable model, 90
usages, 98–99

Domain
analysis, 253, 257
modeling, 253
objects. See Business objects (BOs)
specificity, 111–112

E

Effective CRC card format pattern
context, 319
example, 321–324
forces, 320–321
problem, 319–320
solution, 321

Electronic discovery (e-discovery), 98–99
Enduring business themes (EBTs), 8, 22, 31, 152,

160, 264, 291, 307
and BOs, 181
CRC cards, 259t
of SPM, 260t
structure, 296t

Engagement stable analysis pattern
context, 313–314
example, 314–315
problem, 314
solution, 314
stable object model, 315

Enterprise JavaBeans (EJB), 271
ERD (Entity-relationship diagrams), 257
Extended Backus–Naur Form (EBNF), 23

formalization using, 95–97
Extension points. See Hooks

F

Facilitator, 316
Factors of reproducibility, 78
Fool-proof methodology, 251–252
Formal tropos, 68

G

Gang of four (GoF) patterns, 291
Gantt charts, 161
Genetic map, 161, 212
Geographical map, 161
Goal-based requirements analysis method

(GBRAM), 68
Goal-oriented development, 70
Goal-oriented requirements engineering (GORE),

67–68
Goals

dealing, 53–55
extracting, process

dealing with subgoals, 57
process for identifying, 55f
simple process, 56–57

identifying, 56
knowledge maps, 58t

discovery, 60
knowledge, 60–62
learning, 58–60

with no capability, 139–140
open research issues, 63
programming, 69
significance, 50–53

e-commerce application, 52–53, 52f
properties, 51

UML representation, 236f
Google road map navigation (case study)

class diagram, 181–182, 181f
sequence diagram, 182, 183f
use case, 178–181

H

Hooks, 8, 21–23
adaptation of capabilities, 38f
class, 298
code, 34, 36, 136
engine, 23–26
facility, 297t, 298–301, 298f
features, 26
SSM architecture, 22f
structure, 296t

Human computer interaction (HCI), 50

420 Index

I

Industrial objects (IOs), 8, 22, 36, 73, 264
and BOs associating, 300
structure, 296t

Innovation or invention. See Discovery
Integrated development environment (IDE), 338
Intellectual property (IP), 76
Interfaces

implementations, 292–294
knowledge map engine, 291–292

J

Java Archive (JAR), 271

K

KAOS (Knowledge Acquisition in autOmated
Specification), 68

Knowledge, 109
classification, 253
definition, 131
discovery, 73, 106

challenges, 79
constraints, 79–80

stable analysis pattern, 109–131
Knowledge Acquisition in autOmated Specification

(KAOS), 68
Knowledge maps, 6

abstraction levels, 30–31
advantages, 14
capabilities, 144t

AnyContent, 147–148
AnyMechanism, 144–145
AnyModel, 146–147
AnyView, 145–146

categories, 234f, 235f
concerns, 9
concurrent software development method,

11–14
context awareness and assessment, 244–247
core knowledge, 9
CRC cards, 258–259, 259t
deployment

conceptual point of view, 282–283
practical point of view, 283–284

Fayad’s template, 354–355
fool-proof methodology, 251–252
formation and stable architectural patterns,

35–36, 37f
future work, 338–339
goals

discovery, 60, 61f
knowledge, 60–62, 62f
learning, 58–60, 59f

mapping elements, 31–32, 31t
methodology, 11–14, 13f
objectives, 7
open research issues, 16–19, 251–253
overview, 8–9
packages representation, 269–271, 271f
versus pattern languages, 9–11, 11t
patterns system, 258
potential, 17
properties of, 240–247
quality factors, 239–240
representation, 10f, 35f
research methodology, 15–16
SPM, 260–261, 261t
stability and patterns, 31–32
steps, 12–14
structure. See Knowledge maps, structure
template, 234–236
testing cycle, 286–287
three-layer representation, 237, 238f
versus traditional pattern languages, 247–248
validation process, 286
verification process, 286

Knowledge maps, structure
brand using, 245f, 246f
notation used, 233–234
properties

faster ROI, 244
generality and reusability property, 244
infinite stable software architectures, 244
intersection property, 241, 242f–244f
measurement property, 241–244
partitioning property, 240–241, 241f

quality factors, 239–240
and relationship with UML, 236–239
scalability quality, 240f
template, 234–236

The knowledge stable analysis pattern
autonomic computing context (scenario 1), 122f

class diagram, 120
sequence diagram, 123, 124f
use case, 120–123

challenges, 113
constraints, 113–114
context, 111
CRC cards, 115–120
CRM system (scenario 2), 126f

class diagram, 123–124
use case, 124–127

examples, 120–127
measurability, 127–128
open research issues, 129
problem

functional requirements, 111–112
nonfunctional requirements, 113

related patterns, 127

421Index

solution
pattern participants, 115
pattern structure, 114

structure, 114f
usages, 128

L

Linkage map, 161

M

Magnetic resonance imaging (MRI), 250
Mapping elements

knowledge maps, 31–32, 31t
process patterns, 32

Maps
genetic, 161, 212
geograpical, 162
negative impacts, 160
topographic, 161, 213
usage and purposes, 157–159

Mathematical mapping (case study)
class diagram, 186–188, 187f
sequence diagram, 188, 189f
use case, 182–186

Metaphors, work flow, 137
Modeling issues, 92
Model-view-mapping (MVM), 248
MRI (Magnetic resonance imaging), 250

N

National Leadership Grants (NLG), 53
Navigation, 165, 166f, 172
NFR (nonfunctional requirements) framework, 68

O

Object constraint language, formalization using, 95–97
Object-oriented paradigm (OOP), 303
Ontology

components, 43–44
concepts and relationships, 44f
definition, 43–45

P

Patterns
discovery, 98–99
documentation templates

detailed, 341–350
other, 351–355
short, 350

effective CRC card format, 319–324
language versus knowledge maps, 9–11

names and documentations
AnyContext stable design pattern, 215–226
AnyMap stable design pattern, 157–207
discovery stable analysis pattern, 73–107
knowledge stable analysis pattern, 109–131

process, 32
singleton, 297
stable analysis

brainstorming, 310–313
CRC cards modeling, 315–318
discovery, 73–101
engagement, 313–315
knowledge, 109–129

stable design
AnyContent, 147–148, 149f
AnyContext, 215–226
AnyMap, 157–207
AnyMechanism, 144–145, 145f
AnyModel, 146–147, 147f
AnyView, 145–146, 146f

systems, 258
Personal digital assistants (PDAs), 206
Process patterns, 32
Production engines, 19

Q

Quality factors
common target environment, 285t
deployment, 284–285
stakeholders, 284t

R

Recommended Dietary Allowance (RDA), 89
Refinement techniques, abstraction, 42–43
Return on investment (ROI), 53, 137, 252, 339

S

SAP (Stable analysis pattern), 233
SArchPs, samples of

stable MRI architectural pattern, 250–251, 250f
stable MVM architectural pattern, 248–249, 249f

SDP (Stable design pattern), 251
Service engines, 19
Singleton pattern, 297
Site map, 212
Skeleton implementation, 292–293
Software project management (SPM), 260
Software stability concepts

layers, 8
overview, 8, 9f

Software stability model (SSM), 73, 157, 233, 272
capabilities, 34–35
criteria, 33

422 Index

Software stability model (SSM) (Continued)
deployment and verification and validation, 38–39
development scenarios, 36–38
e-commerce, 275f
goals, 33–34
stratification of, 239f
template, 274f
traditional model versus, 188–190

SPM (Software project management), 260
SSM (Software stability model), 157, 233
Stable analysis pattern (SAP), 12, 233

brainstorming, 310–313
catalog, 357
CRC cards modeling, 315–318
discovery, 73–101
engagement, 313–315
Fayad’s applications layout, 353–354
knowledge, 109–129

Stable design pattern (SDP), 251
AnyContent, 147–148, 149f
AnyContext, 215–226
AnyMap, 157–207
AnyMechanism, 144–145, 145f
AnyModel, 146–147, 147f
AnyView, 145–146, 146f
catalog, 357
Fayad’s applications layout, 353–354

Subgoals
advantages and disadvantages, 63
analogy use, 62–63
dealing with, 57

Symbol dictionary, 163

T

Templates, knowledge map
detailed, 341–350

other, 351–355
short, 350

Topographic map, 161, 213
Traditional model

map, 190f
versus SSM, 188–190
versus stable model, 90

Traditional pattern languages, 11, 21
knowledge maps, 247–248
pitfalls of, 18–19

Type-oriented paradigm (TOP), 264

U

Unified data mining engine (UDME), 98
Unified modeling language (UML), 226, 233, 271

components representation, 272f
Unified performance evaluation engine

(UPEE), 98
Unified programmable dynamic discovery engine

(UPDDE), 100
Unified software engine (USE), 19

V

Validation, 286
Verification, 286
Visualization, 162–163, 173
Vitamin K discovery (case study), 86–90
V&V (verification and validation)

processes, 281, 286

W

Web services dynamic discovery
(WS-Discovery), 99

Work flow, capabilities, 154

	Пустая страница

	Cit p_11:1:
	Cit p_36:1:
	Cit p_3:1:
	Cit p_38:1:
	Cit p_1:1:
	Cit p_1:2:
	1:
	Cit p_3:1:

	Cit p_4:1:
	Cit p_31:1:
	Cit p_14:1:
	Cit p_87:1:
	Cit p_84:1:
	Cit p_85:1:
	2:
	Cit p_1:1:

	Cit p_2:1:
	Cit p_5:1:
	Cit p_35:1:
	Cit p_37:1:
	Cit p_71:1:
	3:
	Cit p_3:1:

	4:
	Cit p_5:1:

	Cit p_5:2:
	Cit p_6:1:
	Cit p_6:2:
	Cit p_47:1:
	Cit p_75:1:
	Cit p_8:1:
	Cit p_12:1:
	Cit p_21:1:
	Cit p_7:1:
	Cit p_9:1:
	5:
	Cit p_11:1:
	Cit p_4:1:

	Cit p_13:1:
	Cit p_22:1:
	Cit p_40:1:
	Cit p_42:1:
	Cit p_44:1:
	Cit p_34:1:
	Cit p_43:1:
	Cit p_56:1:
	Cit p_60:1:
	Cit p_62:1:
	Cit p_48:1:
	Cit p_57:1:
	Cit p_57:2:
	Cit p_59:1:
	Cit p_61:1:
	Cit p_72:1:
	Cit p_89:1:
	Cit p_82:1:
	Cit p_94:1:
	Cit p_104:1:
	Cit p_108:1:
	Cit p_108:2:
	Cit p_110:1:
	Cit p_103:1:
	Cit p_114:1:
	Cit p_114:2:
	Cit p_118:1:
	Cit p_119:1:
	Cit p_128:1:
	Cit p_155:1:
	Cit p_139:1:
	Cit p_145:1:
	Cit p_145:2:
	Cit p_154:1:
	Cit p_147:1:
	Cit p_133:1:
	Cit p_142:1:
	Cit p_142:2:
	Cit p_151:1:
	Cit p_151:2:
	Cit p_144:1:
	Cit p_164:1:
	Cit p_164:2:
	Cit p_175:1:
	Cit p_159:1:
	Cit p_163:1:
	Cit p_163:2:
	Cit p_156:1:
	Cit p_158:1:
	Cit p_198:1:
	Cit p_191:1:
	Cit p_191:2:
	Cit p_184:1:
	Cit p_186:1:
	Cit p_188:1:
	Cit p_183:1:
	Cit p_199:1:
	Cit p_185:1:
	Cit p_206:1:
	Cit p_208:1:
	Cit p_210:1:
	Cit p_209:1:
	Cit p_218:1:
	Cit p_223:1:
	Cit p_241:1:
	Cit p_247:1:
	Cit p_249:1:
	Cit p_244:1:
	Cit p_246:1:
	Cit p_252:1:
	Cit p_252:2:
	Cit p_245:1:

