Software Patterns,
Knowledge Maps, and

Domain Analysis

Mohamed k. Fayad » Huascar A. Sanchez
Srikanth G.K. Hegde * Anshu Basia * Ashka Vakil

Software Patterns,
Knowledge Maps, and

Domain Analysis

Mohamed E. Fayad ¢ Huascar A. Sanchez
Srikanth G.K. Hegde * Anshu Basia * Ashka Vakil

CRC Press

Taylor & Francis Group

Boca Raton London New York
SS

Taylor & Francis Group, an informa
AAAAAAAAAAAA OK

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20141006

International Standard Book Number-13: 978-1-4665-7144-0 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Dedication

To the land of the Delta—Egypt, and the land of Dreams—The
United States of America, and the love of science and humanity
that they share. .. Pouring out a flood of knowledge for centuries
and centuries between the Nile and the Mississippi. .. Between the
millstones of my heart, Egypt and the United States of America. ..

Mohamed E. Fayad
To my wife, Claudia, and my two beautiful daughters, Isabella and Camilla.
Huascar A. Sanchez
To my wife, Kumuda.
Srikanth G. K. Hegde
To my family, for their encouragement and support.

Ashka Vakil

Contents

PrEfacCe. ..ottt et et et e e e e e e e e e e e e e e Xvii
ACKNOWISAZMENLS ...ttt ettt et ebb e et e sabeeeae xxi
AUTNOTS .ot e e e e et e e e e e e e e e Xxiil

SECTION I Introduction

Chapter 1 An Overview of Knowledge Mapscocceceevieninieiicniinenieneneneeenieeieeeene 5

1.1 Introduction: Key Concepts—Software Stable Models,
Knowledge Maps, Pattern Language, Goals, Capabilities

(Enduring Business Themes + Business Objects)cccceeevveeevveennenn. 5
1.2 The MOtIVALION ..c..eeitiiiieiieniieniiesiiestee sttt ettt 6
1.3 The Problemcoieiiiiieiiee ettt e e e 7
1.4 The ObBJECLIVES ...cueiiieiiiiieiieiieeeee ettt 7
1.5 Overview of Software Stability Concepts........cceceevvuverniieeneeenieenneene 8
1.6 Overview of Knowledge Mapsccccvevvieriiieiiiieeniieeiie e 8
1.7 Pattern Languages versus Knowledge Maps: A Brief Comparison.....9
1.8 The SOIUHON. ..c..eiiiiiiiiiiiie et 11
1.9 Knowledge Maps Methodology or Concurrent Software
Development Model.........ccc.eovuiiiiiiiiiiiiiiiieeetesee e 11
1.10 Why Knowledge Maps?........ccccooieiriieniieniie ettt 14
1.10.1 Research Methodology Undertakencccceeveveeeeieennnnnee. 14
1.10.2 Research Verification and Validationcccccecoeevieenennnenne 15
1.10.3 The Stratification of This BoOKcccceccevniriiiiiiininnieens 15
SUMIMATY + ettt st et et e et sttt e eaee e 16
Open Research ISSUES........oouiiiiiiiiiiiiiiiieieccecee e 16
ReVIEW QUESLIONSuvvviiieeeieeiiiiee e ettt eeeete e e e eeeta e e e e eeetaaeeeeeeeeeanns 19
EXBICISES ettt ettt et ettt 20
g 0] [Tt USSR 20
Chapter 2 Abstraction: Knowledge Maps, Stability, and Patternscccceeevvevnenee. 29
2.1 INErOAUCHION ..o 29
2.2 Levels of Abstraction in Knowledge Maps.........cccccceevverieriiennicnnenne. 30
2.3 Mapping Elements in Knowledge Maps to Software Stability
Concepts and Patterns.........ocoocueevueiiiiriiiniiieiieeeeeie e 31
2.4 The Software Stability Model..........cccoocuerviiiiiiiiiiiiiieeieeeeeee 32
241 GOALS ittt 33
2.4.2 Capabilities ...cccuveeerieeiieeiieeiie ettt e 34
243 Knowledge Maps: Formation and Stable Architectural
Patternsooeeeiiie it 35

vi Contents

2.4.4 Development SCENATIOScc.ueerveerueerieeriieeeiieesieeenieeenteenieenns 36

2.4.5 Deployment and Verification and Validation............c.cccceeee. 38

SUIIMNATY -evteitieeitieeiie et ettt et et e et e et e et e e sabeesabeesabeeenseeesseeeenseesaseesnnes 39

Open Research ISSUES.......cviviiiriiieeiie et 39

RevVIeW QUESHIONSeeiiiiiieieiiieeceiiee ettt e et e e e e e eeate e e e e e e e e e aree e eaneas 40

B BICISES 1.ttt ettt ettt ettt e bbbttt et et en 41

PrOJECES ettt s 41
SECTION Il Goals of the Knowledge Maps

Chapter 3 The Goals: Significance and Identification.............ccceceeviieiiniinienienieeee, 49

3.1 INEEOAUCHION ..ottt et 49

3.2 Significance of GOAalS.......ceeeviiiriiiiiiiiiieeieeeeee et 50

3.2.1 An Example: A Simple E-Commerce Application.................. 52

3.3 Dealing with Goals: Extraction and Assessment..............ccceeevverveennee. 53

3.4 Extracting the Goals of a Discipline: The Process.........ccccoceevennne 55

3.4.1 Dealing with SUbgoals.........ccceeviriiiiiiiiiiiece e 57

3.5 Goals of Knowledge Mapsc..ccoceevieriiniiniiniiniiniceicneeceeeeeee 58

3.5.1 Goal 1: Learning......c.coeueerueeeiieeiieenieesieesieesieesieeesiee e 58

3.5.2 GOAl 2: DISCOVETY ..uvvieiiieiiiieeiie et et eeeeesieeseeeseeeesnaeesnsee e 60

3.5.3 Goal 3: KNOWIEdZEccvvveeevieeiieeieeeeeeecee e 60

3.0 SUDZOAIS....iiiiiiietieee e 62

3.6.1 Use an Analogy: Marriage or Friendshipcccceeerinnnnn 62

SUMMATY ..ttt ettt st ettt e 63

Open Research ISSUES......cc.uiiiiiiiiiiiiieeiie et 63

ReVIEW QUESLIONSuuvvveiieeeeeeiieeeee et eeeee e e e e e e e e eeeaareeeeeeeen 64

EXETCISES e ettt ettt s e 65

PrOJECES ettt 67

Chapter 4 Discovery Stable Analysis Patternc.cccccvevcveeeeiieeiieinie e 73

4.1 INFOAUCHION ..ottt e 73

4.2 Discovery Stable Analysis Pattern...........ccccoeveereenienienienieeeeeeee 74

4.2.1 Pattern Name: Discovery Stable Analysis Pattern................... 74

4.2.2 KNOWI AS ettt ettt 74

4.2.3 CONEXL..iuviiieiiiiieiiereie sttt s 75

4.2.4 Problem........ccooiiiiiiiiiiiiiiiieeeeeeee e 75

4.2.4.1 Functional Requir€ments...........cccceeveerueeneeneeneennenns 76

4.2.4.2 Nonfunctional Requirements.............cccceevvereereennene 78

4.2.5 Challenges and CONSLrAINScccueevveevuieveeenieeieeieeieeieeieeiens 78

4.2.5.1 Challengesccceeeruieerieeriieiiieeieeeite e 79

4.2.5.2 CONSAINES. couveeteiieeieeiieieeteeieente ettt ens 79

42,6 SOIULION......coiiiiiiiieieie ettt 80

4.2.6.1 CRC Cards.......ceceeruerireesieninieneeieneeeeeenene e 83

4277 CONSEQUEIICESuvenrienrienieeneeeteeteeieeteeseeteeteenbeebeeseenseenseens 86

Contents

Chapter 5

vii

4.2.8 APPHCADILILY . .eeeuiieiieiieiiee e 86
4.2.8.1 Case Study 1: Discovery of a New Vitamin K.......... 86
4.2.9 Related Patterns and Measurability...........ccccceevveeiiienieeninenns 90
4.29.1 Related Patterncccceeveeveeneinennennieeeeeeeiene 90
4.2.9.2 Measurability........ccceeeeveercrieniieeie e 91
4.2.10 Modeling Issues, Criteria, and Constraintsc...cccceevueeneenne 92
4.2.10.1 Modeling HEUTrIStICS ...cocveevieiieiieiieieeiiciecieeieee 92
4.2.11 Design and Implementation ISSUESccccceveevirnieniineenienns 92
4.2.11.1 Delegation versus Inheritancecccceeeueernennee. 93
4.2.11.2 Model Implemented with Delegation 93
4.2.12 TeStabilityoocveeiiiiiiiiiieciceeeee e 94

4.2.13 Formalization Using Object Constraint
Language, Z++ or Object Z, and/or Extended

Backus—Naur FOrmcccoooiiiiiiiniiiiiiiicceceeee e 95

4.2.14 BUSINESS ISSULSeouvieiiiiiiiiiiiieieeieeeceecee e 97
4.2.14.1 Business Rules........cccceevieniiniiniiniiniiecccceee 97

4.2.14.2 Business INtegrationc.ccceceeveeneenieeneenceneenens 98

4.2.14.3 Business Enduring Themes..........ccccocceeveninereennn. 98

4.2.15 Known USageS......ccueevuiriiiiiriiiiieiieieeeeeie ettt 98
4.2.16 Tips and HEUTIStICS ..ccuerverieriiriieiieiieiceecceeee e 99
SUINIMNATY -evteitieeitieetie ettt ettt ee et e et e et e e abeessbeesabeesnbeeenseeesbeeenseesaseesnnes 99
Open Research ISSUES.......ccvieiiieiiieiiie ettt 100
RevVIeW QUESHIONSviiiiiiiieeciiiie et e e ettt e eeie e e et e e eeataeeeetaeeeeareeeeeareeeeeaes 101
EXBICISES 1.ttt ettt st et 103
PrOJECES ettt e 105
The Knowledge Stable Analysis Patterncoccevoiriiiiiniineiicieeee 109
5.1 INEFOAUCTION «..eiiiiiiiiieitieteeeee ettt 109
5.2 Pattern DocumMentationc.eevueeeriieiniieniie sttt 110
5.2.1 Pattern Name: Knowledge Stable Analysis Pattern............... 110

5.2.2 KNOWN AS ittt sttt 110

5.2.3 CONLEXL. ettt ettt sttt 11

5.2.4 Problem.......ccooiiiiiiiiiiiiiie e 111
5.2.4.1 Functional Requirements............cccceevueerueernneennne. 111

5.2.4.2 Nonfunctional Requirements..........cc.cccocverveneennee. 113

5.2.5 Challenges and CONStIaintscceeeeveerieeeriieeesieeeneeeneeennnns 113

5.2.6 Solution: Pattern Structure and Participants...............cc......... 114
5.2.6.1 SHUCLUT® ..cvieiiiiiiiiiniieiiesiteeete et 114

5.2.6.2 PartiCipants......cccccoceeveerienienienienee e 115

5.2.6.3 CRC Cards......ccooeevueeriiiiiienienieneesee st 115

5.2.7 Applicability with Illustrated Examples..........c.cccoceerveneennee. 120
5.2.77.1 Scenario 1—Autonomic Computing Context........ 120

5.2.7.2 Scenario 2—CRM SyStem..........cccceerereercreernnrenne. 123

5.2.8 Related Patterns and Measurability...........ccccceevieerveenieennn. 127
5.2.8.1 Measurability......cccccevvieiieniieniinienienieee e, 127

5.2.9 Known USages.....c.cccociriiriiriiniinienienieeiesee e 128

viii Contents

SUIINATY -eteenitteiiiteeitte ettt ettt ettt e bt e e s bt e e sabeesabeesabeesbeeesabeesaneenas 128

Open Research ISSUES.........ooviiiiriiiiiiiiicncc e 129

ReVIEW QUESLIONSuvvvviiieeeeeiiieeee ettt eeeee e e e e e e e eeeearraeeeeeean 129

EXEICISE .ttt 130

PrOJECES ittt ettt e st e et e et e et e eta e e snbeeenbeeennea e 130
SECTION Il Knowledge Map Capabilities

Chapter 6 Capabilities: The Heart of BUSINESScceeevvieeriieeiiiiiieeieeeiie e 135

6.1 INtrOAUCHIONeovviiiiiiiiiiieiietee e 135

6.1.1 The Heart of the BuSinessccccceveereeniinienienieniencenene 135

6.1.2 Work Flow Metaphor—Workhorses..........ccccceeeeveeniencenienne 137

Chapter 7

6.1.3 Dealing with Capabilities: Identification and Assessment137
6.1.3.1 The Impact of BO on Creating Multiple

Applications: Generality..........cceocveerieeriieencieenneens 139

6.1.3.2 BO = Stable Design Patterns...........ccccccvevevvernrennee. 139

6.1.3.3 Essential Properties of BOc..coccocevcieiinincencnnns 139

6.1.4 A Goal with No Capability.......cccccocervereeniinininecnineneenene. 139

6.1.5 A Capability with No Goal.........cccccoceeriiniiniiiniiiiicecens 140

6.1.6 Identification Process of Capabilities: An Example............... 141

6.2 Capabilities of Knowledge Maps.........coccveerieeiiieiiieeiieerie e 144
6.2.1 Capability 1cocoiiiiiiiiiiie e 144

6.2.2 Capability 2ccceoiiiiiiiieiieee e 145

6.2.3 Capability 3cccoiiiiiiiieee e 146

6.2.4 Capability 4ccoooiiiiiiieeieeeee e 147
SUINNIMATY 1eeteitteeiite ettt ettt e et e et e e bt e e s bt e sabeessteesbeeeseeesnseesaneens 148
Open Research ISSUES......cc.uieriieiiieiiie ettt 149
RevVIeW QUESHIONSviiiiiiiieeciiiieeeiiee e et eeete e e et e e eeebaeeeetaeeeeereeeesaneeaeeaes 149
EXICISES ..ttt ettt sttt e 150
PrOJECES ..ttt e 152
AnyMap Stable Design Patternccoceeieiiiiiiiiiiieiiceeceeeeee 157
7.1 INtrOAUCHION ...t 157
7.2 Pattern Documentationccceevueeerieeenieenieeniie et 160
7.2.1 Pattern Name: AnyMap Stable Design Pattern...................... 160

722 KNOWN AS .ottt 160

T.2.3 CONLEXLu ittt ettt st 161

7.2.4 Problem........ccccoiiiiiiiiiiiiiie e 162
7.2.4.1 Functional Requirements...........ccccoeceeveerienieneennee. 162

7.2.4.2 Nonfunctional Requirements.........c..ccoccceveervennennee. 168

7.2.5 Challenges and CONStraintscceeeeveeriueeriieersieeeneeeneeennnenn 169
7.2.5.1 Challengesccceeeveeeriieesiieeiieenieesreeeeee e eeee s 169

7.2.5.2 CONSIAINES....ccovviiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeee e 170

Contents

Chapter 8

ix

7.2.6 Solution Structure and Participantsccoceveeereereennennen. 171

7.2.6.1 SEIUCLUIES....eeeiiiieriiieniieeiie ettt e 171

7.2.6.2 PartiCipants.......cccceeecueeesieeenieenieenieeeiee e 171

7.2.6.3 CRC Cards......ccooeeveeriinienienieneeneeneeneeseeeeees 172

727 CONSEQUENCES ..eeeveeeerreerireeirresereesseesseessseessseeasseesssseessessssees 178

7.2.8 Applicability with Illustrated Examples..........c.cccecevieneenee. 178
7.2.8.1 Case Study 1: Navigation—Google Road Map

for Planning Driving Routes........c..cccccoveeennenne. 178

7.2.8.2 Case Study 2: Mathematical Mapping................... 182

7.2.9 Related Patterns and Measurability...........ccccceevveerveenneennn. 188

7.2.9.1 Traditional Model versus SSMcc.cccocveviennennen. 188

7.2.9.2 Measurability........cccecerinerienieneninienenenceiene 190

7.2.10 Modeling Issues, Criteria, and Constraintsc...ccceeeenneee. 191

7.2.10.1 ADSEIACHON ..eovvvieiiieniiieeiieeiie ettt e 191

7.2.11 Design and Implementation ISSUESccceevuveerieeriieenieennn. 193

7.2.12 FOrmaliZationcccccecueviirienienienieniestesiee st 194

7.2.13 TeStability ...cooveeiiiiiiiiiierieee e 202

7.2.14 BUsSIness [SSUESccceeriiiiiiiiiiiiie et 203

7.2.15 KNOWN USAZE ..eevveeruiiiiiiiiiiieiie ettt 205

7.2.16 Tips and HEUTriStiCScouereeriirienieniiicniene e 206

SUINIMNATY <eeteitieeiite ettt ettt ettt e et e et e esateesabeesnbeeenteesnbeesneeesnseesnneanns 207

Open Research ISSUES.......ccvieiiieiiieiiie ettt 207

RevVIeW QUESHIONSviiiiiiiieeciiiie et e e ettt e eeie e e et e e eeataeeeetaeeeeareeeeeareeeeeaes 207

EXICISES 1.ttt 209

Research and Developmentcccoiiieniiiniiiniieniiiiiciceeeeen 210

Indexing and Dictionary Search..........c.cccocverviniiniiniiniincncnecee, 210

Site Map Developmentcoovierieeriieeiieeieeie et 211

g 0] [Tt USRS 211

AnyContext Stable Design Patternccoceevieiiiiiiiiiiniiiniiiicenieenees 215

8.1 INLrOAUCHION ..ottt e 215

8.2 Pattern DocUMENTAtiONcooueeviieriiiniiiniieiieieeieeeete e 216

8.2.1 Pattern Name: AnyContext Stable Design Pattern 216

8.2.2 KNOWN AS .ottt 216

8.2.3 COMLEXL.cuutiairieiieeriiee ettt ettt ettt sttt e st naree e 217

8.2.4 Problem........cccoiiiiiiiiiiiiiiice e 217

8.2.5 Challenges and Constraintsecceevveerueeneeneenieeneeneenneens 218

8.2.5.1 Challengesccccveeveeerieeeiieeiieeiee et 218

8.2.5.2 CONSLIAINTS.cc.veerueeriieiieiieieeieenieenieeie et 218

8.2.6 Solution: Pattern Structure and Participants............c.cceeeuvennns 218

8.2.6.1 CRC CardS.....ccceerueeruiaiiieiiiesieenieesieesieeieeieeieeiene 220

8.2.6.2 CONSEUENCES ...eeuvienrieeieieenieenieenieenieenieenieeneeeneeens 221

8.2.6.3 Applicability with Illustrated Examples................ 221

SUINNIMNATY -eteeitieeitie ettt ettt e st e et e e bt eeetteesabeesnbeeenteesnbeessaeesnseesnneanns 226

Open Research ISSUES........cvieiiieiiieiiieeie ettt 226

Contents

ReVIEW QUESHIONSvviiiiiiiieeeiiie et e ettt eetee e e et e e et e e eeareeeeeaaeeeeans 226
EXOTCISES . ttiiieiiiie ettt e et e e e et e e eenbae e e sataeeeenbaeeeennaaaeenes 227
PrOJECES ettt ettt et e b b ens 227

SECTION IV Knowledge Maps, Development, and Deployment

Chapter 9

Chapter 10

Knowledge Maps: System of Patternsccceeeeeevieeniienieenieeeiee e 231
0.1 INtrOAUCHIONeouiiiniiiiieieeiteete ettt 231
9.2 Representation of Knowledge Maps: Structure, Quality
Factors, and Properties.........ccoceeeerieiieniiiie et 232
9.2.1 Structure of the Knowledge Maps.........ccocceveervenienecnnee. 233
9.2.1.1 The Notation Used in Knowledge
Map StruCtUIeScvvvvneeeeiiiiiieeeeeeiiiieeeeeees 233
9.2.1.2 Knowledge Map Template...........cccccvrerurrenneen. 234
9.2.1.3 Structure of Knowledge Maps
and Its Relationship with UML 236
9.2.1.4 Quality Factors in Knowledge Maps................ 239
9.2.1.5 Properties of Knowledge Maps...........c.......... 240
9.3 Knowledge Maps versus Traditional Pattern Languages 247
9.4 Samples of SATChPScccoovviiiiiiieiiee e 248
9.4.1 ATCHItECtUIe 1 .oooviiiriiiiiiiiiieicienieeece e 248
0.4.2 ATCRItECUI® 2 ...ooviiiiieiieiieiieee et 250
SUMIMATY ..ttt 251
Open Research ISSUESoeeuiiiiiiiiiieiicceee e 251
ReVIEW QUESTIONS.ciiieiiieiieeeeeeereeeeeeeeeeee e e eeeree e e e e eerareeeeeeeeannneeas 253
EXEICISES ettt ettt sttt 255
PIOJECES ..t 255
Development Scenarios: Setting the Stagecoccecerveriieniieniienienieee, 263
10.1 INtrOAUCHION ...ttt 263
10.2 Implementation Issues of the Knowledge Maps.......c..ccccceeveneenee 264
10.2.1 Type versus Class within TOPcccccooviiininnieennnnn. 264
10.2.2 Design Type Specification Template..........c.ccccveercveernenne 266
10.2.2.1 Design Type Specification Template 1: EBT267
10.2.2.2 Design Type Specification Template 2: BO.....267
10.2.3 The Uses of Contracts in the Specification
Of Design TYPeS......ooveriiriiriiniiiiceceeecece e 267
10.2.4 The Hook Specification Templatecccoeeeveeerceennenne 268
10.2.5 Specification of the User Model or Storyteller................. 268
10.2.5.1 Packages OVErVIEWccccevveveeriveereveenereennnnnn 269
10.2.6 COMPONECILS ..couveeniieiieiieiieniieniiesitenieesieeseeesieesieesieesieesaees 271
10.3 Aspect-Oriented Modeling..........cccoeevierienieniinienienieseeieeeee. 272
10.3.1 Aspects as Core Design Features in a System 273

10.3.2 Difference between the Aspect-Oriented Design
Approach and SSM ..o, 274

Contents

Chapter 11

Xi

10.3.3 Identification of Whether Aspects Will Be All

the EBTs and All the BOs in a Systemc...cccccecveeeenee. 276
10.3.4 Understanding Whether Aspects in AOP

Will Represent either EBTs or BOs of SSM

LT B BN] 13 1 RO 277

10.3.5 Comparison between Extraction of Aspects in AOP,
EBTs, and BOs in SSM.....ccccociiiiininieiininicicicnceecen 277
10.3.6 Modeling EBTs and BOs as ASpPectsccccevvervenueennee. 278
SUIMIMATY ¢ttt ettt ettt st e st e s beeebeeeateessteesseeesnbeeenseesnseesnees 278
Open Research ISSUESoeeviieriieiiiecieeciie e 279
ReVIEW QUESHIONS.couviieiiiiie et e ettt e e et e e ear e e e eeareeeeeaneas 279
EXEICISES -nteiiteeie ettt sttt 279
PIOJECES ot 280
Deployment, Verification and Validation, and Quality Factors................. 281
11,1 INrOdUCHION ..ottt 281
11.2 Deployment of Knowledge Mapscccceveenienienienienienieneeee, 282
11.2.1 The Conceptual Point of View of Deployment................. 282
11.2.2 The Practical Point of View of Deployment 283
11.3 The Quality Factors of Deployment...........c.ccceevveerieenieenieenneenne 284
11.4 Deployment—VE&V ProCessccccvvevuieeeieerieenieenieesiee e eeee s 285
SUIMIMATY ¢ttt ettt ettt et e bt e bt e e sateesabeesabeesanee 287
Open Research ISSUESoouiiiiiiiiiiiiiiiieecceeeeee e 287
ReVIEW QUESHIONS. ...ccceuiiieiiiieeeiiee e eeiee ettt e tee e e eraeeeeeaeeeesereeeenneeas 287
EXETCISES ..ttt 288
PIOJECES ittt ettt eanee e 288

SECTION V Case Studies of the Knowledge Maps

Chapter 12 Knowledge Map Engine: Initial Work........c.cocoviniiiininiininnnien 291
12,1 INtroOdUCHIONeeuviiiiiiiiiecieee ettt 291
12.2 Interfaces Supported by the Knowledge Map Engine.................... 291
12.3 Implementations of the Interfaces...........cccoeveevviieniiencieecie e, 292
12,4 Structures of TYPES.....ccvecvereririerieniieceeeeeeceseetee e 294
12.5 Construction Heuristics of ENgiNes........ccccoeceevvenenenievincncncecnnns 297
12.6 The Hooking Facility of the Knowledge Map Engine 298

12.6.1 An Example: Creating Associations between
BOSs and IOs......ccooiiiiiiiiniiicicceeee e 300
SUMIMATY .eenteeetee ettt et e e e e e et eeebaesteeesreessaeessseesnseeesseesnseeennes 301
Open Research ISSUESoc.eiiieiiiiiiniieieeeeeee e 302
ReVIEW QUESHIONS.couiiiiieiiieeeeiiee ettt ettt e et e e e e e eeeeaaees 302
EXETCISES ettt ettt sttt ettt et 302

PIrOJECES ittt 302

xii Contents

Chapter 13 CRC Cards Knowledge Mapc..cccceceeriininieiiinineniecneneeeeniene e 303
13,1 INtrOUCHION ..cveeieiieeiite ettt et 303
13.2 What Makes Effective CRC Cards........c..ccoceereeriiniinicniinicnncns 304
13.3 CRC Cards Knowledge Classification............ccecveeruveenveenieenneenns 305
13.4 Toward a Knowledge Map for CRC Cards........c.ccccvvevveeecreernnenne. 307

13.4.1 Goals or Classificationcccceereerienienienienienieseeeee. 307
13.4.2 Capabilities or Properties........cccccceevueernieeneeenieenieenieene 307
13.4.3 Development SCeNarios.c..ccovereereeneeneeneeneeneeneennees 308
13.4.4 DeplOYMENt.....ccceeevueeriieiiieeieeeiteeiee e ereeeteeeiee e 308
13.4.5 Family of Patterns—Bird’s-Eye View........c..ccceveuvrrnnnn. 308
13.5 Knowledge Map for CRC Cardsccoceeveenienienienienienieneeee, 309
13.5.1 The Main Step in the Classification.........c..ccccceereeeennene 309
13.5.2 Pattern 1—Brainstorming Stable Analysis Pattern.......... 310
13.5.2.1 CONEXL uvviaiiiieiiiieeiiieeeiiee ettt 311
13.5.2.2 Problemccocirviiniiniiiniiiieeecceeceeeee, 311
13.5.2.3 SOIULION ..ottt 311
13.5.2.4 EXQAMPIL ..oovvvieeiiieeiieeeiee e 313
13.5.3 Pattern 2—Engagement Stable Analysis Pattern 313
13.5.3.1 CONLEXL uvviiiiiieiiiieiiiieeeiiee ettt 313
13.5.3.2 Problemcccoeeieiiiiiiniiiiiiieeeieeeeceeeeen 314
13.5.3.3 SOIULION ..eeiiiiiiiiiieiiceeeeceece e 314
13.5.3.4 Example: Conceptual Map Creation................. 314
13.5.4 Pattern 3—CRC Card Modeling Stable
Analysis Patternccocccoeviiiniiiniiiiieeeeeeeeee e, 315
13.5.4. 1 CONEXL .evvuviiiiiieiieeiieeeiee ettt 315
13.5.4.2 Problemcccccoviieviiiniiiiiieiieeieee e 316
13.5.4.3 FOTCES ...eeeuiiiiiiiiiieiceeeetesee e 317
13.5.4.4 SOIUtiON......eoviiiiiiiiiiiicceete e 317
13.5.5 The Main Step in the Capability..........ccccevvvvercieencriennnns 319
13.5.6 Pattern 4—Effective CRC Card Format Pattern.............. 319
13.5.6.1 CONEXL .uveiiiieiiieiieiie ettt 319
13.5.6.2 Problemccoocueeiiiiiniiiiiiiieeieeeeeeeeeen 319
13.5.6.3 FOTCESeouiiiiiiiiiienicececeeeee e 320
13.5.6.4 SOIULION ...eouiiiiiiiiiiiieceicecece e 321
13.5.6.5 EXaMPIE ..ooovviieiiieeiiieeiee e 321
SUMIMATY + ettt ettt ettt et et e bt e b e bt e beenbeens 325
Open Research ISSUES......coc.uiiiiiiiiiiiiiiicetcetceeee e 325
ReVIeW QUESHIONSvviieeiiiieeeiiieeeiiee e et e eeiee e e ettt e e eeeteeeeetaeeeesreeesenneeaeenns 325
EXBICISES .ttt 327
g 0] [Tt RSP SUSRPR 335

Chapter 14 Future Work and CONnCIUSIONS.........ccceriirienienieriieniiesieeseesicesieesieeniee e 337
141 Future WOTKcooiiiiiiiiiiee ettt 338
SUNMIMATY ¢ttt eitee ettt ettt ettt e et e st eebeeeaeeesbteessbeesnbeeenbeesnseeenees 339

ReVIEW QUESTIONS.cccuviiiiiiieieeiiee ettt e e e e e ear e e e e are e e e e 340

Contents

Appendix A:

Appendix B:

Appendix C:

Appendix D:

EXETCISES .ottt ettt sttt et e e 340
PIOJECES e 340
Pattern Documentation Templates..........c.ccovieriereeneenieenienieneeeeseeiens 341
A.1 Pattern Documentation—Detailed Template (Preferred) 341
A.2 Pattern Documentation—Short Template...........ccccceevveeeniienieennnen. 350
Other TemPIates.cooviiiiiiiiieiee ettt 351
B.1 Fayad’s Class Responsibility and Collaboration Card Layout 351
B.2 Fayad’s Use Case Template.........ccccevvieriieniieiiiieiiie e 351
B.3 Fayad’s Stable Analysis/Design/Architectural
Patterns (LayOUL)ccccccvviiieeeeiiiiiiieeeeeiieeee e eeireee e e e enreeee e e 352
B.3.1 Stable Analysis Pattern or Stable Design Pattern
Layout (1 EBT and 2—14 BOS)......ccoviiiiiiiiienieenieceieeee 352
B.3.2 Stable Architectural Patterns Layout (2-5 EBTs
Where 3 Is the Most COmMmON)cccccuveeeeeeeeeiinneeeeeeeeenns 353
B.4 Fayad’s Stable Analysis/Design Pattern Applications Layout............... 353
B.4.1 Stable Analysis Pattern or Stable Design Pattern
Applications Layoutccccoeceeviierienienieiienie e 353
B.4.2 Stable Architectural Pattern Applications Layout.............. 354
B.5 Fayad’s Knowledge Map Template...........ccocceerveiriiienniieeneeenieannenn 354
Stable Patterns Catalog........cocveeiiiiiiiiniiiiiieiiceceeeeeee e 357
C.1 Stable Analysis Patternsccccocceevirieeninninniniiiiieieeeeieeeee 357
C.2 Stable Design Patternscccoeceevvieeeniieniienieenieeeiee et 357
Sample REqUITEMENtS.......cccoooiiiiiriiiiiriieeeeeteeee e 359
D.1 Ocean Resources Management SYStemccceevveeerveeeniveenueeennnenn 359
D.1.T INtroducCtioncocueevueenieenieenieeiieieeieeieeieeieeie e 359
D.1.2 Description of DOmMain..........ccceevvieriieeeiiieeieeieeeeeesieenns 359
D.1.3 Block DIagramcccceceerieiienienienieenieeieesiceiceieeieeieane 360
D.1.4 Description of the Program That Is Wanted 360
D.1.5 Detailed ReqUIrements...........cceeevueevueenieeneeneeneenieeneenneens 361
D.1.5.1 Functional Requirementsccceeeueerveerneennne. 361
D.1.5.2 Nonfunctional Requirementsccccccvveeveennee. 363
D.1.6 Use Case and User CONEXLccueerueerueerieenieenieenieenieenieeniens 363
D.1.6.1 Use Case l..cccoooieiiiiiiiieeieeeeee e 363
D.1.6.2 Use CaSe 2...ueviiiiieeiieeieeeeeee e 363
D.1.6.3 Use Case 3....ueieiiieiiieiiieeiteeee ettt 364
D.1.6.4 Use Case 4.....coceriiriiriiniiniineeneeneceeeeceeee 364
D.1.6.5 Use Case S....eerieriiiriiiniiiienieneeseenee e 364
D.1.6.6 Use CaSe O....eevveiieiiiniiieiieiieseesee e 364
D.1.6.7 USE CaSE 7.eueeiiieiiiieiieeieeeeeete e 364
D.1.6.8 Use Case 8.....ooeerueerieeieeieeieeie e 364
D.1.6.9 Use Case 9.....oeevueiiviiiiiieiiieeieeieeeeeee e 364
D.1.6.10 Use Case 10......ccocuerieriiniiniiniinecniceeceeceeeen 365

SOUTCES .ttt eeeeaas 365

Xiv

D3

D4

Contents
D.2 Dengue Fever Prevention and Outbreak

Management SYStemM........cc..viiuiiiiniiiineiiineiiie e 365
D.2.1 INtroductionceovvevieiriieriniiieiiiiee et 365
D.2.2 Description of Domaincccceeeeeeiiiiieeeeniiiiiee e, 365
D.2.3 Description of the Program That Is Required................. 366
D.2.4 Detailed Requirementsccceeevuieeiiiiieiniieeeniieeee 366
D.2.5 Use Cases and User ConteXt...........eeeeeveeueernrnrrrreeeeeenennn. 367
SOUTCES ..utiieiiiieee et ee et ee ettt e e et e e e e bt e e e bt e e esaaseeeesbaeeensaeeennseeens 369
Organizing Cricket World CUpccoecveeeiiiieiiiiieeieeeeeeeeeiee 370
D.3.1 Domain DeSCIriptionccceeeruveervierieeeiieeiieesireesveesveenns 370
D.3.2 Description of the Program That Is Wanted 370
D.3.3 Detailed RequUir€ments...........cccceevueeneereeneeneeneeneeneenieens 371
D.3.4 Use Cases and User CONLEXL......cccvvrrrrvrreeeecrieeniireeenieeeennns 373
D.3.4.1 UsSe Case 1 .ccviieviiieeeiieeeeiiee e 373
D342 Use Case 2 ..coccoviiriiriiniinieneenecneceeeeeceeeee 373
D343 UseCase 3 ..cocoriiriiniiienienieneeee e 373
D344 UseCase 4 ..ooovriiiiiiiiienieieseeee e 373
D.3.45 USeCase S .iiiiieeiieeieeeeeeee et 374
D.3.4.6 USeCaSC 0 ..ooeceereiiieeiieeiieeee e 374
D.3.47 USE CASE 7 cevriieeiiieeeieee ettt eeeee e 374
D348 Use Case 8 ..ccccevieriiriiniinicnecneenecececeee 374
D349 UseCase 9 ..coccovieriiriiniinienieececeeeeee 375
D.3.4.10 Use Case 10.....cccerieriinienieiieiienienieeeeeeen 375
D.3.4.11 Use Case 1..oooieeeiieeiieeiieeee et 375
D.3.4.12 Use Case 12 ..ocovvcviieeiiieeeieeeeeieee e 375
SOUTCES ...utiieeiiiiee ettt e ettt e e ettt e e ettt e e e tbeeeeabeeeessaseeeesbaeeensaeeennseeens 376
Pollution Managementc.eeevueeeriieenieenieenieesiee e eieeeiee e 376
D.4.1 Description of DOMain..........ccceervieriiieeiiieeie e 376
D.4.2 Block DIiagramcccceceeeeieeiiieeiiesieeeiie e eeeesvee e 377
D.4.3 Description of the Program That Is Wanted 377
D.4.4 Detailed ReqUiréments.........cocceeevveerieenieenieeeneeenieenieenne 377
D.4.4.1 Functional Requirements.........c..ccoccovverveneennee. 377
D.4.4.2 Nonfunctional Requirements...........c.ccceeveenee. 378

D.4.5 Use Cases and User CONeXL.......cccueevueerueeneeneenieenieeneenneens 378
D451 UseCase | .oooirieiiiiiiiienieiieeeeeeee e 378
D452 USECaSE 2 .uuiiiiieiieeiie et 378
D.4.53 USe CaSe 3 ...oiiiieiieieiieeeeeieee et 379
D454 USe CaSE 4 ...ooiiieiiieeeiieeeeiiee et 379
D455 UseCase S ..oooiririiniiiiinicieeneeneceeeeceee 379
D456 Use Case 6 ..ooceereeriiniiniiiienieneeneceeeeeee 379
D457 USE CaSE 7 weereiriieiiieiieeieeieeee sttt 379
D458 UseCase 8 ..ooovveeeieeeiieeiieeee et 380
D.4.59 Use Case 9 ..ooiiviiiieiieeeceee e 380
D.4.5.10 Use Case 10......ccccieeeevirieiiiieeeieee e 380
D.4.5.11 Use Case T.ccccooiiriiniiniiniinicneciceceeceeee 380
D.4.5.12 Use Case 12oocueiiiriieiiiiiniceeeceeeeeee 380

D.4.5.13 USE CaSE 13..cumeeiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeee 380

Contents XV
D.4.5.14 Use Case 14....cooouiieeiiiieeeiieeeiiee et 381

D.A45.15 Use Case 15. it 381

D.4.6 INerfacescoccoevervieriiriiiriiiiccicececeee e 381
SOUICES ...ttt ettt ettt et 381
D.5 Natural Disaster Tracking SyStemcccceccvevvrierriieesieenieeeieeenenn 381
D.5.1 GoalS/PUIPOSES.....ceeueiriiiriiieiieeiieeieeieete et 381
D.5.2 MOUVALIONS ...cvviieeiiieeeiiieeeeiiieeeieee e eree e e e sareeeeivee s 381
D.5.3 Brief Descriptionccccecueeviervienvieniieneeneenecneeeeceecneen 382
D.5.4 Challengesccceeveeeiiieeiieeiieeiieeeeeeseee et 382
D.5.5 Accomplishments.........ccceecereeiirniieniienieeeiee e 382
D.5.6 Project Resultscccoecveeeeiiiiiiiiiieceeceecee e 383
D.5.7 Description of the Domaincceceveeiniiniiiniiniineee, 383
D.5.8 Block Diagram.........cccocueevvieiiiiiiiniiiniceniceniee e 383
D.5.9 Use Cases and User Context.........ccevveerveereeersieeenuneannnenn 384
D.5.9.1 Use Case: Gather Satellite Information.......... 384

D.5.9.2 Use Case: Communicate with Media 384

D.5.9.3 Use Case: Manage and Model Data............... 384

D.5.9.4 Use Case: Backup and Transfer Information....384

D.5.9.5 Use Case: Monitor in Real Time.................... 385

D.5.9.6 Use Case: Gather Remote Aerial Sensor Data... 385

D.5.9.7 Use Case: Correlate Information.................... 385

D.5.9.8 Use Case: Allocate and Manage Resources.....385

D.5.9.9 Use Case: Track Natural Disasters 386

D.5.10 Detailed Requirementsccceeveeneenieneeneeneeneeieene 386
D.5.10.1 Nonfunctional Requirements......................... 386

D.5.10.2 Functional Requirements.........c..ccccccevvenueennee. 386

D51 INerface...coceeoeevieeiieiiiieeeceeeeeeeeeee e 387
SOUICES .ttt ettt sttt 387
D.6 Global Warming Control SYStemccceeeveeeviieerveenieenieeeieesneens 387
D.6.1 Description of the Domainc..ceceeceevueninievenenenciennens 389
D.6.2 Description of the Program That Is Required 389
D.6.3 Detailed Requirementsccccceceeeveervienecnicniicnicneennee. 390
D.6.3.1 Functional Requirements.............ccccceevuveenneen. 390

D.6.3.2 Nonfunctional Requirements........................ 391

D.6.4 USE CaSLS..eerueiriiiriieiiieeiieeiee ettt 391
D.6.41 UseCase 1 ..ccovvieviieeieeeiieeiee e 391

D.6.42 UseCase 2..cccccovieeiieeieeeiee et eiee e 392

D.6.43 UseCase 3 ...ccoooieviieriieiieeieeee et 392

D.6.4.4 UseCase 4 ...ccccooirviriniiniinecneceieeeceeee 392

D.6.45 Use Case S ...cooeriiriiniiiiinienicneeeeeeeeeeee 392

D.6.4.6 Use Case 6 ...coceeeeriiriiiiiniiniceeeeeeeeen 392

D.6.5 INerfacescccevvieviiiiiieeiie et 393
SOUTCES. .o iiiiiee ettt ettt e et e e ettt e e etteeeesateeesenbaeeeentbeeesassaeeeensseeennns 393
D.T7 CITCUS oottt ettt et e e etae e e eeaeeeeenaaaaeeaes 393
D.7.1 Description of the Domainccceceeevvierciieenieenieenen. 393
D.7.2 Description of the Program That Is Wanted.................... 394

D.7.2.1 Detailed Requirements..............cccceeveerureennenn. 395

XVi

Contents
D.7.3 Use Cases and User Contextcceeveerveenieersieerneeennnenn 395
D.7.3. 1 UseCase 1 ..ccovieniieiieeiieeieeieeeeeeeen 396
D.7.3.2 U Case 2 ...coceviiriieiiniinienecneceeeeeeeeees 396
D.7.3.3 Use Case 2.1 cccooeeriiriiiiiienecneeeeeeeeee 396
D.7.34 Use Case 3 ...cooioieriiiiiiienieneeeee e 396
D.7.3.5 Use Case 3.1 .coooieniiiniiiiiiiiiiceeceeceeeeeen 396
D.7.3.6 U Case 4 ...oooereeeiieieeieeeeeee e 397
D.7.377 UseCase 4.1 .ooooieviiiniiiiiiiieeieeeeeeeen 397
D.7.3.8 Use Case 4.2coccevviiriniiniinecniceiceeeeee 397
D.7.3.9 Use Case S ...cooeriiriiniiniinienecneeeeeeeee e 397
D.7.3.10 Use Case 6 ..covueerueeniiiiiiieienieeeeeeeeeeeeee 397
D.7.3. 11 USe Case 7 uveeeeeeeiieenieeiieeeeeeiec e 398
SOUICES. .ttt ettt ettt ettt ettt e e beeesabeesabee e 398
D.8 Jurassic Park.........ccoceeviiiiiiiiiiiii e 398
D.8.1 GOalS/PUIPOSES....cccvieriieeiieeiieeiieesie et 398
D.8.2 MOtIVAtION.eriiiiiiriiiiteiicee ettt 398
D.8.3 Description of DOMaiNccccvvervieriieniierieeeieeire e 398
D.8.4 Jurassic Park Block Diagram.......c..cccccocevenievencnenncncns 399
D.8.4.1 Description of the Program That Is Wanted.....399
D.8.4.2 Detailed Requirements........c..ccccervvereennnnne. 400
D.8.5 USE CaSLS..ceruiiruiiruiieiiiriierieeeeceteeetete et 402
D.8.5.1 Use Case I: Attack by Velociraptor,
While Releasing...........cccoevvevveenieeecreenineeenns 402
D.8.5.2 Use Case 2: Tour at the Park..........cc.cc.c.... 402
D.8.5.3 Use Case 3: Attempt to Steal Dinosaur
EmbBryo .c..cooveniiiiiiiniiicce 402
D.8.54 Use Case 4: Attack Due to Park’s Shut
Down Security Systemccceeeeeeecreeerunenne 402
D.8.5.5 Use Case 5: Visiting Paleontologist
and Children Hike to Safety...........cccceeuenee. 403
D.8.5.6 Use Case 6: Attempt to Restart Computer
and POWercccooviiiiiiiiiiiccecc, 403
D.8.5.7 Use Case 7: Children and Visiting
Paleontologist Reach the Shelter.................... 403
D.8.5.8 Use Case 8: Children Are Attacked
by Raptors......ccocveerieeriiiiiiiiiceicenccece 403
D.8.5.9 Use Case 9: Raptors Attack the Control
ROOM .. 403
D.8.5.10 Use Case 10: Escape from the Island............ 404
SOUICES . ..euteeiiteieeteet ettt ettt ettt et 404
... 405

Preface

This book delineates a new creation process and provides an understanding of software
pattern languages and true domain analysis based on the fundamental concepts of soft-
ware stability. It also introduces a well-defined paradigm for creating pattern languages,
software patterns, and better software development methodology that leads to highly
reusable artifacts and high-quality, cost-effective systems. Each chapter of the book
concludes with an open research issue, review questions, exercises, and projects.

The main goal of this book is to define knowledge maps as the groundwork for an
insightful classification of the software patterns governing or administering a particular
discipline. Knowledge maps are the enduring mirrors of experience and best practices of
what a discipline is, why it is so necessary, and how developers can exploit it.

This book addresses various issues related to stable software patterns, knowledge maps,
and domain analysis and eventually analyzes different paradigms and factors that result in
the creation of stable software systems that are reusable and extremely cost-effective to pro-
duce. It is written for use as an advanced textbook for software course developers, students
of software development, researchers, and academicians.

WHY THIS BOOK?

Software analysis and design patterns are known to play a vital role in enhancing the qual-
ity and merit of a software product. In addition, they are also known to lessen the final cost
of software products as well as reduce their life cycle. Despite the immense usefulness
of these patterns, we may still need to sort out a series of critical problems that usually
occur in today’s domain of contemporary analysis and design patterns, such as instability,
absence of right abstraction levels, and improper/insufficient documentation of procedures
and processes. All these factors, in combination, might significantly bring down factors like
reusability, repeatability, stability, robustness, and overall effectiveness of finished software
products.

Hence, software developers, pattern makers, and programmers may need to focus their
professional attention on using different patterns in combination, to solve myriad problems
that might pose numerous challenges, while developing a product, and to provide practi-
cal solutions to those problems to bring effective resolutions, which eventually lead to the
development of a robust and stable product with sustained life cycle and durability.

While conducting detailed research on these issues, we analyzed how numerous draw-
backs of current software approaches that deal with software patterns, especially in soft-
ware pattern compositions, traceability, generality, and so on, hindered the quality of built
systems in one way or another (e.g., design trade-offs, loss of generality). In order to
overcome these drawbacks, we have provided a standard way for conceiving, building,
and deploying systems by using a topology of software patterns. This topology is known
as knowledge maps. The knowledge map will serve as the road map or supporting tech-
nique to guide software practitioners as they delve into the rationale, business rules,
and context of application of a set of problem domains and come up with a high-quality
software system.

Xvii

Xviii Preface

The essence of knowledge maps is twofold: a clear methodology and a precise visual
representation. For the methodology approach, we have provided a set of guidelines,
heuristics, and quality factors that will simplify the process of creating knowledge maps,
along with their realization and documentation. However, for visual representation, we have
provided the visual gadgets or symbols that convey how the knowledge maps and their
enclosed elements look, and in what manner they interact with other enclosed elements or
other knowledge maps. Together, both methodology and visual representation serve as the
road map for building systems from software patterns in a cost-effective manner. In addi-
tion to this, this road map will also allow the creation of synergies between managers and
technical staff, especially when creating systems in terms of goals and capabilities. As a
result, these synergies will provide the ways and means for reducing existing communica-
tion gaps between the managerial and technical staff.

In essence, this book provides readers with a detailed view of the art and practice of cre-
ating meaningful knowledge maps that help software developers build software products
from stable, enduring, and cost-effective software patterns.

WHOM IS THIS BOOK FOR?

Software students who read this book will gain a basic, as well as advanced, under-
standing of principles and issues related to the creation of stable and robust software
patterns, meaningful knowledge maps, and their domain analysis. While using knowl-
edge maps, we can expect great team dynamics between managers and technical staffs.
They are capable of creating an environment where the initial clashing of ideas that
might occur because of one’s own beliefs and experience is immediately detected and
recognized for immediate action and identification of suitable solutions. This environ-
ment will also allow managers and technical staff to focus on the merit of the problem
and not on the irrelevant and trifles, for example, implementation details. At the same
time, it will also create a common language for communicating ideas between manag-
ers and the technical staff.

Students, software developers, software designers, and technical managers with a
basic background in software development and engineering will find information con-
tained in this book easy to understand. Although some of the material in this book
relates to advanced programming, readers (both beginning and advanced) can easily
understand its essence and get the big picture of creating knowledge maps and robust
software patterns.

This book could be of great help for a large community of computing and modeling aca-
demics, students, software technologists, software methodologists, software pattern com-
munities, component developers, software reuse communities, and software professionals
(analysts, designers, architects, programmers, testers, maintainers, and developers) who are
involved in the management, research, and development of methodologies and software
patterns. Industry agents, who work on any technology project and want to improve the
project’s reliability and cost-effectiveness, will also benefit hugely by reading this book.

We also anticipate and assume that the concepts presented in this book will greatly affect
the development of new software systems and application frameworks for the next two or
three decades. This book will be very valuable for database designers, knowledge manage-
ment and development professionals, and knowledge ontology scientists. We expect this
book to be a leading choice for many graduate courses on software engineering, system

Preface Xix

engineering, software modeling, knowledge modeling, domain analysis, requirement
engineering, software architectures, software design, and programmers.

HOW TO USE THIS BOOK

This book is designed to allow readers to master the basics of knowledge maps from their
theoretical aspects to practical application. To allow easy reading and better understanding
of individual topics, this book is divided into 14 chapters, each of which deals with separate
aspects of knowledge maps.

CHAPTER CONTENTS IN DETAIL

This book is stratified and segregated as follows. Chapter 1 provides an overview of the con-
tents of the entire book and sets the stage for its proper development. Chapter 2 examines the
methodology for forming knowledge maps in a cost-effective manner. Chapter 3 explores the
term goals and its importance in the formation of knowledge maps, whereas Chapters 4 and 5
provide a set of complete documentation of two stable analysis patterns: discovery and knowl-
edge. A goal without a trace of capability is not a goal; therefore, in Chapter 6, we will give
readers a detailed description of the capabilities of the element of knowledge maps and their
role in building them. Chapters 7 and 8 provide complete documentation of two stable design
patterns: AnyMap and AnyContext. Chapter 9 provides additional details and describes what
knowledge maps and their system of patterns are and their role in the understanding and
mastering of any discipline of interest. Chapter 10 concentrates and focuses on the formation
of development scenarios, especially in the identification of context-specific classes, and how
they are hooked into the core formed by goals and capabilities. Chapter 11 provides insight
and a summary of the ways and manner in which knowledge maps are deployed. Chapter 12
provides detailed descriptions on knowledge map engines and how software protagonists
can start initial work on the formation of a stable engine. Chapter 13 provides information
on CRC cards and their relationship with knowledge maps. Chapter 14 focuses on the book’s
concluding remarks, where we provide a summary of what we have performed throughout the
book and what we will do as a future task.

Mohamed E. Fayad
San Jose State University

Huascar A. Sanchez
University of California Santa Cruz

Srikanth G.K. Hegde
Freelance Writer

Anshu Basia
Quisk

Ashka Vakil
SAP

Acknowledgments

This book would not have been completed without the help of many great people; I thank
them all. I am honored to work with my friend and coauthor of this book, Srikanth G. K.
Hegde, and three of my best students and coauthors of this book, Huascar A. Sanchez, Anshu
Basia, and Ashka Vakil. This was a great and fun project because of your tremendous help
and extensive patience. I also thank all of my student assistants, Hema Veeraragavathatham,
Vishnu Sai Reddy Gangireddy, Mansi Joshi, Siddharth Jindal, and Pavan Pavuluri, for their
work on the figures and diagrams. Thanks to my dear friend and colleague Professor Supratik
Mukhopadhyay for his contribution of two sidebars, on formality and goal-oriented devel-
opment. Special thanks to my San Jose State University students—Chintan Shah, Hardik
Shah, Viral Sonawala, Ashutosh Kulkarni, Sapna Suku, Shashi Bhushan Kedilaya , Swetha
Seshadri; the Magnum team—Santosh Kumar Gottipamula, Vamseedhar Vuppu, Dhiwakar
Mani, Nirav Kumar Patel, Ashka Vakil, Lalitha Venkataramani, Padmavathi Chaganti, Suju
Koshy, Lois Desplat, Fayad Hussain, Ashira Khera, Ali Parandian, Mary Elaine David, Anu
Ganesan, and Joselyn Tapas; and Abhishek Maloo, Rahul Panjrath, Ruchin Kabra, Fan Ieong,
Priya Lobo, and Mrunali Mohane for helping me create the sample requirements in Appendix D.

Special thanks to my wife, Raefa, my lovely daughters Rodina and Rawan and my son
Ahmad for their great patience and understanding. Special thanks also to Srikanth’s wife,
Kumuda Srikanth, for help with reviewing some of the chapters. Special thanks to all my
friends all over the world for their encouragement and long discussions about the topics and
the issues in this book. Thanks to all my students and coauthors of many articles related to
this topic, in particular, Haitham Hamza, Ahmed Mahdy, Shasha Wu, Peeyush Tugnawat,
and Shivanshu Singh; to my friends Davide Brugali and Ahmed Yousif for their encourage-
ment during this project; and to the Communications of the ACM staff—my friends Diana
Crawford, the executive editor, Thomas E. Lambert, the managing editor, and Andrew
Rosenbloom, the senior editor.

On behalf of the authors of this book, I acknowledge and thank all of those who have had
a part in the production of this book. First, and foremost, we owe our families a huge debt
of gratitude for being so patient while we put their world in a whirl by injecting this writ-
ing activity into their already busy lives. We also thank the various reviewers and editors
who have helped in so many ways to get the book together. We thank our associates who
offered their advice and wisdom in defining the content of the book. We owe special thanks
to those who have worked on the various projects covered in the case studies and examples.

Finally, we acknowledge and thank the work of some of the people who helped us in
this effort: John Wyzalek, acquisition editor, Jill J. Jurgensen, senior project coordinator,
Keyle Meyer, project editor, and Rebecca Rothschild, the marketing manager at CRC Press,
Taylor & Francis Group, LLC, for their excellent and quality support and work done to
produce this book; a special note of acknowledgment and thanks to Indumathi S., project
management executive at Lumina Datamatics Ltd., whose team did a tremendous job
proofreading and copy editing all the chapters in detail, including the elegant and focused
way in which Indumathi took care of the day-to-day handling of this book; and special
thanks to all the people in marketing and design and the support staff at CRC Press,
Taylor & Francis Group, LLC, and Lumina Datamatics Ltd.

xxi

Authors

Dr. Mohamed E. Fayad is a full professor of computer engineering at San Jose State
University from 2002 to the present. He was a J.D. Edwards Professor, Computer Science
and Engineering, at the University of Nebraska, Lincoln, from 1999 to 2002; an associate
professor at the computer science and computer engineering faculty at the University of
Nevada, from 1995 to 1999; and an editor-in-chief for IEEE Computer Society Press—
Computer Science and Engineering Practice Press, from 1995 to 1997. He has 15+ years
of industrial experience. Dr. Fayad is an IEEE distinguished speaker, an associate editor,
editorial advisor, a columnist for the Communications of the ACM (Thinking Objectively),
and a columnist for the A/-Ahram newspaper (two million subscribers); he was a gen-
eral chair of the IEEE/Arab Computer Society International Conference on Computer
Systems and Applications (AICCSA 2001), Beirut, Lebanon, June 26-29, 2001; he is the
founder of the Arab Computer Society (ACS), serving as its president from April 2004
to April 2007.

Dr. Fayad is a known and well-recognized authority in the domain of theory and the
applications of software engineering. Dr. Fayad was a guest editor on 12 theme issues:
CACM’s OO Experiences, October 1995; IEEE Computer’s Managing OO Software
Development Projects, September 1996; CACM’s Software Patterns, October 1996; CACM'’s
00 Application Frameworks, October 1997, ACM Computing Surveys—QOO Application
Frameworks, March 2000; IEEE Software—Software Engineering in-the-Small, September/
October 2000; International Journal on Software Practice and Experiences, July 2001;
IEEE Transaction on Robotics and Automation— Object-Oriented Methods for Distributed
Control Architecture, October 2002; Annals of Software Engineering Journal—OO Web-
Based Software Engineering, October 2002; Journal of Systems and Software, Software
Architectures and Mobility, July 2010; and Pattern Languages: Addressing the Challenges,
Wiley Software: Practice and Experience, March—April 2012.

Dr. Fayad has published more than 218 high-quality papers, which include profound and
well-cited reports (more than 50) in reputed journals, 84 articles in refereed conferences,
more than 20 well-received and cited journal columns, 16 blogged columns; 12 well-cited
theme issues in prestigious journals and flagship magazines; 24 different workshops in
respected conferences; and over 125 tutorials, seminars, and short presentations in 30+
different countries, such as Hong Kong (thrice), Canada (12 times), Bahrain (twice), Saudi
Arabia (4 times), Egypt (30 times), Lebanon (twice), UAE (twice), Qatar (twice), Portugal
(twice), Finland (twice), United Kingdom (thrice), Holland (thrice), Germany (4 times),
Mexico (once), Argentina (thrice), Chile (once), Peru (once), Spain (once), and Brazil
(once). Dr. Fayad is founder of 7 online journals, NASA Red Team Review of QRAS and
NSF-USA Research Delegations’ Workshops to Argentina and Chile, and 4 authoritative
books, of which three are translated into different languages, such as Chinese; over 5 books
are currently in progress. Dr. Fayad is filing for 8 valuable and innovative patents and has
developed over 800 stable software patterns. Dr. Fayad earned an MS and a PhD in com-
puter science from the University of Minnesota at Minneapolis. His research title was OO
Software Engineering: Problems and Perspectives. He is the lead author of several clas-
sic works: Transition to OO Software Development, August 1998; Building Application

xxiii

XXiv Authors

Frameworks, September 1999; Implementing Application Frameworks, September 1999;
Domain-Specific Application Frameworks, October 1999. Dr. Fayad’s books in progress
include Stable Analysis Patterns, Stable Design Patterns, Unified Software Architectures,
Service and Production Engines, Moviemaking: UML and Knowledge Map in Action,
UML in Action, Unified Software Engine, and Knowledge Map: True Domain Analysis
Approach.

Huascar A. Sanchez is a PhD candidate in the University of California Santa Cruz’s
Computer Science Department. His research interests include software engineering, specif-
ically source code curation, an approach to discovering, cleaning, and refining online code
snippets upon which to build programs. Sanchez has earned an MS in software engineering
from San Jose State University.

Srikanth G. K. Hegde is a professional Internet security consultant and a freelance writer
with a master’s degree to his credit. His areas of interest include Internet security, net-
working, social media marketing, antivirus software, adware, spyware removal and its
management, Internet safety, network security policy, and broadband and Internet/security
protocols. In addition, his domains of interest also include preparing articles, whitepapers,
and status reports on diverse industries, businesses, global events, finance, and business
management. Furthermore, he has published numerous articles on software patterns (analy-
sis and design), pattern development, patterns composition, and knowledge maps, in asso-
ciation with Dr. Prof. M. E. Fayad. Srikanth is also an experienced freelance writer with
more than 15 years of experience in writing books, articles, columns, critiques, and various
other e-publications.

Anshu Basia is a software engineer with extensive experience and management skills.
Her specialization includes analyzing, designing, and developing complex enterprise solu-
tions in agile environments. Anshu is highly proficient in Java, Spring, Struts, HTML,
JavaScript, Rest Web services, SQL, and a multitude of other technologies used in modern
applications.

Currently, Anshu works for Quisk, a global technology company that partners with
financial institutions and others to digitize cash and provide safe, simple, and secure
financial services and cashless transactions for anyone with a mobile phone number.
Prior to joining Quisk, Anshu worked as a software engineer at A2Z (subsidiary of
Amazon.com) now known as Amazon Music. Anshu completed her second masters in
software engineering with a focus on enterprise software technologies from San Jose
State University, graduating with highest honors. Anshu’s first master’s degree is in
computer applications from Banasthali Vidyapith, India.

Ashka Vakil is an accomplished software engineer who specializes in building highly
complex enterprise applications. Ashka has 8+ years of extensive experience in architec-
ture, design, and agile development. She is an expert in mobile application and cloud appli-
cation development. Ashka is highly proficient in Java, HTML, JavaScript, web services,
SQL, and a multitude of other technologies used in modern web applications.

Currently, Ashka works for SAP, a German multinational software corporation that
makes enterprise software to manage business operations and customer relations. As a

Authors XXV

senior software engineer, she is responsible for building custom enterprise-grade mobile
applications for SAP customers. Prior to joining SAP, Ashka worked as a software engineer
at Tata Consultancy Services, the largest India-based IT services company. Ashka holds a
master’s degree in software engineering with a focus on enterprise software technologies
from San Jose State University, graduating with highest honors.

Section |

Introduction

2 Introduction

A knowledge map is a topology of patterns that is driven by the principles of software
stability concepts (Fayad 2002a, 2002b; Fayad and Altman 2001). In this section, we will
provide its structure, mantra, and the rationale-driven language use to discover and visu-
alize elemental pieces of knowledge (patterns), how to organize them, and how to relate
them to formulate an accurate solution in contexts, which shares the same core knowledge
(rationale or goals, and capabilities).

Building a knowledge map (Sanchez 2006) for a determined discipline involves myr-
iad skills, knowledge, and steps beyond the identification of the tangible artifacts that are
bound to a specific context of applicability. It also requires a systematic capture and full
understanding of the domain, where our solution would be laid down and expanded. That
includes describing the problem not from its tangible side, but focusing more on its con-
ceptual side, describing underlying affairs with respect to the problem, and describing the
elements required to fulfill them. Section I is made up of two chapters and five sidebars.

Chapter 1 is titled “An Overview of Knowledge Maps,” and it introduces the key con-
cepts and technologies of knowledge maps, such as software stability model, the definitions
of enduring business themes or goals, and the definition of business objects or capabilities.
It also discusses the existing problems with traditional pattern languages and software pat-
terns, enumerates the objectives of knowledge maps approach briefly, defines the software
stability concepts, shows the representation of knowledge maps, and compares the essential
differences between traditional pattern languages and knowledge maps. This chapter con-
cludes with a summary and numerous open research issues. This chapter also provides a
number of review questions, exercises, and projects.

Chapter 2 is titled “Abstraction: Knowledge Maps, Stability, and Patterns,” and it dis-
cusses knowledge maps level of abstraction, charts knowledge maps elements to software
stability concepts, and patterns world; it also illustrates the software stability model steps
like goals, capabilities, and knowledge map.

Sidebar 1.1 is titled “Traditional Pattern Languages,” and it provides a brief introduc-
tion for traditional pattern languages, as a structured method of describing better design
practices within a field of expertise or domain. A pattern language consists of a cascade
or hierarchy of parts, linked together by patterns that solve generic recurring problems
associated with the parts. Each pattern has a definite title and collectively the titles form a
language for design (http://www.designmatrix.com/pl/anatomy.html).

Sidebar 1.2 is titled “Hooks or Extension Points.” Hooks are the important and critical
extension points that are used as a means to extend, augment, activate, modify, replace, and
add new functionality (Fayad, Schmidt, and Johnson 1999; Froehlich et al. 1997), to adapt,
customize, personalize, trace, and/or integrate knowledge by application developers, and
to design and produce brand new applications from the core knowledge or knowledge map
(Shtivastava 2005).

Sidebar 1.3 is titled “Hook Engine.” Hook Engine is a special web-based engine, and
hook facility is an enduring tool that facilitates knowledge map hooks. The engine or tool
maintains a rich repository of the hook templates and existing software patterns defined
specially for the core knowledge of the applications driven from the entire knowledge map.
The engine or tool also supports addition, modification, and deletion of hook templates in
the given repository. Each hook template specifies a list of changes or editions needed for
the core knowledge classes known as business objects.

Sidebar 2.1 is titled “Formal Methods and Formal Languages.” Popular knowl-
edge representation techniques can include various monotonic and nonmonotonic logics

http://www.designmatrix.com

Introduction 3

(Barwise 2006), such as description logics (Baader et al. 2003) and default logics (Besnard
1989). Goals can be specified as intentional knowledge in a knowledge base. Capabilities
can be added to provide the extensional definitions. Goals can be reified by automatically
connecting the intentional goals to the extensional knowledge, by using the deductive
reasoning capabilities of the underlying logical framework (Boddu et al. 2004). Reifying
goals usually results in ontology.

Sidebar 2.2 is titled “The Definition of Ontology.” Ontology is a specification of a
conceptualization (Chandrasekaran et al. 1999; Gruber 1993, 1995). The word ontology
seems to generate a lot of controversies in discussions about artificial intelligence. It has a
long history and tradition in philosophy, in which it refers to the subject of existence. It is
also often confused with epistemology, which is about knowledge and knowing.

’I An Overview of
Knowledge Maps

He who knows not and knows not he knows not: he is a fool—shun him. He who
knows not and knows he knows not: he is simple—teach him. He who knows and
knows not he knows: he is asleep—wake him. He who knows and knows he knows:
he is wise—follow him.

Old Arabian Proverb

1.1 INTRODUCTION: KEY CONCEPTS—SOFTWARE STABLE MODELS,
KNOWLEDGE MAPS, PATTERN LANGUAGE, GOALS, CAPABILITIES
(ENDURING BUSINESS THEMES + BUSINESS OBJECTS)

Right now, a number of factors, for example, overall increase or bulkiness in software
size, complexity, hefty costs incurred in design and development, and an increase in
the need for more insightful and practical techniques, exist that require total software
development time and complexity to be reduced. A number of companies and corporate
firms are now attempting to design and develop their diverse software products and
applications in lesser amount of time and with lower cost, all the while maintaining
and preserving a very high quality in the products designed and created. In fact, in the
2000s, novel and innovative concepts of software patterns emerged before us, as the
magical potions to achieve these underlying goals and thereby creating very high quality
developed software products (Gamma et al. 1995; Schmidt, Fayad, and Johnson 1996).
However, we are yet to realize the potentiality of using these patterns in developing
robust systems.

When the meaningful theory of software patterns emerged some years back, its
proponents foresaw and visualized a huge and unlimited potential for developing and
conveying flexible, practical, useful, and quality software solutions. The main objec-
tive of developing such solutions was to embed and include given software products
with an uncanny ability to adapt to new needs and requirements, with ease and without
any visible or serious side effects (i.e., bugs), via useful software patterns. Software
patterns are successful solutions to recurring software problems within a context
(Coplien 1996; Schmidt, Fayad, and Johnson 1996). Although there have been a num-
ber of successful stories quoted for using software patterns (e.g., analysis and design)
(Buschmann 1996; Fowler 1997), we still do not know how one can weave and hem
several software patterns together to build a stable system of patterns. These systems
of patterns are simply a set of related patterns, insightfully and intelligently woven,
that later communicate a measure of architectural knowledge and styles for a set of
high-level problems in particular contexts. Along with the appearance of software

6 Software Patterns, Knowledge Maps, and Domain Analysis

patterns, the concept of pattern languages (as defined in the Sidebar 1.1) also arose
to attempt to ease the weaving of software patterns and form a system of patterns.
Pattern languages are simply a collection of interrelated patterns (Schmidt, Fayad,
and Johnson 1996). One can combine these patterns in any way and manner to design
and create new environments and ambiences, where practitioners and developers can
solve context-specific problems with few problems. More precisely, the concept of
pattern languages has spilled over into the software engineering domain to describe
prior experiences and the processes that arise from them (patterns) in a simple and
straightforward language, where one can skillfully weave and combine patterns in any
way to solve a particular problem. Yet, this process is still ad hoc in nature and very
casual, and it is not simple and straightforward enough to ease and speed the software
development process up.

This book poses you three main questions. First, how can we classify, develop,
and utilize analysis and design patterns together toward problem resolution? Second,
what are the behind-the-scenes language and scripts that guide the sewing of patterns
together as a whole? Third, how can we overcome and face a range of unique chal-
lenges other than pattern composition problems (patterns traceability) that can hinder
and obstruct the development of a system of patterns? The inability to answer these
subtle questions detrimentally impacts the understanding of how to put patterns in
practice and will therefore make the use of software patterns more complex than it
should.

1.2 THE MOTIVATION

The main motivation for writing this book is to answer the aforementioned questions in a
meaningful manner, and to synthesize and crystallize the foundations for patterns classifi-
cation, composition, traceability, and deployment, with the sole purpose of building stable
systems by use of patterns in a systematic manner. We are able to fulfill this motivation
by providing or suggesting two important ideas. First, we will offer a set of quality factors
that will evaluate the definition, application, and solution accuracy of software patterns.
Second, we will also provide a new and different representation of pattern languages. This
new representation is called knowledge maps, or knowledge core sets that describe a topol-
ogy of software patterns.

The main goal of this book is to define knowledge maps as the groundwork for an insight-
ful classification of the software patterns governing a particular discipline. Knowledge
maps are the enduring mirrors of experience and best practices of what a discipline is. The
most important driving and motivating force of knowledge maps is the innovative approach
of software stability concepts (Fayad 2002a, 2002b; Fayad and Altman 2001; Mahdy and
Fayad 2002). This unique approach allows us to classify software patterns within knowl-
edge maps and according to their application rationale and nature (e.g., analysis, design).

We will also demonstrate how knowledge maps overcome those problems experienced in
traditional pattern languages, by surveying a number of examples within the genre of pat-
tern languages, and later analyzing detected commonalities and drawbacks in these forms,
by maintaining the reference to the instances surveyed. The surveyed pattern languages
will undergo detailed comparisons with knowledge maps by using previously defined qual-
ity factors and parameters.

An Overview of Knowledge Maps 7

1.3 THE PROBLEM

Building high-quality systems is not an easy task, nor is it a work carried out in a moment,
especially when several factors can undermine and hinder their success, such as cost, time,
and lack of systematic approaches. The promise of using software patterns in software
development to deal with these aforementioned factors or obstacles has led and made soft-
ware developers to strongly affirm their belief in the power of pattern languages as the sole
means for constructing complex systems in a constrained environment.

Software patterns, along with pattern languages, have attracted software developers for
more than a decade. In fact, they have visualized software patterns and pattern languages as
promising and emerging techniques that can ease and speed up their software development
processes (Appleton 1997; Coplien 1996; Gamma et al. 1995; Schmidt, Fayad, and Johnson
1996). However, developing a set of robust software patterns and pattern languages is yet
to reach the expected level of ease it should have when dealing with determined software
problems, such as pattern composition and stability. Instead, they end up in constructing
models that lack some important and essential qualities that diminish the quality of the
system rather than improve it (Wu, Hamza, and Fayad 2003).

Our calculated and calibrated response to the aforementioned critical issues is the intro-
duction of knowledge maps or stable pattern language as a standard means to classify,
organize, weave, and deploy knowledge core sets or a group of patterns according to their
rationales. These knowledge core sets consist of software patterns that are pertinent and
important to particular domains. To classify these software patterns in accordance with
their rationale and create knowledge maps, we will also use software stability concepts as
the main and leading approach. The succeeding sections of this book will provide detailed
descriptions of this approach.

1.4 THE OBJECTIVES

This research effort also aims to achieve a knowledge synthesis for building systems by
using patterns, that is, creating knowledge maps. We will plan, intend, and project to high-
light and emphasize, through an extensive study, how current approaches that are using
pattern languages to build systems strive in providing a systematic and cost-effective man-
ner to weave patterns together and create immensely complex systems. To confront this
unique problem, we will also propose a new and distinct representation of pattern lan-
guages, called knowledge maps, the realization of which is mainly driven by the software
stability concepts approach.

Throughout the course of this book, we will debate and confront several important
issues and topics related to pattern classification, composition, traceability, deployment, and
development to support our concept of knowledge maps. The main objective of this book is
to provide patterns researchers, framework developers, and application developers a stable
means and mode for answering critical questions or queries, such as how one can weave
together similar and different kinds of patterns, what the relationships between analysis
patterns and design patterns really are, and what those behind-the-curtain guidelines for
sewing these patterns together really are.

The next section will describe the approach that drives the knowledge map realization,
providing the required semantics, knowledge organization, organization, and understanding.

8 Software Patterns, Knowledge Maps, and Domain Analysis

1.5 OVERVIEW OF SOFTWARE STABILITY CONCEPTS

Software stability concepts segregate or classify the classes of any system into three main
layers of understanding (Fayad 2002a, 2002b; Fayad and Altman 2001): the enduring busi-
ness themes (EBTs) layer, the business objects (BOs) layer, and the industrial objects (I0s)
layer. It is possible to assign and tag each class to a particular layer based on its nature and
level of tangibility.

EBTs represent the specification classes within a problem’s understanding, whereas
the nature of EBTs is entirely conceptual, which means that their structure is internally
and externally very stable or durable (Fayad and Altman 2001). BOs are semitangible
artifacts that are internally stable and externally adaptable, via a number of extension
points called hooks, or existing or traditional patterns, such as gang of four patterns
(Gamma et al. 1995). Hooks are extension points used as a means to extend, enhance, or
augment knowledge of BOs by application developers, to produce new applications from
the core knowledge (EBTs + BOs), by activating, modifying, replacing, and/or adding
new functionality to the core knowledge. Hooks also provide other critical services like
adaptability, customization and personalization, integration, and configuration, as dis-
cussed in Sidebars 1.2 and 1.3. They also represent the business rules or process abstrac-
tions that are necessary to carry out a determined EBT—they are, in other words, the
workhorses of the EBTs. The last artifact is the 10. IOs are the context-specific classes
that attach themselves to the core formed by EBTs and BOs. The nature of IOs is entire
tangible, which means that they are both internally and externally unstable. They always
keep changing proportionally with the occurrence of new business requirements (Fayad,
Hamza, and Sanchez 2005).

Software stability concepts also provide practical foundations for domain-neutral core
sets or stable patterns. These domain-neutral core sets are not bound to any application-
specific concerns by any means. Instead, they remain the same and almost constant when-
ever they appear, regardless of the application context. Figure 1.1 represents a concise view
of software stability concepts (Fayad 2002a, 2002b; Fayad and Altman 2001; Hamza and
Fayad 2004, pp. 197-208).

1.6 OVERVIEW OF KNOWLEDGE MAPS

A knowledge map or stable pattern language is a topology of patterns driven by the essential
principles of software stability concepts (Fayad 2002a, 2002b; Fayad and Altman 2001).
It also consists of knowledge core sets or stable patterns that host the pertinent features
and functionality of a particular domain. In addition, one can also utilize it to build other
foundation sets or knowledge maps of other domains.

Building a knowledge map for a determined and set discipline involves usage of numer-
ous skills and knowledge and a number of steps beyond the identification of tangible arti-
facts bound to a specific context of applicability. It also requires systematic capture and full
understanding of the domain where we are planning to deploy and expand the proposed
solution. This also includes describing the problem in detail, not from its tangible side, but
focusing more on its conceptual side, describing the underlying affairs with respect to the
problem, and using the elements required to fulfill them.

The ultimate representation of knowledge maps is driven mainly by the significant mantra
divide and conquer, which is applied throughout the structure of knowledge maps, as shown

An Overview of Knowledge Maps 9

Workhorse

Application
objects/classes

Core knowledge

Capability

FIGURE 1.1 The software stability concepts approach.

in Figure 1.2. For instance, knowledge maps are the products of partitioning a domain into
different levels of granularity, so that we can manage and administer each level with consid-
erable ease. In addition, knowledge maps are stratified into the following five main concerns:

* Analysis concerns (goals)

* Design concerns (capabilities)

» Knowledge concerns (goals and capabilities together)
* Development concerns (development scenarios)

* Deployment concerns (deployment scenarios)

Each one of the knowledge concerns found on a knowledge map is stratified and graded
into three layers of software stability, EBTs, BOs, and 10s, whereas EBTs and BOs together
are called the core knowledge of any domain.

1.7 PATTERN LANGUAGES VERSUS KNOWLEDGE
MAPS: A BRIEF COMPARISON

The novel concept of pattern languages (Appleton 1997; Buschmann 1996; Fincher 1999;
Salingaros 2000) is spilling over into the software engineering field to describe experiences
or best practices of software development, by using a coherent language that can be used for
both talking and describing about a particular problem and creating new environments from
the patterns it conveys. This special language works specifically by connecting a collection

10 Software Patterns, Knowledge Maps, and Domain Analysis

Analysis phase

— Identify the hidden goals of a domain

— Describe in detail the found goals

— Verification and validation Deployment

— Quality factors

— Create bundles (optional)
— Verification and validation

Deployment

Development

— Identify/describe of capabilities/
workbones

— Identify capabilities of internal ultimate goal

— Connect capabilities to domain’s goals

— Verification and validation

Design phase

Knowledge phase

— Connect goals + capabilities
— Goals + capabilities + knowledge concerns

— Scale knowledge concerns Development scenarios

- Inﬁplte lfnowledge ?on?erns combination _ Specify the context where the core will be used
— Verification and validation _ Identify 10s

Remarks: - IOs = context

— Attach the IOs to knowledge concerns via
extension points (hooks)
— Verification and validation

— Fulfill quality factors such as
scalability, traceability,
composition, partitioning, and ROI

FIGURE 1.2 The representation of knowledge maps.

of patterns, as if they were in a neatly narrated story. Each of the patterns in this collection
is an insightful way to handle or solve a set of recurrent problems in a particular context
(Appleton 1997; Fincher 1999; Schmidt, Fayad, and Johnson 1996). As a whole, they also
make visible both the knowledge that is pertinent or relevant to a particular domain and the
solutions for a set of recurrent problems within this particular domain.

An Overview of Knowledge Maps

11

TABLE 1.1

Knowledge Maps versus Pattern Languages

Knowledge Maps

Knowledge maps provide a systematic approach
that ensures focused software solutions

They classify patterns according to their rationale,
that is, EBTs, BOs, and IOs

They provide full traceability of their enclosed
patterns

They provide full generality of their enclosed
patterns

They provide enduring solutions. Maintenance is
minimal

They are quite easy to understand and use, when
dealing with determined software problems.
Everything is based on goals, capabilities, etc.

They distinguish between direct and remote
knowledge

Pattern Languages

Pattern languages lack indicators/guidelines to
determine within-context software solutions

They lack indicators that determine the rationale of
their enclosed patterns

Traceability is lost, especially when dealing with
deeper levels of pattern language’s implementation

They do not guarantee full generality of their
enclosed patterns

They are hard to maintain and they struggle in
providing enduring solutions

They are hard to use and understand, when solving a
determined software problem

They do not distinguish between associate (direct)
and remote knowledge

Any existing approaches and pattern language representations, not driven by software

stability concepts, will refer to as traditional approaches and traditional pattern languages,
and the ones driven by software stability concepts will refer to as knowledge maps through
out this book. Throughout the section, we will also try to briefly compare and contrast both
traditional pattern languages and knowledge maps. This study will efficiently determine
the path taken in this book and offer the benefits of using knowledge maps to ease and
speed up the software development process.

The comparison between these two pattern language representations is illustrated in
Table 1.1, a brief description of the generated outcomes.

The next section describes the systematic approach for implementing knowledge maps.

1.8 THE SOLUTION

The following sections provide a brief explanation of the distinct pieces of our proposed
solution. It starts with the detailed description of the methodology to be used for building
knowledge maps. Then, it will proceed with the employed research methodology that will
support the completion of this book.

1.9 KNOWLEDGE MAPS METHODOLOGY OR CONCURRENT
SOFTWARE DEVELOPMENT MODEL

From a software perspective, several requirements of prime importance must be fulfilled
before, during, and after investigating any problem. These important things are as follows:

* Choosing the right approach for understanding the problem, by using a systematic
and precise problem analysis process

12 Software Patterns, Knowledge Maps, and Domain Analysis

* Creating a suitable design process to support analysis outcomes and foresee or visualize
future project changes

* Providing a classification of the distinct building blocks that conform to the analy-
sis and design outcomes, which will then form knowledge and the best practices

* Using validation and verification techniques to evidence your work value and the
integration accuracy of building blocks

e Creating and making development cost and time reduction

* Encouraging a unique welcome-change attitude when the developers are working
with constantly evolving situations

In this book, we will also present a suitable approach to address all the aforementioned
challenges and questions. This special approach consists of the unification of two promising
approaches: the pattern languages approach and the software stability concepts approach
(Fayad 2002a, 2002b; Fayad and Altman 2001; Mahdy and Fayad 2002; Salingaros 2000;
Wu, Hamza, and Fayad 2003). This unified approach relies heavily on a rationale-driven
view to discover and visualize stable knowledge core sets (patterns) within a particular
domain and methods to organize and relate them to formulate an accurate solution for a
myriad of contexts that share the same core knowledge (rationale or goals and capabilities).

From a bird’s-eye perspective, we could suggest that the overall process of creating a
knowledge map involves five main steps, as shown in Figure 1.3: Goals or classification,
capabilities/properties of a particular discipline, knowledge maps formation, development
scenarios, and finally, solution deployment. However, later in the book, we will describe a
detailed process about how to design and formulate knowledge maps in a systematic and
organized manner. For each one of these main steps involved in the creation of knowledge
foundations sets (knowledge map), we will help readers discover a set of distinctive pat-
terns that they can interconnect to form accurate solutions that can satisfy a rationale of the
domain in question.

1. The first main step, analysis/goals, is concerned with surfacing the implicit goals
hidden within a particular discipline. These goals are the EBTs (Fayad and Altman
2001; Hamza and Fayad 2004, pp. 197-208). This process requires the capture and
full understanding of the context, where one can use solutions. This process also
incorporates describing the goals not from their tangible side, but focusing more
on their conceptual side. This process may imply the necessity and need to delve
or deliberate into the internal structure of the goals, flush out, and obtain any hid-
den insight or knowledge core sets and rules that aid the problem’s resolution. The
outcome is stable analysis patterns (SAPs) (Hamza 2002; Hamza and Fayad 2002).

2. The second main step, design/capabilities, emphasizes the discovery of the reci-
pes and potions required to fulfill the stated goals of a particular domain. These
recipes are the BOs (Fayad 2002a, 2002b; Fayad and Altman 2001). Without
these recipes or stable patterns, only a vague understanding (almost none) of the
domain’s goals will be achieved. As with goals, the accurate and correct under-
standing of capabilities may require a deep analysis of the elements that build
them. That is, capabilities may contain a second level of abstraction or inter-
nal structure. When such a capacity occurs, we will label them as Pattern-BO.
However, this second level of abstraction is still not made public. Therefore, the
Pattern-BO will be represented as a single unit of interest using only its first level

An Overview of Knowledge Maps 13

‘ Analysis/goals
— Enduring business themes

— Stable analysis patterns
— Testing and verification and validation

Design/capabilities

Domain knowledge — Business objects

— Stable design patterns

— Testing and verification
and validation

5 ?QQTSEZS:MS 3 Knowledge maps

— Workflow pattern selection
— Testing and verification and
validation

— Forming knowledge maps
— Stable architectural patterns
— Testing and verification

4 Development scenarios and validation

— Industrial objects
— Third party architecture

- COTs
— Testing and verification and 31 Properties
validation ’ — Partitioning
— Intersection
Extensions — Infinite architectures
4.1 — Traceability
~ Hooks — Scalability
— Add/remove/update _ROL

— Activate/deactivate
— Testing and verification and
validation

FIGURE 1.3 Methodology of knowledge maps.

of abstraction. The outcome of this step is the stable design patterns (SDPs) (Chen,
Hamza, and Fayad 2005, pp. 592-596; Fayad and Kilaru 2005, pp. 108-115).

3. The third main step is forming the knowledge maps. Intuition and experiences from
practitioners (i.e., analysts and designers) will support the formation of knowledge
maps. First, practitioners must know the environment wherein the problem is hap-
pening or occurring. Second, practitioners must examine the overall goals and
capabilities required to describe that environment (i.e., the solution within the con-
text). Third, after acknowledging the existing environment, goals, and capabilities,
practitioners must then create synergies between these elements and form knowl-
edge concerns or stable architectural patterns that will handle the given problem
of interest. In short, the main objective of this step is to compose knowledge core
sets from goals and capabilities. One can realize this composed knowledge via the
distinct routes/paths taken during the synergy between two or more patterns or one
goal and other capabilities. Each one of the complete routes taken will satisfy a dis-
tinct need in a particular domain. This step produces a number of different stable
architectures that include SAPs and SDPs, and its outcome is the stable architec-
tural patterns (Fayad 2015a, 2015b, 2015c¢).

14 Software Patterns, Knowledge Maps, and Domain Analysis

4. The fourth step, development scenarios, provides the essential qualities of stan-
dards to our software solution, such as scalability, traceability, maintainability,
stability, and return on investment, due to the inherent qualities of the inherited
software stability concepts. This particular step is concerned with how the knowl-
edge core sets will be adapted to specific contexts, based upon the utilization
of tangible artifacts or IOs. Such an adaptation is possible with extension points
called hooks that will attach context-specific classes (I0s) to the core. By achiev-
ing this, unprecedented flexibility and ease will arise, enabling businesses and
firms to add, remove, update, and extend functionalities from their systems on a
real-time basis.

5. The last main step, deployment, deals not only with how a particular solution and
its enclosed knowledge core sets would be deployed in particular domain, but also
with the representation of the artifacts or domain-specific patterns that will aid the
deployment process. This includes EBTs, Pattern-EBTs, BOs, and Pattern-BOs,
and their formed context (I0s) (Hamza and Fayad 2002).

The knowledge maps methodology or concurrent software development method offers
many advantages:

1. Applications created by using this methodology are quite adaptable and amenable
to ever-changing needs and requirements. This is because the core is quite robust
and stable and is unaffected in any way by the changes or modifications in the
requirements. As a result, the application built by using knowledge maps can be
modified very easily to satisfy the changing business needs.

2. Applications can also be scaled easily with minimal efforts. Because it is possible
to plug the application-specific IOs to the stable knowledge map core, one can eas-
ily extend and adapt a specified application.

3. Using a knowledge map, an infinite number of diverse applications can be created
within a fraction of time and with minimum effort. The knowledge map serves as
a building block for the applications. IOs have to be just plugged to the knowledge
map with the help of hooks and existing design patterns.

4. Because the knowledge map methodology is synonymous with concurrent devel-
opment, all the phases of software life-cycle analysis, design, implementation, and
testing can be carried out simultaneously. This eventually results in our being able
to verify the work at every step, rather than waiting until the testing phase. In addi-
tion, a thorough and complete understanding of the problem is possible. Again,
changes or modifications to the design are possible at any time, as all phases are
carried out concurrently.

110 WHY KNOWLEDGE MAPS?

1.10.1 ReseARCH METHODOLOGY UNDERTAKEN

The development and synthesis of this book will be on a systematic and organized manner.
We have already invested considerable time and effort in collecting and organizing
fundamental information with respect to pattern languages, pattern organization, and col-
lections. This strategy also includes acquiring a number of books that reflect and provide

An Overview of Knowledge Maps 15

up-to-date, readily available software patterns/pattern language techniques—usage and
addressed problems, production and deployment processes commonly used in industry—
and current limitations and future trends related to this area of study.

This strategy also includes accessing good online libraries, looking for proceedings of
software patterns conferences, white papers, published research papers, and scientific jour-
nals. Additionally, the trial of currently available commercial software, such as Eclipse and
Rational XDE, which use patterns to support software development, will also be an essen-
tial part of our strategic and knowledge input. In doing so, we will also explore the required
knowledge hidden behind their usage and capabilities currently offered. Such a task is com-
plicated, complex, and Herculean, because most of these commercial and noncommercial
systems never disclose or announce their internal structure or source code.

After collecting and understanding information and details regarding software patterns,
pattern languages, their underlying techniques, and ad hoc classifications, we will introduce
our new approach called knowledge maps. We will describe the structure, semantics, qual-
ity factors, and properties of knowledge maps, including the extremely promising benefits
to software development activities.

After completing these essential steps, we will also proceed with the utilization of the
offered benefits and semantics of knowledge maps, by quoting real-life examples and expe-
riences. These examples will show the benefits of knowledge maps in terms of pattern dis-
covery, organization, classification, development, and deployment.

1.10.2 RESEARCH VERIFICATION AND VALIDATION

We will verify and validate our work with the help of two factors: using a set of applicabil-
ity scenarios that imply common software patterns/pattern languages usage and expected
outcomes and results. Nevertheless, we will also provide considerable enhancement in
their organization and visualization, via a software stable model (SSM) (Mahdy and Fayad
2002), which is actually the visual representation of software stability concepts. In addition,
we will validate each information source to see and examine if it accurately addresses what
it is actually disclosing and divulging.

We can consider the determined numbers of scenarios per pattern based on proof of
validity requirements of current patterns: by providing three or more applications or
scenarios to prove pattern accuracy and correctness. Thus, practitioners will be able to
visualize the underlying rationale and its associated capabilities and perfectly aid and assist
context-specific aspects to rapidly realize and form a suitable solution.

1.10.3 THEe STRATIFICATION OF THIs Book

The book provides the following to its readers:

1. Knowledge synthesis for building systems using knowledge maps, along with the
knowledge core sets that form its main structure

2. An initial framework on knowledge maps with some of their significant qualities,
like scalability and adaptability, including a discussion of source code

3. A representation of knowledge maps to help readers understand the path of execu-
tion for all the stable patterns provided, as well as their objectives and the part of
the knowledge infrastructure they actually represent

16 Software Patterns, Knowledge Maps, and Domain Analysis

4. Documentation of some of the stable patterns, via the use of a noteworthy docu-
mentation template

5. Two significant case studies illustrating the actual applicability of the framework
of knowledge maps

6. Stable patterns implementation heuristics to simplify the software development
process of stable patterns

This book is stratified and segregated as follows. This chapter provides an overview of
the contents of the entire book and sets the stage for its proper development. Chapter
2 examines the methodology for forming knowledge maps in a cost-effective manner.
Chapter 3 explores the term goals and its importance in the formation of knowledge
maps, whereas Chapters 4 and 5 provide a set of complete documentation of two SAPs:
knowledge and discovery. A goal without even a trace of capability is not a goal; there-
fore, in Chapter 6, we will give readers a detailed description on the capabilities of
the element of knowledge maps and their role in building knowledge maps. Chapters
7 through 10 provide a complete documentation of four SDPs: AnyMap, AnyContext,
AnyAgreement, and AnyPartition. Chapter 11 provides additional details and describes
what a knowledge map is and its role in the understanding and mastering of any disci-
pline of interest. Chapter 12 focuses on the formation of development scenarios, espe-
cially in the identification of context-specific classes, and how they are hooked into the
core formed by goals and capabilities. Chapter 13 provides an insight into and summary
about the ways and manner in which knowledge maps are deployed, whereas Chapters 14
and 15 provide detailed descriptions of the two critical case studies. Chapter 16 focuses
on the book’s concluding remarks, where we will provide a summary of what we have
performed throughout the book and what we will do as a future task. This also includes
a description of the book’s contributions.

SUMMARY

This section will represent each of the contributions expected from this book. These contri-
butions will list themselves according to the merit of the problem they address and encoun-
ter. We will also deal with the following aspects.

The main objectives of Chapter 1 were to introduce knowledge maps or the topology
of stable patterns, as the means for developing software systems in a cost-effective man-
ner, to show its perceived superiority over traditional pattern languages and to specify
how the rest of the book will flow. This includes a brief and concise introduction of the
content that will appear in each chapter. The chapter also provides a brief description of
the structure and properties of knowledge maps along with their benefits, challenges, and
constraints.

OPEN RESEARCH ISSUES

There is nothing more difficult to take in hand, more perilous to conduct, or more uncer-
tain in its success, than to take the lead in the introduction of a new order of things
(Machiavelli 1913).

An Overview of Knowledge Maps 17

The above-mentioned quote is very true in the context of knowledge maps, as this con-
cept is the newest development in the field of software engineering. Moreover, every new
invention has to undergo the test of passage of time, so knowledge maps will also have to
answer a number of questions before being accepted.

1. Potential of knowledge maps. Knowledge maps have immense potential to change,
transform, or modify the way in which software development is currently per-
ceived and felt. By using a knowledge map, it is possible to generate stable applica-
tions in double-quick time. However, the concept of knowledge map is still in its
infant stages of development and considerable work needs to be carried out for
knowledge maps to replace the existing traditional methodologies. As a result, one
of the issues that need immediate attention is how to implement knowledge maps
to achieve a stable core. Another open issue is of verifiability. How to be sure that
the knowledge map is stable and satisfies the need at hand? In other words, how to
build knowledge maps that are correct by construction, that is, are stable, and meet
the customer’s requirements? How can we carry out testing of the knowledge map?
Knowledge maps will definitely face some form of competition or even challenge,
because traditional approaches have been in vogue for quite some time.

2. Concurrent-oriented software development versus existing software development
models. Contrast concurrent-oriented software development with other existing
software development models and methodologies, such as incremental development
model, spiral model, aspect-oriented programming, and iterative process, based on
quantitative criteria, such as time, cost, and number of recurrence (applications),
and qualitative criteria, such as scalability, reusability, flexibility, accuracy, com-
pleteness, applicability, and maintainability.

3. The utilization of concurrent-oriented software development as dynamic analysis.
Using a knowledge map, an infinite number of diverse applications can be created
within a fraction of time. The knowledge map serves as the main building block
for the applications. One needs to plug the 10s to the knowledge map with the help
of hooks and existing design patterns. Therefore, we can easily generate sophisti-
cated applications very quickly and perform dynamic analysis of each of the gener-
ated applications on top of the same core. This will ultimately lead to comparative
studies and real-time data about dynamic analysis and allow the developers and
users of the applications to give concrete results based on real running systems or
applications.

4. Goals for requirements formation and true problem understanding. How to use
goals for requirements formation and true problem understanding? Goals that cor-
respond to SAPs and impose an accurate list of requirements which are based
on problem formation contribute to a true problem understanding. The main idea
behind the goals or SAPs is to analyze the overall problem under question, in
terms of its EBTs and the BOs, mainly with the objective of increased stability and
broader reuse. By deeply analyzing the problem in terms of its EBTs and the BOs,
the consequent pattern will form the core knowledge of the problem. The ultimate
goal of this new concept is enduring stability. Accordingly, these stable patterns
could be easily comprehended and reused to model the same underlying problem,
under any given situation and context. Data must be collected in relation to how

Software Patterns, Knowledge Maps, and Domain Analysis

accurately the problem is spaced and how much is understood by all the people
involved in software development and management.

5. Business objects or capabilities—Software design base or ultimate solution space.
By applying stability model concepts to design patterns, we hereby propose the
new concept of SDPs, or BOs. The important idea behind SDPs is to design an
enduring solution to the problem under consideration, in terms of its EBTs and the
BOs, with the main goal of increased stability and broader reuse. By developing
the problem solution in terms of its EBTs and the BOs, the resulting pattern could
easily be reused to solve the same problem under any given context and domain.
Data sets must be collected in relation to how accurate and complete the solution
space is to all the people involved in software development and management.

6. EBTs + BOs = software architectures or mapping any software architecture
to model-driven architectures. The rapid growth of emerging technology cou-
pled with tightened or constricted software development time and production
cost constraints has imposed and exerted tremendous pressure on and an intense
desire for software enterprises and firms to design and create new and innovative
designs to respond to a rapidly changing business environment. Enterprises must
heavily invest in building stable architectures that are readily adapted in many
different ways to meet the new challenges and risks. These kinds of architectures
are called architectures on demand, as they can be adapted accordingly to meet
the future requirements and changes in the system. The primary focus of this
issue is to show how software stability concepts are used to develop on-demand
architectures. This issue also focuses on three key aspects: (1) EBTs or business
goals and transformations, which we call SAPs; (2) BOs or business process
design, which we call SDPs; and (3) 10s or application objects. Both EBTs and
BOs form a stable core and thus provide architectures on demand for any domain.
We will call these architectures as stable architectural patterns. Data must be
collected in relation to how often and how many architectures on demand can be
generated per knowledge map. EBTs and BOs are stable software patterns, and
a combination of EBTs and BOs forms the core knowledge for a given domain.
The core knowledge for any domain is called a stable architectural pattern
that you can extend and adapt through the application of hooks. The quality of
stable architectural patterns creates competitive advantages through differentia-
tion and productivity. It will also integrate partners in order to increase adaptive
capabilities.

7. Pitfalls of traditional pattern languages. Software patterns, along with tradi-
tional pattern languages, have attracted software developers for more than a
decade or so. In fact, developers have visualized software patterns and exist-
ing pattern languages as promising techniques that simplify and speed up
their software development process (Appleton 1997; Coplien 1996; Gamma
et al. 1995; Schmidt, Fayad, and Johnson 1996). However, developing a set
of robust software patterns and traditional pattern languages is yet to reach
expected ease—as it should have—when dealing with determined software
problems, such as pattern composition and stability; instead, developers con-
struct models that lack some essential qualities that diminish the quality of
the system rather than improve it (Wu, Hamza, and Fayad 2003).

An Overview of Knowledge Maps

Our innovative response to the aforementioned critical issues needs further
advanced research and discussions on the pitfalls of traditional pattern languages;
we provide solutions for each one of these pitfalls.

. EBTs + BOs = Unified engine for any domain. This method leads to a very

highly reusable and unified software engine (USE) technology for develop-
ing service and/or production systems, which are called service engines and
production engines. USEs for any domain are an open research issue and
topic, because building such engines is not an easy exercise, specifically, when
several conflicting factors can undermine or impede their success, such as cost,
time, and lack of systematic approaches. The main difference between soft-
ware developments (business as usual), application and enterprise frameworks,
and the USEs also needs further research and development in a comprehensive
manner.

REVIEW QUESTIONS

1.
. What is a traditional pattern language?

. What are the major differences between knowledge maps and pattern languages?

. Knowledge map = stable pattern language. Explain.

. Knowledge map methodology is equivalent to concurrent software development

@) wn A~ W

o]

10.

11

12.
13.
14.
15.

16.

17.
18.
19.

What is a knowledge map?

model. Explain.

. Into how many types can you classify the classes of a system by using software

stability concept? Name them.

. Compare EBTs, BOs, and 1Os.
. Knowledge map is based on the concept of
. Is the following statement true or false? Software stability concept results in stable

patterns.
Is the following statement true or false? Core knowledge of any domain is repre-
sented by EBTs and 1Os.

. Into how many concerns can you stratify knowledge maps? Describe each concern

briefly.
is the mantra used to create knowledge maps.
What are hooks?
What are the advantages of using hooks?
Match the following:
a. Goals — Development scenarios
b. Capabilities — Knowledge phase
c. 10s — Analysis phase
d. EBTs + BOs - Deployment
e. Quality factors — Design phase

Is the following statement true or false? Traditional pattern languages and tradi-
tional approaches are driven by software stability concepts.

Describe knowledge map methodology in brief.

List the advantages of knowledge map methodology.

What is meant by Patterns—BO?

19

20

20.

21.
22.
23.
24.
25.

26.
27.

28.
29.

30.
31.
32.
33.

Software Patterns, Knowledge Maps, and Domain Analysis

Specify against each of the traits listed below, whether they belong to knowledge
map or pattern languages:

Lack of systematic approach

Result in classification of patterns according to their rationale

Can be traced

Difficult to maintain

Hard to use

Does not distinguish between direct and remote knowledge

Is the following statement true or false? BOs are usually conceptual.

Is the following statement true or false? 10s are application independent.

Is the following statement true or false? EBTs represent the ultimate goal of the system.
Is the following statement true or false? IOs are stable over a period of time.

Is the following statement true or false? BOs are externally stable and internally
adaptable.

Is the following statement true or false? EBTs are stable.

Is the following statement true or false? BOs represent the capabilities needed to
satisfy the goal of the system.

Is the following statement true or false? BOs are always tangible.

Infinite number of applications can be built by the use of knowledge map. Is this
statement correct? Explain.

Stable analysis pattern is represented by
Is the following statement true or false? BOs represent stable archltectural patterns.
can be formed by using knowledge maps.

Is the following statement true or false? IOs result in third-party architectures.

o &0 o

EXERCISES

1

2.

3.

4.

. Name, list, categorize, and describe all the patterns of the traditional patterns

language of sample requirements DI, titled “Ocean Resources Management
System.” (see Appendix D)

Name, list, categorize, and describe all the patterns of the traditional patterns lan-
guage of sample requirements D2, titled “Dengue Fever Prevention and Outbreak
Management System.” (see Appendix D)

Name, list, categorize, and describe all the patterns of the traditional patterns
language of sample requirements D3, titled “Organizing Cricket World Cup.” (see
Appendix D)

Name, list, categorize, and describe all the patterns of the traditional patterns lan-
guage of sample requirements D4, titled “Pollution Management.” (see Appendix D)

PROJECTS

1.

2.

Show the relationships between all the categories that are based on domain names
of all of the patterns, within the pattern language of Exercise 1. List all the patterns
per category.
Show the relationships between all the categories that are based on domain names
of all of the patterns, within the pattern language of Exercise 2. List all the patterns
per category.

An Overview of Knowledge Maps 21

3. Show the relationships between all the categories that are based on domain names
of all of the patterns, within the pattern language of Exercise 3. List all the patterns
per category.

4. Show the relationships between all the categories that are based on domain names
of all of the patterns, within the pattern language of Exercise 4. List all the patterns
per category.

5. Patterns that appear in the above-mentioned four projects are common patterns. List
all the common patterns, specify the pattern type (analysis, design, process, etc.),
and describe them. Document three of the common patterns using Appendix A and
the pattern documentation template.

SIDEBAR 1.1 Traditional Pattern Languages

According to Wikipedia, the free online encyclopedia (Alexander 1977, 1979):

A pattern language is a structured method of describing better design practices within a field
of expertise or domain.

It is essentially characterized by the following:

1. Noticing and naming common problems in a field of interest

2. Describing the key characteristics of effective solutions for meeting some stated goals
3. Helping a designer migrate from one problem to another in a logical way

4. Allowing different paths through the design processes

Christopher Alexander, an architect and author, coined the term pattern language. He used it to
refer to common problems of civil and architectural designs, from how cities and towns should be
laid out, to where windows should be placed in a room. The main idea was initially popularized in
his book A Pattern Language (Alexander 1977).

A Pattern Language consists of a cascade or hierarchy of parts, all linked together by patterns
that solve generic recurring problems associated with the parts. Each pattern has a definite title and
collectively the titles form a language for design (Hamza and Fayad 2002). In a pattern language,
individual patterns are not isolated. The structure of the language is composed of the links from larger
patterns to smaller patterns, together creating a network. Thus, for a single pattern to work completely,
it must not only be followed through by implementing the smaller patterns that complete it, it must, if
possible, be connected to certain larger patterns (Coplien and Schmidt 1995; Khadpe 2005).

REFERENCES

Alexander, C. A Pattern Language: Towns, Buildings, Construction. New York, NY: Oxford University
Press, 1977.

Alexander, C. The Timeless Way of Building. New York, N'Y: Oxford University Press, 1979.

Coplien, J. O., and D. C. Schmidt (eds.). Pattern Languages of Program Design. Addison-Wesley, 1995.

Hamza, H., and M. E. Fayad. “A Pattern Language for Building Stable Analysis Patterns.” Paper presented at
the 9th Pattern Languages of Programs Conference, Monticello, IL, September §—12, 2002.

Khadpe, P. “Pattern Language for Data Mining.” Master’s Thesis Report, San Jose State University, San Jose,
CA, May 2005.

SIDEBAR 1.2 Hooks or Extension Points

Hooks are the important and critical extension points that are used as a means to extend, augment,
activate, modify, replace, and add new functionality (Fayad, Schmidt, and Johnson; Froehlich
et al. 1999), to adapt, customize, personalize, trace, and/or integrate knowledge by application

22 Software Patterns, Knowledge Maps, and Domain Analysis

BOs

10s o—— < Hooks EBTs Hooks >———o ¢

FIGURE 1.4 Hooks in SSM architecture.

developers, and to design and produce brand new applications from the core knowledge or
knowledge map (Shtivastava 2005). Systems developed based on the software stable model (SSM)
are highly stable and robust, and they could easily accommodate new needs and requirements.
This is possible as software stability stratifies classes of the system into three layers (Figure 1.4).

EBTs. These contain classes that present the enduring and basic knowledge of the underlying
industry or business domain. These are extremely stable and enduring, as they represent
the goals of the system to be developed (Shtivastava 2005).

BOs. These contain classes that map the EBTs of the system into more concrete objects,
which serve as capabilities required to achieve the goals of the system. These BOs imple-
ment generic functionality, which will be needed by all the applications of the domain
(Shtivastava 2005).

10s. These contain classes that map the BOs of the system into application-specific
components. The I0s implement application-specific functionality (Shtivastava 2005).

A pattern designed using SSM system could be further extended, enhanced, or customized to build
multiple applications. If the changes or corrections are directly performed on the BOs, then the core
will no longer remain stable, while the rules of SSM would be intentionally violated. Hooks are used
for this sole purpose. They take the load of modifying the BOs to achieve application-specific behav-
iors through the same core, without actually making any significant changes in the core classes.

The extensions and customizations are specified through hook templates. Hooks interface
between the I0s and BOs (Figure 1.4). They provide a flexible mapping between BOs and IOs. IOs
for different applications could be easily associated with BOs through hooks. Figure 1.4 depicts
the hooks with the three layers of the software stability model.

An Overview of Knowledge Maps 23

In addition to stable analysis and design patterns, more than a 1000 existing patterns, such as the
Gang of Four, Java design patterns, and Siemens group patterns, are implemented as essential parts
of the hook facility. The hook is described and implemented through several templates: a base and
several specialized templates, such as customization, adaptation, and integration templates. Each
hook description is written and codified in a specific format made up of base template, and as many
as you wish of specialized template and/or existing software patterns. Here, the application developers
will be able at change or tweak the given application at ease and within the shortest possible time
through the application of hook or create a new application (Fayad, Schmidt, and Johnson 1999;
Froehlich et al. 1997). The hook template(s) serve as an enduring guide to the application
developers by using the knowledge map. The hook template helps and assists in organizing the
available information in a precise and less ambiguous way (Shtivastava 2005).

REFERENCES

Fayad, M. E., D. C. Schmidt, and R. E. Johnson. Building Application Frameworks: Object-Oriented
Foundations of Framework Design. New York, NY: Wiley, 1999.

Froehlich, G., H. J. Hoover, L. Liu, and P. Sorenson. “Hooking into Object-Oriented Application
Frameworks.” | I N o< on, MA,
May 1997, 491-501.

Shtivastava, P. The Hook Facility, MS Project Report, San Jose State University, San Jose, CA, May 2005.

SIDEBAR 1.3 Hook Engine

Hook engine is a special web-based engine, while hook facility is an enduring tool that facilitates
knowledge map hooks. The engine or tool maintains a rich repository of the hook templates and
existing software patterns, defined specially for the core knowledge of the applications driven
from the entire knowledge map. The engine or tool also supports addition, modification, and
deletion of hook templates in the given repository. Each hook template specifies a list of changes
or editions needed for the core knowledge classes known as BOs. These perceived changes

or modifications are specified by using hook grammar that has specific statements to modify/
replace existing behavior and add new behavior to adapt, change, customize, integrate, trace,

and configure the core BOs. There are essential statements to add new properties and operations,
override, extend, and copy methods, as shown in the base hook template in Figure 1.5.

The tool also understands hook grammar syntax, which uses Enhanced Backus—Naur Form
(EBNF) syntax (Niklaus 1982; Peter 1960; Scowen 1993). It parses each change statement
individually and automates the process of applying the changes specified in the statement.
Additional statements have been integrated into the hook grammar to address the need of keeping
a flexible mapping between BOs and IOs. This enhancement has added more value and additional
functionalities to the hook concept and increased/enhanced its applicability. By using the engine
or tool and application-specific functionality, one can easily extend and enhance the applications
to the core knowledge and it is possible to develop new applications in no time. The engine or
tool has an intuitive and useful user interface that makes it very easy and straightforward to use.
The tool requires minimal configuration to be put to use. Figure 1.5 shows the details of the base
template of the hook on the right side and many options on the left side of the screen.

Change statements. Figure 1.6 shows the change section of the template in a separate tab.

Creating new hook template. Clicking on Create button brings up an empty form to help
create a new hook template. The Save button should be clicked to save the new template
as shown in Figure 1.7.

Editing existing templates. One can make changes to the template in the repository by
selecting it from the list and clicking on the Edit button. The Save button helps you to
save the ensuing changes as shown in Figure 1.8.

http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F253228.253432

24 Software Patterns, Knowledge Maps, and Domain Analysis

Amyhlgor ithmHaak Harne: l&nﬁmraamrmlfomcomumr

omper | R |r —y

Level of Suppart: |w

- Aroa: |N.wmmlm|m

unes |

3 |pafierns Amedia stockguote Computer

HewOperationHook fio canstraints I

pdtate Crata For the Selected Hook And Then Click On Save

FIGURE 1.5 The hook base template.

| Hook Filds. | Hoak Chianpos. |

ctivateFe: - e hanges
| ActhatoFeaturetiookForoTy <Staliment=ACTIVATE Anysbedia himn FOR Computer</Statemants
Anyhigosithmiook [<iChanges>

| e [e | v e

E petati Diata For the Selected Hook And Then Click On Sive

FIGURE 1.6 The change statement screen.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b17771-3&iName=master.img-010.jpg&w=336&h=255
http://www.crcnetbase.com/action/showImage?doi=10.1201/b17771-3&iName=master.img-011.jpg&w=335&h=240

An Overview of Knowledge Maps

 Data For the hew Hoak And Then Click On

FIGURE 1.7 Creating new hook templates.

ar the New Hoak And Then Click On Save

FIGURE 1.8 Editing existing templates.

25

http://www.crcnetbase.com/action/showImage?doi=10.1201/b17771-3&iName=master.img-012.jpg&w=335&h=252
http://www.crcnetbase.com/action/showImage?doi=10.1201/b17771-3&iName=master.img-013.jpg&w=335&h=252

26 Software Patterns, Knowledge Maps, and Domain Analysis

Hook List

ActheateFeatureHoakForioTy
AmyAlgor ithmHoak
AnyServiceHaook

e
AttachmentHookForAnySenice
AttachmentHookForloComparter
Code Removal Hook
CodeReplacement ook
DeActivateFeatureHookFor Ty
HooklisingOtherHooks
MethodCoplesHook
MethadCapiesWiths guments
MethodExtentdsHook
MethodExtendsWitharguments
MethodCrverridesHoak
MethadCrverridesWithArgurnents:
NewsOperationHook
HewPropertyHook¥WithRepeat
HewPropertyHookwihaulRepast
HewSubClassHoak
OperationHook ToBeCalled
PropertyHookTaBeCalied

| FExecuting Statement NEW SUBCLASS Car OF Vshicle

| P Executing Staternent Car.showPictured) OVERRIDES Vehicle showPiclure()

| Executing Staternent Car.Creata(EXTENDS Vehicle.Create(y

| P Executing Statament Car displayDescriptiond COPIES Vahicle. displayDescriplion(:
| | Hook Changes Applied Successtully

FIGURE 1.9 Creating new hook templates—execution sequence.

Deleting existing hooks. One can delete unused templates from the repository by selecting it
in the list and clicking the Delete button.

Applying changes in hook template. The changes or modifications specified in the change
section of the hook template may be applied by selecting or creating the template
satisfying the requirement and hitting the Apply Hook button. The text area component
shows the result of execution.

The engine or tool executes each change statement individually and the text area depicts the
results (Figure 1.9).

WHAT ARE THE FEATURES OF THE HOOK?

The hook engine or the hook facility tool has the following useful features:

* The tool supports the creation of hook templates and it allows editing and deletion of
templates.

* A registry maintains the repository of hook templates.

* The changes or transformations in the hook template are written by using hook
grammar. The tool parses the changes or modifications according to the hook grammar
rules.

* The engine or tool generates code corresponding to the changes specified in the hook
template.

* The engine or tool guides the users through the process of applying the changes.

* The engine or tool asks the users for inputs required to apply the change statements.

* The engine or tool keeps the users well informed through appropriate messages,
while applying these changes.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b17771-3&iName=master.img-014.jpg&w=335&h=252

An Overview of Knowledge Maps 27

* The engine or tool also allows the users to search the hook.

* The engine or tool has a number of special purpose hooks, such as adaptability,
customization, traceability, accessibility, personalization, extensibility, integration,
and configuration abilities.

REFERENCES
Niklaus, W. Programming in Modula-2. Berlin, Heidelberg: Springer, 1982.

Peter, N. ed. “Revised Report on the Algorithmic Language ALGOL 60.” _ 3,

no. 5 (1960): 299-314.
Scowen, R. S. Extended BNF—A generic base standard. In Proceedings of the Software Engineering
Standards Symposium, 30 August, 1993.

http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F367236.367262

2 Abstraction

Knowledge Maps,
Stability, and Patterns

Abstraction is real, probably more real than nature.

Josef Albers, 2008
New York Times

2.1 INTRODUCTION

Chapter 1 briefly discussed the knowledge, or skills required, to design, format, and create
highly innovative knowledge maps. Important building blocks were described in that chap-
ter, along with an approach that systematically integrates them to develop better and mean-
ingful software products. This chapter provides additional information, details, and tidbits
of useful advice to support and buttress the process of creation of knowledge maps and thus
ease the process of creating diverse software products. In other words, the chapter’s ratio-
nale and scope is to provide a profound exploration of the significant elements that compose
our methodology in the creation of knowledge maps.

The main purpose of this exploration is to uncover the basic rules of the game, those golden
rules software creators must follow and obey, in order to ease and simplify their software
development activities. This set of golden rules is represented by knowledge core sets or
patterns. These core sets are allocated into a knowledge map on the basis of their purpose or
tasks regarding software development, for example, analysis. There are five areas of inter-
est in knowledge maps: analysis concerns, design concerns, knowledge concerns, develop-
ment concerns (application concerns), and deployment concerns. Each one of these concerns
isolates the core sets that are significant to the domain in question and suppresses ones that
are unimportant or too application specific. For instance, analysis concerns deal with the
elicitation and understanding of requirements (the problem space), whereas design concerns
concentrate on recipes for handling defined requirements (the solution space). Knowledge
concerns represent the experience achieved by creating synergies between analysis concerns
and design concerns; they also convey knowledge of architectural or styles. Development
concerns deal with the formation of the contexts to be used in the implementation of knowl-
edge maps. Deployment concerns deal mainly with the quality factors that must be fulfilled
when deploying the knowledge maps, such as performance, scalability, and adaptability.

The intricate process of extracting the core sets pertinent to the domain under discourse
and omitting the unimportant ones is nothing different from the traditional abstraction
process. Abstraction refers to the process of extracting the significant details of an entity,
or group of entities, and suppressing the unimportant ones (Berard n.d.). In knowledge
maps, this abstraction process, along with its enclosed levels and participants (core sets), is

29

30 Software Patterns, Knowledge Maps, and Domain Analysis

restrained by certain rules or boundaries; this restriction is imposed to help software
practitioners better understand and use knowledge maps and avoid any misconception or
wrong examination of the core sets pertinent to the domain addressed.

Although creating knowledge maps may seem to involve complex and tedious processes,
as well as an extensive learning curve, actually, it is not so. To systematically describe the
process of creating knowledge maps, along with the set of rules that guides their creation,
we need to describe first their elements, or building blocks, and then proceed with the
actual process of knowledge maps creation.

A knowledge map consists of a series of goals, capabilities, and transient aspects that
are insightfully woven to specify the groundwork for any domain of interest. Goals are the
essential concerns that determine the rationale of a problem of interest. Capabilities are
twofold here: they are defined as the capabilities to achieve the goals, and they encapsu-
late abstraction processes that are internally enduring and externally adaptable, via hooks
(see Sidebars 1.2 and 1.3; Fayad, Hamza, and Sanchez 2005). Transient aspects are those
requirement-centric classes that create the context for goals and capabilities as a whole unit.

Before examining the elements that are pertinent to knowledge maps, we need to specifi-
cally describe the abstraction process that is used to represent and define the elements of
knowledge maps. After that, we will be able to better understand why these elements are
so important and critical for knowledge maps. To help better understanding of the process
of creating and understanding knowledge maps, we will also provide an intuitive visual
representation of knowledge maps in subsequent chapters. This visual representation will
allow us to understand the underlying language that helps the integration of elements in
knowledge maps.

2.2 LEVELS OF ABSTRACTION IN KNOWLEDGE MAPS

Abstraction is a complex and tedious concept that leads users to increased confusion and
antagonism, because it can be used interchangeably, as either a process or an entity. As a pro-
cess, abstraction concentrates on the isolation of the significant aspects from a domain, all the
while overlooking the less important ones. As an entity, abstraction takes a different meaning
altogether: the representation of a significant part of the aspect of interest via a view, a model,
or some sort of focused representation (Berard n.d.). On the one hand, a model is a simplified
construct of a complex entity, which is used to enable understanding of the relevant elements
that form this entity of interest. On the other hand, a view is merely a simplified representa-
tion of a model. In other words, both model and view represent the outcomes of an abstraction
process, as well as representing the different levels of abstraction a problem can take.

Representation of knowledge maps steadfastly relies on the application of certain levels
or degrees of abstraction, which drives the conception of its building blocks. These levels
of abstraction vary from higher levels, where practitioners are involved and aware of one
or more aspects that represent the purpose of the domain of interest, to lower levels, where
users take abstraction in knowledge maps one step further, by investigating the core set
itself as a domain of interest and its representation as a view or model. The application of
these levels of abstraction can go on forever, which has the potential to result in a set of
details that does not have anything to do with the context in which the knowledge map was
created. To prevent the possible occurrence of these irrelevant aspects, we propose that each
of the elements pertinent to the knowledge maps be exploited by using two levels of abstrac-
tion: atomic aspects and nonatomic aspects.

Abstraction 31

Atomic aspects are the business-centric classes that define the constructs of the problem
core. They are the same classes used in any of the traditional object-oriented class diagrams
(Hamza and Fayad 2003), but with a significant quantum of business focus embedded in
them. These classes are tagged by using two stereotypes: enduring business theme (EBT)
and business object (BO). Nonatomic aspects are business-centric patterns that present a
second level of abstraction. This second level of abstraction consists of other classes and, in
some rare cases, other patterns as well. The tag names used to represent nonatomic aspects
are Pattern-EBT and Pattern-BO. The next section will provide details about the elements
that these tags represent.

2.3 MAPPING ELEMENTS IN KNOWLEDGE MAPS TO
SOFTWARE STABILITY CONCEPTS AND PATTERNS

Before delving deeper into the underlying thesis of knowledge maps, we need to describe
the tight relationship between the following elements: goals, capabilities, development sce-
narios, deployment, and software stability concepts and patterns. Table 2.1 represents an
overview of this relationship.

In the world of knowledge maps, everything is classified in terms of goals, capabili-
ties, and transient aspects. These aspects, however, are directly mapped into other fields
of study, as in the case of software stability concepts and patterns. In Table 2.1, the goals
of knowledge maps are directly mapped to software stability concepts such as EBTs,
because they represent a domain-independent knowledge that contains enduring con-
tracts or rules under which the concept is applied. Because of the enduring and reusable
quality of goals and their conceptual nature, goals can also be directly mapped into the
domain of patterns as stable analysis patterns. The same direct mapping process occurs
with capabilities, which are mapped to software stability concepts such as BOs, because
they also are enduring and reusable and their rationale is the achievement of goals.
Due to their embedded properties, they also form the basis for pattern representation.

TABLE 2.1

Mapping of Elements in Knowledge Maps

Knowledge Maps Stability Patterns

Goals EBTs Stable analysis patterns

Capabilities to achieve each goal BOs Stable design patterns

Synergy of goals and capabilities EBTs + BOs Knowledge maps and many stable
architectural patterns

Development scenario 10s Process patterns

Deployment EBTs + BOs Stable analysis patterns, stable design
patterns, and stable architectural patterns

Dynamic analysis/the business Stability model/ Building systems of patterns

language one-shot software

development

BOs, business objects; EBTs, enduring business themes; IOs, industrial objects.

32 Software Patterns, Knowledge Maps, and Domain Analysis

Therefore, in the world of patterns, these BOs are known as stable design patterns. Goals
and capabilities depend on each other: a goal must have one or more capabilities associ-
ated with it and a capability must have a well-defined goal to fulfill. When we have two
or more goals, along with their combined capabilities, a knowledge map essentially takes
shape. Knowledge maps are directly mapped in software stability concepts as the syn-
ergy between EBTs and BOs. Because knowledge maps consist of goals and capabilities
and their nature is enduring and reusable, the overall outcome of their association in the
world of patterns is stable architectural patterns. Knowledge maps convey architectural
styles that adapt or acclimatize to new requirements or contexts via extension points.
These extension points tell us not only how knowledge maps will be used here but also
what the context of deployment really is (which is possible by means of hooking a set of
transient classes to them). Due to the volatile and changing nature of transient classes,
they are mapped as industrial objects in software stability concepts. In the world of pat-
terns, they are also known as process patterns.

One important point is that regardless of the different names attributed to these concepts,
their characteristics, values, purposes, and behavior remain almost the same throughout
their use. Therefore, these terms will be interchangeably used in the book. The rationale
of this nomenclature is to bridge the existing communication gap between technical and
business people by use of a shared language. This means that a nontechnical manager,
for example, can understand or exercise control over the processes in place relating to a
particular software product the same way a developer can, because both speak the same
language.

In the world of software stability concepts, the enduring quality and reusability of
EBTs and BOs are determined mainly by examining the underlying knowledge, some-
times overlooked or assumed by practitioners, mainly found in business issues and rules.
Thus, EBTs and BOs represent a set of norms and rules on how to understand and solve
a set of recurrent problems that require immediate attention from practitioners. From
a knowledge map’s perspective, goals and capabilities share almost the same vision as
EBTs and BOs. They are all business-centric and within-context aspects that provide a
retrospective of a domain’s rationale. The process of identifying the EBTs and the BOs of
a problem can be explored in detail in Fayad (2002a, 2002b), Fayad and Altman (2001),
and Hamza and Fayad (2003).

The following sections describe one important element of knowledge maps: goals. One’s
understanding of the basic definition of goals is critical for the construction of the knowledge
map of the selected domain, because goals specify the fundamental themes that drive the
understanding of the selected domain. Therefore, practitioners and developers must pay
great attention to them when building their own environments or knowledge maps.

2.4 THE SOFTWARE STABILITY MODEL

The stability model (Fayad 2002b) represents an innovative method of designing,
creating, and modeling any system, including software systems. It is an extension of
object-oriented software design methodology, but it has its own set of suggested rules,
format guidelines, procedures, and several heuristics to arrive at a more advanced and
complex object-oriented software system. Designing and building high-quality software
systems has been the focus of immense interest among the proponents and designers
of software systems. One of the most desirable quality attributes, yet the most difficult

Abstraction 33

to achieve, is stability. A stable basis in software design technology provides us a solid
foundation for building high-quality software systems.
The overall goal is to achieve innovative criteria, such as the following:

» Stability criteria. Objects meeting this criterion will be stable and robust over time
and will not need incorporation of any changes.

* Reusability criteria. The majority of the objects meeting this criterion can be
reused for a huge number of applications.

* Maintainability criteria. Maintainability is an object-oriented valid tool in stabil-
ity model applications, because the objects will rarely need of maintenance and
updates.

» Wide-applicability criteria. Patterns meeting this criterion have wide recurrence
and represent a base block for modeling in any context with an appropriate level of
flexibility, so that the developer can apply the pattern to the desired application. This
also includes generality criteria, where the objects become domain-independent
and can be applicable to any context regardless of the domain, according to which
the context of any pattern should be general enough to form a base for developing
any context in any application.

2.41 GoarLs

From the standpoint of knowledge maps, goals are business-centric themes that provide
an enduring aspects of a domain’s rationale. They also represent the essential themes of
any domain, themes that are free of irrelevant or insignificant details not pertinent to the
domain under consideration. For example, the concept of friendship is a universal theme
applicable across different cultures and beliefs. Basically, it is not bound to any one of
the possible contexts of applicability, because its meaning is pervasive and universal.

Generally speaking, goals are difficult to discover, because they are basically implicit
themes that are hidden within the complexity and lack of understanding of the problem of
interest. For example, imagine being involved in a project that requires the development of
a scalable biometric system for a top-security company. As a developer, you will automati-
cally suggest certain tangible objects that you think will represent the correct solution for
the desired system. These tangible objects may be the following: Suspect, SystemOperator,
FacialScanning, Facelmage, Fingerprints, RetinalPattern, IrisPattern, DNASequence,
SuspectDetection, CameraSensor, FacialShape, and Database. These tangible objects are
specific to a particular context; therefore, they cannot be the main focus of your solution,
since they will change in the short or long term, because of the introduction of new tech-
nologies and subsequent changes in needs and requirements. Thus, even if you include
them, any investment in software product containing these tangible objects will be lost.

In order to overcome these unique problems, we need to start thinking in terms of
goals, because it is their pervasive nature that will help software products survive con-
stant changes or modifications in requirements or needs. Following the above example,
we will try to tackle the same problem, but focus on the main goals of the problem. Let us
first define the area of interest, that is, biometrics. Biometrics is a science that measures
the physical or behavioral features of an entity. This definition in conjunction with the
question what is biometrics for will assist us in the process of defining one of biometrics
main goals. This first goal will be branding (Sanchez 2005). Branding is a construct that

34 Software Patterns, Knowledge Maps, and Domain Analysis

readily creates a close association between an entity and its brands, by forming a unique
identity that differentiates this entity from its peers (Sanchez 2005). This branding’s strange
behavioral characteristics strongly complement the use of biometrics. Therefore, if you
want to solve the existing project successfully, you must try to address the branding goal
in your solution. Branding is a conceptual model or solution and consists of the following
elements: Branding type; AnyEntity, as the handler for any type of entities; AnyBrand, to
deal with any type of brand; AnyMechanism, to control all possible mechanisms involved
in branding; Anyldentity, to represent the sum of all essential qualities that will be used by
a brand; and AnyParty, which can be the branding practitioner and the spectator.

In summary, a goal mainly answers the question, What is the concept used for? However,
a goal does not indicate how the concept can perform this operation; this task is handled
by the capabilities of the concept. Goals and capabilities depend on each other and provide
the foundation for an unimaginable set of architectures. Therefore, before getting into the
subjects of how goals are associated with capabilities, we need to define exactly what capa-
bilities are in a real sense.

2.4.2 CAPABILITIES

A goal without a capability would not be useful or worthwhile. We will use these rules
during the creation of knowledge maps. Capabilities are the business-centric workhorses
that support the realization or fulfillment of a goal. Like goals, capabilities are enduring
artifacts, but with a minor difference: they are externally adaptable, via hooks (Fayad,
Hamza, and Sanchez 2005). Their adaptable nature can be determined only by examining
the relationships between the underlying business and direct application and by applying
the right hooking code. First, these relationships can be inheritance, aggregation, or asso-
ciations. Second, the hooking code is solely responsible for weaving business and industry
together, rather than focusing on the generalization—specialization principle. An important
point here is that BOs are not directly adapted by the industry (transient aspects); in fact,
they are not. Rather, hooks create an environment, where capabilities are able to attach any
transient aspect without changing the internal structure of the capabilities and without a bit
of chance of a collapse.

Capabilities are less difficult to find compared to the task of determining the underlying
goals of a domain, because capabilities tend to represent any knowledge skill, process, or
ability required for the execution of a specified course of action or work flow. Answering a
few simple questions helps in identifying capabilities. For instance, how can we approach
the underlying goal? What do we need to fulfill it? Who is it that is going to use it? As an
example, imagine that the goal of interest is sampling (Sanchez, Lai, and Fayad 2003). By
asking the above important questions, we will arrive at the following results: How can we
approach the underlying goal? SamplingEntity, SamplingType, Applicability. What do we
need to fulfill it? AnyMechanism, AnyCriteria, AnyMedia. Who is it that is going to use
it? AnyParty.

In the methodology of knowledge maps, capabilities are adaptive concerns that ensure a
reduced cycle time for coping with a vast number of transient requirements and handling of
other goals and capabilities. This feature enables both on-demand adaptations and flexibil-
ity to transient aspects and on-demand scalability of the environment to expand the abili-
ties needed to achieve a goal. The above behavior of capabilities is at the end introduced as
faster return of investment, while still maintaining a high-quality solution.

Abstraction 35

In essence, then, the domain capabilities are important aspects that attempt to encapsu-
late the business processes and categories of a business-centric theme or goal. When these
capabilities are directly associated and linked with their goals, they form a synergetic force
that would represent the groundwork for the understanding of any domain.

2.4.3 KNOWLEDGE MAPS: FORMATION AND STABLE ARCHITECTURAL PATTERNS

In Chapter 1, we provided a visual representation of knowledge maps to give an idea of
how a knowledge map is structured. From the point of view of a positioning level, that rep-
resentation would be just enough; however, from the point of view of a research level—the
main objective of this work—such a representation is not simply enough. Therefore, we
will provide a more technical representation of knowledge maps. Figure 2.1 shows such a
representation.

As we can observe here, knowledge maps reach far beyond an organized visual represen-
tation. Underneath their images and symbols lie a set of well-elaborated pieces of code (i.e.,
Java code) that determines how goals, capabilities, development scenarios, and so on are
developed in terms of Java classes. In Chapter 10, we will go through in a detailed manner
how these building blocks are implemented in Java. However, for now, an important thing
to remember is that for academic purposes, we have used Java as the target programming
language, because it is a fully object-oriented programming language. Software practitio-
ners, however, can also use other programming languages, such as C#, VB.NET, C++, and
Aspectl, if they so desire.

The creation of knowledge maps requires considerable advanced skills and knowledge
and steps beyond the identification of tangible aspects that are bound to specific contexts
of applicability. It also requires a systematic capture and full understanding of the domain
in which it resides. This includes describing the domain not regarding its tangible side but
regarding its conceptual side as well as describing its underlying affairs or essentials and
the elements required to fulfill these underlying affairs.

Knowledge maps

Goals (EBTs/specification classes)
Examples: synchronization, caching, security, recording

Capabilities (BOs/business classes)
Examples: AnyLog, AnyParty, AnyService, AnyMedia, StorageSchema

Knowledge concerns
Examples: Stable architecture, MVM, stable renting system

Development scenarios
Examples: DNA Sequence, OracleDB,
Computer, RetinaScanning,
ClusterSampling

Hook facility
Examples: activate/deactivate/replace/
remove/add

Deployment (quality factors)

Examples: Traceability, Performance, Automation, Stability, Recording

FIGURE 2.1 The knowledge maps representation.

36 Software Patterns, Knowledge Maps, and Domain Analysis

The process consists of seven important steps:

1. Domain knowledge partitioning. This is an interactive process, where we will
decompose the domain or domain into distinct levels of abstraction. By doing this,
we can deal with domain knowledge with ease.

2. Single domain focus. This step concentrates on selecting a subdomain (a product of
the domain partitioning) of interest at a certain time (this subdomain will be repre-
sented as a knowledge map). Then, we will extract the goals that drive the rationale
of this subdomain. This step will be executed with all the subdomains generated
after the partitioning of the main domain.

3. Place goals. This step focuses especially on placing the extracted goals into the
goals section of the knowledge map (i.e., three to five goals per knowledge map).

4. Identify capabilities associated with goals. The main focus of this step is to iden-
tify, filter, and evaluate the potential capabilities that will fulfill the goals that were
identified in our knowledge map.

5. Connect capabilities to their goals. The sole purpose of this step is to specify how
the domain’s rationale will be fulfilled once and for all.

6. Branch out to other knowledge maps. This step is twofold:

a. Because the knowledge maps of partitioned subdomains may have overlapping
capabilities, we may connect two knowledge maps that were once part of the
same domain, before they had been partitioned.

b. One domain’s partitioned subdomain can be associated with another domain’s
subdomain (remote knowledge). This remote knowledge serves as both a usage
indicator of our current domain knowledge and a position indicator of the sub-
domain that we are dealing with.

7. Formation of knowledge maps. In this step, we establish a set of knowledge maps
that will realize the rationale of particular domains. The number of knowledge maps
will depend upon how deeply we can explore or partition our domain of interest.

The results of these steps will be a set of interrelated goals and capabilities that serve a
particular purpose. Figure 2.2 shows this process.

The next section will describe the development scenarios of knowledge maps and how
they are attached to the core formed by goals and capabilities.

2.4.4 DEVELOPMENT SCENARIOS

Development scenarios are determined by examining or inspecting how capabilities cope
with determined contexts, full of transient or industry details, by using extension points or
some sort of hooking code. Contexts tend to be very volatile, unstable, and fickle, because
they are driven by current business and cultural responses, not future ones. This reality
makes them unstable and replaceable.

Reference the example where we needed to develop an efficient biometric system.
Developers generally tend to overlook or ignore the sometimes off-content essence of the
problem and proceed with details of the problem with which they are quite familiar. This
prompt response ended up with certain objects that are internally and externally unstable:
FaceScanning, Facelmage, FacialShape, Database, Suspect, Operator, and so on. From the
standpoint of knowledge maps, these unstable aspects are known as industrial objects.

Abstraction 37

designer feels that he/she has covered all
possibilities

< Process can continue until the analyst/

N partitions
< Single domain goals

Single domain focus

—»
Domain knowledge partitioning - Identify goals: G1, G2, G3, etc.
— Filter goals
< — Evaluate goals (verification and

validation)

< Specific perspective

U

Ho=

Knowledge maps formation Fvlvit}eliiolfrli)wle dge map)

- KM1, KM2, KM3,...KMn

— Find/place quality factors within KM

(G6, G7, G8, etc.)

— Next: Generate N Soft. Arch. .
Find/attach IOs Domain knowledge
Shuffle goals/capabilities
Create new knowledge

<N knowledge maps

— Place goals in the goals category
— Associate goals (goals and subgoals)

Focused capabilities

Identify goals’ capabilities

— Identify capabilities: C1, C2, C3, C4, etc.
— Filter capabilities
— Evaluate capabilities (verification and

validation)
< Fulfill domain’s rationale

Connect capabilities to their goals

o

— Connect capabilities to their goals
(synergy between goals and capabilities)

K
‘]

< Interaction/union with remote knowledge maps

Remote knowledge

Branch out to other knowledge maps

— By knowledge usage applications

— By knowledge composition/decomposition
— As a domain’s foundation

— Intersection via goals: G1, G2, G3, etc.

— Intersection via capabilities

— Unions of goals and/or capabilities

FIGURE 2.2 The formation of knowledge maps.

The intricate process of finding these classes is common and straightforward. One
special way is to follow traditional methods such as Abbot’s approach (Abbot 1983,
pp- 882-894) or other methods, where the target is the finding of verbs as candidate classes.
Another preferable way is to first examine the capabilities and directly map them to the
physical world (i.e., develop ontologies), then apply the just-mentioned software engineer-
ing methods, and find the objects that complement the mapped one from the capabilities.

This process may not sound earth shattering, but it is quite effective, especially when
dealing with a vast number of problems, each different in nature and composition, and a
reduced notion of the context under discourse exists. The effectiveness of this process lies
in the utilization of these transient aspects, via hooks, to complement the performance of

38 Software Patterns, Knowledge Maps, and Domain Analysis

Hooks: Allow capabilities to adapt to new

Infinite combinations: contexts without changing the internal
- Goals + capabilities structure of capabilities. They provide
- Capabilities + capabilities hooking code.

Transient
aspects

Goals + capabilities = Knowledge concerns
Knowledge concerns = Stable architecture patterns

FIGURE 2.3 The adaptation of capabilities via hooks.

certain capabilities without changing the internal structure of these capabilities. Figure 2.3
illustrates the aforementioned process.

Figure 2.3 details the transitioning between goals and capabilities to the physical world.
Remember that adaptation to new contexts is done at the hook level and not at the capability
level. This allows us to change the transient aspects at will, without posing threats to the
capabilities integrity and enduring work flow.

The next section describes the last element in knowledge maps: deployment and verifica-
tion and validation concerns.

2.4.5 DEPLOYMENT AND VERIFICATION AND VALIDATION

Deployment and verification and validation focus mainly on the definition of robust knowl-
edge maps, by using a set of quality factors pertinent to the domain of interest. Providing
a definition of these robust knowledge maps is a special and unique challenge, especially
when dealing with domains with unique characteristics and behavior and a lack of complete
and systematic processes to support their creation.

The deployment and utilization of knowledge maps is intended to serve as a mirror of
the collaborative experience gained over the definition of goals and capabilities. This col-
laborative experience is used to define the quality factors governing the deployment of
knowledge maps.

These quality factors are identified and detected by following the same process that is used
to identify various goals. In fact, quality factors are also the goals of a domain, with a central
focus on how to use this domain (and how it should not be used) in larger or more specific
domains. These quality factors usually represent nonfunctional requirements, such as reliabil-
ity, performance, scalability, traceability, and usability. However, the definition of these quality

Abstraction 39

factors is highly dependent upon the domain or subject of interest. Due to the reusable and
domain-independent nature of goals and quality factors, some cases may already exist wherein
a few of the quality factors of one domain appear in another. But this is not always the case.

Clearly, to make knowledge easily accessible, complete, and accurate, we must explain or
note how the context is set and what the purpose of its use is. One unique and special way to
represent this usage notion is to identify quality factors and indicate which capabilities are
required to complete them (this also includes the attachment of a set of industrial objects).
Along with the synergy between goals and capabilities, quality factors and capabilities also
provide the basis for the generation of an unimaginable number of software architectures.
This particular behavior is noted in Figure 2.3. In the end, we would recommend applying
the same heuristics and assessment indicators used for goals identification and verification and
validation. As a result, we emerge here with a set of enduring software architectures that
comply with identified sets of quality factors of a domain of interest, along with the evalua-
tion and assessment methods that will guide its examination and validation process.

In general, the rationale of providing a deployment concern in the knowledge maps guar-
antees and ascertains the proper forming and usage of core sets and the enclosed patterns
pertinent to the domain of interest. In Chapters 9 through 13, we will expand and elaborate
upon the idea of knowledge maps, along with their concerns.

SUMMARY

This chapter described in detail the structure of knowledge maps and the distinct concerns
it develops. These concerns are analysis, design, knowledge, development or application,
and deployment. We implemented these objectives by outlining the essence of a knowledge
map in proper order.

OPEN RESEARCH ISSUES

The following are some of the open research issues that need to be examined and require
future work and experimentation:

1. Using or employing knowledge maps to develop suitable knowledge representation
schemes for storing nonmonotonic knowledge or skills that allow computationally
efficient manipulation (see Sidebar 2.1).

2. Using knowledge maps to generate core knowledge to be utilized in aspect-oriented
architectures and programming. Here, aspect-oriented programming is a program-
ming paradigm, and aspect-oriented software development is used to aid and assist
programmers in the separation of concerns, specifically cross-cutting concerns, as an
advance in modularization.

3. Identifying a broader base for software reuse through knowledge maps and avoid-
ing having to reinvent the wheel all the time. We believe that knowledge maps
provide high levels of reuse in software development: analysis, design, documenta-
tion templates of architectural patterns, code, test procedures, test cases, manual
reports, and so on. We also believe that the success of any type of software system
or application largely depends on whether its capability may be reused in different
collaborative scenarios in broad application areas, without requiring significant
software redevelopment efforts or any overhead involvement.

40

4,

Software Patterns, Knowledge Maps, and Domain Analysis

Using the stability model as a way for knowledge elicitation is a process of
obtaining knowledge from any source, for example, human and literature sources.
This can involve the use of reading, researching, interviews, observation, and pro-
tocol analysis.

. Utilize the concurrent software development model or knowledge map method-

ology as a way for developing ontologies of any application or domain, where
“ontology is a specification of a conceptualization” (Gruber 1992, 1993; see
Sidebar 2.2).

REVIEW QUESTIONS

1.
2.

A~ W

10.
11.
12.
13.
14.

15.
16.
17.
18.
19.

20.
21.
22.
23.

24.
25.

List the different concerns of interest in knowledge maps.
What do the following topics deal with?

a. Analysis concern

b. Design concern

c. Knowledge concern

d. Development concern

e. Deployment concern

. Is creating knowledge map an abstraction process? Explain.
. What aspects make up a knowledge map?
. Is the following statement true or false? Goals determine the rationale of the prob-

lem domain.

. What are the two important aspects of BOs (capabilities)?
. What is meant by transient aspects of a knowledge map?
. Explain how abstraction can be used, as either a process or an entity depending on

the context under consideration.

. What strategy is used in the knowledge map methodology to prevent occurrences

of irrelevant aspects?

What is meant by atomic aspect of an element pertinent to a knowledge map?
Define the nonatomic aspect in the context of knowledge maps.

What stereotypes are used to tag atomic classes?

Nonatomic aspects can be represented by using tag names.

Is the following statement true or false? Capability might not have a goal to
fulfill.

What aspects of knowledge maps are mapped into the software stability concept?
Provide a mapping of knowledge maps with the software patterns.

Explain the term goal in the context of knowledge maps.

Is loyalty a goal? Explain: why or why not?

Is the following statement true or false? Goal provides answer to the question,
What is the concept for?

What is role of the capabilities of a concept?

Goals and capabilities have a symbiotic relation. Explain how?

Explain the term capability in the context of knowledge maps.

Finding capabilities for a concept is easier than finding the goals. Is it true?
Justify.

How can capabilities be identified? Explain by giving an example.

Why do capabilities result in higher returns of investment?

Abstraction 41

26. What are the goals and capabilities of the following?
a. Marriage
b. Doing a project
c. A stamp collection process
d. A banking system

27. Sketch the knowledge map representation and describe it in brief.

28. List the steps that must be carried out for creating a knowledge map. Explain each step.

29. How can development scenarios be identified?

30. List the ways of finding industrial objects.

31. Can the transient aspect of knowledge maps be changed at will? If so, give reasons
to support your answer.

32. What do you mean by quality factors? How are they identified?

33. Is the following statement true or false? Quality factors are also goals of a domain, but
with a central focus on how to use this domain in large or more specific domains.

34. What is nonmonotonic knowledge?

35. What is aspect-oriented programming? Give an example.

36. What is ontology?

37. What are the differences and similarities between knowledge maps and aspect-
oriented programming?

38. What are the differences and similarities between knowledge maps and ontology?

EXERCISES

1. Name three ultimate goals (EBTs) of sample requirements D1, which is titled
“Ocean Resources Management System.”

2. Name three ultimate goals (EBTs) of sample requirements D2, which is titled
“Dengue Fever Prevention and Outbreak Management System.”

3. Name all the capabilities (BOs) of sample requirements D1, which is titled “Ocean
Resources Management System.”

4. Name all the capabilities (BOs) of sample requirements D2, which is titled “Dengue
Fever Prevention and Outbreak Management System.”

PROJECTS

1. Use the abstracted EBTs and BOs from your responses to problem statement E1,
which is titled “Ocean Resources Management System” to form a knowledge map.

2. Use the abstracted EBTs and BOs from your responses to problem statement E2,
which is titled “Dengue Fever Prevention and Outbreak Management System” to
form a knowledge map.

SIDEBAR 2.1 Formal Methods and Formal Languages (Supratik Mukhopadhyay)

In the past, formal abstraction-refinement techniques (Morgan 1994) have traditionally

been used to support model/specification-driven development of software. Stepwise refine-
ment techniques (Morgan 1994) map an abstract model of the system to concrete software
through a set of small refinement steps. In the model-driven architecture framework, a
platform-independent model of the system is effectively mapped to a platform-specific model
through model transformations.

42 Software Patterns, Knowledge Maps, and Domain Analysis

In knowledge-based software engineering, knowledge representation techniques are used for
representing domain knowledge. Popular knowledge representation techniques include various
monotonic and nonmonotonic logics (Barwise 2006), such as description logics (Baader et al.
2003) and default logics (Besnard 1989). Goals may be specified as intentional knowledge within
a knowledge base. Capabilities can be added to provide extensional definitions. Goals may be
reified by automatically connecting the intentional goals to the extensional knowledge by using
the deductive reasoning capabilities of the underlying logical framework (Boddu et al. 2004).
Reifying goals results in ontology. Consider the following (simplified) requirement from the
Bay Area Rapid Transit project (van Lamsweerde 2001): “if a train is on a track, then its speed
should be less than the specified speed on the track.” A first-order discourse corresponding to this
requirement (Boddu et al. 2004) is given below (the discourse can be created from the natural
language requirement automatically).

EX X1

EX X2

end referent
isa (X1, train)
isa (X2, track)
ison (X1, X2)
end discourse
= >

EX X3

EX X4

EX X5

end referent
isa (X3, speed)

of (X1, X3)
isa (X4, speed)
of (X4, X2)

isa (X4, specified)
shouldbelessthan (X3, X4)
end discourse

end discourse

This is a discourse of the form D1 = D2, where D1 and D2 are discourse representation structures.
Notice that the atomic formula shouldbelessthan (X3, X4) isundefined in the require-
ment, as well as the discourse representation structure. Such undefined atomic formulas need to

be interpreted in the current context. A knowledge map system should first search the knowledge
base for a definition of the atomic formula. If a definition is found, it should consult the user about
whether to interpret the atomic formula with a definition from the knowledge base. (It presents the
user with all the definitions of the atomic formula found in the knowledge base if there are more
than one.) If either no definition is found in the knowledge base or the user does not agree with
definitions in the knowledge base, the user will be asked to specify what it means by should be less
than in the sentence—"If a train is on a track, then its speed should be less than the specified speed
of the track.” The user might specify “X should be less than Y if X < Y.” This input will be used
to interpret the atomic formula _ shouldbelessthan (X3, X4) as shouldbelessthan
(X3, X4) < (X3 < X4) _.(Theuser might be less precise in specifying the meaning of
should be less than; in this case, more refinement is needed and the user will be prompted to refine
his or her specification.) Thus, for the sentence ‘“Managers can access the database,” the user will
be asked the meaning of the word managers. If the user specifies “Tom and Jim are managers,” the
interpretation for isa(X, Managers)_ will be isa(X, Managers) < (X = Tom or X = Jim).

Abstraction 43

We can use a closed world assumption to interpret the atomic formulas. Hence, lack of extra
information would mean that in a closed world isa(X, Managers) = (X = Tom or X = Jim) _ and.
The definitions of _shouldbelessthan (X3, X4)_ and _ isa (X, Managers) are then stored in the
knowledge base along with their English interpretations “X should be less than Y if _X < Y” and
“Tom and Jim are managers,” respectively, for use in future sessions. Thus, a refinement of the
requirements goals results in a model-theoretic interpretation of the atomic formulas.

REFERENCES

Baader, F.,, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider. The Description Logic
Handbook: Theory, Implementation, and Applications. Cambridge, UK: Cambridge University Press,
2003.

Barwise, J. ed. Handbook of Mathematical Logic. North Holland, the Netherlands: Elsevier, 2006.

Besnard, P. _ Heidelberg, Germany: Springer, 1989.

Boddu, R., L. Guo, S. Mukhopadhyay, and B. Cukic. “RETNA: From Requirements to Testing in a Natural Way.”
Paper presented at the IEEE International Conference on Requirements Engineering, Kyoto, Japan, 2004.

Morgan, C. Programming from Specifications. 2nd edn. New Jersey, NJ: Prentice Hall, 1994.

van Lamsweerde, A. “Goal Oriented Requirements Engineering: A Guided Tour.” Paper presented at the
IEEE International Conference on Requirements Engineering, Toronto, ON, Canada, 2001.

SIDEBAR 2.2 The Definition of Ontology

Ontology is a specification of a conceptualization (Gruber 1993, 2009). The word ontology seems
to generate a lot of controversies in discussions about artificial intelligence. It has a long history
and tradition in philosophy, in which it refers to the subject of existence. It is also often confused
with epistemology, which refers to knowledge and knowing.

Ontology (Gruber 2009) is defined as an “explicit specification of a conceptualization,”
which is, in turn, “the objects, concepts, and other entities that are presumed to exist in some
area of interest and the relationships that hold among them.” While the terms specification
and conceptualization have caused much debate, the essential points of this definition of
ontology are

* An ontology defines (specifies) the concepts, relationships, and other distinctions that are
relevant for modeling a domain.

» The specification takes the form of the definitions of representational vocabulary
(classes, relations, etc.), which provide meanings for the vocabulary and formal
constraints on its coherent use.

This definition does not distinguish between tangible and conceptual objects and all the common
components of the any giving ontology are domain dependent.

In both computer science and information science, ontology is a formal representation of a
set of concepts within a domain and the relationships between those concepts. It is used to reason
about the properties of that domain and may be used to define the domain.

Ontologies are used in artificial intelligence, the semantic web, software engineering,
biomedical informatics, library science, and information architecture, as a form of knowledge
representation about the world or some part of it. Common components of ontologies as shown in
(Gruber 1995) include the following:

* Individuals. Instances or objects (the basic or ground-Ilevel objects)

* Classes. Sets, collections, concepts, or types of objects

* Artributes. Properties, features, characteristics, or parameters that objects (and classes)
can have

http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-3-662-05689-9

44 Software Patterns, Knowledge Maps, and Domain Analysis

* Relations. Ways that classes and objects can be related to one another

* Function terms. Complex structures formed from certain relations that can be used in
place of an individual term in a statement

* Restrictions. Formally stated descriptions of what must be true in order for some
assertion to be accepted as input

* Rules. Statements in the form of an if-then (antecedent-consequent) sentence that
describe the logical inferences that can be drawn from an assertion in a particular
form

* Axioms. Assertions (including rules) in a logical form that together comprise the
overall theory that the ontology describes in its domain of application. This definition
differs from that of axioms in generative grammar and formal logic. In these domains,
axioms include only statements asserted as a priori knowledge. As used here, axioms
also include the theory derived from axiomatic statements.

» Events. The changing of attributes or relations

Ontologies are commonly encoded using ontology languages. Ontologies resemble or look
like faceted taxonomies, but use richer semantic relationships among terms and attributes,

as well as very strict rules about how to specify terms and relationships. Because ontology
does more than just control vocabulary, they are thought of as knowledge representation.

An oft-quoted definition of ontology follows: “the specification of one’s conceptualization of
a knowledge domain” (see http://www.ksl.stanford.edu/people/dlm/papers/ontologies-come-
of-age-mit-press-(with-citation).htm). An example of concepts and relationships in ontology is
shown in Figure 2.4.

Parks
Department

L .
The United States ocated in

Maintained by

FIGURE 2.4 An example of concepts and relationships in ontology.

http://www.ksl.­stanford.edu
http://www.ksl.­stanford.edu

Abstraction 45

Ontologies, because they are machine readable, allow applications to be standardized, while
domain-specific information can be customized over time. The goal of Ontologies is to move the
complexity of the system into how the information is organized, rather than in the application that
processes that information.

REFERENCES

Gruber, T. R. “A Translation Approach to Portable Ontologies.” | N |} } NN 5. no. 2 (1993):
199-220.

Gruber, T. R. Toward principles for the design of ontologies used for knowledge sharing. International
Journal of Human-Computer Studies, Vol. 43, Issues 4-5, November 1995, pp. 907-928.

Gruber, T. R. “Ontology.” in the Encyclopedia of Database Systems, L. Liu and M. T. Ozsu, eds.,
Springer-Verlag, 2009.

http://www.crcnetbase.com/action/showLinks?crossref=10.1006%2Fknac.1993.1008

Section Il

Goals of the Knowledge Maps

48 Goals of the Knowledge Maps

Goals always represent what a concept is for, but not how a concept actually does it
(capabilities). They also convey the enduring business rules under which the capabilities
of a concept must function and act. Goals are important and critical pieces of formation of
the knowledge maps.

Section II discusses goals or/and enduring business themes, the origin of goals, several
perspectives of goals that are related to people, business, and projects; describes guide-
lines for ultimate goals, the impact of goals on problem understanding; and documents two
major goals of the knowledge maps as stable analysis patterns: discovery and knowledge.
Section II contains three chapters and six sidebars.

Chapter 3 is titled “The Goals: Significance and Identification,” and it defines goals and
their origin, discusses the goal significance, shows how to deal with goals: extraction and
assessment, briefly lists goals of the knowledge maps, and shows short pattern documenta-
tion templates for a few goals. This chapter concludes with a brief summary and numerous
open research issues. This chapter also provides review questions, exercises, and some
projects.

Chapter 4 is titled “Discovery Stable Analysis Patterns,” and it discusses, models, and
documents this pattern by using Fayad’s stable pattern documentation template as shown in
Appendix A. This chapter concludes with a summary and many open research issues. This
chapter provides numerous review questions, exercises, and some projects.

Chapter 5 is titled “Knowledge Stable Analysis Pattern,” and it repeats with the same
headers as shown in Chapter 4.

Sidebar 3.1 is titled “Goal-Oriented Requirements Engineering,” and it views any system
as a collection of active components (agents). Agents may restrict their behavior to ensure
the constraints that they are assigned (Lapouchnian 2005). In GORE, agents are assigned
responsibility for achieving goals (Lapouchnian 2005). A requirement is a goal whose
achievement is the responsibility of a single software agent (Lapouchnian 2005).

Sidebar 3.2 is titled “Goal Programming,” which is a fanciful or exotic nomenclature for
a very simple and straightforward concept: the thin fine line between stated objectives and
listed constraints is never completely crystallized.

Sidebar 3.3 is titled “Goal-Oriented Development,” which involves traversing through a
goal tree, an And—Or tree, whose root is associated with the system-wide goals.

Sidebar 4.1 is titled “Knowledge Discovery,” and it derives special knowledge from the
available set of input data.

Sidebar 4.2 is titled “Business Rules,” and it discusses the business rules as well-defined
rules through a set or collection of well-calibrated processes to achieve certain goal(s).

Sidebar 5.1 is titled “Knowledge Definition,” and it defines in simple words what exactly
knowledge is?

3 The Goals

Significance and Identification

Setting goals is the first step in turning the invisible into the visible.

Anthony Robbins

Goals always represent what a concept is for but not how the concept is applied to achieve
those goals (capabilities). They also convey the enduring business rules under which the
capabilities of a concept must function and act. Goals are important and critical pieces
for the formation of knowledge maps. They are important and mandatory, because they
encapsulate a discipline’s rationale and retrospective. This rationale and retrospective anal-
ysis will embed the appropriate axioms or rules under which a knowledge map will be
exploited. By discovering these goals, we can have a more precise idea of what problem
domains and their nature really is and the elements that are necessary to solve it.

3.1 INTRODUCTION

The main use of goals to wrap up the outcomes of the analysis phase is not entirely new or
fresh. Goals were originally suggested and recommended in Anton (1996), Anton and Potts
(1998), and van Lamsweerde (2001). However, in Anton (1996), Anton and Potts (1998),
and van Lamsweerde (2001), goals were simply defined as the functions (activities) and
constraints bound to an organizational process. In other words, these goals will change
proportionally to any change or modification in the processes of an organization. Usually,
the number of functions or activities can be quite large in an organization, especially if the
documentation of the organizational processes is analyzed or explored in a cautious manner
(Anton 1996; Anton and Potts 1998). Consequently, this number can be overwhelming for
the stakeholders and the technical staff of an organization to handle and manage.

In this book, we will share a different view and perspective of what goals really are. In
this view, goals are simply the enduring themes that justify why a software solution, area of
study, and so forth is needed in a determined environment (e.g., organization and software
project). They are neither functions nor constraints bound to organizational processes, as
suggested in Anton (1996) and Anton and Potts (1998).

Indications or suggestions of goals usually become obvious in meetings and situations,
where there is some sort of negotiation between one or two parties, for example, require-
ments elicitation meeting. In this instance, you have a group of software analysts, designers,
architects, and maybe some developers who are trying to learn and understand what the
needs, scopes, and trade-offs of a subject or project really are. For example, an individual
(project manager) tries to convince another individual (customer) to accept a particular soft-
ware product. If the project manager can satisfy or meet the needs and requirements of a
customer, there is a certainty that the customer will accept the software product. Otherwise,

49

50 Software Patterns, Knowledge Maps, and Domain Analysis

the customer will just walk away, even when the product is cheaper. This is because there
is no need for using that product if it is not going to satisfy the customer.

Another example of when goals become obvious and noticeable is a situation when
developers deal with businesspeople and/or stakeholders. Entrepreneurs always tend to
think about a problem in terms of principles, things that describe what the problem is.
Developers, however, tend to think in terms of concrete elements that can be adapted and
used to satisfy a determined process. Principles, by nature, are more enduring and stable
than processes. For instance, let us use branding as the subject of discourse. Branding is
an enduring principle that has been part of our daily lives throughout time. The earliest
known shepherds effectively branded their cattle to identify, detect, and differentiate them
from other shepherds cattle, by using a set of machinery, such as iron brands and paint
tars. Today, branding is specially used in other fields such as marketing, human computer
interaction (HCI), and biometrics. The process to achieve branding is totally different and
separate in each field, but the principle of what branding is for remains exactly the same;
for example, it allows us to identify an entity and to differentiate among the entities peers.

It is important to remember that any type of business or activity is driven forward
mainly by enduring principles that determine its function and success. Unfortunately,
many companies overlook these principles and depend solely on available machinery or
industry, to temporarily extend their businesses lives or overhaul these activities (patching
your business or activity). Software development process is a good practical example of
such behavior. This unique behavior can be turned into an expensive viscous cycle that
will never end. In fact, it will constantly incur additional cost, time, and effort every time
and whenever new patches come along. These issues show and demonstrate how important
it is to focus on those aspects that are likely to endure in any business than just focusing
on patching existing deficiencies with new machinery proportionally to the appearance of
new requirements.

The terms principles, essential themes, or enduring themes of the subject will be inter-
changeably used to represent goals. In the rest of the chapter, we will illustrate why goals
are important and critical elements of a problem space, and what the processes of iden-
tifying them are. Later in the chapter, we will also introduce the essential themes driv-
ing the realization and understanding of knowledge maps. These essential themes will be
described using a short-pattern documentation template. Two complete pattern documenta-
tion templates are provided in Appendix A.

3.2 SIGNIFICANCE OF GOALS

Goals have always been the essential part of object-oriented analysis or problem space; how-
ever, their use and deployment was always implicit and, in several cases, totally ignored by
software practitioners (van Lamsweerde 2001). For instance, software practitioners put more
effort and energy into trying to solve a problem than trying to learn and understand it first.
Therefore, requirements and needs were never synchronized with the machinery or elements
used to fulfill them. Consequently, businesses all over the world experienced great losses due
to software systems that was not completed on time and software developed wrongly. The
use of goals to overcome the aforementioned problems is starting to be recognized (Anton
1996; Anton and Potts 1998) now, especially during the requirements acquisition phase.
Software practitioners are beginning to think in terms of why do we need this subject (sys-
tem) or what are the objectives that we are planning to achieve with this subject.

The Goals 51

The most important and critical problem with the above approach is that practitioners
have a peculiar tendency to think in terms of the application’s elements that are most likely
to change and transform over time, due to the emergence of new problems or new business
requirements (Fayad, Hamza, and Sanchez 2005). The approach being introduced in this
chapter concentrates mainly on those goals that will remain the same over time. These
goals will overcome application changes, new business requirements, and so on, because
they are always created at a knowledge level and not at an application level.

Alex van Lamsweerde (2001) provides a set of reasons and causes as to why the defini-
tion of goals is so important and critical to the requirements elicitation process. Some of
these reasons are also applicable to the approach that is being introduced here. The special
ones that apply to our approach are products of certain properties of goals that have deter-
mined the value of a subject matter’s rationale. (We have included some of our reasons
too.) Following are these important properties (Hamza and Fayad 2003) (Some properties
were omitted, because they merely apply to a model that consists of goal and capabilities.):

e Stable. A goal must represent a stable and conceptual structure that determines a
subject matter’s rationale.

* Natural. It is important to present, in a cohesive and natural manner, no less impor-
tant, language to assure its reusability elsewhere.

* Domain-independent. A goal must represent a conceptual structure that appears in
multiple domains of applications.

» Single enduring business theme (EBT). A goal must represent a single EBT. This
means that we are focusing on one problem at a time.

These properties were described to help practitioners understand in detail numerous rea-
sons as to why goals are so critically important. These reasons are as follows:

1. The definition of a goal implies adequate requirements, specification, and com-
pleteness. A requirement specification was said to be complete if a determined goal
was achieved.

2. Goals are the subject’s rationale retrospective that provides the high- and low-level
essentials or principles that the management and technical personnel can easily
understand and apply.

3. Goals facilitate a natural mechanism to allow management and technical groups to
be on the same page with respect to the design objective of the subject (system).

4. The process of definition of a goal is a focused process—irrelevant details are
always avoided.

5. Goals are enduring themes that are not bound to volatile information. Their endur-
ing nature is determined by specially focusing on aspects that will remain stable
over time (knowledge) and not on aspects that are application specific.

6. A proper identification of goals will drive the discovery of their capabilities. In
other words, once we have successfully found (and evaluated) a determined and set
goal, we will be able to determine its capabilities.

7. A goals identification process facilitates great team dynamics and vibrancy. Because
goals are described in a simple, straightforward, and natural language, they are clearly
understood by managers and technical staff. Therefore, managers can actively partici-
pate in identification of goals, which is the area with which they are most familiar.

52 Software Patterns, Knowledge Maps, and Domain Analysis

3.2.1 AN ExampLE: A SiMPLE E-COMMERCE APPLICATION

To illustrate the importance of using goals to understand the purpose of a subject’s existence,
we will discuss a simple e-commerce example. This example will convey why the goals are
so much needed.

Let us now imagine that a business firm is requesting JustACompany to develop the
firm’s new e-commerce application. Without any hesitation or doubt, JustACompany
accepts the project and it gets ready for its development. Now, JustACompany’s soft-
ware development team proceeds with the requirements elicitation process. During this
process, the team reviews the problem statement. Then, it looks out for the candidate
objects of the problem by using traditional software engineering approaches (Abbot 1983,
pp- 882—-894; Fayad, Hamza, and Sanchez 2005). A typical result of this process will con-
sist of objects such as Customer, ShoppingCart, CreditCard, Database, Catalog, Order,
and Product. These objects are usually extracted from a problem statement that was given
to JustACompany. The model is illustrated in Figure 3.1.

Consider the above illustrated e-commerce example as a specific business case. We
have a simple model that has the tendency to be redone or recast every time new require-
ments appear on the loop. Proportional to the occurrence of new business requirements,

navigates retrieves products

Customer Catalog DataBase

1.% > >

exhibit instances of
-t
store information
-t

1.*

1.*

Product <>| ShoppingCart

provides
-+

spawn
€+

— < validates —
CreditCard Order

FIGURE 3.1 A simple e-commerce application.

The Goals 53

this e-commerce solution will be susceptible to drastic and sudden changes and
adaptations of the elements that form it (Fayad, Hamza, and Sanchez 2005). These dras-
tic changes or transformations may also jeopardize the life of the e-commerce appli-
cation from a business perspective, because businesses are usually reluctant to keep
financing a project that produces more recurring costs than benefits. Therefore, our
e-commerce application has two possible ends: abandonment or reengineering. Neither
one of those states is positive and beneficial for the business. In fact, no pleasing effects
will arise unless if we focus on the company’s business themes likely to endure through-
out its life. So, JustACompany will ask these questions: What are those enduring themes
of e-commerce? Is there a way to capitalize on the declared e-commerce’s enduring
principles and trace them over the success of the business? How and in what way, can we
find these enduring themes? To answer such questions, we need to describe the enduring
business’s identification process.

These critical and important questions will facilitate a complete understanding of the
e-commerce subject’s problem space. For instance, we will be able to characterize and
acknowledge the e-commerce subject’s scope, nature, and its core elements. Those core ele-
ments are essential outcomes, purely conceptual, for which we are actually looking. They
are the single themes of interest; they are the true what of the e-commerce subject. The
following section will describe the process for identifying the goals of a subject matter or
discipline. Our case argued here would be the identification of the goals of an e-commerce
application.

3.3 DEALING WITH GOALS: EXTRACTION AND ASSESSMENT

Focusing mainly on goals during the analysis phase is very important and vital for under-
standing the problem space of any subject matter. Instead of focusing on aspects that
come and go proportionally with the appearance of new requirements and technology,
we focus here on elements that we know will remain enduring or stable over time. Within
the realm or domain of knowledge maps, these goals are classified into three categories:
personal goals, business goals, and project goals. The determination of a goal’s category
is finalized by examining the nature and target context of the subject matter. This clas-
sification will set the boundaries or perimeters for the identification and assessment of
future goals.

Goals are the special domains where businesses, projects, and persons (hosts) meet when
trying to understand a particular subject of interest. Goal achievement resides within the
harmony or equilibrium between these goal’s hosts. This harmony is recognized by the
relationships and levels of organization among each one of the concerns that form these
host’s rationale. These concerns may include businesses, projects, and persons own values,
desires, and constraints, such as mission, vision, needs, meaning, return on investment
(ROI), trade-offs, current state, and future destination. Each one of these concerns can
be addressed or discussed in isolation; however, the relationship among them defines the
overall flow or guidance for how these hosts are handled, and how they complement their
high- and/or low-level neighbors (e.g., business and persons).

Business goals are, in fact, the mission constructs of any business entities. They define
the path that any business has to follow if it wants to succeed in a corporate sense. This
path consists of high-level abstractions that will drive a business performance and focus
on a determined society (e.g., a market-driven society). However, because we are dealing

54 Software Patterns, Knowledge Maps, and Domain Analysis

with high-level abstractions, it is common that these concerns are built from other fine-
grained (level of detail) concerns. For example, the fulfillment of business goals depends
on realization of project goals, the project goals depend on achievement of personal
goals, and so on.

Project goals are need-driven concerns formulated to reach a future deliverable for a set
of customers (internal or external). They always reside in the satisfaction of determined
needs, such as project completion, availability, solution scope, and time to market, which
are transformed into products (e.g., software applications and services). Project goals are
just “the compass guiding the direction of your project” (National Leadership Grants
[NLG] Project Planning: A Tutorial; Woodley 2008). The fulfillment of project goals will
lead us closer to achieving overall business goals. For example, let us imagine that two of
your business’s goals are to ensure your products acceptance by possible customers and to
achieve a greater ROL. In order to fulfill these particular goals or needs, we have to ensure
customer satisfaction, customer support in case they have concerns or questions regarding
your product, and efficiency and efficacy for how to sell and deliver your products to these
customers. After acknowledging these project goals, we would have a better idea or notion
of type of infrastructure needed, prerequisites required to implement it, and information
about the solution scope. This may ultimately result in the definition of a set of products
that will eventually achieve these goals. A customer relationship management system may
be required, for example. Here is where the responsibility of technical and business staff
comes into place to formulate and implement the infrastructure. Infrastructure is a set of
products or services required to assure the completion of business goals.

Dealing and acquainting with personal goals is a little bit different from dealing with
business and project goals. This raises a sensitive question—why? Here, we are directly
dealing with the goals of each one of the individuals participating in the company or proj-
ect of interest. In fact, they are the most delicate or sensitive goals that we have to address
and imply during a project’s lifecycle, because they implicitly determine the success of
accomplishing the project goals. Here is where you, as team leader or manager, try to
bring or import each individual on the same boat or journey, while still ensuring each
individual’s goals are achieved in an efficient manner. These goals include incentives or
rewards that will motivate, cajole, and urge individuals in multicultural environments to
possess a proud feeling of being a key element in the team and will promote efficient col-
laboration and support among all team members. The management staff and team leaders
must discern the required steps to set the right type of environment where these goals
will be addressed in detail and then give them enough attention and care to engage these
individuals (e.g., technical staff).

Within a business environment, each one of the goals categories can be addressed in
isolation. However, the harmonized relationship between them will determine the success
or failure of any business. Throughout the course of this chapter, we will concentrate com-
pletely and specifically on project goals, especially the ones related to project develop-
ment (e.g., products and services). However, we will certainly acknowledge and note the
importance of personal and business goals in the achievement of project goals. Failing to
acknowledge the critical importance of personal and business goals during exploration of
project goals will certainly affect their accuracy and achievement. Hence, one should never
ignore these goals during the process of definition of project goals.

In a nutshell, extracting all underlying goals from a discipline or subject matter is a
challenging and strenuous task for both novice and experienced software/business/project

The Goals 55

practitioners. The software stability concept approach (Fayad 2002a, 2002b; Fayad and
Altman 2001) shows greater and immense promise for the extraction of goals of a disci-
pline. In spite of a detailed process highlighted here, mastering its basic principles requires
a lot of practice and skills, because of a common tendency to think in terms of application’s
objects rather than knowledge’s objects. The next section describes the process of extract-
ing goals in a cohesive and a seamless way, so that practitioners can learn, define, compre-
hend, and understand it quite easily.

3.4 EXTRACTING THE GOALS OF A DISCIPLINE: THE PROCESS

Through a set of straightforward questions and enquiries, we will also illustrate and
demonstrate how you can extract, assess, and filter main goals of a discipline. The high-
level process for extracting these goals is illustrated in Figure 3.2. Please note that you can
perform this process in parallel with the capabilities identification process.

Using the e-commerce example cited before in the chapter, we will now illustrate how the
e-commerce project’s goals and ambitions are extracted, filtered, and evaluated. One of the
important questions that JustACompany asked when they were facing a potential collapse

Note 1: Practitioners must
delve into a complete

exploration of the subject

N\
\ ~N
\ ~
\\ ~ ~| Select the subject of interest ¢ ioszailwit:;:;:;ﬂ\;gs
\ (Problem) T We know the goal, but
\ T | we do not know its
\ | | capabilities
\ 2 1L | T
Note 3: Quality factors \ e —_——_—_—_—_,—_,—,—_— —————— —
(EBTs) are also identified \ Apply software stability n 1
\ concepts | Note 6: This is another way |
~ | to deal with capabilities. |
S~ A capability with no goal;
~ | |
~ 3 we must find the goal
~ | and the other capabilities |
Note 2: Since the purpose of Identify goals (EBTs) and | _~ - that support its goal |
this process is identification capabilities (BOs) _——— e e e e e ——— | |
of goals, practitioners must 7 A |
overlook the statements that | |
mention capabilities identification 4 | I,'- ______ 1 6.2 | :
~ N .
| Filter identified goals (EBTs) Evaluate each identified | |
_- and capabilities (BOs) capability (BO) against BO’s | |
- .
Note 4: Practitioners - 8 properties : |
must carefully filter |
the identified goals 4.1 | |
(EléTs) and capabilities Evaluate each identified goal Model each goal (EBT) using L _ | __ I -
(BOs) (EBT) against EBT’s software stability concepts r
properties |
|
10 |

Note 7: Goals (EBTs) are
placed in the concern type
named goals and
capabilities (BOs) in the
concern type named
capabilities

Model each capability (BO)
using software stability
_____________________ concepts

ED Create the knowledge map

FIGURE 3.2 The high-level process for identifying goals.

56 Software Patterns, Knowledge Maps, and Domain Analysis

or abandonment of their product was—what are those enduring themes of e-commerce?
The answer to this question is found by following this simple process:

1. Selecting subject of interest. This step is designated to help guide software prac-
titioners to examine and probe the subject of interest. Irrelevant details, such
as application details, must be ignored totally during this subject’s exploration.
Practitioners must focus only on the aspects that define the core knowledge of
e-commerce. We would support this step by asking the following questions:

a. What is the subject or problem? The subject is e-commerce.

b. Are you aware of scenarios or situations, where the subject (e-commerce)
appears? This will help us narrow down the scope of the subject being explored.
In other words, we have a focused problem.

2. Applying the software stability concepts approach. This step follows the heuris-
tics provided in Fayad (2002a, 2002b), Fayad and Altman (2001), and Hamza and
Fayad (2002) to identify and detect the initial list of goals of a discipline. This step
also uses the following questions to get this initial list.

a. What is the subject/problem (e-commerce)? What are the reasons for this sub-
ject matter/concept to exist?

b. What does the subject (e-commerce) do? (See Chapter 4.)

3. Identifying goals and capabilities. This step’s outcome will be a conglomeration of
potential goals, such as ROI, product navigation, product selection, trading, order
handling, customer service, convenience, and security.

a. These goals are potentially useful, because they surfaced or appeared by solely
examining what we know or what we have found about the subject in current
literature.

b. In addition, some of them may be still referencing the subject matter from an
industrial objects perspective.

4. Filtering identified goals and capabilities. This step concentrates mainly on filter-
ing the list of potential goals we just identified in the previous step. By filtering
down these goals, we are getting and inching closer to the stage, where we may
say that we have the right set of goals of the discipline. This step is driven by the
following questions:

a. Does the goal depend on adjacent goals to exist? If yes, the goals must be
removed. Is the goal part of a wish list of a stakeholder(s)? If yes, the goals
must be eradicated. By a wish list, we mean the list of goals that you may like
to achieve or have at certain point of time.

b. The resulting list of goals will be smaller than the initial list. The new list will
be trading, order handling, convenience, and security.

4.1. Evaluating each identified goal (EBT) by using the EBTs’ properties. This step
is driven by the following questions and heuristics from Cline and Girou (2000),
Fayad (2002a, 2002b), Fayad and Altman (2001), and Hamza and Fayad (2002):

a. Can we replace or exchange any of the remaining goals with another goal? If
yes, the affected goal must be removed.

b. Is the goal internally and externally enduring and stable? In other words, does
the goal reflect the essence of the subject matter’s existence? If no, the goal
must be removed.

The Goals 57

c. Does the goal have a direct physical representation? If yes, the goal must be
removed.

d. The final list will consist of three goals: trading, convenience, and security.

e. These goals will determine what e-commerce is. The resulting list will also
answer the middle question of JustACompany: is there a way to capitalize on
the declared e-commerce’s enduring principles and trace them over the success
of the business?

4.2. Evaluating each identified capability (business object [BO]) against the proper-
ties of BOs. See Chapter 4 for more details.

The rest of the steps 5 through 11 shown in Figure 3.2 are addressed in Chapters 4 through 6,
respectively. Regarding the question “Is there an efficient way to capitalize on the declared
e-commerce’s enduring principles and trace them all over the success of a business?” the
answer is yes, there is a way! This way is twofold: the definition of the goals capabilities,
and establishing a synergy between the goals and their capabilities without losing generality.
This means that this unique synergy will provide the foundations for the development of a
set of applications on an on-demand basis. This will also answer the aforementioned ques-
tion. The critical process for identifying these capabilities will be explained in Chapter 4.

3.4.1 DEALING WITH SUBGOALS

Similar to goals, subgoals are those enduring principles that determine the very rationale
and nature of a discipline or domain. They are also represented as EBTs. However, their
existence and satisfaction are not as required and mandatory as the ones of the main goals
are. Subgoals can be considered as the extras you may wish to have or satisfy within a given
determined event or situation. Therefore, bringing subgoals or the extras as part of the essen-
tial elements of a discipline may bring you more problems than actual benefits. First, you are
extending and redefining the context or boundary of your study. This extended context will
certainly contain additional axioms or constraints and events that may, in some cases, con-
taminate the direction of your subject study and the overall rationale of that particular sub-
ject. Second, the inclusion of subgoals implies the consideration of certain trade-offs that the
designing team (or any software practitioner) must consider and accept, when a particular
need or requirement appears. For example, do you think your goals were achieved without
satisfying your subgoals? Please think about this question in a critical manner.

Let us use the concept of marriage as a goal that contains or implies a set of extras or
subgoals, such as love, friendship, companionship, and harmony. If we ask the question
“can marriage exist with the satisfaction of any of its subgoals?”” honestly, we know that the
answer is yes, marriage can exist per se without the satisfaction of any of its subgoals. This
does not mean, however, that it is wrong to satisfy marriage’s extras or subgoals. What we
are trying to say here is that unless you really need the existence of a subgoal to clarify or
focus the purpose of your study, you should not deal with subgoals or include them in your
subject’s rationale study.

The next section covers the main goals of the knowledge maps. Because we have cov-
ered the subject of what goals are and how they can be identified, readers will be able to
understand the goals of the knowledge maps and get an accurate picture of what they are
and how they were identified.

58 Software Patterns, Knowledge Maps, and Domain Analysis

3.5 GOALS OF KNOWLEDGE MAPS

This section covers in detail the goals of knowledge maps. They are illustrated as the stable
analysis patterns (see Chapter 2). Seven goals drive the function and rationale of knowledge
maps. Table 3.1 summarizes these goals.

3.5.1 GoAL 1: LEARNING

* Name. Learning stable analysis pattern (Fayad and Telu 2005).

* (Context. Learning stable patterns can be applied to various patterns in various
day-to-day fields or applications. For example, in a formal learning experience, a
student has a set of syllabus from which he or she is taught and then tested later
on. In the workplace, people often learn through previous experiences. Generally,
a person with a graduate degree and five years of experience in a particular field
is more knowledgeable about that field than a student who has just graduated in
the same field because, while working in the field, the experienced individual has
learned enough through the process of encountering and conquering challenges
presented in the workplace.

We can easily see a sense of learning occurring here as a routine activity in
nonhumans too. Birds always learn by observation and experience. A baby bird
starts learning by watching its mother or father fly and trying to fly small distances
by hopping from one tree to another. As it grows, the bird begins fly better until it
masters the talent.

* Problem. How to create a conceptual model for the learning concept that is general
enough to be applicable to any domain, which incidentally includes users’ require-
ments that will apply to all possible users of learning applications.

TABLE 3.1

Goals of Knowledge Maps

Goal Description Provided?

Learning In this domain, learning is the cognitive process of acquiring skills or knowledge Yes
about a specific discipline.

Discovery It is defined as the process or act of discovering something or somebody Yes
unexpectedly or after research.

Knowledge In this domain, it portrays the distinct aspects (goals and capabilities) of the Yes
knowledge maps.

Abstraction A view of a problem that extracts the essential information relevant to a No
particular purpose and it ignores the remainder of the information.

Visualization In this domain, it visualizes the existence of certain goals, capabilities, and No
transient aspects in the knowledge maps, as well as their relationship with each
other.

Synthesis It is the ability to create new knowledge out of pertinent aspects of a No

particular domain. This includes the association of direct knowledge and
remote knowledge.

Leveraging This refers to the reuse of source and/or target patterns from one set of core sets No
in remote knowledge maps and/or domain-specific applications.

The Goals

* Solution and participants.
* Solution. See Figure 3.3.

* Participants
— Classes

— Learning. It represents the learning of any party. This class consists of

behaviors and attributes that control the learning process.

—AnyStudy
—AnyExperience
—AnyTeaching
—AnyResearch
—AnyObservation

59

<<P-BO>>
AnySource >—
1.7
—Acquiring skill £
—Change in behavior brought S A
about by experience ha
—Increase in the amount of
response rules in memory
I results <<P-BO>>
| AnySubject
| > 1. i
| 1.
| .
| =
I S(A
|
|
|
. throughout <<P-BO>>
<<EBT>> Learning > i AnyMechanism
w)
7
=
A
g
A
h=
S,
<}
1. &
achieves <<P-BO>> AnyActor gains <<P-BO>>
: > L > :1 AnySkill o
| |
| |
| |
{OR} {OR}
| |
| |
| |
| |
!achieves <<P-BO>> I gains
> L AnyParty L >

FIGURE 3.3 The learning stable analysis pattern (culled from Fayad’s pattern archive).

60 Software Patterns, Knowledge Maps, and Domain Analysis

— Patterns

— AnyActor. It represents any actor, who gains any kind of skill or achieves
learning through various means.

— AnySkill. Tt represents the skill that is gained by the actor, by adopting
the learning process.

— AnyLearningProcess. This is the methodology an actor adopts to gather
a special skill. This can be experience, trial and error, formal education,
or just watching.

— AnySubject. It represents the subject or the topic of learning.

— AnySource. It represents the source from which this learning process
takes place. This can be a book, the Internet, a paper, or a journal. This
is optional. In some cases, such as group discussion, this might not actu-
ally exist, unless the group discussion is about a book or a journal.

3.5.2 GoAL 2: Discovery

* Name. Discovery stable analysis pattern (Khadpe 2005).

* Context. This pattern can be used in several applications and scenarios, where a
discovery concept is used in the system. It can be used for the discovery of facts,
patterns of any artifacts or discovery of anything in a multitude of domains.

* Problem. Discovery is an enduring concept, whose application can range from the
discovery of the universe to the discovery of a mathematical formula, to the discov-
ery of patterns in data. It asks how to make the discovery analysis pattern general
enough to be applicable to any domain?

* Solution and participants
e Solution. See Figure 3.4.

e Participants
— Classes
— Discovery. It describes the discovery process.
— Patterns
— AnyDiscoveryType. It represents the different types of discoveries in
different application areas or domains.
— AnyDiscoveryMechanism. It represents the BO, which deals with differ-
ent kinds of discovery mechanisms.
— AnyDiscovery. It represents the BO, which represents the desired
discovery.
— AnyActor. It represents a person or a group of people who interact or a
scientific group responsible for the discovery process.
— AnyEvidence. It represents the proof of the discovery.

3.5.3 GoaL 3: KNOWLEDGE

* Name. Knowledge stable analysis pattern (Fayad and Telu 2005).

* Context. Knowledge can be gained through experience or conducting studies. It
represents a collection of facts, rules, tips, or lessons learned with respect to any-
thing that must be synthesized to create knowledge. This pattern will be used to
represent knowledge synthesis and acquisition.

The Goals

EBTs e BOs
S>— Many possibilities
such as star
1.* discovery,
- <<P-BO>> |———————"— innovations, and
some kind of
can be of » AnyType discovery
AnyExamination
AnyExperiment
» AnyObservation
°:’ AnyKnowledge
é AnyResearch
= AnyAccident
% 4
7
o s
\/ s
7
Ve
7
7
done through L~ done by
<<EBT>> » <<P-BO>> » <<P-BO>>
Discovery 1 AnyMechanism Any Actor
o— S —
A °
= P
£ 3
g =
o y
=
=
]
v . .
QE) indicates
<<P-BO>> > <<P-BO>>
AnyEvidence 1 AnyDiscovery
1.%
S
qualifies p

FIGURE 3.4 The discovery stable analysis pattern (culled from Fayad’s patterns archive).

e Problem. How do we build an effective model that encloses the common core
knowledge of knowledge?
* Solution and participants
e Solution. See Figure 3.5.
e Participants
— Classes
— Knowledge. It describes the synthesized knowledge.
— Patterns
— AnySkill. Tt represents different types of abilities that an actor can gain
via any mechanism.
— AnyMechanism. It represents the BO, which deals with different kinds
of discovery mechanisms.
— AnySubject. It represents the class, where all facts and other information
pertinent to a domain are located for future reference.

62 Software Patterns, Knowledge Maps, and Domain Analysis

1.7
1.*

Experience
<<EBT>> <> <<P-BO>> Experimentation
Knowledge AnyDomain _q—l: Research
0 e
|
|
|
|
|
X E |
|
1.* |
A I: <<P-BO>> |
] AnySubject 1. I
E A !
5 = |
< I
=1
= |
3 I
2 |
2
g |
= <<P-BO>>
AnyMechanism
<—
3
2
<
2
=
kS|
<)
5]
<<P-BO>> <<P-BO>> \
L AnyParty gains » L AnySkill L

<

FIGURE 3.5 The knowledge stable analysis pattern (culled from Fayad’s patterns archive).

— AnyDomain. It represents the environment that will be explored in
search of rules, constraints, and knowledge pertinently related to one
or more subjects.

— AnyActor. It represents a person or a group of people who is/are or will
be gaining knowledge.

3.6 SUBGOALS

3.6.1 Use AN ANALOGY: MARRIAGE OR FRIENDSHIP

A good and feasible way to describe subgoals is through forwarding a number of meaning-
ful analogies. Having written that, we will use the concept of friendship throughout this
section to explain what subgoals are in the context of knowledge maps. Subgoals can be
seen as the wish list elements that come along with the utilization of a determined goal. In
other words, imagine the goal friendship. You will always expect from the word friendship
several other aspects to be achieved along with it, such as trust, companionship, assistance,
forgiveness, and love. As we discussed before, subgoals are the wish list elements of a
determined goal. It does not mean that by achieving friendship we are guaranteeing the

The Goals 63

achievement of other aspects associated with it. We can have friendship without any or
all of the aspects involved in the process. Because of this, you must be very careful when
including subgoals as part of any solution formed by specific goals, because they accom-
pany different rules, axioms, and/or problems that would undermine your original solution.

The inclusion of subgoals to your original solutions has its advantages and disadvantages.
Some of the advantages are as follows:

1. It will allow the representation of alternative ways of satisfying a particular goal.

2. It will also represent successful connections or trajectories toward the achievement
of goals.

3. It will increment the criteria that feed available verification and validation methods.

Some of the disadvantages are as follows:

1. It will increase the level of complexity and difficulty of a solution, because there
are no reasonable limits to the number of alternatives to satisfy a particular goal.

2. It will also increase the number of rules and conditions, which influence the accu-
racy of solution derived that come along with the inclusion of more subgoals.

As you can read, the use of subgoals can bring a lot benefits to your proposed set of
solutions. However, if their use is not properly addressed during the design of your solution,
they might result in additional problems than presumed benefits. Having written that, we
always favor and prefer nonuse of subgoals as part of your solution.

SUMMARY

The main objective and goal of this chapter was to provide a set of heuristics to ease the
process of identifying and assessing the goals of a discipline. The second objective was to
state and define the basic understanding of what a goal really is and why we need goals in
the analysis phase of any problem. The third objective was to provide some of the goals that
drive the formation of knowledge maps. These goals were provided by using a short-pattern
documentation template. We have implemented these objectives by using the software sta-
bility concept as the main approach for identifying goals. By using this unique approach,
we also provided the behind-the-scenes knowledge about goals usage, and in what manner
they make a fundamental part of a complete analysis of the problem or subject of interest.
We have included a very short template for documenting stable analysis patterns for the sake
of simplicity. By doing so, the reader will cover the provided goals description in a short time.

OPEN RESEARCH ISSUES

The following are some of the open research issues that need to be examined and require
future work and experimentation:

1. Using stability model as a method for goal elicitation. It is a process of obtaining
goals from any source, such as human and literature sources. This can involve the
use of reading, researching, interviews, observation, and protocol analysis.

2. Utilize the concurrent software development model or knowledge map methodol-
ogy as an effective way for requirements engineering of any application or domain,
instead of using goal-oriented requirements engineering approaches, such as NFR
Frameworks, KAOS, and GBRAM (see Sidebar 3.1).

64 Software Patterns, Knowledge Maps, and Domain Analysis

REVIEW QUESTIONS

. What is a goal?

. What are the types of goals?

. Which type is concerning software development?

. Which ones of the following concepts are goals and why?

Project

Account

Ownership

Agreement

Range

Measurement

Evaluation

Performance

Trust

Love

Anger

Revenge

Pleasure

Acknowledgment

Acceptance

Warning

System

Entity

. Log

. Describe what goals are from two different perspectives—traditional and stability.

. What other terms are used interchangeably with the term goal in the book?

. List the properties of goals that can be applied to the model.

. State why goals are so important.

. Goals are classified into , , and

10. Describe what business goals are.

11. Define project goals.

12. “Personal goals are the most delicate of all the goals that one needs to address dur-
ing the projects lifecycle.” Justify this statement.

13. Is the following statement true or false? Goal extraction can be carried out in paral-
lel with the capabilities identification process.

14. Enlist the steps carried out for identifying goals.

15. What are subgoals? How are they different from goals?

16. “Adding subgoals makes the problem more complex.” Do you agree with this state-
ment? Support your stance with appropriate arguments.

17. Summarize the goals that drive the knowledge map’s rationale.

18. is the wish list elements of a determined goal.

19. What are the pros and cons of using subgoals to a solution?

20. What the following terms stands for:

a. NFR

b. GORE

BN =
» m 2T OB E mFe TR A0 R0 T

O 0 3 N W

The Goals
c. KAOS
d. GBRAM

21. Define GORE.

22. Name the GORE approaches.

23. What are the benefits of using GORE?

24. What are the differences between GORE and software stability model as a way for
de-engineering requirements?

EXERCISES

1. Model or create a class diagram of each of the goals of the following concepts (not
all goals) by using software stability model, resulting stable analysis pattern for
EBT, and stable design pattern for BO.

a. No documentation
b. No meta models
c. No implementations

For each goal do the following:

1. Create three scenarios (usage) for each of the following concepts.
ii. Extract common properties.
iii. Create the pattern based on software stability/concurrent-oriented software
development model in Chapter 1.

Activity

Diagram

Decision

Action

Friendship

Health

Condition

Employment

Swimlane

Object

Acting

Negotiation

Trade

Event

Transition

Trust

Workflow

Splitting

Merging

StartingPoint

EndingPoint

Concurrency

Constraint

Synchronization

XELCHLALO O ZEr R TQmuonNwp

65

66

Software Patterns, Knowledge Maps, and Domain Analysis

Y. Recording
Z. Traceability

2. Each movie has one or more specific and ultimate themes (goals). Name the
ultimate goal(s) of the following classic movies:

CF B mF e F@ o B0 TR

Lagaan

The Lord of the Rings trilogy (2001-2003)
Titanic (1997)

Toy Story (1995)

The Silence of the Lambs (1991)
Crumb (1995)

The Lion King (1994)

Shrek (2001)

The Breakfast Club (1985)
Speed (1994)

Scarface (1983)

Fatal Attraction (1987)
Ghostbusters (1984)

Dirty Dancing (1987)

Back to the Future (1985)

3. Each book has one or more specific and ultimate themes (goals). Name the ultimate
goal(s) of the following classic books:

il N O S S i

The Road, Cormack McCarthy (2006)

Harry Potter and the Goblet of Fire, J. K. Rowling (2000)
Beloved, Toni Morrison (1987)

The Liars’ Club, Mary Karr (1995)

American Pastoral, Philip Roth (1997)

Mpystic River, Dennis Lehane (2001)

Cold Mountain, Charles Frazier (1997)

Watchmen, Alan Moore and Dave Gibbons (1986—-1987)
Black Water, Joyce Carol Oates (1992)

4. Each TV show has one or more specific and ultimate themes (goals). Name the
ultimate goal(s) of the following classic TV shows:

BOBE ~FeFm om0 0T

The Simpsons, Fox (1989—present)

The Sopranos, HBO (1999-2007)

Seinfeld, NBC (1989-98)

The X-Files, Fox (1993-2002)

Sex and the City, HBO (1998-2004)

Survivor, CBS (2000—present)

The Cosby Show, NBC (1984-92)

Friends, NBC (1994-2004)

The Oprah Winfrey Show, Syndicated (1986—present)
American Idol, Fox (2002—present)

Beverly Hills, 90210, Fox (1990-2000)

Star Trek: The Next Generation, Syndicated (1987-94)
Miami Vice, NBC (1984-89)

L.A. Law, NBC (1986-94)

Moonlighting, ABC (1985-89)

The Goals 67

q. Planet Earth, Discovery Channel (2007)
1. The Golden Girls, NBC (1985-92)
S. Prime Suspect, ITV (1991-2006)

PROJECTS

1. Identify and model two to four ultimate goals and connect them together for the
following domains:

Manufacturing

Modeling

Requirement analysis

Customer relationship management

Database

Project
g. Kitchen

2. Identify and model the class diagrams using two to three ultimate goals for each of
the sample requirements in Appendix D.

-0 0 o

SIDEBAR 3.1 Goal-Oriented Requirements Engineering

Goal-oriented requirements engineering (GORE) regards any system as a collection of active
components (agents). Agents may restrict their behavior to ensure the constraints that they are
assigned (Lapouchnian 2005). In GORE, agents are assigned responsibilities for achieving

goals (Lapouchnian 2005). A requirement is a goal, whose achievement is the responsibility of

a single software agent (Lapouchnian 2005). Agent-based reasoning is central to requirements
engineering, because the assignment of responsibilities for goals and constraints among agents in
the software-to-be and in the environment is the main outcome of the RE process (van Lamsweerde
2000). There are a number of important benefits associated with explicit modeling, refinement, and
analysis of goals (mostly adapted from van Lamsweerde, 2001) such as the following:

* Goals provide a precise criterion for sufficient completeness of a requirement
specification.

* Goals provide a precise criterion for requirements pertinence. A requirement is pertinent
with respect to a set of goals in the domain, if its specification is used in the proof of at
least one goal at Yue (1987).

* A goal refinement tree provides traceability links from high-level strategic objectives to
low-level technical requirements (Lapouchnian 2005).

* Goal modeling provides a natural mechanism for structuring complex requirements
documents (van Lamsweerde 2001).

* Goals can be used to provide the basis for the detection and management of conflicts
among requirements (Robinson 1989; van Lamsweerde 1996).

* A single goal model can capture variability in the problem domain using alternative goal
refinements and alternative assignment of responsibilities.

* Quantitative and qualitative analysis of these alternatives is possible (Lapouchnian 2005).

* Goal models provide an excellent way to communicate requirements to customers.

* Goal refinements offer the right level of abstraction to involve decision makers for
validating choices being made among alternatives and for suggesting other alternatives
(Lapouchnian 2005).

68 Software Patterns, Knowledge Maps, and Domain Analysis
The main approaches of GORE are as follows:

» The NFR framework (nonfunctional requirements). NFR framework provides a
process-oriented approach for dealing with nonfunctional requirements (Chung
et al. 2000; Mylopoulos, Chung, and Nixon 1992).

* i*Tropos. i* (Yu 1997) is an agent-oriented modeling framework that can be used
for requirements engineering, business process reengineering, organizational impact
analysis, and software process modeling. The i* modeling framework is the basis for
Tropos, a requirements-driven agent-oriented development methodology (Castro, Kolp,
and Mylopoulos 2000). The Tropos methodology guides the development of agent-based
systems from the early requirements analysis through architectural design and detailed
design to the implementation. Tropos uses the i* modeling framework to represent and
reason about requirements and system configuration choices. Tropos has an associated
formal specification language called Formal Tropos (Fuxman et al. 2001) for adding
constraints, invariants, pre- and post-conditions capturing more of the subject domain’s
semantics to the graphical models in the i* notation. These models can be validated by
model checking.

o KAOS (Knowledge Acquisition in autOmated Specification) (Dardenne, van Lamsweerde,
and Fickas 1993) or keep all objects satisfied (van Lamsweerde and Letier 2003). A KAOS
specification is a collection of the following core models:

* Goal model is where goals are represented and assigned to agents.

e Object model is a UML model that can be derived from formal specifications of
goals because it refers to objects or their properties.

e Operation model defines various services to be provided by software agents.

* GBRAM (goal-based requirements analysis method). The emphasis of GBRAM
(Anton 1996, 1997) is on the initial identification and abstraction of goals from various
sources of information. It assumes that no goals have been documented or elicited
from stakeholders and thus can use existing diagrams, textual statements, interview
transcripts, and so on. GBRAM involves the following activities: goal analysis and goal
refinement.

REFERENCES

Anton, A. “Goal-Based Requirements Analysis.” Paper presented at the _

, Colorado Springs, CO, April 1996.

Anton, A. “Goal Identification and Refinement in the Specification of Software-Based Information Systems.”
PhD Thesis, Georgia Institute of Technology, Atlanta, GA, 1997.

Castro, J., M. Kolp, and J. Mylopoulos. “Towards Requirements-Driven Information Systems Engineering:
The Tropos Project.” | 7. no. 6 (2000): 365-89.

Chung, L., B. Nixon, E. Yu, and J. Mylopoulos.

Kluwer Academic Publishing, 2000.

Dardenne, A., A. van Lamsweerde, and S. Fickas. “Goal-Directed Requirements Acquisition.” Science of
Computer Programming 20, nos. 1/2 (1993): 3-50.

Fuxman, A., M. Pistore, J. Mylopoulos, and P. Traverso. “Model Checking Early Requirements Specifications
in Tropos.” Paper presented at the Proceedings of 5th International Symposium on Requirements
Engineering, Toronto, Canada, August 2001.

Lapouchnian, A. “Goal-Oriented Requirements Engineering: An Overview of the Current Research
Department of Computer Science.” University of Toronto, White Paper, June 28, 2005.

Mylopoulos, J., L. Chung, and B. Nixon. “Representing and Using Non-Functional Requirements:

A Process-Oriented Approach.” IEEE Transactions on Software Engineering, Special Issue on
Knowledge Representation and Reasoning in Software Development 18, no. 6 (1992): 483-97.

http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FICRE.1996.491438
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FICRE.1996.491438
http://www.crcnetbase.com/action/showLinks?crossref=10.1016%2FS0306-4379%2802%2900012-1
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-1-4615-5269-7

The Goals 69

Robinson, W. “Integrating Multiple Specifications Using Domain Goals.” Paper presented at the Proceedings
of 5th International Workshop on Software Specification and Design, Pittsburgh, PA, May 1989.

van Lamsweerde A. “Divergent Views in Goal-Driven Requirements Engineering.” Paper presented at the
Proceedings of Workshop on Viewpoints in Software Development, San Francisco, CA, October 1996.

van Lamsweerde, A. “Requirements Engineering in the Year 00: A Research Perspective.” Paper presented at
the 22nd International Conference on Software Engineering (ICSE’2000), Limerick, Ireland, June 2000.

van Lamsweerde, A. “Goal-Oriented Requirements Engineering: A Guided Tour.” Paper presented at the
Proceedings of 5th IEEE International Symposium on Requirements Engineering, Toronto, Canada,
August 2001.

van Lamsweerde, A., and E. Letier. “From Object Orientation to Goal Orientation: A Paradigm Shift for
Requirements Engineering.” Paper presented at the Proceeding of Radical Innovations of Software
and Systems Engineering, Post-Workshop Proceedings of the Monterey’02 Workshop, Venice, Italy,
Springer-Verlag, LNCS 2003.

Yu, E. “Towards Modeling and Reasoning Support for Early-Phase Requirements Engineering.” Paper
presented at the)
Washington, DC, January 1997.

Yue, K. “What Does It Mean to Say that a Specification is Complete?”” Paper presented at the Proceedings of
Fourth International Workshop on Software Specification and Design, Monterey, CA, 1987.

SIDEBAR 3.2 Goal Programming

According to Johnson and Trick (1996), goal programming is a fanciful or exotic nomenclature for
a very simple and straightforward concept: the thin fine line between stated objectives and listed
constraints is never completely crystallized. One needs to synthesize this slender difference to
arrive at a proper goal programming. Specially, when a number of objectives surround the problem,
it is usually a feasible idea to consider some or all of them as real constraints instead of stated
objectives.

Goal programming is thus very simple, basic, and flexible: change, alter, modify, or bring some
objectives into feasible constraints, by adding or introducing slack, extra, and/or surplus number
of variables to represent a departure from a goal. Charnes, Cooper, and Ferguson (1955) first used
goal programming in 1955, although the actual name first appeared in a 1961 treatise by Charnes
and Cooper (1961). Seminal works by Lee (1972), Ignizio (1976), Ignizio and Cavalier (1994),
and Romero (1991) are also followed by research personnel world over. The first real engineering
application of goal programming, due to Ignizio in 1962, was the design and placement of the
antennas employed on the second stage of the Sarurn V. This was employed to launch the Apollo
space capsule that landed the first men on the moon.

REFERENCES

Charnes, A., and W. W. Cooper. Management Models and Industrial Applications of Linear Programming.
New York, NY: Wiley, 1961.

Charnes, A., W. W. Cooper, and R. Ferguson. “Optimal Estimation of Executive Compensation by Linear
Programming.” | . | (1955): 138-51.

Ignizio, J. P. Goal Programming and Extensions. Lexington, MA: Lexington Books, 1976.

Ignizio, J. P, and Cavalier, T. M. Linear Programming. Upper Saddle River, NJ: Prentice Hall International
Series in Industrial and Systems Engineering, 1994.

Johnson, D. S., and Trick, M. A. Cliques, coloring, and satisfiability: Second DIMACS implementation
challenge, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, American
Mathematical Society 26, 1996.

Lee, S. M. Goal Programming for Decision Analysis. Philadelphia, PA: Auerbach, 1972.

Romero, C. Handbook of Critical Issues in Goal Programming. Oxford: Pergamon Press, 1991.

http://www.crcnetbase.com/action/showLinks?crossref=10.1287%2Fmnsc.1.2.138
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FISRE.1997.566873

70 Software Patterns, Knowledge Maps, and Domain Analysis

SIDEBAR 3.3 Goal-Oriented Development (Supratik Mukhopadhyay)

The notion or idea of goals was originally derived from the artificial intelligence literature
(Russell and Norvig 2004). In a goal-oriented development method, goals are stated as intentional
specifications that later, during the software development process, are reified by getting
associated with extensional specification (c.f. remote knowledge) (van Lamsweerde 2001). In a
multistakeholder software development environment, each agent states its goals that might be
competing or contradicting. It is the duty of the requirements engineering process to weed out
these contradictions. A goal-oriented methodology can be used to reduce the complexity of the
software development process. In software stability model, goals are simply the enduring themes
(Fayad 2002a, 2002b) that justify why a software solution, area of study, and so on is needed in a
determined environment (e.g., organization and software project).

Goals can be used to identify a number of aspects in a software project. (The goal of
consistency is a correctness aspect of a bank transaction system.) They can be stated (in natural
language or formally) or can be discovered and abstracted out, during the requirements analysis
phase, manually or through a semiautomated specification mining process. Formalisms for stating
goals in a formal manner are usually some versions of temporal and modal logics (Blackburn, de
Rijke, and Venema 2002). Goals can refer to either system-wide objectives (e.g., high throughput)
or low-level aims describing the requirements of a particular module. They can arise from both
functional and nonfunctional requirements of a system (e.g., real-time constraints). A goal can be
refined to one or more subgoals.

A goal-oriented software project involves traversing through a goal tree, an And-Or tree, whose
root is associated with the system-wide goals. The goal corresponding to each node is refined
by simpler subgoals corresponding to the children of the node. Refining a goal should take into
account constraints imposed on it by other goals. The leaves of the tree correspond to atomic
goals that can be implemented as services in such a way that the top-level goals are satisfied. Each
level of the tree corresponds to complex services and meeting goals associated with the nodes
of that level those are built by combining services corresponding to the nodes at the next level.
Goals can aid and assist in verification and validation. They can either serve as specifications in a
formal verification process or test cases can be derived out of them (von Mayrhauser, Scheetz, and
Dahlman 1999).

A goal-oriented software development methodology easily integrates with other existing
methodologies and software architectures. For example, the system model can describe the
goals in a model-driven development environment. A service-oriented architecture (Singh and
Huhns 2005) can be viewed as a goal-oriented framework, where the existing services are the
leaves of a goal tree and services that are more complex are successively built by composing
simpler services. A goal-oriented methodology fits well into an agent-based software devel-
opment project (Cheong and Winikoff 2005). An agent-oriented architecture is essentially a
goal-oriented one where each agent implements a system goal. Interactions between agents can
also be formulated as goals and can be described either through interaction diagrams or through
temporal logic constraints. Goal-oriented development can be integrated into object-oriented
development methodology through the process of refinement of subgoals for nonfunctional
requirements, goals for functional requirements, and conflict analysis (Mylopoulos, Chung,
and Yu 1999).

Classical goal-oriented software development assumes that requirements are available a priori
and are frozen at the initial stage of the project. Hence, intentional specification about goals can
be expressed through monotonic predicates. This creates problems in real-life software projects
where requirements, and hence goals, continually change during the lifecycle of the project. For
projects with dynamically changing requirements, goals can be described and refined formally
using nonmonotonic knowledge representation schemes (Makinson 2005).

The Goals 71

REFERENCES

Blackburn, P., M. de Rijke, and Y. Venema. A Course in Modal Logic. Cambridge, UK: Cambridge University
Press, 2002.

Cheong, C., and M. Winikoff. “Hermes: A Methodology for Goal-Oriented Agent Interactions.” Paper
presented at the Proceedings of Fourth International Joint Conference on AAMAS, Utrecht, the
Netherlands, 2005.

Fayad, M. E. “Accomplishing Software Stability.” | NG| GG 5. 0. 1 (20022): 111-15.

Fayad, M. E. “How to Deal with Software Stability.” || GGG 5. 0. 4 2002b): 109-12.

Makinson, D. Bridges from Classical to Nonmonotonic Logic. Vol. 5. Texts in Computing Series, London:
College Publications, 2005.

Mylopoulos, J., L. Chung, and E. Yu. “From Object-Oriented to Goal Oriented Requirements Analysis.”
I . o | (1999): 31-37.

Russell, S., and P. Norvig. Artificial Intelligence: A Modern Approach. Upper Saddle River, NJ: Prentice Hall,
2004.

Singh, M. P., and Huhns, M. N. Service-Oriented Computing: Semantics, Processes, Agents. New York, NY:
Wiley, 2005.

van Lamsweerde, A. “Goal-Oriented Requirements Engineering: A Guided Tour.” Paper presented at the
Proceedings of 5th IEEE International Symposium on Requirements Engineering, Toronto, Ontario,
Canada, August 2001.

von Mayrhauser, A., M. Scheetz, and E. Dahlman. “Generating Goal-Oriented Test Cases.” Paper presented
at the Proceedings of the 23rd Annual International Computer Software and Applications Conference,
October 27-29, Phoenix, AZ, 1999.

http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F291469.293165
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F502269.502308
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F505248.505278

4 Discovery Stable
Analysis Pattern

All truths are easy to understand once they are discovered; the point is to discover
them.

David Whitehouse
Renaissance Genius: Galileo Galilei & His Legacy to Modern Science, 2009

Discovery is defined as the act of finding or discovering something. It could be a disease,
a drug or hidden patterns, and so on. It can be applied in areas as diverse as data min-
ing, space exploration, forensics investigation, and humans’ growth and development. For
example, in data mining, we are dealing with the discovery of hidden patterns and knowl-
edge from the widely available set of data. In space exploration, we are dealing with the
discovery or anything that leads humans to have a better understanding of what is beyond
our planet. In forensics investigation, the goal is to present a set of findings to a judge,
jury, or opposition to help defend or blame a suspect. In human’s growth and development,
discovery is seen, when children start discovering and understanding the environment that
surrounds them. Every single piece of the environment, such as events, noises, and other
humans, is a new discovery for them. As you could see, there is nothing different in the
way discovery is handled in any of those areas of application. In fact, discovery is the same
in all of them. Therefore, the reason for the analysis of this concept, with the sole purpose
of extracting its core knowledge, is a worthwhile reason, especially if you are planning to
reuse it in numerous applications, while still maintaining a cost-effective nature.

4.1 INTRODUCTION

Discovery is the elaborate process of finding information or inventing something. This
information can range from associations, trends, hidden patterns, or any meaningful knowl-
edge. Discovery in the data mining scenario, for example, is called as knowledge discovery,
which is the process of finding meaningful patterns in a set of data that explain past events
in such a way that one can use the patterns to help predict future events (see Herbert 1970).

Discovery is a stable analysis pattern as well. Analysis patterns are conceptual models
that model the core knowledge of the problem (Fayad and Wu 2002; Hamza and Fayad
2002, 2006). Stable analysis pattern is one of the building blocks of constructing a stable
pattern language, which we call a knowledge map. A nonformal language is composed of
stable analysis and stable design patterns. The knowledge map and the software stability
model (SSM) go hand in hand, and in tandem, to develop stable architectures and stable
frameworks. Stable architectures are simply a collection of two or more stable analysis
patterns and numerous stable design patterns (usually between 4 and 5). Stable frameworks
can be seen as the skeleton upon which stable architectures, as well as the application-specific
aspects (industrial objects [IOs]), are integrated for a given software solution. SSM is a

73

74 Software Patterns, Knowledge Maps, and Domain Analysis

uniquely layered approach for developing software systems (Fayad and Wu 2002; Hamza
and Fayad 2002, 2006). The layers of SSM comprise of enduring business themes (EBTs)
which are the classes that present the enduring and core concepts of the underlying industry
or business. In this case, discovery is an EBT, as it deals with the core knowledge of the
system. The second layer, business object (BO), is similar to the design patterns of stable
pattern language. BOs are the workhorses that map the EBT to concrete objects. The notion
about EBTs and BOs will be more comprehensible in the next few sections.

Currently, there are a number of existing discovery patterns (see Mobasher 1996; Sain
and Tamrakar 2012); however, the solutions they portray/portrayed are quite different when
compared to our solutions. The existing patterns usually concentrate on one particular
algorithm or technique at a time, such as data mining, psychology, information theory, or
algorithms used for finding maximal forward references and large reference sequences.
Focusing on one technique at a time, as well as on the constraints that stem from this tech-
nique, makes these patterns rigid and stiff, and hard to reuse, especially when each solution
handles discovery in a unique way. Our solution, however, originates from ultimate stability
in mind. We intend it to represent the core knowledge of discovery, regardless of its context
of applicability. In other words, we will build our patterns in terms of conceptual aspects
rather than detail-specific ones, which are highly coupled to volatile requirements. The rest
of the chapter introduces the novel discovery analysis pattern.

4.2 DISCOVERY STABLE ANALYSIS PATTERN

4.2.1 PATTERN NAME: DISCOVERY STABLE ANALYSIS PATTERN

The term discovery represents an act of finding or discovering something. It may be a
productive insight causing a breakthrough in some domains or a compulsory revelation
of facts. Discovery is an interesting, elementary, and complex concept. It is an interesting
concept that has always been part of human activities or events like life evolution, science
creation and management (i.e., math and physics), and human growth. The basic fact that
we are constantly exposed to its intricacies makes it elementary to our sensorial system.
However, as elementary as it appears to our senses, it is a very complex concept, especially
when we want to analyze and extract its core knowledge. The proof of this is the fact that
each discovery solution (see Mobasher 1996; Sain and Tamrakar 2012) is unique and has
few elements that overlap each other. Discovery is an enduring aspect and is always concep-
tual; discovery stable patterns always encapsulate the discovery process.

4.2.2 KNOWN As

Discovery, also called innovation or invention, has different meanings in different
scenarios (see Herbert 1970); discovery in the data mining scenario is knowledge dis-
covery, but discovery of the number 0 by Aryabhatta is an invention. In other words, the
connotation of this concept will depend on the area where it is applied and whether the
evidence or factual event has already existed by its own means (i.e., nature, life evolu-
tion). Regardless of the suggested meaning, the structure of this concept will remain
the same.

Sometimes, breakthrough is used interchangeably with discovery depending on the
context of usage. A discovery is called a breakthrough only when the finding/learning so

Discovery Stable Analysis Pattern 75

achieved paves way for future success by removing the barrier to progress. However, not all
discoveries result in significant advancements. Thus, there is a subtle difference between
discovery and breakthrough, and hence, you cannot use the core knowledge of discovery as
you do it from a breakthrough pattern.

Discovery is the act of observing, reasoning, and analyzing aspects that are unknown to
humans. Discovery may use preexisting knowledge or fact, but it still has certain amount
of creativity associated with it. Creativity is the ability to present new or existing ideas and
one’s imagination in a very concise way, so that everybody can assimilate or absorb it very
easily. However, discovery requires much more than just creativity; it needs knowledge
and power to think beyond the obvious and to discover things that are yet unknown. This
means creativity is an essential ingredient for discovery, and discovery may be incomplete
without creativity. Nevertheless, you cannot replace discovery with creativity to represent
the same idea.

Sometimes, the usage of word discovery is mixed up with the usage of revelation.
Revelation is the act of uncovering information about a certain entity. Discovery definitely
involves disclosing the findings from a particular discovery. However, this act of disclosing
is not as important during a discovery as is the actual discovery. Revelation is just a small
part during discovery, so that everyone is aware of the finding. Thus, it does not make any
sense to reuse the core knowledge of discovery for representing revelation.

4.2.3 CONTEXT

One can apply the principles of discovery in areas as diverse as data mining, space explora-
tion, forensics investigation, and humans’ growth and development. For example, in data
mining, we are dealing with the discovery of hidden patterns and knowledge from the data
that are available widely. In space exploration, we are dealing with the discovery or any-
thing that leads humans to a better understanding of what is beyond our planet. In forensics
investigation, the goal is to present a set of findings to a judge, a jury, or an opposition to
help defend or blame a suspect. In human growth and development, discovery is seen when
children start discovering and understanding the environment that surrounds them. Every
single piece of the environment, such as events, noises, and other humans, is a new discov-
ery for them. As you could see, there is nothing different in the way discovery is handled
in any of those areas of application. In fact, the concept of discovery is the same in all of
them. Therefore, the reason for the analysis of this concept is extracting its core knowledge;
it is a worthwhile reason, especially if you are planning to reuse it in numerous applications,
while still maintaining a cost-effective nature.

4.2.4 PROBLEM

Discovery is an enduring concept, whose application can range from the discovery of the
universe to the discovery of a mathematical formula, to the discovery of patterns in data.
However, current solutions strive in providing a stable solution that is applicable at any
time, when there is a necessity for discovery, such as the discovery of an event or thing.
The struggle, the effort, cost, and time spent to handle forthcoming adaptations (product
of changes in requirements) will increase at exorbitant and astronomical levels, which are
not accepted or handled by any company. Hence, how can we model a stable pattern that is
easily adaptable to any kind of discovery application?

76 Software Patterns, Knowledge Maps, and Domain Analysis

The aforementioned problem becomes more acute and serious when the problem’s
abstractions or the core knowledge of existing solutions depend on application-specific or
low-level details, rather than the opposite, where low-level details depend on abstractions.
So, how can we guarantee a solution that represents the core knowledge of discovery with-
out being specific or without following one particular discovery process style? For example,
some discoveries are made successful by experimentations, while others happen by sheer
accident; some discoveries are made by observations. Discovery requirements include the
following.

4.2.4.1 Functional Requirements

Involvement and ownership. The person or the investigator, who indulges in the act of
discovery, has to be dedicated and devoted to the assigned task. Discovery is per-
formed by observing and identifying things that a common person cannot. Thus,
discovery is a process that demands countless hours of active involvement, and
years of perseverance and belief in what one is investigating, where AnyParty has
exclusive rights and control over their discovery. AnyParty (owner) can gain, trans-
fer, and lose their ownership of their discovery in a number of ways, such as selling
it for money or giving it away for AnyReason. Ownership of discovery is self-
propagating in that when AnyParty owns a discovery, any other additional goods
produced using those discoveries will also be owned by the parties. Ownership
implies responsibility for actions regarding the property of the discovery. A legal
shield is said to exist if the discovery’s properties legal liabilities are not redistrib-
uted among the discovery’s owners. Ownership allows for parties sharing gains
and use of their discovery. Ownership also includes the intellectual property (IP),
which refers to a legal entitlement, which sometimes pegs to the expressed form
of a discovery. This legal entitlement generally enables its holder (AnyParty) to
exercise exclusive rights of use in relation to the discovery of the IP. IP laws are
designed to protect different forms of discovery, they include copyright, patent,
trademark, trade secret, and so on.

Ownership/party types. The ownership or AnyParty type classifies all the legal
parties: individuals, organizations, countries, political parties, and/or a combina-
tion of some or all of them.

Source/root. It names the initiators of the idea or provides an accurate reference of
who contributed to the idea over the years.

Discovery mechanisms. It describes all the techniques and approaches used to lead
to discovery.

Characteristics/properties. Characteristics are feature-prominent attributes or aspect
of the discovery. List and utilize all the distinctive properties of the discovery, such
as aspects, attributes, services, test cases, and outstanding features.

Domains or fields of knowledge. The discovery belongs to a domain knowledge,
which has its own context, terms, laws, rules, and vocabulary, but utilized in many
different domains.

Proof. We live in an era that boasts a number of discoveries and inventions. However,
each one of these discoveries needs a sufficient amount of proof or evidence to
prove that a particular discovery is indeed a new discovery. Because there is an
immense need for proof, most of us think that it is a simple affair. Obviously, the
path or road to proof is neither easy and simple nor always straightforward. Under

Discovery Stable Analysis Pattern

normal circumstances, one will need to take a long journey before reaching a valid
or right conclusion.

Assessments lead to indicators or evidences. A discovery is never proved or ascer-
tained, unless one can measure or assess it, and there are sufficient quantities of
indicators or evidences to prove that the discoverer has actually made the act of dis-
covery. Indicators or evidences could be those buttressing points or tools that can
vouch for the act of discovery. Verified and validated metrics/results will need to
be made available as formidable evidence of discovery. Failure to do so may result
in unrecognized discovery. Thus, providing evidence as a proof for discovery is the
most important requirement for any discovery.

Classification. Once an act of discovery has been made, we need to associate each
set of proof to one class or a set of predefined classes based on the values of some
definite attributes. A discovery that is of no use at all is useless because it does
not catch the attention of people, nor does any institution recognize it. Thus, the
overall goal is to discover knowledge that is not only useful and beneficial but also
interesting to the users.

Impacts. Notable discoveries of the past have had a deep impact on all aspects
of human lives, be they personal or professional. For example, the discovery
of penicillin served as a cure for various infective diseases and benefited thou-
sands of people. Similarly, accidental discoveries of fire and wheel permanently
changed the way people lived. However, because man always craves for more and
more knowledge discoveries—accidental or planned—discoveries keep happen-
ing every now and then. Thus, discovery is a continuous and ongoing challenge
for all of us; its innumerable impacts affect our daily lives with a pronounced
effect (from extremely positive to truly negative). Some effects can be far reach-
ing and deep, whereas others may exert a very small impact. However, it is a
certainty that those who master the art of discovery will eventually win the race.
For the winner, the impact could be monumental, like winning a Nobel prize for
the invention or the intangible satisfaction of helping millions of people with the
discovery.

Identification. Recently, there has been a large quantum of information and details
obtained, indexed, and deposited in various databases and data banks. Identifying,
detecting, and interpreting interesting and significant patterns from this rich repos-
itory of information has become an essential part in directing advanced software
and documentation research. Identifying discovery tools and techniques seems to
be the biggest problem and a perennial bottleneck.

Recording. Discovery is worthless or useless without proper and meaningful record-
ing, but people just record what they see, by using their perception. What they
usually see in front of them is always decided by what they consider or think to be
significant or prominent. Bias is a sure certainty, but one can reduce or eliminate
it by researching and probing all concepts and ideas in a proper manner. Thus, a
proper recording that results in the essence of the discovery is an important require-
ment for successful discovery.

Releasing. Announcing or promoting a discovery is a thing of uncertainty and inse-
curity. It is often very difficult and tedious to advertise a particular incident of
discovery, as without proper investigation and assertion, the validity of discovery
may be a big question.

78 Software Patterns, Knowledge Maps, and Domain Analysis

4.2.4.2 Nonfunctional Requirements

Accuracy. It is the state of being accurate and the discovery conforms to known rules
and facts or recognized standards. In the domains of applied and pure science,
engineering, industry, and statistics, the term accuracy is defined as the degree
and extent of closeness of a measured, estimated, or calculated quantity to its
actual, real (true) value. Accuracy is closely related to the degree of precision, also
called the factors of reproducibility or repeatability, the extent to which further or
advanced measurements or calculations show or repeat the same or similar results.
The term accuracy is also defined as the degree to which a given quantity is correct
and free from error (see Taylor 1999; Broderson et al. 2010).

Advantageous. It is the quality of the discovery being encouraging or promising of
a successful outcome. The quality of a discovery is said to be advantageous when
people find the discovery very beneficial and useful in their daily life. A discovery
is also highly advantageous when it provides a number of benefits and advantages
that could eventually help humankind. The word advantageous means furnishing
convenience or opportunity, favorable, profitable, useful, beneficial, an advanta-
geous position; an advantageous discovery.

Advancement. The discovery represents an advancement of an entity and brings
improvement or enhancement of an existing entity. A particular discovery will
also help the advancement of further development of a given domain of expertise.
Advancement: an act of moving forward, development; progress: the advancement
of knowledge. The act of advancing, or the state of being advanced; progression;
improvement; furtherance; promotion to a higher place or dignity; as, the advance-
ment of learning.

Reliability. It is the quality of being dependable or reliable. It is closely connected
with the quality of discovery. In its general explanation, reliability is the factor of
consistency or repeatability of discovery parameters. Reliability is also the consis-
tency of a set of quality factors used to check the veracity of the announcement of
a particular discovery.

Usability. Discovery is easy to use and/or to be utilized. A discovery made or
announced should be easily available for daily use. A discovery is said to be usable
when its use becomes flexible and practical. Usability is also used to denote the
ease with which people can employ a particular discovery in order to achieve a
particular goal or objective (Norman 2002).

4.2.5 CHALLENGES AND CONSTRAINTS

Knowledge discovery systems (Sidebar 4.1) always face a number of difficult challenges
and constraints. In fact, constraints can challenge good pattern designs. Current stable
analysis discovery systems are armed with many techniques and processes that can be
potentially applied to find solutions to a new problem. However, this system may face a
challenge or constraint of selecting or choosing the most appropriate and practically fea-
sible technique(s) for a problem that is pending at hand. This is due to the real domain area
that is difficult to perform a deep comparison of all practically applicable techniques.
Because of the generic nature of discovery, one may need to exercise enough caution and
care to handle stability patterns. Another important thing that a software developer must

Discovery Stable Analysis Pattern 79

focus on is the number of types of discoveries that tend to pose innumerable difficulties and
obstacles, especially in devising a practically feasible mechanism.

4.2.5.1 Challenges

Current knowledge discovery systems (Sidebar 4.1) are equipped with a number of tech-
niques that have the ability to relate to a new problem. Nevertheless, an existing system may
face a unique task of selecting the most appropriate technique or method, because it is so
difficult to make a comparative study of all applicable techniques.

* The discovery pattern plans to model discovery performed in numerous domains
or fields that need some sort of discovery process. However, the very defini-
tion of discovery needs to be constrained for this pattern, that is, informational
perspective.

* Discovery is a generic concept—it can mean any breakthrough by serendipity or a
product of persistent research and innovation. These flavors of discovery need to be
handled carefully by the stable pattern.

* Discovery has various forms in different domains; for example, discovery of water
on Mars is conducted by observation and research and not by experimentations. All
these different aspects need to be taken care of while building the model.

» Different parties like a scientist, a child, or a lawyer may handle discovery.
Therefore, this pattern must be able to capture all the different roles that a party
can take.

* There are different mechanisms used to perform a discovery, such as experimenta-
tion, observation, and research. Therefore, this pattern must be able to encapsulate
the canonical knowledge and semantics shared among all the different mecha-
nisms for discovery.

* Regardless of the mechanism selected to perform discovery, there must be any
type of evidence available that leads to the ultimate proof of the discovery—the
feeder of information. The pattern, then, must be able to cope with different
types of evidence that will induce a proof for the discovery by any type of
mechanism.

4.2.5.2 Constraints

* Discovery has one type or more than one types. Some discovery types go hand in
hand with other discovery types to discover a number of artifacts.

* Depending on the type of discovery, there could be one or more discovery mecha-
nisms to handle this aspect. For example, discovery of a medicine requires obser-
vation, experimentation, research, and so on.

* An individual or a group of individuals conducts a discovery process. For exam-
ple, scientists collaborate with doctors, analysts, and researchers to arrive at a
solution.

* An individual or a group of individuals may define a special set of criteria for their
aim of discovery that influence the discovery mechanisms.

* One or more than one discovery mechanisms may require zero or more than zero
things, events throughout zero, or more than zero media to produce a specific discovery.

80 Software Patterns, Knowledge Maps, and Domain Analysis

* The discovery mechanism leads to one piece of evidence or more. Therefore, in
order to use this pattern, we have to acknowledge any type of evidence that will
lead us to the actual discovery.

* Any evidence supports the actual existence of a thing and event that is to be
discovered.

* Evidences qualify the actual discovery or discoveries made during the evaluation
of them.

* Because discovery is a crosscutting concern, there must be one sole instance of this
concept shared across the entire patterns reminding classes.

* There must be a selection of a particular process before the usage of the discovery
aspect.

4.2.6 SOLUTION

The solution to the above problem is demonstrated in the form of a model, followed by the
participants. See Figure 4.1.

e Pattern structure
* Classes
— Discovery. Itdescribes the discovery process. It is the EBT. It must follow certain
rules and regulations, so that no laws are violated while making a discovery. For
example, patents must be taken into consideration when claiming discovery.

Discovery has many flavors and it comes in many forms and domains. In the domain
of legal studies, the act discovery is an essential process of pretrial litigation proceed-
ings, when both sides demand correct and fitting information, details, legal papers,
and documents from each other, in a well-calibrated attempt to discover and seek out
legally correct and admissible facts. In a general sense, a number of legal devises and
tools make the part of judicial proceedings to discover something, such as deposi-
tions, witnesses, arguments, hearings, requests for admissions and document produc-
tion (http://www.lectlaw.com/def/d058.htm).

Within the realm of the software development process, the act of discovery refers to seek-
ing out bugs and errors, during the developmental or maintenance phase. For discovering
errors, the developer needs to search and find out through the heaps of source code by run-
ning simultaneous and multiple tests. Discovery can mean a geological discovery, medical
discovery, or data mining discovery. Depending on the type of discovery, there could be
one or many discovery mechanisms.

These mechanisms could be examinations, experimentations, observations, analysis,
research, and so forth. An individual or a group of individuals, or a company, conducts the
discovery process. Every discovery requires the evidence to prove itself. The discovery mech-
anism implemented later leads to the body of evidence that finally asserts or proves the dis-
covery or discoveries. This discovery should meet the criteria for which it was discovered
and needs to be qualified to be a valid discovery. Irrespective of the domain in which discovery
is carried out, it is always difficult to carry out the process and is a time-consuming and labo-
rious process. The immense difficulty associated with discovery is because the information/
knowledge sought by the discoverer is not available in an easily understandable form.

http://www.lectlaw.com

Discovery Stable Analysis Pattern

81

EBTs BOs
1F defi 1.*
- works on [<PBO> | elines Ho=
| AnyParty | N
: AnyCriteria
{OR}
X 1 defines
~¢ <<P-BO>> 1
works on AnyActor -
\ A
g
g
a
° <|—[
L e
> < 1.
P-BO>>
<<EBT>> ,——E L <<P-BO>>
. AnyMechanism .
Discover involves [1.* 7 Y é leads to AnyEvidence
/
1.%
/
/ v 2 /
Y. 5 indicates
y 3 S
/ 0.* ~ ~
4’—t. - <<P-BO>>
AnyExamllnatlon ~<P- AnyDiscovery
AnyExperlmgnt AnyEntity
AnyObservation
AnyKnowledge 0.
AnyResearch " ks
. =S
AnyAccident A E
3
k3]
<
has <<P-BO>> <>
> 1+ L AnyType ~
Many possibilities
such as star
—q—[discovery,
innovat‘ions, aqd P S
some kind of discovery

FIGURE 4.1 Discovery stable analysis pattern.

The participants of discovery pattern are classified into two categories as follows:

e Patterns

* AnyParty. It represents a person or a group of people or an organization

or a group of scientists responsible for the discovery process. AnyParty is

involved in the whole process of discovery from the very beginning, and

thus AnyParty is solely responsible for any impact the discovery may have.

AnyParty stable design pattern is a very common pattern and it is provided

in [X, y].

* AnyActor. This class represents any individual, hardware, software, or crea-
tures that utilize or discover the different forms of the discovery. The AnyActor
stable design pattern is a very common pattern and it is provided in [X, y].

* AnyCriteria. It represents the criteria specified by AnyActor or AnyParty.
AnyCriteria influences AnyMechanism followed to verify the trustworthiness
of AnyActor or AnyParty. AnyCriteria stable design pattern is a very common

pattern and it is provided in [X, y].

82

Software Patterns, Knowledge Maps, and Domain Analysis

AnyMechanism. It represents the BO, which deals with different kinds of dis-
covery mechanisms. Some discovery mechanisms used to make discovery can
be examination, experimentation, observation, knowledge, research, accident,
and investigation. The AnyMechanism stable design pattern is a very common
pattern and it is provided in [X, y].

AnyType. It represents the different types of discoveries in different applica-
tion areas or domains. For example, discovery of life on Mars or discovery of
medicines for curing cancer could be different discoveries. The AnyType stable
design pattern is a very common pattern and it is provided in [x, y].

AnyEntity. It represents an entity used by AnyMechanism for generating
AnyDiscovery. Every entity has certain properties and characteristics that can
be quantified and verified against any criteria. The AnyEntity stable design pat-
tern is a very common pattern and it is provided in [X, y].

AnyEvent. It is something that takes place or an occurrence. The AnyEvent
stable design pattern is a very common pattern and it is provided in [X, y].
AnyMedia. It represents the media through which the discovery will
take place. For instance, one can discover certain patterns on the Internet.
Others may discover patterns in email messages, by using text mining. The
AnyMedia stable design pattern is a very common pattern and it is provided
in [X, y].

AnyEvidence. It represents the proof of the discovery. AnyParty may provide
evidence in terms of compiled research results or actual test results or the evi-
dence may be photographs. Evidence must be concrete, tangible, and verifiable
in order for the discovery to be meaningful. The AnyEvidence stable design
pattern is a very common pattern and it is provided in [X, y].

AnyDiscovery. It represents the BO, which represents the desired discovery.
It is the actual discovery that is being made or carried out. The AnyDiscovery
stable design pattern is a very common pattern and it is provided in [X, y].

* Class Diagram Description. The class diagram provides visual illustration of all the
classes in the model, along with their relationships with other classes. Description
of the class diagram is as follows:

AnyParty and/or AnyActor use the discovery process for achieving
AnyDiscovery (BO) by defining a zero or more than zero set of AnyCriteria
(BO) that influence the selected AnyMechanism (BO).

Discovery is the EBT of this model. Discovery (EBT) must have one or more
than one AnyType (BO).

AnyType (BO) represents all the domains in which one can carry out the dis-
covery (EBT). AnyType (BO) can be represented as discovery of a star or some
other innovations like finding another planet that has life.

AnyType (BO) plays an important role in determining a zero or more than zero
set of AnyEntity (BO).

Devising AnyMechanism (BO) specific to the discovery in context involves
discovery (EBT) too.

AnyCriteria influences this AnyMechanism (BO), which is defined by AnyParty
(BO) or AnyActor after thorough analysis. Depending on the domain of discov-
ery, AnyMechanism (BO) varies and can range from simple examination to
full-fledged experimentation.

Discovery Stable Analysis Pattern 83

* AnyMechanism (BO) must lead to creation of AnyEvidence (BO), because
without demonstrable and confirmable evidence discovery cannot be complete.

* The presence of AnyEvidence (BO) indicates that AnyDiscovery (BO) qualifies
for being called discovery (EBT), as it now meets the criteria.

* AnyDiscovery may utilize zero or more of AnyEntity, within zero or more of
AnyEvent on AnyMedia.

4.2.6.1 CRC Cards

Discovery (Discovery) (EBT)

Responsibility Collaboration
Client Server
Discovering AnyType implement (), qualifyAnyDiscovery()
AnyMechanism discover(), selectType(),
satisfyConditions()
AnyDiscovery provideAdvancement(), innovate(),

limits(), requires(), apply To(), qualify()
Attributes: properties, conditions, qualityGuides, importance, fieldOfDiscovery, applications, requirements,
states, limitations

AnyActor(AnyActor) (Pattern-BO)

Responsibility Collaboration
Client Server
To perform Discovery agree(), disagree(), participate(),
group(),
AnyCriteria interact(), associate(), organize(),

join(), discover(), monitor(),

switchRole(), request(), explore(),

playRole(), conduct(), carryout(),

analyze(), find out(), initiate(),
Attributes: id, name, type, role, member, affair, activity, category

AnyParty(AnyParty) (Pattern-BO)

Responsibility Collaboration
Client Server
To perform Discovery, participate(), playRole(), interact(),
AnyCeriteria leave(), group(), associate(), organize(),

request(), setCriteria(), switchRole(),
partake(), join(), monitor(), explore(),
receive(), collectData(), integrate(),
agree(), disagree()
Attributes: id, partyName, type, role, member, affair, activity, partiesInvolved, id, activity, category
(or orientation), purpose

84 Software Patterns, Knowledge Maps, and Domain Analysis

AnyCriteria (AnyCriteria) (Pattern-BO)
Responsibility

Collaboration

Client
Present a set of requirements and AnyParty
constraints AnyActor
AnyMechanism

Attributes: id, name, condition, property, priority

Server

define(), verify(), apply(), priority(),
parse(), exhibit()

AnyMechanism (AnyMechanism) (Pattern-BO)
Responsibility

Collaboration

Client
To implement Discovery
AnyCeriteria
AnyEvidence

Server
execute(), provideEvidence(), status(),
performActions(), activate(),
deactivate(),
attach(), detached(), pause(), return()

Attributes: context, id, name, status, application, components, description

AnyType (AnyType) (Pattern-BO)
Responsibility

Collaboration

Client

To classify the types of discoveries Discovery
AnyEntity

Server
determine(), change(), operateOn(),
pass(), resume(), label(), classify(),
attached(), nameAttributes(), specify()

Attributes: id, name, properties, interfaceList, methodList, clientList

AnyEntity (AnyEntity) (Pattern-BO)
Responsibility

Collaboration

Client
To be utilized in or as an evidence AnyType
AnyEntity
AnyMechanism
AnyEvent

Attributes: id, entityName, entityType, status, position, states, type

Server

performfunction(), status(), type(),
update(), new(), relatedTo()

Discovery Stable Analysis Pattern 85

AnyEvent (AnyEvent) (Pattern-BO)

Responsibility Collaboration
Client Server
To facilitate AnyEntity takeplace(), to be reported(),
AnyMedia startDate(), duration(), setActivity(),

organize(), facilitate()
Attributes: id, eventName, eventType, status, states, type, size, duration, startingDate, startingTime,
endingDate, endingTime, location, commonality, activities

AnyMedia (AnyMedia) (Pattern-BO)

Responsibility Collaboration
Client Server
Place to store, perform, and reside AnyEvent connect(), broadcast(), capture(),
AnyDiscovery store(), display(), access(), select(),

remove(), navigate(), secure(),
defineProperties(), identify()
Attributes: id, mediaName, mediaType, capability, entry, securityLevel, status, sector, security

AnyEvidence (AnyEvidence) (Pattern-BO)

Responsibility Collaboration
Client Server
To provide proof AnyDiscovery provide(), lookFor(), indicate(),
present(),
AnyMechanism pointsTo(), consistsOf(), prioritize(),

interpret(), validate()
Attributes: id, name, number, description, type, status, conditions, limitations, upperLimit, lowerLimit,
importanceFlag, attributes, relationships, impacts, context, components

AnyDiscovery (AnyDiscovery) (Pattern-BO)

Responsibility Collaboration
Client Server
Store information about itself Discovery type(), new(), generate(), gain(), loses()
AnyEvidence performActions(), impact(), value(),
meetCriteria()

Attributes: id, name, type, status, value, states, impacts, conditions, numberOfApplications, ownedBy,
ingredients, properties

86 Software Patterns, Knowledge Maps, and Domain Analysis

4.2.7 CONSEQUENCES

The pattern supports the motivation behind its modeling.

* The pattern supports different types of discoveries in different application areas.
This means that one can use the described discovery patterns as an essential frame-
work for building any type of discovery. For example, one can use this pattern
to represent discovery of computers, as well as discovery of new planet, by just
attaching the discovery-specific 10s. Thus, diverse discoveries in varied domains
can be modeled using the depicted discovery pattern.

» This pattern is a proper level of abstraction, which tries to cover only the shareable
characteristics and behavior of all the elements it portrays. This is because the pat-
tern is designed by extracting common characteristics of the process of discovery.
The pattern is extremely stable because of the existence of core components—EBT
and BO form the basis of patterns.

* Because the pattern is abstract when used in a specific application, its scope must
be constrained in accordance with a category of employment, that is, child devel-
opment and growth. However, the pattern itself offers a way to constraint its scope
with AnyDiscoveryMechanism pattern. By restricting the number of mechanisms
used in the pattern, one can easily control and manage its scope.

* This pattern always supports the motive behind its modeling. It depicts a generic
pattern, which can be utilized in applications across diverse domains. This general-
ized usage is possible, because the pattern has a stable core consisting of BOs and
EBT, which results in reusability.

* To use this pattern in accordance with a specific discovery, its scope must be signifi-
cantly narrowed down. For instance, is the discovery process involved in data mining,
or is the discovery involved in child development and growth? The discovery pattern
will be constrained to the selected category where it will exist. However, this is not a
limitation, because for the new discovery its type and mechanism can be easily added.

Given above points, one can conclude that the discovery design pattern is scalable and can
be used in a number of scenarios, without requiring any change in the base framework. Only
the scenario-specific objects need to be wired with the base discovery patterns framework, in
order to fit this design pattern in the scenario. This is possible because the discovery pattern
is derived by keeping stability in mind and this is the good thing about discovery design pat-
tern. However, the discovery pattern will require integration of verification systems to verify
the correctness of the discovery. Many people will think this as a negative feature about the
discovery pattern, as the pattern looks incomplete. However, this is not true, because pat-
terns can never exist alone and they should be used in conjunction with other components.

4.2.8 APPLICABILITY

4.2.8.1 Case Study 1: Discovery of a New Vitamin K

This case study demonstrates the applicability of the discovery pattern in the discovery of
vitamin K. Vitamin K discovery is a part of AnyDiscovery type. The different discovery
mechanisms determined are experiments, investigation, and research.

The scientists involved in this discovery process are responsible for initiating the dis-
covery process and conducting the research, investigation, and experiments (see Figure 4.2).

<<IO>>
fed as per B>-
<<EBT>> <<BO>> |
X feedson B>
Chicken
| Leses subject as
<A works on q - d)
AnyActor writes #
Scientist
performs
efines carries out | K v
0..* o Y involves
AnyCriteria
determi
¢ erml;es - infliences 0.F ExperimentalStudy [—— Coagulation
By feeding
chickena |7 |
cholestrol-
AnyMechanism K> depleted diet {1 BloodClot
i | relates to
) /)
Discovery | | leadsto ¥) | reduces risk of
requires AnyEvidence q»
\ + Hemorrhage A
i > indicates 1
involves v inhibits
H q
— Examination AnyEvent AnyDiscovery L
i Composition
— Experiment .]
B . A consists o
Observation AO on |v ot
— Research e *
AR
— Accident 0. within T
VitaminK ResearchPaper |——
o AnyEntity K>— AnyMedia
consists of
A Cereal
determines >
| Rec ded-
has P AnyType required for Dietary-
GreenLeafy- Allowance (RDA)
v bl <
required for
Medical -
specifies

FIGURE 4.2 Class diagram for case study 1.

uia)iey sisAjeuy a|qeis A19A00s1(

L8

88 Software Patterns, Knowledge Maps, and Domain Analysis

A scientist inherits information from the super class AnyActor. The results of these mecha-
nisms act as evidence and vitamin K is a part of AnyDiscovery.

Use Case Title: Discovery of Vitamin K

Actors Roles
AnyActor 1. Scientist
2. Chicken
Class Name Type Attributes Operations
Discovery EBT 1. discoveryType 1. followsMechanism()
2. discoveryMechanism 2. finds()
3. discoveryCriteria
4. discoveryMedia
AnyCriteria BO 1. criteriaName 1. decidesMechanism()
2. levelOfStandard
AnyActor BO 1. actorType 1. performsTask()
2. actorCategory
AnyMechanism BO 1. mechanismName 1. leadsToEvidence()
2. mechanismDescription 2. dependsOnCriteria()
3. mechanismProcedure
AnyType BO 1. typeName 1. determines()
2. typeDescription 2. categorizes()
3. properties
AnyEntity BO 1. entityName 1. relatesToEvent()
2. entityCategory 2. takesPart()
3. entityDescription
AnyEvent BO 1. frequencyOfOccurence 1. executes()
2. eventLocation 2. involvesEntity()
3. eventDescription
AnyConsequence BO 1. consequenceFactor 1. occurs()
2. consequencelmpact
3. consequenceDescription
AnyMedia BO 1. mediaType 1. servesAsMedium()
2. mediaDescription
3. mediaName
4. mediaPurpose
AnyDiscovery BO 1. discoveryType 1. supportedByEvidence()
2. evidence 2. happens()
3. discoveryDescription
4. discoveryConsequence
Chicken 10 1. breed 1. lives()
2. birthDate 2. servesAsSubject()
Scientist 10 1. name 1. discovers()
2. workHrs 2. writes()
3. skills 3. performs()
4. knowledge

(Continued)

Discovery Stable Analysis Pattern

89

Class Name Type
ExperimentalStudy 10

Coagulation 10
Hemorrhage 10
BoodClot 10
Hempseed 10
Compostion
VitaminK 10
ResearchPaper 10
Cereals 10
Green Leafy 10
Vegetable
Medical 10
Recommended 10

Dietary Allowance

D= = W= = AW~ W = W=D = W=D~ W=

Attributes
type

. domain
. subject
. performer

type

. reason

type

. affectedArea
. cause

. intensity

. affectedOrgan

type

. breed
. ingredients

type

. composition
. typeOfBonds

domain

. author
. topic
. title

type

. nutrientContent

type

. breed
. vitaminType

type

. nutritionLevel
. quantity

DN = DN =

N =

Operations

. involves()
. proves()

. relatesToBloodClot()

. servesAsEvidence()

. reducesRisk()

. prevents()

. providesNutrition()
. consistsVitaminK()

. maintainsHealth()
. preventsHemorrhage()

. tellsAboutDiscovery()

. servesAsFood()
. providesVitaminK()
. providesVitaminK()

. specifiesRDA()
. aidsInDiscovery()
. definesNutritionNeed()

Use Case Description

1. Discovery involves AnyMechanism, and ExperimentalStudy provides a mecha-

nism for discovery.

What kind of mechanism is needed for discovery? How is appropriateness of
mechanism assured? How experimental study provides a mechanism? What kind

of experimental study?

2. ExperimentalStudy involves Coagulation that relates to BloodClot, and BloodClot
reduces risk of Hemorrhage that forms a part of AnyEvidence.
How blood clot reduces risk of hemorrhage? What forms evidence? What kind of

evidence?

3. HempseedComposition consists of VitaminK, inhibits coagulation, and forms

AnyEvidence.

What is Vitamin K? How coagulation is inhibited?

4. AnyEvidence indicates AnyDiscovery and discovery is done on AnyMedia.
What kind of media? How evidence indicates discovery?
5. AnyEvent occurs on AnyMedia that comprises of AnyEntity.

90 Software Patterns, Knowledge Maps, and Domain Analysis

6. AnyType determines AnyEntity.
What are types of entity?
7. Medical specifies RecommendedDietaryAllowance (RDA) that is required for
GreenLeafyVegetables and Cereals.
How Medical specifies RDA? What is the purpose of RDA? Who defines medical?
8. Cereals and GreenLeafyVegetables consist of VitaminK, which is AnyDiscovery.
What is the proof that cereals and green vegetables consists of Vitamin K?
9. Scientist uses Chicken as subject for ExperimentalStudy.
Why scientist uses chicken? What kind of experimental study?
10. Chicken feeds as per RDA.
11. Chicken and Scientist forms AnyActor, who determines AnyMechanism.
What kind of mechanism? Why actor determines mechanism? What is the purpose?
12. AnyActor defines AnyCriteria, which influences AnyMechanism.
How criteria influence mechanism? What criteria actor defines? On what basis?
13. AnyMechanism requires AnyEntity and leads to AnyEvidence.
How mechanism leads to evidence?
14. AnyActor works on Discovery that has AnyType.
What are the types of discovery? How the actor starts for discovery?

4.2.9 REeLATED PATTERNS AND MEASURABILITY

4.2.9.1 Related Pattern

The discovery process exhibits different forms under different applications and under dif-
ferent domains. Although these different types of discovery mechanisms are implemented
in tools, discovery as a pattern does not exist per se. The discovery process exists as a part
of different tools. Some tools implement pattern discovery process, some tools implement
association rules, while others implement other mechanism (see http://maya.cs.depaul.
edu/~mobasher/webminer/survey/node7.html). These tools are domain specific and deal
with one particular algorithm or discovery mechanism, but the solution we have provided
is generic in nature, which can be adaptable in any domain and any application. Thus, the
existing tools in the market can be used only for a specific purpose and use. The tool will
fail when you try to use it in another context. However, the tools created on top of the stable
discovery pattern depicted here can be used for as many domains as needed. In short, the
single tool can serve as a key to all the available tools in the market for discovery. Based on
this definition, the following metamodel can be modeled for the discovery problem.

In law, discovery is the pretrial phase in a lawsuit, in which each party through the law of
civil procedure can request documents and other evidence from other parties or can compel
the production of evidence by using a subpoena or through other discovery devices, such as
requests for production of documents and depositions. In other words, discovery includes
interrogatories, motions or requests for production of documents, requests for admissions,
and depositions.

Traditional Model (Business as Usual) versus Stable Model (Pattern)

e The basis of the traditional model is entirely 1Os, which are physical objects
and are unstable. However, the stable model is based on three different concepts—
EBT, BO, and I0. The EBTs represent elements those remain stable internally and

http://maya.cs.depaul.edu
http://maya.cs.depaul.edu

Discovery Stable Analysis Pattern 91

externally overtime. The BOs are objects that are internally stable but externally
adaptable; IOs are replaceable, are unstable, and are application classes/objects.

* The traditional model is hard to reuse, when requirements change. Any changes in
the requirements might cause a complete reengineering of the project. The stable
model is highly flexible and is reusable in wide domains and applications.

* The traditional model requires high maintenance cost in terms of time, labor, and
money. The system built by using the traditional model cannot be extended or
adapted. The stable model is easily maintainable and extendable.

To summarize, the features of stability model like stability, scalability, understandability, reus-
ability, maintainability, and simplicity make it far better as compared to the traditional model.

4.2.9.2 Measurability

* Quantitative Measure

* Quantitative metrics refer to the quantity aspect of EBTs, BOs, and IOs. The more
the number of classes, the more it will result in lines of code while developing
the system. In addition, as lines of code increase, error propagation rate will also
increase and it will be difficult to maintain accuracy in the pattern development.

* The quantitative aspect shows that EBTs, BOs, and 10s should be selected in
such a way that it should cover all the necessary patterns required in modeling,
and yet it should be developed in a manageable number of lines of code, which
will result in lesser error propagation. The second aspect of quantitative metrics
is when compared to a traditional model the stability model has less number of
classes with the focus on explicit as well as implicit factors.

» Traditional models are specific to an application as they are based on classes
specific to one application only. A stable model is generic, and it can be extended
to develop any application by just hooking the application-specific 10s to the
stable pattern. This makes the stable model highly flexible. Also in the stable
model, as the base pattern is known well in advance, determining and develop-
ing estimations or measurement metrics is far easier and less time consuming,
as compared to that observed in the traditional model.

e Qualitative Measure

* A stable model being very generic can be reused to apply to any application,
whereas the traditional model is built on application-specific tangible objects
and thus cannot be reused. Reusing traditional model requires a lot of reen-
gineering, effort, time, and cost. This makes the stable model more scalable
and flexible. Moreover, it is easy to maintain the stable model as compared to
traditional model, because it is flexible and easily adaptable.

» For software requirement specificity, we can formulate one formula; to create
it, we just need to define a few terms. We can use QI for specificity of require-
ments. By specificity of requirements, we mean lack of ambiguity. The second
value is completeness. By completeness, we mean how well they cover all the
functions of classes to be implemented. We refer to it as Q2. So, now to deter-
mine specificity for requirements, we will use following formula:

Nui
nr

Ql

92 Software Patterns, Knowledge Maps, and Domain Analysis

where:
Q1 is specificity of requirements
Nui is number of common requirements identified
nr is total number of requirements

nr = nf + nnf

where:
nf is number of functional requirements
nnf is number of nonfunctional requirements

Thus, the lower the value of requirement specificity, the greater will be the ambiguity.
Therefore, the value of requirement specificity should always be optimal.

4.2.10 MODELING IssuEs, CRITERIA, AND CONSTRAINTS

4.2.10.1 Modeling Heuristics
4.2.10.1.1 General Enough to Be Reused in Different Applications

The stable design pattern so developed can be applied to a wide range of applications. The
pattern has been developed keeping generality in mind. Discovery has different meanings
under different contexts. BOs defined for the pattern are general enough, such that they can
be hooked to IOs of any application, and the pattern is capable enough to derive the spe-
cific functionality of the application. This part has been well explained in our discussion of
applicability, where discovery is used to define legal discovery. Similarly, we can use the
same pattern to develop a model for drug discovery.

4.2.11 DESIGN AND IMPLEMENTATION ISSUES

For a design pattern to be useful and applicable across many different problem domains, it
must represent an EBT, which defines the core value of the pattern and which can withstand
changes over time. For the discovery pattern, the EBT is identified to be that of discovery.
Discovery is the enduring concept of observing, finding, and noting things that are not
known to anyone before. This enduring concept must maintain its characteristics in dif-
ferent applications. While analyzing the mapping concept, we could identify a set of BOs
that form the basis of the discovery pattern. These BOs are also very stable and extendable
into different I0s depending on the type of application. Therefore, discovery is the process
of making AnyDiscovery by AnyParty. How any discovery is made is encapsulated by
AnyDiscovery and AnyMechanism and can be influenced by AnyEvidence. All these BOs
are stable and generic enough, because they will not change when the discovery is applied
in various contexts or over time.

To apply the discovery pattern to a particular application, we also look for 1Os that are
extensible from the BOs and are tangible objects that reflect the true problem domain. 10s
generally are not stable and you may need to modify them over time. Because the BO layer
remains stable and the EBT lasts over time, any possible changes are restricted to the 10
layer only.

Stability model is based on EBTs, BOs, and I0s. The EBTs used are general so that they
can be applied in various domains. But there are a few implementation issues that we must
tackle and manage. They are as follows.

Discovery Stable Analysis Pattern 93

AnyParty

I

Country World Health Organization

FIGURE 4.3 Inheritance.

4.2.11.1 Delegation versus Inheritance

Figure 4.3 shows the model implemented with inheritance.

The model shown in Figure 4.3 is static and fixed. Country and WHO are the subclasses,
and they inherit attribute, operations, and methods from AnyParty. If any change occurs in
AnyParty, then it will reflect in all the subclasses, even when that change is not needed for
all subclasses concerned here. In other words, superclass will not hide any methods from
its subclasses.

4.2.11.2 Model Implemented with Delegation

The model in Figure 4.4 shows the use of delegation instead of inheritance. How it affects
the modeling pattern is an interesting feature. Delegation provides dynamism, that is, run-
time flexibility, which is one of its distinct features. The rest of the characteristics are
similar to inheritance as it also provides a reuse technique. Dynamic coupling between
superclass and subclass is the key feature.

In this case, the same submodel is implemented by using delegation instead of inheri-
tance. Now, even if superclass adds some changes, it will not reflect in all subclasses because
of delegation, as it provides dynamic run-time linking by invoking a call from one object
in superclass to the object in the subclass concerned. Now, if some additional rules need to

1 AnyParty 1

1.*

Country World Health Organization

FIGURE 4.4 Delegation.

94 Software Patterns, Knowledge Maps, and Domain Analysis

be implemented for WHO guidelines, then all we need to do is create a separate method for
WHO rules and then pass the object to the WHO subclass. So, in this case that particular
change will not be seen in the Country subclass. In other words, a superclass can hide its
methods from subclasses.

The code for the delegation example taken is as below

public class anyparty({
public void publichealth(system.out.println('public health
issue')) ;
public void population(system.out.println('number of people
in the country'));

}
public class who
{
anyparty a = new anyparty () ;
public void publichealth(a.publichealth()) ;
}
public class country
{
anyparty b = new anyparty () ;
public void population (b.population()) ;
}

The above code shows how the class WHO creates an object and delegates the class
AnyParty by using that object to invoke the method in class AnyParty. Thus, it will use the
relevant methods from class AnyParty for its own class. In this way, class AnyParty can
hide its methods from other classes that do not require those methods.

4.2.12 TESTABILITY

If the discovery analysis pattern can be used as it is in its original form, without chang-
ing the core design and by only plugging 1Os for infinite number of applications, then
the discovery pattern can be said to be testable. In Section 4.2.8, two widely different
applications are illustrated, and they do not require changing the core design of the
pattern. Using the scenarios listed in this paper, many such scenarios can be deduced
and proved to say that the discovery pattern is indeed testable. Another alternative to
test the discovery pattern is to come up with such cases where discovery is being used/
can be used but the given discovery pattern solution does not model the given problem.

In general, patterns designed by using the stability model are more easily testable
when compared to the traditional model. This is because the EBTs and BOs rarely
change and they can be applied to other applications without any major changes. In
this project, the discovery stability pattern is tested by applying the pattern to many
different applications without introducing any changes to the core pattern. This is
achieved by plugging in the necessary IOs to the core discovery pattern. In the same
way, other application’s IOs from any context can be plugged to BOs. The above
pattern so developed will be considered testable only when it can be applied to any
scenario/application.

Discovery Stable Analysis Pattern 95

4.2.13 FormALIZATION UsING OBjecT CONSTRAINT LANGUAGE, Z++
OR OBJeCT Z, AND/OR EXTENDED BACKUS—NAUR FORM

We can describe the discovery pattern in a many-sorted first-order language (Yang, Chin, and
Chung 1992). A many-sorted first-order language consists of a set of sorts or types. Each
sort is associated with a universe and a set of relation and function symbols whose defini-
tion would come from the domain. In addition, each sort can have a one or more subsorts.
The universe of a sort is the union of the universes of its subsorts. We use an XML-based
schema for describing a discovery pattern. The XML description can be used for generat-
ing code in a language such as C+4 or C#. We can briefly describe the syntax for discovery
patterns below. Because the full description of the schema is space consuming and reduces
readability aspects, we are providing only a part of the schema. The remaining portions of
the schema can be developed along similar lines.

<pattern>
<title>
"discovery"
</title>
< sort>
<title>
"Discovery"
</title>
<sort>
<title>
"discoveryType"
</title>
<sort>
<title>
"name"
</title>
<type>
String
</type>
<universe>
{life on Mars, drug, ...}
</universe>
</sort>
<sort>
<title>
n type n
</title>
<type>
String
</type>
<universe>
{Space, Medicine, ...}
</universe>
</sort>
<sort>

<title>

96 Software Patterns, Knowledge Maps, and Domain Analysis

"description"
</title>
<type>
String
</type>
<universe>
(...}
</universes>
</sort>
<sort>
<title>
"list of mechanisms"
</title>
<type>
Power: DiscoveryMechanism
</type>
</sort>
<functions>
<title>
"determine mechanism"
</title>
<type>
Constant: DiscoveryMechanism
</type>
</function>
<functions>
<title>
"addDiscoveryType"
</title>
<type>
name?->type?-sDiscoveryType-=DiscoveryType
</type>
<descriptions>
addDiscoveryType: DiscoveryType' = DiscoveryType U {name?, type?}
</descriptions>
</functions>
<functions>
<title>
"removeDiscoveryType"
</title>
<type>
name?->type?-sDiscoveryType->DiscoveryType
</type>
<description>
<pre>
{name?, type?} & DiscoveryType
</pre>
<body>

addDiscoveryType: DiscoveryType = DiscoveryType' U {name?, type?}
</body>

Discovery Stable Analysis Pattern 97

</description>
</function>
</sort>

</patterns>

4.2.14 BusINESS ISSUES
4.2.14.1 Business Rules

One can easily find business rules (Sidebar 4.2) in both application development and
business management life cycles. Application architects, analysts, and developers base
the majority of their work on basic business rules and constraints. Business rules are an
excellent tool for automated processes with multiple decision points. Connecting business
rules to business processes creates a direct correlation between company policy and
business operations. Although such processes do not change very often, business rules
keep changing continuously, as managers adjust to internal and external market environ-
ments. Business rules differ in complexity. In some instances, a business rule can be very
simple, described maybe in one sentence. To make the rules most efficient, each rule
should be independent of procedures and work flows (Perry and Kaminski 2008).

Mapping business rules to discovery and finding an instance of discovery with strong
evidence ensure the stability of this concept in all areas where discovery is utilized.

The class diagram provides visual illustration of all the classes in the model along with
their relationships with other classes. Description of the business rules based on discovery
pattern’s class diagram is shown below.

* AnyParty and/or AnyActor uses the discovery process for achieving AnyDiscovery
(BO) by defining a zero or more than zero set of AnyCriteria (BO) that influence
the selected AnyMechanism (BO).

* AnyParty. This refers to any legal user involved with AnyDiscovery, such as sci-
entists, discoverers, assistants of discoverers, any user of the discovery, and so on.

* AnyMechanism or discovery process. Any techniques used to make a specific
or particular discovery, such as experimentation and observation.

* AnyCriteria. Any legal user’s defined criteria (requirements, constraints, etc.)
over what the pattern has.

* AnyDiscovery. Any specific and particular discovery, such as vitamin K dis-
covery, phone discovery, and a particular drug discovery.

* Discovery is the EBT of this model. Discovery (EBT) must have one or more than
one Anylype (BO).

* AnyType. Specifies the type of discovery based on domain, such as medical, social,
drug, engineering, life, and planetary, or based on criticality, such as major or minor.

* AnyType (BO) represents all the domains in which one can carry out the discovery
(EBT). AnyType (BO) can be represented as the discovery of a star or some other
innovations like finding another planet that has life.

* AnyType (BO) plays an important role in determining the name and the numbers
of AnyEntity (BO).

98 Software Patterns, Knowledge Maps, and Domain Analysis

e AnyEntity. AnyEntity used as part or required for the discovery

* Devising AnyMechanism (BO) specific to the discovery in context involves discov-
ery (EBT) too.

* AnyCeriteria influences this AnyMechanism (BO), which is defined by AnyParty
(BO) or AnyActor after thorough analysis. Depending on the domain of discov-
ery, AnyMechanism (BO) varies and can range from simple examination to full-
fledged experimentation.

* AnyMechanism (BO) must lead to creation of AnyEvidence (BO), because without
demonstrable and confirmable evidence discovery cannot be complete.

* AnyEvidence. This refers to patentable information about a particular discov-
ery, such as data and process.

* The presence of AnyEvidence (BO) indicates that AnyDiscovery (BO) qualifies for
being called discovery (EBT) as it now meets the criteria.

* AnyDiscovery may utilize zero or more of AnyEntity within zero or more of
AnyEvent on AnyMedia.

* AnyEvent. This discusses the events of a particular discovery
* AnyMedia. This describes the media used in a particular discovery, such as
computers, lands, nature, air, labs, and the Internet

4.2.14.2 Business Integration

The stability model extracts the core concepts involved in the problem. This makes it easier
to extend it to fit the needs of any application. The BOs act as the extension points, where
the 10s for the particular application can be hooked to make a final product. Hence, it is
much easier to integrate the pattern in any business model.

4.2.14.3 Business Enduring Themes

Discovery represents the goal of the business. It answers the question, What is the main and
unique goal of the pattern? The system is used to model the concept of discovery.

This pattern can be used in any domain that involves the concept of discovery. The
pattern models the concept of discovery in a stable way, so that it can be used in many
applications.

4.2.15 KNowN USAGES

The discovery pattern can be used to create the following tools:

1. Unified data mining engine (UDME). This tool is used to discover various trends
from vast amounts of data. UDME is a generalized tool that is usable on any kind
of database, as well as on any type of data. It is built by using the knowledge map
and discovery is one of the patterns in the knowledge map.

2. Unified performance evaluation engine (UPEE). This is again a generalized tool
that is usable to evaluate the performance of any entity. It again uses discovery
stable patterns in its knowledge map.

3. Electronic discovery (e-discovery). This tool represents a discovery process that
uses any form of e-content such as email messages, instant messages, files, data-
bases, and other electronic content that may be stored on a variety of platforms. It
is becoming much more important in the context of civil litigation—for example,

Discovery Stable Analysis Pattern 99

roughly three out of four discovery orders today require an email message to be
produced as part of the discovery process.

4. Web services dynamic discovery (WS-Discovery) Version 1.1, retrieved January 6,
2012. WS-Discovery is a technical specification defining a multicast discovery
protocol to locate services on a local network. BEA Systems, Canon, Intel,
Microsoft, and WebMethods developed WS-Discovery. As the name suggests, the
actual communication between nodes is done using web services standards, nota-
bly SOAP. Various components in Microsoft’s Windows Vista operating system,
such as the “People Near Me” contact location system, use WS-Discovery.

4.2.16 Tips AND HEURISTICS

* Describing patterns is a hard task and it requires careful and calibrated work.

* The metamodel is very different compared to a stable model, and it is a traditional
model.

* Pattern design must be generic, so that it can be applied to applications spread
across various domains.

* EBT must represent the goal of the pattern.

* Intuition and experience are required in order to find the correct EBT for the
pattern.

* BOs provide capabilities to achieve the goal of the pattern. Identification of BO
requires spending some time in thinking and coming up with correct BOs.

* BOs provide hooks to which specific IOs can be plugged and for getting var-
ied applications in diverse domains. This reduces the cost by encouraging
reusability.

SUMMARY

The discovery stable analysis pattern demonstrates or exhibits the entire discovery
process in a concise, lucid, and clear manner. The domain can be scientific, geological,
engineering, medical, or any other. Similarly, one can use the patterns to implement
different discovery mechanisms. The discovery analysis pattern is developed by using
software stability paradigm and stable pattern language concepts. These paradigms also
help us to develop a pattern that is reusable and stable in nature.

This discovery model can be used for different domains, and IOs can be extended
according to the application. The model represents the core knowledge of the pattern in
different applications and is presented as EBTs and BOs. The model is explained with
three special and specific applications that perform well based on this model.

The correct identification of EBTs and BOs is the most challenging and tedious task,
and it requires previous experience and skills. After identifying EBTs and BOs correctly,
your next critical challenge is to determine the relationship between EBTs and BOs, so
that the discovery pattern can hold true in any context of usage for discovering. Once you
perform this task, depending on the nature of the application, the IOs are attached to the
hooks provided by BOs. Thus, using the discovery pattern as a basis, an infinite number of
applications can be built by just plugging in the application-specific 1Os to the pattern. This
results in reduced cost and effort and a stable solution. Hence, the discovery design pattern
is very useful.

100 Software Patterns, Knowledge Maps, and Domain Analysis

OPEN RESEARCH ISSUES

The following are some of the open research issues that need to be examined and require
future work and experimentation.

1. Software stability and knowledge maps. Software stability and knowledge maps
lead to many knowledge discoveries, which include the generation of problem
space patterns (analysis) and ultimate solution patterns (design), redefine knowl-
edge, and discover many possibilities of architectural patterns that are generated
from the knowledge map of any domain and used as foundation bases of millions
of applications. Software stability and knowledge maps allow the development of
meaningful patterns. Developing meaningful patterns is a thing of art and a system
of perfect skills; improving the overall quality of patterns is never easy and quick;
more often, developers take an inordinately long time to design perfect and mean-
ingful patterns. To develop meaningful and robust patterns, a developer may need
to design them in a phased manner. The most important and critical of all these
phases is the diagnostic phase, using which one can understand and comprehend
the main problems that come in the way of development of today’s patterns. Once
a pattern developer identifies and notes all the bottlenecks, it becomes very easy
to explore the causes of pattern immaturity and their subsequent usability. In addi-
tion, software stability and knowledge maps provide simple and clear guidelines
for choosing the appropriate patterns from a large inventory of alternatives and
distinguishing clearly between analyses, design, and architectural patterns.

2. e-discovery. Utilizing the concurrent software development model or knowledge
map methodology is a way for developing an e-discovery engine. Building this
engine by using traditional development approaches is not an easy exercise, specifi-
cally when several factors can undermine their quality success, such as cost, time,
and lack of systematic approaches.

3. Unified programmable dynamic discovery engine (UPDDE). Utilizing the concur-
rent software development model or knowledge map methodology is a way for
developing UPDDE. The engine mainly focuses on several patterns: dynamism,
discovery, adaptability, extensibility, customizability, and so on. The proposed
solution attempts to extract out the commonality from all the domains and repre-
sent it in such a way that it is applicable to a wide range of domains without trivial-
izing or generalizing the concepts. The engine is a stable structural pattern, and it
provides a generic engine that can be applied and/or extensible to any application
by plugging application-specific features.

4. Discovery informatics. Utilizing the concurrent software development model
or knowledge map methodology is a way for developing a unified discovery
informatics enterprise framework that facilitates the drug discovery process at
any enterprise level. The unified framework includes chemical structure handling
(e.g., editing, database storage, and database searching), biological data han-
dling (e.g., database storage, searching, and data reduction), structure—activity
relationship handling, e-discovery, dynamic discovery, e-scientific, and chemi-
cal inventory management. The unified framework is very generic and can be
applied in or easily extended to cheminformatics, bioinformatics, chemoinfor-
matics, medicinal chemistry, computational chemistry, drug discovery innovation,

Discovery Stable Analysis Pattern 101

structure-based drug design, screening, docking, structural biology, predictive
toxicology, predictive ADME, chemogenomics, molecular modeling pharmaceu-
tical, and so on.

REVIEW QUESTIONS

1. What do you mean by the term discovery? Can you use the term discovery in any
other context than what you thought of?
2. Find out all such terms that mean exactly same as discovery and can be used
interchangeably.
3. Examine the functional requirements of discovery pattern—Are there any missing
requirements? Discuss them.
4. Examine the nonfunctional requirements of discovery pattern—Are there any
missing requirements? Discuss them.
. Examine the challenges and add two more challenges to the existing list.
. Examine the constraints and add five more constraints to the existing list.
. What are the capabilities to achieve discovery? Describe each of them.
. What is the trade-off of using this pattern?
. Present the sequence diagram for applicability of the discovery stable analysis pat-
tern in the drug discovery domain.
10. What are the possible design issues for the discovery EBT when linked to the
design phase?
11. What do you think are the implementation issues for the AnyEvidence BO when
used in the discovery stable analysis pattern?
12. What do you think are the implementation issues for the AnyMedia BO when used
in the discovery stable analysis pattern?
13. List a couple of advantages of using the stable analysis pattern for discovery.
14. List two scenarios that will not be covered by the discovery analysis pattern.
15. Describe how the developed discovery analysis pattern would be stable over time.
16. List some of the lessons learnt from the use of the stable analysis pattern for
discovery.
17. List some of the testing patterns that can be applied for testing the discovery stable
analysis pattern.
18. List three test cases to test the class members of the discovery pattern.
19. List some of the related design patterns used in formulating the discovery stable
analysis pattern.
20. Briefly explain how the discovery stable analysis pattern supports its objectives.
21. Assess two different quantitative measures on the discovery traditional model and
discovery stable analysis patterns, and explain the differences between each of the
measures.
22. Examine the CRC cards and add two new operations if possible to the EBTs and BOs.
23. Try to create a use case and interaction diagram for each of the scenarios you
thought of in the above question.
24. Name two more qualitative metrics and utilize them to measure discovery pattern.
25. Compare the traditional model and stable pattern of discovery using the following
adequacies:

O 0 3 O W

102

26.

27.

Software Patterns, Knowledge Maps, and Domain Analysis

a. Descriptive adequacy.
It refers to the ability to visualize objects in the models. Every defined object
should be browsable, allowing the user to view the structure of an object and
its state at a particular point in time. This requires skill of understanding and
extracting metadata about objects that will be used to build a visual model of
objects and their configurations. This visual model is domain dependent, that
is, based on domain data and objects’ metadata. Descriptive adequacy requires
that all of the knowledge representation be visual as follows:
i. Visual models are structured to reflect natural structure of objects and their
configurations.
ii. All the visual knowledge (data and operations) in the visual model is localized.
iii. Relationships among objects in the visual model are well defined.
iv. Interactions among objects in the visual model are limited and concise.
v. The visual model must transcend objects and instead highlight crosscutting
aspects.
b. Understanding adequacy.
It relates to be easy to understand.

c. Simplicity adequacy.

It relates to how simple your models will be.

d. Extensibility adequacy.

It relates to the degree of extensibility, adaptability, customizability, and con-
figurability of your models.

Compare the traditional model and stable pattern of discovery by using the fol-

lowing modeling essentials (Fayad and Laitinen 1998) as comparative criteria:

a. Simple. This property covers those attributes of the object-oriented model that
present modeling aspects of the problem domain in the most understandable
manner.

b. Complete (most likely to be correct). This property determines if the object-
oriented model provides internal consistency and completeness of the mod-
el’s artifacts. The model must be able to convey the essential concepts of its
properties.

c. Stable to technological change. The model should be stable enough to techno-
logical changes and it cannot require any changes with a change of technology,
such as change of the media or the mechanisms.

d. Testable. To be testable, the model must be specific, unambiguous, and quan-
titative wherever possible, such as we can run an infinite number of scenarios
with the context of the pattern.

e. Easy to understand. In addition to the familiarity of the modeling notations,
the notational aspects, design constraints, and analysis and design rules of the
model should be simple and easy to understand by the customers, users, and
domain experts.

f. Visual or graphical. A picture is worth a thousand words. As a user, you can
visualize and describe the model. The graphical model is essential for visual-
ization and simulation.

Discuss the benefits of using the discovery analysis pattern to generate busi-

ness rule.

Discovery Stable Analysis Pattern 103

28. Give some examples of applications, where discovery pattern are currently used.
29. What are the lessons learnt by you from studying the discovery pattern.

EXERCISES

1. Think of a few scenarios where discovery pattern is applicable and come up with
corresponding class diagram, use case, and sequence diagram as shown in the solu-
tion and applicability sections for each of the scenarios.

2. Draw a sequence diagram of the case study to discover vitamin K use (case
study 1).

3. Research and development. New product design and development is more than
often a crucial factor in the survival of a company. In an industry that is fast
changing, firms must continually revise their design and range of products.
This is necessary due to continuous technology change and development as
well as other competitors and the changing preference of customers. A sys-
tem driven by marketing is one that puts the customer needs first and only
produces goods that are known to sell. Market research is carried out, which
establishes what is needed. If the development is technology driven, then it is
a matter of selling what it is possible to make. The product range is developed
so that production processes are as efficient as possible and the products are
technically superior, hence possessing a natural advantage in the market place
(Ortega-Argiles et al. 2011).

Utilize the discovery pattern as an application of a research and development:

a. Draw a class diagram based on the discovery pattern to show the application of
research and development.

b. Document a detailed and significant use case as shown in case study 1.

c. Create a sequence diagram of the created use case of b.

4. Planetary research. Planetary systems are generally believed to form as part
of the same process that results in star formation. Some early theories involved
another star passing extremely close to the Sun, drawing material out from it
which then coalesced to form the planets. However, the probability of such
a near collision is now known to be far too low to make this a viable model.
Accepted theories today argue that a protoplanetary disk forms by gravitational
collapse of a molecular cloud and then evolves into a planetary system by col-
lisions and gravitational capture (see Darling 2004).

Some planetary systems may form differently, however. Planets orbiting
pulsars—stars which emit periodic bursts of electromagnetic radiation—have been
discovered by the slight variations they cause in the timing of these bursts. Pulsars
are formed in violent supernova explosions, and a normal planetary system could
not possibly survive such a blast—planets would either evaporate or be pushed off
of their orbits by the masses of gas from the exploding star, or the sudden loss of
most of the mass of the central star would see them escape the gravitational hold of
the star. One theory is that existing stellar companions were almost entirely evap-
orated by the supernova blast, leaving behind planet-sized bodies. Alternatively,
planets may somehow form in the accretion disk surrounding pulsars (see Darling
2007; Podsiadlowski 1993).

104 Software Patterns, Knowledge Maps, and Domain Analysis

a. Planetary systems, formation of, David Darling, entry in The Internet
Encyclopedia of Science, accessed online September 23, 2007.
b. Planet formation scenarios (Podsiadlowski 1993)
Utilize the discovery pattern as an application of a planetary research and
i. Draw a class diagram based on the discovery pattern to show the applica-
tion of planetary research.
ii. Document a detailed and significant use case as shown in case study 1.

iii. Create a sequence diagram of the created use case of ii.

5. Drug discovery (Paul et al. 2010; Warren 2011). In medicine, biotechnology, and
pharmacology, drug discovery is the process by which drugs are discovered and/or
designed. In the past, most drugs have been discovered either by identifying the active
ingredient from traditional remedies or by serendipitous discovery. A new approach
has been to understand how disease and infection are controlled at the molecular and
physiological level and to target specific entities based on this knowledge.

The process of drug discovery involves the identification of candidates, syn-
thesis, characterization, screening, and assays for therapeutic efficacy. Once a
compound has shown its value in these tests, it will begin the process of drug
development prior to clinical trials.

Utilize the discovery pattern as an application of drug discovery and

a. Draw a class diagram based on the discovery pattern to show the application of
drug discovery.

b. Document a detailed and significant use case as shown in case study 1.

c. Create a sequence diagram of the created use case of b.

6. Biomarker discovery (Jacobs et al. 2005). Biomarker discovery is the process by
which biomarkers are discovered. It is a medical term.

Many commonly used blood tests in medicine are biomarkers. The way that
these tests have been found can be seen as biomarker discovery. However, their
identification has mostly been a one-at-a-time approach. Many of these well-known
tests have been identified based on clear biological insight, from physiology or bio-
chemistry. This means that only a few markers at a time have been considered. One
example of this way of biomarker discovery is the use of injections of insulin for
measuring kidney function. From this, one discovered a naturally occurring mol-
ecule, creatinine, that enabled the same measurements to be made easily without
injections. This can be seen as a serial process.

The recent interest in biomarker discovery is because new molecular biologic
techniques promise to find relevant markers rapidly, without detailed insight into
mechanisms of disease. By screening many possible biomolecules at a time, a par-
allel approach can be tried. Genomics and proteomics are some technologies that
are used in this process. Significant technical difficulties remain.

There is considerable interest in biomarker discovery from the pharmaceutical
industry. Blood test or other biomarkers could serve as intermediate markers of
disease in clinical trials and also be possible drug targets.

Utilize the discovery pattern as an application of biomarker discovery and
a. Draw a class diagram based on the discovery pattern to show the application of

biomarker discovery.
Document a detailed and significant use case as shown in case study 1.
c. Create a sequence diagram of the created use case of b.

Discovery Stable Analysis Pattern 105

PROJECTS

Develop the following systems using the discovery analysis pattern:

1. Discovery informatics. 1t is the field of computing that facilitates the drug dis-
covery process at the enterprise level. Typical software tools in this space include
chemical structure handling (e.g., editing, database storage, and database search-
ing), biological data handling (e.g., database storage, searching, and data reduc-
tion), structure—activity relationship handling, electronic scientific notebooks, and
chemical inventory management.

2. Discovery science (Chen et al. 2005). Also known as discovery-based science is a
scientific methodology that emphasizes analysis of large volumes of experimental
data, with the goal of finding new patterns or correlations, leading to hypothesis
formation and other scientific methodologies.

Discovery-based methodologies are often viewed in contrast to traditional sci-
entific practice, where hypotheses are formed before close examination of experi-
mental data. However, from a philosophical perspective where all or most of the
observable low-hanging fruit has already been plucked, examining the phenom-
enological world more closely than using the senses alone (even augmented senses,
e.g., via microscopes, telescopes, and bifocals) opens a new source of knowledge
for hypothesis formation.

Data mining is the most common tool used in discovery science and is applied to
data from diverse fields of study such as DNA analysis, climate modeling, nuclear
reaction modeling, and others. The use of data mining in discovery science fol-
lows a general trend of increasing use of computers and computational theory in
all fields of science. Further following this trend, the cutting edge of data mining
employs specialized machine learning algorithms for automated hypothesis form-
ing and automated theorem proving.

3. E-discovery (Adam and Lender 2011; Various 2009). It refers to discovery in
civil litigation that deals with information in electronic format also referred to
as electronically stored information (ESI). In this context, electronic form is
the representation of information as binary numbers. Electronic information is
different from paper information, because of its intangible form, volume, tran-
sience, and persistence. In addition, electronic information is usually accompa-
nied by metadata, which is never present in paper information unless manually
coded (see below). Metadata is the data about the data, or the information that
is kept about the electronic files, that is, who the author was, when the file was
created, and so on. It is descriptive information that cannot be changed unless
spoliation occurs. E-discovery poses new challenges and opportunities for attor-
neys, their clients, technical advisors, and the courts, as electronic information
is collected, reviewed, and produced.

Examples of the types of data included in e-discovery are e-mail, instant mes-
saging chats, documents (such as MS Office or OpenOffice files), accounting
databases, CAD/CAM files, websites, and any other ESI which could be relevant
evidence in a lawsuit. Also included in e-discovery is the rawdata which forensic
investigators can review for hidden evidence. The original file format is known
as the native format. Litigators may review material from e-discovery in one of

106 Software Patterns, Knowledge Maps, and Domain Analysis

several formats: printed paper, native file, or TIFF images. If the native file, for
example, a Microsoft Word document, contains 10 pages, then an e-discovery
vendor will convert it into 10 TIFF images for use in a discovery review database.
Documents that are produced are numbered using Bates numbering. Individuals
working in the field of e-discovery commonly refer to the field as litigation
support.

4. Legal discovery (Kyckelhahn and cohen 2008). In law, discovery is the pretrial
phase in a lawsuit, in which each party through the law of civil procedure can
request documents and other evidence from other parties or can compel the
production of evidence by using a subpoena or through other discovery devices,
such as requests for production of documents and depositions.

a. Name two to three ultimate goals of each of the above discoveries.

b. List all the functional requirements and nonfunctional requirements of each of
the ultimate goals.

c. List five challenges for the two or three ultimate goals combined for each area.

Name 10 different applications for each of the goals.

e. Name five different applications for the two or three ultimate goals combined.

o

SIDEBAR 4.1 Knowledge Discovery

Knowledge discovery is a unique and special concept in the realm of computer science that
explains the process of automatically or mechanically searching or seeking large streams of data,
for set and convenient patterns that can be considered as pertinent and essential set of knowl-
edge about the data in question. It is about deriving special knowledge from the available set of
input data. This complex but defining topic can be classified according to the type of data being
searched and in what form or type is the result of the data search tabulated. The most famous
area of knowledge discovery is the data mining, which is also known as knowledge discovery in
databases (Bozdogan 2004).

REFERENCE

Bozdogan. H., (ed.). Statistical Data Mining, and Knowledge Discovery, Boca Raton, FL: CRC Press LLC,
2004.

SIDEBAR 4.2 Business Rules

Business architecture, in its simplest explanation, can be viewed as a set of resources that
interact under well-defined rules through a set or collection of well-calibrated processes to
achieve certain goal(s). These rules are known as business rules. This simple view of business
architecture does not indeed clarify what business rules are. In fact, there exists no formal or
standard definition for business rules; nonetheless, several definitions have evolved over the
last decade. In the following paragraphs, we give some of such definitions. A business rule can
be defined as

 Units of business knowledge (Odell 1998).
* A statement that defines or constrains certain aspects of a business (Halle 2001).
* Declarations of policies or conditions that must be satisfied (OMG 1992).

Discovery Stable Analysis Pattern 107

It is a statement that defines or constrains some aspect of the business. It is intended to assert
business structure or to control or influence the behavior of the business (Morgan 2002). We will
use this definition of business rules throughout this book.

» Business rules are abstractions of the policies and practices of a business organiza-
tion. The business rules approach is a development methodology, where rules are in a
form that is used by but does not have to be embedded in business process management
systems.

* The business rules approach formalizes an enterprise’s critical business rules in a
language that managers and technologists understand. Business rules create an
unambiguous statement of what a business does with information to decide a proposition.
The formal specification becomes information for process and rules engines to run.

Ronald Ross (2003) describes several basic principles of what he calls the business rule approach.
He believes that rules should

* Be written and made explicit.

* Be expressed in plain language.

» Exist independent of procedures and work flows (e.g., multiple models).

* Build on facts, and facts should build on concepts as represented by terms
(e.g., glossaries).

* Guide or influence behavior in desired ways.

* Be motivated by identifiable and important business factors.

* Be accessible to authorized parties (e.g., collective ownership).

* Be single sourced.

* Be specified directly by those people, who have relevant knowledge (e.g., active
stakeholder participation).

* Be managed.

REFERENCES

Halle, B. V. Business Rules Applied: Building Better Systems Using the Business Rules Approach. New York,
NY: Wiley, 2001.

Morgan, T. Business Rules and Information Systems. Boston, MA: Addison-Wesley Publishing, 2002.

Odell, J. Advanced Object-Oriented Analysis and Design Using UML. New York, NY: SIGs Books, 1998.

OMG. Analysis and Design Reference Model. Framingham, MA: OMG, 1992.

Ross, R. G. Principles of Business Rule Approach. Reading, MA: Addison-Wesley Publishing, 2003.

5 The Knowledge Stable
Analysis Pattern

When you stop learning you might as well be dead (Power 2004), for it is like starving
the brain. Knowledge is the food of the mind; and without knowledge the mind must
languish (Sanford 1846). Knowledge is the seed that is planted and will develop into
a beautiful blossoming tree also known as that idea. When the brain is fed it grows
and when it grows it become more peaceful, confident, and comfortable with its
surroundings.

A seed is planted and it eventually grows into maturity to produce a beautiful flower. That
is the actual story of our mind. A mind is fed manure called knowledge, and in return, it
grows, nurtures itself, and prospers by forming a number of ideas, plans, and concepts.
From those ideas and concepts, the world grows, adapts, and eventually becomes a better
place to live, for with knowledge comes inner peace and contentment.

Without the right kind of knowledge, we are just little more than an empty shell that
breathes. In essence, knowledge is the basic foundation, upon which we as humans grow
and enrich our lives. Without knowledge, there is always a fear of the unknown, and when
there is fear or scare, there will be a lack of trust, and when there is a lack of trust, there is
a greater risk for conflict. Knowledge can set you free. In fact, it can set the whole world
free. For, when we have knowledge, we can easily nourish our mind, body, and soul for
knowledge definition, refer to Sidebar 5.1.

5.1 INTRODUCTION

One can think of knowledge as the mirror of experience that is gained by practice and/or study
of a particular discipline. Once this knowledge is acquired by some individuals, it can be
used by them to avoid experienced pitfalls and sloppy actions those were experienced in
the past. Additionally, it will also allow them to either create new environments/ambience
or streamline previously addressed/tackled ones, based on the acquired knowledge. So,
the question now is how one can represent such knowledge in a straightforward and
coherent manner, so that individuals can use it repeatedly to solve recurrent problems.

Knowledge is the root of the human mind, body, and spirit, for without it, we are noth-
ing but an empty shell. Without knowledge, we fear and when we fear, eventually evil
will become us. Knowledge is power, said Francis Bacon, for from knowledge, we grow
and prosper and eventually blossom into more compassionate and complete human beings.
Knowledge is what we know now. It is not about what is right or wrong, true or false, and
good or evil. It is what we have been exposed to, and thus what becomes our knowledge,
our reality, and eventually the center of our universe. No two people will or can share iden-
tical knowledge, because no two people can ever share identical life experiences, which
create knowledge, although we will all share common knowledge.

109

110 Software Patterns, Knowledge Maps, and Domain Analysis

Software development must attempt to take all those variations that make up the human
mind and streamline a product, so that it becomes a product based on common knowledge.
For example, we would all agree that to enter some data, we must type something. That is
common knowledge.

In order for software development to be both successful and profitable, a less complex
methodology must be developed that focuses on common knowledge. From that common
knowledge or application, each user would build and fine-tune a product that was specific
and special to their needs.

When a software application package is built upon common knowledge, we would reduce
the costs significantly, because you are no longer attempting to develop a software applica-
tion that is different for hundreds of thousands of users. Not only is software development
extremely expensive, it is also extremely labor intensive, and spending too much time trying
to please the world might result in an inferior and untimely product that is most likely to hit
the market well past its target release date.

Instead of focusing more on knowledge and implicitly common knowledge, which is
shared knowledge, we will not be continuing to reinvent what has already been invented;
instead, we can focus on a common platform that can be expanded on. As a result, a build
can occur in a fraction of the time; because of the flexibility of the product, we target a
much larger audience.

5.2 PATTERN DOCUMENTATION

5.2.1 PatTeRN NAME: KNOWLEDGE STABLE ANALYSIS PATTERN

The name should be right and appropriate, for knowledge creates stability and with stability
comes the power for analysis and subsequently the creation of reoccurring patterns. Thus,
this is an excellent choice of title. The name is appropriate and fitting to the analysis that
follows in the evaluation of the problem of how knowledge can be stabilized, so that the
wheel is not reinvented every other time.

5.2.2 KNOwN As

Many times, acquisition of knowledge is interpreted as gaining information, and hence,
information is used many times in the context of knowledge. Although gaining informa-
tion about any entity is certainly a part of acquiring knowledge, that information must be
investigated, analyzed, assimilated, disseminated, and properly used. Thus, knowledge is
much more than just acquiring information, and thus, the term information cannot be used
in place of knowledge to represent certain context.

Another issue that is often misinterpreted to mean knowledge is education. People
always think that they can gain knowledge through education. This is totally inaccurate
and wrong, as education is just one of the means of gaining knowledge. In order to acquire
knowledge, one needs to have a keen and intense interest in learning and understanding
things. Reading, education, learning, analyzing, thinking, and so on are just a number of
means to gain knowledge. Thus, education cannot be used interchangeably with knowledge.

However, cognition can be used interchangeably with knowledge. This is because both
knowledge and cognition represent the psychological result of perception, learning, and reason-
ing. Thus, the stable knowledge pattern can be used as a solution pattern for cognition too.

The Knowledge Stable Analysis Pattern 111

5.2.3 CoONTEXT

Knowledge can be gained through experience or study. It represents a collection of facts,
rules, tips, or lessons learned with respect to anything that must be synthesized to create
knowledge. Sometimes, it might not be possible to obtain complete knowledge about a sub-
ject, and it results in partial knowledge. As a result, this partial knowledge needs to be used
to solve a problem. The knowledge pattern will be used to represent knowledge synthesis
and acquisition.

For example, in autonomic computing, knowledge is a collection of information acquired
through examinations of log files, as well as other types of files, located in local or remote
repositories (i.e., servers/PCs in local networks or in wide area networks). Another example
of knowledge application is encountered in customer relationship management (CRM) sys-
tems. In CRMs, knowledge is collected to learn and understand customers’ buying behav-
ior, so that they can offer better services and increase their sales. Knowledge is obtained
by means of recording the customers’ navigational behavior (clicks) during their shopping
session. Knowledge may also be represented in the form of symbols or write-ups or just
passed on by word of mouth. Thus in this age, storing and dissemination knowledge is
essential to gain competitive edge. As a result, knowledge management is important and
critical for any organization.

5.2.4 PROBLEM

There is a general tendency to think of knowledge as individual facts, or relevant and spe-
cific information that your system collects or requires. This perception makes implementa-
tion or application of knowledge different every time it is used, because each system may
handle a different subject and with a set of different information and constrains. Why do we
need to reinvent the wheel every time we are dealing with a new type of knowledge? This is
a significant problem that we must overcome and tackle. Therefore, we need to answer the
question: how do we encapsulate the main component of knowledge as an aspect, regard-
less of its context of applicability and prevent from reinventing the wheel?

For example, a software system solution may be required to use both topic maps from
artificial intelligence and implement them in an autonomic software solution. In this
case, both topic maps and autonomic computing might view knowledge from different
angles and structures. So, their integration may be tricky and tedious, especially when
dealing with different representations of knowledge. Hence, the question is restructured
in the following way—how can one abstract knowledge characteristics and behavior that
are common by different knowledge representations and later generate a single repre-
sentation of knowledge that can even knowledge acquisition among different software
solutions?

5.2.4.1 Functional Requirements

1. Domain specificity. What is knowledge of the specific domain or any domain? How
is knowledge acquired within the specific domain or any domain and hence, its
subjects? What is the knowledge of a specific subject or any subject within any
domain? Where the knowledge of any domain obtains one or more subjects matters?
Knowledge is defined in the Oxford English Dictionary (2011) as (1) expertise and
skills acquired by a person through experience or education, the theoretical or

112 Software Patterns, Knowledge Maps, and Domain Analysis

practical understanding of a subject; (2) what is known in a particular field or in

total, facts and information; or (3) awareness or familiarity gained by experience of

a fact or situation.

2. Criteria. Criteria consist of the characteristics of the knowledge and the
constraints that are imposed on knowledge, the characteristics, constraints of
the knowledge, within AnyDomain. There are specific criteria imposed on the
knowledge of AnyDomain and these criteria influence the means for achieving
knowledge and lead to change in state. Thus, the pattern should be able to accom-
modate all these changes with the change in AnyCriteria.

3. Context. The broad applicability of the produced or AnySubject defined
knowledge.

4. Type. Knowledge can be classified based on different factors, such as definition,
field or domain, description, or production of knowledge. Usually, AnySubject
knowledge has one or more types that are used to describe knowledge, such as
meta-knowledge and procedural knowledge. Knowledge can also be classified
based on its production, such as actual knowledge, constructive knowledge, or/and
imputed knowledge.

. Structure. Structure describes the knowledge structure.

6. Knowledge. Knowledge treated as a model has one or more views of it. Knowledge

also has a scope.

7. Mechanisms such as knowledge acquisition. Knowledge acquisition involves com-
plex cognitive processes: perception, learning, communication, association, and
reasoning. The term knowledge is also used to mean the confident understanding
of a subject with the ability to use it for a specific purpose if appropriate.

8. Knowledge handlers. Who possesses the knowledge? AnyActor, such as individual,
hardware, software, and/or creatures, and AnyParty, such as individuals, organiza-
tions, countries, political parties, and/or a combination of some or all of them as
the holder, the user, and/or the creator of knowledge. What does AnyParty know?
How do we know what we know?

9. AnyEntity.

a. The knowledge of AnyEntity is gained through logs, which are stored on
AnyMedia, which helps us to access AnyEntity. So, the spectrum of AnyEntity
should be well understood and well covered.

b. Knowledge about entities should be available after the criteria hold true. If the
criteria fail, knowledge should be restructured.

c. AnyEntity makes use of AnyMedia. So, the mapping between AnyEntity and
AnyMedia should be clear.

d. The knowledge of AnyEntity should be general enough to make it fit into any

9

application.
10. Media.
a. Media that are used to store and gain access of knowledge, which should be
well identified.
b. Media can be of different types and usage of each may vary.
11. Logs.

a. Logs, such as files, disks, tapes, papers, temples, tomb walls, and/or papyrus,
are used to store and gain access to knowledge, which should be well identified.
b. Logs can be of different types and usage of each may vary.

The Knowledge Stable Analysis Pattern 113

5.2.4.2 Nonfunctional Requirements

1. Completeness. The pattern should be complete in the sense that it should be able
to present all the meanings of knowledge and the areas where it can be applied.
This means that the pattern is applicable to many areas and has different meanings
everywhere. So, the pattern should possess the quality of inferring correct mean-
ing in different contexts and should define the state, rules, assessment, and type
according to the context in which it is applied.

2. Accuracy. It is the state of being accurate, and the knowledge conforms to known
rules and facts or recognized standards. In the domains of applied and pure sci-
ence, engineering, industry, and statistics, the term accuracy is defined as the
degree and extent of closeness of a measured, estimated, or calculated quantity to
its actual, real (true) value. Accuracy is closely related to the degree of precision,
also called the factors of reproducibility or repeatability, the extent to which fur-
ther or advanced measurements or calculations show or repeat the same or similar
results. The term accuracy is also defined as the degree to which a given quantity
is correct and free from error (Wolfram 2002).

3. Comprehension. It is a measurement of the understanding of knowledge and the
totality of knowledge, that is, properties or qualities that knowledge possesses.
Other nonfunctional requirements of knowledge are manageability, produceability,
and awareness.

5.2.5 CHALLENGES AND CONSTRAINTS

e Challenges

* Challenges encapsulate the default structure and behavior that will be shared
among different knowledge implementations.

e They allow canonical handling for a different set of subjects that may be
selected during knowledge acquisition.

* They robustly cope with a set of distinct actors per application on an on-demand
basis.

* They synchronize the provided skills of the actors with the capabilities pro-
vided by different mechanisms during knowledge acquisition.

e Actors must take respective actions according their abilities in varied and
uncertain situations.

* Constraints.

e The domain of interest must be selected before any other aspect or subject
selection.

* Subject’s definition must wrap, surround, and delegate the default and public
capabilities of the mechanism aspect.

» Before utilizing a specific actor, their skills must be assessed with respect to
the selected subject.

* The knowledge acquisition process is a synchronized and well-tuned process.

* There must be at least one actor understanding this knowledge.

* Knowledge can be shared or it can belong to multiple domains.

* A single domain can contain at least one subject of interest. A subject can be
either atomic (does not contain subsubjects) or composed (contains at least one
subsubject).

114 Software Patterns, Knowledge Maps, and Domain Analysis

* Knowledge involves a set of mechanism. At least one mechanism needs to be
associated with a subject of interest.
* This mechanism streamlines one or more skills of a determined actor.

5.2.6 SOLUTION: PATTERN STRUCTURE AND PARTICIPANTS

The solution is divided into the pattern’s structure and its participants.

5.2.6.1 Structure

The structure of this pattern is illustrated by a class diagram.

As seen in Figure 5.1, the knowledge stable analysis pattern requires a determined
domain, as the main input for perception, reasoning, and learning. This main input will be
broken down into a list of subjects relevant to the main input. These subjects were filtered
and reported by the utilization of different mechanisms bound to specific skills of a par-
ticular actor. This will result in an understanding of interrelated facts or subjects belonging

to a specific domain.

1.% Experience
<<EBT>> S <<P-BO>> Experimentation
Knowledge AnyDomain J Research

L.r etc.
|
|
|
1 I: |
|
L. !
A <<P-BO>> :
P AnySubject . |
g 5 |
o
5 |
5
5 |
IS
» |
2
S
£ <<P-BO>>
AnyMechanism
o
38
3
2
<
2
&
3
<)
=
<<P-BO>> <<P-BO>> \J
. AnyParty ains B 1 . AnySkill .
L. 8 L. Lo

<

FIGURE 5.1 The structure of the knowledge stable analysis pattern. Some scenarios may require
other business objects within knowledge pattern, such as AnyParty, AnyCriteria, AnyType,
AnyStructure, AnyEntity, AnyEvent, AnyLog, and AnyMedia.

The Knowledge Stable Analysis Pattern 115

5.2.6.2 Participants

The pattern’s participants are classified into two types: classes and patterns. Classes are
individual object constructs that appear in any traditional class diagram. Patterns encapsu-
late a collection of classes and the associations that stem from these classes.

* Classes

* Knowledge. It encapsulates the shared behavior and properties between a set of

different types of knowledge.
* Patterns

e AnyDomain. It represents the container of a set of distinct and interre-
lated subjects that have a significant role in a domain’s understanding and
abstraction.

* AnyMechanism. It encapsulates the canonical (shared) behavior and proper-
ties that occur in different types of mechanisms, regardless of their context of
applicability.

* AnyCriteria. It represents the requirements and constraints that should hold
true in order to access knowledge of some entity or for generating knowledge.

* AnyActor. It represents the set of users or stakeholders, with certain skills, that
acquire or understand knowledge.

e AnyParty. It represents a party, an organization, governmental organization, or
a country. They may request certain knowledge or generate knowledge about
some entity.

e AnyStucture. It states the knowledge format or layout and/or the knowledge
structure.

* AnyType. It represents different types of knowledge, when applied to different
contexts.

e AnyEntity. It represents the entity that has knowledge. The entity defines the
media through which it can be found.

* AnyMedia. It represents the media through which the knowledge of an entity
exists or stored. It is possible to have multiple mediums to store knowledge.

* AnyLog. It represents the log, such as record, file, stone, tape, and disk, where
the knowledge is stored.

5.2.6.3 CRC Cards

Knowledge (Knowledge) EBT

Responsibility Collaboration
Client Server
Represents any type of knowledge that your system 1. AnyParty, {OR} 1. acquire()
requires or collects 2. AnyActor 2. convey()
3. AnyMechanism 3. peek()
4. AnyType 4. assess()

5. relatedTo()
Attributes: knowledgeld, KnowledgeArea, KnowledgeProperties, createdBy, context, knowledgeConstraints,
knowledgeType

116 Software Patterns, Knowledge Maps, and Domain Analysis

AnyParty (AnyParty) BO

Responsibility Collaboration
Client Server
To use or generate knowledge 1. Knowledge 1. declaresCeriteria()
2. AnyCriteria 2. assesses()
3. possesses()
4. defines()
5. operates()

6. generates()
Attributes: name, designation, skills, workHrs, location, popularity, noOfMembers, fieldOfOperation

AnyActor (AnyActor) BO

Responsibility Collaboration

Client Server

To use or generate knowledge 1. Knowledge . performs()

. succeeds()

. accomplishes()

. doesTask()

. implementsRules()
. achieves()

7. prospers()

2. AnyCriteria

AN N AW =

Attributes: name, birthdate, designation, skills, qualification, address, status, workingLocation,
workingHours

AnyType (AnyType) BO

Responsibility Collaboration

Client Server

. categorizes()
. classifies()

. describes()
sorts()

. seperates()

. makesClass()
. organizes()

To name the type of knowledge 1. Knowledge
2. AnyDomain

Attributes: name, status, number, basis, ruleForClassification, parameterUsed, factor,
inspirationForClassification

The Knowledge Stable Analysis Pattern 117

AnyDomain (AnyDomain) BO

Responsibility Collaboration
Client Server
To specify domain where knowledge is required 1. AnyType 1. enforces()
2. AnyEntity 2. functions()
3. contributes()
4. comprises()
5. involves()
Attributes: name, type, history, arena, subject, value, peopleInvolved, knowledge
AnyEntity (AnyEntity) BO
Responsibility Collaboration
Client Server
To specity entity where knowledge is required 2. AnyMedia 1. exists()
2. maintains()
3. states()
4. demands()
5. hasValue()
6. needs()
7. represents()
8. symbolizes()
Attributes: name, location, type, quintessence, value, history, built, status
AnyCriteria (AnyCriteria) BO
Responsibility Collaboration
Client Server
To specity user-defined requirements and constraints for 1. AnyParty 1. influences()
knowledge 2. AnyActor 2. imposes()
3. AnyMechanism 3. specifiesStandard()
4. restricts()
5. confines()

6. constraints()
Attributes: typeOfCeriteria, stateOfCeriteria, specifiedBy, numberOfCeriteria, effectOfCriteria, purpose, description

118 Software Patterns, Knowledge Maps, and Domain Analysis

AnyMechanism (AnyMechanism) BO

Responsibility Collaboration
Client Server
To incorporate means/methods for knowledge 1. AnyCriteria 1. presentKnowledge()
2. Knowledge 2. generateKnowledge()
3. AnyStructure 3. classifyKnowledge()
4. findKnowledge()

5. sortKnowledge()
Attributes: nameOfMechanism, criteriaForMechanism, wayOfFunction, usedBy, numberOfMechanism,
mechanismDescription, status, application, components, context

AnyStructure (AnyStructure) BO

Responsibility Collaboration
Client Server
To specity the knowledge structure 1. AnyMechanism 1. formatKnowledge()
2. AnyLog 2. stateModel()
3. describeKnowledge()
4. relateKnowledge()
5. IlustrateKnowledge()

Attributes: structureld, structureName, parameterUsed, notationName, modelName, aspectName

AnyMedia (AnyMedia) BO

Responsibility Collaboration

Client Server

. store()
. formsMedia()
used()
. connect()
. helpsToAccess()
. capture()
. access()
. navigate()

9. format()
Attributes: usedFor, usedBy, purposeFor, mediaName, mediaType, capability, entry, securityLevel, status,

To provide media for storage and illustration 1. AnyEntity
2. AnylLog

© NN AW~

sector

The Knowledge Stable Analysis Pattern 119

Anylog (AnyLog) BO

Responsibility Collaboration

Client Server

To record and edit knowledge 3. AnyStructure
4. AnyMedia

1. record()
2. format()
3. open()
4. close()
5. edit()
6. modity()
7. cut()

8. past()
9. add()
10. delete()
Attributes: logld, logName, usedFor, usedBy, purposeFor, logType, capability, entry, securityLevel, status,
logSpecifications

AnyDomain (Domain) (BO)

Responsibility Collaboration
Client Server
Serves as the bridge between knowledge AnyType, AnyEntity define(), explore(), localize(),
acquisition and subject understanding scale(), constrain(), disclose()

Attributes: domainld, domainName, subDomains, domainProperties, domainConstraints

AnyMechanism (Mechanism) (BO)

Responsibility Collaboration
Client Server
Adjust the available processing or Knowledge, AnyCriteria, bind(), invokes(), cancel(),
ability per actor’s skill AnyStructure adjust(), report()

Attributes: mechanismld, mechanismName, mechanismType, mechanismList, mechanismProperties,
mechanismParameters

Anyskill (skill) (Type: BO)

Responsibility Collaboration
Client Server
Represents the abilities an actor can take per AnyMechanism isAble(), obtain(), perform(),
the synthesis of new knowledge AnyActor indicate(), denoteHost()

Attributes: mechanism, List; actor, AnyActor

120 Software Patterns, Knowledge Maps, and Domain Analysis

AnyActor (Actor) (Type: BO)

Responsibility Collaboration
Client Server
Represents the actors acquiring knowledge Knowledge act(), demonstrate(),
matching a subject of interest AnySkill understand(), gain()

Attributes: skills, List; knowledge, Knowledge

Knowledge acquisition will initiate when a determined actor localizes and explores a
domain of particular interest. Then, the actor will break down the domain into a list of
subjects to ease the actor’s understanding toward the domain of interest. This breaking will
be carried out by using certain well-defined mechanisms. The actor will then process the
explored subjects and gain important skills, which are the implementation of the gained
knowledge toward the actor’s benefits.

5.2.7 APPLICABILITY WITH ILLUSTRATED EXAMPLES

The following two scenarios provide two possible uses for this pattern. For the sake of sim-
plicity, we did not include the complete pattern’s model.

5.2.7.1 Scenario T—Autonomic Computing Context

Briefly, autonomic computing relies on the idea of the creation of self-governing that can
adapt and manage themselves in accordance with stakeholders’ interest (i.e., automatic sys-
tem installation, etc.). Self-governing systems will use gained knowledge acquired from
detecting and analyzing log files, system configuration, and so on to detect and solve local
problems related to bugs or logical errors. Using the gained knowledge about these possible
failures, the self-governing system will look into a specific repository for the right patches
(if available) and fix the problems.

5.2.7.1.1 Class Diagram

The autonomic computing application, Figure 5.2, will consist of an agent that will be
responsible to determine by experience and context which task to perform during its instal-
lation and deployment in a determined environment. This agent will analyze the context,
where it is trying to be installed, via the checking of logs files. This information will be
filtered and stored in a database for posterior use during its deployment. If a problem arises,
this information will be retrieved, so that the agent will know what to do to guarantee a
successful deployment and installation.

5.2.71.2 Use Case

Use Case Title: Use Autonomic Computing

Actors Roles
AnyActor Agent

The Knowledge Stable Analysis Pattern

121

Classes
Knowledge

AnyActor

AnyDomain

AnyType

AnyMechanism

AnyCeriteria

AnyEntity

AnyMedia

AnyStructure
Agent
Deployment
Database
SolutionSearch
InfoManagement
Activity
ActivityProduct

Installation
ActivityFactory

BO, business object; EBT, enduring business theme; 10, industrial object.

Type
EBT

BO

BO

BO

BO

BO

BO

BO

BO

10

10
10

10
10
10
10

Attributes
id
area
id
actorName
type
role
id
name
type
id
type
domainName
name
type
interface
name
type
value
entityld
entityType
entityName
mediald
mediaName
mediaType
interface
structureld
structureType
structureName
name

type

type

size

criteria
mechanismType
dataType
mechanismType

Operations

presentFact()
learn()
participate()

storeKnowledge()

report()

provideAutonomicComputing()

adjustMechanism()

exist()

store()

layoutKnowledge()

retrieveData()
gainSkill()

understandKnowledge()

storeData()

searchForSolution()

manageData()

EBTs BOs 10s
t
domain domains r— _<icr_ea_esi>_ - e
1.7 1.%* | | :
<<P-BO>> | |
AnySubject Q <<IO>> | WA
domai Deployment <<10>> .<‘<IO>> -
omain Activity | | [ActivityProduct |
| AN |
Y domain | <<creates>> |
s | |
= |
2 ; |
5 L subject | |
B) o <<cretlﬁtes>> tores | <<10>> !
) <<10>> SLOres | Installati I
<<EBT>> <<P-BO>> subject reports Database | nstaration |
Knowledge AnySubject |
|
o i 1.% mechanism : :
E subject 1. |
z subjects <<IO>> [—— 11> <<IO>>
£ <<P-BO>> SolutionSearch ActivityFactory
undetstand AnyMechanism
actor <<P-BO>> mechanism
AnyActor
Lr AN adjust
. <<I10>> <<I0>> - <<10>> i
% skill RecoveryHandler Agent InfoManagement
«©
L | skill
galins
<<P-BO>>
AnySkill
1.*

raah

FIGURE 5.2 The autonomic computing context scenario.

sisAjeuy urewo(q pue ‘sdepy 98pajmouy| ‘suidlied a1emljos

The Knowledge Stable Analysis Pattern 123

Use Case Description

1. AnyActor (Agent) understands knowledge (enduring business theme [EBT]) of
AnyDomain (Deployment) by detecting and analyzing log files, system configuration,
and so on. What are the other techniques available to AnyActor (Agent) for understand-
ing knowledge (EBT) of AnyDomain?

2. AnyDomain (business object [BO]) under consideration can again be a part of another
AnyDomain (BO). What happens if AnyDomain (BO) is a part of AnyDomain (BO)?

3. AnyActor (Agent) gains AnySkill (RecoveryHandler) through understanding of
knowledge (EBT). How does AnyActor (Agent) gain AnySkill (RecoveryHandler)?

4. This AnySkill (RecoveryHandler) adjusts AnyMechanism (BO). How is Any-
Mechanism (BO) adjusted through AnySkill (RecoveryHandler)?

5. AnySubject (BO), which is a part of AnyDomain (Deployment), reports the use of
AnyMechanism (BO) too. In what way AnyDomain (Deployment) reports the use
of AnyMechanism (BO)?

6. AnyActor (Agent) uses AnyMechanism (SolutionSearch) to give the desired results.
How is AnyMechanism (SolutionSearch) used by AnyActor (Agent)?

7. In addition, AnyMechanism (InfoManagement) is also available for storing the
filtered data in a database for posterior use during deployment (industrial object [[O]).
If a problem arises, this information will be retrieved, so that the AnyActor (Agent)
will know what to do to guarantee a successful deployment and installation. What
is the structure and type of database? Who stores data in database and how? How
does AnyActor (Agent) retrieve the information upon failure?

5.2.7.1.3 Sequence Diagram

The flow diagram in Figure 5.3 represents the flow of messages, when AnyActor (Agent)
understands knowledge (EBT) of AnyDomain (Deployment) under consideration by use of
various strategies. By understanding the knowledge (EBT), AnyActor (Agent) gains AnySkill
(RecoveryHandler). This AnySkill (RecoveryHandler) is used to adjust AnyMechanism
(SolutionSearch). AnyMechanism (SolutionSearch) is reported by AnySubject (BO). This
AnySubject (BO) is a part of AnyDomain (BO) and is made available to AnyActor (Agent).
AnyActor (Agent) also uses AnyMechanism (InfoManagement), which stores the data
for later retrieval in database (BO). Data in the database (BO) are retrieved by AnyActor
(Agent) when needed.

5.2.7.2 Scenario 2—CRM System

In B2B, C2B, or any other systems within the e-commerce’s realm, the acquisition of custom-
ers’ knowledge is the cornerstone, especially understanding these customers including their
needs, aims, and wants. Therefore, we need a system that facilitates the proper understand-
ing of the customers’ knowledge and allows businesses to align their processes, products,
and services to build good customer relationships and increase the benefits of the businesses.

5.2.7.2.1 Class Diagram

The CRM application (Figure 5.4) will consist of an efficient catalog subsystem that will
be responsible to analyze customer data in order to analyze customer behavior. The product
search and purchase activity of the customers is tracked. These data mined for the custom-
ers will be stored in the database, via a customer mining application. Using these data, the
subsystem will collect and predict the behavior of the customers.

124 Software Patterns, Knowledge Maps, and Domain Analysis
<<BO>>: <<IO>>: <<BO>>: <<BO>>: <<BO>>:
;;EBF?;' AnyActor AnySkill AnyDomain A<n<E;0l:> ¢ AnyMechanism AnyMechanism l<3<ltob>>.
owledge (Agent) (RecoveryHandler) (Deployment) youbjec (SolutionSearch) | | (InfoManagement) atabase
| | T T 1
I I | | | I
|
! 1: gathers() ! | | : |
| | | |
2: of() ! ! | |
T | |
I ! I !
| 3: helps() | :
| : |
I | I
I | I
4: gains() ! | :
: i
T
|

L
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
'

|
8: availz;bleTo()

|
|
|
|
: 5: adjust()
T
|
|
|
: 7: isPartOf()

9: uses()

6: isReportedBy()

11: retrievedBy()

10: storesIn() J_‘

FIGURE 5.3 Sequence diagram for autonomic computing.

5.2.7.2.2 Use Case

Use Case Title: Maintaining Customer Relationship

Actors Roles
AnyActor Catalog subsystem
Classes Type Attributes Operations
Knowledge EBT id presentFact()
area
AnyActor BO id learn()
actorName participate()
type
role

(Continued)

The Knowledge Stable Analysis Pattern 125
Classes Type Attributes Operations
AnyDomain BO id storeKnowledge()
name
type
AnySubject BO id report()
type
domainName
AnyMechanism BO name provideAutonomicComputing()
type
interface
AnySkill BO name adjustMechanism()
type
value
CatalogSubsystem 10 name retrieveData()
type understandCustomerBehavior()
Purchase 10
Database 10 type storeData()
size
ProductSearch 10 criteria searchForProduct()
mechanismType
BehaviorCollection 10 dataType collectCustomerbehavior()
mechanismType
BehaviorPrediction 10 predictCustomerBehavior()
CustomerMining 10 analyzeData()
inferTrends()

Use Case Description

1.

AnyActor (CatalogSubsystem) understands knowledge (EBT) of AnyDomain
(CustomerMining) by detecting and analyzing customer-related data. What are
the other techniques available to AnyActor (CatalogSubsystem) for understanding
knowledge (EBT) of AnyDomain?

. AnyDomain (BO) under consideration can again be a part of another AnyDomain

(BO). What happens, if AnyDomain (BO) is a part of AnyDomain (BO)?

. AnyActor (CatalogSubsystem) gains AnySkill (OrganizationHandler) through

understanding of knowledge (EBT). How does AnyActor (CatalogSubsystem) gain
AnySkill (OrganizationHandler)?

. This AnySkill (OrganizationHandler) adjusts AnyMechanism (BO). How is

AnyMechanism (BO) adjusted through AnySkill (OrganizationHandler)?

. AnySubject (BO), which is part of AnyDomain (CustomerMining), reports the use

of AnyMechanism (BO) too. In what way AnyDomain (CustomerMining) reports
the use of AnyMechanism (BO)?

. AnyActor (CatalogSubsystem) uses AnyMechanism (BehaviorCollection and Behavior-

Prediction) to give the desired results. How is AnyMechanism (BehaviorCollection
and BehaviorPrediction) used by AnyActor (CatalogSubsystem)?

. In addition AnySubject (BehaviorProduct) is also available for storing the filtered data

in a database for posterior use during CustomerMining (IO). If a problem arises, this

EBTs BOs 10s
domain domains
1 g 0..*
b <<P-BO>> <<I0>> — <<I0>>
A AnyDomain CustomerMining Database
domalin
Q
% 10
= domain - — <<I0>>
% : ProductSearch c 1<<;O];>
£ subject | atalogSubsystem
EBT <<10>> |
K<< 1 (>1> <<P-BO>> subject reports BehaviorProduct g: - <<I0>>
nowledge AnySubject 7 | Purchase
%] Do
T 1. mechanism | :
T subject |
g subjects <<P-BO>> K> —; | I
detstand AnyMechanism <>——“—“—|| | L <<I10>>
undeystan | | BehaviorCollection
actor | mechanism : |
<<P-BO>> adjust | :
AnyActor
1.% I | <<creates>>
5 skill | ! l
g L o
1. skill |\ T T T = 1
g4ins <<P-BO>> | <<I0>>
R AnySkill | BehaviorFactory
! 7N
I <<I0>>
| -|BehaviorProtection
<<I0>>
OrganizationHandler

FIGURE 5.4 The CRM system scenario.

9C1

sisAjeuy urewo(q pue ‘sdepy 98pajmouy| ‘suidlied a1emljos

The Knowledge Stable Analysis Pattern 127

information will be retrieved, so that the AnyActor (CatalogSubsystem) will know
what to do to guarantee a successful knowledge of the customer’s behavior. What is
the structure and type of a database? Who stores data in a database and how? How
does AnyActor (CatalogSubsystem) retrieve the information upon failure?

5.2.8 RELATED PATTERNS AND MEASURABILITY

Knowledge for stability pattern is generalized enough to allow its applicability in
diverse application domains. This pattern includes EBTs and BOs as objects, so its
applicability in other related domains only requires attachment of I0s on peripheral
boundaries. Even this pattern is complex in design and requires deeper analysis to
identify key EBTs and BOs, but it greatly enhances pattern reusage and effectiveness
to find solution.

Traditional model is based on IOs. IOs are the physical objects and are unstable. The
traditional model caters to the current requirements. The traditional model is hard to reuse if
the requirements change. Any changes in the requirements cause complete reengineering of
project. Thus, the traditional model involves high maintenance cost in terms of time, labor,
and money. The system built by using the traditional model cannot be extended or adapted.

Knowledge traditional model is based on 10s, which are nonenduring and nonadapt-
able objects. Change in single IO may initiate a cascade of changes throughout other 1Os, thus
making it highly unstable. So, this model cannot remain stable for longer time span, whereas
knowledge stable pattern is based on enduring concepts, that is, EBTs and BOs, which are
adaptable and durable. This confirms its applicability forever.

Applicability of traditional model is limited to a particular domain area. In case of knowl-
edge traditional model, it is tied to knowledge related to area, such as engineering, science,
and so on. On the other side, a stable model on knowledge is applicable to a number of
domain areas having core themes in common. Hooks can be easily used to extend and reuse
this stabilized model.

The identification of objects involved in the traditional model just requires brief knowl-
edge and documented data about specific domain. These objects can be easily found in
problem statement. But, in stable model, one requires deeper study, experience in domain,
and intuition to come up with useful set of EBTs and BOs.

5.2.8.1 Measurability
5.2.8.1.1 Quantitative Measurability

* Number of Behaviors
e The number of behaviors in the traditional model is far more when compared to
the stability model. All the classes have to be changed in a traditional model for
each application, where as the stability pattern designed here will have the same
EBTs and BOs. For any application, we only have to choose the 10s accord-
ingly, which will obviously result in less number of classes and with no rework.

5.2.8.1.2 Qualitative Measurability
* Knowledge Imparted
e A traditional model requires the knowledge of a specific domain; thus, the
knowledge imparted by the traditional model is limited, whereas the stability

128 Software Patterns, Knowledge Maps, and Domain Analysis

model, which covers the whole domain, requires a considerable amount of
knowledge to understand.
* Usability
* Because the stability model is modeled by using the ultimate goal, it is usable for
all kinds of similar problems or applications, whereas a traditional model defeats
the purpose of usability, because it is only used for the application it is designed for.

5.2.9 KNOwN USAGES

The knowledge analysis pattern can be applied in any industry, where prior knowledge is
useful. Some of the industries where it is most effective are listed as follows:

* Manufacturing

* Retail industry

* Media and marketing
* Software industry

Listed below are some of the applications where knowledge is being currently used.
However, the need for knowledge is different in each case and so is the mechanism used to
achieve knowledge, but the core concept remains the same.

1. E-learning tools that obtain the knowledge level of the user and then provide them
accordingly with the learning aids.

2. Amazon, where the system gains knowledge of the user’s preferences from the
items that he or she buys and provide recommendations of items that are of interest.

SUMMARY

One can quickly understand that for the software industry to remain vital and healthy, spe-
cific methodology changes or modifications must occur that might result in reduced devel-
opmental cost. Currently, these developmental costs continue to skyrocket out of control,
thereby threatening the very existence of the industry.

The most important change that must occur is for software to be built on a common
knowledge platform that is shared by all and then to allow the user flexibility to expand the
software according to their own needs and requirements. Only then, will software develop-
ment become a profitable venture.

In this chapter, we saw how the CRM system collected information and how it could help
distinguish their buyers’ buying habits. The pattern allows for better targeting of the con-
sumer and thus the ability to identify areas that can be improved to attract that buyer and
to increase the amount of purchases. The end result means a decrease in expenses incurred
for wasted marketing and adverting dollars and an increase in sales and profits because of
better targeting.

In conclusion, the knowledge pattern is a powerful and efficient tool that will represent
both synthesis and acquisition of collecting information, by allowing for the collection
of information in a variety of files, which can then be examined and used for decision-
making processes, thus allowing for a much better targeting of one’s market and reducing

The Knowledge Stable Analysis Pattern

expenditures significantly and increasing profit margins. There are few companies that
would not jump at the chance for increased revenues and the knowledge pattern is able to

meet that demand at a reasonable cost to the company.

OPEN RESEARCH ISSUES

No formal process or tools for testing are available for testing knowledge pattern use for
making an infinite number of applications. Thus, one needs to come up with formal docu-

ments and tools for testing the same.

REVIEW QUESTIONS

1.

W B~ W

13.
14.
15.
16.
17.
18.

19.
20.
21.
22.
23.

24.

What do you mean by the term knowledge? Can the term knowledge be used in any
other context other than what you thought of?

. Find out all such terms that mean exactly the same as knowledge and can be used

interchangeably?

. What are the capabilities to achieve knowledge? Describe each of them.
. Draw and describe the class diagram for stable knowledge pattern?
. Come up with two scenarios other than those given in this chapter, where knowl-

edge can be used. Try to fit these scenarios with the knowledge pattern.

. Try to create a use case and interaction diagram for each of the scenarios you

thought of in the above question.

. List differences between the knowledge pattern described here and the traditional

knowledge pattern.

. List some design and implementation issues faced when implementing knowledge

pattern. Explain each issue.

. Give some applications where the knowledge pattern is being used.
10.
11.
12.

What are the lessons learnt by you by studying the knowledge pattern.

Define the knowledge stable analysis pattern.

Is the following statement true or false? The knowledge stable analysis pattern can
be applied and extended to any domain.

List some of the domains where the knowledge analysis pattern can be applied.
List any four new applications of the knowledge stable analysis pattern.

List three challenges in formulating the knowledge analysis pattern.

List 10 different constraints in the knowledge analysis pattern.

What are the classes and patterns involved in defining the stable pattern for knowledge?
Illustrate using a class diagram of knowledge patterns of each of the new applica-
tions of question 14.

Illustrate with a class diagram how AnyParty or AnyActor BO has a second abstrac-
tion level.

Document the CRC card for the knowledge EBT.

Is the knowledge pattern incomplete without the use of other patterns? Explain briefly.
What is the trade-off of using this pattern?

Present the sequence diagram for applicability of the knowledge stable analysis
pattern in the e-commerce domain.

What are the possible design issues for the knowledge EBT, when linked to the
design phase?

129

130 Software Patterns, Knowledge Maps, and Domain Analysis

25. What do you think are the implementation issues for the AnySkill BO when used
in the knowledge stable analysis pattern?

26. List a couple of advantages of using the stable analysis pattern for knowledge.

27. List two scenarios that will not be covered by the knowledge analysis pattern.

28. Describe how the developed knowledge analysis pattern would be stable over
time.

29. List some of the lessons learnt from the use of the stable analysis pattern for
knowledge.

30. List some of the testing patterns that can be applied for testing the knowledge
stable analysis pattern.

31. List three test cases to test the class members of the knowledge pattern.

32. List some of the related design patterns used in formulating the knowledge stable
pattern.

33. Briefly explain how the knowledge stable analysis pattern supports its objectives.

34. Assess two different quantitative measures on the knowledge traditional model and
knowledge stable analysis patterns and explain the differences between each of the
measures.

EXERCISE

Think of a few scenarios where knowledge pattern is applicable and come up with cor-
responding class diagram, use case, and sequence diagram, as shown in the solution and
applicability sections for each of the scenarios.

PROJECTS

1. Knowledge retrieval (Martin and Eklund 2000; Yao et al. 2007). It is a field of
study that seeks to return information in a structured form, consistent with human
cognitive processes as opposed to simple lists of data items. It draws on a range of
fields including epistemology (theory of knowledge), cognitive psychology, cogni-
tive neuroscience, logic and inference, machine learning and knowledge discovery,
linguistics, information technology, and so on.

2. The knowledge economy (Powell and Snellman 2004). It is a term that refers either
to an economy of knowledge focused on the production and management of knowl-
edge in the frame of economic constraints or to a knowledge-based economy. In
the second meaning, more frequently used, it refers to the use of knowledge tech-
nologies (such as knowledge engineering and knowledge management) to produce
economic benefits. The phrase was popularized, if not invented, by Peter Drucker
(1969), as the title of Chapter 12 in his book The Age of Discontinuity.

3. Knowledge acquisition (Potter 2014). It is the transformation of knowledge from
the forms in which it exists into forms that can be used in a knowledge-based
system.

4. Knowledge ecosystem (Bahrami and Evans 2005). As an extension of knowl-
edge management ideas, a knowledge ecosystem fosters the dynamic evolu-
tion of knowledge interactions between entities. This bottom-up approach seeks
to provide a more resilient approach. Within certain contexts (e.g., turbulent

The Knowledge Stable Analysis Pattern 131

environments), a top-down knowledge management is viewed as indeterminate;

hence, the intention of creating a knowledge ecosystem to improve decision

making and innovation through improved evolutionary networks of collaboration.

a. Name two to three ultimate goals of each of the above knowledge areas.

b. List all the functional requirements and nonfunctional requirements of each of
the ultimate goals.

c. List five challenges for the two or three ultimate goals combined for each area.

d. Name 10 different applications for each of the goals.

e. Name five different applications for the two or three ultimate goals combined.

SIDEBAR 5.1 Knowledge Definition

Knowledge is what I know.
Information is what we know.

In the world of philosophy, knowing and understanding that something is a likely scenario
assumes that what is known is always true and 100% correct. Is it possible to announce that
someone really knows something but it is not exactly true and correct? It is almost impossible
to say or ascertain that something is true unless we are successful in demonstrating that that
something is also true and correct (Foskett 1982).

So, what exactly is knowledge? Is it possible to define or explain it in very simple and easy to
understand terms?

According to Merriam Webster’s online dictionary, knowledge is defined as

1. The fact or condition of knowing something with familiarity gained through experience
or association.

2. Acquaintance with or understanding of a science, art, or technique; the fact or condition
of being aware of something.

3. The range of one’s information or understanding (e.g., answered to the best of my
knowledge); the circumstance or condition of apprehending truth or fact through
reasoning.

The definition of knowledge is a matter of intensive and ongoing debate among philosophers in
the field of epistemology. The classical definition, described but not ultimately endorsed by Plato,
has it that in order for there to be knowledge, at least three criteria must be fulfilled: to count as
knowledge, a statement must be justified, should be truthful, and should be believed.

REFERENCE

Foskett, A. C. The Subject Approach to Information. Hamden, CT: Linnet Books/The Shoe String Press, Inc.,
p. 1, 1982.

Section Il

Knowledge Map Capabilities

134 Knowledge Map Capabilities

Simply speaking, capabilities are entities that form the heart and soul of a business.
Without appropriate capabilities, it may be very tedious for an organization to conduct
day-to-day business operations. Capabilities also form the essential components of busi-
ness process to ensure maximized productivity, stability, durability, and steadfastness of
business functions. In essence, capabilities may mean many things to people and in dif-
ferent industries.

Capabilities also complement the goals of a given concept by guiding themselves
systematically toward their goal achievement. In fact, they are the enduring busi-
ness workhorses of the goals. Their behavior is driven forward by a set of enduring
business rules, which are encapsulated by a number of goals. Each capability has an
ultimate goal responsible for constraining the capabilities’ internal behavior toward a
nondeterministic outcome without causing strugglers. The main idea of embedding the
capability’s ultimate goal within the capability’s workflow is to ensure and ascertain a
business-centric behavior that is usually coherent with the rationale or goals of interest.

Section III discusses capabilities or/and business objects and documents two major
capabilities of the knowledge maps as stable design patterns: AnyMap and AnyContext.
Section III also contains three chapters and six sidebars.

Chapter 6 is titled “Capabilities: The Heart of Business,” and it defines capabilities or
business objects and the origin of business objects, discusses the workflows, shows how
to deal with capabilities: identification and assessment, the essential properties of busi-
ness objects, and briefly discusses the capabilities of the knowledge maps. This chapter
concludes with a brief summary and open research issues for the future. This chapter also
provides a series of review questions, exercises, and projects.

Chapter 7 is titled “AnyMap Stable Design Pattern,” and it discusses, models, and docu-
ments this pattern by using Fayad’s stable pattern documentation template as shown in
Appendix A. The chapter also includes three different and distinguishable AnyMap pat-
terns that focus on three different goals: navigation, visualization, and recording. This
chapter concludes with a brief summary and numerous open research issues. This chapter
also provides review questions, exercises, and projects.

Chapter 8 is titled “AnyContext Stable Design Pattern,” and it discusses, models, and
documents this pattern by using Fayad’s stable pattern documentation template as shown in
Appendix A. This chapter concludes with a brief summary and many open research issues.
This chapter also provides review questions, exercises, and projects.

Sidebar 6.1 is titled “Business Objects,” and it provides different definitions of business
objects.

Sidebar 6.2 is titled “Learning about Capability,” and it provides different definitions of
capability.

Sidebar 6.3 is titled “Work Flow,” where the workflow is defined, and it shows how dif-
ferent activities coordinate within the workflow.

Sidebar 7.1 is titled “Genetic or Linkage Map,” where a definition has been provided.

Sidebar 7.2 is titled ““Site Map,” where a definition has been provided.

Sidebar 7.3 is titled “Topographic Map,” where a definition has been provided.

6 Capabilities

The Heart of Business

Capabilities are the true understanding of the solution space.

M. E. Fayad
2015

6.1 INTRODUCTION

Capabilities are those entities that form the heart and soul of a business. Without proper
capabilities, it may be very tedious for an organization to conduct day-to-day business
operations. Capabilities also form the essential components of a business process, to ensure
maximized productivity, stability, durability, and steadfastness of business functions. In
essence, capabilities mean many things to people in different industries. For business, capa-
bility means abilities that are acquired and are applied at their workplaces. It may include a
series of knowledge pools and skill sets required to run, manage, and administer numerous
business processes. In some domains, capabilities may also include wisdom and knowledge
acquired because of years of experience; more often, a person is said to be capable when
he or she has the required abilities to perform certain things or actions. Capabilities are
always enduring and persisting in their nature; once you acquire capabilities in a given
domain, it is almost certain that you will be capable to excel in that domain for life.

Capabilities in software architecture and development system may encompass several
things like required knowledge and skills, prior experience in the industry, and expertise
required to run several functions. A piece of software system is said to be capable when it
has the ability to remain stable for a long time, acquire the intrinsic ability to resist frequent
architectural changes or modification, and finally display an ability to perform a series of
functions with different variables.

It is possible to acquire capability by developing the capabilities of software systems by
specializing in a given domain, or by repeating the same thing in different contexts, or even
by developing them in a larger domain with more variables, or in a new domain, or in a
totally different domain (Sidebar 6.2).

6.1.1 THe HEeART OF THE BUSINESS

Capabilities or business objects (BOs) (Sidebar 6.1) are the heart and soul of business
operations. They always implement a number of entities that realize an assured and defi-
nite business concept (Patel, Sutherland, and Miller 1998). Such a responsibility allows
them to specify, execute, and track internal norms or comply with a series of logical steps
across a wide spectrum of environments. Like goals, they are the intrinsic parts of the
knowledge maps. Their main responsibility, within the knowledge maps’ standpoint of

135

136 Software Patterns, Knowledge Maps, and Domain Analysis

view and perspective, is to interpret goal definition, to encapsulate the processing points
where this goal is achieved, and to interact with work flow participants. Additionally,
capabilities have a major effect on business processing (Lawrence 1997). They are able
to execute the logical steps pertinent to their work flow in parallel, thereby reducing
substantially the cycle time necessary to handle a particular goal. Thus, for example,
a common task that requires 10 logical steps can have 5 of its logical steps executed in
parallel (Lawrence 1997). Likewise, capabilities also support or enable the execution of
their logical steps manually or in sequence.

Capabilities, like BOs, represent complete work flows that are responsible for specifying
and managing a stable set of processing tasks. To handle these tasks, the work flows of
capabilities are expressed as sets of smaller chunks of functionality that are easier to under-
stand than high-level complex processing tasks (James, Hawick, and Coddington 2000). In
essence, one can design capabilities with a high cohesion of their individual instructions.
The basic definition of these instructions is completed by means of a systematic process that
involves focused role assignation, their respective responsibilities, the services that cope with
these responsibilities, and their work flow collaborators (Fayad, Sanchez, and Hamza 2004).

Capabilities (Sidebar 6.2, Fayad 2002a, 2002b) also complement the goals of a given con-
cept by guiding themselves systematically toward their goal achievement. In fact, they are
the enduring business workhorses of the goals. These capabilities or workhorses behavior
is driven forward by a set of enduring business rules, which are encapsulated by a number
of goals. Each capability has an ultimate goal responsible for constraining the capability’s
internal behavior toward a nondeterministic outcome without causing struggles. The main
idea of literally embedding the capability’s ultimate goal within the capability’s work flow
is to ensure and ascertain a business-centric behavior that is usually consistent with the
rationale or goals of interest. This idea neatly corroborates and supports two things: a capa-
bility without a goal is not a capability at all, and capabilities are recursively related to the
goals without losing generality. Together, they form the basis for the generation of many
applications across the spectrum of interest, such as transactions and services in service-
oriented architectures (Fayad and Kilaru 2005).

Similar to goals, capabilities are the enduring artifacts, but with a minor difference:
they are externally adaptable, via extension points or hooks (Fayad, Sanchez, and Hamza
2005). Their adaptable natures can be determined by examining the relationships between
the underlying business, and their direct application, and the application of the right hook-
ing code. These relationships can be inheritance, aggregation, and associations. Rather
than focusing on the generalization and specification problems, the hooking code is mainly
responsible for weaving business and the actual application together on a real-time basis.
An important point here is that BOs (Sidebar 6.1) are not directly adapted by the industrial
objects (I0s); in fact, they are not. Rather, hooks create an environment where capabilities
are able to attach to any IO without changing the capabilities internal structure and without
a bit of chance of a collapse.

Further sections in the book introduce how capabilities form part of the work flow meta-
phor specification and how they consolidate a complete goal processing. Concretely speak-
ing, they make sure you are properly achieving the goal that you discovered during the
analysis phase in a complete and accurate manner. That is, they represent how the goal defi-
nition should happen, rather than focusing on what needs to be performed, that is, the solu-
tion space. The following section represents such a work flow metaphor and what its role is
in a definition of the capabilities and their abilities facing a set of undetermined contexts.

Capabilities 137

6.1.2 Work FLow METAPHOR—WORKHORSES

Metaphors are useful and beneficial for introducing a new idea or concept to a particular
cast (Odell 1998). Their application to BOs is quite common, especially for specifying and
managing their work flows (Fayad, Hamu, and Brugali 2000). In the capabilities domain,
these work flows or business processes are well defined with a stable nature in mind.
Nonetheless, they provide the right type of facilities to cope with determined contexts
of applicability. Using work flows, as a metaphor, is always interesting and compelling,
because it allows us to capture and understand those essential high-level sequences of activ-
ities required to fulfill system behavior. In fact, they dramatically allow complex business
processing to be streamlined among work flow participants in determined environments
(Fayad, Hamu, and Brugali 2000) and ease their execution and management.

Work flow metaphors have a strong effect on business process definition and under-
standing. They provide the capabilities for constructing enduring business processes. They
also ensure that each of the activities they enclose and divulge is an essential activity,
a complete one, of the target environment or subject matter. The interactions of the
activities, internal and external, cover detailed (enduring) and dynamic (nested) process-
ing according to the target environment’s conditions and opportunities. To assure proper
execution and management of these activities, BOs or capabilities must contain the right
type of services. Using the divine mantra divide and conquer as the starting point, we
could write and postulate that a proper and focused definition of a capability’s services
depends on how you distribute the load of each service to achieve the capability’s respon-
sibility, hence providing a proper work flow execution.

One can express the work flows of capabilities as a set of smaller chunks of function-
alities that are easier to understand than those high-level complex processing tasks. This
functionality is one to one and is mapped with the services the capability provides. How to
define these services will determine how accurate the work flow is and how one perceives
the enduring quality along the entire work flow. We will not cover, in this section, the iden-
tification of the services of capabilities work flows. However, we will describe the process
to identify these capabilities. The next section describes such a process.

6.1.3 DEeALING WITH CAPABILITIES: IDENTIFICATION AND ASSESSMENT

Capabilities are adaptive concerns that represent the solution space of a problem of interest.
They embody knowledge skills, processes, and abilities associated with the execution of a
specified course of actions or actions work flow. Due to their extreme adaptive nature, they
also ensure a reduced cycle time for coping with a vast number of transient requirements
and handling other goals and capabilities in a determined topology of patterns. This pecu-
liarity of capabilities allows both demand adaptation and flexibility against IOs or transient
aspects, and on-demand scalability of the environment to expand the abilities needed to
achieve a goal. The above behavior of capabilities is, in the end, translated as a faster return
of investment (ROI), while still maintaining a high-quality solution. This means that a
customer could manage his or her products basic functionality (e.g., add, remove, override,
and extend), when facing new requirements without the necessity of reinventing the wheel.

A tendency or trend exists with developers to be more familiar or accustomed with
capabilities than with goals. One reason here is that they are usually exposed to capa-
bilities on a daily and consistent basis. However, this familiarity with capabilities does

138 Software Patterns, Knowledge Maps, and Domain Analysis

not mean that capabilities are obvious to extract whatsoever; in fact, their extraction is
a challenging activity due to different reasons. For instance, following are the common
difficulties experienced when trying to extract capabilities:

1. Software practitioners do not know or understand if they have discovered a capa-
bility or a goal due to the conceptual nature of both. For example, one can see a
collection as both a goal and a capability. There is a fuzzy line between the identi-
fication of goals and capabilities.

2. Software practitioners have quite a bit of difficulty knowing and understanding,
whether they have discovered the right capabilities for a determined goal. For
example, what are the capabilities of branding? By reading a problem statement,
practitioners will consider position, advertisement, promotion, market, product,
brand, and so on. However, they should be looking for the right ones: AnyEntity,
AnyBrand, AnyMechanism, AnyParty, and Anyldentity (Sanchez 2005).

3. Software practitioners may misunderstand the real nature of capabilities. Instead
of thinking in terms of the enduring principles that drive their business, they
always start thinking in terms of an application’s artifacts. From the previous
example, we have the following application-centric artifacts, which are part of
the marketing field: product, market, promotion, and so on What if we used and
employed branding for identifying humans in the United States. It is obvious that
we have a different set of application, where we will not have the objects: promo-
tion, market, product, and so on.

4. Belaboring the rareness of a one-to-one mapping between goals and capabilities
(Hamza and Fayad 2002), a goal can be mapped into several capabilities. This
increases the complexity of extracting the right capabilities.

5. There are also cases or instances, when candidate capabilities are off content and
are thus recursively related to other capabilities and not to goals. This is understood
by delving into the capability’s context of applicability.

Hamza and Fayad (2002) described a process for extracting capabilities or BOs that sup-
port a determined goal of interest. This process implicitly conveys the idea that capabilities
must be focused with the sole purpose of avoiding practitioners to be bogged down with
many irrelevant details (e.g., application-specific details). An important remark here is that
this process was addressed from a point where we already knew and understood the goal of
the subject but that goal did not have capabilities in reality. In this chapter, we focus espe-
cially on how does the subject do it, by describing two ways for dealing with capabilities:
first, when we have a goal with no capabilities, and second, when we have one capability
with no goal at all. One needs to evaluate the capabilities and filter down then by using a set
of heuristics, provided in the form of questions.

Before providing the capabilities identification process, we have to step back or retract
and understand that two perspectives will drive this process’ success. First is that we will
have, in most of the cases, a goal with no capabilities. In this case, our important job is
to identify those capabilities and the relationships that stem from them and provide that
expected and cherished harmony between those capabilities and their goals. The second is
that each capability has a second level of abstraction or level of granularity, where it may
or may not have a set of collaborators or other capabilities interacting with it to satisfy an
internal goal. In this case, our immediate task will be to identify the internal goal and the

Capabilities 139

set of collaborators (capabilities) that will aid in the definition of the capability’s second
level of abstraction. You can use the process described in Chapter 3 to identify this goal,
but now the subject explored will be the selected capability. Other sections of this book will
cover the processes of both perspectives.

6.1.3.1 The Impact of BO on Creating Multiple Applications: Generality

BOs, along with goals, serve as an essential framework for building important applications.
Because BOs represent the capabilities to achieve goal, they do not always depend on any
application in particular. BOs abstract the actual application-specific IOs. Thus, if we have
corrected BOs at our disposal, infinite number of applications can be built on top of them
easily by just attaching specific 1Os.

6.1.3.2 BO = Stable Design Patterns

BOs provide high-level and accomplished designs to which one can plug application-spe-
cific 10s. Because BOs are abstract and generalized, we need to arrive here with them,
before implementing the actual application; hence, they represent stable design patterns.

6.1.3.3 Essential Properties of BO
A complete description of the BOs essential properties can be found in Fayad (2008):

* Timeless notion patterns

* Working horse of the system patterns

* Adaptability patterns

* True presentation of the solution space patterns
e Management work flow metaphor patterns

* Domain-independent patterns

6.1.4 A GoaL witH No CAPABILITY

Even though the identification of capabilities seems to be a little bit less complicated and
complex than the identification of goals, their inherent processes require the same amount
and care as do those for the identification of goals. Therefore, we will provide in this section
a set of questions and heuristics that will guide you throughout the entire identification
process. By following these questions, the success of this identification process in terms of
finding the right capabilities will be more tangible. The process of identifying the capabili-
ties of a goal is described herein.

1. Set the context, where all candidate capabilities will need extraction. We determine
the context by asking, “What is the subject of interest?”

2. Identify the goal(s) of interest by asking, What is the subject for?

3. Determine a focused problem or subject understanding by asking, Can we divide
this subject into smaller chunks of understanding? To support this step, we use the
following questions:

a. How can we approach the underlying goal?
b. What do we need to fulfill this goal?

140 Software Patterns, Knowledge Maps, and Domain Analysis

c. What are we looking for with this goal in the determined subject of interest?

d. Who is going to use the goal?

4. Filter the entire list of found capabilities.

a. Does the outcome apply to the goal itself, or is it just part of a wish list
of the stakeholder? If it is part of a wish list, this is not a good candidate
capability.

b. Can the subject matter exist without this capability? However, is the capability
redundant or nonexistent within the subject of interest? If yes, this is not a good
candidate capability.

c. Does the outcome have a physical representation in application-specific
environments? If not, this is not a good candidate capability.

5. Use the prefix Any as a generality indicator for both atomic and capabilities. We
will use the stereotype BO for atomic capabilities, and Pattern-BO for nonatomic
capabilities. There is an exception for this naming rule. Capabilities that repre-
sent types of a unit or element will follow a determined naming convention: the
UnitName + Type keyword. For example, you can rename types of resources as
ResourceType.

6. Evaluate the list of candidate capabilities to assure their accuracy and relevance to
the goal of interest. We can use the following questions to support this step:

a. What is the relationship between the capability and the target goal? Is it purely
obscure or confusing? Alternatively, is it clear? If it is clear, this may be a good
candidate capability.

b. Is the capability’s execution and management bound to external conditions
and abilities related to a specific context? If yes, this is not a good candidate
capability.

c. Does the capability comply with the so-called stateless class definition? If yes,
this is not a good candidate capability. A good example of this is Chotin.

7. Model the found capabilities and goals using UML notation.

The next section will mainly concentrate on the second perspective for dealing with capa-
bilities. This specific and fixed way concentrates on providing the right abstraction level
for each one of the extracted capabilities. That is, we must delve into the second level of
abstraction of certain capabilities and define their ultimate goals and the set of capabilities
that support their ultimate goal.

6.1.5 A Carasiuty witH No GoAL

Once you have identified all the capabilities of a determined goal, your need to take each
capability in isolation for immediate perusal or follow-up. During this perusal, we will
identify the ultimate goal of the isolated capability. In addition to this, we will also iden-
tify, if they exist, the rest of the capabilities that complement the isolated capability’s
ultimate goal.

Capabilities have their own internal goal to fulfill. The fulfillment of this goal depends
on how well software practitioners have examined the isolated capability’s structure in
search of the pieces that synthesize and realize, as a whole, the rationale of this capability
in question.

Capabilities 141

TABLE 6.1
Scenario Format

Scenario 1: Scenario Name

Definition Business Rules

Concept of interest definition List of business rules of the concept

To simplify this examination process, we can provide a set of questions and heuristics
that will guide software practitioners throughout the entire examination process. This
examination process is described herein.

1. What is the subject of interest? In this case, the selected capability is the subject of
interest.

2. What is the subject matter? The process described in Section 3.4 can help one come
up with the right goal.

3. What are the core elements of the subject matter? This question is addressed by
means of the following steps:

a. Specify a set of scenarios, where the subject matter is present.

b. Describe each of the scenarios by identifying the pertinent business issues or
rules that drive the subject matter’s realization.

c. Make sure that each of the scenarios is described from a domain-independent
perspective. Table 6.1 depicts what we mean and understand by the word
scenarios and the business rules that were extracted from them. The number of
scenarios can be almost infinite.

d. Abstract the business rules or issues shared by all the scenarios

e. Identify the formal axioms that constrain business rules’ application across
several scenarios.

f. Does each one of the capabilities have a physical representation? If yes, these
are tentative core elements of the subject matter.

g. Discuss the results with the technical cast and look for consensus of the core
elements of the subject.

h. Continue with this process, until you have covered all the capabilities exploration.

In order to support the previous process, we will provide an example (in the next section),
where we put in action and work all the questions and heuristics previously described.

6.1.6 IDENTIFICATION PROCESS OF CAPABILITIES: AN EXAMPLE

Let us select a possible goal that is easy to explore in detail, so that we can start finding its
capabilities. We will walk through the steps of the process with the CRC cards example
described in Fayad, Sanchez, and Hamza (2004). The following illustrates the application
of heuristics and the questions for extracting the capabilities of a goal:

1. We will determine the context by asking, What is the subject of interest? In this
case, it will be CRC cards.
2. What are CRC cards’ goals? One of CRC cards’ goals is brainstorming.

142 Software Patterns, Knowledge Maps, and Domain Analysis

3. Can we divide the brainstorming concept into smaller chunks of understanding?
Yes, we can. See below.

a. How can we approach the brainstorming concept? The result: location where a
participant will brainstorm, rules for doing brainstorming, time for brainstorming,
brainstorming media, and so on.

b. What do we need to fulfill this brainstorming goal? We need motivation or
interest for doing brainstorming, processes for doing brainstorming, forms of
brainstorming, the target context where brainstorming is applied, the specific
topic of interest, engagement among participants, and so on.

¢. What are we looking for with the brainstorming goal in the CRC cards context?
To complete a brainstorming session, to explore a context, and to produce a list
of new ideas or candidate classes represented by CRC cards, ideas assessment,
and so on.

d. Who is going to perform brainstorming in the CRC cards context? The results
are facilitators, analysts, designers, scribes, and so on.

4. We will also filter all the identified capabilities with the sole purpose of avoiding
being constrained with irrelevant details associated with the application side of
brainstorming.

a. Does the outcome (found capabilities) apply to the brainstorming goal itself, or
is it just part of a wish list of the stakeholder? The result: new ideas and idea
assessment will be removed.

b. Can the CRC cards approach exist without some of the found capabilities?
Alternatively, are some capabilities redundant within the CRC cards approach?
The result: the capabilities, such as time for brainstorming, rules for brain-
storming, location where brainstorming is carried out, and the brainstorming
session, will be removed.

c. Does the outcome (found capabilities) have a physical representation? The
result: this capability is removed: motivation or interest.

5. Use the aforementioned naming conventions with the left capabilities. The result:
AnyMedia, AnyForm, AnyContext, AnyEngagement, AnyParty, AnyTopic, and
AnyMechanism.

6. Evaluate this list of capabilities.

a. What is the relationship between each one of the capabilities and the brain-
storming goal? The result: AnyTopic capability will be removed, because its
association with the goal is too vague and almost redundant. AnyContext is
already covering the AnyTopic role.

b. Is each one of the capabilities’ execution and management bound to external
conditions and abilities related to a specific context? The result: none of the
current capabilities is bound to external conditions. Therefore, they will not be
removed.

c. Does each one of the capabilities comply with the so-called stateless class
definition? The result: none of the current capabilities is stateless classes.

7. The final list of capabilities: AnyMedia, AnyForm, AnyContext, AnyEngagement,
AnyParty, and AnyMechanism.

The second phase is to pick, select, choose, and explore only one capability at a time. We
do this with the sole purpose of finding each capability’s internal goal, along with other

Capabilities 143

capabilities that may complement the picked capability’s internal goal. To support this
process, we will use the AnyMechanism capability as the subject to be explored.

1. What is the subject of interest? In this case, it is the AnyMechanism capability.

2. What is AnyMechanism used for? The process described in Chapter 3 is used to
come up with the right goal. After following this process, we will come up with the
following goal: computing.

3. What are the core elements of AnyMechanism? This question involves the
following:

a. Specify a set of scenarios, where AnyMechanism is present. We can use the
scenario format illustrated in Table 6.1.

b. Describe the business rules of the AnyMechanism capability. Table 6.2 shows
the result.

c. For example, take the business rules or issues shared by all the scenarios. For
the sake of simplicity, we did not include all the business rules that we used
to extract the atomic structure of AnyMechanism. Based on the scenarios, we
found the following capabilities: AnyAlgorithm, AnySequence, AnyPeriod,
AnySignature, AnyType, AnyClass, and AnyMedia.

d. Define the pertinent axioms of the AnyMechanism capability. For example, in
order to run the sequence of steps, a period must be defined and described. The
aggregation mechanism into the sequence must be ordered.

4. The final list of capabilities, along with the AnyMechanism goal, is computing
(goal), AnyMechanism, AnyAlgorithm, AnySequence, AnyPeriod, AnySignature,
AnyType, AnyClass, and AnyMedia.

The complete model of AnyMechanism can be seen in section on the capabilities of
knowledge maps.

TABLE 6.2
AnyMechanism’s Scenarios

Definition Business Rules

Scenario 1: Chemical Reactions
An atomic process that occurs during a A systematic sequence of steps or reactions that influences
chemical reaction a chemical change
A process occurs in natural phenomena

Represents the implementation of an algorithm

Scenario 2: Earth’s Sunlight Process
A process that has occurred on earth A process on the earth that occurs according to a determined
due to a chain of causes period
Certain parameters determine when the light will be perceived
on earth
A process that consists of other processes, such as Earth orbit,
Sun, and nuclear reactions

144 Software Patterns, Knowledge Maps, and Domain Analysis

6.2 CAPABILITIES OF KNOWLEDGE MAPS

This section covers the capabilities of knowledge maps. They are illustrated as stable design
patterns (see Chapter 2 for reference). Nine capabilities drive the formation of the knowledge
map. Table 6.3 summarizes these capabilities.

6.2.1 CaraBiLTy 1

* Name. AnyMechanism stable design pattern
* Context. The pattern is trying to capture the essentials or the core knowledge of
any mechanism concept whenever it appears.
e Problem. How to model the core abstractions of a concept that spans multiple
application domains.
* Solution and participants
e Solution (Figure 6.1)
e Participants
— Classes
— AnyMechanism. It represents or signifies the process or logical steps to
perform a determined activity.
— Patterns
— AnyMedia. 1t identifies and defines the media upon which the mech-
anism will be executed. It also represents the media, by which the
sequence of logical steps will be executed.

TABLE 6.3

Capabilities of Knowledge Maps

Capability Description Provided?

AnyMechanism AnyMechanism represents the process or logical steps to perform a Yes
determined activity

AnyView It is the view of a model that extracts the essential information relevant Yes
to a particular purpose and ignores the remainder of the information

AnyModel It visualizes the relevant details of a subject or discipline, while Yes
ignoring the irrelevant details

AnyLevel It represents the level of abstraction that a concern or concept can be No
represented

AnyContent This deals with the sum or range of what (patterns) has been Yes
perceived, discovered, or learned in a particular discipline

AnyContext This defines what elements are/are not part of the problem under No
discussion

AnyArchitecture This refers to the integration of two or more patterns. Architecture No
should contain more than one EBT or goal®

AnyPattern This is the best solution for a set of recurring problems or events No

ExtensionPoint They represent “the slots, knobs, and dials that must adjust in order No

to adapt the framework to your context™

Source: *Fayad, M.E. Stable Design Patterns for Software and Systems. Boca Raton, FL: Auerbach
Publications, 2015.

Capabilities 145

<| <<P-BO>> <<P-BO>>

AnyType AnySignature

s‘ *
[e)]
o
=]
X
2!
<<P-EBT>> triggers » L[<BO>> |_representedby? <<P-BO>>
Computation AnyMechanism AnyAlgorithm
— T
* 1.7
<S>—
g
B
@
o -
g <<P-BO>>
@ AnyClass
o
=]
0.* .
1 .
<<P-BO>> requures » <<P-BO>>
AnySequence AnyDuration
= S
é R
° g
=
1.
<<P-BO>> o

AnyMedia —

1.*

FIGURE 6.1 The AnyMechanism stable design pattern.

— AnyClass. It classifies the common properties and behavior for a set of
specific kinds of objects.

— AnyType. It tags the interfaces that form the mechanisms. The provided
signatures of a set of services classify it.

— AnySequence. It represents the logical order in which a set of instruc-
tions is executed in a determined period.

— AnyPeriod. It indicates the amount of time duration required by the
sequence of steps to be executed in accordance with certain algorithm.

— AnyAlgorithm. It indicates a set of systematic rules that produce a deter-
mined outcome or solution.

— AnySignature. It represents the specification of an instruction that is
part of a mechanism.

6.2.2 CaraABILITY 2

* Name. AnyView stable design pattern (Fayad, Islam, and Hamza 2003)

* Context. It represents the core knowledge for the situations in which a view may occur.

* Problem. How can we model the core knowledge of a concept that spans multiple
application domains?

146 Software Patterns, Knowledge Maps, and Domain Analysis

- <<P-BO>> > <<P-BO>>
i AnyParty . AnyCriteria
views 1.x imposes 1..*
1.7
|
based on
<<P,_EB,°T>> <<P_BO>'> > <<BO>> maps to <<P-BO>>
Viewing - L AnyMechanism] AnyView - AnyModel
enforced by " views 1.* 1.7
1.*
—
S
> <<P-BO>> < <<P-BO>>
within L AnyMedia resides on L AnyEntity

FIGURE 6.2 The AnyView stable design pattern. (From Fayad, M. E. Software System
Engineering, Lecture Notes, Computer Engineering Department, College of Engineering, San Jose
State University, San Jose, CA, 2002-2014.)

* Solution and participants
e Solution (Figure 6.2)
* Participants
— Classes
— AnyView. It represents the view of a collection of data (the model).
— Viewing. It describes the viewing process and rules.
— Patterns

— AnyParty. This represents the viewer. This viewer perceived the mapped
view of a requested model.

— AnyMedia. 1t identifies and defines the media upon which the views
are mapped and transmitted. It also represents the media by which the
views are to be displayed.

— AnyCeriteria. It describes the properties that govern specific kinds of views.

— AnyEntity. It describes the entity where models and views are produced.

— AnyModel. It describes the model of any entity.

6.2.3 Carasiuty 3

* Name. AnyModel stable design pattern (Fayad, Islam, and Hamza 2003)

* Context. A model is a significant representation of a subject. The model concept
spans and stretches across multiple application domains.

* Problem. How can we capture the reusable essentials or the core knowledge of a
model?

Capabilities 147

- <<P-BO>> > <<P-BO>>
i AnyParty . AnyCriteria
views 1.x imposes 1..*
1.%
|
based on
1
<<P-EBT>> <<P-BO>> - —<BO->
Modeling - L AnyMechanism AnyModel
enforced by - produces 1.#
1.*
o
o
» <<P-BO>> - <<P-BO>>
disseminates 1 AnyMedia resides on L AnyEntity

FIGURE 6.3 The AnyModel stable design pattern. (From Fayad, M. E. Software System
Engineering, Lecture Notes, Computer Engineering Department, College of Engineering, San Jose
State University, San Jose, CA, 2002-2014.)

e Solution and participants
e Solution (Figure 6.3)
e Participants
— Classes
— AnyModel. It describes the model of a determined application (e.g.,
plane manufacturing and game development). In other words, a model
is a representation of data within a specific application.
— Patterns
— Modeling. It defines the modeling process.
— AnyParty. It represents the modeler. The modeler is responsible for
building the data models in an appropriate abstract level.
— AnyMedia. It identifies and defines the media upon which the models are
built or exchanged.
— AnyCriteria. It describes the properties that govern specific kinds of
models.

6.2.4 CaraBILITY 4

* Name. AnyContent stable design pattern

* Context. From an informational perspective view, content is a special concept that
represents any type of information in a digital context, such as web pages’ content
and files” content.

* Problem. How can we capture the core knowledge of any content focusing on the
information category?

e Solution and participants

148 Software Patterns, Knowledge Maps, and Domain Analysis

possess » —<P-BO>>
L AnyActor
—views
<<EBT>>
Knowledge .
—views
—form
1.* 1.*
<<BO>> k> <<P-BO>>
AnyContent AnyMedi
nyConten —form nyMedia forms
—content
resides|on

1..* |-media

<<P-BO>>
AnyMedia

FIGURE 6.4 The AnyContent stable design pattern (From Fayad, M. E. Software System
Engineering, Lecture Notes, Computer Engineering Department, College of Engineering, San Jose
State University, San Jose, CA, 2002-2014.)

e Solution (Figure 6.4)
 Participants
— Classes
— AnyContent. It describes the type of information in a digital context.
— Patterns
— AnyActor. The actor who successfully generates the content
— AnyMedia. It identifies/defines the media upon which the contents are
generated and exchanged.
— AnyForm. It identifies/defines the different types of content in that digi-
tal context, such as text, images, audio, and symbols.
— Knowledge. It represents the gained experience that will be used as the
basis for the actor to generate content.

SUMMARY

By applying the software stability concepts approach to the definition of capabilities,
we have concluded that capabilities are the true BOs that allow software practitioners to
achieve determined goals in a systematic manner. They will always comprise a focused
logical processing or work flow consistent with a set of enduring business rules. The fol-
lowing summarizes the information covered in this chapter:

1. Capabilities are knowledge-centric BOs with an ultimate goal in mind and view.
A capability without a goal means a capability with an obscure purpose in a deter-
mined system.

2. Capabilities are internally stable and externally adaptable. This means that devel-
opment of capabilities involves both the internal norms and compliance-logical
steps forming the capabilities work flow and the comprising of hooking code that
enables capabilities to adapt to external application-specific environments.

Capabilities 149

3. Capabilities collaborate with other capabilities, working together to achieve a
common goal, which is the extension and adaptation of their periphery (behavior
and structure) to maximize their goal’s success. We usually focus on the imple-
mentation of gluing or gelling points, where the capabilities can associate other
capabilities, rather than focusing on the capabilities per se.

4. Capabilities’ work flow interoperability is defined with a role in mind, which
enables the responsibility of each of the capabilities involved in the goal’s resolu-
tion. Being aware of the responsibility of each capability will enable a designer to
create the right abilities or services of a particular capability.

5. Dynamic change in capabilities’ abilities is allowed. Capabilities are embedded
with the ability to dynamically change their abilities through extension points that
are responsible to add, remove, update, override, and extend functionality on a real-
time basis.

In summary, the capabilities of a discipline are important and critical aspects attempting
to encapsulate or encompass the business processes and categories of a business-centric
theme or goal. When they are directly associated with their goals, they form a synergetic
force indented to represent the groundwork of any discipline’s understanding: the knowl-
edge maps.

OPEN RESEARCH ISSUES

Capabilities are conceptual concepts, and hence, finding or detecting them requires thor-
ough knowledge and acquiring skills of the domain for which capabilities need to be found.
In addition, the goal(s) must be known and identified, before hand, in order to find the
correct BOs. Thus, finding correct capabilities comes naturally only through intense and
regular practice.

REVIEW QUESTIONS

1. Discuss the following statement: capabilities/BOs are heart of business.
2. What is the responsibility of capabilities from the standpoint of knowledge maps?
3. Justify: capabilities have a major effect on business processing.
4. Explain how BOs represent complete work flow for specifying and managing a
stable set of processing tasks.
. What drives the capabilities behavior?
. What is the main difference between capabilities and goals?
7. What are the two main ideas corroborated by business-centric behavior of
capabilities?
. Is the following statement true or false? BOs are directly adapted by the 1Os.
0. create an environment, where capabilities are able to attach to any
10 without changing the capabilities’ internal structure.
10. What is the main function of hooks?
11. What mechanism is used to attach industrial-specific IOs to BOs?
12. Is the work flow metaphor of workhorses apt for capabilities? Explain.
13. Which behavior of capabilities can be translated into faster ROI with high-quality
solution?

AN

oo

150 Software Patterns, Knowledge Maps, and Domain Analysis

14. List all the difficulties experienced by software practitioners, when extracting
capabilities for a domain.

15. What are the two scenarios under which a software practitioner needs to deal with
capability? Explain each one of them.

16. What is the impact of BOs on creating multiple applications?

17. Explain how BOs represent stable design patterns.

18. Enlist essential properties of BOs and explain each one of them briefly.

19. What steps need to be followed for identifying capabilities given a goal?

20. What steps need to be followed for identifying capabilities given a capability with
no goal?

21. Compare and contrast the process of extracting capabilities, when goal is given to
the process of extracting capabilities, when one capability and no goal are given.

22. Explain all the capabilities of the knowledge map using the standard template given
in Section 6.2 as shown in Table 6.3.

23. A capability without a goal means a capability with an obscure purpose in a deter-
mined system. Explain.

24. Is the following statement true or false? Capabilities collaborate with other
capabilities toward a common goal.

25. Is the following statement true or false? Dynamic change of capabilities’ abilities is
not allowed.

26. Why is capabilities’ work flow interoperability definition defined with a role in
mind?

27. What are the differences and similarities between traditional BOs and knowledge
map’s BOs?

EXERCISES

1. Find out if following are goals or capabilities
Personalization

Dynamism

Secrecy

Collection

Storage

Perfection

Entity

ind the rest of the capabilities of the following concepts:
AnyProject

AnyRevenge

AnyClaim

AnyOption

AnyPresentation

AnyAlarm

AnyEvent

AnyTask

AnyHabit

AnyCrime

cemeFe o0 00 O TI0E 0 &0 O ®

Capabilities 151

3. Name the BOs or capabilities of the ultimate goal(s) of the following classic movies:

o8B mFe TR w0 a0 o8

Lagaan

The Lord of the Rings trilogy (2001-03)
Titanic (1997)

Toy Story (1995)

The Silence of the Lambs (1991)
Crumb (1995)

The Lion King (1994)

Shrek (2001)

The Breakfast Club (1985)
Speed (1994)

Scarface (1983)

Fatal Attraction (1987)
Ghostbusters (1984)

Dirty Dancing (1987)

Back to the Future (1985)

4. Name the BOs or capabilities of the ultimate goal(s) of the following classic
books:

A

The Road, Cormac McCarthy (2006)

Harry Potter and the Goblet of Fire, J. K. Rowling (2000)
Beloved, Toni Morrison (1987)

The Liars’ Club, Mary Karr (1995)

American Pastoral, Philip Roth (1997)

Mpystic River, Dennis Lehane (2001)

Cold Mountain, Charles Frazier (1997)

Watchmen, Alan Moore and Dave Gibbons (1986—1987)
Black Water, Joyce Carol Oates (1992)

5. Name the BOs or capabilities of the ultimate goal(s) of the following classic TV
shows:

n 0T OB E m A TR e R0 T

The Simpsons, Fox (1989—present)

The Sopranos, HBO (1999-2007)

Seinfeld, NBC (1989-1998)

The X-Files, Fox (1993-2002)

Sex and the City, HBO (1998-2004)

Survivor, CBS (2000—present)

The Cosby Show, NBC (1984-1992)

Friends, NBC (1994-2004)

The Oprah Winfrey Show, Syndicated (1986—present)
American Idol, Fox (2002—present)

Beverly Hills, 90210, Fox (1990-2000)

Star Trek: The Next Generation, Syndicated (1987-1994)
Miami Vice, NBC (1984-1989)

L. A. Law, NBC (1986-1994)

Moonlighting, ABC (1985-1989)

Planet Earth, Discovery Channel (2007)

The Golden Girls, NBC (1985-1992)

Prime Suspect, ITV (1991-2006)

152 Software Patterns, Knowledge Maps, and Domain Analysis

PROJECTS

1. Form a group and discuss other ways to find capabilities.

2. Identify and model two to four ultimate goals, their capabilities, and connect them
together for the following domains.

Manufacturing

Modeling

Requirement analysis

Customer relationship management

Database

Project
g. Kitchen
Identify the common capabilities in each of the models.

3. Identify and model the class diagrams by using 2-3 ultimate goals and their capa-
bilities for each of the problem statements in Appendix D. Identify the common
capabilities in each of the models.

-0 0 o

SIDEBAR 6.1 Business Objects

The traditional definition of a business object is that they are objects in an object-oriented
computer program that represent the entities in the business domain that the program is
designed to support. For example, an order entry program might have a BO to represent each
order, line item, and invoice. BOs are sometimes called domain objects; a domain model
represents the set of domain objects and the relationships between them. BOs often encapsu-
late all of the data and business behavior associated with the entity that it represents. They do
not necessarily need to represent objects in an actual business, though they often do. They can
represent any object related to the domain for which a developer is creating business logic. The
term is used to distinguish between the objects a developer is creating or using related to the
domain, and all the other types of object he or she may be working with, such as user interface
widgets and database objects such as tables or rows.

Technically, BOs encapsulate traditional lower-level objects that implement a business process
(i.e., they are a collection of lower-level objects that behave as single, reusable units). User inter-
faces can be thought of as views of large-grained BOs. Databases maintain a record of the state of
BOs as they change over time (Sutherland 1997).

A BO is an object that is modeled after a business concept, such as a person, place,
event, or process. BOs represent real-world things such as employees, products, invoices,
or payments. To remain competitive, modern day enterprises need information systems that serve
and adapt to their complex needs. Applications designed from the ground upward (not hacked)
by using the BO model are better suited to meet the requirements of rapidly evolving businesses
Sutherland (1997).

Our definition of BO is completely different from all of the above. Our BOs are capabilities
that are used to achieve the business goals, which we call them, enduring business themes (EBTs)
(Fayad 2002a, 2002b, 2015; check Chapter 6 for more information).

REFERENCES
Fayad, M. E. “Accomplishing Software Stability.” || G 5. 0. 1 20022):

111-115.

Fayad, M. E. “How to Deal with Software Stability.” || N 5. . 4 2002b):

109-112.

http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F502269.502308
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F505248.505278

Capabilities 153

Fayad, M. E. Stable Design Patterns for Software and Systems. Boca Raton, FL: Auerbach Publications,
2015.

Sutherland, J. “Business objects in corporate information systems.” | N NN 2. no. 2 (1995):
274-276.

Sutherland, J. “The Object Technology Architecture: Business Objects for Corporate Information Systems.”
In Business Object Design and Implementation, Sutherland, J. V., D. Patel, C. Casanave, J. Miller, and
G. Hollowell. eds. Spzingas. 1997.

Sutherland, J. “Business Object and Component Architectures: Enterprise Application Integration Encounters
Complex Adaptive Systems” (invited paper). IEEE Hawaii International Conference on Software
Systems, 2001.

SIDEBAR 6.2 Learning about Capability

The basic term of capability was coined first by Dennis and Van Horn (Dennis and Van Horn
1966). According to them, the basic idea of capability is just like a token that can designate an
object and give the program an authority to carry out a specific and unique set of actions on the
given object. The token in this context is the capability.

A capability is very similar to the keys on your key ring, such as a car key or house key, or
password. It is just like the password to be used to log into your computer system. Just consider
this simple example: the password that you use can open only your computer and it is specific to
your machine. Anyone who has your password can open your computer without any problems.
It means that your password does not know or identify who is holding the password, be it you or
anyone else.

Computer login passwords can come in several variations. One common type of password is
the computer boot password, which starts or boots your computer, whereas the other one is the
data encryption password that can help you open your sensitive files and folders. Though both
passwords perform the same action, which is opening up something, the actions performed are
entirely different.

Thus, two capabilities can tag or designate the same type of object, but they will always
authorize different set of actions! This is similar to capability-based security, which is a
concept in the design of secure computing systems. A capability (known in some systems as a
key) is a communicable token of authority. It refers to a value that references an object, along
with an associated set of access rights (Levy 1984, Miller et al. 2003).

In summary, one can delegate capabilities that mean that you can hand over the capability
to anyone that you rely and trust. One can copy a set of capabilities, whereas the other can
hand over the capability only after the clause of trust is acknowledged and obeyed. However,
one can even change the nature of the capabilities by rescinding them, if the situation compels
you to do so.

Our definition of capability is different from all of the other definitions: Dennis and
Van Horn (1966); http://www.erosos.org/essays/capintro.html. Capabilities are equal and
identical to BOs that are used to achieve the business goals, which we call them EBTs (Fayad
2002a, 2002b). Capabilities are adaptive concerns that represent the solution space of a prob-
lem of interest. They embody knowledge skills, processes, and abilities associated with the
execution of a specified course of actions or actions work flow (check Chapter 6 for more
information).

REFERENCES

Dennis, J. B., and E. C. Van Horn. “Programming Semantics for Multiprogrammed Computations.”
I 0. 0. 3 (1966): 143-55.
Fayad, M. E. “Accomplishing Software Stability.” | NGGNGGGIIINNGNGE 5. 0. 1 20022): 111-15.

http://www.erosos.org
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-1-4471-0947-1_3
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F365230.365252
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F502269.502308
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F210376.210394

154 Software Patterns, Knowledge Maps, and Domain Analysis

Fayad, M. E. “How to Deal with Software Stability.” _ 45, no. 4 (2002b): 109-12.

http://www.eros-os.org/essays/capintro.html.

Levy, H. M., Capability-Based Computer Systems, Digital Equipment Corporation 1984.

Mark S. M., Ka-Ping Yee, and J. Shapiro. Capability Myths Demolished, Technical Report SRL.2003-02,
Systems Research Laboratory, Johns Hopkins University, 2003.

SIDEBAR 6.3 Work Flow

Work flow is a depiction of a sequence of many operations, declared as works of a person, the
work of a simple or complex mechanism, work of a group of persons (Fischer 2007), and work
of an organization of staff, or machines. It may be seen as any abstraction of real work, segre-
gated in work share, work split, or whatever the types of ordering. For control purposes, work
flow may be a detailed view on real work under a chosen or selected aspect (Fischer 2005), thus
serving as a virtual representation of actual work.

A work flow is a reliable, trusted, repeatable, and consistent pattern of activities empowered
by a systematic and orderly organization of a number of resources, well-defined and specific roles
and mass, energy and information flows, into a complete and wholesome work process that can be
efficiently documented and learned. Work flows are designed to achieve specific processing inten-
tions of some sort, such as physical transformation, service provision, or information processing
(Jackson and Twaddle 1997; Sharp and McDermott 2009).

Better work flow will provide a number of benefits and advantages like improved
business process efficiency, enhanced business process control, improved consumer
service, flexibility and simplicity, and an overall improvement in business processes.

The term is widely used in computer programming and designing to seek, develop,
capture, and streamline man-to-machine communication. Work flow software scripts try
to provide end users with a flexibility to create and design or describe complex processing
of data in an easier way to understand visual form, much like flow charts, but without the
need to understand computers or programming (Jackson and Twaddle 1997; Sharp and
McDermott 2009).

Work flows as indicated at Zhu 2010, like traditional programs, allow you to coordinate the
work. In addition, they can be defined as follows:

* Work flows can handle and manage long running work schedules by persisting on a
durable store, such as a database, when idle, and loading again once there is a pending
work.

* Aninstance of a work flow can be modified dynamically, while running the event that
new conditions require the work flow to behave differently than it did when it was
created.

* Work flows are a declarative way of writing programs by linking together predefined
activities, rather than an imperative programming model of writing lines of code.

* They allow you to declare business rules that are separated from your code, thus making
it easier for you to modify them in the future.

* They support different styles of systems with sequential and state machine work flows.

Work flows will also lead to EBTs (Fayad, Hamu, and Brugali 2000), which are the keys for
developing stable object-oriented systems. One should manage and maintain the work flow
to streamline the complex interactions between objects found in large-scale object-oriented
applications.

Proponents of stable architectures, component-based, and pattern-oriented systems go so
far as to suggest that work flow mechanisms should eliminate the need for most application
programming in the workplace (Fayad, Hamu, and Brugali 2000).

http://www.eros-os.org
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F505248.505278

Capabilities 155

REFERENCES
Fayad, M. E., D. S. Hamu, and D. Brugali. “Enterprise Frameworks Characteristics, Criteria, and

Challenges.” | N GGG 3. ~o. 10 (2000): 39-46.
Fischer, L. Workflow Handbook 2005. Future Strategies Inc, 2005.
Fischer, L., ed. BPM and Workflow Handbook. Lighthouse point, FL: Future Strategies Inc, 2007.
Jackson, M., and Twaddle, G. Business Process Implementation: Building Workflow Systems, Addison-
Wesley, ACM Press, July 1997.
Sharp, A., and McDermott, P. Workflow Modeling, Artech House Publishers, 2009.
Zhu, A. Microsoft Windows Workflow Foundation 4.0 Cookbook, Packt Publishing, September 24, 2010.

http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F352183.352200

7 AnyMap Stable Design Pattern

We believe in map because in our view, it’s what the customer needs and wants: To
have access anywhere, through any kind of technology.

Jean-Marie Messier
Neligan 2006

The word map ordinarily means pictorial representation of some geographical area, but
this word is not limited only to represent some geographical areas. It has wide applicability
in many fields, like genetic maps that are used by biologists to analyze the genetic structure
of humans in order to cure genetic diseases, nonspatial maps like Gantt charts that are
used to display logical relationship among items, and spatial, but nongeographical, maps
like star maps that are used by astronomers to present night sky and to locate astronomical
objects like stars, galaxies, and constellations. In other words, a map can be defined as sym-
bolic depiction highlighting relationships between elements of that space such as objects,
regions, and themes. Some maps are static 2D representations, whereas others are dynamic
3D representations. Moreover, it is not necessary to always have a scale or context for a map
like brain maps and genetic maps.

The main objective of this paper is to come up with a generic model of AnyMap, which
can be used in any field. As a map has wide applicability, it can change its definition under
different contexts; hence, it becomes necessary to define a generic pattern of AnyMap, which
could fit all the applications. In order to achieve this goal, the concepts of software stability
model (SSM) (Fayad and Altman 2001) will be applied and the pattern so developed will
have no influence of application-specific knowledge. Rather, the pattern can be reused for
different applications by just hooking the application-specific concrete objects to the pattern

71 INTRODUCTION

A map is a symbolic or graphical representation of any real or imaginary objects, regions,
or themes in a particular space. They can be 2D or 3D, static or dynamic, logical or spa-
tial, and geographical or nongeographical. The AnyMap pattern introduces this concept of
map in a very simple and general manner by using the concept of SSM. This chapter also
develops a stable design pattern of the same and discusses the applicability of the pattern in
wide applications from different domains. The usage and utilization of map may vary from
very simple to very complex, and it may also rely on the usage in many domains for many
different purposes. Below are some examples of usage of map and some of its purposes:

General reference. Whenever we need to find some place and we do not know where
to look, then we should start with an atlas with an index. There are many sources
of maps that can be consulted for general reference, including maps posted in pub-
lic places. With access to the web and a good search engine, we now have another
source of maps to find out where places are in our world.

157

158 Software Patterns, Knowledge Maps, and Domain Analysis

Navigation, control, and route planning. Whether we move on land, at sea, or in the
air, we rely heavily on maps to plan our routes and to maintain our path. We also
have hiking and biking maps, maps for crawling through caves or orienteering
through woods, highway and off-road maps, as well as nautical and aeronautical
charts. In addition, there are maps to display rapids in white water and fishing
structure in lakes. We can use these maps to plan our routes and then to navigate,
when we are on the move.

Communication, persuasion, and propaganda. Many maps are designed and pro-
duced to convey a particular image or communicate a particular idea. Because
map data must be classified and represented by symbols, in almost all cases the
image cannot be very general. Maps that appear in newspapers, accompanying
an article, or on TV with a report aid in telling the story. Very often, those maps
are not neutral in terms of the message conveyed. Under this category, we might
include maps that are used to route traffic in specific directions; maps are employed
to get people to register to vote, whereas a number of persons select map projec-
tions to convey a specific image; this is particularly true of the Peters projection,
which advances the argument that it is time for a new image of the world. And
the Australian maps that show the South Pole at the top of the map belong here.

Planning. Because where is important, we would use maps to determine where
we want to do what. We also turn to maps to determine where a communica-
tions tower should be located in terms of reception, visual impact, and zoning
and land use restrictions. Urban and regional planning rely heavily on maps for
the location of schools and public facilities, for the development of highway,
sewer, and water networks, and for the orderly organization of space through
zoning and other techniques. We also try to identify areas subject to potential
hazards and develop plans for areas containing problems, evacuating those in
danger and providing services. Military operations rely heavily on maps for the
deployment of troops, for the assessment of enemy positions, and for targeting
weapons.

Jurisdiction, ownership, and assessment. Maps are used as legal documents showing
the ownership of land and boundaries. Cadastral mapping is that area dealing with
the legal systems showing who has rights to property. Land that is subdivided is
plotted and is recorded on the maps. Taxes are based on property ownership and
assessors rely heavily on maps. In more traditional societies where boundaries have
been understood but not documented, efforts are now being made to create maps
showing agreed-upon boundaries. These maps are permitting indigenous societies
to retain rights to their land against outside forces wanting access to resources.

Understanding spatial relationships. Many maps are made in the process of trying
to understand how phenomena are distributed spatially. In some cases, the subject
of investigation may be a single variable, and in other cases, a number of variables
may be examined in relationship to each other and to other nonspatial variables.
The classic example of this is the work of Dr. John Snow in creating the map of the
incidence of cholera in London and finding that the patterns led to a public water
pump. The development of the concept of plate tectonics was based on a great
amount of mapping and map analysis around the world. Police and public officials
map data to see if there are patterns in the behavior of crime.

AnyMap Stable Design Pattern 159

Forecasting and warning. The weathercaster on television is but one component of
the use of maps to predict the future of events that play out over the earth’s surface
and that have the potential for significant damage to systems important to humans.
Such forecasting and the dissemination of warnings is done at many scales, rang-
ing from quite localized flash flooding, wildfires, and tornado touchdowns to larger
features like hurricane landfalls, severe storms, volcanic eruptions, insect infesta-
tions, tsunamis, and sea level rise and high tides. Maps are an important part of the
prediction processes and are equally important in forewarning potential victims.

Map compilation/mapping. The making of a map in almost all cases requires the
use of maps. Map production is an iterative process, and in that process, a number
of maps may be made as we converge on an appropriate design. In many cases,
we consult other maps for such things as checking geographic names, confirming
boundary changes, or examining land use and topography to better place dots on a
map portraying the distribution of dairy cattle in a region.

Decoration, collection, and investment. Maps are collected, sold, and displayed sim-
ply because they are maps and many people like the appearance of a map. Historic
maps take on value based on their rarity, quality, and area of interest. It is common
to see historic map images employed as decoration on clothing, walls, games, and
puzzles. And there is the occasional use of map images in advertisements, perhaps
as a background.

Storage of information. The topographic maps that are produced by most countries
are good examples of this type of map use. These maps are produced to provide a
standardized inventory of features that are deemed to be important, for example,
boundaries, hydrography, topography, and place names. These types of maps are
produced in series, and all maps in the series should be at the same scale and have
consistent forms of data capture and representation. The maps are fixed in time,
and therefore, the information on the map can be correct only at the time the map
was compiled, but much of the information on these types of maps changes slowly,
so that maps that are 50 years old may still be useful for the examination of such
things as topography and hydrography (see Sidebar 7.3).

Research and analysis. Researchers and biologists use variety of biological maps like
genetic map, family tree map, linkage map (see Sidebar 7.1), and chromosomal map
for their research and prediction of human traits. The analysis through these maps
helps in understanding and developing a cure for a number of genetic diseases.
Through these maps only medical practitioners are able to determine diseases at
an early stage and cure them.

Geographical information systems. Maps used in these systems are basically called
electronic maps or emaps. These maps are used by cartographers at the data gath-
ering survey level. The functionality of these maps has been greatly advanced by
new technologies, which simplified the superimposition of spatially located vari-
ables onto already existing geographical maps. The superimposition allows local
information like rainfall level and wildlife distribution to be integrated onto the
same map, which allows more efficient analysis and better decision making. Such
superimposition of data on a map led researchers to discover the cause of cholera.
Today, these superimposed maps are used by agencies of human kind, wildlife
conservatives, and militaries for their work.

160 Software Patterns, Knowledge Maps, and Domain Analysis

Some of the negative impacts of maps are as follows:

1. The ability to use a map depends on the nature of a map. The map should be
readable, symbols should be distinguishable and properly defined, and the user
should be able to comprehend images.

2. Developing a map takes a lot of time and resources. There are several factors that
determine the usefulness of a map. Hence, it becomes necessary to identify all
these factors before hand, because if any one factor is ignored, the whole purpose
of developing the map is defeated.

3. One aspect of standards and map usability is the scale of the map, but different
countries use different scales while developing it. This creates challenge to the user
to convert these scales according to their needs and may result in inaccurate results.

4. On a geographical map, all the spatial information like rivers, lakes, and mountains
needs to be labeled properly. Over centuries, cartographers have developed the
art of placing names on even the densest of maps. This name placement can get
mathematically very complex, as the number of labels and map density increases.
Therefore, text placement is time consuming and labor intensive.

5. All maps are not accurate. Even the most accurate maps sacrifice a certain amount
of accuracy in scale in order to deliver a greater visual usefulness to its users.

For people who practice topic maps, there are always more than one ways of reaching the
goal post. The basic structure of topic maps is quite amenable and flexible to such an extent
that two different topic map designers faced with the same kind of problem will end up in
creating a multitude of different solutions! In fact, there will be a conflicting set of solu-
tions with no single correct patterns among them. If you are developing formal patterns
for a given topic map design, you will benefit in almost the same manner as a discerning
programmer would benefit from creating design patterns.

7.2 PATTERN DOCUMENTATION

7.2.1 PATTERN NAME: ANYMAP STABLE DESIGN PATTERN

The basic idea behind choosing the term AnyMap is to give this pattern a general form.
Generality is the driving force for choosing the term AnyMap, as this term applies to all
fields with its different types and takes different values yet leads to same meaning. This
generality will lead to a stable design pattern for AnyMap by using it as a capability to
accomplish mapping as an enduring business theme (EBT) in a variety of applications.

7.2.2 KNOWN As

In general terms, a map is a symbolic or graphical representation of relationships among
real or imaginary objects in a particular space. The essential concept of a map can also be
compared to the concept of transformation, relationship, metaphor, and binding. It is used
to make logical connections between two entities.

Usually, a map is considered to be a geographical map representing some piece of land
or water. Nowdays, the definition of map has expanded to a great extent. The map can be
geographical or nongeographical, spatial or nonspatial, and 2D or 3D. Earlier, there used to

AnyMap Stable Design Pattern 161

be only static maps, but now due to advancement of technology, dynamic maps can also be
built that can interact with users, for example, emaps.

In the domians of physics and mathematics, a map is any mathematical transformation that
is applied over and over again in a neat sequence. Sometimes, the term function is used instead
of map. In medical sciences, the graphical chart used to represent relationship among different
components of DNA and chromosomes is also called map-like genetic map or linkage map
(see Sidebar 7.1).

Many times, a chart is confused to mean a map. This is quite incorrect, as a chart is
a subset of map. Charts are used to represent large amounts of information in tabular,
graphical, or function form, so that interpretation is very easy and lucid. For example, Gantt
charts are used for projecting or estimating the time needed to complete some work and
also to track the progress of the project.

A cartogram, however, is a subset of map in which area is substituted by another mapping
variable. Cartogram maps have become very useful these days, as these maps represent all the
related information. Though building of such maps is very complex, with the help of technical
tools and softwares these maps can be easily created, and they can also be made to interact
with the user, like Google maps, which can be zoomed in and out according to the need.

Other similar terms are contour, plot, and so on.

7.2.3 CONTEXT

A map is a common tool used for many purposes. Any form of representation of data of one
kind by another kind can be thought of as a map.

Geographical map. The most common usage of a map is the geographical map, which
graphically represents 3D spatial relationship on a 2D surface and is drawn to
scale. It can be used to pinpoint location of a place, a city, or a country or to
describe certain features of the earth.

Topographical map. It depicts the contour and elevation of mountains and the depth
of oceans on earth, and a geological map, which illustrates geological features of
the earth, falls into this category of mapping (see Sidebar 7.3).

Mathematical usage. Another use of a map is commonly found in mathematics and
many science disciplines. It has to do with transforming elements in one domain
into elements of another domain and is synonymous with the term function.

In the field of computers. In computer applications, data mapping and memory map-
ping are common examples of maps. A site map is widely used in web-based appli-
cations, as it provides graphical representation of the various pages and hyperlinks
between the pages. It basically gives the layout of the whole site (see Sidebar 7.2).

Biological research. In genetic research, scientists employ the technique of gene mapping
to study genetic diseases like genetic maps, linkage maps, and chromosomal maps.

Nongeographical spatial maps. These maps basically represent the sky and are used
by astronomers for their study and research, like star maps, maps of planets other
than earth, moon map, and solar system maps.

Nonspatial maps. The diagrams or charts that depict the logical relationship among
entities also fall under the category of map, like a Gantt chart. Some topological
maps, where distance is not important and only the connectivity is significant, also
fall under the category of nonspatial maps.

162 Software Patterns, Knowledge Maps, and Domain Analysis

Astronautical mapsicharts. These maps are designed to assist in navigation of aircrafts,
just like a simple road map for a driver. These maps are used by pilots to determine
their position, safe altitude, way to destination, and alternative landing areas in
case of emergency.

Floor plan. It is a kind of map used by architects for designing a building structure
and its interiors. It is basically a blue print of how the building or the complex will
look like from outside and from inside.

Above listed are few contexts of AnyMap. The number of domains and applications, where
maps can be used are so vast and widespread; hence, discussing all the contexts in which
maps can be used is beyond the scope of this chapter.

The geograpical maps can depict roads, public transports, boundaries of country, state,
city, and a particular area and are thus classified as road maps, bus maps, train maps, and
so on. All these maps are depicted using the actual area structures. Topographic maps, on
the one hand, represent the vast areas of land with the help of contour lines. Image maps,
on the other hand, link various parts of images together, so that the user can click on the
smaller parts to get further information regarding them.

7.2.4 PROBLEM

The AnyMap design pattern represents the concept of mapping (logically connecting) data
in one domain to data in another domain. The source and target data domains of a map can
be any domain and could be very different. However, in general, a map is always used for
a particular (well-defined) purpose and it determines what the source and target data look
like. Therefore, it makes sense to model a generic design pattern that can be used for differ-
ent purposes involving various types of data domains.

Trying to define a generic model for any kind of map is not that easy. The main dif-
ficulty in coming up with such a generic design pattern lies in the fact that the usage of
a map and that data used can be quite different. For example, a topographical map that
contains contours of mountains and depth of oceans is used for geographical expedition of
the earth, whereas a gene map that links genes to specific locations on chromosones is used
in researches of genetic diseases. Again, maps generally cannot depict the exact distance
due to the large areas they need to depict on the media and hence are drawn according to
a specific scale. Small scale results in depiction of finer details. For example, a world map
needs a bigger scale than a road map for a city, say San Jose. This consideration of scale is
an important aspect in modeling correct patterns. Nowadays, maps are available on various
types of media like papers, smart phones, electronic screens (digital), and projections.

Fortunately, by using the SSM to focus on the enduring aspects of the problem, we arrive
at a solution for the problem and provide a generic model of AnyMap for any application
domain (purpose).

7.2.4.1 Functional Requirements

Functional requirements can be classified as internal requirements and external requirements.

7.2.4.1.1 AnyMap (Visualization) Functional Requirements

7.2.4.1.1.1 Internal Requirements As the name suggests, these requirements are inter-
nal to the pattern which means these are the requirements for the proper working of EBT/
goal of the pattern and are not visible to the application. These requirements are tightly

AnyMap Stable Design Pattern

163

intervened to the system and changes, if the method used for visualizing the map changes.
Some of them are as follows:

1.

Method employed for visualizing a map. There are various methods through which
a map can be visualized, but any method used for creating a map should produce
the same result. Thus, all the rules that need to be followed like the signs to be used
and the boundary conditions should be defined clearly beforehand and they should
be followed by any method used in visualization.

. Evidence used to record map. Depending on the type of map, an appropriate media

should be used to store the map. Evidence indicates the existence of map later on,
and hence, it is a very important step. Moreover, the format in which a map is stored
should also be carefully selected, so that the reader can understand the map easily.

. Symbol dictionary. Usually, on a map, one or many symbols can be used to depict

various things. Hence, a standard rule should be followed while selecting symbols
during visualization. This will give uniformity to the map, and moreover, it will
make the map easier to read. Moreover, a map legend should be created listing all
the symbols and their meanings.

. Boundary condition. The boundary of entity or region for which a map is being

developed should be kept in mind.

7.2.4.1.1.2 External Requirements

This section highlights the visualize part of the AnyMap stable design pattern as shown i

Figure 7.1.

1.

Visualization. It means analyzing the available data given in any format and creat-
ing or plotting any kind of map, be it, say, a geographical map or a chart, from it
(Figure 7.1). With the invention of new tools and technology, several tools are pres-
ent nowadays that aid in the creation of maps. Creating maps also includes labeling,
texting, and defining proper scale and symbols and images to depict a variety of
things. Hence, map creation is not a single step; instead, it is labor intensive and
complex and involves multitude of actions and decisions.

. Partieslactors. AnyActor and AnyParty may request or may generate a visualized

form for any entity and/or any region. In the request scenario and in provision sce-
nario, the mechanisms involved may be different and this must be well anticipated
and dealt with properly to avoid ambiguity. AnyActor/AnyParty must go through
proper mechanisms to request or generate visual form such as any map.

. Visualization mechanisms. Mechanisms should be well defined and implemented

to visualize any entity or region. AnyActor/AnyParty must follow the proper,
incorporated mechanisms to visualize AnyEntity or AnyRegion. Mechanisms
should check AnyCeriteria that are required to visualize any entity or any region.
AnyCeriteria, in turn, validates the selection of the right visualization mechanism to
those who holds the criteria true.

. Data. They can be present in any form, but it should represent either some enti-

ties or some regions. Data should be complete and well defined and must have the
capability to refer to map/s.

. Entity. Entity should be distinct and should have separate existence. It should not

be abstract or imaginary. More than one entity can be present in AnyData, but all
these entities should be linked and not even one should lie apart.

164 Software Patterns, Knowledge Maps, and Domain Analysis

EBT BO
i
4 requests/generates specifies p |
1.*
<<P-BO>> ! {and/or} 0
AnyActor . |
requests Y specifiesp | <<P-BO>>
/generates 1.* <<P-BO>> | — 1| x 0>>
AnyParty 0.% nyCriteria
_{_agd_/grl_ basedOn p - <<P-BO>>
through AnyMedia
[useOf <<P-BO>> —
AnyMechanism a L
<<P-EBT>> < 1.* produces indicates p <<P-BO>>
Visualization Le = v 1% 1.% AnyEvidence
| . <<P-BO>>
of b AnyData .
<<BO>> <>—0 <<P-BO>>
AnyMap AnySymbol
{and/or} _
________ 1“* a E
& £
<<P-BO>> = £
AnyEntity - 2
<<P-BO>> <<P-BO>>
o AnyType AnyLegend
1.% AnyRegion

FIGURE 7.1 AnyMap (visualization) stable design pattern class diagram.

6. Region. It should have well-defined boundaries and must represent some geograph-
ical area. All the characteristics of the region should be explained properly be it
physical, human, or functional.

7. Criteria. They are set by party while mapping in order to set some standards, like
usage of blue color to depict water in all geographical map. These criteria define
each and every minute details about how symbols, signs, and images will be used
and also define a particular format for labeling. This is necessary in order to achieve
uniformity throughout the map and also to avoid confusion among readers.

8. Type. Maps are of different types, like geographical maps, linkage maps, and
charts, and each type of map has a different purpose. The purpose for which a map
is visualized should be kept in mind while visualizing, and the symbols and images
used should be in accordance with the purpose.

9. Legend. It represents important information on a map, like important buildings, for
example, the parliament building; oceans; and structures of common compounds,
for example, benzene. Some information are showed as legend and are known to
everyone. Hence, these information should be marked properly on a map.

10. Symbol. Every map represents information in the form of symbols. These can be
some image or keyword, lines, colors, and so forth. The symbols used in a map
should be defined properly, so as to avoid any confusion among readers.

11. Evidence. Every map has some real existence and some documents or evidences to
support its existence. All the evidences of a map should be documented properly
and they should also clearly define the purpose of a map.

AnyMap Stable Design Pattern 165

12. Media. Media that are used to visualize maps should be well identified and documented.
They can be of different types and usage of each may vary. Media used to present
evidences of a map should be appropriate and in accordance with the type of evidence.

13. Colors/shadesllines. Different degrees of colors and/or shades are used to distin-
guish among different properties or area of focuses within the visual form (any map).
Different types of lines are used to show different indications, such as focus areas,
concentration, and distribution. Colors/shades/lines are considered different entities.

7.2.4.1.2 AnyMap (Navigation) Functional Requirements

7.2.4.1.2.1 Internal Requirements

1. Type of map. How navigation is done depends on the type of map at hand; to
analyze genetic map, one should have knowledge of DNA sequence and chromo-
some crossover, but to analyze a road map a party or an actor does not require any
specialized knowledge.

2. Symbol interpretation. All the symbols and the interpretation rule associated with
them should be studied carefully, so as not to make any mistake while navigating a map.

3. Skills to operate media. A party or an actor navigating the map should know how to
operate the media on which a map is stored. These days, with the advancement of
technology, various software applications are used to store different kinds of maps.

7.2.4.1.2.2 External Requirements

1. Navigation. It refers to analysis of a map (Figure 7.2) in order to extract informa-
tion from it. For analyzing, all the symbols, labels, and legends of the map should
be studied carefully and all the interpretation rules should be followed. The evi-
dence in support of the map should also be considered.

2. Partieslactors. AnyParty or AnyActor may request navigation of AnyMap in order
to study AnyEntity or AnyRegion. AnyParty or AnyActor must make use of the
evidence available in support of AnyMap and must interpret AnySymbol and Any-
Legend correctly. AnyParty or AnyActor must also know how to operate the media
on which evidence of AnyMap is present.

3. Evidence. Every map has some real existence and documents or evidences to sup-
port its existence. All the available evidences of a map should be carefully studied
to determine the purpose of the map.

4. Media. Media on which evidence of the map should be present should be operated
properly, so as to not to destroy the evidence. AnyActor or AnyParty navigating the
map should posses the skills to operate the media.

5. Region. AnyParty or AnyActor navigating the map should define all the boundaries
and characteristics of the region. All the symbols, images, legend, and labels of that
region should be analyzed properly.

6. Type. Maps are of different types like geographical maps, linkage maps, and charts,
and each type of map has a different purpose. The purpose for which a map is navi-
gated should be kept in mind while navigating, and the symbols and images used
should be in accordance with the purpose.

7. Legend. It is like a dictionary of symbols of a map. A map legend should be used
whenever required to avoid confusion while determining the meaning of the symbols.

8. Symbol. They form an important part of the map. Hence, while navigating, all the
symbols and their meanings should be interpreted correctly. Some symbols are

166 Software Patterns, Knowledge Maps, and Domain Analysis
EBT BO
| : <<P-BO>>
4 requests N utilizes b AnyMedia
L <<P-BO>> : tand/or} 1.*
AnyActor [on .,
Y utilizes p : <<P-BO>> a L.
drequests L <<P-BO>> 1. AnyEvidence
AnyParty -
1.*
{and/or} W indicates
through p 1.2 <<BO>> . <<P-BO>>
>
AnyMap AnySymbol
<<P-EBT>> of b A
Navigation v °
= -~
o
- >
determines 4
1.* <<P-BO>> leadTo <<P-BO>>
: AnyType L AnyLegend L
! . .
{and/or} :ﬂ.
________ o
L. 13
of P &
)
<<P-BO>> ::L
AnyEntity : determines ¢
<<P-BO>> !
1 AnyRegion

FIGURE 7.2 AnyMap (navigation) stable design pattern class diagram.

very common, but nothing should be taken as granted. Every symbol should be
looked up for its meaning. It might happen that the map creator might have created
his or her own set of symbols.

9. Entity. While navigating, all the entities and their relationships should be analyzed
properly. Depending on the purpose, the entities can change their meaning. Hence,
the purpose of the navigating map should be clearly understood beforehand.

10. Colors/shades. Different degrees of colors and/or shades are used to distinguish
among different properties or area of focuses within the visual form (any map).
Different types of lines are used to show different indications, such as focus areas,
concentration, and distribution. Colors/shades/lines are considered different entities.

7.2.4.1.3 AnyMap (Recording) Functional Requirements

7.2.4.1.3.1 Internal Requirements

1. Suitable media. One of the most important requirements is selecting suitable
media for recording based on the type of map and target party/actor who will be
using the map.

2. Recording method. The method of recording is also critical, as the accuracy of the
map depends entirely on it.

3. Dependency on map data and type. The type of map being recorded also influences
the mechanism used for recording, skills needed by party, and even the media
selection on which the map resides. All the rules and symbols defined during
recording lay heavily on the map type.

AnyMap Stable Design Pattern

7.2.4.1.3.2 External Requirements

1.

Recording. 1t refers to recording a map (Figure 7.3), so that it can be made available
to any user at later time. The appropriate method and media for recording should
be chosen carefully depending on the type of map. The intended users of the map
should also be kept in mind.

. Partieslactors. AnyParty or AnyActor may request recording of AnyMap in order

to preserve the evidence of existence of that map. AnyParty or AnyActor must con-
sider the type of map being recorded before selecting the type of media.

. Criteria. Depending on the type and amount of data to be recorded, AnyParty/

AnyActor should define the criteria for recording. The criteria impose restriction on
recording; hence, all the rules should be defined properly and clearly and beforehand.

. Data. They can be present in any form, but it should represent either some entity or

aregion. They should be complete and well defined and must have the capability to
refer to map/s, as they affect the method selected for recording.

. Evidence. Every map has some real existence and some documents or evidence to

support its existence. All the evidence of a map should be documented properly
and they should also clearly define the purpose of a map.

. Entity. They should be distinct and should have a separate existence. It should not

be abstract or imaginary. More than one entity can be present in AnyData, but all
these entities should be linked and not even one should lie apart.

. Region. They should have well-defined boundaries and must represent some geo-

graphical area. All the characteristics of the region should be explained properly,
be it physical, human, or functional.

167

EBT BO
T
4 requests R specifies p |
L <<P-BO>> :{and/or} 0.
AnyActor specifies > | > L
] o ! <<P-BO>> - <<P-BO>>
requests * -~ h
4 requ 1. <;K1:ygaor:y> o AnyCriteria basedOn AnyData
{and/or} 4 influences L.
_______ through | <<P-BO>>
/usedOf AnyMedia
<<P-BO>>
1.* | AnyMechanism <<P-BO>> ‘il 1.%
AnyEvidence
<<PEBT>> produces PR — on b <<P-BO>>
Recording v 1.% ‘indicatesw 1.% AnyLog
{and/or} : <<BO>> Oi <<P-BO>>
- AnyMap AnySymbol
&L a [
v A 0.% 3
<<P-BO>> 5 E :?_
AnyEntity "
<<P-BO>> <<P-BO>> <<P-BO>>
- AnyT AnyL
AnyRegion |1 ny“ype nyLegend

FIGURE 7.3 AnyMap (recording) stable design pattern class diagram.

168 Software Patterns, Knowledge Maps, and Domain Analysis

8. Symbol. Every map represents information in the form of symbols. These can be
some image or keyword, lines, colors, and so forth. The symbols used in a map
should be defined properly, so as to avoid any confusion among readers.

9. Legend. It represents important information on a map like important buildings,
for example, parliament building; oceans; and structures of common compounds,
for example, benzene. Some information are showed as legend and are known to
everyone. Hence, these information should be marked properly on a map.

10. Media. Media that are used to record maps should be well identified and documented.
They can be of different types and the usage of each may vary. Media used to present
evidences of a map should be appropriate and in accordance with the type of map.

11. Mechanism. They should be well defined and implemented to record the map.
AnyActor/AnyParty must follow the proper, incorporated mechanisms to record
the map. Mechanisms selected should be appropriate and in accordance with the
media used to record the map.

12. Log. It represents the format in which map is stored on media. AnyParty should
have the knowledge of different formats/logs used for different media.

7.2.4.2 Nonfunctional Requirements

1. Modeling essentials.

a. Simplicity. In maps, the technique of simplicity is used to achieve the effect
of singling out an item or items from their surrounding. Simplicity is one of
the underlying map-plotting techniques; a cluttered map distracts the eye and
takes away attention from the subject. A simple map can be achieved by get-
ting closer to the subject, which is also one of the main rules of map making.
Simplicity is one of the main components of most good maps. The simpler
the map, the easier it is for the viewer to comprehend the subject and appreci-
ate it. Cluttered images and backgrounds are less visually pleasing and more
likely to cause the subject and lesser objects to confuse each other visually.

b. Completeness. It refers to the presence of all constituent parts with each part
fully illustrated. In general, a map is complete if nothing needs to be added to
it. It forms an important factor while mapping, and each and every word of the
requirement document should be studied carefully.

c. Easy to understand or understandability. It refers to clarity of purpose. This
goes further than just a statement of purpose; all of the parts must be clearly
illustrated so that it is easily understandable. This is obviously subjective in
that the user context must be taken into account: for instance, if the map is to
be used by map designer, it is not required to be understandable to the layman.
This also includes proper laying of all the interpretation rules and definitions of
all signs and symbols used on the map.

d. Stability. If amap is complete, simple, easy to understand, it is most likely to be
stable. The map once created should be able to expand and adapt to changing
requirements, such that if later on some new features need to be added to the
map, then the developer does not have to start from the scratch. Instead, he can
use the already existing map and add on the things without any difficulty.

e. Testability. It refers to the disposition to support acceptance criteria and evalu-
ation of performance. Such a characteristic must be built in during the design
phase if the map is to be easily testable; a complex design leads to poor testability.

AnyMap Stable Design Pattern 169

f. Visualization. Maps are visible graphical tools. A picture is worth a 1000
words. This requirement directly relates to understandability and simplicity
requirement of the map. The reader of the map should be able to comprehend
the things depicted on the map without any external help.

2. Consistency. It refers to uniformity in notation, symbology, appearance, and ter-
minology within itself. While designing the map, some standards need to be set
in advance so as to avoid confusion during implementation phase. Also, if stan-
dards are followed properly, the reader will be able to read the map without any
difficulty.

3. Documentable. 1t refers to the capability of being supported by documentary
evidence. This is necessary to prove the usefulness of the map.

4. Portability. It refers to the ability to be run well and easily on multiple media of a
variety of configurations. With the invention of new tools and technology, a num-
ber of tools are used while mapping. Hence, it becomes necessary for the developer
to ensure that the developed map runs on a number of configurations, for example,
Google Maps and Yahoo! Maps.

5. Structuredness. It refers to the organization of constituent parts in a definite pattern.

7.2.5 CHALLENGES AND CONSTRAINTS

7.2.5.1 Challenges

e The AnyMap design pattern must not impose any restriction on the kind of data
involved in the mapping. In other words, it should not need check on the type of
data involved in the mapping. For example, the AnyMap design pattern should apply
to geographical data in the same way as it would with computer data or gene data.

* Every map has a purpose and this purpose varies in different applications. While
the AnyMap design pattern must generate a map that serves the designated pur-
pose, it must not be dependent on the nature of the purpose.

* The AnyMap design pattern must be usable by different kinds of party. For
instance, a person can use a road map for traveling from one place to another, an
organization can use a concept map to describe its product marketing strategy, and
a software application can use a hash map to store data related by hashed keys.

e Map problems span a fairly wide range of applications and domains, which makes
the task of capturing the core concept of a map problem more challenging than it
might appear to be.

* Even after extracting the common feature of different types of maps, the difficulty
still resides in how these common features can be abstracted in such a way that
makes them still valid for all the wide applications where usage of the map exists.

* Maintaining a high level of accuracy in maps is a major challenge.

* Maintaining the simplicity of the map also poses a big challenge. For example,
emaps present a number of things at a time, and sometimes, it becomes difficult for
the user to comprehend information from the map.

* Deciding on the standards for a map is also difficult. The way maps are labeled and
the text language used varies from country to country, and the set of colors used
vary by producers, though, the overall image will be fairly simple.

* The conditions and the environment in which a map is used also affect the reader.
Developing general model of AnyMap keeping user’s environment in mind is not easy.

170 Software Patterns, Knowledge Maps, and Domain Analysis

e With advanced technology, there are various mechanisms through which a map
can be visualized. Selecting appropriate mechanism for the type of map to be visu-
alized is not an easy task.

e Selecting an appropriate method for recording depending on the data to be
recorded and the type of map is quite challenging.

* While recording, the symbols and legends used to represent a variety of things on
the map should be appropriate.

7.2.5.2 Constraints
7.2.5.2.1 Navigation

* Navigation of any map can be requested by or provided to one or more parties or/
and actors.

* Navigation takes place through one or more maps.

* Different maps have different features and some of these features may not apply to
other types of maps.

* AnyMechanisms are based on none to more user-defined criteria.

* AnyMap indicates one or more piece of evidence.

* AnyMap and its pieces of evidence are stored and represented on one or more media.

* Navigation can be done for any region and/or any entity that is determined by the
type of the requested map.

* The type of the map leads to zero or more legends on the map.

* The type of the map leads to zero or more symbols that exist on the map, which
indicates many different things, such as direction and distribution.

e All the symbols defined by the user should be present in at least one legend, so as
to avoid confusion while navigation.

7.2.5.2.2 Visualization

e The AnyMap design pattern requires that the user of the map supply the source
data, although the pattern does not dictate the format of the source data.

* The format of the source and target (mapped) data is defined by the
AnyMappingMechanism, which is unique for each application.

e The AnyMap design pattern does not address how the target (mapped) data are to
be interpreted in order to achieve the designated purpose of the map. The interpre-
tation of the mapped data, however, can be aided by AnylnterpretationRule, which
is generated as an optional part of the outcome of mapping.

* The AnyMap design pattern is not responsible for scaling or filtering the source
data prior to the mapping, but provides a hook for the user to do so via the Any
Criteria BO, which represents any additional user requirements.

» Different maps have different features and some of these features may not apply to
other types of maps.

* Navigation takes place through one or more maps.

* Navigation of any map can be requested by or provided to one or more parties
or/and actors.

* AnyActor can also request for accessibility and/or can define criteria.

* AnyParty/AnyActor can also request for the navigation of any map based on addi-
tional user-defined zero or more criteria.

* AnyParty has to follow one or more mechanisms to gain authorized accessibility.

AnyMap Stable Design Pattern 171

AnyParty/AnyActor can define none to many criteria for the mechanisms to check
for to validate accessibility

AnyParty has to follow one or more mechanisms to gain authorized accessibility.
AnyParty/AnyActor can define none to many criteria for the mechanisms to check
for to validate accessibility

AnyMechanisms are based on none to many user-defined criteria.

Accessibility may be granted or denied to AnyActor/AnyParty, depending upon the
mechanism and its criteria.

AnyMechanism involves at least one or many media types to gain accessibility.
AnyMedia helps to access one or many entities required for accessibility.
AnyEntity can take one or many mappings with industrial object (10) related to the
application.

Accessibility can utilize one or many mechanisms to carry out the task given by
the user.

One or more criteria are needed for validation in order to gain accessibility.

7.2.5.2.3 Recording

AnyParty/AnyActor should clearly define none or some criteria for recording data
into AnyMap.

AnyCriteria defined by AnyParty/AnyActor should be based on one or more
AnyData made available for recording.

AnyMechanism used for recording should be decided on the basis of one or more
AnyData available.

Recording can be done through one or more AnyMechanism.

AnyMechanism is capable of producing one or more AnyMap.

AnyMap can be presented on one or more AnyEvidence.

AnyMap is stored in one or more AnyLog.

AnyLog can reside on one or more AnyMedia.

AnyLegend can be indicated by one or more AnySymbol.

AnyMap consists of none or any number of AnySymbol and AnyLegend.

7.2.6 SOLUTION STRUCTURE AND PARTICIPANTS

7.2.6.1 Structures

Figure 7.1 illustrates AnyMap (virtualization) stable design pattern class diagram.
Figure 7.2 shows AnyMap (navigation) stable design pattern class diagram. Figure 7.3
represents AnyMap (recording) stable design pattern class diagram.

7.2.6.2 Participants

Classes

* AnyMap. This class represents the map that holds the mapped data and optional
rules for interpreting the mapped data.

Patterns

» Visualization. This class represents the goal or EBT of the pattern. AnyMap is
visualized by AnyActor or AnyParty on the basis of AnyData available.

* Navigation. This pattern represents the EBT or the goal of AnyMap that repre-
sents the purpose served by the map used by a user.

172 Software Patterns, Knowledge Maps, and Domain Analysis

* Recording. This class represents the EBT or goal of AnyMap that represents
how a map is recorded.

e AnyParty. This class represents a group of users, who uses the AnyMap to
achieve an AnyPurpose.

e AnyActor. This class represents a single user, who can visualize as well as use
AnyMap.

e AnyData. This class represents the data provided by the user in order to gener-
ate AnyMap. This class represents the data in the map translated or mapped
from the source data provided by the user. It is part of AnyMap.

* AnyType. This class represents the type of map being visualized or navigated
or recorded by its users, for example, geographical map, biological map, and
chart.

* AnyMedia. This class represents the media on which the map is present.

* AnyMechanism. This class represents the method specified by the user in order
to generate a map. There are several methods and techniques through which a
map can be produced and recorded.

* AnyCriteria. This class represents optional mapping criteria entered by user to
refine quality and scope of a map.

e AnyEntity. This class represents the real object, which is visualized and a map
is produced.

* AnyRegion. This class represents any geographical area for which a map is
generated.

e AnyEvidence. This class represents the documents that support the existence
and purpose of a map.

* AnyLegend. This class represents the dictionary of symbols used while produc-
ing a map. It contains the complete list of symbols and their definition.

* AnySymbol. This class represents the keywords used on a map to depict various
things like notations, lines, colors, and shapes.

* AnyLog. This class represents the format in which a map is stored on
AnyMedia.

7.2.6.3 CRC Cards

Navigation (Navigation) (P-EBT)

Responsibility Collaboration
Client Server
To allow navigation of a map AnyParty navigates()
AnyActor voyage()
AnyMap uses()
AnyEntity travels()
AnyRegion analyze()

explores()
determines()
Attributes: route, distance, area, entity, scale, position, range, toolsUsed

AnyMap Stable Design Pattern 173

Visualization (Visualization) (P-EBT)

Responsibility Collaboration
Client Server
To facilitate generation of a map AnyParty produces()
AnyActor generates()
AnyMechanism visualizes()
AnyData transforms()
converts()
creates()

Attributes: sourceData, generatedMap, typeOfMap, dataFormat, symbolsUsed, interpretationRules,
mechanismUsed, criteriaFollowed

Recording (Recording) (P-EBT)

Responsibility Collaboration
Client Server
To store/record map AnyParty records()
AnyActor stores()
AnyMechanism saves()
logs()
uses()
documents()
preserves()

Attributes: sourceData, mediaUsed, typeOfData, dataFormat, methodInvolved, rulesFollowed, skillsNeeded

AnyParty (AnyParty) (P-BO)

Responsibility Collaboration
Client Server
To request or generate a visual Navigation requests(), provides(),
form, such as any map. Also, requests uses(), defines(), playRole(),
the navigation of any map group(),
AnyEvidence setCriteria(), monitor(),

switchRole(), agree(),
generate(), navigates(),
utilizes(), requires(),

Or

Visualization

AnyCriteria

Or

Recording

AnyCriteria

Attributes: partyName, type, members, location, areaOfExpertise, workHours, accessFor, activity

174

Software Patterns, Knowledge Maps, and Domain Analysis

AnyActor (AnyActor) (P-BO)

Responsibility

To request or generate a visual form, such as any
map. Also, requests the navigation of any map

Collaboration

Client

Navigation

AnyEvidence

Or
Visualization
AnyCriteria
Or
Recording
AnyCeriteria

Server

gainsAccess(), uses(), defines(),
navigate()

participate(), interact(), organize(),
request(), explore(), utilizes(),
requests()

Attributes: name, rank, typeOfAuthority, accessFor, members, category

AnyMechanism (AnyMechanism) (P-BO)

Responsibility

To incorporate means/methods for
generating a visual form

Collaboration

Client

Visualization
AnyCriteria

AnyData
AnyMap
Or
Recording
AnyData
AnyMap

Server
used(), hasBase(), makesUseOf(),
execute(), activate(), pause(), attach(),
status(), generate(),
utilizes(), archives(), classifies()

Attributes: isStated, isValid, methodUsed, skillsRequired, rulesFollowed, accuracy, toolsUsed, output,

intermediateState

AnyMap (AnyMap) (BO)

Responsibility

To represent data in a visual form

Collaboration

Client

Navigation
AnyEvidence

Server
returnMap(), illustrate()
focusOn(), includeSymbols(),
mayIncludeLegend(), showEvidences(),
hasType(), aidsNavigation(),

(Continued)

AnyMap Stable Design Pattern 175

AnyMap (AnyMap) (BO)

Responsibility Collaboration

Client Server

AnyType consistsOf()
AnySymbol or
AnyLegend
AnySymbol
AnyType
AnyMechanism
AnyEvidence or
AnyMechanism
AnyEntity, AnyRegion,

AnyEvidence, AnyLog,

AnySymbol, AnyLegend

Attributes: mapName, size, relatedTo, focusOn, evidences, meetCriteria, scale, colorsUsed, shadeUsed,
type, purpose

AnyData (AnyData) (P-BO)

Responsibility Collaboration
Client Server
To provide source data of a map AnyEntity, AnyRegion, AnyMechanism, returnData()
Visualization
Or returnType()
AnyMechanism returnLegalRange()
AnyCriteria belongsTo()
formCollection()
represents()
hasValue()

Attribute: type, isReliableData, dataSource, id, name, property, model, application, format, belongTo,
domain, context

AnyEntity (AnyEntity) (P-BO)

Responsibility Collaboration
Client Server
To define entities that can be accessed Navigation utilizes(), defines(), type(), update(),
AnyType new(), performFunction(), status(),
determines()
Or
AnyData (in Visualization)
Or
AnyMap (Recording)

Attributes: nameOfEntity, typeOfEntity, useOf, usedFor, descriptionOfEntity, status, position, states

176 Software Patterns, Knowledge Maps, and Domain Analysis

AnyRegion (AnyRegion) (P-BO)

Responsibility Collaboration
Client Server
Represents the form of data Navigation exists(), represents(), hasBoundary(),
to be visualized determineMapType(), actAsData()
AnyType or
AnyData or
AnyMap

Attributes: location, boundary, physicalCharacteristic, functionalCharacteristic, name, type, size, area

AnyType (AnyType) (P-BO)

Responsibility Collaboration
Client Server
Defines the type of map in question AnyEntity, AnyRegion, AnyMap, classifies(), categorizes(),
AnyLegend (Navigation) or distinguishes(), sorts(),
makesClass(), organizes(),
separates()

AnyMap(Visualization) or
AnyParty, AnyMechanism
(Recording)
Attributes: name, status, number, basis, ruleForClassification, parameterUsed, factor,
inspirationForClassification

AnyCriteria (AnyCriteria) (P-BO)

Responsibility Collaboration
Client Server
To define visualization criteria AnyParty validates(), (TRUE, only when validation
for the map passes), providesBase(), verify(), apply(),

prioritize(), exhibit(), imposes(), limits(),
influences(), standardizes()

AnyActor

AnyMechanism

Or

AnyData

AnyParty

AnyActor

Attributes: nameOfCriteria, numberOf, checkedBy, implementedBy, leadsTo, condition, property, priority

AnyMap Stable Design Pattern 177

AnyEvidence (AnyEvidence) (P-BO)

Responsibility Collaboration

Client Server
To support map presence AnyParty, AnyActor, AnyMap, supports(), provesExistence(), documents(),
and purpose AnyMedia (Navigation) or showsValidity(), definesPurpose(), indicates()
AnyMedia, AnyMap
(Visualization)
Or AnyMap(Recording)
Attribute: evidenceld, name, type, status, validity, approvedBy, format, purpose

AnyMedia (AnyMedia) (P-BO)

Responsibility Collaboration
Client Server
The technique through which AnyEvidence (Visualization) stores(), displays(), actAsMedium(),
evidence of a map is stored or AnyLog (Recording) works(), executes(), operates(),
showsEvidence()

Attribute: mediald, type, name, technologyUsed, rulesToOperate, skillsNeeded

AnyLegend (AnyLegend) (P-BO)

Responsibility Collaboration

Client Server

To define symbols used on a map AnyType, AnySymbol (Navigation) or defines(), explains(), lists(),
identifies(), compiles(),
clarifies(), discloses()

AnySymbol, AnyMap (Visualization) or
AnyMap, AnySymbol (Recording)
Attribute: name, languageUsed, format, numberOfSymbols, id, type, length, symbolsDefined

AnySymbol (AnySymbol) (P-BO)

Responsibility Collaboration

Client Server

To represent real objects on amap AnyLegend, AnyMap or AnyMap, represents(), shortens(),
AnyLegend (Recording) indicates(), marks(), simplifies()
Attributes: id, name, type, format, colorUsed, value, importance

178 Software Patterns, Knowledge Maps, and Domain Analysis

7.2.7 CONSEQUENCES

The AnyMap design pattern satisfies its objective and provides a base pattern that is adaptable
to applications in different domains.

Understandability. The AnyMap design pattern presents the enduring concept of
mapping in an easily understandable fashion. It accomplishes this through the
Mapping EBT, and by using a basic AnyMappingMechansim, it produces AnyMap
based on a user-supplied AnyMapType.

Adaptability. The AnyMap design pattern is generic enough to be applicable in mul-
tiple domains that require mapping. This is illustrated through the use of a generic
AnyMappingMechansim controlled by AnyMapType. It can be further infered
from the two examples given under the applicability section.

Stability. The concept of mapping is described in generic terms, without using any
domain-specific 10s. Applications in different domains can use this concept
by substituting IOs (industrial objects) specific to the application. Examples of
domain-specific IOs may be different mapping mechansims, different mapping
criteria, and different data type involved in the mapping.

Extensibility. The pattern can be extended by plugging in the application-specific
context classes such as instances of AnyParty, AnyMappingMechanism, and
AnylnterpretationRule. Thus, the system provides a high level of extensibility to
suit applications in various domains.

The good thing with the AnyMap design pattern is that AnyParty can specify the criteria
and get the map according to their liking. But the bad thing is that AnyParty is responsible
to interpret the mapped data. This can be a big problem, because AnyParty can have differ-
ent interpetations of the map depending on their understanding.

7.2.8 APPLICABILITY WITH ILLUSTRATED EXAMPLES

7.2.8.1 Case Study 1: Navigation—Google Road Map for Planning Driving Routes

Google road maps are widely used for navigation. They are used in day-to-day life
for traveling from one place to another, for finding a particular address, for searching
near well-known buildings and intersections, and so on. This application serves as an
example, where the generic model of navigation developed above for AnyMap is used
for finding shortest route from one point to another. The traveler can easily interpret
the routing directions using the map legend available along with google map. Besides
showing the route, the map shows the distance between the two points and how much
will be needed to cover the distance with various options of traveling like by car and by
public transport.

Use Case: Navigate through Google Road Map

Actors Roles

AnyParty Traveler

AnyMap Stable Design Pattern 179

Classes Type Attributes Operations

Navigation EBT route explores()
distance navigates()
scale
entity

AnyParty BO Name requests()
workHour navigates()
activity utilizes()
member

AnyMap BO name hasType()
purpose aidsNavigation()
evidence
scale

AnyEvidence BO Id indicates()
name documents()
type provesExistence()
status

AnyMedia BO name showsEvidence()
type displays()
Id
technologyUsed

AnyType BO status leadsTo()
number classifies()
basis
factor

AnySymbol BO name represents()
type
format
value

AnyLegend BO name definesSymbol()
type
languageUsed
format

AnyRegion BO location determines()
boundary
Area
Size

AnyEntity BO name determines()
Use
description
position

GoogleEarth 10 technologyUsed displaysMap()
version
systemRequirement

Traveler 10 name navigates()
Id specifies()
status

(Continued)

180 Software Patterns, Knowledge Maps, and Domain Analysis

Classes Type Attributes Operations
qualification

GoogleMapService 10 parameter accepts()
algorithmUsed generates()

selects()

GoogleMap 10 Line showsRoute()
symbol directs()
color

Address 10 location providesLocation()
Area
country

MapLegend 10 symbol defines()
format
language

ShortestRoute 10 distance actsAsOutput()
Area showsDirection()
path

Use Case Description

1.

Navigation is requested by AnyParty for exploration and Traveler who wants to
navigate the map for driving direction inherits from AnyParty.

How to do navigation? What type of map is used by traveler? How the map will
show driving direction?

. Traveler specifies address for direction on a map.

How does Traveler specifies address? What is the format of address? Is the
format of address fixed?

. GoogleMapService accepts address and then generates GoogleMap showing the

route.
How the address acts as input for GoogleMapService? How GoogleMap is
generated? What is the technology used?

. The ShortestRoute selected by GoogleMapService acts as output for Traveler.

Which algorithm is used by MapService to select shortest path? How does the
algorithm work?

. AnyParty utilizes AnyEvidence and AnyEvidence is present on AnyMedia like

GoogleEarth.
How the evidence is utilized? What is the purpose of evidence? What kind of
media is used?

. AnyEvidence indicates AnyMap, which has many AnyType.

How the map is classified into various types? How evidence indicates map?

. AnyType leads to AnyLegend and AnyLegend defines a list of AnySymbol, which

represents various things on a map.
How are type of map and legend related to each other? What is the format of
legend? How are symbols defined by legend?

. AnyMap aids in navigation.

AnyMap Stable Design Pattern 181

How does map helps in navigation? Who does navigation? What are the
techniques used?
9. Navigation is done for AnyRegion or AnyEntity and they both determine AnyType.
What is the definiton of entity? How region and entity decide the type of map?
10. AnyEvidence proves existence of AnyMap and documents it.
What is the format of the document? How is the existence and purpose of a map
proved?

Aternatives:

1. The address specified by traveler is not correct.
2. GoogleMapService also shows alternative routes which are not the shortest ones.

Class Diagram—A class diagram is shown in Figure 7.4.
Class Diagram Description

1. Navigation is requested by AnyActor or AnyParty.

2. Traveler inherits from AnyParty.

3. Traveler specifies address, which is a part of AnyRegion.

4. Address is accepted by GoogleMapService and it generates GoogleMap.

EBT BO 10
specifies p
utilizes b
- <<P-BO>> <<I10>>
AnyEvidence Traveler outputFor
< 10
on <<I0>>
4 requests |, - PBO v ShortestRoute
AnyParty Lt
<<P-BO>> <} <<I0>>
indicates & AnyMedia GoogleEarth selects
-
» through
<<P-EBT>> <<BO>> <} <<10>> 1.7
Navigation 1.* AnyMap GoogleMap 4 <<IO>>
— <i 01 generates GoogleMapService
has
Le v <<P-BO>> aCC?tS
- AnySymbol L
<<P-BO>> -
AnyType <<I10>> ||
Address
-
leadTo f
v o
determines
v
1.% 1.* 1.
<<P-BO>> <<P-BO>> <} <<I0>>
>of L AnyRegion AnyLegend MapLegend
o

FIGURE 7.4 Class diagram for navigation through Google Road Map.

182

O 0 3 O\ W

Software Patterns, Knowledge Maps, and Domain Analysis

. GoogleMapService selects ShortestRoute that acts as output for traveler.
. AnyParty utilizes AnyEvidence on AnyMedia.

. GoogleEarth inherits from AnyMedia.

. AnyEvidence indicates AnyMap, which has many AnyType.

. GoogleMap inherits from AnyMap and is on GoogleEarth.

10.
11.
12.
13.
14.

AnySymbol is a part of AnyMap.

AnyType leads to AnyLegend, which consists of AnySymbol.

MapLegend inherits from AnyLegend and is a part of GoogleMap.

Navigation is done through AnyMap.

Navigation is of either AnyEntity or AnyRegion and they both determine AnyType.

Sequence Diagram—A sequence diagram is shown in Figure 7.5.
Sequence Diagram Description

_— O 0 09U AW =

—_

. Navigation is requested by AnyParty(Traveler).

. AnyParty(Traveler) specifies AnyRegion(Address).

. AnyRegion(Address) is accepted by GoogleMapService.
. GoogleMapService selects ShortestRoute.

. ShortestRoute acts as an output for AnyParty(Traveler).
. AnyParty utilizes AnyEvidence.

. AnyEvidence indicates AnyMap.

. AnyMap has AnyType.

. AnyType leads to AnyLegend(MapLegend).

. AnyLegend(MapLegend) is a part of AnyMap(GoogleMap).
. AnyMap helps in navigation.

7.2.8.2 Case Study 2: Mathematical Mapping

Consider the problem where a person uses a certain mathematical function for the pur-
pose of computation. For each value X in the domain of function F, a value in the range
represented by F(X) is the expected mapping. In this case, AnyParty will be extended
with one IO that will represent the mathematician. For each computation, the mathemati-
can will provide a value in the domain of the function and the function will return a
value of the range of the function. In some cases, a boundary condition may need to be
applied to the function. Such a boundary condition is implemented as an extended object
of AnyCeriteria.

Use Case: Map Mathematical Data

Actors Roles

AnyParty Mathematician

<<EBT>> <<BO>> <<I10>>
- AnyRegion . AnyMap AnyLegend GoogleMap-
Navigation AnyParty (Address) AnyEvidence (GoogleMap) AnyType (MapLegend) Service ShortestRoute

I
|

requgsted by :

. I
specifies
I
| accepted by
[
| .
I specifies
I
| output to
I
utihll\zes
I
I indicates
I
I
I has
I
I leads to
I
: parts of
I
thrdugh

T
I
I
I

FIGURE 7.5 Sequence diagram for navigation through Google Road Map.

uianed udisa a|qels depwAuy

€81

184 Software Patterns, Knowledge Maps, and Domain Analysis

Classes Type Attributes Operations

Visualization EBT sourceData visualizes()
generatedMap produces()
mapType

AnyParty BO Name requests()
workHour specifies()
activity defines()
member

AnyCriteria BO name limits()
implemented influences()
condition

AnyMap BO name hasType()
purpose consistsOf()
evidence
scale

AnyEvidence BO id indicates()
name documents()
type
status

AnyMedia BO name showsEvidence()
type displays()
id
technologyUsed

AnyMechanism BO methodUsed uses()
accuracy generates()
output

AnySymbol BO name represents()
type
format
value

AnyLegend BO name definesSymbol()
type
languageUsed
format

AnyEntity BO name exists()
use
description

AnyType BO status classifies()
number categorizes()
basis
factor

Thesis 10 name provesExistence()
topic recordsResearch()
researchArea

Mathematician 10 name requests()
id defines()
researchArea

(Continued)

AnyMap Stable Design Pattern 185
Classes Type Attributes Operations
MathematicalFormula 10 parameter devises()
range
MathematicalMap 10 purpose typeOf()
function presents()
entity
BoundaryCondition 10 range limits()
entry Value impacts()
exitValue
Function 10 expression isMap()
boundary Value containsElement()
limit
Relation 10 element inheritsFromEntity()
value relates()
mapping
DomainElement 10 numberOfElement partOfFunction()
typeOfElement
value
CodomainElement 10 numberOfElement partOfFunction()
typeOfElement
value

Use Case Description

1. Visualization is requested by AnyParty and Mathematician inherits from AnyParty,
who is researching and wants to develop a new mathematical function.
What is visualization? What kind of research mathematician is doing? What is
the area of research? What knowledge is required for developing a function?
2. Mathematician first needs to define the AnyCriteria(BoundaryCondition) for the
function.
How to set BoundaryCondition? What is its purpose? How will it help in devel-
oping function?
3. AnyCeriteria(BoundaryCondition) defined by Mathematician limits AnyMechanism
(MathematicalFormula), which is used in devising AnyMap(Function).
On what basis boundary condition is set? How mechanism for developing map/
function is restricted? What is the mechanism used in developing function?
4. AnyMap(Function) is documented on AnyEvidence and this evidence can be pres-
ent on AnyMedia(Thesis).
What is the purpose of documentation? What type of media is used for storing
function? Who prepares thesis? Thesis is approved by whom?
5. Thesis is prepared by Mathematician as a proof of their research.
What is the format of thesis?
6. AnyParty specifies AnyCriteria and AnyCeriteria influences AnyMechanism.
What type of criteria is specified by party? How does criteria infleunces
mechanism?

186 Software Patterns, Knowledge Maps, and Domain Analysis

7. AnyMechanism makes use of AnyData which is of the type AnyEntity.
What kind of entity is used in visualization? What should be the format of input
data?
8. Relation inherits from AnyEntity and it relates DomainElement and
CodomainElement, which are a part of Function.
What are domain element and codomain element? How are they related? How
does function represents them? What are their values?
9. AnyMap has many AnyType and one such type is MathematicalMap, which is used
in the field of mathematics to represent any function or graph.
How many types of map can exist? Can any function be represented as map?
What other types of map are used in the field of mathematics?
10. AnyMap consists of AnySymbol and AnyLegend. AnyLegend acts like a diction-
ary of symbols and symbols are used to represent shorthand notations used on map.
What are the uses of AnySymbol and AnyLegend? What is the format of
AnyLegend? How many symbols are used on a map?
11. AnyMap is generated by AnyMechanism and that mechanism aids in visualization.
What mechanism is used? What are the steps in mechanism? How is visualiza-
tion done through this mechanism?
12. AnyData acts as input in visualization and through these data AnyMap is generated.
What is the input to visualization? How is map generated through these data?

Alternatives:

1. AnyMechanism(MathematicalFormula) is faulty and thus AnyMap(Function) so
returned is inaccurate.

2. AnyParty(Mathematician) might miss some AnyCriteria(BoundaryCondition)
when specifying them.

Class Diagram—A class diagram is shown in Figure 7.6.
Class Diagram Description

. Visualization is requested by AnyParty(Mathematician).

. Mathematician defines AnyCriteria(BoundaryCondition).

. AnyCeriteria(BoundaryCondition) limits AnyMechanism(MathematicalFormula).
AnyMechanism(MathematicalFormula) implements AnyMap(Function).
AnyMap is indicated by AnyEvidence.

. AnyEvidence on AnyMedia(Thesis).

. AnyMedia(Thesis) is prepared by AnyParty(Mathematician).

. AnyParty specifies AnyCriteria.

. AnyCeriteria influences AnyMechanism.

. AnyMechanism uses AnyData.

. AnyEntity(Relation) inherits from AnyData.

. AnyEntity(Relation) relates DomainElement and CodomainElement.

. DomainElement and CodomainElement are a part of AnyMap(Function).

. AnyMap has AnyType and MathematicalMap is a type of AnyMap.

. Function is a part of MathematicalMap.

. AnyMap consists of AnySymbol and AnyLegend and AnyLegend includes
AnySymbol.

NelRecBEN o IR B R A

el e e el
NN B~ W =O

<<EBT>> <<BO>>
Requests specifiesp
4/generates 1.% AnyParty AnyCriteria <}
0.*
1.
basedOn
4
| AnyMedia
through »
- AnyMechanism Q— C:l 1.
J 1.% d indicates p
Visualization A uses produces AnyEvidence
| — 1.* 1.x
AnyData |
of p K i—l 0.*
AnyMap K>—— AnySymbol
: a
1. A E_
o £
o g
AnyEntity 0.1]
AnyType AnyLegend

<<I10>>
prepares
Mathematician
v defines
Boundary-
Condition
W limits
implements
Mathematical-
Formula
v
Thesis
Function
| |]
relates P
MathematicalMap DomainElement
1.*
) relates P Codomain-
Relation
1% Element

FIGURE 7.6 Class diagram for mathematical mapping.

ulaped udisaq o|qeis depwAuy

8L

188 Software Patterns, Knowledge Maps, and Domain Analysis

17. AnyMap is produced by AnyMechanism.
18. AnyMechanism aids in visualization.
19. Visualization is of AnyData and AnyEntity inherits from AnyData.

Sequence Diagram—A sequence diagram is shown in Figure 7.7.
Sequence Diagram Description

. Visualization is requested by AnyParty(Mathematician).

. Mathematician defines AnyCriteria(BoundaryCondition).

. AnyCriteria(BoundaryCondition) limits AnyMechanism(MathematicalFormula).
AnyMechanism(MathematicalFormula) implements AnyMap(Function).
. AnyMap is indicated by AnyEvidence.

. AnyEvidence on AnyMedia(Thesis).

. AnyMedia(Thesis) is prepared by AnyParty(Mathematician).

. AnyParty specifies AnyCeriteria.

. AnyCeriteria influences AnyMechanism.

. AnyMechanism uses AnyData/AnyEntity(Relation).

. AnyEntity(Relation) relates DomainElement.

. DomainElement is a part of AnyMap(Function).

. AnyMap is produced by AnyMechanism.

. AnyMechanism aids in visualization.

[T Y Sy
A LN = O

7.2.9 REeLATED PATTERNS AND MEASURABILITY

7.2.9.1 Traditional Model versus SSM

* A traditional model, as shown in Figure 7.8, is based on tangible objects, that is,
I0s, which are physical objects and are unstable. However, a stable model relies
on three concepts—EBT, BO, and 10, which are nontangible. These nontangible
objects make the stability model very stable. The EBTs represent elements that
remain stable internally and externally. The BOs are objects that are internally
adaptable, but externally stable, whereas IOs are the external interfaces of the
system.

 In traditional modeling, because we only design as much as is needed for a specific
application in question and do not think of its applicability in other domain, the
application that results is very specific to the application problem in question. In
stability modeling, we use general enduring concepts, and hence, the resulting pat-
tern can be used for building numerous applications. In short, the resulting pattern
can serve as a building block for diverse application domains.

e The cost and maintenance of the traditional model is very labor intensive, costly,
and time consuming, because of its unstable nature. However, the stable model takes
very less time to develop and it is very easy and less labor intensive to maintain.

* The traditional model is neither adaptable to the changing need of the requirement
nor extendable, whereas the stable model can be used in a wide variety of applica-
tions, by just hooking the application 1Os to the general pattern.

e Challenges and constraints of an application are easier to determine in the stable
model as compared to the traditional model and all the challenges and constraints
defined in the stable model are applicable for all applications in any domain.

FIGURE 7.7 Sequence diagram for mathematical mapping.

Visualization AnyParty AnyCriteria AnyEvidence AnyMedia AnyMap AnyType Me?h?;ism AnyEntity]]?Fe r::lel:t_
requested by
defines
limits
implements
indicafted by
on
prepared by
specifies
influences
uses
relates
part of
produfed by
through

uianed udisa a|qels depwAuy

681

190 Software Patterns, Knowledge Maps, and Domain Analysis

P uses
) accesses
Person 1
1.*
GoogleWebsite
1.*
Symbol
. displays
Driver v R
» studies explains L.
A
‘ GoogleMap
specifies ¥ <>—|
Legend —
Address shows
v
finds 4
A ShortestRoute
accepts L.r
MapService Algorithm
uses p

FIGURE 7.8 Traditional model of a map.

* The interdependency among the classes in the traditional model is very high such
that a small change in one class disturbs the whole model. But this is not the case
in the stable model.

* The number of classes in the traditional model is more to represent any application
and they are very application specific, but in the stable model the number of classes
is limited, which makes the stable model easier to understand and implement.

e It is very difficult to define multiplicity of relationship in the traditional model,
whereas in the stable model, the multiplicity constraint is more obvious and easy
to determine.

7.2.9.2 Measurability
7.2.9.2.1 Quantitative Measure
Factors on which quantitative measures can be applied are as follows:

1. Quantity aspect of EBTs, BOs, and 10s. The more the number of patterns, the
more the lines of code that will result, while developing the system. In addition, as
lines of code increase, error propagation rate will also increase and it will be dif-
ficult to maintain accuracy in pattern development. Quantitative aspects show that
EBTs, BOs, and 10s should be selected in such a way that they should cover all the
necessary patterns required in modeling, and yet they should be developed using a
manageable number of lines of code, which will result in lesser error propagation.

2. Number of classes. The second aspect of quantitative metrics is that the stability
model has lesser number of classes with focus on explicit as well as implicit factors,
as compared to the traditional model. The stability model relies on the concept of
EBTs, BOs, and pluggable 10s. As a result, the base pattern remains stable and has
the capability of representing a large number of applications by just hooking the

AnyMap Stable Design Pattern 191

appropriate 10s with the base pattern. This reduces the number of classes required
to represent an application by a drastic amount.

3. Cost estimation. Determining and developing estimation or measurement metrics
is far easier and less time consuming as compared to that in the traditional model,
because we know the base pattern of a stable model well in advance.

4. Coupling among classes. Coupling represents how tightly the classes bind together
and depend on each other. In the traditional model, coupling among classes is very
high. As aresult, even a small change or modification to any class in the traditional
model ripples through and affects the entire model, whereas in a stability model,
change in one class does not affect the whole model and remains restricted to that
particular BO.

5. Constraints. They represent the multiplicity of the class and are very easy to define
in the stability model as compared to the traditional model.

7.2.9.2.2 Qualitative Measure

Qualitative measure of a pattern relates to usability, stability, scalability, and maintainabil-
ity of the pattern. If you can use pattern for a number of applications without any significant
changes in the system, then the pattern will have a number of qualitative qualities. Moreover,
the pattern should be reusable in a wide variety of application. Besides these features, the
maintenance cost of the pattern should also be very low. Stable model approach to develop
patterns supports all these features, whereas traditional model does not. Patterns developed
by using traditional model are quite specific to many applications and thus cannot be used
repeatedly. Moreover, they are meant for only one specific application. For a new applica-
tion with the same base, an entirely new pattern has to be developed which incurs a lot of
cost and resources. However, stability model is opposite to the traditional model. One single
pattern only supports a variety of different application with the same goal.

7.2.10 MODELING Issues, CRITERIA, AND CONSTRAINTS

7.2.10.1 Abstraction

In stable model, classes are classified into three layers: EBT, BO, and IO. EBT represents the
goal of the pattern (the basic or core of the pattern and its purpose). BOs are tangible objects,
but externally stable, and they can adapt to any applications. This BO layer encapsulates the
pattern behavior from the application and thus, results in reusability of the pattern in wide
range of applications. The third layer is IO and is specific to the application, which actually
represents the application and is hooked to the second layer of BO. Thus, the core of the pattern
lies in EBT and BO, and thus, it becomes necessary to discuss at length on the selection of
EBT and BO, so that the pattern can fit to any application in any domain without major changes.

Map cannot be the ultimate goal of the pattern. Hence, in this pattern, map is taken as
BO and AnyMap design pattern is developed.

The next step is to find the ultimate goal or EBT for this design pattern. There can be a num-
ber of goals associated with map like mapping, navigating, recording, and analyzing. After
much discussion, we came with three goals of map—navigation, recording, and visualization.
Visualization means to form a visual picture of something. Mapping is not an appropriate
EBT here, as map also relates to graphs, charts, and functions besides geographical maps. The
other goal was taken as navigating, which means studying or analyzing the map. Recording

192 Software Patterns, Knowledge Maps, and Domain Analysis

was also taken as one of the EBT, because without recording a map the other two goals are
useless. We could not find one goal which can fit these three goals of map, so we decided on
taking three EBTs instead of one in order to cover every aspect of map application.

Next would be the selection of BO for both the EBTs.

* Visualization

e AnyActor is not the only one generating the map, as a group of people might
work together to create a map like mathematical map and biological map.
Hence, AnyParty was also chosen.

* AnyActor/AnyParty, depending on the type of map they are developing, defines
the rules or criteria of map interpretation, which also sets the rules for stan-
dardizing the map symbol. Another BO that becomes important for this pattern
is AnyCeriteria.

* Now, the next class or BO to think is AnyMechanism or AnyMethod through
which measurement is performed.

* AnyData in this pattern represents something that needs to be mapped. It can
be any location or any real object. To represent a location, AnyRegion BO is
used and the object is represented by AnyEntity.

e Depending on whether map is being developed for AnyRegion or AnyEntity,
the type of map is selected. Hence, AnyType is also taken as one BO.

e There should be something to document the map and should prove its exis-
tence. Hence, AnyEvidence and AnyMedia are also taken as BOs.

* Navigation

e Again, navigation can be done by either a single person or a group of people
who can study the map. Thus, AnyActor and AnyParty both are considered.

e Navigation can be done with any type of map and can be done for anything.
Hence, AnyType, AnyRegion, and AnyEntity are taken as BOs.

* AnyActor/AnyParty navigating should have map on something. So,
AnyEvidence is taken as BO that displays map and shows its existence.
Moreover, the map evidence will be present on some media; hence, AnyMedia
is also selected as one of the BO.

* Recording

* Recording can be done by anybody. Hence, both AnyActor and AnyParty were
chosen as BOs of the pattern.

e Some rules have to be followed while recording. Hence, AnyParty or AnyActor
should be defined before starting the process. As a consequence, AnyCriteria
was also chosen.

* AnyCriteria is based on the type of data and the amount of data to be recorded.
So, AnyData was also considered.

* Recording has to be done on some media. Thus, AnyMedia forms an important
part of the pattern.

» Different media uses different formats for storage. To represent these formats,
AnyLog BO was taken.

* There has to be some properly defined method via which AnyMap can be stored
on AnyMedia. Thus, AnyMechanism was also chosen as one of the BOs.

* AnyEvidence was also taken as it presents a proof for the existence of AnyMap.

AnyMap Stable Design Pattern 193

* AnyLegend and AnySymbol also form a part of the pattern as AnyMap uses
them to symbolize various things.

* AnyMap is of AnyRegion or AnyLegend. Hence, they also form a part of the
pattern.

e In the end, using all these BOs, a pattern was developed, and this pattern was
complete by itself and was able to support all the applications from any domain.

7.2.11 DESIGN AND IMPLEMENTATION ISSUES

In the design phase, the BOs and EBTs so decided are taken and a pattern is formulated by
using them. This phase involves the tedious task of deciding on the attributes and operations
for each EBT and BO. Once the attributes and operations are finalized, the constraints associ-
ated with each one of them are listed in order. Then, the relationship among BOs and EBTs
is defined and a stable pattern is designed. The challenges and constraints associated with the
pattern as a whole are also taken into consideration. After the design phase is over, the next
phase is implementation phase. In this phase, the pattern is applied to any desired application.
For this, the IOs are first defined based on the context of the application and then hooks are
created between pattern and IOs of the application. Thus, in implementation phase, the pat-
tern is developed for the application by simply hooking the IOs of the application to the BOs
of the pattern. One way of developing the hooks is via interface (see Figure 7.9).

AnyParty/
AnyActor
Designation, workHours, 10
AnyCriteria location, skill, validit‘y,
status, leadTo, condition,
Navigation — priority, validity,
parameterUsed, factor, 10
AnyMap characteristics, area,
location, description,
position, format,
AnySymbol domain, context 10
Visualization = |—
AnyLegend
Generate()
AnyData Vizualizes()
Recording — consistsOf() 10
Limits()
AnyEvidence Influences()
Determines()
Works() 10
) Classifies()
AnyMedia provesExistence()
Documents()
AnyType

FIGURE 7.9 Hooking BOs to 1Os.

194 Software Patterns, Knowledge Maps, and Domain Analysis

Interface is a function that would list all operations of BOs in a combination required
to connect BOs to 10s. Thus, BOs will connect to IOs via interface. It will also increase
functionality. All the links, which are used to connect to 1O0s, will be included in
interface.

7.2.12 FORMALIZATION
Formalization in XML (AnyMap [Recording]):

<patterns>
<title>
"recording"
</title>
<sort>
<title>
"Recording"
</title>
<sort>
<title>
"Recording"
</title>
<sort>
<title>
n name n
</title>
<type>
String
</type>
<universe>
(.}
</universe>
</sort>
<sort>
<title>
n type n
</title>
<type>
String
</type>
<universe>
(.}

</sort>
<sort>
<title>
"description"
</title>
<type>
String
</type>
<universe>

</universe>

AnyMap Stable Design Pattern

(.}

</sort>
<function>

</universe>

<title>

"allowReusability™"

</titles>

<type>

Constant: allowReusability
</type>

</function>

<function>

<titles>

"providePerseverance"
</titles>

<type>

Constant: providePerseverance
</type>

</function>

<function>

</sort>
<sorts>

<title>

"definePurpose"
</titles>

<type>

Constant: definePurpose
</type>

</function>

<title>
"AnyParty"
</title>

<sort>

<title>

"name"
</title>

<type>

String

</type>

<universe>

(.}

</universes>

</sort>

<sort>

<title>

n type n

</title>

<type>
String

</type>

</sort>

195

196 Software Patterns, Knowledge Maps, and Domain Analysis

<sort>
<title>
"description"
</title>
<type>
String
</type>
<universe>
(.}

</sort>
<function>
<title>

</universe>

"accessData"
</titles>
<type>
Constant : accessData
</type>
</function>
<function>
<title>
"performRecording"
</titles>
<type>
Constant : performRecording
</type>
</function>
<function>
<title>
"useMedia™"
</title>
<type>
Constant : useMedia
</type>
</function>
</sort>
<sort>
<title>
"AnyType"
</titles>
<sort>
<title>
"name"
</titles>
<type>
String
</type>
<universe>
{2
</universes>
</sort>

AnyMap Stable Design Pattern 197

<sort>
<title>
"type"
</title>
<type>
String
</type>
</sort>
<sort>
<title>
"description™"
</title>
<type>
String
</type>
<universe>
(.}
</universe>
</sort>
<function>
<title>
"classifieg"
</titles>
<type>
Constant : classifies
</type>
</function>
<function>
<title>
"organize"
</title>
<type>
Constant : organize
</type>
</function>
<function>
<title>
"stateStandard"
</title>
<type>
Constant : stateStandard
</type>
</function>
</sort>
<sort>
<title>
"AnyMechanism"
</title>
<sort>
<title>

n name n

198 Software Patterns, Knowledge Maps, and Domain Analysis

</title>
<type>
String
</type>
<universe>
(.}
</universe>
</sort>
<sort>
<title>
n type n
</title>
<type>
String
</type>
<universe>
(.}
</universe>
</sort>
<sorts>
<title>
"description"
</titles>
<type>
String
</type>
<universe>
(.}
</universe>
</sort>
<functions>
<title>
"specifyOperation"
</title>
<type>
Constant : specifyOperation
</type>
</functions>
<functions>
<title>
"records"
</title>
<type>
Constant : records
</type>
</functions>
<function>
<title>
"utilizeMedia"
</title>

<type>

AnyMap Stable Design Pattern

Constant
</type>
</function>
</sort>
<sort>
<title>
"AnyEntity"
</title>
<sort>
<title>
"name"
</title>
<type>
String
</type>
<universe>
{2
</universe>
</sort>
<sorts>
<title>
n t-ype n
</titles>
<type>
String
</type>
<universe>
(.}
</universe>
</sort>
<sort>
<title>
"description"
</title>
<type>
String
</type>
<universe>
(.}

</sort>
<function>
<title>

</universe>

utilizeMedia

"distinguishEntity"

</title>
<type>
Constant
</type>
</functions>
<function>
<title>

distinguishEntity

199

200 Software Patterns, Knowledge Maps, and Domain Analysis

"occupySpace"
</title>
<type>
Constant : occupySpace
</type>

</function>
<function>
<title>

"specifyEntity"
</title>
<type>
Constant : specifyEntity
</type>

</function>
</sort>
</sort>
<sort>
<title>
"AnyLog"
</title>
<sort>
<title>
"name"
</title>
<type>
String
</type>
<universe>
{.)
</universe>
</sort>
<sort>
<title>
n type n
</title>
<type>
String
</type>
<universe>
(.}
</universes>
</sort>
<sort>
<title>
"description"
</title>
<type>
String
</type>
<universe>
(.}

AnyMap Stable Design Pattern

</universe>
</sort>
<function>
<title>
"residesOn"
</title>
<type>
Constant : residesOn
</type>
</function>
<function>
<title>
"givesSpace"
</title>
<type>
Constant : givesSpace
</type>
</function>
<function>
<title>
"showCapacity"
</title>
<type>
Constant : showCapacity
</type>
</function>
</sort>
</sort>
<sorts>
<title>
"AnyMedia™"
</title>
<sort>
<title>
"name"
</title>
<type>
String
</type>
<universe>
{ .}
</universes>
</sort>
<sort>
<title>
n type n
</title>
<type>
String
</type>

<universe>

201

202 Software Patterns, Knowledge Maps, and Domain Analysis

(.}
</universe>
</sort>
<sort>
<title>
"description™"
</titles>
<type>
String
</type>
<universe>
(.}
</universes>
</sort>
<functions>
<title>
"create"
</title>
<type>
Constant : create
</type>
</function>
<functions>
<title>
"open"
</title>
<type>
Constant : open
</type>
</function>
<functions>
<titles>
n save n
</title>
<type>
Constant : save
</type>
</function>
</sort>
</sort>

</pattern>

7.213 TEeSTABILITY

If AnyMap design pattern can be used, as it is without changing the core design and by
only plugging 1Os for infinite number of applications, then AnyMap pattern can be said
to be testable. In applicability section, two widely different applications are illustrated
and they do not require changing the core design of the pattern. Using the scenarios listed
in this chapter, many such scenarios can be deduced and proved that AnyMap pattern is
indeed testable.

AnyMap Stable Design Pattern 203

The above-presented recording pattern is generally applicable to all the domains, and it
is designed in such a way that it should be applicable in any type of scenario. If the designed
pattern can be applied to all the application, then it is said to be testable. If the derived
model is applied with hooking some IOs to related BOs pertaining to that particular sce-
nario, then the pattern is called stable.

There are certain conditions that must be satisfied in order to accomplish successful
recording. If these requirements and conditions are not maintained, then recording pat-
tern may fail in end. One of the most basic requirements is to choose proper recording
medium depending upon what entity to be recorded. Second is proper security measures
should be taken care to prevent the loss of recorded media in case of any natural disas-
ter, theft, and other intrusion-related malicious activities. For example, if a company
is recording all the details of their employees in a computer database and then to any
other digital media like CD and DVD. In that case, if the system crashes due to virus or
disturbance while recording, the company may lose the data, and here in this case, the
recording pattern will fail.

Some scenarios in which the above patterns will not give correct result and will fail are
as follows:

1. Visualization. This pattern fails when the criterion defined by party or actor is not
properly followed while implementing mechanism to generate a map. This mistake
can mess up with the various symbols used for notation purposes and it might hap-
pen to symbols mean that the same or two different things on a map are denoted by
a single symbol.

2. Navigation. While navigating, the party or actor analyzing the map should care-
fully read all the interpretation rules and purpose of the map properly. Moreover,
the person should also make proper use of legend as any negligence while deci-
phering the map can lead to inappropriate results.

3. Recording. Recording of a map can go wrong when AnyParty/AnyActor does not
follow proper mechanism and all the rules laid down for the media chosen.

7.2.14 BusINESs ISSUES

This section covers business rules, their structural elements, and properties:

* A map can be used by individual, group, organization, software, or a concept.

* A map connects one kind of data to another kind of data.

* Data mapped from or to can be of any form. It can be information, physical objects,
or intangible concepts.

* The mechanism employed to perform the visualization can be any method.

e There should be some data ready for visualization.

e Data used for visualization should have real existence and should not be
imaginary.

* All the rules influencing the mechanism used in visualization should be defined
properly.

e The symbols used in map should be defined in legend properly.

* Any exceptions with the mechanism involved in visualization should be laid down
clearly beforehand.

204

Software Patterns, Knowledge Maps, and Domain Analysis

The map so created should be documented properly using the appropriate media.
While navigating, all the symbols should be deciphered correctly.

The choice of media for recording should be done keeping the type of map and
intended users in mind.

The format in which map is stored should be in accordance with the media type.
The mechanism used for recording a map should be chosen according to the type
of the map.

Business rules control and manage the behavior of the system. They impose constraints on
the system and tell the system what it should do. Business rules are atomic in nature and
thus they cannot be broken down into smaller pieces without causing a loss of information.
They must be defined prior to defining requirements of the system.

Elements of business rules are as follows.

1. Business Items

This element corresponds to different classes forming the pattern. Stable pattern

consists of classes at various levels: EBT, BO, IO, and they have different functions

and responsibilities at each level. Some of the business rules defined for business

items are as follows:

* Each class should be capable of at least one function.

* C(lasses should be able to work independently.

* 1O classes should interact with BO classes only.

* EBT classes should interact with BO classes.

» C(lasses should be able to reflect the specificity of application.

* EBT class should represent the ultimate goal of the pattern.

* BO classes when combined should be able to represent a pattern depicting the
meaning of EBT/s involved.

. Properties

Properties in business language corresponds to attributes and operations of classes

in stable language. Business rules related to properties are as follows:

e The operations defined for the class should be unique and generic, such that
they can be used to represent any application.

* The class should be able to carry out the responsibility assigned to it.

* The attributes of the class must cover all the distinct aspects of the class.

* The operations defined for the class should be such that the class is able to per-
form them independently, as well as in cooperation with other classes.

. Relationships

It presents the interdependency among classes and in what manner one class relates

to the other class. Business rules defined at this level are as follows:

* One relation can connect only two classes.

* Every class should relate to another class through some relation. No classes in
a pattern can standalone.

* Relation can be simple relation connecting two classes, that is, association, or it
can be a kind of or a part of relation.

* Every associative relation has some multiplicity. The default is one to one.

* Every association relation has some name that represents the type of connec-
tion between the two classes.

AnyMap Stable Design Pattern 205

4. Facts
These represent business or common terms that can occur in the form of EBT or
BO. Some of them are as follows:
1. Navigation. It is the process of reading, analyzing, and controlling.
Visualization. It is the process of forming visual pictures.
Recording. 1t is the process of documenting.
Legend. It is the dictionary of symbols used on map.
Boundary. This term represents any geographical boundary or functional
boundary.
6. Notation. It represents symbols like color, lines, and images used on map.
5. Constraints
These represent the restrictions imposed on pattern. Some of the constraints are as
follows:
One or more criteria can influence AnyMechanism.
AnyMap should be represented on AnyEvidence.
Visualization/navigation can be done by one or many actor/party.
AnyMap should have at least one AnyType.
AnyMap can be of AnyEntity/AnyRegion.
Visualization can be done through one or more AnyMechanism.

Nk

kW =

Based on the above elements, some generic business rules for the pattern are given as
follows:

. AnyData used for visualization can be AnyEntity or AnyRegion.
. AnyRegion used for visualization should have well-defined boundary.
. AnyEntity should have real existence and should not be imaginary.
. AnyParty/AnyActor involved in visualization should define all the criteria properly.
. AnyMechanism used in visualization should follow AnyCriteria defined.
. AnyMap should be indicated on AnyEvidence to prove its existence.
. While navigating, AnyParty/AnyActor should use AnyLegend properly to under-
stand AnySymbol.
8. AnyType of AnyMap decides whether map is for AnyRegion or AnyEntity.
9. AnyMap should be available for navigation.
10. AnyCriteria should be validated for visualization.
11. AnyMap is stored on AnyMedia in the form of AnyLog.
12. AnyParty/AnyActor requires AnyData of map to decide AnyMechanism and
AnyMedia for recording.
13. Quality of AnyLog depends on the capabilities of AnyMechanism.
14. AnyLog is a faithful reproduction of AnyType.
15. All recording mechanisms should be defined.

IO DW=

7.2.15 KNowN UsAGE

The AnyMap pattern can be used in many applications in our daily life. Road maps are the
most common form of AnyMap pattern. But almost every application that tries to relate one
set of things with another set of things can use the AnyMap pattern. The dictionary that we
use often to look up the meaning of a word is a form of map. The directory in a shopping

206

mall is another form of map. These are the more physical or tangible kind of AnyMap pat-
terns. At the more abstract level, the functions used by mathematicians and physicals are
applications of AnyMap. Computer applications find many usage of this pattern in data
mapping, internet domain name servers, and site mapping. The possibilities are many and
endless. With global positioning system (GPS) installed in cars, personal digital assistants
(PDAs), and mobile phones being in vogue, AnyMap design pattern provides ample usage
for easy implementation. Satellite maps are used by military to get an idea of enemy’s ter-
rain and positions. Site maps are useful to first-time users to access required information

Software Patterns, Knowledge Maps, and Domain Analysis

correctly (see Sidebar 7.2).
Number of scenarios where this pattern can be used are as follows:

This pattern can be used as geographical map, for teaching in the class, for finding
routes, and for pinpointing any location, in GPS.

This pattern can be used as biological map, to make a map of chromosomal cross-
over like in genetic map and linkage map (see Sidebar 7.1).

Every function is a type of map. Hence, this pattern can also be used for represent-
ing any mathematical function.

This pattern can also be used by astronauts for their research, as they can use this
pattern to develop a map of constellations, galaxies, and stars.

Through this pattern, site maps can be developed which aid in developing
websites.

7.2.16 Tips AND HEURISTICS

1.

AN

10.

In designing the AnyMap pattern, we try to not just look at the most obvious map
pattern. We attempt to research and try to exhaust all possible forms of a map and
can try to extract commonalities among all the maps that we could find, so that our
pattern will be as generic and extensible as possible.

. We first tried to identify the EBT of the pattern, which serve to anchor our design

goals.

. In looking for the BOs that provide capabilities for the identified EBT, we will

select objects/concepts that are more stable, which cannot change easily over
time.

. We would also make sure that our pattern can be used by any party, human, or

nonhuman (i.e., software) alike and the pattern can be scaled to different types of
data involved.

. EBT must represent the goal of the pattern.
. Intuition and experience is required in order to find correct EBT for the pattern.
. BOs provide capabilities to achieve the goal of the pattern. Identification of BO

requires spending some time in thinking and coming up with correct BOs.

. BOs provide hooks to which specific IOs can be plugged and getting varied appli-

cations in diverse domains. This reduces the cost by encouraging reusability.

. Designing class diagram using EBTs and BOs serves as the basis for coming up

with correct sequence diagram. Drawing sequence diagram using class diagram is
much easier and accurate.

Writing a clear and thorough description for class diagram and sequence diagram
helps in understanding the concept behind the specific design pattern.

AnyMap Stable Design Pattern 207

11. Describing patterns is a hard job and requires careful and calibrated work.

12. Metamodel is totally different than stable model and it is a traditional model.

13. Pattern design must be generic, so that it can be applied to applications spread
across various domains.

SUMMARY

AnyMap is modeled by using the SSM by identifying the corresponding EBTs and BOs.
This model can be used for different domains and IOs can be extended according to the
application. The model represents the core knowledge of the pattern in different applica-
tions and is presented as EBTs and BOs. The model is explained with two specific applica-
tions that perform well based on this model.

Though building a stable design pattern for AnyMap that can be reused and reapplied
across diverse domain is always difficult and requires thorough understanding of the prob-
lem, it is worth the effort and time. Modeling AnyMap pattern by using SSM can result in
reusable, extensible, and stable pattern.

The correct identification of EBTs and BOs for AnyMap is the most challenging
task and requires some prior experience. Once EBTs and BOs are correctly identified,
next main challenge is to determine the relationship between EBTs and BOs, so that
AnyMap pattern can hold true in any context of usage for data. Once this is done, depend-
ing on the application, the IOs are attached to the hooks so provided by the BOs. Thus,
using AnyMap pattern as a basis, infinite number of applications can be built by just plug-
ging in the application-specific 1Os to the pattern. This results in reduced cost, effort, and
stable solution. Hence, AnyMap design pattern is very useful.

OPEN RESEARCH ISSUES

How to test the AnyMap design pattern effectively is one of the open issues that are left to
the user to probe further. Some pointers have been provided under the testability section,
but they need further research.

One open issue is to come up with one ultimate goal for AnyMap design pattern, which
will contain goals like visualization, navigation, and recording.

List all the possible pitfalls of this pattern.

REVIEW QUESTIONS

1. Explain what do you mean by the term map?

. What is the usage of the AnyMap stable design pattern?

. Can the term map be used in any other context than what you thought of?

. Can AnyMap design pattern be used interchangeably with AnyChart design pattern?
Explain your answer.

. Which pattern can AnyMap be used interchangeably? Justify.

. What problem does the AnyMap design pattern solve?

In what context is the AnyMap design pattern (Recording) being applied?

. In what context is the AnyMap design pattern (Navigation) being applied?

. In what context is the AnyMap design pattern (Visualization) being applied?

. Name a few scenarios for the application of AnyMap design pattern (Recording).

FENOSINS)

SO a0 W

208 Software Patterns, Knowledge Maps, and Domain Analysis

11. Name a few scenarios for the application of AnyMap design pattern (Navigation).

12. Name a few scenarios for the application of AnyMap design pattern (Visualization).

13. What are the challenges faced in implementing the AnyMap design pattern
(Recording)?

14. What are the challenges faced in implementing the AnyMap design pattern
(Navigation)?

15. What are the challenges faced in implementing the AnyMap design pattern
(Visualization)?

16. What are the constraints faced in implementing the AnyMap design pattern
(Recording)?

17. What are the constraints faced in implementing the AnyMap design pattern
(Navigation)?

18. What are the constraints faced in implementing the AnyMap design pattern
(Visualization)?

19. Discuss briefly the functional requirements of AnyMap design pattern (Recording).

20. Discuss briefly the nonfunctional requirements of AnyMap design pattern
(Recording).

21. Discuss briefly the functional requirements of AnyMap design pattern (Navigation).

22. Discuss briefly the nonfunctional requirements of AnyMap design pattern

(Navigation).

23. Discuss briefly the functional requirements of AnyMap design pattern
(Visualization).

24. Discuss briefly the nonfunctional requirements of AnyMap design pattern
(Visualization).

25. Explain AnyMap pattern model (Recording) with the help of class diagram and
CRC cards.

26. Explain AnyMap pattern model (Navigation) with the help of class diagram and
CRC cards.

27. Explain AnyMap pattern model (Visualization) with the help of class diagram and
CRC cards.

28. What are the design and implementation issues for the given AnyMap design pat-
tern (Recording)?

29. What are the design and implementation issues for the given AnyMap design pat-
tern (Navigation)?

30. What are the design and implementation issues for the given AnyMap design pat-
tern (Visualization)?

31. Provide some patterns related to the AnyMap design pattern (Recording).

32. Provide some patterns related to the AnyMap design pattern (Navigation).

33. Provide some patterns related to the AnyMap design pattern (Visualization).

34. Explain usage of AnyMap design pattern (Recording) with two examples other
than the ones provided in this chapter.

35. Explain usage of AnyMap design pattern (Navigation) with two examples other
than the ones provided in this chapter.

36. Explain usage of AnyMap design pattern (Visualization) with two examples other
than the ones provided in this chapter.

37. How does traditional model differ from the stability model? Explain using the
AnyMap design pattern model (Recording).

AnyMap Stable Design Pattern 209

38. How does traditional model differ from the stability model? Explain using the
AnyMap design pattern model (Navigation).

39. How does traditional model differ from the stability model? Explain using the
AnyMap design pattern model (Visualization).

40. Enlist some of the business issues encountered for the AnyMap design pattern
(Recording).

41. Explain procedure for testing the AnyMap design pattern.

42. Discuss some of the real-time usages of AnyMap design pattern (Recording).

43. Discuss some of the real-time usages of AnyMap design pattern (Navigation).

44. Discuss some of the real-time usages of AnyMap design pattern (Visualization).

45. What are the lessons learned by you from this pattern.

46. List some of the domains in which AnyMap design pattern (Recording) can be
applied.

47. List some of the domains in which AnyMap design pattern (Navigation) can be
applied.

48. List some of the domains in which AnyMap design pattern (Vi