
Shelve in
Databases/Oracle

User level:
Intermediate–Advanced

Kuhn

SOURCE CODE ONLINE

RMAN is Oracle’s flagship backup and recovery tool, but did you know it’s also
an effective database duplication tool? Oracle RMAN Database Duplication
is a deep dive into RMAN’s duplication feature set, showing how RMAN can
make it so much easier for you as a database administrator to satisfy the many
requests from developers and testers for database copies and refreshes for use
in their work. You’ll learn to make and refresh duplicate databases with a single
command, and of course you can automate and schedule that command so
that developers and testers are supplied with regular, known good databases
without any manual intervention on your part.

Fast and easy provisioning of databases for developers and testers is a
driving force in the move to cloud computing and virtualization. RMAN’s robust
database duplication feature set plays right into this growing need for ease of
provisioning, enabling easy duplication of known-good databases on demand,
across operating systems such as between Linux and Solaris, and even across
storage environments such as when duplicating from a RAC/ASM environment
to a single-node instance using regular file system storage. Oracle RMAN
Database Duplication is your thorough guide to providing amazing business
value to your organization by way of fast and easy provisioning of database
duplicates in service of development and testing projects.

9 781484 211137

52999
ISBN 978-1-4842-1113-7

RELATED

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Author ��xi

About the Technical Reviewers ��xiii

Acknowledgments ���xv

Introduction ���xvii

Chapter 1: Introduction ■ ��1

Chapter 2: Manual Duplication Techniques ■ ����������������������������������13

Chapter 3: Backup-Based Duplication ■ ��55

Chapter 4: Active Duplication ■ ���85

Chapter 5: Advanced Topics ■ ���109

Chapter 6: Oracle Net Primer ■ ��139

Index ��165

www.apress.com
www.ioug.org
www.ioug.org/join

xvii

Introduction

Companies often have the requirement to provision copies of databases. These replicated
databases are used for a wide variety of business purposes, such as reporting, testing
Oracle upgrades, testing new application releases, troubleshooting, performance tuning,
and so on. There are a wide variety of techniques for making copies of databases. Oracle
provides many tools that can assist with database duplication. One such tool is the
RMAN DUPLICATE functionality. With just a few lines of code DBAs can efficiently and
easily create copies of databases.

The focus of this book is database duplication using RMAN. If you find yourself
frequently replicating databases then consider using RMAN duplication to automate
what would otherwise be a sometimes complicated process.

What This Book Covers
Chapter 1 introduces you to the topic of database duplication. The groundwork for the
other chapters is provided here. Chapter 2 covers background information on manual
techniques for making copies of databases. These methods are important to understand
as they’re widely used and will allow you to compare and contrast the manual methods
with the RMAN duplication functionality.

Backup-based RMAN duplication is the focus of Chapter 3. This simplest way to
duplicate a database is using an RMAN backup as the source. The targetless duplication
feature is covered extensively here. Chapter 4 moves on to active duplication. This type of
replication uses the live database as the source for duplicating a database. Chapter 5 then
covers advanced topics such as duplicating subsets of tablespaces, enabling parallelism,
container/pluggable database duplication, and RAC/ASM to non-RAC/non-ASM
duplication.

Chapter 6 is an introduction to Oracle Net. Many of the duplication scenarios
require you to connect to the source and destination databases over Oracle Net. This
chapter serves as an introduction to Oracle Net implementation and management.

These six chapters will provide you with a solid foundation for Oracle RMAN
database duplication. With this knowledge you’ll be able to efficiently provision and
replicate your company’s databases; these skills are needed by all DBAs.

xviii

■ IntroduCtIon

Conventions
The following typographical conventions are used in this book:

$ is used to denote Linux/UNIX commands that can be run by •	
the operating system owner of the Oracle binaries (usually
named oracle).

SQL> is used to denote one-line SQL*Plus statements.•	

Monospaced font is used for code examples, utility names, •	
file names, URLs, and directory paths.

Italics are used to highlight a new concept or word.•	

UPPERCASE•	 indicates names of database objects like views, tables,
and corresponding column names.

< > is used where you need to provide input, such as a filename or •	
password.

Source Code
The code for the examples shown in this book is available on the Apress web site,
www.apress.com. A link can be found on the book’s information page under the
“Source Code/Downloads” tab. This tab is located underneath the Related Titles section
of the page.

Errata
Apress makes every effort to make sure that there are no errors in the text or the code.
However, to err is human, and as such we recognize the need to keep you informed of any
mistakes as they’re discovered and corrected. Errata sheets are available for all our books
at www.apress.com. If you find an error that hasn’t already been reported, please let us
know. The Apress web site acts as a focus for other information and support, including
the code from all Apress books, sample chapters, previews of forthcoming titles, and
articles on related topics.

Contacting the Author
If you have any questions regarding the book, feel free to contact me directly at the
following email address: darl.kuhn@gmail.com.

www.apress.com
www.apress.com
www.apress.com

1

Chapter 1

Introduction

RMAN (Recovery Manager) is Oracle’s flagship backup and recovery tool. Although RMAN’s
main purpose is the backup and recovery of Oracle databases, there are other features that
make this utility invaluable to an organization. One salient feature of RMAN is that it allows
you to efficiently copy a database from one location to another. The copy of the database
can be placed on the same server as the source database or placed on a remote destination
server. RMAN can use as its source either a live production database or an RMAN backup
of a database. This is all effortlessly achieved through the RMAN DUPLICATE command.
With just a few lines of code you can replicate a database from one environment to another.
Furthermore this process is easily scripted for automation and repeatability.

I was a latecomer to using RMAN’s duplication functionality. The genesis for
my using this technology started a few years ago when I was assigned to work with a
development team that required fairly frequent refreshes of development and testing
environments from a copy of the production database. At first I grumbled about having
to refresh environments for them. I’d tell them that there were several complicated steps
involved in making a copy of a database. Indeed, for large databases it takes a great
deal of time to copy data files and/or backups from server to server. Additional time is
required to perform the restore and recovery of the copied database. I mandated that
the team provide me at least a two-day warning when they required an environment
to be replicated. The development manager then proposed that we duplicate various
environments at a set time each week.

This is when I started using the DUPLICATE command. I figured out the DUPLICATE
syntax required for each environment. I then encapsulated that logic in operating system
shell scripts and additionally automated the running of these duplication jobs through an
operating system scheduling utility (cron). Now each week this complex task of duplicating
various environments has been reduced to processes automatically running and
subsequent emails from the cron job informing me the duplication was successful.

I’ve also come across other scenarios wherein RMAN’s duplicate functionality
has vastly simplified what would otherwise be quite complex tasks. For instance, my
manager asked me what it would take to replicate an Oracle real application cluster
(RAC) database running on Oracle automatic storage management (ASM) to a non-RAC
and non-ASM environment. He also asked if it would be possible to replicate the other
way, to RAC/ASM from non-RAC/non-ASM. Given the complexity of RAC and ASM
environments, this task at first seemed impossible. But the RMAN duplicate functionality
turns it into a one-command operation.

Chapter 1 ■ IntroduCtIon

2

Another situation I faced was replicating databases where the source database server
was on a different operating system from the destination host; for example, having to
duplicate from a Solaris-based system to a Linux server. Here again the RMAN duplicate
functionality takes a seemingly difficult task and turns it into a few lines of code.

The purpose of this book is to provide clear and precise examples of how to take
advantage of RMAN-based duplication in your work environment. Most examples will
include a diagram that details the configuration for each scenario. The most commonly
encountered problems for each situation are also explained.

This chapter starts by introducing the reasons for using RMAN duplication. Then I
discuss the advantages and disadvantages of this feature. I also cover the basic setup that
I use for the examples in this book. This information will form the basis for moving on to
simple and then advanced RMAN duplication scenarios.

Use Cases for Duplicating
In many instances it’s a requirement to replicate a database from one environment to
another. There are many important reasons for this. Listed next are typical business
requirements that drive the duplicating of a database.

Offload reporting to a periodically refreshed copy of production•	

Build development/test/quality assurance/beta environments•	

Test database upgrades and migrations•	

Test new application code•	

Troubleshoot production issues•	

Exercise backup and recovery strategy•	

Create a Data Guard standby database used for disaster recovery •	
and reporting

Database administrators (DBAs) add value by being able to quickly and effectively
replicate a copy of one database to another. Manually duplicating a database is not
difficult; however, it requires that the DBA perform about a dozen separate steps. This
manual process can be time consuming and prone to error. RMAN vastly simplifies the
database duplication operation by reducing it to a one-line command.

Methods for Replicating
Over the years, DBAs have devised many methods for transferring data from one
database to another. Each method has its merits. Table 1-1 describes at a high level the
most basic advantages and disadvantages of each replication technique. Not all possible
replication tools are listed, nor are every single pro and con listed. Rather this table
serves as a starting point for discussing when it is appropriate to use the RMAN duplicate
functionality.

Chapter 1 ■ IntroduCtIon

3

Table 1-1. Replication techniques

Technique Advantages Disadvantages

Copy of hot, cold,
or RMAN backup

Most DBAs are familiar with
these techniques, no extra
license, fairly straightforward

Many manual steps involved,
time consuming

Data Pump DBAs are familiar with this
tool, no extra license, excels at
replicating specific schemas,
tablespaces, and tables

Not as efficient when moving
large amounts of data (e.g.,
hundreds of gigabytes)

Old exp/imp utilities DBAs are familiar with these
tools, easy to use

The exp utility is deprecated,
Oracle strongly recommends
to use Data Pump instead

Database link Simple DML statements or
Materialized Views to replicate
from remote database

Not efficient for moving large
amounts of data

External tables Good for transporting data
across different platforms and
loading data from OS files

Many manual steps involved

GoldenGate Oracle’s flagship data-
replication tool, multi-direction
replication possible

Requires an extra license and
maintenance of replication
environment

SQL*Loader Excellent for bulk-loading data
from OS files, can load data over
the network

Sometimes non-intuitive to
craft SQL*Loader control file
containing instructions

Pro*C or Java Excellent for bulk-loading data
from OS files

Requires knowledge of the
language being used

Data Guard Oracle’s flagship disaster
recovery tool, keeps standby
database synchronized with
primary database

Requires a DBA familiar with
Data Guard, and for some
advanced features requires an
extra license

Enterprise Manager Provides a graphical interface to
many of the tools in this table

Requires an extra license, and
some setup and maintenance is
involved

Transportable
tablespaces

Excellent for transporting data
across different platforms

Some knowledge of Data Pump
and/or RMAN is required, some
downtime may be required for
tablespaces being transported

Sync/Split
technologies

Fast way to produce a copy of a
large database

Costs money and requires
maintenance

RMAN duplication A few lines of code implements
the replication of entire
database, simple and efficient

Some knowledge of RMAN is
required

Chapter 1 ■ IntroduCtIon

4

As you can see, there are a wide variety of options available to replicate data. This
table doesn’t even contain every possible solution. For example, there are many third-
party tools (outside of Oracle) that can be used to efficiently replicate databases. Rather,
this table gives you an idea of what’s possible and when to use potential solutions. Don’t
decide on a duplication option and then make the requirements fit it; instead, gather the
replication requirements and determine which tool best meets those needs.

Even though I’m a huge fan of RMAN-based duplication, in the last year there have
been some non-RMAN replication solutions that I’ve used; below I explain why:

•	 External tables or SQL*Loader: A customer sends a spreadsheet
or csv file with a request to load it into the database. If I’m loading
over a network link then I’ll use SQL*Loader, otherwise I use
external tables to load data from csv files.

•	 exp/imp: I got lazy once or twice and just wanted to export one
table and so I decided to use the deprecated exp utility. Having
said that, Data Pump is a vastly superior tool for any tasks that
exp/imp have historically been used for.

•	 Data Pump: This tool really excels when you need to transport
data at a granular level, such as by schema(s), by tablespace(s),
or even by table(s). You can move schemas with or without the
data, subsets of the data, subsets of tables within a schema, and
so on. For instance, I use Data Pump quite often when just one
table needs to be backed up, or when a schema and its objects are
required to be replicated. This tool allows you to extract with a great
deal of precision just the users or objects you want replicated.

•	 Cold backup: My manager asked me to make a copy of a small
test database. The database wasn’t in archive log mode, and there
were no RMAN backups. In this situation I simply shutdown the
test database, copied the data files to the remote server, then on
the remote server re-created the control file, and lastly opened the
database with RESETLOGS.

Having discussed various duplication techniques and reasons to use (or not) these
methods, let’s now focus on RMAN’s duplication feature.

RMAN Duplicate Advantages
So when would you want to use the RMAN duplication functionality? RMAN excels when
you need an entire database copied. The copy can be placed on the same server as the
source database or on a remote server. RMAN seamlessly handles either requirement.

When you need a copy of a database that matches the source in every physical
aspect, then RMAN is the tool to use. RMAN can efficiently duplicate very large databases
across the network, between different operating system platforms, and from RAC/ASM
to non-RAC/non-ASM (and vice versa). RMAN can use the active target database as its
source, or it can use an RMAN backup for duplication. In these scenarios the RMAN
DUPLICATE command has several advantages over other manual replication methods.
I’ve divided these benefits into the three following subsections.

Chapter 1 ■ IntroduCtIon

5

Ease of Use
The following aspects demonstrate the simplicity and flexibility of RMAN-based
duplication:

The •	 DUPLICATE command is a standard part of RMAN (and
therefore is a standard part of Oracle); there’s no extra installation,
license, or cost for this feature. RMAN ships with all editions of
Oracle (although there are certain advanced features that are only
available with the Enterprise Edition).

Most Oracle DBAs are already familiar with RMAN; there’s no •	
extra training.

The •	 DUPLICATE command can be easily scripted for reliable
repeatability and automation.

You can duplicate from an RMAN backup of a database or directly •	
from a live database.

When duplicating, RMAN creates a new database identifier •	
(DBID) for the duplicated database. This means you can register
a duplicated database in the same recovery catalog as the target
(source) database. Why is the new DBID important? Consider if
you manually cloned a database (and didn’t create a new DBID)
and then tried to register the cloned database in the recovery
catalog; this would cause confusion, as the recovery catalog will
think the database already exists, thus throwing the RMAN-20002:
target database already registered… error. This could cause your
restore and recover mechanism to behave unexpectedly.

You can create a duplicate database with a different name and •	
different directory structure with a one-line command.

Duplication to a user-specified point-in-time is available.•	

Performance and Security
This next list describes many of RMAN’s default features that enhance performance and
security when duplicating:

You can allocate multiple channels to enable parallelization to •	
maximize performance.

As of Oracle 12c, RMAN by default uses the backup set format •	
when replicating from an active database; this reduces resources
required for active duplication and improves the performance.

It’s possible to duplicate encrypted databases.•	

Chapter 1 ■ IntroduCtIon

6

You can enable compression when duplicating active databases •	
with the backup set format; this greatly reduces the network
bandwidth required.

RMAN provides options for duplication of a subset of tablespaces •	
within a database in situations where you don’t require the entire
database to be replicated.

Flexible Replication
This list demonstrates that RMAN works seamlessly with other Oracle tools and across
operating system platforms where Oracle is installed:

RMAN is Data Guard–aware. You can use RMAN to create a •	
standby database using the primary database as the source. This
takes a somewhat manual and labor-DBA-intensive process and
turns it into an automated one-line-of-code operation.

You can replicate container and pluggable databases. It’s also •	
possible to duplicate subsets of pluggable databases that exist
within a container database.

It’s possible to duplicate from non-RAC, non-ASM to RAC and •	
ASM (and vice versa); this completely automates what otherwise
would be a complex task.

Some cross-platform duplication is supported. RMAN can assist •	
in duplicating between servers using different operating systems.

The bottom line here is that RMAN’s database duplication feature makes it easy to
provision copies of databases. It’s efficient, flexible, and simple to use. Every Oracle DBA
should know how to proficiently use this tool.

RMAN Duplication Overview
Next I’ll describe the basic terms involved and the duplication process. This information
lays the foundation for understanding and leveraging the concepts in this book.

Definition of Terms
The following list provides a definition of RMAN duplication components. If you’re not
familiar with these terms, now would be a good time to review them.

•	 Target (source) database. This is the source database of the
duplication operation. RMAN can duplicate directly from a live
target database or a backup of the target database. The terms
target and source are used interchangeably in this book.

•	 Target (source) server. The server that hosts the target database.

Chapter 1 ■ IntroduCtIon

7

•	 Auxiliary (destination) database. This is the database copy that
is created. This can exist on the same server as the target or on a
different server. This is a complete stand-alone clone of the target
database.

•	 Auxiliary (destination) server. The server that hosts the
auxiliary database.

•	 Active duplication. RMAN uses the live target database data files
as the source of the copy. No RMAN backup is necessary for active
duplication.

•	 Backup set format. When using active duplication, RMAN
replicates the data files across the network in a backup set format.
This is the same format as if it were copying from an RMAN backup
set. No backup set is created on disk; rather, it’s the format RMAN
uses to transfer the data files across the network. This format is
used by default and is available with Oracle 12c and above.

•	 Image copy format. When using active duplication you can
specify that RMAN use image copies. Image copies are byte-for-
byte copies of the data files. This is the only format available in
active-based duplication in Oracle 11g.

•	 Backup-based duplication. RMAN uses a backup of the target
database to create the auxiliary database.

•	 Targetless duplication. A form of backup-based duplication.
No connection to the target database (or recovery catalog) is
required.

•	 Standby database. A near real-time copy of a target database
kept in synchronization with the target database via Oracle’s
Data Guard tool. The DUPLICATE command has an option to
specify that a standby database be created for the target (primary)
database.

•	 Recovery catalog. An optional storage repository of the target
database RMAN metadata. This same metadata is stored in the
target database control file.

•	 Channels. The Oracle server processes for handling I/O between
files being copied and restored and the backup device (disk or tape).

Now that we’ve reviewed the basic duplication components and definitions, we’ll
discuss the detailed steps that RMAN performs when duplicating.

Chapter 1 ■ IntroduCtIon

8

RMAN Duplication Process
Understanding the RMAN duplication process sequence of events lays the foundation
for successfully using this technology. At a high level, when you issue a DUPLICATE
command, RMAN first allocates at least one channel (more if you specify them). RMAN
uses this channel to restore the target database control file to the auxiliary server. Next,
the auxiliary database is mounted using the control file that was just restored. RMAN
then restores to the auxiliary server the data files, incremental backups (if any exist and
are required), and archive redo logs. RMAN then recovers the auxiliary database (applies
increment backups and/or archive redo logs). Lastly, it sets a new DBID and opens the
database with the RESETLOGS option. This process is depicted in Figure 1-1.

Figure 1-1. High-level view of RMAN duplication

Now that you have a bird’s eye view of the process and components involved, let’s
look at the detailed steps RMAN performs when duplicating a database.

1. DBA accesses RMAN client and connects to auxiliary
database. If required, the DBA will also establish connections
to the target and/or recovery catalog.

2. DBA issues RMAN DUPLICATE command.

3. RMAN allocates channels on the auxiliary database and/or
target database as required.

4. RMAN creates a default server parameter file (SPFILE) for the
auxiliary database if not duplicating to a standby database
and not duplicating the SPFILE, and if the auxiliary instance
was not started with an SPFILE.

Chapter 1 ■ IntroduCtIon

9

5. RMAN restores from backup sets or image copies from the
target database the latest control file that satisfies the UNTIL
clause requirements. If no UNTIL clause was specified, then
RMAN uses the maximum system change number (SCN) in
the last archived redo log generated by the target database as
recorded in V$ARCHIVED_LOG.

Note ■ the SCn is oracle’s internal clock or counter. the SCn is incremented with every
change within the database. this information is critical for read consistency and recovery
operations; it provides the exact sequence in which changes occurred in the database.

6. Opens the auxiliary database in mount mode using the
control file that was restored in the prior step.

7. Determines from the RMAN repository (either from a restored
control file, an active connection to the target database, or
a connection to the recovery catalog) which backups will be
used for restoring the data files to the auxiliary database.

8. Restores the target database data files to the auxiliary
database and applies any applicable incremental backups
and/or archived redo log files. If no UNTIL clause is specified,
RMAN will apply the last archive redo log that was restored.
For active duplication the target database data files are the
source. For targetless duplication the DBA places the RMAN
target database backups where the auxiliary server can access
them (e.g., copies the backups to the auxiliary server).

9. Shuts down the auxiliary database.

10. Restarts the auxiliary database in nomount mode.

11. Creates a new control file by which a new DBID is created
for the auxiliary database and stores the new DBID in the
restored data files.

12. Opens the auxiliary database with the RESETLOGS clause,
which creates new online redo logs for the auxiliary database.

This list of steps provides a basic understanding of RMAN’s duplication process.
When working through issues refer back to this list and logically think through the
steps RMAN is performing and how that applies to the issue you’re trying to resolve.
You’ll see in coming chapters that the RMAN DUPLICATE command produces a
vast amount of output. When you have issues, knowing the sequence of steps RMAN
performs can help you pinpoint at what stage the issue is occurring and thus assist in
resolving the problem.

Chapter 1 ■ IntroduCtIon

10

Tip ■ Starting with oracle 12c, if you do not want the duplication process to open the
database (as the final step), use the NOOPEN clause of the DUPLICATE command.

Example Setup Environment
This section provides details regarding the environment that I’ll use throughout the book
in most of the examples. For most duplication scenarios I use two servers. The target
database server is named shrek and the auxiliary server is named shrek2. The target
database is named TRG. The auxiliary database is either named TRG (when there’s no
database name change) or DUP (when the database is renamed during duplication).
The target server data files are located in /u01/dbfile/TRG. The auxiliary server data
files are restored to /u01/dbfile/TRG when the directory name is the same as the target.
If the directory structure is different, then the directory name is /u01/dbfile/DUP. This
environment is displayed in Figure 1-2.

Figure 1-2. Basic configuration for RMAN duplication examples

Additionally, in this configuration the same exact same version of the Oracle
software (binaries) is installed on both servers (shrek and shrek2). RMAN will not let you
connect to both a target database and an auxiliary database of different Oracle database
versions. If you attempt to do that you may receive a message similar to the following:

RMAN-06618: RMAN client and database release mismatch...

Also, for active duplication there must be Oracle Net connectivity between the
servers. For targetless duplication no listener or connection to the target database is
required. Targetless duplication only requires access to an RMAN backup of the target
database. The RMAN backup can be placed on shared storage readable from the auxiliary
server or it can be directly copied to the auxiliary server. For the targetless duplication
examples in this book I directly copy the RMAN backup to the auxiliary server.

Chapter 1 ■ IntroduCtIon

11

Note ■ any time you connect over oracle net to a database as a SYSDBA privileged user
(such as SYS) or with user-assigned SYSBACKUP privileges, you must have a password file
in place on the remote server.

Summary
Each Oracle installation includes a ready-to-go RMAN executable. RMAN is chiefly
used for backup and recovery operations. However, RMAN can also be used to replicate
database environments. RMAN’s DUPLICATE command is a very powerful feature
used to make a copy of a database. The replicated database is a stand-alone copy of the
source (target) database. The duplicated database can be used for a variety of business
requirements, such as offloading reporting, testing, troubleshooting, and creating a Data
Guard standby database.

The duplication process is reliable and simple. RMAN provides many built-in
features to achieve performance and security. RMAN is capable of duplicating in complex
database environments such as container and associated pluggable databases, RAC and
ASM, and differing operating systems.

This chapter serves as an introduction the RMAN duplication functionality. The
next chapter in this book walks you through various manual replication processes.
This information is relevant because it helps you understand the ease of using RMAN
duplication to achieve the same goals. A knowledge of manual methods also assists
in troubleshooting activities. You’ll be better prepared to face any type of duplication
situation if you’re knowledgeable about manual procedures. If you’re already familiar
with manual replication methods then feel free to move on to Chapters 3, 4, and 5, where
the bulk RMAN duplication is investigated and explained.

13

Chapter 2

Manual Duplication
Techniques

This chapter will walk you through manual methods for cloning databases and tablespaces.
If you’re already familiar with these techniques, then feel free to move on to the next
chapters in this book, which illustrate how to employ the RMAN duplication process.
Otherwise, there are several manual replication scenarios covered in this chapter:

Cold backup•	

RMAN backup•	

Data Pump across network link•	

Data Pump and transportable tablespaces•	

RMAN and transportable tablespaces•	

External tables•	

Knowledge of these methods will help you understand when it’s appropriate to use
a technique and its advantages and disadvantages. This information will help you better
understand the other chapters in this book that contrast these techniques with the RMAN
DUPLICATE functionality (covered in Chapters 3, 4, and 5). First up is cloning a database
using a cold backup.

Cloning from Cold Backup
If you worked with Oracle twenty or so years ago, you probably used a cold backup to
move a database from one server to another. Even though this is an old technique,
I still find myself occasionally using this method for cloning a database. For example,
recently my supervisor asked me to copy a database (about 20 gig in size) from one
server to another. In this scenario, the destination server directory structure was
different from the source server directory structure, and the destination database

Chapter 2 ■ Manual DupliCation teChniques

14

needed to have a different name that the source database. In this situation I used a cold
backup to move the database for the following reasons:

Source database wasn’t in archive log mode•	

There weren’t any RMAN backups of the source database•	

Source database was fairly small, and it wouldn’t take long to •	
copy the data files

The requirement was to replicate the entire database•	

For this example to work you need the same version of Oracle installed on both the
source and destination servers. The scenario is depicted in Figure 2-1.

Figure 2-1. Cloning with a cold backup

Next are the detailed descriptions of each of the steps shown in Figure 2-1.

1. On the source database, determine the locations of the
data files:

SQL> select name from v$datafile;

Chapter 2 ■ Manual DupliCation teChniques

15

Here’s some output for the database used in this example:

NAME

/u01/dbfile/TRG/repdata.dbf
/u01/dbfile/TRG/repidx.dbf
/u01/dbfile/TRG/sysaux01.dbf
/u01/dbfile/TRG/system01.dbf
/u01/dbfile/TRG/undotbs01.dbf
/u01/dbfile/TRG/users01.dbf

2. On the source database create a trace file that contains
a CREATE CONTROLFILE command in it:

SQL> alter database backup controlfile to trace as '/tmp/dk.sql' resetlogs;

3. Copy the trace file from the source server to the destination
server. This example uses the Linux/UNIX scp command
(initiated from the source server):

$ scp /tmp/dk.sql oracle@shrek2:/tmp

4. Shut down the source database using immediate
(and not abort):

$ sqlplus / as sysdba
SQL> shutdown immediate;

5. Create directory structures on destination server:

$ mkdir /u01/dbfile/DUP
$ mkdir /u01/oraredo/DUP

6. While the source database is shut down, copy the source
data files from the source server to the destination server.
This example uses the Linux/UNIX scp command
(initiated from the destination server):

$ scp oracle@shrek:/u01/dbfile/TRG/*.dbf /u01/dbfile/DUP

Notice there’s no need to copy the control files or the online redo logs in this scenario.
Since the destination directory structure and destination database name will be different
from the source name, the control files and online redo logs will need to be recreated.
If the directory structure and the database name were the same on both the source
and the destination, the procedure would be as simple as shutting down the source
database, copying all control files, data files, online redo logs, and initialization file to the
destination server, and then starting the database.

Chapter 2 ■ Manual DupliCation teChniques

16

Note ■ after the copy is complete you can restart the source database.

7. Copy the source init.ora file to the destination server. If your
source database uses an SPFILE, then you can create a text-
based init.ora file from SQL*Plus, as follows:

SQL> create pfile from spfile;

This command will place a text-based initialization file with the name of init<SID>.ora
in the ORACLE_HOME/dbs directory. If you don’t want the text-based file to be placed
in that directory you can override the default behavior as follows:

SQL> create pfile='/tmp/initTRG.ora' from spfile;

This example uses the Linux/UNIX scp command (initiated from the destination
server). Modify this appropriately for your environment. Assuming the file is in the
default location of ORACLE_HOME/dbs:

$ scp oracle@shrek:$ORACLE_HOME/dbs/initTRG.ora $ORACLE_HOME/dbs/initDUP.ora

8. Modify the destination init.ora file, change the DB_NAME
parameter to reflect the new name of the database, and also
modify any directories to reflect the directory structure of the
destination environment:

$ vi $ORACLE_HOME/dbs/initDUP.ora

Here is the content of the initDUP.ora file after the modifications:

db_name='DUP'
control_files='/u01/dbfile/DUP/control01.ctl','/u01/dbfile/DUP/control02.ctl'
db_block_size=8192
fast_start_mttr_target=500
job_queue_processes=10
memory_max_target=500M
memory_target=500M
open_cursors=100
os_authent_prefix=''
processes=100
remote_login_passwordfile='EXCLUSIVE'
resource_limit=true
undo_management='AUTO'
undo_tablespace='UNDOTBS1'
workarea_size_policy='AUTO'

Chapter 2 ■ Manual DupliCation teChniques

17

9. Modify the script to recreate the destination database control file:

$ vi /tmp/dk.sql

Change the first line to include the SET keyword and change the database name and
directory structures to reflect the destination environment. Here are the contents of dk.sql
after the modifications:

CREATE CONTROLFILE REUSE SET DATABASE "DUP" RESETLOGS ARCHIVELOG
 MAXLOGFILES 16
 MAXLOGMEMBERS 4
 MAXDATAFILES 1024
 MAXINSTANCES 1
 MAXLOGHISTORY 876
LOGFILE
 GROUP 1 '/u01/oraredo/DUP/redo01a.rdo' SIZE 50M BLOCKSIZE 512,
 GROUP 2 '/u01/oraredo/DUP/redo02a.rdo' SIZE 50M BLOCKSIZE 512
DATAFILE
 '/u01/dbfile/DUP/system01.dbf',
 '/u01/dbfile/DUP/sysaux01.dbf',
 '/u01/dbfile/DUP/undotbs01.dbf',
 '/u01/dbfile/DUP/users01.dbf',
 '/u01/dbfile/DUP/repdata.dbf',
 '/u01/dbfile/DUP/repidx.dbf'
CHARACTER SET AL32UTF8;

10. Set the ORACLE_SID variable to reflect the destination
database name:

$ export ORACLE_SID=DUP

11. Start up the destination database in nomount mode:

$ sqlplus / as sysdba
SQL> startup nomount;

12. Execute the script to recreate the control file:

SQL> @/tmp/dk.sql

You should see this message if successful:

Control file created.

Chapter 2 ■ Manual DupliCation teChniques

18

At this point you have new control files and the database is in mount mode.

13. Alter the destination database open with the OPEN
RESETLOGS clause:

SQL> alter database open resetlogs;
Database altered.

14. Lastly, add the temporary tablespace temp file:

SQL> ALTER TABLESPACE TEMP ADD TEMPFILE '/u01/dbfile/DUP/temp01.dbf'
 SIZE 524288000 REUSE AUTOEXTEND OFF;

Also keep in mind that other steps may be required for your environment depending
on your standards. For example, you might want to ensure the database SID is listed
in the oratab file, or you might require the use of an SPFILE, enabling a password file,
changing passwords, enabling archiving, taking a backup, adding entries into Oracle Net
files, and so on.

The advantages of the cold backup approach to cloning a database are:

It’s fairly simple and not much can go wrong (which simplifies •	
troubleshooting any issues). There aren’t many moving parts to
this technique.

It uses a combination of SQL and operating system commands, so •	
you don’t need to be familiar with any other tools to accomplish
this task. A savvy manager, system administrator, or developer
could easily use this approach to replicate a database.

The downside to this approach is that it requires you to shut down the source
database while it is being copied. Thus, if you work in an environment that can’t afford
any downtime with the source database, then this approach isn’t appropriate.

Copying from an RMAN Backup
When you think about architecting your backup strategy, as part of the process you must
also consider how you’re going to restore and recover. Your backups are only as good
as the last time you tested a restore and recovery. A backup can be rendered worthless
without a good restore and recovery strategy. The last thing you want to happen is to
experience a media failure, go to restore your database, and then find out you’re missing
a file, you don’t have enough space to restore, something is corrupt, and so on.

One of the best ways to test an RMAN backup is to restore and recover it to a
different database server. This will exercise all your backup, restore, and recovery DBA
skills. If you can restore and recover an RMAN backup on a different server, it will
give you confidence when a real disaster hits. Moving a database from one server to
another using an RMAN backup requires an expert-level understanding of the Oracle
architecture and how backup and recovery works. The next example will do just that;
it uses an RMAN backup to restore and recover a database on a different server. This
scenario is depicted in Figure 2-2.

Chapter 2 ■ Manual DupliCation teChniques

19

Notice in Figure 2-2 that only step 1 occurs on the source database server. All
remaining steps are performed on the destination server. For this example the source
database is named TRG, and the destination database is named DUP. Also notice that the
originating source server and destination server have different directory names. You’ll
have to adjust these directory names to reflect the directory structures on your database
servers. Let’s get started with step 1:

1. Create an RMAN backup on the source (target) database.
When backing up a database, make sure you have the
autobackup control file feature turned on:

$ rman target /
RMAN> configure controlfile autobackup on;

Also include the archive redo logs as part of the backup, as shown:

RMAN> backup database plus archivelog;

Verify that a backup of the control file exists:

RMAN> list backup of controlfile;

Here’s some sample output:

Piece Name: /u01/rman/TRG/TRGctl_c-1251088236-20141228-00.bk

Figure 2-2. Manually cloning a database using an RMAN backup

Chapter 2 ■ Manual DupliCation teChniques

20

You’ll need to reference the prior backup piece file when you restore the control file
on the destination server (step 8). Also notice for this example that the backup pieces on
the source server are in the /u01/rman/TRG directory.

2. On the destination server, create any required directories
for data files, control files, and so on. For this example the
destination server directories created are:

$ mkdir -p /u01/rman/DUP
$ mkdir -p /u01/dbfile/DUP
$ mkdir -p /u01/oraredo/DUP
$ mkdir -p /u01/arch/DUP

3. Copy the RMAN backup to the destination server. This
exampl.nux/UNIX scp command to copy the backup pieces
(initiated from the destination server):

$ scp oracle@shrek:/u01/rman/TRG/*.* /u01/rman/DUP

Note ■ if the rMan backups are on tape instead of on disk, then the same media
 manager software must be installed/configured on the destination server. also, that server
must have direct access to the rMan backups on tape.

4. On the destination server, ensure you have the same version
of the Oracle binaries installed as you do on the originating
database.

5. On the destination server establish the OS variables, such as
ORACLE_SID, ORACLE_HOME, and PATH. The ORACLE_SID
variable is initially set to match what it was on the source
database (TRG in this example). The destination database
name will be changed as part of the last step in this list, to DUP.
Here are the settings for ORACLE_SID and ORACLE_HOME
on the destination server:

$ export ORACLE_SID=TRG
$ echo $ORACLE_SID
TRG
$ echo $ORACLE_HOME
/orahome/app/oracle/product/12.1.0.2/db_1

Chapter 2 ■ Manual DupliCation teChniques

21

6. Copy the init.ora file from the source server to the destination
server, placing it in the ORACLE_HOME/dbs directory.
Modify the init.ora file so that it matches the destination
box in terms of any directory paths. Ensure that you change
the parameters, such as the CONTROL_FILES, to reflect the
new path directories on the destination server (/u01/dbfile/
DUP, in this example). Initially, the name of the init.ora file
on the destination server is initTRG.ora, and the name of the
database is TRG. Both will be renamed in a later step. Here are
the contents of the initTRG.ora file:

db_name='TRG'
control_files='/u01/dbfile/DUP/control01.ctl','/u01/dbfile/DUP/control02.ctl'
log_archive_dest_1='LOCATION=/u01/arch/DUP'
log_archive_format='DUP%t_%s_%r.arc'
db_block_size=8192
fast_start_mttr_target=500
job_queue_processes=10
memory_max_target=800M
memory_target=800M
open_cursors=100
processes=100
remote_login_passwordfile='EXCLUSIVE'
resource_limit=true
standby_file_management='auto'
undo_management='AUTO'
undo_tablespace='UNDOTBS1'
workarea_size_policy='AUTO'

7. You should now be able to start up the destination database in
nomount mode:

$ rman target /
RMAN> startup nomount;

8. Next, restore the control file from the backup that was
previously copied from the source database; for example:

RMAN> restore controlfile from
'/u01/rman/DUP/TRGctl_c-1251088236-20141228-00.bk';

Chapter 2 ■ Manual DupliCation teChniques

22

The control file will be restored to all locations specified by the CONTROL_FILES
initialization parameter in the destination init.ora file. Here is some sample output from
the restore operation:

channel ORA_DISK_1: restoring control file
channel ORA_DISK_1: restore complete, elapsed time: 00:00:07
output file name=/u01/dbfile/DUP/control01.ctl
output file name=/u01/dbfile/DUP/control02.ctl

You may see an error like this:

RMAN-06172: no AUTOBACKUP found or specified handle ...

In this situation, ensure that the path and backup piece names are correctly
specified.

9. You should now be able to start up your database in mount mode:

RMAN> alter database mount;

At this point, your control files exist and have been opened, but none of the data files
or online redo logs exist yet.

10. Make sure the control file is aware of the location of the RMAN
backups. First, use the CROSSCHECK command to let the
control file know that none of the backups or archive redo logs
are in the same location that they were in on the original server:

RMAN> crosscheck backup; # Crosscheck backups
RMAN> crosscheck copy; # Crosscheck image copies and archive logs

You’ll probably see output indicating that RMAN can’t validate that archive redo
logs exist:

archived log file name=/u01/arch/TRG/TRG1_16_869840124.arc
RECID=765 STAMP=869842623

That’s the expected behavior because those archive redo logs do not exist on the
destination server.

Next use the CATALOG command to make the control file aware of the location and
names of the backup pieces that were copied to the destination server.

Note ■ Don’t confuse the CATALOG command with the recovery catalog schema.
the CATALOG command adds rMan metadata to the control file, whereas the recovery
catalog schema is a user, generally created in a separate database, which can be used to
store rMan metadata.

Chapter 2 ■ Manual DupliCation teChniques

23

In this example, any RMAN files that are in the /u01/rman/DUP directory will be
cataloged in the control file:

RMAN> catalog start with '/u01/rman/DUP';

Here is some sample output:

List of Files Unknown to the Database
=====================================
File Name: /u01/rman/DUP/TRGctl_c-1251088236-20141228-00.bk
File Name: /u01/rman/DUP/TRGrman1_b7pr9m9q_1_1.bk
File Name: /u01/rman/DUP/TRGrman2_b6pr9m82_1_1.bk
File Name: /u01/rman/DUP/TRGrman2_b4pr9m6k_1_1.bk
File Name: /u01/rman/DUP/TRGrman1_b2pr9m4c_1_1.bk
File Name: /u01/rman/DUP/TRGrman2_b3pr9m4c_1_1.bk
File Name: /u01/rman/DUP/TRGrman1_b5pr9m82_1_1.bk
Do you really want to catalog the above files (enter YES or NO)?

Now, type YES (if everything looks okay). You should then be able to use the RMAN
LIST BACKUP command to view the newly cataloged backup pieces:

RMAN> list backup;

You should see output indicating that RMAN is aware of the backups that were
copied to the destination server. Here’s a small snippet of the output:

BP Key: 280 Status: AVAILABLE Compressed: NO Tag:
TAG20150108T203552
Piece Name: /u01/rman/DUP/TRGrman2_jkps7th9_1_1.bk

11. Rename and restore the data files to reflect new directory
locations. If your destination server has the exact same
directory structure as the original server directories, you can
issue the RESTORE command directly:

RMAN> restore database;

However, when restoring data files to locations that are different from the original
directories, you’ll have to use the SET NEWNAME command. Create a file that uses an RMAN
run{} block that contains the appropriate SET NEWNAME and RESTORE commands. I like
to use a SQL script that generates SQL to give me a starting point. Here is a sample script:

set head off feed off verify off echo off pages 0 trimspool on
set lines 132 pagesize 0
spo newname.sql
--

Chapter 2 ■ Manual DupliCation teChniques

24

select 'run{' from dual;
--
select
'set newname for datafile ' || file# || ' to ' || '''' || name || '''' || ';'
from v$datafile;
--
select
'restore database;' || chr(10) ||
'switch datafile all;' || chr(10) ||
'}'
from dual;
--
spo off;

Run the prior script from SQL*Plus as SYS. In this example, the prior code is placed
in a file named gen.sql and executed as follows:

SQL> @gen.sql

After running the script, these are the contents of the newname.sql script that was
generated:

run{
set newname for datafile 1 to '/u01/dbfile/TRG/system01.dbf';
set newname for datafile 2 to '/u01/dbfile/TRG/sysaux01.dbf';
set newname for datafile 3 to '/u01/dbfile/TRG/undotbs01.dbf';
set newname for datafile 4 to '/u01/dbfile/TRG/users01.dbf';
set newname for datafile 5 to '/u01/dbfile/TRG/repdata.dbf';
set newname for datafile 6 to '/u01/dbfile/TRG/repidx.dbf';
restore database;
switch datafile all;
}

Then, modify the contents of the newname.sql script to reflect the directories on
the destination database server. Here is what the final newname.sql script looks like for
this example:

run{
set newname for datafile 1 to '/u01/dbfile/DUP/system01.dbf';
set newname for datafile 2 to '/u01/dbfile/DUP/sysaux01.dbf';
set newname for datafile 3 to '/u01/dbfile/DUP/undotbs01.dbf';
set newname for datafile 4 to '/u01/dbfile/DUP/users01.dbf';
set newname for datafile 5 to '/u01/dbfile/DUP/repdata.dbf';
set newname for datafile 6 to '/u01/dbfile/DUP/repidx.dbf';
restore database;
switch datafile all;
}

Chapter 2 ■ Manual DupliCation teChniques

25

Now, connect to RMAN and run the prior script to restore the data files to the
new locations:

$ rman target /
RMAN> @newname.sql

Here’s a small sample of the output from the prior script:

executing command: SET NEWNAME
executing command: SET NEWNAME
...
channel ORA_DISK_1: restoring datafile 00001 to /u01/dbfile/DUP/system01.dbf
channel ORA_DISK_1: restoring datafile 00004 to /u01/dbfile/DUP/users01.dbf
...
input datafile copy RECID=16 STAMP=869854446 file
name=/u01/dbfile/DUP/repidx.dbf
RMAN> **end-of-file**

All the data files have been restored to the new database server. You can use the
RMAN REPORT SCHEMA command to verify that the files have been restored and are
in the correct locations:

RMAN> report schema;

Here is some sample output:

RMAN-06139: WARNING: control file is not current for REPORT SCHEMA
Report of database schema for database with db_unique_name TRG
List of Permanent Datafiles
===========================
File Size(MB) Tablespace RB segs Datafile Name
---- -------- -------------------- ------- ------------------------
1 500 SYSTEM *** /u01/dbfile/DUP/system01.dbf
2 500 SYSAUX *** /u01/dbfile/DUP/sysaux01.dbf
3 200 UNDOTBS1 *** /u01/dbfile/DUP/undotbs01.dbf
4 10 USERS *** /u01/dbfile/DUP/users01.dbf
5 10 REPDATA *** /u01/dbfile/DUP/repdata.dbf
6 10 REPIDX *** /u01/dbfile/DUP/repidx.dbf
List of Temporary Files
=======================
File Size(MB) Tablespace Maxsize(MB) Tempfile Name
---- -------- -------------------- ----------- --------------------
1 500 TEMP 500 /u01/dbfile/TRG/temp01.dbf

From the prior output you can see that the database name and temporary tablespace
data file still don’t reflect the destination database (DUP). These will be modified in
subsequent steps.

Chapter 2 ■ Manual DupliCation teChniques

26

12. Next you need to apply any archive redo files that were
generated during the backup. These should be included in the
backup because the ARCHIVELOG ALL clause was used to
create the backup. Initiate the application of redo files via the
RECOVER DATABASE command:

RMAN> recover database;

RMAN will restore and apply as many archive redo logs as it has in the backup pieces;
it may throw an error when it reaches an archive redo log that doesn’t exist. For example:

RMAN-06054: media recovery requesting unknown archived log for...

That error message is fine. The recovery process will restore and recover archive
redo logs contained in the backups, which should be sufficient to open the database. The
recovery process doesn’t know when to stop applying archive redo logs and therefore will
continue to attempt to do so until it can’t find the next log. Having said that, now is a good
time to verify that your data files are online and not in a fuzzy state:

SQL> select file#, status, fuzzy, error, checkpoint_change#,
to_char(checkpoint_time,'dd-mon-rrrr hh24:mi:ss') as checkpoint_time
from v$datafile_header;

Here is a small sample of the output:

 FILE# STATUS FUZ ERROR CHECKPOINT_CHANGE# CHECKPOINT_TIME
---------- ------- --- ---------- ------------------ ---------------------
 1 ONLINE NO 1.3790E+13 23-jan-2015 15:23:37
 2 ONLINE NO 1.3790E+13 23-jan-2015 15:23:37
...

If you do have a file with a fuzzy status of YES, this indicates more redo logs need to
be applied to the data file (normally this should not happen in this scenario).

13. Set the new location for the online redo logs. If your source
and destination servers have the exact same directory
structures, then you don’t need to set a new location for the
online redo logs (so you can skip this step). However, if the
directory structures are different, then you’ll need to update
the control file to reflect the new directory for the online redo
logs. I sometimes use an SQL script that generates SQL to
assist with this step:

set head off feed off verify off echo off pages 0 trimspool on
set lines 132 pagesize 0
spo renlog.sql
select

Chapter 2 ■ Manual DupliCation teChniques

27

'alter database rename file ' || chr(10)
|| '''' || member || '''' || ' to ' || chr(10) || '''' || member || ''''
||';'
from v$logfile;
spo off;
set feed on verify on echo on

For this example, assume the prior code was placed in a file named genredo.sql and
run it as follows:

SQL> @genredo.sql

Here is a snippet of the renlog.sql file that was generated:

alter database rename file
'/u01/oraredo/TRG/redo01a.rdo' to
'/u01/oraredo/TRG/redo01a.rdo';

alter database rename file
'/u01/oraredo/TRG/redo02a.rdo' to
'/u01/oraredo/TRG/redo02a.rdo';

The contents of renlog.sql need to be modified to reflect the directory structure on
the destination server. Here is what renlog.sql looks like after being edited:

alter database rename file
'/u01/oraredo/TRG/redo01a.rdo' to
'/u01/oraredo/DUP/redo01a.rdo';

alter database rename file
'/u01/oraredo/TRG/redo02a.rdo' to
'/u01/oraredo/DUP/redo02a.rdo';

Update the control file by running the renlog.sql script:

SQL> @renlog.sql

You can select from V$LOGFILE to verify that the online redo log names are correct:

SQL> select member from v$logfile;

Here is the output for this example:

/u01/oraredo/DUP/redo01a.rdo
/u01/oraredo/DUP/redo02a.rdo

Chapter 2 ■ Manual DupliCation teChniques

28

14. You must open the database with the OPEN RESETLOGS
clause (because there are no online redo logs, and they must
be recreated at this point):

SQL> alter database open resetlogs;

If successful, you should see this message:

Statement processed

Note ■ Keep in mind that all the passwords from the newly restored copy are as they
were in the source database. You may want to change the passwords in a replicated
database, especially if it was copied from production.

15. Add the temporary tablespace temp file. When you start your
database, Oracle will automatically try to add any missing
temp files to the database. Oracle won’t be able to do this if
the directory structure on the destination server is different
from that of the source server. In this scenario, you will have
to add any missing temp files manually. To do this, first take
offline the temporary tablespace temp file. The file definition
from the originating database is taken offline like so:

SQL> alter database tempfile '/u01/dbfile/TRG/temp01.dbf' offline;
SQL> alter database tempfile '/u01/dbfile/TRG/temp01.dbf' drop;

Next, add a temporary tablespace file to the TEMP tablespace that matches the
directory structure of the destination database server:

SQL> alter tablespace temp add tempfile '/u01/dbfile/DUP/temp01.dbf'
 size 100m;

You can run the REPORT SCHEMA command to verify that all files are in the
correct locations.

16. Rename the database (optional). If you need to rename
the database to reflect the name for a development or
test database, create a trace file that contains the CREATE
CONTROLFILE statement and use it to rename your database.
For details on how to rename a database, see the next section
“Renaming a Database.”

Chapter 2 ■ Manual DupliCation teChniques

29

Tip ■ if you don’t rename the database, be careful about connect and resync operations
to the same recovery catalog used by the original/source database. this causes confusion
in the recovery catalog as to which is the real source database, which may jeopardize your
ability to recover and restore the real source database.

Also keep in mind that other steps may be required for your environment depending
on your standards. For example, you might want to ensure the database SID is listed
in the oratab file, or you might require the use of an SPFILE, enabling a password file,
changing passwords, taking a backup, adding entries into Oracle Net files, and so on.

Renaming a Database
This section shows you how to rename a database. If you’re working with a critical
database, make sure you have a good backup of the data files, control files, and any
relevant archive redo logs before you change the name.

Two different ways of renaming your database are described next. The first renaming
method walks you through the manual steps. The second technique describes renaming
a database with the Oracle NID utility. If you need to assign a new DBID to the renamed
database, then you should use the NID utility.

Manual
In this example, the database is renamed from TRG to DUP. The steps for manually
renaming your database are as follows:

1. Generate a trace file that contains the SQL command to
recreate the control files:

SQL> alter database backup controlfile to trace as '/tmp/cf.sql' resetlogs;

2. Shut down the database:

SQL> shutdown immediate;

3. Modify the /tmp/cf.sql trace file; be sure to specify SET DATABASE
"<NEW DATABASE NAME>" in the top line of the output:

CREATE CONTROLFILE REUSE SET DATABASE "DUP" RESETLOGS ARCHIVELOG
 MAXLOGFILES 16
 MAXLOGMEMBERS 4
 MAXDATAFILES 1024
 MAXINSTANCES 1
 MAXLOGHISTORY 876

Chapter 2 ■ Manual DupliCation teChniques

30

LOGFILE
 GROUP 1 '/u01/oraredo/DUP/redo01a.rdo' SIZE 50M BLOCKSIZE 512,
 GROUP 2 '/u01/oraredo/DUP/redo02a.rdo' SIZE 50M BLOCKSIZE 512
DATAFILE
 '/u01/dbfile/DUP/system01.dbf',
 '/u01/dbfile/DUP/sysaux01.dbf',
 '/u01/dbfile/DUP/undotbs01.dbf',
 '/u01/dbfile/DUP/users01.dbf',
 '/u01/dbfile/DUP/repdata.dbf',
 '/u01/dbfile/DUP/repidx.dbf'
CHARACTER SET AL32UTF8;

If you don’t specify SET DATABASE in the top line of this script, when you run the
script (as shown later in this example) you’ll receive an error such as this:

ORA-01161: database name ... in file header does not match...

4. Create an init.ora file that matches the new database name:

$ cd $ORACLE_HOME/dbs
$ cp init<old_sid>.ora init<new_sid>.ora

In this example, the prior line of code looks like this:

$ cp initTRG.ora initDUP.ora

5. Modify the DB_NAME variable within the new initDUP.ora
file (in this example, it’s set to DUP):

db_name='DUP'

6. If the instance with the old SID is still running, then shut it
down (TRG in this example):

SQL> shutdown immediate;

7. Set the ORACLE_SID OS variable to reflect the new SID name
(in this example, it’s set to DUP):

$ export ORACLE_SID=DUP
$ echo $ORACLE_SID
DUP

8. Start up the instance in nomount mode:

$ sqlplus / as sysdba
SQL> startup nomount;

Chapter 2 ■ Manual DupliCation teChniques

31

9. Run the trace file to recreate the control file:

SQL> @/tmp/cf.sql

If successful you should see:

Control file created.

Note ■ in this example, the control files already exist in the location specified by the
CONTROL_FILES initialization parameter; therefore, the REUSE parameter is used in
the CREATE CONTROL FILE statement.

10. Open the database with OPEN RESETLOGS:

SQL> alter database open resetlogs;

If successful you should see:

Database altered.

11. As a last step, ensure that your temporary tablespace exists:

SQL> ALTER TABLESPACE TEMP ADD TEMPFILE '/u01/dbfile/DUP/temp01.dbf'
 SIZE 104857600 REUSE AUTOEXTEND OFF;

You now have a database that is a copy of the original database. All the data files,
control files, archive redo logs, and online redo logs are in the new locations, and the
database has a new name. Now would be a good time to take a backup of the newly
renamed database, recreate the password file (if using), and modify service name values
in Oracle Net files.

If you need to assign the database a new DBID, then you can use a utility such as NID
to accomplish this.

NID
This section describes using the NID utility to rename a database. This procedure will
rename the database and assign it a new DBID.

1. First start the database in mount mode:

$ sqlplus / as sysdba
SQL> startup mount;

Chapter 2 ■ Manual DupliCation teChniques

32

2. Now, from the operating system command line run the NID
utility. This renames the database from DUP to DUP_NEW.
You have to modify this as appropriate for the database names
and passwords in your environment:

$ nid target=sys/foo dbname=DUP_NEW

In the output you should see a line similar to this:

Change database ID and database name DUP to DUP_NEW? (Y/[N]) =>

Respond with Y if you wish to proceed. Here’s a sample of the output for this example:

Proceeding with operation
Changing database ID from 1251088236 to 1191846239
Changing database name from DUP to DUP_NEW
 Control File /u01/dbfile/DUP/control01.ctl - modified
 Control File /u01/dbfile/DUP/control02.ctl - modified
 Datafile /u01/dbfile/DUP/system01.db - dbid changed, wrote new name
...
All previous backups and archived redo logs for this database are unusable.
Database has been shut down, open database with RESETLOGS option.
Successfully changed database name and ID.
DBNEWID - Completed successfully.

Next create an initialization file that corresponds to the new database name:

$ cd $ORACLE_HOME/dbs
$ cp initDUP.ora initDUP_NEW.ora

3. Modify the DB_NAME parameter in the initDUP_NEW.ora to
reflect the new database name:

db_name=DUP_NEW

4. Set ORACLE_SID to reflect the new database name:

$ export ORACLE_SID=DUP_NEW

5. Mount the database:

$ sqlplus / as sysdba
SQL> startup mount;

6. Open the database with the OPEN RESETLOGS clause:

SQL> alter database open resetlogs;

Chapter 2 ■ Manual DupliCation teChniques

33

You can verify that the database has the new DBID assigned to it using the following:

SQL> select dbid from v$database;

 DBID

1191846239

Now would be a good time to take a backup of the newly renamed database, recreate
the password file (if using), and modify service name values in Oracle Net files.

Tip ■ see Mos note 863800.1 for more details regarding niD. You can leverage niD
to only change the DBiD (and not the database name), or you can use niD to change only
change the database name (and not the DBiD).

Replicating with Data Pump Across a Network Link
Data Pump is a powerful and flexible tool for moving data from one environment to
another. This utility has significant advantages over other data replication methods,
especially in the following situations:

You need the ability to replicate at the table, tablespace, schema, •	
or database level of granularity. For example, with Data Pump it’s
simple to copy a schema and all its objects, with or without the
data, from one database to another. Furthermore, you can also
filter and transform the data during the replication.

You need cross-platform replication. Any combination of cross-•	
platform replication is possible. For instance, you can move data
seamlessly between any two operating systems (Linux, Solaris,
Windows, and so on) where Oracle is installed.

You need to export data and import it into a database with the •	
same version, or to any higher version. Some shops use this as a
database upgrade mechanism.

A real-world example will help illustrate the utility. Suppose you have two database
environments—a production database running on a Solaris box and a test database
running on a Linux server. Your manager comes to you with these instructions:

Make a copy of the production database on the Solaris box and •	
import the copy into the test database on the Linux server.

Change the names of the schemas when importing to reflect •	
naming standards in the test environment.

Chapter 2 ■ Manual DupliCation teChniques

34

First consider the steps required to transfer data from one database to another when
using the old exp/imp utilities. The steps would look something like this:

1. Export the production database (which creates a dump file on
the database server).

2. Copy the dump file to the testing database server.

3. Import the dump file into the testing database.

You can perform those same steps using Data Pump. However, Data Pump provides
a much more efficient and transparent method for executing those steps. If you have
direct network connectivity between the source and destination database servers, you
can import directly into the destination database over the network without having to
create and/or copy any dump files. Furthermore, you can rename schemas on the fly as
you perform the import. Additionally, it doesn’t matter if the source database is running
on a different operating system than that of the destination database. Figure 2-3 illustrates
the environment and required steps.

Figure 2-3. Data Pump export and import across a network link

For this example, in the source database there’s a schema named STAR. You want
to move this user into the destination database and rename it to STAR_JUL. Also assume
that the tablespace names are the same in both the source and the destination databases.

Notice that all of the following steps are performed on the destination server. No
steps are required on the source server.

Chapter 2 ■ Manual DupliCation teChniques

35

1. In the destination database, create a user to be imported into.
Here is a sample script that creates the user:

define star_user=star_jul
define star_user_pwd=star_jul_pwd
--
create user &&star_user identified by &&star_user_pwd;
grant create session, create table, create procedure to &&star_user;

2. In the destination database, create a database link that points to
the source database. The remote user (in the source database)
referenced in the CREATE DATABASE LINK statement must
have a privileged role granted to it in the source database (this
minimally needs to be the DATAPUMP_EXP_FULL_DATABASE
role). Log into SQL as the user that you’ll use later to import
the data. You want to ensure that the database link is created
with the same schema used when importing. In this example,
AUXDBA is the user in the destination database:

$ sqlplus auxdba/auxfoo

Here is a sample CREATE DATABASE LINK script:

SQL> create database link trg
connect to trgdba identified by trgfoo
using 'shrek:1521/TRG';

3. In the destination database, create a directory object that
points to the location where you want your log file to go. You’ll
have to modify this to match a directory in your environment:

SQL> create or replace directory dpdir as '/orahome/oracle/dpdir';

With the prior directory object, if you’re not using a privileged user (e.g., a user that
has been granted the DBA role) you may need to additionally grant READ and WRITE
privileges on the directory to the user. For instance:

SQL> grant read, write on directory dpdir to auxdba;

4. Run the import command on the destination box. This
command references the remote database via the NETWORK_
LINK parameter. This command also instructs Data Pump to
map the target database schema to the newly created user in
the destination database:

$ impdp auxdba/auxfoo directory=dpdir network_link=trg \
schemas='STAR' remap_schema=STAR:STAR_JUL

Chapter 2 ■ Manual DupliCation teChniques

36

This technique allows you to move large amounts of data between disparate
databases without having to create or copy any dump files or data files. You can also
rename schemas on the fly via the REMAP_SCHEMA parameter. If the tablespace
names weren’t the same on both the source and destination, you can use the REMAP_
TABLESPACE parameter to have tables placed in different tablespaces in the destination
database. This is a very powerful Data Pump feature that lets you efficiently transfer data
between disparate databases.

Tip ■ For a complete description of Data pump’s features, see Pro Oracle Database 12c
Administration available from apress.

Replicating with Data Pump Transportable
Tablespaces
Oracle provides a mechanism for copying data files from one database to another in
conjunction with using Data Pump to transport the associated metadata. This is known
as the transportable tablespace feature. The amount of time this task requires is directly
proportional to the time it takes to copy the data files to the destination server. In this
scenario both the source and destination servers have the same operating system
platform. Figure 2-4 shows the systems and the steps required to transport tablespaces
for this scenario.

Figure 2-4. Using Data Pump with transportable tablespaces

Chapter 2 ■ Manual DupliCation teChniques

37

The steps depicted in Figure 2-4 are described in detail next.

1. First ensure that the tablespaces being transported are
self-contained. These are some common violations of the
self-contained rule:

 An index in one tablespace can’t point to a table in ·
another tablespace that isn’t in the set of tablespaces being
transported.

 A foreign-key constraint is defined on a table in a tablespace ·
that references a primary-key constraint on a table in
a tablespace that isn’t in the set of tablespaces being
transported.

Run the following check on the source database to see if the set of tablespaces being
transported violates any of the self-contained rules:

SQL> exec dbms_tts.transport_set_check('REPDATA,REPIDX', TRUE);

Now, see if Oracle detected any violations:

SQL> select * from transport_set_violations;

If you don’t have any violations, you should see this:

no rows selected

If you do have violations, such as an index that is built on a table that exists in a
tablespace not being transported, then you’ll have to rebuild the index in a tablespace
that is being transported. Be aware that detecting and resolving violations can lead to
other tablespaces being required to be added in the transportable set. This can turn into a
much bigger task than one might initially anticipate.

2. Make the tablespaces being transported read-only. In this
example the tablespaces REPDATA and REPIDX are going to
be transported:

SQL> alter tablespace repdata read only;
SQL> alter tablespace repidx read only;

3. Create a physical directory on disk:

$ mkdir /orahome/oracle/dpdir

4. Create a directory object that points to a directory that exists
on disk:

SQL> create directory dpdir as '/orahome/oracle/dpdir';

Chapter 2 ■ Manual DupliCation teChniques

38

5. Use Data Pump export on the target server to extract the
metadata for the tablespaces being transported (in this
example, REPDATA and REPIDX). When exporting, use a user
that has been assigned the DBA role:

$ expdp trgdba/trgfoo directory=dpdir \
dumpfile=trans.dmp logfile=trans.log \
transport_tablespaces=REPDATA,REPIDX

6. On the destination server, create a directory to hold the Data
Pump export file (created in a previous step):

$ mkdir /orahome/oracle/dpdir

7. On the destination server, create a directory object that points
to the physical exist directory.

SQL> create directory dpdir as '/orahome/oracle/dpdir';

8. Copy the Data Pump export dump file from the source server
to the destination server. The following line of code uses the
Linux/UNIX scp command to copy the dump file. This is
initiated from the destination server:

$ scp oracle@shrek:/orahome/oracle/dpdir/trans.dmp /orahome/oracle/dpdir

9. Copy the data file(s) from the source server to the destination
server. Place the files in the directory where you want them
on the destination database server. The following line of code
uses the Linux/UNIX scp command to copy the data files. This
is initiated from the destination server:

$ scp oracle@shrek:/u01/dbfile/TRG/rep*.dbf /u01/dbfile/DUP

10. On the destination server, import the metadata into the
destination database. Use the following parameter file to
import the metadata for the data files being transported.
When importing, use a user that has been assigned the
DBA role:

$ impdp auxdba/auxfoo directory=dpdir dumpfile=trans.dmp \
transport_datafiles=/u01/dbfile/DUP/repdata.dbf, \
/u01/dbfile/DUP/repidx.dbf

Chapter 2 ■ Manual DupliCation teChniques

39

Additionally, ensure that the owner(s) of any tables or indexes within the tablespaces
being transported exist(s) in the destination database. If the owning schema doesn’t exist
in the destination database, you’ll receive this error:

ORA-29342: user ... does not exist in the database

If everything goes well, you should see some output indicating success:

job "AUXDBA"."SYS_IMPORT_TRANSPORTABLE_01" successfully completed ...

11. As a final step, you may want to change the tablespaces back to
read-write. Depending on your requirements, you may want to
perform this on both the destination and the source databases:

SQL> alter tablespace repdata read write;
SQL> alter tablespace repidx read write;

If the data files that are being transported have a block size different from that of
the destination database, then you must modify your initialization file (or use an ALTER
SYSTEM command) and add a buffer pool that contains the block size of the source
database. For example, to add a 16KB buffer cache, place this in the initialization file:

db_16k_cache_size=200M

You can check a tablespace’s block size via this query:

SQL> select tablespace_name, block_size from dba_tablespaces;

The transportable tablespace mechanism allows you to quickly move data files
between databases. It’s an appropriate method for moving data in data warehouse–type
environments where you might have a staging database that periodically needs data
transferred to a reporting database.

Note ■ to export transportable tablespaces, you must use oracle enterprise edition. You
can use other editions of oracle to import transportable tablespaces.

Chapter 2 ■ Manual DupliCation teChniques

40

RMAN Replication Using Transportable
Tablespaces
You can use RMAN in conjunction with transportable tablespaces to copy data files
from one database to a different database. In RMAN terminology the source database is
referred to as the target and the destination database is referred to as the auxiliary. The
target server can have the same operating system as the auxiliary server, or the target
server can have a different operating system than the auxiliary server.

When the operating system is the same, you can issue the RMAN TRANSPORT
TABLESPACE command to generate the tablespace metadata dump file. In this mode,
the advantage to using RMAN is that you can keep the live data files online during the
procedure (meaning you don’t have to place the tablespaces in read-only mode like Data
Pump requires when transporting tablespaces).

When the operating systems are different (such as different endian formats), you’ll
have to use the RMAN CONVERT command to create data files that can be used by a
database running on a different operating system with a different endian format. In this
mode, the tablespaces must be in read-only mode while the RMAN command is running.

Scenarios for transporting between two servers that have the same operating system
and between two that have different operating systems are covered in the following
sections.

Same Operating System
Using RMAN to transport tablespaces between servers that have the same operating
system platform is fairly straightforward. As mentioned previously, in this configuration
you can transport data files while the tablespaces are online. RMAN achieves this high
availability by utilizing RMAN backups and archive logs while creating the transportable
tablespace dump files. This means you must have a valid RMAN backup of the target
database. If you don’t have a backup, when you attempt to run the TRANSPORT
TABLESPACE command you’ll receive this error:

RMAN-06024: no backup or copy of the control file found to restore

The target database must be in archivelog mode also, if you attempt to run TRANSPORT
TABLESPACE on a noarchivelog mode database you’ll receive the following error:

RMAN-05004: target database log mode is NOARCHIVELOG

Figure 2-5 illustrates the basic steps involved when using RMAN to transport
tablespaces from one server and database to another when the servers are of the same
operating system.

Chapter 2 ■ Manual DupliCation teChniques

41

The steps shown in Figure 2-5 are described in detail next.

1. On the target server, create two directories, one for the
transport files that RMAN will generate and one for the
auxiliary files that RMAN will generate (in a future step). You’ll
have to modify this as appropriate for your environment:

$ mkdir -p /u01/transport/TRG
$ mkdir -p /u01/auxiliary/TRG

2. Ensure you have a current backup of the target database:

$ rman target /
RMAN> list backup;

3. While connected via RMAN to the target database, issue the
TRANSPORT TABLESPACE command for the tablespaces you
wish to transport (REPDATA and REPIDX in this example):

$ rman target /
RMAN> transport tablespace repdata, repidx
tablespace destination '/u01/transport/TRG'
auxiliary destination '/u01/auxiliary/TRG';

Figure 2-5. RMAN and transportable tablespaces (same platforms)

Chapter 2 ■ Manual DupliCation teChniques

42

In the prior command, the tablespace destination is where RMAN will place files that
can be used to transport the tablespaces. The auxiliary destination is used by RMAN to
create files associated with a temporary auxiliary database that is used to generate the
transportable tablespace files. This temporary auxiliary database will be dropped after the
transportable tablespace files have been generated and placed in the transport directory.
Don’t confuse this temporary auxiliary database with the auxiliary database that you’ll be
transporting the tablespaces to.

4. On the auxiliary server, from the operating system create an
operating system directory:

$ mkdir /orahome/oracle/dpdir

This is the directory in which you’re going to place the dmpfile.dmp (from the target).
If you’ve worked through examples in previous sections in this book, this directory may
already exist, and that’s fine.

5. On the auxiliary server, create a directory object that points to
the physical operating system directory created in the prior set:

SQL> create directory dpdir as '/orahome/oracle/dpdir';

If you’ve worked through previous examples in this book, then this directory object
may already exist, and that’s fine. Just make sure the directory object DPDIR points to the
/orahome/oracle/dpdir directory.

6. Copy the dmpfile.dmp from the target server to the auxiliary
server. This example uses the Linux/UNIX scp command
initiated from the auxiliary server:

$ scp oracle@shrek:/u01/transport/TRG/dmpfile.dmp /orahome/oracle/dpdir

7. Copy the database files from the target server to the auxiliary
server. This example uses the Linux/UNIX scp command
initiated from the auxiliary server:

$ scp oracle@shrek:/u01/transport/TRG/repdata.dbf /u01/dbfile/DUP
$ scp oracle@shrek:/u01/transport/TRG/repidx.dbf /u01/dbfile/DUP

8. On the auxiliary server, run the Data Pump import command
to import the metadata for the transported tablespaces:

$ impdp auxdba/auxfoo directory=dpdir dumpfile=dmpfile.dmp \
transport_datafiles=/u01/dbfile/DUP/repdata.dbf,/u01/dbfile/DUP/repidx.dbf

When finished, you should have the tablespaces transported into the auxiliary
(destination) database.

Chapter 2 ■ Manual DupliCation teChniques

43

Cross-Platform Replication
In some scenarios you can use RMAN commands such as DUPLICATE, RESTORE, and
RECOVER when the target server uses a different operating system than the auxiliary
server. RMAN supports these operations only for the following operating system
combinations that have the same endian format:

To and from Solaris x86-64 and Linux x86-64•	

To and from HP-PA and HP-IA•	

To and from Windows 64-bit (IA or Itanium) and •	
Windows 64-bit (AMD or x86-64)

To and from Linux and Windows•	

Additionally, these types of operations are only supported when the Oracle version
in use is the same on both the target and auxiliary databases. Also, the two environments
must be at the same patch level.

Tip ■ see Mos note 1079563.1 for details on operations allowed when different
platforms are in use for the target and auxiliary servers.

If an operating system combination is not listed in the prior bulleted list then you
must use other supported migration procedures, such as transportable tablespace,
transportable database, or Data Pump export/import. See the sections in this chapter
“Different Operating System (Convert Tablespace)” and “Different Operating System
(Convert Data File)” for examples of using RMAN to transport a tablespace (and
associated data files) between operating systems with different endian formats.

Different Operating System (Convert Tablespace)
When transporting between different operating systems that have different endian
formats, the CONVERT TABLESPACE command facilitates the converting of the data files
from the source operating system platform to the destination platform. After the data files
have been converted, they can be copied to a host of different operating systems with the
different endian format.

I recently worked on a project moving a database from a Solaris SPARC 64-bit server
to a Linux x-86 64-bit host. The steps involved in using CONVERT TABLESPACE to
convert the data files are depicted in Figure 2-6.

Chapter 2 ■ Manual DupliCation teChniques

44

Details of the steps shown in Figure 2-6 follow next.

1. On the target database, confirm the platforms that tablespaces
can be converted to via the following SQL:

SQL> SELECT platform_id, platform_name, endian_format
FROM V$TRANSPORTABLE_PLATFORM
WHERE UPPER(platform_name) LIKE 'LINUX%';

Here is some sample output:

PLATFORM_ID PLATFORM_NAME ENDIAN_FORMAT
----------- ------------------------------ --------------------
 10 Linux IA (32-bit) Little
 11 Linux IA (64-bit) Little
 13 Linux x86 64-bit Little

In this case, the target server can convert data files to be used on the destination
Linux x86 64-bit box with the little endian format.

Figure 2-6. RMAN and transportable tablespaces (different platforms)

Chapter 2 ■ Manual DupliCation teChniques

45

2. On the target database, run the following check to see if the
set of tablespaces being transported violates any of the self-
contained rules:

SQL> exec dbms_tts.transport_set_check('REPDATA,REPIDX', TRUE);

Now, see if Oracle detected any violations:

SQL> select * from transport_set_violations;

If you don’t have any violations, you should see this:

no rows selected

If you do have violations, such as an index that is built on a table that exists in a
tablespace not being transported, then you’ll have to rebuild the index in a tablespace
that is being transported. If you need more details on the DBMS_TTS.TRANSPORT_SET_
CHECK procedure, refer to the Oracle Database PL/SQL Package and Types Reference
guide available on Oracle’s technology network website.

3. Place the target tablespaces in read-only mode:

SQL> alter tablespace repdata read only;
SQL> alter tablespace repidx read only;

4. Create a directory on the target server to hold the data
files that will be converted. You’ll have to modify this as
appropriate for your environment:

$ mkdir /orahome/oracle/convert

5. Connect to the target database and run the CONVERT
TABLESPACE command:

$ rman target /
RMAN> CONVERT TABLESPACE repdata, repidx
TO PLATFORM 'Linux x86 64-bit'
FORMAT '/orahome/oracle/convert/%U';

You should now have the converted data files in the specified directory:

$ ls /orahome/oracle/convert

Here is some sample output:

data_D-TRG_I-1251088236_TS-REPDATA_FNO-5_brprfa57
data_D-TRG_I-1251088236_TS-REPIDX_FNO-6_bsprfa57

Chapter 2 ■ Manual DupliCation teChniques

46

6. On the target server, create a physical directory on disk:

$ mkdir /orahome/oracle/dpdir

7. On the target database create a directory object that points to
a directory that exists on disk:

SQL> create directory dpdir as '/orahome/oracle/dpdir';

8. Use Data Pump export on the target server to export the
metadata for the tablespaces being transported:

$ expdp trgdba/trgfoo directory=dpdir \
dumpfile=conv.dmp logfile=conv.log \
transport_tablespaces=REPDATA,REPIDX

9. Now, on the destination server create a directory to contain
files that will be copied to it:

$ mkdir /orahome/oracle/dpdir

10. Create a directory object to point to the physical directory
created in the prior step:

SQL> create directory dpdir as '/orahome/oracle/dpdir';

11. Copy the Data Pump export dump file from the target server
to the destination server. The following line of code uses the
Linux/UNIX scp command to copy the dump file. This is
initiated from the destination server:

$ scp oracle@shrek:/orahome/oracle/dpdir/conv.dmp /orahome/oracle/dpdir

12. Copy the data file(s) from the target server to the destination
server. Place the files in the directory where you want them
in the destination database server. The following line of code
uses the Linux/UNIX scp command to copy the data files. This
is initiated from the destination server:

$ scp oracle@shrek:/orahome/oracle/convert/data_D-TRG_I-1251088236_TS-
REPDATA_FNO-5_brprfa57 /u01/dbfile/DUP/repdata.dbf

$ scp oracle@shrek:/orahome/oracle/convert/data_D-TRG_I-1251088236_TS-
REPIDX_FNO-6_bsprfa57 /u01/dbfile/DUP/repidx.dbf

Chapter 2 ■ Manual DupliCation teChniques

47

13. On the destination server, import the metadata into the
destination database:

$ impdp auxdba/auxfoo directory=dpdir dumpfile=conv.dmp \
transport_datafiles=/u01/dbfile/DUP/repdata.dbf,/u01/dbfile/DUP/repidx.dbf

You should now have the converted tablespaces (and associated data files) in the
destination database.

14. As a final step, you may want to change the tablespaces back
to read-write:

SQL> alter tablespace repdata read write;
SQL> alter tablespace repidx read write;

Different Operating System (Convert DataFile)
You can also transport data across platforms with different endian formats using the
RMAN CONVERT DATAFILE command. This example performs a conversion between
Solaris 64-bit with big endian format to a Linux server with little endian format, with
the conversion taking place on the destination server. The environment used and steps
required are shown in Figure 2-7.

Figure 2-7. Converting data files between operating systems with different endian formats

Chapter 2 ■ Manual DupliCation teChniques

48

Details of the steps shown in Figure 2-7 follow next.

1. On the destination database (on the Linux server, in this
example), confirm the platform can be converted
from via the following SQL:

SQL> SELECT platform_id, platform_name, endian_format
FROM V$TRANSPORTABLE_PLATFORM
WHERE UPPER(platform_name) LIKE 'SOLARIS%';

Here is some sample output:

PLATFORM_ID PLATFORM_NAME ENDIAN_FORMAT
----------- -- --------------
 1 Solaris[tm] OE (32-bit) Big
 2 Solaris[tm] OE (64-bit) Big
 17 Solaris Operating System (x86) Little
 20 Solaris Operating System (x86-64) Little

In this case, the destination (Linux) server is capable of converting data files from a
Solaris box with the big endian format.

2. On the source database (Solaris, in this example), run
the following check to see if the set of tablespaces being
transported violates any of the self-contained rules:

SQL> exec dbms_tts.transport_set_check('REPDATA,REPIDX', TRUE);

Now, see if Oracle detected any violations:

SQL> select * from transport_set_violations;

If you don’t have any violations, you should see this:

no rows selected

If you do have violations, such as an index that is built on a table that exists in a
tablespace not being transported, then you’ll have to rebuild the index in a tablespace
that is being transported.

3. Place the source tablespaces in read-only mode:

SQL> alter tablespace repdata read only;
SQL> alter tablespace repidx read only;

4. On the source server, create a physical directory on disk:

$ mkdir /orahome/oracle/dpdir

Chapter 2 ■ Manual DupliCation teChniques

49

5. On the source database, create a directory object that points
to a directory that exists on disk:

SQL> create directory dpdir as '/orahome/oracle/dpdir';

6. Use Data Pump on the target server to export the metadata for
the tablespaces being transported:

$ expdp trgdba/trgfoo directory=dpdir \
dumpfile=conv.dmp logfile=conv.log \
transport_tablespaces=REPDATA,REPIDX

7. On the destination Linux server, create a directory to place the
dump file in:

$ mkdir /orahome/oracle/dpdir

8. On the destination Linux server, create a directory object that
points to the directory holding the Data Pump metadata:

SQL> create directory dpdir as '/orahome/oracle/dpdir';

9. Copy the conv.dmp from the target server to the destination
server. This example uses the Linux/UNIX scp command
initiated from the destination server:

$ scp oracle@shrek:/orahome/oracle/dpdir/conv.dmp /orahome/oracle/dpdir

10. Copy the database files from the source server to the
destination server. This example uses the Linux/UNIX scp
command initiated from the destination server:

$ scp oracle@shrek:/u01/dbfile/TRG/repdata.dbf /tmp
$ scp oracle@shrek:/u01/dbfile/TRG/repidx.dbf /tmp

11. On the destination Linux server, connect to RMAN and run
the CONVERT DATAFILE command:

$ rman target /
RMAN> CONVERT DATAFILE
'/tmp/repdata.dbf',
'/tmp/repidx.dbf'
DB_FILE_NAME_CONVERT
'/tmp',
'/u01/dbfile/DUP'
FROM PLATFORM 'Solaris[tm] OE (64-bit)';

Chapter 2 ■ Manual DupliCation teChniques

50

12. Next, run Data Pump import so as to import the metadata
associated with the data files being transported:

$ impdp auxdba/auxfoo directory=dpdir dumpfile=conv.dmp \
transport_datafiles=/u01/dbfile/DUP/repdata.dbf, \
/u01/dbfile/DUP/repidx.dbf

This imports into the destination database the metadata for the tablespaces
(and associated data files) being converted. You can verify the data files exist in the data
dictionary via:

SQL> select name from v$datafile where name like '%rep%';

NAME
--
/u01/dbfile/DUP/repdata.dbf
/u01/dbfile/DUP/repidx.dbf

You may want to place the newly converted tablespaces into read-write mode at this
point:

SQL> alter tablespace repdata read write;
SQL> alter tablespace repidx read write;

Moving Data with External Tables
External tables are primary used to load data from csv files into the database. External
tables can also be used to select data from a regular database table and create a binary
dump file. The dump file is platform independent and can be used to move large
amounts of data between servers of different platforms and different endian formats.

You can also encrypt or compress data, or both, when creating the dump file.
Doing so provides you with an efficient and secure way of transporting data between
database servers.

Figure 2-8 illustrates the components involved in using an external table to unload
and load data. On the target (source) database, create a dump file using an external table
that selects data from a table named INV. After it’s created, copy the dump file to the
auxiliary (destination) server and subsequently load the file into the database using an
external table.

Chapter 2 ■ Manual DupliCation teChniques

51

A small example illustrates the technique of using an external table to unload data.
Here are the steps required:

1. Create a physical directory on the target server:

$ mkdir /orahome/oracle/dpdir

2. Create a directory object that points to the physical directory:

SQL> create directory dpdir as '/orahome/oracle/dpdir';

3. Create a table named INV and insert some data:

SQL> CREATE TABLE inv
(inv_id NUMBER,
 inv_desc VARCHAR2(30));
SQL> insert into inv values (1, 'test data');
SQL> commit;

4. Use the CREATE TABLE...ORGANIZATION EXTERNAL...AS
SELECT statement to unload data from the database into the
dump file. Use the ORACLE_DATAPUMP access driver of the
CREATE TABLE...ORGANIZATION EXTERNAL statement. This
example unloads the INV table’s contents into the inv.dmp file:

CREATE TABLE inv_et
ORGANIZATION EXTERNAL (
 TYPE ORACLE_DATAPUMP
 DEFAULT DIRECTORY dpdir
 LOCATION ('inv.dmp')
)
AS SELECT * FROM inv;

Figure 2-8. Using external tables to unload and load data

Chapter 2 ■ Manual DupliCation teChniques

52

The previous command creates two things:

An external table named •	 INV_ET based on the structure and data
within the INV table

A platform-independent dump file named •	 inv.dmp

5. Now, on the destination server create a physical directory:

$ mkdir /orahome/oracle/dpdir

6. On the destination database, create a directory object that
references the physical directory:

SQL> create directory dpdir as '/orahome/oracle/dpdir';

7. Now, you can copy the inv.dmp file to a separate database
server and base an external table on this dump file. The
following example uses the Linux/UNIX scp command to copy
the file. This command is initiated from the destination server:

$ scp oracle@shrek:/orahome/oracle/dpdir/inv.dmp /orahome/oracle/dpdir

The remote server (to which you copy the dump file) can be a platform different
from that of the server on which you created the file. For example, you can create a dump
file on a Windows box, copy to a Linux/UNIX server, and select from the dump file via an
external table.

8. On the destination database, create an external table that
points at the dump file. In this example the external table is
named INV_DW:

SQL> CREATE TABLE inv_dw
(inv_id number
,inv_desc varchar2(30))
ORGANIZATION EXTERNAL (
 TYPE ORACLE_DATAPUMP
 DEFAULT DIRECTORY dpdir
 LOCATION ('inv.dmp'));

After it’s created, you can access the external table data from SQL*Plus:

SQL> select * from inv_dw;
 INV_ID INV_DESC
---------- ------------------------------
 1 test data

Chapter 2 ■ Manual DupliCation teChniques

53

You can also create and load data into regular tables using the dump file:

SQL> create table inv as select * from inv_dw;

This provides a simple and efficient mechanism for transporting data from one
platform to another.

Tip ■ For complete details on external tables, see Expert Oracle Database Architecture,
available from apress.

Enabling Parallelism
To maximize the unload performance when you create a dump file via an external table,
use the PARALLEL clause. This example creates two dump files in parallel:

CREATE TABLE inv_et
ORGANIZATION EXTERNAL (
 TYPE ORACLE_DATAPUMP
 DEFAULT DIRECTORY dpdir
 LOCATION ('inv1.dmp','inv2.dmp')
)
PARALLEL 2
AS SELECT * FROM inv;

To access the data in the dump files, create a different external table that references
the two dump files:

CREATE TABLE inv_dw
(inv_id number
,inv_desc varchar2(30))
ORGANIZATION EXTERNAL (
 TYPE ORACLE_DATAPUMP
 DEFAULT DIRECTORY dpdir
 LOCATION ('inv1.dmp','inv2.dmp'));

You can now use this external table to select data from the dump files:

SQL> select * from inv_dw;

Chapter 2 ■ Manual DupliCation teChniques

54

Enabling Compression
You can create a compressed dump file via an external table. For example, use the
COMPRESS option of the ACCESS PARAMETERS clause:

CREATE TABLE inv_et
ORGANIZATION EXTERNAL (
 TYPE ORACLE_DATAPUMP
 DEFAULT DIRECTORY dpdir
 ACCESS PARAMETERS (COMPRESSION ENABLED BASIC)
 LOCATION ('inv.dmp')
)
AS SELECT * FROM inv;

In Oracle 12c there are four levels of compression: BASIC, LOW, MEDIUM, and
HIGH. Before using compression, ensure that the COMPATIBLE initialization parameter
is set to 12.0.0 or higher. The LOW, MEDIUM, and HIGH levels of compression require
Oracle Enterprise Edition, along with the Advanced Compression option.

Tip ■ You can also enable encryption when transporting data via external tables. see
the Oracle Advanced Security Administrator’s Guide, which can be freely downloaded from
the technology network area of the oracle web site (http://otn.oracle.com), for full
details on implementing encryption.

Summary
This chapter lays the foundation for understanding how you can move data from one
database environment to another. This chapter discussed several different manual
techniques for moving data:

Cloning from a cold backup•	

Restoring from an RMAN backup•	

Replicating with Data Pump across a network link•	

Replicating with Data Pump transportable tablespaces•	

Replicating with RMAN transportable tablespaces between the •	
same operating system platform and between different operating
system platforms

Moving data with external tables•	

Understanding these manual methods lays the foundation for intelligently using
RMAN’s duplicate database functionality. You’ll now better understand the advantages
and disadvantages of each feature. You will be in a better position to architect replication
solutions. The RMAN duplicate database feature is next discussed in detail in the
Chapters 3, 4, and 5 in this book.

http://otn.oracle.com/

55

Chapter 3

Backup-Based Duplication

Backup-based duplication uses an RMAN backup of the target (source) database as its
source to create the data files in the auxiliary (destination) environment. There are two
types of RMAN backup-based duplication:

1. No connection to the target database (or a recovery catalog)
is required. This is referred to as targetless duplication.
This technique only requires a connection to the auxiliary
database. Targetless duplication is available in Oracle 11g
release 2 and higher.

2. In some types of backup-based duplication, a connection
to both the target database (or a recovery catalog) and the
auxiliary database is required.

The main focus of this chapter is targetless duplication, where there is no
requirement to be connected to the target (source) database. In other words, you only
need a connection to the auxiliary (destination) database. The big advantage to backup-
based duplication is that if you work in an environment where it’s not possible to have
a simultaneous connection to both the target and the auxiliary database you can still
duplicate a database provided you can copy an RMAN backup to the auxiliary database
server (or provided the backup is on network-mounted storage readable from the
auxiliary server). For example, in many environments, due to security rules, there is no
network connectivity allowed from test environments to the production server.

The first section of this chapter outlines some basic troubleshooting techniques.
If you’re already familiar with basic troubleshooting, then proceed directly to the second
major section of this chapter, which deals with targetless duplication. The last section of
this chapter details a few backup-based duplication scenarios that require a connection
to both the target database (and/or recovery catalog) and the auxiliary database.

Chapter 3 ■ BaCkup-Based dupliCation

56

Basic Troubleshooting
Before getting started with examples of duplicating databases, it’s prudent to spend just a
small amount of time going over some basic troubleshooting techniques, such as:

Checking the syntax of an RMAN command•	

Monitoring•	

Logging RMAN output•	

Reviewing these techniques will save you a great deal of time when performing
RMAN duplication operations. When you’re having issues and can’t get a command to
run correctly, the first thing to do is check the syntax for accuracy. It may seem like a small
thing, but one misplaced comma can cause hours of misplaced troubleshooting. If you’re
not familiar with these basic troubleshooting techniques, now would be a good time to
spend just a few minutes reviewing the material in this section.

Checking Syntax
As you’ll soon see, some of the RMAN DUPLICATE commands in coming examples can
get quite lengthy, especially those using the SPFILE clause and specifying how to map
different directory structures from the target to the auxiliary. With long DUPLICATE
commands, it’s easy to miss a small detail and attempt to run a command that isn’t
syntactically correct. In these situations, it’s handy to check first (before actually running
the RMAN command) to see if the syntax is accurate. Fortunately, RMAN has a built-in
CHECKSYNTAX clause that allows you to do this. You can use this clause in a couple of
different ways.

From the Command Line
One method for using the CHECKSYNTAX clause is from the operating system command
line. To do so, initiate RMAN with the CHECKSYNTAX clause:

$ rman checksyntax

While connected to RMAN in this mode, any commands that you issue aren’t
executed; rather, RMAN only checks to see if the syntax is correct. For example

RMAN> duplicate database to TRG
backup location '/u01/rman/TRG'
nofilenamecheck;

If everything is correct, this line is displayed in the output:

The command has no syntax errors

Chapter 3 ■ BaCkup-Based dupliCation

57

The CHECKSYNTAX clause can be used for any RMAN command. Most RMAN
commands aren’t very long, like BACKUP DATABASE. However, for lengthy DUPLICATE
commands it’s prudent to first verify the syntax before attempting to run the command.
This will eliminate a syntax error as being the cause of a problem.

From a Script
Another technique for invoking the CHECKSYNTAX functionality is to put the RMAN
command in an operating system file and then use that file as input to the RMAN.
For example, say you have a long RMAN command stored in a file named cmd.rc.
You can quickly check for syntax issues like this:

$ rman checksyntax @cmd.rc

If successful, this message is displayed:

The cmdfile has no syntax errors

Tip ■ the CHECKSYNTAX clause does not check to see if required directories on the
auxiliary (destination) server exist. if required directories don’t exist, the DUPLICATE
command will fail and throw an error indicating there has been a problem.

For lengthy RMAN commands, the CHECKSYNTAX clause provides you a quick way
to determine if the issue is related to syntax of if it’s some other problem. Eliminating
syntax-related issues quickly helps you focus on the root cause of the problem.

Monitoring Progress
Sometimes when duplicating a database invariably somebody will ask “Is it done yet?”
This is especially true for large databases. In order to better report on RMAN operations,
I recommend that before you start any job (DUPLICATE, BACKUP, RESTORE, and so
on) you first set the NLS_DATE_FORMAT operating system variable, as this will provide
RMAN timings down to the second:

$ export NLS_DATE_FORMAT='dd-mon-rrrr hh24:mi:ss'

Now RMAN will report down to the second when each operation took place. If you
don’t set the prior variable then RMAN only reports the day, month, and year portion of
the time. If RMAN operations are common in your environment then consider setting
the NLS_DATE_FORMAT in an operating system startup file so that the variable is
consistently set when you log on to a server.

Chapter 3 ■ BaCkup-Based dupliCation

58

Next to be covered are several methods for monitoring progress. First up is the
operating system approach.

Operating System Approach
When a duplication operation is taking place, you can navigate to the directory (or directories)
that contain the auxiliary database data files and use Linux/UNIX operating system utilities
such as ls or du to manually view which data files have been restored and/or are currently
being restored. For instance:

$ cd /u01/dbfile/TRG
$ ls -altr
ls -altr
total 2597754
drwxr-x--- 4 oracle dba 4 Dec 19 21:01 ..
drwxr-x--- 2 oracle dba 10 Jan 2 10:07 .
-rw-r----- 1 oracle dba 19185664 Jan 2 10:07 control01.ctl
-rw-r----- 1 oracle dba 19185664 Jan 2 10:07 control02.ctl
-rw-r----- 1 oracle dba 524296192 Jan 2 10:07 system01.dbf
-rw-r----- 1 oracle dba 524296192 Jan 2 10:07 sysaux01.dbf
-rw-r----- 1 oracle dba 209723392 Jan 2 10:07 undotbs01.dbf
...

This approach is simple but very effective. This will give you an idea as to where
RMAN is in the duplication process. If your target (source) database has hundreds of data
files and you only see a handful of data files that are in the auxiliary destination directory,
then you know there is a bit more work to be done.

If you’re in a Windows environment, you can view the file sizes from the Windows
Explorer graphical tool, or use the DOS command-line DIR/O:-S command to view
file sizes.

SQL Approach
The SQL*Plus script in this section will give you an idea of how long the duplication
process has remaining. First, some background on how RMAN operates. RMAN will
create at least one process, called a channel, when performing the duplication operation.
You can also instruct RMAN to open more than one channel (see the section on
“Parallelism” in Chapter 5 for details). Each channel has an associated database process
that can be monitored through SQL*Plus. RMAN will open the channels, either on the

Chapter 3 ■ BaCkup-Based dupliCation

59

target database or the auxiliary database depending on the type of duplication you're
performing. Here are some guidelines regarding where RMAN will open the channels:

•	 When performing active duplication with the backup set
format. Most of the work is done by the auxiliary database
channels and therefore you should run the script in this section
on the auxiliary database to view progress.

•	 When performing active duplication when image copies are
specified. The work is done by target database channels, therefore
run the script in this section on the target database to view
progress. This is important to remember when building a standby
from an active database using image copies; in this situation you’ll
need to run the monitor script on the target database.

•	 When performing targetless duplication. All of the work is done
on the auxiliary database and therefore the script should be run on
the auxiliary database to view the progress of the duplication job.

Based on these listed rules, you’ll have to run the following SQL script to monitor
RMAN progress either on the target or on the auxiliary, depending on where RMAN
opens the channels:

SET LINES 132
COL opname FORM A30 HEAD "Oper."
COL pct_complete FORM 99.99 HEAD "% Comp."
COL start_time FORM A15 HEAD "Start|Time"
COL hours_running FORM 9999.99 HEAD "Hours|Running"
COL minutes_left FORM 999999 HEAD "Minutes|Left"
COL est_comp_time FORM A15 HEAD "Est. Comp.|Time"
--
SELECT sid, serial#, opname,
ROUND(sofar/totalwork*100,2) AS pct_complete,
TO_CHAR(start_time,'dd-mon-yy hh24:mi') start_time,
(sysdate-start_time)*24 hours_running,
((sysdate-start_time)*24*60)/(sofar/totalwork) - (sysdate-start_time)*24*60
minutes_left,
TO_CHAR((sysdate-start_time)/(sofar/totalwork) + start_time,'dd-mon-yy
hh24:mi') est_comp_time
FROM v$session_longops
WHERE opname LIKE 'RMAN%'
AND opname NOT LIKE '%aggregate%'
AND totalwork != 0
AND sofar <> totalwork;

Chapter 3 ■ BaCkup-Based dupliCation

60

Here is some sample output that results when performing active duplication and
running the script on the target database during an image copy–based duplication
operation:

 Start Hours Minutes Est. Comp.

 SID SERIAL# Oper. % Comp. Time Running Left Time

---- ------- -------------------------- ------- -------------- --------- ------ --------------

 34 37827 RMAN: full datafile backup 5.60 31-dec-14 10:02 .01 11 31-dec-14 10:14

 51 10159 RMAN: full datafile backup 20.21 31-dec-14 10:02 .01 3 31-dec-14 10:05

The output doesn’t quite fit on the page, but if you have a wide terminal this will

clearly show when the operation started, how long it’s been running, and how much time
is remaining. The output also indicates two RMAN channels have been allocated on the
target and that, as part of an image copy, RMAN is backing up the data files.

Note ■ You can run the prior script to provide timing details on any type of rMan
operation, such as how long a backup has been running or how long a restore operation
has remaining.

Capturing RMAN Output
The RMAN DUPLICATE command in particular can generate great volumes of output.
Sometimes when troubleshooting it’s handy to capture all of the output in a file that can
be used later to identify issues. You can either use the RMAN logging feature or use an
operating system utility to capture the output.

RMAN Logging
RMAN logging can be enabled a couple of different ways. When connected to RMAN you
can specify a log file to capture the output of your activities:

RMAN> spool log to '/u01/log/backup.log';
RMAN> backup database;
RMAN> spool log off;
Spooling for log turned off

You should now have a file in the /u01/log directory named backup.log that contains
the output of the BACKUP command. Note that the directory /u01/log must exist on the
server for this to work. You’ll have to modify this appropriately for your environment.

Chapter 3 ■ BaCkup-Based dupliCation

61

The other way to enable RMAN logging is from the command line:

$ rman target / log /u01/log/output.log

Now all output is captured for any subsequent RMAN commands in the
/u01/log/output.log file.

Script Command
The Linux/UNIX script command enables the recording of all output printed to your
terminal to additionally be captured in an operating system file. For instance, before
connecting to RMAN and running a DUPLICATE command, first do this:

$ script dup.log
Script started, file is dup.log

Now connect to RMAN and run the DUPLICATE command:

$ rman target sys/foo@shrek:1521/TRG auxiliary sys/foo@shrek2:1521/TRG
RMAN> DUPLICATE TARGET DATABASE TO TRG
FROM ACTIVE DATABASE
USING COPY
NOFILENAMECHECK;

When finished, you can stop the script-capture process by pressing Ctrl+D or typing
in exit, after which you should see this message:

Script done, file is dup.log

Now you can use an operating system utility such as vi or notepad to examine the
contents of the script file. If you enlist the help of Oracle Support with an issue, a file such
as this containing all the command output can be invaluable in troubleshooting problems.

Tee Command
The Linux/UNIX tee command is another useful way to record output displayed on the
terminal into a file. Here’s an example of using tee:

$ rman target / | tee rman.log

Now any commands that you run will be captured in the rman.log file. When you exit
RMAN, the rman.log file closes.

Chapter 3 ■ BaCkup-Based dupliCation

62

RMAN Command Output View
The V$RMAN_OUTPUT view contains messages recently reported by RMAN. It is an
in-memory view that can hold a maximum of 32,768 rows. Information in this view is
cleared out when you stop and start your database. Here’s a sample way to query this view:

set lines 132 pages 110
col output form a70
--
select sid, recid, output
from v$rman_output
order by recid;

Using V$RMAN_OUTPUT also has the advantage of being operating system
agnostic. You can always query its output regardless of the operating system (Windows,
Linux, Solaris, and so on).

Targetless Duplication
You can replicate a target (source) database using an RMAN backup when duplicating to
an auxiliary (destination) database. In the scenarios described in this section, you are not
required to connect to the target database or a recovery catalog when issuing the RMAN
DUPLICATE command (hence the moniker targetless duplication). The basic idea here
is to copy an RMAN backup to an auxiliary server (or storage that the auxiliary server has
read access to) and create the auxiliary database directly from the backup. This is a simple
and powerful technique for replicating a database. It is especially applicable where there’s
no direct network connection between the target database and the auxiliary.

Next, several targetless duplication scenarios are described. Let’s get started with the
simplest scenario, one in which the directory structure and database name are the same
from the target to the auxiliary environment.

Directory Structure and Database Name Remain Identical
It is easiest to use the RMAN DUPLICATE command when you have the following scenario:

Target (source) and auxiliary (destination) servers have the same •	
directory structure, meaning that the directory locations on the
target for data files, control files, and online redo logs are identical
to the directory locations on the auxiliary server.

Target and auxiliary database names are the same, meaning you •	
don’t require the name of the auxiliary database to be different
from the target.

In this situation, the basic idea is that you copy the RMAN backup files from the
target (source) server to the auxiliary (destination) server and then issue the DUPLICATE
command to create a copy of the target database on the auxiliary server. As shown in
Figure 3-1, there are five steps required for this scenario. Notice this configuration doesn’t

Chapter 3 ■ BaCkup-Based dupliCation

63

require a listener or Oracle Net connectivity. The auxiliary database simply requires read
access to an RMAN backup of the target database. In this situation the RMAN backup is
copied to a directory on the auxiliary server.

Figure 3-1. Same name and directory structure using targetless duplication

The first three steps are executed on the target server, and the last two steps are
executed on the auxiliary server.

1. On the target server, connect to RMAN and back up the target
(source) database plus archivelog:

$ rman target /
RMAN> backup database plus archivelog;

2. On the target server, copy the target RMAN backups to the
auxiliary (destination) server. First locate the RMAN backups
and then copy them to the destination server:

RMAN> list backup;

Here’s a partial listing of the output for my target database showing that the RMAN
backup pieces (physical backup files) are in the /u01/rman/TRG directory:

Piece Name: /u01/rman/TRG/TRGrman1_07pqj1um_1_1.bk

Chapter 3 ■ BaCkup-Based dupliCation

64

Next I use the Linux/UNIX scp command to copy the RMAN backups from the
source server to the destination server (you’ll have to modify this per the location of your
backups on the source and destination servers):

$ cd /u01/rman/TRG
$ scp *.bk oracle@shrek2:/u01/rman/TRG

As mentioned at the beginning of the chapter, another method to make the RMAN
backup available to the auxiliary server would be to place the backups on storage that is
readable from the auxiliary host. If this option is available it would save you from having
to copy the backups (which takes time and storage).

3. On the target server, copy the target init.ora to the auxiliary
server (you’ll have to modify this per the location of your
backups on the source and destination servers). You can use
either a server parameter file (SPFILE) or an init.ora file; here
I’m using an SPFILE:

$ cd $ORACLE_HOME/dbs
$ scp spfileTRG.ora oracle@shrek2:$ORACLE_HOME/dbs

4. Now log on to the auxiliary server, connect to SQL*Plus, and
start up the auxiliary database in nomount mode:

$ sqlplus / as sysdba
SQL> startup nomount;
SQL> exit;

5. On the auxiliary server, connect to the auxiliary instance via
RMAN and issue the DUPLICATE command:

$ rman auxiliary /
RMAN> duplicate database to TRG
backup location '/u01/rman/TRG'
nofilenamecheck;

Here’s a very small snippet of the large amount of output for this operation:

Starting Duplicate Db at...
contents of Memory Script:
...
Finished Duplicate Db...

When finished, you should have a database restored on the destination server that is
an identical copy of the source database.

Chapter 3 ■ BaCkup-Based dupliCation

65

One important note: In the DUPLICATE command the NOFILENAMECHECK was
included. When the target database and auxiliary database are on different servers, but
have the same directory structure, then always include the NOFILENAMECHECK clause.
If you don’t include NOFILENAMECHECK, then you’ll receive the following error:

RMAN-05001: auxiliary file name ... conflicts with a
file used by the target database

The NOFILENAMECHECK instructs RMAN not to check that the data file names
are identical from the target to the auxiliary. If your target and auxiliary are on the same
server, then you should not include the NOFILENAMECHECK, as you want RMAN to
ensure that you don’t attempt to restore an auxiliary data file over the top of a live target
database data file.

Directory Structure Identical and Database
Name Different
In this scenario the target (source) server and auxiliary (destination) server have the same
directory structures. However, you want to rename the database as part of duplicating
the target to the auxiliary. As shown in Figure 3-2, there are six steps required for this
scenario.

Figure 3-2. Duplicating and changing the database name

Chapter 3 ■ BaCkup-Based dupliCation

66

The first three steps are executed on the target server, and the last several steps are
executed on the auxiliary server:

1. On the target server, connect to RMAN and back up the target
(source) database plus archivelog:

$ rman target /
RMAN> backup database plus archivelog;

2. On the target server, copy the target RMAN backups to the
auxiliary (destination) server. Start by verifying the location of
the backups:

RMAN> list backup;

Here’s a partial listing of the output for my target database that shows the RMAN
backup pieces (physical backup files) are in the /u01/rman/TRG directory:

Piece Name: /u01/rman/TRG/TRGrman1_0fpqj2f9_1_1.bk

Next use the Linux/UNIX scp command to copy the RMAN backups from the source
server to the destination server (you’ll have to modify this per the location of your
backups on the source and destination servers):

$ cd /u01/rman/TRG
$ scp *.bk oracle@shrek2:/u01/rman/TRG

3. On the target server, copy the target initialization file to the
auxiliary server (you’ll have to modify this per the location of
your backups on the source and destination servers). For this
scenario I’m using a text-based init.ora file:

$ cd $ORACLE_HOME/dbs
$ scp initTRG.ora oracle@shrek2:$ORACLE_HOME/dbs

If your source database uses an SPFILE, then you can create a text-based init.ora file
from SQL*Plus, as follows:

SQL> create pfile from spfile;

This command will place a text-based initialization file with the name of init<SID>.
ora in the ORACLE_HOME/dbs directory. If you don’t want the text-based file to be
placed in that directory you can override the default behavior as follows:

SQL> create pfile='/tmp/initTRG.ora' from spfile;

Chapter 3 ■ BaCkup-Based dupliCation

67

4. Now log on to the auxiliary server, connect to SQL*Plus, and
start up the auxiliary database in nomount mode:

$ sqlplus / as sysdba
SQL> startup nomount;
SQL> exit;

5. On the auxiliary server, connect to the auxiliary instance via
RMAN and issue the DUPLICATE command. Notice that the
database is being duplicated and given the new name of DUP:

$ rman auxiliary /
RMAN> duplicate database to DUP
backup location '/u01/rman/TRG'
nofilenamecheck;

Here’s a very small snippet of the large amount of output for this operation:

Starting Duplicate Db at...
contents of Memory Script:
...
Finished Duplicate Db...

6. When finished, the database name in this example is DUP,
but it still has an instance name of TRG. To set the instance
name to DUP, shut down the auxiliary database:

RMAN> shutdown immediate;
RMAN> exit;

In this scenario, RMAN will automatically create an SPFILE for you with the name of
spfileTRG.ora. You must rename that file:

$ cd $ORACLE_HOME/dbs
$ mv spfileTRG.ora spfileDUP.ora

To complete this operation you need to set your ORACLE_SID to reflect the new
database name of DUP:

$ export ORACLE_SID=DUP
$ sqlplus / as sysdba
SQL> startup;

Tip ■ see Mos note 874352.1 for additional details regarding targetless duplication.

Chapter 3 ■ BaCkup-Based dupliCation

68

Directory Structures and Database Names Different,
Using SPFILE Clause
In this scenario the directory structure is different from the target (source) host to the
auxiliary (destination) host, and the auxiliary database will be renamed (to be different
from the target). The SPFILE clause will be used to facilitate this operation. When
performing targetless duplication, in order to use the SPFILE clause, two conditions apply:

Ensure that the target database is using an SPFILE when the •	
backup is created, otherwise you’ll receive this error when
duplicating to the auxiliary:

RMAN-05569: SPFILE backup not found in /u01/rman/TRG

The auxiliary database must be started with an •	 init.ora file (and not
an SPFILE), otherwise you’ll receive this error when duplicating:

RMAN-05537: DUPLICATE without TARGET connection when
auxiliary instance is
started with spfile cannot use SPFILE clause

Figure 3-3 depicts the steps used in this scenario.

Figure 3-3. Duplicating with different directory structure and database name

Chapter 3 ■ BaCkup-Based dupliCation

69

1. The first step is to verify the target database is using an
SPFILE-based initialization file:

SQL> select value from v$parameter where name='spfile';
VALUE
--
/orahome/app/oracle/product/12.1.0.2/db_1/dbs/spfileTRG.ora

You can also verify the target database is using an SPFILE via:

SQL> show parameter spfile;

2. On the target server, connect to RMAN and back up the target

(source) database plus archivelog. Additionally, a full backup
of the database will automatically include the SPFILE. The
SPFILE must be in the backup when using the SPFILE clause
in the DUPLICATE command (seen in a subsequent step of
this scenario):

$ rman target /
RMAN> backup database plus archivelog;

3. On the target server, locate the RMAN backups and copy them
to the destination server:

RMAN> list backup;

Here’s a partial listing of the output for my target database showing that the RMAN
backup pieces (physical backup files) are in the /u01/rman/TRG directory. Ensure that
the output shows an SPFILE was included:

Piece Name: /u01/rman/TRG/TRGrman1_0spq30vi_1_1.bk
Piece Name: /u01/rman/TRG/TRGrman2_umpu0r0e_1_1.bk
SPFILE Included: Modification time...

Next use the Linux/UNIX scp command to copy the RMAN backups from the source
server to the destination server (you’ll have to modify this per the location of your
backups on the source and destination servers):

$ cd /u01/rman/TRG
$ scp *.bk oracle@shrek2:/u01/rman/TRG

4. On the target server, copy the target initialization file to the
auxiliary server. In this scenario you must use an init.ora file
when starting the auxiliary database, otherwise RMAN will
throw the following error:

RMAN-05537, DUPLICATE without TARGET connection when auxiliary
instance is started with spfile cannot use SPFILE clause.

Chapter 3 ■ BaCkup-Based dupliCation

70

Create a text-based init.ora file and then copy it to the auxiliary server:

$ sqlplus / as sysdba
SQL> create pfile from spfile;
SQL> exit;
$ cd $ORACLE_HOME/dbs
$ scp initTRG.ora oracle@shrek2:$ORACLE_HOME/dbs

5. Now log on to the auxiliary server, connect to SQL*Plus, and
start up the auxiliary database in nomount mode:

$ sqlplus / as sysdba
SQL> startup nomount;
SQL> exit;

6. Connect to the auxiliary database and issue the DUPLICATE
command. Notice how the DUPLICATE command specifies
the new locations for control files (PARAMETER_VALUE_
CONVERT), data files (DB_FILE_NAME_CONVERT),
and online redo log files (LOG_FILE_NAME_CONVERT).
You’ll have to modify this statement to reflect the directory
structures in your environment. These directories must exist
on the auxiliary server (RMAN doesn’t create the directories
for you):

$ rman auxiliary /
RMAN> DUPLICATE TARGET DATABASE TO DUP
BACKUP LOCATION '/u01/rman/TRG'
SPFILE
 PARAMETER_VALUE_CONVERT
'/u01/dbfile/TRG', '/u01/dbfile/DUP'
 SET DB_FILE_NAME_CONVERT
'/u01/dbfile/TRG', '/u01/dbfile/DUP'
 SET LOG_FILE_NAME_CONVERT
'/u01/oraredo/TRG', '/u01/oraredo/DUP';

When finished you should have a database with the new name of DUP, but the
instance is currently running with the old name of TRG. You should also have an SPFILE
that is named spfileTRG.ora.

7. To start your database with the new name of DUP, shut down
the database, rename the SPFILE, export your ORACLE_SID to
reflect the new instance name, and then restart your database:

RMAN> shutdown immediate;
RMAN> exit
$ cd $ORACLE_HOME/dbs
$ mv spfileTRG.ora spfileDUP.ora

Chapter 3 ■ BaCkup-Based dupliCation

71

$ export ORACLE_SID=DUP
$ sqlplus / as sysdba
SQL> startup;

Keep in mind when using the SPFILE clause that you can specify other initialization
parameters for which you require different values from the target to the auxiliary. For
example, this next bit of code also sets the values of MEMORY_TARGET, MEMORY_MAX_
TARGET, and SHARED_POOL_SIZE. For instance:

RMAN> DUPLICATE TARGET DATABASE TO DUP
BACKUP LOCATION '/u01/rman/TRG'
SPFILE
 PARAMETER_VALUE_CONVERT
'/u01/dbfile/TRG', '/u01/dbfile/DUP'
 SET DB_FILE_NAME_CONVERT
'/u01/dbfile/TRG', '/u01/dbfile/DUP'
 SET LOG_FILE_NAME_CONVERT
'/u01/oraredo/TRG', '/u01/oraredo/DUP'
 SET MEMORY_TARGET '800M'
 SET MEMORY_MAX_TARGET '800M'
 SET SHARED_POOL_SIZE '100M';

After the duplication process is complete, you can verify the memory settings from
SQL*Plus:

SQL> show parameter shared_pool_size;
NAME TYPE VALUE
---------------- ----------- -------
shared_pool_size big integer 100M

Directory Structures and Database Names Different,
Not Using SPFILE
In this scenario, your target (source) and auxiliary (destination) servers have different
directory structures, and the auxiliary database is renamed. Additionally, the target
database does not use an SPFILE, so you don’t have the option of using the SPFILE clause
of the DUPLICATE command.

1. On the target server, connect to RMAN and back up the target
(source) database:

$ rman target /
RMAN> backup database plus archivelog;

2. On the target server, locate the RMAN backups and copy them
to the destination server:

RMAN> list backup;

Chapter 3 ■ BaCkup-Based dupliCation

72

Here’s a partial listing of the output for my target database showing that the RMAN
backup pieces (physical backup files) are in the /u01/rman/TRG directory:

Piece Name: /u01/rman/TRG/TRGrman1_0fpqj2f9_1_1.bk

On the target server, use the Linux/UNIX scp command to copy the RMAN backups
from the source server to the destination server (you’ll have to modify this per the
location of your backups on the source and destination servers):

$ cd /u01/rman/TRG
$ scp *.bk oracle@shrek2:/u01/rman/TRG

3. On the target server, copy the target database init.ora file to
the auxiliary server. Notice that the init.ora file is renamed
during the copying to initDUP.ora:

$ cd $ORACLE_HOME/dbs
$ scp initTRG.ora oracle@shrek2:$ORACLE_HOME/dbs/initDUP.ora

4. Now on the auxiliary database server, modify the initDUP.ora
file to reflect the new directory structure. For this example,
I’ve modified the CONTROL_FILES and DB_NAME
parameters as follows:

control_files='/u01/dbfile/DUP/control01.ctl',
'/u01/dbfile/DUP/control02.ctl'
db_name='DUP'

5. Next, export the ORACLE_SID to reflect the new database name:

$ export ORACLE_SID=DUP

Now start up the auxiliary in nomount mode:

$ sqlplus / as sysdba
SQL> startup nomount;
SQL> exit;

6. Connect to the auxiliary database via RMAN and issue the
DUPLICATE command:

$ rman auxiliary /
RMAN> DUPLICATE TARGET DATABASE TO DUP
BACKUP LOCATION '/u01/rman/TRG'
 DB_FILE_NAME_CONVERT '/u01/dbfile/TRG','/u01/dbfile/DUP'
 ,'/u02/dbfile/TRG','/u02/dbfile/DUP'
 ,'/u03/dbfile/TRG','/u03/dbfile/DUP'
LOGFILE GROUP 1('/u01/oraredo/DUP/redo01a.rdo') SIZE 50m,
 GROUP 2('/u01/oraredo/DUP/redo02a.rdo') SIZE 50m;

Chapter 3 ■ BaCkup-Based dupliCation

73

When finished you should have a fully functioning copy of the target database on
the auxiliary server. Note that even though the SPFILE clause wasn’t specified in this
scenario, RMAN will still create an SPFILE for the auxiliary database. As a result, you may
see this in the output:

Cannot remove created server parameter file

This is just an informational message and nothing to worry about.

Transforming Directory Names via Initialization File
Instead of specifying in the DUPLICATE command the transformation of the target
directory structure to the auxiliary directory structure, you can place the necessary
transformation in the auxiliary initialization file directly. For example, the following
modifications to the auxiliary initialization file (initDUP.ora in this example) instruct
RMAN where to place the control files (CONTROL_FILES), how to transform data file
names (DB_FILE_NAME_CONVERT), and how to transform online redo log file names
(LOG_FILE_NAME_CONVERT):

db_name=DUP
#
control_files='/u01/dbfile/DUP/control01.ctl',
'/u02/dbfile/DUP/control02.ctl'
#
db_file_name_convert= ('/u01/dbfile/TRG','/u01/dbfile/DUP','/u02/dbfile/TRG',
'/u02/dbfile/DUP',
'/u03/dbfile/TRG','/u03/dbfile/DUP')
#
log_file_name_convert=('/u01/oraredo/TRG','/u01/oraredo/DUP',
'/u02/oraredo/TRG','/u02/oraredo/DUP')

And now start up your database in nomount mode:

$ export ORACLE_SID=DUP
$ sqlplus / as sysdba
SQL> startup nomount;
SQL> exit;

Next, use RMAN to connect to the auxiliary database and issue the DUPLICATE
command:

$ rman auxiliary /
RMAN> DUPLICATE TARGET DATABASE TO DUP
BACKUP LOCATION '/u01/rman/TRG';

When finished, you should see this at the bottom of the lengthy output:

Finished Duplicate Db at...

Chapter 3 ■ BaCkup-Based dupliCation

74

Now you should stop and start your duplicated database and inspect the alert.log
file. You may see an error such as this:

ORA-01110: data file 201: '/u01/dbfile/DUP/temp01.dbf'

To resolve this either move or remove the existing temporary tablespace temp file
using operating system commands:

$ mv /u01/dbfile/DUP/temp01.dbf /u01/dbfile/DUP/tempo01.old.dbf

Then stop and start the database. When starting, Oracle will detect that the
temporary tablespace temp file is missing and recreate it.

Transforming Directory Names using SET NEWNAME
Another technique for instructing RMAN to transform directory names is with the SET
NEWNAME command. This command must be encapsulated within an RMAN RUN{}
block. Before performing this operation, first verify your target database data file numbers
and corresponding names:

$ rman target /
RMAN> report schema;

In the following output, take note of the file number and data file name; this will
provide the mapping used subsequently with the SET NEWNAME command:

File Size(MB) Tablespace RB segs Datafile Name
---- -------- ---------- ------- -----------------------------
1 500 SYSTEM YES /u01/dbfile/TRG/system01.dbf
2 500 SYSAUX NO /u01/dbfile/TRG/sysaux01.dbf
3 200 UNDOTBS1 YES /u01/dbfile/TRG/undotbs01.dbf
4 15 USERS NO /u01/dbfile/TRG/users01.dbf
5 10 REPDATA NO /u01/dbfile/TRG/repdata.dbf
6 10 REPIDX NO /u01/dbfile/TRG/repidx.dbf

List of Temporary Files
=======================
File Size(MB) Tablespace Maxsize(MB) Tempfile Name
---- -------- ---------- ---------- --------------------------
1 500 TEMP 500 /u01/dbfile/TRG/temp01.dbf

On the auxiliary host, set your ORACLE_SID to the name of the new database:

$ export ORACLE_SID=DUP

Chapter 3 ■ BaCkup-Based dupliCation

75

Next, modify the initialization file so that it reflects the new name of the database and
the directories for the control files (in this example the initialization file name is initDUP.ora):

db_name=DUP
#
control_files='/u01/dbfile/DUP/control01.ctl','/u02/dbfile/DUP/control02.ctl'

And now start up the auxiliary database in nomount mode:

$ sqlplus / as sysdba
SQL> startup nomount;
SQL> exit;

Next, use RMAN to connect to the auxiliary database and issue the SET NEWNAME
and DUPLICATE commands with a RUN{} block:

$ rman auxiliary /

Now run the following code. Notice the new directory location has been specified for
each data file (TRG has been changed to DUP):

RMAN> RUN
{
SET NEWNAME FOR DATAFILE 1 TO '/u01/dbfile/DUP/system01.dbf';
SET NEWNAME FOR DATAFILE 2 TO '/u01/dbfile/DUP/undotbs01.dbf';
SET NEWNAME FOR DATAFILE 3 TO '/u01/dbfile/DUP/sysaux01.dbf';
SET NEWNAME FOR DATAFILE 4 TO '/u01/dbfile/DUP/users01.dbf';
SET NEWNAME FOR DATAFILE 5 TO '/u01/dbfile/DUP/repdata.dbf';
SET NEWNAME FOR DATAFILE 6 TO '/u01/dbfile/DUP/repidx.dbf';
SET NEWNAME FOR TEMPFILE 1 TO '/u01/dbfile/DUP/temp01.dbf';
DUPLICATE TARGET DATABASE TO DUP
BACKUP LOCATION '/u01/rman/TRG'
LOGFILE GROUP 1 ('/u01/oraredo/DUP/redo01.rdo') SIZE 50M,
 GROUP 2 ('/u01/oraredo/DUP/redo02.rdo') SIZE 50M;
}

When finished you should see the following line at the bottom of the lengthy output:

Finished Duplicate Db at...

Chapter 3 ■ BaCkup-Based dupliCation

76

Shell Scripting the Duplication Process
Oftentimes you’ll have the requirement to automate the duplication process. For example,
in one environment at work the development team regularly requests that I refresh a
development copy of the production database to the test environment. I use the
Linux/UNIX cron utility to schedule the following tasks:

Copy the latest RMAN target database backup from production to •	
the auxiliary test server

Copy an initialization file from the target to the auxiliary server•	

Run a Bash shell script (on the auxiliary server) to refresh •	
the database

Here are the contents of the Bash shell script that automate the duplication of the
target database:

#!/bin/bash
#---------------------------------
export ORACLE_SID=TRG
#
sqlplus -s /nolog <<EOF
connect / as sysdba;
shutdown immediate;
startup nomount;
exit;
EOF
#---------------------------------
rman nocatalog <<EOF
connect auxiliary /
duplicate database to TRG
backup location '/u01/rman/TRG'
nofilenamecheck;
exit;
EOF
#---------------------------------
exit 0

The shell script needs to exist on the auxiliary (destination) database server. Ensure
you make the shell script executable. Assuming the shell script name is dup.bsh, here’s an
example of making the shell script executable:

$ chmod +x dup.bsh

And now you should be able to run the script:

$ dup.bsh

Chapter 3 ■ BaCkup-Based dupliCation

77

When RMAN is finished duplicating the database, you should see the following line:

Recovery Manager complete.

You should now have a database that has been duplicated from the target database
RMAN backups.

Sometimes with large databases it can take a while for the shell script to complete.
When executing the shell script from the command line, it’s useful to use the Linux/UNIX
nohup command. This will allow the shell script to run in the background. Sometimes it’s
advantageous to run a script in the background, as that will prevent the shell script from
being terminated if the server is configured to automatically terminate what appears to be
a process with no activity. Here’s an example of using nohup:

$ nohup dup.bsh &

Now you can monitor the progress of the duplication job via the Linux/UNIX tail
command:

$ tail -f nohup.out

The -f switch instructs the tail command to continuously display the last several lines
of the output on your terminal. To exit the continuous tailing process, enter a Ctrl+C.

Duplicating and Stopping Recovery at a Specific Time
It’s possible to specify a specific point-in-time recovery when duplicating a database. You
may want to do this because you want the restoration point to stop at a specific point (like
a baseline that you’ve established for testing). First, start up the auxiliary (destination)
database in nomount mode:

$ sqlplus / as sysdba
SQL> startup nomount;
SQL> exit;

Next, connect via RMAN to the auxiliary:

$ rman auxiliary /

This next bit of code specifies that the DUPLICATE command should apply all
transactions that occurred before the specified point in time:

RMAN> DUPLICATE TARGET DATABASE TO TRG
BACKUP LOCATION '/u01/rman/TRG'
db_file_name_convert '/u01/dbfile/TRG','/u01/dbfile/DUP'
 ,'/u02/dbfile/TRG','/u02/dbfile/DUP'
 ,'/u03/dbfile/TRG','/u03/dbfile/DUP'

Chapter 3 ■ BaCkup-Based dupliCation

78

logfile group 1
 ('/u01/oraredo/DUP/redo01a.rdo',
 '/u02/oraredo/DUP/redo01b.rdo') size 50m,
group 2
('/u01/oraredo/DUP/redo02a.rdo',
 '/u02/oraredo/DUP/redo02b.rdo') size 50m
UNTIL TIME "TO_DATE('16-dec-2014 09:00:00', 'dd-mon-rrrr hh24:mi:ss')";

Tip ■ it’s best to always specify the date format with the TO_DATE function. this eliminates
any ambiguity as to what date is being utilized.

Restarting Duplication
One handy aspect of RMAN is that if you’re restoring a large database and there’s some
sort of failure (e.g., power outage) that causes the restore to abort, when you restart the
restore operation RMAN will not restore files that have already been successfully restored.
RMAN checks for files in the expected location and expected information in the data file
header and if already present, RMAN will not restore those files. This is known as restore
optimization. For operations initiated with the RESTORE command, you can override
restore optimization with the FORCE option. This forces RMAN to restore a file even if it
exists in the expected location.

The restore optimization feature also applies to RMAN database duplication. If the
duplication job unexpectedly aborts during the replication process you can simply rerun
the DUPLICATE command and RMAN will not restore data files that were previously
successfully restored. Thus, if you had a DUPLICATE job that was 90% complete, and the
server crashed, when it comes back online, you can rerun the DUPLICATE command and
RMAN will restore the remaining 10% of the data files.

When rerunning the DUPLICATE command, if RMAN detects there are data files
that have already been restored, it will display a message similar to this in the output:

skipping datafile 1; already restored to file /u01/dbfile/TRG/system01.dbf
skipping datafile 4; already restored to file /u01/dbfile/TRG/users01.dbf

One caveat is that unlike operations initiated with the RESTORE command, with the
DUPLCIATE command there is no way to force RMAN to restore files that have previously
been successfully restored. If you need to force RMAN to restore a file, then first delete it.

Restricting Access after Duplication
By default, when you duplicate a database, as the last step RMAN will open the database.
You may not want this behavior if you don't immediately want the duplicated database
to be available for use. For example, you may first want to verify the duplication was

Chapter 3 ■ BaCkup-Based dupliCation

79

successful before you open the database for use. In this situation use the NOOPEN clause.
For example, first connect to the auxiliary database:

$ rman auxiliary /

Then issue the DUPLICATE command with NOOPEN:

RMAN> duplicate database to TRG
noopen
backup location '/u01/rman/TRG'
nofilenamecheck;

When finished, you have a duplicate of the target database, but the database is
placed in mount mode:

SQL> select open_mode from v$database;

OPEN_MODE

MOUNTED

When you’re ready you can open the database for use. Notice that you must use the
RESETLOGS clause when you open the database:

SQL> alter database open resetlogs;

Another option you have is to have RMAN open the database in restricted mode.
In this way, only users with the restricted session privilege (like users with the DBA role
assigned to them) can connect to the database. First, connect to the auxiliary database:

$ rman auxiliary /

Then issue the DUPLICATE command with OPEN RESTRICTED clause:

RMAN> duplicate database to TRG
open restricted
backup location '/u01/rman/TRG'
nofilenamecheck;

In this mode, RMAN issues an ALTER SYSTEM ENABLE RESTRICTED SESSION
command before opening the database. You can verify that logins are restricted via:

RMAN> select status, logins from v$instance;

STATUS LOGINS
------------ ----------
OPEN RESTRICTED

Chapter 3 ■ BaCkup-Based dupliCation

80

When desired you can enable normal logons via:

RMAN> alter system disable restricted session;

Tip ■ starting with oracle 12c, you can run sQl statements directly from within rMan
without having to specify the sQl clause.

Scenarios Requiring Connections to Target
All of the previous examples in this chapter have only required a connection to the auxiliary
database to perform backup-based duplication. Having said that, there are some types of
backup-based duplication scenarios that require a connection to both the target database
and the auxiliary database. An example of this is replicating and stopping the restoration
process at a specific log sequence number or at a restore point. If you attempt to restore to a
sequence number or restore point without a connection to both the target and the auxiliary
database, RMAN will throw an RMAN-05542 error indicating that only UNTIL TIME can be
used with DUPLICATE without a target (and/or recovery catalog) connection. Examples of
sequence and restore-point duplication are detailed in the following sections.

UNTIL Sequence
Before performing a log sequence–based recovery, verify which archive redo logs are
included in the backup and determine which archive redo log you want to recover up to
(but not including). You can verify the archive redo logs included in a backup by issuing
the following on the target database:

RMAN> list backup of archivelog all;

Here is some sample output:

List of Archived Logs in backup set 15
 Thrd Seq Low SCN Low Time Next SCN Next Time
 ---- ------- ---------- --------- ---------- ---------
 1 28 351977 19-DEC-14 352064 19-DEC-14

To specify a log sequence number at which the restoration process should stop you
must be connected to both the target (source) and the auxiliary (destination) databases. If
you attempt to duplicate to a log sequence number with just a connection to the auxiliary
database you’ll receive the following error message:

RMAN-05542: Only UNTIL TIME can be used with DUPLICATE
without TARGET and CATALOG connections

Chapter 3 ■ BaCkup-Based dupliCation

81

In this scenario, on the auxiliary server initiate a connection to both the target
database and the auxiliary database. This requires that Oracle Net connectivity exists
between the two servers (see Chapter 6 for details on Oracle Net):

$ rman target sys/foo@TRG auxiliary sys/foo

Next, issue the DUPLICATE command and specify a log sequence to restore up
to (but not including). This example restores up to but not including the specified log
sequence number:

DUPLICATE TARGET DATABASE TO TRG
BACKUP LOCATION '/u01/rman/TRG'
db_file_name_convert '/u01/dbfile/TRG','/u01/dbfile/DUP'
 ,'/u02/dbfile/TRG','/u02/dbfile/DUP'
 ,'/u03/dbfile/TRG','/u03/dbfile/DUP'
logfile group 1
 ('/u01/oraredo/DUP/redo01a.rdo',
 '/u02/oraredo/DUP/redo01b.rdo') size 50m,
group 2
('/u01/oraredo/DUP/redo02a.rdo',
 '/u02/oraredo/DUP/redo02b.rdo') size 50m
UNTIL SEQUENCE 28;

After the job is finished, you should see this at the bottom of the output:

Finished Duplicate Db at...

If you have a recovery catalog in place, it’s also possible to restore until a sequence
while connected to the recovery catalog and the auxiliary database. For example:

$ rman auxiliary / catalog rcat/foo@cat

Next, issue the DUPLICATE command. Notice that the syntax here does not use the
keyword TARGET:

RMAN> DUPLICATE DATABASE TRG TO TRG
BACKUP LOCATION '/u01/rman/TRG'
db_file_name_convert '/u01/dbfile/TRG','/u01/dbfile/DUP'
 ,'/u02/dbfile/TRG','/u02/dbfile/DUP'
 ,'/u03/dbfile/TRG','/u03/dbfile/DUP'
logfile group 1
 ('/u01/oraredo/DUP/redo01a.rdo',
 '/u02/oraredo/DUP/redo01b.rdo') size 50m,
group 2
('/u01/oraredo/DUP/redo02a.rdo',
 '/u02/oraredo/DUP/redo02b.rdo') size 50m
UNTIL SEQUENCE 28;

Chapter 3 ■ BaCkup-Based dupliCation

82

The key here is that the UNTIL clause requires a connection to the target (or recovery
catalog) database along with a connection to the auxiliary database.

UNTIL Restore Point
This example uses a restore point to recover to a point in time. A restore point is a pointer
to a system change number (SCN). Recall that an SCN is an internal counter that Oracle
uses to assign a sequential number to every change that occurs in the database.

1. First, on the target (source) database, take an RMAN backup
as follows:

RMAN> backup database
include current controlfile
plus archivelog;

2. Next, create a restore point on the target database.

SQL> create restore point my_rp;

3. Now back up all of the archive redo logs again, which will
ensure that you have any archive redo logs required to restore
up to the SCN recorded by the restore point:

RMAN> backup archivelog all;

4. Then use the Linux/UNIX scp command to copy the RMAN
backups from the target server to the auxiliary server (you’ll have
to modify this per the location of your backups on the source and
destination servers). This is initiated from the target server:

$ cd /u01/rman/TRG
$ scp *.bk oracle@shrek2:/u01/rman/TRG

5. Copy the initialization file from the target to the auxiliary. You
can use either an SPFILE or a text-based init.ora file. Here’s
an example of using the Linux/UNIX scp command for my
environment (initiated from the target server):

$ cd $ORACLE_HOME/dbs
$ scp $ORACLE_HOME/dbs/initTRG.ora oracle@shrek2:$ORACLE_HOME/dbs

6. Then on the auxiliary server, start up the auxiliary database in
nomount mode:

$ sqlplus / as sysdba
SQL> startup nomount;

Chapter 3 ■ BaCkup-Based dupliCation

83

7. On the auxiliary server, connect to the target and the auxiliary
databases. When using an RMAN backup as the source and
performing an UNTIL SEQUENCE duplication, a connection
to both the target and the auxiliary is required:

$ rman target sys/foo@shrek:1521/TRG auxiliary sys/foo

This connection can be made from either the target, the auxiliary, or a remote client.

8. Next issue the DUPLICATE command specifying a restore
point. In this example the restore point is my MY_RP:

RMAN> DUPLICATE TARGET DATABASE TO TRG
BACKUP LOCATION '/u01/rman/TRG'
UNTIL RESTORE POINT my_rp
NOFILENAMECHECK;

At this point you may see the following errors:

RMAN-03002: failure of Duplicate Db command at ...
RMAN-05501: aborting duplication of target database
RMAN-03015: error occurred in stored script Memory Script
RMAN-06026: some targets not found - aborting restore
RMAN-06024: no backup or copy of the control file found to restore

This output indicates that RMAN can’t retrieve the control file required or archive
redo logs required from the backups. For example, if you create a restore point before you
take a backup of the control file and data files, RMAN can’t find a control file to restore
that is prior to when the restore point was created.

In this situation, ensure that you have taken the RMAN backup before you created
the restore point, and also have backed up any archive redo logs required to restore up to
the SCN recorded in the restore point.

To further troubleshoot this issue, run the following on the target database:

RMAN> run {
set until restore point my_rp;
restore controlfile preview;
}

Inspect the output of the previous command. Ensure that the backups required to
restore the data files and archived redo logs exist on the auxiliary server.

Tip ■ see Mos note 1543996.1 for more details on the RMAN-06024 error.

Chapter 3 ■ BaCkup-Based dupliCation

84

Summary
This chapter detailed using an RMAN backup as the source for the duplication operation.
There are two types of backup-based duplication:

Targetless duplication, which requires no connection to the target •	
database

Non-targetless duplication, which does require a target •	
connection (and/or recovery catalog)

Most of the chapter discussed various targetless duplication scenarios. This is the
simplest method for duplicating a database. This type of duplication relies only on an
RMAN backup for the source of the database being copied. There is no need to connect to
the target and/or a recovery catalog while performing targetless duplication.

This type of duplication is especially handy in environments where it’s not possible
to connect to the target and the auxiliary at the same time. This could be due to security
requirements, and therefore no direct Oracle Net connection is possible between the
target and the auxiliary.

85

Chapter 4

Active Duplication

The previous chapter discussed duplicating from an RMAN backup. This chapter walks
you through duplicating directly from an open target database. This is referred to as
active duplication because the source is a live database. You don’t need an RMAN backup
when using active duplication. Rather, RMAN uses the live data files and control files as
the source when copying the target (source) to the auxiliary (destination). When actively
duplicating, RMAN copies the files over the network in either:

RMAN backup set format•	

Image copy format•	

When using the backup set format, RMAN creates the equivalent of a backup set in
memory and transfers the backup set across the network to the auxiliary database, where
it restores and recovers the data files. When using image copies, RMAN copies byte for
byte the live data files across the network to the auxiliary database.

In Oracle 12c the default format for transferring the data files is the backup set format
(more on this shortly). In Oracle 11g, RMAN can only use the image copy format to
transfer the data files. This process is depicted in Figure 4-1.

Figure 4-1. RMAN active duplication

Chapter 4 ■ aCtive DupliCation

86

Active database duplication using the backup set format is a feature of RMAN in
Oracle 12c and higher. Using RMAN backup sets is usually the preferable format for
performing active duplication. The backup set method doesn’t copy a byte for byte
copy of the data file, rather it copies the minimal amount of information in the data file
that would be required to recreate the data file on the auxiliary database. This feature is
referred to as unused block compression. This means if you have a large data file that is
mostly empty, RMAN won’t transfer the blocks that have never been used; only the blocks
that have been used in the data file will be copied. This can greatly speed up the time and
reduce the resources required to actively duplicate a database.

Additionally, the backup set format provides access to standard RMAN features
such as compression, encryption, and parallel multisection transfer of large data files.
For example, if your network bandwidth is constrained, you may want to consider having
RMAN compress the backup set contents before copying them to the auxiliary database.
This will use more CPU on the target and auxiliary databases as the compression and
decompression take place, but the load on the network will be greatly reduced.

Oracle Net Configuration
Active duplication requires an RMAN connection to both the target and the auxiliary
database. If you don’t have network connectivity between the target and the auxiliary then
active duplication is not possible. For instance, sometimes due to security reasons there
is no network connectivity allowed between production and test environments. In those
scenarios you’ll have to use another approach like targetless duplication based on an
RMAN backup (see Chapter 3 for details).

With active duplication the RMAN connection can be initiated from either the target
or the auxiliary server. Recall the following points highlighted in Chapter 3 regarding
where RMAN consumes the most resources when performing active duplication:

When performing active duplication with the backup set format •	
(default format in Oracle 12c and higher), most of the work is
done by the auxiliary database channels.

When performing active duplication when image copies are •	
specified (only option available in Oracle 11g), the work is done
by the target database channels.

Since a connection is required to both the target and the auxiliary, this means
you have to connect to one of the databases over an Oracle Net connection. Oracle Net
connectivity requires:

A listener running on the database that you’re connecting to over •	
Oracle Net.

A password file; any time you connect over Oracle Net to a •	
database as a SYSDBA privileged user (such as SYS) or as a user
with SYSBACKUP privileges you must have a password file in
place. Active duplication requires that a password file exist for
both the target and auxiliary servers.

Chapter 4 ■ aCtive DupliCation

87

In other words, whenever you run the RMAN client and need to connect over Oracle
Net to either the target or the auxiliary database as a SYS (or SYSBACKUP) privileged user
you must have Oracle Net set up and password files created.

Setting Up the Listener
This section describes the basics of setting up the listener. If you’re not familiar with
Oracle Net concepts then then refer to Chapter 6, which covers basic Oracle Net
components and configuration.

For simple test environments you can start a default listener via:

$ lsnrctl start

If no listener.ora file has been configured for the listener, you’ll initially see a message
similar to this in the output:

The listener supports no services

If you haven’t configured your listener to listen on a specific port then by default
the listener will listen for incoming connections on port 1521. If listening on port 1521,
by default the LREG process will register an actively running instance service with the
listener (PMON will register an instance with the listener in Oracle 11g and before). The
LREG process periodically (every 60 seconds) checks to see if any new instances are
running on the server, and if so it will attempt to register an instance service with the
listener. You can verify the registration of the service with the listener via:

$ lsnrctl services

After 60 seconds you should see each Oracle instance service registered with the
listener in the output; for example:

Listening Endpoints Summary...
 (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=shrek)(PORT=1521)))
Service "TRG" has 1 instance(s).
 Instance "TRG", status READY, has 1 handler(s) for this service...

If you have configured the listener to listen on a port other than 1521, then you can
instruct LREG (or PMON in Oracle 11g and before) to dynamically register a service with
a listener by setting the LOCAL_LISTENER initialization parameter. For example, if you’ve
configured the listener to listen on port 1522, then you can enable dynamic registration
by setting the LOCAL_LISTENER initialization parameter as follows:

SQL> alter system set
local_listener='(ADDRESS=(PROTOCOL=TCP)(HOST=shrek)(PORT=1522))';

Chapter 4 ■ aCtive DupliCation

88

If your listener is listening on port 1521, ensure that the LOCAL_LISTENER
parameter isn’t set:

SQL> alter system set local_listener='';

Setting Up the Password File
In addition to Oracle Net being implemented, active duplication requires password files
for both the target and auxiliary databases. To create a password file, do as follows:

$ cd $ORACLE_HOME/dbs
$ orapwd file=<filename> password=<password>

For example, for my database named TRG I created the password file as follows:

$ cd $ORACLE_HOME/dbs
$ orapwd file=orapwTRG password=foo

After the listener is started and a password file is in place, you can use the easy
connect naming method to connect over Oracle Net to a remote database as a SYSDBA
privileged user (such as SYS). For example, assuming the target database service name
is TRG, host name is shrek, and port is 1521, here’s what the connection looks like when
initiating the RMAN client from the auxiliary server over Oracle Net to the target database:

$ rman target sys/foo@shrek:1521/TRG auxiliary sys/foo

If initiating the connection from the target database, and assuming the auxiliary
database service name is DUP, host name is shrek2, and port is 1521, the easy connection
looks like this:

$ rman target sys/foo auxiliary sys/foo@shrek2:1521/DUP

If you were initiating the RMAN connection from a client that doesn’t reside on either
the target server or the auxiliary server, you would then have to specify the Oracle Net
connection information for both the target and the auxiliary. Also, a listener would need
to be running on both the target server and the auxiliary server. Here’s an example RMAN
connection string for my environment:

$ rman target sys/foo@shrek:1521/TRG auxiliary sys/foo@shrek2:1521/DUP

Chapter 4 ■ aCtive DupliCation

89

Another common method for specifying Oracle Net information is to use a tnansames.ora
file on the client. This file is usually located in the ORACLE_HOME/network/admin directory
and contains an alias for each service that is associated with network connection details,
such as the host name, port number, and service name. For example:

TRG =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = shrek)(PORT = 1521))
 (CONNECT_DATA = (SERVER = DEDICATED) (SERVICE_NAME = TRG)))

DUP =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = shrek2)(PORT = 1521))
 (CONNECT_DATA = (SERVER = DEDICATED) (SERVICE_NAME = DUP)))

Once specified in the tnsnames.ora file, then the RMAN connection looks like this:

$ rman target sys/foo@TRG auxiliary sys/foo@DUP

Again, if you need a primer on Oracle Net concepts then refer to Chapter 6. For full
details on how to configure Oracle Net, refer to Oracle’s documentation, which is freely
available on the Oracle Technology Network website. My intention in this chapter is to
provide you with just enough information to get started with active duplication.

Same Directory Structure and Database Name
This scenario duplicates the auxiliary database using the active (open) target database’s
data files and control files. Here are some points to be aware of with active duplication:

No RMAN backup is required.•	

If the target database is open then it is required to be in archivelog •	
mode. When actively duplicating an open database, if it’s not in
archivelog mode, you’ll receive this message:

ORA-19602: cannot backup or copy active file in NOARCHIVELOG mode

Does require Oracle Net connectivity between the target and •	
auxiliary.

Does require a password file for target and auxiliary database. •	
If there’s no password file in place, you’ll receive this message:

ORA-17627: ORA-01017: invalid username/password; logon denied

The required steps can be performed from either the target (source) server or the

auxiliary (destination) server. Figure 4-2 depicts the scenario in which all of the steps are
performed on the auxiliary server. This example uses an Oracle 12c database, therefore the
default format for the data file transfer is the backup set format. If this were an Oracle 11g
database the image copy format would be used for the data file transfer. In this example
the directory structure and database name remain the same from target to auxiliary.

Chapter 4 ■ aCtive DupliCation

90

The steps for duplication for this scenario are described in detail next.

1. Copy the initialization file from the target to the auxiliary.
You can use either an SPFILE or a text-based init.ora file.
Here’s an example of using the Linux/UNIX scp command
for my environment. This command is initiated from the
auxiliary server:

$ cd $ORACLE_HOME/dbs
$ scp oracle@shrek:$ORACLE_HOME/dbs/initTRG.ora.

2. Start up the auxiliary database in nomount mode:

$ sqlplus / as sysdba
SQL> startup nomount;
SQL> exit;

3. When connecting to RMAN you can initiate the connection
from the target, the auxiliary, or a remote client. This shows an
example of connecting to target and auxiliary initiated from
the auxiliary server:

$ rman target sys/foo@shrek:1521/TRG auxiliary sys/foo

Figure 4-2. Active duplication with same database name and directory structure

Chapter 4 ■ aCtive DupliCation

91

If you were issuing the RMAN connection from the target, it would look like this
(assuming there’s a listener on the auxiliary host listening on port 1521):

$ rman target sys/foo auxiliary sys/foo@shrek2:1521/TRG

For active duplication you must specify a username and password for both the target
and the auxiliary connection. Otherwise, when issuing the DUPLICATE command RMAN
will throw an RMAN-05609 or an RMAN-05610 error specifying that the username and
password are required.

4. Now execute the DUPLICATE command:

RMAN> DUPLICATE TARGET DATABASE TO TRG
FROM ACTIVE DATABASE
NOFILENAMECHECK;

You should now see a great deal of output. Here’s a small snippet:

Starting Duplicate Db at ...
using target database control file instead of recovery catalog
...
channel ORA_AUX_DISK_1: using network backup set from service shrek:1521/TRG
...
Cannot remove created server parameter file
Finished Duplicate Db at ...

After it successfully completes, on the auxiliary server you should have an identical
copy of the database from the target database. Don’t worry about the Cannot remove
create server parameter file message. RMAN is just telling you that it created an SPFILE as
part of the duplication process and did not remove it (which is fine).

Different Directory Structure and Database Name
Using SPFILE Clause
In this example active duplication is performed where the directory structures and
database names are different from the target to the auxiliary. This type of operation is
best achieved by using the SPFILE clause of the DUPLCIATION command. This approach
requires the target (source) database be started using an SPFILE; if you don’t start the
target database with an SPFILE, you’ll receive the following error when duplicating:

RMAN-05557: Target instance not started with server parameter file

This approach also requires that the auxiliary (destination) database not be started
with an SPFILE; if you start your auxiliary instance with an SPFILE, you’ll receive this
error when duplicating:

RMAN-05537: DUPLICATE without TARGET connection when auxiliary
instance is started with spfile cannot use SPFILE clause

Chapter 4 ■ aCtive DupliCation

92

This error message states that you can’t duplicate without a target connection. In this
scenario you will be connected to the target, so don’t let that confuse you. The point here
is that you must start the auxiliary with a text-based init.ora file and not an SPFILE.

The required steps can be performed from either the target server or the auxiliary
server. Figure 4-3 graphically displays this method.

The steps required for this scenario are described in detail next. This example
assumes the target database is using an SPFILE. You can verify this on the target as follows:

SQL> show parameter spfile;
NAME TYPE VALUE
--------- ----------- ------------------------
spfile string /orahome/app/oracle/product

/12.1.0.2/db_1/dbs/spfileTRG.ora

1. On the target database, create a text-based initialization file:

SQL> create pfile from spfile;

Figure 4-3. Active duplication with different database name and directory structure

Chapter 4 ■ aCtive DupliCation

93

2. Copy the initialization file from the target to the auxiliary.
Here’s an example of using the Linux/UNIX scp command for
my environment initiated from the auxiliary server:

$ cd $ORACLE_HOME/dbs
$ scp oracle@shrek:$ORACLE_HOME/dbs/initTRG.ora.

3. Start up the auxiliary database in nomount mode:

$ sqlplus / as sysdba
SQL> startup nomount;
SQL> exit;

4. Connect to RMAN and to target and auxiliary databases.
This shows the connection originating from the auxiliary
(destination) server:

$ rman target sys/foo@shrek:1521/TRG auxiliary sys/foo

If you were issuing the RMAN connection from the target, it would look like this:

$ rman target sys/foo auxiliary sys/foo@shrek2:1521/TRG

5. Now execute the DUPLICATE command. This example
assumes that the target database is using an SPFILE, and
therefore the SPFILE clause of the DUPLICATE command
can be used to specify the new directory path names for the
control files (PARAMETER_VALUE_CONVERT), data files
(DB_FILE_NAME_CONVERT), and online redo log files
(LOG_FILE_NAME_CONVERT):

RMAN> DUPLICATE TARGET DATABASE TO DUP
FROM ACTIVE DATABASE
SPFILE
 PARAMETER_VALUE_CONVERT
'/u01/dbfile/TRG', '/u01/dbfile/DUP'
 SET DB_FILE_NAME_CONVERT
'/u01/dbfile/TRG', '/u01/dbfile/DUP'
 SET LOG_FILE_NAME_CONVERT
'/u01/oraredo/TRG', '/u01/oraredo/DUP'
NOFILENAMECHECK;

You’ll see a great volume of output. Here is a small portion for this example:

Starting Duplicate Db at ...
using target database control file instead of recovery catalog
allocated channel: ORA_AUX_DISK_1
...

Chapter 4 ■ aCtive DupliCation

94

executing Memory Script
database opened
Finished Duplicate Db at ...

After RMAN successfully completes the database duplication, on the auxiliary server
you should have a complete copy of the target with a different name and files located in a
different directory structure.

Note that NOFILENAMECHECK was also used. Why is that required when
the directory structures are different from the target to the auxiliary? You need the
NOFILENAMECHECK any time you experience the RMAN-05001 error. That error may
be thrown in this scenario because RMAN detects that the archive redo log location is
the same on the target as on the auxiliary. This is not an issue, you just need to include
NOFILENAMECHECK to prevent RMAN from throwing the error.

Also keep in mind that if you have multiple directories that you need to transform,
you need to add them where appropriate; for example:

RMAN> DUPLICATE TARGET DATABASE TO DUP
FROM ACTIVE DATABASE
SPFILE
 PARAMETER_VALUE_CONVERT
'/u01/dbfile/TRG', '/u01/dbfile/DUP',
'/u02/dbfile/TRG', '/u02/dbfile/DUP'
 SET DB_FILE_NAME_CONVERT
'/u01/dbfile/TRG', '/u01/dbfile/DUP',
'/u02/dbfile/TRG', '/u02/dbfile/DUP'
 SET LOG_FILE_NAME_CONVERT
'/u01/oraredo/TRG', '/u01/oraredo/DUP',
'/u02/oraredo/TRG', '/u02/oraredo/DUP'
NOFILENAMECHECK;

6. To start your database with the new name of DUP, exit from
RMAN, then get into SQL*Plus and shut down the database,
rename the SPFILE, and export your ORACLE_SID to reflect
the new instance name and restart your database:

RMAN> exit;
$ sqlplus / as sysdba
SQL> shutdown immediate;
SQL> exit;
$ cd $ORACLE_HOME/dbs
$ mv spfileTRG.ora spfileDUP.ora
$ export ORACLE_SID=DUP
$ sqlplus / as sysdba
SQL> startup

Chapter 4 ■ aCtive DupliCation

95

In the prior code, you may be asking, “Why not issue the SHUTDOWN command
from within RMAN?” If you issue a SHUTDOWN while connected to the target database,
RMAN will stop the target database (and not the auxiliary database), which is probably
not the behavior that you want.

You might also wonder if prior to issuing the DUPLICATE command is it possible to
first set the ORACLE_SID to the duplicated database name (DUP in this example), and
use an initialization file named initDUP.ora to start the auxiliary in nomount mode? The
answer is yes, in that scenario you need to ensure a password file has been created with
the name of orapwDUP before duplicating.

Note ■ With active duplication rMan doesn’t allow you to restore to a point in time in the
past. if you attempt a point–in-time duplication operation, rMan will throw an RMAN-05600
error indicating you cannot specify UNTIL clause when duplicating from active database.

Replicating from a Noarchivelog Mode Target
My manager pings me every once in a while and asks me to replicate a database from
one server to another. The target database is usually some sort of a test database and is
not in archivelog mode. One might wonder if it’s possible to use the RMAN duplication
functionality in this scenario. To test this, first connect to the target and the auxiliary:

$ rman target sys/foo@TRG auxiliary sys/foo

Next, attempt to run the DUPLICATE command:

RMAN> DUPLICATE TARGET DATABASE TO DUP...

If the target (active) database is in noarchivelog mode and open, the RMAN throws
this error:

ORA-19602: cannot backup or copy active file in NOARCHIVELOG mode

One solution to this situation is to place the target database in mount mode while the
duplication is taking place. Figure 4-4 depicts the steps involved in this situation.

Chapter 4 ■ aCtive DupliCation

96

The steps required for this scenario are described in detail next. This example
assumes the target database is using an SPFILE. You can verify this on the target as follows:

SQL> show parameter spfile;
NAME TYPE VALUE
--------- ----------- ------------------------
spfile string /orahome/app/oracle/product
 /12.1.0.2/db_1/dbs/spfileTRG.ora

1. On the target database, create a text-based initialization file:

SQL> create pfile from spfile;

2. On the target database, shut it down with the IMMEDIATE
option:

SQL> shutdown immediate;

3. Now start the target database up in mount mode:

SQL> startup mount;
SQL> exit;

Figure 4-4. Duplicating an active noarchivelog mode database

Chapter 4 ■ aCtive DupliCation

97

4. Copy the initialization file from the target to the auxiliary.
Here’s an example of using the Linux/UNIX scp command for
my environment. This command is initiated from the auxiliary
server:

$ cd $ORACLE_HOME/dbs
$ scp oracle@shrek:$ORACLE_HOME/dbs/initTRG.ora.

You must use a text-based initialization file to start the auxiliary database in this
scenario. If you use an SPFILE to start the auxiliary database you’ll receive this error when
duplicating:

RMAN-05537: DUPLICATE without TARGET connection when auxiliary instance
is started with spfile cannot use SPFILE clause

5. Now start the auxiliary in nomount mode:

$ sqlplus / as sysdba
SQL> startup nomount;
SQL> exit;

6. Next, connect to target and auxiliary databases. This shows
the connection originating from the auxiliary database server:

$ rman target sys/foo@shrek:1521/TRG auxiliary sys/foo

7. Now execute the RMAN DUPLICATE command. This example
assumes that the target database is using an SPFILE, and
therefore the SPFILE clause of the DUPLICATE command
can be used to specify the new directory path names for the
control files (PARAMETER_VALUE_CONVERT), data files
(DB_FILE_NAME_CONVERT), and online redo log files
(LOG_FILE_NAME_CONVERT):

RMAN> DUPLICATE TARGET DATABASE TO DUP
FROM ACTIVE DATABASE
SPFILE
 PARAMETER_VALUE_CONVERT
'/u01/dbfile/TRG', '/u01/dbfile/DUP'
 SET DB_FILE_NAME_CONVERT
'/u01/dbfile/TRG', '/u01/dbfile/DUP'
 SET LOG_FILE_NAME_CONVERT
 '/u01/oraredo/TRG', '/u01/oraredo/DUP'
NOFILENAMECHECK;

Chapter 4 ■ aCtive DupliCation

98

At this point you’ll see a great deal of messaging. Here is a small bit of the output:

Starting Duplicate Db at ...
using target database control file instead of recovery catalog
...
executing Memory Script
database opened
Finished Duplicate Db at ...

After it successfully completes, on the auxiliary server you should have a copy of the
target with a different name and in a different directory structure.

8. To start your database with the new instance name of DUP,
exit from RMAN, then get into SQL*Plus and shut down the
database, rename the SPFILE, and export the ORACLE_SID
operating system variable to reflect the new instance name
and restart your database:

$ sqlplus / as sysdba
SQL> shutdown immediate;
SQL> exit;
$ cd $ORACLE_HOME/dbs
$ mv spfileTRG.ora spfileDUP.ora
$ export ORACLE_SID=DUP
$ sqlplus / as sysdba
SQL> startup

9. As the last step, don’t forget to open the target database
for use again. On the target server, issue the following SQL
command:

SQL> alter database open;

Same-Host Replication
You may have the requirement to replicate a database where the target and the auxiliary
are on the same server. Figure 4-5 depicts this concept.

Chapter 4 ■ aCtive DupliCation

99

The steps required for this scenario are described in detail next. This example
assumes the target database is using an SPFILE. You can verify this on the target as follows:

SQL> show parameter spfile;
NAME TYPE VALUE
--------- ----------- ------------------------
spfile string /orahome/app/oracle/product
 /12.1.0.2/db_1/dbs/spfileTRG.ora

1. First create an init.ora file for the auxiliary database. The
easiest way to create a text-based parameter file from
the SPFILE and then rename it:

$ sqlplus / as sysdba
SQL> create pfile from spfile;
SQL> exit;
$ cd $ORACLE_HOME/dbs
$ cp initTRG.ora initDUP.ora

Figure 4-5. Same-host active database duplication

Chapter 4 ■ aCtive DupliCation

100

2. Edit the initDUP.ora with an operating system utility
(such as vi or notepad) and modify the DB_NAME parameter
and any parameters that contain directory structures
(like CONTROL_FILES, LOG_ARCHIVE_DEST_1, and so on).
Here are what the lines look like for this example:

db_name='DUP'
control_files='/u01/dbfile/DUP/control01.ctl','/u01/dbfile/DUP/
control02.ctl'
log_archive_dest_1='LOCATION=/u01/arch/DUP'

Ensure that the directories being referenced are not the target database directories.
If this is the first time you’re performing the duplication on the server then you’ll have to
create the new directories with an operating system utility (like mkdir):

$ mkdir /u01/dbfile/DUP
$ mkdir /u01/oraredo/DUP
$ mkdir /u01/arch/DUP

3. Set your ORACLE_SID variable to point to the auxiliary
instance:

$ export ORACLE_SID=DUP

4. Create a password file for the auxiliary database:

$ cd $ORACLE_HOME/dbs
$ orapwd file=orapwDUP password=foo

5. Start up the auxiliary database in nomount mode:

$ sqlplus / as sysdba
SQL> startup nomount;
SQL> exit;

If you get an error like the following snippet, then ensure that you don’t have any
parameters defined incorrectly in the auxiliary init.ora file:

ORA-01078: failure in processing system parameters

6. Connect to the target and the auxiliary instances:

$ rman target sys/foo@shrek:1521/TRG auxiliary sys/foo

Chapter 4 ■ aCtive DupliCation

101

7. Issue the DUPLICATE command:

RMAN> DUPLICATE TARGET DATABASE TO DUP
FROM ACTIVE DATABASE
SPFILE
 PARAMETER_VALUE_CONVERT
'/u01/dbfile/TRG', '/u01/dbfile/DUP'
 SET DB_FILE_NAME_CONVERT
'/u01/dbfile/TRG', '/u01/dbfile/DUP'
 SET LOG_FILE_NAME_CONVERT
 '/u01/oraredo/TRG', '/u01/oraredo/DUP';

At this point you’ll see a large amount of output; here’s a tiny snip:

Starting Duplicate Db at ...
using target database control file instead of recovery catalog
...
database opened
Finished Duplicate Db at ...

If you receive an error like the following:

RMAN-05520: database name mismatch, auxiliary instance has TRG,
command specified DUP

In this situation ensure that your ORACLE_SID is set to DUP and that the DB_NAME
parameter in the init.ora file is set to DUP:

You may also receive a memory error such as the following:

ORA-27125: unable to create shared memory segment

This indicates you don’t have enough physical memory on the host to start two
instances. You’ll need to start any existing instances with less memory or add physical
memory to the server.

You must also ensure that the auxiliary database is started with a text-based init.ora
file, otherwise you’ll receive this error:

RMAN-05537: DUPLICATE without TARGET connection when auxiliary instance
is started with spfile cannot use SPFILE clause

You may receive an RMAN-05001 error like the following:

RMAN-05001: auxiliary file name ... conflicts with a file
used by the target database

If this happens ensure that in the DUPLICATE command you’ve correctly mapped
the target directories to new auxiliary directories.

Chapter 4 ■ aCtive DupliCation

102

If you continue to receive the RMAN-05001 error, and are sure that you’ve correctly
mapped the target directories to the new auxiliary directories then consider adding the
NOFILENAMECHECK clause. Keep in mind this can be dangerous when performing
same server replication as it instructs RMAN not to check if the file exists before writing it
to disk:

RMAN> DUPLICATE TARGET DATABASE TO DUP
FROM ACTIVE DATABASE
SPFILE
 PARAMETER_VALUE_CONVERT
'/u01/dbfile/TRG', '/u01/dbfile/DUP'
 SET DB_FILE_NAME_CONVERT
'/u01/dbfile/TRG', '/u01/dbfile/DUP'
 SET LOG_FILE_NAME_CONVERT
 '/u01/oraredo/TRG', '/u01/oraredo/DUP'
NOFILENAMECHECK;

After the duplication process has finished, check the alert.log and ensure there have
been no errors. You may see an error such as this:

ORA-01110: data file 201: '/u01/dbfile/DUP/temp01.dbf'

To resolve prior error either move or remove the existing temporary tablespace temp
file using operating system commands, for example:

$ mv /u01/dbfile/DUP/temp01.dbf /u01/dbfile/DUP/tempo01.old.dbf

Then stop and start the database. When starting Oracle will detect the temporary
tablespace temp file is missing and recreate it.When complete, you should have a fully
functioning copy of the target database named DUP that resides on the target server.

Image Copies
In Oracle 12c and above, when using active database duplication RMAN will by default
use the backup set format to copy data files from the target database to the source
database. If you want to ensure that image copies be used, then you need to explicitly
instruct RMAN to do this with the USING COPY clause. Figure 4-6 illustrates the steps
involved with this type of duplication.

Chapter 4 ■ aCtive DupliCation

103

1. Copy the initialization file from the target to the auxiliary.
You can use either an SPFILE or a text-based init.ora file.
Here’s an example of using the Linux/UNIX scp command
for my environment. This command is initiated from the
auxiliary server:

$ cd $ORACLE_HOME/dbs
$ scp oracle@shrek:$ORACLE_HOME/dbs/initTRG.ora.

2. Start up the auxiliary database in nomount mode:

$ sqlplus / as sysdba
SQL> startup nomount;
SQL> exit;

3. Connect to both the target and the auxiliary using an Oracle
Net connection; for example:

$ rman target sys/foo@shrek:1521/TRG auxiliary
sys/foo@shrek2:1521/TRG

In this scenario, you must specify an Oracle Net connection for both the target
database and the auxiliary database, otherwise you’ll receive this error when you attempt
to run the DUPLICATE command:

RMAN-06217: not connected to auxiliary database with a net service name

Figure 4-6. Active database duplication with image copies

Chapter 4 ■ aCtive DupliCation

104

You may also receive this error when connecting to the auxiliary instance:

RMAN-04006: error from auxiliary database:
ORA-12528: TNS:listener: all appropriate instances are
blocking new connections

In this situation statically register the auxiliary instance service with the listener.
For details on static service registration see Chapter 6.

4. Now issue the DUPLICATE command with the USING
COPY clause:

RMAN> DUPLICATE TARGET DATABASE TO TRG
FROM ACTIVE DATABASE
USING COPY
NOFILENAMECHECK;

The output of this command verifies that image copies are being created; for instance:

channel ORA_DISK_1: starting datafile copy
input datafile file number=00001 name=/u01/dbfile/TRG/system01.dbf

Recall that an image copy is a byte-for-byte copy of the data file. Therefore, you
may find that this method takes longer than it would have had you used the backup set
format. I recommend that you use the default backup set format, as this is more efficient
(typically uses fewer resources because RMAN is not copying the data files block for
block). However, if you’re using an older version of Oracle, then the image copy format is
the only one available for active database duplication over the network.

Note ■ in oracle 11g, image copies are the only format available with active duplication.

Compression
When using active duplication with the backup set format, you have the option of using
compression. If you have limited bandwidth on the network connection between the
target and the auxiliary, you may want to consider using compression. The compression
option will transfer the data files across the network in a compressed backup set format.
This will minimize the impact on the network. Figure 4-7 illustrates this concept.

Chapter 4 ■ aCtive DupliCation

105

Keep in mind that the backup set format for transferring data files is only available in
Oracle 12c and higher. The detailed steps for the scenario are described next.

1. First copy the initialization file from the target to the auxiliary.
You can use either an SPFILE or a text-based init.ora file. Here’s
an example of using the Linux/UNIX scp command for my
environment. This command is initiated from the auxiliary server:

$ cd $ORACLE_HOME/dbs
$ scp oracle@shrek:$ORACLE_HOME/dbs/initTRG.ora.

 2. Start up the auxiliary in nomount mode:

$ sqlplus / as sysdba
SQL> startup nomount;
SQL> exit;

3. Next, connect to the target and the auxiliary:

$ rman target sys/foo@shrek:1521/TRG auxiliary sys/foo

4. Then issue the DUPLICATE command, specifying
compression:

RMAN> DUPLICATE TARGET DATABASE TO TRG
FROM ACTIVE DATABASE
USING COMPRESSED BACKUPSET
NOFILENAMECHECK;

Figure 4-7. Active duplication using compressed backup set format

Chapter 4 ■ aCtive DupliCation

106

In the lengthy output, you should see that the compressed backup set format is used
to transfer the data:

channel ORA_AUX_DISK_1: using compressed network backup set from service trg

There are several levels of compression available. When you specify USING
COMPRESSED BACKUPSET, if no compression has been configured, then by default
RMAN uses the BASIC compression. You can verify the compression algorithm in use via:

RMAN> show compression algorithm;

Here is some output verifying that the BASIC compression algorithm is in use:

RMAN configuration parameters for database with db_unique_name TRG are:
CONFIGURE COMPRESSION ALGORITHM 'BASIC' AS OF RELEASE 'DEFAULT' OPTIMIZE
FOR LOAD TRUE ; # default

The other compression options are LOW, MEDIUM, and HIGH. Here’s an example of
configuring RMAN to use the MEDIUM compression algorithm:

RMAN> CONFIGURE COMPRESSION ALGORITHM 'MEDIUM';

You can set the compression algorithm back to the default (of BASIC) via:

RMAN> configure compression algorithm clear;

In summary, compression is a good choice when you know your network bandwidth
is the bottleneck. Compression will reduce the number of bytes transferred from the
target to the auxiliary. The downside is that compression requires more CPU resources
on the target server to compress the backup set data and then more CPU again to
uncompress the data on the auxiliary server.

Note ■ the BASIC encryption is freely available. if you want to use the LOW, MEDIUM, and
HIGH compression options you need a license for the oracle advanced Compression option.
the advanced Compression option is only available with the enterprise edition of oracle.

Encryption
Starting with Oracle 12c, you have the option of using encryption when using active
duplication with the backup set format. This provides additional security when
duplicating a database from the target server to the auxiliary server.

Chapter 4 ■ aCtive DupliCation

107

When using transparent encryption, you must copy the keystore that contains the
encryption key to the auxiliary server (placed in the default location or in the location
specified in the sqlnet.ora file). The keystore must also be an automatic login keystore.

Once the keystore has been copied from the target server to the auxiliary server,
on the auxiliary connect to the target and the auxiliary databases:

$ rman target sys/foo@shrek:1521/TRG auxiliary sys/foo

Next, issue the DUPLICATE command:

RMAN> DUPLICATE TARGET DATABASE TO TRG
FROM ACTIVE DATABASE
NOFILENAMECHECK;

This command uses the backup set format to transfer the data files from the target to
the auxiliary in an encrypted manner.

Tip ■ See the Oracle Database Advanced Security Guide for details on using encryption.
the advanced Security option requires an additional license from oracle. the advanced
Security option is only available with the enterprise edition of oracle.

Summary
This chapter has focused on active database duplication. In this mode there’s no
requirement to have an RMAN backup available. Rather, RMAN uses the live (active
target) database data files and control files for the source. RMAN can transfer the data
files across the network in either an RMAN backup set format or in an image copy format.
Using the RMAN backup set format has many advantages over image copies:

It allows you to use advanced features such as compression, •	
encryption, and parallel multisection transfer of large data files.

It only copies blocks that have ever been used within the data file. •	
Depending on the used space in the data file, this can be more
efficient than full image copies.

There were many active duplication examples shown in this chapter. The simplest
example is where the database name and directory structure are identical on both the
target and the auxiliary servers. More advanced examples detailed how to use active
database replication in environments where it’s required to have a different auxiliary
database name (from the target) and where the auxiliary server has a different directory
structure. You should be able to modify these examples to fit the requirements of your
environment.

109

Chapter 5

Advanced Topics

Chapters 3 and 4 discussed duplicating a database from RMAN backups and from active
databases, respectively. This chapter focuses on advanced topics such as:

Partially duplicating a subset of tablespaces•	

Duplicating in parallel•	

Creating Data Guard standby databases with the •	 DUPLICATE
command

Duplicating container and pluggable databases•	

Duplicating databases between RAC and ASM to non-RAC and •	
non-ASM (and vice versa)

The RMAN DUPLICATE command helps automate what would otherwise be quite
complex tasks. First up is the topic of partial database duplication.

Partial Database Duplication
There are a couple of different techniques for duplicating a subset of tablespaces from the
target (source) to the auxiliary (destination). You can either exclude certain tablespaces
or just include specific tablespaces. Examples of each technique are shown in the
following sections.

Chapter 5 ■ advanCed topiCs

110

Excluding Tablespaces
When excluding tablespaces from a duplication operation, you can specify tablespaces to
be skipped or skip read-only tablespaces. Examples of each will be shown in this section.
Skipping specific tablespaces is enabled via the SKIP TABLESPACE clause. The following
example duplicates while skipping the USERS tablespace. The steps required to do this
are detailed next:

1. Since this example uses targetless duplication it assumes
there is a backup of the target database available to the
auxiliary database (see Chapter 3 for complete details
regarding targetless duplication). On the target database,
create backups and copy them to the auxiliary server (or to
network storage that is readable by the auxiliary server):

$ rman target/
RMAN> backup database plus archivelog;
RMAN> exit;

You can verify the location of the backups via the LIST BACKUP command; here’s a
small snippet of the output:

Piece Name: /u01/rman/TRG/TRGrman1_rrpth9n6_1_1.bk

In my environment, the RMAN backups on the target host are in the /u01/rman/TRG
directory. Next, I copy the backup files from the target to the auxiliary using the Linux/
UNIX scp command. You need to ensure the destination directory exists before initiating
the scp command. This command is initiated from the auxiliary server:

$ scp oracle@shrek:/u01/rman/TRG/*.* /u01/rman/TRG

2. Now copy the initialization file from the target to the auxiliary.
You can use either an SPFILE or a text-based init.ora file.
Here’s an example of using the Linux/UNIX scp command
for my environment. This command is initiated from the
auxiliary server:

$ cd $ORACLE_HOME/dbs
$ scp oracle@shrek:$ORACLE_HOME/dbs/initTRG.ora.

3. Start up the auxiliary database in nomount mode:

$ sqlplus / as sysdba
SQL> startup nomount;
SQL> exit;

Chapter 5 ■ advanCed topiCs

111

4. Next, connect to the auxiliary database via RMAN:

$ rman auxiliary /

5. This example uses an RMAN backup for the source of the
control file and data files, and therefore no connection to the
target database is necessary. Once connected to the auxiliary,
issue the DUPLICATE command, as follows:

RMAN> duplicate database to TRG
backup location '/u01/rman/TRG'
skip tablespace users
nofilenamecheck;

Once complete, a quick SQL query verifies that the USERS tablespace was not
duplicated:

RMAN> select tablespace_name from dba_tablespaces
 where tablespace_name='USERS';

no rows selected

Tip ■ see Mos note 1355120.1 for further details regarding skipping tablespaces
during duplication.

It’s also possible to skip read-only tablespaces during the duplication process.
The following command performs active duplication while skipping any tablespaces that
have been placed in read-only mode:

RMAN> DUPLICATE TARGET DATABASE TO TRG
FROM ACTIVE DATABASE
SKIP READONLY
NOFILENAMECHECK;

When you exclude read-only tablespaces during the duplication command, you can
expect to see output that indicates that the read-only tablespaces have been skipped:

datafile 5 not processed because file is read-only
datafile 6 not processed because file is read-only

Chapter 5 ■ advanCed topiCs

112

To wrap up this section, excluding tablespaces is a good method for performing
partial database duplication when you have specific tablespaces that you know aren’t
required in the copied database.

Including Tablespaces
Another way to skip tablespaces is to instruct RMAN which tablespaces to include in the
DUPLICATE command. In this manner, any tablespaces not included will be excluded.
This example instructs RMAN to include the REPDATA and REPIDX tablespaces. The
steps required to do this are detailed next:

1. Copy the initialization file from the target to the auxiliary.
You can use either an SPFILE or a text-based init.ora file.
Here’s an example of using the Linux/UNIX scp command for
my environment. This command is initiated from
the auxiliary server:

$ cd $ORACLE_HOME/dbs
$ scp oracle@shrek:$ORACLE_HOME/dbs/initTRG.ora.

2. Start up the auxiliary database in nomount mode:

$ sqlplus / as sysdba
SQL> startup nomount;
SQL> exit;

3. Next, connect to the auxiliary database via RMAN:

$ rman auxiliary /

4. This example uses an RMAN backup for the source of the
control file and data files, and therefore no connection to
the target database is necessary. Thus, you need to ensure a
valid backup of the target database is available to the auxiliary
database (see Chapter 3 for complete details on targetless
duplication). Once connected to the auxiliary, issue the
DUPLICATE command, as follows:

RMAN> duplicate database to TRG
backup location '/u01/rman/TRG'
tablespace repdata, repidx
nofilenamecheck;

Chapter 5 ■ advanCed topiCs

113

In this situation, RMAN duplicates all essential tablespaces (SYSTEM, SYSAUX,
UNDO, and TEMP) and then only the tablespaces included in the TABLESPACE clause.
A quick SQL query verifies this:

RMAN> select tablespace_name from dba_tablespaces;

TABLESPACE_NAME

SYSTEM
SYSAUX
UNDOTBS1
TEMP
REPDATA
REPIDX

Including specific tablespaces provides a quick method for creating a copy of a
database that only contains the tablespaces required in the duplicated environment.

Parallelism
Parallelism can be used to greatly increase the performance of any RMAN backup,
restore, or duplication operation. First I’ll cover general parallelism techniques as they
apply to duplication and then I’ll review parallelism using the SECTION SIZE clause.

Configuring Parallelism
If you’re performing an active duplication (meaning you are connected to both the target
and auxiliary and are using the live target database as the source for the duplication),
then RMAN will automatically allocate the number of channels per the degree of
parallelization configured in the target database. For example, if the degree of parallelism
has been defined in the target database to be 4 (as follows):

RMAN> configure device type disk parallelism 4;

then when performing active replication, both the target and the auxiliary database will
have 4 channels opened.

If performing targetless duplication (meaning you’re restoring from an RMAN
backup), RMAN will open the number of channels configured for RMAN that were
defined in the target at the time the backup was taken.

You can manually specify the channels to be opened via ALLOCATE within a run
block. For example, first connect to the auxiliary:

$ rman auxiliary /

Chapter 5 ■ advanCed topiCs

114

Then allocate channels and run the DUPLICATE command from within a run block:

RMAN> run{
allocate auxiliary channel dup1 type disk;
allocate auxiliary channel dup2 type disk;
allocate auxiliary channel dup3 type disk;
allocate auxiliary channel dup4 type disk;
#
duplicate database to TRG
backup location '/u01/rman/TRG'
nofilenamecheck;
}

You can verify the number of channels open. From another session, run this query:

SET LINES 132
COL username FORM a10
COL kill_string FORM A12
COL os_id FORM A6
COL client_info FORM A28
COL action FORM A21
--
SELECT
 a.username
,a.sid || ',' || a.serial# AS kill_string
, b.spid AS OS_ID
,(CASE WHEN a.client_info IS NULL AND a.action IS NOT NULL
 THEN 'First Default'
 WHEN a.client_info IS NULL AND a.action IS NULL
 THEN 'Polling'
 ELSE a.client_info
 END) client_info
,a.action
FROM v$session a
 ,v$process b
WHERE a.program like '%rman%'
AND a.paddr = b.addr;

Here is some sample output:

USERNAME KILL_STRING OS_ID CLIENT_INFO ACTION
---------- ------------ ------ ------------------------- -------------------
SYS 21,48425 12664 rman channel=dup1 0000023 STARTED40
SYS 23,60820 12665 rman channel=dup2 0000016 STARTED40
SYS 20,7160 12663 Polling
SYS 25,21933 12667 rman channel=dup4 0000008 FINISHED129
SYS 24,22053 12666 rman channel=dup3 0000008 FINISHED129
SYS 1,17710 12662 First Default 0000041 FINISHED64

Chapter 5 ■ advanCed topiCs

115

Parallelism can greatly reduce the time required to duplicate a database. This is
especially true for servers that have multiple CPUs and data files spread across multiple
locations.

Using SECTION SIZE
By default RMAN uses at most one channel (process) to back up a data file. Starting with
Oracle 11g, RMAN added the capability of using multiple processes to back up one data
file. This is accomplished by specifying the SECTION SIZE clause. Using parallelism along
with SECTION SIZE instructs RMAN to use multiple channels to back up a datafile. For
example, say you had a 32-gig data file you wanted to back up. If you specify a SECTION
SIZE of 8 gigs and a degree of parallelism of 4, then RMAN can use four parallel processes,
each working on an 8-gig section of the data file. This feature is known as a multisection
backup. The idea here is that you increase the performance of a backup by using multiple
channels to back up one data file.

Starting with Oracle 12c, RMAN extended the multisection feature to active database
duplication. This means you can specify the SECTION SIZE when replicating from an
active database to parallelize the duplication of large data files. When you specify a
SECTION SIZE and configure parallelism this instructs RMAN to use multiple channels to
duplicate a single data file.

For example, say you have a database with 32 gigs of data files and you require
RMAN to duplicate these data files in parallel. Further assume that the primary target
database has never configured parallelism; therefore, you’ll need to manually allocate
channels on the primary database as well as on the auxiliary database. The following
specifies a SECTION SIZE of 8 gig and parallelism of four channels:

RMAN> run{
allocate channel prmy1 type disk connect 'sys/"foo"@TRG';
allocate channel prmy2 type disk connect 'sys/"foo"@TRG';
allocate channel prmy3 type disk connect 'sys/"foo"@TRG';
allocate channel prmy4 type disk connect 'sys/"foo"@TRG';
allocate auxiliary channel dup1 type disk;
allocate auxiliary channel dup2 type disk;
allocate auxiliary channel dup3 type disk;
allocate auxiliary channel dup4 type disk;
DUPLICATE TARGET DATABASE TO TRG
FROM ACTIVE DATABASE
SECTION SIZE 8G
NOFILENAMECHECK;
}

In this way you can increase the performance when duplicating databases
containing large data files.

Chapter 5 ■ advanCed topiCs

116

Creating Standby Databases
Data Guard is Oracle’s flagship disaster recovery tool. One main feature of this tool is the
ability to implement a standby database. A standby database is a near real time copy of
the primary (source) database. The standby database is typically created on a different
server in a different data center from the primary database. The idea is that if a disaster
struck (e.g., flood, earthquake, long-term power outage, and so on) you could quickly
point applications at the standby database and be back in business literally within
seconds or minutes, depending on how you’ve configured the Data Guard environment.

You can manually create a standby database or use the RMAN DUPLICATE command.
A high-level description of how to manually implement a standby database is required to
understand the utility of using DUPLICATE. Here’s an overview of the manual steps:

1. Ensure Oracle Net connectivity exists between the primary
server and standby server.

2. Create standby redo logs on the primary database (optional,
but recommended).

3. Configure the initialization parameter files.

4. Create a physical backup of the primary database (hot, cold,
or RMAN backup).

5. Create a standby control file.

6. Copy the standby control file and backup to the standby
server.

7. Restore and recover the standby database.

8. Start the Data Guard processes that keep the primary and
standby database synchronized.

9. Troubleshoot any issues.

These steps aren’t super difficult, but they do require solid DBA backup and recovery
skills. Manually creating a standby can be a time-consuming process, especially the
steps where you’re creating a backup of the primary and restoring and recovering that
backup to the standby server. Enter the RMAN DUPLICATE command. In one command
consisting of just a few lines of code, you can automate the creation of the standby
database. You can create a standby by duplicating from an active target (primary)
database, or you can create the standby from an RMAN backup of the primary database.
Examples of each are described in the following sections.

Chapter 5 ■ advanCed topiCs

117

Creating Standby from Active Target
Figure 5-1 illustrates the steps involved with using the RMAN DUPLICATE command
to create a standby database. In this scenario it’s a single-instance primary database
being duplicated to a single-instance standby database (no RAC or ASM involved). Pay
particular attention to Step 17, which is running the DUPLICATE command. If you were
manually creating the standby database you would have to replace that step with several
steps, such as “create an RMAN backup, create a standby control file, copy files to standby
server, and restore and recover the standby database.”

Figure 5-1. Creating a standby database with RMAN active duplication

A detailed description of using the DUPLICATE command to implement a standby
database is next. As a prerequisite, ensure that the same version of Oracle that is installed
on the primary database server is also installed on the standby database server. Also
make sure all directories that contain the control files, data files, online redo logs, and
archive redo logs exist on the standby server. Additionally, for active duplication there
must be Oracle Net connectivity between the two hosts.

Tip ■ if you’re not familiar with oracle net, now would be a good time to review
Chapter 6 in its entirety.

Chapter 5 ■ advanCed topiCs

118

1. Ensure the primary target database is in force logging mode:

$ sqlplus / as sysdba
SQL> alter database force logging;

Verify that force logging has been set correctly, as follows:

SQL> select force_logging from v$database;

FORCE_LOGGING

YES

2. From the operating system, create a password file on the
primary host. You’ll have to modify this to match the database
name used in your environment. The primary database name
is TRG in this example:

$ cd $ORACLE_HOME/dbs
$ orapwd file=orapwTRG password=foo

3. Copy the primary database password file to the standby
server. This example uses the Linux/UNIX scp command and
is initiated from the target server:

$ cd $ORACLE_HOME/dbs
$ scp orapwTRG oracle@shrek2:$ORACLE_HOME/dbs

4. On the primary target database, create standby redo logs.
Make very sure that the size of the standby redo logs is the
exact same size as the existing online redo logs:

$ sqlplus / as sysdba

Here I verify the size of the existing online redo log files:

SQL> select distinct bytes from v$log;
 BYTES

 52428800

Now I add the standby redo logs:

SQL> alter database add standby logfile
 '/u01/oraredo/TRG/sb1.rdo' size 52428800;
SQL> alter database add standby logfile
 '/u01/oraredo/TRG/sb2.rdo' size 52428800;

Chapter 5 ■ advanCed topiCs

119

SQL> alter database add standby logfile
 '/u01/oraredo/TRG/sb3.rdo' size 52428800;
SQL> alter database add standby logfile
 '/u01/oraredo/TRG/sb4.rdo' size 52428800;

Next, verify the standby redo logs were created:

SQL> SELECT GROUP#,THREAD#,SEQUENCE#,ARCHIVED,STATUS FROM V$STANDBY_LOG;

Here is some sample output:

 GROUP# THREAD# SEQUENCE# ARC STATUS
---------- ---------- ---------- --- ----------
 3 0 0 YES UNASSIGNED
 4 0 0 YES UNASSIGNED
 5 0 0 YES UNASSIGNED
 6 0 0 YES UNASSIGNED

5. Ensure the primary database is in archive log mode:

SQL> archive log list;
Database log mode Archive Mode
Automatic archival Enabled
Archive destination /u01/arch/TRG

If the primary database is not in archive log mode, then enable it, as follows:

SQL> shutdown immediate;
SQL> startup mount;
SQL> alter database archivelog;
SQL> alter database open;

6. Configure the tnsnames.ora file on the primary host (usually
located in the ORACLE_HOME/network/admin directory):

TRG1 =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = shrek)(PORT = 1522))
 (CONNECT_DATA = (SERVER = DEDICATED) (SERVICE_NAME = TRG1)))

TRG2 =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = shrek2)(PORT = 1522))
 (CONNECT_DATA = (SERVER = DEDICATED) (SERVICE_NAME = TRG2)))

Chapter 5 ■ advanCed topiCs

120

7. Configure the tnsnames.ora file on the standby host (usually
located in the ORACLE_HOME/network/admin directory):

TRG1 =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = shrek)(PORT = 1522))
 (CONNECT_DATA = (SERVER = DEDICATED) (SERVICE_NAME = TRG1)))

TRG2 =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = shrek2)(PORT = 1522))
 (CONNECT_DATA = (SERVER = DEDICATED) (SERVICE_NAME = TRG2)))

8. Configure the listener on the primary and place the following
in the listener.ora file (usually located in the ORACLE_HOME/
network/admin directory):

DGL1 =
 (DESCRIPTION_LIST =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = shrek)(PORT = 1522))))

SID_LIST_DGL1 =
 (SID_LIST =
 (SID_DESC =
 (GLOBAL_DBNAME = TRG1) # static registration of TRG1 service
 (ORACLE_HOME = /orahome/app/oracle/product/12.1.0.2/db_1)
 (SID_NAME = TRG)))

Start the listener on the primary:

$ lsnrctl start DGL1

You should see this in the output:

Service "TRG1" has 1 instance(s).
 Instance "TRG", status UNKNOWN, has 1 handler(s) for this service...

The UNKNOWN status indicates the TRG1 service has been statically registered with
the listener.

Chapter 5 ■ advanCed topiCs

121

9. Configure the listener on the standby server and place
the following in the listener.ora file (usually located in the
ORACLE_HOME/network/admin directory):

DGL2 =
 (DESCRIPTION_LIST =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = shrek2)(PORT = 1522))))

SID_LIST_DGL2 =
 (SID_LIST =
 (SID_DESC =
 (GLOBAL_DBNAME = TRG2) # static registration of TRG2 service
 (ORACLE_HOME = /orahome/app/oracle/product/12.1.0.2/db_1)
 (SID_NAME = TRG)))

Start the listener on the standby host:

$ lsnrctl start DGL2

You should see this in the output:

Service "TRG2" has 1 instance(s).
 Instance "TRG", status UNKNOWN, has 1 handler(s) for this service...

This output indicates that the TRG2 service has been registered statically with the
listener. We know that the service was registered statically because of the UNKNOWN
status.

10. Before modifying the primary database initialization file,
first copy the primary database init.ora file to the standby
database. This initiates the scp command from the primary
database host:

$ scp $ORACLE_HOME/dbs/initTRG.ora oracle@shrek2:$ORACLE_HOME/dbs

11. Now add primary database–related initialization parameters
in init.ora file (usually located in the ORACLE_HOME/dbs
directory):

Standby params
db_unique_name=TRG1
log_archive_config='DG_CONFIG=(TRG1,TRG2)'
log_archive_max_processes='6'
#

Chapter 5 ■ advanCed topiCs

122

Next two lines should be all on one line in initialization file:
log_archive_dest_1='LOCATION=/u01/arch/TRG valid_For=(all_
logfiles,all_roles)
 db_unique_name=TRG1'
#
Next two lines should be all on one line in initialization
file:
log_archive_dest_2='SERVICE=TRG2 ASYNC
 valid_for=(online_logfiles,primary_role) db_unique_name=TRG2'
fal_server=TRG2
standby_file_management=auto
log_file_name_convert='/u01/oraredo/TRG','/u01/oraredo/TRG'

Stop and start the primary database to ensure the initialization parameters are
instantiated:

SQL> startup force;

If you’re not comfortable with running the prior command (which performs a
SHUTDOWN ABORT and STARTUP), then stop and start the database as follows:

SQL> shutdown immediate;
SQL> startup;

12. Set the standby initialization parameters in the init.ora file
(usually located in the ORACLE_HOME/dbs directory). In this
example, the file is named initTRG.ora and has the following
added to it:

Standby params
db_unique_name=TRG2
log_archive_config='DG_CONFIG=(TRG1,TRG2)'
log_archive_max_processes='6'
#
Next two lines should be all on one line in initialization file:
log_archive_dest_1='LOCATION=/u01/arch/TRG valid_For=(all_
logfiles,all_roles)
 db_unique_name=TRG2'
#
Next two lines should be all on one line in initialization
file:
log_archive_dest_2='SERVICE=TRG1 ASYNC
 valid_for=(online_logfiles,primary_role) db_unique_name=TRG1'
fal_server=TRG1
standby_file_management=auto
log_file_name_convert='/u01/oraredo/TRG','/u01/oraredo/TRG'

Chapter 5 ■ advanCed topiCs

123

13. Start up the standby in nomount mode:

$ sqlplus / as sysdba
SQL> startup nomount;
SQL> exit;

14. Ensure Oracle Net connectivity exists between the primary
and standby servers. From the standby database server, ensure
you can connect to the primary database over Oracle Net:

$ sqlplus sys/foo@TRG1 as sysdba
SQL> select host_name from v$instance;

HOST_NAME

shrek

15. From the primary database server, ensure that you can
connect to the standby database over Oracle Net:

$ sqlplus sys/foo@TRG2 as sysdba
SQL> select host_name from v$instance;

HOST_NAME

shrek2

16. Connect to RMAN with the target and auxiliary databases.
In this example, the RMAN connection is initiated on the
auxiliary standby server (but could just as easily be initiated
from the target server or a remote RMAN client):

$ rman target sys/foo@TRG1 auxiliary sys/foo@TRG2

In the prior line of code, you need to specify a net service name for the auxiliary
database connection, otherwise you’ll receive an error similar to this:

RMAN-06217: not connected to auxiliary database with a net service name

17. Issue the DUPLCIATE command to create a standby database
on the auxiliary host:

RMAN> DUPLICATE TARGET DATABASE
FOR STANDBY
FROM ACTIVE DATABASE
DORECOVER
NOFILENAMECHECK;

Chapter 5 ■ advanCed topiCs

124

Here’s a small snippet of the lengthy output:

Starting Duplicate Db at
using target database control file instead of recovery catalog
allocated channel: ORA_AUX_DISK_1
channel ORA_AUX_DISK_1: SID=22 device type=DISK
contents of Memory Script:
...
Finished recover at
Finished Duplicate Db at

18. After the standby database is created you can start the Data
Guard recovery process:

$ sqlplus / as sysdba
SQL> startup force;
SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DISCONNECT;

In the prior code, if you’re not comfortable using STARTUP FORCE (which does a
SHUTDOWN ABORT and STARTUP), then instead issue SHUTDOWN IMMEDATE and
then STARTUP.

One caveat is that starting with Oracle 12c, the USING CURRENT LOGFILE clause
is no longer required when starting the Data Guard managed recovery process. If you’re
using Oracle 11g, the prior ALTER DATABASE command looks like this:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
USING CURRENT LOGFILE DISCONNECT;

19. Lastly, verify that Data Guard is working. You can verify the
standby is operational in a number of ways. One simple way
is to insert a record into a table on the primary and then
query the table from the standby to see if the transactions are
being applied to the standby. This assumes that you’re using
the Enterprise Edition of Oracle and Active Data Guard (this
option requires a license from Oracle). If you’re using standby
redo logs, such as in this example, then the transactions
should be transmitted from the primary database to the
standby in near real time (seconds or less). You can also run
the following query on the standby database to verify that the
standby is applying transactions properly:

SQL> SELECT client_process, process, thread#, sequence#, status
FROM v$managed_standby
WHERE client_process='LGWR' OR PROCESS='MRP0';

Chapter 5 ■ advanCed topiCs

125

The output indicates that Data Guard is alive and applying a log:

CLIENT_P PROCESS THREAD# SEQUENCE# STATUS
-------- --------- ---------- ---------- ------------
LGWR RFS 1 283 IDLE
N/A MRP0 1 283 APPLYING_LOG

An additional sanity check would be to switch the log file on the primary database
and then check the alert.log on the standby to see if those logs are applied to the standby
database. If Data Guard is working correctly you should see messages similar to this in the
alert.log:

Media Recovery Waiting for thread 1 sequence 14 (in transit)
Recovery of Online Redo Log: Thread 1 Group 3 Seq 14 Reading mem 0
 Mem# 0: /u01/oraredo/TRG/sb1.rdo

Creating Standby from RMAN Backup
Creating a standby database from an RMAN backup is similar in many ways to the steps
covered in the previous section, “Creating a Standby from Active Target.” The main
difference is that instead of duplicating from the active primary (target) database, you
must instead first create an RMAN backup and copy it to the standby (auxiliary) server (or
to storage that the standby database can access).

I won’t repeat all of the steps regarding setting up a standby. Make sure you complete
Steps 1 through 16 from the previous section in this chapter before starting here. Next is
a description of the additional tasks required when creating a standby database from an
RMAN backup.

1. First, create an RMAN backup on the primary database:

$ rman target /
RMAN> backup database plus archivelog;
RMAN> exit;

2. Next, copy the backup files to the standby server. For my
environment the backup files are in the /u01/rman/TRG
directory. This example uses the Linux/UNIX scp command
and initiates the operation from the primary server:

$ scp /u01/rman/TRG/*.* oracle@shrek2:/u01/rman/TRG

3. On the standby server, start up the auxiliary database in
nomount mode:

$ sqlplus / as sysdba
SQL> startup nomount;
SQL> exit;

Chapter 5 ■ advanCed topiCs

126

4. On the standby server, connect to RMAN with both the target
and auxiliary connections specified:

$ rman target sys/foo@TRG1 auxiliary sys/foo@TRG2

5. Assuming there’s an RMAN backup available, issue the
DUPLICATE command as follows:

RMAN> DUPLICATE TARGET DATABASE
FOR STANDBY
DORECOVER
NOFILENAMECHECK;

Notice that the prior DUPLICATE command in this scenario does not use the FROM
ACTIVE DATABASE clause. It assumes there is an RMAN backup available. It knows
where the RMAN backup is located based on the metadata in the target database control
file, hence the need to connect to the target database (or a recovery catalog). If there is no
RMAN backup available, you’ll receive this error:

RMAN-06024: no backup or copy of the control file found to restore

You may receive an error similar to this when RMAN completes the duplication
procedure:

ORA-01152: file 1 was not restored from a sufficiently old backup
ORA-01110: data file 1: '/ora01/dbfile/TRG/system01.dbf'
ORA-1547 signalled during: alter database recover cancel...

These error messages aren’t as bad as they look. Perform these additional steps from
SQL*Plus (on the auxiliary database). First, shutdown the database, start it in mount
mode, and start the Data Guard processes, as follows:

$ sqlplus / as sysdba
SQL> shutdown immediate;
SQL> startup mount;
SQL> alter database recover managed standby database
disconnect from session;

That should apply the redo necessary to be able to open the database. You’ll need to
inspect the alert.log file of the auxiliary database and verify that the required archive redo
logs have been successfully applied. If you’re unsure of where the alert.log is located, run
this query:

SQL> select value from v$diag_info where name='Diag Trace';

Chapter 5 ■ advanCed topiCs

127

Here’s the output for my standby database:

VALUE
--
/orahome/app/oracle/diag/rdbms/trg2/TRG/trace

You should messages like this in the alert.log:

Media Recovery Log /u01/arch/TRG/TRG1_18_869840124.arc
Media Recovery Log /u01/arch/TRG/TRG1_19_869840124.arc
Recovery of Online Redo Log: Thread 1 Group 4 Seq 21 Reading mem 0
Mem# 0: /u01/oraredo/TRG/sb2.rdo

After the required archive redo logs have been applied, shut down the database and
restart the standby database and the Data Guard processes:

SQL> shutdown immediate;
SQL> startup;
SQL> alter database recover managed standby database
disconnect from session;

This command works in Oracle 12c; if you’re using Oracle 11g, you should run the
following command instead to start the Data Guard processes:

SQL> alter database recover managed standby database
using current logfile disconnect;

Tip ■ see Mos note 469493.1 for additional details on how to manually create a standby
database.

One last note: If you’re creating a standby database that is quite large in size
(terabytes), you may want to encapsulate the DUPLICATE command within a shell script.
Here’s a typical Bash shell script that contains such code:

#!/bin/bash
date
export ORACLE_SID=TRG
export NLS_DATE_FORMAT='dd-mon-rrrr hh24:mi:ss'
#
sqlplus -s /nolog <<EOF
connect / as sysdba;
startup nomount;
select host_name from v\$instance;
exit;
EOF

Chapter 5 ■ advanCed topiCs

128

#---------------------------------
rman <<EOF
connect target sys/foo@TRG1
connect auxiliary sys/foo@TRG2
DUPLICATE TARGET DATABASE
FOR STANDBY
DORECOVER
NOFILENAMECHECK;
EOF
date
exit 0

Now, assuming the prior code is in a file named dup.bsh, you can make it executable,
as follows:

$ chmod +x dup.bsh

When creating standby databases that are large in size, where it may take hours or
even days to build the standby database, I’ll usually run the duplication shell script in the
background as follows:

$ nohup dup.bsh &

Running a script in the background like this serves two purposes. First, it creates
an operating system file (named nohup.out) that captures the output of any commands
executing within the shell script. It also allows me to continuously tail the output the shell
script is producing:

$ tail -f nohup.out

If you work on servers that have an automatic timeout for idle sessions, running
a shell script in the background is highly desirable, as the shell script will continue to
execute even if your terminal session is automatically logged off from a timeout setting on
the server.

Container and Pluggable Databases
The Oracle Multitenant option is available in Oracle 12c and higher. This feature allows
you to create and maintain many pluggable databases within an overarching multitenant
container database. A multitenant container database is defined as a database capable
of housing one or more pluggable databases. A container is defined as a collection of
data files and metadata that exist within a container database. A pluggable database is
a special type of container that can be easily provisioned by cloning another database.
If need be, a pluggable database can also be transferred from one container database to
another.

Chapter 5 ■ advanCed topiCs

129

Every container database contains a master set of data files and metadata known as
the root container. Each container database also contains a seed container, which is used
as a template for creating other pluggable databases. Each container database consists
of one master root container, one seed container, and zero or one or more pluggable
databases.

When working with containers and pluggable databases, there are two types of
duplication you may require:

Duplicating the entire container database (and all of the •	
associated pluggable databases)

Duplicating a subset of pluggable databases•	

Examples of each are shown in the following sections.

Duplicating a Container Database
It’s fairly simple to duplicate an entire container database. Just like with a regular
(non-container) database, you can either duplicate from an active target database or
from RMAN backups. The main aspect to note about this scenario is that the initialization
parameter file on the auxiliary must contain this line:

enable_pluggable_database=true

Also, you must ensure that you make a connection to the root container as SYS when
performing the duplicate operation. Figure 5-2 illustrates the steps required to duplicate
a container database. Notice that there must be a listener running on the target server
(if you’re unsure of how to start a listener and register services, see Chapter 6 for details).

Figure 5-2. Duplicating a container database

Chapter 5 ■ advanCed topiCs

130

These details of the duplication steps in this scenario are described next. This example
assumes that a fully functioning container target database has already been created.

Tip ■ see Pro Oracle Database 12c Administration available from apress for details on
creating and managing container and pluggable databases.

In this example, the target container database name is CDB. Additionally, the
auxiliary database name and directory structure are identical to the target database.

1. Ensure the container target database is in archive log mode.
Connect to the root container as a user with the SYSDBA
privilege:

$ sqlplus / as sysdba
SQL> archive log list;

If it’s not in archivelog mode, enable it as follows:

SQL> shutdown immediate;
SQL> startup mount;
SQL> alter database archivelog;
SQL> alter database open;

2. On the target, create a text-based initialization file if one
doesn’t already exist:

SQL> create pfile from spfile;

3. Copy the initCDB.ora file to the auxiliary server. This example
uses the Linux/UNIX scp command and initiates the copy
operation from the target database:

$ scp $ORACLE_HOME/dbs/initCDB.ora oracle@shrek2:$ORACLE_HOME/dbs

4. On the auxiliary server, ensure that all required directories
exist to hold the data files, control files, and online redo logs.
You can verify the directories in use by running this query on
the target database:

SQL> select name from v$datafile
union
select name from v$tempfile
union
select name from v$controlfile
union
select member from v$logfile;

Chapter 5 ■ advanCed topiCs

131

5. On the auxiliary server, create a password file for the CDB
database:

$ cd $ORACLE_HOME/dbs
$ orapwd file=orapwCDB password=foo

6. On the auxiliary server, start up the CDB auxiliary database in
nomount mode:

$ sqlplus / as sysdba
SQL> startup nomount;

At this point, it doesn’t hurt to verify the enable_pluggable_database parameter is set
to TRUE:

SQL> show parameter enable_pluggable_database

Here is some sample output:

NAME TYPE VALUE
------------------------------------ ----------- -----------------
enable_pluggable_database boolean TRUE

7. On the auxiliary server, connect via RMAN to the target and
auxiliary databases:

$ rman target sys/foo@shrek:1521/CDB auxiliary sys/foo

You’ll have to change the prior username, password, and connection information to
match your environment.

8. Now execute the DUPLICATE command:

RMAN> DUPLICATE TARGET DATABASE TO CDB
FROM ACTIVE DATABASE
NOFILENAMECHECK;

You should now see some rather verbose output; here’s a snippet:

executing Memory Script
...
database opened
Finished Duplicate Db at ...

Chapter 5 ■ advanCed topiCs

132

When finished you should have an identical copy of the container database (and all
of its associated pluggable databases). You can now connect to the root container and
verify the container and pluggable databases exist via the following:

SQL> select con_id, name from v$containers;

Here’s some sample output:

 CON_ID NAME
---------- ------------------------------
 1 CDB$ROOT
 2 PDB$SEED

Duplicating Pluggable Databases
You can use RMAN to duplicate one or more pluggable databases to an auxiliary database.
When you duplicate a pluggable database, RMAN duplicates the container database that
houses the pluggable databases and then also duplicates the pluggable databases that you
choose.

You can either specify which pluggable databases you want to include or state which
pluggable databases you want to exclude. Examples of each operation are described in
the following subsections.

Including Pluggable Databases
Suppose you have two pluggable databases named SALESPDB and HRPDB that you require
to be duplicated to a different environment. To achieve this, first follow steps 1 through 7
from the prior section, “Duplicating a Container Database.” Make sure you create all of
the required directories on the auxiliary server before you run the step containing the
DUPLICATE operation. This means you must create all directories (on the auxiliary server)
to house the pluggable database data files (as they existed on the target server).

Now, change the DUPLICATE command as follows to only include the pluggable
databases of interest:

RMAN> DUPLICATE TARGET DATABASE TO CDB
PLUGGABLE DATABASE salespdb, hrpdb
FROM ACTIVE DATABASE
NOFILENAMECHECK;

You should see a great deal of output; here’s a small sample for this example:

Starting Duplicate Db at ...
using target database control file instead of recovery catalog
allocated channel: ORA_AUX_DISK_1
...

Chapter 5 ■ advanCed topiCs

133

sql statement: alter pluggable database all open
Dropping offline and skipped tablespaces
...

When the operation is finished, you can verify the pluggable databases that were
duplicated:

$ sqlplus / as sysdba
SQL> select con_id, name from v$containers;

Here’s some sample output confirming that only the pluggable databases of interest
were duplicated:

 CON_ID NAME
---------- ------------------------------
 1 CDB$ROOT
 2 PDB$SEED
 3 SALESPDB
 4 HRPDB

Keep in mind that the duplicate operation in this section duplicates the entire
container environment and additionally the pluggable databases specified in the
DUPLICATE command. That’s why the CDB$ROOT and PDB$SEED containers were also
duplicated, as these are part of any base container database.

Note ■ You can also instruct rMan to only duplicate specific tablespaces within a pdB via
the following syntax: TABLESPACE pdb:tablespace

Excluding Pluggable Databases
The other technique to duplicate specific pluggable databases is by specifying which
pluggable databases you do not want duplicated. To achieve this, first follow steps 1
through 7 from the section “Duplicating a Container Database.” Ensure you create
all of the required directories on the auxiliary server before you run the step with the
DUPLICATE operation. This means you must create all directories (on the auxiliary
server) to house the pluggable database data files (as they existed on the target server).

For the last step, change the DUPLICATE command as follows to exclude pluggable
databases that you don’t want replicated. This example excludes the HRPDB pluggable
database:

RMAN> DUPLICATE TARGET DATABASE TO CDB
SKIP PLUGGABLE DATABASE hrpdb
FROM ACTIVE DATABASE
NOFILENAMECHECK;

Chapter 5 ■ advanCed topiCs

134

When finished you can verify that the container database contains the pluggable
databases of interest:

$ sqlplus / as sysdba
SQL> select con_id, name from v$containers;

Here is some sample output:

 CON_ID NAME
---------- ------------------------------
 1 CDB$ROOT
 2 PDB$SEED
 3 SALESPDB

Note ■ You can also instruct rMan to only skip specific tablespaces within a pdB via the
following syntax: SKIP TABLESPACE pdb:tablespace

RAC Databases
If you work in an environment that contains a mixture of RAC and non-RAC databases
and find yourself with requirements to duplicate environments within this infrastructure,
then you’ll find the DUPLICATE command seamlessly solves many technical issues.
Because of the complexity of RAC environments, this section doesn’t document every
detail involved with this operation, but it does give you a good high-level overview of a
couple of common duplication scenarios involving RAC-enabled databases. Let’s first
take the case of duplicating a non-RAC environment to a RAC environment.

Non-RAC/Non-ASM to RAC/ASM
I was recently asked by my manager to create a copy of a 10 TB database that was non-RAC
and non-ASM and create an RAC database that uses ASM storage. One caveat was that on
the auxiliary (destination RAC and ASM database) there was only about 10 TB of storage,
so there was not enough space to copy an RMAN backup (even if it was compressed) to the
auxiliary server and restore the database.

In this situation, I decided to use the RMAN DUPLICATE command to replicate
from the live target database. RMAN nicely handles the conversion of taking data files
on regular storage and restoring them on ASM disks. Figure 5-3 depicts this scenario.
This example assumes that the RAC grid/cluster software and Oracle database software
has been installed in the auxiliary environment. It’s beyond the scope of this book to
document the steps to install this software, so here you’ll need to look at Oracle’s RAC
and grid infrastructure software documentation, which is available freely on Oracle
Technology Network website (otn.oracle.com).

Chapter 5 ■ advanCed topiCs

135

The steps depicted in figure 5-3 are described in detail next.

1. Prepare an init.ora file for one RAC instance on one RAC
node. Ensure you initially set the cluster_database parameter
to FALSE.

2. Start up one node of the RAC cluster:

$ sqlplus / as sysdba
SQL> startup nomount;

3. Connect to the target and auxiliary instances:

$ rman target sys/foo@shrek:1521/TRG auxiliary sys/foo@RAC

4. Issue the DUPLICATE command:

RMAN> DUPLICATE TARGET DATABASE TO DUP
FROM ACTIVE DATABASE
 db_file_name_convert '/u01/dbfile/TRG', '+DATA/DUP/datafile'
logfile group 1
 ('+DATA/DUP/onlinelog/redot1g1m1.rdo',
 '+DATA/DUP/onlinelog/redot1g1m2.rdo') size 1073741824,
group 2
 ('+DATA/DUP/onlinelog/redot1g2m1.rdo',
 '+DATA/DUP/onlinelog/redot1g2m2.rdo') size 1073741824,

Figure 5-3. Duplicating from non-RAC to RAC

Chapter 5 ■ advanCed topiCs

136

group 3
 ('+DATA/DUP/onlinelog/redot1g3m1.rdo',
 '+DATA/DUP/onlinelog/redot1g3m2.rdo') size 1073741824
NOFILENAMECHECK;

5. After the duplication procedure successfully completes, add
any additional threads of REDO and UNDO to the other RAC
nodes:

SQL> ALTER DATABASE ADD LOGFILE THREAD 2
 GROUP 10
 ('+DATA/DUP/onlinelog/redot2g10m1.rdo',
 '+DATA/DUP/onlinelog/redot2g10m2.rdo') SIZE 1073741824,
 GROUP 11
 ('+DATA/DUP/onlinelog/redot2g11m1.rdo',
 '+DATA/DUP/onlinelog/redot2g11m2.rdo') SIZE 1073741824,
 GROUP 12
 ('+DATA/DUP/onlinelog/redot2g12m1.rdo',
 '+DATA/DUP/onlinelog/redot2g12m2.rdo') SIZE 1073741824;

Enable the second thread of redo:

SQL> alter database enable public thread 2;

And now create the UNDO tablespace for the second node:

SQL> create undo tablespace undotbs2
datafile '+DATA/DUP/datafile/undotbs02_01.dbf' size 1g;

Also set cluster_database=TRUE in the initialization file, and you should now be able
to start the second node.

RAC/ASM to Non-RAC/Non-ASM
Duplicating from a multinode RAC database using ASM storage to a single-instance
database using the regular file system storage is fairly easy. The RMAN DUPLICATE
command seamlessly handles the conversion from ASM-based storage to regular file
system disks. This scenario is shown in Figure 5-4.

Chapter 5 ■ advanCed topiCs

137

The steps shown in Figure 5-4 are described next.

1. Create an init.ora file for a single-instance database.

Here’s the initDUP.ora file I used for this example:

control_files='/u01/dbfile/DUP/control01.ctl'
db_block_size=8192
db_name='DUP'
fast_start_mttr_target=500
job_queue_processes=10
sga_max_size=400M
sga_target=400M
open_cursors=75
processes=100
remote_login_passwordfile='EXCLUSIVE'
resource_limit=true
standby_file_management='auto'
undo_management='AUTO'
undo_tablespace='UNDOTBS1'
workarea_size_policy='AUTO'

2. Start up the auxiliary database in nomount mode:

$ sqlplus / as sysdba
SQL> startup nomount;

Figure 5-4. RAC to non-RAC duplication

Chapter 5 ■ advanCed topiCs

138

3. Connect via RMAN to the target and auxiliary databases:

$ rman target sys/foo@RAC auxiliary sys/foo@DUP

4. Issue the RMAN DUPLICATE command:

RMAN> DUPLICATE TARGET DATABASE TO DUP
FROM ACTIVE DATABASE
DB_FILE_NAME_CONVERT '+DATA/rac/datafile','/u01/dbfile/DUP',
 '+DATA/rac/tempfile','/u01/dbfile/DUP'
LOGFILE GROUP 1 ('/u01/oraredo/DUP/redo01.rdo') SIZE 50M,
 GROUP 2 ('/u01/oraredo/DUP/redo02.rdo') SIZE 50M;

In the previous command, I used the DB_FILE_NAME conversion to ensure that the
data files were mapped properly from the ASM storage to the regular file system storage.

If you see an error such as this:

ORA-38856: cannot mark instance UNNAMED_INSTANCE_2...

then place this line in your init.ora file:

_no_recovery_through_resetlogs=true

You should now be able to:

SQL> shutdown immediate;
SQL> startup mount;
SQL> alter database open resetlogs;

Summary
This chapter covered many additional scenarios with RMAN duplication. First, we
investigated examples of partial database duplication. Then we then discussed increasing
the performance through parallelism. When working with large databases, increasing the
degree of parallelism can greatly improve performance.

Next, we discussed how to create Data Guard standby databases using the RMAN
DUPLICATE command. You can create a standby database from a live target primary
database or from an RMAN backup of a target primary database.

Duplicating container and pluggable databases was also covered. Duplicating an
entire container database is very similar to duplicating a non-container database. You
also have the option of duplicating a subset of pluggable databases housed within the
container database.

Lastly, we discussed how to duplicate RAC/ASM databases to non-RAC/non-ASM
databases and vice versa. The RMAN DUPLICATE command greatly assists in duplicating
in RAC environments.

139

Chapter 6

Oracle Net Primer

This chapter describes the basics of Oracle Net. When using RMAN with active
duplication, or to duplicate to a standby database, it’s critical to understand how to
configure and use Oracle Net. The examples described shortly deal with Oracle Net in a
single-instance (non-RAC) and non-Oracle Restart environment; in other words,
a single vanilla Oracle database installed on a host with nothing special configured.
This chapter is not a comprehensive guide for Oracle’s networking technology stack.
Rather, it’s an introduction to foundational Oracle Net material. I’ve found that a thorough
understanding of the default behavior of Oracle Net in a single-instance environment
is critical to successfully using RMAN to duplicate databases. Therefore, this chapter
focuses on the following elementary topics:

Detailing the default behavior of an Oracle Net service•	

Creating and registering (dynamically and statically) services with •	
the listener

Controlling the listener•	

First, let’s briefly discuss some background information on Oracle Net and its
components.

Oracle Net
Oracle Net Services is the collection of technology that manages network connectivity
between all components of the technology stack. Oracle Net is the component of Oracle
Net Services that manages connectivity between remote clients and the Oracle database.
The chief components of Oracle Net are:

Service: A service is an object created in the database that is used by Oracle to
manage a connection to the database. Any connection to the Oracle database must be
through a service. Many times the service is transparent to the client because either a
default service is used during a connection or the service name is transparently used
when the client uses an alias to resolve the connection information.

Listener: A process that resides on the database server that listens for incoming
connections to the database.

Chapter 6 ■ OraCle Net primer

140

lsnrctl executable: A utility that allows you to start, stop, reload, and view
characteristics of the listener process. The lsnrctl utility can start the listener without any
special settings. If you need more control over the listener behavior then you can place
configuration settings in the listener.ora file.

listener.ora: This file controls the behavior of the listener process and is usually located
in the ORACLE_HOME/network/admin directory. If you don’t have a listener.ora file in
place, then the listener uses default settings to operate. Some aspects you can control with
this file are the name of the listener, the port used for listening for incoming connections,
static registration of services with the listener, logging and tracing information, security
settings, and so on.

Service registration: Before that service can be used for remote connections to the
database, it must be registered with the listener. Registering a service with a listener gives
the listener the ability to accept incoming connections via that service. The listener will
refuse to connect any remote connections attempting to connect to a service that hasn’t
been registered. A service is registered with the listener either dynamically or statically.

LREG: The listener registration process. This process is responsible for dynamically
registering services with listeners. The PMON process is responsible for registering
services with the listener in Oracle 11g and previous editions. Whenever I mention LREG
in this chapter, if you’re working with Oracle 11g and prior, then you should substitute
PMON for LREG. The main point here is that there is an Oracle background process that
will automatically attempt to dynamically register services with the listener under certain
conditions.

Dynamic registration: The LREG background process periodically wakes up and
attempts to register any new instances (and associated services) running on the server
with any listeners running on the server. By default LREG will only register services with
listeners listening on the default port of 1521. If a listener is not listening on port 1521,
then LREG will only automatically register an instance’s services if the LOCAL_LISTENER
initialization parameter has been defined with the port information a listener is listening
for. You can manually instruct LREG to wake up and attempt service registration with
the following:

SQL> alter system register;

Static registration: You can instruct the listener to perform registration for a service
by placing information regarding the service in the listener.ora configuration file. This
method is called static because the information in the listener.ora file is static (unless you
change it). In other words, when you start a listener it will perform service registration
for any service entries it finds that have been statically configured for the listener in the
listener.ora file.

Remote client: A program that connects to a database over the network (e.g., SQL*Plus,
RMAN, Java using JDBC, and so on).

Easy connection method: The name given to remote clients connecting over the
network to a database where the remote client specifies the host name, the port the
listener is listening on, and the service name directly in the string used to connect to
the remote database. If you know the name of the host, port, and service name, you can
directly enter those on the command line. The syntax is as follows:

$ sqlplus user/pass@[//]host[:port][/service_name][:server][/instance_name]

Chapter 6 ■ OraCle Net primer

141

For example, the following SQL*Plus connection specifies a host, a port, and the
service name of the remote database being connected to:

$ sqlplus system/foo@shrek:1521/TRG

In the prior connection string the host is shrek, the port is 1521, and the service
name is TRG.

Local naming method: The name given to clients connecting over the network to
a database by using the tnsnames.ora file to provide information such as the host the
database is running on, the port the listener is listening on, and the service name.

tnsnames.ora: This file maps a connection alias to a host name, a port the listener
is listening on, and the service name. This file is used in the local naming connection
method and is usually located in the ORACLE_HOME/network/admin directory.
For example, say the following entry is placed in the tnsnames.ora file:

TRG =
 (DESCRIPTION =
 (ADDRESS=(PROTOCOL=TCP)(HOST=shrek)(PORT=1521))
 (CONNECT_DATA=(SERVER=DEDICATED)(SERVICE_NAME=TRG)))

Then a connection to the TRG service using the local naming method would be as:

$ sqlplus system/foo@TRG

The examples in this chapter will use either the easy connect naming method or the
local naming method. If you require details on other naming methods (e.g., directory
naming method, like Oracle Internet Directory) that Oracle supports, see the Oracle
Database Net Services Administrator’s Guide freely available for download on Oracle’s
technology website (otn.oracle.com).

Now that you have an understanding of the basic components of Oracle Net, let’s
dive deeper into how to use a service to connect remotely to a database. One key aspect to
keep in mind when reviewing the following material is that a service, a listener, and how a
service gets registered with a listener are three separate concepts.

Services Default Behavior
It’s critical to understand the default behavior of a service within an Oracle database.
This lays the foundation for understanding how Oracle Net functions. When you create a
new database there will normally be three default services created for you. For reference,
here’s the SQL script I used to create a basic single-instance Oracle database:

CREATE DATABASE TRG
 MAXLOGFILES 16
 MAXLOGMEMBERS 4
 MAXDATAFILES 1024
 MAXINSTANCES 1

Chapter 6 ■ OraCle Net primer

142

 MAXLOGHISTORY 680
 CHARACTER SET AL32UTF8
DATAFILE
'/u01/dbfile/TRG/system01.dbf' SIZE 500M REUSE
 EXTENT MANAGEMENT LOCAL
UNDO TABLESPACE undotbs1 DATAFILE
'/u01/dbfile/TRG/undotbs01.dbf' SIZE 800M
SYSAUX DATAFILE
'/u01/dbfile/TRG/sysaux01.dbf' SIZE 500M
DEFAULT TEMPORARY TABLESPACE TEMP TEMPFILE
'/u01/dbfile/TRG/temp01.dbf' SIZE 500M
DEFAULT TABLESPACE USERS DATAFILE
'/u01/dbfile/TRG/users01.dbf' SIZE 20M
LOGFILE GROUP 1 ('/u01/oraredo/TRG/redo01a.rdo') SIZE 50M,
 GROUP 2 ('/u01/oraredo/TRG/redo02a.rdo') SIZE 50M
USER sys IDENTIFIED BY foo
USER system IDENTIFIED BY foo;
--
@?/rdbms/admin/catalog.sql
@?/rdbms/admin/catproc.sql
conn system/foo
@?/sqlplus/admin/pupbld.sql

In this script, the name of the database is TRG. After the script finishes, we can
display the services available in the DBA_SERVICES view thusly:

SQL> select service_id, name, network_name,
to_char(creation_date,'dd-mon-yy hh24:mi') create_date
from v$services
order by service_id;

As you can see, there are by default three services that have been created:

SERVICE_ID NAME NETWORK_NAME CREATE_DATE
---------- -------------- ------------ ----------------
 1 SYS$BACKGROUND 25-jan-15 15:28
 2 SYS$USERS 25-jan-15 15:28
 3 TRG TRG 25-jan-15 15:28

The SYS$BACKGROUND service is the service that the Oracle background processes
use when establishing a connection to the database. The SYS$USERS service is used
for local connections. A third service is created that gets its name from the setting of the
SERVICE_NAMES parameter. By default the SERVICE_NAMES parameter is populated
by the value of DB_UNIQUE_NAME, and by default DB_UNIQUE_NAME is populated
from the DB_NAME initialization parameter. In other words, for a freshly created Oracle
database, if you don’t set the SERVICE_NAMES or the DB_UNIQUE_NAME initialization

Chapter 6 ■ OraCle Net primer

143

parameters, a service is created by default with the same name as the value in the
DB_NAME initialization parameter:

SQL> show parameter db_name
NAME TYPE VALUE
--------------------------- ------ ------
db_name string TRG

So we now have a service that can be used to connect remotely to the database.
On a remote box, using the easy connection method, let’s try to connect to the database
through the TRG service:

$ sqlplus system/foo@shrek:1521/TRG

The connection fails with this error:

ORA-12541: TNS:no listener

A service by itself doesn’t allow for remote connectivity from a client to a database;
it’s the combination of three components that does the trick:

A service must exist.•	

A listener process must be running on the database server (host).•	

The service must be registered with the listener before remote •	
connections can access the database through the given service.

So far in this example, the first item is true; a service named TRG does exist. We’ve
verified that by viewing the information in the data dictionary. Take the second item from
the prior list: Is a listener running? From the operating system on the database server,
let’s check the status of the listener:

$ lsnrctl status

This error is present in the output, thus indicating that no listener is running:

TNS-12541: TNS:no listener

You can start a listener on the database server without configuring any Oracle Net
files. The listener works perfectly fine with default settings. So, without configuring
anything, let’s start the listener on the database server:

$ lsnrctl start

Here’s a partial listing of the output:

 (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=shrek)(PORT=1521)))
The listener supports no services
The command completed successfully

Chapter 6 ■ OraCle Net primer

144

We have a listener running now, and by default the listener is listening on port 1521
(as shown in the prior output). Let’s again attempt to connect to the database from a
remote client:

$ sqlplus system/foo@shrek:1521/TRG

Now this error is displayed:

ORA-12514: TNS:listener does not currently know of service requested in
connect descriptor

By default the LREG background process (PMON in Oracle 11g and before)
periodically checks (every 60 seconds) to see if a new instance and listener are running on
the server. If the listener is listening on port 1521, then the LREG process will automatically
register any services contained in the SERVICE_NAMES parameter with the listener.
It’s been about a minute, so let’s ask the listener to display services that are registered:

$ lsnrctl services

Service "TRG" has 1 instance(s).
 Instance "TRG", status READY, has 1 handler(s) for this service...

The output indicates the service TRG has been registered with the instance TRG.
By default a service is registered with the listener to listen for a particular instance. The
instance in this name also happens to be TRG. In a single-instance database, the instance
name is usually the same as the database name (the value in the DB_NAME parameter).

So, by default, you get a service, and once started the listener will by default listen on
port 1521, and by default the LREG process will register services with a listener listening
on port 1521. Let’s try to connect remotely again:

$ sqlplus system/foo@shrek:1521/TRG

Bingo, all the pieces come together; the remote connection was successful:

SQL>

The prior connection details are depicted in Figure 6-1 and are described as follows.
First, LREG registers the TRG service with the listener listening on port1521 on the shrek
server (step 1). Second, a remote client uses the easy connection method to connect to
the TRG service in the TRG database (step 2). Once successful, the listener hands off the
connection to an Oracle server process (step 3). From that point on the Oracle server
process handles all communication between the remote client and the database (step 4).

Chapter 6 ■ OraCle Net primer

145

By using default settings you can make your database available for use via remote
connections. In the real world the use of default settings is not recommended, nor are
they seldom used. Most hackers know that by default an Oracle listener listens on port
1521, so that port is where most hackers start when trying to remotely access a database.
Having said that, I will use the default settings in several examples in this chapter, as
it’s important to understand how to identify default configurations and modify them
appropriately.

It’s worth mentioning at this point that you can modify the default service that
gets created by setting the DB_UNIQUE_NAME initialization parameter. Setting
DB_UNIQUE_NAME is a requirement when configuring Data Guard environments.
When you set the value of DB_UNIQUE_NAME a service is created and named with the
setting of DB_UNIQUE_NAME. To modify this parameter you can use the ALTER SYSTEM
command. If you’re using an SPFILE you must specify SCOPE=SPFILE, meaning that it
cannot be set dynamically in memory:

SQL> alter system set db_unique_name='TRG1' scope=spfile;

Figure 6-1. A remote client connects to an Oracle database with default service and port

Chapter 6 ■ OraCle Net primer

146

Start and stop the instance in order for the value to take effect:

SQL> shutdown immediate;
SQL> startup;

Now, instead of a service with the name of TRG being registered with the listener, the
service name should be TRG1:

$ lsnrctl services

After LREG has had a chance to dynamically register the service, the output verifies
that the service TRG1 in the instance TRG is registered with the listener:

Service "TRG1" has 1 instance(s).
 Instance "TRG", status READY, has 1 handler(s) for this service...

Now that we’ve covered the default behavior of Oracle Net, let’s look at non-default
ways to create a service and register it with the listener.

Creating and Registering Services with the Listener
In most circumstances you’ll require more from Oracle Net than just the default behavior.
For example, you may want to register several services with the listener. Techniques to
accomplish this are listed next:

Set the •	 SERVICE_NAMES initialization parameter to contain
multiple service names and let LREG dynamically register the
services (either by having the listener listen on port 1521 or by
setting the LOCAL_LISTENER parameter to contain information
regarding the port the listener is listening on).

Static registration creates and registers a service for each service •	
statically listed in the listener.ora file.

The •	 DBMS_SERVICE internal PL/SQL package allows you to
create, activate, and drop services.

Each of these techniques is described in the following sections. First up is setting the
SERVICE_NAMES initialization parameter.

Setting SERVICE_NAMES
One method for creating and registering multiple services with the listener is to
populate the SERVICE_NAMES initialization parameter. Recall that if you don’t specify a
value for SERVICE_NAMES the default value is derived from DB_UNIQUE_NAME, and if
DB_UNIQUE_NAME is not set, the default value is derived from DB_NAME. For this
example, say that the SERVICE_NAMES parameter is not currently set to anything and has a
default value of TRG, which it derived from the DB_NAME (which is TRG for my database).

Chapter 6 ■ OraCle Net primer

147

In this example you have the requirement to add a service named HRS to the database.
The following ALTER SYSTEM command sets the SERVICE_NAMES parameter to specify
a TRG service and an HRS service:

SQL> alter system set service_names='TRG, HRS';

Querying V$SERVICES shows the service has been added to the instance:

SQL> select service_id, name, network_name,
to_char(creation_date,'dd-mon-yy hh24:mi') create_date
from v$services
order by service_id;

Here is the output:

SERVICE_ID NAME NETWORK_NAME CREATE_DATE
---------- -------------- ------------ ---------------
 1 SYS$BACKGROUND 25-jan-15 15:28
 2 SYS$USERS 25-jan-15 15:28
 3 TRG TRG 25-jan-15 15:28
 4 HRS HRS 25-jan-15 16:14

Recall that just because a service has been created doesn’t mean that the service has
also been registered with the listener. A service is only dynamically registered with the
listener (by LREG) when:

The listener is listening on port 1521•	

The •	 LOCAL_LISTENER initialization parameter contains
information regarding the port the listener is listening on.

By default, if the listener is listening on port 1521, LREG will dynamically register
services contained in the SERVICE_NAMES parameter with the listener.

To continue this example, assume there is a listener listening on port 1521. Let’s
observe any services registered with this listener:

$ lsnrctl services

Here’s a snippet of the relevant output:

Service "HRS" has 1 instance(s).
 Instance "TRG", status READY, has 1 handler(s) for this service...
...
Service "TRG" has 1 instance(s).
 Instance "TRG", status READY, has 1 handler(s) for this service...

Chapter 6 ■ OraCle Net primer

148

We can see that both the services, TRG and HRS, are registered with the listener,
which is listening on port 1521. Let’s see if we can connect remotely using the newly
created and registered HRS service:

$ sqlplus system/foo@shrek:1521/HRS
SQL>

Yes, the connection was successful, as evidenced by the SQL prompt. Now what
happens if we stop the listener and restart it by listening on the non-default port of 1529?
First stop the currently running listener:

$ lsnrctl stop

In my environment, to configure the listener to listen on port 1529, I must navigate
to the ORACLE_HOME/network/admin directory and place within the listener.ora file the
following code:

LISTENER =
 (DESCRIPTION_LIST=
 (DESCRIPTION=
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = shrek)(PORT = 1529))
)
)
)

Next, start the listener:

$ lsnrctl start

The output indicates the listener is now listening on port 1529 and supports no
services (meaning no services are registered with this listener):

(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=shrek)(PORT=1529)))
The listener supports no services
The command completed successfully

With nothing else configured, this listener will never contain registered services. The
LREG background process is currently only attempting to register services for a listener
listening on port 1521, which now does not exist on this host. Notice what happens if we
attempt to connect from a remote client to this database via a service:

$ sqlplus system/foo@shrek:1529/HRS

We receive a message indicating the service is not registered with the listener:

ORA-12514: TNS:listener does not currently know of service requested
in connect descriptor

Chapter 6 ■ OraCle Net primer

149

How do we get LREG to register listeners running on the non-default port of 1529?
There are two techniques:

Set the •	 LOCAL_LISTENER parameter to contain the host and port
information.

Set the •	 LOCAL_LISTENER parameter to point to an entry in
the tnsnames.ora file that contains the host, port, and service
information.

Setting the LOCAL_LISTENER to contain host and port information
The first method involves setting the LOCAL_LISTENER initialization parameter to
contain information regarding the host and port 1529. This instructs LREG to, instead
of looking for listeners on port 1521, attempt to register services with a listener listening
on port 1529. Use the ALTER SYSTEM command to set the LOCAL_LISTENER parameter
to contain information regarding the host and port:

SQL> alter system set
local_listener='(ADDRESS=(PROTOCOL=TCP)(HOST=shrek)(PORT=1529))';

Now let’s view the services registered with the listener:

$ lsnrctl services

Here’s a partial listing of the output:

Service "HRS" has 1 instance(s).
 Instance "TRG", status READY, has 1 handler(s) for this service...
...
Service "TRG" has 1 instance(s).
 Instance "TRG", status READY, has 1 handler(s) for this service...

And we can verify that a remote connection is now possible via the HRS service:

$ sqlplus system/foo@shrek:1529/HRS
SQL>

The above connection process is shown in Figure 6-2 and described next. First, the
initialization parameters SERVICE_NAMES and LOCAL_LISTENER are populated (step 1).
Next, the listener.ora file is modified to contain the port 1529 (step 2). Next, the listener
is stopped and started so that it is now listening on port 1529 (step 3). Subsequently, the
LREG process dynamically registers the services TRG and HRS with the listener (step 4).
Then the client process attempts a remote connection to the HRS service on port 1529
on the shrek server (step 5). When successful, the listener hands off the connection to an
Oracle server process (step 6). From that point on the Oracle server process handles all
communication between the database and client (step 7).

Chapter 6 ■ OraCle Net primer

150

Setting LOCAL_LISTENER to point to an entry in tnsnames.ora
There’s another technique for setting the LOCAL_LISTENER parameter. This involves
setting the value of LOCAL_LISTENER to what is effectively a pointer to an entry in the
tnsnames.ora file. The entry in the tnsnames.ora file contains the host, port, and service
information. Recall that the tnsnames.ora file is usually located in the ORACLE_HOME/
network/admin directory. To demonstrate this technique, first place an entry in the
tnsnames.ora file as follows:

LL=(ADDRESS=(PROTOCOL=TCP)(HOST=shrek)(PORT=1529))

Next, set the value of LOCAL_LISTENER to point to the entry in the tnsnames.ora file:

SQL> alter system set local_listener='LL';

Now let’s confirm that the listener is listening on port 1529 for services defined in the
SERVICE_NAMES parameter:

$ lsnrctl services

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=shrek)(PORT=1529)))
Services Summary...

Figure 6-2. Remote connection using a non-default port and non-default service

Chapter 6 ■ OraCle Net primer

151

Service "HRS" has 1 instance(s).
 Instance "TRG", status READY, has 1 handler(s) for this service...
...
Service "TRG" has 1 instance(s).
 Instance "TRG", status READY, has 1 handler(s) for this service...

And let’s also confirm that we can connect from a remote client:

$ sqlplus system/foo@shrek:1529/HRS
SQL>

Statically Registering Services
The material thus far has outlined how to create and register multiple services with the
listener using the SERVICE_NAMES parameter in combination with the default behavior
of the listener listening on port 1521, and also with setting the listener to listen on a
non-default port such as 1529.

This current section demonstrates how to create and register multiple services with a
listener using static service registration. Static registration means the details of the service
have been statically placed in the listener.ora file (the listener.ora file is static until you
change it, anyway). For the material in this chapter covered up to this point, the listener.ora
file only contains the following lines that specify which port the listener is listening on for
a given host:

LISTENER =
 (DESCRIPTION_LIST=
 (DESCRIPTION=
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = shrek)(PORT = 1529))
)
)
)

For this static registration example, set the LOCAL_LISTENER parameter to contain
a null value, meaning that no dynamic registration will take place:

SQL> alter system set local_listener='';

Also set SERVICE_NAMES to contain a null value:

SQL> alter system set service_names='';

Chapter 6 ■ OraCle Net primer

152

When checking to see what services are registered with the listener we expect it to be
none, because the listener is not listening on the default port of 1521 and we have not set
the LOCAL_LISTENER parameter to point at port 1529:

$ lsnrctl services

Here’s a partial listing of the output verifying our thinking that the listener is indeed
running but with no registered services:

(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=shrek)(PORT=1529)))
The listener supports no services

To statically register a service with the listener you need to place an additional
section in the listener.ora file that lists the services you require the listener to register. This
addition to the listener.ora file is the SID_LIST_LISTENER section. The following lines of
code are added to the listener.ora file specifying the static registration information for two
services (TRG and HRS):

SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC =
 (GLOBAL_DBNAME = TRG) # service name
 (ORACLE_HOME = /u01/app/oracle/product/12.1.0.2/db_1)
 (SID_NAME = TRG) # instance name
)
 (SID_DESC =
 (GLOBAL_DBNAME = HRS) # service name
 (ORACLE_HOME = /u01/app/oracle/product/12.1.0.2/db_1)
 (SID_NAME = TRG) # instance name
)
)

In this code, the GLOBAL_DBNAME specifies the service name, and SID_NAME is
the instance name. So a service TRG is registered with the TRG instance, and the service
HRS is registered with the TRG instance. Also note that any text on a line that appears
after a # sign is a comment. Now stop and restart the listener (you could also do a reload;
more on this later). When the listener is stopped and started:

$ lsnrctl stop
$ lsnrctl start

Here’s part of the output it displays:

 (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=shrek)(PORT=1529)))
Services Summary...
Service "HRS" has 1 instance(s).
 Instance "TRG", status UNKNOWN, has 1 handler(s) for this service...
Service "TRG" has 1 instance(s).
 Instance "TRG", status UNKNOWN, has 1 handler(s) for this service...

Chapter 6 ■ OraCle Net primer

153

The UNKNOWN status means the service has been statically registered with the
listener. In other words, the status of UNKNOWN doesn’t mean the listener isn’t aware
of the service; rather, it means that the service was not dynamically registered by LREG.
So don’t let the status of UNKNOWN confuse you, as it simply means the service was
statically registered.

Now that the services have been statically registered with the listener, we can again
connect remotely from a client:

$ sqlplus system/foo@shrek:1529/HRS
SQL>

The following query and output shows the successful connection:

SQL> select instance_name from v$instance;

INSTANCE_NAME

TRG

If you want to use the local naming method (and not easy connect), then add an
entry to the tnsnames.ora file on the client machine, as follows:

HRS =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = shrek)(PORT = 1529))
 (CONNECT_DATA = (SERVER = DEDICATED) (SERVICE_NAME = HRS)))

And now the client connection is initiated as follows:

$ sqlplus system/foo@HRS

The SQL*Plus utility knows from the connection string that local naming is being
used and that it needs look in the tnsnames.ora file for details on the host, port, and
service name.

The prior static registration and local naming connection method is depicted in
Figure 6-3 and described here. First, the listener.ora file is modified to contain the static
service information (step 1). Next, the listener is stopped and started so that it statically
registers the services contained in the listener.ora file (step 2). Then the client tnsnames.
ora file is modified to contain local naming information such as the host, port, and service
name (step 3). Next, the remote client attempts to connect to the database (step 4). When
successful, the listener hands off the connection to an Oracle server process (step 5). From
that point on the Oracle server process handles all communication between the database
and remote client (step 6).

Chapter 6 ■ OraCle Net primer

154

Dynamic Registration versus Static Registration
The prior two sections detailed dynamic and static registration options. Which technique
is preferable? Either dynamic or static registration is acceptable. There are some specific
situations in which you may want to use static registration:

If it’s required by Oracle Enterprise Manager Cloud Control.•	

If you want the service to be immediately available when the •	
listener is started; static registration provides this.

If you want the listener to automatically register any statically •	
listed services when it starts or reloads.

Dynamic registration also has some advantages:

You don’t need to maintain information regarding the services in •	
the listener.ora file.

If need be you can instruct •	 LREG to wake up and perform
dynamic registration with the following:

SQL> alter system register;

Figure 6-3. Static registration and local naming connection

Chapter 6 ■ OraCle Net primer

155

This command instructs LREG to immediately register any services with a listener.
This works if the listener is listening on the default port of 1521 or if you’ve configured the
LOCAL_LISTENER parameter to include information regarding the host and port number
that the listener is listening on.

Here are some other differences between dynamic registration and static registration
that you should be aware of:

When you stop an instance, dynamically registered services are •	
no longer registered with the listener, whereas statically registered
services still show up as registered with the listener (even though
there is no instance running).

It’s also possible to statically register a service with a listener when •	
there is no instance running.

By default, statically registered services don’t appear in the •	
V$SERVICES or DBA_SERVICES views. You can change this
behavior by using DBMS_SERVICE to create and start the
statically registered service.

Dynamically registered services do appear automatically in the •	
V$SERVICES and DBA_SERVICES views.

By default, when you connect to a statically registered service, the •	
SERVICE_NAME column in V$SESSION shows the connection
coming through the SYS$USERS service. You can change this
behavior by using DBMS_SERVICE to create and start the
statically registered service.

You may work with a group that has a strong opinion on which approach is best used
(because of some of the differences listed previously), and that’s fine.

Why Use Multiple Services?
You may also be asking why not just use the default service that’s created when you create
the database; why is it necessary to create multiple services? When you use a service to
connect to the database Oracle tracks which service you use. Oracle populates various
performance-related views with the service information along with resource usage per
service. This allows you to monitor and report on performance metrics per each service.
For example, you may have several applications using your database. You can create a
service for each application to use when connecting to the database, which will allow you
to monitor resource usage per the service connection.

Using DBMS_SERVICE
Oracle provides the built-in PL/SQL package DBMS_SERVICE to manage services.
Normally you don’t need to manage services with the degree of control provided through
DBMS_SERVICE. However, you’ll be better able to understand and maintain your Oracle

Chapter 6 ■ OraCle Net primer

156

Net environment with a basic knowledge of how to use this package. There are several
tasks you can perform with DBMS_SERVICE. The main features I’ll cover here are:

Adding and starting a service•	

Stopping and deleting a service•	
Keep in mind there are other uses for DBMS_SERVICE (e.g., modifying a service,

disconnecting a session, and so on). What I want to cover here are some of the features
you’ll use most frequently. Let’s start with adding a service.

Adding a service
Suppose you want to use DBMS_SERVICE to add a service named DW to the instance.
This next line of code demonstrates how to do so:

SQL> exec DBMS_SERVICE.CREATE_SERVICE(service_name=>'DW',
network_name=>'DW');

Checking in the DBA_SERVICES view we can confirm the creation of the service:

select service_id, name, network_name,
to_char(creation_date,'dd-mon-yy hh24:mi') create_date
from dba_services
order by service_id;

Here is the output:

SERVICE_ID NAME NETWORK_NAME CREATE_DATE
---------- -------------- ------------ ---------------
 1 SYS$BACKGROUND 25-jan-15 15:28
 2 SYS$USERS 25-jan-15 15:28
 3 TRG TRG 25-jan-15 15:28
 4 HRS HRS 25-jan-15 16:14
 5 DW DW 25-jan-15 17:12

Now that the service has been created, and before it becomes available for use with
remote connections, it must be registered with the listener. In this environment I’m using
dynamic registration to register the service with the listener. I can force LREG to wake up
and register any new services:

SQL> alter system register;

Chapter 6 ■ OraCle Net primer

157

Assuming dynamic registration has been set up, when I look to see if the new service
has been registered, it has not yet been:

$ lsnrctl services
Service "TRG" has 1 instance(s).
 Instance "TRG", status READY, has 1 handler(s) for this service...

Before a service created with DBMS_SERVICE can be registered with the listener it
must be started. Let’s do that as follows:

SQL> exec DBMS_SERVICE.START_SERVICE(service_name=>'DW');

Now instruct LREG to wake up and register any started services:

SQL> alter system register;

The service is now registered with the listener:

$ lsnrctl services
...
Service "DW" has 1 instance(s).
 Instance "TRG", status READY, has 1 handler(s) for this service...

We can now connect remotely using this new service:

$ sqlplus system/foo@shrek:1529/DW
SQL>

Removing a service
Removing a service is the opposite of adding it. First, stop any services and then drop
them. For example, to stop and delete the DW service do as follows:

SQL> exec DBMS_SERVICE.STOP_SERVICE(service_name=>'DW');
SQL> exec DBMS_SERVICE.DELETE_SERVICE(service_name=>'DW');

To wrap this section up, the DBMS_SERVICE package can be used to add and remove
services. If you’re using dynamic registration then the service will automatically be
registered by LREG with the listener.

Displaying Service Information
When troubleshooting issues with remote connectivity you’ll invariably want to
determine which services are registered with the listener and which services exist in the
database. You can display service information either through Oracle-provided operating
system utilities or via data dictionary views.

Chapter 6 ■ OraCle Net primer

158

LSNRCTL
The lsnrctl utility is the best source for showing which services are registered with the
listener. For example:

$ lsnrctl services

The output will show details such as:

Service names (and associated instance names) registered with •	
the listener

Whether service was registered dynamically (status of •	 READY) or
statically (status of UNKNOWN)

Host name and port the listener is listening on•	

You can also display helpful status information regarding the listener as follows:

$ lsnrctl status

The STATUS option includes much of the same information the SERVICES option
contains. In addition, the status displays how long the listener has been running as well
as parameter and logging files.

Data dictionary views
There are also several data dictionary views available for looking at service information.
The two primary views are V$SERVICES and DBA_SERVICES. These views display much
of the same information, such as services that have been registered dynamically or that
have been created and started via DBMS_SERVICES. The V$SERVICES view shows only
services that have ever been active. The DBA_SERVICES shows all services that have ever
been created regardless of whether they have ever been active.

You can view the service associated with a remote connection by querying the
SERVICE_NAME column of the V$SESSION view. This is helpful for determining
connections to the database and the corresponding services being used for the
connections.

Other views such as V$SERVICEMETRIC and V$SERVICEMETRIC_HISTORY
display resource usage for services. These views are useful for determining the usage and
performance metrics for sessions using a particular service.

TNSPING
Oracle provides the tnsping utility to help troubleshoot Oracle Net connectivity issues
between a client and a remote database. For example, if you want to verify the existence
of a listener on a remote server you can do so as follows from the operating system
command line:

$ tnsping <host>:<port>/<service_name>

Chapter 6 ■ OraCle Net primer

159

To further this example, suppose I have a remote client that wants to verify if there’s
a listener running remotely on the shrek server. To verify the listener is up and receiving
incoming requests I tnsping the shrek server on port 1529 via the TRG service:

$ tnsping shrek:1529/TRG

If successful, you’ll see output similar to this:

Attempting to contact (DESCRIPTION=(CONNECT_DATA=(SERVICE_NAME=TRG))
(ADDRESS=(PROTOCOL=TCP)
(HOST=shrek)(PORT=1529)))
OK (40 msec)

What’s confusing is that the prior output only means that the listener is up and
receiving requests; it doesn’t necessarily indicate that there actually is a service (TRG in
this example) running on the remote host. For example, look at what happens when I try
to connect to the remote service:

$ sqlplus system/foo@shrek:1529/TRG

This appears in the output:

ORA-12514: TNS:listener does not currently know of service requested in
connect descriptor

In this situation you should verify which services are registered with the remote
listener. Logging on to the remote box, run the following code:

$ lsnrctl services

The output verifies the listener doesn’t have any services registered:

The listener supports no services
The command completed successfully

In this scenario ensure that the listener has registered the service that you’re
attempting to remotely contact. You can do this by following the instructions laid out in
previous sections that show how to either dynamically or statically register services with
the listener.

Listener
The listener is the process that resides on the database server and listens for remote
clients attempting to connect to the database. When a remote client attempts to connect
to a database it specifies the host name, port, and service associated with the database
that it wants to connect to. The listener is configured to listen on one or more ports for
services that have been registered with the listener either dynamically or statically.

Chapter 6 ■ OraCle Net primer

160

Starting a Listener
The lsnrctl utility allows you start and stop the listener. The START option will start the
listener process:

$ lsnrctl start

If nothing has been configured in the listener.ora file, you’ll see:

Connecting to (ADDRESS=(PROTOCOL=tcp)(HOST=shrek)(PORT=1521))
The listener supports no services
The command completed successfully

By default the listener will listen for incoming connections on port 1521.
Additionally, the default name of the listener is LISTENER. You can check the status of the
listener with the STATUS option:

$ lsnrctl status

Here’s a portion of the output:

STATUS of the LISTENER

Alias LISTENER
Version TNSLSNR for Solaris: Version 12.1.0.2.0 -

Production
Start Date 25-JAN-2015 18:04:16
Uptime 0 days 0 hr. 4 min. 58 sec
Trace Level off
Security ON: Local OS Authentication
SNMP OFF
Listener Parameter File /orahome/app/oracle/product/12.1.0.2/db_1/network/

admin/listener.ora
Listener Log File /orahome/app/oracle/diag/tnslsnr/shrek/listener/

alert/log.xml
Listening Endpoints Summary...
 (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=shrek)(PORT=1521)))
...

The listener running by itself with no services registered is of little use. Services
must be registered with the listener before the database will accept remote connections.
If the listener is listening on port 1521 then by default the LREG process periodically
checks to see if there are any databases running a box and whether there are any services
associated with the database. The LREG process performs dynamic service registration.

Chapter 6 ■ OraCle Net primer

161

Service registration makes the listener aware of details about the database running on the
box, such as the following:

Instance name•	

Services running within the instance•	

Service handlers (dedicated or multiple dispatchers)•	

Dispatcher information•	

If the listener has been configured to listen on a port other than 1521, then you
can still have LREG perform dynamic registration by setting the LOCAL_LISTENER
initialization parameter to contain details regarding the listener, such as the host and the
port it is listening on.

Modifying the Behavior of the Listener
The most common ways that you’ll use to modify the behavior of the listener are setting
the listener to listen on a non-default port and naming the listener.

Setting the port
Using the default port of 1521 is almost never recommended. This port number is well
known to be the default and is the first port that a hacker will attempt using to remotely
access an Oracle database. To set the port to a different value, first stop the listener if it is
running:

$ lsnrctl stop

To configure the port number, navigate to the ORACLE_HOME/network/admin
directory and add an entry in the listener.ora file:

LISTENER =
 (DESCRIPTION_LIST=
 (DESCRIPTION=
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = shrek)(PORT = 1529))
)
)
)

Chapter 6 ■ OraCle Net primer

162

These lines of code instruct the listener to listen on the port of 1529 on the host
of shrek. You can instruct a single listener to listen on multiple ports by adding more
addresses to the address list. For example:

LISTENER =
 (DESCRIPTION_LIST=
 (DESCRIPTION=
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = shrek)(PORT = 1529))
 (ADDRESS = (PROTOCOL = TCP)(HOST = shrek)(PORT = 1530))
)
)
)

Naming the listener
By default when you start the listener process without configuring anything, the default
name that Oracle assigns to the listener is LISTENER. You can verify the name of a listener
that is currently running via the operating system utility ps. For example:

$ ps -ef | grep tns | grep -v grep

In the output the name appears as the text LISTENER:

oracle 12320 1 0 09:50 ? 00:00:00 /u01/app/oracle/product/
12.1.0.2/db_1/bin/tnslsnr
LISTENER -inherit

Tip ■ if you’re in a Windows environment you can check to see whether there’s a listener
Windows service (don’t confuse a Windows service with an Oracle database service) running
by right clicking on the task manager bar, starting the task manager, and then viewing services.
You can view from the Windows services manager if there’s an Oracle listener running.

You can also verify the name of the listener by viewing the output of the lsnrctl utility
executed with the STATUS option. For example:

$ lsnrctl status

In the output the alias name appears as LISTENER:

STATUS of the LISTENER

Alias LISTENER

Chapter 6 ■ OraCle Net primer

163

If you require more than one listener running on a host then it’s common to start
different listeners with different names listening on different ports. The following lines of
code are placed in the listener.ora file and give the listener the name of DGLIST:

DGLIST =
 (DESCRIPTION_LIST=
 (DESCRIPTION=
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = shrek)(PORT = 1531))
)
)
)

To start this listener you need to specify its name (if not using the default name)
when executing the lsnrctl utility. For instance:

$ lsnrctl start dglist

If you want to statically register services with this named listener then you must add
an additional section to the listener.ora file, as follows:

SID_LIST_DGLIST =
 (SID_LIST =
 (SID_DESC =
 (GLOBAL_DBNAME = DG1) # service name
 (ORACLE_HOME = /u01/app/oracle/product/12.1.0.2/db_1)
 (SID_NAME = TRG) # instance name
)
)

You can only have one listener listening on the same port on the same host.

Getting help
To view help information for the listener, execute the lsnrctl utility with the help option:

$ lsnrctl help

Here’s a partial listing of the output:

The following operations are available
An asterisk (*) denotes a modifier or extended command:

start stop status services
version reload save_config trace
spawn quit exit set*
show*

Chapter 6 ■ OraCle Net primer

164

Now if you want to view more information about a particular command, you can run
the lsnrctl utility and name the option you need help with:

$ lsnrctl help start

Summary
This chapter provides you with the basic information you will need to successfully work
with simple single instance non-RAC Oracle Net environments. This knowledge lays
the foundation for understanding and implementing Oracle Net. With this information
you’ll be able to more effectively implement and troubleshoot Oracle Net configurations.
Elementary concepts such as defining terms, creating and registering a service with the
listener, dynamic and static registration, and listener usage were covered.

This chapter was included in this book because in many duplication scenarios
you’ll be required to use Oracle Net to connect to the target database, auxiliary database,
and/or a recovery catalog. You should now be able to quickly configure and successfully
use Oracle Net for your basic duplication requirements.

A���������
Active duplication, 7

compression, 104–106
different directory structures and

database names
auxiliary (destination) server, 93
DUPLICATE command, 93, 95
NOFILENAMECHECK, 94
SHUTDOWN command, 95
SPFILE clause, 91
text-based init.ora file, 92

encryption, 106
features, 86
image copies, 102–104
image copy format, 85
noarchivelog mode, 95–98
Oracle Net configuration

listener setting up, 87–88
password file setting up, 88–89
requirement, 86

same directory structure and
database name, 89–91

same-host replication, 98
alert.log, 102
DUPLICATE command, 101
init.ora file, 99
NOFILENAMECHECK

clause, 102
ORACLE_SID variable, 100
password file creation, 100
text-based init.ora file, 101
vi/notepad, 100

unused block compression, 86

Auxiliary (destination) database, 7, 42
Auxiliary (destination) server, 7

B���������
Backup-based duplication, 7. See also

RMAN backup
Backup set format, 7
Bash shell script, 76

C���������
CATALOG command, 22
Channels, 7
Cold backup

advantages of, 18
cloning with, 14
initDUP.ora file, 16
Linux/UNIX scp command, 15
ORACLE_SID variable, 17
SET keyword, 17
text-based init.ora file, 16
usage, 14

Compression, 104–106
Container database, 132

CDB database, 131
enable_pluggable_database

parameter, 131
initialization parameter file, 129
SYSDBA privilege, 130
text-based initialization file, 130

CONVERT DATAFILE command, 47–50
CONVERT TABLESPACE command, 43–47
CROSSCHECK command, 22

Index

165

■ index

166

D���������
Database identifier (DBID), 5
Data Pump

advantages, 33
CREATE DATABASE LINK script, 35
definition, 33
exp/imp utilities, 34
network link, 34
transportable tablespace

definition, 36
Linux/UNIX scp command, 38
REPDATA and REPIDX, 37
RMAN replication. RMAN

replication
self-contained rules, 37

E���������
Encryption, 106

F, G���������
FROM ACTIVE DATABASE clause, 126

H���������
HRPDB pluggable database, 133

I, J, K���������
Image copy format, 7
IMMEDIATE option, 96

L���������
LIST BACKUP command, 110
Listener, 139

definition, 159
help option, 163
lsnrctl utility, 160
operating system utility ps, 162
port set up, 161

LOCAL_LISTENER parameter, 88

M���������
Manual duplication techniques, 13

cold backup
advantages of, 18
cloning with, 14

initDUP.ora file, 16
Linux/UNIX scp command, 15
ORACLE_SID variable, 17
SET keyword, 17
text-based init.ora file, 16
usage, 14

database renaming
manual, 29–31
NID utility, 31–33

Data Pump (see Data Pump)
external tables

ACCESS PARAMETERS clause, 54
csv files, 50
inv.dmp file, 51
INV_DW, 52
Linux/UNIX scp command, 52
PARALLEL clause, 53
unload and load data, 50

RMAN backup
CATALOG command, 22
creation, 19
CROSSCHECK command, 22
definition, 18
destination server directories, 20
init.ora file, 22
initTRG.ora file, 21
newname.sql script, 24
ORACLE_SID and ORACLE_

HOME, 20
RECOVER DATABASE command, 26
renlog.sql file, 27
REPORT SCHEMA command, 25
RESTORE command, 23
SET NEWNAME command, 23

N���������
NETWORK_LINK parameter, 35

O���������
Oracle Net

definition, 139
dynamic registration, 140
easy connection method, 140
listener, 139

definition, 159
help option, 163
lsnrctl utility, 160
operating system utility ps, 162
port set up, 161

■ index

167

listener.ora, 140
local naming method, 141
LREG, 140
lsnrctl executable, 140
remote client, 140
service, 139
service registration, 140 (see also

Service registration)
services default behavior

components, 143
DBA_SERVICES view, 142
DB_NAME initialization

parameter, 143
DB_UNIQUE_NAME initialization

parameter, 145–146
LREG background process, 144
remote client connection

method, 144
shrek server, 144
single-instance Oracle database

creation, 141
SYS$BACKGROUND, 142
SYS$USERS, 142

static registration, 140
tnsnames.ora, 141

P, Q���������
PARALLEL clause, 53
Parallelism

configuration, 113–115
definition, 113
SECTION SIZE clause, 115

Partial database duplication
excluding tablespaces, 110–112
including tablespaces, 112–113

Pluggable databases
excluding, 133
including, 132–133

PMON process, 140

R���������
RAC databases

Non-RAC/Non-ASM to
RAC/ASM, 134–136

RAC/ASM to Non-RAC/Non-ASM,
136–138

Recovery catalog, 7
Recovery manager (RMAN), 1
REPORT SCHEMA command, 25

RESTORE command, 23
Restore optimization, 78
Restore point, 82
RMAN backup

Bash shell script, 76
nomount mode, 77
NOOPEN clause, 79
OPEN RESTRICTED

clause, 79
redo logs, 80
RESETLOGS clause, 79
restore optimization, 78
restore point, 82
targetless duplication, 55 (see also

Targetless duplication)
troubleshooting techniques

BACKUP command, 60
CHECKSYNTAX clause, 56
logging, 60
monitoring progress, 58
script command, 61
tee command, 61
V$RMAN_OUTPUT view, 62

RMAN DUPLICATE command, 1
advantages

cross-platform replication, 6
ease of use, 5
performance and security, 5

business requirements, 2
definition of, 6–7
environment setup, 10
process sequence, 8–9
replicating methods, 2–4

RMAN replication
cross-platform replication, 43
different operating systems

CONVERT DATAFILE
command, 47–50

CONVERT TABLESPACE
command, 43–47

same operating system, 40–42

S���������
Service registration, 140

data dictionary views, 158
DBMS_SERVICE, 155–156
lsnrctl utility, 158
SERVICE_NAMES parameter, 146

HRS service, 148
listener.ora file, 148

■ index

168

LOCAL_LISTENER to contain host
and port information, 149–150

LOCAL_LISTENER to tnsnames.
ora, 150–151

LREG background process, 148
V$SERVICES, 147

statically
and local naming connection, 154
GLOBAL_DBNAME, 152
listener.ora file, 151–152
tnsnames.ora file, 153
vs. dynamic registration, 154–155

tnsping utility, 158–159
using multiple services, 155

SET NEWNAME command, 23, 74
SHUTDOWN command, 95
SKIP TABLESPACE clause, 110
Standby database, 7

active target, 117
archive log mode, 119
Data Guard recovery

process, 124–125
DUPLCIATE command, 123
in force logging mode, 118
initTRG.ora, 122
Linux/UNIX scp command, 118
listener.ora file, 120–121
primary database name, 118

redo log files, 118
tnsnames.ora file, 119–120
UNKNOWN status, 121
USING CURRENT LOGFILE

clause, 124
definition, 116
overview of, 116
RMAN backup, 125–128

System change number (SCN), 82

T, U, V, W, X, Y, Z���������
Tablespace destination, 42
Targetless duplication, 7, 62

duplicate database, 65
same name and directory, 63
SPFILE clause, 68–75

Target (source) database, 6
Target (source) server, 6
Troubleshooting

BACKUP command, 60
CHECKSYNTAX clause, 56
logging, 60
monitoring progress

OS approach, 58
SQL approach, 59

script command, 61
tee command, 61
V$RMAN_OUTPUT view, 62

Service registration (cont.)

Oracle RMAN
Database Duplication

Darl Kuhn

Oracle RMAN Database Duplication

Copyright © 2015 by Darl Kuhn

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of
the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1113-7

ISBN-13 (electronic): 978-1-4842-1112-0

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Jonathan Gennick
Technical Reviewers: Bill Padfield and Fuad Arshad
Editorial Board: Steve Anglin, Mark Beckner, Gary Cornell, Louise Corrigan,

Jim DeWolf, Jonathan Gennick, Robert Hutchinson, Michelle Lowman,
James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick,
Ben Renow-Clarke, Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Jill Balzano
Copy Editor: April Rondeau
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code/.

http:\\orders-ny@springer-sbm.com
www.springeronline.com
http:\\rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

To the readers.
Keep contributing and sharing your knowledge.

vii

Contents

About the Author ��xi

About the Technical Reviewers ��xiii

Acknowledgments ���xv

Introduction ���xvii

Chapter 1: Introduction ■ ��1

Use Cases for Duplicating ���2

Methods for Replicating ��2

RMAN Duplicate Advantages ���4

Ease of Use �� 5

Performance and Security ��� 5

Flexible Replication ��� 6

RMAN Duplication Overview ��6
Definition of Terms ��� 6

RMAN Duplication Process �� 8

Example Setup Environment ���10

Summary ���11

Chapter 2: Manual Duplication Techniques ■ ����������������������������������13

Cloning from Cold Backup ���13

Copying from an RMAN Backup ��18

Renaming a Database ���29
Manual ��� 29

NID ��� 31

viii

■ Contents

Replicating with Data Pump Across a Network Link ����������������������������� 33

Replicating with Data Pump Transportable Tablespaces ����������������������� 36

RMAN Replication Using Transportable Tablespaces����������������������������� 40
Same Operating System ��� 40

Cross-Platform Replication ��� 43

Different Operating System (Convert Tablespace) �� 43

Different Operating System (Convert DataFile) ��� 47

Moving Data with External Tables ��� 50
Enabling Parallelism ��� 53

Enabling Compression �� 54

Summary ��� 54

Chapter 3: Backup-Based Duplication ■ �� 55

Basic Troubleshooting ��� 56
Checking Syntax ��� 56

Monitoring Progress ��� 57

Capturing RMAN Output �� 60

Targetless Duplication ��� 62
Directory Structure and Database Name Remain Identical ������������������������������������ 62

Directory Structure Identical and Database Name Different ���������������������������������� 65

Directory Structures and Database Names Different, Using SPFILE Clause ����������� 68

Directory Structures and Database Names Different, Not Using SPFILE ���������������� 71

Shell Scripting the Duplication Process�� 76

Duplicating and Stopping Recovery at a Specific Time �� 77

Restarting Duplication �� 78

Restricting Access after Duplication ��� 78

Scenarios Requiring Connections to Target ��� 80
UNTIL Sequence ��� 80

UNTIL Restore Point �� 82

Summary ��� 84

ix

■ Contents

Chapter 4: Active Duplication ■ ��� 85

Oracle Net Configuration ��� 86

Setting Up the Listener ��� 87

Setting Up the Password File �� 88

Same Directory Structure and Database Name ������������������������������������ 89

Different Directory Structure and Database Name
Using SPFILE Clause �� 91

Replicating from a Noarchivelog Mode Target �������������������������������������� 95

Same-Host Replication �� 98

Image Copies ��� 102

Compression ��� 104

Encryption ��� 106

Summary ��� 107

Chapter 5: Advanced Topics ■ ��� 109

Partial Database Duplication ��� 109

Excluding Tablespaces�� 110

Including Tablespaces �� 112

Parallelism��� 113

Configuring Parallelism �� 113

Using SECTION SIZE �� 115

Creating Standby Databases ��� 116

Creating Standby from Active Target �� 117

Creating Standby from RMAN Backup �� 125

Container and Pluggable Databases ��� 128

Duplicating a Container Database �� 129

Duplicating Pluggable Databases ��� 132

x

■ Contents

RAC Databases �� 134

Non-RAC/Non-ASM to RAC/ASM ��� 134

RAC/ASM to Non-RAC/Non-ASM ��� 136

Summary ��� 138

Chapter 6: Oracle Net Primer ■ �� 139

Oracle Net�� 139

Services Default Behavior ��� 141

Creating and Registering Services with the Listener �������������������������� 146

Setting SERVICE_NAMES �� 146

Statically Registering Services ��� 151

Dynamic Registration versus Static Registration ��� 154

Why Use Multiple Services? ��� 155

Using DBMS_SERVICE �� 155

Displaying Service Information ��� 157

Listener ��� 159

Starting a Listener �� 160

Modifying the Behavior of the Listener ��� 161

Summary ��� 164

Index �� 165

xi

About the Author

Darl Kuhn I’m a DBA/developer working for Oracle.
I teach Oracle classes at Regis University in Denver,
Colorado, and am also an active member of the
Rocky Mountain Oracle Users Group. I enjoy sharing
knowledge, and that has led to several book projects
over the years.

xiii

About the Technical
Reviewers

Bill Padfield is an Oracle Certified Professional,
working for a large telecommunications company in
Denver, Colorado, as a senior database administrator.
Bill helps administer and manage a large data
warehouse environment consisting of more than
100 databases. Bill has been an Oracle Database
administrator for more than 16 years and has been in
the IT industry since 1985. Bill also teaches graduate
database courses at Regis University and currently
resides in Aurora, Colorado, with his wife, Oyuna, and
son, Evan.

Fuad Arshad is a senior database architect who has
worked with Oracle Database technologies for more
than 16 years. He has experience in all aspects of
Oracle Database, from management to tuning, and
he is an Oracle Certified Expert. He frequently blogs
about Oracle at http://www.fuadarshad.com. Fuad
participates in online forums and social media. He
is an active Twitter user, and you can find him there
at http://www.twitter.com/fuadar. Fuad has
presented at conferences, such as Collaborate and
Oracle OpenWorld, on topics ranging from Oracle Real
Application Clusters to Oracle Database Appliance.
Fuad currently works for Oracle Corporation in its
North American Sales organization. He is husband to
Saba and father to Areej and Ammaar, with whom he
tries to spend all of his non-Oracle-related time.

http://www.fuadarshad.com
http://www.twitter.com/fuadar

xv

Acknowledgments

Thanks to Jonathan Gennick, Jill Balzano, and the entire Apress staff; it takes a good
(coordinated) team to produce a quality book.

Also thanks to many developers and DBAs that I’ve learned from over the years,
including Dave Jennings, Scott Schulze, Bob Suehrstedt, Venkatesh Ranganathan,
Valerie Eipper, Mike Tanaka, Simon Ip, Nitin Mittal, Mohan Shanmugavelu, Ric Ambridge,
Kamal Chamakura, Dallas Powell, Krishna (KP) Tallapaneni, Laurie Bourgeois,
Todd Sherman, Radha Ponnapalli, Mohan Koneru, Kevin O’Grady, Peter Schow,
Sujit Pattnaik, Roger Murphy, Barb Sannwald, Pete Mullineaux, Janet Bacon, Shawn
Heisdorffer, Mehran Sowdaey, Patrick David, Carson Vowles, Aaron Isom, Tim Gorman,
Bill Wiley, Liz Brill, John Biernacki, Joe Stella, Mike Eason, and Jim Stark.

www.ioug.org/join

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: Introduction
	Use Cases for Duplicating
	Methods for Replicating
	RMAN Duplicate Advantages
	Ease of Use
	Performance and Security
	Flexible Replication

	RMAN Duplication Overview
	Definition of Terms
	RMAN Duplication Process

	Example Setup Environment
	Summary

	Chapter 2: Manual Duplication Techniques
	Cloning from Cold Backup
	Copying from an RMAN Backup
	Renaming a Database
	Manual
	NID

	Replicating with Data Pump Across a Network Link
	Replicating with Data Pump Transportable Tablespaces
	RMAN Replication Using Transportable Tablespaces
	Same Operating System
	Cross-Platform Replication
	Different Operating System (Convert Tablespace)
	Different Operating System (Convert DataFile)

	Moving Data with External Tables
	Enabling Parallelism
	Enabling Compression

	Summary

	Chapter 3: Backup-Based Duplication
	Basic Troubleshooting
	Checking Syntax
	From the Command Line
	From a Script

	Monitoring Progress
	Operating System Approach
	SQL Approach

	Capturing RMAN Output
	RMAN Logging
	Script Command
	Tee Command
	RMAN Command Output View

	Targetless Duplication
	Directory Structure and Database Name Remain Identical
	Directory Structure Identical and Database Name Different
	Directory Structures and Database Names Different, Using SPFILE Clause
	Directory Structures and Database Names Different, Not Using SPFILE
	Transforming Directory Names via Initialization File
	Transforming Directory Names using SET NEWNAME

	Shell Scripting the Duplication Process
	Duplicating and Stopping Recovery at a Specific Time
	Restarting Duplication
	Restricting Access after Duplication

	Scenarios Requiring Connections to Target
	UNTIL Sequence
	UNTIL Restore Point

	Summary

	Chapter 4: Active Duplication
	Oracle Net Configuration
	Setting Up the Listener
	Setting Up the Password File

	Same Directory Structure and Database Name
	Different Directory Structure and Database Name Using SPFILE Clause
	Replicating from a Noarchivelog Mode Target
	Same-Host Replication
	Image Copies
	Compression
	Encryption
	Summary

	Chapter 5: Advanced Topics
	Partial Database Duplication
	Excluding Tablespaces
	Including Tablespaces

	Parallelism
	Configuring Parallelism
	Using SECTION SIZE

	Creating Standby Databases
	Creating Standby from Active Target
	Creating Standby from RMAN Backup

	Container and Pluggable Databases
	Duplicating a Container Database
	Duplicating Pluggable Databases
	Including Pluggable Databases
	Excluding Pluggable Databases

	RAC Databases
	Non-RAC/Non-ASM to RAC/ASM
	RAC/ASM to Non-RAC/Non-ASM

	Summary

	Chapter 6: Oracle Net Primer
	Oracle Net
	Services Default Behavior
	Creating and Registering Services with the Listener
	Setting SERVICE_NAMES
	Setting the LOCAL_LISTENER to contain host and port information
	Setting LOCAL_LISTENER to point to an entry in tnsnames.ora

	Statically Registering Services
	Dynamic Registration versus Static Registration
	Why Use Multiple Services?
	Using DBMS_SERVICE
	Adding a service
	Removing a service

	Displaying Service Information
	LSNRCTL
	Data dictionary views
	TNSPING

	Listener
	Starting a Listener
	Modifying the Behavior of the Listener
	Setting the port
	Naming the listener
	Getting help

	Summary

	Index

