
N

Intel® 64 and IA-32 Architectures
Optimization Reference Manual

Order Number: 248966-014
 November 2006

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANT-
ED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED
FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Developers must not rely on the absence or characteristics of any features or instructions marked “re-
served” or “undefined.” Improper use of reserved or undefined features or instructions may cause unpre-
dictable behavior or failure in developer's software code when running on an Intel processor. Intel reserves
these features or instructions for future definition and shall have no responsibility whatsoever for conflicts
or incompatibilities arising from their unauthorized use.

The Intel® 64 architecture processors may contain design defects or errors known as errata. Current char-
acterized errata are available on request.

Hyper-Threading Technology requires a computer system with an Intel® processor supporting Hyper-
Threading Technology and an HT Technology enabled chipset, BIOS and operating system. Performance will
vary depending on the specific hardware and software you use. For more information, see http://www.in-
tel.com/technology/hyperthread/index.htm; including details on which processors support HT Technology.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual
machine monitor (VMM) and for some uses, certain platform software enabled for it. Functionality, perfor-
mance or other benefits will vary depending on hardware and software configurations. Intel® Virtualization
Technology-enabled BIOS and VMM applications are currently in development.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, oper-
ating system, device drivers and applications enabled for Intel® 64 architecture. Processors will not operate
(including 32-bit operation) without an Intel® 64 architecture-enabled BIOS. Performance will vary de-
pending on your hardware and software configurations. Consult with your system vendor for more infor-
mation.

Intel, Pentium, Intel Centrino, Intel Centrino Duo, Intel Xeon, Intel NetBurst, Intel Core Solo, Intel Core
Duo, Intel Core 2 Duo, Intel Core 2 Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, and VTune
are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 5937
Denver, CO 80217-9808

or call 1-800-548-4725
or visit Intel’s website at http://www.intel.com

Copyright © 1997-2006 Intel Corporation

CONTENTS
PAGE
CHAPTER 1
INTRODUCTION
1.1 TUNING YOUR APPLICATION. 1-1
1.2 ABOUT THIS MANUAL . 1-2
1.3 RELATED INFORMATION. 1-3

CHAPTER 2
INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.1 INTEL® CORE™ MICROARCHITECTURE. 2-2
2.1.1 Intel® Core™ Microarchitecture Pipeline Overview . 2-3
2.1.2 Front End. 2-4
2.1.2.1 Branch Prediction Unit . 2-6
2.1.2.2 Instruction Fetch Unit . 2-6
2.1.2.3 Instruction Queue (IQ) . 2-7
2.1.2.4 Instruction Decode . 2-8
2.1.2.5 Stack Pointer Tracker . 2-8
2.1.2.6 Micro-fusion . 2-9
2.1.3 Execution Core . 2-9
2.1.3.1 Issue Ports and Execution Units . 2-10
2.1.4 Intel® Advanced Memory Access . 2-13
2.1.4.1 Loads and Stores . 2-14
2.1.4.2 Data Prefetch to L1 caches. 2-14
2.1.4.3 Data Prefetch Logic . 2-15
2.1.4.4 Store Forwarding . 2-16
2.1.4.5 Memory Disambiguation . 2-16
2.1.5 Intel® Advanced Smart Cache . 2-17
2.1.5.1 Loads . 2-18
2.1.5.2 Stores. 2-19
2.2 INTEL NETBURST® MICROARCHITECTURE . 2-19
2.2.1 Design Goals . 2-20
2.2.2 Pipeline . 2-20
2.2.2.1 Front End. 2-22
2.2.2.2 Out-of-order Core . 2-22
2.2.2.3 Retirement . 2-23
2.2.3 Front End Pipeline Detail . 2-23
2.2.3.1 Prefetching. 2-23
2.2.3.2 Decoder . 2-24
2.2.3.3 Execution Trace Cache . 2-24
2.2.3.4 Branch Prediction . 2-24
2.2.4 Execution Core Detail . 2-25
2.2.4.1 Instruction Latency and Throughput . 2-26
2.2.4.2 Execution Units and Issue Ports . 2-26
2.2.4.3 Caches . 2-28
2.2.4.4 Data Prefetch . 2-29
2.2.4.5 Loads and Stores . 2-31
2.2.4.6 Store Forwarding . 2-32
2.3 INTEL® PENTIUM® M PROCESSOR MICROARCHITECTURE . 2-32
iii

CONTENTS

PAGE
2.3.1 Front End. 2-33
2.3.2 Data Prefetching. 2-34
2.3.3 Out-of-Order Core. 2-35
2.3.4 In-Order Retirement. 2-35
2.4 MICROARCHITECTURE OF INTEL® CORE™ SOLO AND INTEL® CORE™ DUO

PROCESSORS . 2-36
2.4.1 Front End. 2-36
2.4.2 Data Prefetching. 2-37
2.5 INTEL® HYPER-THREADING TECHNOLOGY . 2-37
2.5.1 Processor Resources and HT Technology. 2-38
2.5.1.1 Replicated Resources . 2-39
2.5.1.2 Partitioned Resources. 2-39
2.5.1.3 Shared Resources. 2-39
2.5.2 Microarchitecture Pipeline and HT Technology. 2-40
2.5.3 Front End Pipeline . 2-40
2.5.4 Execution Core . 2-40
2.5.5 Retirement . 2-41
2.6 MULTICORE PROCESSORS . 2-41
2.6.1 Microarchitecture Pipeline and MultiCore Processors . 2-43
2.6.2 Shared Cache in Intel® Core™ Duo Processors . 2-43
2.6.2.1 Load and Store Operations . 2-43
2.7 INTEL®

64 ARCHITECTURE . 2-45

2.8 SIMD TECHNOLOGY . 2-45
2.8.1 Summary of SIMD Technologies. 2-48
2.8.1.1 MMX™ Technology . 2-48
2.8.1.2 Streaming SIMD Extensions. 2-48
2.8.1.3 Streaming SIMD Extensions 2. 2-48
2.8.1.4 Streaming SIMD Extensions 3. 2-49
2.8.1.5 Supplemental Streaming SIMD Extensions 3 . 2-49

CHAPTER 3
GENERAL OPTIMIZATION GUIDELINES
3.1 PERFORMANCE TOOLS . 3-1
3.1.1 Intel® C++ and Fortran Compilers . 3-1
3.1.2 General Compiler Recommendations . 3-2
3.1.3 VTune™ Performance Analyzer . 3-2
3.2 PROCESSOR PERSPECTIVES . 3-3
3.2.1 CPUID Dispatch Strategy and Compatible Code Strategy . 3-4
3.2.2 Transparent Cache-Parameter Strategy . 3-5
3.2.3 Threading Strategy and Hardware Multithreading Support . 3-5
3.3 CODING RULES, SUGGESTIONS AND TUNING HINTS . 3-5
3.4 OPTIMIZING THE FRONT END . 3-6
3.4.1 Branch Prediction Optimization . 3-6
3.4.1.1 Eliminating Branches . 3-7
3.4.1.2 Spin-Wait and Idle Loops . 3-9
3.4.1.3 Static Prediction . 3-9
3.4.1.4 Inlining, Calls and Returns . 3-11
3.4.1.5 Code Alignment . 3-12
3.4.1.6 Branch Type Selection . 3-13
3.4.1.7 Loop Unrolling . 3-15
3.4.1.8 Compiler Support for Branch Prediction . 3-16
iv

CHAPTER 2
INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

This chapter gives an overview of features relevant to software optimization for
current generations of Intel 64 and IA-32 processors (processors based on the Intel
Core microarchitecture, Intel NetBurst microarchitecture; including Intel Core Solo,
Intel Core Duo, and Intel Pentium M processors). These features are:

• Microarchitectures that enable executing instructions with high throughput at
high clock rates, a high speed cache hierarchy and high speed system bus

• Multicore architecture available in Intel Core 2 Duo, Intel Core Duo, Intel
Pentium D processors, Pentium processor Extreme Edition1, and Dual-core Intel
Xeon processors

• Hyper-Threading Technology2 (HT Technology) support

• Intel 64 architecture on Intel 64 processors

• SIMD instruction extensions: MMX technology, Streaming SIMD Extensions
(SSE), Streaming SIMD Extensions 2 (SSE2), Streaming SIMD Extensions 3
(SSE3), and Supplemental Streaming SIMD Extensions 3 (SSSE3)

The Intel Pentium M processor introduced a power-efficient microarchitecture with
balanced performance. Dual-core Intel Xeon processor LV, Intel Core Solo and Intel
Core Duo processors incorporate enhanced Pentium M processor microarchitecture.
The Intel Core 2 processor family, Intel Xeon processor 3000 series and 5100 series
are based on the high-performance and power-efficient Intel Core microarchitecture.
Intel Pentium 4 processors, Intel Xeon processors, Pentium D processors, and
Pentium processor Extreme Editions are based on Intel NetBurst microarchitecture.

1. Dual-core platform requires an Intel Xeon processor 3000 series, Intel Xeon processor 5100
series, Intel Core 2 Duo, Intel Core 2 Extreme, Dual-core Intel Xeon processors, Intel Core Duo,
Pentium D processor or Pentium processor Extreme Edition, with appropriate chipset, BIOS, and
operating system. Performance varies depending on the hardware and software used.

2. Hyper-Threading Technology requires a computer system with an Intel processor supporting HT
Technology and an HT Technology enabled chipset, BIOS and operating system. Performance
varies depending on the hardware and software used.
2-1

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.1 INTEL® CORE™ MICROARCHITECTURE
Intel Core microarchitecture introduces the following features that enable high
performance and power-efficient performance for single-threaded as well as multi-
threaded workloads:

• Intel® Wide Dynamic Execution enables each processor core to fetch,
dispatch, execute with high bandwidths and retire up to four instructions per
cycle. Features include:

— Fourteen-stage efficient pipeline

— Three arithmetic logical units

— Four decoders to decode up to five instruction per cycle

— Macro-fusion and micro-fusion to improve front-end throughput

— Peak issue rate of dispatching up to six μops per cycle

— Peak retirement bandwidth of up to four μops per cycle

— Advanced branch prediction

— Stack pointer tracker to improve efficiency of executing function/procedure
entries and exits

• Intel® Advanced Smart Cache delivers higher bandwidth from the second
level cache to the core, optimal performance and flexibility for single-threaded
and multi-threaded applications. Features include:

— Optimized for multicore and single-threaded execution environments

— 256 bit internal data path to improve bandwidth from L2 to first-level data
cache

— Unified, shared second-level cache of 4 Mbyte, 16 way (or 2 MByte, 8 way)

• Intel® Smart Memory Access prefetches data from memory in response to
data access patterns and reduces cache-miss exposure of out-of-order
execution. Features include:

— Hardware prefetchers to reduce effective latency of second-level cache
misses

— Hardware prefetchers to reduce effective latency of first-level data cache
misses

— Memory disambiguation to improve efficiency of speculative execution
execution engine
2-2

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
• Intel® Advanced Digital Media Boost improves most 128-bit SIMD instruc-
tions with single-cycle throughput and floating-point operations. Features
include:

— Single-cycle throughput of most 128-bit SIMD instructions

— Up to eight floating-point operations per cycle

— Three issue ports available to dispatching SIMD instructions for execution

2.1.1 Intel® Core™ Microarchitecture Pipeline Overview
The pipeline of the Intel Core microarchitecture contains:

• An in-order issue front end that fetches instruction streams from memory, with
four instruction decoders to supply decoded instruction (μops) to the out-of-
order execution core.

• An out-of-order superscalar execution core that can issue up to six μops per cycle
(see Table 2-2) and reorder μops to execute as soon as sources are ready and
execution resources are available.

• An in-order retirement unit that ensures the results of execution of μops are
processed and architectural states are updated according to the original program
order.

Intel Core 2 Extreme, Intel Core 2 Duo processors and Intel Xeon processor 5100
series implement two processor cores based on the Intel Core microarchitecture, the
functionality of the subsystems in each core are depicted in Figure 2-1.
2-3

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.1.2 Front End
The front ends needs to supply decoded instructions (μops) and sustain the stream
to a six-issue wide out-of-order engine. The components of the front end, their func-

Figure 2-1. Intel Core Microarchitecture Pipeline Functionality

Decode

ALU
Branch

MMX/SSE/FP
Move

Load

Shared L2 Cache
Up to 10.7 GB/s

FSB

Retirement Unit
(Re-Order Buffer)

L1D Cache and DTLB

Instruction Fetch and PreDecode

Instruction Queue

Rename/Alloc

ALU
FAdd

MMX/SSE

ALU
FMul

MMX/SSE

Scheduler

Micro-
code
ROM

Store

OM19808
2-4

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
tions, and the performance challenges to microarchitectural design are described in
Table 2-1.

Table 2-1. Components of the Front End
Component Functions Performance Challenges

Branch Prediction
Unit (BPU)

• Helps the instruction fetch unit
fetch the most likely instruction
to be executed by predicting
the various branch types:
conditional, indirect, direct, call,
and return. Uses dedicated
hardware for each type.

• Enables speculative
execution.

• Improves speculative
execution efficiency by
reducing the amount of
code in the “non-architected
path”1 to be fetched into
the pipeline.

NOTES:
1. Code paths that the processor thought it should execute but then found out it should go in

another path and therefore reverted from its initial intention.

Instruction Fetch
Unit

• Prefetches instructions that are
likely to be executed

• Caches frequently-used
instructions

• Predecodes and buffers
instructions, maintaining a
constant bandwidth despite
irregularities in the instruction
stream

• Variable length instruction
format causes unevenness
(bubbles) in decode
bandwidth.

• Taken branches and
misaligned targets causes
disruptions in the overall
bandwidth delivered by the
fetch unit.

Instruction Queue
and Decode Unit

• Decodes up to four instructions,
or up to five with macro-fusion

• Stack pointer tracker algorithm
for efficient procedure entry
and exit

• Implements the Macro-Fusion
feature, providing higher
performance and efficiency

• The Instruction Queue is also
used as a loop cache, enabling
some loops to be executed with
both higher bandwidth and
lower power

• Varying amounts of work
per instruction requires
expansion into variable
numbers of μops.

• Prefix adds a dimension of
decoding complexity.

• Length Changing Prefix
(LCP) can cause front end
bubbles.
2-5

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.1.2.1 Branch Prediction Unit
Branch prediction enables the processor to begin executing instructions long before
the branch outcome is decided. All branches utilize the BPU for prediction. The BPU
contains the following features:

• 16-entry Return Stack Buffer (RSB). It enables the BPU to accurately predict RET
instructions.

• Front end queuing of BPU lookups. The BPU makes branch predictions for 32
bytes at a time, twice the width of the fetch engine. This enables taken branches
to be predicted with no penalty.

Even though this BPU mechanism generally eliminates the penalty for taken
branches, software should still regard taken branches as consuming more
resources than do not-taken branches.

The BPU makes the following types of predictions:

• Direct Calls and Jumps. Targets are read as a target array, without regarding the
taken or not-taken prediction.

• Indirect Calls and Jumps. These may either be predicted as having a monotonic
target or as having targets that vary in accordance with recent program behavior.

• Conditional branches. Predicts the branch target and whether or not the branch
will be taken.

For information about optimizing software for the BPU, see Section 3.4, “Optimizing
the Front End”.

2.1.2.2 Instruction Fetch Unit
The instruction fetch unit comprises the instruction translation lookaside buffer
(ITLB), an instruction prefetcher, the instruction cache and the predecode logic of the
instruction queue (IQ).

Instruction Cache and ITLB

An instruction fetch is a 16-byte aligned lookup through the ITLB into the instruction
cache and instruction prefetch buffers. A hit in the instruction cache causes 16 bytes
to be delivered to the instruction predecoder. Typical programs average slightly less
than 4 bytes per instruction, depending on the code being executed. Since most
instructions can be decoded by all decoders, an entire fetch can often be consumed
by the decoders in one cycle.

A misaligned target reduces the number of instruction bytes by the amount of offset
into the 16 byte fetch quantity. A taken branch reduces the number of instruction
bytes delivered to the decoders since the bytes after the taken branch are not
decoded. Branches are taken approximately every 10 instructions in typical integer
code, which translates into a “partial” instruction fetch every 3 or 4 cycles.
2-6

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
Due to stalls in the rest of the machine, front end starvation does not usually cause
performance degradation. For extremely fast code with larger instructions (such as
SSE2 integer media kernels), it may be beneficial to use targeted alignment to
prevent instruction starvation.

Instruction PreDecode

The predecode unit accepts the sixteen bytes from the instruction cache or prefetch
buffers and carries out the following tasks:

• Determine the length of the instructions.

• Decode all prefixes associated with instructions.

• Mark various properties of instructions for the decoders (for example, “is
branch.”).

The predecode unit can write up to six instructions per cycle into the instruction
queue. If a fetch contains more than six instructions, the predecoder continues to
decode up to six instructions per cycle until all instructions in the fetch are written to
the instruction queue. Subsequent fetches can only enter predecoding after the
current fetch completes.

For a fetch of seven instructions, the predecoder decodes the first six in one cycle,
and then only one in the next cycle. This process would support decoding 3.5 instruc-
tions per cycle. Even if the instruction per cycle (IPC) rate is not fully optimized, it is
higher than the performance seen in most applications. In general, software usually
does not have to take any extra measures to prevent instruction starvation.

The following instruction prefixes cause problems during length decoding. These
prefixes can dynamically change the length of instructions and are known as length
changing prefixes (LCPs):

• Operand Size Override (66H) preceding an instruction with a word immediate
data

• Address Size Override (67H) preceding an instruction with a mod R/M in real,
16-bit protected or 32-bit protected modes

When the predecoder encounters an LCP in the fetch line, it must use a slower length
decoding algorithm. With the slower length decoding algorithm, the predecoder
decodes the fetch in 6 cycles, instead of the usual 1 cycle.

Normal queuing within the processor pipeline usually cannot hide LCP penalties.

The REX prefix (4xh) in the Intel 64 architecture instruction set can change the size
of two classes of instruction: MOV offset and MOV immediate. Nevertheless, it does
not cause an LCP penalty and hence is not considered an LCP.

2.1.2.3 Instruction Queue (IQ)
The instruction queue is 18 instructions deep. It sits between the instruction prede-
code unit and the instruction decoders. It sends up to five instructions per cycle, and
2-7

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
supports one macro-fusion per cycle. It also serves as a loop cache for loops smaller
than 18 instructions. The loop cache operates as described below.

A Loop Stream Detector (LSD) resides in the BPU. The LSD attempts to detect loops
which are candidates for streaming from the instruction queue (IQ). When such a
loop is detected, the instruction bytes are locked down and the loop is allowed to
stream from the IQ until a misprediction ends it. When the loop plays back from the
IQ, it provides higher bandwidth at reduced power (since much of the rest of the
front end pipeline is shut off).

The LSD provides the following benefits:

• No loss of bandwidth due to taken branches

• No loss of bandwidth due to misaligned instructions

• No LCP penalties, as the pre-decode stage has already been passed

• Reduced front end power consumption, because the instruction cache, BPU and
predecode unit can be idle

Software should use the loop cache functionality opportunistically. Loop unrolling and
other code optimizations may make the loop too big to fit into the LSD. For high
performance code, loop unrolling is generally preferable for performance even when
it overflows the loop cache capability.

2.1.2.4 Instruction Decode
The Intel Core microarchitecture contains four instruction decoders. The first,
Decoder 0, can decode Intel 64 and IA-32 instructions up to 4 μops in size. Three
other decoders handles single-μop instructions. The microsequencer can provide up
to 3 μops per cycle, and helps decode instructions larger than 4 μops.

All decoders support the common cases of single μop flows, including: micro-fusion,
stack pointer tracking and macro-fusion. Thus, the three simple decoders are not
limited to decoding single-μop instructions. Packing instructions into a 4-1-1-1
template is not necessary and not recommended.

Macro-fusion merges two instructions into a single μop. Intel Core microarchitecture
is capable of one macro-fusion per cycle in 32-bit operation (including compatibility
sub-mode of the Intel 64 architecture), but not in 64-bit mode because code that
uses longer instructions (length in bytes) more often is less likely to take advantage
of hardware support for macro-fusion.

2.1.2.5 Stack Pointer Tracker
The Intel 64 and IA-32 architectures have several commonly used instructions for
parameter passing and procedure entry and exit: PUSH, POP, CALL, LEAVE and RET.
These instructions implicitly update the stack pointer register (RSP), maintaining a
combined control and parameter stack without software intervention. These instruc-
tions are typically implemented by several μops in previous microarchitectures.
2-8

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
The Stack Pointer Tracker moves all these implicit RSP updates to logic contained in
the decoders themselves. The feature provides the following benefits:

• Improves decode bandwidth, as PUSH, POP and RET are single μop instructions
in Intel Core microarchitecture.

• Conserves execution bandwidth as the RSP updates do not compete for execution
resources.

• Improves parallelism in the out of order execution engine as the implicit serial
dependencies between μops are removed.

• Improves power efficiency as the RSP updates are carried out on small, dedicated
hardware.

2.1.2.6 Micro-fusion
Micro-fusion fuses multiple μops from the same instruction into a single complex
μop. The complex μop is dispatched in the out-of-order execution core. Micro-fusion
provides the following performance advantages:

• Improves instruction bandwidth delivered from decode to retirement.

• Reduces power consumption as the complex μop represents more work in a
smaller format (in terms of bit density), reducing overall “bit-toggling” in the
machine for a given amount of work and virtually increasing the amount of
storage in the out-of-order execution engine.

Many instructions provide register flavors and memory flavors. The flavor involving a
memory operand will decodes into a longer flow of μops than the register version.
Micro-fusion enables software to use memory to register operations to express the
actual program behavior without worrying about a loss of decode bandwidth.

2.1.3 Execution Core
The execution core of the Intel Core microarchitecture is superscalar and can process
instructions out of order. When a dependency chain causes the machine to wait for a
resource (such as a second-level data cache line), the execution core executes other
instructions. This increases the overall rate of instructions executed per cycle (IPC).

The execution core contains the following three major components:

• Renamer — Moves μops from the front end to the execution core. Architectural
registers are renamed to a larger set of microarchitectural registers. Renaming
eliminates false dependencies known as read-after-read and write-after-read
hazards.

• Reorder buffer (ROB) — Holds μops in various stages of completion, buffers
completed μops, updates the architectural state in order, and manages ordering
of exceptions. The ROB has 96 entries to handle instructions in flight.
2-9

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
• Reservation station (RS) — Queues μops until all source operands are ready,
schedules and dispatches ready μops to the available execution units. The RS has
32 entries.

The initial stages of the out of order core move the μops from the front end to the
ROB and RS. In this process, the out of order core carries out the following steps:

• Allocates resources to μops (for example: these resources could be load or store
buffers).

• Binds the μop to an appropriate issue port.

• Renames sources and destinations of μops, enabling out of order execution.

• Provides data to the μop when the data is either an immediate value or a register
value that has already been calculated.

The following list describes various types of common operations and how the core
executes them efficiently:

• Micro-ops with single-cycle latency — Most μops with single-cycle latency
can be executed by multiple execution units, enabling multiple streams of
dependent operations to be executed quickly.

• Frequently-used μops with longer latency — These μops have pipelined
execution units so that multiple μops of these types may be executing in different
parts of the pipeline simultaneously.

• Operations with data-dependent latencies — Some operations, such as
division, have data dependent latencies. Integer division parses the operands to
perform the calculation only on significant portions of the operands, thereby
speeding up common cases of dividing by small numbers.

• Floating point operations with fixed latency for operands that meet
certain restrictions — Operands that do not fit these restrictions are
considered exceptional cases and are executed with higher latency and reduced
throughput. The lower-throughput cases do not affect latency and throughput for
more common cases.

• Memory operands with variable latency, even in the case of an L1 cache
hit — Loads that are not known to be safe from forwarding may wait until a store-
address is resolved before executing. The memory order buffer (MOB) accepts
and processes all memory operations. See Section 2.1.5 for more information
about the MOB.

2.1.3.1 Issue Ports and Execution Units
The scheduler can dispatch up to six μops per cycle through the issue ports depicted
in Table 2-2. The table provides latency and throughput data of common integer and
floating-point (FP) operations for each issue port in cycles.
2-10

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
In each cycle, the RS can dispatch up to six μops. Each cycle, up to 4 results may be
written back to the RS and ROB, to be used as early as the next cycle by the RS. This

Table 2-2. Issue Ports of Intel Core Microarchitecture

Port
Executable
operations Latency

Through
put

Writeback
Port Comment

Port 0 Integer ALU

Integer SIMD ALU

Single-precision (SP)
FP MUL

Double-precision FP
MUL

FP MUL (X87)

FP/SIMD/SSE2 Move
and Logic

QW Shuffle

1

1

4

5

5

1

1

1

1

1

1

2

1

1

Writeback 0 Includes 64-bit mode
integer MUL.

Mixing operations of
different latencies that
use the same port can
result in writeback bus
conflicts; this can
reduce overall
throughput.

Port 1 Integer ALU

Integer SIMD MUL

FP ADD

FP/SIMD/SSE2 Move
and Logic

QW Shuffle

1

1

3

1

1

1

1

1

1

1

Writeback 1 Excludes 64-bit mode
integer MUL.

Mixing operations of
different latencies that
use the same port can
result in writeback bus
conflicts; this can
reduce overall
throughput.

Port 2 Integer loads

FP loads

3

4

1

1

Writeback 2

Port 3 Store address 3 1 None (flags) Prepares the store
forwarding and store
retirement logic with
the address of the data
being stored.

Port 4 Store data None Prepares the store
forwarding and store
retirement logic with
the data being stored.

Port 5 Integer ALU

Integer SIMD ALU

FP/SIMD/SSE2 Move
and Logic

Shuffle

1

1

1

1

1

1

1

1

Writeback 5 Excludes QW shuffles.
2-11

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
high execution bandwidth enables execution bursts to keep up with the functional
expansion of the micro-fused μops that are decoded and retired.

The execution core contains the following three execution stacks:

• SIMD integer

• regular integer

• x87/SIMD floating point

The execution core also contains connections to and from the memory cluster. See
Figure 2-2.

Notice that the two dark squares inside the execution block (in grey color) and
appear in the path connecting the integer and SIMD integer stacks to the floating
point stack. This delay shows up as an extra cycle called a bypass delay. Data from
the L1 cache has one extra cycle of latency to the floating point unit. The dark-
colored squares in Figure 2-2 represent the extra cycle of latency.

Figure 2-2. Execution Core of Intel Core Microarchitecture

Data Cache
Unit

dtlb
Memory ordering
store forwarding

0,1,5

SIMD
Integer

0,1,5

Integer

0,1,5

Floating
Point

Load 2

Store (address) 3

Store (data) 4

Integer/
SIMD
MUL

EXE
2-12

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.1.4 Intel® Advanced Memory Access
The Intel Core microarchitecture contains an instruction cache and a first-level data
cache in each core. The two cores share a 2 or 4-MByte L2 cache. All caches are
writeback and non-inclusive. Each core contains:

• L1 data cache, known as the data cache unit (DCU) — The DCU can handle
multiple outstanding cache misses and continue to service incoming stores and
loads. It supports maintaining cache coherency. The DCU has the following speci-
fications:

— 32-KBytes size

— 8-way set associative

— 64-bytes line size

• Data translation lookaside buffer (DTLB) — The DTLB in Intel Core microar-
chitecture implements two levels of hierarchy. Each level of the DTLB have
multiple entries and can support either 4-KByte pages or large pages. The entries
of the inner level (DTLB0) is used for loads. The entries in the outer level (DTLB1)
support store operations and loads that missed DTLB0. All entries are 4-way
associative. Here is a list of entries in each DTLB:

— DTLB1 for large pages: 32 entries

— DTLB1 for 4-KByte pages: 256 entries

— DTLB0 for large pages: 16 entries

— DTLB0 for 4-KByte pages: 16 entries

An DTLB0 miss and DTLB1 hit causes a penalty of 2 cycles. Software only pays
this penalty if the DTLB0 is used in some dispatch cases. The delays associated
with a miss to the DTLB1 and PMH are largely non-blocking due to the design of
Intel Smart Memory Access.

• Page miss handler (PMH)

• A memory ordering buffer (MOB) — Which:

— enables loads and stores to issue speculatively and out of order

— ensures retired loads and stores have the correct data upon retirement

— ensures loads and stores follow memory ordering rules of the Intel 64 and
IA-32 architectures.

The memory cluster of the Intel Core microarchitecture uses the following to speed
up memory operations:

• 128-bit load and store operations

• data prefetching to L1 caches

• data prefetch logic for prefetching to the L2 cache

• store forwarding

• memory disambiguation
2-13

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
• 8 fill buffer entries

• 20 store buffer entries

• out of order execution of memory operations

• pipelined read-for-ownership operation (RFO)

For information on optimizing software for the memory cluster, see Section 3.6,
“Optimizing Memory Accesses.”

2.1.4.1 Loads and Stores
The Intel Core microarchitecture can execute up to one 128-bit load and up to one
128-bit store per cycle, each to different memory locations. The microarchitecture
enables execution of memory operations out of order with respect to other instruc-
tions and with respect to other memory operations.

Loads can:

• issue before preceding stores when the load address and store address are
known not to conflict

• be carried out speculatively, before preceding branches are resolved

• take cache misses out of order and in an overlapped manner

• issue before preceding stores, speculating that the store is not going to be to a
conflicting address

Loads cannot:

• speculatively take any sort of fault or trap

• speculatively access the uncacheable memory type

Faulting or uncacheable loads are detected and wait until retirement, when they
update the programmer visible state. x87 and floating point SIMD loads add 1 addi-
tional clock latency.

Stores to memory are executed in two phases:

• Execution phase — Prepares the store buffers with address and data for store
forwarding. Consumes dispatch ports, which are ports 3 and 4.

• Completion phase — The store is retired to programmer-visible memory. It
may compete for cache banks with executing loads. Store retirement is
maintained as a background task by the memory order buffer, moving the data
from the store buffers to the L1 cache.

2.1.4.2 Data Prefetch to L1 caches
Intel Core microarchitecture provides two hardware prefetchers to speed up data
accessed by a program by prefetching to the L1 data cache:

• Data cache unit (DCU) prefetcher — This prefetcher, also known as the
streaming prefetcher, is triggered by an ascending access to very recently loaded
2-14

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
data. The processor assumes that this access is part of a streaming algorithm
and automatically fetches the next line.

• Instruction pointer (IP)- based strided prefetcher — This prefetcher keeps
track of individual load instructions. If a load instruction is detected to have a
regular stride, then a prefetch is sent to the next address which is the sum of the
current address and the stride. This prefetcher can prefetch forward or backward
and can detect strides of up to half of a 4KB-page, or 2 KBytes.

Data prefetching works on loads only when the following conditions are met:

• Load is from writeback memory type.

• Prefetch request is within the page boundary of 4 Kbytes.

• No fence or lock is in progress in the pipeline.

• Not many other load misses are in progress.

• The bus is not very busy.

• There is not a continuous stream of stores.

DCU Prefetching has the following effects:

• Improves performance if data in large structures is arranged sequentially in the
order used in the program.

• May cause slight performance degradation due to bandwidth issues if access
patterns are sparse instead of local.

• On rare occasions, if the algorithm's working set is tuned to occupy most of the
cache and unneeded prefetches evict lines required by the program, hardware
prefetcher may cause severe performance degradation due to cache capacity of
L1.

In contrast to hardware prefetchers relying on hardware to anticipate data traffic,
software prefetch instructions relies on the programmer to anticipate cache miss
traffic, software prefetch act as hints to bring a cache line of data into the desired
levels of the cache hierarchy. The software-controlled prefetch is intended for
prefetching data, but not for prefetching code.

2.1.4.3 Data Prefetch Logic
Data prefetch logic (DPL) prefetches data to the second-level (L2) cache based on
past request patterns of the DCU from the L2. The DPL maintains two independent
arrays to store addresses from the DCU: one for upstreams (12 entries) and one for
down streams (4 entries). The DPL tracks accesses to one 4K byte page in each
entry. If an accessed page is not in any of these arrays, then an array entry is allo-
cated.

The DPL monitors DCU reads for incremental sequences of requests, known as
streams. Once the DPL detects the second access of a stream, it prefetches the next
cache line. For example, when the DCU requests the cache lines A and A+1, the DPL
assumes the DCU will need cache line A+2 in the near future. If the DCU then reads
2-15

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
A+2, the DPL prefetches cache line A+3. The DPL works similarly for “downward”
loops.

The Intel Pentium M processor introduced DPL. The Intel Core microarchitecture
added the following features to DPL:

• The DPL can detect more complicated streams, such as when the stream skips
cache lines. DPL may issue 2 prefetch requests on every L2 lookup. The DPL in
the Intel Core microarchitecture can run up to 8 lines ahead from the load
request.

• DPL in the Intel Core microarchitecture adjusts dynamically to bus bandwidth and
the number of requests. DPL prefetches far ahead if the bus is not busy, and less
far ahead if the bus is busy.

• DPL adjusts to various applications and system configurations.

Entries for the two cores are handled separately.

2.1.4.4 Store Forwarding
If a load follows a store and reloads the data that the store writes to memory, the
Intel Core microarchitecture can forward the data directly from the store to the load.
This process, called store to load forwarding, saves cycles by enabling the load to
obtain the data directly from the store operation instead of through memory.

The following rules must be met for store to load forwarding to occur:

• The store must be the last store to that address prior to the load.

• The store must be equal or greater in size than the size of data being loaded.

• The load cannot cross a cache line boundary.

• The load cannot cross an 8-Byte boundary. 16-Byte loads are an exception to this
rule.

• The load must be aligned to the start of the store address, except for the
following exceptions:

— An aligned 64-bit store may forward either of its 32-bit halves

— An aligned 128-bit store may forward any of its 32-bit quarters

— An aligned 128-bit store may forward either of its 64-bit halves

Software can use the exceptions to the last rule to move complex structures without
losing the ability to forward the subfields.

2.1.4.5 Memory Disambiguation
A load instruction μop may depend on a preceding store. Many microarchitectures
block loads until all preceding store address are known.
2-16

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
The memory disambiguator predicts which loads will not depend on any previous
stores. When the disambiguator predicts that a load does not have such a depen-
dency, the load takes its data from the L1 data cache.

Eventually, the prediction is verified. If an actual conflict is detected, the load and all
succeeding instructions are re-executed.

2.1.5 Intel® Advanced Smart Cache
The Intel Core microarchitecture optimized a number of features for two processor
cores on a single die. The two cores share a second-level cache and a bus interface
unit, collectively known as Intel Advanced Smart Cache. This section describes the
components of Intel Advanced Smart Cache. Figure 2-3 illustrates the architecture of
the Intel Advanced Smart Cache.

Table 2-3 details the parameters of caches in the Intel Core microarchitecture. For
information on enumerating the cache hierarchy identification using the deterministic
cache parameter leaf of CPUID instruction, see the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2A.

Figure 2-3. Intel Advanced Smart Cache Architecture

Branch
Prediction

Retirement Execution
Fetch/
Decode

L1 Data
Cache

L1 Instr.
Cache

Core 1
Branch
Prediction

Retirement Execution
Fetch/
Decode

L1 Data
Cache

L1 Instr.
Cache

Core 0

L2 Cache

Bus Interface Unit

System Bus
2-17

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.1.5.1 Loads
When an instruction reads data from a memory location that has write-back (WB)
type, the processor looks for the cache line that contains this data in the caches and
memory in the following order:

1. DCU of the initiating core

2. DCU of the other core and second-level cache

3. System memory

The cache line is taken from the DCU of the other core only if it is modified, ignoring
the cache line availability or state in the L2 cache.

Table 2-4 shows the characteristics of fetching the first four bytes of different locali-
ties from the memory cluster. The latency column provides an estimate of access
latency. However, the actual latency can vary depending on the load of cache,
memory components, and their parameters.

Table 2-3. Cache Parameters of Processors based on Intel Core Microarchitecture

Level Capacity
Associativit
y (ways)

Line Size
(bytes)

Access
Latency
(clocks)

Access
Throughput
(clocks)

Write Update
Policy

First Level 32 KB 8 64 3 1 Writeback

Instruction 32 KB 8 N/A N/A N/A N/A

Second Level
(Shared L2)

2, 4 MB 8 or 16 64 141

NOTES:
1. Software-visible latency will vary depending on access patterns and other factors.

2 Writeback

Table 2-4. Characteristics of Load and Store Operations
in Intel Core Microarchitecture

Load Store

Data Locality Latency Throughput Latency Throughput

DCU 3 1 2 1

DCU of the other
core in modified
state

14 + 5.5 bus
cycles

14 + 5.5 bus
cycles

14 + 5.5 bus
cycles

2nd-level cache 14 3 14 3

Memory 14 + 5.5 bus
cycles + memory

Depends on bus
read protocol

14 + 5.5 bus
cycles + memory

Depends on bus
write protocol
2-18

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
Sometimes a modified cache line has to be evicted to make space for a new cache
line. The modified cache line is evicted in parallel to bringing the new data and does
not require additional latency. However, when data is written back to memory, the
eviction uses cache bandwidth and possibly bus bandwidth as well. Therefore, when
multiple cache misses require the eviction of modified lines within a short time, there
is an overall degradation in cache response time.

2.1.5.2 Stores
When an instruction writes data to a memory location that has WB memory type, the
processor first ensures that the line is in Exclusive or Modified state in its own DCU.
The processor looks for the cache line in the following locations, in the specified
order:

1. DCU of initiating core

2. DCU of the other core and L2 cache

3. System memory

The cache line is taken from the DCU of the other core only if it is modified, ignoring
the cache line availability or state in the L2 cache. After reading for ownership is
completed, the data is written to the first-level data cache and the line is marked as
modified.

Reading for ownership and storing the data happens after instruction retirement and
follows the order of retirement. Therefore, the store latency does not effect the store
instruction itself. However, several sequential stores may have cumulative latency
that can affect performance. Table 2-4 presents store latencies depending on the
initial cache line location.

2.2 INTEL NETBURST® MICROARCHITECTURE
The Pentium 4 processor, Pentium 4 processor Extreme Edition supporting Hyper-
Threading Technology, Pentium D processor, and Pentium processor Extreme Edition
implement the Intel NetBurst microarchitecture. Intel Xeon processors that imple-
ment Intel NetBurst microarchitecture can be identified using CPUID (family
encoding 0FH).

This section describes the features of the Intel NetBurst microarchitecture and its
operation common to the above processors. It provides the technical background
required to understand optimization recommendations and the coding rules
discussed in the rest of this manual. For implementation details, including instruction
latencies, see Appendix C, “Instruction Latency and Throughput.”

Intel NetBurst microarchitecture is designed to achieve high performance for integer
and floating-point computations at high clock rates. It supports the following
features:

• hyper-pipelined technology that enables high clock rates
2-19

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
• high-performance, quad-pumped bus interface to the Intel NetBurst microarchi-
tecture system bus

• rapid execution engine to reduce the latency of basic integer instructions

• out-of-order speculative execution to enable parallelism

• superscalar issue to enable parallelism

• hardware register renaming to avoid register name space limitations

• cache line sizes of 64 bytes

• hardware prefetch

2.2.1 Design Goals
The design goals of Intel NetBurst microarchitecture are:

• To execute legacy IA-32 applications and applications based on single-
instruction, multiple-data (SIMD) technology at high throughput

• To operate at high clock rates and to scale to higher performance and clock rates
in the future

Design advances of the Intel NetBurst microarchitecture include:

• A deeply pipelined design that allows for high clock rates (with different parts of
the chip running at different clock rates).

• A pipeline that optimizes for the common case of frequently executed instruc-
tions; the most frequently-executed instructions in common circumstances (such
as a cache hit) are decoded efficiently and executed with short latencies.

• Employment of techniques to hide stall penalties; Among these are parallel
execution, buffering, and speculation. The microarchitecture executes instruc-
tions dynamically and out-of-order, so the time it takes to execute each individual
instruction is not always deterministic.

Chapter 3, “General Optimization Guidelines,” lists optimizations to use and situa-
tions to avoid. The chapter also gives a sense of relative priority. Because most opti-
mizations are implementation dependent, the chapter does not quantify expected
benefits and penalties.

The following sections provide more information about key features of the Intel
NetBurst microarchitecture.

2.2.2 Pipeline
The pipeline of the Intel NetBurst microarchitecture contains:

• an in-order issue front end

• an out-of-order superscalar execution core

• an in-order retirement unit
2-20

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
The front end supplies instructions in program order to the out-of-order core. It
fetches and decodes instructions. The decoded instructions are translated into µops.
The front end’s primary job is to feed a continuous stream of µops to the execution
core in original program order.

The out-of-order core aggressively reorders µops so that µops whose inputs are
ready (and have execution resources available) can execute as soon as possible. The
core can issue multiple µops per cycle.

The retirement section ensures that the results of execution are processed according
to original program order and that the proper architectural states are updated.

Figure 2-4 illustrates a diagram of the major functional blocks associated with the
Intel NetBurst microarchitecture pipeline. The following subsections provide an over-
view for each.

Figure 2-4. The Intel NetBurst Microarchitecture
2-21

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.2.2.1 Front End
The front end of the Intel NetBurst microarchitecture consists of two parts:

• fetch/decode unit

• execution trace cache

It performs the following functions:

• prefetches instructions that are likely to be executed

• fetches required instructions that have not been prefetched

• decodes instructions into µops

• generates microcode for complex instructions and special-purpose code

• delivers decoded instructions from the execution trace cache

• predicts branches using advanced algorithms

The front end is designed to address two problems that are sources of delay:

• time required to decode instructions fetched from the target

• wasted decode bandwidth due to branches or a branch target in the middle of a
cache line

Instructions are fetched and decoded by a translation engine. The translation engine
then builds decoded instructions into µop sequences called traces. Next, traces are
then stored in the execution trace cache.

The execution trace cache stores µops in the path of program execution flow, where
the results of branches in the code are integrated into the same cache line. This
increases the instruction flow from the cache and makes better use of the overall
cache storage space since the cache no longer stores instructions that are branched
over and never executed.

The trace cache can deliver up to 3 µops per clock to the core.

The execution trace cache and the translation engine have cooperating branch
prediction hardware. Branch targets are predicted based on their linear address
using branch prediction logic and fetched as soon as possible. Branch targets are
fetched from the execution trace cache if they are cached, otherwise they are fetched
from the memory hierarchy. The translation engine’s branch prediction information is
used to form traces along the most likely paths.

2.2.2.2 Out-of-order Core
The core’s ability to execute instructions out of order is a key factor in enabling paral-
lelism. This feature enables the processor to reorder instructions so that if one µop is
delayed while waiting for data or a contended resource, other µops that appear later
in the program order may proceed. This implies that when one portion of the pipeline
experiences a delay, the delay may be covered by other operations executing in
parallel or by the execution of µops queued up in a buffer.
2-22

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
The core is designed to facilitate parallel execution. It can dispatch up to six µops per
cycle through the issue ports (Figure 2-5). Note that six µops per cycle exceeds the
trace cache and retirement µop bandwidth. The higher bandwidth in the core allows
for peak bursts of greater than three µops and to achieve higher issue rates by
allowing greater flexibility in issuing µops to different execution ports.

Most core execution units can start executing a new µop every cycle, so several
instructions can be in flight at one time in each pipeline. A number of arithmetic
logical unit (ALU) instructions can start at two per cycle; many floating-point instruc-
tions start one every two cycles. Finally, µops can begin execution out of program
order, as soon as their data inputs are ready and resources are available.

2.2.2.3 Retirement
The retirement section receives the results of the executed µops from the execution
core and processes the results so that the architectural state is updated according to
the original program order. For semantically correct execution, the results of Intel 64
and IA-32 instructions must be committed in original program order before they are
retired. Exceptions may be raised as instructions are retired. For this reason, excep-
tions cannot occur speculatively.

When a µop completes and writes its result to the destination, it is retired. Up to
three µops may be retired per cycle. The reorder buffer (ROB) is the unit in the
processor which buffers completed µops, updates the architectural state and
manages the ordering of exceptions.

The retirement section also keeps track of branches and sends updated branch target
information to the branch target buffer (BTB). This updates branch history.
Figure 2-9 illustrates the paths that are most frequently executing inside the Intel
NetBurst microarchitecture: an execution loop that interacts with multilevel cache
hierarchy and the system bus.

The following sections describe in more detail the operation of the front end and the
execution core. This information provides the background for using the optimization
techniques and instruction latency data documented in this manual.

2.2.3 Front End Pipeline Detail
The following information about the front end operation is be useful for tuning soft-
ware with respect to prefetching, branch prediction, and execution trace cache oper-
ations.

2.2.3.1 Prefetching
The Intel NetBurst microarchitecture supports three prefetching mechanisms:

• a hardware instruction fetcher that automatically prefetches instructions
2-23

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
• a hardware mechanism that automatically fetches data and instructions into the
unified second-level cache

• a mechanism fetches data only and includes two distinct components: (1) a
hardware mechanism to fetch the adjacent cache line within a 128-byte sector
that contains the data needed due to a cache line miss, this is also referred to as
adjacent cache line prefetch (2) a software controlled mechanism that fetches
data into the caches using the prefetch instructions.

The hardware instruction fetcher reads instructions along the path predicted by the
branch target buffer (BTB) into instruction streaming buffers. Data is read in 32-byte
chunks starting at the target address. The second and third mechanisms are
described later.

2.2.3.2 Decoder
The front end of the Intel NetBurst microarchitecture has a single decoder that
decodes instructions at the maximum rate of one instruction per clock. Some
complex instructions must enlist the help of the microcode ROM. The decoder opera-
tion is connected to the execution trace cache.

2.2.3.3 Execution Trace Cache
The execution trace cache (TC) is the primary instruction cache in the Intel NetBurst
microarchitecture. The TC stores decoded instructions (µops).

In the Pentium 4 processor implementation, TC can hold up to 12-Kbyte µops and
can deliver up to three µops per cycle. TC does not hold all of the µops that need to
be executed in the execution core. In some situations, the execution core may need
to execute a microcode flow instead of the µop traces that are stored in the trace
cache.

The Pentium 4 processor is optimized so that most frequently-executed instructions
come from the trace cache while only a few instructions involve the microcode ROM.

2.2.3.4 Branch Prediction
Branch prediction is important to the performance of a deeply pipelined processor. It
enables the processor to begin executing instructions long before the branch
outcome is certain. Branch delay is the penalty that is incurred in the absence of
correct prediction. For Pentium 4 and Intel Xeon processors, the branch delay for a
correctly predicted instruction can be as few as zero clock cycles. The branch delay
for a mispredicted branch can be many cycles, usually equivalent to the pipeline
depth.

Branch prediction in the Intel NetBurst microarchitecture predicts near branches
(conditional calls, unconditional calls, returns and indirect branches). It does not
predict far transfers (far calls, irets and software interrupts).
2-24

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
Mechanisms have been implemented to aid in predicting branches accurately and to
reduce the cost of taken branches. These include:

• ability to dynamically predict the direction and target of branches based on an
instruction’s linear address, using the branch target buffer (BTB)

• if no dynamic prediction is available or if it is invalid, the ability to statically
predict the outcome based on the offset of the target: a backward branch is
predicted to be taken, a forward branch is predicted to be not taken

• ability to predict return addresses using the 16-entry return address stack

• ability to build a trace of instructions across predicted taken branches to avoid
branch penalties

The Static Predictor. Once a branch instruction is decoded, the direction of the
branch (forward or backward) is known. If there was no valid entry in the BTB for the
branch, the static predictor makes a prediction based on the direction of the branch.
The static prediction mechanism predicts backward conditional branches (those with
negative displacement, such as loop-closing branches) as taken. Forward branches
are predicted not taken.

To take advantage of the forward-not-taken and backward-taken static predictions,
code should be arranged so that the likely target of the branch immediately follows
forward branches (see also Section 3.4.1, “Branch Prediction Optimization”).

Branch Target Buffer. Once branch history is available, the Pentium 4 processor
can predict the branch outcome even before the branch instruction is decoded. The
processor uses a branch history table and a branch target buffer (collectively called
the BTB) to predict the direction and target of branches based on an instruction’s
linear address. Once the branch is retired, the BTB is updated with the target
address.

Return Stack. Returns are always taken; but since a procedure may be invoked
from several call sites, a single predicted target does not suffice. The Pentium 4
processor has a Return Stack that can predict return addresses for a series of proce-
dure calls. This increases the benefit of unrolling loops containing function calls. It
also mitigates the need to put certain procedures inline since the return penalty
portion of the procedure call overhead is reduced.

Even if the direction and target address of the branch are correctly predicted, a taken
branch may reduce available parallelism in a typical processor (since the decode
bandwidth is wasted for instructions which immediately follow the branch and
precede the target, if the branch does not end the line and target does not begin the
line). The branch predictor allows a branch and its target to coexist in a single trace
cache line, maximizing instruction delivery from the front end.

2.2.4 Execution Core Detail
The execution core is designed to optimize overall performance by handling common
cases most efficiently. The hardware is designed to execute frequent operations in a
2-25

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
common context as fast as possible, at the expense of infrequent operations using
rare contexts.

Some parts of the core may speculate that a common condition holds to allow faster
execution. If it does not, the machine may stall. An example of this pertains to store-
to-load forwarding (see “Store Forwarding” in this chapter). If a load is predicted to
be dependent on a store, it gets its data from that store and tentatively proceeds. If
the load turned out not to depend on the store, the load is delayed until the real data
has been loaded from memory, then it proceeds.

2.2.4.1 Instruction Latency and Throughput
The superscalar out-of-order core contains hardware resources that can execute
multiple μops in parallel. The core’s ability to make use of available parallelism of
execution units can enhanced by software’s ability to:

• Select instructions that can be decoded in less than 4 μops and/or have short
latencies

• Order instructions to preserve available parallelism by minimizing long
dependence chains and covering long instruction latencies

• Order instructions so that their operands are ready and their corresponding issue
ports and execution units are free when they reach the scheduler

This subsection describes port restrictions, result latencies, and issue latencies (also
referred to as throughput). These concepts form the basis to assist software for
ordering instructions to increase parallelism. The order that μops are presented to
the core of the processor is further affected by the machine’s scheduling resources.

It is the execution core that reacts to an ever-changing machine state, reordering
μops for faster execution or delaying them because of dependence and resource
constraints. The ordering of instructions in software is more of a suggestion to the
hardware.

Appendix C, “Instruction Latency and Throughput,” lists some of the more-
commonly-used Intel 64 and IA-32 instructions with their latency, their issue
throughput, and associated execution units (where relevant). Some execution units
are not pipelined (meaning that µops cannot be dispatched in consecutive cycles and
the throughput is less than one per cycle). The number of µops associated with each
instruction provides a basis for selecting instructions to generate. All µops executed
out of the microcode ROM involve extra overhead.

2.2.4.2 Execution Units and Issue Ports
At each cycle, the core may dispatch µops to one or more of four issue ports. At the
microarchitecture level, store operations are further divided into two parts: store
data and store address operations. The four ports through which μops are dispatched
to execution units and to load and store operations are shown in Figure 2-5. Some
ports can dispatch two µops per clock. Those execution units are marked Double
Speed.
2-26

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
Port 0. In the first half of the cycle, port 0 can dispatch either one floating-point
move µop (a floating-point stack move, floating-point exchange or floating-point
store data) or one arithmetic logical unit (ALU) µop (arithmetic, logic, branch or store
data). In the second half of the cycle, it can dispatch one similar ALU µop.

Port 1. In the first half of the cycle, port 1 can dispatch either one floating-point
execution (all floating-point operations except moves, all SIMD operations) µop or
one normal-speed integer (multiply, shift and rotate) µop or one ALU (arithmetic)
µop. In the second half of the cycle, it can dispatch one similar ALU µop.

Port 2. This port supports the dispatch of one load operation per cycle.

Port 3. This port supports the dispatch of one store address operation per cycle.

The total issue bandwidth can range from zero to six µops per cycle. Each pipeline
contains several execution units. The µops are dispatched to the pipeline that corre-
sponds to the correct type of operation. For example, an integer arithmetic logic unit
and the floating-point execution units (adder, multiplier, and divider) can share a
pipeline.

Figure 2-5. Execution Units and Ports in Out-Of-Order Core

OM15151

ALU 0
Double
Speed

Port 0

ADD/SUB
Logic

Store Data
Branches

FP Move
FP Store Data

FXCH

ALU 1
Double
Speed

ADD/SUB Shift/Rotate

FP
Execute

FP_ADD
FP_MUL
FP_DIV

FP_MISC
MMX_SHFT
MMX_ALU

MMX_MISC

Port 1

Memory
Store

Memory
Load

All Loads
Prefetch

Port 2 Port 3

Store
Address

FP
Move

Integer
Operation

Normal
Speed

Note:
FP_ADD refers to x87 FP, and SIMD FP add and subtract operations
FP_MUL refers to x87 FP, and SIMD FP multiply operations
FP_DIV refers to x87 FP, and SIMD FP divide and square root operations
MMX_ALU refers to SIMD integer arithmetic and logic operations
MMX_SHFT handles Shift, Rotate, Shuffle, Pack and Unpack operations
MMX_MISC handles SIMD reciprocal and some integer operations
2-27

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.2.4.3 Caches
The Intel NetBurst microarchitecture supports up to three levels of on-chip cache. At
least two levels of on-chip cache are implemented in processors based on the Intel
NetBurst microarchitecture. The Intel Xeon processor MP and selected Pentium and
Intel Xeon processors may also contain a third-level cache.

The first level cache (nearest to the execution core) contains separate caches for
instructions and data. These include the first-level data cache and the trace cache
(an advanced first-level instruction cache). All other caches are shared between
instructions and data.

Levels in the cache hierarchy are not inclusive. The fact that a line is in level i does
not imply that it is also in level i+1. All caches use a pseudo-LRU (least recently used)
replacement algorithm.

Table 2-5 provides parameters for all cache levels for Pentium and Intel Xeon Proces-
sors with CPUID model encoding equals 0, 1, 2 or 3.

Table 2-5. Pentium 4 and Intel Xeon Processor Cache Parameters

Level (Model) Capacity
Associativity
(ways)

Line Size
(bytes)

Access
Latency,
Integer/
floating-point
(clocks)

Write Update
Policy

First (Model 0,
1, 2)

8 KB 4 64 2/9 write through

First (Model 3) 16 KB 8 64 4/12 write through

TC (All models) 12K µops 8 N/A N/A N/A

Second (Model
0, 1, 2)

256 KB or
512 KB1

NOTES:
1. Pentium 4 and Intel Xeon processors with CPUID model encoding value of 2 have a second level

cache of 512 KB.

8 642

2. Each read due to a cache miss fetches a sector, consisting of two adjacent cache lines; a write
operation is 64 bytes.

7/7 write back

Second (Model
3, 4)

 1 MB 8 642 18/18 write back

Second (Model
3, 4, 6)

2 MB 8 642 20/20 write back

Third (Model
0, 1, 2)

0, 512 KB,
1 MB or 2 MB

8 642 14/14 write back
2-28

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
On processors without a third level cache, the second-level cache miss initiates a
transaction across the system bus interface to the memory sub-system. On proces-
sors with a third level cache, the third-level cache miss initiates a transaction across
the system bus. A bus write transaction writes 64 bytes to cacheable memory, or
separate 8-byte chunks if the destination is not cacheable. A bus read transaction
from cacheable memory fetches two cache lines of data.

The system bus interface supports using a scalable bus clock and achieves an effec-
tive speed that quadruples the speed of the scalable bus clock. It takes on the order
of 12 processor cycles to get to the bus and back within the processor, and 6-12 bus
cycles to access memory if there is no bus congestion. Each bus cycle equals several
processor cycles. The ratio of processor clock speed to the scalable bus clock speed
is referred to as bus ratio. For example, one bus cycle for a 100 MHz bus is equal to
15 processor cycles on a 1.50 GHz processor. Since the speed of the bus is implemen-
tation-dependent, consult the specifications of a given system for further details.

2.2.4.4 Data Prefetch
The Pentium 4 processor and other processors based on the NetBurst microarchitec-
ture have two type of mechanisms for prefetching data: software prefetch instruc-
tions and hardware-based prefetch mechanisms.

Software controlled prefetch is enabled using the four prefetch instructions
(PREFETCHh) introduced with SSE. The software prefetch is not intended for
prefetching code. Using it can incur significant penalties on a multiprocessor system
if code is shared.

Software prefetch can provide benefits in selected situations. These situations
include when:

• the pattern of memory access operations in software allows the programmer to
hide memory latency

• a reasonable choice can be made about how many cache lines to fetch ahead of
the line being execute

• a choice can be made about the type of prefetch to use

SSE prefetch instructions have different behaviors, depending on cache levels
updated and the processor implementation. For instance, a processor may imple-
ment the non-temporal prefetch by returning data to the cache level closest to the
processor core. This approach has the following effect:

• minimizes disturbance of temporal data in other cache levels

• avoids the need to access off-chip caches, which can increase the realized
bandwidth compared to a normal load-miss, which returns data to all cache levels

Situations that are less likely to benefit from software prefetch are:

• For cases that are already bandwidth bound, prefetching tends to increase
bandwidth demands.
2-29

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
• Prefetching far ahead can cause eviction of cached data from the caches prior to
the data being used in execution.

• Not prefetching far enough can reduce the ability to overlap memory and
execution latencies.

Software prefetches are treated by the processor as a hint to initiate a request to
fetch data from the memory system, and consume resources in the processor and
the use of too many prefetches can limit their effectiveness. Examples of this include
prefetching data in a loop for a reference outside the loop and prefetching in a basic
block that is frequently executed, but which seldom precedes the reference for which
the prefetch is targeted.

See: Chapter 7, “Optimizing Cache Usage.”

Automatic hardware prefetch is a feature in the Pentium 4 processor. It brings
cache lines into the unified second-level cache based on prior reference patterns.

Software prefetching has the following characteristics:

• handles irregular access patterns, which do not trigger the hardware prefetcher

• handles prefetching of short arrays and avoids hardware prefetching start-up
delay before initiating the fetches

• must be added to new code; so it does not benefit existing applications

Hardware prefetching for Pentium 4 processor has the following characteristics:

• works with existing applications

• does not require extensive study of prefetch instructions

• requires regular access patterns

• avoids instruction and issue port bandwidth overhead

• has a start-up penalty before the hardware prefetcher triggers and begins
initiating fetches

The hardware prefetcher can handle multiple streams in either the forward or back-
ward directions. The start-up delay and fetch-ahead has a larger effect for short
arrays when hardware prefetching generates a request for data beyond the end of an
array (not actually utilized). The hardware penalty diminishes if it is amortized over
longer arrays.

Hardware prefetching is triggered after two successive cache misses in the last level
cache and requires these cache misses to satisfy a condition that the linear address
distance between these cache misses is within a threshold value. The threshold value
depends on the processor implementation (see Table 2-6). However, hardware
prefetching will not cross 4-KByte page boundaries. As a result, hardware
prefetching can be very effective when dealing with cache miss patterns that have
small strides and that are significantly less than half the threshold distance to trigger
hardware prefetching. On the other hand, hardware prefetching will not benefit
cache miss patterns that have frequent DTLB misses or have access strides that
cause successive cache misses that are spatially apart by more than the trigger
threshold distance.
2-30

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
Software can proactively control data access pattern to favor smaller access strides
(e.g., stride that is less than half of the trigger threshold distance) over larger access
strides (stride that is greater than the trigger threshold distance), this can achieve
additional benefit of improved temporal locality and reducing cache misses in the last
level cache significantly.

Software optimization of a data access pattern should emphasize tuning for hard-
ware prefetch first to favor greater proportions of smaller-stride data accesses in the
workload; before attempting to provide hints to the processor by employing software
prefetch instructions.

2.2.4.5 Loads and Stores
The Pentium 4 processor employs the following techniques to speed up the execution
of memory operations:

• speculative execution of loads

• reordering of loads with respect to loads and stores

• multiple outstanding misses

• buffering of writes

• forwarding of data from stores to dependent loads

Performance may be enhanced by not exceeding the memory issue bandwidth and
buffer resources provided by the processor. Up to one load and one store may be
issued for each cycle from a memory port reservation station. In order to be
dispatched to a reservation station, there must be a buffer entry available for each
memory operation. There are 48 load buffers and 24 store buffers3. These buffers
hold the µop and address information until the operation is completed, retired, and
deallocated.

The Pentium 4 processor is designed to enable the execution of memory operations
out of order with respect to other instructions and with respect to each other. Loads
can be carried out speculatively, that is, before all preceding branches are resolved.
However, speculative loads cannot cause page faults.

Reordering loads with respect to each other can prevent a load miss from stalling
later loads. Reordering loads with respect to other loads and stores to different
addresses can enable more parallelism, allowing the machine to execute operations
as soon as their inputs are ready. Writes to memory are always carried out in
program order to maintain program correctness.

A cache miss for a load does not prevent other loads from issuing and completing.
The Pentium 4 processor supports up to four (or eight for Pentium 4 processor with
CPUID signature corresponding to family 15, model 3) outstanding load misses that
can be serviced either by on-chip caches or by memory.

3. Pentium 4 processors with CPUID model encoding equal to 3 have more than 24 store buffers.
2-31

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
Store buffers improve performance by allowing the processor to continue executing
instructions without having to wait until a write to memory and/or cache is complete.
Writes are generally not on the critical path for dependence chains, so it is often
beneficial to delay writes for more efficient use of memory-access bus cycles.

2.2.4.6 Store Forwarding
Loads can be moved before stores that occurred earlier in the program if they are not
predicted to load from the same linear address. If they do read from the same linear
address, they have to wait for the store data to become available. However, with
store forwarding, they do not have to wait for the store to write to the memory hier-
archy and retire. The data from the store can be forwarded directly to the load, as
long as the following conditions are met:

• Sequence — Data to be forwarded to the load has been generated by a program-
matically-earlier store which has already executed.

• Size — Bytes loaded must be a subset of (including a proper subset, that is, the
same) bytes stored.

• Alignment — The store cannot wrap around a cache line boundary, and the
linear address of the load must be the same as that of the store.

2.3 INTEL® PENTIUM® M PROCESSOR
MICROARCHITECTURE

Like the Intel NetBurst microarchitecture, the pipeline of the Intel Pentium M
processor microarchitecture contains three sections:

• in-order issue front end

• out-of-order superscalar execution core

• in-order retirement unit

Intel Pentium M processor microarchitecture supports a high-speed system bus (up
to 533 MHz) with 64-byte line size. Most coding recommendations that apply to the
Intel NetBurst microarchitecture also apply to the Intel Pentium M processor.

The Intel Pentium M processor microarchitecture is designed for lower power
consumption. There are other specific areas of the Pentium M processor microarchi-
tecture that differ from the Intel NetBurst microarchitecture. They are described
next. A block diagram of the Intel Pentium M processor is shown in Figure 2-6.
2-32

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.3.1 Front End
The Intel Pentium M processor uses a pipeline depth that enables high performance
and low power consumption. It’s shorter than that of the Intel NetBurst microarchi-
tecture.

The Intel Pentium M processor front end consists of two parts:

• fetch/decode unit

• instruction cache

The fetch and decode unit includes a hardware instruction prefetcher and three
decoders that enable parallelism. It also provides a 32-KByte instruction cache that
stores un-decoded binary instructions.

The instruction prefetcher fetches instructions in a linear fashion from memory if the
target instructions are not already in the instruction cache. The prefetcher is
designed to fetch efficiently from an aligned 16-byte block. If the modulo 16
remainder of a branch target address is 14, only two useful instruction bytes are
fetched in the first cycle. The rest of the instruction bytes are fetched in subsequent
cycles.

The three decoders decode instructions and break them down into µops. In each
clock cycle, the first decoder is capable of decoding an instruction with four or fewer

Figure 2-6. The Intel Pentium M Processor Microarchitecture
2-33

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
µops. The remaining two decoders each decode a one µop instruction in each clock
cycle.

The front end can issue multiple µops per cycle, in original program order, to the out-
of-order core.

The Intel Pentium M processor incorporates sophisticated branch prediction hard-
ware to support the out-of-order core. The branch prediction hardware includes
dynamic prediction, and branch target buffers.

The Intel Pentium M processor has enhanced dynamic branch prediction hardware.
Branch target buffers (BTB) predict the direction and target of branches based on an
instruction’s address.

The Pentium M Processor includes two techniques to reduce the execution time of
certain operations:

• ESP folding — This eliminates the ESP manipulation μops in stack-related
instructions such as PUSH, POP, CALL and RET. It increases decode rename and
retirement throughput. ESP folding also increases execution bandwidth by
eliminating µops which would have required execution resources.

• Micro-ops (µops) fusion — Some of the most frequent pairs of µops derived
from the same instruction can be fused into a single µops. The following
categories of fused µops have been implemented in the Pentium M processor:

— “Store address” and “store data” μops are fused into a single “Store” μop.
This holds for all types of store operations, including integer, floating-point,
MMX technology, and Streaming SIMD Extensions (SSE and SSE2)
operations.

— A load μop in most cases can be fused with a successive execution μop.This
holds for integer, floating-point and MMX technology loads and for most kinds
of successive execution operations. Note that SSE Loads can not be fused.

2.3.2 Data Prefetching
The Intel Pentium M processor supports three prefetching mechanisms:

• The first mechanism is a hardware instruction fetcher and is described in the
previous section.

• The second mechanism automatically fetches data into the second-level cache.
The implementation of automatic hardware prefetching in Pentium M processor
family is basically similar to those described for NetBurst microarchitecture. The
trigger threshold distance for each relevant processor models is shown in
Table 2-6. The third mechanism is a software mechanism that fetches data into
the caches using the prefetch instructions.
2-34

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
Data is fetched 64 bytes at a time; the instruction and data translation lookaside
buffers support 128 entries. See Table 2-7 for processor cache parameters.

2.3.3 Out-of-Order Core
The processor core dynamically executes µops independent of program order. The
core is designed to facilitate parallel execution by employing many buffers, issue
ports, and parallel execution units.

The out-of-order core buffers µops in a Reservation Station (RS) until their operands
are ready and resources are available. Each cycle, the core may dispatch up to five
µops through the issue ports.

2.3.4 In-Order Retirement
The retirement unit in the Pentium M processor buffers completed µops is the reorder
buffer (ROB). The ROB updates the architectural state in order. Up to three µops may
be retired per cycle.

Table 2-6. Trigger Threshold and CPUID Signatures for Processor Families

Trigger Threshold Distance
(Bytes)

Extended
Model ID

Extended
Family ID Family ID Model ID

512 0 0 15 3, 4, 6

256 0 0 15 0, 1, 2

256 0 0 6 9, 13, 14

Table 2-7. Cache Parameters of Pentium M, Intel Core Solo,
and Intel Core Duo Processors

Level Capacity
Associativity
(ways)

Line Size
(bytes)

Access
Latency
(clocks)

Write Update
Policy

First 32 KByte 8 64 3 Writeback

Instruction 32 KByte 8 N/A N/A N/A

Second
(mode 9)

1 MByte 8 64 9 Writeback

Second
(model 13)

 2 MByte 8 64 10 Writeback

Second
(model 14)

 2 MByte 8 64 14 Writeback
2-35

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.4 MICROARCHITECTURE OF INTEL® CORE™ SOLO AND
INTEL® CORE™ DUO PROCESSORS

Intel Core Solo and Intel Core Duo processors incorporate an microarchitecture that
is similar to the Pentium M processor microarchitecture, but provides additional
enhancements for performance and power efficiency. Enhancements include:

• Intel Smart Cache — This second level cache is shared between two cores in an
Intel Core Duo processor to minimize bus traffic between two cores accessing a
single-copy of cached data. It allows an Intel Core Solo processor (or when one
of the two cores in an Intel Core Duo processor is idle) to access its full capacity.

• Stream SIMD Extensions 3 — These extensions are supported in Intel Core
Solo and Intel Core Duo processors.

• Decoder improvement — Improvement in decoder and μop fusion allows the
front end to see most instructions as single μop instructions. This increases the
throughput of the three decoders in the front end.

• Improved execution core — Throughput of SIMD instructions is improved and
the out-of-order engine is more robust in handling sequences of frequently-used
instructions. Enhanced internal buffering and prefetch mechanisms also improve
data bandwidth for execution.

• Power-optimized bus — The system bus is optimized for power efficiency;
increased bus speed supports 667 MHz.

• Data Prefetch — Intel Core Solo and Intel Core Duo processors implement
improved hardware prefetch mechanisms: one mechanism can look ahead and
prefetch data into L1 from L2. These processors also provide enhanced hardware
prefetchers similar to those of the Pentium M processor (see Table 2-6).

2.4.1 Front End
Execution of SIMD instructions on Intel Core Solo and Intel Core Duo processors are
improved over Pentium M processors by the following enhancements:

• Micro-op fusion — Scalar SIMD operations on register and memory have single
μop flows comparable to X87 flows. Many packed instructions are fused to reduce
its μop flow from four to two μops.

• Eliminating decoder restrictions — Intel Core Solo and Intel Core Duo
processors improve decoder throughput with micro-fusion and macro-fusion, so
that many more SSE and SSE2 instructions can be decoded without restriction.
On Pentium M processors, many single μop SSE and SSE2 instructions must be
decoded by the main decoder.

• Improved packed SIMD instruction decoding — On Intel Core Solo and Intel
Core Duo processors, decoding of most packed SSE instructions is done by all
three decoders. As a result the front end can process up to three packed SSE
instructions every cycle. There are some exceptions to the above; some
shuffle/unpack/shift operations are not fused and require the main decoder.
2-36

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.4.2 Data Prefetching
Intel Core Solo and Intel Core Duo processors provide hardware mechanisms to
prefetch data from memory to the second-level cache. There are two techniques:

1. One mechanism activates after the data access pattern experiences two cache-
reference misses within a trigger-distance threshold (see Table 2-6). This
mechanism is similar to that of the Pentium M processor, but can track 16 forward
data streams and 4 backward streams.

2. The second mechanism fetches an adjacent cache line of data after experiencing
a cache miss. This effectively simulates the prefetching capabilities of 128-byte
sectors (similar to the sectoring of two adjacent 64-byte cache lines available in
Pentium 4 processors).

Hardware prefetch requests are queued up in the bus system at lower priority than
normal cache-miss requests. If bus queue is in high demand, hardware prefetch
requests may be ignored or cancelled to service bus traffic required by demand
cache-misses and other bus transactions. Hardware prefetch mechanisms are
enhanced over that of Pentium M processor by:

• Data stores that are not in the second-level cache generate read for ownership
requests. These requests are treated as loads and can trigger a prefetch stream.

• Software prefetch instructions are treated as loads, they can also trigger a
prefetch stream.

2.5 INTEL® HYPER-THREADING TECHNOLOGY
Intel® Hyper-Threading Technology (HT Technology) is supported by specific
members of the Intel Pentium 4 and Xeon processor families. The technology enables
software to take advantage of task-level, or thread-level parallelism by providing
multiple logical processors within a physical processor package. In its first implemen-
tation in Intel Xeon processor, Hyper-Threading Technology makes a single physical
processor appear as two logical processors.

The two logical processors each have a complete set of architectural registers while
sharing one single physical processor's resources. By maintaining the architecture
state of two processors, an HT Technology capable processor looks like two proces-
sors to software, including operating system and application code.

By sharing resources needed for peak demands between two logical processors, HT
Technology is well suited for multiprocessor systems to provide an additional perfor-
mance boost in throughput when compared to traditional MP systems.

Figure 2-7 shows a typical bus-based symmetric multiprocessor (SMP) based on
processors supporting HT Technology. Each logical processor can execute a software
thread, allowing a maximum of two software threads to execute simultaneously on
one physical processor. The two software threads execute simultaneously, meaning
that in the same clock cycle an “add” operation from logical processor 0 and another
2-37

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
“add” operation and load from logical processor 1 can be executed simultaneously by
the execution engine.

In the first implementation of HT Technology, the physical execution resources are
shared and the architecture state is duplicated for each logical processor. This mini-
mizes the die area cost of implementing HT Technology while still achieving perfor-
mance gains for multithreaded applications or multitasking workloads.

The performance potential due to HT Technology is due to:

• The fact that operating systems and user programs can schedule processes or
threads to execute simultaneously on the logical processors in each physical
processor

• The ability to use on-chip execution resources at a higher level than when only a
single thread is consuming the execution resources; higher level of resource
utilization can lead to higher system throughput

2.5.1 Processor Resources and HT Technology
The majority of microarchitecture resources in a physical processor are shared
between the logical processors. Only a few small data structures were replicated for
each logical processor. This section describes how resources are shared, partitioned
or replicated.

Figure 2-7. Hyper-Threading Technology on an SMP

OM15152

Bus Interface

Execution Engine

Architectural
State

Architectural
State

Local APIC Local APIC

System Bus

Execution Engine

Architectural
State

Architectural
State

Local APIC Local APIC

Bus Interface
2-38

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.5.1.1 Replicated Resources
The architectural state is replicated for each logical processor. The architecture state
consists of registers that are used by the operating system and application code to
control program behavior and store data for computations. This state includes the
eight general-purpose registers, the control registers, machine state registers,
debug registers, and others. There are a few exceptions, most notably the memory
type range registers (MTRRs) and the performance monitoring resources. For a
complete list of the architecture state and exceptions, see the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volumes 3A & 3B.

Other resources such as instruction pointers and register renaming tables were repli-
cated to simultaneously track execution and state changes of the two logical proces-
sors. The return stack predictor is replicated to improve branch prediction of return
instructions.

In addition, a few buffers (for example, the 2-entry instruction streaming buffers)
were replicated to reduce complexity.

2.5.1.2 Partitioned Resources
Several buffers are shared by limiting the use of each logical processor to half the
entries. These are referred to as partitioned resources. Reasons for this partitioning
include:

• Operational fairness

• Permitting the ability to allow operations from one logical processor to bypass
operations of the other logical processor that may have stalled

For example: a cache miss, a branch misprediction, or instruction dependencies may
prevent a logical processor from making forward progress for some number of
cycles. The partitioning prevents the stalled logical processor from blocking forward
progress.

In general, the buffers for staging instructions between major pipe stages are parti-
tioned. These buffers include µop queues after the execution trace cache, the queues
after the register rename stage, the reorder buffer which stages instructions for
retirement, and the load and store buffers.

In the case of load and store buffers, partitioning also provided an easier implemen-
tation to maintain memory ordering for each logical processor and detect memory
ordering violations.

2.5.1.3 Shared Resources
Most resources in a physical processor are fully shared to improve the dynamic utili-
zation of the resource, including caches and all the execution units. Some shared
resources which are linearly addressed, like the DTLB, include a logical processor ID
bit to distinguish whether the entry belongs to one logical processor or the other.
2-39

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
The first level cache can operate in two modes depending on a context-ID bit:

• Shared mode: The L1 data cache is fully shared by two logical processors.

• Adaptive mode: In adaptive mode, memory accesses using the page directory is
mapped identically across logical processors sharing the L1 data cache.

The other resources are fully shared.

2.5.2 Microarchitecture Pipeline and HT Technology
This section describes the HT Technology microarchitecture and how instructions
from the two logical processors are handled between the front end and the back end
of the pipeline.

Although instructions originating from two programs or two threads execute simulta-
neously and not necessarily in program order in the execution core and memory hier-
archy, the front end and back end contain several selection points to select between
instructions from the two logical processors. All selection points alternate between
the two logical processors unless one logical processor cannot make use of a pipeline
stage. In this case, the other logical processor has full use of every cycle of the pipe-
line stage. Reasons why a logical processor may not use a pipeline stage include
cache misses, branch mispredictions, and instruction dependencies.

2.5.3 Front End Pipeline
The execution trace cache is shared between two logical processors. Execution trace
cache access is arbitrated by the two logical processors every clock. If a cache line is
fetched for one logical processor in one clock cycle, the next clock cycle a line would
be fetched for the other logical processor provided that both logical processors are
requesting access to the trace cache.

If one logical processor is stalled or is unable to use the execution trace cache, the
other logical processor can use the full bandwidth of the trace cache until the initial
logical processor’s instruction fetches return from the L2 cache.

After fetching the instructions and building traces of µops, the µops are placed in a
queue. This queue decouples the execution trace cache from the register rename
pipeline stage. As described earlier, if both logical processors are active, the queue is
partitioned so that both logical processors can make independent forward progress.

2.5.4 Execution Core
The core can dispatch up to six µops per cycle, provided the µops are ready to
execute. Once the µops are placed in the queues waiting for execution, there is no
distinction between instructions from the two logical processors. The execution core
and memory hierarchy is also oblivious to which instructions belong to which logical
processor.
2-40

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
After execution, instructions are placed in the re-order buffer. The re-order buffer
decouples the execution stage from the retirement stage. The re-order buffer is
partitioned such that each uses half the entries.

2.5.5 Retirement
The retirement logic tracks when instructions from the two logical processors are
ready to be retired. It retires the instruction in program order for each logical
processor by alternating between the two logical processors. If one logical processor
is not ready to retire any instructions, then all retirement bandwidth is dedicated to
the other logical processor.

Once stores have retired, the processor needs to write the store data into the level-
one data cache. Selection logic alternates between the two logical processors to
commit store data to the cache.

2.6 MULTICORE PROCESSORS
The Intel Pentium D processor and the Pentium Processor Extreme Edition introduce
multicore features. These processors enhance hardware support for multithreading
by providing two processor cores in each physical processor package. The Dual-core
Intel Xeon and Intel Core Duo processors also provide two processor cores in a phys-
ical package. The multicore topology of Intel Core 2 Duo processors are similar to
those of Intel Core Duo processor.

The Intel Pentium D processor provides two logical processors in a physical package,
each logical processor has a separate execution core and a cache hierarchy. The
Dual-core Intel Xeon processor and the Intel Pentium Processor Extreme Edition
provide four logical processors in a physical package that has two execution cores.
Each core provides two logical processors sharing an execution core and a cache
hierarchy.

The Intel Core Duo processor provides two logical processors in a physical package.
Each logical processor has a separate execution core (including first-level cache) and
a smart second-level cache. The second-level cache is shared between two logical
processors and optimized to reduce bus traffic when the same copy of cached data is
used by two logical processors. The full capacity of the second-level cache can be
used by one logical processor if the other logical processor is inactive.

The functional blocks of these processors are shown in Figure 2-8.
2-41

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
Figure 2-8. Pentium D Processor, Pentium Processor Extreme Edition,
Intel Core Duo Processor, and Intel Core 2 Duo Processor
2-42

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.6.1 Microarchitecture Pipeline and MultiCore Processors
In general, each core in a multicore processor resembles a single-core processor
implementation of the underlying microarchitecture. The implementation of the
cache hierarchy in a dual-core or multicore processor may be the same or different
from the cache hierarchy implementation in a single-core processor.

CPUID should be used to determine cache-sharing topology information in a
processor implementation and the underlying microarchitecture. The former is
obtained by querying the deterministic cache parameter leaf (see Chapter 7, “Opti-
mizing Cache Usage”); the latter by using the encoded values for extended family,
family, extended model, and model fields. See Table 2-8.

2.6.2 Shared Cache in Intel® Core™ Duo Processors
The Intel Core Duo processor has two symmetric cores that share the second-level
cache and a single bus interface (see Figure 2-8). Two threads executing on two
cores in an Intel Core Duo processor can take advantage of shared second-level
cache, accessing a single-copy of cached data without generating bus traffic.

2.6.2.1 Load and Store Operations
When an instruction needs to read data from a memory address, the processor looks
for it in caches and memory. When an instruction writes data to a memory location
(write back) the processor first makes sure that the cache line that contains the
memory location is owned by the first-level data cache of the initiating core (that is,

Table 2-8. Family And Model Designations of Microarchitectures

Dual-Core
Processor

Micro-
architecture

Extended
Family Family

Extended
Model Model

Pentium D
processor

NetBurst 0 15 0 3, 4, 6

Pentium
processor
Extreme
Edition

NetBurst 0 15 0 3, 4, 6

Intel Core Duo
processor

Improved
Pentium M

0 6 0 14

Intel Core 2
Duo
processor/
Intel Xeon
processor
5100

Intel Core
Microarchitec-
ture

0 6 0 15
2-43

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
the line is in exclusive or modified state). Then the processor looks for the cache line
in the cache and memory sub-systems. The look-ups for the locality of load or store
operation are in the following order:

1. DCU of the initiating core

2. DCU of the other core and second-level cache

3. System memory

The cache line is taken from the DCU of the other core only if it is modified, ignoring
the cache line availability or state in the L2 cache. Table 2-9 lists the performance
characteristics of generic load and store operations in an Intel Core Duo processor.
Numeric values of Table 2-9 are in terms of processor core cycles.

Throughput is expressed as the number of cycles to wait before the same operation
can start again. The latency of a bus transaction is exposed in some of these opera-
tions, as indicated by entries containing “+ bus transaction”. On Intel Core Duo
processors, a typical bus transaction may take 5.5 bus cycles. For a 667 MHz bus and
a core frequency of 2.167GHz, the total of 14 + 5.5 * 2167 /(667/4) ~ 86 core
cycles.

Sometimes a modified cache line has to be evicted to make room for a new cache
line. The modified cache line is evicted in parallel to bringing in new data and does
not require additional latency. However, when data is written back to memory, the
eviction consumes cache bandwidth and bus bandwidth. For multiple cache misses
that require the eviction of modified lines and are within a short time, there is an
overall degradation in response time of these cache misses.

For store operation, reading for ownership must be completed before the data is
written to the first-level data cache and the line is marked as modified. Reading for
ownership and storing the data happens after instruction retirement and follows the
order of retirement. The bus store latency does not affect the store instruction itself.
However, several sequential stores may have cumulative latency that can effect
performance.

Table 2-9. Characteristics of Load and Store Operations
in Intel Core Duo Processors

Load Store

Data Locality Latency Throughput Latency Throughput

DCU 3 1 2 1

DCU of the other core in
“Modified” state

14 + bus
transaction

14 + bus
transaction

14 + bus
transaction

~10

2nd-level cache 14 <6 14 <6

Memory 14 + bus
transaction

Bus read
protocol

14 + bus
transaction

Bus write
protocol
2-44

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2.7 INTEL® 64 ARCHITECTURE
Intel 64 architecture supports almost all features in the IA-32 Intel architecture and
extends support to run 64-bit OS and 64-bit applications in 64-bit linear address
space. Intel 64 architecture provides a new operating mode, referred to as IA-32e
mode, and increases the linear address space for software to 64 bits and supports
physical address space up to 40 bits.

IA-32e mode consists of two sub-modes: (1) compatibility mode enables a 64-bit
operating system to run most legacy 32-bit software unmodified, (2) 64-bit mode
enables a 64-bit operating system to run applications written to access 64-bit linear
address space.

In the 64-bit mode of Intel 64 architecture, software may access:

• 64-bit flat linear addressing

• 8 additional general-purpose registers (GPRs)

• 8 additional registers for streaming SIMD extensions (SSE, SSE2, SSE3 and
SSSE3)

• 64-bit-wide GPRs and instruction pointers

• uniform byte-register addressing

• fast interrupt-prioritization mechanism

• a new instruction-pointer relative-addressing mode

For optimizing 64-bit applications, the features that impact software optimizations
include:

• using a set of prefixes to access new registers or 64-bit register operand

• pointer size increases from 32 bits to 64 bits

• instruction-specific usages

2.8 SIMD TECHNOLOGY
SIMD computations (see Figure 2-9) were introduced to the architecture with MMX
technology. MMX technology allows SIMD computations to be performed on packed
byte, word, and doubleword integers. The integers are contained in a set of eight
64-bit registers called MMX registers (see Figure 2-10).

The Pentium III processor extended the SIMD computation model with the introduc-
tion of the Streaming SIMD Extensions (SSE). SSE allows SIMD computations to be
performed on operands that contain four packed single-precision floating-point data
elements. The operands can be in memory or in a set of eight 128-bit XMM registers
(see Figure 2-10). SSE also extended SIMD computational capability by adding addi-
tional 64-bit MMX instructions.

Figure 2-9 shows a typical SIMD computation. Two sets of four packed data elements
(X1, X2, X3, and X4, and Y1, Y2, Y3, and Y4) are operated on in parallel, with the
2-45

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
same operation being performed on each corresponding pair of data elements (X1
and Y1, X2 and Y2, X3 and Y3, and X4 and Y4). The results of the four parallel compu-
tations are sorted as a set of four packed data elements.

The Pentium 4 processor further extended the SIMD computation model with the
introduction of Streaming SIMD Extensions 2 (SSE2), Streaming SIMD Extensions 3
(SSE3), and Intel Xeon processor 5100 series introduced Supplemental Streaming
SIMD Extensions 3 (SSSE3).

SSE2 works with operands in either memory or in the XMM registers. The technology
extends SIMD computations to process packed double-precision floating-point data
elements and 128-bit packed integers. There are 144 instructions in SSE2 that
operate on two packed double-precision floating-point data elements or on 16
packed byte, 8 packed word, 4 doubleword, and 2 quadword integers.

SSE3 enhances x87, SSE and SSE2 by providing 13 instructions that can accelerate
application performance in specific areas. These include video processing, complex
arithmetics, and thread synchronization. SSE3 complements SSE and SSE2 with
instructions that process SIMD data asymmetrically, facilitate horizontal computa-
tion, and help avoid loading cache line splits. See Figure 2-10.

SSSE3 provides additional enhancement for SIMD computation with 32 instructions
on digital video and signal processing.

The SIMD extensions operates the same way in Intel 64 architecture as in IA-32
architecture, with the following enhancements:

• 128-bit SIMD instructions referencing XMM register can access 16 XMM registers
in 64-bit mode.

Figure 2-9. Typical SIMD Operations

X4 X3 X2 X1

Y4 Y3 Y2 Y1

X4 op Y4 X3 op Y3 X2 op Y2 X1 op Y1

OP OP OP OP

OM15148
2-46

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
• Instructions that reference 32-bit general purpose registers can access 16
general purpose registers in 64-bit mode.

SIMD improves the performance of 3D graphics, speech recognition, image
processing, scientific applications and applications that have the following character-
istics:

• inherently parallel

• recurring memory access patterns

• localized recurring operations performed on the data

• data-independent control flow

SIMD floating-point instructions fully support the IEEE Standard 754 for Binary
Floating-Point Arithmetic. They are accessible from all IA-32 execution modes:
protected mode, real address mode, and Virtual 8086 mode.

SSE, SSE2, and MMX technologies are architectural extensions. Existing software will
continue to run correctly, without modification on Intel microprocessors that incorpo-
rate these technologies. Existing software will also run correctly in the presence of
applications that incorporate SIMD technologies.

SSE and SSE2 instructions also introduced cacheability and memory ordering
instructions that can improve cache usage and application performance.

Figure 2-10. SIMD Instruction Register Usage

MM7

MM6

MM7

MM3

MM2

MM1

MM0

MM5

MM4

MM7

XMM6

XMM7

XMM3

XMM2

XMM1

XMM0

XMM5

XMM4

64-bit MMX Registers 128-bit XMM Registers

OM15149
2-47

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
For more on SSE, SSE2, SSE3 and MMX technologies, see the following chapters in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1:

• Chapter 9, “Programming with Intel® MMX™ Technology”

• Chapter 10, “Programming with Streaming SIMD Extensions (SSE)”

• Chapter 11, “Programming with Streaming SIMD Extensions 2 (SSE2)”

• Chapter 12, “Programming with SSE3 and Supplemental SSE3”

2.8.1 Summary of SIMD Technologies

2.8.1.1 MMX™ Technology
MMX Technology introduced:

• 64-bit MMX registers

• Support for SIMD operations on packed byte, word, and doubleword integers

MMX instructions are useful for multimedia and communications software.

2.8.1.2 Streaming SIMD Extensions
Streaming SIMD extensions introduced:

• 128-bit XMM registers

• 128-bit data type with four packed single-precision floating-point operands

• data prefetch instructions

• non-temporal store instructions and other cacheability and memory ordering
instructions

• extra 64-bit SIMD integer support

SSE instructions are useful for 3D geometry, 3D rendering, speech recognition, and
video encoding and decoding.

2.8.1.3 Streaming SIMD Extensions 2
Streaming SIMD extensions 2 add the following:

• 128-bit data type with two packed double-precision floating-point operands

• 128-bit data types for SIMD integer operation on 16-byte, 8-word,
4-doubleword, or 2-quadword integers

• support for SIMD arithmetic on 64-bit integer operands

• instructions for converting between new and existing data types

• extended support for data shuffling

• Extended support for cacheability and memory ordering operations
2-48

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
SSE2 instructions are useful for 3D graphics, video decoding/encoding, and encryp-
tion.

2.8.1.4 Streaming SIMD Extensions 3
Streaming SIMD extensions 3 add the following:

• SIMD floating-point instructions for asymmetric and horizontal computation

• a special-purpose 128-bit load instruction to avoid cache line splits

• an x87 FPU instruction to convert to integer independent of the floating-point
control word (FCW)

• instructions to support thread synchronization

SSE3 instructions are useful for scientific, video and multi-threaded applications.

2.8.1.5 Supplemental Streaming SIMD Extensions 3
The Supplemental Streaming SIMD Extensions 3 introduces 32 new instructions to
accelerate eight types of computations on packed integers. These include:

• 12 instructions that perform horizontal addition or subtraction operations

• 6 instructions that evaluate the absolute values

• 2 instructions that perform multiply and add operations and speed up the
evaluation of dot products

• 2 instructions that accelerate packed-integer multiply operations and produce
integer values with scaling

• 2 instructions that perform a byte-wise, in-place shuffle according to the second
shuffle control operand

• 6 instructions that negate packed integers in the destination operand if the signs
of the corresponding element in the source operand is less than zero

• 2 instructions that align data from the composite of two operands
2-49

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES
2-50

	Intel® 64 and IA-32 Architectures Optimization Reference Manual
	Disclaimer
	Contents
	Chapter 1 Introduction
	1.1 Tuning Your Application
	1.2 About This Manual
	1.3 Related Information

	Chapter 2 Intel® 64 and IA-32 Processor Architectures
	2.1 Intel® Core™ Microarchitecture
	2.1.1 Intel® Core™ Microarchitecture Pipeline Overview
	2.1.2 Front End
	2.1.2.1 Branch Prediction Unit
	2.1.2.2 Instruction Fetch Unit
	2.1.2.3 Instruction Queue (IQ)
	2.1.2.4 Instruction Decode
	2.1.2.5 Stack Pointer Tracker
	2.1.2.6 Micro-fusion

	2.1.3 Execution Core
	2.1.3.1 Issue Ports and Execution Units

	2.1.4 Intel® Advanced Memory Access
	2.1.4.1 Loads and Stores
	2.1.4.2 Data Prefetch to L1 caches
	2.1.4.3 Data Prefetch Logic
	2.1.4.4 Store Forwarding
	2.1.4.5 Memory Disambiguation

	2.1.5 Intel® Advanced Smart Cache
	2.1.5.1 Loads
	2.1.5.2 Stores

	2.2 Intel NetBurst® Microarchitecture
	2.2.1 Design Goals
	2.2.2 Pipeline
	2.2.2.1 Front End
	2.2.2.2 Out-of-order Core
	2.2.2.3 Retirement

	2.2.3 Front End Pipeline Detail
	2.2.3.1 Prefetching
	2.2.3.2 Decoder
	2.2.3.3 Execution Trace Cache
	2.2.3.4 Branch Prediction

	2.2.4 Execution Core Detail
	2.2.4.1 Instruction Latency and Throughput
	2.2.4.2 Execution Units and Issue Ports
	2.2.4.3 Caches
	2.2.4.4 Data Prefetch
	2.2.4.5 Loads and Stores
	2.2.4.6 Store Forwarding

	2.3 Intel® Pentium® M Processor Microarchitecture
	2.3.1 Front End
	2.3.2 Data Prefetching
	2.3.3 Out-of-Order Core
	2.3.4 In-Order Retirement

	2.4 Microarchitecture of Intel® Core™ Solo and Intel® Core™ Duo Processors
	2.4.1 Front End
	2.4.2 Data Prefetching

	2.5 Intel® Hyper-Threading Technology
	2.5.1 Processor Resources and HT Technology
	2.5.1.1 Replicated Resources
	2.5.1.2 Partitioned Resources
	2.5.1.3 Shared Resources

	2.5.2 Microarchitecture Pipeline and HT Technology
	2.5.3 Front End Pipeline
	2.5.4 Execution Core
	2.5.5 Retirement

	2.6 MultiCore Processors
	2.6.1 Microarchitecture Pipeline and MultiCore Processors
	2.6.2 Shared Cache in Intel® Core™ Duo Processors
	2.6.2.1 Load and Store Operations

	2.7 Intel® 64 Architecture
	2.8 SIMD Technology
	2.8.1 Summary of SIMD Technologies
	2.8.1.1 MMX™ Technology
	2.8.1.2 Streaming SIMD Extensions
	2.8.1.3 Streaming SIMD Extensions 2
	2.8.1.4 Streaming SIMD Extensions 3
	2.8.1.5 Supplemental Streaming SIMD Extensions 3

	Chapter 3 General Optimization Guidelines
	3.1 Performance Tools
	3.1.1 Intel® C++ and Fortran Compilers
	3.1.2 General Compiler Recommendations
	3.1.3 VTune™ Performance Analyzer

	3.2 Processor Perspectives
	3.2.1 CPUID Dispatch Strategy and Compatible Code Strategy
	3.2.2 Transparent Cache-Parameter Strategy
	3.2.3 Threading Strategy and Hardware Multithreading Support

	3.3 Coding Rules, Suggestions and Tuning Hints
	3.4 Optimizing the Front End
	3.4.1 Branch Prediction Optimization
	3.4.1.1 Eliminating Branches
	3.4.1.2 Spin-Wait and Idle Loops
	3.4.1.3 Static Prediction
	3.4.1.4 Inlining, Calls and Returns
	3.4.1.5 Code Alignment
	3.4.1.6 Branch Type Selection
	3.4.1.7 Loop Unrolling
	3.4.1.8 Compiler Support for Branch Prediction

	3.4.2 Fetch and Decode Optimization
	3.4.2.1 Optimizing for Micro-fusion
	3.4.2.2 Optimizing for Macro-fusion
	3.4.2.3 Length-Changing Prefixes (LCP)
	3.4.2.4 Optimizing the Loop Stream Detector (LSD)
	3.4.2.5 Scheduling Rules for the Pentium 4 Processor Decoder
	3.4.2.6 Scheduling Rules for the Pentium M Processor Decoder
	3.4.2.7 Other Decoding Guidelines

	3.5 Optimizing the Execution Core
	3.5.1 Instruction Selection
	3.5.1.1 Use of the INC and DEC Instructions
	3.5.1.2 Integer Divide
	3.5.1.3 Using LEA
	3.5.1.4 Using SHIFT and ROTATE
	3.5.1.5 Address Calculations
	3.5.1.6 Clearing Registers and Dependency Breaking Idioms
	3.5.1.7 Compares
	3.5.1.8 Using NOPs
	3.5.1.9 Mixing SIMD Data Types
	3.5.1.10 Spill Scheduling

	3.5.2 Avoiding Stalls in Execution Core
	3.5.2.1 ROB Read Port Stalls
	3.5.2.2 Bypass between Execution Domains
	3.5.2.3 Partial Register Stalls
	3.5.2.4 Partial XMM Register Stalls
	3.5.2.5 Partial Flag Register Stalls
	3.5.2.6 Floating Point/SIMD Operands in Intel NetBurst microarchitecture

	3.5.3 Vectorization
	3.5.4 Optimization of Partially Vectorizable Code
	3.5.4.1 Alternate Packing Techniques
	3.5.4.2 Simplifying Result Passing
	3.5.4.3 Stack Optimization
	3.5.4.4 Tuning Considerations

	3.6 Optimizing Memory Accesses
	3.6.1 Load and Store Execution Bandwidth
	3.6.2 Enhance Speculative Execution and Memory Disambiguation
	3.6.3 Alignment
	3.6.4 Store Forwarding
	3.6.4.1 Store-to-Load-Forwarding Restriction on Size and Alignment
	3.6.4.2 Store-forwarding Restriction on Data Availability

	3.6.5 Data Layout Optimizations
	3.6.6 Stack Alignment
	3.6.7 Capacity Limits and Aliasing in Caches
	3.6.7.1 Capacity Limits in Set-Associative Caches
	3.6.7.2 Aliasing Cases in Processors Based on Intel NetBurst Microarchitecture
	3.6.7.3 Aliasing Cases in the Pentium M, Intel Core Solo, Intel Core Duo and Intel Core 2 Duo Processors

	3.6.8 Mixing Code and Data
	3.6.8.1 Self-modifying Code

	3.6.9 Write Combining
	3.6.10 Locality Enhancement
	3.6.11 Minimizing Bus Latency
	3.6.12 Non-Temporal Store Bus Traffic

	3.7 Prefetching
	3.7.1 Hardware Instruction Fetching and Software Prefetching
	3.7.2 Software and Hardware Prefetching in Prior Microarchitectures
	3.7.3 Hardware Prefetching for First-Level Data Cache
	3.7.4 Hardware Prefetching for Second-Level Cache
	3.7.5 Cacheability Instructions
	3.7.6 REP Prefix and Data Movement

	3.8 Floating-point Considerations
	3.8.1 Guidelines for Optimizing Floating-point Code
	3.8.2 Floating-point Modes and Exceptions
	3.8.2.1 Floating-point Exceptions
	3.8.2.2 Dealing with floating-point exceptions in x87 FPU code
	3.8.2.3 Floating-point Exceptions in SSE/SSE2/SSE3 Code

	3.8.3 Floating-point Modes
	3.8.3.1 Rounding Mode
	3.8.3.2 Precision
	3.8.3.3 Improving Parallelism and the Use of FXCH

	3.8.4 x87 vs. Scalar SIMD Floating-point Trade-offs
	3.8.4.1 Scalar SSE/SSE2 Performance on Intel Core Solo and Intel Core Duo Processors
	3.8.4.2 x87 Floating-point Operations with Integer Operands
	3.8.4.3 x87 Floating-point Comparison Instructions
	3.8.4.4 Transcendental Functions

	Chapter 4 Coding for SIMD Architectures
	4.1 Checking for Processor Support of SIMD Technologies
	4.1.1 Checking for MMX Technology Support
	4.1.2 Checking for Streaming SIMD Extensions Support
	4.1.3 Checking for Streaming SIMD Extensions 2 Support
	4.1.4 Checking for Streaming SIMD Extensions 3 Support
	4.1.5 Checking for Supplemental Streaming SIMD Extensions 3 Support

	4.2 Considerations for Code Conversion to SIMD Programming
	4.2.1 Identifying Hot Spots
	4.2.2 Determine If Code Benefits by Conversion to SIMD Execution

	4.3 Coding Techniques
	4.3.1 Coding Methodologies
	4.3.1.1 Assembly
	4.3.1.2 Intrinsics
	4.3.1.3 Classes
	4.3.1.4 Automatic Vectorization

	4.4 Stack and Data Alignment
	4.4.1 Alignment and Contiguity of Data Access Patterns
	4.4.1.1 Using Padding to Align Data
	4.4.1.2 Using Arrays to Make Data Contiguous

	4.4.2 Stack Alignment For 128-bit SIMD Technologies
	4.4.3 Data Alignment for MMX Technology
	4.4.4 Data Alignment for 128-bit data
	4.4.4.1 Compiler-Supported Alignment

	4.5 Improving Memory Utilization
	4.5.1 Data Structure Layout
	4.5.2 Strip-Mining
	4.5.3 Loop Blocking

	4.6 Instruction Selection
	4.6.1 SIMD Optimizations and Microarchitectures

	4.7 Tuning the Final Application

	Chapter 5 Optimizing for SIMD Integer Applications
	5.1 General Rules on SIMD Integer Code
	5.2 Using SIMD Integer with x87 Floating-point
	5.2.1 Using the EMMS Instruction
	5.2.2 Guidelines for Using EMMS Instruction

	5.3 Data Alignment
	5.4 Data Movement Coding Techniques
	5.4.1 Unsigned Unpack
	5.4.2 Signed Unpack
	5.4.3 Interleaved Pack with Saturation
	5.4.4 Interleaved Pack without Saturation
	5.4.5 Non-Interleaved Unpack
	5.4.6 Extract Word
	5.4.7 Insert Word
	5.4.8 Move Byte Mask to Integer
	5.4.9 Packed Shuffle Word for 64-bit Registers
	5.4.10 Packed Shuffle Word for 128-bit Registers
	5.4.11 Shuffle Bytes
	5.4.12 Unpacking/interleaving 64-bit Data in 128-bit Registers
	5.4.13 Data Movement
	5.4.14 Conversion Instructions

	5.5 Generating Constants
	5.6 Building Blocks
	5.6.1 Absolute Difference of Unsigned Numbers
	5.6.2 Absolute Difference of Signed Numbers
	5.6.3 Absolute Value
	5.6.4 Pixel Format Conversion
	5.6.5 Endian Conversion
	5.6.6 Clipping to an Arbitrary Range [High, Low]
	5.6.6.1 Highly Efficient Clipping
	5.6.6.2 Clipping to an Arbitrary Unsigned Range [High, Low]

	5.6.7 Packed Max/Min of Signed Word and Unsigned Byte
	5.6.7.1 Signed Word
	5.6.7.2 Unsigned Byte

	5.6.8 Packed Multiply High Unsigned
	5.6.9 Packed Sum of Absolute Differences
	5.6.10 Packed Average (Byte/Word)
	5.6.11 Complex Multiply by a Constant
	5.6.12 Packed 32*32 Multiply
	5.6.13 Packed 64-bit Add/Subtract
	5.6.14 128-bit Shifts

	5.7 Memory Optimizations
	5.7.1 Partial Memory Accesses
	5.7.1.1 Supplemental Techniques for Avoiding Cache Line Splits

	5.7.2 Increasing Bandwidth of Memory Fills and Video Fills
	5.7.2.1 Increasing Memory Bandwidth Using the MOVDQ Instruction
	5.7.2.2 Increasing Memory Bandwidth by Loading and Storing to and from the Same DRAM Page
	5.7.2.3 Increasing UC and WC Store Bandwidth by Using Aligned Stores

	5.8 Converting from 64-bit to 128-bit SIMD Integers
	5.8.1 SIMD Optimizations and Microarchitectures
	5.8.1.1 Packed SSE2 Integer versus MMX Instructions

	Chapter 6 Optimizing for SIMD Floating-point Applications
	6.1 General Rules for SIMD Floating-point Code
	6.2 Planning Considerations
	6.3 Using SIMD Floating-point with x87 Floating- point
	6.4 Scalar Floating-point Code
	6.5 Data Alignment
	6.5.1 Data Arrangement
	6.5.1.1 Vertical versus Horizontal Computation
	6.5.1.2 Data Swizzling
	6.5.1.3 Data Deswizzling
	6.5.1.4 Using MMX Technology Code for Copy or Shuffling Functions
	6.5.1.5 Horizontal ADD Using SSE

	6.5.2 Use of CVTTPS2PI/CVTTSS2SI Instructions
	6.5.3 Flush-to-Zero and Denormals-are-Zero Modes

	6.6 SIMD Optimizations and Microarchitectures
	6.6.1 SIMD Floating-point Programming Using SSE3
	6.6.1.1 SSE3 and Complex Arithmetics
	6.6.1.2 SSE3 and Horizontal Computation
	6.6.1.3 Packed Floating-Point Performance in Intel Core Duo Processor

	Chapter 7 Optimizing Cache Usage
	7.1 General Prefetch Coding Guidelines
	7.2 Hardware Prefetching of Data
	7.3 Prefetch and Cacheability Instructions
	7.4 Prefetch
	7.4.1 Software Data Prefetch
	7.4.2 Prefetch Instructions - Pentium® 4 Processor Implementation
	7.4.3 Prefetch and Load Instructions

	7.5 Cacheability Control
	7.5.1 The Non-temporal Store Instructions
	7.5.1.1 Fencing
	7.5.1.2 Streaming Non-temporal Stores
	7.5.1.3 Memory Type and Non-temporal Stores
	7.5.1.4 Write-Combining

	7.5.2 Streaming Store Usage Models
	7.5.2.1 Coherent Requests
	7.5.2.2 Non-coherent requests

	7.5.3 Streaming Store Instruction Descriptions
	7.5.4 FENCE Instructions
	7.5.4.1 SFENCE Instruction
	7.5.4.2 LFENCE Instruction
	7.5.4.3 MFENCE Instruction

	7.5.5 CLFLUSH Instruction

	7.6 Memory Optimization Using Prefetch
	7.6.1 Software-Controlled Prefetch
	7.6.2 Hardware Prefetch
	7.6.3 Example of Effective Latency Reduction with Hardware Prefetch
	7.6.4 Example of Latency Hiding with S/W Prefetch Instruction
	7.6.5 Software Prefetching Usage Checklist
	7.6.6 Software Prefetch Scheduling Distance
	7.6.7 Software Prefetch Concatenation
	7.6.8 Minimize Number of Software Prefetches
	7.6.9 Mix Software Prefetch with Computation Instructions
	7.6.10 Software Prefetch and Cache Blocking Techniques
	7.6.11 Hardware Prefetching and Cache Blocking Techniques
	7.6.12 Single-pass versus Multi-pass Execution

	7.7 Memory Optimization using Non-Temporal Stores
	7.7.1 Non-temporal Stores and Software Write-Combining
	7.7.2 Cache Management
	7.7.2.1 Video Encoder
	7.7.2.2 Video Decoder
	7.7.2.3 Conclusions from Video Encoder and Decoder Implementation
	7.7.2.4 Optimizing Memory Copy Routines
	7.7.2.5 TLB Priming
	7.7.2.6 Using the 8-byte Streaming Stores and Software Prefetch
	7.7.2.7 Using 16-byte Streaming Stores and Hardware Prefetch
	7.7.2.8 Performance Comparisons of Memory Copy Routines

	7.7.3 Deterministic Cache Parameters
	7.7.3.1 Cache Sharing Using Deterministic Cache Parameters
	7.7.3.2 Cache Sharing in Single-Core or Multicore
	7.7.3.3 Determine Prefetch Stride

	Chapter 8 Multicore and Hyper-Threading Technology
	8.1 Performance and Usage Models
	8.1.1 Multithreading
	8.1.2 Multitasking Environment

	8.2 Programming Models and Multithreading
	8.2.1 Parallel Programming Models
	8.2.1.1 Domain Decomposition

	8.2.2 Functional Decomposition
	8.2.3 Specialized Programming Models
	8.2.3.1 Producer-Consumer Threading Models

	8.2.4 Tools for Creating Multithreaded Applications
	8.2.4.1 Programming with OpenMP Directives
	8.2.4.2 Automatic Parallelization of Code
	8.2.4.3 Supporting Development Tools
	8.2.4.4 Intel® Thread Checker
	8.2.4.5 Thread Profiler

	8.3 Optimization Guidelines
	8.3.1 Key Practices of Thread Synchronization
	8.3.2 Key Practices of System Bus Optimization
	8.3.3 Key Practices of Memory Optimization
	8.3.4 Key Practices of Front-end Optimization
	8.3.5 Key Practices of Execution Resource Optimization
	8.3.6 Generality and Performance Impact

	8.4 Thread Synchronization
	8.4.1 Choice of Synchronization Primitives
	8.4.2 Synchronization for Short Periods
	8.4.3 Optimization with Spin-Locks
	8.4.4 Synchronization for Longer Periods
	8.4.4.1 Avoid Coding Pitfalls in Thread Synchronization

	8.4.5 Prevent Sharing of Modified Data and False-Sharing
	8.4.6 Placement of Shared Synchronization Variable

	8.5 System Bus Optimization
	8.5.1 Conserve Bus Bandwidth
	8.5.2 Understand the Bus and Cache Interactions
	8.5.3 Avoid Excessive Software Prefetches
	8.5.4 Improve Effective Latency of Cache Misses
	8.5.5 Use Full Write Transactions to Achieve Higher Data Rate

	8.6 Memory Optimization
	8.6.1 Cache Blocking Technique
	8.6.2 Shared-Memory Optimization
	8.6.2.1 Minimize Sharing of Data between Physical Processors
	8.6.2.2 Batched Producer-Consumer Model

	8.6.3 Eliminate 64-KByte Aliased Data Accesses
	8.6.4 Preventing Excessive Evictions in First-Level Data Cache
	8.6.4.1 Per-thread Stack Offset
	8.6.4.2 Per-instance Stack Offset

	8.7 Front-end Optimization
	8.7.1 Avoid Excessive Loop Unrolling
	8.7.2 Optimization for Code Size

	8.8 Using Thread Affinities to Manage Shared Platform Resources
	8.9 Optimization of Other Shared Resources
	8.9.1 Using Shared Execution Resources in a Processor Core

	Chapter 9 64-bit Mode Coding Guidelines
	9.1 Introduction
	9.2 Coding Rules Affecting 64-bit Mode
	9.2.1 Use Legacy 32-Bit Instructions When Data Size Is 32 Bits
	9.2.2 Use Extra Registers to Reduce Register Pressure
	9.2.3 Use 64-Bit by 64-Bit Multiplies To Produce 128-Bit Results Only When Necessary
	9.2.4 Sign Extension to Full 64-Bits

	9.3 Alternate Coding Rules for 64-Bit Mode
	9.3.1 Use 64-Bit Registers Instead of Two 32-Bit Registers for 64-Bit Arithmetic
	9.3.2 CVTSI2SS and CVTSI2SD
	9.3.3 Using Software Prefetch

	Chapter 10 Power Optimization for Mobile Usages
	10.1 Overview
	10.2 Mobile Usage Scenarios
	10.3 ACPI C-States
	10.3.1 Processor-Specific C4 and Deep C4 States

	10.4 Guidelines for Extending Battery Life
	10.4.1 Adjust Performance to Meet Quality of Features
	10.4.2 Reducing Amount of Work
	10.4.3 Platform-Level Optimizations
	10.4.4 Handling Sleep State Transitions
	10.4.5 Using Enhanced Intel SpeedStep® Technology
	10.4.6 Enabling Intel® Enhanced Deeper Sleep
	10.4.7 Multicore Considerations
	10.4.7.1 Enhanced Intel SpeedStep® Technology
	10.4.7.2 Thread Migration Considerations
	10.4.7.3 Multicore Considerations for C-States

	Appendix A Application Performance Tools
	A.1 Compilers
	A.1.1 Recommended Optimization Settings for Intel 64 and IA-32 Processors
	A.1.2 Vectorization and Loop Optimization
	A.1.2.1 Multithreading with OpenMP*
	A.1.2.2 Automatic Multithreading

	A.1.3 Inline Expansion of Library Functions (/Oi, /Oi-)
	A.1.4 Floating-point Arithmetic Precision (/Op, /Op-, /Qprec, /Qprec_div, /Qpc, /Qlong_double)
	A.1.5 Rounding Control Option (/Qrcr, /Qrcd)
	A.1.6 Interprocedural and Profile-Guided Optimizations
	A.1.6.1 Interprocedural Optimization (IPO)
	A.1.6.2 Profile-Guided Optimization (PGO)

	A.1.7 Auto-Generation of Vectorized Code

	A.2 Intel® VTune™ Performance Analyzer
	A.2.1 Sampling
	A.2.1.1 Time-based Sampling
	A.2.1.2 Event-based Sampling
	A.2.1.3 Workload Characterization

	A.2.2 Call Graph
	A.2.3 Counter Monitor

	A.3 Intel® Performance Libraries
	A.3.1 Benefits Summary
	A.3.2 Optimizations with the Intel® Performance Libraries

	A.4 Intel® Threading Analysis Tools
	A.4.1 Intel® Thread Checker 3.0
	A.4.2 Intel Thread Profiler 3.0
	A.4.3 Intel Threading Building Blocks 1.0

	A.5 Intel® Software College

	Appendix B Using Performance Monitoring Events
	B.1 Pentium® 4 Processor Performance Metrics
	B.1.1 Pentium® 4 Processor-Specific Terminology
	B.1.1.1 Bogus, Non-bogus, Retire
	B.1.1.2 Bus Ratio
	B.1.1.3 Replay
	B.1.1.4 Assist
	B.1.1.5 Tagging

	B.1.2 Counting Clocks
	B.1.2.1 Non-Halted Clock Ticks
	B.1.2.2 Non-Sleep Clock Ticks
	B.1.2.3 Time-Stamp Counter

	B.2 Metrics Descriptions and Categories
	B.2.1 Trace Cache Events
	B.2.2 Bus and Memory Metrics
	B.2.2.1 Reads due to program loads
	B.2.2.2 Reads due to program writes (RFOs)
	B.2.2.3 Writebacks (dirty evictions)

	B.2.3 Usage Notes for Specific Metrics
	B.2.4 Usage Notes on Bus Activities

	B.3 Performance Metrics and Tagging Mechanisms
	B.3.1 Tags for replay_event
	B.3.2 Tags for front_end_event
	B.3.3 Tags for execution_event

	B.4 Using Performance Metrics with Hyper- Threading Technology
	B.5 Using Performance Events of Intel Core Solo and Intel Core Duo processors
	B.5.1 Understanding the Results in a Performance Counter
	B.5.2 Ratio Interpretation
	B.5.3 Notes on Selected Events

	B.6 Drill-Down Techniques for Performance Analysis
	B.6.1 Cycle Composition at Issue Port
	B.6.2 Cycle Composition of OOO Execution
	B.6.3 Drill-Down on Performance Stalls

	B.7 Event ratios for Intel Core microarchitecture
	B.7.1 Clocks Per Instructions Retired Ratio (CPI)
	B.7.2 Front-end Ratios
	B.7.2.1 Code Locality
	B.7.2.2 Branching and Front-end
	B.7.2.3 Stack Pointer Tracker
	B.7.2.4 Macro-fusion
	B.7.2.5 Length Changing Prefix (LCP) Stalls
	B.7.2.6 Self Modifying Code Detection

	B.7.3 Branch Prediction Ratios
	B.7.3.1 Branch Mispredictions
	B.7.3.2 Virtual Tables and Indirect Calls
	B.7.3.3 Mispredicted Returns

	B.7.4 Execution Ratios
	B.7.4.1 Resource Stalls
	B.7.4.2 ROB Read Port Stalls
	B.7.4.3 Partial Register Stalls
	B.7.4.4 Partial Flag Stalls
	B.7.4.5 Bypass Between Execution Domains
	B.7.4.6 Floating Point Performance Ratios

	B.7.5 Memory Sub-System - Access Conflicts Ratios
	B.7.5.1 Loads Blocked by the L1 Data Cache
	B.7.5.2 4K Aliasing and Store Forwarding Block Detection
	B.7.5.3 Load Block by Preceding Stores
	B.7.5.4 Memory Disambiguation
	B.7.5.5 Load Operation Address Translation

	B.7.6 Memory Sub-System - Cache Misses Ratios
	B.7.6.1 Locating Cache Misses in the Code
	B.7.6.2 L1 Data Cache Misses
	B.7.6.3 L2 Cache Misses

	B.7.7 Memory Sub-system - Prefetching
	B.7.7.1 L1 Data Prefetching
	B.7.7.2 L2 Hardware Prefetching
	B.7.7.3 Software Prefetching

	B.7.8 Memory Sub-system - TLB Miss Ratios
	B.7.9 Memory Sub-system - Core Interaction
	B.7.9.1 Modified Data Sharing
	B.7.9.2 Fast Synchronization Penalty
	B.7.9.3 Simultaneous Extensive Stores and Load Misses

	B.7.10 Memory Sub-system - Bus Characterization
	B.7.10.1 Bus Utilization
	B.7.10.2 Modified Cache Lines Eviction

	Appendix C Instruction Latency and Throughput
	C.1 Overview
	C.2 Definitions
	C.3 Latency and Throughput
	C.3.1 Latency and Throughput with Register Operands
	C.3.2 Table Footnotes
	C.3.3 Latency and Throughput with Memory Operands

	Appendix D Stack Alignment
	D.4 Stack Frames
	D.4.1 Aligned ESP-Based Stack Frames
	D.4.2 Aligned EDP-Based Stack Frames
	D.4.3 Stack Frame Optimizations

	D.5 Inlined Assembly and EBX

	Appendix E Summary of Rules and Suggestions
	E.1 Assembly/Compiler Coding Rules
	E.2 User/Source Coding Rules
	E.3 Tuning Suggestions

	Index
	Intel Sales Offices

