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6.1.2. Task State

The following items define the state of the currently executing task:

• The task’s current execution space, defined by the segment selectors in the segment
registers (CS, DS, SS, ES, FS, and GS).

• The state of the general-purpose registers.

• The state of the EFLAGS register.

• The state of the EIP register.

• The state of control register CR3.

• The state of the task register.

• The state of the LDTR register.

• The I/O map base address and I/O map (contained in the TSS).

• Stack pointers to the privilege 0, 1, and 2 stacks (contained in the TSS).

• Link to previously executed task (contained in the TSS).

Prior to dispatching a task, all of these items are contained in the task’s TSS, except the state of
the task register. Also, the complete contents of the LDTR register are not contained in the TSS,
only the segment selector for the LDT.

Figure 6-1.  Structure of a Task
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The processor updates the dynamic fields when a task is suspended during a task switch. The
following are dynamic fields:

General-purpose register fields
State of the EAX, ECX, EDX, EBX, ESP, EBP, ESI, and EDI registers prior to
the task switch.

Figure 6-2.  32-Bit Task-State Segment (TSS)
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The base, limit, and DPL fields and the granularity and present flags have functions similar to
their use in data-segment descriptors (see Section 3.4.3., “Segment Descriptors”). When the G
flag is 0 in a TSS descriptor for a 32-bit TSS, the limit field must have a value equal to or greater
than 67H, one byte less than the minimum size of a TSS. Attempting to switch to a task whose
TSS descriptor has a limit less than 67H generates an invalid-TSS exception (#TS). A larger
limit is required if an I/O permission bit map is included in the TSS. An even larger limit would
be required if the operating system stores additional data in the TSS. The processor does not
check for a limit greater than 67H on a task switch; however, it does when accessing the I/O
permission bit map or interrupt redirection bit map.

Any program or procedure with access to a TSS descriptor (that is, whose CPL is numerically
equal to or less than the DPL of the TSS descriptor) can dispatch the task with a call or a jump. 

In most systems, the DPLs of TSS descriptors should be set to values less than 3, so that only
privileged software can perform task switching. However, in multitasking applications, DPLs
for some TSS descriptors can be set to 3 to allow task switching at the application (or user) priv-
ilege level.

6.2.3. Task Register

The task register holds the 16-bit segment selector and the entire segment descriptor (32-bit base
address, 16-bit segment limit, and descriptor attributes) for the TSS of the current task (see
Figure 2-4). This information is copied from the TSS descriptor in the GDT for the current task.
Figure 6-4 shows the path the processor uses to accesses the TSS, using the information in the
task register.

Figure 6-3.  TSS Descriptor
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Figure 6-4.  Task Register

Figure 6-5.  Task-Gate Descriptor
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6.3. TASK SWITCHING

The processor transfers execution to another task in any of four cases:

• The current program, task, or procedure executes a JMP or CALL instruction to a TSS
descriptor in the GDT.

• The current program, task, or procedure executes a JMP or CALL instruction to a task-gate
descriptor in the GDT or the current LDT.

• An interrupt or exception vector points to a task-gate descriptor in the IDT.

• The current task executes an IRET when the NT flag in the EFLAGS register is set. 

Figure 6-6.  Task Gates Referencing the Same Task
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ating floating-point exceptions with the rest of the processor. The TS flag indicates that the
context of the floating-point unit may be different from that of the current task. See Section 2.5.,
“Control Registers”, for a detailed description of the function and use of the TS flag.

6.4. TASK LINKING

The previous task link field of the TSS (sometimes called the “backlink”) and the NT flag in the
EFLAGS register are used to return execution to the previous task. The NT flag indicates
whether the currently executing task is nested within the execution of another task, and the
previous task link field of the current task's TSS holds the TSS selector for the higher-level task
in the nesting hierarchy, if there is one (see Figure 6-7).

When a CALL instruction, an interrupt, or an exception causes a task switch, the processor
copies the segment selector for the current TSS into the previous task link field of the TSS for
the new task, and then sets the NT flag in the EFLAGS register. The NT flag indicates that the
previous task link field of the TSS has been loaded with a saved TSS segment selector. If soft-
ware uses an IRET instruction to suspend the new task, the processor uses the value in the
previous task link field and the NT flag to return to the previous task; that is, if the NT flag is
set, the processor performs a task switch to the task specified in the previous task link field.

NOTE

When a JMP instruction causes a task switch, the new task is not nested; that
is, the NT flag is set to 0 and the previous task link field is not used. A JMP
instruction is used to dispatch a new task when nesting is not desired. 

Table 6-2 summarizes the uses of the busy flag (in the TSS segment descriptor), the NT flag, the
previous task link field, and TS flag (in control register CR0) during a task switch. Note that the
NT flag may be modified by software executing at any privilege level. It is possible for a
program to set its NT flag and execute an IRET instruction, which would have the effect of
invoking the task specified in the previous link field of the current task's TSS. To keep spurious

Figure 6-7.  Nested Tasks
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6.5.2. Task Logical Address Space

To allow the sharing of data among tasks, use any of the following techniques to create shared
logical-to-physical address-space mappings for data segments:

• Through the segment descriptors in the GDT. All tasks must have access to the segment
descriptors in the GDT. If some segment descriptors in the GDT point to segments in the
linear-address space that are mapped into an area of the physical-address space common to
all tasks, then all tasks can share the data and code in those segments.

• Through a shared LDT. Two or more tasks can use the same LDT if the LDT fields in their
TSSs point to the same LDT. If some segment descriptors in a shared LDT point to
segments that are mapped to a common area of the physical address space, the data and
code in those segments can be shared among the tasks that share the LDT. This method of
sharing is more selective than sharing through the GDT, because the sharing can be limited
to specific tasks. Other tasks in the system may have different LDTs that do not give them
access to the shared segments.

• Through segment descriptors in distinct LDTs that are mapped to common addresses in the
linear address space. If this common area of the linear address space is mapped to the same
area of the physical address space for each task, these segment descriptors permit the tasks
to share segments. Such segment descriptors are commonly called aliases. This method of
sharing is even more selective than those listed above, because, other segment descriptors
in the LDTs may point to independent linear addresses which are not shared.

Figure 6-8.  Overlapping Linear-to-Physical Mappings
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