
Vol. 3 5-3

INTERRUPT AND EXCEPTION HANDLING

NOTES:
1. The UD2 instruction was introduced in the Pentium Pro processor.
2. IA-32 processors after the Intel386 processor do not generate this exception.
3. This exception was introduced in the Intel486 processor.
4. This exception was introduced in the Pentium processor and enhanced in the P6 family processors.
5. This exception was introduced in the Pentium III processor.

Table 5-1. Protected-Mode Exceptions and Interrupts

Vector
No.

Mne-
monic Description Type

Error
Code Source

 0 #DE Divide Error Fault No DIV and IDIV instructions.

 1 #DB RESERVED Fault/
Trap

No For Intel use only.

 2 — NMI Interrupt Interrupt No Nonmaskable external interrupt.

 3 #BP Breakpoint Trap No INT 3 instruction.

 4 #OF Overflow Trap No INTO instruction.

 5 #BR BOUND Range Exceeded Fault No BOUND instruction.

 6 #UD Invalid Opcode (Undefined
Opcode)

Fault No UD2 instruction or reserved
opcode.1

 7 #NM Device Not Available (No
Math Coprocessor)

Fault No Floating-point or WAIT/FWAIT
instruction.

 8 #DF Double Fault Abort Yes
(Zero)

Any instruction that can generate
an exception, an NMI, or an INTR.

 9 Coprocessor Segment
Overrun (reserved)

Fault No Floating-point instruction.2

10 #TS Invalid TSS Fault Yes Task switch or TSS access.

11 #NP Segment Not Present Fault Yes Loading segment registers or
accessing system segments.

12 #SS Stack-Segment Fault Fault Yes Stack operations and SS register
loads.

13 #GP General Protection Fault Yes Any memory reference and other
protection checks.

14 #PF Page Fault Fault Yes Any memory reference.

15 — (Intel reserved. Do not use.) No

16 #MF x87 FPU Floating-Point
Error (Math Fault)

Fault No x87 FPU floating-point or
WAIT/FWAIT instruction.

17 #AC Alignment Check Fault Yes
(Zero)

Any data reference in memory.3

18 #MC Machine Check Abort No Error codes (if any) and source
are model dependent.4

19 #XF SIMD Floating-Point
Exception

Fault No SSE/SSE2/SSE3 floating-point
instructions5

20-31 — Intel reserved. Do not use.

32-
255

— User Defined (Non-
reserved) Interrupts

Interrupt External interrupt or INT n
instruction.

5-10 Vol. 3

INTERRUPT AND EXCEPTION HANDLING

When set, it prevents an instruction breakpoint from generating a debug exception (#DB); when
clear, instruction breakpoints will generate debug exceptions. The primary function of the RF
flag is to prevent the processor from going into a debug exception loop on an instruction-break-
point. See Section 15.3.1.1., “Instruction-Breakpoint Exception Condition”, for more informa-
tion on the use of this flag.

5.8.3. Masking Exceptions and Interrupts When Switching
Stacks

To switch to a different stack segment, software often uses a pair of instructions, for example:

MOV SS, AX

MOV ESP, StackTop

If an interrupt or exception occurs after the segment selector has been loaded into the SS register
but before the ESP register has been loaded, these two parts of the logical address into the stack
space are inconsistent for the duration of the interrupt or exception handler.

To prevent this situation, the processor inhibits interrupts, debug exceptions, and single-step trap
exceptions after either a MOV to SS instruction or a POP to SS instruction, until the instruction
boundary following the next instruction is reached. All other faults may still be generated. If the
LSS instruction is used to modify the contents of the SS register (which is the recommended
method of modifying this register), this problem does not occur.

5.9. PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND
INTERRUPTS

If more than one exception or interrupt is pending at an instruction boundary, the processor
services them in a predictable order. Table 5-2 shows the priority among classes of exception
and interrupt sources.

Table 5-2. Priority Among Simultaneous Exceptions and Interrupts

Priority Descriptions

1 (Highest) Hardware Reset and Machine Checks
- RESET
- Machine Check

2 Trap on Task Switch
- T flag in TSS is set

3 External Hardware Interventions
- FLUSH
- STOPCLK
- SMI
- INIT

4 Traps on the Previous Instruction
- Breakpoints
- Debug Trap Exceptions (TF flag set or data/I-O breakpoint)

Vol. 3 5-11

INTERRUPT AND EXCEPTION HANDLING

While priority among these classes listed in Table 5-2 is consistent throughout the architecture,
exceptions within each class are implementation-dependent and may vary from processor to
processor. The processor first services a pending exception or interrupt from the class which has
the highest priority, transferring execution to the first instruction of the handler. Lower priority
exceptions are discarded; lower priority interrupts are held pending. Discarded exceptions are
re-generated when the interrupt handler returns execution to the point in the program or task
where the exceptions and/or interrupts occurred.

5.10. INTERRUPT DESCRIPTOR TABLE (IDT)

The interrupt descriptor table (IDT) associates each exception or interrupt vector with a gate
descriptor for the procedure or task used to service the associated exception or interrupt. Like
the GDT and LDTs, the IDT is an array of 8-byte descriptors (in protected mode). Unlike the
GDT, the first entry of the IDT may contain a descriptor. To form an index into the IDT, the
processor scales the exception or interrupt vector by eight (the number of bytes in a gate
descriptor). Because there are only 256 interrupt or exception vectors, the IDT need not contain
more than 256 descriptors. It can contain fewer than 256 descriptors, because descriptors are
required only for the interrupt and exception vectors that may occur. All empty descriptor slots
in the IDT should have the present flag for the descriptor set to 0.

The base addresses of the IDT should be aligned on an 8-byte boundary to maximize perfor-
mance of cache line fills. The limit value is expressed in bytes and is added to the base address

Priority Descriptions

5 External Interrupts
- NMI Interrupts
- Maskable Hardware Interrupts

6 Code Breakpoint Fault

7 Faults from Fetching Next Instruction
- Code-Segment Limit Violation
- Code Page Fault

8 Faults from Decoding the Next Instruction
- Instruction length > 15 bytes
- Invalid Opcode
- Coprocessor Not Available

9 (Lowest) Faults on Executing an Instruction
- Overflow
- Bound error
- Invalid TSS
- Segment Not Present
- Stack fault
- General Protection
- Data Page Fault
- Alignment Check
- x87 FPU Floating-point exception
- SIMD floating-point exception

Table 5-2. Priority Among Simultaneous Exceptions and Interrupts (Contd.)

5-12 Vol. 3

INTERRUPT AND EXCEPTION HANDLING

to get the address of the last valid byte. A limit value of 0 results in exactly 1 valid byte. Because
IDT entries are always eight bytes long, the limit should always be one less than an integral
multiple of eight (that is, 8N – 1).

The IDT may reside anywhere in the linear address space. As shown in Figure 5-1, the processor
locates the IDT using the IDTR register. This register holds both a 32-bit base address and 16-bit
limit for the IDT.

The LIDT (load IDT register) and SIDT (store IDT register) instructions load and store the
contents of the IDTR register, respectively. The LIDT instruction loads the IDTR register with
the base address and limit held in a memory operand. This instruction can be executed only
when the CPL is 0. It normally is used by the initialization code of an operating system when
creating an IDT. An operating system also may use it to change from one IDT to another. The
SIDT instruction copies the base and limit value stored in IDTR to memory. This instruction can
be executed at any privilege level.

If a vector references a descriptor beyond the limit of the IDT, a general-protection exception
(#GP) is generated.

Figure 5-1. Relationship of the IDTR and IDT

IDT LimitIDT Base Address

+
Interrupt

Descriptor Table (IDT)

Gate for

0
IDTR Register

Interrupt #n

Gate for
Interrupt #3

Gate for
Interrupt #2

Gate for
Interrupt #1

151647

031
0

8

16

(n−1)∗8

5-14 Vol. 3

INTERRUPT AND EXCEPTION HANDLING

5.12. EXCEPTION AND INTERRUPT HANDLING

The processor handles calls to exception- and interrupt-handlers similar to the way it handles
calls with a CALL instruction to a procedure or a task. When responding to an exception or inter-
rupt, the processor uses the exception or interrupt vector as an index to a descriptor in the IDT.
If the index points to an interrupt gate or trap gate, the processor calls the exception or interrupt
handler in a manner similar to a CALL to a call gate (see Section 4.8.2., “Gate Descriptors”

Figure 5-2. IDT Gate Descriptors

31 16 15 1314 12 8 7 0

POffset 31..16
D
P
L

0 4

31 16 15 0

Segment Selector Offset 15..0 0

011D

Interrupt Gate

DPL
Offset
P
Selector

Descriptor Privilege Level
Offset to procedure entry point
Segment Present flag
Segment Selector for destination code segment

31 16 15 1314 12 8 7 0

P
D
P
L

0 4

31 16 15 0

TSS Segment Selector 0

1010

Task Gate

45

0 0 0

31 16 15 1314 12 8 7 0

POffset 31..16
D
P
L

0 4

31 16 15 0

Segment Selector Offset 15..0 0

111D

Trap Gate
45

0 0 0

Reserved

Size of gate: 1 = 32 bits; 0 = 16 bitsD

Vol. 3 5-15

INTERRUPT AND EXCEPTION HANDLING

through Section 4.8.6., “Returning from a Called Procedure”). If index points to a task gate, the
processor executes a task switch to the exception- or interrupt-handler task in a manner similar
to a CALL to a task gate (see Section 6.3., “Task Switching”).

5.12.1. Exception- or Interrupt-Handler Procedures

An interrupt gate or trap gate references an exception- or interrupt-handler procedure that runs
in the context of the currently executing task (see Figure 5-3). The segment selector for the gate
points to a segment descriptor for an executable code segment in either the GDT or the current
LDT. The offset field of the gate descriptor points to the beginning of the exception- or interrupt-
handling procedure.

Figure 5-3. Interrupt Procedure Call

IDT

Interrupt or

Code Segment

Segment Selector

GDT or LDT

Segment

Interrupt
Vector

Base
Address

Destination

Procedure
Interrupt

+

Descriptor

Trap Gate

Offset

Vol. 3 5-17

INTERRUPT AND EXCEPTION HANDLING

To return from an exception- or interrupt-handler procedure, the handler must use the IRET (or
IRETD) instruction. The IRET instruction is similar to the RET instruction except that it restores
the saved flags into the EFLAGS register. The IOPL field of the EFLAGS register is restored
only if the CPL is 0. The IF flag is changed only if the CPL is less than or equal to the IOPL.
See “IRET/IRETD—Interrupt Return” in Chapter 3 of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 2, for the complete operation performed by the IRET instruction.

If a stack switch occurred when calling the handler procedure, the IRET instruction switches
back to the interrupted procedure’s stack on the return.

5.12.1.1. PROTECTION OF EXCEPTION- AND INTERRUPT-HANDLER
PROCEDURES

The privilege-level protection for exception- and interrupt-handler procedures is similar to that
used for ordinary procedure calls when called through a call gate (see Section 4.8.4., “Accessing
a Code Segment Through a Call Gate”). The processor does not permit transfer of execution to
an exception- or interrupt-handler procedure in a less privileged code segment (numerically
greater privilege level) than the CPL.

Figure 5-4. Stack Usage on Transfers to Interrupt and Exception-Handling Routines

 CS

Error Code

EFLAGS
CS

 EIP
ESP After
Transfer to Handler

Error Code

ESP Before
Transfer to Handler

 EFLAGS

 EIP

 SS
 ESP

Stack Usage with No
Privilege-Level Change

Stack Usage with
Privilege-Level Change

Interrupted Procedure’s

Interrupted Procedure’s
and Handler’s Stack

Handler’s Stack

ESP After
Transfer to Handler

Transfer to Handler
ESP Before

Stack

5-20 Vol. 3

INTERRUPT AND EXCEPTION HANDLING

Figure 5-5. Interrupt Task Switch

IDT

Task Gate

TSS for Interrupt-

TSS Selector

GDT

TSS Descriptor

Interrupt
Vector

TSS
Base
Address

Handling Task

Vol. 3 5-21

INTERRUPT AND EXCEPTION HANDLING

5.13. ERROR CODE

When an exception condition is related to a specific segment, the processor pushes an error code
onto the stack of the exception handler (whether it is a procedure or task). The error code has
the format shown in Figure 5-6. The error code resembles a segment selector; however, instead
of a TI flag and RPL field, the error code contains 3 flags:

EXT External event (bit 0). When set, indicates that an event external to the
program, such as a hardware interrupt, caused the exception.

IDT Descriptor location (bit 1). When set, indicates that the index portion of the
error code refers to a gate descriptor in the IDT; when clear, indicates that the
index refers to a descriptor in the GDT or the current LDT.

TI GDT/LDT (bit 2). Only used when the IDT flag is clear. When set, the TI flag
indicates that the index portion of the error code refers to a segment or gate
descriptor in the LDT; when clear, it indicates that the index refers to a
descriptor in the current GDT.

The segment selector index field provides an index into the IDT, GDT, or current LDT to the
segment or gate selector being referenced by the error code. In some cases the error code is null
(that is, all bits in the lower word are clear). A null error code indicates that the error was not
caused by a reference to a specific segment or that a null segment descriptor was referenced in
an operation.

The format of the error code is different for page-fault exceptions (#PF), see “Interrupt
14—Page-Fault Exception (#PF)” in this chapter.

The error code is pushed on the stack as a doubleword or word (depending on the default inter-
rupt, trap, or task gate size). To keep the stack aligned for doubleword pushes, the upper half of
the error code is reserved. Note that the error code is not popped when the IRET instruction is
executed to return from an exception handler, so the handler must remove the error code before
executing a return.

Error codes are not pushed on the stack for exceptions that are generated externally (with the
INTR or LINT[1:0] pins) or the INT n instruction, even if an error code is normally produced
for those exceptions.

Figure 5-6. Error Code

31 0

Reserved
I
D
T

T
I

123

Segment Selector Index
E
X
T

