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If paging is not used, the linear address space of the processor is mapped directly into the phys-
ical address space of processor. The physical address space is defined as the range of addresses
that the processor can generate on its address bus.

Because multitasking computing systems commonly define a linear address space much larger
than it is economically feasible to contain all at once in physical memory, some method of
“virtualizing” the linear address space is needed. This virtualization of the linear address space
is handled through the processor’s paging mechanism.

Paging supports a “virtual memory” environment where a large linear address space is simulated
with a small amount of physical memory (RAM and ROM) and some disk storage. When using
paging, each segment is divided into pages (typically 4 KBytes each in size), which are stored
either in physical memory or on the disk. The operating system or executive maintains a page
directory and a set of page tables to keep track of the pages. When a program (or task) attempts
to access an address location in the linear address space, the processor uses the page directory
and page tables to translate the linear address into a physical address and then performs the
requested operation (read or write) on the memory location. 

Figure 3-1.  Segmentation and Paging
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More complexity can be added to this protected flat model to provide more protection. For
example, for the paging mechanism to provide isolation between user and supervisor code and
data, four segments need to be defined: code and data segments at privilege level 3 for the user,
and code and data segments at privilege level 0 for the supervisor. Usually these segments all
overlay each other and start at address 0 in the linear address space. This flat segmentation
model along with a simple paging structure can protect the operating system from applications,
and by adding a separate paging structure for each task or process, it can also protect applica-
tions from each other. Similar designs are used by several popular multitasking operating
systems.

Figure 3-2.  Flat Model

Figure 3-3.  Protected Flat Model
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3.2.3. Multi-Segment Model

A multi-segment model (such as the one shown in Figure 3-4) uses the full capabilities of the
segmentation mechanism to provided hardware enforced protection of code, data structures, and
programs and tasks. Here, each program (or task) is given its own table of segment descriptors
and its own segments. The segments can be completely private to their assigned programs or
shared among programs. Access to all segments and to the execution environments of individual
programs running on the system is controlled by hardware.

Access checks can be used to protect not only against referencing an address outside the limit
of a segment, but also against performing disallowed operations in certain segments. For
example, since code segments are designated as read-only segments, hardware can be used to
prevent writes into code segments. The access rights information created for segments can also
be used to set up protection rings or levels. Protection levels can be used to protect operating-
system procedures from unauthorized access by application programs.

Figure 3-4.  Multi-Segment Model

Linear Address Space
(or Physical Memory)

Segment
Registers

CS

Segment
Descriptors

LimitAccess
Base Address

SS
LimitAccess

Base Address

DS
LimitAccess

Base Address

ES LimitAccess
Base Address

FS LimitAccess
Base Address

GS LimitAccess
Base Address

LimitAccess
Base Address

LimitAccess
Base Address

LimitAccess
Base Address

LimitAccess
Base Address

Stack

Code

Data

Data

Data

Data



Vol. 3 3-7

PROTECTED-MODE MEMORY MANAGEMENT

To translate a logical address into a linear address, the processor does the following:

1. Uses the offset in the segment selector to locate the segment descriptor for the segment in
the GDT or LDT and reads it into the processor. (This step is needed only when a new
segment selector is loaded into a segment register.)

2. Examines the segment descriptor to check the access rights and range of the segment to
insure that the segment is accessible and that the offset is within the limits of the segment.

3. Adds the base address of the segment from the segment descriptor to the offset to form a
linear address.

If paging is not used, the processor maps the linear address directly to a physical address (that
is, the linear address goes out on the processor’s address bus). If the linear address space is
paged, a second level of address translation is used to translate the linear address into a physical
address. Page translation is described in Section 3.6., “Paging (Virtual Memory) Overview”.

3.4.1. Segment Selectors

A segment selector is a 16-bit identifier for a segment (see Figure 3-6). It does not point directly
to the segment, but instead points to the segment descriptor that defines the segment. A segment
selector contains the following items:

Index (Bits 3 through 15). Selects one of 8192 descriptors in the GDT or LDT. The
processor multiplies the index value by 8 (the number of bytes in a segment
descriptor) and adds the result to the base address of the GDT or LDT (from
the GDTR or LDTR register, respectively).

TI (table indicator) flag
(Bit 2). Specifies the descriptor table to use: clearing this flag selects the GDT;
setting this flag selects the current LDT.

Figure 3-5.  Logical Address to Linear Address Translation
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Requested Privilege Level (RPL)
(Bits 0 and 1). Specifies the privilege level of the selector. The privilege level
can range from 0 to 3, with 0 being the most privileged level. See Section 4.5.,
“Privilege Levels”, for a description of the relationship of the RPL to the CPL
of the executing program (or task) and the descriptor privilege level (DPL) of
the descriptor the segment selector points to.

The first entry of the GDT is not used by the processor. A segment selector that points to this
entry of the GDT (that is, a segment selector with an index of 0 and the TI flag set to 0) is used
as a “null segment selector.” The processor does not generate an exception when a segment
register (other than the CS or SS registers) is loaded with a null selector. It does, however,
generate an exception when a segment register holding a null selector is used to access memory.
A null selector can be used to initialize unused segment registers. Loading the CS or SS register
with a null segment selector causes a general-protection exception (#GP) to be generated.

Segment selectors are visible to application programs as part of a pointer variable, but the values
of selectors are usually assigned or modified by link editors or linking loaders, not application
programs.

3.4.2. Segment Registers

To reduce address translation time and coding complexity, the processor provides registers for
holding up to 6 segment selectors (see Figure 3-7). Each of these segment registers support a
specific kind of memory reference (code, stack, or data). For virtually any kind of program
execution to take place, at least the code-segment (CS), data-segment (DS), and stack-segment
(SS) registers must be loaded with valid segment selectors. The processor also provides three
additional data-segment registers (ES, FS, and GS), which can be used to make additional data
segments available to the currently executing program (or task).

For a program to access a segment, the segment selector for the segment must have been loaded
in one of the segment registers. So, although a system can define thousands of segments, only 6
can be available for immediate use. Other segments can be made available by loading their
segment selectors into these registers during program execution.

Figure 3-6.  Segment Selector
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Every segment register has a “visible” part and a “hidden” part. (The hidden part is sometimes
referred to as a “descriptor cache” or a “shadow register.”) When a segment selector is loaded
into the visible part of a segment register, the processor also loads the hidden part of the segment
register with the base address, segment limit, and access control information from the segment
descriptor pointed to by the segment selector. The information cached in the segment register
(visible and hidden) allows the processor to translate addresses without taking extra bus cycles
to read the base address and limit from the segment descriptor. In systems in which multiple
processors have access to the same descriptor tables, it is the responsibility of software to reload
the segment registers when the descriptor tables are modified. If this is not done, an old segment
descriptor cached in a segment register might be used after its memory-resident version has been
modified.

Two kinds of load instructions are provided for loading the segment registers:

1. Direct load instructions such as the MOV, POP, LDS, LES, LSS, LGS, and LFS instruc-
tions. These instructions explicitly reference the segment registers.

2. Implied load instructions such as the far pointer versions of the CALL, JMP, and RET
instructions, the SYSENTER and SYSEXIT instructions, and the IRET, INTn, INTO and
INT3 instructions. These instructions change the contents of the CS register (and
sometimes other segment registers) as an incidental part of their operation.

The MOV instruction can also be used to store visible part of a segment register in a general-
purpose register.

3.4.3. Segment Descriptors

A segment descriptor is a data structure in a GDT or LDT that provides the processor with the
size and location of a segment, as well as access control and status information. Segment
descriptors are typically created by compilers, linkers, loaders, or the operating system or exec-
utive, but not application programs. Figure 3-8 illustrates the general descriptor format for all
types of segment descriptors.

Figure 3-7.  Segment Registers
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The flags and fields in a segment descriptor are as follows:

Segment limit field
Specifies the size of the segment. The processor puts together the two segment
limit fields to form a 20-bit value. The processor interprets the segment limit
in one of two ways, depending on the setting of the G (granularity) flag:

• If the granularity flag is clear, the segment size can range from 1 byte to 1
MByte, in byte increments.

• If the granularity flag is set, the segment size can range from 4 KBytes to
4 GBytes, in 4-KByte increments.

The processor uses the segment limit in two different ways, depending on
whether the segment is an expand-up or an expand-down segment. See Section
3.4.3.1., “Code- and Data-Segment Descriptor Types”, for more information
about segment types. For expand-up segments, the offset in a logical address
can range from 0 to the segment limit. Offsets greater than the segment limit
generate general-protection exceptions (#GP). For expand-down segments, the
segment limit has the reverse function; the offset can range from the segment
limit to FFFFFFFFH or FFFFH, depending on the setting of the B flag. Offsets
less than the segment limit generate general-protection exceptions. Decreasing
the value in the segment limit field for an expand-down segment allocates new
memory at the bottom of the segment's address space, rather than at the top. IA-
32 architecture stacks always grow downwards, making this mechanism
convenient for expandable stacks.

Figure 3-8.  Segment Descriptor
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The instruction prefix 66H can be used to select an operand size other than
the default, and the prefix 67H can be used select an address size other than
the default.

• Stack segment (data segment pointed to by the SS register). The flag is
called the B (big) flag and it specifies the size of the stack pointer used for
implicit stack operations (such as pushes, pops, and calls). If the flag is set,
a 32-bit stack pointer is used, which is stored in the 32-bit ESP register; if
the flag is clear, a 16-bit stack pointer is used, which is stored in the 16-bit
SP register. If the stack segment is set up to be an expand-down data
segment (described in the next paragraph), the B flag also specifies the
upper bound of the stack segment.

• Expand-down data segment. The flag is called the B flag and it specifies
the upper bound of the segment. If the flag is set, the upper bound is
FFFFFFFFH (4 GBytes); if the flag is clear, the upper bound is FFFFH (64
KBytes).

G (granularity) flag
Determines the scaling of the segment limit field. When the granularity flag is
clear, the segment limit is interpreted in byte units; when flag is set, the
segment limit is interpreted in 4-KByte units. (This flag does not affect the
granularity of the base address; it is always byte granular.) When the granu-
larity flag is set, the twelve least significant bits of an offset are not tested when
checking the offset against the segment limit. For example, when the granu-
larity flag is set, a limit of 0 results in valid offsets from 0 to 4095.

Available and reserved bits
Bit 20 of the second doubleword of the segment descriptor is available for use
by system software; bit 21 is reserved and should always be set to 0.

Figure 3-9.  Segment Descriptor When Segment-Present Flag Is Clear

31 16 15 1314 12 11 8 7 0

0Available
D
P
L

TypeS 4

31 0

Available 0

Available



Vol. 3 3-13

PROTECTED-MODE MEMORY MANAGEMENT

3.4.3.1. CODE- AND DATA-SEGMENT DESCRIPTOR TYPES

When the S (descriptor type) flag in a segment descriptor is set, the descriptor is for either a code
or a data segment. The highest order bit of the type field (bit 11 of the second double word of
the segment descriptor) then determines whether the descriptor is for a data segment (clear) or
a code segment (set). 

For data segments, the three low-order bits of the type field (bits 8, 9, and 10) are interpreted as
accessed (A), write-enable (W), and expansion-direction (E). See Table 3-1 for a description of
the encoding of the bits in the type field for code and data segments. Data segments can be read-
only or read/write segments, depending on the setting of the write-enable bit. 

Stack segments are data segments which must be read/write segments. Loading the SS register
with a segment selector for a nonwritable data segment generates a general-protection exception
(#GP). If the size of a stack segment needs to be changed dynamically, the stack segment can be
an expand-down data segment (expansion-direction flag set). Here, dynamically changing the
segment limit causes stack space to be added to the bottom of the stack. If the size of a stack
segment is intended to remain static, the stack segment may be either an expand-up or expand-
down type.

The accessed bit indicates whether the segment has been accessed since the last time the oper-
ating-system or executive cleared the bit. The processor sets this bit whenever it loads a segment
selector for the segment into a segment register, assuming that the type of memory that contains
the segment descriptor supports processor writes. The bit remains set until explicitly cleared.
This bit can be used both for virtual memory management and for debugging. 

Table 3-1.  Code- and Data-Segment Types

Type Field

Descriptor
Type DescriptionDecimal

11 10
E

9
W

8
A

0
1
2
3
4
5
6
7

0
0
0
0
0
0
0
0

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

Data
Data
Data
Data
Data
Data
Data
Data

Read-Only
Read-Only, accessed
Read/Write
Read/Write, accessed
Read-Only, expand-down
Read-Only, expand-down, accessed
Read/Write, expand-down
Read/Write, expand-down, accessed

C R A

8
9
10
11
12
13
14
15

1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

Code
Code
Code
Code
Code
Code
Code
Code

Execute-Only
Execute-Only, accessed
Execute/Read
Execute/Read, accessed
Execute-Only, conforming
Execute-Only, conforming, accessed
Execute/Read-Only, conforming
Execute/Read-Only, conforming, accessed
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• Interrupt-gate descriptor.

• Trap-gate descriptor.

• Task-gate descriptor.

These descriptor types fall into two categories: system-segment descriptors and gate descriptors.
System-segment descriptors point to system segments (LDT and TSS segments). Gate descrip-
tors are in themselves “gates,” which hold pointers to procedure entry points in code segments
(call, interrupt, and trap gates) or which hold segment selectors for TSS’s (task gates). Table 3-2
shows the encoding of the type field for system-segment descriptors and gate descriptors.

For more information on the system-segment descriptors, see Section 3.5.1., “Segment
Descriptor Tables”, and Section 6.2.2., “TSS Descriptor”; for more information on the gate
descriptors, see Section 4.8.3., “Call Gates”, Section 5.11., “IDT Descriptors”, and Section
6.2.4., “Task-Gate Descriptor”.

Table 3-2.  System-Segment and Gate-Descriptor Types

Type Field

Decimal 11 10 9 8 Description

0 0 0 0 0 Reserved

1 0 0 0 1 16-Bit TSS (Available)

2 0 0 1 0 LDT

3 0 0 1 1 16-Bit TSS (Busy)

4 0 1 0 0 16-Bit Call Gate

5 0 1 0 1 Task Gate

6 0 1 1 0 16-Bit Interrupt Gate

7 0 1 1 1 16-Bit Trap Gate

8 1 0 0 0 Reserved

9 1 0 0 1 32-Bit TSS (Available)

10 1 0 1 0 Reserved

11 1 0 1 1 32-Bit TSS (Busy)

12 1 1 0 0 32-Bit Call Gate

13 1 1 0 1 Reserved

14 1 1 1 0 32-Bit Interrupt Gate

15 1 1 1 1 32-Bit Trap Gate
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3.5.1. Segment Descriptor Tables

A segment descriptor table is an array of segment descriptors (see Figure 3-10). A descriptor
table is variable in length and can contain up to 8192 (213) 8-byte descriptors. There are two
kinds of descriptor tables:

• The global descriptor table (GDT)

• The local descriptor tables (LDT)

Each system must have one GDT defined, which may be used for all programs and tasks in the
system. Optionally, one or more LDTs can be defined. For example, an LDT can be defined for
each separate task being run, or some or all tasks can share the same LDT.

The GDT is not a segment itself; instead, it is a data structure in the linear address space. The
base linear address and limit of the GDT must be loaded into the GDTR register (see Section
2.4., “Memory-Management Registers”). The base addresses of the GDT should be aligned on

Figure 3-10.  Global and Local Descriptor Tables
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an eight-byte boundary to yield the best processor performance. The limit value for the GDT is
expressed in bytes. As with segments, the limit value is added to the base address to get the
address of the last valid byte. A limit value of 0 results in exactly one valid byte. Because
segment descriptors are always 8 bytes long, the GDT limit should always be one less than an
integral multiple of eight (that is, 8N – 1).

The first descriptor in the GDT is not used by the processor. A segment selector to this “null
descriptor” does not generate an exception when loaded into a data-segment register (DS, ES,
FS, or GS), but it always generates a general-protection exception (#GP) when an attempt is
made to access memory using the descriptor. By initializing the segment registers with this
segment selector, accidental reference to unused segment registers can be guaranteed to generate
an exception.

The LDT is located in a system segment of the LDT type. The GDT must contain a segment
descriptor for the LDT segment. If the system supports multiple LDTs, each must have a sepa-
rate segment selector and segment descriptor in the GDT. The segment descriptor for an LDT
can be located anywhere in the GDT. See Section 3.5., “System Descriptor Types”, information
on the LDT segment-descriptor type.

An LDT is accessed with its segment selector. To eliminate address translations when accessing
the LDT, the segment selector, base linear address, limit, and access rights of the LDT are stored
in the LDTR register (see Section 2.4., “Memory-Management Registers”). 

When the GDTR register is stored (using the SGDT instruction), a 48-bit “pseudo-descriptor”
is stored in memory (see Figure 3-11). To avoid alignment check faults in user mode (privilege
level 3), the pseudo-descriptor should be located at an odd word address (that is, address MOD
4 is equal to 2). This causes the processor to store an aligned word, followed by an aligned
doubleword. User-mode programs normally do not store pseudo-descriptors, but the possibility
of generating an alignment check fault can be avoided by aligning pseudo-descriptors in this
way. The same alignment should be used when storing the IDTR register using the SIDT instruc-
tion. When storing the LDTR or task register (using the SLTR or STR instruction, respectively),
the pseudo-descriptor should be located at a doubleword address (that is, address MOD 4 is
equal to 0).

3.6. PAGING (VIRTUAL MEMORY) OVERVIEW

When operating in protected mode, the IA-32 architecture permits the linear address space to be
mapped directly into a large physical memory (for example, 4 GBytes of RAM) or indirectly
(using paging) into a smaller physical memory and disk storage. This latter method of mapping
the linear address space is commonly referred to as virtual memory or demand-paged virtual
memory.

Figure 3-11.  Pseudo-Descriptor Format
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3.7. PAGE TRANSLATION USING 32-BIT PHYSICAL 
ADDRESSING

The following sections describe the IA-32 architecture’s page translation mechanism when
using 32-bit physical addresses and a maximum physical address space of 4 Gbytes. Section
3.8., “36-Bit Physical Addressing Using the PAE Paging Mechanism” and Section 3.9., “36-Bit
Physical Addressing Using the PSE-36 Paging Mechanism” describe extensions to this page
translation mechanism to support 36-bit physical addresses and a maximum physical address
space of 64 Gbytes.

3.7.1. Linear Address Translation (4-KByte Pages)

Figure 3-12 shows the page directory and page-table hierarchy when mapping linear addresses
to 4-KByte pages. The entries in the page directory point to page tables, and the entries in a page
table point to pages in physical memory. This paging method can be used to address up to 220

pages, which spans a linear address space of 232 bytes (4 GBytes).

Table 3-3.  Page Sizes and Physical Address Sizes

PG Flag, 
CR0

PAE Flag, 
CR4

PSE Flag, 
CR4

PS Flag, 
PDE

PSE-36 CPUID 
Feature Flag Page Size

Physical 
Address Size

0 X X X X — Paging Disabled

1 0 0 X X 4 KBytes 32 Bits

1 0 1 0 X 4 KBytes 32 Bits

1 0 1 1 0 4 MBytes 32 Bits

1 0 1 1 1 4 MBytes 36 Bits

1 1 X 0 X 4 KBytes 36 Bits

1 1 X 1 X 2 MBytes 36 Bits
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To select the various table entries, the linear address is divided into three sections: 

• Page-directory entry—Bits 22 through 31 provide an offset to an entry in the page
directory. The selected entry provides the base physical address of a page table. 

• Page-table entry—Bits 12 through 21 of the linear address provide an offset to an entry in
the selected page table. This entry provides the base physical address of a page in physical
memory. 

• Page offset—Bits 0 through 11 provides an offset to a physical address in the page.

Memory management software has the option of using one page directory for all programs and
tasks, one page directory for each task, or some combination of the two.

3.7.2. Linear Address Translation (4-MByte Pages)

Figure 3-13 shows how a page directory can be used to map linear addresses to 4-MByte pages.
The entries in the page directory point to 4-MByte pages in physical memory. This paging
method can be used to map up to 1024 pages into a 4-GByte linear address space.

Figure 3-12.  Linear Address Translation (4-KByte Pages)
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The 4-MByte page size is selected by setting the PSE flag in control register CR4 and setting
the page size (PS) flag in a page-directory entry (see Figure 3-14). With these flags set, the linear
address is divided into two sections: 

• Page directory entry—Bits 22 through 31 provide an offset to an entry in the page
directory. The selected entry provides the base physical address of a 4-MByte page. 

• Page offset—Bits 0 through 21 provides an offset to a physical address in the page.

NOTE

(For the Pentium processor only.) When enabling or disabling large page
sizes, the TLBs must be invalidated (flushed) after the PSE flag in control
register CR4 has been set or cleared. Otherwise, incorrect page translation
might occur due to the processor using outdated page translation information
stored in the TLBs. See Section 10.9., “Invalidating the Translation
Lookaside Buffers (TLBs)”, for information on how to invalidate the TLBs.

3.7.3. Mixing 4-KByte and 4-MByte Pages

When the PSE flag in CR4 is set, both 4-MByte pages and page tables for 4-KByte pages can
be accessed from the same page directory. If the PSE flag is clear, only page tables for 4-KByte
pages can be accessed (regardless of the setting of the PS flag in a page-directory entry).

A typical example of mixing 4-KByte and 4-MByte pages is to place the operating system or
executive’s kernel in a large page to reduce TLB misses and thus improve overall system perfor-
mance. 

Figure 3-13.  Linear Address Translation (4-MByte Pages)
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(Page-directory entries for 4-KByte page tables.) Specifies the physical
address of the first byte of a page table. The bits in this field are interpreted as
the 20 most-significant bits of the physical address, which forces page tables to
be aligned on 4-KByte boundaries.

(Page-directory entries for 4-MByte pages.) Specifies the physical address of
the first byte of a 4-MByte page. Only bits 22 through 31 of this field are used
(and bits 12 through 21 are reserved and must be set to 0, for IA-32 processors
through the Pentium II processor). The base address bits are interpreted as the
10 most-significant bits of the physical address, which forces 4-MByte pages
to be aligned on 4-MByte boundaries.

Figure 3-14.  Format of Page-Directory and Page-Table Entries for 4-KByte Pages 
and 32-Bit Physical Addresses
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Present (P) flag, bit 0
Indicates whether the page or page table being pointed to by the entry is
currently loaded in physical memory. When the flag is set, the page is in phys-
ical memory and address translation is carried out. When the flag is clear, the
page is not in memory and, if the processor attempts to access the page, it
generates a page-fault exception (#PF).

The processor does not set or clear this flag; it is up to the operating system or
executive to maintain the state of the flag. 

If the processor generates a page-fault exception, the operating system gener-
ally needs to carry out the following operations: 

1. Copy the page from disk storage into physical memory.

2. Load the page address into the page-table or page-directory entry and set
its present flag. Other flags, such as the dirty and accessed flags, may also
be set at this time.

3. Invalidate the current page-table entry in the TLB (see Section 3.11.,
“Translation Lookaside Buffers (TLBs)”, for a discussion of TLBs and
how to invalidate them).

4. Return from the page-fault handler to restart the interrupted program (or
task).

Read/write (R/W) flag, bit 1
Specifies the read-write privileges for a page or group of pages (in the case of
a page-directory entry that points to a page table). When this flag is clear, the
page is read only; when the flag is set, the page can be read and written into.

Figure 3-15.  Format of Page-Directory Entries for 4-MByte Pages and 32-Bit Addresses
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Reserved and available-to-software bits
For all IA-32 processors. Bits 9, 10, and 11 are available for use by software.
(When the present bit is clear, bits 1 through 31 are available to software—see
Figure 3-16.) In a page-directory entry that points to a page table, bit 6 is
reserved and should be set to 0. When the PSE and PAE flags in control register
CR4 are set, the processor generates a page fault if reserved bits are not set to 0.

For Pentium II and earlier processors. Bit 7 in a page-table entry is reserved and
should be set to 0. For a page-directory entry for a 4-MByte page, bits 12
through 21 are reserved and must be set to 0.

For Pentium III and later processors. For a page-directory entry for a 4-MByte
page, bits 13 through 21 are reserved and must be set to 0.

3.7.7. Not Present Page-Directory and Page-Table Entries

When the present flag is clear for a page-table or page-directory entry, the operating system or
executive may use the rest of the entry for storage of information such as the location of the page
in the disk storage system (see Figure 3-16).

3.8. 36-BIT PHYSICAL ADDRESSING USING THE PAE PAGING 
MECHANISM

The PAE paging mechanism and support for 36-bit physical addressing were introduced into the
IA-32 architecture in the Pentium Pro processors. Implementation of this feature in an IA-32
processor is indicated with CPUID feature flag PAE (bit 6 in the EDX register when the source
operand for the CPUID instruction is 2). The physical address extension (PAE) flag in register
CR4 enables the PAE mechanism and extends physical addresses from 32 bits to 36 bits. Here,
the processor provides 4 additional address line pins to accommodate the additional address bits.
To use this option, the following flags must be set:

• PG flag (bit 31) in control register CR0—Enables paging

• PAE flag (bit 5) in control register CR4 are set—Enables the PAE paging mechanism.

When the PAE paging mechanism is enabled, the processor supports two sizes of pages:
4-KByte and 2-MByte. As with 32-bit addressing, both page sizes can be addressed within the
same set of paging tables (that is, a page-directory entry can point to either a 2-MByte page or

Figure 3-16.  Format of a Page-Table or Page-Directory Entry for a Not-Present Page
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a page table that in turn points to 4-KByte pages). To support the 36-bit physical addresses, the
following changes are made to the paging data structures:

• The paging table entries are increased to 64 bits to accommodate 36-bit base physical
addresses. Each 4-KByte page directory and page table can thus have up to 512 entries.

• A new table, called the page-directory-pointer table, is added to the linear-address
translation hierarchy. This table has 4 entries of 64-bits each, and it lies above the page
directory in the hierarchy. With the physical address extension mechanism enabled, the
processor supports up to 4 page directories.

• The 20-bit page-directory base address field in register CR3 (PDPR) is replaced with a
27-bit page-directory-pointer-table base address field (see Figure 3-17). (In this case,
register CR3 is called the PDPTR.) This field provides the 27 most-significant bits of the
physical address of the first byte of the page-directory-pointer table, which forces the table
to be located on a 32-byte boundary.

• Linear address translation is changed to allow mapping 32-bit linear addresses into the
larger physical address space.

3.8.1. Linear Address Translation With PAE Enabled (4-KByte 
Pages)

Figure 3-18 shows the page-directory-pointer, page-directory, and page-table hierarchy when
mapping linear addresses to 4-KByte pages when the PAE paging mechanism enabled. This
paging method can be used to address up to 220 pages, which spans a linear address space of 232

bytes (4 GBytes).

To select the various table entries, the linear address is divided into three sections: 

• Page-directory-pointer-table entry—Bits 30 and 31 provide an offset to one of the 4 entries
in the page-directory-pointer table. The selected entry provides the base physical address
of a page directory. 

• Page-directory entry—Bits 21 through 29 provide an offset to an entry in the selected page
directory. The selected entry provides the base physical address of a page table. 

• Page-table entry—Bits 12 through 20 provide an offset to an entry in the selected page
table. This entry provides the base physical address of a page in physical memory. 

• Page offset—Bits 0 through 11 provide an offset to a physical address in the page.

Figure 3-17.  Register CR3 Format When the Physical Address Extension is Enabled
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3.8.2. Linear Address Translation With PAE Enabled (2-MByte 
Pages)

Figure 3-19 shows how a page-directory-pointer table and page directories can be used to map
linear addresses to 2-MByte pages when the PAE paging mechanism enabled. This paging
method can be used to map up to 2048 pages (4 page-directory-pointer-table entries times 512
page-directory entries) into a 4-GByte linear address space.

When PAE is enabled, the 2-MByte page size is selected by setting the page size (PS) flag in a
page-directory entry (see Figure 3-14). (As shown in Table 3-3, the PSE flag in control register
CR4 has no affect on the page size when PAE is enabled.) With the PS flag set, the linear address
is divided into three sections: 

• Page-directory-pointer-table entry—Bits 30 and 31 provide an offset to an entry in the
page-directory-pointer table. The selected entry provides the base physical address of a
page directory. 

• Page-directory entry—Bits 21 through 29 provide an offset to an entry in the page
directory. The selected entry provides the base physical address of a 2-MByte page. 

• Page offset—Bits 0 through 20 provides an offset to a physical address in the page.

Figure 3-18.  Linear Address Translation With PAE Enabled (4-KByte Pages)
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3.8.3. Accessing the Full Extended Physical Address Space 
With the Extended Page-Table Structure

The page-table structure described in the previous two sections allows up to 4 GBytes of
the 64 GByte extended physical address space to be addressed at one time. Additional 4-GByte
sections of physical memory can be addressed in either of two way:

• Change the pointer in register CR3 to point to another page-directory-pointer table, which
in turn points to another set of page directories and page tables.

• Change entries in the page-directory-pointer table to point to other page directories, which
in turn point to other sets of page tables.

3.8.4. Page-Directory and Page-Table Entries With Extended 
Addressing Enabled

Figure 3-20 shows the format for the page-directory-pointer-table, page-directory, and
page-table entries when 4-KByte pages and 36-bit extended physical addresses are being
used. Figure 3-21 shows the format for the page-directory-pointer-table and page-directory
entries when 2-MByte pages and 36-bit extended physical addresses are being used. The func-
tions of the flags in these entries are the same as described in Section 3.7.6., “Page-Directory
and Page-Table Entries”. The major differences in these entries are as follows:

• A page-directory-pointer-table entry is added.

• The size of the entries are increased from 32 bits to 64 bits.

Figure 3-19.  Linear Address Translation With PAE Enabled (2-MByte Pages)
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• The maximum number of entries in a page directory or page table is 512.

• The base physical address field in each entry is extended to 24 bits.

NOTE

Current IA-32 processors that implement the PAE mechanism use uncached
accesses when loading page-directory-pointer table entries. This behavior is
model specific and not architectural. Future IA-32 processors may cache
page-directory-pointer table entries.

Figure 3-20.  Format of Page-Directory-Pointer-Table, Page-Directory, and Page-Table 
Entries for 4-KByte Pages with PAE Enabled
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The base physical address in an entry specifies the following, depending on the type of entry:

• Page-directory-pointer-table entry—the physical address of the first byte of a 
4-KByte page directory.

• Page-directory entry—the physical address of the first byte of a 4-KByte page table or a
2-MByte page.

• Page-table entry—the physical address of the first byte of a 4-KByte page. 

For all table entries (except for page-directory entries that point to 2-MByte pages), the bits in
the page base address are interpreted as the 24 most-significant bits of a 36-bit physical address,
which forces page tables and pages to be aligned on 4-KByte boundaries. When a page-directory
entry points to a 2-MByte page, the base address is interpreted as the 15 most-significant bits of
a 36-bit physical address, which forces pages to be aligned on 2-MByte boundaries.

The present flag (bit 0) in the page-directory-pointer-table entries can be set to 0 or 1. If the
present flag is clear, the remaining bits in the page-directory-pointer-table entry are available to
the operating system. If the present flag is set, the fields of the page-directory-pointer-table entry
are defined in Figure 3-20 for 4KB pages and Figure 3-21 for 2MB pages.

The page size (PS) flag (bit 7) in a page-directory entry determines if the entry points to a page
table or a 2-MByte page. When this flag is clear, the entry points to a page table; when the flag
is set, the entry points to a 2-MByte page. This flag allows 4-KByte and 2-MByte pages to be
mixed within one set of paging tables.

Figure 3-21.  Format of Page-Directory-Pointer-Table and Page-Directory Entries for 
2-MByte Pages with PAE Enabled
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Figure 3-23 shows the format for the page-directory entries when 4-MByte pages and 36-bit
physical addresses are being used. Section 3.7.6., “Page-Directory and Page-Table Entries”
describes the functions of the flags and fields in bits 0 through 11. 

Figure 3-22.  Linear Address Translation (4-MByte Pages)

Figure 3-23.  Format of Page-Directory Entries for 4-MByte Pages and
36-Bit Physical Addresses
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3.10. MAPPING SEGMENTS TO PAGES

The segmentation and paging mechanisms provide in the IA-32 architecture support a wide
variety of approaches to memory management. When segmentation and paging is combined,
segments can be mapped to pages in several ways. To implement a flat (unsegmented)
addressing environment, for example, all the code, data, and stack modules can be mapped to
one or more large segments (up to 4-GBytes) that share same range of linear addresses (see
Figure 3-2). Here, segments are essentially invisible to applications and the operating-system or
executive. If paging is used, the paging mechanism can map a single linear address space
(contained in a single segment) into virtual memory. Or, each program (or task) can have its own
large linear address space (contained in its own segment), which is mapped into virtual memory
through its own page directory and set of page tables.

Segments can be smaller than the size of a page. If one of these segments is placed in a page
which is not shared with another segment, the extra memory is wasted. For example, a small data
structure, such as a 1-byte semaphore, occupies 4K bytes if it is placed in a page by itself. If
many semaphores are used, it is more efficient to pack them into a single page.

The IA-32 architecture does not enforce correspondence between the boundaries of pages and
segments. A page can contain the end of one segment and the beginning of another. Likewise, a
segment can contain the end of one page and the beginning of another.

Memory-management software may be simpler and more efficient if it enforces some alignment
between page and segment boundaries. For example, if a segment which can fit in one page is
placed in two pages, there may be twice as much paging overhead to support access to that
segment.

One approach to combining paging and segmentation that simplifies memory-management soft-
ware is to give each segment its own page table, as shown in Figure 3-24. This convention gives
the segment a single entry in the page directory which provides the access control information
for paging the entire segment.

Figure 3-24.  Memory Management Convention That Assigns a Page Table
to Each Segment
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