
3-4 Vol. 1

BASIC EXECUTION ENVIRONMENT

Figure 3-1. IA-32 Basic Execution Environment for Non-64-bit Modes

0

2^32 -1

Eight 32-bit

32-bits

32-bits

General-Purpose Registers

Segment Registers

EFLAGS Register

EIP (Instruction Pointer Register)

Address Space*

*The address space can be

Six 16-bit
Registers

Registers

Eight 80-bit
Registers

Floating-Point
Data Registers

Eight 64-bit
Registers MMX Registers

flat or segmented. Using

XMM RegistersEight 128-bit
Registers

16 bits Control Register

16 bits Status Register

48 bits FPU Instruction Pointer Register

48 bits FPU Data (Operand) Pointer Register

FPU Registers

MMX Registers

XMM Registers

32-bits MXCSR Register

Opcode Register (11-bits)

Basic Program Execution Registers

16 bits Tag Register

the physical address
extension mechanism, a
physical address space of
2^36 - 1 can be addressed.

Vol. 1 3-7

BASIC EXECUTION ENVIRONMENT

hold a full 64-bit base address. The local descriptor table register (LDTR) and the
task register (TR) also expand to hold a full 64-bit base address.

Figure 3-2. 64-Bit Mode Execution Environment

0

2^64 -1

Sixteen 64-bit

64-bits

64-bits

General-Purpose Registers

Segment Registers

RFLAGS Register

RIP (Instruction Pointer Register)

Address Space

Six 16-bit
Registers

Registers

Eight 80-bit
Registers

Floating-Point
Data Registers

Eight 64-bit
Registers MMX Registers

XMM RegistersSixteen 128-bit
Registers

16 bits Control Register

16 bits Status Register

64 bits FPU Instruction Pointer Register

64 bits FPU Data (Operand) Pointer Register

FPU Registers

MMX Registers

XMM Registers

32-bits MXCSR Register

Opcode Register (11-bits)

Basic Program Execution Registers

16 bits Tag Register

Vol. 1 3-9

BASIC EXECUTION ENVIRONMENT

segment prevents the stack from growing into the code or data space and
overwriting instructions or data, respectively.

• Real-address mode memory model — This is the memory model for the Intel
8086 processor. It is supported to provide compatibility with existing programs
written to run on the Intel 8086 processor. The real-address mode uses a specific
implementation of segmented memory in which the linear address space for the
program and the operating system/executive consists of an array of segments of
up to 64 KBytes in size each. The maximum size of the linear address space in
real-address mode is 220 bytes.

See also: Chapter 15, “8086 Emulation,” Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A.

Figure 3-3. Three Memory Management Models

Linear Address

Flat Model

Linear
Address
Space*

Segment Selector

Offset

Segment Selector

Segmented Model

Real-Address Mode Model

Linear Address

Logical

Offset (effective address)

Space Divided
Into Equal

Sized Segments

Address

Logical
Address

Linear
Address

Space*

Segments

* The linear address space
can be paged when using the
flat or segmented model.

3-12 Vol. 1

BASIC EXECUTION ENVIRONMENT

3.3.6 Extended Physical Addressing in Protected Mode
Beginning with P6 family processors, the IA-32 architecture supports addressing of
up to 64 GBytes (236 bytes) of physical memory. A program or task could not
address locations in this address space directly. Instead, it addresses individual linear
address spaces of up to 4 GBytes that mapped to 64-GByte physical address space
through a virtual memory management mechanism. Using this mechanism, an oper-
ating system can enable a program to switch 4-GByte linear address spaces within
64-GByte physical address space.

The use of extended physical addressing requires the processor to operate in
protected mode and the operating system to provide a virtual memory management
system. See “36-Bit Physical Addressing Using the PAE Paging Mechanism” in
Chapter 3, “Protected-Mode Memory Management,” of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

3.3.7 Address Calculations in 64-Bit Mode
In most cases, 64-bit mode uses flat address space for code, data, and stacks. In
64-bit mode (if there is no address-size override), the size of effective address calcu-
lations is 64 bits. An effective-address calculation uses a 64-bit base and index regis-
ters and sign-extend displacements to 64 bits.

In the flat address space of 64-bit mode, linear addresses are equal to effective
addresses because the base address is zero. In the event that FS or GS segments are
used with a non-zero base, this rule does not hold. In 64-bit mode, the effective
address components are added and the effective address is truncated (See for
example the instruction LEA) before adding the full 64-bit segment base. The base is
never truncated, regardless of addressing mode in 64-bit mode.

The instruction pointer is extended to 64 bits to support 64-bit code offsets. The
64-bit instruction pointer is called the RIP. Table 3-1 shows the relationship between
RIP, EIP, and IP.

Table 3-1. Instruction Pointer Sizes

Generally, displacements and immediates in 64-bit mode are not extended to 64 bits.
They are still limited to 32 bits and sign-extended during effective-address calcula-
tions. In 64-bit mode, however, support is provided for 64-bit displacement and
immediate forms of the MOV instruction.

All 16-bit and 32-bit address calculations are zero-extended in IA-32e mode to form
64-bit addresses. Address calculations are first truncated to the effective address

Bits 63:32 Bits 31:16 Bits 15:0

16-bit instruction pointer Not Modified IP

32-bit instruction pointer Zero Extension EIP

64-bit instruction pointer RIP

Vol. 1 3-15

BASIC EXECUTION ENVIRONMENT

The special uses of general-purpose registers by instructions are described in
Chapter 5, “Instruction Set Summary,” in this volume. See also: Chapter 3 and
Chapter 4 of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volumes 2A & 2B. The following is a summary of special uses:

• EAX — Accumulator for operands and results data

• EBX — Pointer to data in the DS segment

• ECX — Counter for string and loop operations

• EDX — I/O pointer

• ESI — Pointer to data in the segment pointed to by the DS register; source
pointer for string operations

• EDI — Pointer to data (or destination) in the segment pointed to by the ES
register; destination pointer for string operations

• ESP — Stack pointer (in the SS segment)

Figure 3-4. General System and Application Programming Registers

031
EAX
EBX
ECX

EDX
ESI

EDI
EBP

ESP

Segment Registers

CS

DS
SS

ES
FS

GS

015

031
EFLAGS

EIP
31 0

General-Purpose Registers

Program Status and Control Register

Instruction Pointer

3-16 Vol. 1

BASIC EXECUTION ENVIRONMENT

• EBP — Pointer to data on the stack (in the SS segment)

As shown in Figure 3-5, the lower 16 bits of the general-purpose registers map
directly to the register set found in the 8086 and Intel 286 processors and can be
referenced with the names AX, BX, CX, DX, BP, SI, DI, and SP. Each of the lower two
bytes of the EAX, EBX, ECX, and EDX registers can be referenced by the names AH,
BH, CH, and DH (high bytes) and AL, BL, CL, and DL (low bytes).

3.4.1.1 General-Purpose Registers in 64-Bit Mode
In 64-bit mode, there are 16 general purpose registers and the default operand size
is 32 bits. However, general-purpose registers are able to work with either 32-bit or
64-bit operands. If a 32-bit operand size is specified: EAX, EBX, ECX, EDX, EDI, ESI,
EBP, ESP, R8D - R15D are available. If a 64-bit operand size is specified: RAX, RBX,
RCX, RDX, RDI, RSI, RBP, RSP, R8-R15 are available. R8D-R15D/R8-R15 represent
eight new general-purpose registers. All of these registers can be accessed at the
byte, word, dword, and qword level. REX prefixes are used to generate 64-bit
operand sizes or to reference registers R8-R15.

Registers only available in 64-bit mode (R8-R15 and XMM8-XMM15) are preserved
across transitions from 64-bit mode into compatibility mode then back into 64-bit
mode. However, values of R8-R15 and XMM8-XMM15 are undefined after transitions
from 64-bit mode through compatibility mode to legacy or real mode and then back
through compatibility mode to 64-bit mode.

Figure 3-5. Alternate General-Purpose Register Names

071531 16 8

AH AL

BH BL

CH CL

DH DL

BP

SI

DI

SP

16-bit

AX

DX

CX

BX

32-bit

EAX

EBX

ECX

EDX

EBP

ESI

ESP

General-Purpose Registers

EDI

Vol. 1 3-17

BASIC EXECUTION ENVIRONMENT

In 64-bit mode, there are limitations on accessing byte registers. An instruction
cannot reference legacy high-bytes (for example: AH, BH, CH, DH) and one of the
new byte registers at the same time (for example: the low byte of the RAX register).
However, instructions may reference legacy low-bytes (for example: AL, BL, CL or
DL) and new byte registers at the same time (for example: the low byte of the R8
register, or RBP). The architecture enforces this limitation by changing high-byte
references (AH, BH, CH, DH) to low byte references (BPL, SPL, DIL, SIL: the low 8
bits for RBP, RSP, RDI and RSI) for instructions using a REX prefix.

When in 64-bit mode, operand size determines the number of valid bits in the desti-
nation general-purpose register:

• 64-bit operands generate a 64-bit result in the destination general-purpose
register.

• 32-bit operands generate a 32-bit result, zero-extended to a 64-bit result in the
destination general-purpose register.

• 8-bit and 16-bit operands generate an 8-bit or 16-bit result. The upper 56 bits or
48 bits (respectively) of the destination general-purpose register are not be
modified by the operation. If the result of an 8-bit or 16-bit operation is intended
for 64-bit address calculation, explicitly sign-extend the register to the full
64-bits.

Because the upper 32 bits of 64-bit general-purpose registers are undefined in 32-bit
modes, the upper 32 bits of any general-purpose register are not preserved when
switching from 64-bit mode to a 32-bit mode (to protected mode or compatibility
mode). Software must not depend on these bits to maintain a value after a 64-bit to
32-bit mode switch.

3.4.2 Segment Registers
The segment registers (CS, DS, SS, ES, FS, and GS) hold 16-bit segment selectors.
A segment selector is a special pointer that identifies a segment in memory. To
access a particular segment in memory, the segment selector for that segment must
be present in the appropriate segment register.

Table 3-2. Addressable General Purpose Registers
Register Type Without REX With REX

Byte Registers AL, BL, CL, DL, AH, BH, CH,
DH

AL, BL, CL, DL, DIL, SIL, BPL, SPL,
R8L - R15L

Word Registers AX, BX, CX, DX, DI, SI, BP, SP AX, BX, CX, DX, DI, SI, BP, SP, R8W -
R15W

Doubleword Registers EAX, EBX, ECX, EDX, EDI, ESI,
EBP, ESP

EAX, EBX, ECX, EDX, EDI, ESI, EBP,
ESP, R8D - R15D

Quadword Registers N.A. RAX, RBX, RCX, RDX, RDI, RSI,
RBP, RSP, R8 - R15

3-18 Vol. 1

BASIC EXECUTION ENVIRONMENT

When writing application code, programmers generally create segment selectors
with assembler directives and symbols. The assembler and other tools then create
the actual segment selector values associated with these directives and symbols. If
writing system code, programmers may need to create segment selectors directly.
See Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

How segment registers are used depends on the type of memory management model
that the operating system or executive is using. When using the flat (unsegmented)
memory model, segment registers are loaded with segment selectors that point to
overlapping segments, each of which begins at address 0 of the linear address space
(see Figure 3-6). These overlapping segments then comprise the linear address
space for the program. Typically, two overlapping segments are defined: one for code
and another for data and stacks. The CS segment register points to the code
segment and all the other segment registers point to the data and stack segment.

When using the segmented memory model, each segment register is ordinarily
loaded with a different segment selector so that each segment register points to a
different segment within the linear address space (see Figure 3-7). At any time, a
program can thus access up to six segments in the linear address space. To access a
segment not pointed to by one of the segment registers, a program must first load
the segment selector for the segment to be accessed into a segment register.

Figure 3-6. Use of Segment Registers for Flat Memory Model

Segment Registers

CS

SS
DS

ES
FS
GS

Linear Address
Space for Program

The segment selector in
each segment register
points to an overlapping

Overlapping
Segments

of up to
4 GBytes

segment in the linear
address space.

Beginning at
Address 0

Vol. 1 3-19

BASIC EXECUTION ENVIRONMENT

Each of the segment registers is associated with one of three types of storage: code,
data, or stack. For example, the CS register contains the segment selector for the
code segment, where the instructions being executed are stored. The processor
fetches instructions from the code segment, using a logical address that consists of
the segment selector in the CS register and the contents of the EIP register. The EIP
register contains the offset within the code segment of the next instruction to be
executed. The CS register cannot be loaded explicitly by an application program.
Instead, it is loaded implicitly by instructions or internal processor operations that
change program control (such as, procedure calls, interrupt handling, or task
switching).

The DS, ES, FS, and GS registers point to four data segments. The availability of
four data segments permits efficient and secure access to different types of data
structures. For example, four separate data segments might be created: one for the
data structures of the current module, another for the data exported from a higher-
level module, a third for a dynamically created data structure, and a fourth for data
shared with another program. To access additional data segments, the application
program must load segment selectors for these segments into the DS, ES, FS, and
GS registers, as needed.

The SS register contains the segment selector for the stack segment, where the
procedure stack is stored for the program, task, or handler currently being executed.
All stack operations use the SS register to find the stack segment. Unlike the CS
register, the SS register can be loaded explicitly, which permits application programs
to set up multiple stacks and switch among them.

Figure 3-7. Use of Segment Registers in Segmented Memory Model

Segment Registers

CS
DS
SS
ES
FS
GS

Code
Segment

Data
Segment

Stack
Segment

Data
Segment

Data
Segment

Data
Segment

All segments
are mapped
to the same
linear-address
space

Vol. 1 3-21

BASIC EXECUTION ENVIRONMENT

an interrupt or exception is handled with a task switch, the state of the EFLAGS
register is saved in the TSS for the task being suspended.

As the IA-32 Architecture has evolved, flags have been added to the EFLAGS register,
but the function and placement of existing flags have remained the same from one
family of the IA-32 processors to the next. As a result, code that accesses or modifies
these flags for one family of IA-32 processors works as expected when run on later
families of processors.

3.4.3.1 Status Flags
The status flags (bits 0, 2, 4, 6, 7, and 11) of the EFLAGS register indicate the results
of arithmetic instructions, such as the ADD, SUB, MUL, and DIV instructions. The
status flag functions are:

CF (bit 0) Carry flag — Set if an arithmetic operation generates a carry or
a borrow out of the most-significant bit of the result; cleared

Figure 3-8. EFLAGS Register

31 2930 28 27 26 25 24 23 22 21 20 19 18 17 16

0 R
F

I
D

A
C

V
M

X Virtual-8086 Mode (VM)
X Resume Flag (RF)
X Nested Task (NT)
X I/O Privilege Level (IOPL)
S Overflow Flag (OF)
C Direction Flag (DF)
X Interrupt Enable Flag (IF)

X Alignment Check (AC)

X ID Flag (ID)
X Virtual Interrupt Pending (VIP)

15 1314 12 11 10 9 8 7 6 5 4 3 2 1 0

0 C
F

A
F

P
F 1D

F
I
F

T
F

S
F

Z
F

N
T 000 0 0 0 0 0 0 0 0

V
I
P

V
I
F

O
F

I
O
P
L

X Virtual Interrupt Flag (VIF)

X Trap Flag (TF)
S Sign Flag (SF)
S Zero Flag (ZF)
S Auxiliary Carry Flag (AF)
S Parity Flag (PF)
S Carry Flag (CF)

S Indicates a Status Flag
C Indicates a Control Flag
X Indicates a System Flag

Reserved bit positions. DO NOT USE.
Always set to values previously read.

3-28 Vol. 1

BASIC EXECUTION ENVIRONMENT

processor management, and debugging activities. Some of these system registers
are accessible by an application program, the operating system, or the executive
through a set of system instructions. When accessing a system register with a
system instruction, the register is generally an implied operand of the instruction.

3.7.2.1 Register Operands in 64-Bit Mode
Register operands in 64-bit mode can be any of the following:

• 64-bit general-purpose registers (RAX, RBX, RCX, RDX, RSI, RDI, RSP, RBP, or
R8-R15)

• 32-bit general-purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP, or
R8D-R15D)

• 16-bit general-purpose registers (AX, BX, CX, DX, SI, DI, SP, BP, or R8W-R15W)

• 8-bit general-purpose registers: AL, BL, CL, DL, SIL, DIL, SPL, BPL, and R8L-
R15L are available using REX prefixes; AL, BL, CL, DL, AH, BH, CH, DH are
available without using REX prefixes.

• Segment registers (CS, DS, SS, ES, FS, and GS)

• RFLAGS register

• x87 FPU registers (ST0 through ST7, status word, control word, tag word, data
operand pointer, and instruction pointer)

• MMX registers (MM0 through MM7)

• XMM registers (XMM0 through XMM15) and the MXCSR register

• Control registers (CR0, CR2, CR3, CR4, and CR8) and system table pointer
registers (GDTR, LDTR, IDTR, and task register)

• Debug registers (DR0, DR1, DR2, DR3, DR6, and DR7)

• MSR registers

• RDX:RAX register pair representing a 128-bit operand

3.7.3 Memory Operands
Source and destination operands in memory are referenced by means of a segment
selector and an offset (see Figure 3-9). Segment selectors specify the segment
containing the operand. Offsets specify the linear or effective address of the operand.
Offsets can be 32 bits (represented by the notation m16:32) or 16 bits (represented
by the notation m16:16).

Figure 3-9. Memory Operand Address

Offset (or Linear Address)
015

Segment
310

Selector

Vol. 1 3-29

BASIC EXECUTION ENVIRONMENT

3.7.3.1 Memory Operands in 64-Bit Mode
In 64-bit mode, a memory operand can be referenced by a segment selector and an
offset. The offset can be 16 bits, 32 bits or 64 bits (see Figure 3-10).

3.7.4 Specifying a Segment Selector
The segment selector can be specified either implicitly or explicitly. The most
common method of specifying a segment selector is to load it in a segment register
and then allow the processor to select the register implicitly, depending on the type
of operation being performed. The processor automatically chooses a segment
according to the rules given in Table 3-5.

When storing data in memory or loading data from memory, the DS segment default
can be overridden to allow other segments to be accessed. Within an assembler, the
segment override is generally handled with a colon “:” operator. For example, the
following MOV instruction moves a value from register EAX into the segment pointed
to by the ES register. The offset into the segment is contained in the EBX register:

MOV ES:[EBX], EAX;

At the machine level, a segment override is specified with a segment-override prefix,
which is a byte placed at the beginning of an instruction. The following default
segment selections cannot be overridden:

• Instruction fetches must be made from the code segment.

Figure 3-10. Memory Operand Address in 64-Bit Mode

Table 3-5. Default Segment Selection Rules

Reference
Type

Register
Used

Segment
Used Default Selection Rule

Instructions CS Code Segment All instruction fetches.

Stack SS Stack Segment All stack pushes and pops.
Any memory reference which uses the ESP or EBP
register as a base register.

Local Data DS Data Segment All data references, except when relative to stack or
string destination.

Destination
Strings

ES Data Segment
pointed to with
the ES register

Destination of string instructions.

Offset (or Linear Address)
015

Segment
630

Selector

Vol. 1 3-31

BASIC EXECUTION ENVIRONMENT

The uses of general-purpose registers as base or index components are restricted in
the following manner:

• The ESP register cannot be used as an index register.

• When the ESP or EBP register is used as the base, the SS segment is the default
segment. In all other cases, the DS segment is the default segment.

The base, index, and displacement components can be used in any combination, and
any of these components can be NULL. A scale factor may be used only when an
index also is used. Each possible combination is useful for data structures commonly
used by programmers in high-level languages and assembly language.

The following addressing modes suggest uses for common combinations of address
components.

• Displacement ⎯ A displacement alone represents a direct (uncomputed) offset
to the operand. Because the displacement is encoded in the instruction, this form
of an address is sometimes called an absolute or static address. It is commonly
used to access a statically allocated scalar operand.

• Base ⎯ A base alone represents an indirect offset to the operand. Since the
value in the base register can change, it can be used for dynamic storage of
variables and data structures.

• Base + Displacement ⎯ A base register and a displacement can be used
together for two distinct purposes:

— As an index into an array when the element size is not 2, 4, or 8 bytes—The
displacement component encodes the static offset to the beginning of the
array. The base register holds the results of a calculation to determine the
offset to a specific element within the array.

— To access a field of a record: the base register holds the address of the
beginning of the record, while the displacement is a static offset to the field.

An important special case of this combination is access to parameters in a
procedure activation record. A procedure activation record is the stack frame

Figure 3-11. Offset (or Effective Address) Computation

Offset = Base + (Index * Scale) + Displacement

Base

EAX
EBX
ECX
EDX
ESP
EBP
ESI
EDI

EAX
EBX
ECX
EDX
EBP
ESI
EDI

1 None

2

4

8

8-bit

16-bit

32-bit

Index Scale Displacement

*
+ +

