

Figure 3-1. IA-32 Basic Execution Environment for Non-64-bit Modes

Figure 3-2. 64-Bit Mode Execution Environment

Figure 3-3. Three Memory Management Models

Table 3-1. Instruction Pointer Sizes

	Bits 63:32	Bits 31:16	Bits 15:0
16-bit instruction pointer	Not Modified		IP
32-bit instruction pointer	Zero Extension	EIP	
64-bit instruction pointer	RIP		

Figure 3-4. General System and Application Programming Registers

(General-Purpo						
31	16	15 8	7	0	16-bit	32-bit	
		AH	AL		AX	EAX	
		BH	BL		BX	EBX	
		CH	CL		CX	ECX	
		DH	DL		DX	EDX	
		В	P			EBP	
		S	51			ESI	
		C)			EDI	
		S	P			ESP	

Figure 3-5. Alternate General-Purpose Register Names

Table 3-2. Addressable General Purpose Registers

Register Type	Without REX	With REX
Byte Registers	AL, BL, CL, DL, AH, BH, CH, DH	AL, BL, CL, DL, DIL, SIL, BPL, SPL, R8L - R15L
Word Registers	AX, BX, CX, DX, DI, SI, BP, SP	AX, BX, CX, DX, DI, SI, BP, SP, R8W - R15W
Doubleword Registers	eax, ebx, ecx, edx, edi, esi, ebp, esp	EAX, EBX, ECX, EDX, EDI, ESI, EBP, ESP, R8D - R15D
Quadword Registers	N.A.	RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, R8 - R15

Figure 3-6. Use of Segment Registers for Flat Memory Model

Figure 3-7. Use of Segment Registers in Segmented Memory Model

	31 3	0 29	9 28	27 2	26 25	24	23	22	21 2	20	19	18	17	16	15	14	13 12	11	10	9	8	7	6	5	4	3	2	1	0
	0	o o	0	0	0 0	0	0	0	I D	V I P	V I F	A C	∨ M	R F	0	N T	I O P L	0 F	D F	l F	T F	S F	Z F	0	A F	0	P F	1	C F
X ID Flag (IE X Virtual Inter X Alignment (X Virtual-808) X Resume Fl X Nested Tas X I/O Privileg S Overflow F C Direction F X Interrupt Er X Trap Flag (S Sign Flag (S Auxiliary Ca S Parity Flag S Carry Flag	D) errupt Chec 6 Mc 6 Mc 6 Mc 6 Mc 6 Mc 6 Mc 6 Mc 6 M	ot P Fla ck (ode RF IT) vel (OF (OF (OF (Fla) —	end ag (AC (V)	ding VIF) — M) - DPL (IF) (IF)) —) —																								

- S Indicates a Status Flag
- C Indicates a Control Flag
- X Indicates a System Flag

Reserved bit positions. DO NOT USE.

Always set to values previously read.

Figure 3-8. EFLAGS Register

Figure 3-9. Memory Operand Address

Figure 3-10. Memory Operand Address in 64-Bit Mode

Offset = Base + (Index * Scale) + Displacement

Figure 3-11. Offset (or Effective Address) Computation