Multithreading

How can we guarantee no dependencies
between instructions in a pipeline?

-- One way Is to interleave execution of
Instructions from different program threads on

same pipeline
Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

10 11 12 3 t4 t5 16 {7 .t8 . t9

T1: LW r1, 0(r2) FID|X|M W4_ i = Prior instruction in
_ : i I athread always
T2:ADD r7, 11, r4 _F DI XM WE : i i completes write-
T3: XORI r5, r4, #12 FID|X back before next
T4: SW 0(r7), r5 FID instruction in
. : same thread reads
T1. LW 5, 12(rl) : _F | register file

Simple Multithreaded Pipeline

|I X _
BN ' > >
;E i-» 1$ 4>|IR|—> GPR1 J,J N ‘: ‘
i D$

"‘ W
a va >
2 Thread ﬁ 2 ﬂ

select

Have to carry thread select down pipeline
to ensure correct state bits read/written

at each pipe stage

Multithreading Costs

e Each thread requires its own user state
— PC
— GPRs

e Also, needs its own system state
— virtual memory page table base register
— exception handling registers

Thread Scheduling Policies

e Fixed interleave (CDC 6600 PPUs, 1965)

— each of N threads executes one instruction every N cycles
— if thread not ready to go in its slot, insert pipeline bubble

e Software-controlled interleave (TI ASC PPUs, 1971)

— OS allocates S pipeline slots amongst N threads

— hardware performs fixed interleave over S slots, executing
whichever thread is in that slot

e Hardware-controlled thread scheduling (HEP, 1982)
— hardware keeps track of which threads are ready to go

— picks next thread to execute based on hardware priority
scheme

Pentium-4 Hyperthreading
(2002)

First commercial SMT design (2-way SMT)

— Hyperthreading == SMT

Logical processors share nearly all resources of
the physical processor

— Caches, execution units, branch predictors

Die area overhead of hyperthreading — 5%

When one logical processor is stalled, the other

can make progress

— No logical processor can use all entries in queues when two
threads are active

Processor running only one active software
thread runs at approximately same speed with
or without hyperthreading

O-0-0 Simultaneous Multithreading
[Tullsen, Eggers, Emer, Levy, Stamm, Lo, DEC/UW, 1996]

e Add multiple contexts and fetch engines and
allow instructions fetched from different
threads to issue simultaneously

e Utilize wide out-of-order superscalar processor
Issue queue to find instructions to issue from
multiple threads

e 0OOO instruction window already has most of
the circuitry required to schedule from
multiple threads

e Any single thread can utilize whole machine

Why Parallel Processing?

parallel processors: also called multiprocessors (MPS)

* multiple processors working together, why?

» performance: break physical limits of uniprocessing
 ILP (branch prediction, RAW dependences, etc.)

 speed of light

e cost and cost effectiveness
* build big systems from commodity parts (ordinary uniprocessors)

» the commodity part of the future (no more uniprocessors)

e other
« smooth upgrade path (keep adding processors)

« fault tolerance (one processor fails, still have P-1 working)

Parallel Processing Is Hard

In a word: software

« difficult to parallelize applications
— compiler parallelization hard (have already seen this with vectors)

— by-hand parallelization maybe harder (very error prone)

o difficult to make parallel applications run fast
— communication very expensive (must be aware of it)

Application Domain 1: Parallel Programs

e true parallelism in one job
* regular loop structures

 data usually tightly shared

» automatic parallelization

o called “data-level parallelism’

 can often exploit vectors as well (have seen)

e workloads
» scientific simulation codes (e.g., FFT, weather, fluid dynamics, etc.)

» was the dominant market segment of 10-15 years ago

Parallel Program Example: Matrix Multiply

N
- > * parameters

P * N = size of matrix (N*N)
e P = number of processors

« growth functions
H: « computation grows as f(N3)
« computation per processor grows as f(N3/P)
- data size grows as f(N?)
- data size per processor grows as f(N%/P)

« communication grows as f(N2/P1/2)
« computation/communication = f(N/P/2)

Application Domain 2: Parallel Tasks

o parallel independent-but-similar tasks
e irregular control structures

* loosely shared data locked at different granularities

» programmer defines & fine-tunes parallelism

« cannot exploit vectors

o called “thread-level parallelism’ or “thruput-oriented parallelism”

e workload
e transaction processing, OS, databases, web-servers

e dominant MP market segment TODAY (by far)

Taxonomy of Processors

Flynn Taxonomy [1966]

 not all encompassing but simple

« dimensions
e instruction streams: single (SI) or multiple (Ml)

 data streams: single (SD) or multiple (MD)

e cross-product
» SISD: uniprocessor (been there)

« SIMD: vectors (done that)
* MISD: no practical examples (won'’t do that)
o MIMD: multiprocessors + multicomputers (doing it now)

SIMD vs. MIMD

why are MPs (much) more common than vector processors?

e programming model flexibility
e can simulate vectors with an MP, but not the other way around

e dominant market segment cannot exploit vectors

e cost effectiveness
o commodity part. high volume (translation: cheap) component

« MPs made up of commodity parts (i.e., uniprocessors)
« can match size of MP to your budget
« can’t do this for a vector processor

o footnote: vectors are making a comeback
o for graphics/Multimedia applications

Taxonomy of Parallel (MIMD) Processors

e again, two dimensions
« center on organization of main memory (shared vs. distributed)

e dimension |: appearance of memory to hardware
* Q: is access to all memory uniform in latency?

» shared (UMA). yes [1 where you put data doesn’'t matter
e distributed (NUMA). no J where you put data really matters

e dimension |l: appearance of memory to software
» Q: can processors communicate via memory directly?

» shared (shared memory). yes 1 communicate via loads/stores
e distributed (message passing). no L1 communicate via messages

e dimensions are orthogonal
* e.9., DSM: (physically) distributed (logically) shared memory

UMA vs. NUMA: The Setup

memory
short

latency ¢ ¢ ¢
PO|(p1l|[pP2]||P3

 PRAM (parallel RAM). ideal theoretical model
* perfect (single-cycle) memory latency

* perfect (infinite) memory bandwidth
— not achievable

e in the real world...
— latencies are long and grow with system size

— bandwidth is limited
* to get bandwidth OO split memory into banks, add interconnect
— Interconnect adds even more latency

UMA vs. NUMA

long
latency

long
latency

short
latency

Interconnect

3

*+ 3 3

p0

pl||p2||p3

terconnect

2

e UMA: uniform memory access
 from p0O same latency to m0O as to m3

+ data placement unimportant (software is easier)
— latency long, gets worse as system grows

— interconnect contention restricts bandwidth

o typically used in small multiprocessors only

e NUMA: non-uniform memory accesss
 from pO faster to mO (local) than m3 (non-local)

+ low latency to local memory helps performance
— data placement important (software is harder)

+ less contention (non-local only) 0 more scalable
o typically used in larger multiprocessors

Interlude: What Is “Interconnect”?

e connects processors/memories to each other
e direct. endpoints connected directly

e /ndirect. endpoints connected via switches/routers

e interconnect issues
e Jatency. average latency most important (locality optimizations?)

e bandwidth: per processor
o CcOst. # wires, # switches, # ports per switch
o scalability: how latency, bandwidth, cost grow with # processors (P)

e mainly concerned with interconnect topology
e can have separate interconnects for addresses and data

Interconnect 1: Bus

mO

m1

m2

m3

e direct interconnect

+ COSt
* f(1) wires
+ latency: (1)
* no neighbor/locality optimization

— bandwidth: not scalable at all, f(1/P)
 only used in small systems (P <= 4)

+ other: capable of ordered broadcast
e incapable of anything else

what about hierarchical busses?

Interconnect 2: Crossbar Switch

e Indirect interconnect

+ latency: (1)
* no locality/neighbor optimizations

+ bandwidth: f(1)
— COSt

 f{(2P) wires

. f{(P?) switches

4 wires per switch

Interconnect 3: Multistage Network

e indirect interconnect
* routing done by address bit decoding

e k: switch arity (# inputs and outputs per switch)
* d: number of network stages = log, P

+ cost
o f(d*P/k) switches
o f(P*d) wires
o f(k) wires per switch
+ latency: f(d)
+ bandwidth: f(1)
« commonly used in large UMA systems

oo~ 1, A | P I R o [PR PPy

Interconnect 4: 2D Torus

e direct interconnect
* N0 dedicated switches

+ latency: f(P1/?)

— » locality/neighbor optimization
_

= + bandwidth: f(1)

+ CcOost

L * f(2P) wires

r

* 4 wires per switch

bl
Il Il
ko
Tyity

i

e good scalability [1 widely used
e variants: 3D, mesh (no “wraparound”)

=2l

©
=

'II'E_I

Interconnect Routing

e Sstore-and-forward routing
« switch buffers entire message before passing it on

* latency = [(message length / bandwidth) + fixed overhead] * # hops

* Wwormhole routing
* pipeline message through interconnect

» switch passes message on before completely arrives

* latency = (message length / bandwidth) + (fixed overhead * # hops)
+ no buffering needed at switch

+ latency (relatively) independent of number of intermediate hops

e Separate issue: dimension-order routing
* route along dimensions in fixed order to avoid deadlocks

Shared Memory vs. Message Passing

MIMD dimension Il: appearance of address space to software

e message passing (multicomputers)
» each processor has its own address space (and unique processor #)

 processors send (receive) messages to (from) each other
e communication pattern explicit and precise (only way)

» used for scientific codes (explicit communication patterns)
* message passing systems: PVM, MPI

+ simple hardware

— difficult programming model (in general)

Shared Memory vs. Message Passing

e shared memory (multiprocessors)
» one shared address space
* processors use conventional loads/stores to access shared data
e communication can be complex/dynamic
+ simpler programming model (compatible with uniprocessors)
— but with its own nasties (e.g., synchronization)
— more complex hardware... (we’ll see soon)
+ but more room for hardware optimization

Two Issues for Shared Memory Systems

 actually three issues
e cache coherence

 synchronization
* memory consistency model

* not completely unrelated to each other
* not Issues for message passing machines

Cache (In)Coherence

 most common cause: sharing of writeable data
e example

processor O processor 1 correct value of A in..

memory
read A memory, p0 cache
read A memory, p0 cache, pl cache
write A pO cache, memory (if wthru)
read A pl gets stale value on hit

* other causes
* process migration (even if jobs are independent)

* /O (can be fixed by OS cache flushes)

Solutions to Coherence Problem

* N0 caches
 yeah, right

» make shared-data non-cacheable
+ simplest software solution

— low performance if a lot of data is shared

o software flush at strategic times: e.g., after critical sections
+ relatively simple

— low performance if synchronization is frequent

» hardware cache coherence
 make memory and caches coherent (consistent) with each other

* in other words: let memory and other processors see writes

Coherence Protocols

 absolute coherence
« all copies of each block have same data at all times

* NOt necessary

e what is required is appearance of absolute coherence
« temporary incoherence is OK (e.g., write-back cache)

 as long as all loads get correct values

e coherence protocol: FSM that runs at every cache

 two kinds of protocols
e invalidate protocol: invalidate copies in other caches

» update protocol. update copies in other caches
 memory is always updated

Bus-Based Protocols (Snooping)

 bus-based protocol (snooping)
 ALL caches see and react to ALL bus events

* protocol relies on global visibility of events (ordered broadcast)

« 3 processor events (i.e., events from own processor)
 read (R)
o write (W)
» writeback (WB)

» 2 bus events (i.e., events from other processors)
* bus read (BR)

* bus write (BW)

Chip Multiprocessors

trend today: multiprocessors on a single chip (CMPSs)

e can’'t spend all of the transistors on just one processor
 with limited ILP, single processor would not exploit it

e.g., IBM POWERA4
1 chip contains: 2 1Ghz processors, L2, L3 tags, interconnect
« can connect 4 chips on 1 MCM to create 8 processor system
o targets threaded server workloads)

pl | | pl

L2
L3 tags

bus control

	L0X-Multithreading.pdf
	L06-Multithreading.pdf
	Pipeline Hazards
	Multithreading
	CDC 6600 Peripheral Processors(Cray, 1964)
	Simple Multithreaded Pipeline
	Multithreading Costs
	Thread Scheduling Policies
	Denelcor HEP(Burton Smith, 1982)
	Tera MTA (1990-97)
	MTA Architecture
	MTA Pipeline
	Multithreading Design Choices
	Coarse-Grain Multithreading
	MIT Alewife (1990)
	IBM PowerPC RS64-IV (2000)
	Superscalar Machine Efficiency
	Vertical Multithreading
	Chip Multiprocessing
	Ideal Superscalar Multithreading [Tullsen, Eggers, Levy, UW, 1995]
	O-o-O Simultaneous Multithreading[Tullsen, Eggers, Emer, Levy, Stamm, Lo, DEC/UW, 1996]
	Basic Out-of-order Pipeline
	SMT Pipeline
	Icount Choosing Policy
	Why Does Icount Make Sense?
	SMT Fetch Policies (Locks)
	Adaptation to parallelism type
	Pentium-4 Hyperthreading (2002)
	Pentium-4 HyperthreadingFront End
	Pentium-4 Branch Predictor
	Pentium-4 HyperthreadingExecution Pipeline

	12_MP.PDF
	Parallel Processors and Multithreading
	• why parallel processors?
	• types of parallel processors
	• SIMD vs. MIMD
	• UMA vs. NUMA
	• message passing vs. shared memory

	• a little bit about interconnect
	• two issues for shared memory systems
	• cache coherence
	• synchronization

	just the tip of the iceberg, could be a course in itself

	Chip Multiprocessors
	trend today: multiprocessors on a single chip (CMPs)
	• can’t spend all of the transistors on just one processor
	• with limited ILP, single processor would not exploit it

	• e.g., IBM POWER4
	• 1 chip contains: 2 1Ghz processors, L2, L3 tags, interconnect
	• can connect 4 chips on 1 MCM to create 8 processor system
	• targets threaded server workloads)

	Readings
	H+P
	• chapter 6
	• 6.1–6.4, 6.7–6.9

	Multithreading
	another trend: multithreaded processors
	• processor utilization: IPC / processor width
	• decreases as processor width increases (~50% on 4 wide)
	• why? cache misses, branch mis-predictions, RAW dependences

	• idea: two (or more) processes (threads) share one pipeline
	• replicate process (thread) state
	• PC, register file, bpred history, page table pointer, etc.

	• one copy of stateless (or naturally tagged) structures
	• caches, functional units, buses, etc.

	• hardware thread switch must be fast
	• multiple on-chip contexts ﬁ no need to load from memory

	Why Parallel Processing?
	parallel processors: also called multiprocessors (MPs)
	• multiple processors working together, why?
	• performance: break physical limits of uniprocessing
	• ILP (branch prediction, RAW dependences, etc.)
	• speed of light

	• cost and cost effectiveness
	• build big systems from commodity parts (ordinary uniprocessors)
	• the commodity part of the future (no more uniprocessors)

	• other
	• smooth upgrade path (keep adding processors)
	• fault tolerance (one processor fails, still have P-1 working)

	Two Multithreading Paradigms
	• coarse-grained
	• in-order processor with short pipeline
	• switch threads on long stalls (e.g., L2 cache misses)
	• instructions from one thread in stage per cycle
	+ threads don’t interfere with each other much
	– can’t improve utilization on L1 misses, or branch mispredictions
	• e.g., IBM Northstar/Pulsar (2 threads)

	• fine-grained: simultaneous multithreading (SMT)
	• out-of-order processor with deep pipeline
	• instructions from multiple threads in stage at same time, miss or not
	+ improves utilization in all scenarios
	– individual thread performance suffers due to interference
	• e.g., Pentium4 (2 threads), Alpha 21464 (4 threads)

	Parallel Processing Is Hard
	in a word: software
	• difficult to parallelize applications
	– compiler parallelization hard (have already seen this with vectors)
	– by-hand parallelization maybe harder (very error prone)

	• difficult to make parallel applications run fast
	– communication very expensive (must be aware of it)

	IT’S THE SOFTWARE, STUPID!

	Amdahl’s Law
	speedup = 1/ [fracparallel/speedupparallel + 1 – fracparallel]
	• example
	• achieve speedup of 80 using 100 processors
	• ﬁ 80 = 1 / [fracparallel/100 + 1 – fracparallel]
	• ﬁ fracparallel = 0.9975 ﬁ only 0.25% work can be serial!

	• application domains
	• problems where parallel parts scale faster than serial parts
	• e.g., O(N2) parallel vs. O(N) serial
	• interesting programs require communication between parallel parts
	• problems where computation scales faster than communication

	Application Domain 1: Parallel Programs
	• true parallelism in one job
	• regular loop structures
	• data usually tightly shared
	• automatic parallelization
	• called “data-level parallelism”
	• can often exploit vectors as well (have seen)

	• workloads
	• scientific simulation codes (e.g., FFT, weather, fluid dynamics, etc.)
	• was the dominant market segment of 10–15 years ago

	Parallel Program Example: Matrix Multiply
	• parameters
	• N = size of matrix (N*N)
	• P = number of processors

	• growth functions
	• computation grows as f(N3)
	• computation per processor grows as f(N3/P)
	• data size grows as f(N2)
	• data size per processor grows as f(N2/P)
	• communication grows as f(N2/P1/2)
	• computation/communication = f(N/P1/2)

	Application Domain 2: Parallel Tasks
	• parallel independent-but-similar tasks
	• irregular control structures
	• loosely shared data locked at different granularities
	• programmer defines & fine-tunes parallelism
	• cannot exploit vectors
	• called “thread-level parallelism” or “thruput-oriented parallelism”

	• workload
	• transaction processing, OS, databases, web-servers
	• dominant MP market segment TODAY (by far)

	Parallel Task Example: Bank Database
	• parameters
	• D = number of accounts
	• P = number of processors in central server
	• N = number of ATMs (parallel transactions)

	• growth functions
	• computation: f(N)
	• computation per processor: f(N/P)
	• what is communication? have to lock records while changing them
	• communication: f(N)
	– computation/communication: f(1)
	+ but no serial parts!

	Taxonomy of Processors
	Flynn Taxonomy [1966]
	• not all encompassing but simple
	• dimensions
	• instruction streams: single (SI) or multiple (MI)
	• data streams: single (SD) or multiple (MD)

	• cross-product
	• SISD: uniprocessor (been there)
	• SIMD: vectors (done that)
	• MISD: no practical examples (won’t do that)
	• MIMD: multiprocessors + multicomputers (doing it now)

	SIMD vs. MIMD
	why are MPs (much) more common than vector processors?
	• programming model flexibility
	• can simulate vectors with an MP, but not the other way around
	• dominant market segment cannot exploit vectors

	• cost effectiveness
	• commodity part: high volume (translation: cheap) component
	• MPs made up of commodity parts (i.e., uniprocessors)
	• can match size of MP to your budget
	• can’t do this for a vector processor

	• footnote: vectors are making a comeback
	• for graphics/Multimedia applications
	• NEC’s EarthSimulator is an MP of vector processors

	Taxonomy of Parallel (MIMD) Processors
	• again, two dimensions
	• center on organization of main memory (shared vs. distributed)

	• dimension I: appearance of memory to hardware
	• Q: is access to all memory uniform in latency?
	• shared (UMA): yes ﬁ where you put data doesn’t matter
	• distributed (NUMA): no ﬁ where you put data really matters

	• dimension II: appearance of memory to software
	• Q: can processors communicate via memory directly?
	• shared (shared memory): yes ﬁ communicate via loads/stores
	• distributed (message passing): no ﬁ communicate via messages

	• dimensions are orthogonal
	• e.g., DSM: (physically) distributed (logically) shared memory

	UMA vs. NUMA: The Setup
	• PRAM (parallel RAM): ideal theoretical model
	• perfect (single-cycle) memory latency
	• perfect (infinite) memory bandwidth
	– not achievable

	• in the real world...
	– latencies are long and grow with system size
	– bandwidth is limited
	• to get bandwidth ﬁ split memory into banks, add interconnect
	– interconnect adds even more latency

	UMA vs. NUMA
	• UMA: uniform memory access
	• from p0 same latency to m0 as to m3
	+ data placement unimportant (software is easier)
	– latency long, gets worse as system grows
	– interconnect contention restricts bandwidth
	• typically used in small multiprocessors only

	• NUMA: non-uniform memory accesss
	• from p0 faster to m0 (local) than m3 (non-local)
	+ low latency to local memory helps performance
	– data placement important (software is harder)
	+ less contention (non-local only) ﬁ more scalable
	• typically used in larger multiprocessors

	Interlude: What Is “Interconnect”?
	• connects processors/memories to each other
	• direct: endpoints connected directly
	• indirect: endpoints connected via switches/routers

	• interconnect issues
	• latency: average latency most important (locality optimizations?)
	• bandwidth: per processor
	• cost: # wires, # switches, # ports per switch
	• scalability: how latency, bandwidth, cost grow with # processors (P)

	• mainly concerned with interconnect topology
	• can have separate interconnects for addresses and data

	Interconnect 1: Bus
	• direct interconnect
	+ cost
	• f(1) wires

	+ latency: f(1)
	• no neighbor/locality optimization

	– bandwidth: not scalable at all, f(1/P)
	• only used in small systems (P <= 4)

	+ other: capable of ordered broadcast
	• incapable of anything else

	what about hierarchical busses?

	Interconnect 2: Crossbar Switch
	• indirect interconnect
	+ latency: f(1)
	• no locality/neighbor optimizations

	+ bandwidth: f(1)
	– cost
	• f(2P) wires
	• f(P2) switches
	• 4 wires per switch

	Interconnect 3: Multistage Network
	• indirect interconnect
	• routing done by address bit decoding
	• k: switch arity (# inputs and outputs per switch)
	• d: number of network stages = logkP

	+ cost
	• f(d*P/k) switches
	• f(P*d) wires
	• f(k) wires per switch

	+ latency: f(d)
	+ bandwidth: f(1)
	• commonly used in large UMA systems
	• a.k.a. butterfly, banyan, omega

	Interconnect 4: 2D Torus
	• direct interconnect
	• no dedicated switches

	+ latency: f(P1/2)
	• locality/neighbor optimization

	+ bandwidth: f(1)
	+ cost
	• f(2P) wires
	• 4 wires per switch

	• good scalability ﬁ widely used
	• variants: 3D, mesh (no “wraparound”)

	Interconnect 5: Hypercube
	• direct interconnect
	• k: arity (# nodes per dimension)
	• d: dimension = logkP
	• in figure: P = 16, k = 2, d = 4

	+ latency: f(d)
	• locality/neighbor optimized

	+ bandwidth: f((k–1)*d)
	– cost
	• f((k–1)*d*P) wires
	• f((k–1)*d) wires per switch

	• good scalability, expensive switches
	– switch changes as nodes are added

	Interconnect Routing
	• store-and-forward routing
	• switch buffers entire message before passing it on
	• latency = [(message length / bandwidth) + fixed overhead] * # hops

	• wormhole routing
	• pipeline message through interconnect
	• switch passes message on before completely arrives
	• latency = (message length / bandwidth) + (fixed overhead * # hops)
	+ no buffering needed at switch
	+ latency (relatively) independent of number of intermediate hops

	• separate issue: dimension-order routing
	• route along dimensions in fixed order to avoid deadlocks

	Shared Memory vs. Message Passing
	MIMD dimension II: appearance of address space to software
	• message passing (multicomputers)
	• each processor has its own address space (and unique processor #)
	• processors send (receive) messages to (from) each other
	• communication pattern explicit and precise (only way)
	• used for scientific codes (explicit communication patterns)
	• message passing systems: PVM, MPI
	+ simple hardware
	– difficult programming model (in general)

	Shared Memory vs. Message Passing
	• shared memory (multiprocessors)
	• one shared address space
	• processors use conventional loads/stores to access shared data
	• communication can be complex/dynamic
	+ simpler programming model (compatible with uniprocessors)
	– but with its own nasties (e.g., synchronization)
	– more complex hardware... (we’ll see soon)
	+ but more room for hardware optimization

	(Not Too) Recent Parallel Systems
	SPARCcenter
	shared memory
	bus
	<=20
	1
	SGI Challenge
	shared memory
	bus
	<= 32
	1
	Cray T3D
	shared memory (nc)
	3D torus
	64-1024
	1
	Convex SPP
	shared memory
	X-bar/ring
	8-64
	2
	KSR-1
	shared memory
	bus/ring
	32
	2-6
	TMC CM-5
	messages
	fat tree
	64-1024
	10
	Intel Paragon
	messages
	2-d mesh
	32-2048
	10-30
	IBM SP-2
	messages
	multistage
	32-256
	30-100
	we will concentrate on shared memory systems
	• more hardware oriented
	• market is going this way
	• speaking of which...

	Multiprocessor Industry Trends
	• shared memory
	• easier, more dynamic program model (it IS the software, stupid!)
	• can do more to optimize the hardware

	• small-to-medium size UMA systems (2–8 processors)
	• processors + memory + switch on single board (e.g., quad Pentium)
	• coming soon: same thing on a single chip (e.g., IBM POWER4)
	• commodity part of the future (present?)
	• glueless MP: slap these together and MP just works!!

	• larger NUMA systems built from smaller UMA systems
	• exploit commodity nature of small UMA systems
	• use commodity interconnect (e.g., gigabit Ethernet, Myrinet)
	• called NUMA clusters

	Two Issues for Shared Memory Systems
	• actually three issues
	• cache coherence
	• synchronization
	• memory consistency model

	• not completely unrelated to each other
	• not issues for message passing machines
	• why not?

	Cache (In)Coherence
	• most common cause: sharing of writeable data
	• example
	processor 0 processor 1 correct value of A in..
	----------- ----------- -----------------------
	memory
	read A memory, p0 cache
	read A memory, p0 cache, p1 cache
	write A p0 cache, memory (if wthru)
	read A p1 gets stale value on hit

	• other causes
	• process migration (even if jobs are independent)
	• I/O (can be fixed by OS cache flushes)

	Solutions to Coherence Problem
	• no caches
	• yeah, right

	• make shared-data non-cacheable
	+ simplest software solution
	– low performance if a lot of data is shared

	• software flush at strategic times: e.g., after critical sections
	+ relatively simple
	– low performance if synchronization is frequent

	• hardware cache coherence
	• make memory and caches coherent (consistent) with each other
	• in other words: let memory and other processors see writes

	Coherence Protocols
	• absolute coherence
	• all copies of each block have same data at all times
	• not necessary

	• what is required is appearance of absolute coherence
	• temporary incoherence is OK (e.g., write-back cache)
	• as long as all loads get correct values

	• coherence protocol: FSM that runs at every cache
	• two kinds of protocols
	• invalidate protocol: invalidate copies in other caches
	• update protocol: update copies in other caches
	• memory is always updated

	Bus-Based Protocols (Snooping)
	• bus-based protocol (snooping)
	• ALL caches see and react to ALL bus events
	• protocol relies on global visibility of events (ordered broadcast)

	• 3 processor events (i.e., events from own processor)
	• read (R)
	• write (W)
	• writeback (WB)

	• 2 bus events (i.e., events from other processors)
	• bus read (BR)
	• bus write (BW)

	Two-State Invalidate Protocol
	• two states
	• invalid: don’t have block
	• valid: have block
	+ can implement with cache valid bit

	• protocol diagram (left)
	• convention: event ﬁ generated event
	• WB: write-block back to memory
	• CCT: cache-to-cache transfer (faster than memory)
	• CCT is an optimization, not strictly necessary

	• problem
	– block can be in only one cache at a time
	– stupid, especially if data is only being read

	Three-State Invalidate Protocol (MSI)
	• three states
	• idea: add new “read-only” state (shared)
	• invalid: don’t have block (same as invalid)
	• modified: have block and wrote it (same as valid)
	• shared: have block but only read it (new)
	+ other processors can read blocks in shared state

	Scalable Coherence Protocols: Directories
	– bus-based protocols are not scalable!
	• not enough bus b/w for everyone’s coherence traffic
	• not enough processor snooping b/w to handle everyone’s traffic

	• directories: scalable cache coherence for large MPs
	• each memory entry (cache line) has a bit vector (1 bit per processor)
	• bit vector tracks which processors have cached copies of line
	• send all messages to memory directory
	• if no other cached copies, memory returns data
	• otherwise, memory forwards request to correct processor
	+ low b/w consumption (communicate only with processors that care)
	+ works with general interconnect (bus not needed)
	– longer latency (3-hop transactions: p0 ﬁ directory ﬁ p1 ﬁ p0)

	Coherence Protocols: Performance
	• 3C miss model ﬁ 4C miss model
	• capacity, compulsory, conflict
	• coherence: additional misses due to coherence protocol
	• complicates uniprocessor cache analysis

	• as processors are added
	– coherence misses increase (more communication)

	• as cache size is increased
	+ capacity misses decrease
	– coherence misses increase (more shared data is cached)

	• as block size is increased
	– coherence misses increase (false sharing)
	• false sharing: sharing of different data in same cache line

	Synchronization
	• synchronization: important issue for shared memory
	• regulates access to shared data
	• e.g., semaphore, monitor, critical section (s/w constructs)
	• synchronization primitive: lock
	acquire(lock); // while (lock != 0); lock = 1;
	critical section;
	release(lock); // lock = 0;
	0: ldw r1, lock // wait for lock to be free
	1: bnez r1, #0
	2: stw #1, lock // acquire lock
	... // critical section
	9: stw #0, lock // release lock

	Implementing Locks
	• lock implementation from previous slide
	• called spin lock
	– doesn’t actually work
	processor 0 processor 1
	0: ldw r1,lock
	1: bnez r1,#0 // p0 sees lock free
	0: ldw r1,lock
	1: bnez r1,#0 // p1 sees lock free
	2: stw #1,lock // p0 acquires lock
	2: stw #1,lock // p1 acquires lock
	... // p0 AND p1 in
	... // critical section
	... // TOGETHER
	9: stw #0,lock

	Implementing Locks
	problem: acquire sequence (load-test-store) is not atomic
	• option I: implement sequence in kernel
	• kernel can control interleaving by suppressing interrupts
	+ implementation works
	– hugely expensive for common case (lock is free)
	ACQUIRE_LOCK: 0: syscall ACQUIRE_LOCK
	10: enable interrupts 1: ...
	11: disable interrupts 2: stw #0, lock
	12: ldw r1,lock
	13: bnez r1,#10
	14: stw #1,lock
	15: enable interrupts
	16: ret

	Implementing Locks
	• option II: ISA provides an atomic lock-acquire operation
	• load+check+store in one instruction (uninterruptible by definition)
	• e.g., test&set instruction (t&s) (aka fetch&add, swap)
	t&s r1,lock // ldw r1,lock; stw #1,lock;
	0: t&s r1,lock
	1: bnez r1, #0
	2: ...
	3: stw r1, #0
	• BTW, lock-release is already atomic

	a lot of work has gone into making synchronization fast + cheap

	Correctness: Memory Ordering
	memory updates may become re-ordered by the memory system
	• example
	processor 0 processor 1
	A = 0 B = 0
	A = 1 B = 1
	L1: if (B == 0) L2: if (A == 0)
	critical section critical section
	• intuitively impossible for both processors to be in critical section
	• BUT can happen if memory operations are reordered
	• coherence: A’s must be same, B’s must be same EVENTUALLY
	• says nothing about relative timing of A’s and B’s coherence
	• this is specified by the memory ordering (consistency) model

	Memory Ordering: Sequential Consistency
	“system is sequentially consistent if the result of ANY execution is the same as if the operation...
	• sequential consistency
	• all loads and stores in order
	+ simple for programmer
	– not much room for hardware (or software) optimization
	• example works if system obeys sequential consistency (SC)

	Weak(er) Consistency Models
	• observation: SC needed only for lock variables
	• other variables?
	• either in critical section (no parallel access)
	• or not shared

	• weaker consistency: can delay/reorder loads and stores
	+ more room for hardware optimization
	– somewhat trickier programming model?
	• e.g., Intel: processor consistency (PC)
	• e.g., Sun: total store order (TSO)
	• e.g., Alpha: release consistency (RC)

	Summary
	• parallel processors
	• workloads: parallel programs and parallel tasks
	• PRAM not achievable ﬁ UMA vs. NUMA

	• interconnect
	• direct vs. indirect, store-and-forward vs. wormhole, topologies

	• interprocess communication
	• message passing vs. shared memory

	• shared memory
	• cache coherence: bus-based (2-state vs. 3-state)
	• synchronization

	• multithreading
	• coarse-grained vs. fine-grained

