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L15-3

Arvind & Emer

Multithreading

How can we guarantee no dependencies
between instructions in a pipeline?

-- One way is to interleave execution of
instructions from different program threads on
same pipeline

F D X M W
t0 t1 t2 t3 t4 t5 t6 t7 t8

T1: LW r1, 0(r2)
T2: ADD r7, r1, r4
T3: XORI r5, r4, #12
T4: SW 0(r7),  r5
T1: LW r5, 12(r1)

t9

F D X M W
F D X M W

F D X M W
F D X M W

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

Prior instruction in
a thread always
completes write-
back before next
instruction in
same thread reads
register file
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L15-5

Arvind & Emer

Simple Multithreaded Pipeline

Have to carry thread select down pipeline
to ensure correct state bits read/written
at each pipe stage

+1

2 Thread
select

PC
1PC

1PC
1PC

1
I$ IR GPR1GPR1GPR1GPR1

X

Y

2

D$
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L15-6

Arvind & Emer

Multithreading Costs

• Each thread requires its own user state
–  PC
–  GPRs

• Also, needs its own system state
– virtual memory page table base register
– exception handling registers

• Other costs?

• Appears to software (including OS) as
multiple, albeit slower, CPUs
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L15-7

Arvind & Emer

Thread Scheduling Policies

• Fixed interleave (CDC 6600 PPUs, 1965)
– each of N threads executes one instruction every N cycles
– if thread not ready to go in its slot, insert pipeline bubble

• Software-controlled interleave (TI ASC PPUs, 1971)
– OS allocates S pipeline slots amongst N threads
– hardware performs fixed interleave over S slots, executing

whichever thread is in that slot

• Hardware-controlled thread scheduling (HEP, 1982)
– hardware keeps track of which threads are ready to go
– picks next thread to execute based on hardware priority

scheme
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Arvind & Emer

Pentium-4 Hyperthreading
(2002)

• First commercial SMT design (2-way SMT)
– Hyperthreading == SMT

• Logical processors share nearly all resources of
the physical processor
– Caches, execution units, branch predictors

• Die area overhead of hyperthreading  ~ 5%
• When one logical processor is stalled, the other

can make progress
– No logical processor can use all entries in queues when two

threads are active

• Processor running only one active software
thread runs at approximately same speed with
or without hyperthreading
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Arvind & Emer

O-o-O Simultaneous Multithreading
[Tullsen, Eggers, Emer, Levy, Stamm, Lo, DEC/UW, 1996]

• Add multiple contexts and fetch engines and
allow instructions fetched from different
threads to issue simultaneously

• Utilize wide out-of-order superscalar processor
issue queue to find instructions to issue from
multiple threads

• OOO instruction window already has most of
the circuitry required to schedule from
multiple threads

• Any single thread can utilize whole machine
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Why Parallel Process

l processors: also called multiprocess

 multiple processors working together,

 performance: break physical limits of u
• ILP (branch prediction, RAW dependences

• speed of light

 cost and cost effectiveness
• build big systems from commodity parts (o

• the commodity part of the future (no more 

 other
• smooth upgrade path (keep adding proces

• fault tolerance (one processor fails, still hav
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Parallel Processing I

ord: software

• difficult to parallelize applications
– compiler parallelization hard (have alrea

– by-hand parallelization maybe harder (ve

• difficult to make parallel applications
– communication very expensive (must be

IT’S THE SOFTWARE, ST
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lication Domain 1: Paralle

ue parallelism in one job
• regular loop structures

• data usually tightly shared

• automatic parallelization

• called “data-level parallelism”

• can often exploit vectors as well (have seen)

orkloads
• scientific simulation codes (e.g., FFT, weathe

• was the dominant market segment of 10–15 
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allel Program Example: M

• parameters
• N = size of matrix (N*N)

• P = number of processo

• growth functions
• computation grows as f(

• computation per proces

• data size grows as f(N2)

• data size per processor

• communication grows a

• computation/communica

N

P
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plication Domain 2: Para

arallel independent-but-similar tasks
• irregular control structures

• loosely shared data locked at different granul

• programmer defines & fine-tunes parallelism

• cannot exploit vectors

• called “thread-level parallelism” or “thruput-or

orkload
• transaction processing, OS, databases, web-

• dominant MP market segment TODAY (by far
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Taxonomy of Process

xonomy [1966]

t all encompassing but simple

mensions
 instruction streams: single (SI) or multiple (MI

 data streams: single (SD) or multiple (MD)

oss-product
 SISD: uniprocessor (been there)

 SIMD: vectors (done that)

 MISD: no practical examples (won’t do that)

MIMD: multiprocessors + multicomputers (do
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SIMD vs. MIMD

Ps (much) more common than vector

gramming model flexibility
can simulate vectors with an MP, but not the o

dominant market segment cannot exploit vecto

st effectiveness
commodity part: high volume (translation: che

MPs made up of commodity parts (i.e., unipro

can match size of MP to your budget

can’t do this for a vector processor

tnote: vectors are making a comeback
for graphics/Multimedia applications

NEC’s EarthSimulator is an MP of vector proc
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onomy of Parallel (MIMD)
 again, two dimensions

• center on organization of main memory (sh

 dimension I: appearance of memory to
• Q: is access to all memory uniform in latenc

• shared (UMA): yes ⇒ where you put data d

• distributed (NUMA): no ⇒ where you put da

 dimension II: appearance of memory to
• Q: can processors communicate via memor

• shared (shared memory): yes ⇒ communic

• distributed (message passing): no ⇒ comm

 dimensions are orthogonal
• e.g.,  DSM: (physically) distributed (logically
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UMA vs. NUM

• UMA: uniform mem
• from p0 same latenc

+ data placement unim

– latency long, gets wo

– interconnect content

• typically used in sma

• NUMA: non-uniform
• from p0 faster to m0 

+ low latency to local m

– data placement impo

+ less contention (non

• typically used in large

interconnect

m0 m1 m2 m3

p0 p1 p2 p3

interconnect

m0 m1 m2 m3

p0 p1 p2 p3
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nterlude: What Is “Intercon
nnects processors/memories to each o
direct: endpoints connected directly

indirect: endpoints connected via switches/rou

terconnect issues
latency: average latency most important (local

bandwidth: per processor

cost: # wires, # switches, # ports per switch

scalability: how latency, bandwidth, cost grow w

ainly concerned with interconnect topol

n have separate interconnects for addr
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Interconnect 1: Bu

• direct interconnect

+ cost
• f(1) wires

+ latency: f(1)
• no neighbor/locality 

– bandwidth: not sca
• only used in small sy

+ other: capable of o
• incapable of anythin

what about hierarc

p2 p3

1 m2 m3

p2 p3

1 m2 m3
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t
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Interconnect 2: Crossbar

• indirect interconnec

+ latency: f(1)
• no locality/neighbor 

+ bandwidth: f(1)

– cost
• f(2P) wires

• f(P2) switches

• 4 wires per switch

m1 m2 m3
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Interconnect 3: Multistage 
• indirect interconnect

• routing done by address

• k: switch arity (# inputs a

• d: number of network sta

+ cost
• f(d*P/k) switches

• f(P*d) wires

• f(k) wires per switch

+ latency: f(d)

+ bandwidth: f(1)

• commonly used in larg
• a.k.a. butterfly, banyan, 

1 m2 m3

1 p2 p3
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• direct interconn
• no dedicated s

+ latency: f(P1/2)
• locality/neighbo

+ bandwidth: f(1

+ cost
• f(2P) wires

• 4 wires per swi

• good scalability
• variants: 3D, m
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Interconnect Routin

tore-and-forward routing
• switch buffers entire message before passin

• latency = [(message length / bandwidth) + fix

ormhole routing
• pipeline message through interconnect

• switch passes message on before completel

• latency = (message length / bandwidth) + (fi

+ no buffering needed at switch

+ latency (relatively) independent of number o

eparate issue: dimension-order routing
• route along dimensions in fixed order to avoi
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ared Memory vs. Message

mension II: appearance of address spa

essage passing (multicomputers)
each processor has its own address space (an

 processors send (receive) messages to (from

 communication pattern explicit and precise (o

 used for scientific codes (explicit communicati

 message passing systems: PVM, MPI

 simple hardware

 difficult programming model (in general)
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red Memory vs. Message

ared memory (multiprocessors)
ne shared address space

rocessors use conventional loads/stores to ac

ommunication can be complex/dynamic

simpler programming model (compatible with 

but with its own nasties (e.g., synchronization)

more complex hardware... (we’ll see soon)

but more room for hardware optimization
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Issues for Shared Memor

tually three issues
cache coherence

synchronization

memory consistency model

t completely unrelated to each other

t issues for message passing machine
why not?
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Cache (In)Coheren

ost common cause: sharing of writea
• example

sor 0  processor 1  correct value of A in..
---  -----------  -----------------------
                memory
                    memory, p0 cache
   read A       memory, p0 cache, p1 cache
                   p0 cache, memory (if wthru)

read A        p1 gets stale value o

ther causes
• process migration (even if jobs are independ

• I/O (can be fixed by OS cache flushes)
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Solutions to Coherence P

o caches
• yeah, right

ake shared-data non-cacheable
+ simplest software solution

– low performance if a lot of data is shared

oftware flush at strategic times: e.g., a
+ relatively simple

– low performance if synchronization is freque

ardware cache coherence
• make memory and caches coherent (consist

• in other words: let memory and other proces
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Coherence Protoco

bsolute coherence
• all copies of each block have same data at al

• not necessary

hat is required is appearance of absol
• temporary incoherence is OK (e.g., write-bac

• as long as all loads get correct values

oherence protocol: FSM that runs at ev

o kinds of protocols
• invalidate protocol: invalidate copies in other 

• update protocol: update copies in other cach

• memory is always updated
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Bus-Based Protocols (Sno

s-based protocol (snooping)
 ALL caches see and react to ALL bus events

 protocol relies on global visibility of events (o

processor events (i.e., events from ow
 read (R)

 write (W)

 writeback (WB)

bus events (i.e., events from other pro
 bus read (BR)

 bus write (BW)
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	Parallel Processors and Multithreading
	• why parallel processors?
	• types of parallel processors
	• SIMD vs. MIMD
	• UMA vs. NUMA
	• message passing vs. shared memory

	• a little bit about interconnect
	• two issues for shared memory systems
	• cache coherence
	• synchronization

	just the tip of the iceberg, could be a course in itself

	Chip Multiprocessors
	trend today: multiprocessors on a single chip (CMPs)
	• can’t spend all of the transistors on just one processor
	• with limited ILP, single processor would not exploit it

	• e.g., IBM POWER4
	• 1 chip contains: 2 1Ghz processors, L2, L3 tags, interconnect
	• can connect 4 chips on 1 MCM to create 8 processor system
	• targets threaded server workloads)



	Readings
	H+P
	• chapter 6
	• 6.1–6.4, 6.7–6.9



	Multithreading
	another trend: multithreaded processors
	• processor utilization: IPC / processor width
	• decreases as processor width increases (~50% on 4 wide)
	• why? cache misses, branch mis-predictions, RAW dependences

	• idea: two (or more) processes (threads) share one pipeline
	• replicate process (thread) state
	• PC, register file, bpred history, page table pointer, etc.

	• one copy of stateless (or naturally tagged) structures
	• caches, functional units, buses, etc.

	• hardware thread switch must be fast
	• multiple on-chip contexts ﬁ no need to load from memory



	Why Parallel Processing?
	parallel processors: also called multiprocessors (MPs)
	• multiple processors working together, why?
	• performance: break physical limits of uniprocessing
	• ILP (branch prediction, RAW dependences, etc.)
	• speed of light

	• cost and cost effectiveness
	• build big systems from commodity parts (ordinary uniprocessors)
	• the commodity part of the future (no more uniprocessors)

	• other
	• smooth upgrade path (keep adding processors)
	• fault tolerance (one processor fails, still have P-1 working)



	Two Multithreading Paradigms
	• coarse-grained
	• in-order processor with short pipeline
	• switch threads on long stalls (e.g., L2 cache misses)
	• instructions from one thread in stage per cycle
	+ threads don’t interfere with each other much
	– can’t improve utilization on L1 misses, or branch mispredictions
	• e.g., IBM Northstar/Pulsar (2 threads)

	• fine-grained: simultaneous multithreading (SMT)
	• out-of-order processor with deep pipeline
	• instructions from multiple threads in stage at same time, miss or not
	+ improves utilization in all scenarios
	– individual thread performance suffers due to interference
	• e.g., Pentium4 (2 threads), Alpha 21464 (4 threads)


	Parallel Processing Is Hard
	in a word: software
	• difficult to parallelize applications
	– compiler parallelization hard (have already seen this with vectors)
	– by-hand parallelization maybe harder (very error prone)

	• difficult to make parallel applications run fast
	– communication very expensive (must be aware of it)


	IT’S THE SOFTWARE, STUPID!

	Amdahl’s Law
	speedup = 1/ [fracparallel/speedupparallel + 1 – fracparallel]
	• example
	• achieve speedup of 80 using 100 processors
	• ﬁ 80 = 1 / [fracparallel/100 + 1 – fracparallel]
	• ﬁ fracparallel = 0.9975 ﬁ only 0.25% work can be serial!

	• application domains
	• problems where parallel parts scale faster than serial parts
	• e.g., O(N2) parallel vs. O(N) serial
	• interesting programs require communication between parallel parts
	• problems where computation scales faster than communication



	Application Domain 1: Parallel Programs
	• true parallelism in one job
	• regular loop structures
	• data usually tightly shared
	• automatic parallelization
	• called “data-level parallelism”
	• can often exploit vectors as well (have seen)

	• workloads
	• scientific simulation codes (e.g., FFT, weather, fluid dynamics, etc.)
	• was the dominant market segment of 10–15 years ago


	Parallel Program Example: Matrix Multiply
	• parameters
	• N = size of matrix (N*N)
	• P = number of processors

	• growth functions
	• computation grows as f(N3)
	• computation per processor grows as f(N3/P)
	• data size grows as f(N2)
	• data size per processor grows as f(N2/P)
	• communication grows as f(N2/P1/2)
	• computation/communication = f(N/P1/2)


	Application Domain 2: Parallel Tasks
	• parallel independent-but-similar tasks
	• irregular control structures
	• loosely shared data locked at different granularities
	• programmer defines & fine-tunes parallelism
	• cannot exploit vectors
	• called “thread-level parallelism” or “thruput-oriented parallelism”

	• workload
	• transaction processing, OS, databases, web-servers
	• dominant MP market segment TODAY (by far)


	Parallel Task Example: Bank Database
	• parameters
	• D = number of accounts
	• P = number of processors in central server
	• N = number of ATMs (parallel transactions)

	• growth functions
	• computation: f(N)
	• computation per processor: f(N/P)
	• what is communication? have to lock records while changing them
	• communication: f(N)
	– computation/communication: f(1)
	+ but no serial parts!


	Taxonomy of Processors
	Flynn Taxonomy [1966]
	• not all encompassing but simple
	• dimensions
	• instruction streams: single (SI) or multiple (MI)
	• data streams: single (SD) or multiple (MD)

	• cross-product
	• SISD: uniprocessor (been there)
	• SIMD: vectors (done that)
	• MISD: no practical examples (won’t do that)
	• MIMD: multiprocessors + multicomputers (doing it now)



	SIMD vs. MIMD
	why are MPs (much) more common than vector processors?
	• programming model flexibility
	• can simulate vectors with an MP, but not the other way around
	• dominant market segment cannot exploit vectors

	• cost effectiveness
	• commodity part: high volume (translation: cheap) component
	• MPs made up of commodity parts (i.e., uniprocessors)
	• can match size of MP to your budget
	• can’t do this for a vector processor

	• footnote: vectors are making a comeback
	• for graphics/Multimedia applications
	• NEC’s EarthSimulator is an MP of vector processors



	Taxonomy of Parallel (MIMD) Processors
	• again, two dimensions
	• center on organization of main memory (shared vs. distributed)

	• dimension I: appearance of memory to hardware
	• Q: is access to all memory uniform in latency?
	• shared (UMA): yes ﬁ where you put data doesn’t matter
	• distributed (NUMA): no ﬁ where you put data really matters

	• dimension II: appearance of memory to software
	• Q: can processors communicate via memory directly?
	• shared (shared memory): yes ﬁ communicate via loads/stores
	• distributed (message passing): no ﬁ communicate via messages

	• dimensions are orthogonal
	• e.g., DSM: (physically) distributed (logically) shared memory


	UMA vs. NUMA: The Setup
	• PRAM (parallel RAM): ideal theoretical model
	• perfect (single-cycle) memory latency
	• perfect (infinite) memory bandwidth
	– not achievable

	• in the real world...
	– latencies are long and grow with system size
	– bandwidth is limited
	• to get bandwidth ﬁ split memory into banks, add interconnect
	– interconnect adds even more latency


	UMA vs. NUMA
	• UMA: uniform memory access
	• from p0 same latency to m0 as to m3
	+ data placement unimportant (software is easier)
	– latency long, gets worse as system grows
	– interconnect contention restricts bandwidth
	• typically used in small multiprocessors only

	• NUMA: non-uniform memory accesss
	• from p0 faster to m0 (local) than m3 (non-local)
	+ low latency to local memory helps performance
	– data placement important (software is harder)
	+ less contention (non-local only) ﬁ more scalable
	• typically used in larger multiprocessors


	Interlude: What Is “Interconnect”?
	• connects processors/memories to each other
	• direct: endpoints connected directly
	• indirect: endpoints connected via switches/routers

	• interconnect issues
	• latency: average latency most important (locality optimizations?)
	• bandwidth: per processor
	• cost: # wires, # switches, # ports per switch
	• scalability: how latency, bandwidth, cost grow with # processors (P)

	• mainly concerned with interconnect topology
	• can have separate interconnects for addresses and data

	Interconnect 1: Bus
	• direct interconnect
	+ cost
	• f(1) wires

	+ latency: f(1)
	• no neighbor/locality optimization

	– bandwidth: not scalable at all, f(1/P)
	• only used in small systems (P <= 4)

	+ other: capable of ordered broadcast
	• incapable of anything else

	what about hierarchical busses?

	Interconnect 2: Crossbar Switch
	• indirect interconnect
	+ latency: f(1)
	• no locality/neighbor optimizations

	+ bandwidth: f(1)
	– cost
	• f(2P) wires
	• f(P2) switches
	• 4 wires per switch


	Interconnect 3: Multistage Network
	• indirect interconnect
	• routing done by address bit decoding
	• k: switch arity (# inputs and outputs per switch)
	• d: number of network stages = logkP

	+ cost
	• f(d*P/k) switches
	• f(P*d) wires
	• f(k) wires per switch

	+ latency: f(d)
	+ bandwidth: f(1)
	• commonly used in large UMA systems
	• a.k.a. butterfly, banyan, omega


	Interconnect 4: 2D Torus
	• direct interconnect
	• no dedicated switches

	+ latency: f(P1/2)
	• locality/neighbor optimization

	+ bandwidth: f(1)
	+ cost
	• f(2P) wires
	• 4 wires per switch

	• good scalability ﬁ widely used
	• variants: 3D, mesh (no “wraparound”)


	Interconnect 5: Hypercube
	• direct interconnect
	• k: arity (# nodes per dimension)
	• d: dimension = logkP
	• in figure: P = 16, k = 2, d = 4

	+ latency: f(d)
	• locality/neighbor optimized

	+ bandwidth: f((k–1)*d)
	– cost
	• f((k–1)*d*P) wires
	• f((k–1)*d) wires per switch

	• good scalability, expensive switches
	– switch changes as nodes are added


	Interconnect Routing
	• store-and-forward routing
	• switch buffers entire message before passing it on
	• latency = [(message length / bandwidth) + fixed overhead] * # hops

	• wormhole routing
	• pipeline message through interconnect
	• switch passes message on before completely arrives
	• latency = (message length / bandwidth) + (fixed overhead * # hops)
	+ no buffering needed at switch
	+ latency (relatively) independent of number of intermediate hops

	• separate issue: dimension-order routing
	• route along dimensions in fixed order to avoid deadlocks


	Shared Memory vs. Message Passing
	MIMD dimension II: appearance of address space to software
	• message passing (multicomputers)
	• each processor has its own address space (and unique processor #)
	• processors send (receive) messages to (from) each other
	• communication pattern explicit and precise (only way)
	• used for scientific codes (explicit communication patterns)
	• message passing systems: PVM, MPI
	+ simple hardware
	– difficult programming model (in general)



	Shared Memory vs. Message Passing
	• shared memory (multiprocessors)
	• one shared address space
	• processors use conventional loads/stores to access shared data
	• communication can be complex/dynamic
	+ simpler programming model (compatible with uniprocessors)
	– but with its own nasties (e.g., synchronization)
	– more complex hardware... (we’ll see soon)
	+ but more room for hardware optimization


	(Not Too) Recent Parallel Systems
	SPARCcenter
	shared memory
	bus
	<=20
	1
	SGI Challenge
	shared memory
	bus
	<= 32
	1
	Cray T3D
	shared memory (nc)
	3D torus
	64-1024
	1
	Convex SPP
	shared memory
	X-bar/ring
	8-64
	2
	KSR-1
	shared memory
	bus/ring
	32
	2-6
	TMC CM-5
	messages
	fat tree
	64-1024
	10
	Intel Paragon
	messages
	2-d mesh
	32-2048
	10-30
	IBM SP-2
	messages
	multistage
	32-256
	30-100
	we will concentrate on shared memory systems
	• more hardware oriented
	• market is going this way
	• speaking of which...




	Multiprocessor Industry Trends
	• shared memory
	• easier, more dynamic program model (it IS the software, stupid!)
	• can do more to optimize the hardware

	• small-to-medium size UMA systems (2–8 processors)
	• processors + memory + switch on single board (e.g., quad Pentium)
	• coming soon: same thing on a single chip (e.g., IBM POWER4)
	• commodity part of the future (present?)
	• glueless MP: slap these together and MP just works!!

	• larger NUMA systems built from smaller UMA systems
	• exploit commodity nature of small UMA systems
	• use commodity interconnect (e.g., gigabit Ethernet, Myrinet)
	• called NUMA clusters


	Two Issues for Shared Memory Systems
	• actually three issues
	• cache coherence
	• synchronization
	• memory consistency model

	• not completely unrelated to each other
	• not issues for message passing machines
	• why not?


	Cache (In)Coherence
	• most common cause: sharing of writeable data
	• example
	processor 0 processor 1 correct value of A in..
	----------- ----------- -----------------------
	memory
	read A memory, p0 cache
	read A memory, p0 cache, p1 cache
	write A p0 cache, memory (if wthru)
	read A p1 gets stale value on hit

	• other causes
	• process migration (even if jobs are independent)
	• I/O (can be fixed by OS cache flushes)


	Solutions to Coherence Problem
	• no caches
	• yeah, right

	• make shared-data non-cacheable
	+ simplest software solution
	– low performance if a lot of data is shared

	• software flush at strategic times: e.g., after critical sections
	+ relatively simple
	– low performance if synchronization is frequent

	• hardware cache coherence
	• make memory and caches coherent (consistent) with each other
	• in other words: let memory and other processors see writes


	Coherence Protocols
	• absolute coherence
	• all copies of each block have same data at all times
	• not necessary

	• what is required is appearance of absolute coherence
	• temporary incoherence is OK (e.g., write-back cache)
	• as long as all loads get correct values

	• coherence protocol: FSM that runs at every cache
	• two kinds of protocols
	• invalidate protocol: invalidate copies in other caches
	• update protocol: update copies in other caches
	• memory is always updated


	Bus-Based Protocols (Snooping)
	• bus-based protocol (snooping)
	• ALL caches see and react to ALL bus events
	• protocol relies on global visibility of events (ordered broadcast)

	• 3 processor events (i.e., events from own processor)
	• read (R)
	• write (W)
	• writeback (WB)

	• 2 bus events (i.e., events from other processors)
	• bus read (BR)
	• bus write (BW)


	Two-State Invalidate Protocol
	• two states
	• invalid: don’t have block
	• valid: have block
	+ can implement with cache valid bit

	• protocol diagram (left)
	• convention: event ﬁ generated event
	• WB: write-block back to memory
	• CCT: cache-to-cache transfer (faster than memory)
	• CCT is an optimization, not strictly necessary

	• problem
	– block can be in only one cache at a time
	– stupid, especially if data is only being read


	Three-State Invalidate Protocol (MSI)
	• three states
	• idea: add new “read-only” state (shared)
	• invalid: don’t have block (same as invalid)
	• modified: have block and wrote it (same as valid)
	• shared: have block but only read it (new)
	+ other processors can read blocks in shared state


	Scalable Coherence Protocols: Directories
	– bus-based protocols are not scalable!
	• not enough bus b/w for everyone’s coherence traffic
	• not enough processor snooping b/w to handle everyone’s traffic

	• directories: scalable cache coherence for large MPs
	• each memory entry (cache line) has a bit vector (1 bit per processor)
	• bit vector tracks which processors have cached copies of line
	• send all messages to memory directory
	• if no other cached copies, memory returns data
	• otherwise, memory forwards request to correct processor
	+ low b/w consumption (communicate only with processors that care)
	+ works with general interconnect (bus not needed)
	– longer latency (3-hop transactions: p0 ﬁ directory ﬁ p1 ﬁ p0)


	Coherence Protocols: Performance
	• 3C miss model ﬁ 4C miss model
	• capacity, compulsory, conflict
	• coherence: additional misses due to coherence protocol
	• complicates uniprocessor cache analysis

	• as processors are added
	– coherence misses increase (more communication)

	• as cache size is increased
	+ capacity misses decrease
	– coherence misses increase (more shared data is cached)

	• as block size is increased
	– coherence misses increase (false sharing)
	• false sharing: sharing of different data in same cache line


	Synchronization
	• synchronization: important issue for shared memory
	• regulates access to shared data
	• e.g., semaphore, monitor, critical section (s/w constructs)
	• synchronization primitive: lock
	acquire(lock); // while (lock != 0); lock = 1;
	critical section;
	release(lock); // lock = 0;
	0: ldw r1, lock // wait for lock to be free
	1: bnez r1, #0
	2: stw #1, lock // acquire lock
	... // critical section
	9: stw #0, lock // release lock


	Implementing Locks
	• lock implementation from previous slide
	• called spin lock
	– doesn’t actually work
	processor 0 processor 1
	0: ldw r1,lock
	1: bnez r1,#0 // p0 sees lock free
	0: ldw r1,lock
	1: bnez r1,#0 // p1 sees lock free
	2: stw #1,lock // p0 acquires lock
	2: stw #1,lock // p1 acquires lock
	... // p0 AND p1 in
	... // critical section
	... // TOGETHER
	9: stw #0,lock


	Implementing Locks
	problem: acquire sequence (load-test-store) is not atomic
	• option I: implement sequence in kernel
	• kernel can control interleaving by suppressing interrupts
	+ implementation works
	– hugely expensive for common case (lock is free)
	ACQUIRE_LOCK: 0: syscall ACQUIRE_LOCK
	10: enable interrupts 1: ...
	11: disable interrupts 2: stw #0, lock
	12: ldw r1,lock
	13: bnez r1,#10
	14: stw #1,lock
	15: enable interrupts
	16: ret



	Implementing Locks
	• option II: ISA provides an atomic lock-acquire operation
	• load+check+store in one instruction (uninterruptible by definition)
	• e.g., test&set instruction (t&s) (aka fetch&add, swap)
	t&s r1,lock // ldw r1,lock; stw #1,lock;
	0: t&s r1,lock
	1: bnez r1, #0
	2: ...
	3: stw r1, #0
	• BTW, lock-release is already atomic


	a lot of work has gone into making synchronization fast + cheap

	Correctness: Memory Ordering
	memory updates may become re-ordered by the memory system
	• example
	processor 0 processor 1
	A = 0 B = 0
	A = 1 B = 1
	L1: if (B == 0) L2: if (A == 0)
	critical section critical section
	• intuitively impossible for both processors to be in critical section
	• BUT can happen if memory operations are reordered
	• coherence: A’s must be same, B’s must be same EVENTUALLY
	• says nothing about relative timing of A’s and B’s coherence
	• this is specified by the memory ordering (consistency) model




	Memory Ordering: Sequential Consistency
	“system is sequentially consistent if the result of ANY execution is the same as if the operation...
	• sequential consistency
	• all loads and stores in order
	+ simple for programmer
	– not much room for hardware (or software) optimization
	• example works if system obeys sequential consistency (SC)



	Weak(er) Consistency Models
	• observation: SC needed only for lock variables
	• other variables?
	• either in critical section (no parallel access)
	• or not shared

	• weaker consistency: can delay/reorder loads and stores
	+ more room for hardware optimization
	– somewhat trickier programming model?
	• e.g., Intel: processor consistency (PC)
	• e.g., Sun: total store order (TSO)
	• e.g., Alpha: release consistency (RC)


	Summary
	• parallel processors
	• workloads: parallel programs and parallel tasks
	• PRAM not achievable ﬁ UMA vs. NUMA

	• interconnect
	• direct vs. indirect, store-and-forward vs. wormhole, topologies

	• interprocess communication
	• message passing vs. shared memory

	• shared memory
	• cache coherence: bus-based (2-state vs. 3-state)
	• synchronization

	• multithreading
	• coarse-grained vs. fine-grained






