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Memory Management

• The Fifties
- Absolute Addresses
- Dynamic address translation

• The Sixties
- Atlas’ Demand Paging
- Paged memory systems and TLBs

• Modern Virtual Memory Systems



October 1, 2008 http://www.csg.csail.mit.edu/6.823 Arvind & Emer

L08-3

Names for Memory Locations

• Machine language address
– as specified in machine code

• Virtual address
– ISA specifies translation of machine code address

into virtual address of program variable (sometime
called effective address)

• Physical address
⇒ operating system specifies mapping of virtual

address into name for a physical memory location

physical
address

virtual
address

machine
language
address

Address
MappingISA

Physical
Memory
(DRAM)
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Absolute Addresses

• Only one program ran at a time, with
unrestricted access to entire machine (RAM +
I/O devices)

• Addresses in a program depended upon where
the program was to be loaded in memory

• But it was more convenient for programmers
to write location-independent subroutines

virtual address  =  physical memory address

EDSAC, early 50’s

How could location independence be achieved?

Linker and/or loader modify addresses of subroutines
and callers when building a program memory image
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Dynamic Address Translation

Motivation
In the early machines, I/O operations were slow
and each word transferred involved the CPU

Higher throughput if CPU and I/O of 2 or more
programs were overlapped.  How?
⇒ multiprogramming

Location-independent programs
Programming and storage management ease

⇒ need for a base register

Protection
Independent programs should not affect
each other inadvertently

⇒ need for a bound register
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Simple Base and Bound Translation

Base and bounds registers are visible/accessible only
when processor is running in the supervisor mode

Load X
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Separate Areas for Program and Data

What is an advantage of this separation?
(Scheme used on all Cray vector supercomputers prior to X1, 2002)
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Memory Fragmentation

  As users come and go, the storage is “fragmented”. 
  Therefore, at some stage programs have to be moved
  around to compact the storage. 
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• Processor generated address can be
interpreted as a pair <page number, offset>

• A page table contains the physical address
of the base of each page

Paged Memory Systems

Page tables make it possible to store the
pages of a program non-contiguously.

0
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Address Space
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Page Table 
of User-1
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0
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page number      offset
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Private Address Space per User

• Each user has a page table
• Page table contains an entry for each user page

VA1User 1

Page Table 

VA1User 2

Page Table 

VA1User 3

Page Table 
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Where Should Page Tables Reside?

• Space required by the page tables (PT) is
proportional to the address space, number
of users, ...

      ⇒  Space requirement is large
    ⇒  Too expensive to keep in registers

• Idea: Keep PT of the current user in special
registers
– may not be feasible for large page tables
– Increases the cost of context swap

• Idea: Keep PTs in the main memory
– needs one reference to retrieve the page base address

and another to access the data word
⇒ doubles the number of memory references!
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Page Tables in Physical Memory

VA1

User 1

PT User 1 

PT User 2 

VA1

User 2

Idea: cache the
address translation
of frequently used
pages -- TLBs
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A Problem in Early Sixties

• There were many applications whose data
could not fit in the main memory, e.g., payroll
– Paged memory system reduced fragmentation but still

required the whole program to be resident in the main
memory

• Programmers moved the data back and forth
from the secondary store by overlaying it
repeatedly on the primary store

tricky programming!
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Demand Paging in Atlas (1962)

Secondary
(Drum)

32x6 pages

Primary
32 Pages

512 words/page

Central 
MemoryUser sees 32 x 6 x 512 words

of storage

“A page from secondary
storage is brought into the
primary storage whenever
it is (implicitly) demanded
by the processor.”

Tom Kilburn

Primary memory as a cache
for secondary memory
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Atlas Demand Paging Scheme

• On a page fault:
– Input transfer into a free page is initiated

– The Page Address Register (PAR) is updated

– If no free page is left, a page is selected to be
replaced  (based on usage)

– The replaced page is written on the drum
• to minimize the drum latency effect, the first

empty page on the drum was selected

– The page table is updated to point to the new
location of the page on the drum
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Caching vs. Demand Paging

CPU cache
primary
memory

secondary
memory

Caching        Demand paging
cache entry page frame
cache block (~32 bytes) page (~4K bytes)
cache miss rate (1% to 20%) page miss rate (<0.001%)
cache hit (~1 cycle) page hit (~100 cycles)
cache miss (~100 cycles) page miss (~5M cycles)
a miss is handled           a miss is handled 
     in hardware                mostly in software

primary
memory

CPU
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Modern Virtual Memory Systems
 Illusion of a large, private, uniform store

Protection & Privacy
several users, each with their private
address space and one or more
shared address spaces

page table ≡ name space

Demand Paging
Provides the ability to run programs
larger than the primary memory

Hides differences in machine
configurations

The price is address translation on
each memory reference

OS

useri

Primary
Memory

Swapping
Store

VA PAmapping

TLB
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Linear Page Table

VPN Offset

Virtual address
PT Base Register

VPN

Data word

Data Pages

Offset

PPN
PPN

DPN
PPN

PPN
PPN

Page Table

DPN

PPN

DPN
DPN

DPN
PPN

• Page Table Entry (PTE)
contains:
– A bit to indicate if a page

exists
– PPN (physical page number)

for a memory-resident page
– DPN (disk page number) for

a page on the disk
– Status bits for protection

and usage
• OS sets the Page Table

Base Register
whenever active user
process changes
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Size of Linear Page Table

With 32-bit addresses, 4-KB pages & 4-byte PTEs:
⇒  220 PTEs, i.e, 4 MB page table per user
⇒  4 GB of swap space needed to back up the full virtual

address space

Larger pages?
• Internal fragmentation (Not all memory in a page is

used)
• Larger page fault penalty (more time to read from disk)

What about 64-bit virtual address space???
• Even 1MB pages would require 244  8-byte PTEs (35 TB!)

                          What is the “saving grace” ?
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Hierarchical Page Table

Level 1 
Page Table

Level 2
Page Tables 

Data Pages

page in primary memory 
page in secondary memory

Root of the Current
Page Table

p1

offset

p2

Virtual Address

(Processor
Register)

PTE of a nonexistent page

p1          p2          offset
01112212231

10-bit
L1 index

10-bit 
L2 index
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Address Translation & Protection

• Every instruction and data access needs address
  translation and protection checks

A good VM design needs to be fast (~ one cycle) and
space efficient

Physical Address

Virtual Address

Address
Translation

Virtual Page No. (VPN) offset

Physical Page No. (PPN) offset

Protection
Check

Exception?

Kernel/User Mode

Read/Write
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Translation Lookaside Buffers
Address translation is very expensive!

In a two-level page table, each reference
becomes several memory accesses

Solution: Cache translations in TLB
TLB hit ⇒ Single Cycle Translation

     TLB miss ⇒ Page Table Walk to refill

VPN         offset

V R W D    tag        PPN

physical address PPN      offset

virtual address

hit?

(VPN = virtual page number)

(PPN = physical page number)
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TLB Designs

• Typically 32-128 entries, usually fully associative
– Each entry maps a large page, hence less spatial locality

across pages  more likely that two entries conflict
– Sometimes larger TLBs (256-512 entries) are 4-8 way set-

associative

• Random or FIFO replacement policy

• No process information in TLB?
• TLB Reach: Size of largest virtual address space

that can be simultaneously mapped by TLB

Example: 64 TLB entries, 4KB pages, one page per entry

TLB Reach = _____________________________________?64 entries * 4 KB = 256 KB (if contiguous)
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Handling a TLB Miss

Software (MIPS, Alpha)
TLB miss causes an exception and the operating system
walks the page tables and reloads TLB. A privileged
“untranslated”  addressing mode used for walk

Hardware (SPARC v8, x86, PowerPC)
A memory management unit (MMU) walks the page
tables and reloads the TLB

If a missing (data or PT) page is encountered during the
TLB reloading, MMU gives up and signals a Page-Fault
exception for the original instruction
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Address Translation:
putting it all together

Virtual Address

TLB
Lookup

Page Table
Walk

Update TLBPage Fault
(OS loads page)

Protection
Check

Physical
Address
(to cache)

miss hit

      the  page is 
∉ memory          ∈ memory denied permitted

Protection
Fault

hardware
hardware or software
software

SEGFAULTWhere?
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Topics

• Interrupts

• Speeding up the common case:
– TLB & Cache organization

• Speeding up page table walks

• Modern Usage
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Interrupts:
altering the normal flow of control

Ii-1 HI1

HI2

HIn

Ii

Ii+1

program
interrupt 
handler

An external or internal event  that needs to be processed by
another (system) program. The event is usually unexpected or
rare from program’s point of view.
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Causes of Interrupts

• Asynchronous: an external event
– input/output device service-request
– timer expiration
– power disruptions, hardware failure

• Synchronous: an internal event (a.k.a
exceptions)
– undefined opcode, privileged instruction
– arithmetic overflow, FPU exception
– misaligned memory access
– virtual memory exceptions: page faults,

            TLB misses, protection violations
– traps:  system calls, e.g., jumps into kernel

Interrupt: an event that requests the attention of the processor
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Asynchronous Interrupts:
invoking the interrupt handler

• An I/O device requests attention by
asserting one of the prioritized interrupt
request lines

• When the processor decides to process the
interrupt
– It stops the current program at instruction Ii,

completing all the instructions up to Ii-1
(precise interrupt)

– It saves the PC of instruction Ii in a special
register (EPC)

– It disables interrupts and transfers control to a
designated interrupt handler running in the
kernel mode
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Interrupt Handler

• Saves EPC before enabling interrupts to
allow nested interrupts ⇒
– need an instruction to move EPC into GPRs
– need a way to mask further interrupts at least until

EPC can be saved

• Needs to read a status register that
indicates the cause of the interrupt

• Uses a special indirect jump instruction
RFE (return-from-exception) which
– enables interrupts
– restores the processor to the user mode
– restores hardware status and control state
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Synchronous Interrupts

• A synchronous interrupt (exception) is caused
by a particular instruction

• In general, the instruction cannot be
completed and needs to be restarted after the
exception has been handled
– requires undoing the effect of one or more  partially

executed instructions

• In case of a trap (system call), the instruction
is considered to have been completed
– a  special jump instruction involving a change to

privileged kernel mode
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Exception Handling 5-Stage Pipeline

• How to handle multiple simultaneous
exceptions in different pipeline stages?

• How and where to handle external
asynchronous interrupts?

PC
Inst.
Mem D Decode E M

Data
Mem W+

Illegal
Opcode Overflow

Data address
Exceptions

PC address
Exception

Asynchronous Interrupts
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Exception Handling 5-Stage Pipeline

PC
Inst.
Mem D Decode E M

Data
Mem W+

Illegal
Opcode

Overflow Data address
Exceptions

PC address
Exception

Asynchronous
Interrupts

Ex
D

PC
D

Ex
E

PC
E

Ex
M

PC
M

C
au
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E
PC

Kill D
Stage

Kill F
Stage

Kill E
Stage

Select
Handler
PC

Kill
Writeback

Commit
Point
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Exception Handling 5-Stage Pipeline

• Hold exception flags in pipeline until
commit point (M stage)

• Exceptions in earlier pipe stages override
later exceptions for a given instruction

• Inject external interrupts at commit
point (override others)

• If exception at commit: update Cause
and EPC registers, kill all stages, inject
handler PC into fetch stage
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Topics

• Interrupts

• Speeding up the common case:
– TLB & Cache organization

• Speeding up page table walks

• Modern Usage
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Address Translation in CPU Pipeline

• Software handlers need a restartable exception on
page fault or protection violation

• Handling a TLB miss needs a hardware or software
mechanism to refill TLB

• Need mechanisms to cope with the additional latency
of a TLB:
–   slow down the clock
–   pipeline the TLB and cache access
–   virtual address caches
–   parallel TLB/cache access

PC
Inst
TLB

Inst.
Cache D Decode E M

Data
TLB

Data
Cache W+

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?



October 6, 2008 http://www.csg.csail.mit.edu/6.823 Arvind & Emer

L09-15

Virtual Address Caches

• one-step process in case of a hit (+)
• cache needs to be flushed on a context switch unless

address space identifiers (ASIDs) included in tags (-)
• aliasing problems due to the sharing of pages (-)

CPU Physical
Cache

TLB Primary
Memory

VA
PA

Alternative: place the cache before the TLB

CPU

VA

(StrongARM)Virtual
Cache

PA
TLB

Primary
Memory
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A solution via Second Level Cache

Usually a  common L2 cache backs up both
Instruction and Data L1 caches

L2 is “inclusive” of both Instruction and Data caches

CPU

L1 Data
Cache

L1
Instruction

Cache Unified L2
Cache

RF Memory

Memory

Memory

Memory
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Topics

• Interrupts

• Speeding up the common case:
– TLB & Cache organization

• Speeding up page table walks

• Modern Usage
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Page Fault Handler

• When the referenced page is not in DRAM:
– The missing page is located (or created)
– It is brought in from disk, and page table is

updated
   Another job may be run on the CPU while the first

job waits for the requested page to be read from disk

– If no free pages are left, a page is swapped out
   Pseudo-LRU replacement policy

• Since it takes a long time to transfer a page
(msecs), page faults are handled completely
in software by the OS
– Untranslated addressing mode is essential to allow

kernel to access page tables
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Translation for Page Tables
• Can references to page tables cause TLB misses?
• Can this go on forever?

User Page Table
(in virtual space)

Data Pages

User PTE Base

System Page Table
(in physical space)

System PTE Base

A program that traverses the
page table needs a “no
translation” addressing mode.
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Hashed Page Table:
Approximating Associative Addressing

hash
Offset

Base of Table

+
PA of PTE

Primary
Memory

VPN  PID PPN

Page Table

VPN d Virtual Address

VPN  PID DPN

VPN  PID

PID

• Hashed Page Table is typically 2 to 3
times larger than the number of PPN’s
to reduce collision probability

• It can also contain DPN’s for some non-
resident pages (not common)

• If a translation cannot be resolved in
this table then the software consults a
data structure that has an entry for
every existing page
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A PTE in primary memory contains 
primary or secondary memory addresses

A PTE in secondary memory contains 
only secondary memory addresses

⇒  a page of a PT can be swapped out only
      if none its PTE’s point to pages in the 
      primary memory

Why?__________________________________

Swapping a Page of a Page Table
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Virtual Memory Use Today - 1

• Desktops/servers have full demand-paged virtual
memory
– Portability between machines with different memory sizes
– Protection between multiple users or multiple tasks
– Share small physical memory among active tasks
– Simplifies implementation of some OS features

• Vector supercomputers have translation and
protection but not demand-paging
(Older Crays: base&bound, Japanese & Cray X1: pages)
– Don’t waste expensive CPU time thrashing to disk (make jobs

fit in memory)
– Mostly run in batch mode (run set of jobs that fits in memory)
– Difficult to implement restartable vector instructions
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Virtual Memory Use Today - 2

• Most embedded processors and DSPs provide
physical addressing only
– Can’t afford area/speed/power budget for virtual memory

support
– Often there is no secondary storage to swap to!
– Programs custom written for particular memory

configuration in product
– Difficult to implement restartable instructions for exposed

architectures

Given the software demands of modern embedded devices (e.g.,
cell phones, PDAs) all this may change in the near future!
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