
 I/O
1© ill, W

ar, L

 System

/O, mainly about disks

roughput

em

 (

L

L

2002 by H
Vijaykum

m

disk

I$
CIS 501 Lecture Notes
Storage Hierarchy III: Disks, Buses and

ood, Sohi, Smith,
ipasti and Roth

Storage Hierarchy III: I/O

• boring, but important
• ostensibly about general I

• performance: latency & th

• disks
• parameters

• extensions

• redundancy and RAID

• buses

• I/O system architecture
• DMA and I/O processors

ory

swap)

3

2

D$

reg

CIS 501 Lecture Notes
Storage Hierarchy III: Disks, Buses and I/O

4© Hill, Wood, Sohi, Smith,
mar, Lipasti and Roth

ristics

partner data rate KB/s
human 0.01

human 60,000

machine 2-8

machine 500-6000

machine 2000

machine 2000-10,000

 t

 p

 d
2002 by
Vijayku

•

•

•

I/O Device Characte

device type
mouse I

CRT O

modem I/O

LAN I/O

tape storage

disk storage

ype
• input: read only

• output: write only

• storage: both

artner
• human

• machine

ata rate
• peak transfer rate

CIS 501 Lecture Notes
Storage Hierarchy III: Disks, Buses and I/O

5y Hill, Wood, Sohi, Smith,
umar, Lipasti and Roth

 (data on both sides)
on-oxide coating

e head per side

cks per platter

rs per track
 fewer on inside tracks

tes per sector
d length

 (parity) + gap

• 3000–10000 RPM

s

h

sector
© 2002 b
Vijayk

ead
• 1–20 platters
• magnetic ir

• 1 read/writ

• 500–2500 tra

• 32–128 secto
• sometimes

• 512–2048 by
• usually fixe

• data + ECC

• 4–24GB total

Disk Parameter

platter

track

spindle

 and I/O
6by H

kum

ce

troller + tqueuing

•

• tor to come around

PS = RPM / 60)

•

 RPS)

• troller to do its thing

• r requests to finish
© 2002
Vijay
CIS 501 Lecture Notes
Storage Hierarchy III: Disks, Buses

ill, Wood, Sohi, Smith,
ar, Lipasti and Roth

Disk Performan

tdisk: tseek + trotation + ttransfer + tcon

tseek (seek time): move head to track

trotation (rotational latency): wait for sec

• average trotation = 0.5 / RPS // (R

ttransfer (transfer time): read disk

• ratetransfer = (bytes/sector * sector/track *

• ttransfer = bytes transferred / ratetransfer

tcontroller (controller delay): wait for con

tqueuing (queueing delay): wait for olde

d I/O
7© Hill,

ar,

mple

 p

 q
or * 60 RPS = 2.4 MB/s

 = 18.5ms

ger with more request)
2002 by
Vijaykum

•

•

CIS 501 Lecture Notes
Storage Hierarchy III: Disks, Buses an

Wood, Sohi, Smith,
 Lipasti and Roth

Disk Performance Exa

arameters
• 3600 RPM ⇒ 60 RPS

• avg seek time: 9ms

• 100 sectors per track, 512 bytes per sector

• controller + queuing delays: 1ms

: average time to read 1 sector?
• ratetransfer = 100 sectors/track * 512 B/sect

• ttransfer = 512 B / 2.4 MB/s = 0.2ms

• trotation = .5 / 60 RPS = 8.3ms

• tdisk = 9ms + 8.3ms + 0.2ms (ttranfer) + 1ms

• ttransfer is only a small component!!

• end of story? no! tqueuing not fixed (gets lon

/O
10© 20 l, W

V , Lip

o
nterface

sfer rate

L
sfer rate

p
le
02 by Hil
ijaykumar

• s

• F

• o
CIS 501 Lecture Notes
Storage Hierarchy III: Disks, Buses and I

ood, Sohi, Smith,
asti and Roth

Disk Alternatives

lid state disk (SSD)
• DRAM + battery backup with standard disk i

+ fast: no seek time, no rotation time, fast tran

– expensive

ASH memory
+ fast: no seek time, no rotation time, fast tran

+ non-volatile

– slow: bulk erase before write

– “wears” out over time

tical disks (CDs)
• cheap if write-once, expensive if write-multip

– slow

11© 2002 oo
Vija ipa

E l Disks

cr finer control
–

e
+

–

ra ultiple platters
– ltiple surfaces

–

by Hill, W
ykumar, L

• in

• fix

• pa
CIS 501 Lecture Notes
Storage Hierarchy III: Disks, Buses and I/O

d, Sohi, Smith,
sti and Roth

xtensions to Conventiona

easing density: more sensitive heads,
 increases cost

d head: head per track
 seek time eliminated

 low track density

llel transfer: simultaneous read from m
 difficulty in looking onto different tracks on mu

 lower cost alternatives possible (disk arrays)

12© 2002 oo
Vijay ipas

r onal Disks

sk ata
+

+

–

sk ce latency
•

• ps back and forth)

•

by Hill, W
kumar, L

Mo

• di

• di
CIS 501 Lecture Notes
Storage Hierarchy III: Disks, Buses and I/O

d, Sohi, Smith,
ti and Roth

e Extensions to Conventi

 caches: disk-controller RAM buffers d
 fast writes: RAM acts as a write buffer

 better utilization of host-to-device path

 high miss rate increases request latency

 scheduling: schedule requests to redu
 e.g., schedule request with shortest seek time

 e.g., “elevator” algorithm for seeks (head swee

 works best for unlikely cases (long queues)

CIS 501 Lecture Notes
Storage Hierarchy III: Disks, Buses and I/O

13© 2 ill, W
r, L

Disk Arrays

co ual disks (D = # disks)
ross disks

l for higher b/w (IOPS)

ution => load balancing

es (A,B, and C): each 2 sectors long

B1

A0

C0

A1

C1

B0 A1
B0

A0

C0
C1

B1

A1
B0

A0

C0
C1

B1

A1
B0

A0

C0
C1

B1

fine-grain stripingcoarse-grain striping
002 by H
Vijaykuma

•
ood, Sohi, Smith,
ipasti and Roth

llection of individ
• distribute data ac

• access in paralle

• issue: data distrib

• e.g., 3 disks, 3 fil

A1

A0

B1

B0

C1

C0

undistributed

14© 2002 oo
Vijay ipas

dth

e
• sible data (sector)

•

+

+ an single disk

– ized (disk skew)

a
•

• requests at once)

•

m tripe width
by Hill, W
kumar, L

• fin

• co
CIS 501 Lecture Notes
Storage Hierarchy III: Disks, Buses and I/O

d, Sohi, Smith,
ti and Roth

Disk Arrays: Stripe Wi

-grain striping
 D * stripe width evenly divides smallest acces

 only one request served at a time

 perfect load balance

 effective transfer rate approx D times better th

 access time can go up, unless disks synchron

rse-grain striping
 data transfer parallelism for large requests

 concurrency for small requests (several small

 “statistical” load balance

ust consider workload to determine s

/O
15© 20 l, W

V r, Li

AIDs

is ll hardware failures
ore common

tr d by failure

x n

A ks [Patterson+87]
nce + reliability

 l concurrency

)

, C=2)
02 by Hil
ijaykuma

• d

• s

• fi

• R

• 6
CIS 501 Lecture Notes
Storage Hierarchy III: Disks, Buses and I

ood, Sohi, Smith,
pasti and Roth

Disk Redundancy and R

k failures are a significant fraction of a
• electrical failures rare, mechanical failures m

iping increases number of files touche

 with replication and/or parity protectio

ID: redundant array of inexpensive dis
• arrays of cheap disks provide high performa

• D = # data disks C = # check disks

evels of RAID depend on redundancy/
• level 1: full mirroring (D==C)

• level 3: bit-interleaved parity (e.g., D=8, C=1

• level 6: two-dimensional error bits (e.g., D=8

CIS 501 Lecture Notes
Storage Hierarchy III: Disks, Buses and I/O

16© 20 ll, Wood, Sohi, Smith,
V r, Lipasti and Roth

ure

trolled

rs (IOPs)

U

te

m

P

02 by Hi
ijaykuma

CP

$

I/O

adap

IO
I/O System Architect

• buses
• memory bus

• I/O bus

• I/O processing
• program con

• DMA

• I/O processo

I/O

I/O

memoryr

emory bus

I/O bus

DMAC

/O
17© ill,

ar,

cl
k ⇒ fast

instead ⇒ slow

sw d and released
low

nd reply ⇒ fast

ar xt
nt transfer

low

 medium

ot
2002 by H
Vijaykum

•

•

•

•
CIS 501 Lecture Notes
Storage Hierarchy III: Disks, Buses and I

Wood, Sohi, Smith,
Lipasti and Roth

Bus Issues

ocking: is bus clocked?
• synchronous: clocked, short bus or slow cloc

• asynchronous: no clock, use “handshaking”

itching: when control of bus is acquire
• atomic: bus held until request complete ⇒ s

• split-transaction: bus free between request a

bitration: deciding who gets the bus ne
• overlap arbitration for next master with curre

• daisy chain: closer devices have priority ⇒ s

• distributed: wired-OR, low-priority back-off ⇒

her issues
• split data/address lines, width, burst transfer

/O
18© 20 l, W

V r, Lip

es

e esign)

/O standard) + cost

special features
m ry

s

s

original PC bus
tape, CD-ROM

“plug+play”
high-level interface

modem, “hot-swap”
power line, packetized

fast USB
02 by Hil
ijaykuma

• m

• I

emo

buse

I/O

buse
CIS 501 Lecture Notes
Storage Hierarchy III: Disks, Buses and I

ood, Sohi, Smith,
asti and Roth

I/O and Memory Bus

mory buses: speed (usually custom d

 buses: compatibility (usually industry

bits MHz peak MB/s
Summit 128 60 960

Challenge 256 48 1200
XDBus 144 66 1056

ISA 16 8 16
IDE 16 8 16
PCI 32(64) 33(66) 133(266)

SCSI/2 8/16 5/10 10/20
PCMCIA 8/16 8 16

USB serial isoch. 1.5
FireWire serial isoch. 100

19© 2002 b od,
Vijayk asti

in
• e

–

+

 P
• (operations

+

–

A
• c ddress (but that’s all)

+

– emory bus
y Hill, Wo
umar, Lip

• ma

• I/O

• DM
CIS 501 Lecture Notes
Storage Hierarchy III: Disks, Buses and I/O

Sohi, Smith,
 and Roth

Who Does I/O?

 CPU
xplicitly executes all I/O operations

high overhead, potential cache pollution

but no coherence problems

rocessor (IOP or channel processor)
special or general) processor dedicated to I/O

fast

may be overkill, cache coherence problems

C (direct memory access controller)
an transfer data to/from memory given start a

fast, usually simple

still may be coherence problems, must be on m

20© 2002 ood
Vijay ipas

o cessors

t elf

• d addresses

•

 C/IOP is finished?
•

• t

d dresses?
• at a time

• LB
by Hill, W
kumar, L

C

• no

• I/O

• I/O

• Q:
CIS 501 Lecture Notes
Storage Hierarchy III: Disks, Buses and I/O

, Sohi, Smith,
ti and Roth

mmunicating with I/O Pro

issues if main CPU performs I/O by its

control: how to initialize DMAC/IOP?
memory mapped: ld/st to preset, VM-protecte

priveleged I/O instructions

completion: how does CPU know DMA
polling: periodically check status bit ⇒ slow

interrupt: I/O completion interrupts CPU ⇒ fas

o DMAC/IOP use physical or virtual ad
physical: simpler, but can only transfer 1 page

virtual: more powerful, but DMAC/IOP needs T

	Storage Hierarchy III: I/O System
	• boring, but important
	• ostensibly about general I/O, mainly about disks

	• performance: latency & throughput
	• disks
	• parameters
	• extensions
	• redundancy and RAID

	• buses
	• I/O system architecture
	• DMA and I/O processors

	Readings
	H+P
	• chapter 6

	other
	• D. Patterson, G. Gibson, and R. Katz, “A Case for Redundant Arrays of Inexpensive Disks (RAID)”

	I/O (Disk) Performance
	• who cares? you do
	• remember Amdahl’s Law
	• want fast disk access (fast swap, fast file reads)

	• I/O performance
	• bandwidth: I/Os per second (IOPS)
	• latency: response time

	• is I/O (disk) latency important? why not just context-switch?
	– context-switching requires more memory
	– context-switching requires jobs to context-switch to
	– context-switching annoys users (productivity = f(1/response time))

	I/O Device Characteristics
	mouse
	I
	human
	0.01
	CRT
	O
	human
	60,000
	modem
	I/O
	machine
	2-8
	LAN
	I/O
	machine
	500-6000
	tape
	storage
	machine
	2000
	disk
	storage
	machine
	2000-10,000
	• type
	• input: read only
	• output: write only
	• storage: both

	• partner
	• human
	• machine

	• data rate
	• peak transfer rate

	Disk Parameters
	• 1–20 platters (data on both sides)
	• magnetic iron-oxide coating
	• 1 read/write head per side

	• 500–2500 tracks per platter
	• 32–128 sectors per track
	• sometimes fewer on inside tracks

	• 512–2048 bytes per sector
	• usually fixed length
	• data + ECC (parity) + gap

	• 4–24GB total
	• 3000–10000 RPM

	Disk Performance
	tdisk: tseek + trotation + ttransfer + tcontroller + tqueuing
	• tseek (seek time): move head to track
	• trotation (rotational latency): wait for sector to come around
	• average trotation = 0.5 / RPS // (RPS = RPM / 60)

	• ttransfer (transfer time): read disk
	• ratetransfer = (bytes/sector * sector/track * RPS)
	• ttransfer = bytes transferred / ratetransfer

	• tcontroller (controller delay): wait for controller to do its thing
	• tqueuing (queueing delay): wait for older requests to finish

	Disk Performance Example
	• parameters
	• 3600 RPM ﬁ 60 RPS
	• avg seek time: 9ms
	• 100 sectors per track, 512 bytes per sector
	• controller + queuing delays: 1ms

	• q: average time to read 1 sector?
	• ratetransfer = 100 sectors/track * 512 B/sector * 60 RPS = 2.4 MB/s
	• ttransfer = 512 B / 2.4 MB/s = 0.2ms
	• trotation = .5 / 60 RPS = 8.3ms
	• tdisk = 9ms + 8.3ms + 0.2ms (ttranfer) + 1ms = 18.5ms
	• ttransfer is only a small component!!
	• end of story? no! tqueuing not fixed (gets longer with more request)

	Disk Performance: Queuing Theory
	• I/O is a queuing system
	• equilibrium: ratearrival == ratedeparture
	• total time tsystem = tqueue + tserver
	• ratearrival * tsystem = lengthsystem (Little’s Law)
	• utilizationserver = tserver * ratearrival

	• the important result (derivation in H+P)
	• tqueue = tserver * utilizationserver / (1 – utilizationserver)
	• tsystem = tserver / (1 – utilizationserver)
	• if server highly utilized tsystem gets VERY HIGH
	• lesson: keep utilization low (below 75%)

	• q: what is new tdisk if disk is 50% utilized
	• tdisk_new = tdisk_old / (1 – 0.50) = 37ms

	Disk Usage Models
	• data mining + supercomputing
	• large files, sequential reads
	• raw data transfer rate (ratetransfer) is most important

	• transaction processing
	• large files, but random access, many small requests
	• IOPS is most important

	• time sharing filesystems
	• small files, sequential accesses, potential for file caching
	• IOPS is most important

	must design disk (I/O) system based on target workload
	• use disk benchmarks (they exist)

	Disk Alternatives
	• solid state disk (SSD)
	• DRAM + battery backup with standard disk interface
	+ fast: no seek time, no rotation time, fast transfer rate
	– expensive

	• FLASH memory
	+ fast: no seek time, no rotation time, fast transfer rate
	+ non-volatile
	– slow: bulk erase before write
	– “wears” out over time

	• optical disks (CDs)
	• cheap if write-once, expensive if write-multiple
	– slow

	Extensions to Conventional Disks
	• increasing density: more sensitive heads, finer control
	– increases cost

	• fixed head: head per track
	+ seek time eliminated
	– low track density

	• parallel transfer: simultaneous read from multiple platters
	– difficulty in looking onto different tracks on multiple surfaces
	– lower cost alternatives possible (disk arrays)

	More Extensions to Conventional Disks
	• disk caches:�disk-controller RAM buffers data
	+ fast writes: RAM acts as a write buffer
	+ better utilization of host-to-device path
	– high miss rate increases request latency

	• disk scheduling: schedule requests to reduce latency
	• e.g., schedule request with shortest seek time
	• e.g., “elevator” algorithm for seeks (head sweeps back and forth)
	• works best for unlikely cases (long queues)

	Disk Arrays
	• collection of individual disks (D = # disks)
	• distribute data across disks
	• access in parallel for higher b/w (IOPS)
	• issue: data distribution => load balancing
	• e.g., 3 disks, 3 files (A,B, and C): each 2 sectors long

	Disk Arrays: Stripe Width
	• fine-grain striping
	• D * stripe width evenly divides smallest accessible data (sector)
	• only one request served at a time
	+ perfect load balance
	+ effective transfer rate approx D times better than single disk
	– access time can go up, unless disks synchronized (disk skew)

	• coarse-grain striping
	• data transfer parallelism for large requests
	• concurrency for small requests (several small requests at once)
	• “statistical” load balance

	must consider workload to determine stripe width
	Disk Redundancy and RAIDs
	• disk failures are a significant fraction of all hardware failures
	• electrical failures rare, mechanical failures more common

	• striping increases number of files touched by failure
	• fix with replication and/or parity protection
	• RAID: redundant array of inexpensive disks [Patterson+87]
	• arrays of cheap disks provide high performance + reliability
	• D = # data disks C = # check disks

	• 6 levels of RAID depend on redundancy/concurrency
	• level 1: full mirroring (D==C)
	• level 3: bit-interleaved parity (e.g., D=8, C=1)
	• level 6: two-dimensional error bits (e.g., D=8, C=2)

	I/O System Architecture
	• buses
	• memory bus
	• I/O bus

	• I/O processing
	• program controlled
	• DMA
	• I/O processors (IOPs)

	Bus Issues
	• clocking: is bus clocked?
	• synchronous: clocked, short bus or slow clock ﬁ fast
	• asynchronous: no clock, use “handshaking” instead ﬁ slow

	• switching: when control of bus is acquired and released
	• atomic: bus held until request complete ﬁ slow
	• split-transaction: bus free between request and reply ﬁ fast

	• arbitration: deciding who gets the bus next
	• overlap arbitration for next master with current transfer
	• daisy chain: closer devices have priority ﬁ slow
	• distributed: wired-OR, low-priority back-off ﬁ medium

	• other issues
	• split data/address lines, width, burst transfer

	I/O and Memory Buses
	memory
	buses
	Summit
	128
	60
	960
	Challenge
	256
	48
	1200
	XDBus
	144
	66
	1056
	I/O
	buses
	ISA
	16
	8
	16
	original PC bus
	IDE
	16
	8
	16
	tape, CD-ROM
	PCI
	32(64)
	33(66)
	133(266)
	“plug+play”
	SCSI/2
	8/16
	5/10
	10/20
	high-level interface
	PCMCIA
	8/16
	8
	16
	modem, “hot-swap”
	USB
	serial
	isoch.
	1.5
	power line, packetized
	FireWire
	serial
	isoch.
	100
	fast USB
	• memory buses: speed (usually custom design)
	• I/O buses: compatibility (usually industry standard) + cost

	Who Does I/O?
	• main CPU
	• explicitly executes all I/O operations
	– high overhead, potential cache pollution
	+ but no coherence problems

	• I/O Processor (IOP or channel processor)
	• (special or general) processor dedicated to I/O operations
	+ fast
	– may be overkill, cache coherence problems

	• DMAC (direct memory access controller)
	• can transfer data to/from memory given start address (but that’s all)
	+ fast, usually simple
	– still may be coherence problems, must be on memory bus

	Communicating with I/O Processors
	• not issues if main CPU performs I/O by itself
	• I/O control: how to initialize DMAC/IOP?
	• memory mapped: ld/st to preset, VM-protected addresses
	• priveleged I/O instructions

	• I/O completion: how does CPU know DMAC/IOP is finished?
	• polling: periodically check status bit ﬁ slow
	• interrupt: I/O completion interrupts CPU ﬁ fast

	• Q: do DMAC/IOP use physical or virtual addresses?
	• physical: simpler, but can only transfer 1 page at a time
	• virtual: more powerful, but DMAC/IOP needs TLB

	I/O System Example
	• given
	• 500 MIPS CPU
	• 16B wide, 100 ns memory system
	• 10000 instrs per I/O
	• 16KB per I/O
	• 200 MB/s I/O bus, with room for 20 SCSI-2 controllers
	• SCSI-2 strings–20MB/s with 15 disks per bus
	• SCSI-2 1ms overhead per I/O
	• 7200 RPM (120 RPS), 8ms avg seek, 6MB/s transfer disks
	• 200GB total storage

	• Q: choose 2BG or 8GB disks for maximum IOPS?
	• how to arrange disks and controllers?

	I/O System Example (cont’d)
	• step 1: calculate CPU, memory, I/O bus peak IOPS
	• CPU: 500 MIPS/ (10000 instructions/IO) = 50000 IOPS
	• memory: (16-bytes / 100ns) / 16KB = 10000 IOPS
	• I/O bus: (200MB/s) / 16KB = 12500 IOPS
	• memory bus (10000 IOPS) is the bottleneck!

	• step 2: calculate disk IOPS
	• tdisk = 8ms + 0.5 / 120 RPS + 16BK / (6MB/s) = 15ms
	• disk: 1 / 15ms = 67 IOPS
	• 8GB disks ﬁ need 25 ﬁ 25 * 67 IOPS = 1675 IOPS
	• 2GB disks ﬁ need 100 ﬁ 100 * 67 IOPS = 6700 IOPS
	• 100 2GB disks (6700 IOPS) disks are new bottleneck!

	• answer.I: 100 2GB disks!

	I/O System Example (cont’d)
	• step 3: calculate SCSI-2 controller peak IOPS
	• tSCSI-2 = 1ms + 16KB / (20MB/s) = 1.8ms
	• SCSI-2: 1 / 1.8ms = 556 IOPS

	• step 4: how many disks per controller?
	• 556 IOPS / 67 IOPS = 8 disks per controller

	• step 5: how many controllers?
	• 100 disks / 8 disks/controller = 13 controllers

	• answer.II: 13 controllers, 8-disks each

	Summary
	• disks
	• parameters
	• performance (tqueuing gets worse as utilization increases)
	• RAID

	• buses
	• I/O vs. memory

	• I/O system architecture
	• CPU vs. DMAC vs. IOP

	next up: pipelining

