Storage Hierarchy Ill: I/O System

reg

#

1$ | | DS

v

L2

#

L3

#

memory

 boring, but important
 ostensibly about general 1/O, mainly about disks

» performance: latency & throughput
o disks

* parameters
» extensions
* redundancy and RAID

e buses

* |/O system architecture
« DMA and 1I/O processors

/O Device Characteristics

* type
e input: read only
 output: write only

* storage: both device | type | partner | data rate KB/s
e partner mouse I human 0.01
e human CRT O human 60,000
e machine modem /O machine 2-8
. data rate LAN /O machine 500-6000
tape | storage maching 2000
* peak transfer rate disk | storagd machine 2000-10,000

Disk Parameters

% platter » 1-20 platters (data on both sides)
head % e magnetic iron-oxide coating

1 read/write head per side

* 500-2500 tracks per platter

splndle

track

» 32—-128 sectors per track
» sometimes fewer on inside tracks

e 512-2048 bytes per sector

e usually fixed length
 data + ECC (parity) + gap

e 4-24GB total
* 3000-10000 RPM

S

sector

Disk Performance

+ 1 +1

tdisk: tseek + trotation + ttransfer controller

* ccek (S€€k time): move head to track

gueuing

* t,otation (rotational latency): wait for sector to come around
e average t,gtation = 0.5/ RPS Il (RPS = RPM / 60)

* tiansfer (transfer time): read disk

* rateyansfer = (Dytes/sector * sector/track * RPS)
* tiansfer = Dytes transferred / rat€anser

* toontroller (CONtroller delay): wait for controller to do its thing

* tqueuing (Queueing delay): wait for older requests to finish

Disk Performance Example

* parameters

« 3600 RPM O 60 RPS

e avg seek time: 9ms

» 100 sectors per track, 512 bytes per sector
 controller + queuing delays: 1ms

* (. average time to read 1 sector?

e ratey ansfer = 100 sectors/track * 512 B/sector * 60 RPS = 2.4 MB/s
* tyansfer = 912 B/ 2.4 MB/s = 0.2ms

* trotation = -2 / 60 RPS = 8.3ms

* tgisk = 9Ms + 8.3ms + 0.2ms (tyanfer) + IMs = 18.5ms

* tiansfer IS ONly & small component!!

* end of story? no! ty,euing NOt fixed (gets longer with more request)

Disk Alternatives

e solid state disk (SSD)

« DRAM + battery backup with standard disk interface
+ fast: no seek time, no rotation time, fast transfer rate
— expensive

e FLASH memory

+ fast: no seek time, no rotation time, fast transfer rate
+ non-volatile

— slow: bulk erase before write

— “wears” out over time

o optical disks (CDs)
 cheap if write-once, expensive if write-multiple
— slow

Extensions to Conventional Disks

e increasing density: more sensitive heads, finer control
— increases cost

« fixed head: head per track
+ seek time eliminated
— low track density
o parallel transfer: simultaneous read from multiple platters

— difficulty in looking onto different tracks on multiple surfaces
— lower cost alternatives possible (disk arrays)

More Extensions to Conventional Disks

o disk caches: disk-controller RAM buffers data
+ fast writes: RAM acts as a write buffer
+ better utilization of host-to-device path
— high miss rate increases request latency

e disk scheduling: schedule requests to reduce latency

* e.g., schedule request with shortest seek time
* e.g., “elevator” algorithm for seeks (head sweeps back and forth)
» works best for unlikely cases (long queues)

Disk Arrays

e collection of individual disks (D = # disks)

o distribute data across disks

« access in parallel for higher b/w (IOPS)

e issue: data distribution => load balancing

e e.g., 3 disks, 3 files (A,B, and C): each 2 sectors long

undistributed coarse-grain striping fine-grain striping
AO0| [AO] |AO
AQ| |BO| [CO AQ| A1 |BO Al |Al] AL
BO|[|BO| [BO
Bl| (Bl |B1
All Bl |C1 B1| (COQ| IC1 ICO| (CO] |CO|
IC1| [C1] |IC1
A M A M A M

Disk Arrays: Stripe Width

e fine-grain striping
» D * stripe width evenly divides smallest accessible data (sector)
» only one request served at a time
+ perfect load balance
+ effective transfer rate approx D times better than single disk
— access time can go up, unless disks synchronized (disk skew)

e coarse-grain striping
« data transfer parallelism for large requests

» concurrency for small requests (several small requests at once)
« “statistical” load balance

must consider workload to determine stripe width

Disk Redundancy and RAIDs

o disk failures are a significant fraction of all hardware failures
» electrical failures rare, mechanical failures more common

e striping increases number of files touched by failure
« fix with replication and/or parity protection

o RAID: redundant array of inexpensive disks [Patterson+87]
e arrays of cheap disks provide high performance + reliability
» D = # data disks C = # check disks

* 6 levels of RAID depend on redundancy/concurrency

e level 1: full mirroring (D==C)
e level 3: bit-interleaved parity (e.g., D=8, C=1)

/O System Architecture

memory bus

adapter| [memory

I/0O bus

e buses

* memory bus
* /O bus

* |/O processing

 program controlled
* DMA
* |/O processors (IOPs)

Bus Issues

e clocking: is bus clocked?

 synchronous: clocked, short bus or slow clock [fast
« asynchronous: no clock, use “handshaking” instead [J slow

» switching. when control of bus is acquired and released

 atomic: bus held until request complete [1 slow
e split-transaction: bus free between request and reply [fast

e arbitration: deciding who gets the bus next
e overlap arbitration for next master with current transfer
e daisy chain: closer devices have priority [1 slow
e distributed: wired-OR, low-priority back-off [I medium

 other issues
* split data/address lines, width, burst transfer

/O and Memory Buses

bits MHz | peak MB/s special features
memory | Summit 128 60 960
buses | Challenge 256 48 1200
XDBus 144 66 1056
/O ISA 16 8 16 original PC bus
buses IDE 16 8 16 tape, CD-ROM
PCI 32(64) | 33(66) 133(266) “plug+play”
SCSI/2 8/16 5/10 10/20 high-level interface
PCMCIA 8/16 8 16 modem, “hot-swap”
USB serial isoch. 1.5 power line, packetize
FireWire serial isoch. 100 fast USB

« memory buses: speed (usually custom design)

¢ |/O buses: compatibility (usually industry standard) + cost

Who Does I/0?

e main CPU

o explicitly executes all I/0 operations
— high overhead, potential cache pollution
+ but no coherence problems

e |/O Processor (IOP or channel processor)

* (special or general) processor dedicated to I/O operations
+ fast
— may be overkill, cache coherence problems

e DMAC (direct memory access controller)
e can transfer data to/from memory given start address (but that’s all)
+ fast, usually simple
— still may be coherence problems, must be on memory bus

Communicating with 1/O Processors

 not issues if main CPU performs 1/O by itself

e |/O control: how to initialize DMAC/IOP?

 memory mapped: Id/st to preset, VM-protected addresses
* priveleged 1/O instructions

 [/O completion. how does CPU know DMAC/IOP is finished?

* polling: periodically check status bit [slow
e interrupt: I/O completion interrupts CPU I fast

* Q: do DMAC/IOP use physical or virtual addresses?

* physical: simpler, but can only transfer 1 page at a time
e virtual: more powerful, but DMAC/IOP needs TLB

	Storage Hierarchy III: I/O System
	• boring, but important
	• ostensibly about general I/O, mainly about disks

	• performance: latency & throughput
	• disks
	• parameters
	• extensions
	• redundancy and RAID

	• buses
	• I/O system architecture
	• DMA and I/O processors

	Readings
	H+P
	• chapter 6

	other
	• D. Patterson, G. Gibson, and R. Katz, “A Case for Redundant Arrays of Inexpensive Disks (RAID)”

	I/O (Disk) Performance
	• who cares? you do
	• remember Amdahl’s Law
	• want fast disk access (fast swap, fast file reads)

	• I/O performance
	• bandwidth: I/Os per second (IOPS)
	• latency: response time

	• is I/O (disk) latency important? why not just context-switch?
	– context-switching requires more memory
	– context-switching requires jobs to context-switch to
	– context-switching annoys users (productivity = f(1/response time))

	I/O Device Characteristics
	mouse
	I
	human
	0.01
	CRT
	O
	human
	60,000
	modem
	I/O
	machine
	2-8
	LAN
	I/O
	machine
	500-6000
	tape
	storage
	machine
	2000
	disk
	storage
	machine
	2000-10,000
	• type
	• input: read only
	• output: write only
	• storage: both

	• partner
	• human
	• machine

	• data rate
	• peak transfer rate

	Disk Parameters
	• 1–20 platters (data on both sides)
	• magnetic iron-oxide coating
	• 1 read/write head per side

	• 500–2500 tracks per platter
	• 32–128 sectors per track
	• sometimes fewer on inside tracks

	• 512–2048 bytes per sector
	• usually fixed length
	• data + ECC (parity) + gap

	• 4–24GB total
	• 3000–10000 RPM

	Disk Performance
	tdisk: tseek + trotation + ttransfer + tcontroller + tqueuing
	• tseek (seek time): move head to track
	• trotation (rotational latency): wait for sector to come around
	• average trotation = 0.5 / RPS // (RPS = RPM / 60)

	• ttransfer (transfer time): read disk
	• ratetransfer = (bytes/sector * sector/track * RPS)
	• ttransfer = bytes transferred / ratetransfer

	• tcontroller (controller delay): wait for controller to do its thing
	• tqueuing (queueing delay): wait for older requests to finish

	Disk Performance Example
	• parameters
	• 3600 RPM ﬁ 60 RPS
	• avg seek time: 9ms
	• 100 sectors per track, 512 bytes per sector
	• controller + queuing delays: 1ms

	• q: average time to read 1 sector?
	• ratetransfer = 100 sectors/track * 512 B/sector * 60 RPS = 2.4 MB/s
	• ttransfer = 512 B / 2.4 MB/s = 0.2ms
	• trotation = .5 / 60 RPS = 8.3ms
	• tdisk = 9ms + 8.3ms + 0.2ms (ttranfer) + 1ms = 18.5ms
	• ttransfer is only a small component!!
	• end of story? no! tqueuing not fixed (gets longer with more request)

	Disk Performance: Queuing Theory
	• I/O is a queuing system
	• equilibrium: ratearrival == ratedeparture
	• total time tsystem = tqueue + tserver
	• ratearrival * tsystem = lengthsystem (Little’s Law)
	• utilizationserver = tserver * ratearrival

	• the important result (derivation in H+P)
	• tqueue = tserver * utilizationserver / (1 – utilizationserver)
	• tsystem = tserver / (1 – utilizationserver)
	• if server highly utilized tsystem gets VERY HIGH
	• lesson: keep utilization low (below 75%)

	• q: what is new tdisk if disk is 50% utilized
	• tdisk_new = tdisk_old / (1 – 0.50) = 37ms

	Disk Usage Models
	• data mining + supercomputing
	• large files, sequential reads
	• raw data transfer rate (ratetransfer) is most important

	• transaction processing
	• large files, but random access, many small requests
	• IOPS is most important

	• time sharing filesystems
	• small files, sequential accesses, potential for file caching
	• IOPS is most important

	must design disk (I/O) system based on target workload
	• use disk benchmarks (they exist)

	Disk Alternatives
	• solid state disk (SSD)
	• DRAM + battery backup with standard disk interface
	+ fast: no seek time, no rotation time, fast transfer rate
	– expensive

	• FLASH memory
	+ fast: no seek time, no rotation time, fast transfer rate
	+ non-volatile
	– slow: bulk erase before write
	– “wears” out over time

	• optical disks (CDs)
	• cheap if write-once, expensive if write-multiple
	– slow

	Extensions to Conventional Disks
	• increasing density: more sensitive heads, finer control
	– increases cost

	• fixed head: head per track
	+ seek time eliminated
	– low track density

	• parallel transfer: simultaneous read from multiple platters
	– difficulty in looking onto different tracks on multiple surfaces
	– lower cost alternatives possible (disk arrays)

	More Extensions to Conventional Disks
	• disk caches:�disk-controller RAM buffers data
	+ fast writes: RAM acts as a write buffer
	+ better utilization of host-to-device path
	– high miss rate increases request latency

	• disk scheduling: schedule requests to reduce latency
	• e.g., schedule request with shortest seek time
	• e.g., “elevator” algorithm for seeks (head sweeps back and forth)
	• works best for unlikely cases (long queues)

	Disk Arrays
	• collection of individual disks (D = # disks)
	• distribute data across disks
	• access in parallel for higher b/w (IOPS)
	• issue: data distribution => load balancing
	• e.g., 3 disks, 3 files (A,B, and C): each 2 sectors long

	Disk Arrays: Stripe Width
	• fine-grain striping
	• D * stripe width evenly divides smallest accessible data (sector)
	• only one request served at a time
	+ perfect load balance
	+ effective transfer rate approx D times better than single disk
	– access time can go up, unless disks synchronized (disk skew)

	• coarse-grain striping
	• data transfer parallelism for large requests
	• concurrency for small requests (several small requests at once)
	• “statistical” load balance

	must consider workload to determine stripe width
	Disk Redundancy and RAIDs
	• disk failures are a significant fraction of all hardware failures
	• electrical failures rare, mechanical failures more common

	• striping increases number of files touched by failure
	• fix with replication and/or parity protection
	• RAID: redundant array of inexpensive disks [Patterson+87]
	• arrays of cheap disks provide high performance + reliability
	• D = # data disks C = # check disks

	• 6 levels of RAID depend on redundancy/concurrency
	• level 1: full mirroring (D==C)
	• level 3: bit-interleaved parity (e.g., D=8, C=1)
	• level 6: two-dimensional error bits (e.g., D=8, C=2)

	I/O System Architecture
	• buses
	• memory bus
	• I/O bus

	• I/O processing
	• program controlled
	• DMA
	• I/O processors (IOPs)

	Bus Issues
	• clocking: is bus clocked?
	• synchronous: clocked, short bus or slow clock ﬁ fast
	• asynchronous: no clock, use “handshaking” instead ﬁ slow

	• switching: when control of bus is acquired and released
	• atomic: bus held until request complete ﬁ slow
	• split-transaction: bus free between request and reply ﬁ fast

	• arbitration: deciding who gets the bus next
	• overlap arbitration for next master with current transfer
	• daisy chain: closer devices have priority ﬁ slow
	• distributed: wired-OR, low-priority back-off ﬁ medium

	• other issues
	• split data/address lines, width, burst transfer

	I/O and Memory Buses
	memory
	buses
	Summit
	128
	60
	960
	Challenge
	256
	48
	1200
	XDBus
	144
	66
	1056
	I/O
	buses
	ISA
	16
	8
	16
	original PC bus
	IDE
	16
	8
	16
	tape, CD-ROM
	PCI
	32(64)
	33(66)
	133(266)
	“plug+play”
	SCSI/2
	8/16
	5/10
	10/20
	high-level interface
	PCMCIA
	8/16
	8
	16
	modem, “hot-swap”
	USB
	serial
	isoch.
	1.5
	power line, packetized
	FireWire
	serial
	isoch.
	100
	fast USB
	• memory buses: speed (usually custom design)
	• I/O buses: compatibility (usually industry standard) + cost

	Who Does I/O?
	• main CPU
	• explicitly executes all I/O operations
	– high overhead, potential cache pollution
	+ but no coherence problems

	• I/O Processor (IOP or channel processor)
	• (special or general) processor dedicated to I/O operations
	+ fast
	– may be overkill, cache coherence problems

	• DMAC (direct memory access controller)
	• can transfer data to/from memory given start address (but that’s all)
	+ fast, usually simple
	– still may be coherence problems, must be on memory bus

	Communicating with I/O Processors
	• not issues if main CPU performs I/O by itself
	• I/O control: how to initialize DMAC/IOP?
	• memory mapped: ld/st to preset, VM-protected addresses
	• priveleged I/O instructions

	• I/O completion: how does CPU know DMAC/IOP is finished?
	• polling: periodically check status bit ﬁ slow
	• interrupt: I/O completion interrupts CPU ﬁ fast

	• Q: do DMAC/IOP use physical or virtual addresses?
	• physical: simpler, but can only transfer 1 page at a time
	• virtual: more powerful, but DMAC/IOP needs TLB

	I/O System Example
	• given
	• 500 MIPS CPU
	• 16B wide, 100 ns memory system
	• 10000 instrs per I/O
	• 16KB per I/O
	• 200 MB/s I/O bus, with room for 20 SCSI-2 controllers
	• SCSI-2 strings–20MB/s with 15 disks per bus
	• SCSI-2 1ms overhead per I/O
	• 7200 RPM (120 RPS), 8ms avg seek, 6MB/s transfer disks
	• 200GB total storage

	• Q: choose 2BG or 8GB disks for maximum IOPS?
	• how to arrange disks and controllers?

	I/O System Example (cont’d)
	• step 1: calculate CPU, memory, I/O bus peak IOPS
	• CPU: 500 MIPS/ (10000 instructions/IO) = 50000 IOPS
	• memory: (16-bytes / 100ns) / 16KB = 10000 IOPS
	• I/O bus: (200MB/s) / 16KB = 12500 IOPS
	• memory bus (10000 IOPS) is the bottleneck!

	• step 2: calculate disk IOPS
	• tdisk = 8ms + 0.5 / 120 RPS + 16BK / (6MB/s) = 15ms
	• disk: 1 / 15ms = 67 IOPS
	• 8GB disks ﬁ need 25 ﬁ 25 * 67 IOPS = 1675 IOPS
	• 2GB disks ﬁ need 100 ﬁ 100 * 67 IOPS = 6700 IOPS
	• 100 2GB disks (6700 IOPS) disks are new bottleneck!

	• answer.I: 100 2GB disks!

	I/O System Example (cont’d)
	• step 3: calculate SCSI-2 controller peak IOPS
	• tSCSI-2 = 1ms + 16KB / (20MB/s) = 1.8ms
	• SCSI-2: 1 / 1.8ms = 556 IOPS

	• step 4: how many disks per controller?
	• 556 IOPS / 67 IOPS = 8 disks per controller

	• step 5: how many controllers?
	• 100 disks / 8 disks/controller = 13 controllers

	• answer.II: 13 controllers, 8-disks each

	Summary
	• disks
	• parameters
	• performance (tqueuing gets worse as utilization increases)
	• RAID

	• buses
	• I/O vs. memory

	• I/O system architecture
	• CPU vs. DMAC vs. IOP

	next up: pipelining

